xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 4cff79e9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/fsnotify.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/mount.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/swap.h>
22 #include <linux/writeback.h>
23 #include <linux/compat.h>
24 #include <linux/bit_spinlock.h>
25 #include <linux/security.h>
26 #include <linux/xattr.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/blkdev.h>
30 #include <linux/uuid.h>
31 #include <linux/btrfs.h>
32 #include <linux/uaccess.h>
33 #include <linux/iversion.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "volumes.h"
40 #include "locking.h"
41 #include "inode-map.h"
42 #include "backref.h"
43 #include "rcu-string.h"
44 #include "send.h"
45 #include "dev-replace.h"
46 #include "props.h"
47 #include "sysfs.h"
48 #include "qgroup.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 
52 #ifdef CONFIG_64BIT
53 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
54  * structures are incorrect, as the timespec structure from userspace
55  * is 4 bytes too small. We define these alternatives here to teach
56  * the kernel about the 32-bit struct packing.
57  */
58 struct btrfs_ioctl_timespec_32 {
59 	__u64 sec;
60 	__u32 nsec;
61 } __attribute__ ((__packed__));
62 
63 struct btrfs_ioctl_received_subvol_args_32 {
64 	char	uuid[BTRFS_UUID_SIZE];	/* in */
65 	__u64	stransid;		/* in */
66 	__u64	rtransid;		/* out */
67 	struct btrfs_ioctl_timespec_32 stime; /* in */
68 	struct btrfs_ioctl_timespec_32 rtime; /* out */
69 	__u64	flags;			/* in */
70 	__u64	reserved[16];		/* in */
71 } __attribute__ ((__packed__));
72 
73 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
74 				struct btrfs_ioctl_received_subvol_args_32)
75 #endif
76 
77 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
78 struct btrfs_ioctl_send_args_32 {
79 	__s64 send_fd;			/* in */
80 	__u64 clone_sources_count;	/* in */
81 	compat_uptr_t clone_sources;	/* in */
82 	__u64 parent_root;		/* in */
83 	__u64 flags;			/* in */
84 	__u64 reserved[4];		/* in */
85 } __attribute__ ((__packed__));
86 
87 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
88 			       struct btrfs_ioctl_send_args_32)
89 #endif
90 
91 static int btrfs_clone(struct inode *src, struct inode *inode,
92 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 		       int no_time_update);
94 
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static unsigned int btrfs_mask_flags(umode_t mode, unsigned int flags)
97 {
98 	if (S_ISDIR(mode))
99 		return flags;
100 	else if (S_ISREG(mode))
101 		return flags & ~FS_DIRSYNC_FL;
102 	else
103 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
104 }
105 
106 /*
107  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108  */
109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110 {
111 	unsigned int iflags = 0;
112 
113 	if (flags & BTRFS_INODE_SYNC)
114 		iflags |= FS_SYNC_FL;
115 	if (flags & BTRFS_INODE_IMMUTABLE)
116 		iflags |= FS_IMMUTABLE_FL;
117 	if (flags & BTRFS_INODE_APPEND)
118 		iflags |= FS_APPEND_FL;
119 	if (flags & BTRFS_INODE_NODUMP)
120 		iflags |= FS_NODUMP_FL;
121 	if (flags & BTRFS_INODE_NOATIME)
122 		iflags |= FS_NOATIME_FL;
123 	if (flags & BTRFS_INODE_DIRSYNC)
124 		iflags |= FS_DIRSYNC_FL;
125 	if (flags & BTRFS_INODE_NODATACOW)
126 		iflags |= FS_NOCOW_FL;
127 
128 	if (flags & BTRFS_INODE_NOCOMPRESS)
129 		iflags |= FS_NOCOMP_FL;
130 	else if (flags & BTRFS_INODE_COMPRESS)
131 		iflags |= FS_COMPR_FL;
132 
133 	return iflags;
134 }
135 
136 /*
137  * Update inode->i_flags based on the btrfs internal flags.
138  */
139 void btrfs_update_iflags(struct inode *inode)
140 {
141 	struct btrfs_inode *ip = BTRFS_I(inode);
142 	unsigned int new_fl = 0;
143 
144 	if (ip->flags & BTRFS_INODE_SYNC)
145 		new_fl |= S_SYNC;
146 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 		new_fl |= S_IMMUTABLE;
148 	if (ip->flags & BTRFS_INODE_APPEND)
149 		new_fl |= S_APPEND;
150 	if (ip->flags & BTRFS_INODE_NOATIME)
151 		new_fl |= S_NOATIME;
152 	if (ip->flags & BTRFS_INODE_DIRSYNC)
153 		new_fl |= S_DIRSYNC;
154 
155 	set_mask_bits(&inode->i_flags,
156 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 		      new_fl);
158 }
159 
160 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
161 {
162 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
163 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
164 
165 	if (copy_to_user(arg, &flags, sizeof(flags)))
166 		return -EFAULT;
167 	return 0;
168 }
169 
170 static int check_flags(unsigned int flags)
171 {
172 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
173 		      FS_NOATIME_FL | FS_NODUMP_FL | \
174 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
175 		      FS_NOCOMP_FL | FS_COMPR_FL |
176 		      FS_NOCOW_FL))
177 		return -EOPNOTSUPP;
178 
179 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
180 		return -EINVAL;
181 
182 	return 0;
183 }
184 
185 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
186 {
187 	struct inode *inode = file_inode(file);
188 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
189 	struct btrfs_inode *ip = BTRFS_I(inode);
190 	struct btrfs_root *root = ip->root;
191 	struct btrfs_trans_handle *trans;
192 	unsigned int flags, oldflags;
193 	int ret;
194 	u64 ip_oldflags;
195 	unsigned int i_oldflags;
196 	umode_t mode;
197 
198 	if (!inode_owner_or_capable(inode))
199 		return -EPERM;
200 
201 	if (btrfs_root_readonly(root))
202 		return -EROFS;
203 
204 	if (copy_from_user(&flags, arg, sizeof(flags)))
205 		return -EFAULT;
206 
207 	ret = check_flags(flags);
208 	if (ret)
209 		return ret;
210 
211 	ret = mnt_want_write_file(file);
212 	if (ret)
213 		return ret;
214 
215 	inode_lock(inode);
216 
217 	ip_oldflags = ip->flags;
218 	i_oldflags = inode->i_flags;
219 	mode = inode->i_mode;
220 
221 	flags = btrfs_mask_flags(inode->i_mode, flags);
222 	oldflags = btrfs_flags_to_ioctl(ip->flags);
223 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
224 		if (!capable(CAP_LINUX_IMMUTABLE)) {
225 			ret = -EPERM;
226 			goto out_unlock;
227 		}
228 	}
229 
230 	if (flags & FS_SYNC_FL)
231 		ip->flags |= BTRFS_INODE_SYNC;
232 	else
233 		ip->flags &= ~BTRFS_INODE_SYNC;
234 	if (flags & FS_IMMUTABLE_FL)
235 		ip->flags |= BTRFS_INODE_IMMUTABLE;
236 	else
237 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
238 	if (flags & FS_APPEND_FL)
239 		ip->flags |= BTRFS_INODE_APPEND;
240 	else
241 		ip->flags &= ~BTRFS_INODE_APPEND;
242 	if (flags & FS_NODUMP_FL)
243 		ip->flags |= BTRFS_INODE_NODUMP;
244 	else
245 		ip->flags &= ~BTRFS_INODE_NODUMP;
246 	if (flags & FS_NOATIME_FL)
247 		ip->flags |= BTRFS_INODE_NOATIME;
248 	else
249 		ip->flags &= ~BTRFS_INODE_NOATIME;
250 	if (flags & FS_DIRSYNC_FL)
251 		ip->flags |= BTRFS_INODE_DIRSYNC;
252 	else
253 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
254 	if (flags & FS_NOCOW_FL) {
255 		if (S_ISREG(mode)) {
256 			/*
257 			 * It's safe to turn csums off here, no extents exist.
258 			 * Otherwise we want the flag to reflect the real COW
259 			 * status of the file and will not set it.
260 			 */
261 			if (inode->i_size == 0)
262 				ip->flags |= BTRFS_INODE_NODATACOW
263 					   | BTRFS_INODE_NODATASUM;
264 		} else {
265 			ip->flags |= BTRFS_INODE_NODATACOW;
266 		}
267 	} else {
268 		/*
269 		 * Revert back under same assumptions as above
270 		 */
271 		if (S_ISREG(mode)) {
272 			if (inode->i_size == 0)
273 				ip->flags &= ~(BTRFS_INODE_NODATACOW
274 				             | BTRFS_INODE_NODATASUM);
275 		} else {
276 			ip->flags &= ~BTRFS_INODE_NODATACOW;
277 		}
278 	}
279 
280 	/*
281 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
282 	 * flag may be changed automatically if compression code won't make
283 	 * things smaller.
284 	 */
285 	if (flags & FS_NOCOMP_FL) {
286 		ip->flags &= ~BTRFS_INODE_COMPRESS;
287 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
288 
289 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
290 		if (ret && ret != -ENODATA)
291 			goto out_drop;
292 	} else if (flags & FS_COMPR_FL) {
293 		const char *comp;
294 
295 		ip->flags |= BTRFS_INODE_COMPRESS;
296 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
297 
298 		comp = btrfs_compress_type2str(fs_info->compress_type);
299 		if (!comp || comp[0] == 0)
300 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
301 
302 		ret = btrfs_set_prop(inode, "btrfs.compression",
303 				     comp, strlen(comp), 0);
304 		if (ret)
305 			goto out_drop;
306 
307 	} else {
308 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
309 		if (ret && ret != -ENODATA)
310 			goto out_drop;
311 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
312 	}
313 
314 	trans = btrfs_start_transaction(root, 1);
315 	if (IS_ERR(trans)) {
316 		ret = PTR_ERR(trans);
317 		goto out_drop;
318 	}
319 
320 	btrfs_update_iflags(inode);
321 	inode_inc_iversion(inode);
322 	inode->i_ctime = current_time(inode);
323 	ret = btrfs_update_inode(trans, root, inode);
324 
325 	btrfs_end_transaction(trans);
326  out_drop:
327 	if (ret) {
328 		ip->flags = ip_oldflags;
329 		inode->i_flags = i_oldflags;
330 	}
331 
332  out_unlock:
333 	inode_unlock(inode);
334 	mnt_drop_write_file(file);
335 	return ret;
336 }
337 
338 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
339 {
340 	struct inode *inode = file_inode(file);
341 
342 	return put_user(inode->i_generation, arg);
343 }
344 
345 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
346 {
347 	struct inode *inode = file_inode(file);
348 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
349 	struct btrfs_device *device;
350 	struct request_queue *q;
351 	struct fstrim_range range;
352 	u64 minlen = ULLONG_MAX;
353 	u64 num_devices = 0;
354 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
355 	int ret;
356 
357 	if (!capable(CAP_SYS_ADMIN))
358 		return -EPERM;
359 
360 	rcu_read_lock();
361 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
362 				dev_list) {
363 		if (!device->bdev)
364 			continue;
365 		q = bdev_get_queue(device->bdev);
366 		if (blk_queue_discard(q)) {
367 			num_devices++;
368 			minlen = min_t(u64, q->limits.discard_granularity,
369 				     minlen);
370 		}
371 	}
372 	rcu_read_unlock();
373 
374 	if (!num_devices)
375 		return -EOPNOTSUPP;
376 	if (copy_from_user(&range, arg, sizeof(range)))
377 		return -EFAULT;
378 	if (range.start > total_bytes ||
379 	    range.len < fs_info->sb->s_blocksize)
380 		return -EINVAL;
381 
382 	range.len = min(range.len, total_bytes - range.start);
383 	range.minlen = max(range.minlen, minlen);
384 	ret = btrfs_trim_fs(fs_info, &range);
385 	if (ret < 0)
386 		return ret;
387 
388 	if (copy_to_user(arg, &range, sizeof(range)))
389 		return -EFAULT;
390 
391 	return 0;
392 }
393 
394 int btrfs_is_empty_uuid(u8 *uuid)
395 {
396 	int i;
397 
398 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
399 		if (uuid[i])
400 			return 0;
401 	}
402 	return 1;
403 }
404 
405 static noinline int create_subvol(struct inode *dir,
406 				  struct dentry *dentry,
407 				  const char *name, int namelen,
408 				  u64 *async_transid,
409 				  struct btrfs_qgroup_inherit *inherit)
410 {
411 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
412 	struct btrfs_trans_handle *trans;
413 	struct btrfs_key key;
414 	struct btrfs_root_item *root_item;
415 	struct btrfs_inode_item *inode_item;
416 	struct extent_buffer *leaf;
417 	struct btrfs_root *root = BTRFS_I(dir)->root;
418 	struct btrfs_root *new_root;
419 	struct btrfs_block_rsv block_rsv;
420 	struct timespec cur_time = current_time(dir);
421 	struct inode *inode;
422 	int ret;
423 	int err;
424 	u64 objectid;
425 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
426 	u64 index = 0;
427 	u64 qgroup_reserved;
428 	uuid_le new_uuid;
429 
430 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
431 	if (!root_item)
432 		return -ENOMEM;
433 
434 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
435 	if (ret)
436 		goto fail_free;
437 
438 	/*
439 	 * Don't create subvolume whose level is not zero. Or qgroup will be
440 	 * screwed up since it assumes subvolume qgroup's level to be 0.
441 	 */
442 	if (btrfs_qgroup_level(objectid)) {
443 		ret = -ENOSPC;
444 		goto fail_free;
445 	}
446 
447 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
448 	/*
449 	 * The same as the snapshot creation, please see the comment
450 	 * of create_snapshot().
451 	 */
452 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
453 					       8, &qgroup_reserved, false);
454 	if (ret)
455 		goto fail_free;
456 
457 	trans = btrfs_start_transaction(root, 0);
458 	if (IS_ERR(trans)) {
459 		ret = PTR_ERR(trans);
460 		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
461 		goto fail_free;
462 	}
463 	trans->block_rsv = &block_rsv;
464 	trans->bytes_reserved = block_rsv.size;
465 
466 	ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
467 	if (ret)
468 		goto fail;
469 
470 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
471 	if (IS_ERR(leaf)) {
472 		ret = PTR_ERR(leaf);
473 		goto fail;
474 	}
475 
476 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
477 	btrfs_set_header_bytenr(leaf, leaf->start);
478 	btrfs_set_header_generation(leaf, trans->transid);
479 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
480 	btrfs_set_header_owner(leaf, objectid);
481 
482 	write_extent_buffer_fsid(leaf, fs_info->fsid);
483 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
484 	btrfs_mark_buffer_dirty(leaf);
485 
486 	inode_item = &root_item->inode;
487 	btrfs_set_stack_inode_generation(inode_item, 1);
488 	btrfs_set_stack_inode_size(inode_item, 3);
489 	btrfs_set_stack_inode_nlink(inode_item, 1);
490 	btrfs_set_stack_inode_nbytes(inode_item,
491 				     fs_info->nodesize);
492 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
493 
494 	btrfs_set_root_flags(root_item, 0);
495 	btrfs_set_root_limit(root_item, 0);
496 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
497 
498 	btrfs_set_root_bytenr(root_item, leaf->start);
499 	btrfs_set_root_generation(root_item, trans->transid);
500 	btrfs_set_root_level(root_item, 0);
501 	btrfs_set_root_refs(root_item, 1);
502 	btrfs_set_root_used(root_item, leaf->len);
503 	btrfs_set_root_last_snapshot(root_item, 0);
504 
505 	btrfs_set_root_generation_v2(root_item,
506 			btrfs_root_generation(root_item));
507 	uuid_le_gen(&new_uuid);
508 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
509 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
510 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
511 	root_item->ctime = root_item->otime;
512 	btrfs_set_root_ctransid(root_item, trans->transid);
513 	btrfs_set_root_otransid(root_item, trans->transid);
514 
515 	btrfs_tree_unlock(leaf);
516 	free_extent_buffer(leaf);
517 	leaf = NULL;
518 
519 	btrfs_set_root_dirid(root_item, new_dirid);
520 
521 	key.objectid = objectid;
522 	key.offset = 0;
523 	key.type = BTRFS_ROOT_ITEM_KEY;
524 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
525 				root_item);
526 	if (ret)
527 		goto fail;
528 
529 	key.offset = (u64)-1;
530 	new_root = btrfs_read_fs_root_no_name(fs_info, &key);
531 	if (IS_ERR(new_root)) {
532 		ret = PTR_ERR(new_root);
533 		btrfs_abort_transaction(trans, ret);
534 		goto fail;
535 	}
536 
537 	btrfs_record_root_in_trans(trans, new_root);
538 
539 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
540 	if (ret) {
541 		/* We potentially lose an unused inode item here */
542 		btrfs_abort_transaction(trans, ret);
543 		goto fail;
544 	}
545 
546 	mutex_lock(&new_root->objectid_mutex);
547 	new_root->highest_objectid = new_dirid;
548 	mutex_unlock(&new_root->objectid_mutex);
549 
550 	/*
551 	 * insert the directory item
552 	 */
553 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
554 	if (ret) {
555 		btrfs_abort_transaction(trans, ret);
556 		goto fail;
557 	}
558 
559 	ret = btrfs_insert_dir_item(trans, root,
560 				    name, namelen, BTRFS_I(dir), &key,
561 				    BTRFS_FT_DIR, index);
562 	if (ret) {
563 		btrfs_abort_transaction(trans, ret);
564 		goto fail;
565 	}
566 
567 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
568 	ret = btrfs_update_inode(trans, root, dir);
569 	BUG_ON(ret);
570 
571 	ret = btrfs_add_root_ref(trans, fs_info,
572 				 objectid, root->root_key.objectid,
573 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
574 	BUG_ON(ret);
575 
576 	ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
577 				  BTRFS_UUID_KEY_SUBVOL, objectid);
578 	if (ret)
579 		btrfs_abort_transaction(trans, ret);
580 
581 fail:
582 	kfree(root_item);
583 	trans->block_rsv = NULL;
584 	trans->bytes_reserved = 0;
585 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
586 
587 	if (async_transid) {
588 		*async_transid = trans->transid;
589 		err = btrfs_commit_transaction_async(trans, 1);
590 		if (err)
591 			err = btrfs_commit_transaction(trans);
592 	} else {
593 		err = btrfs_commit_transaction(trans);
594 	}
595 	if (err && !ret)
596 		ret = err;
597 
598 	if (!ret) {
599 		inode = btrfs_lookup_dentry(dir, dentry);
600 		if (IS_ERR(inode))
601 			return PTR_ERR(inode);
602 		d_instantiate(dentry, inode);
603 	}
604 	return ret;
605 
606 fail_free:
607 	kfree(root_item);
608 	return ret;
609 }
610 
611 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
612 			   struct dentry *dentry,
613 			   u64 *async_transid, bool readonly,
614 			   struct btrfs_qgroup_inherit *inherit)
615 {
616 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
617 	struct inode *inode;
618 	struct btrfs_pending_snapshot *pending_snapshot;
619 	struct btrfs_trans_handle *trans;
620 	int ret;
621 
622 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
623 		return -EINVAL;
624 
625 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
626 	if (!pending_snapshot)
627 		return -ENOMEM;
628 
629 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
630 			GFP_KERNEL);
631 	pending_snapshot->path = btrfs_alloc_path();
632 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
633 		ret = -ENOMEM;
634 		goto free_pending;
635 	}
636 
637 	atomic_inc(&root->will_be_snapshotted);
638 	smp_mb__after_atomic();
639 	/* wait for no snapshot writes */
640 	wait_event(root->subv_writers->wait,
641 		   percpu_counter_sum(&root->subv_writers->counter) == 0);
642 
643 	ret = btrfs_start_delalloc_inodes(root, 0);
644 	if (ret)
645 		goto dec_and_free;
646 
647 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
648 
649 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
650 			     BTRFS_BLOCK_RSV_TEMP);
651 	/*
652 	 * 1 - parent dir inode
653 	 * 2 - dir entries
654 	 * 1 - root item
655 	 * 2 - root ref/backref
656 	 * 1 - root of snapshot
657 	 * 1 - UUID item
658 	 */
659 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
660 					&pending_snapshot->block_rsv, 8,
661 					&pending_snapshot->qgroup_reserved,
662 					false);
663 	if (ret)
664 		goto dec_and_free;
665 
666 	pending_snapshot->dentry = dentry;
667 	pending_snapshot->root = root;
668 	pending_snapshot->readonly = readonly;
669 	pending_snapshot->dir = dir;
670 	pending_snapshot->inherit = inherit;
671 
672 	trans = btrfs_start_transaction(root, 0);
673 	if (IS_ERR(trans)) {
674 		ret = PTR_ERR(trans);
675 		goto fail;
676 	}
677 
678 	spin_lock(&fs_info->trans_lock);
679 	list_add(&pending_snapshot->list,
680 		 &trans->transaction->pending_snapshots);
681 	spin_unlock(&fs_info->trans_lock);
682 	if (async_transid) {
683 		*async_transid = trans->transid;
684 		ret = btrfs_commit_transaction_async(trans, 1);
685 		if (ret)
686 			ret = btrfs_commit_transaction(trans);
687 	} else {
688 		ret = btrfs_commit_transaction(trans);
689 	}
690 	if (ret)
691 		goto fail;
692 
693 	ret = pending_snapshot->error;
694 	if (ret)
695 		goto fail;
696 
697 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
698 	if (ret)
699 		goto fail;
700 
701 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
702 	if (IS_ERR(inode)) {
703 		ret = PTR_ERR(inode);
704 		goto fail;
705 	}
706 
707 	d_instantiate(dentry, inode);
708 	ret = 0;
709 fail:
710 	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
711 dec_and_free:
712 	if (atomic_dec_and_test(&root->will_be_snapshotted))
713 		wake_up_var(&root->will_be_snapshotted);
714 free_pending:
715 	kfree(pending_snapshot->root_item);
716 	btrfs_free_path(pending_snapshot->path);
717 	kfree(pending_snapshot);
718 
719 	return ret;
720 }
721 
722 /*  copy of may_delete in fs/namei.c()
723  *	Check whether we can remove a link victim from directory dir, check
724  *  whether the type of victim is right.
