1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "rcu-string.h" 42 #include "send.h" 43 #include "dev-replace.h" 44 #include "props.h" 45 #include "sysfs.h" 46 #include "qgroup.h" 47 #include "tree-log.h" 48 #include "compression.h" 49 #include "space-info.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "subpage.h" 53 #include "fs.h" 54 #include "accessors.h" 55 #include "extent-tree.h" 56 #include "root-tree.h" 57 #include "defrag.h" 58 #include "dir-item.h" 59 #include "uuid-tree.h" 60 #include "ioctl.h" 61 #include "file.h" 62 #include "scrub.h" 63 #include "super.h" 64 65 #ifdef CONFIG_64BIT 66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 67 * structures are incorrect, as the timespec structure from userspace 68 * is 4 bytes too small. We define these alternatives here to teach 69 * the kernel about the 32-bit struct packing. 70 */ 71 struct btrfs_ioctl_timespec_32 { 72 __u64 sec; 73 __u32 nsec; 74 } __attribute__ ((__packed__)); 75 76 struct btrfs_ioctl_received_subvol_args_32 { 77 char uuid[BTRFS_UUID_SIZE]; /* in */ 78 __u64 stransid; /* in */ 79 __u64 rtransid; /* out */ 80 struct btrfs_ioctl_timespec_32 stime; /* in */ 81 struct btrfs_ioctl_timespec_32 rtime; /* out */ 82 __u64 flags; /* in */ 83 __u64 reserved[16]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 87 struct btrfs_ioctl_received_subvol_args_32) 88 #endif 89 90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 91 struct btrfs_ioctl_send_args_32 { 92 __s64 send_fd; /* in */ 93 __u64 clone_sources_count; /* in */ 94 compat_uptr_t clone_sources; /* in */ 95 __u64 parent_root; /* in */ 96 __u64 flags; /* in */ 97 __u32 version; /* in */ 98 __u8 reserved[28]; /* in */ 99 } __attribute__ ((__packed__)); 100 101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 102 struct btrfs_ioctl_send_args_32) 103 104 struct btrfs_ioctl_encoded_io_args_32 { 105 compat_uptr_t iov; 106 compat_ulong_t iovcnt; 107 __s64 offset; 108 __u64 flags; 109 __u64 len; 110 __u64 unencoded_len; 111 __u64 unencoded_offset; 112 __u32 compression; 113 __u32 encryption; 114 __u8 reserved[64]; 115 }; 116 117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 118 struct btrfs_ioctl_encoded_io_args_32) 119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 120 struct btrfs_ioctl_encoded_io_args_32) 121 #endif 122 123 /* Mask out flags that are inappropriate for the given type of inode. */ 124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 125 unsigned int flags) 126 { 127 if (S_ISDIR(inode->i_mode)) 128 return flags; 129 else if (S_ISREG(inode->i_mode)) 130 return flags & ~FS_DIRSYNC_FL; 131 else 132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 133 } 134 135 /* 136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 137 * ioctl. 138 */ 139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 140 { 141 unsigned int iflags = 0; 142 u32 flags = binode->flags; 143 u32 ro_flags = binode->ro_flags; 144 145 if (flags & BTRFS_INODE_SYNC) 146 iflags |= FS_SYNC_FL; 147 if (flags & BTRFS_INODE_IMMUTABLE) 148 iflags |= FS_IMMUTABLE_FL; 149 if (flags & BTRFS_INODE_APPEND) 150 iflags |= FS_APPEND_FL; 151 if (flags & BTRFS_INODE_NODUMP) 152 iflags |= FS_NODUMP_FL; 153 if (flags & BTRFS_INODE_NOATIME) 154 iflags |= FS_NOATIME_FL; 155 if (flags & BTRFS_INODE_DIRSYNC) 156 iflags |= FS_DIRSYNC_FL; 157 if (flags & BTRFS_INODE_NODATACOW) 158 iflags |= FS_NOCOW_FL; 159 if (ro_flags & BTRFS_INODE_RO_VERITY) 160 iflags |= FS_VERITY_FL; 161 162 if (flags & BTRFS_INODE_NOCOMPRESS) 163 iflags |= FS_NOCOMP_FL; 164 else if (flags & BTRFS_INODE_COMPRESS) 165 iflags |= FS_COMPR_FL; 166 167 return iflags; 168 } 169 170 /* 171 * Update inode->i_flags based on the btrfs internal flags. 172 */ 173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 174 { 175 struct btrfs_inode *binode = BTRFS_I(inode); 176 unsigned int new_fl = 0; 177 178 if (binode->flags & BTRFS_INODE_SYNC) 179 new_fl |= S_SYNC; 180 if (binode->flags & BTRFS_INODE_IMMUTABLE) 181 new_fl |= S_IMMUTABLE; 182 if (binode->flags & BTRFS_INODE_APPEND) 183 new_fl |= S_APPEND; 184 if (binode->flags & BTRFS_INODE_NOATIME) 185 new_fl |= S_NOATIME; 186 if (binode->flags & BTRFS_INODE_DIRSYNC) 187 new_fl |= S_DIRSYNC; 188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 189 new_fl |= S_VERITY; 190 191 set_mask_bits(&inode->i_flags, 192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 193 S_VERITY, new_fl); 194 } 195 196 /* 197 * Check if @flags are a supported and valid set of FS_*_FL flags and that 198 * the old and new flags are not conflicting 199 */ 200 static int check_fsflags(unsigned int old_flags, unsigned int flags) 201 { 202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 203 FS_NOATIME_FL | FS_NODUMP_FL | \ 204 FS_SYNC_FL | FS_DIRSYNC_FL | \ 205 FS_NOCOMP_FL | FS_COMPR_FL | 206 FS_NOCOW_FL)) 207 return -EOPNOTSUPP; 208 209 /* COMPR and NOCOMP on new/old are valid */ 210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 211 return -EINVAL; 212 213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 214 return -EINVAL; 215 216 /* NOCOW and compression options are mutually exclusive */ 217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 218 return -EINVAL; 219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 220 return -EINVAL; 221 222 return 0; 223 } 224 225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 226 unsigned int flags) 227 { 228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 229 return -EPERM; 230 231 return 0; 232 } 233 234 /* 235 * Set flags/xflags from the internal inode flags. The remaining items of 236 * fsxattr are zeroed. 237 */ 238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 239 { 240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 241 242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 243 return 0; 244 } 245 246 int btrfs_fileattr_set(struct mnt_idmap *idmap, 247 struct dentry *dentry, struct fileattr *fa) 248 { 249 struct inode *inode = d_inode(dentry); 250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 251 struct btrfs_inode *binode = BTRFS_I(inode); 252 struct btrfs_root *root = binode->root; 253 struct btrfs_trans_handle *trans; 254 unsigned int fsflags, old_fsflags; 255 int ret; 256 const char *comp = NULL; 257 u32 binode_flags; 258 259 if (btrfs_root_readonly(root)) 260 return -EROFS; 261 262 if (fileattr_has_fsx(fa)) 263 return -EOPNOTSUPP; 264 265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 266 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 267 ret = check_fsflags(old_fsflags, fsflags); 268 if (ret) 269 return ret; 270 271 ret = check_fsflags_compatible(fs_info, fsflags); 272 if (ret) 273 return ret; 274 275 binode_flags = binode->flags; 276 if (fsflags & FS_SYNC_FL) 277 binode_flags |= BTRFS_INODE_SYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_SYNC; 280 if (fsflags & FS_IMMUTABLE_FL) 281 binode_flags |= BTRFS_INODE_IMMUTABLE; 282 else 283 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 284 if (fsflags & FS_APPEND_FL) 285 binode_flags |= BTRFS_INODE_APPEND; 286 else 287 binode_flags &= ~BTRFS_INODE_APPEND; 288 if (fsflags & FS_NODUMP_FL) 289 binode_flags |= BTRFS_INODE_NODUMP; 290 else 291 binode_flags &= ~BTRFS_INODE_NODUMP; 292 if (fsflags & FS_NOATIME_FL) 293 binode_flags |= BTRFS_INODE_NOATIME; 294 else 295 binode_flags &= ~BTRFS_INODE_NOATIME; 296 297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 298 if (!fa->flags_valid) { 299 /* 1 item for the inode */ 300 trans = btrfs_start_transaction(root, 1); 301 if (IS_ERR(trans)) 302 return PTR_ERR(trans); 303 goto update_flags; 304 } 305 306 if (fsflags & FS_DIRSYNC_FL) 307 binode_flags |= BTRFS_INODE_DIRSYNC; 308 else 309 binode_flags &= ~BTRFS_INODE_DIRSYNC; 310 if (fsflags & FS_NOCOW_FL) { 311 if (S_ISREG(inode->i_mode)) { 312 /* 313 * It's safe to turn csums off here, no extents exist. 314 * Otherwise we want the flag to reflect the real COW 315 * status of the file and will not set it. 316 */ 317 if (inode->i_size == 0) 318 binode_flags |= BTRFS_INODE_NODATACOW | 319 BTRFS_INODE_NODATASUM; 320 } else { 321 binode_flags |= BTRFS_INODE_NODATACOW; 322 } 323 } else { 324 /* 325 * Revert back under same assumptions as above 326 */ 327 if (S_ISREG(inode->i_mode)) { 328 if (inode->i_size == 0) 329 binode_flags &= ~(BTRFS_INODE_NODATACOW | 330 BTRFS_INODE_NODATASUM); 331 } else { 332 binode_flags &= ~BTRFS_INODE_NODATACOW; 333 } 334 } 335 336 /* 337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 338 * flag may be changed automatically if compression code won't make 339 * things smaller. 340 */ 341 if (fsflags & FS_NOCOMP_FL) { 342 binode_flags &= ~BTRFS_INODE_COMPRESS; 343 binode_flags |= BTRFS_INODE_NOCOMPRESS; 344 } else if (fsflags & FS_COMPR_FL) { 345 346 if (IS_SWAPFILE(inode)) 347 return -ETXTBSY; 348 349 binode_flags |= BTRFS_INODE_COMPRESS; 350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 351 352 comp = btrfs_compress_type2str(fs_info->compress_type); 353 if (!comp || comp[0] == 0) 354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 355 } else { 356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 357 } 358 359 /* 360 * 1 for inode item 361 * 2 for properties 362 */ 363 trans = btrfs_start_transaction(root, 3); 364 if (IS_ERR(trans)) 365 return PTR_ERR(trans); 366 367 if (comp) { 368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 369 strlen(comp), 0); 370 if (ret) { 371 btrfs_abort_transaction(trans, ret); 372 goto out_end_trans; 373 } 374 } else { 375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 376 0, 0); 377 if (ret && ret != -ENODATA) { 378 btrfs_abort_transaction(trans, ret); 379 goto out_end_trans; 380 } 381 } 382 383 update_flags: 384 binode->flags = binode_flags; 385 btrfs_sync_inode_flags_to_i_flags(inode); 386 inode_inc_iversion(inode); 387 inode->i_ctime = current_time(inode); 388 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 389 390 out_end_trans: 391 btrfs_end_transaction(trans); 392 return ret; 393 } 394 395 /* 396 * Start exclusive operation @type, return true on success 397 */ 398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 399 enum btrfs_exclusive_operation type) 400 { 401 bool ret = false; 402 403 spin_lock(&fs_info->super_lock); 404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 405 fs_info->exclusive_operation = type; 406 ret = true; 407 } 408 spin_unlock(&fs_info->super_lock); 409 410 return ret; 411 } 412 413 /* 414 * Conditionally allow to enter the exclusive operation in case it's compatible 415 * with the running one. This must be paired with btrfs_exclop_start_unlock and 416 * btrfs_exclop_finish. 417 * 418 * Compatibility: 419 * - the same type is already running 420 * - when trying to add a device and balance has been paused 421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 422 * must check the condition first that would allow none -> @type 423 */ 424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 425 enum btrfs_exclusive_operation type) 426 { 427 spin_lock(&fs_info->super_lock); 428 if (fs_info->exclusive_operation == type || 429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 430 type == BTRFS_EXCLOP_DEV_ADD)) 431 return true; 432 433 spin_unlock(&fs_info->super_lock); 434 return false; 435 } 436 437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 438 { 439 spin_unlock(&fs_info->super_lock); 440 } 441 442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 443 { 444 spin_lock(&fs_info->super_lock); 445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 446 spin_unlock(&fs_info->super_lock); 447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 448 } 449 450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 451 enum btrfs_exclusive_operation op) 452 { 453 switch (op) { 454 case BTRFS_EXCLOP_BALANCE_PAUSED: 455 spin_lock(&fs_info->super_lock); 456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || 458 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE || 459 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 460 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 461 spin_unlock(&fs_info->super_lock); 462 break; 463 case BTRFS_EXCLOP_BALANCE: 464 spin_lock(&fs_info->super_lock); 465 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 466 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 467 spin_unlock(&fs_info->super_lock); 468 break; 469 default: 470 btrfs_warn(fs_info, 471 "invalid exclop balance operation %d requested", op); 472 } 473 } 474 475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 476 { 477 return put_user(inode->i_generation, arg); 478 } 479 480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 481 void __user *arg) 482 { 483 struct btrfs_device *device; 484 struct fstrim_range range; 485 u64 minlen = ULLONG_MAX; 486 u64 num_devices = 0; 487 int ret; 488 489 if (!capable(CAP_SYS_ADMIN)) 490 return -EPERM; 491 492 /* 493 * btrfs_trim_block_group() depends on space cache, which is not 494 * available in zoned filesystem. So, disallow fitrim on a zoned 495 * filesystem for now. 496 */ 497 if (btrfs_is_zoned(fs_info)) 498 return -EOPNOTSUPP; 499 500 /* 501 * If the fs is mounted with nologreplay, which requires it to be 502 * mounted in RO mode as well, we can not allow discard on free space 503 * inside block groups, because log trees refer to extents that are not 504 * pinned in a block group's free space cache (pinning the extents is 505 * precisely the first phase of replaying a log tree). 506 */ 507 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 508 return -EROFS; 509 510 rcu_read_lock(); 511 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 512 dev_list) { 513 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 514 continue; 515 num_devices++; 516 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 517 minlen); 518 } 519 rcu_read_unlock(); 520 521 if (!num_devices) 522 return -EOPNOTSUPP; 523 if (copy_from_user(&range, arg, sizeof(range))) 524 return -EFAULT; 525 526 /* 527 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 528 * block group is in the logical address space, which can be any 529 * sectorsize aligned bytenr in the range [0, U64_MAX]. 530 */ 531 if (range.len < fs_info->sb->s_blocksize) 532 return -EINVAL; 533 534 range.minlen = max(range.minlen, minlen); 535 ret = btrfs_trim_fs(fs_info, &range); 536 if (ret < 0) 537 return ret; 538 539 if (copy_to_user(arg, &range, sizeof(range))) 540 return -EFAULT; 541 542 return 0; 543 } 544 545 int __pure btrfs_is_empty_uuid(u8 *uuid) 546 { 547 int i; 548 549 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 550 if (uuid[i]) 551 return 0; 552 } 553 return 1; 554 } 555 556 /* 557 * Calculate the number of transaction items to reserve for creating a subvolume 558 * or snapshot, not including the inode, directory entries, or parent directory. 559 */ 560 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 561 { 562 /* 563 * 1 to add root block 564 * 1 to add root item 565 * 1 to add root ref 566 * 1 to add root backref 567 * 1 to add UUID item 568 * 1 to add qgroup info 569 * 1 to add qgroup limit 570 * 571 * Ideally the last two would only be accounted if qgroups are enabled, 572 * but that can change between now and the time we would insert them. 573 */ 574 unsigned int num_items = 7; 575 576 if (inherit) { 577 /* 2 to add qgroup relations for each inherited qgroup */ 578 num_items += 2 * inherit->num_qgroups; 579 } 580 return num_items; 581 } 582 583 static noinline int create_subvol(struct mnt_idmap *idmap, 584 struct inode *dir, struct dentry *dentry, 585 struct btrfs_qgroup_inherit *inherit) 586 { 587 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 588 struct btrfs_trans_handle *trans; 589 struct btrfs_key key; 590 struct btrfs_root_item *root_item; 591 struct btrfs_inode_item *inode_item; 592 struct extent_buffer *leaf; 593 struct btrfs_root *root = BTRFS_I(dir)->root; 594 struct btrfs_root *new_root; 595 struct btrfs_block_rsv block_rsv; 596 struct timespec64 cur_time = current_time(dir); 597 struct btrfs_new_inode_args new_inode_args = { 598 .dir = dir, 599 .dentry = dentry, 600 .subvol = true, 601 }; 602 unsigned int trans_num_items; 603 int ret; 604 dev_t anon_dev; 605 u64 objectid; 606 607 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 608 if (!root_item) 609 return -ENOMEM; 610 611 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 612 if (ret) 613 goto out_root_item; 614 615 /* 616 * Don't create subvolume whose level is not zero. Or qgroup will be 617 * screwed up since it assumes subvolume qgroup's level to be 0. 