xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 4bce6fce)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65  * structures are incorrect, as the timespec structure from userspace
66  * is 4 bytes too small. We define these alternatives here to teach
67  * the kernel about the 32-bit struct packing.
68  */
69 struct btrfs_ioctl_timespec_32 {
70 	__u64 sec;
71 	__u32 nsec;
72 } __attribute__ ((__packed__));
73 
74 struct btrfs_ioctl_received_subvol_args_32 {
75 	char	uuid[BTRFS_UUID_SIZE];	/* in */
76 	__u64	stransid;		/* in */
77 	__u64	rtransid;		/* out */
78 	struct btrfs_ioctl_timespec_32 stime; /* in */
79 	struct btrfs_ioctl_timespec_32 rtime; /* out */
80 	__u64	flags;			/* in */
81 	__u64	reserved[16];		/* in */
82 } __attribute__ ((__packed__));
83 
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 				struct btrfs_ioctl_received_subvol_args_32)
86 #endif
87 
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
91 
92 /* Mask out flags that are inappropriate for the given type of inode. */
93 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
94 {
95 	if (S_ISDIR(mode))
96 		return flags;
97 	else if (S_ISREG(mode))
98 		return flags & ~FS_DIRSYNC_FL;
99 	else
100 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
101 }
102 
103 /*
104  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
105  */
106 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
126 		iflags |= FS_COMPR_FL;
127 	else if (flags & BTRFS_INODE_NOCOMPRESS)
128 		iflags |= FS_NOCOMP_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
136 void btrfs_update_iflags(struct inode *inode)
137 {
138 	struct btrfs_inode *ip = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (ip->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (ip->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (ip->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (ip->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
157 /*
158  * Inherit flags from the parent inode.
159  *
160  * Currently only the compression flags and the cow flags are inherited.
161  */
162 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
163 {
164 	unsigned int flags;
165 
166 	if (!dir)
167 		return;
168 
169 	flags = BTRFS_I(dir)->flags;
170 
171 	if (flags & BTRFS_INODE_NOCOMPRESS) {
172 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
173 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
174 	} else if (flags & BTRFS_INODE_COMPRESS) {
175 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
176 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
177 	}
178 
179 	if (flags & BTRFS_INODE_NODATACOW) {
180 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
181 		if (S_ISREG(inode->i_mode))
182 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
183 	}
184 
185 	btrfs_update_iflags(inode);
186 }
187 
188 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
189 {
190 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
191 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
192 
193 	if (copy_to_user(arg, &flags, sizeof(flags)))
194 		return -EFAULT;
195 	return 0;
196 }
197 
198 static int check_flags(unsigned int flags)
199 {
200 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
201 		      FS_NOATIME_FL | FS_NODUMP_FL | \
202 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
203 		      FS_NOCOMP_FL | FS_COMPR_FL |
204 		      FS_NOCOW_FL))
205 		return -EOPNOTSUPP;
206 
207 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
208 		return -EINVAL;
209 
210 	return 0;
211 }
212 
