1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 #include "props.h" 60 #include "sysfs.h" 61 #include "qgroup.h" 62 63 #ifdef CONFIG_64BIT 64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 65 * structures are incorrect, as the timespec structure from userspace 66 * is 4 bytes too small. We define these alternatives here to teach 67 * the kernel about the 32-bit struct packing. 68 */ 69 struct btrfs_ioctl_timespec_32 { 70 __u64 sec; 71 __u32 nsec; 72 } __attribute__ ((__packed__)); 73 74 struct btrfs_ioctl_received_subvol_args_32 { 75 char uuid[BTRFS_UUID_SIZE]; /* in */ 76 __u64 stransid; /* in */ 77 __u64 rtransid; /* out */ 78 struct btrfs_ioctl_timespec_32 stime; /* in */ 79 struct btrfs_ioctl_timespec_32 rtime; /* out */ 80 __u64 flags; /* in */ 81 __u64 reserved[16]; /* in */ 82 } __attribute__ ((__packed__)); 83 84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 85 struct btrfs_ioctl_received_subvol_args_32) 86 #endif 87 88 89 static int btrfs_clone(struct inode *src, struct inode *inode, 90 u64 off, u64 olen, u64 olen_aligned, u64 destoff); 91 92 /* Mask out flags that are inappropriate for the given type of inode. */ 93 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 94 { 95 if (S_ISDIR(mode)) 96 return flags; 97 else if (S_ISREG(mode)) 98 return flags & ~FS_DIRSYNC_FL; 99 else 100 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 101 } 102 103 /* 104 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 105 */ 106 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 126 iflags |= FS_COMPR_FL; 127 else if (flags & BTRFS_INODE_NOCOMPRESS) 128 iflags |= FS_NOCOMP_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_update_iflags(struct inode *inode) 137 { 138 struct btrfs_inode *ip = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (ip->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (ip->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (ip->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (ip->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (ip->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 /* 158 * Inherit flags from the parent inode. 159 * 160 * Currently only the compression flags and the cow flags are inherited. 161 */ 162 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 163 { 164 unsigned int flags; 165 166 if (!dir) 167 return; 168 169 flags = BTRFS_I(dir)->flags; 170 171 if (flags & BTRFS_INODE_NOCOMPRESS) { 172 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 173 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 174 } else if (flags & BTRFS_INODE_COMPRESS) { 175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 176 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 177 } 178 179 if (flags & BTRFS_INODE_NODATACOW) { 180 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 181 if (S_ISREG(inode->i_mode)) 182 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 183 } 184 185 btrfs_update_iflags(inode); 186 } 187 188 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 189 { 190 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 191 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 192 193 if (copy_to_user(arg, &flags, sizeof(flags))) 194 return -EFAULT; 195 return 0; 196 } 197 198 static int check_flags(unsigned int flags) 199 { 200 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 201 FS_NOATIME_FL | FS_NODUMP_FL | \ 202 FS_SYNC_FL | FS_DIRSYNC_FL | \ 203 FS_NOCOMP_FL | FS_COMPR_FL | 204 FS_NOCOW_FL)) 205 return -EOPNOTSUPP; 206 207 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 208 return -EINVAL; 209 210 return 0; 211 } 212 213 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 214 { 215 struct inode *inode = file_inode(file); 216 struct btrfs_inode *ip = BTRFS_I(inode); 217 struct btrfs_root *root = ip->root; 218 struct btrfs_trans_handle *trans; 219 unsigned int flags, oldflags; 220 int ret; 221 u64 ip_oldflags; 222 unsigned int i_oldflags; 223 umode_t mode; 224 225 if (!inode_owner_or_capable(inode)) 226 return -EPERM; 227 228 if (btrfs_root_readonly(root)) 229 return -EROFS; 230 231 if (copy_from_user(&flags, arg, sizeof(flags))) 232 return -EFAULT; 233 234 ret = check_flags(flags); 235 if (ret) 236 return ret; 237 238 ret = mnt_want_write_file(file); 239 if (ret) 240 return ret; 241 242 mutex_lock(&inode->i_mutex); 243 244 ip_oldflags = ip->flags; 245 i_oldflags = inode->i_flags; 246 mode = inode->i_mode; 247 248 flags = btrfs_mask_flags(inode->i_mode, flags); 249 oldflags = btrfs_flags_to_ioctl(ip->flags); 250 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 251 if (!capable(CAP_LINUX_IMMUTABLE)) { 252 ret = -EPERM; 253 goto out_unlock; 254 } 255 } 256 257 if (flags & FS_SYNC_FL) 258 ip->flags |= BTRFS_INODE_SYNC; 259 else 260 ip->flags &= ~BTRFS_INODE_SYNC; 261 if (flags & FS_IMMUTABLE_FL) 262 ip->flags |= BTRFS_INODE_IMMUTABLE; 263 else 264 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 265 if (flags & FS_APPEND_FL) 266 ip->flags |= BTRFS_INODE_APPEND; 267 else 268 ip->flags &= ~BTRFS_INODE_APPEND; 269 if (flags & FS_NODUMP_FL) 270 ip->flags |= BTRFS_INODE_NODUMP; 271 else 272 ip->flags &= ~BTRFS_INODE_NODUMP; 273 if (flags & FS_NOATIME_FL) 274 ip->flags |= BTRFS_INODE_NOATIME; 275 else 276 ip->flags &= ~BTRFS_INODE_NOATIME; 277 if (flags & FS_DIRSYNC_FL) 278 ip->flags |= BTRFS_INODE_DIRSYNC; 279 else 280 ip->flags &= ~BTRFS_INODE_DIRSYNC; 281 if (flags & FS_NOCOW_FL) { 282 if (S_ISREG(mode)) { 283 /* 284 * It's safe to turn csums off here, no extents exist. 285 * Otherwise we want the flag to reflect the real COW 286 * status of the file and will not set it. 287 */ 288 if (inode->i_size == 0) 289 ip->flags |= BTRFS_INODE_NODATACOW 290 | BTRFS_INODE_NODATASUM; 291 } else { 292 ip->flags |= BTRFS_INODE_NODATACOW; 293 } 294 } else { 295 /* 296 * Revert back under same assuptions as above 297 */ 298 if (S_ISREG(mode)) { 299 if (inode->i_size == 0) 300 ip->flags &= ~(BTRFS_INODE_NODATACOW 301 | BTRFS_INODE_NODATASUM); 302 } else { 303 ip->flags &= ~BTRFS_INODE_NODATACOW; 304 } 305 } 306 307 /* 308 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 309 * flag may be changed automatically if compression code won't make 310 * things smaller. 311 */ 312 if (flags & FS_NOCOMP_FL) { 313 ip->flags &= ~BTRFS_INODE_COMPRESS; 314 ip->flags |= BTRFS_INODE_NOCOMPRESS; 315 316 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 317 if (ret && ret != -ENODATA) 318 goto out_drop; 319 } else if (flags & FS_COMPR_FL) { 320 const char *comp; 321 322 ip->flags |= BTRFS_INODE_COMPRESS; 323 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 324 325 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 326 comp = "lzo"; 327 else 328 comp = "zlib"; 329 ret = btrfs_set_prop(inode, "btrfs.compression", 330 comp, strlen(comp), 0); 331 if (ret) 332 goto out_drop; 333 334 } else { 335 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 336 if (ret && ret != -ENODATA) 337 goto out_drop; 338 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 339 } 340 341 trans = btrfs_start_transaction(root, 1); 342 if (IS_ERR(trans)) { 343 ret = PTR_ERR(trans); 344 goto out_drop; 345 } 346 347 btrfs_update_iflags(inode); 348 inode_inc_iversion(inode); 349 inode->i_ctime = CURRENT_TIME; 350 ret = btrfs_update_inode(trans, root, inode); 351 352 btrfs_end_transaction(trans, root); 353 out_drop: 354 if (ret) { 355 ip->flags = ip_oldflags; 356 inode->i_flags = i_oldflags; 357 } 358 359 out_unlock: 360 mutex_unlock(&inode->i_mutex); 361 mnt_drop_write_file(file); 362 return ret; 363 } 364 365 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 366 { 367 struct inode *inode = file_inode(file); 368 369 return put_user(inode->i_generation, arg); 370 } 371 372 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 373 { 374 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 375 struct btrfs_device *device; 376 struct request_queue *q; 377 struct fstrim_range range; 378 u64 minlen = ULLONG_MAX; 379 u64 num_devices = 0; 380 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 381 int ret; 382 383 if (!capable(CAP_SYS_ADMIN)) 384 return -EPERM; 385 386 rcu_read_lock(); 387 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 388 dev_list) { 389 if (!device->bdev) 390 continue; 391 q = bdev_get_queue(device->bdev); 392 if (blk_queue_discard(q)) { 393 num_devices++; 394 minlen = min((u64)q->limits.discard_granularity, 395 minlen); 396 } 397 } 398 rcu_read_unlock(); 399 400 if (!num_devices) 401 return -EOPNOTSUPP; 402 if (copy_from_user(&range, arg, sizeof(range))) 403 return -EFAULT; 404 if (range.start > total_bytes || 405 range.len < fs_info->sb->s_blocksize) 406 return -EINVAL; 407 408 range.len = min(range.len, total_bytes - range.start); 409 range.minlen = max(range.minlen, minlen); 410 ret = btrfs_trim_fs(fs_info->tree_root, &range); 411 if (ret < 0) 412 return ret; 413 414 if (copy_to_user(arg, &range, sizeof(range))) 415 return -EFAULT; 416 417 return 0; 418 } 419 420 int btrfs_is_empty_uuid(u8 *uuid) 421 { 422 int i; 423 424 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 425 if (uuid[i]) 426 return 0; 427 } 428 return 1; 429 } 430 431 static noinline int create_subvol(struct inode *dir, 432 struct dentry *dentry, 433 char *name, int namelen, 434 u64 *async_transid, 435 struct btrfs_qgroup_inherit *inherit) 436 { 437 struct btrfs_trans_handle *trans; 438 struct btrfs_key key; 439 struct btrfs_root_item root_item; 440 struct btrfs_inode_item *inode_item; 441 struct extent_buffer *leaf; 442 struct btrfs_root *root = BTRFS_I(dir)->root; 443 struct btrfs_root *new_root; 444 struct btrfs_block_rsv block_rsv; 445 struct timespec cur_time = CURRENT_TIME; 446 struct inode *inode; 447 int ret; 448 int err; 449 u64 objectid; 450 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 451 u64 index = 0; 452 u64 qgroup_reserved; 453 uuid_le new_uuid; 454 455 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 456 if (ret) 457 return ret; 458 459 /* 460 * Don't create subvolume whose level is not zero. Or qgroup will be 461 * screwed up since it assume subvolme qgroup's level to be 0. 462 */ 463 if (btrfs_qgroup_level(objectid)) 464 return -ENOSPC; 465 466 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 467 /* 468 * The same as the snapshot creation, please see the comment 469 * of create_snapshot(). 470 */ 471 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 472 8, &qgroup_reserved, false); 473 if (ret) 474 return ret; 475 476 trans = btrfs_start_transaction(root, 0); 477 if (IS_ERR(trans)) { 478 ret = PTR_ERR(trans); 479 btrfs_subvolume_release_metadata(root, &block_rsv, 480 qgroup_reserved); 481 return ret; 482 } 483 trans->block_rsv = &block_rsv; 484 trans->bytes_reserved = block_rsv.size; 485 486 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 487 if (ret) 488 goto fail; 489 490 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 491 if (IS_ERR(leaf)) { 492 ret = PTR_ERR(leaf); 493 goto fail; 494 } 495 496 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 497 btrfs_set_header_bytenr(leaf, leaf->start); 498 btrfs_set_header_generation(leaf, trans->transid); 499 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 500 btrfs_set_header_owner(leaf, objectid); 501 502 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(), 503 BTRFS_FSID_SIZE); 504 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 505 btrfs_header_chunk_tree_uuid(leaf), 506 BTRFS_UUID_SIZE); 507 btrfs_mark_buffer_dirty(leaf); 508 509 memset(&root_item, 0, sizeof(root_item)); 510 511 inode_item = &root_item.inode; 512 btrfs_set_stack_inode_generation(inode_item, 1); 513 btrfs_set_stack_inode_size(inode_item, 3); 514 btrfs_set_stack_inode_nlink(inode_item, 1); 515 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 516 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 517 518 btrfs_set_root_flags(&root_item, 0); 519 btrfs_set_root_limit(&root_item, 0); 520 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 521 522 btrfs_set_root_bytenr(&root_item, leaf->start); 523 btrfs_set_root_generation(&root_item, trans->transid); 524 btrfs_set_root_level(&root_item, 0); 525 btrfs_set_root_refs(&root_item, 1); 526 btrfs_set_root_used(&root_item, leaf->len); 527 btrfs_set_root_last_snapshot(&root_item, 0); 528 529 btrfs_set_root_generation_v2(&root_item, 530 btrfs_root_generation(&root_item)); 531 uuid_le_gen(&new_uuid); 532 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 533 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec); 534 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec); 535 root_item.ctime = root_item.otime; 536 btrfs_set_root_ctransid(&root_item, trans->transid); 537 btrfs_set_root_otransid(&root_item, trans->transid); 538 539 btrfs_tree_unlock(leaf); 540 free_extent_buffer(leaf); 541 leaf = NULL; 542 543 btrfs_set_root_dirid(&root_item, new_dirid); 544 545 key.objectid = objectid; 546 key.offset = 0; 547 key.type = BTRFS_ROOT_ITEM_KEY; 548 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 549 &root_item); 550 if (ret) 551 goto fail; 552 553 key.offset = (u64)-1; 554 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 555 if (IS_ERR(new_root)) { 556 btrfs_abort_transaction(trans, root, PTR_ERR(new_root)); 557 ret = PTR_ERR(new_root); 558 goto fail; 559 } 560 561 btrfs_record_root_in_trans(trans, new_root); 562 563 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 564 if (ret) { 565 /* We potentially lose an unused inode item here */ 566 btrfs_abort_transaction(trans, root, ret); 567 goto fail; 568 } 569 570 /* 571 * insert the directory item 572 */ 573 ret = btrfs_set_inode_index(dir, &index); 574 if (ret) { 575 btrfs_abort_transaction(trans, root, ret); 576 goto fail; 577 } 578 579 ret = btrfs_insert_dir_item(trans, root, 580 name, namelen, dir, &key, 581 BTRFS_FT_DIR, index); 582 if (ret) { 583 btrfs_abort_transaction(trans, root, ret); 584 goto fail; 585 } 586 587 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 588 ret = btrfs_update_inode(trans, root, dir); 589 BUG_ON(ret); 590 591 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 592 objectid, root->root_key.objectid, 593 btrfs_ino(dir), index, name, namelen); 594 BUG_ON(ret); 595 596 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 597 root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 598 objectid); 599 if (ret) 600 btrfs_abort_transaction(trans, root, ret); 601 602 fail: 603 trans->block_rsv = NULL; 604 trans->bytes_reserved = 0; 605 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 606 607 if (async_transid) { 608 *async_transid = trans->transid; 609 err = btrfs_commit_transaction_async(trans, root, 1); 610 if (err) 611 err = btrfs_commit_transaction(trans, root); 612 } else { 613 err = btrfs_commit_transaction(trans, root); 614 } 615 if (err && !ret) 616 ret = err; 617 618 if (!ret) { 619 inode = btrfs_lookup_dentry(dir, dentry); 620 if (IS_ERR(inode)) 621 return PTR_ERR(inode); 622 d_instantiate(dentry, inode); 623 } 624 return ret; 625 } 626 627 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root) 628 { 629 s64 writers; 630 DEFINE_WAIT(wait); 631 632 do { 633 prepare_to_wait(&root->subv_writers->wait, &wait, 634 TASK_UNINTERRUPTIBLE); 635 636 writers = percpu_counter_sum(&root->subv_writers->counter); 637 if (writers) 638 schedule(); 639 640 finish_wait(&root->subv_writers->wait, &wait); 641 } while (writers); 642 } 643 644 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 645 struct dentry *dentry, char *name, int namelen, 646 u64 *async_transid, bool readonly, 647 struct btrfs_qgroup_inherit *inherit) 648 { 649 struct inode *inode; 650 struct btrfs_pending_snapshot *pending_snapshot; 651 struct btrfs_trans_handle *trans; 652 int ret; 653 654 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 655 return -EINVAL; 656 657 atomic_inc(&root->will_be_snapshoted); 658 smp_mb__after_atomic(); 659 btrfs_wait_for_no_snapshoting_writes(root); 660 661 ret = btrfs_start_delalloc_inodes(root, 0); 662 if (ret) 663 goto out; 664 665 btrfs_wait_ordered_extents(root, -1); 666 667 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 668 if (!pending_snapshot) { 669 ret = -ENOMEM; 670 goto out; 671 } 672 673 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 674 BTRFS_BLOCK_RSV_TEMP); 675 /* 676 * 1 - parent dir inode 677 * 2 - dir entries 678 * 1 - root item 679 * 2 - root ref/backref 680 * 1 - root of snapshot 681 * 1 - UUID item 682 */ 683 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 684 &pending_snapshot->block_rsv, 8, 685 &pending_snapshot->qgroup_reserved, 686 false); 687 if (ret) 688 goto free; 689 690 pending_snapshot->dentry = dentry; 691 pending_snapshot->root = root; 692 pending_snapshot->readonly = readonly; 693 pending_snapshot->dir = dir; 694 pending_snapshot->inherit = inherit; 695 696 trans = btrfs_start_transaction(root, 0); 697 if (IS_ERR(trans)) { 698 ret = PTR_ERR(trans); 699 goto fail; 700 } 701 702 spin_lock(&root->fs_info->trans_lock); 703 list_add(&pending_snapshot->list, 704 &trans->transaction->pending_snapshots); 705 spin_unlock(&root->fs_info->trans_lock); 706 if (async_transid) { 707 *async_transid = trans->transid; 708 ret = btrfs_commit_transaction_async(trans, 709 root->fs_info->extent_root, 1); 710 if (ret) 711 ret = btrfs_commit_transaction(trans, root); 712 } else { 713 ret = btrfs_commit_transaction(trans, 714 root->fs_info->extent_root); 715 } 716 if (ret) 717 goto fail; 718 719 ret = pending_snapshot->error; 720 if (ret) 721 goto fail; 722 723 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 724 if (ret) 725 goto fail; 726 727 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 728 if (IS_ERR(inode)) { 729 ret = PTR_ERR(inode); 730 goto fail; 731 } 732 733 d_instantiate(dentry, inode); 734 ret = 0; 735 fail: 736 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 737 &pending_snapshot->block_rsv, 738 pending_snapshot->qgroup_reserved); 739 free: 740 kfree(pending_snapshot); 741 out: 742 if (atomic_dec_and_test(&root->will_be_snapshoted)) 743 wake_up_atomic_t(&root->will_be_snapshoted); 744 return ret; 745 } 746 747 /* copy of may_delete in fs/namei.c() 748 * Check whether we can remove a link victim from directory dir, check 749 * whether the type of victim is right. 