725  *  1. We can't do it if dir is read-only (done in permission())
726  *  2. We should have write and exec permissions on dir
727  *  3. We can't remove anything from append-only dir
728  *  4. We can't do anything with immutable dir (done in permission())
729  *  5. If the sticky bit on dir is set we should either
730  *	a. be owner of dir, or
731  *	b. be owner of victim, or
732  *	c. have CAP_FOWNER capability
733  *  6. If the victim is append-only or immutable we can't do anything with
734  *     links pointing to it.
735  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
736  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
737  *  9. We can't remove a root or mountpoint.
738  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
739  *     nfs_async_unlink().
740  */
741 
742 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
743 {
744 	int error;
745 
746 	if (d_really_is_negative(victim))
747 		return -ENOENT;
748 
749 	BUG_ON(d_inode(victim->d_parent) != dir);
750 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
751 
752 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
753 	if (error)
754 		return error;
755 	if (IS_APPEND(dir))
756 		return -EPERM;
757 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
758 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
759 		return -EPERM;
760 	if (isdir) {
761 		if (!d_is_dir(victim))
762 			return -ENOTDIR;
763 		if (IS_ROOT(victim))
764 			return -EBUSY;
765 	} else if (d_is_dir(victim))
766 		return -EISDIR;
767 	if (IS_DEADDIR(dir))
768 		return -ENOENT;
769 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
770 		return -EBUSY;
771 	return 0;
772 }
773 
774 /* copy of may_create in fs/namei.c() */
775 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
776 {
777 	if (d_really_is_positive(child))
778 		return -EEXIST;
779 	if (IS_DEADDIR(dir))
780 		return -ENOENT;
781 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
782 }
783 
784 /*
785  * Create a new subvolume below @parent.  This is largely modeled after
786  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
787  * inside this filesystem so it's quite a bit simpler.
788  */
789 static noinline int btrfs_mksubvol(const struct path *parent,
790 				   const char *name, int namelen,
791 				   struct btrfs_root *snap_src,
792 				   u64 *async_transid, bool readonly,
793 				   struct btrfs_qgroup_inherit *inherit)
794 {
795 	struct inode *dir = d_inode(parent->dentry);
796 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
797 	struct dentry *dentry;
798 	int error;
799 
800 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
801 	if (error == -EINTR)
802 		return error;
803 
804 	dentry = lookup_one_len(name, parent->dentry, namelen);
805 	error = PTR_ERR(dentry);
806 	if (IS_ERR(dentry))
807 		goto out_unlock;
808 
809 	error = btrfs_may_create(dir, dentry);
810 	if (error)
811 		goto out_dput;
812 
813 	/*
814 	 * even if this name doesn't exist, we may get hash collisions.
815 	 * check for them now when we can safely fail
816 	 */
817 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
818 					       dir->i_ino, name,
819 					       namelen);
820 	if (error)
821 		goto out_dput;
822 
823 	down_read(&fs_info->subvol_sem);
824 
825 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
826 		goto out_up_read;
827 
828 	if (snap_src) {
829 		error = create_snapshot(snap_src, dir, dentry,
830 					async_transid, readonly, inherit);
831 	} else {
832 		error = create_subvol(dir, dentry, name, namelen,
833 				      async_transid, inherit);
834 	}
835 	if (!error)
836 		fsnotify_mkdir(dir, dentry);
837 out_up_read:
838 	up_read(&fs_info->subvol_sem);
839 out_dput:
840 	dput(dentry);
841 out_unlock:
842 	inode_unlock(dir);
843 	return error;
844 }
845 
846 /*
847  * When we're defragging a range, we don't want to kick it off again
848  * if it is really just waiting for delalloc to send it down.
849  * If we find a nice big extent or delalloc range for the bytes in the
850  * file you want to defrag, we return 0 to let you know to skip this
851  * part of the file
852  */
853 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
854 {
855 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
856 	struct extent_map *em = NULL;
857 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
858 	u64 end;
859 
860 	read_lock(&em_tree->lock);
861 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
862 	read_unlock(&em_tree->lock);
863 
864 	if (em) {
865 		end = extent_map_end(em);
866 		free_extent_map(em);
867 		if (end - offset > thresh)
868 			return 0;
869 	}
870 	/* if we already have a nice delalloc here, just stop */
871 	thresh /= 2;
872 	end = count_range_bits(io_tree, &offset, offset + thresh,
873 			       thresh, EXTENT_DELALLOC, 1);
874 	if (end >= thresh)
875 		return 0;
876 	return 1;
877 }
878 
879 /*
880  * helper function to walk through a file and find extents
881  * newer than a specific transid, and smaller than thresh.
882  *
883  * This is used by the defragging code to find new and small
884  * extents
885  */
886 static int find_new_extents(struct btrfs_root *root,
887 			    struct inode *inode, u64 newer_than,
888 			    u64 *off, u32 thresh)
889 {
890 	struct btrfs_path *path;
891 	struct btrfs_key min_key;
892 	struct extent_buffer *leaf;
893 	struct btrfs_file_extent_item *extent;
894 	int type;
895 	int ret;
896 	u64 ino = btrfs_ino(BTRFS_I(inode));
897 
898 	path = btrfs_alloc_path();
899 	if (!path)
900 		return -ENOMEM;
901 
902 	min_key.objectid = ino;
903 	min_key.type = BTRFS_EXTENT_DATA_KEY;
904 	min_key.offset = *off;
905 
906 	while (1) {
907 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
908 		if (ret != 0)
909 			goto none;
910 process_slot:
911 		if (min_key.objectid != ino)
912 			goto none;
913 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
914 			goto none;
915 
916 		leaf = path->nodes[0];
917 		extent = btrfs_item_ptr(leaf, path->slots[0],
918 					struct btrfs_file_extent_item);
919 
920 		type = btrfs_file_extent_type(leaf, extent);
921 		if (type == BTRFS_FILE_EXTENT_REG &&
922 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
923 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
924 			*off = min_key.offset;
925 			btrfs_free_path(path);
926 			return 0;
927 		}
928 
929 		path->slots[0]++;
930 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
931 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
932 			goto process_slot;
933 		}
934 
935 		if (min_key.offset == (u64)-1)
936 			goto none;
937 
938 		min_key.offset++;
939 		btrfs_release_path(path);
940 	}
941 none:
942 	btrfs_free_path(path);
943 	return -ENOENT;
944 }
945 
946 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
947 {
948 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
949 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
950 	struct extent_map *em;
951 	u64 len = PAGE_SIZE;
952 
953 	/*
954 	 * hopefully we have this extent in the tree already, try without
955 	 * the full extent lock
956 	 */
957 	read_lock(&em_tree->lock);
958 	em = lookup_extent_mapping(em_tree, start, len);
959 	read_unlock(&em_tree->lock);
960 
961 	if (!em) {
962 		struct extent_state *cached = NULL;
963 		u64 end = start + len - 1;
964 
965 		/* get the big lock and read metadata off disk */
966 		lock_extent_bits(io_tree, start, end, &cached);
967 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
968 		unlock_extent_cached(io_tree, start, end, &cached);
969 
970 		if (IS_ERR(em))
971 			return NULL;
972 	}
973 
974 	return em;
975 }
976 
977 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
978 {
979 	struct extent_map *next;
980 	bool ret = true;
981 
982 	/* this is the last extent */
983 	if (em->start + em->len >= i_size_read(inode))
984 		return false;
985 
986 	next = defrag_lookup_extent(inode, em->start + em->len);
987 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
988 		ret = false;
989 	else if ((em->block_start + em->block_len == next->block_start) &&
990 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
991 		ret = false;
992 
993 	free_extent_map(next);
994 	return ret;
995 }
996 
997 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
998 			       u64 *last_len, u64 *skip, u64 *defrag_end,
999 			       int compress)
1000 {
1001 	struct extent_map *em;
1002 	int ret = 1;
1003 	bool next_mergeable = true;
1004 	bool prev_mergeable = true;
1005 
1006 	/*
1007 	 * make sure that once we start defragging an extent, we keep on
1008 	 * defragging it
1009 	 */
1010 	if (start < *defrag_end)
1011 		return 1;
1012 
1013 	*skip = 0;
1014 
1015 	em = defrag_lookup_extent(inode, start);
1016 	if (!em)
1017 		return 0;
1018 
1019 	/* this will cover holes, and inline extents */
1020 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1021 		ret = 0;
1022 		goto out;
1023 	}
1024 
1025 	if (!*defrag_end)
1026 		prev_mergeable = false;
1027 
1028 	next_mergeable = defrag_check_next_extent(inode, em);
1029 	/*
1030 	 * we hit a real extent, if it is big or the next extent is not a
1031 	 * real extent, don't bother defragging it
1032 	 */
1033 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1034 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1035 		ret = 0;
1036 out:
1037 	/*
1038 	 * last_len ends up being a counter of how many bytes we've defragged.
1039 	 * every time we choose not to defrag an extent, we reset *last_len
1040 	 * so that the next tiny extent will force a defrag.
1041 	 *
1042 	 * The end result of this is that tiny extents before a single big
1043 	 * extent will force at least part of that big extent to be defragged.
1044 	 */
1045 	if (ret) {
1046 		*defrag_end = extent_map_end(em);
1047 	} else {
1048 		*last_len = 0;
1049 		*skip = extent_map_end(em);
1050 		*defrag_end = 0;
1051 	}
1052 
1053 	free_extent_map(em);
1054 	return ret;
1055 }
1056 
1057 /*
1058  * it doesn't do much good to defrag one or two pages
1059  * at a time.  This pulls in a nice chunk of pages
1060  * to COW and defrag.
1061  *
1062  * It also makes sure the delalloc code has enough
1063  * dirty data to avoid making new small extents as part
1064  * of the defrag
1065  *
1066  * It's a good idea to start RA on this range
1067  * before calling this.
1068  */
1069 static int cluster_pages_for_defrag(struct inode *inode,
1070 				    struct page **pages,
1071 				    unsigned long start_index,
1072 				    unsigned long num_pages)
1073 {
1074 	unsigned long file_end;
1075 	u64 isize = i_size_read(inode);
1076 	u64 page_start;
1077 	u64 page_end;
1078 	u64 page_cnt;
1079 	int ret;
1080 	int i;
1081 	int i_done;
1082 	struct btrfs_ordered_extent *ordered;
1083 	struct extent_state *cached_state = NULL;
1084 	struct extent_io_tree *tree;
1085 	struct extent_changeset *data_reserved = NULL;
1086 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1087 
1088 	file_end = (isize - 1) >> PAGE_SHIFT;
1089 	if (!isize || start_index > file_end)
1090 		return 0;
1091 
1092 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1093 
1094 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1095 			start_index << PAGE_SHIFT,
1096 			page_cnt << PAGE_SHIFT);
1097 	if (ret)
1098 		return ret;
1099 	i_done = 0;
1100 	tree = &BTRFS_I(inode)->io_tree;
1101 
1102 	/* step one, lock all the pages */
1103 	for (i = 0; i < page_cnt; i++) {
1104 		struct page *page;
1105 again:
1106 		page = find_or_create_page(inode->i_mapping,
1107 					   start_index + i, mask);
1108 		if (!page)
1109 			break;
1110 
1111 		page_start = page_offset(page);
1112 		page_end = page_start + PAGE_SIZE - 1;
1113 		while (1) {
1114 			lock_extent_bits(tree, page_start, page_end,
1115 					 &cached_state);
1116 			ordered = btrfs_lookup_ordered_extent(inode,
1117 							      page_start);
1118 			unlock_extent_cached(tree, page_start, page_end,
1119 					     &cached_state);
1120 			if (!ordered)
1121 				break;
1122 
1123 			unlock_page(page);
1124 			btrfs_start_ordered_extent(inode, ordered, 1);
1125 			btrfs_put_ordered_extent(ordered);
1126 			lock_page(page);
1127 			/*
1128 			 * we unlocked the page above, so we need check if
1129 			 * it was released or not.
1130 			 */
1131 			if (page->mapping != inode->i_mapping) {
1132 				unlock_page(page);
1133 				put_page(page);
1134 				goto again;
1135 			}
1136 		}
1137 
1138 		if (!PageUptodate(page)) {
1139 			btrfs_readpage(NULL, page);
1140 			lock_page(page);
1141 			if (!PageUptodate(page)) {
1142 				unlock_page(page);
1143 				put_page(page);
1144 				ret = -EIO;
1145 				break;
1146 			}
1147 		}
1148 
1149 		if (page->mapping != inode->i_mapping) {
1150 			unlock_page(page);
1151 			put_page(page);
1152 			goto again;
1153 		}
1154 
1155 		pages[i] = page;
1156 		i_done++;
1157 	}
1158 	if (!i_done || ret)
1159 		goto out;
1160 
1161 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1162 		goto out;
1163 
1164 	/*
1165 	 * so now we have a nice long stream of locked
1166 	 * and up to date pages, lets wait on them
1167 	 */
1168 	for (i = 0; i < i_done; i++)
1169 		wait_on_page_writeback(pages[i]);
1170 
1171 	page_start = page_offset(pages[0]);
1172 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1173 
1174 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1175 			 page_start, page_end - 1, &cached_state);
1176 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1177 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1178 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1179 			  &cached_state);
1180 
1181 	if (i_done != page_cnt) {
1182 		spin_lock(&BTRFS_I(inode)->lock);
1183 		BTRFS_I(inode)->outstanding_extents++;
1184 		spin_unlock(&BTRFS_I(inode)->lock);
1185 		btrfs_delalloc_release_space(inode, data_reserved,
1186 				start_index << PAGE_SHIFT,
1187 				(page_cnt - i_done) << PAGE_SHIFT, true);
1188 	}
1189 
1190 
1191 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1192 			  &cached_state);
1193 
1194 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1195 			     page_start, page_end - 1, &cached_state);
1196 
1197 	for (i = 0; i < i_done; i++) {
1198 		clear_page_dirty_for_io(pages[i]);
1199 		ClearPageChecked(pages[i]);
1200 		set_page_extent_mapped(pages[i]);
1201 		set_page_dirty(pages[i]);
1202 		unlock_page(pages[i]);
1203 		put_page(pages[i]);
1204 	}
1205 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1206 				       false);
1207 	extent_changeset_free(data_reserved);
1208 	return i_done;
1209 out:
1210 	for (i = 0; i < i_done; i++) {
1211 		unlock_page(pages[i]);
1212 		put_page(pages[i]);
1213 	}
1214 	btrfs_delalloc_release_space(inode, data_reserved,
1215 			start_index << PAGE_SHIFT,
1216 			page_cnt << PAGE_SHIFT, true);
1217 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1218 				       true);
1219 	extent_changeset_free(data_reserved);
1220 	return ret;
1221 
1222 }
1223 
1224 int btrfs_defrag_file(struct inode *inode, struct file *file,
1225 		      struct btrfs_ioctl_defrag_range_args *range,
1226 		      u64 newer_than, unsigned long max_to_defrag)
1227 {
1228 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1229 	struct btrfs_root *root = BTRFS_I(inode)->root;
1230 	struct file_ra_state *ra = NULL;
1231 	unsigned long last_index;
1232 	u64 isize = i_size_read(inode);
1233 	u64 last_len = 0;
1234 	u64 skip = 0;
1235 	u64 defrag_end = 0;
1236 	u64 newer_off = range->start;
1237 	unsigned long i;
1238 	unsigned long ra_index = 0;
1239 	int ret;
1240 	int defrag_count = 0;
1241 	int compress_type = BTRFS_COMPRESS_ZLIB;
1242 	u32 extent_thresh = range->extent_thresh;
1243 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1244 	unsigned long cluster = max_cluster;
1245 	u64 new_align = ~((u64)SZ_128K - 1);
1246 	struct page **pages = NULL;
1247 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1248 
1249 	if (isize == 0)
1250 		return 0;
1251 
1252 	if (range->start >= isize)
1253 		return -EINVAL;
1254 
1255 	if (do_compress) {
1256 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1257 			return -EINVAL;
1258 		if (range->compress_type)
1259 			compress_type = range->compress_type;
1260 	}
1261 
1262 	if (extent_thresh == 0)
1263 		extent_thresh = SZ_256K;
1264 
1265 	/*
1266 	 * If we were not given a file, allocate a readahead context. As
1267 	 * readahead is just an optimization, defrag will work without it so
1268 	 * we don't error out.
1269 	 */
1270 	if (!file) {
1271 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1272 		if (ra)
1273 			file_ra_state_init(ra, inode->i_mapping);
1274 	} else {
1275 		ra = &file->f_ra;
1276 	}
1277 
1278 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1279 	if (!pages) {
1280 		ret = -ENOMEM;
1281 		goto out_ra;
1282 	}
1283 
1284 	/* find the last page to defrag */
1285 	if (range->start + range->len > range->start) {
1286 		last_index = min_t(u64, isize - 1,
1287 			 range->start + range->len - 1) >> PAGE_SHIFT;
1288 	} else {
1289 		last_index = (isize - 1) >> PAGE_SHIFT;
1290 	}
1291 
1292 	if (newer_than) {
1293 		ret = find_new_extents(root, inode, newer_than,
1294 				       &newer_off, SZ_64K);
1295 		if (!ret) {
1296 			range->start = newer_off;
1297 			/*
1298 			 * we always align our defrag to help keep
1299 			 * the extents in the file evenly spaced
1300 			 */
1301 			i = (newer_off & new_align) >> PAGE_SHIFT;
1302 		} else
1303 			goto out_ra;
1304 	} else {
1305 		i = range->start >> PAGE_SHIFT;
1306 	}
1307 	if (!max_to_defrag)
1308 		max_to_defrag = last_index - i + 1;
1309 
1310 	/*
1311 	 * make writeback starts from i, so the defrag range can be
1312 	 * written sequentially.
