1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/fsnotify.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/mount.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/swap.h> 22 #include <linux/writeback.h> 23 #include <linux/compat.h> 24 #include <linux/bit_spinlock.h> 25 #include <linux/security.h> 26 #include <linux/xattr.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/blkdev.h> 30 #include <linux/uuid.h> 31 #include <linux/btrfs.h> 32 #include <linux/uaccess.h> 33 #include <linux/iversion.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "volumes.h" 40 #include "locking.h" 41 #include "inode-map.h" 42 #include "backref.h" 43 #include "rcu-string.h" 44 #include "send.h" 45 #include "dev-replace.h" 46 #include "props.h" 47 #include "sysfs.h" 48 #include "qgroup.h" 49 #include "tree-log.h" 50 #include "compression.h" 51 52 #ifdef CONFIG_64BIT 53 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 54 * structures are incorrect, as the timespec structure from userspace 55 * is 4 bytes too small. We define these alternatives here to teach 56 * the kernel about the 32-bit struct packing. 57 */ 58 struct btrfs_ioctl_timespec_32 { 59 __u64 sec; 60 __u32 nsec; 61 } __attribute__ ((__packed__)); 62 63 struct btrfs_ioctl_received_subvol_args_32 { 64 char uuid[BTRFS_UUID_SIZE]; /* in */ 65 __u64 stransid; /* in */ 66 __u64 rtransid; /* out */ 67 struct btrfs_ioctl_timespec_32 stime; /* in */ 68 struct btrfs_ioctl_timespec_32 rtime; /* out */ 69 __u64 flags; /* in */ 70 __u64 reserved[16]; /* in */ 71 } __attribute__ ((__packed__)); 72 73 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 74 struct btrfs_ioctl_received_subvol_args_32) 75 #endif 76 77 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 78 struct btrfs_ioctl_send_args_32 { 79 __s64 send_fd; /* in */ 80 __u64 clone_sources_count; /* in */ 81 compat_uptr_t clone_sources; /* in */ 82 __u64 parent_root; /* in */ 83 __u64 flags; /* in */ 84 __u64 reserved[4]; /* in */ 85 } __attribute__ ((__packed__)); 86 87 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 88 struct btrfs_ioctl_send_args_32) 89 #endif 90 91 static int btrfs_clone(struct inode *src, struct inode *inode, 92 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 93 int no_time_update); 94 95 /* Mask out flags that are inappropriate for the given type of inode. */ 96 static unsigned int btrfs_mask_flags(umode_t mode, unsigned int flags) 97 { 98 if (S_ISDIR(mode)) 99 return flags; 100 else if (S_ISREG(mode)) 101 return flags & ~FS_DIRSYNC_FL; 102 else 103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 104 } 105 106 /* 107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 108 */ 109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 110 { 111 unsigned int iflags = 0; 112 113 if (flags & BTRFS_INODE_SYNC) 114 iflags |= FS_SYNC_FL; 115 if (flags & BTRFS_INODE_IMMUTABLE) 116 iflags |= FS_IMMUTABLE_FL; 117 if (flags & BTRFS_INODE_APPEND) 118 iflags |= FS_APPEND_FL; 119 if (flags & BTRFS_INODE_NODUMP) 120 iflags |= FS_NODUMP_FL; 121 if (flags & BTRFS_INODE_NOATIME) 122 iflags |= FS_NOATIME_FL; 123 if (flags & BTRFS_INODE_DIRSYNC) 124 iflags |= FS_DIRSYNC_FL; 125 if (flags & BTRFS_INODE_NODATACOW) 126 iflags |= FS_NOCOW_FL; 127 128 if (flags & BTRFS_INODE_NOCOMPRESS) 129 iflags |= FS_NOCOMP_FL; 130 else if (flags & BTRFS_INODE_COMPRESS) 131 iflags |= FS_COMPR_FL; 132 133 return iflags; 134 } 135 136 /* 137 * Update inode->i_flags based on the btrfs internal flags. 138 */ 139 void btrfs_update_iflags(struct inode *inode) 140 { 141 struct btrfs_inode *ip = BTRFS_I(inode); 142 unsigned int new_fl = 0; 143 144 if (ip->flags & BTRFS_INODE_SYNC) 145 new_fl |= S_SYNC; 146 if (ip->flags & BTRFS_INODE_IMMUTABLE) 147 new_fl |= S_IMMUTABLE; 148 if (ip->flags & BTRFS_INODE_APPEND) 149 new_fl |= S_APPEND; 150 if (ip->flags & BTRFS_INODE_NOATIME) 151 new_fl |= S_NOATIME; 152 if (ip->flags & BTRFS_INODE_DIRSYNC) 153 new_fl |= S_DIRSYNC; 154 155 set_mask_bits(&inode->i_flags, 156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 157 new_fl); 158 } 159 160 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 161 { 162 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 163 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 164 165 if (copy_to_user(arg, &flags, sizeof(flags))) 166 return -EFAULT; 167 return 0; 168 } 169 170 static int check_flags(unsigned int flags) 171 { 172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 173 FS_NOATIME_FL | FS_NODUMP_FL | \ 174 FS_SYNC_FL | FS_DIRSYNC_FL | \ 175 FS_NOCOMP_FL | FS_COMPR_FL | 176 FS_NOCOW_FL)) 177 return -EOPNOTSUPP; 178 179 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 180 return -EINVAL; 181 182 return 0; 183 } 184 185 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 186 { 187 struct inode *inode = file_inode(file); 188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 189 struct btrfs_inode *ip = BTRFS_I(inode); 190 struct btrfs_root *root = ip->root; 191 struct btrfs_trans_handle *trans; 192 unsigned int flags, oldflags; 193 int ret; 194 u64 ip_oldflags; 195 unsigned int i_oldflags; 196 umode_t mode; 197 198 if (!inode_owner_or_capable(inode)) 199 return -EPERM; 200 201 if (btrfs_root_readonly(root)) 202 return -EROFS; 203 204 if (copy_from_user(&flags, arg, sizeof(flags))) 205 return -EFAULT; 206 207 ret = check_flags(flags); 208 if (ret) 209 return ret; 210 211 ret = mnt_want_write_file(file); 212 if (ret) 213 return ret; 214 215 inode_lock(inode); 216 217 ip_oldflags = ip->flags; 218 i_oldflags = inode->i_flags; 219 mode = inode->i_mode; 220 221 flags = btrfs_mask_flags(inode->i_mode, flags); 222 oldflags = btrfs_flags_to_ioctl(ip->flags); 223 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 224 if (!capable(CAP_LINUX_IMMUTABLE)) { 225 ret = -EPERM; 226 goto out_unlock; 227 } 228 } 229 230 if (flags & FS_SYNC_FL) 231 ip->flags |= BTRFS_INODE_SYNC; 232 else 233 ip->flags &= ~BTRFS_INODE_SYNC; 234 if (flags & FS_IMMUTABLE_FL) 235 ip->flags |= BTRFS_INODE_IMMUTABLE; 236 else 237 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 238 if (flags & FS_APPEND_FL) 239 ip->flags |= BTRFS_INODE_APPEND; 240 else 241 ip->flags &= ~BTRFS_INODE_APPEND; 242 if (flags & FS_NODUMP_FL) 243 ip->flags |= BTRFS_INODE_NODUMP; 244 else 245 ip->flags &= ~BTRFS_INODE_NODUMP; 246 if (flags & FS_NOATIME_FL) 247 ip->flags |= BTRFS_INODE_NOATIME; 248 else 249 ip->flags &= ~BTRFS_INODE_NOATIME; 250 if (flags & FS_DIRSYNC_FL) 251 ip->flags |= BTRFS_INODE_DIRSYNC; 252 else 253 ip->flags &= ~BTRFS_INODE_DIRSYNC; 254 if (flags & FS_NOCOW_FL) { 255 if (S_ISREG(mode)) { 256 /* 257 * It's safe to turn csums off here, no extents exist. 258 * Otherwise we want the flag to reflect the real COW 259 * status of the file and will not set it. 260 */ 261 if (inode->i_size == 0) 262 ip->flags |= BTRFS_INODE_NODATACOW 263 | BTRFS_INODE_NODATASUM; 264 } else { 265 ip->flags |= BTRFS_INODE_NODATACOW; 266 } 267 } else { 268 /* 269 * Revert back under same assumptions as above 270 */ 271 if (S_ISREG(mode)) { 272 if (inode->i_size == 0) 273 ip->flags &= ~(BTRFS_INODE_NODATACOW 274 | BTRFS_INODE_NODATASUM); 275 } else { 276 ip->flags &= ~BTRFS_INODE_NODATACOW; 277 } 278 } 279 280 /* 281 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 282 * flag may be changed automatically if compression code won't make 283 * things smaller. 284 */ 285 if (flags & FS_NOCOMP_FL) { 286 ip->flags &= ~BTRFS_INODE_COMPRESS; 287 ip->flags |= BTRFS_INODE_NOCOMPRESS; 288 289 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 290 if (ret && ret != -ENODATA) 291 goto out_drop; 292 } else if (flags & FS_COMPR_FL) { 293 const char *comp; 294 295 ip->flags |= BTRFS_INODE_COMPRESS; 296 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 297 298 comp = btrfs_compress_type2str(fs_info->compress_type); 299 if (!comp || comp[0] == 0) 300 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 301 302 ret = btrfs_set_prop(inode, "btrfs.compression", 303 comp, strlen(comp), 0); 304 if (ret) 305 goto out_drop; 306 307 } else { 308 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 309 if (ret && ret != -ENODATA) 310 goto out_drop; 311 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 312 } 313 314 trans = btrfs_start_transaction(root, 1); 315 if (IS_ERR(trans)) { 316 ret = PTR_ERR(trans); 317 goto out_drop; 318 } 319 320 btrfs_update_iflags(inode); 321 inode_inc_iversion(inode); 322 inode->i_ctime = current_time(inode); 323 ret = btrfs_update_inode(trans, root, inode); 324 325 btrfs_end_transaction(trans); 326 out_drop: 327 if (ret) { 328 ip->flags = ip_oldflags; 329 inode->i_flags = i_oldflags; 330 } 331 332 out_unlock: 333 inode_unlock(inode); 334 mnt_drop_write_file(file); 335 return ret; 336 } 337 338 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 339 { 340 struct inode *inode = file_inode(file); 341 342 return put_user(inode->i_generation, arg); 343 } 344 345 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 346 { 347 struct inode *inode = file_inode(file); 348 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 349 struct btrfs_device *device; 350 struct request_queue *q; 351 struct fstrim_range range; 352 u64 minlen = ULLONG_MAX; 353 u64 num_devices = 0; 354 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 355 int ret; 356 357 if (!capable(CAP_SYS_ADMIN)) 358 return -EPERM; 359 360 rcu_read_lock(); 361 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 362 dev_list) { 363 if (!device->bdev) 364 continue; 365 q = bdev_get_queue(device->bdev); 366 if (blk_queue_discard(q)) { 367 num_devices++; 368 minlen = min_t(u64, q->limits.discard_granularity, 369 minlen); 370 } 371 } 372 rcu_read_unlock(); 373 374 if (!num_devices) 375 return -EOPNOTSUPP; 376 if (copy_from_user(&range, arg, sizeof(range))) 377 return -EFAULT; 378 if (range.start > total_bytes || 379 range.len < fs_info->sb->s_blocksize) 380 return -EINVAL; 381 382 range.len = min(range.len, total_bytes - range.start); 383 range.minlen = max(range.minlen, minlen); 384 ret = btrfs_trim_fs(fs_info, &range); 385 if (ret < 0) 386 return ret; 387 388 if (copy_to_user(arg, &range, sizeof(range))) 389 return -EFAULT; 390 391 return 0; 392 } 393 394 int btrfs_is_empty_uuid(u8 *uuid) 395 { 396 int i; 397 398 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 399 if (uuid[i]) 400 return 0; 401 } 402 return 1; 403 } 404 405 static noinline int create_subvol(struct inode *dir, 406 struct dentry *dentry, 407 const char *name, int namelen, 408 u64 *async_transid, 409 struct btrfs_qgroup_inherit *inherit) 410 { 411 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 412 struct btrfs_trans_handle *trans; 413 struct btrfs_key key; 414 struct btrfs_root_item *root_item; 415 struct btrfs_inode_item *inode_item; 416 struct extent_buffer *leaf; 417 struct btrfs_root *root = BTRFS_I(dir)->root; 418 struct btrfs_root *new_root; 419 struct btrfs_block_rsv block_rsv; 420 struct timespec cur_time = current_time(dir); 421 struct inode *inode; 422 int ret; 423 int err; 424 u64 objectid; 425 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 426 u64 index = 0; 427 u64 qgroup_reserved; 428 uuid_le new_uuid; 429 430 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 431 if (!root_item) 432 return -ENOMEM; 433 434 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 435 if (ret) 436 goto fail_free; 437 438 /* 439 * Don't create subvolume whose level is not zero. Or qgroup will be 440 * screwed up since it assumes subvolume qgroup's level to be 0. 441 */ 442 if (btrfs_qgroup_level(objectid)) { 443 ret = -ENOSPC; 444 goto fail_free; 445 } 446 447 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 448 /* 449 * The same as the snapshot creation, please see the comment 450 * of create_snapshot(). 451 */ 452 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 453 8, &qgroup_reserved, false); 454 if (ret) 455 goto fail_free; 456 457 trans = btrfs_start_transaction(root, 0); 458 if (IS_ERR(trans)) { 459 ret = PTR_ERR(trans); 460 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 461 goto fail_free; 462 } 463 trans->block_rsv = &block_rsv; 464 trans->bytes_reserved = block_rsv.size; 465 466 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit); 467 if (ret) 468 goto fail; 469 470 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 471 if (IS_ERR(leaf)) { 472 ret = PTR_ERR(leaf); 473 goto fail; 474 } 475 476 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 477 btrfs_set_header_bytenr(leaf, leaf->start); 478 btrfs_set_header_generation(leaf, trans->transid); 479 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 480 btrfs_set_header_owner(leaf, objectid); 481 482 write_extent_buffer_fsid(leaf, fs_info->fsid); 483 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 484 btrfs_mark_buffer_dirty(leaf); 485 486 inode_item = &root_item->inode; 487 btrfs_set_stack_inode_generation(inode_item, 1); 488 btrfs_set_stack_inode_size(inode_item, 3); 489 btrfs_set_stack_inode_nlink(inode_item, 1); 490 btrfs_set_stack_inode_nbytes(inode_item, 491 fs_info->nodesize); 492 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 493 494 btrfs_set_root_flags(root_item, 0); 495 btrfs_set_root_limit(root_item, 0); 496 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 497 498 btrfs_set_root_bytenr(root_item, leaf->start); 499 btrfs_set_root_generation(root_item, trans->transid); 500 btrfs_set_root_level(root_item, 0); 501 btrfs_set_root_refs(root_item, 1); 502 btrfs_set_root_used(root_item, leaf->len); 503 btrfs_set_root_last_snapshot(root_item, 0); 504 505 btrfs_set_root_generation_v2(root_item, 506 btrfs_root_generation(root_item)); 507 uuid_le_gen(&new_uuid); 508 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 509 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 510 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 511 root_item->ctime = root_item->otime; 512 btrfs_set_root_ctransid(root_item, trans->transid); 513 btrfs_set_root_otransid(root_item, trans->transid); 514 515 btrfs_tree_unlock(leaf); 516 free_extent_buffer(leaf); 517 leaf = NULL; 518 519 btrfs_set_root_dirid(root_item, new_dirid); 520 521 key.objectid = objectid; 522 key.offset = 0; 523 key.type = BTRFS_ROOT_ITEM_KEY; 524 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 525 root_item); 526 if (ret) 527 goto fail; 528 529 key.offset = (u64)-1; 530 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 531 if (IS_ERR(new_root)) { 532 ret = PTR_ERR(new_root); 533 btrfs_abort_transaction(trans, ret); 534 goto fail; 535 } 536 537 btrfs_record_root_in_trans(trans, new_root); 538 539 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 540 if (ret) { 541 /* We potentially lose an unused inode item here */ 542 btrfs_abort_transaction(trans, ret); 543 goto fail; 544 } 545 546 mutex_lock(&new_root->objectid_mutex); 547 new_root->highest_objectid = new_dirid; 548 mutex_unlock(&new_root->objectid_mutex); 549 550 /* 551 * insert the directory item 552 */ 553 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 554 if (ret) { 555 btrfs_abort_transaction(trans, ret); 556 goto fail; 557 } 558 559 ret = btrfs_insert_dir_item(trans, root, 560 name, namelen, BTRFS_I(dir), &key, 561 BTRFS_FT_DIR, index); 562 if (ret) { 563 btrfs_abort_transaction(trans, ret); 564 goto fail; 565 } 566 567 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 568 ret = btrfs_update_inode(trans, root, dir); 569 BUG_ON(ret); 570 571 ret = btrfs_add_root_ref(trans, fs_info, 572 objectid, root->root_key.objectid, 573 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 574 BUG_ON(ret); 575 576 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid, 577 BTRFS_UUID_KEY_SUBVOL, objectid); 578 if (ret) 579 btrfs_abort_transaction(trans, ret); 580 581 fail: 582 kfree(root_item); 583 trans->block_rsv = NULL; 584 trans->bytes_reserved = 0; 585 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 586 587 if (async_transid) { 588 *async_transid = trans->transid; 589 err = btrfs_commit_transaction_async(trans, 1); 590 if (err) 591 err = btrfs_commit_transaction(trans); 592 } else { 593 err = btrfs_commit_transaction(trans); 594 } 595 if (err && !ret) 596 ret = err; 597 598 if (!ret) { 599 inode = btrfs_lookup_dentry(dir, dentry); 600 if (IS_ERR(inode)) 601 return PTR_ERR(inode); 602 d_instantiate(dentry, inode); 603 } 604 return ret; 605 606 fail_free: 607 kfree(root_item); 608 return ret; 609 } 610 611 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 612 struct dentry *dentry, 613 u64 *async_transid, bool readonly, 614 struct btrfs_qgroup_inherit *inherit) 615 { 616 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 617 struct inode *inode; 618 struct btrfs_pending_snapshot *pending_snapshot; 619 struct btrfs_trans_handle *trans; 620 int ret; 621 622 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 623 return -EINVAL; 624 625 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 626 if (!pending_snapshot) 627 return -ENOMEM; 628 629 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 630 GFP_KERNEL); 631 pending_snapshot->path = btrfs_alloc_path(); 632 if (!pending_snapshot->root_item || !pending_snapshot->path) { 633 ret = -ENOMEM; 634 goto free_pending; 635 } 636 637 atomic_inc(&root->will_be_snapshotted); 638 smp_mb__after_atomic(); 639 /* wait for no snapshot writes */ 640 wait_event(root->subv_writers->wait, 641 percpu_counter_sum(&root->subv_writers->counter) == 0); 642 643 ret = btrfs_start_delalloc_inodes(root, 0); 644 if (ret) 645 goto dec_and_free; 646 647 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 648 649 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 650 BTRFS_BLOCK_RSV_TEMP); 651 /* 652 * 1 - parent dir inode 653 * 2 - dir entries 654 * 1 - root item 655 * 2 - root ref/backref 656 * 1 - root of snapshot 657 * 1 - UUID item 658 */ 659 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 660 &pending_snapshot->block_rsv, 8, 661 &pending_snapshot->qgroup_reserved, 662 false); 663 if (ret) 664 goto dec_and_free; 665 666 pending_snapshot->dentry = dentry; 667 pending_snapshot->root = root; 668 pending_snapshot->readonly = readonly; 669 pending_snapshot->dir = dir; 670 pending_snapshot->inherit = inherit; 671 672 trans = btrfs_start_transaction(root, 0); 673 if (IS_ERR(trans)) { 674 ret = PTR_ERR(trans); 675 goto fail; 676 } 677 678 spin_lock(&fs_info->trans_lock); 679 list_add(&pending_snapshot->list, 680 &trans->transaction->pending_snapshots); 681 spin_unlock(&fs_info->trans_lock); 682 if (async_transid) { 683 *async_transid = trans->transid; 684 ret = btrfs_commit_transaction_async(trans, 1); 685 if (ret) 686 ret = btrfs_commit_transaction(trans); 687 } else { 688 ret = btrfs_commit_transaction(trans); 689 } 690 if (ret) 691 goto fail; 692 693 ret = pending_snapshot->error; 694 if (ret) 695 goto fail; 696 697 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 698 if (ret) 699 goto fail; 700 701 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 702 if (IS_ERR(inode)) { 703 ret = PTR_ERR(inode); 704 goto fail; 705 } 706 707 d_instantiate(dentry, inode); 708 ret = 0; 709 fail: 710 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 711 dec_and_free: 712 if (atomic_dec_and_test(&root->will_be_snapshotted)) 713 wake_up_var(&root->will_be_snapshotted); 714 free_pending: 715 kfree(pending_snapshot->root_item); 716 btrfs_free_path(pending_snapshot->path); 717 kfree(pending_snapshot); 718 719 return ret; 720 } 721 722 /* copy of may_delete in fs/namei.c() 723 * Check whether we can remove a link victim from directory dir, check 724 * whether the type of victim is right. 