750 * 1. We can't do it if dir is read-only (done in permission()) 751 * 2. We should have write and exec permissions on dir 752 * 3. We can't remove anything from append-only dir 753 * 4. We can't do anything with immutable dir (done in permission()) 754 * 5. If the sticky bit on dir is set we should either 755 * a. be owner of dir, or 756 * b. be owner of victim, or 757 * c. have CAP_FOWNER capability 758 * 6. If the victim is append-only or immutable we can't do antyhing with 759 * links pointing to it. 760 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 761 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 762 * 9. We can't remove a root or mountpoint. 763 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 764 * nfs_async_unlink(). 765 */ 766 767 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 768 { 769 int error; 770 771 if (d_really_is_negative(victim)) 772 return -ENOENT; 773 774 BUG_ON(d_inode(victim->d_parent) != dir); 775 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 776 777 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 778 if (error) 779 return error; 780 if (IS_APPEND(dir)) 781 return -EPERM; 782 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 783 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 784 return -EPERM; 785 if (isdir) { 786 if (!d_is_dir(victim)) 787 return -ENOTDIR; 788 if (IS_ROOT(victim)) 789 return -EBUSY; 790 } else if (d_is_dir(victim)) 791 return -EISDIR; 792 if (IS_DEADDIR(dir)) 793 return -ENOENT; 794 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 795 return -EBUSY; 796 return 0; 797 } 798 799 /* copy of may_create in fs/namei.c() */ 800 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 801 { 802 if (d_really_is_positive(child)) 803 return -EEXIST; 804 if (IS_DEADDIR(dir)) 805 return -ENOENT; 806 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 807 } 808 809 /* 810 * Create a new subvolume below @parent. This is largely modeled after 811 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 812 * inside this filesystem so it's quite a bit simpler. 813 */ 814 static noinline int btrfs_mksubvol(struct path *parent, 815 char *name, int namelen, 816 struct btrfs_root *snap_src, 817 u64 *async_transid, bool readonly, 818 struct btrfs_qgroup_inherit *inherit) 819 { 820 struct inode *dir = d_inode(parent->dentry); 821 struct dentry *dentry; 822 int error; 823 824 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 825 if (error == -EINTR) 826 return error; 827 828 dentry = lookup_one_len(name, parent->dentry, namelen); 829 error = PTR_ERR(dentry); 830 if (IS_ERR(dentry)) 831 goto out_unlock; 832 833 error = -EEXIST; 834 if (d_really_is_positive(dentry)) 835 goto out_dput; 836 837 error = btrfs_may_create(dir, dentry); 838 if (error) 839 goto out_dput; 840 841 /* 842 * even if this name doesn't exist, we may get hash collisions. 843 * check for them now when we can safely fail 844 */ 845 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 846 dir->i_ino, name, 847 namelen); 848 if (error) 849 goto out_dput; 850 851 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 852 853 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 854 goto out_up_read; 855 856 if (snap_src) { 857 error = create_snapshot(snap_src, dir, dentry, name, namelen, 858 async_transid, readonly, inherit); 859 } else { 860 error = create_subvol(dir, dentry, name, namelen, 861 async_transid, inherit); 862 } 863 if (!error) 864 fsnotify_mkdir(dir, dentry); 865 out_up_read: 866 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 867 out_dput: 868 dput(dentry); 869 out_unlock: 870 mutex_unlock(&dir->i_mutex); 871 return error; 872 } 873 874 /* 875 * When we're defragging a range, we don't want to kick it off again 876 * if it is really just waiting for delalloc to send it down. 877 * If we find a nice big extent or delalloc range for the bytes in the 878 * file you want to defrag, we return 0 to let you know to skip this 879 * part of the file 880 */ 881 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 882 { 883 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 884 struct extent_map *em = NULL; 885 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 886 u64 end; 887 888 read_lock(&em_tree->lock); 889 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 890 read_unlock(&em_tree->lock); 891 892 if (em) { 893 end = extent_map_end(em); 894 free_extent_map(em); 895 if (end - offset > thresh) 896 return 0; 897 } 898 /* if we already have a nice delalloc here, just stop */ 899 thresh /= 2; 900 end = count_range_bits(io_tree, &offset, offset + thresh, 901 thresh, EXTENT_DELALLOC, 1); 902 if (end >= thresh) 903 return 0; 904 return 1; 905 } 906 907 /* 908 * helper function to walk through a file and find extents 909 * newer than a specific transid, and smaller than thresh. 910 * 911 * This is used by the defragging code to find new and small 912 * extents 913 */ 914 static int find_new_extents(struct btrfs_root *root, 915 struct inode *inode, u64 newer_than, 916 u64 *off, u32 thresh) 917 { 918 struct btrfs_path *path; 919 struct btrfs_key min_key; 920 struct extent_buffer *leaf; 921 struct btrfs_file_extent_item *extent; 922 int type; 923 int ret; 924 u64 ino = btrfs_ino(inode); 925 926 path = btrfs_alloc_path(); 927 if (!path) 928 return -ENOMEM; 929 930 min_key.objectid = ino; 931 min_key.type = BTRFS_EXTENT_DATA_KEY; 932 min_key.offset = *off; 933 934 while (1) { 935 ret = btrfs_search_forward(root, &min_key, path, newer_than); 936 if (ret != 0) 937 goto none; 938 process_slot: 939 if (min_key.objectid != ino) 940 goto none; 941 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 942 goto none; 943 944 leaf = path->nodes[0]; 945 extent = btrfs_item_ptr(leaf, path->slots[0], 946 struct btrfs_file_extent_item); 947 948 type = btrfs_file_extent_type(leaf, extent); 949 if (type == BTRFS_FILE_EXTENT_REG && 950 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 951 check_defrag_in_cache(inode, min_key.offset, thresh)) { 952 *off = min_key.offset; 953 btrfs_free_path(path); 954 return 0; 955 } 956 957 path->slots[0]++; 958 if (path->slots[0] < btrfs_header_nritems(leaf)) { 959 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 960 goto process_slot; 961 } 962 963 if (min_key.offset == (u64)-1) 964 goto none; 965 966 min_key.offset++; 967 btrfs_release_path(path); 968 } 969 none: 970 btrfs_free_path(path); 971 return -ENOENT; 972 } 973 974 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 975 { 976 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 977 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 978 struct extent_map *em; 979 u64 len = PAGE_CACHE_SIZE; 980 981 /* 982 * hopefully we have this extent in the tree already, try without 983 * the full extent lock 984 */ 985 read_lock(&em_tree->lock); 986 em = lookup_extent_mapping(em_tree, start, len); 987 read_unlock(&em_tree->lock); 988 989 if (!em) { 990 struct extent_state *cached = NULL; 991 u64 end = start + len - 1; 992 993 /* get the big lock and read metadata off disk */ 994 lock_extent_bits(io_tree, start, end, 0, &cached); 995 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 996 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 997 998 if (IS_ERR(em)) 999 return NULL; 1000 } 1001 1002 return em; 1003 } 1004 1005 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1006 { 1007 struct extent_map *next; 1008 bool ret = true; 1009 1010 /* this is the last extent */ 1011 if (em->start + em->len >= i_size_read(inode)) 1012 return false; 1013 1014 next = defrag_lookup_extent(inode, em->start + em->len); 1015 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1016 ret = false; 1017 else if ((em->block_start + em->block_len == next->block_start) && 1018 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024)) 1019 ret = false; 1020 1021 free_extent_map(next); 1022 return ret; 1023 } 1024 1025 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1026 u64 *last_len, u64 *skip, u64 *defrag_end, 1027 int compress) 1028 { 1029 struct extent_map *em; 1030 int ret = 1; 1031 bool next_mergeable = true; 1032 1033 /* 1034 * make sure that once we start defragging an extent, we keep on 1035 * defragging it 1036 */ 1037 if (start < *defrag_end) 1038 return 1; 1039 1040 *skip = 0; 1041 1042 em = defrag_lookup_extent(inode, start); 1043 if (!em) 1044 return 0; 1045 1046 /* this will cover holes, and inline extents */ 1047 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1048 ret = 0; 1049 goto out; 1050 } 1051 1052 next_mergeable = defrag_check_next_extent(inode, em); 1053 /* 1054 * we hit a real extent, if it is big or the next extent is not a 1055 * real extent, don't bother defragging it 1056 */ 1057 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1058 (em->len >= thresh || !next_mergeable)) 1059 ret = 0; 1060 out: 1061 /* 1062 * last_len ends up being a counter of how many bytes we've defragged. 1063 * every time we choose not to defrag an extent, we reset *last_len 1064 * so that the next tiny extent will force a defrag. 1065 * 1066 * The end result of this is that tiny extents before a single big 1067 * extent will force at least part of that big extent to be defragged. 1068 */ 1069 if (ret) { 1070 *defrag_end = extent_map_end(em); 1071 } else { 1072 *last_len = 0; 1073 *skip = extent_map_end(em); 1074 *defrag_end = 0; 1075 } 1076 1077 free_extent_map(em); 1078 return ret; 1079 } 1080 1081 /* 1082 * it doesn't do much good to defrag one or two pages 1083 * at a time. This pulls in a nice chunk of pages 1084 * to COW and defrag. 1085 * 1086 * It also makes sure the delalloc code has enough 1087 * dirty data to avoid making new small extents as part 1088 * of the defrag 1089 * 1090 * It's a good idea to start RA on this range 1091 * before calling this. 1092 */ 1093 static int cluster_pages_for_defrag(struct inode *inode, 1094 struct page **pages, 1095 unsigned long start_index, 1096 unsigned long num_pages) 1097 { 1098 unsigned long file_end; 1099 u64 isize = i_size_read(inode); 1100 u64 page_start; 1101 u64 page_end; 1102 u64 page_cnt; 1103 int ret; 1104 int i; 1105 int i_done; 1106 struct btrfs_ordered_extent *ordered; 1107 struct extent_state *cached_state = NULL; 1108 struct extent_io_tree *tree; 1109 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1110 1111 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 1112 if (!isize || start_index > file_end) 1113 return 0; 1114 1115 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1116 1117 ret = btrfs_delalloc_reserve_space(inode, 1118 page_cnt << PAGE_CACHE_SHIFT); 1119 if (ret) 1120 return ret; 1121 i_done = 0; 1122 tree = &BTRFS_I(inode)->io_tree; 1123 1124 /* step one, lock all the pages */ 1125 for (i = 0; i < page_cnt; i++) { 1126 struct page *page; 1127 again: 1128 page = find_or_create_page(inode->i_mapping, 1129 start_index + i, mask); 1130 if (!page) 1131 break; 1132 1133 page_start = page_offset(page); 1134 page_end = page_start + PAGE_CACHE_SIZE - 1; 1135 while (1) { 1136 lock_extent_bits(tree, page_start, page_end, 1137 0, &cached_state); 1138 ordered = btrfs_lookup_ordered_extent(inode, 1139 page_start); 1140 unlock_extent_cached(tree, page_start, page_end, 1141 &cached_state, GFP_NOFS); 1142 if (!ordered) 1143 break; 1144 1145 unlock_page(page); 1146 btrfs_start_ordered_extent(inode, ordered, 1); 1147 btrfs_put_ordered_extent(ordered); 1148 lock_page(page); 1149 /* 1150 * we unlocked the page above, so we need check if 1151 * it was released or not. 1152 */ 1153 if (page->mapping != inode->i_mapping) { 1154 unlock_page(page); 1155 page_cache_release(page); 1156 goto again; 1157 } 1158 } 1159 1160 if (!PageUptodate(page)) { 1161 btrfs_readpage(NULL, page); 1162 lock_page(page); 1163 if (!PageUptodate(page)) { 1164 unlock_page(page); 1165 page_cache_release(page); 1166 ret = -EIO; 1167 break; 1168 } 1169 } 1170 1171 if (page->mapping != inode->i_mapping) { 1172 unlock_page(page); 1173 page_cache_release(page); 1174 goto again; 1175 } 1176 1177 pages[i] = page; 1178 i_done++; 1179 } 1180 if (!i_done || ret) 1181 goto out; 1182 1183 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1184 goto out; 1185 1186 /* 1187 * so now we have a nice long stream of locked 1188 * and up to date pages, lets wait on them 1189 */ 1190 for (i = 0; i < i_done; i++) 1191 wait_on_page_writeback(pages[i]); 1192 1193 page_start = page_offset(pages[0]); 1194 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1195 1196 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1197 page_start, page_end - 1, 0, &cached_state); 1198 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1199 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1200 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1201 &cached_state, GFP_NOFS); 1202 1203 if (i_done != page_cnt) { 1204 spin_lock(&BTRFS_I(inode)->lock); 1205 BTRFS_I(inode)->outstanding_extents++; 1206 spin_unlock(&BTRFS_I(inode)->lock); 1207 btrfs_delalloc_release_space(inode, 1208 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1209 } 1210 1211 1212 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1213 &cached_state, GFP_NOFS); 1214 1215 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1216 page_start, page_end - 1, &cached_state, 1217 GFP_NOFS); 1218 1219 for (i = 0; i < i_done; i++) { 1220 clear_page_dirty_for_io(pages[i]); 1221 ClearPageChecked(pages[i]); 1222 set_page_extent_mapped(pages[i]); 1223 set_page_dirty(pages[i]); 1224 unlock_page(pages[i]); 1225 page_cache_release(pages[i]); 1226 } 1227 return i_done; 1228 out: 1229 for (i = 0; i < i_done; i++) { 1230 unlock_page(pages[i]); 1231 page_cache_release(pages[i]); 1232 } 1233 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT); 1234 return ret; 1235 1236 } 1237 1238 int btrfs_defrag_file(struct inode *inode, struct file *file, 1239 struct btrfs_ioctl_defrag_range_args *range, 1240 u64 newer_than, unsigned long max_to_defrag) 1241 { 1242 struct btrfs_root *root = BTRFS_I(inode)->root; 1243 struct file_ra_state *ra = NULL; 1244 unsigned long last_index; 1245 u64 isize = i_size_read(inode); 1246 u64 last_len = 0; 1247 u64 skip = 0; 1248 u64 defrag_end = 0; 1249 u64 newer_off = range->start; 1250 unsigned long i; 1251 unsigned long ra_index = 0; 1252 int ret; 1253 int defrag_count = 0; 1254 int compress_type = BTRFS_COMPRESS_ZLIB; 1255 u32 extent_thresh = range->extent_thresh; 1256 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1257 unsigned long cluster = max_cluster; 1258 u64 new_align = ~((u64)128 * 1024 - 1); 1259 struct page **pages = NULL; 1260 1261 if (isize == 0) 1262 return 0; 1263 1264 if (range->start >= isize) 1265 return -EINVAL; 1266 1267 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1268 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1269 return -EINVAL; 1270 if (range->compress_type) 1271 compress_type = range->compress_type; 1272 } 1273 1274 if (extent_thresh == 0) 1275 extent_thresh = 256 * 1024; 1276 1277 /* 1278 * if we were not given a file, allocate a readahead 1279 * context 1280 */ 1281 if (!file) { 1282 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1283 if (!ra) 1284 return -ENOMEM; 1285 file_ra_state_init(ra, inode->i_mapping); 1286 } else { 1287 ra = &file->f_ra; 1288 } 1289 1290 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1291 GFP_NOFS); 1292 if (!pages) { 1293 ret = -ENOMEM; 1294 goto out_ra; 1295 } 1296 1297 /* find the last page to defrag */ 1298 if (range->start + range->len > range->start) { 1299 last_index = min_t(u64, isize - 1, 1300 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1301 } else { 1302 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1303 } 1304 1305 if (newer_than) { 1306 ret = find_new_extents(root, inode, newer_than, 1307 &newer_off, 64 * 1024); 1308 if (!ret) { 1309 range->start = newer_off; 1310 /* 1311 * we always align our defrag to help keep 1312 * the extents in the file evenly spaced 1313 */ 1314 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1315 } else 1316 goto out_ra; 1317 } else { 1318 i = range->start >> PAGE_CACHE_SHIFT; 1319 } 1320 if (!max_to_defrag) 1321 max_to_defrag = last_index + 1; 1322 1323 /* 1324 * make writeback starts from i, so the defrag range can be 1325 * written sequentially. 