1313 	 */
1314 	if (i < inode->i_mapping->writeback_index)
1315 		inode->i_mapping->writeback_index = i;
1316 
1317 	while (i <= last_index && defrag_count < max_to_defrag &&
1318 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1319 		/*
1320 		 * make sure we stop running if someone unmounts
1321 		 * the FS
1322 		 */
1323 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1324 			break;
1325 
1326 		if (btrfs_defrag_cancelled(fs_info)) {
1327 			btrfs_debug(fs_info, "defrag_file cancelled");
1328 			ret = -EAGAIN;
1329 			break;
1330 		}
1331 
1332 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1333 					 extent_thresh, &last_len, &skip,
1334 					 &defrag_end, do_compress)){
1335 			unsigned long next;
1336 			/*
1337 			 * the should_defrag function tells us how much to skip
1338 			 * bump our counter by the suggested amount
1339 			 */
1340 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1341 			i = max(i + 1, next);
1342 			continue;
1343 		}
1344 
1345 		if (!newer_than) {
1346 			cluster = (PAGE_ALIGN(defrag_end) >>
1347 				   PAGE_SHIFT) - i;
1348 			cluster = min(cluster, max_cluster);
1349 		} else {
1350 			cluster = max_cluster;
1351 		}
1352 
1353 		if (i + cluster > ra_index) {
1354 			ra_index = max(i, ra_index);
1355 			if (ra)
1356 				page_cache_sync_readahead(inode->i_mapping, ra,
1357 						file, ra_index, cluster);
1358 			ra_index += cluster;
1359 		}
1360 
1361 		inode_lock(inode);
1362 		if (do_compress)
1363 			BTRFS_I(inode)->defrag_compress = compress_type;
1364 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1365 		if (ret < 0) {
1366 			inode_unlock(inode);
1367 			goto out_ra;
1368 		}
1369 
1370 		defrag_count += ret;
1371 		balance_dirty_pages_ratelimited(inode->i_mapping);
1372 		inode_unlock(inode);
1373 
1374 		if (newer_than) {
1375 			if (newer_off == (u64)-1)
1376 				break;
1377 
1378 			if (ret > 0)
1379 				i += ret;
1380 
1381 			newer_off = max(newer_off + 1,
1382 					(u64)i << PAGE_SHIFT);
1383 
1384 			ret = find_new_extents(root, inode, newer_than,
1385 					       &newer_off, SZ_64K);
1386 			if (!ret) {
1387 				range->start = newer_off;
1388 				i = (newer_off & new_align) >> PAGE_SHIFT;
1389 			} else {
1390 				break;
1391 			}
1392 		} else {
1393 			if (ret > 0) {
1394 				i += ret;
1395 				last_len += ret << PAGE_SHIFT;
1396 			} else {
1397 				i++;
1398 				last_len = 0;
1399 			}
1400 		}
1401 	}
1402 
1403 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1404 		filemap_flush(inode->i_mapping);
1405 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1406 			     &BTRFS_I(inode)->runtime_flags))
1407 			filemap_flush(inode->i_mapping);
1408 	}
1409 
1410 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1411 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1412 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1413 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1414 	}
1415 
1416 	ret = defrag_count;
1417 
1418 out_ra:
1419 	if (do_compress) {
1420 		inode_lock(inode);
1421 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1422 		inode_unlock(inode);
1423 	}
1424 	if (!file)
1425 		kfree(ra);
1426 	kfree(pages);
1427 	return ret;
1428 }
1429 
1430 static noinline int btrfs_ioctl_resize(struct file *file,
1431 					void __user *arg)
1432 {
1433 	struct inode *inode = file_inode(file);
1434 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1435 	u64 new_size;
1436 	u64 old_size;
1437 	u64 devid = 1;
1438 	struct btrfs_root *root = BTRFS_I(inode)->root;
1439 	struct btrfs_ioctl_vol_args *vol_args;
1440 	struct btrfs_trans_handle *trans;
1441 	struct btrfs_device *device = NULL;
1442 	char *sizestr;
1443 	char *retptr;
1444 	char *devstr = NULL;
1445 	int ret = 0;
1446 	int mod = 0;
1447 
1448 	if (!capable(CAP_SYS_ADMIN))
1449 		return -EPERM;
1450 
1451 	ret = mnt_want_write_file(file);
1452 	if (ret)
1453 		return ret;
1454 
1455 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1456 		mnt_drop_write_file(file);
1457 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1458 	}
1459 
1460 	mutex_lock(&fs_info->volume_mutex);
1461 	vol_args = memdup_user(arg, sizeof(*vol_args));
1462 	if (IS_ERR(vol_args)) {
1463 		ret = PTR_ERR(vol_args);
1464 		goto out;
1465 	}
1466 
1467 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1468 
1469 	sizestr = vol_args->name;
1470 	devstr = strchr(sizestr, ':');
1471 	if (devstr) {
1472 		sizestr = devstr + 1;
1473 		*devstr = '\0';
1474 		devstr = vol_args->name;
1475 		ret = kstrtoull(devstr, 10, &devid);
1476 		if (ret)
1477 			goto out_free;
1478 		if (!devid) {
1479 			ret = -EINVAL;
1480 			goto out_free;
1481 		}
1482 		btrfs_info(fs_info, "resizing devid %llu", devid);
1483 	}
1484 
1485 	device = btrfs_find_device(fs_info, devid, NULL, NULL);
1486 	if (!device) {
1487 		btrfs_info(fs_info, "resizer unable to find device %llu",
1488 			   devid);
1489 		ret = -ENODEV;
1490 		goto out_free;
1491 	}
1492 
1493 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1494 		btrfs_info(fs_info,
1495 			   "resizer unable to apply on readonly device %llu",
1496 		       devid);
1497 		ret = -EPERM;
1498 		goto out_free;
1499 	}
1500 
1501 	if (!strcmp(sizestr, "max"))
1502 		new_size = device->bdev->bd_inode->i_size;
1503 	else {
1504 		if (sizestr[0] == '-') {
1505 			mod = -1;
1506 			sizestr++;
1507 		} else if (sizestr[0] == '+') {
1508 			mod = 1;
1509 			sizestr++;
1510 		}
1511 		new_size = memparse(sizestr, &retptr);
1512 		if (*retptr != '\0' || new_size == 0) {
1513 			ret = -EINVAL;
1514 			goto out_free;
1515 		}
1516 	}
1517 
1518 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1519 		ret = -EPERM;
1520 		goto out_free;
1521 	}
1522 
1523 	old_size = btrfs_device_get_total_bytes(device);
1524 
1525 	if (mod < 0) {
1526 		if (new_size > old_size) {
1527 			ret = -EINVAL;
1528 			goto out_free;
1529 		}
1530 		new_size = old_size - new_size;
1531 	} else if (mod > 0) {
1532 		if (new_size > ULLONG_MAX - old_size) {
1533 			ret = -ERANGE;
1534 			goto out_free;
1535 		}
1536 		new_size = old_size + new_size;
1537 	}
1538 
1539 	if (new_size < SZ_256M) {
1540 		ret = -EINVAL;
1541 		goto out_free;
1542 	}
1543 	if (new_size > device->bdev->bd_inode->i_size) {
1544 		ret = -EFBIG;
1545 		goto out_free;
1546 	}
1547 
1548 	new_size = round_down(new_size, fs_info->sectorsize);
1549 
1550 	btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1551 			  rcu_str_deref(device->name), new_size);
1552 
1553 	if (new_size > old_size) {
1554 		trans = btrfs_start_transaction(root, 0);
1555 		if (IS_ERR(trans)) {
1556 			ret = PTR_ERR(trans);
1557 			goto out_free;
1558 		}
1559 		ret = btrfs_grow_device(trans, device, new_size);
1560 		btrfs_commit_transaction(trans);
1561 	} else if (new_size < old_size) {
1562 		ret = btrfs_shrink_device(device, new_size);
1563 	} /* equal, nothing need to do */
1564 
1565 out_free:
1566 	kfree(vol_args);
1567 out:
1568 	mutex_unlock(&fs_info->volume_mutex);
1569 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1570 	mnt_drop_write_file(file);
1571 	return ret;
1572 }
1573 
1574 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1575 				const char *name, unsigned long fd, int subvol,
1576 				u64 *transid, bool readonly,
1577 				struct btrfs_qgroup_inherit *inherit)
1578 {
1579 	int namelen;
1580 	int ret = 0;
1581 
1582 	if (!S_ISDIR(file_inode(file)->i_mode))
1583 		return -ENOTDIR;
1584 
1585 	ret = mnt_want_write_file(file);
1586 	if (ret)
1587 		goto out;
1588 
1589 	namelen = strlen(name);
1590 	if (strchr(name, '/')) {
1591 		ret = -EINVAL;
1592 		goto out_drop_write;
1593 	}
1594 
1595 	if (name[0] == '.' &&
1596 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1597 		ret = -EEXIST;
1598 		goto out_drop_write;
1599 	}
1600 
1601 	if (subvol) {
1602 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1603 				     NULL, transid, readonly, inherit);
1604 	} else {
1605 		struct fd src = fdget(fd);
1606 		struct inode *src_inode;
1607 		if (!src.file) {
1608 			ret = -EINVAL;
1609 			goto out_drop_write;
1610 		}
1611 
1612 		src_inode = file_inode(src.file);
1613 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1614 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1615 				   "Snapshot src from another FS");
1616 			ret = -EXDEV;
1617 		} else if (!inode_owner_or_capable(src_inode)) {
1618 			/*
1619 			 * Subvolume creation is not restricted, but snapshots
1620 			 * are limited to own subvolumes only
1621 			 */
1622 			ret = -EPERM;
1623 		} else {
1624 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1625 					     BTRFS_I(src_inode)->root,
1626 					     transid, readonly, inherit);
1627 		}
1628 		fdput(src);
1629 	}
1630 out_drop_write:
1631 	mnt_drop_write_file(file);
1632 out:
1633 	return ret;
1634 }
1635 
1636 static noinline int btrfs_ioctl_snap_create(struct file *file,
1637 					    void __user *arg, int subvol)
1638 {
1639 	struct btrfs_ioctl_vol_args *vol_args;
1640 	int ret;
1641 
1642 	if (!S_ISDIR(file_inode(file)->i_mode))
1643 		return -ENOTDIR;
1644 
1645 	vol_args = memdup_user(arg, sizeof(*vol_args));
1646 	if (IS_ERR(vol_args))
1647 		return PTR_ERR(vol_args);
1648 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1649 
1650 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1651 					      vol_args->fd, subvol,
1652 					      NULL, false, NULL);
1653 
1654 	kfree(vol_args);
1655 	return ret;
1656 }
1657 
1658 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1659 					       void __user *arg, int subvol)
1660 {
1661 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1662 	int ret;
1663 	u64 transid = 0;
1664 	u64 *ptr = NULL;
1665 	bool readonly = false;
1666 	struct btrfs_qgroup_inherit *inherit = NULL;
1667 
1668 	if (!S_ISDIR(file_inode(file)->i_mode))
1669 		return -ENOTDIR;
1670 
1671 	vol_args = memdup_user(arg, sizeof(*vol_args));
1672 	if (IS_ERR(vol_args))
1673 		return PTR_ERR(vol_args);
1674 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1675 
1676 	if (vol_args->flags &
1677 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1678 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1679 		ret = -EOPNOTSUPP;
1680 		goto free_args;
1681 	}
1682 
1683 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1684 		ptr = &transid;
1685 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1686 		readonly = true;
1687 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1688 		if (vol_args->size > PAGE_SIZE) {
1689 			ret = -EINVAL;
1690 			goto free_args;
1691 		}
1692 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1693 		if (IS_ERR(inherit)) {
1694 			ret = PTR_ERR(inherit);
1695 			goto free_args;
1696 		}
1697 	}
1698 
1699 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1700 					      vol_args->fd, subvol, ptr,
1701 					      readonly, inherit);
1702 	if (ret)
1703 		goto free_inherit;
1704 
1705 	if (ptr && copy_to_user(arg +
1706 				offsetof(struct btrfs_ioctl_vol_args_v2,
1707 					transid),
1708 				ptr, sizeof(*ptr)))
1709 		ret = -EFAULT;
1710 
1711 free_inherit:
1712 	kfree(inherit);
1713 free_args:
1714 	kfree(vol_args);
1715 	return ret;
1716 }
1717 
1718 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1719 						void __user *arg)
1720 {
1721 	struct inode *inode = file_inode(file);
1722 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1723 	struct btrfs_root *root = BTRFS_I(inode)->root;
1724 	int ret = 0;
1725 	u64 flags = 0;
1726 
1727 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1728 		return -EINVAL;
1729 
1730 	down_read(&fs_info->subvol_sem);
1731 	if (btrfs_root_readonly(root))
1732 		flags |= BTRFS_SUBVOL_RDONLY;
1733 	up_read(&fs_info->subvol_sem);
1734 
1735 	if (copy_to_user(arg, &flags, sizeof(flags)))
1736 		ret = -EFAULT;
1737 
1738 	return ret;
1739 }
1740 
1741 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1742 					      void __user *arg)
1743 {
1744 	struct inode *inode = file_inode(file);
1745 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1746 	struct btrfs_root *root = BTRFS_I(inode)->root;
1747 	struct btrfs_trans_handle *trans;
1748 	u64 root_flags;
1749 	u64 flags;
1750 	int ret = 0;
1751 
1752 	if (!inode_owner_or_capable(inode))
1753 		return -EPERM;
1754 
1755 	ret = mnt_want_write_file(file);
1756 	if (ret)
1757 		goto out;
1758 
1759 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1760 		ret = -EINVAL;
1761 		goto out_drop_write;
1762 	}
1763 
1764 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1765 		ret = -EFAULT;
1766 		goto out_drop_write;
1767 	}
1768 
1769 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1770 		ret = -EINVAL;
1771 		goto out_drop_write;
1772 	}
1773 
1774 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1775 		ret = -EOPNOTSUPP;
1776 		goto out_drop_write;
1777 	}
1778 
1779 	down_write(&fs_info->subvol_sem);
1780 
1781 	/* nothing to do */
1782 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1783 		goto out_drop_sem;
1784 
1785 	root_flags = btrfs_root_flags(&root->root_item);
1786 	if (flags & BTRFS_SUBVOL_RDONLY) {
1787 		btrfs_set_root_flags(&root->root_item,
1788 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1789 	} else {
1790 		/*
1791 		 * Block RO -> RW transition if this subvolume is involved in
1792 		 * send
1793 		 */
1794 		spin_lock(&root->root_item_lock);
1795 		if (root->send_in_progress == 0) {
1796 			btrfs_set_root_flags(&root->root_item,
1797 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1798 			spin_unlock(&root->root_item_lock);
1799 		} else {
1800 			spin_unlock(&root->root_item_lock);
1801 			btrfs_warn(fs_info,
1802 				   "Attempt to set subvolume %llu read-write during send",
1803 				   root->root_key.objectid);
1804 			ret = -EPERM;
1805 			goto out_drop_sem;
1806 		}
1807 	}
1808 
1809 	trans = btrfs_start_transaction(root, 1);
1810 	if (IS_ERR(trans)) {
1811 		ret = PTR_ERR(trans);
1812 		goto out_reset;
1813 	}
1814 
1815 	ret = btrfs_update_root(trans, fs_info->tree_root,
1816 				&root->root_key, &root->root_item);
1817 	if (ret < 0) {
1818 		btrfs_end_transaction(trans);
1819 		goto out_reset;
1820 	}
1821 
1822 	ret = btrfs_commit_transaction(trans);
1823 
1824 out_reset:
1825 	if (ret)
1826 		btrfs_set_root_flags(&root->root_item, root_flags);
1827 out_drop_sem:
1828 	up_write(&fs_info->subvol_sem);
1829 out_drop_write:
1830 	mnt_drop_write_file(file);
1831 out:
1832 	return ret;
1833 }
1834 
1835 /*
1836  * helper to check if the subvolume references other subvolumes
1837  */
1838 static noinline int may_destroy_subvol(struct btrfs_root *root)
1839 {
1840 	struct btrfs_fs_info *fs_info = root->fs_info;
1841 	struct btrfs_path *path;
1842 	struct btrfs_dir_item *di;
1843 	struct btrfs_key key;
1844 	u64 dir_id;
1845 	int ret;
1846 
1847 	path = btrfs_alloc_path();
1848 	if (!path)
1849 		return -ENOMEM;
1850 
1851 	/* Make sure this root isn't set as the default subvol */
1852 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1853 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1854 				   dir_id, "default", 7, 0);
1855 	if (di && !IS_ERR(di)) {
1856 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1857 		if (key.objectid == root->root_key.objectid) {
1858 			ret = -EPERM;
1859 			btrfs_err(fs_info,
1860 				  "deleting default subvolume %llu is not allowed",
1861 				  key.objectid);
1862 			goto out;
1863 		}
1864 		btrfs_release_path(path);
1865 	}
1866 
1867 	key.objectid = root->root_key.objectid;
1868 	key.type = BTRFS_ROOT_REF_KEY;
1869 	key.offset = (u64)-1;
1870 
1871 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1872 	if (ret < 0)
1873 		goto out;
1874 	BUG_ON(ret == 0);
1875 
1876 	ret = 0;
1877 	if (path->slots[0] > 0) {
1878 		path->slots[0]--;
1879 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1880 		if (key.objectid == root->root_key.objectid &&
1881 		    key.type == BTRFS_ROOT_REF_KEY)
1882 			ret = -ENOTEMPTY;
1883 	}
1884 out:
1885 	btrfs_free_path(path);
1886 	return ret;
1887 }
1888 
1889 static noinline int key_in_sk(struct btrfs_key *key,
1890 			      struct btrfs_ioctl_search_key *sk)
1891 {
1892 	struct btrfs_key test;
1893 	int ret;
1894 
1895 	test.objectid = sk->min_objectid;
1896 	test.type = sk->min_type;
1897 	test.offset = sk->min_offset;
1898 
1899 	ret = btrfs_comp_cpu_keys(key, &test);
1900 	if (ret < 0)
1901 		return 0;
1902 
1903 	test.objectid = sk->max_objectid;
1904 	test.type = sk->max_type;
1905 	test.offset = sk->max_offset;
1906 
1907 	ret = btrfs_comp_cpu_keys(key, &test);
1908 	if (ret > 0)
1909 		return 0;
1910 	return 1;
1911 }
1912 
1913 static noinline int copy_to_sk(struct btrfs_path *path,
1914 			       struct btrfs_key *key,
1915 			       struct btrfs_ioctl_search_key *sk,
1916 			       size_t *buf_size,
1917 			       char __user *ubuf,
1918 			       unsigned long *sk_offset,
1919 			       int *num_found)
1920 {
1921 	u64 found_transid;
1922 	struct extent_buffer *leaf;
1923 	struct btrfs_ioctl_search_header sh;
1924 	struct btrfs_key test;
1925 	unsigned long item_off;
1926 	unsigned long item_len;
1927 	int nritems;
1928 	int i;
1929 	int slot;
1930 	int ret = 0;
1931 
1932 	leaf = path->nodes[0];
1933 	slot = path->slots[0];
1934 	nritems = btrfs_header_nritems(leaf);
1935 
1936 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1937 		i = nritems;
1938 		goto advance_key;
1939 	}
1940 	found_transid = btrfs_header_generation(leaf);
1941 
1942 	for (i = slot; i < nritems; i++) {
1943 		item_off = btrfs_item_ptr_offset(leaf, i);
1944 		item_len = btrfs_item_size_nr(leaf, i);
1945 
1946 		btrfs_item_key_to_cpu(leaf, key, i);
1947 		if (!key_in_sk(key, sk))
1948 			continue;
1949 
1950 		if (sizeof(sh) + item_len > *buf_size) {
1951 			if (*num_found) {
1952 				ret = 1;
1953 				goto out;
1954 			}
1955 
1956 			/*
1957 			 * return one empty item back for v1, which does not
1958 			 * handle -EOVERFLOW
1959 			 */
1960 
1961 			*buf_size = sizeof(sh) + item_len;
1962 			item_len = 0;
1963 			ret = -EOVERFLOW;
1964 		}
1965 
1966 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1967 			ret = 1;
1968 			goto out;
1969 		}
1970 
1971 		sh.objectid = key->objectid;
1972 		sh.offset = key->offset;
1973 		sh.type = key->type;
1974 		sh.len = item_len;
1975 		sh.transid = found_transid;
1976 
1977 		/* copy search result header */
1978 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1979 			ret = -EFAULT;
1980 			goto out;
1981 		}
1982 
1983 		*sk_offset += sizeof(sh);
1984 
1985 		if (item_len) {
1986 			char __user *up = ubuf + *sk_offset;
1987 			/* copy the item */
1988 			if (read_extent_buffer_to_user(leaf, up,
1989 						       item_off, item_len)) {
1990 				ret = -EFAULT;
1991 				goto out;
1992 			}
1993 
1994 			*sk_offset += item_len;
1995 		}
1996 		(*num_found)++;
1997 
1998 		if (ret) /* -EOVERFLOW from above */
1999 			goto out;
2000 
2001 		if (*num_found >= sk->nr_items) {
2002 			ret = 1;
2003 			goto out;
2004 		}
2005 	}
2006 advance_key:
2007 	ret = 0;
2008 	test.objectid = sk->max_objectid;
2009 	test.type = sk->max_type;
2010 	test.offset = sk->max_offset;
2011 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2012 		ret = 1;
2013 	else if (key->offset < (u64)-1)
2014 		key->offset++;
2015 	else if (key->type < (u8)-1) {
2016 		key->offset = 0;
2017 		key->type++;
2018 	} else if (key->objectid < (u64)-1) {
2019 		key->offset = 0;
2020 		key->type = 0;
2021 		key->objectid++;
2022 	} else
2023 		ret = 1;
2024 out:
2025 	/*
2026 	 *  0: all items from this leaf copied, continue with next
2027 	 *  1: * more items can be copied, but unused buffer is too small
2028 	 *     * all items were found
2029 	 *     Either way, it will stops the loop which iterates to the next
2030 	 *     leaf
2031 	 *  -EOVERFLOW: item was to large for buffer
2032 	 *  -EFAULT: could not copy extent buffer back to userspace
2033 	 */
2034 	return ret;
2035 }
2036 
2037 static noinline int search_ioctl(struct inode *inode,
2038 				 struct btrfs_ioctl_search_key *sk,
2039 				 size_t *buf_size,
2040 				 char __user *ubuf)
2041 {
2042 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2043 	struct btrfs_root *root;
2044 	struct btrfs_key key;
2045 	struct btrfs_path *path;
2046 	int ret;
2047 	int num_found = 0;
2048 	unsigned long sk_offset = 0;
2049 
2050 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2051 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2052 		return -EOVERFLOW;
2053 	}
2054 
2055 	path = btrfs_alloc_path();
2056 	if (!path)
2057 		return -ENOMEM;
2058 
2059 	if (sk->tree_id == 0) {
2060 		/* search the root of the inode that was passed */
2061 		root = BTRFS_I(inode)->root;
2062 	} else {
2063 		key.objectid = sk->tree_id;
2064 		key.type = BTRFS_ROOT_ITEM_KEY;
2065 		key.offset = (u64)-1;
2066 		root = btrfs_read_fs_root_no_name(info, &key);
2067 		if (IS_ERR(root)) {
2068 			btrfs_free_path(path);
2069 			return -ENOENT;
2070 		}
2071 	}
2072 
2073 	key.objectid = sk->min_objectid;
2074 	key.type = sk->min_type;
2075 	key.offset = sk->min_offset;
2076 
2077 	while (1) {
2078 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2079 		if (ret != 0) {
2080 			if (ret > 0)
2081 				ret = 0;
2082 			goto err;
2083 		}
2084 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2085 				 &sk_offset, &num_found);
2086 		btrfs_release_path(path);
2087 		if (ret)
2088 			break;
2089 
2090 	}
2091 	if (ret > 0)
2092 		ret = 0;
2093 err:
2094 	sk->nr_items = num_found;
2095 	btrfs_free_path(path);
2096 	return ret;
2097 }
2098 
2099 static noinline int btrfs_ioctl_tree_search(struct file *file,
2100 					   void __user *argp)
2101 {
2102 	struct btrfs_ioctl_search_args __user *uargs;
2103 	struct btrfs_ioctl_search_key sk;
2104 	struct inode *inode;
2105 	int ret;
2106 	size_t buf_size;
2107 
2108 	if (!capable(CAP_SYS_ADMIN))
2109 		return -EPERM;
2110 
2111 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2112 
2113 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2114 		return -EFAULT;
2115 
2116 	buf_size = sizeof(uargs->buf);
2117 
2118 	inode = file_inode(file);
2119 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2120 
2121 	/*
2122 	 * In the origin implementation an overflow is handled by returning a
2123 	 * search header with a len of zero, so reset ret.