213 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
214 {
215 	struct inode *inode = file_inode(file);
216 	struct btrfs_inode *ip = BTRFS_I(inode);
217 	struct btrfs_root *root = ip->root;
218 	struct btrfs_trans_handle *trans;
219 	unsigned int flags, oldflags;
220 	int ret;
221 	u64 ip_oldflags;
222 	unsigned int i_oldflags;
223 	umode_t mode;
224 
225 	if (!inode_owner_or_capable(inode))
226 		return -EPERM;
227 
228 	if (btrfs_root_readonly(root))
229 		return -EROFS;
230 
231 	if (copy_from_user(&flags, arg, sizeof(flags)))
232 		return -EFAULT;
233 
234 	ret = check_flags(flags);
235 	if (ret)
236 		return ret;
237 
238 	ret = mnt_want_write_file(file);
239 	if (ret)
240 		return ret;
241 
242 	mutex_lock(&inode->i_mutex);
243 
244 	ip_oldflags = ip->flags;
245 	i_oldflags = inode->i_flags;
246 	mode = inode->i_mode;
247 
248 	flags = btrfs_mask_flags(inode->i_mode, flags);
249 	oldflags = btrfs_flags_to_ioctl(ip->flags);
250 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
251 		if (!capable(CAP_LINUX_IMMUTABLE)) {
252 			ret = -EPERM;
253 			goto out_unlock;
254 		}
255 	}
256 
257 	if (flags & FS_SYNC_FL)
258 		ip->flags |= BTRFS_INODE_SYNC;
259 	else
260 		ip->flags &= ~BTRFS_INODE_SYNC;
261 	if (flags & FS_IMMUTABLE_FL)
262 		ip->flags |= BTRFS_INODE_IMMUTABLE;
263 	else
264 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
265 	if (flags & FS_APPEND_FL)
266 		ip->flags |= BTRFS_INODE_APPEND;
267 	else
268 		ip->flags &= ~BTRFS_INODE_APPEND;
269 	if (flags & FS_NODUMP_FL)
270 		ip->flags |= BTRFS_INODE_NODUMP;
271 	else
272 		ip->flags &= ~BTRFS_INODE_NODUMP;
273 	if (flags & FS_NOATIME_FL)
274 		ip->flags |= BTRFS_INODE_NOATIME;
275 	else
276 		ip->flags &= ~BTRFS_INODE_NOATIME;
277 	if (flags & FS_DIRSYNC_FL)
278 		ip->flags |= BTRFS_INODE_DIRSYNC;
279 	else
280 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
281 	if (flags & FS_NOCOW_FL) {
282 		if (S_ISREG(mode)) {
283 			/*
284 			 * It's safe to turn csums off here, no extents exist.
285 			 * Otherwise we want the flag to reflect the real COW
286 			 * status of the file and will not set it.
287 			 */
288 			if (inode->i_size == 0)
289 				ip->flags |= BTRFS_INODE_NODATACOW
290 					   | BTRFS_INODE_NODATASUM;
291 		} else {
292 			ip->flags |= BTRFS_INODE_NODATACOW;
293 		}
294 	} else {
295 		/*
296 		 * Revert back under same assuptions as above
297 		 */
298 		if (S_ISREG(mode)) {
299 			if (inode->i_size == 0)
300 				ip->flags &= ~(BTRFS_INODE_NODATACOW
301 				             | BTRFS_INODE_NODATASUM);
302 		} else {
303 			ip->flags &= ~BTRFS_INODE_NODATACOW;
304 		}
305 	}
306 
307 	/*
308 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
309 	 * flag may be changed automatically if compression code won't make
310 	 * things smaller.
311 	 */
312 	if (flags & FS_NOCOMP_FL) {
313 		ip->flags &= ~BTRFS_INODE_COMPRESS;
314 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
315 
316 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
317 		if (ret && ret != -ENODATA)
318 			goto out_drop;
319 	} else if (flags & FS_COMPR_FL) {
320 		const char *comp;
321 
322 		ip->flags |= BTRFS_INODE_COMPRESS;
323 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
324 
325 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
326 			comp = "lzo";
327 		else
328 			comp = "zlib";
329 		ret = btrfs_set_prop(inode, "btrfs.compression",
330 				     comp, strlen(comp), 0);
331 		if (ret)
332 			goto out_drop;
333 
334 	} else {
335 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
336 		if (ret && ret != -ENODATA)
337 			goto out_drop;