618 */ 619 if (btrfs_qgroup_level(objectid)) { 620 ret = -ENOSPC; 621 goto out_root_item; 622 } 623 624 ret = get_anon_bdev(&anon_dev); 625 if (ret < 0) 626 goto out_root_item; 627 628 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 629 if (!new_inode_args.inode) { 630 ret = -ENOMEM; 631 goto out_anon_dev; 632 } 633 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 634 if (ret) 635 goto out_inode; 636 trans_num_items += create_subvol_num_items(inherit); 637 638 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 639 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 640 trans_num_items, false); 641 if (ret) 642 goto out_new_inode_args; 643 644 trans = btrfs_start_transaction(root, 0); 645 if (IS_ERR(trans)) { 646 ret = PTR_ERR(trans); 647 btrfs_subvolume_release_metadata(root, &block_rsv); 648 goto out_new_inode_args; 649 } 650 trans->block_rsv = &block_rsv; 651 trans->bytes_reserved = block_rsv.size; 652 653 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 654 if (ret) 655 goto out; 656 657 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 658 BTRFS_NESTING_NORMAL); 659 if (IS_ERR(leaf)) { 660 ret = PTR_ERR(leaf); 661 goto out; 662 } 663 664 btrfs_mark_buffer_dirty(leaf); 665 666 inode_item = &root_item->inode; 667 btrfs_set_stack_inode_generation(inode_item, 1); 668 btrfs_set_stack_inode_size(inode_item, 3); 669 btrfs_set_stack_inode_nlink(inode_item, 1); 670 btrfs_set_stack_inode_nbytes(inode_item, 671 fs_info->nodesize); 672 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 673 674 btrfs_set_root_flags(root_item, 0); 675 btrfs_set_root_limit(root_item, 0); 676 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 677 678 btrfs_set_root_bytenr(root_item, leaf->start); 679 btrfs_set_root_generation(root_item, trans->transid); 680 btrfs_set_root_level(root_item, 0); 681 btrfs_set_root_refs(root_item, 1); 682 btrfs_set_root_used(root_item, leaf->len); 683 btrfs_set_root_last_snapshot(root_item, 0); 684 685 btrfs_set_root_generation_v2(root_item, 686 btrfs_root_generation(root_item)); 687 generate_random_guid(root_item->uuid); 688 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 689 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 690 root_item->ctime = root_item->otime; 691 btrfs_set_root_ctransid(root_item, trans->transid); 692 btrfs_set_root_otransid(root_item, trans->transid); 693 694 btrfs_tree_unlock(leaf); 695 696 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 697 698 key.objectid = objectid; 699 key.offset = 0; 700 key.type = BTRFS_ROOT_ITEM_KEY; 701 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 702 root_item); 703 if (ret) { 704 /* 705 * Since we don't abort the transaction in this case, free the 706 * tree block so that we don't leak space and leave the 707 * filesystem in an inconsistent state (an extent item in the 708 * extent tree with a backreference for a root that does not 709 * exists). 710 */ 711 btrfs_tree_lock(leaf); 712 btrfs_clear_buffer_dirty(trans, leaf); 713 btrfs_tree_unlock(leaf); 714 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 715 free_extent_buffer(leaf); 716 goto out; 717 } 718 719 free_extent_buffer(leaf); 720 leaf = NULL; 721 722 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 723 if (IS_ERR(new_root)) { 724 ret = PTR_ERR(new_root); 725 btrfs_abort_transaction(trans, ret); 726 goto out; 727 } 728 /* anon_dev is owned by new_root now. */ 729 anon_dev = 0; 730 BTRFS_I(new_inode_args.inode)->root = new_root; 731 /* ... and new_root is owned by new_inode_args.inode now. */ 732 733 ret = btrfs_record_root_in_trans(trans, new_root); 734 if (ret) { 735 btrfs_abort_transaction(trans, ret); 736 goto out; 737 } 738 739 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 740 BTRFS_UUID_KEY_SUBVOL, objectid); 741 if (ret) { 742 btrfs_abort_transaction(trans, ret); 743 goto out; 744 } 745 746 ret = btrfs_create_new_inode(trans, &new_inode_args); 747 if (ret) { 748 btrfs_abort_transaction(trans, ret); 749 goto out; 750 } 751 752 d_instantiate_new(dentry, new_inode_args.inode); 753 new_inode_args.inode = NULL; 754 755 out: 756 trans->block_rsv = NULL; 757 trans->bytes_reserved = 0; 758 btrfs_subvolume_release_metadata(root, &block_rsv); 759 760 if (ret) 761 btrfs_end_transaction(trans); 762 else 763 ret = btrfs_commit_transaction(trans); 764 out_new_inode_args: 765 btrfs_new_inode_args_destroy(&new_inode_args); 766 out_inode: 767 iput(new_inode_args.inode); 768 out_anon_dev: 769 if (anon_dev) 770 free_anon_bdev(anon_dev); 771 out_root_item: 772 kfree(root_item); 773 return ret; 774 } 775 776 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 777 struct dentry *dentry, bool readonly, 778 struct btrfs_qgroup_inherit *inherit) 779 { 780 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 781 struct inode *inode; 782 struct btrfs_pending_snapshot *pending_snapshot; 783 unsigned int trans_num_items; 784 struct btrfs_trans_handle *trans; 785 int ret; 786 787 /* We do not support snapshotting right now. */ 788 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 789 btrfs_warn(fs_info, 790 "extent tree v2 doesn't support snapshotting yet"); 791 return -EOPNOTSUPP; 792 } 793 794 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 795 return -EINVAL; 796 797 if (atomic_read(&root->nr_swapfiles)) { 798 btrfs_warn(fs_info, 799 "cannot snapshot subvolume with active swapfile"); 800 return -ETXTBSY; 801 } 802 803 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 804 if (!pending_snapshot) 805 return -ENOMEM; 806 807 ret = get_anon_bdev(&pending_snapshot->anon_dev); 808 if (ret < 0) 809 goto free_pending; 810 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 811 GFP_KERNEL); 812 pending_snapshot->path = btrfs_alloc_path(); 813 if (!pending_snapshot->root_item || !pending_snapshot->path) { 814 ret = -ENOMEM; 815 goto free_pending; 816 } 817 818 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 819 BTRFS_BLOCK_RSV_TEMP); 820 /* 821 * 1 to add dir item 822 * 1 to add dir index 823 * 1 to update parent inode item 824 */ 825 trans_num_items = create_subvol_num_items(inherit) + 3; 826 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 827 &pending_snapshot->block_rsv, 828 trans_num_items, false); 829 if (ret) 830 goto free_pending; 831 832 pending_snapshot->dentry = dentry; 833 pending_snapshot->root = root; 834 pending_snapshot->readonly = readonly; 835 pending_snapshot->dir = dir; 836 pending_snapshot->inherit = inherit; 837 838 trans = btrfs_start_transaction(root, 0); 839 if (IS_ERR(trans)) { 840 ret = PTR_ERR(trans); 841 goto fail; 842 } 843 844 trans->pending_snapshot = pending_snapshot; 845 846 ret = btrfs_commit_transaction(trans); 847 if (ret) 848 goto fail; 849 850 ret = pending_snapshot->error; 851 if (ret) 852 goto fail; 853 854 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 855 if (ret) 856 goto fail; 857 858 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 859 if (IS_ERR(inode)) { 860 ret = PTR_ERR(inode); 861 goto fail; 862 } 863 864 d_instantiate(dentry, inode); 865 ret = 0; 866 pending_snapshot->anon_dev = 0; 867 fail: 868 /* Prevent double freeing of anon_dev */ 869 if (ret && pending_snapshot->snap) 870 pending_snapshot->snap->anon_dev = 0; 871 btrfs_put_root(pending_snapshot->snap); 872 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 873 free_pending: 874 if (pending_snapshot->anon_dev) 875 free_anon_bdev(pending_snapshot->anon_dev); 876 kfree(pending_snapshot->root_item); 877 btrfs_free_path(pending_snapshot->path); 878 kfree(pending_snapshot); 879 880 return ret; 881 } 882 883 /* copy of may_delete in fs/namei.c() 884 * Check whether we can remove a link victim from directory dir, check 885 * whether the type of victim is right. 886 * 1. We can't do it if dir is read-only (done in permission()) 887 * 2. We should have write and exec permissions on dir 888 * 3. We can't remove anything from append-only dir 889 * 4. We can't do anything with immutable dir (done in permission()) 890 * 5. If the sticky bit on dir is set we should either 891 * a. be owner of dir, or 892 * b. be owner of victim, or 893 * c. have CAP_FOWNER capability 894 * 6. If the victim is append-only or immutable we can't do anything with 895 * links pointing to it. 896 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 897 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 898 * 9. We can't remove a root or mountpoint. 899 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 900 * nfs_async_unlink(). 901 */ 902 903 static int btrfs_may_delete(struct mnt_idmap *idmap, 904 struct inode *dir, struct dentry *victim, int isdir) 905 { 906 int error; 907 908 if (d_really_is_negative(victim)) 909 return -ENOENT; 910 911 BUG_ON(d_inode(victim->d_parent) != dir); 912 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 913 914 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 915 if (error) 916 return error; 917 if (IS_APPEND(dir)) 918 return -EPERM; 919 if (check_sticky(idmap, dir, d_inode(victim)) || 920 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 921 IS_SWAPFILE(d_inode(victim))) 922 return -EPERM; 923 if (isdir) { 924 if (!d_is_dir(victim)) 925 return -ENOTDIR; 926 if (IS_ROOT(victim)) 927 return -EBUSY; 928 } else if (d_is_dir(victim)) 929 return -EISDIR; 930 if (IS_DEADDIR(dir)) 931 return -ENOENT; 932 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 933 return -EBUSY; 934 return 0; 935 } 936 937 /* copy of may_create in fs/namei.c() */ 938 static inline int btrfs_may_create(struct mnt_idmap *idmap, 939 struct inode *dir, struct dentry *child) 940 { 941 if (d_really_is_positive(child)) 942 return -EEXIST; 943 if (IS_DEADDIR(dir)) 944 return -ENOENT; 945 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 946 return -EOVERFLOW; 947 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 948 } 949 950 /* 951 * Create a new subvolume below @parent. This is largely modeled after 952 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 953 * inside this filesystem so it's quite a bit simpler. 954 */ 955 static noinline int btrfs_mksubvol(const struct path *parent, 956 struct mnt_idmap *idmap, 957 const char *name, int namelen, 958 struct btrfs_root *snap_src, 959 bool readonly, 960 struct btrfs_qgroup_inherit *inherit) 961 { 962 struct inode *dir = d_inode(parent->dentry); 963 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 964 struct dentry *dentry; 965 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 966 int error; 967 968 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 969 if (error == -EINTR) 970 return error; 971 972 dentry = lookup_one(idmap, name, parent->dentry, namelen); 973 error = PTR_ERR(dentry); 974 if (IS_ERR(dentry)) 975 goto out_unlock; 976 977 error = btrfs_may_create(idmap, dir, dentry); 978 if (error) 979 goto out_dput; 980 981 /* 982 * even if this name doesn't exist, we may get hash collisions. 983 * check for them now when we can safely fail 984 */ 985 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 986 dir->i_ino, &name_str); 987 if (error) 988 goto out_dput; 989 990 down_read(&fs_info->subvol_sem); 991 992 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 993 goto out_up_read; 994 995 if (snap_src) 996 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 997 else 998 error = create_subvol(idmap, dir, dentry, inherit); 999 1000 if (!error) 1001 fsnotify_mkdir(dir, dentry); 1002 out_up_read: 1003 up_read(&fs_info->subvol_sem); 1004 out_dput: 1005 dput(dentry); 1006 out_unlock: 1007 btrfs_inode_unlock(BTRFS_I(dir), 0); 1008 return error; 1009 } 1010 1011 static noinline int btrfs_mksnapshot(const struct path *parent, 1012 struct mnt_idmap *idmap, 1013 const char *name, int namelen, 1014 struct btrfs_root *root, 1015 bool readonly, 1016 struct btrfs_qgroup_inherit *inherit) 1017 { 1018 int ret; 1019 bool snapshot_force_cow = false; 1020 1021 /* 1022 * Force new buffered writes to reserve space even when NOCOW is 1023 * possible. This is to avoid later writeback (running dealloc) to 1024 * fallback to COW mode and unexpectedly fail with ENOSPC. 1025 */ 1026 btrfs_drew_read_lock(&root->snapshot_lock); 1027 1028 ret = btrfs_start_delalloc_snapshot(root, false); 1029 if (ret) 1030 goto out; 1031 1032 /* 1033 * All previous writes have started writeback in NOCOW mode, so now 1034 * we force future writes to fallback to COW mode during snapshot 1035 * creation. 1036 */ 1037 atomic_inc(&root->snapshot_force_cow); 1038 snapshot_force_cow = true; 1039 1040 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1041 1042 ret = btrfs_mksubvol(parent, idmap, name, namelen, 1043 root, readonly, inherit); 1044 out: 1045 if (snapshot_force_cow) 1046 atomic_dec(&root->snapshot_force_cow); 1047 btrfs_drew_read_unlock(&root->snapshot_lock); 1048 return ret; 1049 } 1050 1051 /* 1052 * Try to start exclusive operation @type or cancel it if it's running. 1053 * 1054 * Return: 1055 * 0 - normal mode, newly claimed op started 1056 * >0 - normal mode, something else is running, 1057 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1058 * ECANCELED - cancel mode, successful cancel 1059 * ENOTCONN - cancel mode, operation not running anymore 1060 */ 1061 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1062 enum btrfs_exclusive_operation type, bool cancel) 1063 { 1064 if (!cancel) { 1065 /* Start normal op */ 1066 if (!btrfs_exclop_start(fs_info, type)) 1067 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1068 /* Exclusive operation is now claimed */ 1069 return 0; 1070 } 1071 1072 /* Cancel running op */ 1073 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1074 /* 1075 * This blocks any exclop finish from setting it to NONE, so we 1076 * request cancellation. Either it runs and we will wait for it, 1077 * or it has finished and no waiting will happen. 