2124 	 */
2125 	if (ret == -EOVERFLOW)
2126 		ret = 0;
2127 
2128 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2129 		ret = -EFAULT;
2130 	return ret;
2131 }
2132 
2133 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2134 					       void __user *argp)
2135 {
2136 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2137 	struct btrfs_ioctl_search_args_v2 args;
2138 	struct inode *inode;
2139 	int ret;
2140 	size_t buf_size;
2141 	const size_t buf_limit = SZ_16M;
2142 
2143 	if (!capable(CAP_SYS_ADMIN))
2144 		return -EPERM;
2145 
2146 	/* copy search header and buffer size */
2147 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2148 	if (copy_from_user(&args, uarg, sizeof(args)))
2149 		return -EFAULT;
2150 
2151 	buf_size = args.buf_size;
2152 
2153 	/* limit result size to 16MB */
2154 	if (buf_size > buf_limit)
2155 		buf_size = buf_limit;
2156 
2157 	inode = file_inode(file);
2158 	ret = search_ioctl(inode, &args.key, &buf_size,
2159 			   (char __user *)(&uarg->buf[0]));
2160 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2161 		ret = -EFAULT;
2162 	else if (ret == -EOVERFLOW &&
2163 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2164 		ret = -EFAULT;
2165 
2166 	return ret;
2167 }
2168 
2169 /*
2170  * Search INODE_REFs to identify path name of 'dirid' directory
2171  * in a 'tree_id' tree. and sets path name to 'name'.
2172  */
2173 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2174 				u64 tree_id, u64 dirid, char *name)
2175 {
2176 	struct btrfs_root *root;
2177 	struct btrfs_key key;
2178 	char *ptr;
2179 	int ret = -1;
2180 	int slot;
2181 	int len;
2182 	int total_len = 0;
2183 	struct btrfs_inode_ref *iref;
2184 	struct extent_buffer *l;
2185 	struct btrfs_path *path;
2186 
2187 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2188 		name[0]='\0';
2189 		return 0;
2190 	}
2191 
2192 	path = btrfs_alloc_path();
2193 	if (!path)
2194 		return -ENOMEM;
2195 
2196 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2197 
2198 	key.objectid = tree_id;
2199 	key.type = BTRFS_ROOT_ITEM_KEY;
2200 	key.offset = (u64)-1;
2201 	root = btrfs_read_fs_root_no_name(info, &key);
2202 	if (IS_ERR(root)) {
2203 		btrfs_err(info, "could not find root %llu", tree_id);
2204 		ret = -ENOENT;
2205 		goto out;
2206 	}
2207 
2208 	key.objectid = dirid;
2209 	key.type = BTRFS_INODE_REF_KEY;
2210 	key.offset = (u64)-1;
2211 
2212 	while (1) {
2213 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2214 		if (ret < 0)
2215 			goto out;
2216 		else if (ret > 0) {
2217 			ret = btrfs_previous_item(root, path, dirid,
2218 						  BTRFS_INODE_REF_KEY);
2219 			if (ret < 0)
2220 				goto out;
2221 			else if (ret > 0) {
2222 				ret = -ENOENT;
2223 				goto out;
2224 			}
2225 		}
2226 
2227 		l = path->nodes[0];
2228 		slot = path->slots[0];
2229 		btrfs_item_key_to_cpu(l, &key, slot);
2230 
2231 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2232 		len = btrfs_inode_ref_name_len(l, iref);
2233 		ptr -= len + 1;
2234 		total_len += len + 1;
2235 		if (ptr < name) {
2236 			ret = -ENAMETOOLONG;
2237 			goto out;
2238 		}
2239 
2240 		*(ptr + len) = '/';
2241 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2242 
2243 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2244 			break;
2245 
2246 		btrfs_release_path(path);
2247 		key.objectid = key.offset;
2248 		key.offset = (u64)-1;
2249 		dirid = key.objectid;
2250 	}
2251 	memmove(name, ptr, total_len);
2252 	name[total_len] = '\0';
2253 	ret = 0;
2254 out:
2255 	btrfs_free_path(path);
2256 	return ret;
2257 }
2258 
2259 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2260 					   void __user *argp)
2261 {
2262 	 struct btrfs_ioctl_ino_lookup_args *args;
2263 	 struct inode *inode;
2264 	int ret = 0;
2265 
2266 	args = memdup_user(argp, sizeof(*args));
2267 	if (IS_ERR(args))
2268 		return PTR_ERR(args);
2269 
2270 	inode = file_inode(file);
2271 
2272 	/*
2273 	 * Unprivileged query to obtain the containing subvolume root id. The
2274 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2275 	 */
2276 	if (args->treeid == 0)
2277 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2278 
2279 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2280 		args->name[0] = 0;
2281 		goto out;
2282 	}
2283 
2284 	if (!capable(CAP_SYS_ADMIN)) {
2285 		ret = -EPERM;
2286 		goto out;
2287 	}
2288 
2289 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2290 					args->treeid, args->objectid,
2291 					args->name);
2292 
2293 out:
2294 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2295 		ret = -EFAULT;
2296 
2297 	kfree(args);
2298 	return ret;
2299 }
2300 
2301 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2302 					     void __user *arg)
2303 {
2304 	struct dentry *parent = file->f_path.dentry;
2305 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2306 	struct dentry *dentry;
2307 	struct inode *dir = d_inode(parent);
2308 	struct inode *inode;
2309 	struct btrfs_root *root = BTRFS_I(dir)->root;
2310 	struct btrfs_root *dest = NULL;
2311 	struct btrfs_ioctl_vol_args *vol_args;
2312 	struct btrfs_trans_handle *trans;
2313 	struct btrfs_block_rsv block_rsv;
2314 	u64 root_flags;
2315 	u64 qgroup_reserved;
2316 	int namelen;
2317 	int ret;
2318 	int err = 0;
2319 
2320 	if (!S_ISDIR(dir->i_mode))
2321 		return -ENOTDIR;
2322 
2323 	vol_args = memdup_user(arg, sizeof(*vol_args));
2324 	if (IS_ERR(vol_args))
2325 		return PTR_ERR(vol_args);
2326 
2327 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2328 	namelen = strlen(vol_args->name);
2329 	if (strchr(vol_args->name, '/') ||
2330 	    strncmp(vol_args->name, "..", namelen) == 0) {
2331 		err = -EINVAL;
2332 		goto out;
2333 	}
2334 
2335 	err = mnt_want_write_file(file);
2336 	if (err)
2337 		goto out;
2338 
2339 
2340 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2341 	if (err == -EINTR)
2342 		goto out_drop_write;
2343 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2344 	if (IS_ERR(dentry)) {
2345 		err = PTR_ERR(dentry);
2346 		goto out_unlock_dir;
2347 	}
2348 
2349 	if (d_really_is_negative(dentry)) {
2350 		err = -ENOENT;
2351 		goto out_dput;
2352 	}
2353 
2354 	inode = d_inode(dentry);
2355 	dest = BTRFS_I(inode)->root;
2356 	if (!capable(CAP_SYS_ADMIN)) {
2357 		/*
2358 		 * Regular user.  Only allow this with a special mount
2359 		 * option, when the user has write+exec access to the
2360 		 * subvol root, and when rmdir(2) would have been
2361 		 * allowed.
2362 		 *
2363 		 * Note that this is _not_ check that the subvol is
2364 		 * empty or doesn't contain data that we wouldn't
2365 		 * otherwise be able to delete.
2366 		 *
2367 		 * Users who want to delete empty subvols should try
2368 		 * rmdir(2).
2369 		 */
2370 		err = -EPERM;
2371 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2372 			goto out_dput;
2373 
2374 		/*
2375 		 * Do not allow deletion if the parent dir is the same
2376 		 * as the dir to be deleted.  That means the ioctl
2377 		 * must be called on the dentry referencing the root
2378 		 * of the subvol, not a random directory contained
2379 		 * within it.
2380 		 */
2381 		err = -EINVAL;
2382 		if (root == dest)
2383 			goto out_dput;
2384 
2385 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2386 		if (err)
2387 			goto out_dput;
2388 	}
2389 
2390 	/* check if subvolume may be deleted by a user */
2391 	err = btrfs_may_delete(dir, dentry, 1);
2392 	if (err)
2393 		goto out_dput;
2394 
2395 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2396 		err = -EINVAL;
2397 		goto out_dput;
2398 	}
2399 
2400 	inode_lock(inode);
2401 
2402 	/*
2403 	 * Don't allow to delete a subvolume with send in progress. This is
2404 	 * inside the i_mutex so the error handling that has to drop the bit
2405 	 * again is not run concurrently.
2406 	 */
2407 	spin_lock(&dest->root_item_lock);
2408 	root_flags = btrfs_root_flags(&dest->root_item);
2409 	if (dest->send_in_progress == 0) {
2410 		btrfs_set_root_flags(&dest->root_item,
2411 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2412 		spin_unlock(&dest->root_item_lock);
2413 	} else {
2414 		spin_unlock(&dest->root_item_lock);
2415 		btrfs_warn(fs_info,
2416 			   "Attempt to delete subvolume %llu during send",
2417 			   dest->root_key.objectid);
2418 		err = -EPERM;
2419 		goto out_unlock_inode;
2420 	}
2421 
2422 	down_write(&fs_info->subvol_sem);
2423 
2424 	err = may_destroy_subvol(dest);
2425 	if (err)
2426 		goto out_up_write;
2427 
2428 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2429 	/*
2430 	 * One for dir inode, two for dir entries, two for root
2431 	 * ref/backref.
2432 	 */
2433 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2434 					       5, &qgroup_reserved, true);
2435 	if (err)
2436 		goto out_up_write;
2437 
2438 	trans = btrfs_start_transaction(root, 0);
2439 	if (IS_ERR(trans)) {
2440 		err = PTR_ERR(trans);
2441 		goto out_release;
2442 	}
2443 	trans->block_rsv = &block_rsv;
2444 	trans->bytes_reserved = block_rsv.size;
2445 
2446 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2447 
2448 	ret = btrfs_unlink_subvol(trans, root, dir,
2449 				dest->root_key.objectid,
2450 				dentry->d_name.name,
2451 				dentry->d_name.len);
2452 	if (ret) {
2453 		err = ret;
2454 		btrfs_abort_transaction(trans, ret);
2455 		goto out_end_trans;
2456 	}
2457 
2458 	btrfs_record_root_in_trans(trans, dest);
2459 
2460 	memset(&dest->root_item.drop_progress, 0,
2461 		sizeof(dest->root_item.drop_progress));
2462 	dest->root_item.drop_level = 0;
2463 	btrfs_set_root_refs(&dest->root_item, 0);
2464 
2465 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2466 		ret = btrfs_insert_orphan_item(trans,
2467 					fs_info->tree_root,
2468 					dest->root_key.objectid);
2469 		if (ret) {
2470 			btrfs_abort_transaction(trans, ret);
2471 			err = ret;
2472 			goto out_end_trans;
2473 		}
2474 	}
2475 
2476 	ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2477 				  BTRFS_UUID_KEY_SUBVOL,
2478 				  dest->root_key.objectid);
2479 	if (ret && ret != -ENOENT) {
2480 		btrfs_abort_transaction(trans, ret);
2481 		err = ret;
2482 		goto out_end_trans;
2483 	}
2484 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2485 		ret = btrfs_uuid_tree_rem(trans, fs_info,
2486 					  dest->root_item.received_uuid,
2487 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2488 					  dest->root_key.objectid);
2489 		if (ret && ret != -ENOENT) {
2490 			btrfs_abort_transaction(trans, ret);
2491 			err = ret;
2492 			goto out_end_trans;
2493 		}
2494 	}
2495 
2496 out_end_trans:
2497 	trans->block_rsv = NULL;
2498 	trans->bytes_reserved = 0;
2499 	ret = btrfs_end_transaction(trans);
2500 	if (ret && !err)
2501 		err = ret;
2502 	inode->i_flags |= S_DEAD;
2503 out_release:
2504 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2505 out_up_write:
2506 	up_write(&fs_info->subvol_sem);
2507 	if (err) {
2508 		spin_lock(&dest->root_item_lock);
2509 		root_flags = btrfs_root_flags(&dest->root_item);
2510 		btrfs_set_root_flags(&dest->root_item,
2511 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2512 		spin_unlock(&dest->root_item_lock);
2513 	}
2514 out_unlock_inode:
2515 	inode_unlock(inode);
2516 	if (!err) {
2517 		d_invalidate(dentry);
2518 		btrfs_invalidate_inodes(dest);
2519 		d_delete(dentry);
2520 		ASSERT(dest->send_in_progress == 0);
2521 
2522 		/* the last ref */
2523 		if (dest->ino_cache_inode) {
2524 			iput(dest->ino_cache_inode);
2525 			dest->ino_cache_inode = NULL;
2526 		}
2527 	}
2528 out_dput:
2529 	dput(dentry);
2530 out_unlock_dir:
2531 	inode_unlock(dir);
2532 out_drop_write:
2533 	mnt_drop_write_file(file);
2534 out:
2535 	kfree(vol_args);
2536 	return err;
2537 }
2538 
2539 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2540 {
2541 	struct inode *inode = file_inode(file);
2542 	struct btrfs_root *root = BTRFS_I(inode)->root;
2543 	struct btrfs_ioctl_defrag_range_args *range;
2544 	int ret;
2545 
2546 	ret = mnt_want_write_file(file);
2547 	if (ret)
2548 		return ret;
2549 
2550 	if (btrfs_root_readonly(root)) {
2551 		ret = -EROFS;
2552 		goto out;
2553 	}
2554 
2555 	switch (inode->i_mode & S_IFMT) {
2556 	case S_IFDIR:
2557 		if (!capable(CAP_SYS_ADMIN)) {
2558 			ret = -EPERM;
2559 			goto out;
2560 		}
2561 		ret = btrfs_defrag_root(root);
2562 		break;
2563 	case S_IFREG:
2564 		if (!(file->f_mode & FMODE_WRITE)) {
2565 			ret = -EINVAL;
2566 			goto out;
2567 		}
2568 
2569 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2570 		if (!range) {
2571 			ret = -ENOMEM;
2572 			goto out;
2573 		}
2574 
2575 		if (argp) {
2576 			if (copy_from_user(range, argp,
2577 					   sizeof(*range))) {
2578 				ret = -EFAULT;
2579 				kfree(range);
2580 				goto out;
2581 			}
2582 			/* compression requires us to start the IO */
2583 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2584 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2585 				range->extent_thresh = (u32)-1;
2586 			}
2587 		} else {
2588 			/* the rest are all set to zero by kzalloc */
2589 			range->len = (u64)-1;
2590 		}
2591 		ret = btrfs_defrag_file(file_inode(file), file,
2592 					range, BTRFS_OLDEST_GENERATION, 0);
2593 		if (ret > 0)
2594 			ret = 0;
2595 		kfree(range);
2596 		break;
2597 	default:
2598 		ret = -EINVAL;
2599 	}
2600 out:
2601 	mnt_drop_write_file(file);
2602 	return ret;
2603 }
2604 
2605 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2606 {
2607 	struct btrfs_ioctl_vol_args *vol_args;
2608 	int ret;
2609 
2610 	if (!capable(CAP_SYS_ADMIN))
2611 		return -EPERM;
2612 
2613 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2614 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2615 
2616 	mutex_lock(&fs_info->volume_mutex);
2617 	vol_args = memdup_user(arg, sizeof(*vol_args));
2618 	if (IS_ERR(vol_args)) {
2619 		ret = PTR_ERR(vol_args);
2620 		goto out;
2621 	}
2622 
2623 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2624 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2625 
2626 	if (!ret)
2627 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2628 
2629 	kfree(vol_args);
2630 out:
2631 	mutex_unlock(&fs_info->volume_mutex);
2632 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2633 	return ret;
2634 }
2635 
2636 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2637 {
2638 	struct inode *inode = file_inode(file);
2639 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2640 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2641 	int ret;
2642 
2643 	if (!capable(CAP_SYS_ADMIN))
2644 		return -EPERM;
2645 
2646 	ret = mnt_want_write_file(file);
2647 	if (ret)
2648 		return ret;
2649 
2650 	vol_args = memdup_user(arg, sizeof(*vol_args));
2651 	if (IS_ERR(vol_args)) {
2652 		ret = PTR_ERR(vol_args);
2653 		goto err_drop;
2654 	}
2655 
2656 	/* Check for compatibility reject unknown flags */
2657 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2658 		return -EOPNOTSUPP;
2659 
2660 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2661 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2662 		goto out;
2663 	}
2664 
2665 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2666 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2667 	} else {
2668 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2669 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2670 	}
2671 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2672 
2673 	if (!ret) {
2674 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2675 			btrfs_info(fs_info, "device deleted: id %llu",
2676 					vol_args->devid);
2677 		else
2678 			btrfs_info(fs_info, "device deleted: %s",
2679 					vol_args->name);
2680 	}
2681 out:
2682 	kfree(vol_args);
2683 err_drop:
2684 	mnt_drop_write_file(file);
2685 	return ret;
2686 }
2687 
2688 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2689 {
2690 	struct inode *inode = file_inode(file);
2691 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2692 	struct btrfs_ioctl_vol_args *vol_args;
2693 	int ret;
2694 
2695 	if (!capable(CAP_SYS_ADMIN))
2696 		return -EPERM;
2697 
2698 	ret = mnt_want_write_file(file);
2699 	if (ret)
2700 		return ret;
2701 
2702 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2703 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2704 		goto out_drop_write;
2705 	}
2706 
2707 	vol_args = memdup_user(arg, sizeof(*vol_args));
2708 	if (IS_ERR(vol_args)) {
2709 		ret = PTR_ERR(vol_args);
2710 		goto out;
2711 	}
2712 
2713 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2714 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2715 
2716 	if (!ret)
2717 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2718 	kfree(vol_args);
2719 out:
2720 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2721 out_drop_write:
2722 	mnt_drop_write_file(file);
2723 
2724 	return ret;
2725 }
2726 
2727 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2728 				void __user *arg)
2729 {
2730 	struct btrfs_ioctl_fs_info_args *fi_args;
2731 	struct btrfs_device *device;
2732 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2733 	int ret = 0;
2734 
2735 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2736 	if (!fi_args)
2737 		return -ENOMEM;
2738 
2739 	rcu_read_lock();
2740 	fi_args->num_devices = fs_devices->num_devices;
2741 
2742 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2743 		if (device->devid > fi_args->max_id)
2744 			fi_args->max_id = device->devid;
2745 	}
2746 	rcu_read_unlock();
2747 
2748 	memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2749 	fi_args->nodesize = fs_info->nodesize;
2750 	fi_args->sectorsize = fs_info->sectorsize;
2751 	fi_args->clone_alignment = fs_info->sectorsize;
2752 
2753 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2754 		ret = -EFAULT;
2755 
2756 	kfree(fi_args);
2757 	return ret;
2758 }
2759 
2760 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2761 				 void __user *arg)
2762 {
2763 	struct btrfs_ioctl_dev_info_args *di_args;
2764 	struct btrfs_device *dev;
2765 	int ret = 0;
2766 	char *s_uuid = NULL;
2767 
2768 	di_args = memdup_user(arg, sizeof(*di_args));
2769 	if (IS_ERR(di_args))
2770 		return PTR_ERR(di_args);
2771 
2772 	if (!btrfs_is_empty_uuid(di_args->uuid))
2773 		s_uuid = di_args->uuid;
2774 
2775 	rcu_read_lock();
2776 	dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2777 
2778 	if (!dev) {
2779 		ret = -ENODEV;
2780 		goto out;
2781 	}
2782 
2783 	di_args->devid = dev->devid;
2784 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2785 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2786 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2787 	if (dev->name) {
2788 		struct rcu_string *name;
2789 
2790 		name = rcu_dereference(dev->name);
2791 		strncpy(di_args->path, name->str, sizeof(di_args->path) - 1);
2792 		di_args->path[sizeof(di_args->path) - 1] = 0;
2793 	} else {
2794 		di_args->path[0] = '\0';
2795 	}
2796 
2797 out:
2798 	rcu_read_unlock();
2799 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2800 		ret = -EFAULT;
2801 
2802 	kfree(di_args);
2803 	return ret;
2804 }
2805 
2806 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2807 {
2808 	struct page *page;
2809 
2810 	page = grab_cache_page(inode->i_mapping, index);
2811 	if (!page)
2812 		return ERR_PTR(-ENOMEM);
2813 
2814 	if (!PageUptodate(page)) {
2815 		int ret;
2816 
2817 		ret = btrfs_readpage(NULL, page);
2818 		if (ret)
2819 			return ERR_PTR(ret);
2820 		lock_page(page);
2821 		if (!PageUptodate(page)) {
2822 			unlock_page(page);
2823 			put_page(page);
2824 			return ERR_PTR(-EIO);
2825 		}
2826 		if (page->mapping != inode->i_mapping) {
2827 			unlock_page(page);
2828 			put_page(page);
2829 			return ERR_PTR(-EAGAIN);
2830 		}
2831 	}
2832 
2833 	return page;
2834 }
2835 
2836 static int gather_extent_pages(struct inode *inode, struct page **pages,
2837 			       int num_pages, u64 off)
2838 {
2839 	int i;
2840 	pgoff_t index = off >> PAGE_SHIFT;
2841 
2842 	for (i = 0; i < num_pages; i++) {
2843 again:
2844 		pages[i] = extent_same_get_page(inode, index + i);
2845 		if (IS_ERR(pages[i])) {
2846 			int err = PTR_ERR(pages[i]);
2847 
2848 			if (err == -EAGAIN)
2849 				goto again;
2850 			pages[i] = NULL;
2851 			return err;
2852 		}
2853 	}
2854 	return 0;
2855 }
2856 
2857 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2858 			     bool retry_range_locking)
2859 {
2860 	/*
2861 	 * Do any pending delalloc/csum calculations on inode, one way or
2862 	 * another, and lock file content.