338 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
339 	}
340 
341 	trans = btrfs_start_transaction(root, 1);
342 	if (IS_ERR(trans)) {
343 		ret = PTR_ERR(trans);
344 		goto out_drop;
345 	}
346 
347 	btrfs_update_iflags(inode);
348 	inode_inc_iversion(inode);
349 	inode->i_ctime = CURRENT_TIME;
350 	ret = btrfs_update_inode(trans, root, inode);
351 
352 	btrfs_end_transaction(trans, root);
353  out_drop:
354 	if (ret) {
355 		ip->flags = ip_oldflags;
356 		inode->i_flags = i_oldflags;
357 	}
358 
359  out_unlock:
360 	mutex_unlock(&inode->i_mutex);
361 	mnt_drop_write_file(file);
362 	return ret;
363 }
364 
365 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
366 {
367 	struct inode *inode = file_inode(file);
368 
369 	return put_user(inode->i_generation, arg);
370 }
371 
372 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
373 {
374 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
375 	struct btrfs_device *device;
376 	struct request_queue *q;
377 	struct fstrim_range range;
378 	u64 minlen = ULLONG_MAX;
379 	u64 num_devices = 0;
380 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
381 	int ret;
382 
383 	if (!capable(CAP_SYS_ADMIN))
384 		return -EPERM;
385 
386 	rcu_read_lock();
387 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
388 				dev_list) {
389 		if (!device->bdev)
390 			continue;
391 		q = bdev_get_queue(device->bdev);
392 		if (blk_queue_discard(q)) {
393 			num_devices++;
394 			minlen = min((u64)q->limits.discard_granularity,
395 				     minlen);
396 		}
397 	}
398 	rcu_read_unlock();
399 
400 	if (!num_devices)
401 		return -EOPNOTSUPP;
402 	if (copy_from_user(&range, arg, sizeof(range)))
403 		return -EFAULT;
404 	if (range.start > total_bytes ||
405 	    range.len < fs_info->sb->s_blocksize)
406 		return -EINVAL;
407 
408 	range.len = min(range.len, total_bytes - range.start);
409 	range.minlen = max(range.minlen, minlen);
410 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
411 	if (ret < 0)
412 		return ret;
413 
414 	if (copy_to_user(arg, &range, sizeof(range)))
415 		return -EFAULT;
416 
417 	return 0;
418 }
419 
420 int btrfs_is_empty_uuid(u8 *uuid)
421 {
422 	int i;
423 
424 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
425 		if (uuid[i])
426 			return 0;
427 	}
428 	return 1;
429 }
430 
431 static noinline int create_subvol(struct inode *dir,
432 				  struct dentry *dentry,
433 				  char *name, int namelen,
434 				  u64 *async_transid,
435 				  struct btrfs_qgroup_inherit *inherit)
436 {
437 	struct btrfs_trans_handle *trans;
438 	struct btrfs_key key;
439 	struct btrfs_root_item root_item;
440 	struct btrfs_inode_item *inode_item;
441 	struct extent_buffer *leaf;
442 	struct btrfs_root *root = BTRFS_I(dir)->root;
443 	struct btrfs_root *new_root;
444 	struct btrfs_block_rsv block_rsv;
445 	struct timespec cur_time = CURRENT_TIME;
446 	struct inode *inode;
447 	int ret;
448 	int err;
449 	u64 objectid;
450 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
451 	u64 index = 0;
452 	u64 qgroup_reserved;
453 	uuid_le new_uuid;
454 
455 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
456 	if (ret)
457 		return ret;
458 
459 	/*
460 	 * Don't create subvolume whose level is not zero. Or qgroup will be
461 	 * screwed up since it assume subvolme qgroup's level to be 0.
462 	 */
463 	if (btrfs_qgroup_level(objectid))
464 		return -ENOSPC;
465 
466 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
467 	/*
468 	 * The same as the snapshot creation, please see the comment
469 	 * of create_snapshot().