1326 */ 1327 if (i < inode->i_mapping->writeback_index) 1328 inode->i_mapping->writeback_index = i; 1329 1330 while (i <= last_index && defrag_count < max_to_defrag && 1331 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) { 1332 /* 1333 * make sure we stop running if someone unmounts 1334 * the FS 1335 */ 1336 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1337 break; 1338 1339 if (btrfs_defrag_cancelled(root->fs_info)) { 1340 printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n"); 1341 ret = -EAGAIN; 1342 break; 1343 } 1344 1345 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1346 extent_thresh, &last_len, &skip, 1347 &defrag_end, range->flags & 1348 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1349 unsigned long next; 1350 /* 1351 * the should_defrag function tells us how much to skip 1352 * bump our counter by the suggested amount 1353 */ 1354 next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE); 1355 i = max(i + 1, next); 1356 continue; 1357 } 1358 1359 if (!newer_than) { 1360 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1361 PAGE_CACHE_SHIFT) - i; 1362 cluster = min(cluster, max_cluster); 1363 } else { 1364 cluster = max_cluster; 1365 } 1366 1367 if (i + cluster > ra_index) { 1368 ra_index = max(i, ra_index); 1369 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1370 cluster); 1371 ra_index += max_cluster; 1372 } 1373 1374 mutex_lock(&inode->i_mutex); 1375 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1376 BTRFS_I(inode)->force_compress = compress_type; 1377 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1378 if (ret < 0) { 1379 mutex_unlock(&inode->i_mutex); 1380 goto out_ra; 1381 } 1382 1383 defrag_count += ret; 1384 balance_dirty_pages_ratelimited(inode->i_mapping); 1385 mutex_unlock(&inode->i_mutex); 1386 1387 if (newer_than) { 1388 if (newer_off == (u64)-1) 1389 break; 1390 1391 if (ret > 0) 1392 i += ret; 1393 1394 newer_off = max(newer_off + 1, 1395 (u64)i << PAGE_CACHE_SHIFT); 1396 1397 ret = find_new_extents(root, inode, 1398 newer_than, &newer_off, 1399 64 * 1024); 1400 if (!ret) { 1401 range->start = newer_off; 1402 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1403 } else { 1404 break; 1405 } 1406 } else { 1407 if (ret > 0) { 1408 i += ret; 1409 last_len += ret << PAGE_CACHE_SHIFT; 1410 } else { 1411 i++; 1412 last_len = 0; 1413 } 1414 } 1415 } 1416 1417 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1418 filemap_flush(inode->i_mapping); 1419 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1420 &BTRFS_I(inode)->runtime_flags)) 1421 filemap_flush(inode->i_mapping); 1422 } 1423 1424 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1425 /* the filemap_flush will queue IO into the worker threads, but 1426 * we have to make sure the IO is actually started and that 1427 * ordered extents get created before we return 1428 */ 1429 atomic_inc(&root->fs_info->async_submit_draining); 1430 while (atomic_read(&root->fs_info->nr_async_submits) || 1431 atomic_read(&root->fs_info->async_delalloc_pages)) { 1432 wait_event(root->fs_info->async_submit_wait, 1433 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1434 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1435 } 1436 atomic_dec(&root->fs_info->async_submit_draining); 1437 } 1438 1439 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1440 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1441 } 1442 1443 ret = defrag_count; 1444 1445 out_ra: 1446 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1447 mutex_lock(&inode->i_mutex); 1448 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1449 mutex_unlock(&inode->i_mutex); 1450 } 1451 if (!file) 1452 kfree(ra); 1453 kfree(pages); 1454 return ret; 1455 } 1456 1457 static noinline int btrfs_ioctl_resize(struct file *file, 1458 void __user *arg) 1459 { 1460 u64 new_size; 1461 u64 old_size; 1462 u64 devid = 1; 1463 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1464 struct btrfs_ioctl_vol_args *vol_args; 1465 struct btrfs_trans_handle *trans; 1466 struct btrfs_device *device = NULL; 1467 char *sizestr; 1468 char *retptr; 1469 char *devstr = NULL; 1470 int ret = 0; 1471 int mod = 0; 1472 1473 if (!capable(CAP_SYS_ADMIN)) 1474 return -EPERM; 1475 1476 ret = mnt_want_write_file(file); 1477 if (ret) 1478 return ret; 1479 1480 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1481 1)) { 1482 mnt_drop_write_file(file); 1483 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1484 } 1485 1486 mutex_lock(&root->fs_info->volume_mutex); 1487 vol_args = memdup_user(arg, sizeof(*vol_args)); 1488 if (IS_ERR(vol_args)) { 1489 ret = PTR_ERR(vol_args); 1490 goto out; 1491 } 1492 1493 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1494 1495 sizestr = vol_args->name; 1496 devstr = strchr(sizestr, ':'); 1497 if (devstr) { 1498 sizestr = devstr + 1; 1499 *devstr = '\0'; 1500 devstr = vol_args->name; 1501 ret = kstrtoull(devstr, 10, &devid); 1502 if (ret) 1503 goto out_free; 1504 if (!devid) { 1505 ret = -EINVAL; 1506 goto out_free; 1507 } 1508 btrfs_info(root->fs_info, "resizing devid %llu", devid); 1509 } 1510 1511 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1512 if (!device) { 1513 btrfs_info(root->fs_info, "resizer unable to find device %llu", 1514 devid); 1515 ret = -ENODEV; 1516 goto out_free; 1517 } 1518 1519 if (!device->writeable) { 1520 btrfs_info(root->fs_info, 1521 "resizer unable to apply on readonly device %llu", 1522 devid); 1523 ret = -EPERM; 1524 goto out_free; 1525 } 1526 1527 if (!strcmp(sizestr, "max")) 1528 new_size = device->bdev->bd_inode->i_size; 1529 else { 1530 if (sizestr[0] == '-') { 1531 mod = -1; 1532 sizestr++; 1533 } else if (sizestr[0] == '+') { 1534 mod = 1; 1535 sizestr++; 1536 } 1537 new_size = memparse(sizestr, &retptr); 1538 if (*retptr != '\0' || new_size == 0) { 1539 ret = -EINVAL; 1540 goto out_free; 1541 } 1542 } 1543 1544 if (device->is_tgtdev_for_dev_replace) { 1545 ret = -EPERM; 1546 goto out_free; 1547 } 1548 1549 old_size = btrfs_device_get_total_bytes(device); 1550 1551 if (mod < 0) { 1552 if (new_size > old_size) { 1553 ret = -EINVAL; 1554 goto out_free; 1555 } 1556 new_size = old_size - new_size; 1557 } else if (mod > 0) { 1558 if (new_size > ULLONG_MAX - old_size) { 1559 ret = -ERANGE; 1560 goto out_free; 1561 } 1562 new_size = old_size + new_size; 1563 } 1564 1565 if (new_size < 256 * 1024 * 1024) { 1566 ret = -EINVAL; 1567 goto out_free; 1568 } 1569 if (new_size > device->bdev->bd_inode->i_size) { 1570 ret = -EFBIG; 1571 goto out_free; 1572 } 1573 1574 new_size = div_u64(new_size, root->sectorsize); 1575 new_size *= root->sectorsize; 1576 1577 printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n", 1578 rcu_str_deref(device->name), new_size); 1579 1580 if (new_size > old_size) { 1581 trans = btrfs_start_transaction(root, 0); 1582 if (IS_ERR(trans)) { 1583 ret = PTR_ERR(trans); 1584 goto out_free; 1585 } 1586 ret = btrfs_grow_device(trans, device, new_size); 1587 btrfs_commit_transaction(trans, root); 1588 } else if (new_size < old_size) { 1589 ret = btrfs_shrink_device(device, new_size); 1590 } /* equal, nothing need to do */ 1591 1592 out_free: 1593 kfree(vol_args); 1594 out: 1595 mutex_unlock(&root->fs_info->volume_mutex); 1596 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1597 mnt_drop_write_file(file); 1598 return ret; 1599 } 1600 1601 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1602 char *name, unsigned long fd, int subvol, 1603 u64 *transid, bool readonly, 1604 struct btrfs_qgroup_inherit *inherit) 1605 { 1606 int namelen; 1607 int ret = 0; 1608 1609 ret = mnt_want_write_file(file); 1610 if (ret) 1611 goto out; 1612 1613 namelen = strlen(name); 1614 if (strchr(name, '/')) { 1615 ret = -EINVAL; 1616 goto out_drop_write; 1617 } 1618 1619 if (name[0] == '.' && 1620 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1621 ret = -EEXIST; 1622 goto out_drop_write; 1623 } 1624 1625 if (subvol) { 1626 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1627 NULL, transid, readonly, inherit); 1628 } else { 1629 struct fd src = fdget(fd); 1630 struct inode *src_inode; 1631 if (!src.file) { 1632 ret = -EINVAL; 1633 goto out_drop_write; 1634 } 1635 1636 src_inode = file_inode(src.file); 1637 if (src_inode->i_sb != file_inode(file)->i_sb) { 1638 btrfs_info(BTRFS_I(src_inode)->root->fs_info, 1639 "Snapshot src from another FS"); 1640 ret = -EXDEV; 1641 } else if (!inode_owner_or_capable(src_inode)) { 1642 /* 1643 * Subvolume creation is not restricted, but snapshots 1644 * are limited to own subvolumes only 1645 */ 1646 ret = -EPERM; 1647 } else { 1648 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1649 BTRFS_I(src_inode)->root, 1650 transid, readonly, inherit); 1651 } 1652 fdput(src); 1653 } 1654 out_drop_write: 1655 mnt_drop_write_file(file); 1656 out: 1657 return ret; 1658 } 1659 1660 static noinline int btrfs_ioctl_snap_create(struct file *file, 1661 void __user *arg, int subvol) 1662 { 1663 struct btrfs_ioctl_vol_args *vol_args; 1664 int ret; 1665 1666 vol_args = memdup_user(arg, sizeof(*vol_args)); 1667 if (IS_ERR(vol_args)) 1668 return PTR_ERR(vol_args); 1669 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1670 1671 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1672 vol_args->fd, subvol, 1673 NULL, false, NULL); 1674 1675 kfree(vol_args); 1676 return ret; 1677 } 1678 1679 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1680 void __user *arg, int subvol) 1681 { 1682 struct btrfs_ioctl_vol_args_v2 *vol_args; 1683 int ret; 1684 u64 transid = 0; 1685 u64 *ptr = NULL; 1686 bool readonly = false; 1687 struct btrfs_qgroup_inherit *inherit = NULL; 1688 1689 vol_args = memdup_user(arg, sizeof(*vol_args)); 1690 if (IS_ERR(vol_args)) 1691 return PTR_ERR(vol_args); 1692 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1693 1694 if (vol_args->flags & 1695 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1696 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1697 ret = -EOPNOTSUPP; 1698 goto free_args; 1699 } 1700 1701 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1702 ptr = &transid; 1703 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1704 readonly = true; 1705 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1706 if (vol_args->size > PAGE_CACHE_SIZE) { 1707 ret = -EINVAL; 1708 goto free_args; 1709 } 1710 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1711 if (IS_ERR(inherit)) { 1712 ret = PTR_ERR(inherit); 1713 goto free_args; 1714 } 1715 } 1716 1717 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1718 vol_args->fd, subvol, ptr, 1719 readonly, inherit); 1720 if (ret) 1721 goto free_inherit; 1722 1723 if (ptr && copy_to_user(arg + 1724 offsetof(struct btrfs_ioctl_vol_args_v2, 1725 transid), 1726 ptr, sizeof(*ptr))) 1727 ret = -EFAULT; 1728 1729 free_inherit: 1730 kfree(inherit); 1731 free_args: 1732 kfree(vol_args); 1733 return ret; 1734 } 1735 1736 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1737 void __user *arg) 1738 { 1739 struct inode *inode = file_inode(file); 1740 struct btrfs_root *root = BTRFS_I(inode)->root; 1741 int ret = 0; 1742 u64 flags = 0; 1743 1744 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1745 return -EINVAL; 1746 1747 down_read(&root->fs_info->subvol_sem); 1748 if (btrfs_root_readonly(root)) 1749 flags |= BTRFS_SUBVOL_RDONLY; 1750 up_read(&root->fs_info->subvol_sem); 1751 1752 if (copy_to_user(arg, &flags, sizeof(flags))) 1753 ret = -EFAULT; 1754 1755 return ret; 1756 } 1757 1758 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1759 void __user *arg) 1760 { 1761 struct inode *inode = file_inode(file); 1762 struct btrfs_root *root = BTRFS_I(inode)->root; 1763 struct btrfs_trans_handle *trans; 1764 u64 root_flags; 1765 u64 flags; 1766 int ret = 0; 1767 1768 if (!inode_owner_or_capable(inode)) 1769 return -EPERM; 1770 1771 ret = mnt_want_write_file(file); 1772 if (ret) 1773 goto out; 1774 1775 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1776 ret = -EINVAL; 1777 goto out_drop_write; 1778 } 1779 1780 if (copy_from_user(&flags, arg, sizeof(flags))) { 1781 ret = -EFAULT; 1782 goto out_drop_write; 1783 } 1784 1785 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1786 ret = -EINVAL; 1787 goto out_drop_write; 1788 } 1789 1790 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1791 ret = -EOPNOTSUPP; 1792 goto out_drop_write; 1793 } 1794 1795 down_write(&root->fs_info->subvol_sem); 1796 1797 /* nothing to do */ 1798 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1799 goto out_drop_sem; 1800 1801 root_flags = btrfs_root_flags(&root->root_item); 1802 if (flags & BTRFS_SUBVOL_RDONLY) { 1803 btrfs_set_root_flags(&root->root_item, 1804 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1805 } else { 1806 /* 1807 * Block RO -> RW transition if this subvolume is involved in 1808 * send 1809 */ 1810 spin_lock(&root->root_item_lock); 1811 if (root->send_in_progress == 0) { 1812 btrfs_set_root_flags(&root->root_item, 1813 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1814 spin_unlock(&root->root_item_lock); 1815 } else { 1816 spin_unlock(&root->root_item_lock); 1817 btrfs_warn(root->fs_info, 1818 "Attempt to set subvolume %llu read-write during send", 1819 root->root_key.objectid); 1820 ret = -EPERM; 1821 goto out_drop_sem; 1822 } 1823 } 1824 1825 trans = btrfs_start_transaction(root, 1); 1826 if (IS_ERR(trans)) { 1827 ret = PTR_ERR(trans); 1828 goto out_reset; 1829 } 1830 1831 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1832 &root->root_key, &root->root_item); 1833 1834 btrfs_commit_transaction(trans, root); 1835 out_reset: 1836 if (ret) 1837 btrfs_set_root_flags(&root->root_item, root_flags); 1838 out_drop_sem: 1839 up_write(&root->fs_info->subvol_sem); 1840 out_drop_write: 1841 mnt_drop_write_file(file); 1842 out: 1843 return ret; 1844 } 1845 1846 /* 1847 * helper to check if the subvolume references other subvolumes 1848 */ 1849 static noinline int may_destroy_subvol(struct btrfs_root *root) 1850 { 1851 struct btrfs_path *path; 1852 struct btrfs_dir_item *di; 1853 struct btrfs_key key; 1854 u64 dir_id; 1855 int ret; 1856 1857 path = btrfs_alloc_path(); 1858 if (!path) 1859 return -ENOMEM; 1860 1861 /* Make sure this root isn't set as the default subvol */ 1862 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1863 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1864 dir_id, "default", 7, 0); 1865 if (di && !IS_ERR(di)) { 1866 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1867 if (key.objectid == root->root_key.objectid) { 1868 ret = -EPERM; 1869 btrfs_err(root->fs_info, "deleting default subvolume " 1870 "%llu is not allowed", key.objectid); 1871 goto out; 1872 } 1873 btrfs_release_path(path); 1874 } 1875 1876 key.objectid = root->root_key.objectid; 1877 key.type = BTRFS_ROOT_REF_KEY; 1878 key.offset = (u64)-1; 1879 1880 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1881 &key, path, 0, 0); 1882 if (ret < 0) 1883 goto out; 1884 BUG_ON(ret == 0); 1885 1886 ret = 0; 1887 if (path->slots[0] > 0) { 1888 path->slots[0]--; 1889 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1890 if (key.objectid == root->root_key.objectid && 1891 key.type == BTRFS_ROOT_REF_KEY) 1892 ret = -ENOTEMPTY; 1893 } 1894 out: 1895 btrfs_free_path(path); 1896 return ret; 1897 } 1898 1899 static noinline int key_in_sk(struct btrfs_key *key, 1900 struct btrfs_ioctl_search_key *sk) 1901 { 1902 struct btrfs_key test; 1903 int ret; 1904 1905 test.objectid = sk->min_objectid; 1906 test.type = sk->min_type; 1907 test.offset = sk->min_offset; 1908 1909 ret = btrfs_comp_cpu_keys(key, &test); 1910 if (ret < 0) 1911 return 0; 1912 1913 test.objectid = sk->max_objectid; 1914 test.type = sk->max_type; 1915 test.offset = sk->max_offset; 1916 1917 ret = btrfs_comp_cpu_keys(key, &test); 1918 if (ret > 0) 1919 return 0; 1920 return 1; 1921 } 1922 1923 static noinline int copy_to_sk(struct btrfs_root *root, 1924 struct btrfs_path *path, 1925 struct btrfs_key *key, 1926 struct btrfs_ioctl_search_key *sk, 1927 size_t *buf_size, 1928 char __user *ubuf, 1929 unsigned long *sk_offset, 1930 int *num_found) 1931 { 1932 u64 found_transid; 1933 struct extent_buffer *leaf; 1934 struct btrfs_ioctl_search_header sh; 1935 unsigned long item_off; 1936 unsigned long item_len; 1937 int nritems; 1938 int i; 1939 int slot; 1940 int ret = 0; 1941 1942 leaf = path->nodes[0]; 1943 slot = path->slots[0]; 1944 nritems = btrfs_header_nritems(leaf); 1945 1946 if (btrfs_header_generation(leaf) > sk->max_transid) { 1947 i = nritems; 1948 goto advance_key; 1949 } 1950 found_transid = btrfs_header_generation(leaf); 1951 1952 for (i = slot; i < nritems; i++) { 1953 item_off = btrfs_item_ptr_offset(leaf, i); 1954 item_len = btrfs_item_size_nr(leaf, i); 1955 1956 btrfs_item_key_to_cpu(leaf, key, i); 1957 if (!key_in_sk(key, sk)) 1958 continue; 1959 1960 if (sizeof(sh) + item_len > *buf_size) { 1961 if (*num_found) { 1962 ret = 1; 1963 goto out; 1964 } 1965 1966 /* 1967 * return one empty item back for v1, which does not 1968 * handle -EOVERFLOW 1969 */ 1970 1971 *buf_size = sizeof(sh) + item_len; 1972 item_len = 0; 1973 ret = -EOVERFLOW; 1974 } 1975 1976 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1977 ret = 1; 1978 goto out; 1979 } 1980 1981 sh.objectid = key->objectid; 1982 sh.offset = key->offset; 1983 sh.type = key->type; 1984 sh.len = item_len; 1985 sh.transid = found_transid; 1986 1987 /* copy search result header */ 1988 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 1989 ret = -EFAULT; 1990 goto out; 1991 } 1992 1993 *sk_offset += sizeof(sh); 1994 1995 if (item_len) { 1996 char __user *up = ubuf + *sk_offset; 1997 /* copy the item */ 1998 if (read_extent_buffer_to_user(leaf, up, 1999 item_off, item_len)) { 2000 ret = -EFAULT; 2001 goto out; 2002 } 2003 2004 *sk_offset += item_len; 2005 } 2006 (*num_found)++; 2007 2008 if (ret) /* -EOVERFLOW from above */ 2009 goto out; 2010 2011 if (*num_found >= sk->nr_items) { 2012 ret = 1; 2013 goto out; 2014 } 2015 } 2016 advance_key: 2017 ret = 0; 2018 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 2019 key->offset++; 2020 else if (key->type < (u8)-1 && key->type < sk->max_type) { 2021 key->offset = 0; 2022 key->type++; 2023 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 2024 key->offset = 0; 2025 key->type = 0; 2026 key->objectid++; 2027 } else 2028 ret = 1; 2029 out: 2030 /* 2031 * 0: all items from this leaf copied, continue with next 2032 * 1: * more items can be copied, but unused buffer is too small 2033 * * all items were found 2034 * Either way, it will stops the loop which iterates to the next 2035 * leaf 2036 * -EOVERFLOW: item was to large for buffer 2037 * -EFAULT: could not copy extent buffer back to userspace 2038 */ 2039 return ret; 2040 } 2041 2042 static noinline int search_ioctl(struct inode *inode, 2043 struct btrfs_ioctl_search_key *sk, 2044 size_t *buf_size, 2045 char __user *ubuf) 2046 { 2047 struct btrfs_root *root; 2048 struct btrfs_key key; 2049 struct btrfs_path *path; 2050 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 2051 int ret; 2052 int num_found = 0; 2053 unsigned long sk_offset = 0; 2054 2055 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2056 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2057 return -EOVERFLOW; 2058 } 2059 2060 path = btrfs_alloc_path(); 2061 if (!path) 2062 return -ENOMEM; 