2863 	 * The locking order is:
2864 	 *
2865 	 *   1) pages
2866 	 *   2) range in the inode's io tree
2867 	 */
2868 	while (1) {
2869 		struct btrfs_ordered_extent *ordered;
2870 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2871 		ordered = btrfs_lookup_first_ordered_extent(inode,
2872 							    off + len - 1);
2873 		if ((!ordered ||
2874 		     ordered->file_offset + ordered->len <= off ||
2875 		     ordered->file_offset >= off + len) &&
2876 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2877 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2878 			if (ordered)
2879 				btrfs_put_ordered_extent(ordered);
2880 			break;
2881 		}
2882 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2883 		if (ordered)
2884 			btrfs_put_ordered_extent(ordered);
2885 		if (!retry_range_locking)
2886 			return -EAGAIN;
2887 		btrfs_wait_ordered_range(inode, off, len);
2888 	}
2889 	return 0;
2890 }
2891 
2892 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2893 {
2894 	inode_unlock(inode1);
2895 	inode_unlock(inode2);
2896 }
2897 
2898 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2899 {
2900 	if (inode1 < inode2)
2901 		swap(inode1, inode2);
2902 
2903 	inode_lock_nested(inode1, I_MUTEX_PARENT);
2904 	inode_lock_nested(inode2, I_MUTEX_CHILD);
2905 }
2906 
2907 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2908 				      struct inode *inode2, u64 loff2, u64 len)
2909 {
2910 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2911 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2912 }
2913 
2914 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2915 				    struct inode *inode2, u64 loff2, u64 len,
2916 				    bool retry_range_locking)
2917 {
2918 	int ret;
2919 
2920 	if (inode1 < inode2) {
2921 		swap(inode1, inode2);
2922 		swap(loff1, loff2);
2923 	}
2924 	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2925 	if (ret)
2926 		return ret;
2927 	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2928 	if (ret)
2929 		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2930 			      loff1 + len - 1);
2931 	return ret;
2932 }
2933 
2934 struct cmp_pages {
2935 	int		num_pages;
2936 	struct page	**src_pages;
2937 	struct page	**dst_pages;
2938 };
2939 
2940 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2941 {
2942 	int i;
2943 	struct page *pg;
2944 
2945 	for (i = 0; i < cmp->num_pages; i++) {
2946 		pg = cmp->src_pages[i];
2947 		if (pg) {
2948 			unlock_page(pg);
2949 			put_page(pg);
2950 		}
2951 		pg = cmp->dst_pages[i];
2952 		if (pg) {
2953 			unlock_page(pg);
2954 			put_page(pg);
2955 		}
2956 	}
2957 	kfree(cmp->src_pages);
2958 	kfree(cmp->dst_pages);
2959 }
2960 
2961 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2962 				  struct inode *dst, u64 dst_loff,
2963 				  u64 len, struct cmp_pages *cmp)
2964 {
2965 	int ret;
2966 	int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2967 	struct page **src_pgarr, **dst_pgarr;
2968 
2969 	/*
2970 	 * We must gather up all the pages before we initiate our
2971 	 * extent locking. We use an array for the page pointers. Size
2972 	 * of the array is bounded by len, which is in turn bounded by
2973 	 * BTRFS_MAX_DEDUPE_LEN.
2974 	 */
2975 	src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2976 	dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2977 	if (!src_pgarr || !dst_pgarr) {
2978 		kfree(src_pgarr);
2979 		kfree(dst_pgarr);
2980 		return -ENOMEM;
2981 	}
2982 	cmp->num_pages = num_pages;
2983 	cmp->src_pages = src_pgarr;
2984 	cmp->dst_pages = dst_pgarr;
2985 
2986 	/*
2987 	 * If deduping ranges in the same inode, locking rules make it mandatory
2988 	 * to always lock pages in ascending order to avoid deadlocks with
2989 	 * concurrent tasks (such as starting writeback/delalloc).
2990 	 */
2991 	if (src == dst && dst_loff < loff) {
2992 		swap(src_pgarr, dst_pgarr);
2993 		swap(loff, dst_loff);
2994 	}
2995 
2996 	ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
2997 	if (ret)
2998 		goto out;
2999 
3000 	ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3001 
3002 out:
3003 	if (ret)
3004 		btrfs_cmp_data_free(cmp);
3005 	return ret;
3006 }
3007 
3008 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3009 {
3010 	int ret = 0;
3011 	int i;
3012 	struct page *src_page, *dst_page;
3013 	unsigned int cmp_len = PAGE_SIZE;
3014 	void *addr, *dst_addr;
3015 
3016 	i = 0;
3017 	while (len) {
3018 		if (len < PAGE_SIZE)
3019 			cmp_len = len;
3020 
3021 		BUG_ON(i >= cmp->num_pages);
3022 
3023 		src_page = cmp->src_pages[i];
3024 		dst_page = cmp->dst_pages[i];
3025 		ASSERT(PageLocked(src_page));
3026 		ASSERT(PageLocked(dst_page));
3027 
3028 		addr = kmap_atomic(src_page);
3029 		dst_addr = kmap_atomic(dst_page);
3030 
3031 		flush_dcache_page(src_page);
3032 		flush_dcache_page(dst_page);
3033 
3034 		if (memcmp(addr, dst_addr, cmp_len))
3035 			ret = -EBADE;
3036 
3037 		kunmap_atomic(addr);
3038 		kunmap_atomic(dst_addr);
3039 
3040 		if (ret)
3041 			break;
3042 
3043 		len -= cmp_len;
3044 		i++;
3045 	}
3046 
3047 	return ret;
3048 }
3049 
3050 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3051 				     u64 olen)
3052 {
3053 	u64 len = *plen;
3054 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3055 
3056 	if (off + olen > inode->i_size || off + olen < off)
3057 		return -EINVAL;
3058 
3059 	/* if we extend to eof, continue to block boundary */
3060 	if (off + len == inode->i_size)
3061 		*plen = len = ALIGN(inode->i_size, bs) - off;
3062 
3063 	/* Check that we are block aligned - btrfs_clone() requires this */
3064 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3065 		return -EINVAL;
3066 
3067 	return 0;
3068 }
3069 
3070 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3071 			     struct inode *dst, u64 dst_loff)
3072 {
3073 	int ret;
3074 	u64 len = olen;
3075 	struct cmp_pages cmp;
3076 	bool same_inode = (src == dst);
3077 	u64 same_lock_start = 0;
3078 	u64 same_lock_len = 0;
3079 
3080 	if (len == 0)
3081 		return 0;
3082 
3083 	if (same_inode)
3084 		inode_lock(src);
3085 	else
3086 		btrfs_double_inode_lock(src, dst);
3087 
3088 	ret = extent_same_check_offsets(src, loff, &len, olen);
3089 	if (ret)
3090 		goto out_unlock;
3091 
3092 	ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3093 	if (ret)
3094 		goto out_unlock;
3095 
3096 	if (same_inode) {
3097 		/*
3098 		 * Single inode case wants the same checks, except we
3099 		 * don't want our length pushed out past i_size as
3100 		 * comparing that data range makes no sense.
3101 		 *
3102 		 * extent_same_check_offsets() will do this for an
3103 		 * unaligned length at i_size, so catch it here and
3104 		 * reject the request.
3105 		 *
3106 		 * This effectively means we require aligned extents
3107 		 * for the single-inode case, whereas the other cases
3108 		 * allow an unaligned length so long as it ends at
3109 		 * i_size.
3110 		 */
3111 		if (len != olen) {
3112 			ret = -EINVAL;
3113 			goto out_unlock;
3114 		}
3115 
3116 		/* Check for overlapping ranges */
3117 		if (dst_loff + len > loff && dst_loff < loff + len) {
3118 			ret = -EINVAL;
3119 			goto out_unlock;
3120 		}
3121 
3122 		same_lock_start = min_t(u64, loff, dst_loff);
3123 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3124 	}
3125 
3126 	/* don't make the dst file partly checksummed */
3127 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3128 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3129 		ret = -EINVAL;
3130 		goto out_unlock;
3131 	}
3132 
3133 again:
3134 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3135 	if (ret)
3136 		goto out_unlock;
3137 
3138 	if (same_inode)
3139 		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3140 					false);
3141 	else
3142 		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3143 					       false);
3144 	/*
3145 	 * If one of the inodes has dirty pages in the respective range or
3146 	 * ordered extents, we need to flush dellaloc and wait for all ordered
3147 	 * extents in the range. We must unlock the pages and the ranges in the
3148 	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3149 	 * pages) and when waiting for ordered extents to complete (they require
3150 	 * range locking).
3151 	 */
3152 	if (ret == -EAGAIN) {
3153 		/*
3154 		 * Ranges in the io trees already unlocked. Now unlock all
3155 		 * pages before waiting for all IO to complete.
3156 		 */
3157 		btrfs_cmp_data_free(&cmp);
3158 		if (same_inode) {
3159 			btrfs_wait_ordered_range(src, same_lock_start,
3160 						 same_lock_len);
3161 		} else {
3162 			btrfs_wait_ordered_range(src, loff, len);
3163 			btrfs_wait_ordered_range(dst, dst_loff, len);
3164 		}
3165 		goto again;
3166 	}
3167 	ASSERT(ret == 0);
3168 	if (WARN_ON(ret)) {
3169 		/* ranges in the io trees already unlocked */
3170 		btrfs_cmp_data_free(&cmp);
3171 		return ret;
3172 	}
3173 
3174 	/* pass original length for comparison so we stay within i_size */
3175 	ret = btrfs_cmp_data(olen, &cmp);
3176 	if (ret == 0)
3177 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3178 
3179 	if (same_inode)
3180 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3181 			      same_lock_start + same_lock_len - 1);
3182 	else
3183 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3184 
3185 	btrfs_cmp_data_free(&cmp);
3186 out_unlock:
3187 	if (same_inode)
3188 		inode_unlock(src);
3189 	else
3190 		btrfs_double_inode_unlock(src, dst);
3191 
3192 	return ret;
3193 }
3194 
3195 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3196 
3197 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3198 				struct file *dst_file, u64 dst_loff)
3199 {
3200 	struct inode *src = file_inode(src_file);
3201 	struct inode *dst = file_inode(dst_file);
3202 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3203 	ssize_t res;
3204 
3205 	if (olen > BTRFS_MAX_DEDUPE_LEN)
3206 		olen = BTRFS_MAX_DEDUPE_LEN;
3207 
3208 	if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3209 		/*
3210 		 * Btrfs does not support blocksize < page_size. As a
3211 		 * result, btrfs_cmp_data() won't correctly handle
3212 		 * this situation without an update.
3213 		 */
3214 		return -EINVAL;
3215 	}
3216 
3217 	res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3218 	if (res)
3219 		return res;
3220 	return olen;
3221 }
3222 
3223 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3224 				     struct inode *inode,
3225 				     u64 endoff,
3226 				     const u64 destoff,
3227 				     const u64 olen,
3228 				     int no_time_update)
3229 {
3230 	struct btrfs_root *root = BTRFS_I(inode)->root;
3231 	int ret;
3232 
3233 	inode_inc_iversion(inode);
3234 	if (!no_time_update)
3235 		inode->i_mtime = inode->i_ctime = current_time(inode);
3236 	/*
3237 	 * We round up to the block size at eof when determining which
3238 	 * extents to clone above, but shouldn't round up the file size.
3239 	 */
3240 	if (endoff > destoff + olen)
3241 		endoff = destoff + olen;
3242 	if (endoff > inode->i_size)
3243 		btrfs_i_size_write(BTRFS_I(inode), endoff);
3244 
3245 	ret = btrfs_update_inode(trans, root, inode);
3246 	if (ret) {
3247 		btrfs_abort_transaction(trans, ret);
3248 		btrfs_end_transaction(trans);
3249 		goto out;
3250 	}
3251 	ret = btrfs_end_transaction(trans);
3252 out:
3253 	return ret;
3254 }
3255 
3256 static void clone_update_extent_map(struct btrfs_inode *inode,
3257 				    const struct btrfs_trans_handle *trans,
3258 				    const struct btrfs_path *path,
3259 				    const u64 hole_offset,
3260 				    const u64 hole_len)
3261 {
3262 	struct extent_map_tree *em_tree = &inode->extent_tree;
3263 	struct extent_map *em;
3264 	int ret;
3265 
3266 	em = alloc_extent_map();
3267 	if (!em) {
3268 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3269 		return;
3270 	}
3271 
3272 	if (path) {
3273 		struct btrfs_file_extent_item *fi;
3274 
3275 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3276 				    struct btrfs_file_extent_item);
3277 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3278 		em->generation = -1;
3279 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3280 		    BTRFS_FILE_EXTENT_INLINE)
3281 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3282 					&inode->runtime_flags);
3283 	} else {
3284 		em->start = hole_offset;
3285 		em->len = hole_len;
3286 		em->ram_bytes = em->len;
3287 		em->orig_start = hole_offset;
3288 		em->block_start = EXTENT_MAP_HOLE;
3289 		em->block_len = 0;
3290 		em->orig_block_len = 0;
3291 		em->compress_type = BTRFS_COMPRESS_NONE;
3292 		em->generation = trans->transid;
3293 	}
3294 
3295 	while (1) {
3296 		write_lock(&em_tree->lock);
3297 		ret = add_extent_mapping(em_tree, em, 1);
3298 		write_unlock(&em_tree->lock);
3299 		if (ret != -EEXIST) {
3300 			free_extent_map(em);
3301 			break;
3302 		}
3303 		btrfs_drop_extent_cache(inode, em->start,
3304 					em->start + em->len - 1, 0);
3305 	}
3306 
3307 	if (ret)
3308 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3309 }
3310 
3311 /*
3312  * Make sure we do not end up inserting an inline extent into a file that has
3313  * already other (non-inline) extents. If a file has an inline extent it can
3314  * not have any other extents and the (single) inline extent must start at the
3315  * file offset 0. Failing to respect these rules will lead to file corruption,
3316  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3317  *
3318  * We can have extents that have been already written to disk or we can have
3319  * dirty ranges still in delalloc, in which case the extent maps and items are
3320  * created only when we run delalloc, and the delalloc ranges might fall outside
3321  * the range we are currently locking in the inode's io tree. So we check the
3322  * inode's i_size because of that (i_size updates are done while holding the
3323  * i_mutex, which we are holding here).
3324  * We also check to see if the inode has a size not greater than "datal" but has
3325  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3326  * protected against such concurrent fallocate calls by the i_mutex).
3327  *
3328  * If the file has no extents but a size greater than datal, do not allow the
3329  * copy because we would need turn the inline extent into a non-inline one (even
3330  * with NO_HOLES enabled). If we find our destination inode only has one inline
3331  * extent, just overwrite it with the source inline extent if its size is less
3332  * than the source extent's size, or we could copy the source inline extent's
3333  * data into the destination inode's inline extent if the later is greater then
3334  * the former.
3335  */
3336 static int clone_copy_inline_extent(struct inode *dst,
3337 				    struct btrfs_trans_handle *trans,
3338 				    struct btrfs_path *path,
3339 				    struct btrfs_key *new_key,
3340 				    const u64 drop_start,
3341 				    const u64 datal,
3342 				    const u64 skip,
3343 				    const u64 size,
3344 				    char *inline_data)
3345 {
3346 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3347 	struct btrfs_root *root = BTRFS_I(dst)->root;
3348 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3349 				      fs_info->sectorsize);
3350 	int ret;
3351 	struct btrfs_key key;
3352 
3353 	if (new_key->offset > 0)
3354 		return -EOPNOTSUPP;
3355 
3356 	key.objectid = btrfs_ino(BTRFS_I(dst));
3357 	key.type = BTRFS_EXTENT_DATA_KEY;
3358 	key.offset = 0;
3359 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3360 	if (ret < 0) {
3361 		return ret;
3362 	} else if (ret > 0) {
3363 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3364 			ret = btrfs_next_leaf(root, path);
3365 			if (ret < 0)
3366 				return ret;
3367 			else if (ret > 0)
3368 				goto copy_inline_extent;
3369 		}
3370 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3371 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3372 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3373 			ASSERT(key.offset > 0);
3374 			return -EOPNOTSUPP;
3375 		}
3376 	} else if (i_size_read(dst) <= datal) {
3377 		struct btrfs_file_extent_item *ei;
3378 		u64 ext_len;
3379 
3380 		/*
3381 		 * If the file size is <= datal, make sure there are no other
3382 		 * extents following (can happen do to an fallocate call with
3383 		 * the flag FALLOC_FL_KEEP_SIZE).
3384 		 */
3385 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3386 				    struct btrfs_file_extent_item);
3387 		/*
3388 		 * If it's an inline extent, it can not have other extents
3389 		 * following it.
3390 		 */
3391 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3392 		    BTRFS_FILE_EXTENT_INLINE)
3393 			goto copy_inline_extent;
3394 
3395 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3396 		if (ext_len > aligned_end)
3397 			return -EOPNOTSUPP;
3398 
3399 		ret = btrfs_next_item(root, path);
3400 		if (ret < 0) {
3401 			return ret;
3402 		} else if (ret == 0) {
3403 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3404 					      path->slots[0]);
3405 			if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3406 			    key.type == BTRFS_EXTENT_DATA_KEY)
3407 				return -EOPNOTSUPP;
3408 		}
3409 	}
3410 
3411 copy_inline_extent:
3412 	/*
3413 	 * We have no extent items, or we have an extent at offset 0 which may
3414 	 * or may not be inlined. All these cases are dealt the same way.
3415 	 */
3416 	if (i_size_read(dst) > datal) {
3417 		/*
3418 		 * If the destination inode has an inline extent...
3419 		 * This would require copying the data from the source inline
3420 		 * extent into the beginning of the destination's inline extent.
3421 		 * But this is really complex, both extents can be compressed
3422 		 * or just one of them, which would require decompressing and
3423 		 * re-compressing data (which could increase the new compressed
3424 		 * size, not allowing the compressed data to fit anymore in an
3425 		 * inline extent).
3426 		 * So just don't support this case for now (it should be rare,
3427 		 * we are not really saving space when cloning inline extents).
3428 		 */
3429 		return -EOPNOTSUPP;
3430 	}
3431 
3432 	btrfs_release_path(path);
3433 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3434 	if (ret)
3435 		return ret;
3436 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3437 	if (ret)
3438 		return ret;
3439 
3440 	if (skip) {
3441 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3442 
3443 		memmove(inline_data + start, inline_data + start + skip, datal);
3444 	}
3445 
3446 	write_extent_buffer(path->nodes[0], inline_data,
3447 			    btrfs_item_ptr_offset(path->nodes[0],
3448 						  path->slots[0]),
3449 			    size);
3450 	inode_add_bytes(dst, datal);
3451 
3452 	return 0;
3453 }
3454 
3455 /**
3456  * btrfs_clone() - clone a range from inode file to another
3457  *
3458  * @src: Inode to clone from
3459  * @inode: Inode to clone to
3460  * @off: Offset within source to start clone from
3461  * @olen: Original length, passed by user, of range to clone
3462  * @olen_aligned: Block-aligned value of olen
3463  * @destoff: Offset within @inode to start clone
3464  * @no_time_update: Whether to update mtime/ctime on the target inode
3465  */
3466 static int btrfs_clone(struct inode *src, struct inode *inode,
3467 		       const u64 off, const u64 olen, const u64 olen_aligned,
3468 		       const u64 destoff, int no_time_update)
3469 {
3470 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3471 	struct btrfs_root *root = BTRFS_I(inode)->root;
3472 	struct btrfs_path *path = NULL;
3473 	struct extent_buffer *leaf;
3474 	struct btrfs_trans_handle *trans;
3475 	char *buf = NULL;
3476 	struct btrfs_key key;
3477 	u32 nritems;
3478 	int slot;
3479 	int ret;
3480 	const u64 len = olen_aligned;
3481 	u64 last_dest_end = destoff;
3482 
3483 	ret = -ENOMEM;
3484 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3485 	if (!buf)
3486 		return ret;
3487 
3488 	path = btrfs_alloc_path();
3489 	if (!path) {
3490 		kvfree(buf);
3491 		return ret;
3492 	}
3493 
3494 	path->reada = READA_FORWARD;
3495 	/* clone data */
3496 	key.objectid = btrfs_ino(BTRFS_I(src));
3497 	key.type = BTRFS_EXTENT_DATA_KEY;
3498 	key.offset = off;
3499 
3500 	while (1) {
3501 		u64 next_key_min_offset = key.offset + 1;
3502 
3503 		/*
3504 		 * note the key will change type as we walk through the
3505 		 * tree.
3506 		 */
3507 		path->leave_spinning = 1;
3508 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3509 				0, 0);
3510 		if (ret < 0)
3511 			goto out;
3512 		/*
3513 		 * First search, if no extent item that starts at offset off was
3514 		 * found but the previous item is an extent item, it's possible
3515 		 * it might overlap our target range, therefore process it.
3516 		 */
3517 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3518 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3519 					      path->slots[0] - 1);
3520 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3521 				path->slots[0]--;
3522 		}
3523 
3524 		nritems = btrfs_header_nritems(path->nodes[0]);
3525 process_slot:
3526 		if (path->slots[0] >= nritems) {
3527 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3528 			if (ret < 0)
3529 				goto out;
3530 			if (ret > 0)
3531 				break;
3532 			nritems = btrfs_header_nritems(path->nodes[0]);
3533 		}
3534 		leaf = path->nodes[0];
3535 		slot = path->slots[0];
3536 
3537 		btrfs_item_key_to_cpu(leaf, &key, slot);
3538 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3539 		    key.objectid != btrfs_ino(BTRFS_I(src)))
3540 			break;
3541 
3542 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3543 			struct btrfs_file_extent_item *extent;
3544 			int type;
3545 			u32 size;
3546 			struct btrfs_key new_key;
3547 			u64 disko = 0, diskl = 0;
3548 			u64 datao = 0, datal = 0;
3549 			u8 comp;
3550 			u64 drop_start;
3551 
3552 			extent = btrfs_item_ptr(leaf, slot,
3553 						struct btrfs_file_extent_item);
3554 			comp = btrfs_file_extent_compression(leaf, extent);
3555 			type = btrfs_file_extent_type(leaf, extent);
3556 			if (type == BTRFS_FILE_EXTENT_REG ||
3557 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3558 				disko = btrfs_file_extent_disk_bytenr(leaf,
3559 								      extent);
3560 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3561 								 extent);
3562 				datao = btrfs_file_extent_offset(leaf, extent);
3563 				datal = btrfs_file_extent_num_bytes(leaf,
3564 								    extent);
3565 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3566 				/* take upper bound, may be compressed */
3567 				datal = btrfs_file_extent_ram_bytes(leaf,
3568 								    extent);
3569 			}
3570 
3571 			/*
3572 			 * The first search might have left us at an extent
3573 			 * item that ends before our target range's start, can
3574 			 * happen if we have holes and NO_HOLES feature enabled.