1078 */ 1079 atomic_inc(&fs_info->reloc_cancel_req); 1080 btrfs_exclop_start_unlock(fs_info); 1081 1082 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1083 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1084 TASK_INTERRUPTIBLE); 1085 1086 return -ECANCELED; 1087 } 1088 1089 /* Something else is running or none */ 1090 return -ENOTCONN; 1091 } 1092 1093 static noinline int btrfs_ioctl_resize(struct file *file, 1094 void __user *arg) 1095 { 1096 BTRFS_DEV_LOOKUP_ARGS(args); 1097 struct inode *inode = file_inode(file); 1098 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1099 u64 new_size; 1100 u64 old_size; 1101 u64 devid = 1; 1102 struct btrfs_root *root = BTRFS_I(inode)->root; 1103 struct btrfs_ioctl_vol_args *vol_args; 1104 struct btrfs_trans_handle *trans; 1105 struct btrfs_device *device = NULL; 1106 char *sizestr; 1107 char *retptr; 1108 char *devstr = NULL; 1109 int ret = 0; 1110 int mod = 0; 1111 bool cancel; 1112 1113 if (!capable(CAP_SYS_ADMIN)) 1114 return -EPERM; 1115 1116 ret = mnt_want_write_file(file); 1117 if (ret) 1118 return ret; 1119 1120 /* 1121 * Read the arguments before checking exclusivity to be able to 1122 * distinguish regular resize and cancel 1123 */ 1124 vol_args = memdup_user(arg, sizeof(*vol_args)); 1125 if (IS_ERR(vol_args)) { 1126 ret = PTR_ERR(vol_args); 1127 goto out_drop; 1128 } 1129 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1130 sizestr = vol_args->name; 1131 cancel = (strcmp("cancel", sizestr) == 0); 1132 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1133 if (ret) 1134 goto out_free; 1135 /* Exclusive operation is now claimed */ 1136 1137 devstr = strchr(sizestr, ':'); 1138 if (devstr) { 1139 sizestr = devstr + 1; 1140 *devstr = '\0'; 1141 devstr = vol_args->name; 1142 ret = kstrtoull(devstr, 10, &devid); 1143 if (ret) 1144 goto out_finish; 1145 if (!devid) { 1146 ret = -EINVAL; 1147 goto out_finish; 1148 } 1149 btrfs_info(fs_info, "resizing devid %llu", devid); 1150 } 1151 1152 args.devid = devid; 1153 device = btrfs_find_device(fs_info->fs_devices, &args); 1154 if (!device) { 1155 btrfs_info(fs_info, "resizer unable to find device %llu", 1156 devid); 1157 ret = -ENODEV; 1158 goto out_finish; 1159 } 1160 1161 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1162 btrfs_info(fs_info, 1163 "resizer unable to apply on readonly device %llu", 1164 devid); 1165 ret = -EPERM; 1166 goto out_finish; 1167 } 1168 1169 if (!strcmp(sizestr, "max")) 1170 new_size = bdev_nr_bytes(device->bdev); 1171 else { 1172 if (sizestr[0] == '-') { 1173 mod = -1; 1174 sizestr++; 1175 } else if (sizestr[0] == '+') { 1176 mod = 1; 1177 sizestr++; 1178 } 1179 new_size = memparse(sizestr, &retptr); 1180 if (*retptr != '\0' || new_size == 0) { 1181 ret = -EINVAL; 1182 goto out_finish; 1183 } 1184 } 1185 1186 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1187 ret = -EPERM; 1188 goto out_finish; 1189 } 1190 1191 old_size = btrfs_device_get_total_bytes(device); 1192 1193 if (mod < 0) { 1194 if (new_size > old_size) { 1195 ret = -EINVAL; 1196 goto out_finish; 1197 } 1198 new_size = old_size - new_size; 1199 } else if (mod > 0) { 1200 if (new_size > ULLONG_MAX - old_size) { 1201 ret = -ERANGE; 1202 goto out_finish; 1203 } 1204 new_size = old_size + new_size; 1205 } 1206 1207 if (new_size < SZ_256M) { 1208 ret = -EINVAL; 1209 goto out_finish; 1210 } 1211 if (new_size > bdev_nr_bytes(device->bdev)) { 1212 ret = -EFBIG; 1213 goto out_finish; 1214 } 1215 1216 new_size = round_down(new_size, fs_info->sectorsize); 1217 1218 if (new_size > old_size) { 1219 trans = btrfs_start_transaction(root, 0); 1220 if (IS_ERR(trans)) { 1221 ret = PTR_ERR(trans); 1222 goto out_finish; 1223 } 1224 ret = btrfs_grow_device(trans, device, new_size); 1225 btrfs_commit_transaction(trans); 1226 } else if (new_size < old_size) { 1227 ret = btrfs_shrink_device(device, new_size); 1228 } /* equal, nothing need to do */ 1229 1230 if (ret == 0 && new_size != old_size) 1231 btrfs_info_in_rcu(fs_info, 1232 "resize device %s (devid %llu) from %llu to %llu", 1233 btrfs_dev_name(device), device->devid, 1234 old_size, new_size); 1235 out_finish: 1236 btrfs_exclop_finish(fs_info); 1237 out_free: 1238 kfree(vol_args); 1239 out_drop: 1240 mnt_drop_write_file(file); 1241 return ret; 1242 } 1243 1244 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1245 struct mnt_idmap *idmap, 1246 const char *name, unsigned long fd, int subvol, 1247 bool readonly, 1248 struct btrfs_qgroup_inherit *inherit) 1249 { 1250 int namelen; 1251 int ret = 0; 1252 1253 if (!S_ISDIR(file_inode(file)->i_mode)) 1254 return -ENOTDIR; 1255 1256 ret = mnt_want_write_file(file); 1257 if (ret) 1258 goto out; 1259 1260 namelen = strlen(name); 1261 if (strchr(name, '/')) { 1262 ret = -EINVAL; 1263 goto out_drop_write; 1264 } 1265 1266 if (name[0] == '.' && 1267 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1268 ret = -EEXIST; 1269 goto out_drop_write; 1270 } 1271 1272 if (subvol) { 1273 ret = btrfs_mksubvol(&file->f_path, idmap, name, 1274 namelen, NULL, readonly, inherit); 1275 } else { 1276 struct fd src = fdget(fd); 1277 struct inode *src_inode; 1278 if (!src.file) { 1279 ret = -EINVAL; 1280 goto out_drop_write; 1281 } 1282 1283 src_inode = file_inode(src.file); 1284 if (src_inode->i_sb != file_inode(file)->i_sb) { 1285 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1286 "Snapshot src from another FS"); 1287 ret = -EXDEV; 1288 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1289 /* 1290 * Subvolume creation is not restricted, but snapshots 1291 * are limited to own subvolumes only 1292 */ 1293 ret = -EPERM; 1294 } else { 1295 ret = btrfs_mksnapshot(&file->f_path, idmap, 1296 name, namelen, 1297 BTRFS_I(src_inode)->root, 1298 readonly, inherit); 1299 } 1300 fdput(src); 1301 } 1302 out_drop_write: 1303 mnt_drop_write_file(file); 1304 out: 1305 return ret; 1306 } 1307 1308 static noinline int btrfs_ioctl_snap_create(struct file *file, 1309 void __user *arg, int subvol) 1310 { 1311 struct btrfs_ioctl_vol_args *vol_args; 1312 int ret; 1313 1314 if (!S_ISDIR(file_inode(file)->i_mode)) 1315 return -ENOTDIR; 1316 1317 vol_args = memdup_user(arg, sizeof(*vol_args)); 1318 if (IS_ERR(vol_args)) 1319 return PTR_ERR(vol_args); 1320 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1321 1322 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1323 vol_args->name, vol_args->fd, subvol, 1324 false, NULL); 1325 1326 kfree(vol_args); 1327 return ret; 1328 } 1329 1330 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1331 void __user *arg, int subvol) 1332 { 1333 struct btrfs_ioctl_vol_args_v2 *vol_args; 1334 int ret; 1335 bool readonly = false; 1336 struct btrfs_qgroup_inherit *inherit = NULL; 1337 1338 if (!S_ISDIR(file_inode(file)->i_mode)) 1339 return -ENOTDIR; 1340 1341 vol_args = memdup_user(arg, sizeof(*vol_args)); 1342 if (IS_ERR(vol_args)) 1343 return PTR_ERR(vol_args); 1344 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1345 1346 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1347 ret = -EOPNOTSUPP; 1348 goto free_args; 1349 } 1350 1351 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1352 readonly = true; 1353 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1354 u64 nums; 1355 1356 if (vol_args->size < sizeof(*inherit) || 1357 vol_args->size > PAGE_SIZE) { 1358 ret = -EINVAL; 1359 goto free_args; 1360 } 1361 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1362 if (IS_ERR(inherit)) { 1363 ret = PTR_ERR(inherit); 1364 goto free_args; 1365 } 1366 1367 if (inherit->num_qgroups > PAGE_SIZE || 1368 inherit->num_ref_copies > PAGE_SIZE || 1369 inherit->num_excl_copies > PAGE_SIZE) { 1370 ret = -EINVAL; 1371 goto free_inherit; 1372 } 1373 1374 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1375 2 * inherit->num_excl_copies; 1376 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1377 ret = -EINVAL; 1378 goto free_inherit; 1379 } 1380 } 1381 1382 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1383 vol_args->name, vol_args->fd, subvol, 1384 readonly, inherit); 1385 if (ret) 1386 goto free_inherit; 1387 free_inherit: 1388 kfree(inherit); 1389 free_args: 1390 kfree(vol_args); 1391 return ret; 1392 } 1393 1394 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1395 void __user *arg) 1396 { 1397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1398 struct btrfs_root *root = BTRFS_I(inode)->root; 1399 int ret = 0; 1400 u64 flags = 0; 1401 1402 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1403 return -EINVAL; 1404 1405 down_read(&fs_info->subvol_sem); 1406 if (btrfs_root_readonly(root)) 1407 flags |= BTRFS_SUBVOL_RDONLY; 1408 up_read(&fs_info->subvol_sem); 1409 1410 if (copy_to_user(arg, &flags, sizeof(flags))) 1411 ret = -EFAULT; 1412 1413 return ret; 1414 } 1415 1416 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1417 void __user *arg) 1418 { 1419 struct inode *inode = file_inode(file); 1420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1421 struct btrfs_root *root = BTRFS_I(inode)->root; 1422 struct btrfs_trans_handle *trans; 1423 u64 root_flags; 1424 u64 flags; 1425 int ret = 0; 1426 1427 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1428 return -EPERM; 1429 1430 ret = mnt_want_write_file(file); 1431 if (ret) 1432 goto out; 1433 1434 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1435 ret = -EINVAL; 1436 goto out_drop_write; 1437 } 1438 1439 if (copy_from_user(&flags, arg, sizeof(flags))) { 1440 ret = -EFAULT; 1441 goto out_drop_write; 1442 } 1443 1444 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1445 ret = -EOPNOTSUPP; 1446 goto out_drop_write; 1447 } 1448 1449 down_write(&fs_info->subvol_sem); 1450 1451 /* nothing to do */ 1452 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1453 goto out_drop_sem; 1454 1455 root_flags = btrfs_root_flags(&root->root_item); 1456 if (flags & BTRFS_SUBVOL_RDONLY) { 1457 btrfs_set_root_flags(&root->root_item, 1458 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1459 } else { 1460 /* 1461 * Block RO -> RW transition if this subvolume is involved in 1462 * send 1463 */ 1464 spin_lock(&root->root_item_lock); 1465 if (root->send_in_progress == 0) { 1466 btrfs_set_root_flags(&root->root_item, 1467 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1468 spin_unlock(&root->root_item_lock); 1469 } else { 1470 spin_unlock(&root->root_item_lock); 1471 btrfs_warn(fs_info, 1472 "Attempt to set subvolume %llu read-write during send", 1473 root->root_key.objectid); 1474 ret = -EPERM; 1475 goto out_drop_sem; 1476 } 1477 } 1478 1479 trans = btrfs_start_transaction(root, 1); 1480 if (IS_ERR(trans)) { 1481 ret = PTR_ERR(trans); 1482 goto out_reset; 1483 } 1484 1485 ret = btrfs_update_root(trans, fs_info->tree_root, 1486 &root->root_key, &root->root_item); 1487 if (ret < 0) { 1488 btrfs_end_transaction(trans); 1489 goto out_reset; 1490 } 1491 1492 ret = btrfs_commit_transaction(trans); 1493 1494 out_reset: 1495 if (ret) 1496 btrfs_set_root_flags(&root->root_item, root_flags); 1497 out_drop_sem: 1498 up_write(&fs_info->subvol_sem); 1499 out_drop_write: 1500 mnt_drop_write_file(file); 1501 out: 1502 return ret; 1503 } 1504 1505 static noinline int key_in_sk(struct btrfs_key *key, 1506 struct btrfs_ioctl_search_key *sk) 1507 { 1508 struct btrfs_key test; 1509 int ret; 1510 1511 test.objectid = sk->min_objectid; 1512 test.type = sk->min_type; 1513 test.offset = sk->min_offset; 1514 1515 ret = btrfs_comp_cpu_keys(key, &test); 1516 if (ret < 0) 1517 return 0; 1518 1519 test.objectid = sk->max_objectid; 1520 test.type = sk->max_type; 1521 test.offset = sk->max_offset; 1522 1523 ret = btrfs_comp_cpu_keys(key, &test); 1524 if (ret > 0) 1525 return 0; 1526 return 1; 1527 } 1528 1529 static noinline int copy_to_sk(struct btrfs_path *path, 1530 struct btrfs_key *key, 1531 struct btrfs_ioctl_search_key *sk, 1532 size_t *buf_size, 1533 char __user *ubuf, 1534 unsigned long *sk_offset, 1535 int *num_found) 1536 { 1537 u64 found_transid; 1538 struct extent_buffer *leaf; 1539 struct btrfs_ioctl_search_header sh; 1540 struct btrfs_key test; 1541 unsigned long item_off; 1542 unsigned long item_len; 1543 int nritems; 1544 int i; 1545 int slot; 1546 int ret = 0; 1547 1548 leaf = path->nodes[0]; 1549 slot = path->slots[0]; 1550 nritems = btrfs_header_nritems(leaf); 1551 1552 if (btrfs_header_generation(leaf) > sk->max_transid) { 1553 i = nritems; 1554 goto advance_key; 1555 } 1556 found_transid = btrfs_header_generation(leaf); 1557 1558 for (i = slot; i < nritems; i++) { 1559 item_off = btrfs_item_ptr_offset(leaf, i); 1560 item_len = btrfs_item_size(leaf, i); 1561 1562 btrfs_item_key_to_cpu(leaf, key, i); 1563 if (!key_in_sk(key, sk)) 1564 continue; 1565 1566 if (sizeof(sh) + item_len > *buf_size) { 1567 if (*num_found) { 1568 ret = 1; 1569 goto out; 1570 } 1571 1572 /* 1573 * return one empty item back for v1, which does not 1574 * handle -EOVERFLOW 1575 */ 1576 1577 *buf_size = sizeof(sh) + item_len; 1578 item_len = 0; 1579 ret = -EOVERFLOW; 1580 } 1581 1582 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1583 ret = 1; 1584 goto out; 1585 } 1586 1587 sh.objectid = key->objectid; 1588 sh.offset = key->offset; 1589 sh.type = key->type; 1590 sh.len = item_len; 1591 sh.transid = found_transid; 1592 1593 /* 1594 * Copy search result header. If we fault then loop again so we 1595 * can fault in the pages and -EFAULT there if there's a 1596 * problem. Otherwise we'll fault and then copy the buffer in 1597 * properly this next time through 1598 */ 1599 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1600 ret = 0; 1601 goto out; 1602 } 1603 1604 *sk_offset += sizeof(sh); 1605 1606 if (item_len) { 1607 char __user *up = ubuf + *sk_offset; 1608 /* 1609 * Copy the item, same behavior as above, but reset the 1610 * * sk_offset so we copy the full thing again. 1611 */ 1612 if (read_extent_buffer_to_user_nofault(leaf, up, 1613 item_off, item_len)) { 1614 ret = 0; 1615 *sk_offset -= sizeof(sh); 1616 goto out; 1617 } 1618 1619 *sk_offset += item_len; 1620 } 1621 (*num_found)++; 1622 1623 if (ret) /* -EOVERFLOW from above */ 1624 goto out; 1625 1626 if (*num_found >= sk->nr_items) { 1627 ret = 1; 1628 goto out; 1629 } 1630 } 1631 advance_key: 1632 ret = 0; 1633 test.objectid = sk->max_objectid; 1634 test.type = sk->max_type; 1635 test.offset = sk->max_offset; 1636 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1637 ret = 1; 1638 else if (key->offset < (u64)-1) 1639 key->offset++; 1640 else if (key->type < (u8)-1) { 1641 key->offset = 0; 1642 key->type++; 1643 } else if (key->objectid < (u64)-1) { 1644 key->offset = 0; 1645 key->type = 0; 1646 key->objectid++; 1647 } else 1648 ret = 1; 1649 out: 1650 /* 1651 * 0: all items from this leaf copied, continue with next 1652 * 1: * more items can be copied, but unused buffer is too small 1653 * * all items were found 1654 * Either way, it will stops the loop which iterates to the next 1655 * leaf 1656 * -EOVERFLOW: item was to large for buffer 1657 * -EFAULT: could not copy extent buffer back to userspace 1658 */ 1659 return ret; 1660 } 1661 1662 static noinline int search_ioctl(struct inode *inode, 1663 struct btrfs_ioctl_search_key *sk, 1664 size_t *buf_size, 1665 char __user *ubuf) 1666 { 1667 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 1668 struct btrfs_root *root; 1669 struct btrfs_key key; 1670 struct btrfs_path *path; 1671 int ret; 1672 int num_found = 0; 1673 unsigned long sk_offset = 0; 1674 1675 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1676 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1677 return -EOVERFLOW; 1678 } 1679 1680 path = btrfs_alloc_path(); 1681 if (!path) 1682 return -ENOMEM; 1683 1684 if (sk->tree_id == 0) { 1685 /* search the root of the inode that was passed */ 1686 root = btrfs_grab_root(BTRFS_I(inode)->root); 1687 } else { 1688 root = btrfs_get_fs_root(info, sk->tree_id, true); 1689 if (IS_ERR(root)) { 1690 btrfs_free_path(path); 1691 return PTR_ERR(root); 1692 } 1693 } 1694 1695 key.objectid = sk->min_objectid; 1696 key.type = sk->min_type; 1697 key.offset = sk->min_offset; 1698 1699 while (1) { 1700 ret = -EFAULT; 1701 /* 1702 * Ensure that the whole user buffer is faulted in at sub-page 1703 * granularity, otherwise the loop may live-lock. 1704 */ 1705 if (fault_in_subpage_writeable(ubuf + sk_offset, 1706 *buf_size - sk_offset)) 1707 break; 1708 1709 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1710 if (ret != 0) { 1711 if (ret > 0) 1712 ret = 0; 1713 goto err; 1714 } 1715 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1716 &sk_offset, &num_found); 1717 btrfs_release_path(path); 1718 if (ret) 1719 break; 1720 1721 } 1722 if (ret > 0) 1723 ret = 0; 1724 err: 1725 sk->nr_items = num_found; 1726 btrfs_put_root(root); 1727 btrfs_free_path(path); 1728 return ret; 1729 } 1730 1731 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1732 void __user *argp) 1733 { 1734 struct btrfs_ioctl_search_args __user *uargs = argp; 1735 struct btrfs_ioctl_search_key sk; 1736 int ret; 1737 size_t buf_size; 1738 1739 if (!capable(CAP_SYS_ADMIN)) 1740 return -EPERM; 1741 1742 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1743 return -EFAULT; 1744 1745 buf_size = sizeof(uargs->buf); 1746 1747 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1748 1749 /* 1750 * In the origin implementation an overflow is handled by returning a 1751 * search header with a len of zero, so reset ret. 1752 */ 1753 if (ret == -EOVERFLOW) 1754 ret = 0; 1755 1756 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1757 ret = -EFAULT; 1758 return ret; 1759 } 1760 1761 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1762 void __user *argp) 1763 { 1764 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1765 struct btrfs_ioctl_search_args_v2 args; 1766 int ret; 1767 size_t buf_size; 1768 const size_t buf_limit = SZ_16M; 1769 1770 if (!capable(CAP_SYS_ADMIN)) 1771 return -EPERM; 1772 1773 /* copy search header and buffer size */ 1774 if (copy_from_user(&args, uarg, sizeof(args))) 1775 return -EFAULT; 1776 1777 buf_size = args.buf_size; 1778 1779 /* limit result size to 16MB */ 1780 if (buf_size > buf_limit) 1781 buf_size = buf_limit; 1782 1783 ret = search_ioctl(inode, &args.key, &buf_size, 1784 (char __user *)(&uarg->buf[0])); 1785 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1786 ret = -EFAULT; 1787 else if (ret == -EOVERFLOW && 1788 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1789 ret = -EFAULT; 1790 1791 return ret; 1792 } 1793 1794 /* 1795 * Search INODE_REFs to identify path name of 'dirid' directory 1796 * in a 'tree_id' tree. and sets path name to 'name'. 