2063 2064 if (sk->tree_id == 0) { 2065 /* search the root of the inode that was passed */ 2066 root = BTRFS_I(inode)->root; 2067 } else { 2068 key.objectid = sk->tree_id; 2069 key.type = BTRFS_ROOT_ITEM_KEY; 2070 key.offset = (u64)-1; 2071 root = btrfs_read_fs_root_no_name(info, &key); 2072 if (IS_ERR(root)) { 2073 printk(KERN_ERR "BTRFS: could not find root %llu\n", 2074 sk->tree_id); 2075 btrfs_free_path(path); 2076 return -ENOENT; 2077 } 2078 } 2079 2080 key.objectid = sk->min_objectid; 2081 key.type = sk->min_type; 2082 key.offset = sk->min_offset; 2083 2084 while (1) { 2085 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2086 if (ret != 0) { 2087 if (ret > 0) 2088 ret = 0; 2089 goto err; 2090 } 2091 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf, 2092 &sk_offset, &num_found); 2093 btrfs_release_path(path); 2094 if (ret) 2095 break; 2096 2097 } 2098 if (ret > 0) 2099 ret = 0; 2100 err: 2101 sk->nr_items = num_found; 2102 btrfs_free_path(path); 2103 return ret; 2104 } 2105 2106 static noinline int btrfs_ioctl_tree_search(struct file *file, 2107 void __user *argp) 2108 { 2109 struct btrfs_ioctl_search_args __user *uargs; 2110 struct btrfs_ioctl_search_key sk; 2111 struct inode *inode; 2112 int ret; 2113 size_t buf_size; 2114 2115 if (!capable(CAP_SYS_ADMIN)) 2116 return -EPERM; 2117 2118 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2119 2120 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2121 return -EFAULT; 2122 2123 buf_size = sizeof(uargs->buf); 2124 2125 inode = file_inode(file); 2126 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2127 2128 /* 2129 * In the origin implementation an overflow is handled by returning a 2130 * search header with a len of zero, so reset ret. 2131 */ 2132 if (ret == -EOVERFLOW) 2133 ret = 0; 2134 2135 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2136 ret = -EFAULT; 2137 return ret; 2138 } 2139 2140 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2141 void __user *argp) 2142 { 2143 struct btrfs_ioctl_search_args_v2 __user *uarg; 2144 struct btrfs_ioctl_search_args_v2 args; 2145 struct inode *inode; 2146 int ret; 2147 size_t buf_size; 2148 const size_t buf_limit = 16 * 1024 * 1024; 2149 2150 if (!capable(CAP_SYS_ADMIN)) 2151 return -EPERM; 2152 2153 /* copy search header and buffer size */ 2154 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2155 if (copy_from_user(&args, uarg, sizeof(args))) 2156 return -EFAULT; 2157 2158 buf_size = args.buf_size; 2159 2160 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2161 return -EOVERFLOW; 2162 2163 /* limit result size to 16MB */ 2164 if (buf_size > buf_limit) 2165 buf_size = buf_limit; 2166 2167 inode = file_inode(file); 2168 ret = search_ioctl(inode, &args.key, &buf_size, 2169 (char *)(&uarg->buf[0])); 2170 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2171 ret = -EFAULT; 2172 else if (ret == -EOVERFLOW && 2173 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2174 ret = -EFAULT; 2175 2176 return ret; 2177 } 2178 2179 /* 2180 * Search INODE_REFs to identify path name of 'dirid' directory 2181 * in a 'tree_id' tree. and sets path name to 'name'. 2182 */ 2183 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2184 u64 tree_id, u64 dirid, char *name) 2185 { 2186 struct btrfs_root *root; 2187 struct btrfs_key key; 2188 char *ptr; 2189 int ret = -1; 2190 int slot; 2191 int len; 2192 int total_len = 0; 2193 struct btrfs_inode_ref *iref; 2194 struct extent_buffer *l; 2195 struct btrfs_path *path; 2196 2197 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2198 name[0]='\0'; 2199 return 0; 2200 } 2201 2202 path = btrfs_alloc_path(); 2203 if (!path) 2204 return -ENOMEM; 2205 2206 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2207 2208 key.objectid = tree_id; 2209 key.type = BTRFS_ROOT_ITEM_KEY; 2210 key.offset = (u64)-1; 2211 root = btrfs_read_fs_root_no_name(info, &key); 2212 if (IS_ERR(root)) { 2213 printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id); 2214 ret = -ENOENT; 2215 goto out; 2216 } 2217 2218 key.objectid = dirid; 2219 key.type = BTRFS_INODE_REF_KEY; 2220 key.offset = (u64)-1; 2221 2222 while (1) { 2223 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2224 if (ret < 0) 2225 goto out; 2226 else if (ret > 0) { 2227 ret = btrfs_previous_item(root, path, dirid, 2228 BTRFS_INODE_REF_KEY); 2229 if (ret < 0) 2230 goto out; 2231 else if (ret > 0) { 2232 ret = -ENOENT; 2233 goto out; 2234 } 2235 } 2236 2237 l = path->nodes[0]; 2238 slot = path->slots[0]; 2239 btrfs_item_key_to_cpu(l, &key, slot); 2240 2241 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2242 len = btrfs_inode_ref_name_len(l, iref); 2243 ptr -= len + 1; 2244 total_len += len + 1; 2245 if (ptr < name) { 2246 ret = -ENAMETOOLONG; 2247 goto out; 2248 } 2249 2250 *(ptr + len) = '/'; 2251 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2252 2253 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2254 break; 2255 2256 btrfs_release_path(path); 2257 key.objectid = key.offset; 2258 key.offset = (u64)-1; 2259 dirid = key.objectid; 2260 } 2261 memmove(name, ptr, total_len); 2262 name[total_len] = '\0'; 2263 ret = 0; 2264 out: 2265 btrfs_free_path(path); 2266 return ret; 2267 } 2268 2269 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2270 void __user *argp) 2271 { 2272 struct btrfs_ioctl_ino_lookup_args *args; 2273 struct inode *inode; 2274 int ret; 2275 2276 if (!capable(CAP_SYS_ADMIN)) 2277 return -EPERM; 2278 2279 args = memdup_user(argp, sizeof(*args)); 2280 if (IS_ERR(args)) 2281 return PTR_ERR(args); 2282 2283 inode = file_inode(file); 2284 2285 if (args->treeid == 0) 2286 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2287 2288 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2289 args->treeid, args->objectid, 2290 args->name); 2291 2292 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2293 ret = -EFAULT; 2294 2295 kfree(args); 2296 return ret; 2297 } 2298 2299 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2300 void __user *arg) 2301 { 2302 struct dentry *parent = file->f_path.dentry; 2303 struct dentry *dentry; 2304 struct inode *dir = d_inode(parent); 2305 struct inode *inode; 2306 struct btrfs_root *root = BTRFS_I(dir)->root; 2307 struct btrfs_root *dest = NULL; 2308 struct btrfs_ioctl_vol_args *vol_args; 2309 struct btrfs_trans_handle *trans; 2310 struct btrfs_block_rsv block_rsv; 2311 u64 root_flags; 2312 u64 qgroup_reserved; 2313 int namelen; 2314 int ret; 2315 int err = 0; 2316 2317 vol_args = memdup_user(arg, sizeof(*vol_args)); 2318 if (IS_ERR(vol_args)) 2319 return PTR_ERR(vol_args); 2320 2321 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2322 namelen = strlen(vol_args->name); 2323 if (strchr(vol_args->name, '/') || 2324 strncmp(vol_args->name, "..", namelen) == 0) { 2325 err = -EINVAL; 2326 goto out; 2327 } 2328 2329 err = mnt_want_write_file(file); 2330 if (err) 2331 goto out; 2332 2333 2334 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 2335 if (err == -EINTR) 2336 goto out_drop_write; 2337 dentry = lookup_one_len(vol_args->name, parent, namelen); 2338 if (IS_ERR(dentry)) { 2339 err = PTR_ERR(dentry); 2340 goto out_unlock_dir; 2341 } 2342 2343 if (d_really_is_negative(dentry)) { 2344 err = -ENOENT; 2345 goto out_dput; 2346 } 2347 2348 inode = d_inode(dentry); 2349 dest = BTRFS_I(inode)->root; 2350 if (!capable(CAP_SYS_ADMIN)) { 2351 /* 2352 * Regular user. Only allow this with a special mount 2353 * option, when the user has write+exec access to the 2354 * subvol root, and when rmdir(2) would have been 2355 * allowed. 2356 * 2357 * Note that this is _not_ check that the subvol is 2358 * empty or doesn't contain data that we wouldn't 2359 * otherwise be able to delete. 2360 * 2361 * Users who want to delete empty subvols should try 2362 * rmdir(2). 2363 */ 2364 err = -EPERM; 2365 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2366 goto out_dput; 2367 2368 /* 2369 * Do not allow deletion if the parent dir is the same 2370 * as the dir to be deleted. That means the ioctl 2371 * must be called on the dentry referencing the root 2372 * of the subvol, not a random directory contained 2373 * within it. 2374 */ 2375 err = -EINVAL; 2376 if (root == dest) 2377 goto out_dput; 2378 2379 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2380 if (err) 2381 goto out_dput; 2382 } 2383 2384 /* check if subvolume may be deleted by a user */ 2385 err = btrfs_may_delete(dir, dentry, 1); 2386 if (err) 2387 goto out_dput; 2388 2389 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2390 err = -EINVAL; 2391 goto out_dput; 2392 } 2393 2394 mutex_lock(&inode->i_mutex); 2395 2396 /* 2397 * Don't allow to delete a subvolume with send in progress. This is 2398 * inside the i_mutex so the error handling that has to drop the bit 2399 * again is not run concurrently. 2400 */ 2401 spin_lock(&dest->root_item_lock); 2402 root_flags = btrfs_root_flags(&dest->root_item); 2403 if (dest->send_in_progress == 0) { 2404 btrfs_set_root_flags(&dest->root_item, 2405 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2406 spin_unlock(&dest->root_item_lock); 2407 } else { 2408 spin_unlock(&dest->root_item_lock); 2409 btrfs_warn(root->fs_info, 2410 "Attempt to delete subvolume %llu during send", 2411 dest->root_key.objectid); 2412 err = -EPERM; 2413 goto out_unlock_inode; 2414 } 2415 2416 d_invalidate(dentry); 2417 2418 down_write(&root->fs_info->subvol_sem); 2419 2420 err = may_destroy_subvol(dest); 2421 if (err) 2422 goto out_up_write; 2423 2424 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2425 /* 2426 * One for dir inode, two for dir entries, two for root 2427 * ref/backref. 2428 */ 2429 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2430 5, &qgroup_reserved, true); 2431 if (err) 2432 goto out_up_write; 2433 2434 trans = btrfs_start_transaction(root, 0); 2435 if (IS_ERR(trans)) { 2436 err = PTR_ERR(trans); 2437 goto out_release; 2438 } 2439 trans->block_rsv = &block_rsv; 2440 trans->bytes_reserved = block_rsv.size; 2441 2442 ret = btrfs_unlink_subvol(trans, root, dir, 2443 dest->root_key.objectid, 2444 dentry->d_name.name, 2445 dentry->d_name.len); 2446 if (ret) { 2447 err = ret; 2448 btrfs_abort_transaction(trans, root, ret); 2449 goto out_end_trans; 2450 } 2451 2452 btrfs_record_root_in_trans(trans, dest); 2453 2454 memset(&dest->root_item.drop_progress, 0, 2455 sizeof(dest->root_item.drop_progress)); 2456 dest->root_item.drop_level = 0; 2457 btrfs_set_root_refs(&dest->root_item, 0); 2458 2459 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2460 ret = btrfs_insert_orphan_item(trans, 2461 root->fs_info->tree_root, 2462 dest->root_key.objectid); 2463 if (ret) { 2464 btrfs_abort_transaction(trans, root, ret); 2465 err = ret; 2466 goto out_end_trans; 2467 } 2468 } 2469 2470 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2471 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2472 dest->root_key.objectid); 2473 if (ret && ret != -ENOENT) { 2474 btrfs_abort_transaction(trans, root, ret); 2475 err = ret; 2476 goto out_end_trans; 2477 } 2478 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2479 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2480 dest->root_item.received_uuid, 2481 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2482 dest->root_key.objectid); 2483 if (ret && ret != -ENOENT) { 2484 btrfs_abort_transaction(trans, root, ret); 2485 err = ret; 2486 goto out_end_trans; 2487 } 2488 } 2489 2490 out_end_trans: 2491 trans->block_rsv = NULL; 2492 trans->bytes_reserved = 0; 2493 ret = btrfs_end_transaction(trans, root); 2494 if (ret && !err) 2495 err = ret; 2496 inode->i_flags |= S_DEAD; 2497 out_release: 2498 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2499 out_up_write: 2500 up_write(&root->fs_info->subvol_sem); 2501 if (err) { 2502 spin_lock(&dest->root_item_lock); 2503 root_flags = btrfs_root_flags(&dest->root_item); 2504 btrfs_set_root_flags(&dest->root_item, 2505 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2506 spin_unlock(&dest->root_item_lock); 2507 } 2508 out_unlock_inode: 2509 mutex_unlock(&inode->i_mutex); 2510 if (!err) { 2511 shrink_dcache_sb(root->fs_info->sb); 2512 btrfs_invalidate_inodes(dest); 2513 d_delete(dentry); 2514 ASSERT(dest->send_in_progress == 0); 2515 2516 /* the last ref */ 2517 if (dest->ino_cache_inode) { 2518 iput(dest->ino_cache_inode); 2519 dest->ino_cache_inode = NULL; 2520 } 2521 } 2522 out_dput: 2523 dput(dentry); 2524 out_unlock_dir: 2525 mutex_unlock(&dir->i_mutex); 2526 out_drop_write: 2527 mnt_drop_write_file(file); 2528 out: 2529 kfree(vol_args); 2530 return err; 2531 } 2532 2533 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2534 { 2535 struct inode *inode = file_inode(file); 2536 struct btrfs_root *root = BTRFS_I(inode)->root; 2537 struct btrfs_ioctl_defrag_range_args *range; 2538 int ret; 2539 2540 ret = mnt_want_write_file(file); 2541 if (ret) 2542 return ret; 2543 2544 if (btrfs_root_readonly(root)) { 2545 ret = -EROFS; 2546 goto out; 2547 } 2548 2549 switch (inode->i_mode & S_IFMT) { 2550 case S_IFDIR: 2551 if (!capable(CAP_SYS_ADMIN)) { 2552 ret = -EPERM; 2553 goto out; 2554 } 2555 ret = btrfs_defrag_root(root); 2556 if (ret) 2557 goto out; 2558 ret = btrfs_defrag_root(root->fs_info->extent_root); 2559 break; 2560 case S_IFREG: 2561 if (!(file->f_mode & FMODE_WRITE)) { 2562 ret = -EINVAL; 2563 goto out; 2564 } 2565 2566 range = kzalloc(sizeof(*range), GFP_KERNEL); 2567 if (!range) { 2568 ret = -ENOMEM; 2569 goto out; 2570 } 2571 2572 if (argp) { 2573 if (copy_from_user(range, argp, 2574 sizeof(*range))) { 2575 ret = -EFAULT; 2576 kfree(range); 2577 goto out; 2578 } 2579 /* compression requires us to start the IO */ 2580 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2581 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2582 range->extent_thresh = (u32)-1; 2583 } 2584 } else { 2585 /* the rest are all set to zero by kzalloc */ 2586 range->len = (u64)-1; 2587 } 2588 ret = btrfs_defrag_file(file_inode(file), file, 2589 range, 0, 0); 2590 if (ret > 0) 2591 ret = 0; 2592 kfree(range); 2593 break; 2594 default: 2595 ret = -EINVAL; 2596 } 2597 out: 2598 mnt_drop_write_file(file); 2599 return ret; 2600 } 2601 2602 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2603 { 2604 struct btrfs_ioctl_vol_args *vol_args; 2605 int ret; 2606 2607 if (!capable(CAP_SYS_ADMIN)) 2608 return -EPERM; 2609 2610 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2611 1)) { 2612 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2613 } 2614 2615 mutex_lock(&root->fs_info->volume_mutex); 2616 vol_args = memdup_user(arg, sizeof(*vol_args)); 2617 if (IS_ERR(vol_args)) { 2618 ret = PTR_ERR(vol_args); 2619 goto out; 2620 } 2621 2622 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2623 ret = btrfs_init_new_device(root, vol_args->name); 2624 2625 if (!ret) 2626 btrfs_info(root->fs_info, "disk added %s",vol_args->name); 2627 2628 kfree(vol_args); 2629 out: 2630 mutex_unlock(&root->fs_info->volume_mutex); 2631 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2632 return ret; 2633 } 2634 2635 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2636 { 2637 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2638 struct btrfs_ioctl_vol_args *vol_args; 2639 int ret; 2640 2641 if (!capable(CAP_SYS_ADMIN)) 2642 return -EPERM; 2643 2644 ret = mnt_want_write_file(file); 2645 if (ret) 2646 return ret; 2647 2648 vol_args = memdup_user(arg, sizeof(*vol_args)); 2649 if (IS_ERR(vol_args)) { 2650 ret = PTR_ERR(vol_args); 2651 goto err_drop; 2652 } 2653 2654 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2655 2656 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2657 1)) { 2658 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2659 goto out; 2660 } 2661 2662 mutex_lock(&root->fs_info->volume_mutex); 2663 ret = btrfs_rm_device(root, vol_args->name); 2664 mutex_unlock(&root->fs_info->volume_mutex); 2665 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2666 2667 if (!ret) 2668 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name); 2669 2670 out: 2671 kfree(vol_args); 2672 err_drop: 2673 mnt_drop_write_file(file); 2674 return ret; 2675 } 2676 2677 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2678 { 2679 struct btrfs_ioctl_fs_info_args *fi_args; 2680 struct btrfs_device *device; 2681 struct btrfs_device *next; 2682 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2683 int ret = 0; 2684 2685 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2686 if (!fi_args) 2687 return -ENOMEM; 2688 2689 mutex_lock(&fs_devices->device_list_mutex); 2690 fi_args->num_devices = fs_devices->num_devices; 2691 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2692 2693 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2694 if (device->devid > fi_args->max_id) 2695 fi_args->max_id = device->devid; 2696 } 2697 mutex_unlock(&fs_devices->device_list_mutex); 2698 2699 fi_args->nodesize = root->fs_info->super_copy->nodesize; 2700 fi_args->sectorsize = root->fs_info->super_copy->sectorsize; 2701 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize; 2702 2703 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2704 ret = -EFAULT; 2705 2706 kfree(fi_args); 2707 return ret; 2708 } 2709 2710 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2711 { 2712 struct btrfs_ioctl_dev_info_args *di_args; 2713 struct btrfs_device *dev; 2714 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2715 int ret = 0; 2716 char *s_uuid = NULL; 2717 2718 di_args = memdup_user(arg, sizeof(*di_args)); 2719 if (IS_ERR(di_args)) 2720 return PTR_ERR(di_args); 2721 2722 if (!btrfs_is_empty_uuid(di_args->uuid)) 2723 s_uuid = di_args->uuid; 2724 2725 mutex_lock(&fs_devices->device_list_mutex); 2726 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2727 2728 if (!dev) { 2729 ret = -ENODEV; 2730 goto out; 2731 } 2732 2733 di_args->devid = dev->devid; 2734 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2735 