3575 			 */
3576 			if (key.offset + datal <= off) {
3577 				path->slots[0]++;
3578 				goto process_slot;
3579 			} else if (key.offset >= off + len) {
3580 				break;
3581 			}
3582 			next_key_min_offset = key.offset + datal;
3583 			size = btrfs_item_size_nr(leaf, slot);
3584 			read_extent_buffer(leaf, buf,
3585 					   btrfs_item_ptr_offset(leaf, slot),
3586 					   size);
3587 
3588 			btrfs_release_path(path);
3589 			path->leave_spinning = 0;
3590 
3591 			memcpy(&new_key, &key, sizeof(new_key));
3592 			new_key.objectid = btrfs_ino(BTRFS_I(inode));
3593 			if (off <= key.offset)
3594 				new_key.offset = key.offset + destoff - off;
3595 			else
3596 				new_key.offset = destoff;
3597 
3598 			/*
3599 			 * Deal with a hole that doesn't have an extent item
3600 			 * that represents it (NO_HOLES feature enabled).
3601 			 * This hole is either in the middle of the cloning
3602 			 * range or at the beginning (fully overlaps it or
3603 			 * partially overlaps it).
3604 			 */
3605 			if (new_key.offset != last_dest_end)
3606 				drop_start = last_dest_end;
3607 			else
3608 				drop_start = new_key.offset;
3609 
3610 			/*
3611 			 * 1 - adjusting old extent (we may have to split it)
3612 			 * 1 - add new extent
3613 			 * 1 - inode update
3614 			 */
3615 			trans = btrfs_start_transaction(root, 3);
3616 			if (IS_ERR(trans)) {
3617 				ret = PTR_ERR(trans);
3618 				goto out;
3619 			}
3620 
3621 			if (type == BTRFS_FILE_EXTENT_REG ||
3622 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3623 				/*
3624 				 *    a  | --- range to clone ---|  b
3625 				 * | ------------- extent ------------- |
3626 				 */
3627 
3628 				/* subtract range b */
3629 				if (key.offset + datal > off + len)
3630 					datal = off + len - key.offset;
3631 
3632 				/* subtract range a */
3633 				if (off > key.offset) {
3634 					datao += off - key.offset;
3635 					datal -= off - key.offset;
3636 				}
3637 
3638 				ret = btrfs_drop_extents(trans, root, inode,
3639 							 drop_start,
3640 							 new_key.offset + datal,
3641 							 1);
3642 				if (ret) {
3643 					if (ret != -EOPNOTSUPP)
3644 						btrfs_abort_transaction(trans,
3645 									ret);
3646 					btrfs_end_transaction(trans);
3647 					goto out;
3648 				}
3649 
3650 				ret = btrfs_insert_empty_item(trans, root, path,
3651 							      &new_key, size);
3652 				if (ret) {
3653 					btrfs_abort_transaction(trans, ret);
3654 					btrfs_end_transaction(trans);
3655 					goto out;
3656 				}
3657 
3658 				leaf = path->nodes[0];
3659 				slot = path->slots[0];
3660 				write_extent_buffer(leaf, buf,
3661 					    btrfs_item_ptr_offset(leaf, slot),
3662 					    size);
3663 
3664 				extent = btrfs_item_ptr(leaf, slot,
3665 						struct btrfs_file_extent_item);
3666 
3667 				/* disko == 0 means it's a hole */
3668 				if (!disko)
3669 					datao = 0;
3670 
3671 				btrfs_set_file_extent_offset(leaf, extent,
3672 							     datao);
3673 				btrfs_set_file_extent_num_bytes(leaf, extent,
3674 								datal);
3675 
3676 				if (disko) {
3677 					inode_add_bytes(inode, datal);
3678 					ret = btrfs_inc_extent_ref(trans,
3679 							root,
3680 							disko, diskl, 0,
3681 							root->root_key.objectid,
3682 							btrfs_ino(BTRFS_I(inode)),
3683 							new_key.offset - datao);
3684 					if (ret) {
3685 						btrfs_abort_transaction(trans,
3686 									ret);
3687 						btrfs_end_transaction(trans);
3688 						goto out;
3689 
3690 					}
3691 				}
3692 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3693 				u64 skip = 0;
3694 				u64 trim = 0;
3695 
3696 				if (off > key.offset) {
3697 					skip = off - key.offset;
3698 					new_key.offset += skip;
3699 				}
3700 
3701 				if (key.offset + datal > off + len)
3702 					trim = key.offset + datal - (off + len);
3703 
3704 				if (comp && (skip || trim)) {
3705 					ret = -EINVAL;
3706 					btrfs_end_transaction(trans);
3707 					goto out;
3708 				}
3709 				size -= skip + trim;
3710 				datal -= skip + trim;
3711 
3712 				ret = clone_copy_inline_extent(inode,
3713 							       trans, path,
3714 							       &new_key,
3715 							       drop_start,
3716 							       datal,
3717 							       skip, size, buf);
3718 				if (ret) {
3719 					if (ret != -EOPNOTSUPP)
3720 						btrfs_abort_transaction(trans,
3721 									ret);
3722 					btrfs_end_transaction(trans);
3723 					goto out;
3724 				}
3725 				leaf = path->nodes[0];
3726 				slot = path->slots[0];
3727 			}
3728 
3729 			/* If we have an implicit hole (NO_HOLES feature). */
3730 			if (drop_start < new_key.offset)
3731 				clone_update_extent_map(BTRFS_I(inode), trans,
3732 						NULL, drop_start,
3733 						new_key.offset - drop_start);
3734 
3735 			clone_update_extent_map(BTRFS_I(inode), trans,
3736 					path, 0, 0);
3737 
3738 			btrfs_mark_buffer_dirty(leaf);
3739 			btrfs_release_path(path);
3740 
3741 			last_dest_end = ALIGN(new_key.offset + datal,
3742 					      fs_info->sectorsize);
3743 			ret = clone_finish_inode_update(trans, inode,
3744 							last_dest_end,
3745 							destoff, olen,
3746 							no_time_update);
3747 			if (ret)
3748 				goto out;
3749 			if (new_key.offset + datal >= destoff + len)
3750 				break;
3751 		}
3752 		btrfs_release_path(path);
3753 		key.offset = next_key_min_offset;
3754 
3755 		if (fatal_signal_pending(current)) {
3756 			ret = -EINTR;
3757 			goto out;
3758 		}
3759 	}
3760 	ret = 0;
3761 
3762 	if (last_dest_end < destoff + len) {
3763 		/*
3764 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3765 		 * fully or partially overlaps our cloning range at its end.
3766 		 */
3767 		btrfs_release_path(path);
3768 
3769 		/*
3770 		 * 1 - remove extent(s)
3771 		 * 1 - inode update
3772 		 */
3773 		trans = btrfs_start_transaction(root, 2);
3774 		if (IS_ERR(trans)) {
3775 			ret = PTR_ERR(trans);
3776 			goto out;
3777 		}
3778 		ret = btrfs_drop_extents(trans, root, inode,
3779 					 last_dest_end, destoff + len, 1);
3780 		if (ret) {
3781 			if (ret != -EOPNOTSUPP)
3782 				btrfs_abort_transaction(trans, ret);
3783 			btrfs_end_transaction(trans);
3784 			goto out;
3785 		}
3786 		clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3787 				last_dest_end,
3788 				destoff + len - last_dest_end);
3789 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3790 						destoff, olen, no_time_update);
3791 	}
3792 
3793 out:
3794 	btrfs_free_path(path);
3795 	kvfree(buf);
3796 	return ret;
3797 }
3798 
3799 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3800 					u64 off, u64 olen, u64 destoff)
3801 {
3802 	struct inode *inode = file_inode(file);
3803 	struct inode *src = file_inode(file_src);
3804 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3805 	struct btrfs_root *root = BTRFS_I(inode)->root;
3806 	int ret;
3807 	u64 len = olen;
3808 	u64 bs = fs_info->sb->s_blocksize;
3809 	int same_inode = src == inode;
3810 
3811 	/*
3812 	 * TODO:
3813 	 * - split compressed inline extents.  annoying: we need to
3814 	 *   decompress into destination's address_space (the file offset
3815 	 *   may change, so source mapping won't do), then recompress (or
3816 	 *   otherwise reinsert) a subrange.
3817 	 *
3818 	 * - split destination inode's inline extents.  The inline extents can
3819 	 *   be either compressed or non-compressed.
3820 	 */
3821 
3822 	if (btrfs_root_readonly(root))
3823 		return -EROFS;
3824 
3825 	if (file_src->f_path.mnt != file->f_path.mnt ||
3826 	    src->i_sb != inode->i_sb)
3827 		return -EXDEV;
3828 
3829 	/* don't make the dst file partly checksummed */
3830 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3831 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3832 		return -EINVAL;
3833 
3834 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3835 		return -EISDIR;
3836 
3837 	if (!same_inode) {
3838 		btrfs_double_inode_lock(src, inode);
3839 	} else {
3840 		inode_lock(src);
3841 	}
3842 
3843 	/* determine range to clone */
3844 	ret = -EINVAL;
3845 	if (off + len > src->i_size || off + len < off)
3846 		goto out_unlock;
3847 	if (len == 0)
3848 		olen = len = src->i_size - off;
3849 	/* if we extend to eof, continue to block boundary */
3850 	if (off + len == src->i_size)
3851 		len = ALIGN(src->i_size, bs) - off;
3852 
3853 	if (len == 0) {
3854 		ret = 0;
3855 		goto out_unlock;
3856 	}
3857 
3858 	/* verify the end result is block aligned */
3859 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3860 	    !IS_ALIGNED(destoff, bs))
3861 		goto out_unlock;
3862 
3863 	/* verify if ranges are overlapped within the same file */
3864 	if (same_inode) {
3865 		if (destoff + len > off && destoff < off + len)
3866 			goto out_unlock;
3867 	}
3868 
3869 	if (destoff > inode->i_size) {
3870 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3871 		if (ret)
3872 			goto out_unlock;
3873 	}
3874 
3875 	/*
3876 	 * Lock the target range too. Right after we replace the file extent
3877 	 * items in the fs tree (which now point to the cloned data), we might
3878 	 * have a worker replace them with extent items relative to a write
3879 	 * operation that was issued before this clone operation (i.e. confront
3880 	 * with inode.c:btrfs_finish_ordered_io).
3881 	 */
3882 	if (same_inode) {
3883 		u64 lock_start = min_t(u64, off, destoff);
3884 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3885 
3886 		ret = lock_extent_range(src, lock_start, lock_len, true);
3887 	} else {
3888 		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3889 					       true);
3890 	}
3891 	ASSERT(ret == 0);
3892 	if (WARN_ON(ret)) {
3893 		/* ranges in the io trees already unlocked */
3894 		goto out_unlock;
3895 	}
3896 
3897 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3898 
3899 	if (same_inode) {
3900 		u64 lock_start = min_t(u64, off, destoff);
3901 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3902 
3903 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3904 	} else {
3905 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3906 	}
3907 	/*
3908 	 * Truncate page cache pages so that future reads will see the cloned
3909 	 * data immediately and not the previous data.
3910 	 */
3911 	truncate_inode_pages_range(&inode->i_data,
3912 				round_down(destoff, PAGE_SIZE),
3913 				round_up(destoff + len, PAGE_SIZE) - 1);
3914 out_unlock:
3915 	if (!same_inode)
3916 		btrfs_double_inode_unlock(src, inode);
3917 	else
3918 		inode_unlock(src);
3919 	return ret;
3920 }
3921 
3922 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3923 		struct file *dst_file, loff_t destoff, u64 len)
3924 {
3925 	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3926 }
3927 
3928 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3929 {
3930 	struct inode *inode = file_inode(file);
3931 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3932 	struct btrfs_root *root = BTRFS_I(inode)->root;
3933 	struct btrfs_root *new_root;
3934 	struct btrfs_dir_item *di;
3935 	struct btrfs_trans_handle *trans;
3936 	struct btrfs_path *path;
3937 	struct btrfs_key location;
3938 	struct btrfs_disk_key disk_key;
3939 	u64 objectid = 0;
3940 	u64 dir_id;
3941 	int ret;
3942 
3943 	if (!capable(CAP_SYS_ADMIN))
3944 		return -EPERM;
3945 
3946 	ret = mnt_want_write_file(file);
3947 	if (ret)
3948 		return ret;
3949 
3950 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3951 		ret = -EFAULT;
3952 		goto out;
3953 	}
3954 
3955 	if (!objectid)
3956 		objectid = BTRFS_FS_TREE_OBJECTID;
3957 
3958 	location.objectid = objectid;
3959 	location.type = BTRFS_ROOT_ITEM_KEY;
3960 	location.offset = (u64)-1;
3961 
3962 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
3963 	if (IS_ERR(new_root)) {
3964 		ret = PTR_ERR(new_root);
3965 		goto out;
3966 	}
3967 	if (!is_fstree(new_root->objectid)) {
3968 		ret = -ENOENT;
3969 		goto out;
3970 	}
3971 
3972 	path = btrfs_alloc_path();
3973 	if (!path) {
3974 		ret = -ENOMEM;
3975 		goto out;
3976 	}
3977 	path->leave_spinning = 1;
3978 
3979 	trans = btrfs_start_transaction(root, 1);
3980 	if (IS_ERR(trans)) {
3981 		btrfs_free_path(path);
3982 		ret = PTR_ERR(trans);
3983 		goto out;
3984 	}
3985 
3986 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3987 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3988 				   dir_id, "default", 7, 1);
3989 	if (IS_ERR_OR_NULL(di)) {
3990 		btrfs_free_path(path);
3991 		btrfs_end_transaction(trans);
3992 		btrfs_err(fs_info,
3993 			  "Umm, you don't have the default diritem, this isn't going to work");
3994 		ret = -ENOENT;
3995 		goto out;
3996 	}
3997 
3998 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3999 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4000 	btrfs_mark_buffer_dirty(path->nodes[0]);
4001 	btrfs_free_path(path);
4002 
4003 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4004 	btrfs_end_transaction(trans);
4005 out:
4006 	mnt_drop_write_file(file);
4007 	return ret;
4008 }
4009 
4010 void btrfs_get_block_group_info(struct list_head *groups_list,
4011 				struct btrfs_ioctl_space_info *space)
4012 {
4013 	struct btrfs_block_group_cache *block_group;
4014 
4015 	space->total_bytes = 0;
4016 	space->used_bytes = 0;
4017 	space->flags = 0;
4018 	list_for_each_entry(block_group, groups_list, list) {
4019 		space->flags = block_group->flags;
4020 		space->total_bytes += block_group->key.offset;
4021 		space->used_bytes +=
4022 			btrfs_block_group_used(&block_group->item);
4023 	}
4024 }
4025 
4026 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4027 				   void __user *arg)
4028 {
4029 	struct btrfs_ioctl_space_args space_args;
4030 	struct btrfs_ioctl_space_info space;
4031 	struct btrfs_ioctl_space_info *dest;
4032 	struct btrfs_ioctl_space_info *dest_orig;
4033 	struct btrfs_ioctl_space_info __user *user_dest;
4034 	struct btrfs_space_info *info;
4035 	static const u64 types[] = {
4036 		BTRFS_BLOCK_GROUP_DATA,
4037 		BTRFS_BLOCK_GROUP_SYSTEM,
4038 		BTRFS_BLOCK_GROUP_METADATA,
4039 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4040 	};
4041 	int num_types = 4;
4042 	int alloc_size;
4043 	int ret = 0;
4044 	u64 slot_count = 0;
4045 	int i, c;
4046 
4047 	if (copy_from_user(&space_args,
4048 			   (struct btrfs_ioctl_space_args __user *)arg,
4049 			   sizeof(space_args)))
4050 		return -EFAULT;
4051 
4052 	for (i = 0; i < num_types; i++) {
4053 		struct btrfs_space_info *tmp;
4054 
4055 		info = NULL;
4056 		rcu_read_lock();
4057 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4058 					list) {
4059 			if (tmp->flags == types[i]) {
4060 				info = tmp;
4061 				break;
4062 			}
4063 		}
4064 		rcu_read_unlock();
4065 
4066 		if (!info)
4067 			continue;
4068 
4069 		down_read(&info->groups_sem);
4070 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4071 			if (!list_empty(&info->block_groups[c]))
4072 				slot_count++;
4073 		}
4074 		up_read(&info->groups_sem);
4075 	}
4076 
4077 	/*
4078 	 * Global block reserve, exported as a space_info
4079 	 */
4080 	slot_count++;
4081 
4082 	/* space_slots == 0 means they are asking for a count */
4083 	if (space_args.space_slots == 0) {
4084 		space_args.total_spaces = slot_count;
4085 		goto out;
4086 	}
4087 
4088 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4089 
4090 	alloc_size = sizeof(*dest) * slot_count;
4091 
4092 	/* we generally have at most 6 or so space infos, one for each raid
4093 	 * level.  So, a whole page should be more than enough for everyone
4094 	 */
4095 	if (alloc_size > PAGE_SIZE)
4096 		return -ENOMEM;
4097 
4098 	space_args.total_spaces = 0;
4099 	dest = kmalloc(alloc_size, GFP_KERNEL);
4100 	if (!dest)
4101 		return -ENOMEM;
4102 	dest_orig = dest;
4103 
4104 	/* now we have a buffer to copy into */
4105 	for (i = 0; i < num_types; i++) {
4106 		struct btrfs_space_info *tmp;
4107 
4108 		if (!slot_count)
4109 			break;
4110 
4111 		info = NULL;
4112 		rcu_read_lock();
4113 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4114 					list) {
4115 			if (tmp->flags == types[i]) {
4116 				info = tmp;
4117 				break;
4118 			}
4119 		}
4120 		rcu_read_unlock();
4121 
4122 		if (!info)
4123 			continue;
4124 		down_read(&info->groups_sem);
4125 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4126 			if (!list_empty(&info->block_groups[c])) {
4127 				btrfs_get_block_group_info(
4128 					&info->block_groups[c], &space);
4129 				memcpy(dest, &space, sizeof(space));
4130 				dest++;
4131 				space_args.total_spaces++;
4132 				slot_count--;
4133 			}
4134 			if (!slot_count)
4135 				break;
4136 		}
4137 		up_read(&info->groups_sem);
4138 	}
4139 
4140 	/*
4141 	 * Add global block reserve
4142 	 */
4143 	if (slot_count) {
4144 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4145 
4146 		spin_lock(&block_rsv->lock);
4147 		space.total_bytes = block_rsv->size;
4148 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4149 		spin_unlock(&block_rsv->lock);
4150 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4151 		memcpy(dest, &space, sizeof(space));
4152 		space_args.total_spaces++;
4153 	}
4154 
4155 	user_dest = (struct btrfs_ioctl_space_info __user *)
4156 		(arg + sizeof(struct btrfs_ioctl_space_args));
4157 
4158 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4159 		ret = -EFAULT;
4160 
4161 	kfree(dest_orig);
4162 out:
4163 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4164 		ret = -EFAULT;
4165 
4166 	return ret;
4167 }
4168 
4169 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4170 					    void __user *argp)
4171 {
4172 	struct btrfs_trans_handle *trans;
4173 	u64 transid;
4174 	int ret;
4175 
4176 	trans = btrfs_attach_transaction_barrier(root);
4177 	if (IS_ERR(trans)) {
4178 		if (PTR_ERR(trans) != -ENOENT)
4179 			return PTR_ERR(trans);
4180 
4181 		/* No running transaction, don't bother */
4182 		transid = root->fs_info->last_trans_committed;
4183 		goto out;
4184 	}
4185 	transid = trans->transid;
4186 	ret = btrfs_commit_transaction_async(trans, 0);
4187 	if (ret) {
4188 		btrfs_end_transaction(trans);
4189 		return ret;
4190 	}
4191 out:
4192 	if (argp)
4193 		if (copy_to_user(argp, &transid, sizeof(transid)))
4194 			return -EFAULT;
4195 	return 0;
4196 }
4197 
4198 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4199 					   void __user *argp)
4200 {
4201 	u64 transid;
4202 
4203 	if (argp) {
4204 		if (copy_from_user(&transid, argp, sizeof(transid)))
4205 			return -EFAULT;
4206 	} else {
4207 		transid = 0;  /* current trans */
4208 	}
4209 	return btrfs_wait_for_commit(fs_info, transid);
4210 }
4211 
4212 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4213 {
4214 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4215 	struct btrfs_ioctl_scrub_args *sa;
4216 	int ret;
4217 
4218 	if (!capable(CAP_SYS_ADMIN))
4219 		return -EPERM;
4220 
4221 	sa = memdup_user(arg, sizeof(*sa));
4222 	if (IS_ERR(sa))
4223 		return PTR_ERR(sa);
4224 
4225 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4226 		ret = mnt_want_write_file(file);
4227 		if (ret)
4228 			goto out;
4229 	}
4230 
4231 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4232 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4233 			      0);
4234 
4235 	if (copy_to_user(arg, sa, sizeof(*sa)))
4236 		ret = -EFAULT;
4237 
4238 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4239 		mnt_drop_write_file(file);
4240 out:
4241 	kfree(sa);
4242 	return ret;
4243 }
4244 
4245 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4246 {
4247 	if (!capable(CAP_SYS_ADMIN))
4248 		return -EPERM;
4249 