725 * 1. We can't do it if dir is read-only (done in permission()) 726 * 2. We should have write and exec permissions on dir 727 * 3. We can't remove anything from append-only dir 728 * 4. We can't do anything with immutable dir (done in permission()) 729 * 5. If the sticky bit on dir is set we should either 730 * a. be owner of dir, or 731 * b. be owner of victim, or 732 * c. have CAP_FOWNER capability 733 * 6. If the victim is append-only or immutable we can't do anything with 734 * links pointing to it. 735 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 736 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 737 * 9. We can't remove a root or mountpoint. 738 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 739 * nfs_async_unlink(). 740 */ 741 742 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 743 { 744 int error; 745 746 if (d_really_is_negative(victim)) 747 return -ENOENT; 748 749 BUG_ON(d_inode(victim->d_parent) != dir); 750 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 751 752 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 753 if (error) 754 return error; 755 if (IS_APPEND(dir)) 756 return -EPERM; 757 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 758 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 759 return -EPERM; 760 if (isdir) { 761 if (!d_is_dir(victim)) 762 return -ENOTDIR; 763 if (IS_ROOT(victim)) 764 return -EBUSY; 765 } else if (d_is_dir(victim)) 766 return -EISDIR; 767 if (IS_DEADDIR(dir)) 768 return -ENOENT; 769 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 770 return -EBUSY; 771 return 0; 772 } 773 774 /* copy of may_create in fs/namei.c() */ 775 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 776 { 777 if (d_really_is_positive(child)) 778 return -EEXIST; 779 if (IS_DEADDIR(dir)) 780 return -ENOENT; 781 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 782 } 783 784 /* 785 * Create a new subvolume below @parent. This is largely modeled after 786 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 787 * inside this filesystem so it's quite a bit simpler. 788 */ 789 static noinline int btrfs_mksubvol(const struct path *parent, 790 const char *name, int namelen, 791 struct btrfs_root *snap_src, 792 u64 *async_transid, bool readonly, 793 struct btrfs_qgroup_inherit *inherit) 794 { 795 struct inode *dir = d_inode(parent->dentry); 796 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 797 struct dentry *dentry; 798 int error; 799 800 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 801 if (error == -EINTR) 802 return error; 803 804 dentry = lookup_one_len(name, parent->dentry, namelen); 805 error = PTR_ERR(dentry); 806 if (IS_ERR(dentry)) 807 goto out_unlock; 808 809 error = btrfs_may_create(dir, dentry); 810 if (error) 811 goto out_dput; 812 813 /* 814 * even if this name doesn't exist, we may get hash collisions. 815 * check for them now when we can safely fail 816 */ 817 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 818 dir->i_ino, name, 819 namelen); 820 if (error) 821 goto out_dput; 822 823 down_read(&fs_info->subvol_sem); 824 825 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 826 goto out_up_read; 827 828 if (snap_src) { 829 error = create_snapshot(snap_src, dir, dentry, 830 async_transid, readonly, inherit); 831 } else { 832 error = create_subvol(dir, dentry, name, namelen, 833 async_transid, inherit); 834 } 835 if (!error) 836 fsnotify_mkdir(dir, dentry); 837 out_up_read: 838 up_read(&fs_info->subvol_sem); 839 out_dput: 840 dput(dentry); 841 out_unlock: 842 inode_unlock(dir); 843 return error; 844 } 845 846 /* 847 * When we're defragging a range, we don't want to kick it off again 848 * if it is really just waiting for delalloc to send it down. 849 * If we find a nice big extent or delalloc range for the bytes in the 850 * file you want to defrag, we return 0 to let you know to skip this 851 * part of the file 852 */ 853 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 854 { 855 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 856 struct extent_map *em = NULL; 857 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 858 u64 end; 859 860 read_lock(&em_tree->lock); 861 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 862 read_unlock(&em_tree->lock); 863 864 if (em) { 865 end = extent_map_end(em); 866 free_extent_map(em); 867 if (end - offset > thresh) 868 return 0; 869 } 870 /* if we already have a nice delalloc here, just stop */ 871 thresh /= 2; 872 end = count_range_bits(io_tree, &offset, offset + thresh, 873 thresh, EXTENT_DELALLOC, 1); 874 if (end >= thresh) 875 return 0; 876 return 1; 877 } 878 879 /* 880 * helper function to walk through a file and find extents 881 * newer than a specific transid, and smaller than thresh. 882 * 883 * This is used by the defragging code to find new and small 884 * extents 885 */ 886 static int find_new_extents(struct btrfs_root *root, 887 struct inode *inode, u64 newer_than, 888 u64 *off, u32 thresh) 889 { 890 struct btrfs_path *path; 891 struct btrfs_key min_key; 892 struct extent_buffer *leaf; 893 struct btrfs_file_extent_item *extent; 894 int type; 895 int ret; 896 u64 ino = btrfs_ino(BTRFS_I(inode)); 897 898 path = btrfs_alloc_path(); 899 if (!path) 900 return -ENOMEM; 901 902 min_key.objectid = ino; 903 min_key.type = BTRFS_EXTENT_DATA_KEY; 904 min_key.offset = *off; 905 906 while (1) { 907 ret = btrfs_search_forward(root, &min_key, path, newer_than); 908 if (ret != 0) 909 goto none; 910 process_slot: 911 if (min_key.objectid != ino) 912 goto none; 913 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 914 goto none; 915 916 leaf = path->nodes[0]; 917 extent = btrfs_item_ptr(leaf, path->slots[0], 918 struct btrfs_file_extent_item); 919 920 type = btrfs_file_extent_type(leaf, extent); 921 if (type == BTRFS_FILE_EXTENT_REG && 922 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 923 check_defrag_in_cache(inode, min_key.offset, thresh)) { 924 *off = min_key.offset; 925 btrfs_free_path(path); 926 return 0; 927 } 928 929 path->slots[0]++; 930 if (path->slots[0] < btrfs_header_nritems(leaf)) { 931 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 932 goto process_slot; 933 } 934 935 if (min_key.offset == (u64)-1) 936 goto none; 937 938 min_key.offset++; 939 btrfs_release_path(path); 940 } 941 none: 942 btrfs_free_path(path); 943 return -ENOENT; 944 } 945 946 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 947 { 948 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 949 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 950 struct extent_map *em; 951 u64 len = PAGE_SIZE; 952 953 /* 954 * hopefully we have this extent in the tree already, try without 955 * the full extent lock 956 */ 957 read_lock(&em_tree->lock); 958 em = lookup_extent_mapping(em_tree, start, len); 959 read_unlock(&em_tree->lock); 960 961 if (!em) { 962 struct extent_state *cached = NULL; 963 u64 end = start + len - 1; 964 965 /* get the big lock and read metadata off disk */ 966 lock_extent_bits(io_tree, start, end, &cached); 967 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 968 unlock_extent_cached(io_tree, start, end, &cached); 969 970 if (IS_ERR(em)) 971 return NULL; 972 } 973 974 return em; 975 } 976 977 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 978 { 979 struct extent_map *next; 980 bool ret = true; 981 982 /* this is the last extent */ 983 if (em->start + em->len >= i_size_read(inode)) 984 return false; 985 986 next = defrag_lookup_extent(inode, em->start + em->len); 987 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 988 ret = false; 989 else if ((em->block_start + em->block_len == next->block_start) && 990 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 991 ret = false; 992 993 free_extent_map(next); 994 return ret; 995 } 996 997 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 998 u64 *last_len, u64 *skip, u64 *defrag_end, 999 int compress) 1000 { 1001 struct extent_map *em; 1002 int ret = 1; 1003 bool next_mergeable = true; 1004 bool prev_mergeable = true; 1005 1006 /* 1007 * make sure that once we start defragging an extent, we keep on 1008 * defragging it 1009 */ 1010 if (start < *defrag_end) 1011 return 1; 1012 1013 *skip = 0; 1014 1015 em = defrag_lookup_extent(inode, start); 1016 if (!em) 1017 return 0; 1018 1019 /* this will cover holes, and inline extents */ 1020 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1021 ret = 0; 1022 goto out; 1023 } 1024 1025 if (!*defrag_end) 1026 prev_mergeable = false; 1027 1028 next_mergeable = defrag_check_next_extent(inode, em); 1029 /* 1030 * we hit a real extent, if it is big or the next extent is not a 1031 * real extent, don't bother defragging it 1032 */ 1033 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1034 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1035 ret = 0; 1036 out: 1037 /* 1038 * last_len ends up being a counter of how many bytes we've defragged. 1039 * every time we choose not to defrag an extent, we reset *last_len 1040 * so that the next tiny extent will force a defrag. 1041 * 1042 * The end result of this is that tiny extents before a single big 1043 * extent will force at least part of that big extent to be defragged. 1044 */ 1045 if (ret) { 1046 *defrag_end = extent_map_end(em); 1047 } else { 1048 *last_len = 0; 1049 *skip = extent_map_end(em); 1050 *defrag_end = 0; 1051 } 1052 1053 free_extent_map(em); 1054 return ret; 1055 } 1056 1057 /* 1058 * it doesn't do much good to defrag one or two pages 1059 * at a time. This pulls in a nice chunk of pages 1060 * to COW and defrag. 1061 * 1062 * It also makes sure the delalloc code has enough 1063 * dirty data to avoid making new small extents as part 1064 * of the defrag 1065 * 1066 * It's a good idea to start RA on this range 1067 * before calling this. 1068 */ 1069 static int cluster_pages_for_defrag(struct inode *inode, 1070 struct page **pages, 1071 unsigned long start_index, 1072 unsigned long num_pages) 1073 { 1074 unsigned long file_end; 1075 u64 isize = i_size_read(inode); 1076 u64 page_start; 1077 u64 page_end; 1078 u64 page_cnt; 1079 int ret; 1080 int i; 1081 int i_done; 1082 struct btrfs_ordered_extent *ordered; 1083 struct extent_state *cached_state = NULL; 1084 struct extent_io_tree *tree; 1085 struct extent_changeset *data_reserved = NULL; 1086 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1087 1088 file_end = (isize - 1) >> PAGE_SHIFT; 1089 if (!isize || start_index > file_end) 1090 return 0; 1091 1092 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1093 1094 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1095 start_index << PAGE_SHIFT, 1096 page_cnt << PAGE_SHIFT); 1097 if (ret) 1098 return ret; 1099 i_done = 0; 1100 tree = &BTRFS_I(inode)->io_tree; 1101 1102 /* step one, lock all the pages */ 1103 for (i = 0; i < page_cnt; i++) { 1104 struct page *page; 1105 again: 1106 page = find_or_create_page(inode->i_mapping, 1107 start_index + i, mask); 1108 if (!page) 1109 break; 1110 1111 page_start = page_offset(page); 1112 page_end = page_start + PAGE_SIZE - 1; 1113 while (1) { 1114 lock_extent_bits(tree, page_start, page_end, 1115 &cached_state); 1116 ordered = btrfs_lookup_ordered_extent(inode, 1117 page_start); 1118 unlock_extent_cached(tree, page_start, page_end, 1119 &cached_state); 1120 if (!ordered) 1121 break; 1122 1123 unlock_page(page); 1124 btrfs_start_ordered_extent(inode, ordered, 1); 1125 btrfs_put_ordered_extent(ordered); 1126 lock_page(page); 1127 /* 1128 * we unlocked the page above, so we need check if 1129 * it was released or not. 1130 */ 1131 if (page->mapping != inode->i_mapping) { 1132 unlock_page(page); 1133 put_page(page); 1134 goto again; 1135 } 1136 } 1137 1138 if (!PageUptodate(page)) { 1139 btrfs_readpage(NULL, page); 1140 lock_page(page); 1141 if (!PageUptodate(page)) { 1142 unlock_page(page); 1143 put_page(page); 1144 ret = -EIO; 1145 break; 1146 } 1147 } 1148 1149 if (page->mapping != inode->i_mapping) { 1150 unlock_page(page); 1151 put_page(page); 1152 goto again; 1153 } 1154 1155 pages[i] = page; 1156 i_done++; 1157 } 1158 if (!i_done || ret) 1159 goto out; 1160 1161 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1162 goto out; 1163 1164 /* 1165 * so now we have a nice long stream of locked 1166 * and up to date pages, lets wait on them 1167 */ 1168 for (i = 0; i < i_done; i++) 1169 wait_on_page_writeback(pages[i]); 1170 1171 page_start = page_offset(pages[0]); 1172 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1173 1174 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1175 page_start, page_end - 1, &cached_state); 1176 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1177 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1178 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1179 &cached_state); 1180 1181 if (i_done != page_cnt) { 1182 spin_lock(&BTRFS_I(inode)->lock); 1183 BTRFS_I(inode)->outstanding_extents++; 1184 spin_unlock(&BTRFS_I(inode)->lock); 1185 btrfs_delalloc_release_space(inode, data_reserved, 1186 start_index << PAGE_SHIFT, 1187 (page_cnt - i_done) << PAGE_SHIFT, true); 1188 } 1189 1190 1191 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1192 &cached_state); 1193 1194 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1195 page_start, page_end - 1, &cached_state); 1196 1197 for (i = 0; i < i_done; i++) { 1198 clear_page_dirty_for_io(pages[i]); 1199 ClearPageChecked(pages[i]); 1200 set_page_extent_mapped(pages[i]); 1201 set_page_dirty(pages[i]); 1202 unlock_page(pages[i]); 1203 put_page(pages[i]); 1204 } 1205 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1206 false); 1207 extent_changeset_free(data_reserved); 1208 return i_done; 1209 out: 1210 for (i = 0; i < i_done; i++) { 1211 unlock_page(pages[i]); 1212 put_page(pages[i]); 1213 } 1214 btrfs_delalloc_release_space(inode, data_reserved, 1215 start_index << PAGE_SHIFT, 1216 page_cnt << PAGE_SHIFT, true); 1217 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1218 true); 1219 extent_changeset_free(data_reserved); 1220 return ret; 1221 1222 } 1223 1224 int btrfs_defrag_file(struct inode *inode, struct file *file, 1225 struct btrfs_ioctl_defrag_range_args *range, 1226 u64 newer_than, unsigned long max_to_defrag) 1227 { 1228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1229 struct btrfs_root *root = BTRFS_I(inode)->root; 1230 struct file_ra_state *ra = NULL; 1231 unsigned long last_index; 1232 u64 isize = i_size_read(inode); 1233 u64 last_len = 0; 1234 u64 skip = 0; 1235 u64 defrag_end = 0; 1236 u64 newer_off = range->start; 1237 unsigned long i; 1238 unsigned long ra_index = 0; 1239 int ret; 1240 int defrag_count = 0; 1241 int compress_type = BTRFS_COMPRESS_ZLIB; 1242 u32 extent_thresh = range->extent_thresh; 1243 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1244 unsigned long cluster = max_cluster; 1245 u64 new_align = ~((u64)SZ_128K - 1); 1246 struct page **pages = NULL; 1247 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1248 1249 if (isize == 0) 1250 return 0; 1251 1252 if (range->start >= isize) 1253 return -EINVAL; 1254 1255 if (do_compress) { 1256 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1257 return -EINVAL; 1258 if (range->compress_type) 1259 compress_type = range->compress_type; 1260 } 1261 1262 if (extent_thresh == 0) 1263 extent_thresh = SZ_256K; 1264 1265 /* 1266 * If we were not given a file, allocate a readahead context. As 1267 * readahead is just an optimization, defrag will work without it so 1268 * we don't error out. 1269 */ 1270 if (!file) { 1271 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1272 if (ra) 1273 file_ra_state_init(ra, inode->i_mapping); 1274 } else { 1275 ra = &file->f_ra; 1276 } 1277 1278 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1279 if (!pages) { 1280 ret = -ENOMEM; 1281 goto out_ra; 1282 } 1283 1284 /* find the last page to defrag */ 1285 if (range->start + range->len > range->start) { 1286 last_index = min_t(u64, isize - 1, 1287 range->start + range->len - 1) >> PAGE_SHIFT; 1288 } else { 1289 last_index = (isize - 1) >> PAGE_SHIFT; 1290 } 1291 1292 if (newer_than) { 1293 ret = find_new_extents(root, inode, newer_than, 1294 &newer_off, SZ_64K); 1295 if (!ret) { 1296 range->start = newer_off; 1297 /* 1298 * we always align our defrag to help keep 1299 * the extents in the file evenly spaced 1300 */ 1301 i = (newer_off & new_align) >> PAGE_SHIFT; 1302 } else 1303 goto out_ra; 1304 } else { 1305 i = range->start >> PAGE_SHIFT; 1306 } 1307 if (!max_to_defrag) 1308 max_to_defrag = last_index - i + 1; 1309 1310 /* 1311 * make writeback starts from i, so the defrag range can be 1312 * written sequentially. 