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2736 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2737 if (dev->name) { 2738 struct rcu_string *name; 2739 2740 rcu_read_lock(); 2741 name = rcu_dereference(dev->name); 2742 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2743 rcu_read_unlock(); 2744 di_args->path[sizeof(di_args->path) - 1] = 0; 2745 } else { 2746 di_args->path[0] = '\0'; 2747 } 2748 2749 out: 2750 mutex_unlock(&fs_devices->device_list_mutex); 2751 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2752 ret = -EFAULT; 2753 2754 kfree(di_args); 2755 return ret; 2756 } 2757 2758 static struct page *extent_same_get_page(struct inode *inode, u64 off) 2759 { 2760 struct page *page; 2761 pgoff_t index; 2762 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2763 2764 index = off >> PAGE_CACHE_SHIFT; 2765 2766 page = grab_cache_page(inode->i_mapping, index); 2767 if (!page) 2768 return NULL; 2769 2770 if (!PageUptodate(page)) { 2771 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent, 2772 0)) 2773 return NULL; 2774 lock_page(page); 2775 if (!PageUptodate(page)) { 2776 unlock_page(page); 2777 page_cache_release(page); 2778 return NULL; 2779 } 2780 } 2781 unlock_page(page); 2782 2783 return page; 2784 } 2785 2786 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len) 2787 { 2788 /* do any pending delalloc/csum calc on src, one way or 2789 another, and lock file content */ 2790 while (1) { 2791 struct btrfs_ordered_extent *ordered; 2792 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2793 ordered = btrfs_lookup_first_ordered_extent(inode, 2794 off + len - 1); 2795 if ((!ordered || 2796 ordered->file_offset + ordered->len <= off || 2797 ordered->file_offset >= off + len) && 2798 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2799 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2800 if (ordered) 2801 btrfs_put_ordered_extent(ordered); 2802 break; 2803 } 2804 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2805 if (ordered) 2806 btrfs_put_ordered_extent(ordered); 2807 btrfs_wait_ordered_range(inode, off, len); 2808 } 2809 } 2810 2811 static void btrfs_double_unlock(struct inode *inode1, u64 loff1, 2812 struct inode *inode2, u64 loff2, u64 len) 2813 { 2814 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2815 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2816 2817 mutex_unlock(&inode1->i_mutex); 2818 mutex_unlock(&inode2->i_mutex); 2819 } 2820 2821 static void btrfs_double_lock(struct inode *inode1, u64 loff1, 2822 struct inode *inode2, u64 loff2, u64 len) 2823 { 2824 if (inode1 < inode2) { 2825 swap(inode1, inode2); 2826 swap(loff1, loff2); 2827 } 2828 2829 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 2830 lock_extent_range(inode1, loff1, len); 2831 if (inode1 != inode2) { 2832 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 2833 lock_extent_range(inode2, loff2, len); 2834 } 2835 } 2836 2837 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 2838 u64 dst_loff, u64 len) 2839 { 2840 int ret = 0; 2841 struct page *src_page, *dst_page; 2842 unsigned int cmp_len = PAGE_CACHE_SIZE; 2843 void *addr, *dst_addr; 2844 2845 while (len) { 2846 if (len < PAGE_CACHE_SIZE) 2847 cmp_len = len; 2848 2849 src_page = extent_same_get_page(src, loff); 2850 if (!src_page) 2851 return -EINVAL; 2852 dst_page = extent_same_get_page(dst, dst_loff); 2853 if (!dst_page) { 2854 page_cache_release(src_page); 2855 return -EINVAL; 2856 } 2857 addr = kmap_atomic(src_page); 2858 dst_addr = kmap_atomic(dst_page); 2859 2860 flush_dcache_page(src_page); 2861 flush_dcache_page(dst_page); 2862 2863 if (memcmp(addr, dst_addr, cmp_len)) 2864 ret = BTRFS_SAME_DATA_DIFFERS; 2865 2866 kunmap_atomic(addr); 2867 kunmap_atomic(dst_addr); 2868 page_cache_release(src_page); 2869 page_cache_release(dst_page); 2870 2871 if (ret) 2872 break; 2873 2874 loff += cmp_len; 2875 dst_loff += cmp_len; 2876 len -= cmp_len; 2877 } 2878 2879 return ret; 2880 } 2881 2882 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len) 2883 { 2884 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 2885 2886 if (off + len > inode->i_size || off + len < off) 2887 return -EINVAL; 2888 /* Check that we are block aligned - btrfs_clone() requires this */ 2889 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 2890 return -EINVAL; 2891 2892 return 0; 2893 } 2894 2895 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len, 2896 struct inode *dst, u64 dst_loff) 2897 { 2898 int ret; 2899 2900 /* 2901 * btrfs_clone() can't handle extents in the same file 2902 * yet. Once that works, we can drop this check and replace it 2903 * with a check for the same inode, but overlapping extents. 2904 */ 2905 if (src == dst) 2906 return -EINVAL; 2907 2908 if (len == 0) 2909 return 0; 2910 2911 btrfs_double_lock(src, loff, dst, dst_loff, len); 2912 2913 ret = extent_same_check_offsets(src, loff, len); 2914 if (ret) 2915 goto out_unlock; 2916 2917 ret = extent_same_check_offsets(dst, dst_loff, len); 2918 if (ret) 2919 goto out_unlock; 2920 2921 /* don't make the dst file partly checksummed */ 2922 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 2923 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 2924 ret = -EINVAL; 2925 goto out_unlock; 2926 } 2927 2928 ret = btrfs_cmp_data(src, loff, dst, dst_loff, len); 2929 if (ret == 0) 2930 ret = btrfs_clone(src, dst, loff, len, len, dst_loff); 2931 2932 out_unlock: 2933 btrfs_double_unlock(src, loff, dst, dst_loff, len); 2934 2935 return ret; 2936 } 2937 2938 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024) 2939 2940 static long btrfs_ioctl_file_extent_same(struct file *file, 2941 struct btrfs_ioctl_same_args __user *argp) 2942 { 2943 struct btrfs_ioctl_same_args *same; 2944 struct btrfs_ioctl_same_extent_info *info; 2945 struct inode *src = file_inode(file); 2946 u64 off; 2947 u64 len; 2948 int i; 2949 int ret; 2950 unsigned long size; 2951 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 2952 bool is_admin = capable(CAP_SYS_ADMIN); 2953 u16 count; 2954 2955 if (!(file->f_mode & FMODE_READ)) 2956 return -EINVAL; 2957 2958 ret = mnt_want_write_file(file); 2959 if (ret) 2960 return ret; 2961 2962 if (get_user(count, &argp->dest_count)) { 2963 ret = -EFAULT; 2964 goto out; 2965 } 2966 2967 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]); 2968 2969 same = memdup_user(argp, size); 2970 2971 if (IS_ERR(same)) { 2972 ret = PTR_ERR(same); 2973 goto out; 2974 } 2975 2976 off = same->logical_offset; 2977 len = same->length; 2978 2979 /* 2980 * Limit the total length we will dedupe for each operation. 2981 * This is intended to bound the total time spent in this 2982 * ioctl to something sane. 2983 */ 2984 if (len > BTRFS_MAX_DEDUPE_LEN) 2985 len = BTRFS_MAX_DEDUPE_LEN; 2986 2987 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) { 2988 /* 2989 * Btrfs does not support blocksize < page_size. As a 2990 * result, btrfs_cmp_data() won't correctly handle 2991 * this situation without an update. 2992 */ 2993 ret = -EINVAL; 2994 goto out; 2995 } 2996 2997 ret = -EISDIR; 2998 if (S_ISDIR(src->i_mode)) 2999 goto out; 3000 3001 ret = -EACCES; 3002 if (!S_ISREG(src->i_mode)) 3003 goto out; 3004 3005 /* pre-format output fields to sane values */ 3006 for (i = 0; i < count; i++) { 3007 same->info[i].bytes_deduped = 0ULL; 3008 same->info[i].status = 0; 3009 } 3010 3011 for (i = 0, info = same->info; i < count; i++, info++) { 3012 struct inode *dst; 3013 struct fd dst_file = fdget(info->fd); 3014 if (!dst_file.file) { 3015 info->status = -EBADF; 3016 continue; 3017 } 3018 dst = file_inode(dst_file.file); 3019 3020 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) { 3021 info->status = -EINVAL; 3022 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) { 3023 info->status = -EXDEV; 3024 } else if (S_ISDIR(dst->i_mode)) { 3025 info->status = -EISDIR; 3026 } else if (!S_ISREG(dst->i_mode)) { 3027 info->status = -EACCES; 3028 } else { 3029 info->status = btrfs_extent_same(src, off, len, dst, 3030 info->logical_offset); 3031 if (info->status == 0) 3032 info->bytes_deduped += len; 3033 } 3034 fdput(dst_file); 3035 } 3036 3037 ret = copy_to_user(argp, same, size); 3038 if (ret) 3039 ret = -EFAULT; 3040 3041 out: 3042 mnt_drop_write_file(file); 3043 return ret; 3044 } 3045 3046 /* Helper to check and see if this root currently has a ref on the given disk 3047 * bytenr. If it does then we need to update the quota for this root. This 3048 * doesn't do anything if quotas aren't enabled. 3049 */ 3050 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3051 u64 disko) 3052 { 3053 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 3054 struct ulist *roots; 3055 struct ulist_iterator uiter; 3056 struct ulist_node *root_node = NULL; 3057 int ret; 3058 3059 if (!root->fs_info->quota_enabled) 3060 return 1; 3061 3062 btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem); 3063 ret = btrfs_find_all_roots(trans, root->fs_info, disko, 3064 tree_mod_seq_elem.seq, &roots); 3065 if (ret < 0) 3066 goto out; 3067 ret = 0; 3068 ULIST_ITER_INIT(&uiter); 3069 while ((root_node = ulist_next(roots, &uiter))) { 3070 if (root_node->val == root->objectid) { 3071 ret = 1; 3072 break; 3073 } 3074 } 3075 ulist_free(roots); 3076 out: 3077 btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem); 3078 return ret; 3079 } 3080 3081 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3082 struct inode *inode, 3083 u64 endoff, 3084 const u64 destoff, 3085 const u64 olen) 3086 { 3087 struct btrfs_root *root = BTRFS_I(inode)->root; 3088 int ret; 3089 3090 inode_inc_iversion(inode); 3091 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3092 /* 3093 * We round up to the block size at eof when determining which 3094 * extents to clone above, but shouldn't round up the file size. 3095 */ 3096 if (endoff > destoff + olen) 3097 endoff = destoff + olen; 3098 if (endoff > inode->i_size) 3099 btrfs_i_size_write(inode, endoff); 3100 3101 ret = btrfs_update_inode(trans, root, inode); 3102 if (ret) { 3103 btrfs_abort_transaction(trans, root, ret); 3104 btrfs_end_transaction(trans, root); 3105 goto out; 3106 } 3107 ret = btrfs_end_transaction(trans, root); 3108 out: 3109 return ret; 3110 } 3111 3112 static void clone_update_extent_map(struct inode *inode, 3113 const struct btrfs_trans_handle *trans, 3114 const struct btrfs_path *path, 3115 const u64 hole_offset, 3116 const u64 hole_len) 3117 { 3118 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3119 struct extent_map *em; 3120 int ret; 3121 3122 em = alloc_extent_map(); 3123 if (!em) { 3124 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3125 &BTRFS_I(inode)->runtime_flags); 3126 return; 3127 } 3128 3129 if (path) { 3130 struct btrfs_file_extent_item *fi; 3131 3132 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3133 struct btrfs_file_extent_item); 3134 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3135 em->generation = -1; 3136 if (btrfs_file_extent_type(path->nodes[0], fi) == 3137 BTRFS_FILE_EXTENT_INLINE) 3138 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3139 &BTRFS_I(inode)->runtime_flags); 3140 } else { 3141 em->start = hole_offset; 3142 em->len = hole_len; 3143 em->ram_bytes = em->len; 3144 em->orig_start = hole_offset; 3145 em->block_start = EXTENT_MAP_HOLE; 3146 em->block_len = 0; 3147 em->orig_block_len = 0; 3148 em->compress_type = BTRFS_COMPRESS_NONE; 3149 em->generation = trans->transid; 3150 } 3151 3152 while (1) { 3153 write_lock(&em_tree->lock); 3154 ret = add_extent_mapping(em_tree, em, 1); 3155 write_unlock(&em_tree->lock); 3156 if (ret != -EEXIST) { 3157 free_extent_map(em); 3158 break; 3159 } 3160 btrfs_drop_extent_cache(inode, em->start, 3161 em->start + em->len - 1, 0); 3162 } 3163 3164 if (ret) 3165 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3166 &BTRFS_I(inode)->runtime_flags); 3167 } 3168 3169 /** 3170 * btrfs_clone() - clone a range from inode file to another 3171 * 3172 * @src: Inode to clone from 3173 * @inode: Inode to clone to 3174 * @off: Offset within source to start clone from 3175 * @olen: Original length, passed by user, of range to clone 3176 * @olen_aligned: Block-aligned value of olen, extent_same uses 3177 * identical values here 3178 * @destoff: Offset within @inode to start clone 3179 */ 3180 static int btrfs_clone(struct inode *src, struct inode *inode, 3181 const u64 off, const u64 olen, const u64 olen_aligned, 3182 const u64 destoff) 3183 { 3184 struct btrfs_root *root = BTRFS_I(inode)->root; 3185 struct btrfs_path *path = NULL; 3186 struct extent_buffer *leaf; 3187 struct btrfs_trans_handle *trans; 3188 char *buf = NULL; 3189 struct btrfs_key key; 3190 u32 nritems; 3191 int slot; 3192 int ret; 3193 int no_quota; 3194 const u64 len = olen_aligned; 3195 u64 last_disko = 0; 3196 u64 last_dest_end = destoff; 3197 3198 ret = -ENOMEM; 3199 buf = vmalloc(root->nodesize); 3200 if (!buf) 3201 return ret; 3202 3203 path = btrfs_alloc_path(); 3204 if (!path) { 3205 vfree(buf); 3206 return ret; 3207 } 3208 3209 path->reada = 2; 3210 /* clone data */ 3211 key.objectid = btrfs_ino(src); 3212 key.type = BTRFS_EXTENT_DATA_KEY; 3213 key.offset = off; 3214 3215 while (1) { 3216 u64 next_key_min_offset = key.offset + 1; 3217 3218 /* 3219 * note the key will change type as we walk through the 3220 * tree. 3221 */ 3222 path->leave_spinning = 1; 3223 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3224 0, 0); 3225 if (ret < 0) 3226 goto out; 3227 /* 3228 * First search, if no extent item that starts at offset off was 3229 * found but the previous item is an extent item, it's possible 3230 * it might overlap our target range, therefore process it. 3231 */ 3232 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3233 btrfs_item_key_to_cpu(path->nodes[0], &key, 3234 path->slots[0] - 1); 3235 if (key.type == BTRFS_EXTENT_DATA_KEY) 3236 path->slots[0]--; 3237 } 3238 3239 nritems = btrfs_header_nritems(path->nodes[0]); 3240 process_slot: 3241 no_quota = 1; 3242 if (path->slots[0] >= nritems) { 3243 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3244 if (ret < 0) 3245 goto out; 3246 if (ret > 0) 3247 break; 3248 nritems = btrfs_header_nritems(path->nodes[0]); 3249 } 3250 leaf = path->nodes[0]; 3251 slot = path->slots[0]; 3252 3253 btrfs_item_key_to_cpu(leaf, &key, slot); 3254 if (key.type > BTRFS_EXTENT_DATA_KEY || 3255 key.objectid != btrfs_ino(src)) 3256 break; 3257 3258 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3259 struct btrfs_file_extent_item *extent; 3260 int type; 3261 u32 size; 3262 struct btrfs_key new_key; 3263 u64 disko = 0, diskl = 0; 3264 u64 datao = 0, datal = 0; 3265 u8 comp; 3266 u64 drop_start; 3267 3268 extent = btrfs_item_ptr(leaf, slot, 3269 struct btrfs_file_extent_item); 3270 comp = btrfs_file_extent_compression(leaf, extent); 3271 type = btrfs_file_extent_type(leaf, extent); 3272 if (type == BTRFS_FILE_EXTENT_REG || 3273 type == BTRFS_FILE_EXTENT_PREALLOC) { 3274 disko = btrfs_file_extent_disk_bytenr(leaf, 3275 extent); 3276 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3277 extent); 3278 datao = btrfs_file_extent_offset(leaf, extent); 3279 datal = btrfs_file_extent_num_bytes(leaf, 3280 extent); 3281 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3282 /* take upper bound, may be compressed */ 3283 datal = btrfs_file_extent_ram_bytes(leaf, 3284 extent); 3285 } 3286 3287 /* 3288 * The first search might have left us at an extent 3289 * item that ends before our target range's start, can 3290 * happen if we have holes and NO_HOLES feature enabled. 3291 */ 3292 if (key.offset + datal <= off) { 3293 path->slots[0]++; 3294 goto process_slot; 3295 } else if (key.offset >= off + len) { 3296 break; 3297 } 3298 next_key_min_offset = key.offset + datal; 3299 size = btrfs_item_size_nr(leaf, slot); 3300 read_extent_buffer(leaf, buf, 3301 btrfs_item_ptr_offset(leaf, slot), 3302 size); 3303 3304 btrfs_release_path(path); 3305 path->leave_spinning = 0; 3306 3307 memcpy(&new_key, &key, sizeof(new_key)); 3308 new_key.objectid = btrfs_ino(inode); 3309 if (off <= key.offset) 3310 new_key.offset = key.offset + destoff - off; 3311 else 3312 new_key.offset = destoff; 3313 3314 /* 3315 * Deal with a hole that doesn't have an extent item 3316 * that represents it (NO_HOLES feature enabled). 3317 * This hole is either in the middle of the cloning 3318 * range or at the beginning (fully overlaps it or 3319 * partially overlaps it). 3320 */ 3321 if (new_key.offset != last_dest_end) 3322 drop_start = last_dest_end; 3323 else 3324 drop_start = new_key.offset; 3325 3326 /* 3327 * 1 - adjusting old extent (we may have to split it) 3328 * 1 - add new extent 3329 * 1 - inode update 3330 */ 3331 trans = btrfs_start_transaction(root, 3); 3332 if (IS_ERR(trans)) { 3333 ret = PTR_ERR(trans); 3334 goto out; 3335 } 3336 3337 if (type == BTRFS_FILE_EXTENT_REG || 3338 type == BTRFS_FILE_EXTENT_PREALLOC) { 3339 /* 3340 * a | --- range to clone ---| b 3341 * | ------------- extent ------------- | 3342 */ 3343 3344 /* subtract range b */ 3345 if (key.offset + datal > off + len) 3346 datal = off + len - key.offset; 3347 3348 /* subtract range a */ 3349 if (off > key.offset) { 3350 datao += off - key.offset; 3351 datal -= off - key.offset; 3352 } 3353 3354 ret = btrfs_drop_extents(trans, root, inode, 3355 drop_start, 3356 new_key.offset + datal, 3357 1); 3358 if (ret) { 3359 if (ret != -EOPNOTSUPP) 3360 btrfs_abort_transaction(trans, 3361 root, ret); 3362 btrfs_end_transaction(trans, root); 3363 goto out; 3364 } 3365 3366 ret = btrfs_insert_empty_item(trans, root, path, 3367 &new_key, size); 3368 if (ret) { 3369 btrfs_abort_transaction(trans, root, 3370 ret); 3371 btrfs_end_transaction(trans, root); 3372 goto out; 3373 } 3374 3375 leaf = path->nodes[0]; 3376 slot = path->slots[0]; 3377 write_extent_buffer(leaf, buf, 3378 btrfs_item_ptr_offset(leaf, slot), 3379 size); 3380 3381 extent = btrfs_item_ptr(leaf, slot, 3382 struct btrfs_file_extent_item); 3383 3384 /* disko == 0 means it's a hole */ 3385 if (!disko) 3386 datao = 0; 3387 3388 btrfs_set_file_extent_offset(leaf, extent, 3389 datao); 3390 btrfs_set_file_extent_num_bytes(leaf, extent, 3391 datal); 3392 3393 /* 3394 * We need to look up the roots that point at 3395 * this bytenr and see if the new root does. If 3396 * it does not we need to make sure we update 3397 * quotas appropriately. 