4250 	return btrfs_scrub_cancel(fs_info);
4251 }
4252 
4253 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4254 				       void __user *arg)
4255 {
4256 	struct btrfs_ioctl_scrub_args *sa;
4257 	int ret;
4258 
4259 	if (!capable(CAP_SYS_ADMIN))
4260 		return -EPERM;
4261 
4262 	sa = memdup_user(arg, sizeof(*sa));
4263 	if (IS_ERR(sa))
4264 		return PTR_ERR(sa);
4265 
4266 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4267 
4268 	if (copy_to_user(arg, sa, sizeof(*sa)))
4269 		ret = -EFAULT;
4270 
4271 	kfree(sa);
4272 	return ret;
4273 }
4274 
4275 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4276 				      void __user *arg)
4277 {
4278 	struct btrfs_ioctl_get_dev_stats *sa;
4279 	int ret;
4280 
4281 	sa = memdup_user(arg, sizeof(*sa));
4282 	if (IS_ERR(sa))
4283 		return PTR_ERR(sa);
4284 
4285 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4286 		kfree(sa);
4287 		return -EPERM;
4288 	}
4289 
4290 	ret = btrfs_get_dev_stats(fs_info, sa);
4291 
4292 	if (copy_to_user(arg, sa, sizeof(*sa)))
4293 		ret = -EFAULT;
4294 
4295 	kfree(sa);
4296 	return ret;
4297 }
4298 
4299 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4300 				    void __user *arg)
4301 {
4302 	struct btrfs_ioctl_dev_replace_args *p;
4303 	int ret;
4304 
4305 	if (!capable(CAP_SYS_ADMIN))
4306 		return -EPERM;
4307 
4308 	p = memdup_user(arg, sizeof(*p));
4309 	if (IS_ERR(p))
4310 		return PTR_ERR(p);
4311 
4312 	switch (p->cmd) {
4313 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4314 		if (sb_rdonly(fs_info->sb)) {
4315 			ret = -EROFS;
4316 			goto out;
4317 		}
4318 		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4319 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4320 		} else {
4321 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4322 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4323 		}
4324 		break;
4325 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4326 		btrfs_dev_replace_status(fs_info, p);
4327 		ret = 0;
4328 		break;
4329 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4330 		p->result = btrfs_dev_replace_cancel(fs_info);
4331 		ret = 0;
4332 		break;
4333 	default:
4334 		ret = -EINVAL;
4335 		break;
4336 	}
4337 
4338 	if (copy_to_user(arg, p, sizeof(*p)))
4339 		ret = -EFAULT;
4340 out:
4341 	kfree(p);
4342 	return ret;
4343 }
4344 
4345 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4346 {
4347 	int ret = 0;
4348 	int i;
4349 	u64 rel_ptr;
4350 	int size;
4351 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4352 	struct inode_fs_paths *ipath = NULL;
4353 	struct btrfs_path *path;
4354 
4355 	if (!capable(CAP_DAC_READ_SEARCH))
4356 		return -EPERM;
4357 
4358 	path = btrfs_alloc_path();
4359 	if (!path) {
4360 		ret = -ENOMEM;
4361 		goto out;
4362 	}
4363 
4364 	ipa = memdup_user(arg, sizeof(*ipa));
4365 	if (IS_ERR(ipa)) {
4366 		ret = PTR_ERR(ipa);
4367 		ipa = NULL;
4368 		goto out;
4369 	}
4370 
4371 	size = min_t(u32, ipa->size, 4096);
4372 	ipath = init_ipath(size, root, path);
4373 	if (IS_ERR(ipath)) {
4374 		ret = PTR_ERR(ipath);
4375 		ipath = NULL;
4376 		goto out;
4377 	}
4378 
4379 	ret = paths_from_inode(ipa->inum, ipath);
4380 	if (ret < 0)
4381 		goto out;
4382 
4383 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4384 		rel_ptr = ipath->fspath->val[i] -
4385 			  (u64)(unsigned long)ipath->fspath->val;
4386 		ipath->fspath->val[i] = rel_ptr;
4387 	}
4388 
4389 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4390 			   ipath->fspath, size);
4391 	if (ret) {
4392 		ret = -EFAULT;
4393 		goto out;
4394 	}
4395 
4396 out:
4397 	btrfs_free_path(path);
4398 	free_ipath(ipath);
4399 	kfree(ipa);
4400 
4401 	return ret;
4402 }
4403 
4404 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4405 {
4406 	struct btrfs_data_container *inodes = ctx;
4407 	const size_t c = 3 * sizeof(u64);
4408 
4409 	if (inodes->bytes_left >= c) {
4410 		inodes->bytes_left -= c;
4411 		inodes->val[inodes->elem_cnt] = inum;
4412 		inodes->val[inodes->elem_cnt + 1] = offset;
4413 		inodes->val[inodes->elem_cnt + 2] = root;
4414 		inodes->elem_cnt += 3;
4415 	} else {
4416 		inodes->bytes_missing += c - inodes->bytes_left;
4417 		inodes->bytes_left = 0;
4418 		inodes->elem_missed += 3;
4419 	}
4420 
4421 	return 0;
4422 }
4423 
4424 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4425 					void __user *arg, int version)
4426 {
4427 	int ret = 0;
4428 	int size;
4429 	struct btrfs_ioctl_logical_ino_args *loi;
4430 	struct btrfs_data_container *inodes = NULL;
4431 	struct btrfs_path *path = NULL;
4432 	bool ignore_offset;
4433 
4434 	if (!capable(CAP_SYS_ADMIN))
4435 		return -EPERM;
4436 
4437 	loi = memdup_user(arg, sizeof(*loi));
4438 	if (IS_ERR(loi))
4439 		return PTR_ERR(loi);
4440 
4441 	if (version == 1) {
4442 		ignore_offset = false;
4443 		size = min_t(u32, loi->size, SZ_64K);
4444 	} else {
4445 		/* All reserved bits must be 0 for now */
4446 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4447 			ret = -EINVAL;
4448 			goto out_loi;
4449 		}
4450 		/* Only accept flags we have defined so far */
4451 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4452 			ret = -EINVAL;
4453 			goto out_loi;
4454 		}
4455 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4456 		size = min_t(u32, loi->size, SZ_16M);
4457 	}
4458 
4459 	path = btrfs_alloc_path();
4460 	if (!path) {
4461 		ret = -ENOMEM;
4462 		goto out;
4463 	}
4464 
4465 	inodes = init_data_container(size);
4466 	if (IS_ERR(inodes)) {
4467 		ret = PTR_ERR(inodes);
4468 		inodes = NULL;
4469 		goto out;
4470 	}
4471 
4472 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4473 					  build_ino_list, inodes, ignore_offset);
4474 	if (ret == -EINVAL)
4475 		ret = -ENOENT;
4476 	if (ret < 0)
4477 		goto out;
4478 
4479 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4480 			   size);
4481 	if (ret)
4482 		ret = -EFAULT;
4483 
4484 out:
4485 	btrfs_free_path(path);
4486 	kvfree(inodes);
4487 out_loi:
4488 	kfree(loi);
4489 
4490 	return ret;
4491 }
4492 
4493 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4494 			       struct btrfs_ioctl_balance_args *bargs)
4495 {
4496 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4497 
4498 	bargs->flags = bctl->flags;
4499 
4500 	if (atomic_read(&fs_info->balance_running))
4501 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4502 	if (atomic_read(&fs_info->balance_pause_req))
4503 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4504 	if (atomic_read(&fs_info->balance_cancel_req))
4505 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4506 
4507 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4508 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4509 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4510 
4511 	if (lock) {
4512 		spin_lock(&fs_info->balance_lock);
4513 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4514 		spin_unlock(&fs_info->balance_lock);
4515 	} else {
4516 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4517 	}
4518 }
4519 
4520 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4521 {
4522 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4523 	struct btrfs_fs_info *fs_info = root->fs_info;
4524 	struct btrfs_ioctl_balance_args *bargs;
4525 	struct btrfs_balance_control *bctl;
4526 	bool need_unlock; /* for mut. excl. ops lock */
4527 	int ret;
4528 
4529 	if (!capable(CAP_SYS_ADMIN))
4530 		return -EPERM;
4531 
4532 	ret = mnt_want_write_file(file);
4533 	if (ret)
4534 		return ret;
4535 
4536 again:
4537 	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4538 		mutex_lock(&fs_info->volume_mutex);
4539 		mutex_lock(&fs_info->balance_mutex);
4540 		need_unlock = true;
4541 		goto locked;
4542 	}
4543 
4544 	/*
4545 	 * mut. excl. ops lock is locked.  Three possibilities:
4546 	 *   (1) some other op is running
4547 	 *   (2) balance is running
4548 	 *   (3) balance is paused -- special case (think resume)
4549 	 */
4550 	mutex_lock(&fs_info->balance_mutex);
4551 	if (fs_info->balance_ctl) {
4552 		/* this is either (2) or (3) */
4553 		if (!atomic_read(&fs_info->balance_running)) {
4554 			mutex_unlock(&fs_info->balance_mutex);
4555 			if (!mutex_trylock(&fs_info->volume_mutex))
4556 				goto again;
4557 			mutex_lock(&fs_info->balance_mutex);
4558 
4559 			if (fs_info->balance_ctl &&
4560 			    !atomic_read(&fs_info->balance_running)) {
4561 				/* this is (3) */
4562 				need_unlock = false;
4563 				goto locked;
4564 			}
4565 
4566 			mutex_unlock(&fs_info->balance_mutex);
4567 			mutex_unlock(&fs_info->volume_mutex);
4568 			goto again;
4569 		} else {
4570 			/* this is (2) */
4571 			mutex_unlock(&fs_info->balance_mutex);
4572 			ret = -EINPROGRESS;
4573 			goto out;
4574 		}
4575 	} else {
4576 		/* this is (1) */
4577 		mutex_unlock(&fs_info->balance_mutex);
4578 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4579 		goto out;
4580 	}
4581 
4582 locked:
4583 	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4584 
4585 	if (arg) {
4586 		bargs = memdup_user(arg, sizeof(*bargs));
4587 		if (IS_ERR(bargs)) {
4588 			ret = PTR_ERR(bargs);
4589 			goto out_unlock;
4590 		}
4591 
4592 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4593 			if (!fs_info->balance_ctl) {
4594 				ret = -ENOTCONN;
4595 				goto out_bargs;
4596 			}
4597 
4598 			bctl = fs_info->balance_ctl;
4599 			spin_lock(&fs_info->balance_lock);
4600 			bctl->flags |= BTRFS_BALANCE_RESUME;
4601 			spin_unlock(&fs_info->balance_lock);
4602 
4603 			goto do_balance;
4604 		}
4605 	} else {
4606 		bargs = NULL;
4607 	}
4608 
4609 	if (fs_info->balance_ctl) {
4610 		ret = -EINPROGRESS;
4611 		goto out_bargs;
4612 	}
4613 
4614 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4615 	if (!bctl) {
4616 		ret = -ENOMEM;
4617 		goto out_bargs;
4618 	}
4619 
4620 	bctl->fs_info = fs_info;
4621 	if (arg) {
4622 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4623 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4624 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4625 
4626 		bctl->flags = bargs->flags;
4627 	} else {
4628 		/* balance everything - no filters */
4629 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4630 	}
4631 
4632 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4633 		ret = -EINVAL;
4634 		goto out_bctl;
4635 	}
4636 
4637 do_balance:
4638 	/*
4639 	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4640 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4641 	 * or, if restriper was paused all the way until unmount, in
4642 	 * free_fs_info.  The flag is cleared in __cancel_balance.
4643 	 */
4644 	need_unlock = false;
4645 
4646 	ret = btrfs_balance(bctl, bargs);
4647 	bctl = NULL;
4648 
4649 	if (arg) {
4650 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4651 			ret = -EFAULT;
4652 	}
4653 
4654 out_bctl:
4655 	kfree(bctl);
4656 out_bargs:
4657 	kfree(bargs);
4658 out_unlock:
4659 	mutex_unlock(&fs_info->balance_mutex);
4660 	mutex_unlock(&fs_info->volume_mutex);
4661 	if (need_unlock)
4662 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4663 out:
4664 	mnt_drop_write_file(file);
4665 	return ret;
4666 }
4667 
4668 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4669 {
4670 	if (!capable(CAP_SYS_ADMIN))
4671 		return -EPERM;
4672 
4673 	switch (cmd) {
4674 	case BTRFS_BALANCE_CTL_PAUSE:
4675 		return btrfs_pause_balance(fs_info);
4676 	case BTRFS_BALANCE_CTL_CANCEL:
4677 		return btrfs_cancel_balance(fs_info);
4678 	}
4679 
4680 	return -EINVAL;
4681 }
4682 
4683 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4684 					 void __user *arg)
4685 {
4686 	struct btrfs_ioctl_balance_args *bargs;
4687 	int ret = 0;
4688 
4689 	if (!capable(CAP_SYS_ADMIN))
4690 		return -EPERM;
4691 
4692 	mutex_lock(&fs_info->balance_mutex);
4693 	if (!fs_info->balance_ctl) {
4694 		ret = -ENOTCONN;
4695 		goto out;
4696 	}
4697 
4698 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4699 	if (!bargs) {
4700 		ret = -ENOMEM;
4701 		goto out;
4702 	}
4703 
4704 	update_ioctl_balance_args(fs_info, 1, bargs);
4705 
4706 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4707 		ret = -EFAULT;
4708 
4709 	kfree(bargs);
4710 out:
4711 	mutex_unlock(&fs_info->balance_mutex);
4712 	return ret;
4713 }
4714 
4715 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4716 {
4717 	struct inode *inode = file_inode(file);
4718 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4719 	struct btrfs_ioctl_quota_ctl_args *sa;
4720 	struct btrfs_trans_handle *trans = NULL;
4721 	int ret;
4722 	int err;
4723 
4724 	if (!capable(CAP_SYS_ADMIN))
4725 		return -EPERM;
4726 
4727 	ret = mnt_want_write_file(file);
4728 	if (ret)
4729 		return ret;
4730 
4731 	sa = memdup_user(arg, sizeof(*sa));
4732 	if (IS_ERR(sa)) {
4733 		ret = PTR_ERR(sa);
4734 		goto drop_write;
4735 	}
4736 
4737 	down_write(&fs_info->subvol_sem);
4738 	trans = btrfs_start_transaction(fs_info->tree_root, 2);
4739 	if (IS_ERR(trans)) {
4740 		ret = PTR_ERR(trans);
4741 		goto out;
4742 	}
4743 
4744 	switch (sa->cmd) {
4745 	case BTRFS_QUOTA_CTL_ENABLE:
4746 		ret = btrfs_quota_enable(trans, fs_info);
4747 		break;
4748 	case BTRFS_QUOTA_CTL_DISABLE:
4749 		ret = btrfs_quota_disable(trans, fs_info);
4750 		break;
4751 	default:
4752 		ret = -EINVAL;
4753 		break;
4754 	}
4755 
4756 	err = btrfs_commit_transaction(trans);
4757 	if (err && !ret)
4758 		ret = err;
4759 out:
4760 	kfree(sa);
4761 	up_write(&fs_info->subvol_sem);
4762 drop_write:
4763 	mnt_drop_write_file(file);
4764 	return ret;
4765 }
4766 
4767 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4768 {
4769 	struct inode *inode = file_inode(file);
4770 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4771 	struct btrfs_root *root = BTRFS_I(inode)->root;
4772 	struct btrfs_ioctl_qgroup_assign_args *sa;
4773 	struct btrfs_trans_handle *trans;
4774 	int ret;
4775 	int err;
4776 
4777 	if (!capable(CAP_SYS_ADMIN))
4778 		return -EPERM;
4779 
4780 	ret = mnt_want_write_file(file);
4781 	if (ret)
4782 		return ret;
4783 
4784 	sa = memdup_user(arg, sizeof(*sa));
4785 	if (IS_ERR(sa)) {
4786 		ret = PTR_ERR(sa);
4787 		goto drop_write;
4788 	}
4789 
4790 	trans = btrfs_join_transaction(root);
4791 	if (IS_ERR(trans)) {
4792 		ret = PTR_ERR(trans);
4793 		goto out;
4794 	}
4795 
4796 	if (sa->assign) {
4797 		ret = btrfs_add_qgroup_relation(trans, fs_info,
4798 						sa->src, sa->dst);
4799 	} else {
4800 		ret = btrfs_del_qgroup_relation(trans, fs_info,
4801 						sa->src, sa->dst);
4802 	}
4803 
4804 	/* update qgroup status and info */
4805 	err = btrfs_run_qgroups(trans, fs_info);
4806 	if (err < 0)
4807 		btrfs_handle_fs_error(fs_info, err,
4808 				      "failed to update qgroup status and info");
4809 	err = btrfs_end_transaction(trans);
4810 	if (err && !ret)
4811 		ret = err;
4812 
4813 out:
4814 	kfree(sa);
4815 drop_write:
4816 	mnt_drop_write_file(file);
4817 	return ret;
4818 }
4819 
4820 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4821 {
4822 	struct inode *inode = file_inode(file);
4823 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4824 	struct btrfs_root *root = BTRFS_I(inode)->root;
4825 	struct btrfs_ioctl_qgroup_create_args *sa;
4826 	struct btrfs_trans_handle *trans;
4827 	int ret;
4828 	int err;
4829 
4830 	if (!capable(CAP_SYS_ADMIN))
4831 		return -EPERM;
4832 
4833 	ret = mnt_want_write_file(file);
4834 	if (ret)
4835 		return ret;
4836 
4837 	sa = memdup_user(arg, sizeof(*sa));
4838 	if (IS_ERR(sa)) {
4839 		ret = PTR_ERR(sa);
4840 		goto drop_write;
4841 	}
4842 
4843 	if (!sa->qgroupid) {
4844 		ret = -EINVAL;
4845 		goto out;
4846 	}
4847 
4848 	trans = btrfs_join_transaction(root);
4849 	if (IS_ERR(trans)) {
4850 		ret = PTR_ERR(trans);
4851 		goto out;
4852 	}
4853 
4854 	if (sa->create) {
4855 		ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4856 	} else {
4857 		ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4858 	}
4859 
4860 	err = btrfs_end_transaction(trans);
4861 	if (err && !ret)
4862 		ret = err;
4863 
4864 out:
4865 	kfree(sa);
4866 drop_write:
4867 	mnt_drop_write_file(file);
4868 	return ret;
4869 }
4870 
4871 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4872 {
4873 	struct inode *inode = file_inode(file);
4874 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4875 	struct btrfs_root *root = BTRFS_I(inode)->root;
4876 	struct btrfs_ioctl_qgroup_limit_args *sa;
4877 	struct btrfs_trans_handle *trans;
4878 	int ret;
4879 	int err;
4880 	u64 qgroupid;
4881 
4882 	if (!capable(CAP_SYS_ADMIN))
4883 		return -EPERM;
4884 
4885 	ret = mnt_want_write_file(file);
4886 	if (ret)
4887 		return ret;
4888 
4889 	sa = memdup_user(arg, sizeof(*sa));
4890 	if (IS_ERR(sa)) {
4891 		ret = PTR_ERR(sa);
4892 		goto drop_write;
4893 	}
4894 
4895 	trans = btrfs_join_transaction(root);
4896 	if (IS_ERR(trans)) {
4897 		ret = PTR_ERR(trans);
4898 		goto out;
4899 	}
4900 
4901 	qgroupid = sa->qgroupid;
4902 	if (!qgroupid) {
4903 		/* take the current subvol as qgroup */
4904 		qgroupid = root->root_key.objectid;
4905 	}
4906 
4907 	ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
4908 
4909 	err = btrfs_end_transaction(trans);
4910 	if (err && !ret)
4911 		ret = err;
4912 
4913 out:
4914 	kfree(sa);
4915 drop_write:
4916 	mnt_drop_write_file(file);
4917 	return ret;
4918 }
4919 
4920 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4921 {
4922 	struct inode *inode = file_inode(file);
4923 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4924 	struct btrfs_ioctl_quota_rescan_args *qsa;
4925 	int ret;
4926 
4927 	if (!capable(CAP_SYS_ADMIN))
4928 		return -EPERM;
4929 
4930 	ret = mnt_want_write_file(file);
4931 	if (ret)
4932 		return ret;
4933 
4934 	qsa = memdup_user(arg, sizeof(*qsa));
4935 	if (IS_ERR(qsa)) {
4936 		ret = PTR_ERR(qsa);
4937 		goto drop_write;
4938 	}
4939 
4940 	if (qsa->flags) {
4941 		ret = -EINVAL;
4942 		goto out;
4943 	}
4944 
4945 	ret = btrfs_qgroup_rescan(fs_info);
4946 
4947 out:
4948 	kfree(qsa);
4949 drop_write:
4950 	mnt_drop_write_file(file);
4951 	return ret;
4952 }
4953 
4954 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4955 {
4956 	struct inode *inode = file_inode(file);
4957 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4958 	struct btrfs_ioctl_quota_rescan_args *qsa;
4959 	int ret = 0;
4960 
4961 	if (!capable(CAP_SYS_ADMIN))
4962 		return -EPERM;
4963 
4964 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4965 	if (!qsa)
4966 		return -ENOMEM;
4967 
4968 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4969 		qsa->flags = 1;
4970 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4971 	}
4972 
4973 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4974 		ret = -EFAULT;
4975 
4976 	kfree(qsa);
4977 	return ret;
4978 }
4979 
4980 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4981 {
4982 	struct inode *inode = file_inode(file);
4983 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4984 
4985 	if (!capable(CAP_SYS_ADMIN))
4986 		return -EPERM;
4987 
4988 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4989 }
4990 
4991 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4992 					    struct btrfs_ioctl_received_subvol_args *sa)
4993 {
4994 	struct inode *inode = file_inode(file);
4995 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4996 	struct btrfs_root *root = BTRFS_I(inode)->root;
4997 	struct btrfs_root_item *root_item = &root->root_item;
4998 	struct btrfs_trans_handle *trans;
4999 	struct timespec ct = current_time(inode);
5000 	int ret = 0;