1313 */ 1314 if (i < inode->i_mapping->writeback_index) 1315 inode->i_mapping->writeback_index = i; 1316 1317 while (i <= last_index && defrag_count < max_to_defrag && 1318 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1319 /* 1320 * make sure we stop running if someone unmounts 1321 * the FS 1322 */ 1323 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1324 break; 1325 1326 if (btrfs_defrag_cancelled(fs_info)) { 1327 btrfs_debug(fs_info, "defrag_file cancelled"); 1328 ret = -EAGAIN; 1329 break; 1330 } 1331 1332 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1333 extent_thresh, &last_len, &skip, 1334 &defrag_end, do_compress)){ 1335 unsigned long next; 1336 /* 1337 * the should_defrag function tells us how much to skip 1338 * bump our counter by the suggested amount 1339 */ 1340 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1341 i = max(i + 1, next); 1342 continue; 1343 } 1344 1345 if (!newer_than) { 1346 cluster = (PAGE_ALIGN(defrag_end) >> 1347 PAGE_SHIFT) - i; 1348 cluster = min(cluster, max_cluster); 1349 } else { 1350 cluster = max_cluster; 1351 } 1352 1353 if (i + cluster > ra_index) { 1354 ra_index = max(i, ra_index); 1355 if (ra) 1356 page_cache_sync_readahead(inode->i_mapping, ra, 1357 file, ra_index, cluster); 1358 ra_index += cluster; 1359 } 1360 1361 inode_lock(inode); 1362 if (do_compress) 1363 BTRFS_I(inode)->defrag_compress = compress_type; 1364 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1365 if (ret < 0) { 1366 inode_unlock(inode); 1367 goto out_ra; 1368 } 1369 1370 defrag_count += ret; 1371 balance_dirty_pages_ratelimited(inode->i_mapping); 1372 inode_unlock(inode); 1373 1374 if (newer_than) { 1375 if (newer_off == (u64)-1) 1376 break; 1377 1378 if (ret > 0) 1379 i += ret; 1380 1381 newer_off = max(newer_off + 1, 1382 (u64)i << PAGE_SHIFT); 1383 1384 ret = find_new_extents(root, inode, newer_than, 1385 &newer_off, SZ_64K); 1386 if (!ret) { 1387 range->start = newer_off; 1388 i = (newer_off & new_align) >> PAGE_SHIFT; 1389 } else { 1390 break; 1391 } 1392 } else { 1393 if (ret > 0) { 1394 i += ret; 1395 last_len += ret << PAGE_SHIFT; 1396 } else { 1397 i++; 1398 last_len = 0; 1399 } 1400 } 1401 } 1402 1403 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1404 filemap_flush(inode->i_mapping); 1405 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1406 &BTRFS_I(inode)->runtime_flags)) 1407 filemap_flush(inode->i_mapping); 1408 } 1409 1410 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1411 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1412 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1413 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1414 } 1415 1416 ret = defrag_count; 1417 1418 out_ra: 1419 if (do_compress) { 1420 inode_lock(inode); 1421 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1422 inode_unlock(inode); 1423 } 1424 if (!file) 1425 kfree(ra); 1426 kfree(pages); 1427 return ret; 1428 } 1429 1430 static noinline int btrfs_ioctl_resize(struct file *file, 1431 void __user *arg) 1432 { 1433 struct inode *inode = file_inode(file); 1434 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1435 u64 new_size; 1436 u64 old_size; 1437 u64 devid = 1; 1438 struct btrfs_root *root = BTRFS_I(inode)->root; 1439 struct btrfs_ioctl_vol_args *vol_args; 1440 struct btrfs_trans_handle *trans; 1441 struct btrfs_device *device = NULL; 1442 char *sizestr; 1443 char *retptr; 1444 char *devstr = NULL; 1445 int ret = 0; 1446 int mod = 0; 1447 1448 if (!capable(CAP_SYS_ADMIN)) 1449 return -EPERM; 1450 1451 ret = mnt_want_write_file(file); 1452 if (ret) 1453 return ret; 1454 1455 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1456 mnt_drop_write_file(file); 1457 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1458 } 1459 1460 mutex_lock(&fs_info->volume_mutex); 1461 vol_args = memdup_user(arg, sizeof(*vol_args)); 1462 if (IS_ERR(vol_args)) { 1463 ret = PTR_ERR(vol_args); 1464 goto out; 1465 } 1466 1467 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1468 1469 sizestr = vol_args->name; 1470 devstr = strchr(sizestr, ':'); 1471 if (devstr) { 1472 sizestr = devstr + 1; 1473 *devstr = '\0'; 1474 devstr = vol_args->name; 1475 ret = kstrtoull(devstr, 10, &devid); 1476 if (ret) 1477 goto out_free; 1478 if (!devid) { 1479 ret = -EINVAL; 1480 goto out_free; 1481 } 1482 btrfs_info(fs_info, "resizing devid %llu", devid); 1483 } 1484 1485 device = btrfs_find_device(fs_info, devid, NULL, NULL); 1486 if (!device) { 1487 btrfs_info(fs_info, "resizer unable to find device %llu", 1488 devid); 1489 ret = -ENODEV; 1490 goto out_free; 1491 } 1492 1493 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1494 btrfs_info(fs_info, 1495 "resizer unable to apply on readonly device %llu", 1496 devid); 1497 ret = -EPERM; 1498 goto out_free; 1499 } 1500 1501 if (!strcmp(sizestr, "max")) 1502 new_size = device->bdev->bd_inode->i_size; 1503 else { 1504 if (sizestr[0] == '-') { 1505 mod = -1; 1506 sizestr++; 1507 } else if (sizestr[0] == '+') { 1508 mod = 1; 1509 sizestr++; 1510 } 1511 new_size = memparse(sizestr, &retptr); 1512 if (*retptr != '\0' || new_size == 0) { 1513 ret = -EINVAL; 1514 goto out_free; 1515 } 1516 } 1517 1518 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1519 ret = -EPERM; 1520 goto out_free; 1521 } 1522 1523 old_size = btrfs_device_get_total_bytes(device); 1524 1525 if (mod < 0) { 1526 if (new_size > old_size) { 1527 ret = -EINVAL; 1528 goto out_free; 1529 } 1530 new_size = old_size - new_size; 1531 } else if (mod > 0) { 1532 if (new_size > ULLONG_MAX - old_size) { 1533 ret = -ERANGE; 1534 goto out_free; 1535 } 1536 new_size = old_size + new_size; 1537 } 1538 1539 if (new_size < SZ_256M) { 1540 ret = -EINVAL; 1541 goto out_free; 1542 } 1543 if (new_size > device->bdev->bd_inode->i_size) { 1544 ret = -EFBIG; 1545 goto out_free; 1546 } 1547 1548 new_size = round_down(new_size, fs_info->sectorsize); 1549 1550 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1551 rcu_str_deref(device->name), new_size); 1552 1553 if (new_size > old_size) { 1554 trans = btrfs_start_transaction(root, 0); 1555 if (IS_ERR(trans)) { 1556 ret = PTR_ERR(trans); 1557 goto out_free; 1558 } 1559 ret = btrfs_grow_device(trans, device, new_size); 1560 btrfs_commit_transaction(trans); 1561 } else if (new_size < old_size) { 1562 ret = btrfs_shrink_device(device, new_size); 1563 } /* equal, nothing need to do */ 1564 1565 out_free: 1566 kfree(vol_args); 1567 out: 1568 mutex_unlock(&fs_info->volume_mutex); 1569 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1570 mnt_drop_write_file(file); 1571 return ret; 1572 } 1573 1574 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1575 const char *name, unsigned long fd, int subvol, 1576 u64 *transid, bool readonly, 1577 struct btrfs_qgroup_inherit *inherit) 1578 { 1579 int namelen; 1580 int ret = 0; 1581 1582 if (!S_ISDIR(file_inode(file)->i_mode)) 1583 return -ENOTDIR; 1584 1585 ret = mnt_want_write_file(file); 1586 if (ret) 1587 goto out; 1588 1589 namelen = strlen(name); 1590 if (strchr(name, '/')) { 1591 ret = -EINVAL; 1592 goto out_drop_write; 1593 } 1594 1595 if (name[0] == '.' && 1596 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1597 ret = -EEXIST; 1598 goto out_drop_write; 1599 } 1600 1601 if (subvol) { 1602 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1603 NULL, transid, readonly, inherit); 1604 } else { 1605 struct fd src = fdget(fd); 1606 struct inode *src_inode; 1607 if (!src.file) { 1608 ret = -EINVAL; 1609 goto out_drop_write; 1610 } 1611 1612 src_inode = file_inode(src.file); 1613 if (src_inode->i_sb != file_inode(file)->i_sb) { 1614 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1615 "Snapshot src from another FS"); 1616 ret = -EXDEV; 1617 } else if (!inode_owner_or_capable(src_inode)) { 1618 /* 1619 * Subvolume creation is not restricted, but snapshots 1620 * are limited to own subvolumes only 1621 */ 1622 ret = -EPERM; 1623 } else { 1624 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1625 BTRFS_I(src_inode)->root, 1626 transid, readonly, inherit); 1627 } 1628 fdput(src); 1629 } 1630 out_drop_write: 1631 mnt_drop_write_file(file); 1632 out: 1633 return ret; 1634 } 1635 1636 static noinline int btrfs_ioctl_snap_create(struct file *file, 1637 void __user *arg, int subvol) 1638 { 1639 struct btrfs_ioctl_vol_args *vol_args; 1640 int ret; 1641 1642 if (!S_ISDIR(file_inode(file)->i_mode)) 1643 return -ENOTDIR; 1644 1645 vol_args = memdup_user(arg, sizeof(*vol_args)); 1646 if (IS_ERR(vol_args)) 1647 return PTR_ERR(vol_args); 1648 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1649 1650 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1651 vol_args->fd, subvol, 1652 NULL, false, NULL); 1653 1654 kfree(vol_args); 1655 return ret; 1656 } 1657 1658 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1659 void __user *arg, int subvol) 1660 { 1661 struct btrfs_ioctl_vol_args_v2 *vol_args; 1662 int ret; 1663 u64 transid = 0; 1664 u64 *ptr = NULL; 1665 bool readonly = false; 1666 struct btrfs_qgroup_inherit *inherit = NULL; 1667 1668 if (!S_ISDIR(file_inode(file)->i_mode)) 1669 return -ENOTDIR; 1670 1671 vol_args = memdup_user(arg, sizeof(*vol_args)); 1672 if (IS_ERR(vol_args)) 1673 return PTR_ERR(vol_args); 1674 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1675 1676 if (vol_args->flags & 1677 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1678 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1679 ret = -EOPNOTSUPP; 1680 goto free_args; 1681 } 1682 1683 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1684 ptr = &transid; 1685 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1686 readonly = true; 1687 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1688 if (vol_args->size > PAGE_SIZE) { 1689 ret = -EINVAL; 1690 goto free_args; 1691 } 1692 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1693 if (IS_ERR(inherit)) { 1694 ret = PTR_ERR(inherit); 1695 goto free_args; 1696 } 1697 } 1698 1699 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1700 vol_args->fd, subvol, ptr, 1701 readonly, inherit); 1702 if (ret) 1703 goto free_inherit; 1704 1705 if (ptr && copy_to_user(arg + 1706 offsetof(struct btrfs_ioctl_vol_args_v2, 1707 transid), 1708 ptr, sizeof(*ptr))) 1709 ret = -EFAULT; 1710 1711 free_inherit: 1712 kfree(inherit); 1713 free_args: 1714 kfree(vol_args); 1715 return ret; 1716 } 1717 1718 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1719 void __user *arg) 1720 { 1721 struct inode *inode = file_inode(file); 1722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1723 struct btrfs_root *root = BTRFS_I(inode)->root; 1724 int ret = 0; 1725 u64 flags = 0; 1726 1727 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1728 return -EINVAL; 1729 1730 down_read(&fs_info->subvol_sem); 1731 if (btrfs_root_readonly(root)) 1732 flags |= BTRFS_SUBVOL_RDONLY; 1733 up_read(&fs_info->subvol_sem); 1734 1735 if (copy_to_user(arg, &flags, sizeof(flags))) 1736 ret = -EFAULT; 1737 1738 return ret; 1739 } 1740 1741 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1742 void __user *arg) 1743 { 1744 struct inode *inode = file_inode(file); 1745 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1746 struct btrfs_root *root = BTRFS_I(inode)->root; 1747 struct btrfs_trans_handle *trans; 1748 u64 root_flags; 1749 u64 flags; 1750 int ret = 0; 1751 1752 if (!inode_owner_or_capable(inode)) 1753 return -EPERM; 1754 1755 ret = mnt_want_write_file(file); 1756 if (ret) 1757 goto out; 1758 1759 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1760 ret = -EINVAL; 1761 goto out_drop_write; 1762 } 1763 1764 if (copy_from_user(&flags, arg, sizeof(flags))) { 1765 ret = -EFAULT; 1766 goto out_drop_write; 1767 } 1768 1769 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1770 ret = -EINVAL; 1771 goto out_drop_write; 1772 } 1773 1774 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1775 ret = -EOPNOTSUPP; 1776 goto out_drop_write; 1777 } 1778 1779 down_write(&fs_info->subvol_sem); 1780 1781 /* nothing to do */ 1782 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1783 goto out_drop_sem; 1784 1785 root_flags = btrfs_root_flags(&root->root_item); 1786 if (flags & BTRFS_SUBVOL_RDONLY) { 1787 btrfs_set_root_flags(&root->root_item, 1788 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1789 } else { 1790 /* 1791 * Block RO -> RW transition if this subvolume is involved in 1792 * send 1793 */ 1794 spin_lock(&root->root_item_lock); 1795 if (root->send_in_progress == 0) { 1796 btrfs_set_root_flags(&root->root_item, 1797 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1798 spin_unlock(&root->root_item_lock); 1799 } else { 1800 spin_unlock(&root->root_item_lock); 1801 btrfs_warn(fs_info, 1802 "Attempt to set subvolume %llu read-write during send", 1803 root->root_key.objectid); 1804 ret = -EPERM; 1805 goto out_drop_sem; 1806 } 1807 } 1808 1809 trans = btrfs_start_transaction(root, 1); 1810 if (IS_ERR(trans)) { 1811 ret = PTR_ERR(trans); 1812 goto out_reset; 1813 } 1814 1815 ret = btrfs_update_root(trans, fs_info->tree_root, 1816 &root->root_key, &root->root_item); 1817 if (ret < 0) { 1818 btrfs_end_transaction(trans); 1819 goto out_reset; 1820 } 1821 1822 ret = btrfs_commit_transaction(trans); 1823 1824 out_reset: 1825 if (ret) 1826 btrfs_set_root_flags(&root->root_item, root_flags); 1827 out_drop_sem: 1828 up_write(&fs_info->subvol_sem); 1829 out_drop_write: 1830 mnt_drop_write_file(file); 1831 out: 1832 return ret; 1833 } 1834 1835 /* 1836 * helper to check if the subvolume references other subvolumes 1837 */ 1838 static noinline int may_destroy_subvol(struct btrfs_root *root) 1839 { 1840 struct btrfs_fs_info *fs_info = root->fs_info; 1841 struct btrfs_path *path; 1842 struct btrfs_dir_item *di; 1843 struct btrfs_key key; 1844 u64 dir_id; 1845 int ret; 1846 1847 path = btrfs_alloc_path(); 1848 if (!path) 1849 return -ENOMEM; 1850 1851 /* Make sure this root isn't set as the default subvol */ 1852 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1853 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 1854 dir_id, "default", 7, 0); 1855 if (di && !IS_ERR(di)) { 1856 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1857 if (key.objectid == root->root_key.objectid) { 1858 ret = -EPERM; 1859 btrfs_err(fs_info, 1860 "deleting default subvolume %llu is not allowed", 1861 key.objectid); 1862 goto out; 1863 } 1864 btrfs_release_path(path); 1865 } 1866 1867 key.objectid = root->root_key.objectid; 1868 key.type = BTRFS_ROOT_REF_KEY; 1869 key.offset = (u64)-1; 1870 1871 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1872 if (ret < 0) 1873 goto out; 1874 BUG_ON(ret == 0); 1875 1876 ret = 0; 1877 if (path->slots[0] > 0) { 1878 path->slots[0]--; 1879 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1880 if (key.objectid == root->root_key.objectid && 1881 key.type == BTRFS_ROOT_REF_KEY) 1882 ret = -ENOTEMPTY; 1883 } 1884 out: 1885 btrfs_free_path(path); 1886 return ret; 1887 } 1888 1889 static noinline int key_in_sk(struct btrfs_key *key, 1890 struct btrfs_ioctl_search_key *sk) 1891 { 1892 struct btrfs_key test; 1893 int ret; 1894 1895 test.objectid = sk->min_objectid; 1896 test.type = sk->min_type; 1897 test.offset = sk->min_offset; 1898 1899 ret = btrfs_comp_cpu_keys(key, &test); 1900 if (ret < 0) 1901 return 0; 1902 1903 test.objectid = sk->max_objectid; 1904 test.type = sk->max_type; 1905 test.offset = sk->max_offset; 1906 1907 ret = btrfs_comp_cpu_keys(key, &test); 1908 if (ret > 0) 1909 return 0; 1910 return 1; 1911 } 1912 1913 static noinline int copy_to_sk(struct btrfs_path *path, 1914 struct btrfs_key *key, 1915 struct btrfs_ioctl_search_key *sk, 1916 size_t *buf_size, 1917 char __user *ubuf, 1918 unsigned long *sk_offset, 1919 int *num_found) 1920 { 1921 u64 found_transid; 1922 struct extent_buffer *leaf; 1923 struct btrfs_ioctl_search_header sh; 1924 struct btrfs_key test; 1925 unsigned long item_off; 1926 unsigned long item_len; 1927 int nritems; 1928 int i; 1929 int slot; 1930 int ret = 0; 1931 1932 leaf = path->nodes[0]; 1933 slot = path->slots[0]; 1934 nritems = btrfs_header_nritems(leaf); 1935 1936 if (btrfs_header_generation(leaf) > sk->max_transid) { 1937 i = nritems; 1938 goto advance_key; 1939 } 1940 found_transid = btrfs_header_generation(leaf); 1941 1942 for (i = slot; i < nritems; i++) { 1943 item_off = btrfs_item_ptr_offset(leaf, i); 1944 item_len = btrfs_item_size_nr(leaf, i); 1945 1946 btrfs_item_key_to_cpu(leaf, key, i); 1947 if (!key_in_sk(key, sk)) 1948 continue; 1949 1950 if (sizeof(sh) + item_len > *buf_size) { 1951 if (*num_found) { 1952 ret = 1; 1953 goto out; 1954 } 1955 1956 /* 1957 * return one empty item back for v1, which does not 1958 * handle -EOVERFLOW 1959 */ 1960 1961 *buf_size = sizeof(sh) + item_len; 1962 item_len = 0; 1963 ret = -EOVERFLOW; 1964 } 1965 1966 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1967 ret = 1; 1968 goto out; 1969 } 1970 1971 sh.objectid = key->objectid; 1972 sh.offset = key->offset; 1973 sh.type = key->type; 1974 sh.len = item_len; 1975 sh.transid = found_transid; 1976 1977 /* copy search result header */ 1978 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 1979 ret = -EFAULT; 1980 goto out; 1981 } 1982 1983 *sk_offset += sizeof(sh); 1984 1985 if (item_len) { 1986 char __user *up = ubuf + *sk_offset; 1987 /* copy the item */ 1988 if (read_extent_buffer_to_user(leaf, up, 1989 item_off, item_len)) { 1990 ret = -EFAULT; 1991 goto out; 1992 } 1993 1994 *sk_offset += item_len; 1995 } 1996 (*num_found)++; 1997 1998 if (ret) /* -EOVERFLOW from above */ 1999 goto out; 2000 2001 if (*num_found >= sk->nr_items) { 2002 ret = 1; 2003 goto out; 2004 } 2005 } 2006 advance_key: 2007 ret = 0; 2008 test.objectid = sk->max_objectid; 2009 test.type = sk->max_type; 2010 test.offset = sk->max_offset; 2011 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2012 ret = 1; 2013 else if (key->offset < (u64)-1) 2014 key->offset++; 2015 else if (key->type < (u8)-1) { 2016 key->offset = 0; 2017 key->type++; 2018 } else if (key->objectid < (u64)-1) { 2019 key->offset = 0; 2020 key->type = 0; 2021 key->objectid++; 2022 } else 2023 ret = 1; 2024 out: 2025 /* 2026 * 0: all items from this leaf copied, continue with next 2027 * 1: * more items can be copied, but unused buffer is too small 2028 * * all items were found 2029 * Either way, it will stops the loop which iterates to the next 2030 * leaf 2031 * -EOVERFLOW: item was to large for buffer 2032 * -EFAULT: could not copy extent buffer back to userspace 2033 */ 2034 return ret; 2035 } 2036 2037 static noinline int search_ioctl(struct inode *inode, 2038 struct btrfs_ioctl_search_key *sk, 2039 size_t *buf_size, 2040 char __user *ubuf) 2041 { 2042 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2043 struct btrfs_root *root; 2044 struct btrfs_key key; 2045 struct btrfs_path *path; 2046 int ret; 2047 int num_found = 0; 2048 unsigned long sk_offset = 0; 2049 2050 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2051 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2052 return -EOVERFLOW; 2053 } 2054 2055 path = btrfs_alloc_path(); 2056 if (!path) 2057 return -ENOMEM; 2058 2059 if (sk->tree_id == 0) { 2060 /* search the root of the inode that was passed */ 2061 root = BTRFS_I(inode)->root; 2062 } else { 2063 key.objectid = sk->tree_id; 2064 key.type = BTRFS_ROOT_ITEM_KEY; 2065 key.offset = (u64)-1; 2066 root = btrfs_read_fs_root_no_name(info, &key); 2067 if (IS_ERR(root)) { 2068 btrfs_free_path(path); 2069 return -ENOENT; 2070 } 2071 } 2072 2073 key.objectid = sk->min_objectid; 2074 key.type = sk->min_type; 2075 key.offset = sk->min_offset; 2076 2077 while (1) { 2078 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2079 if (ret != 0) { 2080 if (ret > 0) 2081 ret = 0; 2082 goto err; 2083 } 2084 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2085 &sk_offset, &num_found); 2086 btrfs_release_path(path); 2087 if (ret) 2088 break; 2089 2090 } 2091 if (ret > 0) 2092 ret = 0; 2093 err: 2094 sk->nr_items = num_found; 2095 btrfs_free_path(path); 2096 return ret; 2097 } 2098 2099 static noinline int btrfs_ioctl_tree_search(struct file *file, 2100 void __user *argp) 2101 { 2102 struct btrfs_ioctl_search_args __user *uargs; 2103 struct btrfs_ioctl_search_key sk; 2104 struct inode *inode; 2105 int ret; 2106 size_t buf_size; 2107 2108 if (!capable(CAP_SYS_ADMIN)) 2109 return -EPERM; 2110 2111 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2112 2113 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2114 return -EFAULT; 2115 2116 buf_size = sizeof(uargs->buf); 2117 2118 inode = file_inode(file); 2119 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2120 2121 /* 2122 * In the origin implementation an overflow is handled by returning a 2123 * search header with a len of zero, so reset ret. 2124 */ 2125 if (ret == -EOVERFLOW) 2126 ret = 0; 2127 2128 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2129 ret = -EFAULT; 2130 return ret; 2131 } 2132 2133 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2134 void __user *argp) 2135 { 2136 struct btrfs_ioctl_search_args_v2 __user *uarg; 2137 struct btrfs_ioctl_search_args_v2 args; 2138 struct inode *inode; 2139 int ret; 2140 size_t buf_size; 2141 const size_t buf_limit = SZ_16M; 2142 2143 if (!capable(CAP_SYS_ADMIN)) 2144 return -EPERM; 2145 2146 /* copy search header and buffer size */ 2147 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2148 if (copy_from_user(&args, uarg, sizeof(args))) 2149 return -EFAULT; 2150 2151 buf_size = args.buf_size; 2152 2153 /* limit result size to 16MB */ 2154 if (buf_size > buf_limit) 2155 buf_size = buf_limit; 2156 2157 inode = file_inode(file); 2158 ret = search_ioctl(inode, &args.key, &buf_size, 2159 (char __user *)(&uarg->buf[0])); 2160 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2161 ret = -EFAULT; 2162 else if (ret == -EOVERFLOW && 2163 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2164 ret = -EFAULT; 2165 2166 return ret; 2167 } 2168 2169 /* 2170 * Search INODE_REFs to identify path name of 'dirid' directory 2171 * in a 'tree_id' tree. and sets path name to 'name'. 