470 	 */
471 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
472 					       8, &qgroup_reserved, false);
473 	if (ret)
474 		return ret;
475 
476 	trans = btrfs_start_transaction(root, 0);
477 	if (IS_ERR(trans)) {
478 		ret = PTR_ERR(trans);
479 		btrfs_subvolume_release_metadata(root, &block_rsv,
480 						 qgroup_reserved);
481 		return ret;
482 	}
483 	trans->block_rsv = &block_rsv;
484 	trans->bytes_reserved = block_rsv.size;
485 
486 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
487 	if (ret)
488 		goto fail;
489 
490 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
491 	if (IS_ERR(leaf)) {
492 		ret = PTR_ERR(leaf);
493 		goto fail;
494 	}
495 
496 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
497 	btrfs_set_header_bytenr(leaf, leaf->start);
498 	btrfs_set_header_generation(leaf, trans->transid);
499 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
500 	btrfs_set_header_owner(leaf, objectid);
501 
502 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
503 			    BTRFS_FSID_SIZE);
504 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
505 			    btrfs_header_chunk_tree_uuid(leaf),
506 			    BTRFS_UUID_SIZE);
507 	btrfs_mark_buffer_dirty(leaf);
508 
509 	memset(&root_item, 0, sizeof(root_item));
510 
511 	inode_item = &root_item.inode;
512 	btrfs_set_stack_inode_generation(inode_item, 1);
513 	btrfs_set_stack_inode_size(inode_item, 3);
514 	btrfs_set_stack_inode_nlink(inode_item, 1);
515 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
516 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
517 
518 	btrfs_set_root_flags(&root_item, 0);
519 	btrfs_set_root_limit(&root_item, 0);
520 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
521 
522 	btrfs_set_root_bytenr(&root_item, leaf->start);
523 	btrfs_set_root_generation(&root_item, trans->transid);
524 	btrfs_set_root_level(&root_item, 0);
525 	btrfs_set_root_refs(&root_item, 1);
526 	btrfs_set_root_used(&root_item, leaf->len);
527 	btrfs_set_root_last_snapshot(&root_item, 0);
528 
529 	btrfs_set_root_generation_v2(&root_item,
530 			btrfs_root_generation(&root_item));
531 	uuid_le_gen(&new_uuid);
532 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
533 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
534 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
535 	root_item.ctime = root_item.otime;
536 	btrfs_set_root_ctransid(&root_item, trans->transid);
537 	btrfs_set_root_otransid(&root_item, trans->transid);
538 
539 	btrfs_tree_unlock(leaf);
540 	free_extent_buffer(leaf);
541 	leaf = NULL;
542 
543 	btrfs_set_root_dirid(&root_item, new_dirid);
544 
545 	key.objectid = objectid;
546 	key.offset = 0;
547 	key.type = BTRFS_ROOT_ITEM_KEY;
548 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
549 				&root_item);
550 	if (ret)
551 		goto fail;
552 
553 	key.offset = (u64)-1;
554 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
555 	if (IS_ERR(new_root)) {
556 		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
557 		ret = PTR_ERR(new_root);
558 		goto fail;
559 	}
560 
561 	btrfs_record_root_in_trans(trans, new_root);
562 
563 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
564 	if (ret) {
565 		/* We potentially lose an unused inode item here */
566 		btrfs_abort_transaction(trans, root, ret);
567 		goto fail;
568 	}
569 
570 	/*
571 	 * insert the directory item
572 	 */
573 	ret = btrfs_set_inode_index(dir, &index);
574 	if (ret) {
575 		btrfs_abort_transaction(trans, root, ret);
576 		goto fail;
577 	}
578 
579 	ret = btrfs_insert_dir_item(trans, root,
580 				    name, namelen, dir, &key,
581 				    BTRFS_FT_DIR, index);
582 	if (ret) {
583 		btrfs_abort_transaction(trans, root, ret);
584 		goto fail;
585 	}
586 
587 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
588 	ret = btrfs_update_inode(trans, root, dir);
589 	BUG_ON(ret);
590 
591 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
592 				 objectid, root->root_key.objectid,
593 				 btrfs_ino(dir), index, name, namelen);
594 	BUG_ON(ret);
595 
596 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
597 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
598 				  objectid);