1797 */ 1798 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1799 u64 tree_id, u64 dirid, char *name) 1800 { 1801 struct btrfs_root *root; 1802 struct btrfs_key key; 1803 char *ptr; 1804 int ret = -1; 1805 int slot; 1806 int len; 1807 int total_len = 0; 1808 struct btrfs_inode_ref *iref; 1809 struct extent_buffer *l; 1810 struct btrfs_path *path; 1811 1812 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1813 name[0]='\0'; 1814 return 0; 1815 } 1816 1817 path = btrfs_alloc_path(); 1818 if (!path) 1819 return -ENOMEM; 1820 1821 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1822 1823 root = btrfs_get_fs_root(info, tree_id, true); 1824 if (IS_ERR(root)) { 1825 ret = PTR_ERR(root); 1826 root = NULL; 1827 goto out; 1828 } 1829 1830 key.objectid = dirid; 1831 key.type = BTRFS_INODE_REF_KEY; 1832 key.offset = (u64)-1; 1833 1834 while (1) { 1835 ret = btrfs_search_backwards(root, &key, path); 1836 if (ret < 0) 1837 goto out; 1838 else if (ret > 0) { 1839 ret = -ENOENT; 1840 goto out; 1841 } 1842 1843 l = path->nodes[0]; 1844 slot = path->slots[0]; 1845 1846 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1847 len = btrfs_inode_ref_name_len(l, iref); 1848 ptr -= len + 1; 1849 total_len += len + 1; 1850 if (ptr < name) { 1851 ret = -ENAMETOOLONG; 1852 goto out; 1853 } 1854 1855 *(ptr + len) = '/'; 1856 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1857 1858 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1859 break; 1860 1861 btrfs_release_path(path); 1862 key.objectid = key.offset; 1863 key.offset = (u64)-1; 1864 dirid = key.objectid; 1865 } 1866 memmove(name, ptr, total_len); 1867 name[total_len] = '\0'; 1868 ret = 0; 1869 out: 1870 btrfs_put_root(root); 1871 btrfs_free_path(path); 1872 return ret; 1873 } 1874 1875 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1876 struct inode *inode, 1877 struct btrfs_ioctl_ino_lookup_user_args *args) 1878 { 1879 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1880 struct super_block *sb = inode->i_sb; 1881 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 1882 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 1883 u64 dirid = args->dirid; 1884 unsigned long item_off; 1885 unsigned long item_len; 1886 struct btrfs_inode_ref *iref; 1887 struct btrfs_root_ref *rref; 1888 struct btrfs_root *root = NULL; 1889 struct btrfs_path *path; 1890 struct btrfs_key key, key2; 1891 struct extent_buffer *leaf; 1892 struct inode *temp_inode; 1893 char *ptr; 1894 int slot; 1895 int len; 1896 int total_len = 0; 1897 int ret; 1898 1899 path = btrfs_alloc_path(); 1900 if (!path) 1901 return -ENOMEM; 1902 1903 /* 1904 * If the bottom subvolume does not exist directly under upper_limit, 1905 * construct the path in from the bottom up. 1906 */ 1907 if (dirid != upper_limit.objectid) { 1908 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1909 1910 root = btrfs_get_fs_root(fs_info, treeid, true); 1911 if (IS_ERR(root)) { 1912 ret = PTR_ERR(root); 1913 goto out; 1914 } 1915 1916 key.objectid = dirid; 1917 key.type = BTRFS_INODE_REF_KEY; 1918 key.offset = (u64)-1; 1919 while (1) { 1920 ret = btrfs_search_backwards(root, &key, path); 1921 if (ret < 0) 1922 goto out_put; 1923 else if (ret > 0) { 1924 ret = -ENOENT; 1925 goto out_put; 1926 } 1927 1928 leaf = path->nodes[0]; 1929 slot = path->slots[0]; 1930 1931 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1932 len = btrfs_inode_ref_name_len(leaf, iref); 1933 ptr -= len + 1; 1934 total_len += len + 1; 1935 if (ptr < args->path) { 1936 ret = -ENAMETOOLONG; 1937 goto out_put; 1938 } 1939 1940 *(ptr + len) = '/'; 1941 read_extent_buffer(leaf, ptr, 1942 (unsigned long)(iref + 1), len); 1943 1944 /* Check the read+exec permission of this directory */ 1945 ret = btrfs_previous_item(root, path, dirid, 1946 BTRFS_INODE_ITEM_KEY); 1947 if (ret < 0) { 1948 goto out_put; 1949 } else if (ret > 0) { 1950 ret = -ENOENT; 1951 goto out_put; 1952 } 1953 1954 leaf = path->nodes[0]; 1955 slot = path->slots[0]; 1956 btrfs_item_key_to_cpu(leaf, &key2, slot); 1957 if (key2.objectid != dirid) { 1958 ret = -ENOENT; 1959 goto out_put; 1960 } 1961 1962 temp_inode = btrfs_iget(sb, key2.objectid, root); 1963 if (IS_ERR(temp_inode)) { 1964 ret = PTR_ERR(temp_inode); 1965 goto out_put; 1966 } 1967 ret = inode_permission(idmap, temp_inode, 1968 MAY_READ | MAY_EXEC); 1969 iput(temp_inode); 1970 if (ret) { 1971 ret = -EACCES; 1972 goto out_put; 1973 } 1974 1975 if (key.offset == upper_limit.objectid) 1976 break; 1977 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 1978 ret = -EACCES; 1979 goto out_put; 1980 } 1981 1982 btrfs_release_path(path); 1983 key.objectid = key.offset; 1984 key.offset = (u64)-1; 1985 dirid = key.objectid; 1986 } 1987 1988 memmove(args->path, ptr, total_len); 1989 args->path[total_len] = '\0'; 1990 btrfs_put_root(root); 1991 root = NULL; 1992 btrfs_release_path(path); 1993 } 1994 1995 /* Get the bottom subvolume's name from ROOT_REF */ 1996 key.objectid = treeid; 1997 key.type = BTRFS_ROOT_REF_KEY; 1998 key.offset = args->treeid; 1999 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2000 if (ret < 0) { 2001 goto out; 2002 } else if (ret > 0) { 2003 ret = -ENOENT; 2004 goto out; 2005 } 2006 2007 leaf = path->nodes[0]; 2008 slot = path->slots[0]; 2009 btrfs_item_key_to_cpu(leaf, &key, slot); 2010 2011 item_off = btrfs_item_ptr_offset(leaf, slot); 2012 item_len = btrfs_item_size(leaf, slot); 2013 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2014 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2015 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2016 ret = -EINVAL; 2017 goto out; 2018 } 2019 2020 /* Copy subvolume's name */ 2021 item_off += sizeof(struct btrfs_root_ref); 2022 item_len -= sizeof(struct btrfs_root_ref); 2023 read_extent_buffer(leaf, args->name, item_off, item_len); 2024 args->name[item_len] = 0; 2025 2026 out_put: 2027 btrfs_put_root(root); 2028 out: 2029 btrfs_free_path(path); 2030 return ret; 2031 } 2032 2033 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2034 void __user *argp) 2035 { 2036 struct btrfs_ioctl_ino_lookup_args *args; 2037 int ret = 0; 2038 2039 args = memdup_user(argp, sizeof(*args)); 2040 if (IS_ERR(args)) 2041 return PTR_ERR(args); 2042 2043 /* 2044 * Unprivileged query to obtain the containing subvolume root id. The 2045 * path is reset so it's consistent with btrfs_search_path_in_tree. 2046 */ 2047 if (args->treeid == 0) 2048 args->treeid = root->root_key.objectid; 2049 2050 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2051 args->name[0] = 0; 2052 goto out; 2053 } 2054 2055 if (!capable(CAP_SYS_ADMIN)) { 2056 ret = -EPERM; 2057 goto out; 2058 } 2059 2060 ret = btrfs_search_path_in_tree(root->fs_info, 2061 args->treeid, args->objectid, 2062 args->name); 2063 2064 out: 2065 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2066 ret = -EFAULT; 2067 2068 kfree(args); 2069 return ret; 2070 } 2071 2072 /* 2073 * Version of ino_lookup ioctl (unprivileged) 2074 * 2075 * The main differences from ino_lookup ioctl are: 2076 * 2077 * 1. Read + Exec permission will be checked using inode_permission() during 2078 * path construction. -EACCES will be returned in case of failure. 2079 * 2. Path construction will be stopped at the inode number which corresponds 2080 * to the fd with which this ioctl is called. If constructed path does not 2081 * exist under fd's inode, -EACCES will be returned. 2082 * 3. The name of bottom subvolume is also searched and filled. 2083 */ 2084 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2085 { 2086 struct btrfs_ioctl_ino_lookup_user_args *args; 2087 struct inode *inode; 2088 int ret; 2089 2090 args = memdup_user(argp, sizeof(*args)); 2091 if (IS_ERR(args)) 2092 return PTR_ERR(args); 2093 2094 inode = file_inode(file); 2095 2096 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2097 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2098 /* 2099 * The subvolume does not exist under fd with which this is 2100 * called 2101 */ 2102 kfree(args); 2103 return -EACCES; 2104 } 2105 2106 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2107 2108 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2109 ret = -EFAULT; 2110 2111 kfree(args); 2112 return ret; 2113 } 2114 2115 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2116 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2117 { 2118 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2119 struct btrfs_fs_info *fs_info; 2120 struct btrfs_root *root; 2121 struct btrfs_path *path; 2122 struct btrfs_key key; 2123 struct btrfs_root_item *root_item; 2124 struct btrfs_root_ref *rref; 2125 struct extent_buffer *leaf; 2126 unsigned long item_off; 2127 unsigned long item_len; 2128 int slot; 2129 int ret = 0; 2130 2131 path = btrfs_alloc_path(); 2132 if (!path) 2133 return -ENOMEM; 2134 2135 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2136 if (!subvol_info) { 2137 btrfs_free_path(path); 2138 return -ENOMEM; 2139 } 2140 2141 fs_info = BTRFS_I(inode)->root->fs_info; 2142 2143 /* Get root_item of inode's subvolume */ 2144 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2145 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2146 if (IS_ERR(root)) { 2147 ret = PTR_ERR(root); 2148 goto out_free; 2149 } 2150 root_item = &root->root_item; 2151 2152 subvol_info->treeid = key.objectid; 2153 2154 subvol_info->generation = btrfs_root_generation(root_item); 2155 subvol_info->flags = btrfs_root_flags(root_item); 2156 2157 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2158 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2159 BTRFS_UUID_SIZE); 2160 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2161 BTRFS_UUID_SIZE); 2162 2163 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2164 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2165 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2166 2167 subvol_info->otransid = btrfs_root_otransid(root_item); 2168 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2169 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2170 2171 subvol_info->stransid = btrfs_root_stransid(root_item); 2172 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2173 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2174 2175 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2176 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2177 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2178 2179 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2180 /* Search root tree for ROOT_BACKREF of this subvolume */ 2181 key.type = BTRFS_ROOT_BACKREF_KEY; 2182 key.offset = 0; 2183 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2184 if (ret < 0) { 2185 goto out; 2186 } else if (path->slots[0] >= 2187 btrfs_header_nritems(path->nodes[0])) { 2188 ret = btrfs_next_leaf(fs_info->tree_root, path); 2189 if (ret < 0) { 2190 goto out; 2191 } else if (ret > 0) { 2192 ret = -EUCLEAN; 2193 goto out; 2194 } 2195 } 2196 2197 leaf = path->nodes[0]; 2198 slot = path->slots[0]; 2199 btrfs_item_key_to_cpu(leaf, &key, slot); 2200 if (key.objectid == subvol_info->treeid && 2201 key.type == BTRFS_ROOT_BACKREF_KEY) { 2202 subvol_info->parent_id = key.offset; 2203 2204 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2205 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2206 2207 item_off = btrfs_item_ptr_offset(leaf, slot) 2208 + sizeof(struct btrfs_root_ref); 2209 item_len = btrfs_item_size(leaf, slot) 2210 - sizeof(struct btrfs_root_ref); 2211 read_extent_buffer(leaf, subvol_info->name, 2212 item_off, item_len); 2213 } else { 2214 ret = -ENOENT; 2215 goto out; 2216 } 2217 } 2218 2219 btrfs_free_path(path); 2220 path = NULL; 2221 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2222 ret = -EFAULT; 2223 2224 out: 2225 btrfs_put_root(root); 2226 out_free: 2227 btrfs_free_path(path); 2228 kfree(subvol_info); 2229 return ret; 2230 } 2231 2232 /* 2233 * Return ROOT_REF information of the subvolume containing this inode 2234 * except the subvolume name. 2235 */ 2236 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2237 void __user *argp) 2238 { 2239 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2240 struct btrfs_root_ref *rref; 2241 struct btrfs_path *path; 2242 struct btrfs_key key; 2243 struct extent_buffer *leaf; 2244 u64 objectid; 2245 int slot; 2246 int ret; 2247 u8 found; 2248 2249 path = btrfs_alloc_path(); 2250 if (!path) 2251 return -ENOMEM; 2252 2253 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2254 if (IS_ERR(rootrefs)) { 2255 btrfs_free_path(path); 2256 return PTR_ERR(rootrefs); 2257 } 2258 2259 objectid = root->root_key.objectid; 2260 key.objectid = objectid; 2261 key.type = BTRFS_ROOT_REF_KEY; 2262 key.offset = rootrefs->min_treeid; 2263 found = 0; 2264 2265 root = root->fs_info->tree_root; 2266 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2267 if (ret < 0) { 2268 goto out; 2269 } else if (path->slots[0] >= 2270 btrfs_header_nritems(path->nodes[0])) { 2271 ret = btrfs_next_leaf(root, path); 2272 if (ret < 0) { 2273 goto out; 2274 } else if (ret > 0) { 2275 ret = -EUCLEAN; 2276 goto out; 2277 } 2278 } 2279 while (1) { 2280 leaf = path->nodes[0]; 2281 slot = path->slots[0]; 2282 2283 btrfs_item_key_to_cpu(leaf, &key, slot); 2284 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2285 ret = 0; 2286 goto out; 2287 } 2288 2289 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2290 ret = -EOVERFLOW; 2291 goto out; 2292 } 2293 2294 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2295 rootrefs->rootref[found].treeid = key.offset; 2296 rootrefs->rootref[found].dirid = 2297 btrfs_root_ref_dirid(leaf, rref); 2298 found++; 2299 2300 ret = btrfs_next_item(root, path); 2301 if (ret < 0) { 2302 goto out; 2303 } else if (ret > 0) { 2304 ret = -EUCLEAN; 2305 goto out; 2306 } 2307 } 2308 2309 out: 2310 btrfs_free_path(path); 2311 2312 if (!ret || ret == -EOVERFLOW) { 2313 rootrefs->num_items = found; 2314 /* update min_treeid for next search */ 2315 if (found) 2316 rootrefs->min_treeid = 2317 rootrefs->rootref[found - 1].treeid + 1; 2318 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2319 ret = -EFAULT; 2320 } 2321 2322 kfree(rootrefs); 2323 2324 return ret; 2325 } 2326 2327 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2328 void __user *arg, 2329 bool destroy_v2) 2330 { 2331 struct dentry *parent = file->f_path.dentry; 2332 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2333 struct dentry *dentry; 2334 struct inode *dir = d_inode(parent); 2335 struct inode *inode; 2336 struct btrfs_root *root = BTRFS_I(dir)->root; 2337 struct btrfs_root *dest = NULL; 2338 struct btrfs_ioctl_vol_args *vol_args = NULL; 2339 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2340 struct mnt_idmap *idmap = file_mnt_idmap(file); 2341 char *subvol_name, *subvol_name_ptr = NULL; 2342 int subvol_namelen; 2343 int err = 0; 2344 bool destroy_parent = false; 2345 2346 /* We don't support snapshots with extent tree v2 yet. */ 2347 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2348 btrfs_err(fs_info, 2349 "extent tree v2 doesn't support snapshot deletion yet"); 2350 return -EOPNOTSUPP; 2351 } 2352 2353 if (destroy_v2) { 2354 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2355 if (IS_ERR(vol_args2)) 2356 return PTR_ERR(vol_args2); 2357 2358 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2359 err = -EOPNOTSUPP; 2360 goto out; 2361 } 2362 2363 /* 2364 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2365 * name, same as v1 currently does. 2366 */ 2367 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2368 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2369 subvol_name = vol_args2->name; 2370 2371 err = mnt_want_write_file(file); 2372 if (err) 2373 goto out; 2374 } else { 2375 struct inode *old_dir; 2376 2377 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2378 err = -EINVAL; 2379 goto out; 2380 } 2381 2382 err = mnt_want_write_file(file); 2383 if (err) 2384 goto out; 2385 2386 dentry = btrfs_get_dentry(fs_info->sb, 2387 BTRFS_FIRST_FREE_OBJECTID, 2388 vol_args2->subvolid, 0); 2389 if (IS_ERR(dentry)) { 2390 err = PTR_ERR(dentry); 2391 goto out_drop_write; 2392 } 2393 2394 /* 2395 * Change the default parent since the subvolume being 2396 * deleted can be outside of the current mount point. 