2172 */ 2173 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2174 u64 tree_id, u64 dirid, char *name) 2175 { 2176 struct btrfs_root *root; 2177 struct btrfs_key key; 2178 char *ptr; 2179 int ret = -1; 2180 int slot; 2181 int len; 2182 int total_len = 0; 2183 struct btrfs_inode_ref *iref; 2184 struct extent_buffer *l; 2185 struct btrfs_path *path; 2186 2187 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2188 name[0]='\0'; 2189 return 0; 2190 } 2191 2192 path = btrfs_alloc_path(); 2193 if (!path) 2194 return -ENOMEM; 2195 2196 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2197 2198 key.objectid = tree_id; 2199 key.type = BTRFS_ROOT_ITEM_KEY; 2200 key.offset = (u64)-1; 2201 root = btrfs_read_fs_root_no_name(info, &key); 2202 if (IS_ERR(root)) { 2203 btrfs_err(info, "could not find root %llu", tree_id); 2204 ret = -ENOENT; 2205 goto out; 2206 } 2207 2208 key.objectid = dirid; 2209 key.type = BTRFS_INODE_REF_KEY; 2210 key.offset = (u64)-1; 2211 2212 while (1) { 2213 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2214 if (ret < 0) 2215 goto out; 2216 else if (ret > 0) { 2217 ret = btrfs_previous_item(root, path, dirid, 2218 BTRFS_INODE_REF_KEY); 2219 if (ret < 0) 2220 goto out; 2221 else if (ret > 0) { 2222 ret = -ENOENT; 2223 goto out; 2224 } 2225 } 2226 2227 l = path->nodes[0]; 2228 slot = path->slots[0]; 2229 btrfs_item_key_to_cpu(l, &key, slot); 2230 2231 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2232 len = btrfs_inode_ref_name_len(l, iref); 2233 ptr -= len + 1; 2234 total_len += len + 1; 2235 if (ptr < name) { 2236 ret = -ENAMETOOLONG; 2237 goto out; 2238 } 2239 2240 *(ptr + len) = '/'; 2241 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2242 2243 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2244 break; 2245 2246 btrfs_release_path(path); 2247 key.objectid = key.offset; 2248 key.offset = (u64)-1; 2249 dirid = key.objectid; 2250 } 2251 memmove(name, ptr, total_len); 2252 name[total_len] = '\0'; 2253 ret = 0; 2254 out: 2255 btrfs_free_path(path); 2256 return ret; 2257 } 2258 2259 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2260 void __user *argp) 2261 { 2262 struct btrfs_ioctl_ino_lookup_args *args; 2263 struct inode *inode; 2264 int ret = 0; 2265 2266 args = memdup_user(argp, sizeof(*args)); 2267 if (IS_ERR(args)) 2268 return PTR_ERR(args); 2269 2270 inode = file_inode(file); 2271 2272 /* 2273 * Unprivileged query to obtain the containing subvolume root id. The 2274 * path is reset so it's consistent with btrfs_search_path_in_tree. 2275 */ 2276 if (args->treeid == 0) 2277 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2278 2279 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2280 args->name[0] = 0; 2281 goto out; 2282 } 2283 2284 if (!capable(CAP_SYS_ADMIN)) { 2285 ret = -EPERM; 2286 goto out; 2287 } 2288 2289 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2290 args->treeid, args->objectid, 2291 args->name); 2292 2293 out: 2294 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2295 ret = -EFAULT; 2296 2297 kfree(args); 2298 return ret; 2299 } 2300 2301 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2302 void __user *arg) 2303 { 2304 struct dentry *parent = file->f_path.dentry; 2305 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2306 struct dentry *dentry; 2307 struct inode *dir = d_inode(parent); 2308 struct inode *inode; 2309 struct btrfs_root *root = BTRFS_I(dir)->root; 2310 struct btrfs_root *dest = NULL; 2311 struct btrfs_ioctl_vol_args *vol_args; 2312 struct btrfs_trans_handle *trans; 2313 struct btrfs_block_rsv block_rsv; 2314 u64 root_flags; 2315 u64 qgroup_reserved; 2316 int namelen; 2317 int ret; 2318 int err = 0; 2319 2320 if (!S_ISDIR(dir->i_mode)) 2321 return -ENOTDIR; 2322 2323 vol_args = memdup_user(arg, sizeof(*vol_args)); 2324 if (IS_ERR(vol_args)) 2325 return PTR_ERR(vol_args); 2326 2327 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2328 namelen = strlen(vol_args->name); 2329 if (strchr(vol_args->name, '/') || 2330 strncmp(vol_args->name, "..", namelen) == 0) { 2331 err = -EINVAL; 2332 goto out; 2333 } 2334 2335 err = mnt_want_write_file(file); 2336 if (err) 2337 goto out; 2338 2339 2340 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2341 if (err == -EINTR) 2342 goto out_drop_write; 2343 dentry = lookup_one_len(vol_args->name, parent, namelen); 2344 if (IS_ERR(dentry)) { 2345 err = PTR_ERR(dentry); 2346 goto out_unlock_dir; 2347 } 2348 2349 if (d_really_is_negative(dentry)) { 2350 err = -ENOENT; 2351 goto out_dput; 2352 } 2353 2354 inode = d_inode(dentry); 2355 dest = BTRFS_I(inode)->root; 2356 if (!capable(CAP_SYS_ADMIN)) { 2357 /* 2358 * Regular user. Only allow this with a special mount 2359 * option, when the user has write+exec access to the 2360 * subvol root, and when rmdir(2) would have been 2361 * allowed. 2362 * 2363 * Note that this is _not_ check that the subvol is 2364 * empty or doesn't contain data that we wouldn't 2365 * otherwise be able to delete. 2366 * 2367 * Users who want to delete empty subvols should try 2368 * rmdir(2). 2369 */ 2370 err = -EPERM; 2371 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2372 goto out_dput; 2373 2374 /* 2375 * Do not allow deletion if the parent dir is the same 2376 * as the dir to be deleted. That means the ioctl 2377 * must be called on the dentry referencing the root 2378 * of the subvol, not a random directory contained 2379 * within it. 2380 */ 2381 err = -EINVAL; 2382 if (root == dest) 2383 goto out_dput; 2384 2385 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2386 if (err) 2387 goto out_dput; 2388 } 2389 2390 /* check if subvolume may be deleted by a user */ 2391 err = btrfs_may_delete(dir, dentry, 1); 2392 if (err) 2393 goto out_dput; 2394 2395 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2396 err = -EINVAL; 2397 goto out_dput; 2398 } 2399 2400 inode_lock(inode); 2401 2402 /* 2403 * Don't allow to delete a subvolume with send in progress. This is 2404 * inside the i_mutex so the error handling that has to drop the bit 2405 * again is not run concurrently. 2406 */ 2407 spin_lock(&dest->root_item_lock); 2408 root_flags = btrfs_root_flags(&dest->root_item); 2409 if (dest->send_in_progress == 0) { 2410 btrfs_set_root_flags(&dest->root_item, 2411 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2412 spin_unlock(&dest->root_item_lock); 2413 } else { 2414 spin_unlock(&dest->root_item_lock); 2415 btrfs_warn(fs_info, 2416 "Attempt to delete subvolume %llu during send", 2417 dest->root_key.objectid); 2418 err = -EPERM; 2419 goto out_unlock_inode; 2420 } 2421 2422 down_write(&fs_info->subvol_sem); 2423 2424 err = may_destroy_subvol(dest); 2425 if (err) 2426 goto out_up_write; 2427 2428 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2429 /* 2430 * One for dir inode, two for dir entries, two for root 2431 * ref/backref. 2432 */ 2433 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2434 5, &qgroup_reserved, true); 2435 if (err) 2436 goto out_up_write; 2437 2438 trans = btrfs_start_transaction(root, 0); 2439 if (IS_ERR(trans)) { 2440 err = PTR_ERR(trans); 2441 goto out_release; 2442 } 2443 trans->block_rsv = &block_rsv; 2444 trans->bytes_reserved = block_rsv.size; 2445 2446 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 2447 2448 ret = btrfs_unlink_subvol(trans, root, dir, 2449 dest->root_key.objectid, 2450 dentry->d_name.name, 2451 dentry->d_name.len); 2452 if (ret) { 2453 err = ret; 2454 btrfs_abort_transaction(trans, ret); 2455 goto out_end_trans; 2456 } 2457 2458 btrfs_record_root_in_trans(trans, dest); 2459 2460 memset(&dest->root_item.drop_progress, 0, 2461 sizeof(dest->root_item.drop_progress)); 2462 dest->root_item.drop_level = 0; 2463 btrfs_set_root_refs(&dest->root_item, 0); 2464 2465 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2466 ret = btrfs_insert_orphan_item(trans, 2467 fs_info->tree_root, 2468 dest->root_key.objectid); 2469 if (ret) { 2470 btrfs_abort_transaction(trans, ret); 2471 err = ret; 2472 goto out_end_trans; 2473 } 2474 } 2475 2476 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid, 2477 BTRFS_UUID_KEY_SUBVOL, 2478 dest->root_key.objectid); 2479 if (ret && ret != -ENOENT) { 2480 btrfs_abort_transaction(trans, ret); 2481 err = ret; 2482 goto out_end_trans; 2483 } 2484 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2485 ret = btrfs_uuid_tree_rem(trans, fs_info, 2486 dest->root_item.received_uuid, 2487 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2488 dest->root_key.objectid); 2489 if (ret && ret != -ENOENT) { 2490 btrfs_abort_transaction(trans, ret); 2491 err = ret; 2492 goto out_end_trans; 2493 } 2494 } 2495 2496 out_end_trans: 2497 trans->block_rsv = NULL; 2498 trans->bytes_reserved = 0; 2499 ret = btrfs_end_transaction(trans); 2500 if (ret && !err) 2501 err = ret; 2502 inode->i_flags |= S_DEAD; 2503 out_release: 2504 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 2505 out_up_write: 2506 up_write(&fs_info->subvol_sem); 2507 if (err) { 2508 spin_lock(&dest->root_item_lock); 2509 root_flags = btrfs_root_flags(&dest->root_item); 2510 btrfs_set_root_flags(&dest->root_item, 2511 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2512 spin_unlock(&dest->root_item_lock); 2513 } 2514 out_unlock_inode: 2515 inode_unlock(inode); 2516 if (!err) { 2517 d_invalidate(dentry); 2518 btrfs_invalidate_inodes(dest); 2519 d_delete(dentry); 2520 ASSERT(dest->send_in_progress == 0); 2521 2522 /* the last ref */ 2523 if (dest->ino_cache_inode) { 2524 iput(dest->ino_cache_inode); 2525 dest->ino_cache_inode = NULL; 2526 } 2527 } 2528 out_dput: 2529 dput(dentry); 2530 out_unlock_dir: 2531 inode_unlock(dir); 2532 out_drop_write: 2533 mnt_drop_write_file(file); 2534 out: 2535 kfree(vol_args); 2536 return err; 2537 } 2538 2539 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2540 { 2541 struct inode *inode = file_inode(file); 2542 struct btrfs_root *root = BTRFS_I(inode)->root; 2543 struct btrfs_ioctl_defrag_range_args *range; 2544 int ret; 2545 2546 ret = mnt_want_write_file(file); 2547 if (ret) 2548 return ret; 2549 2550 if (btrfs_root_readonly(root)) { 2551 ret = -EROFS; 2552 goto out; 2553 } 2554 2555 switch (inode->i_mode & S_IFMT) { 2556 case S_IFDIR: 2557 if (!capable(CAP_SYS_ADMIN)) { 2558 ret = -EPERM; 2559 goto out; 2560 } 2561 ret = btrfs_defrag_root(root); 2562 break; 2563 case S_IFREG: 2564 if (!(file->f_mode & FMODE_WRITE)) { 2565 ret = -EINVAL; 2566 goto out; 2567 } 2568 2569 range = kzalloc(sizeof(*range), GFP_KERNEL); 2570 if (!range) { 2571 ret = -ENOMEM; 2572 goto out; 2573 } 2574 2575 if (argp) { 2576 if (copy_from_user(range, argp, 2577 sizeof(*range))) { 2578 ret = -EFAULT; 2579 kfree(range); 2580 goto out; 2581 } 2582 /* compression requires us to start the IO */ 2583 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2584 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2585 range->extent_thresh = (u32)-1; 2586 } 2587 } else { 2588 /* the rest are all set to zero by kzalloc */ 2589 range->len = (u64)-1; 2590 } 2591 ret = btrfs_defrag_file(file_inode(file), file, 2592 range, BTRFS_OLDEST_GENERATION, 0); 2593 if (ret > 0) 2594 ret = 0; 2595 kfree(range); 2596 break; 2597 default: 2598 ret = -EINVAL; 2599 } 2600 out: 2601 mnt_drop_write_file(file); 2602 return ret; 2603 } 2604 2605 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2606 { 2607 struct btrfs_ioctl_vol_args *vol_args; 2608 int ret; 2609 2610 if (!capable(CAP_SYS_ADMIN)) 2611 return -EPERM; 2612 2613 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 2614 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2615 2616 mutex_lock(&fs_info->volume_mutex); 2617 vol_args = memdup_user(arg, sizeof(*vol_args)); 2618 if (IS_ERR(vol_args)) { 2619 ret = PTR_ERR(vol_args); 2620 goto out; 2621 } 2622 2623 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2624 ret = btrfs_init_new_device(fs_info, vol_args->name); 2625 2626 if (!ret) 2627 btrfs_info(fs_info, "disk added %s", vol_args->name); 2628 2629 kfree(vol_args); 2630 out: 2631 mutex_unlock(&fs_info->volume_mutex); 2632 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2633 return ret; 2634 } 2635 2636 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2637 { 2638 struct inode *inode = file_inode(file); 2639 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2640 struct btrfs_ioctl_vol_args_v2 *vol_args; 2641 int ret; 2642 2643 if (!capable(CAP_SYS_ADMIN)) 2644 return -EPERM; 2645 2646 ret = mnt_want_write_file(file); 2647 if (ret) 2648 return ret; 2649 2650 vol_args = memdup_user(arg, sizeof(*vol_args)); 2651 if (IS_ERR(vol_args)) { 2652 ret = PTR_ERR(vol_args); 2653 goto err_drop; 2654 } 2655 2656 /* Check for compatibility reject unknown flags */ 2657 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) 2658 return -EOPNOTSUPP; 2659 2660 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 2661 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2662 goto out; 2663 } 2664 2665 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2666 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 2667 } else { 2668 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2669 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2670 } 2671 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2672 2673 if (!ret) { 2674 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2675 btrfs_info(fs_info, "device deleted: id %llu", 2676 vol_args->devid); 2677 else 2678 btrfs_info(fs_info, "device deleted: %s", 2679 vol_args->name); 2680 } 2681 out: 2682 kfree(vol_args); 2683 err_drop: 2684 mnt_drop_write_file(file); 2685 return ret; 2686 } 2687 2688 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2689 { 2690 struct inode *inode = file_inode(file); 2691 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2692 struct btrfs_ioctl_vol_args *vol_args; 2693 int ret; 2694 2695 if (!capable(CAP_SYS_ADMIN)) 2696 return -EPERM; 2697 2698 ret = mnt_want_write_file(file); 2699 if (ret) 2700 return ret; 2701 2702 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 2703 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2704 goto out_drop_write; 2705 } 2706 2707 vol_args = memdup_user(arg, sizeof(*vol_args)); 2708 if (IS_ERR(vol_args)) { 2709 ret = PTR_ERR(vol_args); 2710 goto out; 2711 } 2712 2713 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2714 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2715 2716 if (!ret) 2717 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2718 kfree(vol_args); 2719 out: 2720 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2721 out_drop_write: 2722 mnt_drop_write_file(file); 2723 2724 return ret; 2725 } 2726 2727 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2728 void __user *arg) 2729 { 2730 struct btrfs_ioctl_fs_info_args *fi_args; 2731 struct btrfs_device *device; 2732 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2733 int ret = 0; 2734 2735 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2736 if (!fi_args) 2737 return -ENOMEM; 2738 2739 rcu_read_lock(); 2740 fi_args->num_devices = fs_devices->num_devices; 2741 2742 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2743 if (device->devid > fi_args->max_id) 2744 fi_args->max_id = device->devid; 2745 } 2746 rcu_read_unlock(); 2747 2748 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid)); 2749 fi_args->nodesize = fs_info->nodesize; 2750 fi_args->sectorsize = fs_info->sectorsize; 2751 fi_args->clone_alignment = fs_info->sectorsize; 2752 2753 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2754 ret = -EFAULT; 2755 2756 kfree(fi_args); 2757 return ret; 2758 } 2759 2760 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2761 void __user *arg) 2762 { 2763 struct btrfs_ioctl_dev_info_args *di_args; 2764 struct btrfs_device *dev; 2765 int ret = 0; 2766 char *s_uuid = NULL; 2767 2768 di_args = memdup_user(arg, sizeof(*di_args)); 2769 if (IS_ERR(di_args)) 2770 return PTR_ERR(di_args); 2771 2772 if (!btrfs_is_empty_uuid(di_args->uuid)) 2773 s_uuid = di_args->uuid; 2774 2775 rcu_read_lock(); 2776 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL); 2777 2778 if (!dev) { 2779 ret = -ENODEV; 2780 goto out; 2781 } 2782 2783 di_args->devid = dev->devid; 2784 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2785 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2786 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2787 if (dev->name) { 2788 struct rcu_string *name; 2789 2790 name = rcu_dereference(dev->name); 2791 strncpy(di_args->path, name->str, sizeof(di_args->path) - 1); 2792 di_args->path[sizeof(di_args->path) - 1] = 0; 2793 } else { 2794 di_args->path[0] = '\0'; 2795 } 2796 2797 out: 2798 rcu_read_unlock(); 2799 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2800 ret = -EFAULT; 2801 2802 kfree(di_args); 2803 return ret; 2804 } 2805 2806 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2807 { 2808 struct page *page; 2809 2810 page = grab_cache_page(inode->i_mapping, index); 2811 if (!page) 2812 return ERR_PTR(-ENOMEM); 2813 2814 if (!PageUptodate(page)) { 2815 int ret; 2816 2817 ret = btrfs_readpage(NULL, page); 2818 if (ret) 2819 return ERR_PTR(ret); 2820 lock_page(page); 2821 if (!PageUptodate(page)) { 2822 unlock_page(page); 2823 put_page(page); 2824 return ERR_PTR(-EIO); 2825 } 2826 if (page->mapping != inode->i_mapping) { 2827 unlock_page(page); 2828 put_page(page); 2829 return ERR_PTR(-EAGAIN); 2830 } 2831 } 2832 2833 return page; 2834 } 2835 2836 static int gather_extent_pages(struct inode *inode, struct page **pages, 2837 int num_pages, u64 off) 2838 { 2839 int i; 2840 pgoff_t index = off >> PAGE_SHIFT; 2841 2842 for (i = 0; i < num_pages; i++) { 2843 again: 2844 pages[i] = extent_same_get_page(inode, index + i); 2845 if (IS_ERR(pages[i])) { 2846 int err = PTR_ERR(pages[i]); 2847 2848 if (err == -EAGAIN) 2849 goto again; 2850 pages[i] = NULL; 2851 return err; 2852 } 2853 } 2854 return 0; 2855 } 2856 2857 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 2858 bool retry_range_locking) 2859 { 2860 /* 2861 * Do any pending delalloc/csum calculations on inode, one way or 2862 * another, and lock file content. 