599 	if (ret)
600 		btrfs_abort_transaction(trans, root, ret);
601 
602 fail:
603 	trans->block_rsv = NULL;
604 	trans->bytes_reserved = 0;
605 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
606 
607 	if (async_transid) {
608 		*async_transid = trans->transid;
609 		err = btrfs_commit_transaction_async(trans, root, 1);
610 		if (err)
611 			err = btrfs_commit_transaction(trans, root);
612 	} else {
613 		err = btrfs_commit_transaction(trans, root);
614 	}
615 	if (err && !ret)
616 		ret = err;
617 
618 	if (!ret) {
619 		inode = btrfs_lookup_dentry(dir, dentry);
620 		if (IS_ERR(inode))
621 			return PTR_ERR(inode);
622 		d_instantiate(dentry, inode);
623 	}
624 	return ret;
625 }
626 
627 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
628 {
629 	s64 writers;
630 	DEFINE_WAIT(wait);
631 
632 	do {
633 		prepare_to_wait(&root->subv_writers->wait, &wait,
634 				TASK_UNINTERRUPTIBLE);
635 
636 		writers = percpu_counter_sum(&root->subv_writers->counter);
637 		if (writers)
638 			schedule();
639 
640 		finish_wait(&root->subv_writers->wait, &wait);
641 	} while (writers);
642 }
643 
644 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
645 			   struct dentry *dentry, char *name, int namelen,
646 			   u64 *async_transid, bool readonly,
647 			   struct btrfs_qgroup_inherit *inherit)
648 {
649 	struct inode *inode;
650 	struct btrfs_pending_snapshot *pending_snapshot;
651 	struct btrfs_trans_handle *trans;
652 	int ret;
653 
654 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
655 		return -EINVAL;
656 
657 	atomic_inc(&root->will_be_snapshoted);
658 	smp_mb__after_atomic();
659 	btrfs_wait_for_no_snapshoting_writes(root);
660 
661 	ret = btrfs_start_delalloc_inodes(root, 0);
662 	if (ret)
663 		goto out;
664 
665 	btrfs_wait_ordered_extents(root, -1);
666 
667 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
668 	if (!pending_snapshot) {
669 		ret = -ENOMEM;
670 		goto out;
671 	}
672 
673 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
674 			     BTRFS_BLOCK_RSV_TEMP);
675 	/*
676 	 * 1 - parent dir inode
677 	 * 2 - dir entries
678 	 * 1 - root item
679 	 * 2 - root ref/backref
680 	 * 1 - root of snapshot
681 	 * 1 - UUID item
682 	 */
683 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
684 					&pending_snapshot->block_rsv, 8,
685 					&pending_snapshot->qgroup_reserved,
686 					false);
687 	if (ret)
688 		goto free;
689 
690 	pending_snapshot->dentry = dentry;
691 	pending_snapshot->root = root;
692 	pending_snapshot->readonly = readonly;
693 	pending_snapshot->dir = dir;
694 	pending_snapshot->inherit = inherit;
695 
696 	trans = btrfs_start_transaction(root, 0);
697 	if (IS_ERR(trans)) {
698 		ret = PTR_ERR(trans);
699 		goto fail;
700 	}
701 
702 	spin_lock(&root->fs_info->trans_lock);
703 	list_add(&pending_snapshot->list,
704 		 &trans->transaction->pending_snapshots);
705 	spin_unlock(&root->fs_info->trans_lock);
706 	if (async_transid) {
707 		*async_transid = trans->transid;
708 		ret = btrfs_commit_transaction_async(trans,
709 				     root->fs_info->extent_root, 1);
710 		if (ret)
711 			ret = btrfs_commit_transaction(trans, root);
712 	} else {
713 		ret = btrfs_commit_transaction(trans,
714 					       root->fs_info->extent_root);
715 	}
716 	if (ret)
717 		goto fail;
718 
719 	ret = pending_snapshot->error;
720 	if (ret)
721 		goto fail;
722 
723 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
724 	if (ret)
725 		goto fail;
726 
727 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
728 	if (IS_ERR(inode)) {
729 		ret = PTR_ERR(inode);
730 		goto fail;
731 	}
732 
733 	d_instantiate(dentry, inode);
734 	ret = 0;
735 fail:
736 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
737 					 &pending_snapshot->block_rsv,
738 					 pending_snapshot->qgroup_reserved);
739 free:
740 	kfree(pending_snapshot);
741 out:
742 	if (atomic_dec_and_test(&root->will_be_snapshoted))
743 		wake_up_atomic_t(&root->will_be_snapshoted);
744 	return ret;
745 }
746 
747 /*  copy of may_delete in fs/namei.c()
748  *	Check whether we can remove a link victim from directory dir, check
749  *  whether the type of victim is right.