2397 */ 2398 parent = btrfs_get_parent(dentry); 2399 2400 /* 2401 * At this point dentry->d_name can point to '/' if the 2402 * subvolume we want to destroy is outsite of the 2403 * current mount point, so we need to release the 2404 * current dentry and execute the lookup to return a new 2405 * one with ->d_name pointing to the 2406 * <mount point>/subvol_name. 2407 */ 2408 dput(dentry); 2409 if (IS_ERR(parent)) { 2410 err = PTR_ERR(parent); 2411 goto out_drop_write; 2412 } 2413 old_dir = dir; 2414 dir = d_inode(parent); 2415 2416 /* 2417 * If v2 was used with SPEC_BY_ID, a new parent was 2418 * allocated since the subvolume can be outside of the 2419 * current mount point. Later on we need to release this 2420 * new parent dentry. 2421 */ 2422 destroy_parent = true; 2423 2424 /* 2425 * On idmapped mounts, deletion via subvolid is 2426 * restricted to subvolumes that are immediate 2427 * ancestors of the inode referenced by the file 2428 * descriptor in the ioctl. Otherwise the idmapping 2429 * could potentially be abused to delete subvolumes 2430 * anywhere in the filesystem the user wouldn't be able 2431 * to delete without an idmapped mount. 2432 */ 2433 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2434 err = -EOPNOTSUPP; 2435 goto free_parent; 2436 } 2437 2438 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2439 fs_info, vol_args2->subvolid); 2440 if (IS_ERR(subvol_name_ptr)) { 2441 err = PTR_ERR(subvol_name_ptr); 2442 goto free_parent; 2443 } 2444 /* subvol_name_ptr is already nul terminated */ 2445 subvol_name = (char *)kbasename(subvol_name_ptr); 2446 } 2447 } else { 2448 vol_args = memdup_user(arg, sizeof(*vol_args)); 2449 if (IS_ERR(vol_args)) 2450 return PTR_ERR(vol_args); 2451 2452 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2453 subvol_name = vol_args->name; 2454 2455 err = mnt_want_write_file(file); 2456 if (err) 2457 goto out; 2458 } 2459 2460 subvol_namelen = strlen(subvol_name); 2461 2462 if (strchr(subvol_name, '/') || 2463 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2464 err = -EINVAL; 2465 goto free_subvol_name; 2466 } 2467 2468 if (!S_ISDIR(dir->i_mode)) { 2469 err = -ENOTDIR; 2470 goto free_subvol_name; 2471 } 2472 2473 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2474 if (err == -EINTR) 2475 goto free_subvol_name; 2476 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen); 2477 if (IS_ERR(dentry)) { 2478 err = PTR_ERR(dentry); 2479 goto out_unlock_dir; 2480 } 2481 2482 if (d_really_is_negative(dentry)) { 2483 err = -ENOENT; 2484 goto out_dput; 2485 } 2486 2487 inode = d_inode(dentry); 2488 dest = BTRFS_I(inode)->root; 2489 if (!capable(CAP_SYS_ADMIN)) { 2490 /* 2491 * Regular user. Only allow this with a special mount 2492 * option, when the user has write+exec access to the 2493 * subvol root, and when rmdir(2) would have been 2494 * allowed. 2495 * 2496 * Note that this is _not_ check that the subvol is 2497 * empty or doesn't contain data that we wouldn't 2498 * otherwise be able to delete. 2499 * 2500 * Users who want to delete empty subvols should try 2501 * rmdir(2). 2502 */ 2503 err = -EPERM; 2504 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2505 goto out_dput; 2506 2507 /* 2508 * Do not allow deletion if the parent dir is the same 2509 * as the dir to be deleted. That means the ioctl 2510 * must be called on the dentry referencing the root 2511 * of the subvol, not a random directory contained 2512 * within it. 2513 */ 2514 err = -EINVAL; 2515 if (root == dest) 2516 goto out_dput; 2517 2518 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2519 if (err) 2520 goto out_dput; 2521 } 2522 2523 /* check if subvolume may be deleted by a user */ 2524 err = btrfs_may_delete(idmap, dir, dentry, 1); 2525 if (err) 2526 goto out_dput; 2527 2528 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2529 err = -EINVAL; 2530 goto out_dput; 2531 } 2532 2533 btrfs_inode_lock(BTRFS_I(inode), 0); 2534 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2535 btrfs_inode_unlock(BTRFS_I(inode), 0); 2536 if (!err) 2537 d_delete_notify(dir, dentry); 2538 2539 out_dput: 2540 dput(dentry); 2541 out_unlock_dir: 2542 btrfs_inode_unlock(BTRFS_I(dir), 0); 2543 free_subvol_name: 2544 kfree(subvol_name_ptr); 2545 free_parent: 2546 if (destroy_parent) 2547 dput(parent); 2548 out_drop_write: 2549 mnt_drop_write_file(file); 2550 out: 2551 kfree(vol_args2); 2552 kfree(vol_args); 2553 return err; 2554 } 2555 2556 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2557 { 2558 struct inode *inode = file_inode(file); 2559 struct btrfs_root *root = BTRFS_I(inode)->root; 2560 struct btrfs_ioctl_defrag_range_args range = {0}; 2561 int ret; 2562 2563 ret = mnt_want_write_file(file); 2564 if (ret) 2565 return ret; 2566 2567 if (btrfs_root_readonly(root)) { 2568 ret = -EROFS; 2569 goto out; 2570 } 2571 2572 switch (inode->i_mode & S_IFMT) { 2573 case S_IFDIR: 2574 if (!capable(CAP_SYS_ADMIN)) { 2575 ret = -EPERM; 2576 goto out; 2577 } 2578 ret = btrfs_defrag_root(root); 2579 break; 2580 case S_IFREG: 2581 /* 2582 * Note that this does not check the file descriptor for write 2583 * access. This prevents defragmenting executables that are 2584 * running and allows defrag on files open in read-only mode. 2585 */ 2586 if (!capable(CAP_SYS_ADMIN) && 2587 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2588 ret = -EPERM; 2589 goto out; 2590 } 2591 2592 if (argp) { 2593 if (copy_from_user(&range, argp, sizeof(range))) { 2594 ret = -EFAULT; 2595 goto out; 2596 } 2597 /* compression requires us to start the IO */ 2598 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2599 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2600 range.extent_thresh = (u32)-1; 2601 } 2602 } else { 2603 /* the rest are all set to zero by kzalloc */ 2604 range.len = (u64)-1; 2605 } 2606 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2607 &range, BTRFS_OLDEST_GENERATION, 0); 2608 if (ret > 0) 2609 ret = 0; 2610 break; 2611 default: 2612 ret = -EINVAL; 2613 } 2614 out: 2615 mnt_drop_write_file(file); 2616 return ret; 2617 } 2618 2619 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2620 { 2621 struct btrfs_ioctl_vol_args *vol_args; 2622 bool restore_op = false; 2623 int ret; 2624 2625 if (!capable(CAP_SYS_ADMIN)) 2626 return -EPERM; 2627 2628 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2629 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2630 return -EINVAL; 2631 } 2632 2633 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2634 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2635 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2636 2637 /* 2638 * We can do the device add because we have a paused balanced, 2639 * change the exclusive op type and remember we should bring 2640 * back the paused balance 2641 */ 2642 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2643 btrfs_exclop_start_unlock(fs_info); 2644 restore_op = true; 2645 } 2646 2647 vol_args = memdup_user(arg, sizeof(*vol_args)); 2648 if (IS_ERR(vol_args)) { 2649 ret = PTR_ERR(vol_args); 2650 goto out; 2651 } 2652 2653 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2654 ret = btrfs_init_new_device(fs_info, vol_args->name); 2655 2656 if (!ret) 2657 btrfs_info(fs_info, "disk added %s", vol_args->name); 2658 2659 kfree(vol_args); 2660 out: 2661 if (restore_op) 2662 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2663 else 2664 btrfs_exclop_finish(fs_info); 2665 return ret; 2666 } 2667 2668 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2669 { 2670 BTRFS_DEV_LOOKUP_ARGS(args); 2671 struct inode *inode = file_inode(file); 2672 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2673 struct btrfs_ioctl_vol_args_v2 *vol_args; 2674 struct block_device *bdev = NULL; 2675 fmode_t mode; 2676 int ret; 2677 bool cancel = false; 2678 2679 if (!capable(CAP_SYS_ADMIN)) 2680 return -EPERM; 2681 2682 vol_args = memdup_user(arg, sizeof(*vol_args)); 2683 if (IS_ERR(vol_args)) 2684 return PTR_ERR(vol_args); 2685 2686 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2687 ret = -EOPNOTSUPP; 2688 goto out; 2689 } 2690 2691 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2692 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2693 args.devid = vol_args->devid; 2694 } else if (!strcmp("cancel", vol_args->name)) { 2695 cancel = true; 2696 } else { 2697 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2698 if (ret) 2699 goto out; 2700 } 2701 2702 ret = mnt_want_write_file(file); 2703 if (ret) 2704 goto out; 2705 2706 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2707 cancel); 2708 if (ret) 2709 goto err_drop; 2710 2711 /* Exclusive operation is now claimed */ 2712 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 2713 2714 btrfs_exclop_finish(fs_info); 2715 2716 if (!ret) { 2717 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2718 btrfs_info(fs_info, "device deleted: id %llu", 2719 vol_args->devid); 2720 else 2721 btrfs_info(fs_info, "device deleted: %s", 2722 vol_args->name); 2723 } 2724 err_drop: 2725 mnt_drop_write_file(file); 2726 if (bdev) 2727 blkdev_put(bdev, mode); 2728 out: 2729 btrfs_put_dev_args_from_path(&args); 2730 kfree(vol_args); 2731 return ret; 2732 } 2733 2734 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2735 { 2736 BTRFS_DEV_LOOKUP_ARGS(args); 2737 struct inode *inode = file_inode(file); 2738 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2739 struct btrfs_ioctl_vol_args *vol_args; 2740 struct block_device *bdev = NULL; 2741 fmode_t mode; 2742 int ret; 2743 bool cancel = false; 2744 2745 if (!capable(CAP_SYS_ADMIN)) 2746 return -EPERM; 2747 2748 vol_args = memdup_user(arg, sizeof(*vol_args)); 2749 if (IS_ERR(vol_args)) 2750 return PTR_ERR(vol_args); 2751 2752 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2753 if (!strcmp("cancel", vol_args->name)) { 2754 cancel = true; 2755 } else { 2756 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2757 if (ret) 2758 goto out; 2759 } 2760 2761 ret = mnt_want_write_file(file); 2762 if (ret) 2763 goto out; 2764 2765 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2766 cancel); 2767 if (ret == 0) { 2768 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 2769 if (!ret) 2770 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2771 btrfs_exclop_finish(fs_info); 2772 } 2773 2774 mnt_drop_write_file(file); 2775 if (bdev) 2776 blkdev_put(bdev, mode); 2777 out: 2778 btrfs_put_dev_args_from_path(&args); 2779 kfree(vol_args); 2780 return ret; 2781 } 2782 2783 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2784 void __user *arg) 2785 { 2786 struct btrfs_ioctl_fs_info_args *fi_args; 2787 struct btrfs_device *device; 2788 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2789 u64 flags_in; 2790 int ret = 0; 2791 2792 fi_args = memdup_user(arg, sizeof(*fi_args)); 2793 if (IS_ERR(fi_args)) 2794 return PTR_ERR(fi_args); 2795 2796 flags_in = fi_args->flags; 2797 memset(fi_args, 0, sizeof(*fi_args)); 2798 2799 rcu_read_lock(); 2800 fi_args->num_devices = fs_devices->num_devices; 2801 2802 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2803 if (device->devid > fi_args->max_id) 2804 fi_args->max_id = device->devid; 2805 } 2806 rcu_read_unlock(); 2807 2808 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2809 fi_args->nodesize = fs_info->nodesize; 2810 fi_args->sectorsize = fs_info->sectorsize; 2811 fi_args->clone_alignment = fs_info->sectorsize; 2812 2813 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2814 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2815 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2816 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2817 } 2818 2819 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2820 fi_args->generation = fs_info->generation; 2821 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2822 } 2823 2824 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2825 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2826 sizeof(fi_args->metadata_uuid)); 2827 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2828 } 2829 2830 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2831 ret = -EFAULT; 2832 2833 kfree(fi_args); 2834 return ret; 2835 } 2836 2837 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2838 void __user *arg) 2839 { 2840 BTRFS_DEV_LOOKUP_ARGS(args); 2841 struct btrfs_ioctl_dev_info_args *di_args; 2842 struct btrfs_device *dev; 2843 int ret = 0; 2844 2845 di_args = memdup_user(arg, sizeof(*di_args)); 2846 if (IS_ERR(di_args)) 2847 return PTR_ERR(di_args); 2848 2849 args.devid = di_args->devid; 2850 if (!btrfs_is_empty_uuid(di_args->uuid)) 2851 args.uuid = di_args->uuid; 2852 2853 rcu_read_lock(); 2854 dev = btrfs_find_device(fs_info->fs_devices, &args); 2855 if (!dev) { 2856 ret = -ENODEV; 2857 goto out; 2858 } 2859 2860 di_args->devid = dev->devid; 2861 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2862 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2863 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2864 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2865 if (dev->name) 2866 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2867 else 2868 di_args->path[0] = '\0'; 2869 2870 out: 2871 rcu_read_unlock(); 2872 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2873 ret = -EFAULT; 2874 2875 kfree(di_args); 2876 return ret; 2877 } 2878 2879 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2880 { 2881 struct inode *inode = file_inode(file); 2882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2883 struct btrfs_root *root = BTRFS_I(inode)->root; 2884 struct btrfs_root *new_root; 2885 struct btrfs_dir_item *di; 2886 struct btrfs_trans_handle *trans; 2887 struct btrfs_path *path = NULL; 2888 struct btrfs_disk_key disk_key; 2889 struct fscrypt_str name = FSTR_INIT("default", 7); 2890 u64 objectid = 0; 2891 u64 dir_id; 2892 int ret; 2893 2894 if (!capable(CAP_SYS_ADMIN)) 2895 return -EPERM; 2896 2897 ret = mnt_want_write_file(file); 2898 if (ret) 2899 return ret; 2900 2901 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2902 ret = -EFAULT; 2903 goto out; 2904 } 2905 2906 if (!objectid) 2907 objectid = BTRFS_FS_TREE_OBJECTID; 2908 2909 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2910 if (IS_ERR(new_root)) { 2911 ret = PTR_ERR(new_root); 2912 goto out; 2913 } 2914 if (!is_fstree(new_root->root_key.objectid)) { 2915 ret = -ENOENT; 2916 goto out_free; 2917 } 2918 2919 path = btrfs_alloc_path(); 2920 if (!path) { 2921 ret = -ENOMEM; 2922 goto out_free; 2923 } 2924 2925 trans = btrfs_start_transaction(root, 1); 2926 if (IS_ERR(trans)) { 2927 ret = PTR_ERR(trans); 2928 goto out_free; 2929 } 2930 2931 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2932 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2933 dir_id, &name, 1); 2934 if (IS_ERR_OR_NULL(di)) { 2935 btrfs_release_path(path); 2936 btrfs_end_transaction(trans); 2937 btrfs_err(fs_info, 2938 "Umm, you don't have the default diritem, this isn't going to work"); 2939 ret = -ENOENT; 2940 goto out_free; 2941 } 2942 2943 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2944 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2945 btrfs_mark_buffer_dirty(path->nodes[0]); 2946 btrfs_release_path(path); 2947 2948 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 2949 btrfs_end_transaction(trans); 2950 out_free: 2951 btrfs_put_root(new_root); 2952 btrfs_free_path(path); 2953 out: 2954 mnt_drop_write_file(file); 2955 return