3398 */ 3399 if (disko && root != BTRFS_I(src)->root && 3400 disko != last_disko) { 3401 no_quota = check_ref(trans, root, 3402 disko); 3403 if (no_quota < 0) { 3404 btrfs_abort_transaction(trans, 3405 root, 3406 ret); 3407 btrfs_end_transaction(trans, 3408 root); 3409 ret = no_quota; 3410 goto out; 3411 } 3412 } 3413 3414 if (disko) { 3415 inode_add_bytes(inode, datal); 3416 ret = btrfs_inc_extent_ref(trans, root, 3417 disko, diskl, 0, 3418 root->root_key.objectid, 3419 btrfs_ino(inode), 3420 new_key.offset - datao, 3421 no_quota); 3422 if (ret) { 3423 btrfs_abort_transaction(trans, 3424 root, 3425 ret); 3426 btrfs_end_transaction(trans, 3427 root); 3428 goto out; 3429 3430 } 3431 } 3432 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3433 u64 skip = 0; 3434 u64 trim = 0; 3435 u64 aligned_end = 0; 3436 3437 if (off > key.offset) { 3438 skip = off - key.offset; 3439 new_key.offset += skip; 3440 } 3441 3442 if (key.offset + datal > off + len) 3443 trim = key.offset + datal - (off + len); 3444 3445 if (comp && (skip || trim)) { 3446 ret = -EINVAL; 3447 btrfs_end_transaction(trans, root); 3448 goto out; 3449 } 3450 size -= skip + trim; 3451 datal -= skip + trim; 3452 3453 aligned_end = ALIGN(new_key.offset + datal, 3454 root->sectorsize); 3455 ret = btrfs_drop_extents(trans, root, inode, 3456 drop_start, 3457 aligned_end, 3458 1); 3459 if (ret) { 3460 if (ret != -EOPNOTSUPP) 3461 btrfs_abort_transaction(trans, 3462 root, ret); 3463 btrfs_end_transaction(trans, root); 3464 goto out; 3465 } 3466 3467 ret = btrfs_insert_empty_item(trans, root, path, 3468 &new_key, size); 3469 if (ret) { 3470 btrfs_abort_transaction(trans, root, 3471 ret); 3472 btrfs_end_transaction(trans, root); 3473 goto out; 3474 } 3475 3476 if (skip) { 3477 u32 start = 3478 btrfs_file_extent_calc_inline_size(0); 3479 memmove(buf+start, buf+start+skip, 3480 datal); 3481 } 3482 3483 leaf = path->nodes[0]; 3484 slot = path->slots[0]; 3485 write_extent_buffer(leaf, buf, 3486 btrfs_item_ptr_offset(leaf, slot), 3487 size); 3488 inode_add_bytes(inode, datal); 3489 } 3490 3491 /* If we have an implicit hole (NO_HOLES feature). */ 3492 if (drop_start < new_key.offset) 3493 clone_update_extent_map(inode, trans, 3494 NULL, drop_start, 3495 new_key.offset - drop_start); 3496 3497 clone_update_extent_map(inode, trans, path, 0, 0); 3498 3499 btrfs_mark_buffer_dirty(leaf); 3500 btrfs_release_path(path); 3501 3502 last_dest_end = ALIGN(new_key.offset + datal, 3503 root->sectorsize); 3504 ret = clone_finish_inode_update(trans, inode, 3505 last_dest_end, 3506 destoff, olen); 3507 if (ret) 3508 goto out; 3509 if (new_key.offset + datal >= destoff + len) 3510 break; 3511 } 3512 btrfs_release_path(path); 3513 key.offset = next_key_min_offset; 3514 } 3515 ret = 0; 3516 3517 if (last_dest_end < destoff + len) { 3518 /* 3519 * We have an implicit hole (NO_HOLES feature is enabled) that 3520 * fully or partially overlaps our cloning range at its end. 3521 */ 3522 btrfs_release_path(path); 3523 3524 /* 3525 * 1 - remove extent(s) 3526 * 1 - inode update 3527 */ 3528 trans = btrfs_start_transaction(root, 2); 3529 if (IS_ERR(trans)) { 3530 ret = PTR_ERR(trans); 3531 goto out; 3532 } 3533 ret = btrfs_drop_extents(trans, root, inode, 3534 last_dest_end, destoff + len, 1); 3535 if (ret) { 3536 if (ret != -EOPNOTSUPP) 3537 btrfs_abort_transaction(trans, root, ret); 3538 btrfs_end_transaction(trans, root); 3539 goto out; 3540 } 3541 clone_update_extent_map(inode, trans, NULL, last_dest_end, 3542 destoff + len - last_dest_end); 3543 ret = clone_finish_inode_update(trans, inode, destoff + len, 3544 destoff, olen); 3545 } 3546 3547 out: 3548 btrfs_free_path(path); 3549 vfree(buf); 3550 return ret; 3551 } 3552 3553 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 3554 u64 off, u64 olen, u64 destoff) 3555 { 3556 struct inode *inode = file_inode(file); 3557 struct btrfs_root *root = BTRFS_I(inode)->root; 3558 struct fd src_file; 3559 struct inode *src; 3560 int ret; 3561 u64 len = olen; 3562 u64 bs = root->fs_info->sb->s_blocksize; 3563 int same_inode = 0; 3564 3565 /* 3566 * TODO: 3567 * - split compressed inline extents. annoying: we need to 3568 * decompress into destination's address_space (the file offset 3569 * may change, so source mapping won't do), then recompress (or 3570 * otherwise reinsert) a subrange. 3571 * 3572 * - split destination inode's inline extents. The inline extents can 3573 * be either compressed or non-compressed. 3574 */ 3575 3576 /* the destination must be opened for writing */ 3577 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 3578 return -EINVAL; 3579 3580 if (btrfs_root_readonly(root)) 3581 return -EROFS; 3582 3583 ret = mnt_want_write_file(file); 3584 if (ret) 3585 return ret; 3586 3587 src_file = fdget(srcfd); 3588 if (!src_file.file) { 3589 ret = -EBADF; 3590 goto out_drop_write; 3591 } 3592 3593 ret = -EXDEV; 3594 if (src_file.file->f_path.mnt != file->f_path.mnt) 3595 goto out_fput; 3596 3597 src = file_inode(src_file.file); 3598 3599 ret = -EINVAL; 3600 if (src == inode) 3601 same_inode = 1; 3602 3603 /* the src must be open for reading */ 3604 if (!(src_file.file->f_mode & FMODE_READ)) 3605 goto out_fput; 3606 3607 /* don't make the dst file partly checksummed */ 3608 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3609 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3610 goto out_fput; 3611 3612 ret = -EISDIR; 3613 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3614 goto out_fput; 3615 3616 ret = -EXDEV; 3617 if (src->i_sb != inode->i_sb) 3618 goto out_fput; 3619 3620 if (!same_inode) { 3621 if (inode < src) { 3622 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 3623 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 3624 } else { 3625 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 3626 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 3627 } 3628 } else { 3629 mutex_lock(&src->i_mutex); 3630 } 3631 3632 /* determine range to clone */ 3633 ret = -EINVAL; 3634 if (off + len > src->i_size || off + len < off) 3635 goto out_unlock; 3636 if (len == 0) 3637 olen = len = src->i_size - off; 3638 /* if we extend to eof, continue to block boundary */ 3639 if (off + len == src->i_size) 3640 len = ALIGN(src->i_size, bs) - off; 3641 3642 if (len == 0) { 3643 ret = 0; 3644 goto out_unlock; 3645 } 3646 3647 /* verify the end result is block aligned */ 3648 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3649 !IS_ALIGNED(destoff, bs)) 3650 goto out_unlock; 3651 3652 /* verify if ranges are overlapped within the same file */ 3653 if (same_inode) { 3654 if (destoff + len > off && destoff < off + len) 3655 goto out_unlock; 3656 } 3657 3658 if (destoff > inode->i_size) { 3659 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3660 if (ret) 3661 goto out_unlock; 3662 } 3663 3664 /* 3665 * Lock the target range too. Right after we replace the file extent 3666 * items in the fs tree (which now point to the cloned data), we might 3667 * have a worker replace them with extent items relative to a write 3668 * operation that was issued before this clone operation (i.e. confront 3669 * with inode.c:btrfs_finish_ordered_io). 3670 */ 3671 if (same_inode) { 3672 u64 lock_start = min_t(u64, off, destoff); 3673 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3674 3675 lock_extent_range(src, lock_start, lock_len); 3676 } else { 3677 lock_extent_range(src, off, len); 3678 lock_extent_range(inode, destoff, len); 3679 } 3680 3681 ret = btrfs_clone(src, inode, off, olen, len, destoff); 3682 3683 if (same_inode) { 3684 u64 lock_start = min_t(u64, off, destoff); 3685 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3686 3687 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3688 } else { 3689 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 3690 unlock_extent(&BTRFS_I(inode)->io_tree, destoff, 3691 destoff + len - 1); 3692 } 3693 /* 3694 * Truncate page cache pages so that future reads will see the cloned 3695 * data immediately and not the previous data. 3696 */ 3697 truncate_inode_pages_range(&inode->i_data, destoff, 3698 PAGE_CACHE_ALIGN(destoff + len) - 1); 3699 out_unlock: 3700 if (!same_inode) { 3701 if (inode < src) { 3702 mutex_unlock(&src->i_mutex); 3703 mutex_unlock(&inode->i_mutex); 3704 } else { 3705 mutex_unlock(&inode->i_mutex); 3706 mutex_unlock(&src->i_mutex); 3707 } 3708 } else { 3709 mutex_unlock(&src->i_mutex); 3710 } 3711 out_fput: 3712 fdput(src_file); 3713 out_drop_write: 3714 mnt_drop_write_file(file); 3715 return ret; 3716 } 3717 3718 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 3719 { 3720 struct btrfs_ioctl_clone_range_args args; 3721 3722 if (copy_from_user(&args, argp, sizeof(args))) 3723 return -EFAULT; 3724 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 3725 args.src_length, args.dest_offset); 3726 } 3727 3728 /* 3729 * there are many ways the trans_start and trans_end ioctls can lead 3730 * to deadlocks. They should only be used by applications that 3731 * basically own the machine, and have a very in depth understanding 3732 * of all the possible deadlocks and enospc problems. 3733 */ 3734 static long btrfs_ioctl_trans_start(struct file *file) 3735 { 3736 struct inode *inode = file_inode(file); 3737 struct btrfs_root *root = BTRFS_I(inode)->root; 3738 struct btrfs_trans_handle *trans; 3739 int ret; 3740 3741 ret = -EPERM; 3742 if (!capable(CAP_SYS_ADMIN)) 3743 goto out; 3744 3745 ret = -EINPROGRESS; 3746 if (file->private_data) 3747 goto out; 3748 3749 ret = -EROFS; 3750 if (btrfs_root_readonly(root)) 3751 goto out; 3752 3753 ret = mnt_want_write_file(file); 3754 if (ret) 3755 goto out; 3756 3757 atomic_inc(&root->fs_info->open_ioctl_trans); 3758 3759 ret = -ENOMEM; 3760 trans = btrfs_start_ioctl_transaction(root); 3761 if (IS_ERR(trans)) 3762 goto out_drop; 3763 3764 file->private_data = trans; 3765 return 0; 3766 3767 out_drop: 3768 atomic_dec(&root->fs_info->open_ioctl_trans); 3769 mnt_drop_write_file(file); 3770 out: 3771 return ret; 3772 } 3773 3774 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3775 { 3776 struct inode *inode = file_inode(file); 3777 struct btrfs_root *root = BTRFS_I(inode)->root; 3778 struct btrfs_root *new_root; 3779 struct btrfs_dir_item *di; 3780 struct btrfs_trans_handle *trans; 3781 struct btrfs_path *path; 3782 struct btrfs_key location; 3783 struct btrfs_disk_key disk_key; 3784 u64 objectid = 0; 3785 u64 dir_id; 3786 int ret; 3787 3788 if (!capable(CAP_SYS_ADMIN)) 3789 return -EPERM; 3790 3791 ret = mnt_want_write_file(file); 3792 if (ret) 3793 return ret; 3794 3795 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3796 ret = -EFAULT; 3797 goto out; 3798 } 3799 3800 if (!objectid) 3801 objectid = BTRFS_FS_TREE_OBJECTID; 3802 3803 location.objectid = objectid; 3804 location.type = BTRFS_ROOT_ITEM_KEY; 3805 location.offset = (u64)-1; 3806 3807 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 3808 if (IS_ERR(new_root)) { 3809 ret = PTR_ERR(new_root); 3810 goto out; 3811 } 3812 3813 path = btrfs_alloc_path(); 3814 if (!path) { 3815 ret = -ENOMEM; 3816 goto out; 3817 } 3818 path->leave_spinning = 1; 3819 3820 trans = btrfs_start_transaction(root, 1); 3821 if (IS_ERR(trans)) { 3822 btrfs_free_path(path); 3823 ret = PTR_ERR(trans); 3824 goto out; 3825 } 3826 3827 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 3828 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 3829 dir_id, "default", 7, 1); 3830 if (IS_ERR_OR_NULL(di)) { 3831 btrfs_free_path(path); 3832 btrfs_end_transaction(trans, root); 3833 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir" 3834 "item, this isn't going to work"); 3835 ret = -ENOENT; 3836 goto out; 3837 } 3838 3839 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3840 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3841 btrfs_mark_buffer_dirty(path->nodes[0]); 3842 btrfs_free_path(path); 3843 3844 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 3845 btrfs_end_transaction(trans, root); 3846 out: 3847 mnt_drop_write_file(file); 3848 return ret; 3849 } 3850 3851 void btrfs_get_block_group_info(struct list_head *groups_list, 3852 struct btrfs_ioctl_space_info *space) 3853 { 3854 struct btrfs_block_group_cache *block_group; 3855 3856 space->total_bytes = 0; 3857 space->used_bytes = 0; 3858 space->flags = 0; 3859 list_for_each_entry(block_group, groups_list, list) { 3860 space->flags = block_group->flags; 3861 space->total_bytes += block_group->key.offset; 3862 space->used_bytes += 3863 btrfs_block_group_used(&block_group->item); 3864 } 3865 } 3866 3867 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 3868 { 3869 struct btrfs_ioctl_space_args space_args; 3870 struct btrfs_ioctl_space_info space; 3871 struct btrfs_ioctl_space_info *dest; 3872 struct btrfs_ioctl_space_info *dest_orig; 3873 struct btrfs_ioctl_space_info __user *user_dest; 3874 struct btrfs_space_info *info; 3875 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3876 BTRFS_BLOCK_GROUP_SYSTEM, 3877 BTRFS_BLOCK_GROUP_METADATA, 3878 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3879 int num_types = 4; 3880 int alloc_size; 3881 int ret = 0; 3882 u64 slot_count = 0; 3883 int i, c; 3884 3885 if (copy_from_user(&space_args, 3886 (struct btrfs_ioctl_space_args __user *)arg, 3887 sizeof(space_args))) 3888 return -EFAULT; 3889 3890 for (i = 0; i < num_types; i++) { 3891 struct btrfs_space_info *tmp; 3892 3893 info = NULL; 3894 rcu_read_lock(); 3895 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3896 list) { 3897 if (tmp->flags == types[i]) { 3898 info = tmp; 3899 break; 3900 } 3901 } 3902 rcu_read_unlock(); 3903 3904 if (!info) 3905 continue; 3906 3907 down_read(&info->groups_sem); 3908 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3909 if (!list_empty(&info->block_groups[c])) 3910 slot_count++; 3911 } 3912 up_read(&info->groups_sem); 3913 } 3914 3915 /* 3916 * Global block reserve, exported as a space_info 3917 */ 3918 slot_count++; 3919 3920 /* space_slots == 0 means they are asking for a count */ 3921 if (space_args.space_slots == 0) { 3922 space_args.total_spaces = slot_count; 3923 goto out; 3924 } 3925 3926 slot_count = min_t(u64, space_args.space_slots, slot_count); 3927 3928 alloc_size = sizeof(*dest) * slot_count; 3929 3930 /* we generally have at most 6 or so space infos, one for each raid 3931 * level. So, a whole page should be more than enough for everyone 3932 */ 3933 if (alloc_size > PAGE_CACHE_SIZE) 3934 return -ENOMEM; 3935 3936 space_args.total_spaces = 0; 3937 dest = kmalloc(alloc_size, GFP_NOFS); 3938 if (!dest) 3939 return -ENOMEM; 3940 dest_orig = dest; 3941 3942 /* now we have a buffer to copy into */ 3943 for (i = 0; i < num_types; i++) { 3944 struct btrfs_space_info *tmp; 3945 3946 if (!slot_count) 3947 break; 3948 3949 info = NULL; 3950 rcu_read_lock(); 3951 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3952 list) { 3953 if (tmp->flags == types[i]) { 3954 info = tmp; 3955 break; 3956 } 3957 } 3958 rcu_read_unlock(); 3959 3960 if (!info) 3961 continue; 3962 down_read(&info->groups_sem); 3963 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3964 if (!list_empty(&info->block_groups[c])) { 3965 btrfs_get_block_group_info( 3966 &info->block_groups[c], &space); 3967 memcpy(dest, &space, sizeof(space)); 3968 dest++; 3969 space_args.total_spaces++; 3970 slot_count--; 3971 } 3972 if (!slot_count) 3973 break; 3974 } 3975 up_read(&info->groups_sem); 3976 } 3977 3978 /* 3979 * Add global block reserve 3980 */ 3981 if (slot_count) { 3982 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv; 3983 3984 spin_lock(&block_rsv->lock); 3985 space.total_bytes = block_rsv->size; 3986 space.used_bytes = block_rsv->size - block_rsv->reserved; 3987 spin_unlock(&block_rsv->lock); 3988 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3989 memcpy(dest, &space, sizeof(space)); 3990 space_args.total_spaces++; 3991 } 3992 3993 user_dest = (struct btrfs_ioctl_space_info __user *) 3994 (arg + sizeof(struct btrfs_ioctl_space_args)); 3995 3996 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3997 ret = -EFAULT; 3998 3999 kfree(dest_orig); 4000 out: 4001 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4002 ret = -EFAULT; 4003 4004 return ret; 4005 } 4006 4007 /* 4008 * there are many ways the trans_start and trans_end ioctls can lead 4009 * to deadlocks. They should only be used by applications that 4010 * basically own the machine, and have a very in depth understanding 4011 * of all the possible deadlocks and enospc problems. 