750  *  1. We can't do it if dir is read-only (done in permission())
751  *  2. We should have write and exec permissions on dir
752  *  3. We can't remove anything from append-only dir
753  *  4. We can't do anything with immutable dir (done in permission())
754  *  5. If the sticky bit on dir is set we should either
755  *	a. be owner of dir, or
756  *	b. be owner of victim, or
757  *	c. have CAP_FOWNER capability
758  *  6. If the victim is append-only or immutable we can't do antyhing with
759  *     links pointing to it.
760  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
761  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
762  *  9. We can't remove a root or mountpoint.
763  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
764  *     nfs_async_unlink().
765  */
766 
767 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
768 {
769 	int error;
770 
771 	if (d_really_is_negative(victim))
772 		return -ENOENT;
773 
774 	BUG_ON(d_inode(victim->d_parent) != dir);
775 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
776 
777 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
778 	if (error)
779 		return error;
780 	if (IS_APPEND(dir))
781 		return -EPERM;
782 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
783 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
784 		return -EPERM;
785 	if (isdir) {
786 		if (!d_is_dir(victim))
787 			return -ENOTDIR;
788 		if (IS_ROOT(victim))
789 			return -EBUSY;
790 	} else if (d_is_dir(victim))
791 		return -EISDIR;
792 	if (IS_DEADDIR(dir))
793 		return -ENOENT;
794 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
795 		return -EBUSY;
796 	return 0;
797 }
798 
799 /* copy of may_create in fs/namei.c() */
800 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
801 {
802 	if (d_really_is_positive(child))
803 		return -EEXIST;
804 	if (IS_DEADDIR(dir))
805 		return -ENOENT;
806 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
807 }
808 
809 /*
810  * Create a new subvolume below @parent.  This is largely modeled after
811  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
812  * inside this filesystem so it's quite a bit simpler.
813  */
814 static noinline int btrfs_mksubvol(struct path *parent,
815 				   char *name, int namelen,
816 				   struct btrfs_root *snap_src,
817 				   u64 *async_transid, bool readonly,
818 				   struct btrfs_qgroup_inherit *inherit)
819 {
820 	struct inode *dir  = d_inode(parent->dentry);
821 	struct dentry *dentry;
822 	int error;
823 
824 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
825 	if (error == -EINTR)
826 		return error;
827 
828 	dentry = lookup_one_len(name, parent->dentry, namelen);
829 	error = PTR_ERR(dentry);
830 	if (IS_ERR(dentry))
831 		goto out_unlock;
832 
833 	error = -EEXIST;
834 	if (d_really_is_positive(dentry))
835 		goto out_dput;
836 
837 	error = btrfs_may_create(dir, dentry);
838 	if (error)
839 		goto out_dput;
840 
841 	/*
842 	 * even if this name doesn't exist, we may get hash collisions.
843 	 * check for them now when we can safely fail
844 	 */
845 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
846 					       dir->i_ino, name,
847 					       namelen);
848 	if (error)
849 		goto out_dput;
850 
851 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
852 
853 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
854 		goto out_up_read;
855 
856 	if (snap_src) {
857 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
858 					async_transid, readonly, inherit);
859 	} else {
860 		error = create_subvol(dir, dentry, name, namelen,
861 				      async_transid, inherit);
862 	}
863 	if (!error)
864 		fsnotify_mkdir(dir, dentry);
865 out_up_read:
866 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
867 out_dput:
868 	dput(dentry);
869 out_unlock:
870 	mutex_unlock(&dir->i_mutex);
871 	return error;
872 }
873 
874 /*
875  * When we're defragging a range, we don't want to kick it off again
876  * if it is really just waiting for delalloc to send it down.