ret; 2956 } 2957 2958 static void get_block_group_info(struct list_head *groups_list, 2959 struct btrfs_ioctl_space_info *space) 2960 { 2961 struct btrfs_block_group *block_group; 2962 2963 space->total_bytes = 0; 2964 space->used_bytes = 0; 2965 space->flags = 0; 2966 list_for_each_entry(block_group, groups_list, list) { 2967 space->flags = block_group->flags; 2968 space->total_bytes += block_group->length; 2969 space->used_bytes += block_group->used; 2970 } 2971 } 2972 2973 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 2974 void __user *arg) 2975 { 2976 struct btrfs_ioctl_space_args space_args; 2977 struct btrfs_ioctl_space_info space; 2978 struct btrfs_ioctl_space_info *dest; 2979 struct btrfs_ioctl_space_info *dest_orig; 2980 struct btrfs_ioctl_space_info __user *user_dest; 2981 struct btrfs_space_info *info; 2982 static const u64 types[] = { 2983 BTRFS_BLOCK_GROUP_DATA, 2984 BTRFS_BLOCK_GROUP_SYSTEM, 2985 BTRFS_BLOCK_GROUP_METADATA, 2986 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 2987 }; 2988 int num_types = 4; 2989 int alloc_size; 2990 int ret = 0; 2991 u64 slot_count = 0; 2992 int i, c; 2993 2994 if (copy_from_user(&space_args, 2995 (struct btrfs_ioctl_space_args __user *)arg, 2996 sizeof(space_args))) 2997 return -EFAULT; 2998 2999 for (i = 0; i < num_types; i++) { 3000 struct btrfs_space_info *tmp; 3001 3002 info = NULL; 3003 list_for_each_entry(tmp, &fs_info->space_info, list) { 3004 if (tmp->flags == types[i]) { 3005 info = tmp; 3006 break; 3007 } 3008 } 3009 3010 if (!info) 3011 continue; 3012 3013 down_read(&info->groups_sem); 3014 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3015 if (!list_empty(&info->block_groups[c])) 3016 slot_count++; 3017 } 3018 up_read(&info->groups_sem); 3019 } 3020 3021 /* 3022 * Global block reserve, exported as a space_info 3023 */ 3024 slot_count++; 3025 3026 /* space_slots == 0 means they are asking for a count */ 3027 if (space_args.space_slots == 0) { 3028 space_args.total_spaces = slot_count; 3029 goto out; 3030 } 3031 3032 slot_count = min_t(u64, space_args.space_slots, slot_count); 3033 3034 alloc_size = sizeof(*dest) * slot_count; 3035 3036 /* we generally have at most 6 or so space infos, one for each raid 3037 * level. So, a whole page should be more than enough for everyone 3038 */ 3039 if (alloc_size > PAGE_SIZE) 3040 return -ENOMEM; 3041 3042 space_args.total_spaces = 0; 3043 dest = kmalloc(alloc_size, GFP_KERNEL); 3044 if (!dest) 3045 return -ENOMEM; 3046 dest_orig = dest; 3047 3048 /* now we have a buffer to copy into */ 3049 for (i = 0; i < num_types; i++) { 3050 struct btrfs_space_info *tmp; 3051 3052 if (!slot_count) 3053 break; 3054 3055 info = NULL; 3056 list_for_each_entry(tmp, &fs_info->space_info, list) { 3057 if (tmp->flags == types[i]) { 3058 info = tmp; 3059 break; 3060 } 3061 } 3062 3063 if (!info) 3064 continue; 3065 down_read(&info->groups_sem); 3066 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3067 if (!list_empty(&info->block_groups[c])) { 3068 get_block_group_info(&info->block_groups[c], 3069 &space); 3070 memcpy(dest, &space, sizeof(space)); 3071 dest++; 3072 space_args.total_spaces++; 3073 slot_count--; 3074 } 3075 if (!slot_count) 3076 break; 3077 } 3078 up_read(&info->groups_sem); 3079 } 3080 3081 /* 3082 * Add global block reserve 3083 */ 3084 if (slot_count) { 3085 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3086 3087 spin_lock(&block_rsv->lock); 3088 space.total_bytes = block_rsv->size; 3089 space.used_bytes = block_rsv->size - block_rsv->reserved; 3090 spin_unlock(&block_rsv->lock); 3091 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3092 memcpy(dest, &space, sizeof(space)); 3093 space_args.total_spaces++; 3094 } 3095 3096 user_dest = (struct btrfs_ioctl_space_info __user *) 3097 (arg + sizeof(struct btrfs_ioctl_space_args)); 3098 3099 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3100 ret = -EFAULT; 3101 3102 kfree(dest_orig); 3103 out: 3104 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3105 ret = -EFAULT; 3106 3107 return ret; 3108 } 3109 3110 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3111 void __user *argp) 3112 { 3113 struct btrfs_trans_handle *trans; 3114 u64 transid; 3115 3116 trans = btrfs_attach_transaction_barrier(root); 3117 if (IS_ERR(trans)) { 3118 if (PTR_ERR(trans) != -ENOENT) 3119 return PTR_ERR(trans); 3120 3121 /* No running transaction, don't bother */ 3122 transid = root->fs_info->last_trans_committed; 3123 goto out; 3124 } 3125 transid = trans->transid; 3126 btrfs_commit_transaction_async(trans); 3127 out: 3128 if (argp) 3129 if (copy_to_user(argp, &transid, sizeof(transid))) 3130 return -EFAULT; 3131 return 0; 3132 } 3133 3134 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3135 void __user *argp) 3136 { 3137 u64 transid; 3138 3139 if (argp) { 3140 if (copy_from_user(&transid, argp, sizeof(transid))) 3141 return -EFAULT; 3142 } else { 3143 transid = 0; /* current trans */ 3144 } 3145 return btrfs_wait_for_commit(fs_info, transid); 3146 } 3147 3148 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3149 { 3150 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3151 struct btrfs_ioctl_scrub_args *sa; 3152 int ret; 3153 3154 if (!capable(CAP_SYS_ADMIN)) 3155 return -EPERM; 3156 3157 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3158 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3159 return -EINVAL; 3160 } 3161 3162 sa = memdup_user(arg, sizeof(*sa)); 3163 if (IS_ERR(sa)) 3164 return PTR_ERR(sa); 3165 3166 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3167 ret = -EOPNOTSUPP; 3168 goto out; 3169 } 3170 3171 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3172 ret = mnt_want_write_file(file); 3173 if (ret) 3174 goto out; 3175 } 3176 3177 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3178 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3179 0); 3180 3181 /* 3182 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3183 * error. This is important as it allows user space to know how much 3184 * progress scrub has done. For example, if scrub is canceled we get 3185 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3186 * space. Later user space can inspect the progress from the structure 3187 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3188 * previously (btrfs-progs does this). 3189 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3190 * then return -EFAULT to signal the structure was not copied or it may 3191 * be corrupt and unreliable due to a partial copy. 3192 */ 3193 if (copy_to_user(arg, sa, sizeof(*sa))) 3194 ret = -EFAULT; 3195 3196 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3197 mnt_drop_write_file(file); 3198 out: 3199 kfree(sa); 3200 return ret; 3201 } 3202 3203 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3204 { 3205 if (!capable(CAP_SYS_ADMIN)) 3206 return -EPERM; 3207 3208 return btrfs_scrub_cancel(fs_info); 3209 } 3210 3211 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3212 void __user *arg) 3213 { 3214 struct btrfs_ioctl_scrub_args *sa; 3215 int ret; 3216 3217 if (!capable(CAP_SYS_ADMIN)) 3218 return -EPERM; 3219 3220 sa = memdup_user(arg, sizeof(*sa)); 3221 if (IS_ERR(sa)) 3222 return PTR_ERR(sa); 3223 3224 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3225 3226 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3227 ret = -EFAULT; 3228 3229 kfree(sa); 3230 return ret; 3231 } 3232 3233 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3234 void __user *arg) 3235 { 3236 struct btrfs_ioctl_get_dev_stats *sa; 3237 int ret; 3238 3239 sa = memdup_user(arg, sizeof(*sa)); 3240 if (IS_ERR(sa)) 3241 return PTR_ERR(sa); 3242 3243 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3244 kfree(sa); 3245 return -EPERM; 3246 } 3247 3248 ret = btrfs_get_dev_stats(fs_info, sa); 3249 3250 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3251 ret = -EFAULT; 3252 3253 kfree(sa); 3254 return ret; 3255 } 3256 3257 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3258 void __user *arg) 3259 { 3260 struct btrfs_ioctl_dev_replace_args *p; 3261 int ret; 3262 3263 if (!capable(CAP_SYS_ADMIN)) 3264 return -EPERM; 3265 3266 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3267 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3268 return -EINVAL; 3269 } 3270 3271 p = memdup_user(arg, sizeof(*p)); 3272 if (IS_ERR(p)) 3273 return PTR_ERR(p); 3274 3275 switch (p->cmd) { 3276 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3277 if (sb_rdonly(fs_info->sb)) { 3278 ret = -EROFS; 3279 goto out; 3280 } 3281 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3282 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3283 } else { 3284 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3285 btrfs_exclop_finish(fs_info); 3286 } 3287 break; 3288 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3289 btrfs_dev_replace_status(fs_info, p); 3290 ret = 0; 3291 break; 3292 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3293 p->result = btrfs_dev_replace_cancel(fs_info); 3294 ret = 0; 3295 break; 3296 default: 3297 ret = -EINVAL; 3298 break; 3299 } 3300 3301 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3302 ret = -EFAULT; 3303 out: 3304 kfree(p); 3305 return ret; 3306 } 3307 3308 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3309 { 3310 int ret = 0; 3311 int i; 3312 u64 rel_ptr; 3313 int size; 3314 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3315 struct inode_fs_paths *ipath = NULL; 3316 struct btrfs_path *path; 3317 3318 if (!capable(CAP_DAC_READ_SEARCH)) 3319 return -EPERM; 3320 3321 path = btrfs_alloc_path(); 3322 if (!path) { 3323 ret = -ENOMEM; 3324 goto out; 3325 } 3326 3327 ipa = memdup_user(arg, sizeof(*ipa)); 3328 if (IS_ERR(ipa)) { 3329 ret = PTR_ERR(ipa); 3330 ipa = NULL; 3331 goto out; 3332 } 3333 3334 size = min_t(u32, ipa->size, 4096); 3335 ipath = init_ipath(size, root, path); 3336 if (IS_ERR(ipath)) { 3337 ret = PTR_ERR(ipath); 3338 ipath = NULL; 3339 goto out; 3340 } 3341 3342 ret = paths_from_inode(ipa->inum, ipath); 3343 if (ret < 0) 3344 goto out; 3345 3346 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3347 rel_ptr = ipath->fspath->val[i] - 3348 (u64)(unsigned long)ipath->fspath->val; 3349 ipath->fspath->val[i] = rel_ptr; 3350 } 3351 3352 btrfs_free_path(path); 3353 path = NULL; 3354 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3355 ipath->fspath, size); 3356 if (ret) { 3357 ret = -EFAULT; 3358 goto out; 3359 } 3360 3361 out: 3362 btrfs_free_path(path); 3363 free_ipath(ipath); 3364 kfree(ipa); 3365 3366 return ret; 3367 } 3368 3369 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3370 void __user *arg, int version) 3371 { 3372 int ret = 0; 3373 int size; 3374 struct btrfs_ioctl_logical_ino_args *loi; 3375 struct btrfs_data_container *inodes = NULL; 3376 struct btrfs_path *path = NULL; 3377 bool ignore_offset; 3378 3379 if (!capable(CAP_SYS_ADMIN)) 3380 return -EPERM; 3381 3382 loi = memdup_user(arg, sizeof(*loi)); 3383 if (IS_ERR(loi)) 3384 return PTR_ERR(loi); 3385 3386 if (version == 1) { 3387 ignore_offset = false; 3388 size = min_t(u32, loi->size, SZ_64K); 3389 } else { 3390 /* All reserved bits must be 0 for now */ 3391 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3392 ret = -EINVAL; 3393 goto out_loi; 3394 } 3395 /* Only accept flags we have defined so far */ 3396 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3397 ret = -EINVAL; 3398 goto out_loi; 3399 } 3400 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3401 size = min_t(u32, loi->size, SZ_16M); 3402 } 3403 3404 inodes = init_data_container(size); 3405 if (IS_ERR(inodes)) { 3406 ret = PTR_ERR(inodes); 3407 goto out_loi; 3408 } 3409 3410 path = btrfs_alloc_path(); 3411 if (!path) { 3412 ret = -ENOMEM; 3413 goto out; 3414 } 3415 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3416 inodes, ignore_offset); 3417 btrfs_free_path(path); 3418 if (ret == -EINVAL) 3419 ret = -ENOENT; 3420 if (ret < 0) 3421 goto out; 3422 3423 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3424 size); 3425 if (ret) 3426 ret = -EFAULT; 3427 3428 out: 3429 kvfree(inodes); 3430 out_loi: 3431 kfree(loi); 3432 3433 return ret; 3434 } 3435 3436 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3437 struct btrfs_ioctl_balance_args *bargs) 3438 { 3439 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3440 3441 bargs->flags = bctl->flags; 3442 3443 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3444 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3445 if (atomic_read(&fs_info->balance_pause_req)) 3446 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3447 if (atomic_read(&fs_info->balance_cancel_req)) 3448 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3449 3450 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3451 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3452 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3453 3454 spin_lock(&fs_info->balance_lock); 3455 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3456 spin_unlock(&fs_info->balance_lock); 3457 } 3458 3459 /* 3460 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3461 * required. 3462 * 3463 * @fs_info: the filesystem 3464 * @excl_acquired: ptr to boolean value which is set to false in case balance 3465 * is being resumed 3466 * 3467 * Return 0 on success in which case both fs_info::balance is acquired as well 3468 * as exclusive ops are blocked. In case of failure return an error code. 3469 */ 3470 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3471 { 3472 int ret; 3473 3474 /* 3475 * Exclusive operation is locked. Three possibilities: 3476 * (1) some other op is running 3477 * (2) balance is running 3478 * (3) balance is paused -- special case (think resume) 3479 */ 3480 while (1) { 3481 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3482 *excl_acquired = true; 3483 mutex_lock(&fs_info->balance_mutex); 3484 return 0; 3485 } 3486 3487 mutex_lock(&fs_info->balance_mutex); 3488 if (fs_info->balance_ctl) { 3489 /* This is either (2) or (3) */ 3490 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3491 /* This is (2) */ 3492 ret = -EINPROGRESS; 3493 goto out_failure; 3494 3495 } else { 3496 mutex_unlock(&fs_info->balance_mutex); 3497 /* 3498 * Lock released to allow other waiters to 3499 * continue, we'll reexamine the status again. 3500 */ 3501 mutex_lock(&fs_info->balance_mutex); 3502 3503 if (fs_info->balance_ctl && 3504 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3505 /* This is (3) */ 3506 *excl_acquired = false; 3507 return 0; 3508 } 3509 } 3510 } else { 3511 /* This is (1) */ 3512 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3513 goto out_failure; 3514 } 3515 3516 mutex_unlock(&fs_info->balance_mutex); 3517 } 3518 3519 out_failure: 3520 mutex_unlock(&fs_info->balance_mutex); 3521 *excl_acquired = false; 3522 return ret; 3523 } 3524 3525 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3526 { 3527 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3528 struct btrfs_fs_info *fs_info = root->fs_info; 3529 struct btrfs_ioctl_balance_args *bargs; 3530 struct btrfs_balance_control *bctl; 3531 bool need_unlock = true; 3532 int ret; 3533 3534 if (!capable(CAP_SYS_ADMIN)) 3535 return -EPERM; 3536 3537 ret = mnt_want_write_file(file); 3538 if (ret) 3539 return ret; 3540 3541 bargs = memdup_user(arg, sizeof(*bargs)); 3542 if (IS_ERR(bargs)) { 3543 ret = PTR_ERR(bargs); 3544 bargs = NULL; 3545 goto out; 3546 } 3547 3548 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3549 if (ret) 3550 goto out; 3551 3552 lockdep_assert_held(&fs_info->balance_mutex); 3553 3554 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3555 if (!fs_info->balance_ctl) { 3556 ret = -ENOTCONN; 3557 goto out_unlock; 3558 } 3559 3560 bctl = fs_info->balance_ctl; 3561 spin_lock(&fs_info->balance_lock); 3562 bctl->flags |= BTRFS_BALANCE_RESUME; 3563 spin_unlock(&fs_info->balance_lock); 3564 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3565 3566 goto do_balance; 3567 } 3568 3569 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3570 ret = -EINVAL; 3571 goto out_unlock; 3572 } 3573 3574 if (fs_info->balance_ctl) { 3575 ret = -EINPROGRESS; 3576 goto out_unlock; 3577 } 3578 3579 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3580 if (!bctl) { 3581 ret = -ENOMEM; 3582 goto out_unlock; 3583 } 3584 3585 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3586 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3587 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3588 3589 bctl->flags = bargs->flags; 3590 do_balance: 3591 /* 3592 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3593 * bctl is freed in reset_balance_state, or, if restriper was paused 3594 * all the way until unmount, in free_fs_info. The flag should be 3595 * cleared after reset_balance_state. 