2863 * The locking order is: 2864 * 2865 * 1) pages 2866 * 2) range in the inode's io tree 2867 */ 2868 while (1) { 2869 struct btrfs_ordered_extent *ordered; 2870 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2871 ordered = btrfs_lookup_first_ordered_extent(inode, 2872 off + len - 1); 2873 if ((!ordered || 2874 ordered->file_offset + ordered->len <= off || 2875 ordered->file_offset >= off + len) && 2876 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2877 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2878 if (ordered) 2879 btrfs_put_ordered_extent(ordered); 2880 break; 2881 } 2882 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2883 if (ordered) 2884 btrfs_put_ordered_extent(ordered); 2885 if (!retry_range_locking) 2886 return -EAGAIN; 2887 btrfs_wait_ordered_range(inode, off, len); 2888 } 2889 return 0; 2890 } 2891 2892 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2893 { 2894 inode_unlock(inode1); 2895 inode_unlock(inode2); 2896 } 2897 2898 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2899 { 2900 if (inode1 < inode2) 2901 swap(inode1, inode2); 2902 2903 inode_lock_nested(inode1, I_MUTEX_PARENT); 2904 inode_lock_nested(inode2, I_MUTEX_CHILD); 2905 } 2906 2907 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2908 struct inode *inode2, u64 loff2, u64 len) 2909 { 2910 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2911 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2912 } 2913 2914 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2915 struct inode *inode2, u64 loff2, u64 len, 2916 bool retry_range_locking) 2917 { 2918 int ret; 2919 2920 if (inode1 < inode2) { 2921 swap(inode1, inode2); 2922 swap(loff1, loff2); 2923 } 2924 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 2925 if (ret) 2926 return ret; 2927 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 2928 if (ret) 2929 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 2930 loff1 + len - 1); 2931 return ret; 2932 } 2933 2934 struct cmp_pages { 2935 int num_pages; 2936 struct page **src_pages; 2937 struct page **dst_pages; 2938 }; 2939 2940 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 2941 { 2942 int i; 2943 struct page *pg; 2944 2945 for (i = 0; i < cmp->num_pages; i++) { 2946 pg = cmp->src_pages[i]; 2947 if (pg) { 2948 unlock_page(pg); 2949 put_page(pg); 2950 } 2951 pg = cmp->dst_pages[i]; 2952 if (pg) { 2953 unlock_page(pg); 2954 put_page(pg); 2955 } 2956 } 2957 kfree(cmp->src_pages); 2958 kfree(cmp->dst_pages); 2959 } 2960 2961 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 2962 struct inode *dst, u64 dst_loff, 2963 u64 len, struct cmp_pages *cmp) 2964 { 2965 int ret; 2966 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 2967 struct page **src_pgarr, **dst_pgarr; 2968 2969 /* 2970 * We must gather up all the pages before we initiate our 2971 * extent locking. We use an array for the page pointers. Size 2972 * of the array is bounded by len, which is in turn bounded by 2973 * BTRFS_MAX_DEDUPE_LEN. 2974 */ 2975 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 2976 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 2977 if (!src_pgarr || !dst_pgarr) { 2978 kfree(src_pgarr); 2979 kfree(dst_pgarr); 2980 return -ENOMEM; 2981 } 2982 cmp->num_pages = num_pages; 2983 cmp->src_pages = src_pgarr; 2984 cmp->dst_pages = dst_pgarr; 2985 2986 /* 2987 * If deduping ranges in the same inode, locking rules make it mandatory 2988 * to always lock pages in ascending order to avoid deadlocks with 2989 * concurrent tasks (such as starting writeback/delalloc). 2990 */ 2991 if (src == dst && dst_loff < loff) { 2992 swap(src_pgarr, dst_pgarr); 2993 swap(loff, dst_loff); 2994 } 2995 2996 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff); 2997 if (ret) 2998 goto out; 2999 3000 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff); 3001 3002 out: 3003 if (ret) 3004 btrfs_cmp_data_free(cmp); 3005 return ret; 3006 } 3007 3008 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp) 3009 { 3010 int ret = 0; 3011 int i; 3012 struct page *src_page, *dst_page; 3013 unsigned int cmp_len = PAGE_SIZE; 3014 void *addr, *dst_addr; 3015 3016 i = 0; 3017 while (len) { 3018 if (len < PAGE_SIZE) 3019 cmp_len = len; 3020 3021 BUG_ON(i >= cmp->num_pages); 3022 3023 src_page = cmp->src_pages[i]; 3024 dst_page = cmp->dst_pages[i]; 3025 ASSERT(PageLocked(src_page)); 3026 ASSERT(PageLocked(dst_page)); 3027 3028 addr = kmap_atomic(src_page); 3029 dst_addr = kmap_atomic(dst_page); 3030 3031 flush_dcache_page(src_page); 3032 flush_dcache_page(dst_page); 3033 3034 if (memcmp(addr, dst_addr, cmp_len)) 3035 ret = -EBADE; 3036 3037 kunmap_atomic(addr); 3038 kunmap_atomic(dst_addr); 3039 3040 if (ret) 3041 break; 3042 3043 len -= cmp_len; 3044 i++; 3045 } 3046 3047 return ret; 3048 } 3049 3050 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3051 u64 olen) 3052 { 3053 u64 len = *plen; 3054 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3055 3056 if (off + olen > inode->i_size || off + olen < off) 3057 return -EINVAL; 3058 3059 /* if we extend to eof, continue to block boundary */ 3060 if (off + len == inode->i_size) 3061 *plen = len = ALIGN(inode->i_size, bs) - off; 3062 3063 /* Check that we are block aligned - btrfs_clone() requires this */ 3064 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3065 return -EINVAL; 3066 3067 return 0; 3068 } 3069 3070 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3071 struct inode *dst, u64 dst_loff) 3072 { 3073 int ret; 3074 u64 len = olen; 3075 struct cmp_pages cmp; 3076 bool same_inode = (src == dst); 3077 u64 same_lock_start = 0; 3078 u64 same_lock_len = 0; 3079 3080 if (len == 0) 3081 return 0; 3082 3083 if (same_inode) 3084 inode_lock(src); 3085 else 3086 btrfs_double_inode_lock(src, dst); 3087 3088 ret = extent_same_check_offsets(src, loff, &len, olen); 3089 if (ret) 3090 goto out_unlock; 3091 3092 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3093 if (ret) 3094 goto out_unlock; 3095 3096 if (same_inode) { 3097 /* 3098 * Single inode case wants the same checks, except we 3099 * don't want our length pushed out past i_size as 3100 * comparing that data range makes no sense. 3101 * 3102 * extent_same_check_offsets() will do this for an 3103 * unaligned length at i_size, so catch it here and 3104 * reject the request. 3105 * 3106 * This effectively means we require aligned extents 3107 * for the single-inode case, whereas the other cases 3108 * allow an unaligned length so long as it ends at 3109 * i_size. 3110 */ 3111 if (len != olen) { 3112 ret = -EINVAL; 3113 goto out_unlock; 3114 } 3115 3116 /* Check for overlapping ranges */ 3117 if (dst_loff + len > loff && dst_loff < loff + len) { 3118 ret = -EINVAL; 3119 goto out_unlock; 3120 } 3121 3122 same_lock_start = min_t(u64, loff, dst_loff); 3123 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3124 } 3125 3126 /* don't make the dst file partly checksummed */ 3127 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3128 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3129 ret = -EINVAL; 3130 goto out_unlock; 3131 } 3132 3133 again: 3134 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3135 if (ret) 3136 goto out_unlock; 3137 3138 if (same_inode) 3139 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3140 false); 3141 else 3142 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3143 false); 3144 /* 3145 * If one of the inodes has dirty pages in the respective range or 3146 * ordered extents, we need to flush dellaloc and wait for all ordered 3147 * extents in the range. We must unlock the pages and the ranges in the 3148 * io trees to avoid deadlocks when flushing delalloc (requires locking 3149 * pages) and when waiting for ordered extents to complete (they require 3150 * range locking). 3151 */ 3152 if (ret == -EAGAIN) { 3153 /* 3154 * Ranges in the io trees already unlocked. Now unlock all 3155 * pages before waiting for all IO to complete. 3156 */ 3157 btrfs_cmp_data_free(&cmp); 3158 if (same_inode) { 3159 btrfs_wait_ordered_range(src, same_lock_start, 3160 same_lock_len); 3161 } else { 3162 btrfs_wait_ordered_range(src, loff, len); 3163 btrfs_wait_ordered_range(dst, dst_loff, len); 3164 } 3165 goto again; 3166 } 3167 ASSERT(ret == 0); 3168 if (WARN_ON(ret)) { 3169 /* ranges in the io trees already unlocked */ 3170 btrfs_cmp_data_free(&cmp); 3171 return ret; 3172 } 3173 3174 /* pass original length for comparison so we stay within i_size */ 3175 ret = btrfs_cmp_data(olen, &cmp); 3176 if (ret == 0) 3177 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3178 3179 if (same_inode) 3180 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3181 same_lock_start + same_lock_len - 1); 3182 else 3183 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3184 3185 btrfs_cmp_data_free(&cmp); 3186 out_unlock: 3187 if (same_inode) 3188 inode_unlock(src); 3189 else 3190 btrfs_double_inode_unlock(src, dst); 3191 3192 return ret; 3193 } 3194 3195 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3196 3197 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3198 struct file *dst_file, u64 dst_loff) 3199 { 3200 struct inode *src = file_inode(src_file); 3201 struct inode *dst = file_inode(dst_file); 3202 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3203 ssize_t res; 3204 3205 if (olen > BTRFS_MAX_DEDUPE_LEN) 3206 olen = BTRFS_MAX_DEDUPE_LEN; 3207 3208 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3209 /* 3210 * Btrfs does not support blocksize < page_size. As a 3211 * result, btrfs_cmp_data() won't correctly handle 3212 * this situation without an update. 3213 */ 3214 return -EINVAL; 3215 } 3216 3217 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3218 if (res) 3219 return res; 3220 return olen; 3221 } 3222 3223 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3224 struct inode *inode, 3225 u64 endoff, 3226 const u64 destoff, 3227 const u64 olen, 3228 int no_time_update) 3229 { 3230 struct btrfs_root *root = BTRFS_I(inode)->root; 3231 int ret; 3232 3233 inode_inc_iversion(inode); 3234 if (!no_time_update) 3235 inode->i_mtime = inode->i_ctime = current_time(inode); 3236 /* 3237 * We round up to the block size at eof when determining which 3238 * extents to clone above, but shouldn't round up the file size. 3239 */ 3240 if (endoff > destoff + olen) 3241 endoff = destoff + olen; 3242 if (endoff > inode->i_size) 3243 btrfs_i_size_write(BTRFS_I(inode), endoff); 3244 3245 ret = btrfs_update_inode(trans, root, inode); 3246 if (ret) { 3247 btrfs_abort_transaction(trans, ret); 3248 btrfs_end_transaction(trans); 3249 goto out; 3250 } 3251 ret = btrfs_end_transaction(trans); 3252 out: 3253 return ret; 3254 } 3255 3256 static void clone_update_extent_map(struct btrfs_inode *inode, 3257 const struct btrfs_trans_handle *trans, 3258 const struct btrfs_path *path, 3259 const u64 hole_offset, 3260 const u64 hole_len) 3261 { 3262 struct extent_map_tree *em_tree = &inode->extent_tree; 3263 struct extent_map *em; 3264 int ret; 3265 3266 em = alloc_extent_map(); 3267 if (!em) { 3268 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3269 return; 3270 } 3271 3272 if (path) { 3273 struct btrfs_file_extent_item *fi; 3274 3275 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3276 struct btrfs_file_extent_item); 3277 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3278 em->generation = -1; 3279 if (btrfs_file_extent_type(path->nodes[0], fi) == 3280 BTRFS_FILE_EXTENT_INLINE) 3281 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3282 &inode->runtime_flags); 3283 } else { 3284 em->start = hole_offset; 3285 em->len = hole_len; 3286 em->ram_bytes = em->len; 3287 em->orig_start = hole_offset; 3288 em->block_start = EXTENT_MAP_HOLE; 3289 em->block_len = 0; 3290 em->orig_block_len = 0; 3291 em->compress_type = BTRFS_COMPRESS_NONE; 3292 em->generation = trans->transid; 3293 } 3294 3295 while (1) { 3296 write_lock(&em_tree->lock); 3297 ret = add_extent_mapping(em_tree, em, 1); 3298 write_unlock(&em_tree->lock); 3299 if (ret != -EEXIST) { 3300 free_extent_map(em); 3301 break; 3302 } 3303 btrfs_drop_extent_cache(inode, em->start, 3304 em->start + em->len - 1, 0); 3305 } 3306 3307 if (ret) 3308 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3309 } 3310 3311 /* 3312 * Make sure we do not end up inserting an inline extent into a file that has 3313 * already other (non-inline) extents. If a file has an inline extent it can 3314 * not have any other extents and the (single) inline extent must start at the 3315 * file offset 0. Failing to respect these rules will lead to file corruption, 3316 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3317 * 3318 * We can have extents that have been already written to disk or we can have 3319 * dirty ranges still in delalloc, in which case the extent maps and items are 3320 * created only when we run delalloc, and the delalloc ranges might fall outside 3321 * the range we are currently locking in the inode's io tree. So we check the 3322 * inode's i_size because of that (i_size updates are done while holding the 3323 * i_mutex, which we are holding here). 3324 * We also check to see if the inode has a size not greater than "datal" but has 3325 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3326 * protected against such concurrent fallocate calls by the i_mutex). 3327 * 3328 * If the file has no extents but a size greater than datal, do not allow the 3329 * copy because we would need turn the inline extent into a non-inline one (even 3330 * with NO_HOLES enabled). If we find our destination inode only has one inline 3331 * extent, just overwrite it with the source inline extent if its size is less 3332 * than the source extent's size, or we could copy the source inline extent's 3333 * data into the destination inode's inline extent if the later is greater then 3334 * the former. 3335 */ 3336 static int clone_copy_inline_extent(struct inode *dst, 3337 struct btrfs_trans_handle *trans, 3338 struct btrfs_path *path, 3339 struct btrfs_key *new_key, 3340 const u64 drop_start, 3341 const u64 datal, 3342 const u64 skip, 3343 const u64 size, 3344 char *inline_data) 3345 { 3346 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3347 struct btrfs_root *root = BTRFS_I(dst)->root; 3348 const u64 aligned_end = ALIGN(new_key->offset + datal, 3349 fs_info->sectorsize); 3350 int ret; 3351 struct btrfs_key key; 3352 3353 if (new_key->offset > 0) 3354 return -EOPNOTSUPP; 3355 3356 key.objectid = btrfs_ino(BTRFS_I(dst)); 3357 key.type = BTRFS_EXTENT_DATA_KEY; 3358 key.offset = 0; 3359 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3360 if (ret < 0) { 3361 return ret; 3362 } else if (ret > 0) { 3363 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3364 ret = btrfs_next_leaf(root, path); 3365 if (ret < 0) 3366 return ret; 3367 else if (ret > 0) 3368 goto copy_inline_extent; 3369 } 3370 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3371 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3372 key.type == BTRFS_EXTENT_DATA_KEY) { 3373 ASSERT(key.offset > 0); 3374 return -EOPNOTSUPP; 3375 } 3376 } else if (i_size_read(dst) <= datal) { 3377 struct btrfs_file_extent_item *ei; 3378 u64 ext_len; 3379 3380 /* 3381 * If the file size is <= datal, make sure there are no other 3382 * extents following (can happen do to an fallocate call with 3383 * the flag FALLOC_FL_KEEP_SIZE). 3384 */ 3385 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3386 struct btrfs_file_extent_item); 3387 /* 3388 * If it's an inline extent, it can not have other extents 3389 * following it. 3390 */ 3391 if (btrfs_file_extent_type(path->nodes[0], ei) == 3392 BTRFS_FILE_EXTENT_INLINE) 3393 goto copy_inline_extent; 3394 3395 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3396 if (ext_len > aligned_end) 3397 return -EOPNOTSUPP; 3398 3399 ret = btrfs_next_item(root, path); 3400 if (ret < 0) { 3401 return ret; 3402 } else if (ret == 0) { 3403 btrfs_item_key_to_cpu(path->nodes[0], &key, 3404 path->slots[0]); 3405 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3406 key.type == BTRFS_EXTENT_DATA_KEY) 3407 return -EOPNOTSUPP; 3408 } 3409 } 3410 3411 copy_inline_extent: 3412 /* 3413 * We have no extent items, or we have an extent at offset 0 which may 3414 * or may not be inlined. All these cases are dealt the same way. 3415 */ 3416 if (i_size_read(dst) > datal) { 3417 /* 3418 * If the destination inode has an inline extent... 3419 * This would require copying the data from the source inline 3420 * extent into the beginning of the destination's inline extent. 3421 * But this is really complex, both extents can be compressed 3422 * or just one of them, which would require decompressing and 3423 * re-compressing data (which could increase the new compressed 3424 * size, not allowing the compressed data to fit anymore in an 3425 * inline extent). 3426 * So just don't support this case for now (it should be rare, 3427 * we are not really saving space when cloning inline extents). 