5001 	int received_uuid_changed;
5002 
5003 	if (!inode_owner_or_capable(inode))
5004 		return -EPERM;
5005 
5006 	ret = mnt_want_write_file(file);
5007 	if (ret < 0)
5008 		return ret;
5009 
5010 	down_write(&fs_info->subvol_sem);
5011 
5012 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5013 		ret = -EINVAL;
5014 		goto out;
5015 	}
5016 
5017 	if (btrfs_root_readonly(root)) {
5018 		ret = -EROFS;
5019 		goto out;
5020 	}
5021 
5022 	/*
5023 	 * 1 - root item
5024 	 * 2 - uuid items (received uuid + subvol uuid)
5025 	 */
5026 	trans = btrfs_start_transaction(root, 3);
5027 	if (IS_ERR(trans)) {
5028 		ret = PTR_ERR(trans);
5029 		trans = NULL;
5030 		goto out;
5031 	}
5032 
5033 	sa->rtransid = trans->transid;
5034 	sa->rtime.sec = ct.tv_sec;
5035 	sa->rtime.nsec = ct.tv_nsec;
5036 
5037 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5038 				       BTRFS_UUID_SIZE);
5039 	if (received_uuid_changed &&
5040 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
5041 		ret = btrfs_uuid_tree_rem(trans, fs_info,
5042 					  root_item->received_uuid,
5043 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5044 					  root->root_key.objectid);
5045 		if (ret && ret != -ENOENT) {
5046 		        btrfs_abort_transaction(trans, ret);
5047 		        btrfs_end_transaction(trans);
5048 		        goto out;
5049 		}
5050 	}
5051 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5052 	btrfs_set_root_stransid(root_item, sa->stransid);
5053 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5054 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5055 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5056 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5057 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5058 
5059 	ret = btrfs_update_root(trans, fs_info->tree_root,
5060 				&root->root_key, &root->root_item);
5061 	if (ret < 0) {
5062 		btrfs_end_transaction(trans);
5063 		goto out;
5064 	}
5065 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5066 		ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5067 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5068 					  root->root_key.objectid);
5069 		if (ret < 0 && ret != -EEXIST) {
5070 			btrfs_abort_transaction(trans, ret);
5071 			btrfs_end_transaction(trans);
5072 			goto out;
5073 		}
5074 	}
5075 	ret = btrfs_commit_transaction(trans);
5076 out:
5077 	up_write(&fs_info->subvol_sem);
5078 	mnt_drop_write_file(file);
5079 	return ret;
5080 }
5081 
5082 #ifdef CONFIG_64BIT
5083 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5084 						void __user *arg)
5085 {
5086 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5087 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5088 	int ret = 0;
5089 
5090 	args32 = memdup_user(arg, sizeof(*args32));
5091 	if (IS_ERR(args32))
5092 		return PTR_ERR(args32);
5093 
5094 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5095 	if (!args64) {
5096 		ret = -ENOMEM;
5097 		goto out;
5098 	}
5099 
5100 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5101 	args64->stransid = args32->stransid;
5102 	args64->rtransid = args32->rtransid;
5103 	args64->stime.sec = args32->stime.sec;
5104 	args64->stime.nsec = args32->stime.nsec;
5105 	args64->rtime.sec = args32->rtime.sec;
5106 	args64->rtime.nsec = args32->rtime.nsec;
5107 	args64->flags = args32->flags;
5108 
5109 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5110 	if (ret)
5111 		goto out;
5112 
5113 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5114 	args32->stransid = args64->stransid;
5115 	args32->rtransid = args64->rtransid;
5116 	args32->stime.sec = args64->stime.sec;
5117 	args32->stime.nsec = args64->stime.nsec;
5118 	args32->rtime.sec = args64->rtime.sec;
5119 	args32->rtime.nsec = args64->rtime.nsec;
5120 	args32->flags = args64->flags;
5121 
5122 	ret = copy_to_user(arg, args32, sizeof(*args32));
5123 	if (ret)
5124 		ret = -EFAULT;
5125 
5126 out:
5127 	kfree(args32);
5128 	kfree(args64);
5129 	return ret;
5130 }
5131 #endif
5132 
5133 static long btrfs_ioctl_set_received_subvol(struct file *file,
5134 					    void __user *arg)
5135 {
5136 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5137 	int ret = 0;
5138 
5139 	sa = memdup_user(arg, sizeof(*sa));
5140 	if (IS_ERR(sa))
5141 		return PTR_ERR(sa);
5142 
5143 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5144 
5145 	if (ret)
5146 		goto out;
5147 
5148 	ret = copy_to_user(arg, sa, sizeof(*sa));
5149 	if (ret)
5150 		ret = -EFAULT;
5151 
5152 out:
5153 	kfree(sa);
5154 	return ret;
5155 }
5156 
5157 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5158 {
5159 	struct inode *inode = file_inode(file);
5160 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5161 	size_t len;
5162 	int ret;
5163 	char label[BTRFS_LABEL_SIZE];
5164 
5165 	spin_lock(&fs_info->super_lock);
5166 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5167 	spin_unlock(&fs_info->super_lock);
5168 
5169 	len = strnlen(label, BTRFS_LABEL_SIZE);
5170 
5171 	if (len == BTRFS_LABEL_SIZE) {
5172 		btrfs_warn(fs_info,
5173 			   "label is too long, return the first %zu bytes",
5174 			   --len);
5175 	}
5176 
5177 	ret = copy_to_user(arg, label, len);
5178 
5179 	return ret ? -EFAULT : 0;
5180 }
5181 
5182 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5183 {
5184 	struct inode *inode = file_inode(file);
5185 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5186 	struct btrfs_root *root = BTRFS_I(inode)->root;
5187 	struct btrfs_super_block *super_block = fs_info->super_copy;
5188 	struct btrfs_trans_handle *trans;
5189 	char label[BTRFS_LABEL_SIZE];
5190 	int ret;
5191 
5192 	if (!capable(CAP_SYS_ADMIN))
5193 		return -EPERM;
5194 
5195 	if (copy_from_user(label, arg, sizeof(label)))
5196 		return -EFAULT;
5197 
5198 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5199 		btrfs_err(fs_info,
5200 			  "unable to set label with more than %d bytes",
5201 			  BTRFS_LABEL_SIZE - 1);
5202 		return -EINVAL;
5203 	}
5204 
5205 	ret = mnt_want_write_file(file);
5206 	if (ret)
5207 		return ret;
5208 
5209 	trans = btrfs_start_transaction(root, 0);
5210 	if (IS_ERR(trans)) {
5211 		ret = PTR_ERR(trans);
5212 		goto out_unlock;
5213 	}
5214 
5215 	spin_lock(&fs_info->super_lock);
5216 	strcpy(super_block->label, label);
5217 	spin_unlock(&fs_info->super_lock);
5218 	ret = btrfs_commit_transaction(trans);
5219 
5220 out_unlock:
5221 	mnt_drop_write_file(file);
5222 	return ret;
5223 }
5224 
5225 #define INIT_FEATURE_FLAGS(suffix) \
5226 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5227 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5228 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5229 
5230 int btrfs_ioctl_get_supported_features(void __user *arg)
5231 {
5232 	static const struct btrfs_ioctl_feature_flags features[3] = {
5233 		INIT_FEATURE_FLAGS(SUPP),
5234 		INIT_FEATURE_FLAGS(SAFE_SET),
5235 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5236 	};
5237 
5238 	if (copy_to_user(arg, &features, sizeof(features)))
5239 		return -EFAULT;
5240 
5241 	return 0;
5242 }
5243 
5244 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5245 {
5246 	struct inode *inode = file_inode(file);
5247 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5248 	struct btrfs_super_block *super_block = fs_info->super_copy;
5249 	struct btrfs_ioctl_feature_flags features;
5250 
5251 	features.compat_flags = btrfs_super_compat_flags(super_block);
5252 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5253 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5254 
5255 	if (copy_to_user(arg, &features, sizeof(features)))
5256 		return -EFAULT;
5257 
5258 	return 0;
5259 }
5260 
5261 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5262 			      enum btrfs_feature_set set,
5263 			      u64 change_mask, u64 flags, u64 supported_flags,
5264 			      u64 safe_set, u64 safe_clear)
5265 {
5266 	const char *type = btrfs_feature_set_names[set];
5267 	char *names;
5268 	u64 disallowed, unsupported;
5269 	u64 set_mask = flags & change_mask;
5270 	u64 clear_mask = ~flags & change_mask;
5271 
5272 	unsupported = set_mask & ~supported_flags;
5273 	if (unsupported) {
5274 		names = btrfs_printable_features(set, unsupported);
5275 		if (names) {
5276 			btrfs_warn(fs_info,
5277 				   "this kernel does not support the %s feature bit%s",
5278 				   names, strchr(names, ',') ? "s" : "");
5279 			kfree(names);
5280 		} else
5281 			btrfs_warn(fs_info,
5282 				   "this kernel does not support %s bits 0x%llx",
5283 				   type, unsupported);
5284 		return -EOPNOTSUPP;
5285 	}
5286 
5287 	disallowed = set_mask & ~safe_set;
5288 	if (disallowed) {
5289 		names = btrfs_printable_features(set, disallowed);
5290 		if (names) {
5291 			btrfs_warn(fs_info,
5292 				   "can't set the %s feature bit%s while mounted",
5293 				   names, strchr(names, ',') ? "s" : "");
5294 			kfree(names);
5295 		} else
5296 			btrfs_warn(fs_info,
5297 				   "can't set %s bits 0x%llx while mounted",
5298 				   type, disallowed);
5299 		return -EPERM;
5300 	}
5301 
5302 	disallowed = clear_mask & ~safe_clear;
5303 	if (disallowed) {
5304 		names = btrfs_printable_features(set, disallowed);
5305 		if (names) {
5306 			btrfs_warn(fs_info,
5307 				   "can't clear the %s feature bit%s while mounted",
5308 				   names, strchr(names, ',') ? "s" : "");
5309 			kfree(names);
5310 		} else
5311 			btrfs_warn(fs_info,
5312 				   "can't clear %s bits 0x%llx while mounted",
5313 				   type, disallowed);
5314 		return -EPERM;
5315 	}
5316 
5317 	return 0;
5318 }
5319 
5320 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5321 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5322 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5323 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5324 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5325 
5326 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5327 {
5328 	struct inode *inode = file_inode(file);
5329 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5330 	struct btrfs_root *root = BTRFS_I(inode)->root;
5331 	struct btrfs_super_block *super_block = fs_info->super_copy;
5332 	struct btrfs_ioctl_feature_flags flags[2];
5333 	struct btrfs_trans_handle *trans;
5334 	u64 newflags;
5335 	int ret;
5336 
5337 	if (!capable(CAP_SYS_ADMIN))
5338 		return -EPERM;
5339 
5340 	if (copy_from_user(flags, arg, sizeof(flags)))
5341 		return -EFAULT;
5342 
5343 	/* Nothing to do */
5344 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5345 	    !flags[0].incompat_flags)
5346 		return 0;
5347 
5348 	ret = check_feature(fs_info, flags[0].compat_flags,
5349 			    flags[1].compat_flags, COMPAT);
5350 	if (ret)
5351 		return ret;
5352 
5353 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5354 			    flags[1].compat_ro_flags, COMPAT_RO);
5355 	if (ret)
5356 		return ret;
5357 
5358 	ret = check_feature(fs_info, flags[0].incompat_flags,
5359 			    flags[1].incompat_flags, INCOMPAT);
5360 	if (ret)
5361 		return ret;
5362 
5363 	ret = mnt_want_write_file(file);
5364 	if (ret)
5365 		return ret;
5366 
5367 	trans = btrfs_start_transaction(root, 0);
5368 	if (IS_ERR(trans)) {
5369 		ret = PTR_ERR(trans);
5370 		goto out_drop_write;
5371 	}
5372 
5373 	spin_lock(&fs_info->super_lock);
5374 	newflags = btrfs_super_compat_flags(super_block);
5375 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5376 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5377 	btrfs_set_super_compat_flags(super_block, newflags);
5378 
5379 	newflags = btrfs_super_compat_ro_flags(super_block);
5380 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5381 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5382 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5383 
5384 	newflags = btrfs_super_incompat_flags(super_block);
5385 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5386 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5387 	btrfs_set_super_incompat_flags(super_block, newflags);
5388 	spin_unlock(&fs_info->super_lock);
5389 
5390 	ret = btrfs_commit_transaction(trans);
5391 out_drop_write:
5392 	mnt_drop_write_file(file);
5393 
5394 	return ret;
5395 }
5396 
5397 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5398 {
5399 	struct btrfs_ioctl_send_args *arg;
5400 	int ret;
5401 
5402 	if (compat) {
5403 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5404 		struct btrfs_ioctl_send_args_32 args32;
5405 
5406 		ret = copy_from_user(&args32, argp, sizeof(args32));
5407 		if (ret)
5408 			return -EFAULT;
5409 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5410 		if (!arg)
5411 			return -ENOMEM;
5412 		arg->send_fd = args32.send_fd;
5413 		arg->clone_sources_count = args32.clone_sources_count;
5414 		arg->clone_sources = compat_ptr(args32.clone_sources);
5415 		arg->parent_root = args32.parent_root;
5416 		arg->flags = args32.flags;
5417 		memcpy(arg->reserved, args32.reserved,
5418 		       sizeof(args32.reserved));
5419 #else
5420 		return -ENOTTY;
5421 #endif
5422 	} else {
5423 		arg = memdup_user(argp, sizeof(*arg));
5424 		if (IS_ERR(arg))
5425 			return PTR_ERR(arg);
5426 	}
5427 	ret = btrfs_ioctl_send(file, arg);
5428 	kfree(arg);
5429 	return ret;
5430 }
5431 
5432 long btrfs_ioctl(struct file *file, unsigned int
5433 		cmd, unsigned long arg)
5434 {
5435 	struct inode *inode = file_inode(file);
5436 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5437 	struct btrfs_root *root = BTRFS_I(inode)->root;
5438 	void __user *argp = (void __user *)arg;
5439 
5440 	switch (cmd) {
5441 	case FS_IOC_GETFLAGS:
5442 		return btrfs_ioctl_getflags(file, argp);
5443 	case FS_IOC_SETFLAGS:
5444 		return btrfs_ioctl_setflags(file, argp);
5445 	case FS_IOC_GETVERSION:
5446 		return btrfs_ioctl_getversion(file, argp);
5447 	case FITRIM:
5448 		return btrfs_ioctl_fitrim(file, argp);
5449 	case BTRFS_IOC_SNAP_CREATE:
5450 		return btrfs_ioctl_snap_create(file, argp, 0);
5451 	case BTRFS_IOC_SNAP_CREATE_V2:
5452 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5453 	case BTRFS_IOC_SUBVOL_CREATE:
5454 		return btrfs_ioctl_snap_create(file, argp, 1);
5455 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5456 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5457 	case BTRFS_IOC_SNAP_DESTROY:
5458 		return btrfs_ioctl_snap_destroy(file, argp);
5459 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5460 		return btrfs_ioctl_subvol_getflags(file, argp);
5461 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5462 		return btrfs_ioctl_subvol_setflags(file, argp);
5463 	case BTRFS_IOC_DEFAULT_SUBVOL:
5464 		return btrfs_ioctl_default_subvol(file, argp);
5465 	case BTRFS_IOC_DEFRAG:
5466 		return btrfs_ioctl_defrag(file, NULL);
5467 	case BTRFS_IOC_DEFRAG_RANGE:
5468 		return btrfs_ioctl_defrag(file, argp);
5469 	case BTRFS_IOC_RESIZE:
5470 		return btrfs_ioctl_resize(file, argp);
5471 	case BTRFS_IOC_ADD_DEV:
5472 		return btrfs_ioctl_add_dev(fs_info, argp);
5473 	case BTRFS_IOC_RM_DEV:
5474 		return btrfs_ioctl_rm_dev(file, argp);
5475 	case BTRFS_IOC_RM_DEV_V2:
5476 		return btrfs_ioctl_rm_dev_v2(file, argp);
5477 	case BTRFS_IOC_FS_INFO:
5478 		return btrfs_ioctl_fs_info(fs_info, argp);
5479 	case BTRFS_IOC_DEV_INFO:
5480 		return btrfs_ioctl_dev_info(fs_info, argp);
5481 	case BTRFS_IOC_BALANCE:
5482 		return btrfs_ioctl_balance(file, NULL);
5483 	case BTRFS_IOC_TREE_SEARCH:
5484 		return btrfs_ioctl_tree_search(file, argp);
5485 	case BTRFS_IOC_TREE_SEARCH_V2:
5486 		return btrfs_ioctl_tree_search_v2(file, argp);
5487 	case BTRFS_IOC_INO_LOOKUP:
5488 		return btrfs_ioctl_ino_lookup(file, argp);
5489 	case BTRFS_IOC_INO_PATHS:
5490 		return btrfs_ioctl_ino_to_path(root, argp);
5491 	case BTRFS_IOC_LOGICAL_INO:
5492 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5493 	case BTRFS_IOC_LOGICAL_INO_V2:
5494 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5495 	case BTRFS_IOC_SPACE_INFO:
5496 		return btrfs_ioctl_space_info(fs_info, argp);
5497 	case BTRFS_IOC_SYNC: {
5498 		int ret;
5499 
5500 		ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5501 		if (ret)
5502 			return ret;
5503 		ret = btrfs_sync_fs(inode->i_sb, 1);
5504 		/*
5505 		 * The transaction thread may want to do more work,
5506 		 * namely it pokes the cleaner kthread that will start
5507 		 * processing uncleaned subvols.
5508 		 */
5509 		wake_up_process(fs_info->transaction_kthread);
5510 		return ret;
5511 	}
5512 	case BTRFS_IOC_START_SYNC:
5513 		return btrfs_ioctl_start_sync(root, argp);
5514 	case BTRFS_IOC_WAIT_SYNC:
5515 		return btrfs_ioctl_wait_sync(fs_info, argp);
5516 	case BTRFS_IOC_SCRUB:
5517 		return btrfs_ioctl_scrub(file, argp);
5518 	case BTRFS_IOC_SCRUB_CANCEL:
5519 		return btrfs_ioctl_scrub_cancel(fs_info);
5520 	case BTRFS_IOC_SCRUB_PROGRESS:
5521 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5522 	case BTRFS_IOC_BALANCE_V2:
5523 		return btrfs_ioctl_balance(file, argp);
5524 	case BTRFS_IOC_BALANCE_CTL:
5525 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5526 	case BTRFS_IOC_BALANCE_PROGRESS:
5527 		return btrfs_ioctl_balance_progress(fs_info, argp);
5528 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5529 		return btrfs_ioctl_set_received_subvol(file, argp);
5530 #ifdef CONFIG_64BIT
5531 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5532 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5533 #endif
5534 	case BTRFS_IOC_SEND:
5535 		return _btrfs_ioctl_send(file, argp, false);
5536 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5537 	case BTRFS_IOC_SEND_32:
5538 		return _btrfs_ioctl_send(file, argp, true);
5539 #endif
5540 	case BTRFS_IOC_GET_DEV_STATS:
5541 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5542 	case BTRFS_IOC_QUOTA_CTL:
5543 		return btrfs_ioctl_quota_ctl(file, argp);
5544 	case BTRFS_IOC_QGROUP_ASSIGN:
5545 		return btrfs_ioctl_qgroup_assign(file, argp);
5546 	case BTRFS_IOC_QGROUP_CREATE:
5547 		return btrfs_ioctl_qgroup_create(file, argp);
5548 	case BTRFS_IOC_QGROUP_LIMIT:
5549 		return btrfs_ioctl_qgroup_limit(file, argp);
5550 	case BTRFS_IOC_QUOTA_RESCAN:
5551 		return btrfs_ioctl_quota_rescan(file, argp);
5552 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5553 		return btrfs_ioctl_quota_rescan_status(file, argp);
5554 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5555 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5556 	case BTRFS_IOC_DEV_REPLACE:
5557 		return btrfs_ioctl_dev_replace(fs_info, argp);
5558 	case BTRFS_IOC_GET_FSLABEL:
5559 		return btrfs_ioctl_get_fslabel(file, argp);
5560 	case BTRFS_IOC_SET_FSLABEL:
5561 		return btrfs_ioctl_set_fslabel(file, argp);
5562 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5563 		return btrfs_ioctl_get_supported_features(argp);
5564 	case BTRFS_IOC_GET_FEATURES:
5565 		return btrfs_ioctl_get_features(file, argp);
5566 	case BTRFS_IOC_SET_FEATURES:
5567 		return btrfs_ioctl_set_features(file, argp);
5568 	}
5569 
5570 	return -ENOTTY;
5571 }
5572 
5573 #ifdef CONFIG_COMPAT
5574 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5575 {
5576 	/*
5577 	 * These all access 32-bit values anyway so no further
5578 	 * handling is necessary.
5579 	 */
5580 	switch (cmd) {
5581 	case FS_IOC32_GETFLAGS:
5582 		cmd = FS_IOC_GETFLAGS;
5583 		break;
5584 	case FS_IOC32_SETFLAGS:
5585 		cmd = FS_IOC_SETFLAGS;
5586 		break;
5587 	case FS_IOC32_GETVERSION:
5588 		cmd = FS_IOC_GETVERSION;
5589 		break;
5590 	}
5591 
5592 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5593 }
5594 #endif
5595