3596 */ 3597 need_unlock = false; 3598 3599 ret = btrfs_balance(fs_info, bctl, bargs); 3600 bctl = NULL; 3601 3602 if (ret == 0 || ret == -ECANCELED) { 3603 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3604 ret = -EFAULT; 3605 } 3606 3607 kfree(bctl); 3608 out_unlock: 3609 mutex_unlock(&fs_info->balance_mutex); 3610 if (need_unlock) 3611 btrfs_exclop_finish(fs_info); 3612 out: 3613 mnt_drop_write_file(file); 3614 kfree(bargs); 3615 return ret; 3616 } 3617 3618 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3619 { 3620 if (!capable(CAP_SYS_ADMIN)) 3621 return -EPERM; 3622 3623 switch (cmd) { 3624 case BTRFS_BALANCE_CTL_PAUSE: 3625 return btrfs_pause_balance(fs_info); 3626 case BTRFS_BALANCE_CTL_CANCEL: 3627 return btrfs_cancel_balance(fs_info); 3628 } 3629 3630 return -EINVAL; 3631 } 3632 3633 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3634 void __user *arg) 3635 { 3636 struct btrfs_ioctl_balance_args *bargs; 3637 int ret = 0; 3638 3639 if (!capable(CAP_SYS_ADMIN)) 3640 return -EPERM; 3641 3642 mutex_lock(&fs_info->balance_mutex); 3643 if (!fs_info->balance_ctl) { 3644 ret = -ENOTCONN; 3645 goto out; 3646 } 3647 3648 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3649 if (!bargs) { 3650 ret = -ENOMEM; 3651 goto out; 3652 } 3653 3654 btrfs_update_ioctl_balance_args(fs_info, bargs); 3655 3656 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3657 ret = -EFAULT; 3658 3659 kfree(bargs); 3660 out: 3661 mutex_unlock(&fs_info->balance_mutex); 3662 return ret; 3663 } 3664 3665 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3666 { 3667 struct inode *inode = file_inode(file); 3668 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3669 struct btrfs_ioctl_quota_ctl_args *sa; 3670 int ret; 3671 3672 if (!capable(CAP_SYS_ADMIN)) 3673 return -EPERM; 3674 3675 ret = mnt_want_write_file(file); 3676 if (ret) 3677 return ret; 3678 3679 sa = memdup_user(arg, sizeof(*sa)); 3680 if (IS_ERR(sa)) { 3681 ret = PTR_ERR(sa); 3682 goto drop_write; 3683 } 3684 3685 down_write(&fs_info->subvol_sem); 3686 3687 switch (sa->cmd) { 3688 case BTRFS_QUOTA_CTL_ENABLE: 3689 ret = btrfs_quota_enable(fs_info); 3690 break; 3691 case BTRFS_QUOTA_CTL_DISABLE: 3692 ret = btrfs_quota_disable(fs_info); 3693 break; 3694 default: 3695 ret = -EINVAL; 3696 break; 3697 } 3698 3699 kfree(sa); 3700 up_write(&fs_info->subvol_sem); 3701 drop_write: 3702 mnt_drop_write_file(file); 3703 return ret; 3704 } 3705 3706 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3707 { 3708 struct inode *inode = file_inode(file); 3709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3710 struct btrfs_root *root = BTRFS_I(inode)->root; 3711 struct btrfs_ioctl_qgroup_assign_args *sa; 3712 struct btrfs_trans_handle *trans; 3713 int ret; 3714 int err; 3715 3716 if (!capable(CAP_SYS_ADMIN)) 3717 return -EPERM; 3718 3719 ret = mnt_want_write_file(file); 3720 if (ret) 3721 return ret; 3722 3723 sa = memdup_user(arg, sizeof(*sa)); 3724 if (IS_ERR(sa)) { 3725 ret = PTR_ERR(sa); 3726 goto drop_write; 3727 } 3728 3729 trans = btrfs_join_transaction(root); 3730 if (IS_ERR(trans)) { 3731 ret = PTR_ERR(trans); 3732 goto out; 3733 } 3734 3735 if (sa->assign) { 3736 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 3737 } else { 3738 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3739 } 3740 3741 /* update qgroup status and info */ 3742 mutex_lock(&fs_info->qgroup_ioctl_lock); 3743 err = btrfs_run_qgroups(trans); 3744 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3745 if (err < 0) 3746 btrfs_handle_fs_error(fs_info, err, 3747 "failed to update qgroup status and info"); 3748 err = btrfs_end_transaction(trans); 3749 if (err && !ret) 3750 ret = err; 3751 3752 out: 3753 kfree(sa); 3754 drop_write: 3755 mnt_drop_write_file(file); 3756 return ret; 3757 } 3758 3759 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3760 { 3761 struct inode *inode = file_inode(file); 3762 struct btrfs_root *root = BTRFS_I(inode)->root; 3763 struct btrfs_ioctl_qgroup_create_args *sa; 3764 struct btrfs_trans_handle *trans; 3765 int ret; 3766 int err; 3767 3768 if (!capable(CAP_SYS_ADMIN)) 3769 return -EPERM; 3770 3771 ret = mnt_want_write_file(file); 3772 if (ret) 3773 return ret; 3774 3775 sa = memdup_user(arg, sizeof(*sa)); 3776 if (IS_ERR(sa)) { 3777 ret = PTR_ERR(sa); 3778 goto drop_write; 3779 } 3780 3781 if (!sa->qgroupid) { 3782 ret = -EINVAL; 3783 goto out; 3784 } 3785 3786 trans = btrfs_join_transaction(root); 3787 if (IS_ERR(trans)) { 3788 ret = PTR_ERR(trans); 3789 goto out; 3790 } 3791 3792 if (sa->create) { 3793 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3794 } else { 3795 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3796 } 3797 3798 err = btrfs_end_transaction(trans); 3799 if (err && !ret) 3800 ret = err; 3801 3802 out: 3803 kfree(sa); 3804 drop_write: 3805 mnt_drop_write_file(file); 3806 return ret; 3807 } 3808 3809 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3810 { 3811 struct inode *inode = file_inode(file); 3812 struct btrfs_root *root = BTRFS_I(inode)->root; 3813 struct btrfs_ioctl_qgroup_limit_args *sa; 3814 struct btrfs_trans_handle *trans; 3815 int ret; 3816 int err; 3817 u64 qgroupid; 3818 3819 if (!capable(CAP_SYS_ADMIN)) 3820 return -EPERM; 3821 3822 ret = mnt_want_write_file(file); 3823 if (ret) 3824 return ret; 3825 3826 sa = memdup_user(arg, sizeof(*sa)); 3827 if (IS_ERR(sa)) { 3828 ret = PTR_ERR(sa); 3829 goto drop_write; 3830 } 3831 3832 trans = btrfs_join_transaction(root); 3833 if (IS_ERR(trans)) { 3834 ret = PTR_ERR(trans); 3835 goto out; 3836 } 3837 3838 qgroupid = sa->qgroupid; 3839 if (!qgroupid) { 3840 /* take the current subvol as qgroup */ 3841 qgroupid = root->root_key.objectid; 3842 } 3843 3844 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3845 3846 err = btrfs_end_transaction(trans); 3847 if (err && !ret) 3848 ret = err; 3849 3850 out: 3851 kfree(sa); 3852 drop_write: 3853 mnt_drop_write_file(file); 3854 return ret; 3855 } 3856 3857 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3858 { 3859 struct inode *inode = file_inode(file); 3860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3861 struct btrfs_ioctl_quota_rescan_args *qsa; 3862 int ret; 3863 3864 if (!capable(CAP_SYS_ADMIN)) 3865 return -EPERM; 3866 3867 ret = mnt_want_write_file(file); 3868 if (ret) 3869 return ret; 3870 3871 qsa = memdup_user(arg, sizeof(*qsa)); 3872 if (IS_ERR(qsa)) { 3873 ret = PTR_ERR(qsa); 3874 goto drop_write; 3875 } 3876 3877 if (qsa->flags) { 3878 ret = -EINVAL; 3879 goto out; 3880 } 3881 3882 ret = btrfs_qgroup_rescan(fs_info); 3883 3884 out: 3885 kfree(qsa); 3886 drop_write: 3887 mnt_drop_write_file(file); 3888 return ret; 3889 } 3890 3891 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 3892 void __user *arg) 3893 { 3894 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 3895 3896 if (!capable(CAP_SYS_ADMIN)) 3897 return -EPERM; 3898 3899 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3900 qsa.flags = 1; 3901 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 3902 } 3903 3904 if (copy_to_user(arg, &qsa, sizeof(qsa))) 3905 return -EFAULT; 3906 3907 return 0; 3908 } 3909 3910 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 3911 void __user *arg) 3912 { 3913 if (!capable(CAP_SYS_ADMIN)) 3914 return -EPERM; 3915 3916 return btrfs_qgroup_wait_for_completion(fs_info, true); 3917 } 3918 3919 static long _btrfs_ioctl_set_received_subvol(struct file *file, 3920 struct mnt_idmap *idmap, 3921 struct btrfs_ioctl_received_subvol_args *sa) 3922 { 3923 struct inode *inode = file_inode(file); 3924 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3925 struct btrfs_root *root = BTRFS_I(inode)->root; 3926 struct btrfs_root_item *root_item = &root->root_item; 3927 struct btrfs_trans_handle *trans; 3928 struct timespec64 ct = current_time(inode); 3929 int ret = 0; 3930 int received_uuid_changed; 3931 3932 if (!inode_owner_or_capable(idmap, inode)) 3933 return -EPERM; 3934 3935 ret = mnt_want_write_file(file); 3936 if (ret < 0) 3937 return ret; 3938 3939 down_write(&fs_info->subvol_sem); 3940 3941 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3942 ret = -EINVAL; 3943 goto out; 3944 } 3945 3946 if (btrfs_root_readonly(root)) { 3947 ret = -EROFS; 3948 goto out; 3949 } 3950 3951 /* 3952 * 1 - root item 3953 * 2 - uuid items (received uuid + subvol uuid) 3954 */ 3955 trans = btrfs_start_transaction(root, 3); 3956 if (IS_ERR(trans)) { 3957 ret = PTR_ERR(trans); 3958 trans = NULL; 3959 goto out; 3960 } 3961 3962 sa->rtransid = trans->transid; 3963 sa->rtime.sec = ct.tv_sec; 3964 sa->rtime.nsec = ct.tv_nsec; 3965 3966 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 3967 BTRFS_UUID_SIZE); 3968 if (received_uuid_changed && 3969 !btrfs_is_empty_uuid(root_item->received_uuid)) { 3970 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 3971 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3972 root->root_key.objectid); 3973 if (ret && ret != -ENOENT) { 3974 btrfs_abort_transaction(trans, ret); 3975 btrfs_end_transaction(trans); 3976 goto out; 3977 } 3978 } 3979 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 3980 btrfs_set_root_stransid(root_item, sa->stransid); 3981 btrfs_set_root_rtransid(root_item, sa->rtransid); 3982 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 3983 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 3984 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 3985 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 3986 3987 ret = btrfs_update_root(trans, fs_info->tree_root, 3988 &root->root_key, &root->root_item); 3989 if (ret < 0) { 3990 btrfs_end_transaction(trans); 3991 goto out; 3992 } 3993 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 3994 ret = btrfs_uuid_tree_add(trans, sa->uuid, 3995 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3996 root->root_key.objectid); 3997 if (ret < 0 && ret != -EEXIST) { 3998 btrfs_abort_transaction(trans, ret); 3999 btrfs_end_transaction(trans); 4000 goto out; 4001 } 4002 } 4003 ret = btrfs_commit_transaction(trans); 4004 out: 4005 up_write(&fs_info->subvol_sem); 4006 mnt_drop_write_file(file); 4007 return ret; 4008 } 4009 4010 #ifdef CONFIG_64BIT 4011 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4012 void __user *arg) 4013 { 4014 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4015 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4016 int ret = 0; 4017 4018 args32 = memdup_user(arg, sizeof(*args32)); 4019 if (IS_ERR(args32)) 4020 return PTR_ERR(args32); 4021 4022 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4023 if (!args64) { 4024 ret = -ENOMEM; 4025 goto out; 4026 } 4027 4028 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4029 args64->stransid = args32->stransid; 4030 args64->rtransid = args32->rtransid; 4031 args64->stime.sec = args32->stime.sec; 4032 args64->stime.nsec = args32->stime.nsec; 4033 args64->rtime.sec = args32->rtime.sec; 4034 args64->rtime.nsec = args32->rtime.nsec; 4035 args64->flags = args32->flags; 4036 4037 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4038 if (ret) 4039 goto out; 4040 4041 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4042 args32->stransid = args64->stransid; 4043 args32->rtransid = args64->rtransid; 4044 args32->stime.sec = args64->stime.sec; 4045 args32->stime.nsec = args64->stime.nsec; 4046 args32->rtime.sec = args64->rtime.sec; 4047 args32->rtime.nsec = args64->rtime.nsec; 4048 args32->flags = args64->flags; 4049 4050 ret = copy_to_user(arg, args32, sizeof(*args32)); 4051 if (ret) 4052 ret = -EFAULT; 4053 4054 out: 4055 kfree(args32); 4056 kfree(args64); 4057 return ret; 4058 } 4059 #endif 4060 4061 static long btrfs_ioctl_set_received_subvol(struct file *file, 4062 void __user *arg) 4063 { 4064 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4065 int ret = 0; 4066 4067 sa = memdup_user(arg, sizeof(*sa)); 4068 if (IS_ERR(sa)) 4069 return PTR_ERR(sa); 4070 4071 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4072 4073 if (ret) 4074 goto out; 4075 4076 ret = copy_to_user(arg, sa, sizeof(*sa)); 4077 if (ret) 4078 ret = -EFAULT; 4079 4080 out: 4081 kfree(sa); 4082 return ret; 4083 } 4084 4085 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4086 void __user *arg) 4087 { 4088 size_t len; 4089 int ret; 4090 char label[BTRFS_LABEL_SIZE]; 4091 4092 spin_lock(&fs_info->super_lock); 4093 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4094 spin_unlock(&fs_info->super_lock); 4095 4096 len = strnlen(label, BTRFS_LABEL_SIZE); 4097 4098 if (len == BTRFS_LABEL_SIZE) { 4099 btrfs_warn(fs_info, 4100 "label is too long, return the first %zu bytes", 4101 --len); 4102 } 4103 4104 ret = copy_to_user(arg, label, len); 4105 4106 return ret ? -EFAULT : 0; 4107 } 4108 4109 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4110 { 4111 struct inode *inode = file_inode(file); 4112 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4113 struct btrfs_root *root = BTRFS_I(inode)->root; 4114 struct btrfs_super_block *super_block = fs_info->super_copy; 4115 struct btrfs_trans_handle *trans; 4116 char label[BTRFS_LABEL_SIZE]; 4117 int ret; 4118 4119 if (!capable(CAP_SYS_ADMIN)) 4120 return -EPERM; 4121 4122 if (copy_from_user(label, arg, sizeof(label))) 4123 return -EFAULT; 4124 4125 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4126 btrfs_err(fs_info, 4127 "unable to set label with more than %d bytes", 4128 BTRFS_LABEL_SIZE - 1); 4129 return -EINVAL; 4130 } 4131 4132 ret = mnt_want_write_file(file); 4133 if (ret) 4134 return ret; 4135 4136 trans = btrfs_start_transaction(root, 0); 4137 if (IS_ERR(trans)) { 4138 ret = PTR_ERR(trans); 4139 goto out_unlock; 4140 } 4141 4142 spin_lock(&fs_info->super_lock); 4143 strcpy(super_block->label, label); 4144 spin_unlock(&fs_info->super_lock); 4145 ret = btrfs_commit_transaction(trans); 4146 4147 out_unlock: 4148 mnt_drop_write_file(file); 4149 return ret; 4150 } 4151 4152 #define INIT_FEATURE_FLAGS(suffix) \ 4153 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4154 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4155 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4156 4157 int btrfs_ioctl_get_supported_features(void __user *arg) 4158 { 4159 static const struct btrfs_ioctl_feature_flags features[3] = { 4160 INIT_FEATURE_FLAGS(SUPP), 4161 INIT_FEATURE_FLAGS(SAFE_SET), 4162 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4163 }; 4164 4165 if (copy_to_user(arg, &features, sizeof(features))) 4166 return -EFAULT; 4167 4168 return 0; 4169 } 4170 4171 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4172 void __user *arg) 4173 { 4174 struct btrfs_super_block *super_block = fs_info->super_copy; 4175 struct btrfs_ioctl_feature_flags features; 4176 4177 features.compat_flags = btrfs_super_compat_flags(super_block); 4178 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4179 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4180 4181 if (copy_to_user(arg, &features, sizeof(features))) 4182 return -EFAULT; 4183 4184 return 0; 4185 } 4186 4187 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4188 enum btrfs_feature_set set, 4189 u64 change_mask, u64 flags, u64 supported_flags, 4190 u64 safe_set, u64 safe_clear) 4191 { 4192 const char *type = btrfs_feature_set_name(set); 4193 char *names; 4194 u64 disallowed, unsupported; 4195 u64 set_mask = flags & change_mask; 4196 u64 clear_mask = ~flags & change_mask; 4197 4198 unsupported = set_mask & ~supported_flags; 