3428 */ 3429 return -EOPNOTSUPP; 3430 } 3431 3432 btrfs_release_path(path); 3433 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3434 if (ret) 3435 return ret; 3436 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3437 if (ret) 3438 return ret; 3439 3440 if (skip) { 3441 const u32 start = btrfs_file_extent_calc_inline_size(0); 3442 3443 memmove(inline_data + start, inline_data + start + skip, datal); 3444 } 3445 3446 write_extent_buffer(path->nodes[0], inline_data, 3447 btrfs_item_ptr_offset(path->nodes[0], 3448 path->slots[0]), 3449 size); 3450 inode_add_bytes(dst, datal); 3451 3452 return 0; 3453 } 3454 3455 /** 3456 * btrfs_clone() - clone a range from inode file to another 3457 * 3458 * @src: Inode to clone from 3459 * @inode: Inode to clone to 3460 * @off: Offset within source to start clone from 3461 * @olen: Original length, passed by user, of range to clone 3462 * @olen_aligned: Block-aligned value of olen 3463 * @destoff: Offset within @inode to start clone 3464 * @no_time_update: Whether to update mtime/ctime on the target inode 3465 */ 3466 static int btrfs_clone(struct inode *src, struct inode *inode, 3467 const u64 off, const u64 olen, const u64 olen_aligned, 3468 const u64 destoff, int no_time_update) 3469 { 3470 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3471 struct btrfs_root *root = BTRFS_I(inode)->root; 3472 struct btrfs_path *path = NULL; 3473 struct extent_buffer *leaf; 3474 struct btrfs_trans_handle *trans; 3475 char *buf = NULL; 3476 struct btrfs_key key; 3477 u32 nritems; 3478 int slot; 3479 int ret; 3480 const u64 len = olen_aligned; 3481 u64 last_dest_end = destoff; 3482 3483 ret = -ENOMEM; 3484 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3485 if (!buf) 3486 return ret; 3487 3488 path = btrfs_alloc_path(); 3489 if (!path) { 3490 kvfree(buf); 3491 return ret; 3492 } 3493 3494 path->reada = READA_FORWARD; 3495 /* clone data */ 3496 key.objectid = btrfs_ino(BTRFS_I(src)); 3497 key.type = BTRFS_EXTENT_DATA_KEY; 3498 key.offset = off; 3499 3500 while (1) { 3501 u64 next_key_min_offset = key.offset + 1; 3502 3503 /* 3504 * note the key will change type as we walk through the 3505 * tree. 3506 */ 3507 path->leave_spinning = 1; 3508 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3509 0, 0); 3510 if (ret < 0) 3511 goto out; 3512 /* 3513 * First search, if no extent item that starts at offset off was 3514 * found but the previous item is an extent item, it's possible 3515 * it might overlap our target range, therefore process it. 3516 */ 3517 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3518 btrfs_item_key_to_cpu(path->nodes[0], &key, 3519 path->slots[0] - 1); 3520 if (key.type == BTRFS_EXTENT_DATA_KEY) 3521 path->slots[0]--; 3522 } 3523 3524 nritems = btrfs_header_nritems(path->nodes[0]); 3525 process_slot: 3526 if (path->slots[0] >= nritems) { 3527 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3528 if (ret < 0) 3529 goto out; 3530 if (ret > 0) 3531 break; 3532 nritems = btrfs_header_nritems(path->nodes[0]); 3533 } 3534 leaf = path->nodes[0]; 3535 slot = path->slots[0]; 3536 3537 btrfs_item_key_to_cpu(leaf, &key, slot); 3538 if (key.type > BTRFS_EXTENT_DATA_KEY || 3539 key.objectid != btrfs_ino(BTRFS_I(src))) 3540 break; 3541 3542 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3543 struct btrfs_file_extent_item *extent; 3544 int type; 3545 u32 size; 3546 struct btrfs_key new_key; 3547 u64 disko = 0, diskl = 0; 3548 u64 datao = 0, datal = 0; 3549 u8 comp; 3550 u64 drop_start; 3551 3552 extent = btrfs_item_ptr(leaf, slot, 3553 struct btrfs_file_extent_item); 3554 comp = btrfs_file_extent_compression(leaf, extent); 3555 type = btrfs_file_extent_type(leaf, extent); 3556 if (type == BTRFS_FILE_EXTENT_REG || 3557 type == BTRFS_FILE_EXTENT_PREALLOC) { 3558 disko = btrfs_file_extent_disk_bytenr(leaf, 3559 extent); 3560 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3561 extent); 3562 datao = btrfs_file_extent_offset(leaf, extent); 3563 datal = btrfs_file_extent_num_bytes(leaf, 3564 extent); 3565 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3566 /* take upper bound, may be compressed */ 3567 datal = btrfs_file_extent_ram_bytes(leaf, 3568 extent); 3569 } 3570 3571 /* 3572 * The first search might have left us at an extent 3573 * item that ends before our target range's start, can 3574 * happen if we have holes and NO_HOLES feature enabled. 3575 */ 3576 if (key.offset + datal <= off) { 3577 path->slots[0]++; 3578 goto process_slot; 3579 } else if (key.offset >= off + len) { 3580 break; 3581 } 3582 next_key_min_offset = key.offset + datal; 3583 size = btrfs_item_size_nr(leaf, slot); 3584 read_extent_buffer(leaf, buf, 3585 btrfs_item_ptr_offset(leaf, slot), 3586 size); 3587 3588 btrfs_release_path(path); 3589 path->leave_spinning = 0; 3590 3591 memcpy(&new_key, &key, sizeof(new_key)); 3592 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3593 if (off <= key.offset) 3594 new_key.offset = key.offset + destoff - off; 3595 else 3596 new_key.offset = destoff; 3597 3598 /* 3599 * Deal with a hole that doesn't have an extent item 3600 * that represents it (NO_HOLES feature enabled). 3601 * This hole is either in the middle of the cloning 3602 * range or at the beginning (fully overlaps it or 3603 * partially overlaps it). 3604 */ 3605 if (new_key.offset != last_dest_end) 3606 drop_start = last_dest_end; 3607 else 3608 drop_start = new_key.offset; 3609 3610 /* 3611 * 1 - adjusting old extent (we may have to split it) 3612 * 1 - add new extent 3613 * 1 - inode update 3614 */ 3615 trans = btrfs_start_transaction(root, 3); 3616 if (IS_ERR(trans)) { 3617 ret = PTR_ERR(trans); 3618 goto out; 3619 } 3620 3621 if (type == BTRFS_FILE_EXTENT_REG || 3622 type == BTRFS_FILE_EXTENT_PREALLOC) { 3623 /* 3624 * a | --- range to clone ---| b 3625 * | ------------- extent ------------- | 3626 */ 3627 3628 /* subtract range b */ 3629 if (key.offset + datal > off + len) 3630 datal = off + len - key.offset; 3631 3632 /* subtract range a */ 3633 if (off > key.offset) { 3634 datao += off - key.offset; 3635 datal -= off - key.offset; 3636 } 3637 3638 ret = btrfs_drop_extents(trans, root, inode, 3639 drop_start, 3640 new_key.offset + datal, 3641 1); 3642 if (ret) { 3643 if (ret != -EOPNOTSUPP) 3644 btrfs_abort_transaction(trans, 3645 ret); 3646 btrfs_end_transaction(trans); 3647 goto out; 3648 } 3649 3650 ret = btrfs_insert_empty_item(trans, root, path, 3651 &new_key, size); 3652 if (ret) { 3653 btrfs_abort_transaction(trans, ret); 3654 btrfs_end_transaction(trans); 3655 goto out; 3656 } 3657 3658 leaf = path->nodes[0]; 3659 slot = path->slots[0]; 3660 write_extent_buffer(leaf, buf, 3661 btrfs_item_ptr_offset(leaf, slot), 3662 size); 3663 3664 extent = btrfs_item_ptr(leaf, slot, 3665 struct btrfs_file_extent_item); 3666 3667 /* disko == 0 means it's a hole */ 3668 if (!disko) 3669 datao = 0; 3670 3671 btrfs_set_file_extent_offset(leaf, extent, 3672 datao); 3673 btrfs_set_file_extent_num_bytes(leaf, extent, 3674 datal); 3675 3676 if (disko) { 3677 inode_add_bytes(inode, datal); 3678 ret = btrfs_inc_extent_ref(trans, 3679 root, 3680 disko, diskl, 0, 3681 root->root_key.objectid, 3682 btrfs_ino(BTRFS_I(inode)), 3683 new_key.offset - datao); 3684 if (ret) { 3685 btrfs_abort_transaction(trans, 3686 ret); 3687 btrfs_end_transaction(trans); 3688 goto out; 3689 3690 } 3691 } 3692 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3693 u64 skip = 0; 3694 u64 trim = 0; 3695 3696 if (off > key.offset) { 3697 skip = off - key.offset; 3698 new_key.offset += skip; 3699 } 3700 3701 if (key.offset + datal > off + len) 3702 trim = key.offset + datal - (off + len); 3703 3704 if (comp && (skip || trim)) { 3705 ret = -EINVAL; 3706 btrfs_end_transaction(trans); 3707 goto out; 3708 } 3709 size -= skip + trim; 3710 datal -= skip + trim; 3711 3712 ret = clone_copy_inline_extent(inode, 3713 trans, path, 3714 &new_key, 3715 drop_start, 3716 datal, 3717 skip, size, buf); 3718 if (ret) { 3719 if (ret != -EOPNOTSUPP) 3720 btrfs_abort_transaction(trans, 3721 ret); 3722 btrfs_end_transaction(trans); 3723 goto out; 3724 } 3725 leaf = path->nodes[0]; 3726 slot = path->slots[0]; 3727 } 3728 3729 /* If we have an implicit hole (NO_HOLES feature). */ 3730 if (drop_start < new_key.offset) 3731 clone_update_extent_map(BTRFS_I(inode), trans, 3732 NULL, drop_start, 3733 new_key.offset - drop_start); 3734 3735 clone_update_extent_map(BTRFS_I(inode), trans, 3736 path, 0, 0); 3737 3738 btrfs_mark_buffer_dirty(leaf); 3739 btrfs_release_path(path); 3740 3741 last_dest_end = ALIGN(new_key.offset + datal, 3742 fs_info->sectorsize); 3743 ret = clone_finish_inode_update(trans, inode, 3744 last_dest_end, 3745 destoff, olen, 3746 no_time_update); 3747 if (ret) 3748 goto out; 3749 if (new_key.offset + datal >= destoff + len) 3750 break; 3751 } 3752 btrfs_release_path(path); 3753 key.offset = next_key_min_offset; 3754 3755 if (fatal_signal_pending(current)) { 3756 ret = -EINTR; 3757 goto out; 3758 } 3759 } 3760 ret = 0; 3761 3762 if (last_dest_end < destoff + len) { 3763 /* 3764 * We have an implicit hole (NO_HOLES feature is enabled) that 3765 * fully or partially overlaps our cloning range at its end. 3766 */ 3767 btrfs_release_path(path); 3768 3769 /* 3770 * 1 - remove extent(s) 3771 * 1 - inode update 3772 */ 3773 trans = btrfs_start_transaction(root, 2); 3774 if (IS_ERR(trans)) { 3775 ret = PTR_ERR(trans); 3776 goto out; 3777 } 3778 ret = btrfs_drop_extents(trans, root, inode, 3779 last_dest_end, destoff + len, 1); 3780 if (ret) { 3781 if (ret != -EOPNOTSUPP) 3782 btrfs_abort_transaction(trans, ret); 3783 btrfs_end_transaction(trans); 3784 goto out; 3785 } 3786 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 3787 last_dest_end, 3788 destoff + len - last_dest_end); 3789 ret = clone_finish_inode_update(trans, inode, destoff + len, 3790 destoff, olen, no_time_update); 3791 } 3792 3793 out: 3794 btrfs_free_path(path); 3795 kvfree(buf); 3796 return ret; 3797 } 3798 3799 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3800 u64 off, u64 olen, u64 destoff) 3801 { 3802 struct inode *inode = file_inode(file); 3803 struct inode *src = file_inode(file_src); 3804 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3805 struct btrfs_root *root = BTRFS_I(inode)->root; 3806 int ret; 3807 u64 len = olen; 3808 u64 bs = fs_info->sb->s_blocksize; 3809 int same_inode = src == inode; 3810 3811 /* 3812 * TODO: 3813 * - split compressed inline extents. annoying: we need to 3814 * decompress into destination's address_space (the file offset 3815 * may change, so source mapping won't do), then recompress (or 3816 * otherwise reinsert) a subrange. 3817 * 3818 * - split destination inode's inline extents. The inline extents can 3819 * be either compressed or non-compressed. 3820 */ 3821 3822 if (btrfs_root_readonly(root)) 3823 return -EROFS; 3824 3825 if (file_src->f_path.mnt != file->f_path.mnt || 3826 src->i_sb != inode->i_sb) 3827 return -EXDEV; 3828 3829 /* don't make the dst file partly checksummed */ 3830 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3831 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3832 return -EINVAL; 3833 3834 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3835 return -EISDIR; 3836 3837 if (!same_inode) { 3838 btrfs_double_inode_lock(src, inode); 3839 } else { 3840 inode_lock(src); 3841 } 3842 3843 /* determine range to clone */ 3844 ret = -EINVAL; 3845 if (off + len > src->i_size || off + len < off) 3846 goto out_unlock; 3847 if (len == 0) 3848 olen = len = src->i_size - off; 3849 /* if we extend to eof, continue to block boundary */ 3850 if (off + len == src->i_size) 3851 len = ALIGN(src->i_size, bs) - off; 3852 3853 if (len == 0) { 3854 ret = 0; 3855 goto out_unlock; 3856 } 3857 3858 /* verify the end result is block aligned */ 3859 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3860 !IS_ALIGNED(destoff, bs)) 3861 goto out_unlock; 3862 3863 /* verify if ranges are overlapped within the same file */ 3864 if (same_inode) { 3865 if (destoff + len > off && destoff < off + len) 3866 goto out_unlock; 3867 } 3868 3869 if (destoff > inode->i_size) { 3870 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3871 if (ret) 3872 goto out_unlock; 3873 } 3874 3875 /* 3876 * Lock the target range too. Right after we replace the file extent 3877 * items in the fs tree (which now point to the cloned data), we might 3878 * have a worker replace them with extent items relative to a write 3879 * operation that was issued before this clone operation (i.e. confront 3880 * with inode.c:btrfs_finish_ordered_io). 3881 */ 3882 if (same_inode) { 3883 u64 lock_start = min_t(u64, off, destoff); 3884 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3885 3886 ret = lock_extent_range(src, lock_start, lock_len, true); 3887 } else { 3888 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 3889 true); 3890 } 3891 ASSERT(ret == 0); 3892 if (WARN_ON(ret)) { 3893 /* ranges in the io trees already unlocked */ 3894 goto out_unlock; 3895 } 3896 3897 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3898 3899 if (same_inode) { 3900 u64 lock_start = min_t(u64, off, destoff); 3901 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3902 3903 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3904 } else { 3905 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3906 } 3907 /* 3908 * Truncate page cache pages so that future reads will see the cloned 3909 * data immediately and not the previous data. 3910 */ 3911 truncate_inode_pages_range(&inode->i_data, 3912 round_down(destoff, PAGE_SIZE), 3913 round_up(destoff + len, PAGE_SIZE) - 1); 3914 out_unlock: 3915 if (!same_inode) 3916 btrfs_double_inode_unlock(src, inode); 3917 else 3918 inode_unlock(src); 3919 return ret; 3920 } 3921 3922 int btrfs_clone_file_range(struct file *src_file, loff_t off, 3923 struct file *dst_file, loff_t destoff, u64 len) 3924 { 3925 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 3926 } 3927 3928 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3929 { 3930 struct inode *inode = file_inode(file); 3931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3932 struct btrfs_root *root = BTRFS_I(inode)->root; 3933 struct btrfs_root *new_root; 3934 struct btrfs_dir_item *di; 3935 struct btrfs_trans_handle *trans; 3936 struct btrfs_path *path; 3937 struct btrfs_key location; 3938 struct btrfs_disk_key disk_key; 3939 u64 objectid = 0; 3940 u64 dir_id; 3941 int ret; 3942 3943 if (!capable(CAP_SYS_ADMIN)) 3944 return -EPERM; 3945 3946 ret = mnt_want_write_file(file); 3947 if (ret) 3948 return ret; 3949 3950 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3951 ret = -EFAULT; 3952 goto out; 3953 } 3954 3955 if (!objectid) 3956 objectid = BTRFS_FS_TREE_OBJECTID; 3957 3958 location.objectid = objectid; 3959 location.type = BTRFS_ROOT_ITEM_KEY; 3960 location.offset = (u64)-1; 3961 3962 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 3963 if (IS_ERR(new_root)) { 3964 ret = PTR_ERR(new_root); 3965 goto out; 3966 } 3967 if (!is_fstree(new_root->objectid)) { 3968 ret = -ENOENT; 3969 goto out; 3970 } 3971 3972 path = btrfs_alloc_path(); 3973 if (!path) { 3974 ret = -ENOMEM; 3975 goto out; 3976 } 3977 path->leave_spinning = 1; 3978 3979 trans = btrfs_start_transaction(root, 1); 3980 if (IS_ERR(trans)) { 3981 btrfs_free_path(path); 3982 ret = PTR_ERR(trans); 3983 goto out; 3984 } 3985 3986 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3987 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3988 dir_id, "default", 7, 1); 3989 if (IS_ERR_OR_NULL(di)) { 3990 btrfs_free_path(path); 3991 btrfs_end_transaction(trans); 3992 btrfs_err(fs_info, 3993 "Umm, you don't have the default diritem, this isn't going to work"); 3994 ret = -ENOENT; 3995 goto out; 3996 } 3997 3998 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3999 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4000 btrfs_mark_buffer_dirty(path->nodes[0]); 4001 btrfs_free_path(path); 4002 4003 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4004 btrfs_end_transaction(trans); 4005 out: 4006 mnt_drop_write_file(file); 4007 return ret; 4008 } 4009 4010 void btrfs_get_block_group_info(struct list_head *groups_list, 4011 struct btrfs_ioctl_space_info *space) 4012 { 4013 struct btrfs_block_group_cache *block_group; 4014 4015 space->total_bytes = 0; 4016 space->used_bytes = 0; 4017 space->flags = 0; 4018 list_for_each_entry(block_group, groups_list, list) { 4019 space->flags = block_group->flags; 4020 space->total_bytes += block_group->key.offset; 4021 space->used_bytes += 4022 btrfs_block_group_used(&block_group->item); 4023 } 4024 } 4025 4026 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4027 void __user *arg) 4028 { 4029 struct btrfs_ioctl_space_args space_args; 4030 struct btrfs_ioctl_space_info space; 4031 struct btrfs_ioctl_space_info *dest; 4032 struct btrfs_ioctl_space_info *dest_orig; 4033 struct btrfs_ioctl_space_info __user *user_dest; 4034 struct btrfs_space_info *info; 4035 static const u64 types[] = { 4036 BTRFS_BLOCK_GROUP_DATA, 4037 BTRFS_BLOCK_GROUP_SYSTEM, 4038 BTRFS_BLOCK_GROUP_METADATA, 4039 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4040 }; 4041 int num_types = 4; 4042 int alloc_size; 4043 int ret = 0; 4044 u64 slot_count = 0; 4045 int i, c; 4046 4047 if (copy_from_user(&space_args, 4048 (struct btrfs_ioctl_space_args __user *)arg, 4049 sizeof(space_args))) 4050 return -EFAULT; 4051 4052 for (i = 0; i < num_types; i++) { 4053 struct btrfs_space_info *tmp; 4054 4055 info = NULL; 4056 rcu_read_lock(); 4057 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4058 list) { 4059 if (tmp->flags == types[i]) { 4060 info = tmp; 4061 break; 4062 } 4063 } 4064 rcu_read_unlock(); 4065 4066 if (!info) 4067 continue; 4068 4069 down_read(&info->groups_sem); 4070 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4071 if (!list_empty(&info->block_groups[c])) 4072 slot_count++; 4073 } 4074 up_read(&info->groups_sem); 4075 } 4076 4077 /* 4078 * Global block reserve, exported as a space_info 4079 */ 4080 slot_count++; 4081 4082 /* space_slots == 0 means they are asking for a count */ 4083 if (space_args.space_slots == 0) { 4084 space_args.total_spaces = slot_count; 4085 goto out; 4086 } 4087 4088 slot_count = min_t(u64, space_args.space_slots, slot_count); 4089 4090 alloc_size = sizeof(*dest) * slot_count; 4091 4092 /* we generally have at most 6 or so space infos, one for each raid 4093 * level. So, a whole page should be more than enough for everyone 4094 */ 4095 if (alloc_size > PAGE_SIZE) 4096 return -ENOMEM; 4097 4098 space_args.total_spaces = 0; 4099 dest = kmalloc(alloc_size, GFP_KERNEL); 4100 if (!dest) 4101 return -ENOMEM; 4102 dest_orig = dest; 4103 4104 /* now we have a buffer to copy into */ 4105 for (i = 0; i < num_types; i++) { 4106 struct btrfs_space_info *tmp; 4107 4108 if (!slot_count) 4109 break; 4110 4111 info = NULL; 4112 rcu_read_lock(); 4113 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4114 list) { 4115 if (tmp->flags == types[i]) { 4116 info = tmp; 4117 break; 4118 } 4119 } 4120 rcu_read_unlock(); 4121 4122 if (!info) 4123 continue; 4124 down_read(&info->groups_sem); 4125 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4126 if (!list_empty(&info->block_groups[c])) { 4127 btrfs_get_block_group_info( 4128 &info->block_groups[c], &space); 4129 memcpy(dest, &space, sizeof(space)); 4130 dest++; 4131 space_args.total_spaces++; 4132 slot_count--; 4133 } 4134 if (!slot_count) 4135 break; 4136 } 4137 up_read(&info->groups_sem); 4138 } 4139 4140 /* 4141 * Add global block reserve 4142 */ 4143 if (slot_count) { 4144 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4145 4146 spin_lock(&block_rsv->lock); 4147 space.total_bytes = block_rsv->size; 4148 space.used_bytes = block_rsv->size - block_rsv->reserved; 4149 spin_unlock(&block_rsv->lock); 4150 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4151 memcpy(dest, &space, sizeof(space)); 4152 space_args.total_spaces++; 4153 } 4154 4155 user_dest = (struct btrfs_ioctl_space_info __user *) 4156 (arg + sizeof(struct btrfs_ioctl_space_args)); 4157 4158 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4159 ret = -EFAULT; 4160 4161 kfree(dest_orig); 4162 out: 4163 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4164 ret = -EFAULT; 4165 4166 return ret; 4167 } 4168 4169 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4170 void __user *argp) 4171 { 4172 struct btrfs_trans_handle *trans; 4173 u64 transid; 4174 int ret; 4175 4176 trans = btrfs_attach_transaction_barrier(root); 4177 if (IS_ERR(trans)) { 4178 if (PTR_ERR(trans) != -ENOENT) 4179 return PTR_ERR(trans); 4180 4181 /* No running transaction, don't bother */ 4182 transid = root->fs_info->last_trans_committed; 4183 goto out; 4184 } 4185 transid = trans->transid; 4186 ret = btrfs_commit_transaction_async(trans, 0); 4187 if (ret) { 4188 btrfs_end_transaction(trans); 4189 return ret; 4190 } 4191 out: 4192 if (argp) 4193 if (copy_to_user(argp, &transid, sizeof(transid))) 4194 return -EFAULT; 4195 return 0; 4196 } 4197 4198 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4199 void __user *argp) 4200 { 4201 u64 transid; 4202 4203 if (argp) { 4204 if (copy_from_user(&transid, argp, sizeof(transid))) 