4012 */ 4013 long btrfs_ioctl_trans_end(struct file *file) 4014 { 4015 struct inode *inode = file_inode(file); 4016 struct btrfs_root *root = BTRFS_I(inode)->root; 4017 struct btrfs_trans_handle *trans; 4018 4019 trans = file->private_data; 4020 if (!trans) 4021 return -EINVAL; 4022 file->private_data = NULL; 4023 4024 btrfs_end_transaction(trans, root); 4025 4026 atomic_dec(&root->fs_info->open_ioctl_trans); 4027 4028 mnt_drop_write_file(file); 4029 return 0; 4030 } 4031 4032 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4033 void __user *argp) 4034 { 4035 struct btrfs_trans_handle *trans; 4036 u64 transid; 4037 int ret; 4038 4039 trans = btrfs_attach_transaction_barrier(root); 4040 if (IS_ERR(trans)) { 4041 if (PTR_ERR(trans) != -ENOENT) 4042 return PTR_ERR(trans); 4043 4044 /* No running transaction, don't bother */ 4045 transid = root->fs_info->last_trans_committed; 4046 goto out; 4047 } 4048 transid = trans->transid; 4049 ret = btrfs_commit_transaction_async(trans, root, 0); 4050 if (ret) { 4051 btrfs_end_transaction(trans, root); 4052 return ret; 4053 } 4054 out: 4055 if (argp) 4056 if (copy_to_user(argp, &transid, sizeof(transid))) 4057 return -EFAULT; 4058 return 0; 4059 } 4060 4061 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 4062 void __user *argp) 4063 { 4064 u64 transid; 4065 4066 if (argp) { 4067 if (copy_from_user(&transid, argp, sizeof(transid))) 4068 return -EFAULT; 4069 } else { 4070 transid = 0; /* current trans */ 4071 } 4072 return btrfs_wait_for_commit(root, transid); 4073 } 4074 4075 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4076 { 4077 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4078 struct btrfs_ioctl_scrub_args *sa; 4079 int ret; 4080 4081 if (!capable(CAP_SYS_ADMIN)) 4082 return -EPERM; 4083 4084 sa = memdup_user(arg, sizeof(*sa)); 4085 if (IS_ERR(sa)) 4086 return PTR_ERR(sa); 4087 4088 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4089 ret = mnt_want_write_file(file); 4090 if (ret) 4091 goto out; 4092 } 4093 4094 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 4095 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4096 0); 4097 4098 if (copy_to_user(arg, sa, sizeof(*sa))) 4099 ret = -EFAULT; 4100 4101 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4102 mnt_drop_write_file(file); 4103 out: 4104 kfree(sa); 4105 return ret; 4106 } 4107 4108 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 4109 { 4110 if (!capable(CAP_SYS_ADMIN)) 4111 return -EPERM; 4112 4113 return btrfs_scrub_cancel(root->fs_info); 4114 } 4115 4116 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 4117 void __user *arg) 4118 { 4119 struct btrfs_ioctl_scrub_args *sa; 4120 int ret; 4121 4122 if (!capable(CAP_SYS_ADMIN)) 4123 return -EPERM; 4124 4125 sa = memdup_user(arg, sizeof(*sa)); 4126 if (IS_ERR(sa)) 4127 return PTR_ERR(sa); 4128 4129 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 4130 4131 if (copy_to_user(arg, sa, sizeof(*sa))) 4132 ret = -EFAULT; 4133 4134 kfree(sa); 4135 return ret; 4136 } 4137 4138 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 4139 void __user *arg) 4140 { 4141 struct btrfs_ioctl_get_dev_stats *sa; 4142 int ret; 4143 4144 sa = memdup_user(arg, sizeof(*sa)); 4145 if (IS_ERR(sa)) 4146 return PTR_ERR(sa); 4147 4148 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4149 kfree(sa); 4150 return -EPERM; 4151 } 4152 4153 ret = btrfs_get_dev_stats(root, sa); 4154 4155 if (copy_to_user(arg, sa, sizeof(*sa))) 4156 ret = -EFAULT; 4157 4158 kfree(sa); 4159 return ret; 4160 } 4161 4162 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 4163 { 4164 struct btrfs_ioctl_dev_replace_args *p; 4165 int ret; 4166 4167 if (!capable(CAP_SYS_ADMIN)) 4168 return -EPERM; 4169 4170 p = memdup_user(arg, sizeof(*p)); 4171 if (IS_ERR(p)) 4172 return PTR_ERR(p); 4173 4174 switch (p->cmd) { 4175 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4176 if (root->fs_info->sb->s_flags & MS_RDONLY) { 4177 ret = -EROFS; 4178 goto out; 4179 } 4180 if (atomic_xchg( 4181 &root->fs_info->mutually_exclusive_operation_running, 4182 1)) { 4183 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4184 } else { 4185 ret = btrfs_dev_replace_start(root, p); 4186 atomic_set( 4187 &root->fs_info->mutually_exclusive_operation_running, 4188 0); 4189 } 4190 break; 4191 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4192 btrfs_dev_replace_status(root->fs_info, p); 4193 ret = 0; 4194 break; 4195 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4196 ret = btrfs_dev_replace_cancel(root->fs_info, p); 4197 break; 4198 default: 4199 ret = -EINVAL; 4200 break; 4201 } 4202 4203 if (copy_to_user(arg, p, sizeof(*p))) 4204 ret = -EFAULT; 4205 out: 4206 kfree(p); 4207 return ret; 4208 } 4209 4210 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4211 { 4212 int ret = 0; 4213 int i; 4214 u64 rel_ptr; 4215 int size; 4216 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4217 struct inode_fs_paths *ipath = NULL; 4218 struct btrfs_path *path; 4219 4220 if (!capable(CAP_DAC_READ_SEARCH)) 4221 return -EPERM; 4222 4223 path = btrfs_alloc_path(); 4224 if (!path) { 4225 ret = -ENOMEM; 4226 goto out; 4227 } 4228 4229 ipa = memdup_user(arg, sizeof(*ipa)); 4230 if (IS_ERR(ipa)) { 4231 ret = PTR_ERR(ipa); 4232 ipa = NULL; 4233 goto out; 4234 } 4235 4236 size = min_t(u32, ipa->size, 4096); 4237 ipath = init_ipath(size, root, path); 4238 if (IS_ERR(ipath)) { 4239 ret = PTR_ERR(ipath); 4240 ipath = NULL; 4241 goto out; 4242 } 4243 4244 ret = paths_from_inode(ipa->inum, ipath); 4245 if (ret < 0) 4246 goto out; 4247 4248 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4249 rel_ptr = ipath->fspath->val[i] - 4250 (u64)(unsigned long)ipath->fspath->val; 4251 ipath->fspath->val[i] = rel_ptr; 4252 } 4253 4254 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4255 (void *)(unsigned long)ipath->fspath, size); 4256 if (ret) { 4257 ret = -EFAULT; 4258 goto out; 4259 } 4260 4261 out: 4262 btrfs_free_path(path); 4263 free_ipath(ipath); 4264 kfree(ipa); 4265 4266 return ret; 4267 } 4268 4269 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4270 { 4271 struct btrfs_data_container *inodes = ctx; 4272 const size_t c = 3 * sizeof(u64); 4273 4274 if (inodes->bytes_left >= c) { 4275 inodes->bytes_left -= c; 4276 inodes->val[inodes->elem_cnt] = inum; 4277 inodes->val[inodes->elem_cnt + 1] = offset; 4278 inodes->val[inodes->elem_cnt + 2] = root; 4279 inodes->elem_cnt += 3; 4280 } else { 4281 inodes->bytes_missing += c - inodes->bytes_left; 4282 inodes->bytes_left = 0; 4283 inodes->elem_missed += 3; 4284 } 4285 4286 return 0; 4287 } 4288 4289 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 4290 void __user *arg) 4291 { 4292 int ret = 0; 4293 int size; 4294 struct btrfs_ioctl_logical_ino_args *loi; 4295 struct btrfs_data_container *inodes = NULL; 4296 struct btrfs_path *path = NULL; 4297 4298 if (!capable(CAP_SYS_ADMIN)) 4299 return -EPERM; 4300 4301 loi = memdup_user(arg, sizeof(*loi)); 4302 if (IS_ERR(loi)) { 4303 ret = PTR_ERR(loi); 4304 loi = NULL; 4305 goto out; 4306 } 4307 4308 path = btrfs_alloc_path(); 4309 if (!path) { 4310 ret = -ENOMEM; 4311 goto out; 4312 } 4313 4314 size = min_t(u32, loi->size, 64 * 1024); 4315 inodes = init_data_container(size); 4316 if (IS_ERR(inodes)) { 4317 ret = PTR_ERR(inodes); 4318 inodes = NULL; 4319 goto out; 4320 } 4321 4322 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 4323 build_ino_list, inodes); 4324 if (ret == -EINVAL) 4325 ret = -ENOENT; 4326 if (ret < 0) 4327 goto out; 4328 4329 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4330 (void *)(unsigned long)inodes, size); 4331 if (ret) 4332 ret = -EFAULT; 4333 4334 out: 4335 btrfs_free_path(path); 4336 vfree(inodes); 4337 kfree(loi); 4338 4339 return ret; 4340 } 4341 4342 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4343 struct btrfs_ioctl_balance_args *bargs) 4344 { 4345 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4346 4347 bargs->flags = bctl->flags; 4348 4349 if (atomic_read(&fs_info->balance_running)) 4350 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4351 if (atomic_read(&fs_info->balance_pause_req)) 4352 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4353 if (atomic_read(&fs_info->balance_cancel_req)) 4354 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4355 4356 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4357 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4358 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4359 4360 if (lock) { 4361 spin_lock(&fs_info->balance_lock); 4362 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4363 spin_unlock(&fs_info->balance_lock); 4364 } else { 4365 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4366 } 4367 } 4368 4369 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4370 { 4371 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4372 struct btrfs_fs_info *fs_info = root->fs_info; 4373 struct btrfs_ioctl_balance_args *bargs; 4374 struct btrfs_balance_control *bctl; 4375 bool need_unlock; /* for mut. excl. ops lock */ 4376 int ret; 4377 4378 if (!capable(CAP_SYS_ADMIN)) 4379 return -EPERM; 4380 4381 ret = mnt_want_write_file(file); 4382 if (ret) 4383 return ret; 4384 4385 again: 4386 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4387 mutex_lock(&fs_info->volume_mutex); 4388 mutex_lock(&fs_info->balance_mutex); 4389 need_unlock = true; 4390 goto locked; 4391 } 4392 4393 /* 4394 * mut. excl. ops lock is locked. Three possibilites: 4395 * (1) some other op is running 4396 * (2) balance is running 4397 * (3) balance is paused -- special case (think resume) 4398 */ 4399 mutex_lock(&fs_info->balance_mutex); 4400 if (fs_info->balance_ctl) { 4401 /* this is either (2) or (3) */ 4402 if (!atomic_read(&fs_info->balance_running)) { 4403 mutex_unlock(&fs_info->balance_mutex); 4404 if (!mutex_trylock(&fs_info->volume_mutex)) 4405 goto again; 4406 mutex_lock(&fs_info->balance_mutex); 4407 4408 if (fs_info->balance_ctl && 4409 !atomic_read(&fs_info->balance_running)) { 4410 /* this is (3) */ 4411 need_unlock = false; 4412 goto locked; 4413 } 4414 4415 mutex_unlock(&fs_info->balance_mutex); 4416 mutex_unlock(&fs_info->volume_mutex); 4417 goto again; 4418 } else { 4419 /* this is (2) */ 4420 mutex_unlock(&fs_info->balance_mutex); 4421 ret = -EINPROGRESS; 4422 goto out; 4423 } 4424 } else { 4425 /* this is (1) */ 4426 mutex_unlock(&fs_info->balance_mutex); 4427 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4428 goto out; 4429 } 4430 4431 locked: 4432 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4433 4434 if (arg) { 4435 bargs = memdup_user(arg, sizeof(*bargs)); 4436 if (IS_ERR(bargs)) { 4437 ret = PTR_ERR(bargs); 4438 goto out_unlock; 4439 } 4440 4441 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4442 if (!fs_info->balance_ctl) { 4443 ret = -ENOTCONN; 4444 goto out_bargs; 4445 } 4446 4447 bctl = fs_info->balance_ctl; 4448 spin_lock(&fs_info->balance_lock); 4449 bctl->flags |= BTRFS_BALANCE_RESUME; 4450 spin_unlock(&fs_info->balance_lock); 4451 4452 goto do_balance; 4453 } 4454 } else { 4455 bargs = NULL; 4456 } 4457 4458 if (fs_info->balance_ctl) { 4459 ret = -EINPROGRESS; 4460 goto out_bargs; 4461 } 4462 4463 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4464 if (!bctl) { 4465 ret = -ENOMEM; 4466 goto out_bargs; 4467 } 4468 4469 bctl->fs_info = fs_info; 4470 if (arg) { 4471 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4472 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4473 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4474 4475 bctl->flags = bargs->flags; 4476 } else { 4477 /* balance everything - no filters */ 4478 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4479 } 4480 4481 do_balance: 4482 /* 4483 * Ownership of bctl and mutually_exclusive_operation_running 4484 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4485 * or, if restriper was paused all the way until unmount, in 4486 * free_fs_info. mutually_exclusive_operation_running is 4487 * cleared in __cancel_balance. 4488 */ 4489 need_unlock = false; 4490 4491 ret = btrfs_balance(bctl, bargs); 4492 4493 if (arg) { 4494 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4495 ret = -EFAULT; 4496 } 4497 4498 out_bargs: 4499 kfree(bargs); 4500 out_unlock: 4501 mutex_unlock(&fs_info->balance_mutex); 4502 mutex_unlock(&fs_info->volume_mutex); 4503 if (need_unlock) 4504 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4505 out: 4506 mnt_drop_write_file(file); 4507 return ret; 4508 } 4509 4510 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4511 { 4512 if (!capable(CAP_SYS_ADMIN)) 4513 return -EPERM; 4514 4515 switch (cmd) { 4516 case BTRFS_BALANCE_CTL_PAUSE: 4517 return btrfs_pause_balance(root->fs_info); 4518 case BTRFS_BALANCE_CTL_CANCEL: 4519 return btrfs_cancel_balance(root->fs_info); 4520 } 4521 4522 return -EINVAL; 4523 } 4524 4525 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4526 void __user *arg) 4527 { 4528 struct btrfs_fs_info *fs_info = root->fs_info; 4529 struct btrfs_ioctl_balance_args *bargs; 4530 int ret = 0; 4531 4532 if (!capable(CAP_SYS_ADMIN)) 4533 return -EPERM; 4534 4535 mutex_lock(&fs_info->balance_mutex); 4536 if (!fs_info->balance_ctl) { 4537 ret = -ENOTCONN; 4538 goto out; 4539 } 4540 4541 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 4542 if (!bargs) { 4543 ret = -ENOMEM; 4544 goto out; 4545 } 4546 4547 update_ioctl_balance_args(fs_info, 1, bargs); 4548 4549 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4550 ret = -EFAULT; 4551 4552 kfree(bargs); 4553 out: 4554 mutex_unlock(&fs_info->balance_mutex); 4555 return ret; 4556 } 4557 4558 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4559 { 4560 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4561 struct btrfs_ioctl_quota_ctl_args *sa; 4562 struct btrfs_trans_handle *trans = NULL; 4563 int ret; 4564 int err; 4565 4566 if (!capable(CAP_SYS_ADMIN)) 4567 return -EPERM; 4568 4569 ret = mnt_want_write_file(file); 4570 if (ret) 4571 return ret; 4572 4573 sa = memdup_user(arg, sizeof(*sa)); 4574 if (IS_ERR(sa)) { 4575 ret = PTR_ERR(sa); 4576 goto drop_write; 4577 } 4578 4579 down_write(&root->fs_info->subvol_sem); 4580 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4581 if (IS_ERR(trans)) { 4582 ret = PTR_ERR(trans); 4583 goto out; 4584 } 4585 4586 switch (sa->cmd) { 4587 case BTRFS_QUOTA_CTL_ENABLE: 4588 ret = btrfs_quota_enable(trans, root->fs_info); 4589 break; 4590 case BTRFS_QUOTA_CTL_DISABLE: 4591 ret = btrfs_quota_disable(trans, root->fs_info); 4592 break; 4593 default: 4594 ret = -EINVAL; 4595 break; 4596 } 4597 4598 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4599 if (err && !ret) 4600 ret = err; 4601 out: 4602 kfree(sa); 4603 up_write(&root->fs_info->subvol_sem); 4604 drop_write: 4605 mnt_drop_write_file(file); 4606 return ret; 4607 } 4608 4609 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4610 { 4611 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4612 struct btrfs_ioctl_qgroup_assign_args *sa; 4613 struct btrfs_trans_handle *trans; 4614 int ret; 4615 int err; 4616 4617 if (!capable(CAP_SYS_ADMIN)) 4618 return -EPERM; 4619 4620 ret = mnt_want_write_file(file); 4621 if (ret) 4622 return ret; 4623 4624 sa = memdup_user(arg, sizeof(*sa)); 4625 if (IS_ERR(sa)) { 4626 ret = PTR_ERR(sa); 4627 goto drop_write; 4628 } 4629 4630 trans = btrfs_join_transaction(root); 4631 if (IS_ERR(trans)) { 4632 ret = PTR_ERR(trans); 4633 goto out; 4634 } 4635 4636 /* FIXME: check if the IDs really exist */ 4637 if (sa->assign) { 4638 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4639 sa->src, sa->dst); 4640 } else { 4641 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4642 sa->src, sa->dst); 4643 } 4644 4645 /* update qgroup status and info */ 4646 err = btrfs_run_qgroups(trans, root->fs_info); 4647 if (err < 0) 4648 btrfs_error(root->fs_info, ret, 4649 "failed to update qgroup status and info\n"); 4650 err = btrfs_end_transaction(trans, root); 4651 if (err && !ret) 4652 ret = err; 4653 4654 out: 4655 kfree(sa); 4656 drop_write: 4657 mnt_drop_write_file(file); 4658 return ret; 4659 } 4660 4661 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4662 { 4663 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4664 struct btrfs_ioctl_qgroup_create_args *sa; 4665 struct btrfs_trans_handle *trans; 4666 int ret; 4667 int err; 4668 4669 if (!capable(CAP_SYS_ADMIN)) 4670 return -EPERM; 4671 4672 ret = mnt_want_write_file(file); 4673 if (ret) 4674 return ret; 4675 4676 sa = memdup_user(arg, sizeof(*sa)); 4677 if (IS_ERR(sa)) { 4678 ret = PTR_ERR(sa); 4679 goto drop_write; 4680 } 4681 4682 if (!sa->qgroupid) { 4683 ret = -EINVAL; 4684 goto out; 4685 } 4686 4687 trans = btrfs_join_transaction(root); 4688 if (IS_ERR(trans)) { 4689 ret = PTR_ERR(trans); 4690 goto out; 4691 } 4692 4693 /* FIXME: check if the IDs really exist */ 4694 if (sa->create) { 4695 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid); 4696 } else { 4697 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4698 } 4699 4700 err = btrfs_end_transaction(trans, root); 4701 if (err && !ret) 4702 ret = err; 4703 4704 out: 4705 kfree(sa); 4706 drop_write: 4707 mnt_drop_write_file(file); 4708 return ret; 4709 } 4710 4711 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4712 { 4713 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4714 struct btrfs_ioctl_qgroup_limit_args *sa; 4715 struct btrfs_trans_handle *trans; 4716 int ret; 4717 int err; 4718 u64 qgroupid; 4719 4720 if (!capable(CAP_SYS_ADMIN)) 4721 return -EPERM; 4722 4723 ret = mnt_want_write_file(file); 4724 if (ret) 4725 return ret; 4726 4727 sa = memdup_user(arg, sizeof(*sa)); 4728 if (IS_ERR(sa)) { 4729 ret = PTR_ERR(sa); 4730 goto drop_write; 4731 } 4732 4733 trans = btrfs_join_transaction(root); 4734 if (IS_ERR(trans)) { 4735 ret = PTR_ERR(trans); 4736 goto out; 4737 } 4738 4739 qgroupid = sa->qgroupid; 4740 if (!qgroupid) { 4741 /* take the current subvol as qgroup */ 4742 qgroupid = root->root_key.objectid; 4743 } 4744 4745 /* FIXME: check if the IDs really exist */ 4746 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 4747 4748 err = btrfs_end_transaction(trans, root); 4749 if (err && !ret) 4750 ret = err; 4751 4752 out: 4753 kfree(sa); 4754 drop_write: 4755 mnt_drop_write_file(file); 4756 return ret; 4757 } 4758 4759 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4760 { 4761 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4762 struct btrfs_ioctl_quota_rescan_args *qsa; 4763 int ret; 4764 4765 if (!capable(CAP_SYS_ADMIN)) 4766 return -EPERM; 4767 4768 ret = mnt_want_write_file(file); 4769 if (ret) 4770 return ret; 4771 4772 qsa = memdup_user(arg, sizeof(*qsa)); 4773 if (IS_ERR(qsa)) { 4774 ret = PTR_ERR(qsa); 4775 goto drop_write; 4776 } 4777 4778 if (qsa->flags) { 4779 ret = -EINVAL; 4780 goto out; 4781 } 4782 4783 ret = btrfs_qgroup_rescan(root->fs_info); 4784 4785 out: 4786 kfree(qsa); 4787 drop_write: 4788 mnt_drop_write_file(file); 4789 return ret; 4790 } 4791 4792 