4199 if (unsupported) { 4200 names = btrfs_printable_features(set, unsupported); 4201 if (names) { 4202 btrfs_warn(fs_info, 4203 "this kernel does not support the %s feature bit%s", 4204 names, strchr(names, ',') ? "s" : ""); 4205 kfree(names); 4206 } else 4207 btrfs_warn(fs_info, 4208 "this kernel does not support %s bits 0x%llx", 4209 type, unsupported); 4210 return -EOPNOTSUPP; 4211 } 4212 4213 disallowed = set_mask & ~safe_set; 4214 if (disallowed) { 4215 names = btrfs_printable_features(set, disallowed); 4216 if (names) { 4217 btrfs_warn(fs_info, 4218 "can't set the %s feature bit%s while mounted", 4219 names, strchr(names, ',') ? "s" : ""); 4220 kfree(names); 4221 } else 4222 btrfs_warn(fs_info, 4223 "can't set %s bits 0x%llx while mounted", 4224 type, disallowed); 4225 return -EPERM; 4226 } 4227 4228 disallowed = clear_mask & ~safe_clear; 4229 if (disallowed) { 4230 names = btrfs_printable_features(set, disallowed); 4231 if (names) { 4232 btrfs_warn(fs_info, 4233 "can't clear the %s feature bit%s while mounted", 4234 names, strchr(names, ',') ? "s" : ""); 4235 kfree(names); 4236 } else 4237 btrfs_warn(fs_info, 4238 "can't clear %s bits 0x%llx while mounted", 4239 type, disallowed); 4240 return -EPERM; 4241 } 4242 4243 return 0; 4244 } 4245 4246 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4247 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4248 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4249 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4250 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4251 4252 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4253 { 4254 struct inode *inode = file_inode(file); 4255 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4256 struct btrfs_root *root = BTRFS_I(inode)->root; 4257 struct btrfs_super_block *super_block = fs_info->super_copy; 4258 struct btrfs_ioctl_feature_flags flags[2]; 4259 struct btrfs_trans_handle *trans; 4260 u64 newflags; 4261 int ret; 4262 4263 if (!capable(CAP_SYS_ADMIN)) 4264 return -EPERM; 4265 4266 if (copy_from_user(flags, arg, sizeof(flags))) 4267 return -EFAULT; 4268 4269 /* Nothing to do */ 4270 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4271 !flags[0].incompat_flags) 4272 return 0; 4273 4274 ret = check_feature(fs_info, flags[0].compat_flags, 4275 flags[1].compat_flags, COMPAT); 4276 if (ret) 4277 return ret; 4278 4279 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4280 flags[1].compat_ro_flags, COMPAT_RO); 4281 if (ret) 4282 return ret; 4283 4284 ret = check_feature(fs_info, flags[0].incompat_flags, 4285 flags[1].incompat_flags, INCOMPAT); 4286 if (ret) 4287 return ret; 4288 4289 ret = mnt_want_write_file(file); 4290 if (ret) 4291 return ret; 4292 4293 trans = btrfs_start_transaction(root, 0); 4294 if (IS_ERR(trans)) { 4295 ret = PTR_ERR(trans); 4296 goto out_drop_write; 4297 } 4298 4299 spin_lock(&fs_info->super_lock); 4300 newflags = btrfs_super_compat_flags(super_block); 4301 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4302 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4303 btrfs_set_super_compat_flags(super_block, newflags); 4304 4305 newflags = btrfs_super_compat_ro_flags(super_block); 4306 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4307 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4308 btrfs_set_super_compat_ro_flags(super_block, newflags); 4309 4310 newflags = btrfs_super_incompat_flags(super_block); 4311 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4312 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4313 btrfs_set_super_incompat_flags(super_block, newflags); 4314 spin_unlock(&fs_info->super_lock); 4315 4316 ret = btrfs_commit_transaction(trans); 4317 out_drop_write: 4318 mnt_drop_write_file(file); 4319 4320 return ret; 4321 } 4322 4323 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 4324 { 4325 struct btrfs_ioctl_send_args *arg; 4326 int ret; 4327 4328 if (compat) { 4329 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4330 struct btrfs_ioctl_send_args_32 args32; 4331 4332 ret = copy_from_user(&args32, argp, sizeof(args32)); 4333 if (ret) 4334 return -EFAULT; 4335 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4336 if (!arg) 4337 return -ENOMEM; 4338 arg->send_fd = args32.send_fd; 4339 arg->clone_sources_count = args32.clone_sources_count; 4340 arg->clone_sources = compat_ptr(args32.clone_sources); 4341 arg->parent_root = args32.parent_root; 4342 arg->flags = args32.flags; 4343 memcpy(arg->reserved, args32.reserved, 4344 sizeof(args32.reserved)); 4345 #else 4346 return -ENOTTY; 4347 #endif 4348 } else { 4349 arg = memdup_user(argp, sizeof(*arg)); 4350 if (IS_ERR(arg)) 4351 return PTR_ERR(arg); 4352 } 4353 ret = btrfs_ioctl_send(inode, arg); 4354 kfree(arg); 4355 return ret; 4356 } 4357 4358 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4359 bool compat) 4360 { 4361 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4362 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4363 flags); 4364 size_t copy_end; 4365 struct iovec iovstack[UIO_FASTIOV]; 4366 struct iovec *iov = iovstack; 4367 struct iov_iter iter; 4368 loff_t pos; 4369 struct kiocb kiocb; 4370 ssize_t ret; 4371 4372 if (!capable(CAP_SYS_ADMIN)) { 4373 ret = -EPERM; 4374 goto out_acct; 4375 } 4376 4377 if (compat) { 4378 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4379 struct btrfs_ioctl_encoded_io_args_32 args32; 4380 4381 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4382 flags); 4383 if (copy_from_user(&args32, argp, copy_end)) { 4384 ret = -EFAULT; 4385 goto out_acct; 4386 } 4387 args.iov = compat_ptr(args32.iov); 4388 args.iovcnt = args32.iovcnt; 4389 args.offset = args32.offset; 4390 args.flags = args32.flags; 4391 #else 4392 return -ENOTTY; 4393 #endif 4394 } else { 4395 copy_end = copy_end_kernel; 4396 if (copy_from_user(&args, argp, copy_end)) { 4397 ret = -EFAULT; 4398 goto out_acct; 4399 } 4400 } 4401 if (args.flags != 0) { 4402 ret = -EINVAL; 4403 goto out_acct; 4404 } 4405 4406 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4407 &iov, &iter); 4408 if (ret < 0) 4409 goto out_acct; 4410 4411 if (iov_iter_count(&iter) == 0) { 4412 ret = 0; 4413 goto out_iov; 4414 } 4415 pos = args.offset; 4416 ret = rw_verify_area(READ, file, &pos, args.len); 4417 if (ret < 0) 4418 goto out_iov; 4419 4420 init_sync_kiocb(&kiocb, file); 4421 kiocb.ki_pos = pos; 4422 4423 ret = btrfs_encoded_read(&kiocb, &iter, &args); 4424 if (ret >= 0) { 4425 fsnotify_access(file); 4426 if (copy_to_user(argp + copy_end, 4427 (char *)&args + copy_end_kernel, 4428 sizeof(args) - copy_end_kernel)) 4429 ret = -EFAULT; 4430 } 4431 4432 out_iov: 4433 kfree(iov); 4434 out_acct: 4435 if (ret > 0) 4436 add_rchar(current, ret); 4437 inc_syscr(current); 4438 return ret; 4439 } 4440 4441 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4442 { 4443 struct btrfs_ioctl_encoded_io_args args; 4444 struct iovec iovstack[UIO_FASTIOV]; 4445 struct iovec *iov = iovstack; 4446 struct iov_iter iter; 4447 loff_t pos; 4448 struct kiocb kiocb; 4449 ssize_t ret; 4450 4451 if (!capable(CAP_SYS_ADMIN)) { 4452 ret = -EPERM; 4453 goto out_acct; 4454 } 4455 4456 if (!(file->f_mode & FMODE_WRITE)) { 4457 ret = -EBADF; 4458 goto out_acct; 4459 } 4460 4461 if (compat) { 4462 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4463 struct btrfs_ioctl_encoded_io_args_32 args32; 4464 4465 if (copy_from_user(&args32, argp, sizeof(args32))) { 4466 ret = -EFAULT; 4467 goto out_acct; 4468 } 4469 args.iov = compat_ptr(args32.iov); 4470 args.iovcnt = args32.iovcnt; 4471 args.offset = args32.offset; 4472 args.flags = args32.flags; 4473 args.len = args32.len; 4474 args.unencoded_len = args32.unencoded_len; 4475 args.unencoded_offset = args32.unencoded_offset; 4476 args.compression = args32.compression; 4477 args.encryption = args32.encryption; 4478 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4479 #else 4480 return -ENOTTY; 4481 #endif 4482 } else { 4483 if (copy_from_user(&args, argp, sizeof(args))) { 4484 ret = -EFAULT; 4485 goto out_acct; 4486 } 4487 } 4488 4489 ret = -EINVAL; 4490 if (args.flags != 0) 4491 goto out_acct; 4492 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4493 goto out_acct; 4494 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4495 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4496 goto out_acct; 4497 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4498 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4499 goto out_acct; 4500 if (args.unencoded_offset > args.unencoded_len) 4501 goto out_acct; 4502 if (args.len > args.unencoded_len - args.unencoded_offset) 4503 goto out_acct; 4504 4505 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4506 &iov, &iter); 4507 if (ret < 0) 4508 goto out_acct; 4509 4510 file_start_write(file); 4511 4512 if (iov_iter_count(&iter) == 0) { 4513 ret = 0; 4514 goto out_end_write; 4515 } 4516 pos = args.offset; 4517 ret = rw_verify_area(WRITE, file, &pos, args.len); 4518 if (ret < 0) 4519 goto out_end_write; 4520 4521 init_sync_kiocb(&kiocb, file); 4522 ret = kiocb_set_rw_flags(&kiocb, 0); 4523 if (ret) 4524 goto out_end_write; 4525 kiocb.ki_pos = pos; 4526 4527 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4528 if (ret > 0) 4529 fsnotify_modify(file); 4530 4531 out_end_write: 4532 file_end_write(file); 4533 kfree(iov); 4534 out_acct: 4535 if (ret > 0) 4536 add_wchar(current, ret); 4537 inc_syscw(current); 4538 return ret; 4539 } 4540 4541 long btrfs_ioctl(struct file *file, unsigned int 4542 cmd, unsigned long arg) 4543 { 4544 struct inode *inode = file_inode(file); 4545 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4546 struct btrfs_root *root = BTRFS_I(inode)->root; 4547 void __user *argp = (void __user *)arg; 4548 4549 switch (cmd) { 4550 case FS_IOC_GETVERSION: 4551 return btrfs_ioctl_getversion(inode, argp); 4552 case FS_IOC_GETFSLABEL: 4553 return btrfs_ioctl_get_fslabel(fs_info, argp); 4554 case FS_IOC_SETFSLABEL: 4555 return btrfs_ioctl_set_fslabel(file, argp); 4556 case FITRIM: 4557 return btrfs_ioctl_fitrim(fs_info, argp); 4558 case BTRFS_IOC_SNAP_CREATE: 4559 return btrfs_ioctl_snap_create(file, argp, 0); 4560 case BTRFS_IOC_SNAP_CREATE_V2: 4561 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4562 case BTRFS_IOC_SUBVOL_CREATE: 4563 return btrfs_ioctl_snap_create(file, argp, 1); 4564 case BTRFS_IOC_SUBVOL_CREATE_V2: 4565 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4566 case BTRFS_IOC_SNAP_DESTROY: 4567 return btrfs_ioctl_snap_destroy(file, argp, false); 4568 case BTRFS_IOC_SNAP_DESTROY_V2: 4569 return btrfs_ioctl_snap_destroy(file, argp, true); 4570 case BTRFS_IOC_SUBVOL_GETFLAGS: 4571 return btrfs_ioctl_subvol_getflags(inode, argp); 4572 case BTRFS_IOC_SUBVOL_SETFLAGS: 4573 return btrfs_ioctl_subvol_setflags(file, argp); 4574 case BTRFS_IOC_DEFAULT_SUBVOL: 4575 return btrfs_ioctl_default_subvol(file, argp); 4576 case BTRFS_IOC_DEFRAG: 4577 return btrfs_ioctl_defrag(file, NULL); 4578 case BTRFS_IOC_DEFRAG_RANGE: 4579 return btrfs_ioctl_defrag(file, argp); 4580 case BTRFS_IOC_RESIZE: 4581 return btrfs_ioctl_resize(file, argp); 4582 case BTRFS_IOC_ADD_DEV: 4583 return btrfs_ioctl_add_dev(fs_info, argp); 4584 case BTRFS_IOC_RM_DEV: 4585 return btrfs_ioctl_rm_dev(file, argp); 4586 case BTRFS_IOC_RM_DEV_V2: 4587 return btrfs_ioctl_rm_dev_v2(file, argp); 4588 case BTRFS_IOC_FS_INFO: 4589 return btrfs_ioctl_fs_info(fs_info, argp); 4590 case BTRFS_IOC_DEV_INFO: 4591 return btrfs_ioctl_dev_info(fs_info, argp); 4592 case BTRFS_IOC_TREE_SEARCH: 4593 return btrfs_ioctl_tree_search(inode, argp); 4594 case BTRFS_IOC_TREE_SEARCH_V2: 4595 return btrfs_ioctl_tree_search_v2(inode, argp); 4596 case BTRFS_IOC_INO_LOOKUP: 4597 return btrfs_ioctl_ino_lookup(root, argp); 4598 case BTRFS_IOC_INO_PATHS: 4599 return btrfs_ioctl_ino_to_path(root, argp); 4600 case BTRFS_IOC_LOGICAL_INO: 4601 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4602 case BTRFS_IOC_LOGICAL_INO_V2: 4603 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4604 case BTRFS_IOC_SPACE_INFO: 4605 return btrfs_ioctl_space_info(fs_info, argp); 4606 case BTRFS_IOC_SYNC: { 4607 int ret; 4608 4609 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4610 if (ret) 4611 return ret; 4612 ret = btrfs_sync_fs(inode->i_sb, 1); 4613 /* 4614 * The transaction thread may want to do more work, 4615 * namely it pokes the cleaner kthread that will start 4616 * processing uncleaned subvols. 4617 */ 4618 wake_up_process(fs_info->transaction_kthread); 4619 return ret; 4620 } 4621 case BTRFS_IOC_START_SYNC: 4622 return btrfs_ioctl_start_sync(root, argp); 4623 case BTRFS_IOC_WAIT_SYNC: 4624 return btrfs_ioctl_wait_sync(fs_info, argp); 4625 case BTRFS_IOC_SCRUB: 4626 return btrfs_ioctl_scrub(file, argp); 4627 case BTRFS_IOC_SCRUB_CANCEL: 4628 return btrfs_ioctl_scrub_cancel(fs_info); 4629 case BTRFS_IOC_SCRUB_PROGRESS: 4630 return btrfs_ioctl_scrub_progress(fs_info, argp); 4631 case BTRFS_IOC_BALANCE_V2: 4632 return btrfs_ioctl_balance(file, argp); 4633 case BTRFS_IOC_BALANCE_CTL: 4634 return btrfs_ioctl_balance_ctl(fs_info, arg); 4635 case BTRFS_IOC_BALANCE_PROGRESS: 4636 return btrfs_ioctl_balance_progress(fs_info, argp); 4637 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4638 return btrfs_ioctl_set_received_subvol(file, argp); 4639 #ifdef CONFIG_64BIT 4640 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4641 return btrfs_ioctl_set_received_subvol_32(file, argp); 4642 #endif 4643 case BTRFS_IOC_SEND: 4644 return _btrfs_ioctl_send(inode, argp, false); 4645 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4646 case BTRFS_IOC_SEND_32: 4647 return _btrfs_ioctl_send(inode, argp, true); 4648 #endif 4649 case BTRFS_IOC_GET_DEV_STATS: 4650 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4651 case BTRFS_IOC_QUOTA_CTL: 4652 return btrfs_ioctl_quota_ctl(file, argp); 4653 case BTRFS_IOC_QGROUP_ASSIGN: 4654 return btrfs_ioctl_qgroup_assign(file, argp); 4655 case BTRFS_IOC_QGROUP_CREATE: 4656 return btrfs_ioctl_qgroup_create(file, argp); 4657 case BTRFS_IOC_QGROUP_LIMIT: 4658 return btrfs_ioctl_qgroup_limit(file, argp); 4659 case BTRFS_IOC_QUOTA_RESCAN: 4660 return btrfs_ioctl_quota_rescan(file, argp); 4661 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4662 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4663 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4664 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4665 case BTRFS_IOC_DEV_REPLACE: 4666 return btrfs_ioctl_dev_replace(fs_info, argp); 4667 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4668 return btrfs_ioctl_get_supported_features(argp); 4669 case BTRFS_IOC_GET_FEATURES: 4670 return btrfs_ioctl_get_features(fs_info, argp); 4671 case BTRFS_IOC_SET_FEATURES: 4672 return btrfs_ioctl_set_features(file, argp); 4673 case BTRFS_IOC_GET_SUBVOL_INFO: 4674 return btrfs_ioctl_get_subvol_info(inode, argp); 4675 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4676 return btrfs_ioctl_get_subvol_rootref(root, argp); 4677 case BTRFS_IOC_INO_LOOKUP_USER: 4678 return btrfs_ioctl_ino_lookup_user(file, argp); 4679 case FS_IOC_ENABLE_VERITY: 4680 return fsverity_ioctl_enable(file, (const void __user *)argp); 4681 case FS_IOC_MEASURE_VERITY: 4682 return fsverity_ioctl_measure(file, argp); 4683 case BTRFS_IOC_ENCODED_READ: 4684 return btrfs_ioctl_encoded_read(file, argp, false); 4685 case BTRFS_IOC_ENCODED_WRITE: 4686 return btrfs_ioctl_encoded_write(file, argp, false); 4687 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4688 case BTRFS_IOC_ENCODED_READ_32: 4689 return btrfs_ioctl_encoded_read(file, argp, true); 4690 case BTRFS_IOC_ENCODED_WRITE_32: 4691 return btrfs_ioctl_encoded_write(file, argp, true); 4692 #endif 4693 } 4694 4695 return -ENOTTY; 4696 } 4697 4698 #ifdef CONFIG_COMPAT 4699 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4700 { 4701 /* 4702 * These all access 32-bit values anyway so no further 4703 * handling is necessary. 4704 */ 4705 switch (cmd) { 4706 case FS_IOC32_GETVERSION: 4707 cmd = FS_IOC_GETVERSION; 4708 break; 4709 } 4710 4711 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4712 } 4713 #endif 4714