4205 return -EFAULT; 4206 } else { 4207 transid = 0; /* current trans */ 4208 } 4209 return btrfs_wait_for_commit(fs_info, transid); 4210 } 4211 4212 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4213 { 4214 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4215 struct btrfs_ioctl_scrub_args *sa; 4216 int ret; 4217 4218 if (!capable(CAP_SYS_ADMIN)) 4219 return -EPERM; 4220 4221 sa = memdup_user(arg, sizeof(*sa)); 4222 if (IS_ERR(sa)) 4223 return PTR_ERR(sa); 4224 4225 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4226 ret = mnt_want_write_file(file); 4227 if (ret) 4228 goto out; 4229 } 4230 4231 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4232 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4233 0); 4234 4235 if (copy_to_user(arg, sa, sizeof(*sa))) 4236 ret = -EFAULT; 4237 4238 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4239 mnt_drop_write_file(file); 4240 out: 4241 kfree(sa); 4242 return ret; 4243 } 4244 4245 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4246 { 4247 if (!capable(CAP_SYS_ADMIN)) 4248 return -EPERM; 4249 4250 return btrfs_scrub_cancel(fs_info); 4251 } 4252 4253 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4254 void __user *arg) 4255 { 4256 struct btrfs_ioctl_scrub_args *sa; 4257 int ret; 4258 4259 if (!capable(CAP_SYS_ADMIN)) 4260 return -EPERM; 4261 4262 sa = memdup_user(arg, sizeof(*sa)); 4263 if (IS_ERR(sa)) 4264 return PTR_ERR(sa); 4265 4266 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4267 4268 if (copy_to_user(arg, sa, sizeof(*sa))) 4269 ret = -EFAULT; 4270 4271 kfree(sa); 4272 return ret; 4273 } 4274 4275 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4276 void __user *arg) 4277 { 4278 struct btrfs_ioctl_get_dev_stats *sa; 4279 int ret; 4280 4281 sa = memdup_user(arg, sizeof(*sa)); 4282 if (IS_ERR(sa)) 4283 return PTR_ERR(sa); 4284 4285 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4286 kfree(sa); 4287 return -EPERM; 4288 } 4289 4290 ret = btrfs_get_dev_stats(fs_info, sa); 4291 4292 if (copy_to_user(arg, sa, sizeof(*sa))) 4293 ret = -EFAULT; 4294 4295 kfree(sa); 4296 return ret; 4297 } 4298 4299 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4300 void __user *arg) 4301 { 4302 struct btrfs_ioctl_dev_replace_args *p; 4303 int ret; 4304 4305 if (!capable(CAP_SYS_ADMIN)) 4306 return -EPERM; 4307 4308 p = memdup_user(arg, sizeof(*p)); 4309 if (IS_ERR(p)) 4310 return PTR_ERR(p); 4311 4312 switch (p->cmd) { 4313 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4314 if (sb_rdonly(fs_info->sb)) { 4315 ret = -EROFS; 4316 goto out; 4317 } 4318 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4319 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4320 } else { 4321 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4322 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4323 } 4324 break; 4325 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4326 btrfs_dev_replace_status(fs_info, p); 4327 ret = 0; 4328 break; 4329 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4330 p->result = btrfs_dev_replace_cancel(fs_info); 4331 ret = 0; 4332 break; 4333 default: 4334 ret = -EINVAL; 4335 break; 4336 } 4337 4338 if (copy_to_user(arg, p, sizeof(*p))) 4339 ret = -EFAULT; 4340 out: 4341 kfree(p); 4342 return ret; 4343 } 4344 4345 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4346 { 4347 int ret = 0; 4348 int i; 4349 u64 rel_ptr; 4350 int size; 4351 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4352 struct inode_fs_paths *ipath = NULL; 4353 struct btrfs_path *path; 4354 4355 if (!capable(CAP_DAC_READ_SEARCH)) 4356 return -EPERM; 4357 4358 path = btrfs_alloc_path(); 4359 if (!path) { 4360 ret = -ENOMEM; 4361 goto out; 4362 } 4363 4364 ipa = memdup_user(arg, sizeof(*ipa)); 4365 if (IS_ERR(ipa)) { 4366 ret = PTR_ERR(ipa); 4367 ipa = NULL; 4368 goto out; 4369 } 4370 4371 size = min_t(u32, ipa->size, 4096); 4372 ipath = init_ipath(size, root, path); 4373 if (IS_ERR(ipath)) { 4374 ret = PTR_ERR(ipath); 4375 ipath = NULL; 4376 goto out; 4377 } 4378 4379 ret = paths_from_inode(ipa->inum, ipath); 4380 if (ret < 0) 4381 goto out; 4382 4383 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4384 rel_ptr = ipath->fspath->val[i] - 4385 (u64)(unsigned long)ipath->fspath->val; 4386 ipath->fspath->val[i] = rel_ptr; 4387 } 4388 4389 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4390 ipath->fspath, size); 4391 if (ret) { 4392 ret = -EFAULT; 4393 goto out; 4394 } 4395 4396 out: 4397 btrfs_free_path(path); 4398 free_ipath(ipath); 4399 kfree(ipa); 4400 4401 return ret; 4402 } 4403 4404 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4405 { 4406 struct btrfs_data_container *inodes = ctx; 4407 const size_t c = 3 * sizeof(u64); 4408 4409 if (inodes->bytes_left >= c) { 4410 inodes->bytes_left -= c; 4411 inodes->val[inodes->elem_cnt] = inum; 4412 inodes->val[inodes->elem_cnt + 1] = offset; 4413 inodes->val[inodes->elem_cnt + 2] = root; 4414 inodes->elem_cnt += 3; 4415 } else { 4416 inodes->bytes_missing += c - inodes->bytes_left; 4417 inodes->bytes_left = 0; 4418 inodes->elem_missed += 3; 4419 } 4420 4421 return 0; 4422 } 4423 4424 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4425 void __user *arg, int version) 4426 { 4427 int ret = 0; 4428 int size; 4429 struct btrfs_ioctl_logical_ino_args *loi; 4430 struct btrfs_data_container *inodes = NULL; 4431 struct btrfs_path *path = NULL; 4432 bool ignore_offset; 4433 4434 if (!capable(CAP_SYS_ADMIN)) 4435 return -EPERM; 4436 4437 loi = memdup_user(arg, sizeof(*loi)); 4438 if (IS_ERR(loi)) 4439 return PTR_ERR(loi); 4440 4441 if (version == 1) { 4442 ignore_offset = false; 4443 size = min_t(u32, loi->size, SZ_64K); 4444 } else { 4445 /* All reserved bits must be 0 for now */ 4446 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4447 ret = -EINVAL; 4448 goto out_loi; 4449 } 4450 /* Only accept flags we have defined so far */ 4451 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4452 ret = -EINVAL; 4453 goto out_loi; 4454 } 4455 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4456 size = min_t(u32, loi->size, SZ_16M); 4457 } 4458 4459 path = btrfs_alloc_path(); 4460 if (!path) { 4461 ret = -ENOMEM; 4462 goto out; 4463 } 4464 4465 inodes = init_data_container(size); 4466 if (IS_ERR(inodes)) { 4467 ret = PTR_ERR(inodes); 4468 inodes = NULL; 4469 goto out; 4470 } 4471 4472 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4473 build_ino_list, inodes, ignore_offset); 4474 if (ret == -EINVAL) 4475 ret = -ENOENT; 4476 if (ret < 0) 4477 goto out; 4478 4479 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4480 size); 4481 if (ret) 4482 ret = -EFAULT; 4483 4484 out: 4485 btrfs_free_path(path); 4486 kvfree(inodes); 4487 out_loi: 4488 kfree(loi); 4489 4490 return ret; 4491 } 4492 4493 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4494 struct btrfs_ioctl_balance_args *bargs) 4495 { 4496 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4497 4498 bargs->flags = bctl->flags; 4499 4500 if (atomic_read(&fs_info->balance_running)) 4501 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4502 if (atomic_read(&fs_info->balance_pause_req)) 4503 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4504 if (atomic_read(&fs_info->balance_cancel_req)) 4505 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4506 4507 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4508 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4509 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4510 4511 if (lock) { 4512 spin_lock(&fs_info->balance_lock); 4513 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4514 spin_unlock(&fs_info->balance_lock); 4515 } else { 4516 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4517 } 4518 } 4519 4520 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4521 { 4522 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4523 struct btrfs_fs_info *fs_info = root->fs_info; 4524 struct btrfs_ioctl_balance_args *bargs; 4525 struct btrfs_balance_control *bctl; 4526 bool need_unlock; /* for mut. excl. ops lock */ 4527 int ret; 4528 4529 if (!capable(CAP_SYS_ADMIN)) 4530 return -EPERM; 4531 4532 ret = mnt_want_write_file(file); 4533 if (ret) 4534 return ret; 4535 4536 again: 4537 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4538 mutex_lock(&fs_info->volume_mutex); 4539 mutex_lock(&fs_info->balance_mutex); 4540 need_unlock = true; 4541 goto locked; 4542 } 4543 4544 /* 4545 * mut. excl. ops lock is locked. Three possibilities: 4546 * (1) some other op is running 4547 * (2) balance is running 4548 * (3) balance is paused -- special case (think resume) 4549 */ 4550 mutex_lock(&fs_info->balance_mutex); 4551 if (fs_info->balance_ctl) { 4552 /* this is either (2) or (3) */ 4553 if (!atomic_read(&fs_info->balance_running)) { 4554 mutex_unlock(&fs_info->balance_mutex); 4555 if (!mutex_trylock(&fs_info->volume_mutex)) 4556 goto again; 4557 mutex_lock(&fs_info->balance_mutex); 4558 4559 if (fs_info->balance_ctl && 4560 !atomic_read(&fs_info->balance_running)) { 4561 /* this is (3) */ 4562 need_unlock = false; 4563 goto locked; 4564 } 4565 4566 mutex_unlock(&fs_info->balance_mutex); 4567 mutex_unlock(&fs_info->volume_mutex); 4568 goto again; 4569 } else { 4570 /* this is (2) */ 4571 mutex_unlock(&fs_info->balance_mutex); 4572 ret = -EINPROGRESS; 4573 goto out; 4574 } 4575 } else { 4576 /* this is (1) */ 4577 mutex_unlock(&fs_info->balance_mutex); 4578 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4579 goto out; 4580 } 4581 4582 locked: 4583 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4584 4585 if (arg) { 4586 bargs = memdup_user(arg, sizeof(*bargs)); 4587 if (IS_ERR(bargs)) { 4588 ret = PTR_ERR(bargs); 4589 goto out_unlock; 4590 } 4591 4592 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4593 if (!fs_info->balance_ctl) { 4594 ret = -ENOTCONN; 4595 goto out_bargs; 4596 } 4597 4598 bctl = fs_info->balance_ctl; 4599 spin_lock(&fs_info->balance_lock); 4600 bctl->flags |= BTRFS_BALANCE_RESUME; 4601 spin_unlock(&fs_info->balance_lock); 4602 4603 goto do_balance; 4604 } 4605 } else { 4606 bargs = NULL; 4607 } 4608 4609 if (fs_info->balance_ctl) { 4610 ret = -EINPROGRESS; 4611 goto out_bargs; 4612 } 4613 4614 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4615 if (!bctl) { 4616 ret = -ENOMEM; 4617 goto out_bargs; 4618 } 4619 4620 bctl->fs_info = fs_info; 4621 if (arg) { 4622 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4623 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4624 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4625 4626 bctl->flags = bargs->flags; 4627 } else { 4628 /* balance everything - no filters */ 4629 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4630 } 4631 4632 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4633 ret = -EINVAL; 4634 goto out_bctl; 4635 } 4636 4637 do_balance: 4638 /* 4639 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP 4640 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4641 * or, if restriper was paused all the way until unmount, in 4642 * free_fs_info. The flag is cleared in __cancel_balance. 4643 */ 4644 need_unlock = false; 4645 4646 ret = btrfs_balance(bctl, bargs); 4647 bctl = NULL; 4648 4649 if (arg) { 4650 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4651 ret = -EFAULT; 4652 } 4653 4654 out_bctl: 4655 kfree(bctl); 4656 out_bargs: 4657 kfree(bargs); 4658 out_unlock: 4659 mutex_unlock(&fs_info->balance_mutex); 4660 mutex_unlock(&fs_info->volume_mutex); 4661 if (need_unlock) 4662 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4663 out: 4664 mnt_drop_write_file(file); 4665 return ret; 4666 } 4667 4668 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4669 { 4670 if (!capable(CAP_SYS_ADMIN)) 4671 return -EPERM; 4672 4673 switch (cmd) { 4674 case BTRFS_BALANCE_CTL_PAUSE: 4675 return btrfs_pause_balance(fs_info); 4676 case BTRFS_BALANCE_CTL_CANCEL: 4677 return btrfs_cancel_balance(fs_info); 4678 } 4679 4680 return -EINVAL; 4681 } 4682 4683 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4684 void __user *arg) 4685 { 4686 struct btrfs_ioctl_balance_args *bargs; 4687 int ret = 0; 4688 4689 if (!capable(CAP_SYS_ADMIN)) 4690 return -EPERM; 4691 4692 mutex_lock(&fs_info->balance_mutex); 4693 if (!fs_info->balance_ctl) { 4694 ret = -ENOTCONN; 4695 goto out; 4696 } 4697 4698 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4699 if (!bargs) { 4700 ret = -ENOMEM; 4701 goto out; 4702 } 4703 4704 update_ioctl_balance_args(fs_info, 1, bargs); 4705 4706 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4707 ret = -EFAULT; 4708 4709 kfree(bargs); 4710 out: 4711 mutex_unlock(&fs_info->balance_mutex); 4712 return ret; 4713 } 4714 4715 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4716 { 4717 struct inode *inode = file_inode(file); 4718 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4719 struct btrfs_ioctl_quota_ctl_args *sa; 4720 struct btrfs_trans_handle *trans = NULL; 4721 int ret; 4722 int err; 4723 4724 if (!capable(CAP_SYS_ADMIN)) 4725 return -EPERM; 4726 4727 ret = mnt_want_write_file(file); 4728 if (ret) 4729 return ret; 4730 4731 sa = memdup_user(arg, sizeof(*sa)); 4732 if (IS_ERR(sa)) { 4733 ret = PTR_ERR(sa); 4734 goto drop_write; 4735 } 4736 4737 down_write(&fs_info->subvol_sem); 4738 trans = btrfs_start_transaction(fs_info->tree_root, 2); 4739 if (IS_ERR(trans)) { 4740 ret = PTR_ERR(trans); 4741 goto out; 4742 } 4743 4744 switch (sa->cmd) { 4745 case BTRFS_QUOTA_CTL_ENABLE: 4746 ret = btrfs_quota_enable(trans, fs_info); 4747 break; 4748 case BTRFS_QUOTA_CTL_DISABLE: 4749 ret = btrfs_quota_disable(trans, fs_info); 4750 break; 4751 default: 4752 ret = -EINVAL; 4753 break; 4754 } 4755 4756 err = btrfs_commit_transaction(trans); 4757 if (err && !ret) 4758 ret = err; 4759 out: 4760 kfree(sa); 4761 up_write(&fs_info->subvol_sem); 4762 drop_write: 4763 mnt_drop_write_file(file); 4764 return ret; 4765 } 4766 4767 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4768 { 4769 struct inode *inode = file_inode(file); 4770 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4771 struct btrfs_root *root = BTRFS_I(inode)->root; 4772 struct btrfs_ioctl_qgroup_assign_args *sa; 4773 struct btrfs_trans_handle *trans; 4774 int ret; 4775 int err; 4776 4777 if (!capable(CAP_SYS_ADMIN)) 4778 return -EPERM; 4779 4780 ret = mnt_want_write_file(file); 4781 if (ret) 4782 return ret; 4783 4784 sa = memdup_user(arg, sizeof(*sa)); 4785 if (IS_ERR(sa)) { 4786 ret = PTR_ERR(sa); 4787 goto drop_write; 4788 } 4789 4790 trans = btrfs_join_transaction(root); 4791 if (IS_ERR(trans)) { 4792 ret = PTR_ERR(trans); 4793 goto out; 4794 } 4795 4796 if (sa->assign) { 4797 ret = btrfs_add_qgroup_relation(trans, fs_info, 4798 sa->src, sa->dst); 4799 } else { 4800 ret = btrfs_del_qgroup_relation(trans, fs_info, 4801 sa->src, sa->dst); 4802 } 4803 4804 /* update qgroup status and info */ 4805 err = btrfs_run_qgroups(trans, fs_info); 4806 if (err < 0) 4807 btrfs_handle_fs_error(fs_info, err, 4808 "failed to update qgroup status and info"); 4809 err = btrfs_end_transaction(trans); 4810 if (err && !ret) 4811 ret = err; 4812 4813 out: 4814 kfree(sa); 4815 drop_write: 4816 mnt_drop_write_file(file); 4817 return ret; 4818 } 4819 4820 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4821 { 4822 struct inode *inode = file_inode(file); 4823 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4824 struct btrfs_root *root = BTRFS_I(inode)->root; 4825 struct btrfs_ioctl_qgroup_create_args *sa; 4826 struct btrfs_trans_handle *trans; 4827 int ret; 4828 int err; 4829 4830 if (!capable(CAP_SYS_ADMIN)) 4831 return -EPERM; 4832 4833 ret = mnt_want_write_file(file); 4834 if (ret) 4835 return ret; 4836 4837 sa = memdup_user(arg, sizeof(*sa)); 4838 if (IS_ERR(sa)) { 4839 ret = PTR_ERR(sa); 4840 goto drop_write; 4841 } 4842 4843 if (!sa->qgroupid) { 4844 ret = -EINVAL; 4845 goto out; 4846 } 4847 4848 trans = btrfs_join_transaction(root); 4849 if (IS_ERR(trans)) { 4850 ret = PTR_ERR(trans); 4851 goto out; 4852 } 4853 4854 if (sa->create) { 4855 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid); 4856 } else { 4857 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid); 4858 } 4859 4860 err = btrfs_end_transaction(trans); 4861 if (err && !ret) 4862 ret = err; 4863 4864 out: 4865 kfree(sa); 4866 drop_write: 4867 mnt_drop_write_file(file); 4868 return ret; 4869 } 4870 4871 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4872 { 4873 struct inode *inode = file_inode(file); 4874 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4875 struct btrfs_root *root = BTRFS_I(inode)->root; 4876 struct btrfs_ioctl_qgroup_limit_args *sa; 4877 struct btrfs_trans_handle *trans; 4878 int ret; 4879 int err; 4880 u64 qgroupid; 4881 4882 if (!capable(CAP_SYS_ADMIN)) 4883 return -EPERM; 4884 4885 ret = mnt_want_write_file(file); 4886 if (ret) 4887 return ret; 4888 4889 sa = memdup_user(arg, sizeof(*sa)); 4890 if (IS_ERR(sa)) { 4891 ret = PTR_ERR(sa); 4892 goto drop_write; 4893 } 4894 4895 trans = btrfs_join_transaction(root); 4896 if (IS_ERR(trans)) { 4897 ret = PTR_ERR(trans); 4898 goto out; 4899 } 4900 4901 qgroupid = sa->qgroupid; 4902 if (!qgroupid) { 4903 /* take the current subvol as qgroup */ 4904 qgroupid = root->root_key.objectid; 4905 } 4906 4907 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim); 4908 4909 err = btrfs_end_transaction(trans); 4910 if (err && !ret) 4911 ret = err; 4912 4913 out: 4914 kfree(sa); 4915 drop_write: 4916 mnt_drop_write_file(file); 4917 return ret; 4918 } 4919 4920 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4921 { 4922 struct inode *inode = file_inode(file); 4923 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4924 struct btrfs_ioctl_quota_rescan_args *qsa; 4925 int ret; 4926 4927 if (!capable(CAP_SYS_ADMIN)) 4928 return -EPERM; 4929 4930 ret = mnt_want_write_file(file); 4931 if (ret) 4932 return ret; 4933 4934 qsa = memdup_user(arg, sizeof(*qsa)); 4935 if (IS_ERR(qsa)) { 4936 ret = PTR_ERR(qsa); 4937 goto drop_write; 4938 } 4939 4940 if (qsa->flags) { 4941 ret = -EINVAL; 4942 goto out; 4943 } 4944 4945 ret = btrfs_qgroup_rescan(fs_info); 4946 4947 out: 4948 kfree(qsa); 4949 drop_write: 4950 mnt_drop_write_file(file); 4951 return ret; 4952 } 4953 4954 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 4955 { 4956 struct inode *inode = file_inode(file); 4957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4958 struct btrfs_ioctl_quota_rescan_args *qsa; 4959 int ret = 0; 4960 4961 if (!capable(CAP_SYS_ADMIN)) 4962 return -EPERM; 4963 4964 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4965 if (!qsa) 4966 return -ENOMEM; 4967 4968 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4969 qsa->flags = 1; 4970 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4971 } 4972 4973 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4974 ret = -EFAULT; 4975 4976 kfree(qsa); 4977 return ret; 4978 } 4979 4980 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 4981 { 4982 struct inode *inode = file_inode(file); 4983 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4984 4985 if (!capable(CAP_SYS_ADMIN)) 4986 return -EPERM; 4987 4988 return btrfs_qgroup_wait_for_completion(fs_info, true); 4989 } 4990 4991 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4992 struct btrfs_ioctl_received_subvol_args *sa) 4993 { 4994 struct inode *inode = file_inode(file); 4995 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4996 struct btrfs_root *root = BTRFS_I(inode)->root; 4997 struct btrfs_root_item *root_item = &root->root_item; 4998 struct btrfs_trans_handle *trans; 4999 struct timespec ct = current_time(inode); 5000 int ret = 0; 5001 int received_uuid_changed; 5002 5003 if (!inode_owner_or_capable(inode)) 5004 return -EPERM; 5005 5006 ret = mnt_want_write_file(file); 5007 if (ret < 0) 5008 return ret; 5009 5010 down_write(&fs_info->subvol_sem); 5011 5012 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5013 ret = -EINVAL; 5014 goto out; 5015 } 5016 5017 if (btrfs_root_readonly(root)) { 5018 ret = -EROFS; 5019 goto out; 5020 } 5021 5022 /* 5023 * 1 - root item 5024 * 2 - uuid items (received uuid + subvol uuid) 5025 */ 5026 trans = btrfs_start_transaction(root, 3); 5027 if (IS_ERR(trans)) { 5028 ret = PTR_ERR(trans); 5029 trans = NULL; 5030 goto out; 5031 } 5032 5033 sa->rtransid = trans->transid; 5034 sa->rtime.sec = ct.tv_sec; 5035 sa->rtime.nsec = ct.tv_nsec; 5036 5037 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5038 BTRFS_UUID_SIZE); 5039 if (received_uuid_changed && 5040 !btrfs_is_empty_uuid(root_item->received_uuid)) { 5041 ret = btrfs_uuid_tree_rem(trans, fs_info, 5042 root_item->received_uuid, 5043 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5044 root->root_key.objectid); 5045 if (ret && ret != -ENOENT) { 5046 btrfs_abort_transaction(trans, ret); 5047 btrfs_end_transaction(trans); 5048 goto out; 5049 } 5050 } 5051 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5052 btrfs_set_root_stransid(root_item, sa->stransid); 5053 btrfs_set_root_rtransid(root_item, sa->rtransid); 5054 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5055 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5056 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5057 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5058 5059 ret = btrfs_update_root(trans, fs_info->tree_root, 5060 &root->root_key, &root->root_item); 5061 if (ret < 0) { 5062 btrfs_end_transaction(trans); 5063 goto out; 5064 } 5065 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5066 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid, 5067 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5068 root->root_key.objectid); 5069 if (ret < 0 && ret != -EEXIST) { 5070 btrfs_abort_transaction(trans, ret); 5071 btrfs_end_transaction(trans); 5072 goto out; 5073 } 5074 } 5075 ret = btrfs_commit_transaction(trans); 5076 out: 5077 up_write(&fs_info->subvol_sem); 5078 mnt_drop_write_file(file); 5079 return ret; 5080 } 5081 5082 #ifdef CONFIG_64BIT 5083 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5084 void __user *arg) 5085 { 5086 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5087 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5088 int ret = 0; 5089 5090 args32 = memdup_user(arg, sizeof(*args32)); 5091 if (IS_ERR(args32)) 5092 return PTR_ERR(args32); 5093 5094 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5095 if (!args64) { 5096 ret = -ENOMEM; 5097 goto out; 5098 } 5099 5100 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5101 args64->stransid = args32->stransid; 5102 args64->rtransid = args32->rtransid; 5103 args64->stime.sec = args32->stime.sec; 5104 args64->stime.nsec = args32->stime.nsec; 5105 args64->rtime.sec = args32->rtime.sec; 5106 args64->rtime.nsec = args32->rtime.nsec; 5107 args64->flags = args32->flags; 5108 5109 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5110 if (ret) 5111 goto out; 5112 5113 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5114 args32->stransid = args64->stransid; 5115 args32->rtransid = args64->rtransid; 5116 args32->stime.sec = args64->stime.sec; 5117 args32->stime.nsec = args64->stime.nsec; 5118 args32->rtime.sec = args64->rtime.sec; 5119 args32->rtime.nsec = args64->rtime.nsec; 5120 args32->flags = args64->flags; 5121 5122 ret = copy_to_user(arg, args32, sizeof(*args32)); 5123 if (ret) 5124 ret = -EFAULT; 5125 5126 out: 5127 kfree(args32); 5128 kfree(args64); 5129 return ret; 5130 } 5131 #endif 5132 5133 static long btrfs_ioctl_set_received_subvol(struct file *file, 5134 void __user *arg) 5135 { 5136 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5137 int ret = 0; 5138 5139 sa = memdup_user(arg, sizeof(*sa)); 5140 if (IS_ERR(sa)) 5141 return PTR_ERR(sa); 5142 5143 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5144 5145 if (ret) 5146 goto out; 5147 5148 ret = copy_to_user(arg, sa, sizeof(*sa)); 5149 if (ret) 5150 ret = -EFAULT; 5151 5152 out: 5153 kfree(sa); 5154 return ret; 5155 } 5156 5157 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5158 { 5159 struct inode *inode = file_inode(file); 5160 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5161 size_t len; 5162 int ret; 5163 char label[BTRFS_LABEL_SIZE]; 5164 5165 spin_lock(&fs_info->super_lock); 5166 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5167 spin_unlock(&fs_info->super_lock); 5168 5169 len = strnlen(label, BTRFS_LABEL_SIZE); 5170 5171 if (len == BTRFS_LABEL_SIZE) { 5172 btrfs_warn(fs_info, 5173 "label is too long, return the first %zu bytes", 5174 --len); 5175 } 5176 5177 ret = copy_to_user(arg, label, len); 5178 5179 return ret ? -EFAULT : 0; 5180 } 5181 5182 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5183 { 5184 struct inode *inode = file_inode(file); 5185 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5186 struct btrfs_root *root = BTRFS_I(inode)->root; 5187 struct btrfs_super_block *super_block = fs_info->super_copy; 5188 struct btrfs_trans_handle *trans; 5189 char label[BTRFS_LABEL_SIZE]; 5190 int ret; 5191 5192 if (!capable(CAP_SYS_ADMIN)) 5193 return -EPERM; 5194 5195 if (copy_from_user(label, arg, sizeof(label))) 5196 return -EFAULT; 5197 5198 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5199 btrfs_err(fs_info, 5200 "unable to set label with more than %d bytes", 5201 BTRFS_LABEL_SIZE - 1); 5202 return -EINVAL; 5203 } 5204 5205 ret = mnt_want_write_file(file); 5206 if (ret) 5207 return ret; 5208 5209 trans = btrfs_start_transaction(root, 0); 5210 if (IS_ERR(trans)) { 5211 ret = PTR_ERR(trans); 5212 goto out_unlock; 5213 } 5214 5215 spin_lock(&fs_info->super_lock); 5216 strcpy(super_block->label, label); 5217 spin_unlock(&fs_info->super_lock); 5218 ret = btrfs_commit_transaction(trans); 5219 5220 out_unlock: 5221 mnt_drop_write_file(file); 5222 return ret; 5223 } 5224 5225 #define INIT_FEATURE_FLAGS(suffix) \ 5226 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5227 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5228 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5229 5230 int btrfs_ioctl_get_supported_features(void __user *arg) 5231 { 5232 static const struct btrfs_ioctl_feature_flags features[3] = { 5233 INIT_FEATURE_FLAGS(SUPP), 5234 INIT_FEATURE_FLAGS(SAFE_SET), 5235 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5236 }; 5237 5238 if (copy_to_user(arg, &features, sizeof(features))) 5239 return -EFAULT; 5240 5241 return 0; 5242 } 5243 5244 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5245 { 5246 struct inode *inode = file_inode(file); 5247 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5248 struct btrfs_super_block *super_block = fs_info->super_copy; 5249 struct btrfs_ioctl_feature_flags features; 5250 5251 features.compat_flags = btrfs_super_compat_flags(super_block); 5252 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5253 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5254 5255 if (copy_to_user(arg, &features, sizeof(features))) 5256 return -EFAULT; 5257 5258 return 0; 5259 } 5260 5261 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5262 enum btrfs_feature_set set, 5263 u64 change_mask, u64 flags, u64 supported_flags, 5264 u64 safe_set, u64 safe_clear) 5265 { 5266 const char *type = btrfs_feature_set_names[set]; 5267 char *names; 5268 u64 disallowed, unsupported; 5269 u64 set_mask = flags & change_mask; 5270 u64 clear_mask = ~flags & change_mask; 5271 5272 unsupported = set_mask & ~supported_flags; 5273 if (unsupported) { 5274 names = btrfs_printable_features(set, unsupported); 5275 if (names) { 5276 btrfs_warn(fs_info, 5277 "this kernel does not support the %s feature bit%s", 5278 names, strchr(names, ',') ? "s" : ""); 5279 kfree(names); 5280 } else 5281 btrfs_warn(fs_info, 5282 "this kernel does not support %s bits 0x%llx", 5283 type, unsupported); 5284 return -EOPNOTSUPP; 5285 } 5286 5287 disallowed = set_mask & ~safe_set; 5288 if (disallowed) { 5289 names = btrfs_printable_features(set, disallowed); 5290 if (names) { 5291 btrfs_warn(fs_info, 5292 "can't set the %s feature bit%s while mounted", 5293 names, strchr(names, ',') ? "s" : ""); 5294 kfree(names); 5295 } else 5296 btrfs_warn(fs_info, 5297 "can't set %s bits 0x%llx while mounted", 5298 type, disallowed); 5299 return -EPERM; 5300 } 5301 5302 disallowed = clear_mask & ~safe_clear; 5303 if (disallowed) { 5304 names = btrfs_printable_features(set, disallowed); 5305 if (names) { 5306 btrfs_warn(fs_info, 5307 "can't clear the %s feature bit%s while mounted", 5308 names, strchr(names, ',') ? "s" : ""); 5309 kfree(names); 5310 } else 5311 btrfs_warn(fs_info, 5312 "can't clear %s bits 0x%llx while mounted", 5313 type, disallowed); 5314 return -EPERM; 5315 } 5316 5317 return 0; 5318 } 5319 5320 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5321 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5322 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5323 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5324 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5325 5326 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5327 { 5328 struct inode *inode = file_inode(file); 5329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5330 struct btrfs_root *root = BTRFS_I(inode)->root; 5331 struct btrfs_super_block *super_block = fs_info->super_copy; 5332 struct btrfs_ioctl_feature_flags flags[2]; 5333 struct btrfs_trans_handle *trans; 5334 u64 newflags; 5335 int ret; 5336 5337 if (!capable(CAP_SYS_ADMIN)) 5338 return -EPERM; 5339 5340 if (copy_from_user(flags, arg, sizeof(flags))) 5341 return -EFAULT; 5342 5343 /* Nothing to do */ 5344 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5345 !flags[0].incompat_flags) 5346 return 0; 5347 5348 ret = check_feature(fs_info, flags[0].compat_flags, 5349 flags[1].compat_flags, COMPAT); 5350 if (ret) 5351 return ret; 5352 5353 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5354 flags[1].compat_ro_flags, COMPAT_RO); 5355 if (ret) 5356 return ret; 5357 5358 ret = check_feature(fs_info, flags[0].incompat_flags, 5359 flags[1].incompat_flags, INCOMPAT); 5360 if (ret) 5361 return ret; 5362 5363 ret = mnt_want_write_file(file); 5364 if (ret) 5365 return ret; 5366 5367 trans = btrfs_start_transaction(root, 0); 5368 if (IS_ERR(trans)) { 5369 ret = PTR_ERR(trans); 5370 goto out_drop_write; 5371 } 5372 5373 spin_lock(&fs_info->super_lock); 5374 newflags = btrfs_super_compat_flags(super_block); 5375 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5376 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5377 btrfs_set_super_compat_flags(super_block, newflags); 5378 5379 newflags = btrfs_super_compat_ro_flags(super_block); 5380 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5381 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5382 btrfs_set_super_compat_ro_flags(super_block, newflags); 5383 5384 newflags = btrfs_super_incompat_flags(super_block); 5385 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5386 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5387 btrfs_set_super_incompat_flags(super_block, newflags); 5388 spin_unlock(&fs_info->super_lock); 5389 5390 ret = btrfs_commit_transaction(trans); 5391 out_drop_write: 5392 mnt_drop_write_file(file); 5393 5394 return ret; 5395 } 5396 5397 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5398 { 5399 struct btrfs_ioctl_send_args *arg; 5400 int ret; 5401 5402 if (compat) { 5403 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5404 struct btrfs_ioctl_send_args_32 args32; 5405 5406 ret = copy_from_user(&args32, argp, sizeof(args32)); 5407 if (ret) 5408 return -EFAULT; 5409 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5410 if (!arg) 5411 return -ENOMEM; 5412 arg->send_fd = args32.send_fd; 5413 arg->clone_sources_count = args32.clone_sources_count; 5414 arg->clone_sources = compat_ptr(args32.clone_sources); 5415 arg->parent_root = args32.parent_root; 5416 arg->flags = args32.flags; 5417 memcpy(arg->reserved, args32.reserved, 5418 sizeof(args32.reserved)); 5419 #else 5420 return -ENOTTY; 5421 #endif 5422 } else { 5423 arg = memdup_user(argp, sizeof(*arg)); 5424 if (IS_ERR(arg)) 5425 return PTR_ERR(arg); 5426 } 5427 ret = btrfs_ioctl_send(file, arg); 5428 kfree(arg); 5429 return ret; 5430 } 5431 5432 long btrfs_ioctl(struct file *file, unsigned int 5433 cmd, unsigned long arg) 5434 { 5435 struct inode *inode = file_inode(file); 5436 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5437 struct btrfs_root *root = BTRFS_I(inode)->root; 5438 void __user *argp = (void __user *)arg; 5439 5440 switch (cmd) { 5441 case FS_IOC_GETFLAGS: 5442 return btrfs_ioctl_getflags(file, argp); 5443 case FS_IOC_SETFLAGS: 5444 return btrfs_ioctl_setflags(file, argp); 5445 case FS_IOC_GETVERSION: 5446 return btrfs_ioctl_getversion(file, argp); 5447 case FITRIM: 5448 return btrfs_ioctl_fitrim(file, argp); 5449 case BTRFS_IOC_SNAP_CREATE: 5450 return btrfs_ioctl_snap_create(file, argp, 0); 5451 case BTRFS_IOC_SNAP_CREATE_V2: 5452 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5453 case BTRFS_IOC_SUBVOL_CREATE: 5454 return btrfs_ioctl_snap_create(file, argp, 1); 5455 case BTRFS_IOC_SUBVOL_CREATE_V2: 5456 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5457 case BTRFS_IOC_SNAP_DESTROY: 5458 return btrfs_ioctl_snap_destroy(file, argp); 5459 case BTRFS_IOC_SUBVOL_GETFLAGS: 5460 return btrfs_ioctl_subvol_getflags(file, argp); 5461 case BTRFS_IOC_SUBVOL_SETFLAGS: 5462 return btrfs_ioctl_subvol_setflags(file, argp); 5463 case BTRFS_IOC_DEFAULT_SUBVOL: 5464 return btrfs_ioctl_default_subvol(file, argp); 5465 case BTRFS_IOC_DEFRAG: 5466 return btrfs_ioctl_defrag(file, NULL); 5467 case BTRFS_IOC_DEFRAG_RANGE: 5468 return btrfs_ioctl_defrag(file, argp); 5469 case BTRFS_IOC_RESIZE: 5470 return btrfs_ioctl_resize(file, argp); 5471 case BTRFS_IOC_ADD_DEV: 5472 return btrfs_ioctl_add_dev(fs_info, argp); 5473 case BTRFS_IOC_RM_DEV: 5474 return btrfs_ioctl_rm_dev(file, argp); 5475 case BTRFS_IOC_RM_DEV_V2: 5476 return btrfs_ioctl_rm_dev_v2(file, argp); 5477 case BTRFS_IOC_FS_INFO: 5478 return btrfs_ioctl_fs_info(fs_info, argp); 5479 case BTRFS_IOC_DEV_INFO: 5480 return btrfs_ioctl_dev_info(fs_info, argp); 5481 case BTRFS_IOC_BALANCE: 5482 return btrfs_ioctl_balance(file, NULL); 5483 case BTRFS_IOC_TREE_SEARCH: 5484 return btrfs_ioctl_tree_search(file, argp); 5485 case BTRFS_IOC_TREE_SEARCH_V2: 5486 return btrfs_ioctl_tree_search_v2(file, argp); 5487 case BTRFS_IOC_INO_LOOKUP: 5488 return btrfs_ioctl_ino_lookup(file, argp); 5489 case BTRFS_IOC_INO_PATHS: 5490 return btrfs_ioctl_ino_to_path(root, argp); 5491 case BTRFS_IOC_LOGICAL_INO: 5492 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5493 case BTRFS_IOC_LOGICAL_INO_V2: 5494 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5495 case BTRFS_IOC_SPACE_INFO: 5496 return btrfs_ioctl_space_info(fs_info, argp); 5497 case BTRFS_IOC_SYNC: { 5498 int ret; 5499 5500 ret = btrfs_start_delalloc_roots(fs_info, 0, -1); 5501 if (ret) 5502 return ret; 5503 ret = btrfs_sync_fs(inode->i_sb, 1); 5504 /* 5505 * The transaction thread may want to do more work, 5506 * namely it pokes the cleaner kthread that will start 5507 * processing uncleaned subvols. 5508 */ 5509 wake_up_process(fs_info->transaction_kthread); 5510 return ret; 5511 } 5512 case BTRFS_IOC_START_SYNC: 5513 return btrfs_ioctl_start_sync(root, argp); 5514 case BTRFS_IOC_WAIT_SYNC: 5515 return btrfs_ioctl_wait_sync(fs_info, argp); 5516 case BTRFS_IOC_SCRUB: 5517 return btrfs_ioctl_scrub(file, argp); 5518 case BTRFS_IOC_SCRUB_CANCEL: 5519 return btrfs_ioctl_scrub_cancel(fs_info); 5520 case BTRFS_IOC_SCRUB_PROGRESS: 5521 return btrfs_ioctl_scrub_progress(fs_info, argp); 5522 case BTRFS_IOC_BALANCE_V2: 5523 return btrfs_ioctl_balance(file, argp); 5524 case BTRFS_IOC_BALANCE_CTL: 5525 return btrfs_ioctl_balance_ctl(fs_info, arg); 5526 case BTRFS_IOC_BALANCE_PROGRESS: 5527 return btrfs_ioctl_balance_progress(fs_info, argp); 5528 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5529 return btrfs_ioctl_set_received_subvol(file, argp); 5530 #ifdef CONFIG_64BIT 5531 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5532 return btrfs_ioctl_set_received_subvol_32(file, argp); 5533 #endif 5534 case BTRFS_IOC_SEND: 5535 return _btrfs_ioctl_send(file, argp, false); 5536 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5537 case BTRFS_IOC_SEND_32: 5538 return _btrfs_ioctl_send(file, argp, true); 5539 #endif 5540 case BTRFS_IOC_GET_DEV_STATS: 5541 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5542 case BTRFS_IOC_QUOTA_CTL: 5543 return btrfs_ioctl_quota_ctl(file, argp); 5544 case BTRFS_IOC_QGROUP_ASSIGN: 5545 return btrfs_ioctl_qgroup_assign(file, argp); 5546 case BTRFS_IOC_QGROUP_CREATE: 5547 return btrfs_ioctl_qgroup_create(file, argp); 5548 case BTRFS_IOC_QGROUP_LIMIT: 5549 return btrfs_ioctl_qgroup_limit(file, argp); 5550 case BTRFS_IOC_QUOTA_RESCAN: 5551 return btrfs_ioctl_quota_rescan(file, argp); 5552 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5553 return btrfs_ioctl_quota_rescan_status(file, argp); 5554 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5555 return btrfs_ioctl_quota_rescan_wait(file, argp); 5556 case BTRFS_IOC_DEV_REPLACE: 5557 return btrfs_ioctl_dev_replace(fs_info, argp); 5558 case BTRFS_IOC_GET_FSLABEL: 5559 return btrfs_ioctl_get_fslabel(file, argp); 5560 case BTRFS_IOC_SET_FSLABEL: 5561 return btrfs_ioctl_set_fslabel(file, argp); 5562 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5563 return btrfs_ioctl_get_supported_features(argp); 5564 case BTRFS_IOC_GET_FEATURES: 5565 return btrfs_ioctl_get_features(file, argp); 5566 case BTRFS_IOC_SET_FEATURES: 5567 return btrfs_ioctl_set_features(file, argp); 5568 } 5569 5570 return -ENOTTY; 5571 } 5572 5573 #ifdef CONFIG_COMPAT 5574 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5575 { 5576 /* 5577 * These all access 32-bit values anyway so no further 5578 * handling is necessary. 5579 */ 5580 switch (cmd) { 5581 case FS_IOC32_GETFLAGS: 5582 cmd = FS_IOC_GETFLAGS; 5583 break; 5584 case FS_IOC32_SETFLAGS: 5585 cmd = FS_IOC_SETFLAGS; 5586 break; 5587 case FS_IOC32_GETVERSION: 5588 cmd = FS_IOC_GETVERSION; 5589 break; 5590 } 5591 5592 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5593 } 5594 #endif 5595