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 4793 { 4794 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4795 struct btrfs_ioctl_quota_rescan_args *qsa; 4796 int ret = 0; 4797 4798 if (!capable(CAP_SYS_ADMIN)) 4799 return -EPERM; 4800 4801 qsa = kzalloc(sizeof(*qsa), GFP_NOFS); 4802 if (!qsa) 4803 return -ENOMEM; 4804 4805 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4806 qsa->flags = 1; 4807 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 4808 } 4809 4810 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4811 ret = -EFAULT; 4812 4813 kfree(qsa); 4814 return ret; 4815 } 4816 4817 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 4818 { 4819 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4820 4821 if (!capable(CAP_SYS_ADMIN)) 4822 return -EPERM; 4823 4824 return btrfs_qgroup_wait_for_completion(root->fs_info); 4825 } 4826 4827 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4828 struct btrfs_ioctl_received_subvol_args *sa) 4829 { 4830 struct inode *inode = file_inode(file); 4831 struct btrfs_root *root = BTRFS_I(inode)->root; 4832 struct btrfs_root_item *root_item = &root->root_item; 4833 struct btrfs_trans_handle *trans; 4834 struct timespec ct = CURRENT_TIME; 4835 int ret = 0; 4836 int received_uuid_changed; 4837 4838 if (!inode_owner_or_capable(inode)) 4839 return -EPERM; 4840 4841 ret = mnt_want_write_file(file); 4842 if (ret < 0) 4843 return ret; 4844 4845 down_write(&root->fs_info->subvol_sem); 4846 4847 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 4848 ret = -EINVAL; 4849 goto out; 4850 } 4851 4852 if (btrfs_root_readonly(root)) { 4853 ret = -EROFS; 4854 goto out; 4855 } 4856 4857 /* 4858 * 1 - root item 4859 * 2 - uuid items (received uuid + subvol uuid) 4860 */ 4861 trans = btrfs_start_transaction(root, 3); 4862 if (IS_ERR(trans)) { 4863 ret = PTR_ERR(trans); 4864 trans = NULL; 4865 goto out; 4866 } 4867 4868 sa->rtransid = trans->transid; 4869 sa->rtime.sec = ct.tv_sec; 4870 sa->rtime.nsec = ct.tv_nsec; 4871 4872 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4873 BTRFS_UUID_SIZE); 4874 if (received_uuid_changed && 4875 !btrfs_is_empty_uuid(root_item->received_uuid)) 4876 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 4877 root_item->received_uuid, 4878 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4879 root->root_key.objectid); 4880 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4881 btrfs_set_root_stransid(root_item, sa->stransid); 4882 btrfs_set_root_rtransid(root_item, sa->rtransid); 4883 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4884 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4885 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4886 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4887 4888 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4889 &root->root_key, &root->root_item); 4890 if (ret < 0) { 4891 btrfs_end_transaction(trans, root); 4892 goto out; 4893 } 4894 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4895 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 4896 sa->uuid, 4897 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4898 root->root_key.objectid); 4899 if (ret < 0 && ret != -EEXIST) { 4900 btrfs_abort_transaction(trans, root, ret); 4901 goto out; 4902 } 4903 } 4904 ret = btrfs_commit_transaction(trans, root); 4905 if (ret < 0) { 4906 btrfs_abort_transaction(trans, root, ret); 4907 goto out; 4908 } 4909 4910 out: 4911 up_write(&root->fs_info->subvol_sem); 4912 mnt_drop_write_file(file); 4913 return ret; 4914 } 4915 4916 #ifdef CONFIG_64BIT 4917 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4918 void __user *arg) 4919 { 4920 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4921 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4922 int ret = 0; 4923 4924 args32 = memdup_user(arg, sizeof(*args32)); 4925 if (IS_ERR(args32)) { 4926 ret = PTR_ERR(args32); 4927 args32 = NULL; 4928 goto out; 4929 } 4930 4931 args64 = kmalloc(sizeof(*args64), GFP_NOFS); 4932 if (!args64) { 4933 ret = -ENOMEM; 4934 goto out; 4935 } 4936 4937 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4938 args64->stransid = args32->stransid; 4939 args64->rtransid = args32->rtransid; 4940 args64->stime.sec = args32->stime.sec; 4941 args64->stime.nsec = args32->stime.nsec; 4942 args64->rtime.sec = args32->rtime.sec; 4943 args64->rtime.nsec = args32->rtime.nsec; 4944 args64->flags = args32->flags; 4945 4946 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4947 if (ret) 4948 goto out; 4949 4950 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4951 args32->stransid = args64->stransid; 4952 args32->rtransid = args64->rtransid; 4953 args32->stime.sec = args64->stime.sec; 4954 args32->stime.nsec = args64->stime.nsec; 4955 args32->rtime.sec = args64->rtime.sec; 4956 args32->rtime.nsec = args64->rtime.nsec; 4957 args32->flags = args64->flags; 4958 4959 ret = copy_to_user(arg, args32, sizeof(*args32)); 4960 if (ret) 4961 ret = -EFAULT; 4962 4963 out: 4964 kfree(args32); 4965 kfree(args64); 4966 return ret; 4967 } 4968 #endif 4969 4970 static long btrfs_ioctl_set_received_subvol(struct file *file, 4971 void __user *arg) 4972 { 4973 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4974 int ret = 0; 4975 4976 sa = memdup_user(arg, sizeof(*sa)); 4977 if (IS_ERR(sa)) { 4978 ret = PTR_ERR(sa); 4979 sa = NULL; 4980 goto out; 4981 } 4982 4983 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4984 4985 if (ret) 4986 goto out; 4987 4988 ret = copy_to_user(arg, sa, sizeof(*sa)); 4989 if (ret) 4990 ret = -EFAULT; 4991 4992 out: 4993 kfree(sa); 4994 return ret; 4995 } 4996 4997 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 4998 { 4999 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5000 size_t len; 5001 int ret; 5002 char label[BTRFS_LABEL_SIZE]; 5003 5004 spin_lock(&root->fs_info->super_lock); 5005 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5006 spin_unlock(&root->fs_info->super_lock); 5007 5008 len = strnlen(label, BTRFS_LABEL_SIZE); 5009 5010 if (len == BTRFS_LABEL_SIZE) { 5011 btrfs_warn(root->fs_info, 5012 "label is too long, return the first %zu bytes", --len); 5013 } 5014 5015 ret = copy_to_user(arg, label, len); 5016 5017 return ret ? -EFAULT : 0; 5018 } 5019 5020 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5021 { 5022 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5023 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5024 struct btrfs_trans_handle *trans; 5025 char label[BTRFS_LABEL_SIZE]; 5026 int ret; 5027 5028 if (!capable(CAP_SYS_ADMIN)) 5029 return -EPERM; 5030 5031 if (copy_from_user(label, arg, sizeof(label))) 5032 return -EFAULT; 5033 5034 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5035 btrfs_err(root->fs_info, "unable to set label with more than %d bytes", 5036 BTRFS_LABEL_SIZE - 1); 5037 return -EINVAL; 5038 } 5039 5040 ret = mnt_want_write_file(file); 5041 if (ret) 5042 return ret; 5043 5044 trans = btrfs_start_transaction(root, 0); 5045 if (IS_ERR(trans)) { 5046 ret = PTR_ERR(trans); 5047 goto out_unlock; 5048 } 5049 5050 spin_lock(&root->fs_info->super_lock); 5051 strcpy(super_block->label, label); 5052 spin_unlock(&root->fs_info->super_lock); 5053 ret = btrfs_commit_transaction(trans, root); 5054 5055 out_unlock: 5056 mnt_drop_write_file(file); 5057 return ret; 5058 } 5059 5060 #define INIT_FEATURE_FLAGS(suffix) \ 5061 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5062 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5063 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5064 5065 static int btrfs_ioctl_get_supported_features(struct file *file, 5066 void __user *arg) 5067 { 5068 static struct btrfs_ioctl_feature_flags features[3] = { 5069 INIT_FEATURE_FLAGS(SUPP), 5070 INIT_FEATURE_FLAGS(SAFE_SET), 5071 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5072 }; 5073 5074 if (copy_to_user(arg, &features, sizeof(features))) 5075 return -EFAULT; 5076 5077 return 0; 5078 } 5079 5080 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5081 { 5082 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5083 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5084 struct btrfs_ioctl_feature_flags features; 5085 5086 features.compat_flags = btrfs_super_compat_flags(super_block); 5087 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5088 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5089 5090 if (copy_to_user(arg, &features, sizeof(features))) 5091 return -EFAULT; 5092 5093 return 0; 5094 } 5095 5096 static int check_feature_bits(struct btrfs_root *root, 5097 enum btrfs_feature_set set, 5098 u64 change_mask, u64 flags, u64 supported_flags, 5099 u64 safe_set, u64 safe_clear) 5100 { 5101 const char *type = btrfs_feature_set_names[set]; 5102 char *names; 5103 u64 disallowed, unsupported; 5104 u64 set_mask = flags & change_mask; 5105 u64 clear_mask = ~flags & change_mask; 5106 5107 unsupported = set_mask & ~supported_flags; 5108 if (unsupported) { 5109 names = btrfs_printable_features(set, unsupported); 5110 if (names) { 5111 btrfs_warn(root->fs_info, 5112 "this kernel does not support the %s feature bit%s", 5113 names, strchr(names, ',') ? "s" : ""); 5114 kfree(names); 5115 } else 5116 btrfs_warn(root->fs_info, 5117 "this kernel does not support %s bits 0x%llx", 5118 type, unsupported); 5119 return -EOPNOTSUPP; 5120 } 5121 5122 disallowed = set_mask & ~safe_set; 5123 if (disallowed) { 5124 names = btrfs_printable_features(set, disallowed); 5125 if (names) { 5126 btrfs_warn(root->fs_info, 5127 "can't set the %s feature bit%s while mounted", 5128 names, strchr(names, ',') ? "s" : ""); 5129 kfree(names); 5130 } else 5131 btrfs_warn(root->fs_info, 5132 "can't set %s bits 0x%llx while mounted", 5133 type, disallowed); 5134 return -EPERM; 5135 } 5136 5137 disallowed = clear_mask & ~safe_clear; 5138 if (disallowed) { 5139 names = btrfs_printable_features(set, disallowed); 5140 if (names) { 5141 btrfs_warn(root->fs_info, 5142 "can't clear the %s feature bit%s while mounted", 5143 names, strchr(names, ',') ? "s" : ""); 5144 kfree(names); 5145 } else 5146 btrfs_warn(root->fs_info, 5147 "can't clear %s bits 0x%llx while mounted", 5148 type, disallowed); 5149 return -EPERM; 5150 } 5151 5152 return 0; 5153 } 5154 5155 #define check_feature(root, change_mask, flags, mask_base) \ 5156 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \ 5157 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5158 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5159 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5160 5161 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5162 { 5163 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5164 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5165 struct btrfs_ioctl_feature_flags flags[2]; 5166 struct btrfs_trans_handle *trans; 5167 u64 newflags; 5168 int ret; 5169 5170 if (!capable(CAP_SYS_ADMIN)) 5171 return -EPERM; 5172 5173 if (copy_from_user(flags, arg, sizeof(flags))) 5174 return -EFAULT; 5175 5176 /* Nothing to do */ 5177 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5178 !flags[0].incompat_flags) 5179 return 0; 5180 5181 ret = check_feature(root, flags[0].compat_flags, 5182 flags[1].compat_flags, COMPAT); 5183 if (ret) 5184 return ret; 5185 5186 ret = check_feature(root, flags[0].compat_ro_flags, 5187 flags[1].compat_ro_flags, COMPAT_RO); 5188 if (ret) 5189 return ret; 5190 5191 ret = check_feature(root, flags[0].incompat_flags, 5192 flags[1].incompat_flags, INCOMPAT); 5193 if (ret) 5194 return ret; 5195 5196 trans = btrfs_start_transaction(root, 0); 5197 if (IS_ERR(trans)) 5198 return PTR_ERR(trans); 5199 5200 spin_lock(&root->fs_info->super_lock); 5201 newflags = btrfs_super_compat_flags(super_block); 5202 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5203 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5204 btrfs_set_super_compat_flags(super_block, newflags); 5205 5206 newflags = btrfs_super_compat_ro_flags(super_block); 5207 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5208 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5209 btrfs_set_super_compat_ro_flags(super_block, newflags); 5210 5211 newflags = btrfs_super_incompat_flags(super_block); 5212 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5213 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5214 btrfs_set_super_incompat_flags(super_block, newflags); 5215 spin_unlock(&root->fs_info->super_lock); 5216 5217 return btrfs_commit_transaction(trans, root); 5218 } 5219 5220 long btrfs_ioctl(struct file *file, unsigned int 5221 cmd, unsigned long arg) 5222 { 5223 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5224 void __user *argp = (void __user *)arg; 5225 5226 switch (cmd) { 5227 case FS_IOC_GETFLAGS: 5228 return btrfs_ioctl_getflags(file, argp); 5229 case FS_IOC_SETFLAGS: 5230 return btrfs_ioctl_setflags(file, argp); 5231 case FS_IOC_GETVERSION: 5232 return btrfs_ioctl_getversion(file, argp); 5233 case FITRIM: 5234 return btrfs_ioctl_fitrim(file, argp); 5235 case BTRFS_IOC_SNAP_CREATE: 5236 return btrfs_ioctl_snap_create(file, argp, 0); 5237 case BTRFS_IOC_SNAP_CREATE_V2: 5238 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5239 case BTRFS_IOC_SUBVOL_CREATE: 5240 return btrfs_ioctl_snap_create(file, argp, 1); 5241 case BTRFS_IOC_SUBVOL_CREATE_V2: 5242 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5243 case BTRFS_IOC_SNAP_DESTROY: 5244 return btrfs_ioctl_snap_destroy(file, argp); 5245 case BTRFS_IOC_SUBVOL_GETFLAGS: 5246 return btrfs_ioctl_subvol_getflags(file, argp); 5247 case BTRFS_IOC_SUBVOL_SETFLAGS: 5248 return btrfs_ioctl_subvol_setflags(file, argp); 5249 case BTRFS_IOC_DEFAULT_SUBVOL: 5250 return btrfs_ioctl_default_subvol(file, argp); 5251 case BTRFS_IOC_DEFRAG: 5252 return btrfs_ioctl_defrag(file, NULL); 5253 case BTRFS_IOC_DEFRAG_RANGE: 5254 return btrfs_ioctl_defrag(file, argp); 5255 case BTRFS_IOC_RESIZE: 5256 return btrfs_ioctl_resize(file, argp); 5257 case BTRFS_IOC_ADD_DEV: 5258 return btrfs_ioctl_add_dev(root, argp); 5259 case BTRFS_IOC_RM_DEV: 5260 return btrfs_ioctl_rm_dev(file, argp); 5261 case BTRFS_IOC_FS_INFO: 5262 return btrfs_ioctl_fs_info(root, argp); 5263 case BTRFS_IOC_DEV_INFO: 5264 return btrfs_ioctl_dev_info(root, argp); 5265 case BTRFS_IOC_BALANCE: 5266 return btrfs_ioctl_balance(file, NULL); 5267 case BTRFS_IOC_CLONE: 5268 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 5269 case BTRFS_IOC_CLONE_RANGE: 5270 return btrfs_ioctl_clone_range(file, argp); 5271 case BTRFS_IOC_TRANS_START: 5272 return btrfs_ioctl_trans_start(file); 5273 case BTRFS_IOC_TRANS_END: 5274 return btrfs_ioctl_trans_end(file); 5275 case BTRFS_IOC_TREE_SEARCH: 5276 return btrfs_ioctl_tree_search(file, argp); 5277 case BTRFS_IOC_TREE_SEARCH_V2: 5278 return btrfs_ioctl_tree_search_v2(file, argp); 5279 case BTRFS_IOC_INO_LOOKUP: 5280 return btrfs_ioctl_ino_lookup(file, argp); 5281 case BTRFS_IOC_INO_PATHS: 5282 return btrfs_ioctl_ino_to_path(root, argp); 5283 case BTRFS_IOC_LOGICAL_INO: 5284 return btrfs_ioctl_logical_to_ino(root, argp); 5285 case BTRFS_IOC_SPACE_INFO: 5286 return btrfs_ioctl_space_info(root, argp); 5287 case BTRFS_IOC_SYNC: { 5288 int ret; 5289 5290 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1); 5291 if (ret) 5292 return ret; 5293 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1); 5294 /* 5295 * The transaction thread may want to do more work, 5296 * namely it pokes the cleaner ktread that will start 5297 * processing uncleaned subvols. 5298 */ 5299 wake_up_process(root->fs_info->transaction_kthread); 5300 return ret; 5301 } 5302 case BTRFS_IOC_START_SYNC: 5303 return btrfs_ioctl_start_sync(root, argp); 5304 case BTRFS_IOC_WAIT_SYNC: 5305 return btrfs_ioctl_wait_sync(root, argp); 5306 case BTRFS_IOC_SCRUB: 5307 return btrfs_ioctl_scrub(file, argp); 5308 case BTRFS_IOC_SCRUB_CANCEL: 5309 return btrfs_ioctl_scrub_cancel(root, argp); 5310 case BTRFS_IOC_SCRUB_PROGRESS: 5311 return btrfs_ioctl_scrub_progress(root, argp); 5312 case BTRFS_IOC_BALANCE_V2: 5313 return btrfs_ioctl_balance(file, argp); 5314 case BTRFS_IOC_BALANCE_CTL: 5315 return btrfs_ioctl_balance_ctl(root, arg); 5316 case BTRFS_IOC_BALANCE_PROGRESS: 5317 return btrfs_ioctl_balance_progress(root, argp); 5318 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5319 return btrfs_ioctl_set_received_subvol(file, argp); 5320 #ifdef CONFIG_64BIT 5321 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5322 return btrfs_ioctl_set_received_subvol_32(file, argp); 5323 #endif 5324 case BTRFS_IOC_SEND: 5325 return btrfs_ioctl_send(file, argp); 5326 case BTRFS_IOC_GET_DEV_STATS: 5327 return btrfs_ioctl_get_dev_stats(root, argp); 5328 case BTRFS_IOC_QUOTA_CTL: 5329 return btrfs_ioctl_quota_ctl(file, argp); 5330 case BTRFS_IOC_QGROUP_ASSIGN: 5331 return btrfs_ioctl_qgroup_assign(file, argp); 5332 case BTRFS_IOC_QGROUP_CREATE: 5333 return btrfs_ioctl_qgroup_create(file, argp); 5334 case BTRFS_IOC_QGROUP_LIMIT: 5335 return btrfs_ioctl_qgroup_limit(file, argp); 5336 case BTRFS_IOC_QUOTA_RESCAN: 5337 return btrfs_ioctl_quota_rescan(file, argp); 5338 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5339 return btrfs_ioctl_quota_rescan_status(file, argp); 5340 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5341 return btrfs_ioctl_quota_rescan_wait(file, argp); 5342 case BTRFS_IOC_DEV_REPLACE: 5343 return btrfs_ioctl_dev_replace(root, argp); 5344 case BTRFS_IOC_GET_FSLABEL: 5345 return btrfs_ioctl_get_fslabel(file, argp); 5346 case BTRFS_IOC_SET_FSLABEL: 5347 return btrfs_ioctl_set_fslabel(file, argp); 5348 case BTRFS_IOC_FILE_EXTENT_SAME: 5349 return btrfs_ioctl_file_extent_same(file, argp); 5350 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5351 return btrfs_ioctl_get_supported_features(file, argp); 5352 case BTRFS_IOC_GET_FEATURES: 5353 return btrfs_ioctl_get_features(file, argp); 5354 case BTRFS_IOC_SET_FEATURES: 5355 return btrfs_ioctl_set_features(file, argp); 5356 } 5357 5358 return -ENOTTY; 5359 } 5360