877  * If we find a nice big extent or delalloc range for the bytes in the
878  * file you want to defrag, we return 0 to let you know to skip this
879  * part of the file
880  */
881 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
882 {
883 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
884 	struct extent_map *em = NULL;
885 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
886 	u64 end;
887 
888 	read_lock(&em_tree->lock);
889 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
890 	read_unlock(&em_tree->lock);
891 
892 	if (em) {
893 		end = extent_map_end(em);
894 		free_extent_map(em);
895 		if (end - offset > thresh)
896 			return 0;
897 	}
898 	/* if we already have a nice delalloc here, just stop */
899 	thresh /= 2;
900 	end = count_range_bits(io_tree, &offset, offset + thresh,
901 			       thresh, EXTENT_DELALLOC, 1);
902 	if (end >= thresh)
903 		return 0;
904 	return 1;
905 }
906 
907 /*
908  * helper function to walk through a file and find extents
909  * newer than a specific transid, and smaller than thresh.
910  *
911  * This is used by the defragging code to find new and small
912  * extents
913  */
914 static int find_new_extents(struct btrfs_root *root,
915 			    struct inode *inode, u64 newer_than,
916 			    u64 *off, u32 thresh)
917 {
918 	struct btrfs_path *path;
919 	struct btrfs_key min_key;
920 	struct extent_buffer *leaf;
921 	struct btrfs_file_extent_item *extent;
922 	int type;
923 	int ret;
924 	u64 ino = btrfs_ino(inode);
925 
926 	path = btrfs_alloc_path();
927 	if (!path)
928 		return -ENOMEM;
929 
930 	min_key.objectid = ino;
931 	min_key.type = BTRFS_EXTENT_DATA_KEY;
932 	min_key.offset = *off;
933 
934 	while (1) {
935 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
936 		if (ret != 0)
937 			goto none;
938 process_slot:
939 		if (min_key.objectid != ino)
940 			goto none;
941 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
942 			goto none;
943 
944 		leaf = path->nodes[0];
945 		extent = btrfs_item_ptr(leaf, path->slots[0],
946 					struct btrfs_file_extent_item);
947 
948 		type = btrfs_file_extent_type(leaf, extent);
949 		if (type == BTRFS_FILE_EXTENT_REG &&
950 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
951 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
952 			*off = min_key.offset;
953 			btrfs_free_path(path);
954 			return 0;
955 		}
956 
957 		path->slots[0]++;
958 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
959 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
960 			goto process_slot;
961 		}
962 
963 		if (min_key.offset == (u64)-1)
964 			goto none;
965 
966 		min_key.offset++;
967 		btrfs_release_path(path);
968 	}
969 none:
970 	btrfs_free_path(path);
971 	return -ENOENT;
972 }
973 
974 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
975 {
976 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
977 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
978 	struct extent_map *em;
979 	u64 len = PAGE_CACHE_SIZE;
980 
981 	/*
982 	 * hopefully we have this extent in the tree already, try without
983 	 * the full extent lock
984 	 */
985 	read_lock(&em_tree->lock);
986 	em = lookup_extent_mapping(em_tree, start, len);
987 	read_unlock(&em_tree->lock);
988 
989 	if (!em) {
990 		struct extent_state *cached = NULL;
991 		u64 end = start + len - 1;
992 
993 		/* get the big lock and read metadata off disk */
994 		lock_extent_bits(io_tree, start, end, 0, &cached);
995 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
996 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
997 
998 		if (IS_ERR(em))
999 			return NULL;
1000 	}
1001 
1002 	return em;
1003 }
1004 
1005 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1006 {
1007 	struct extent_map *next;
1008 	bool ret = true;
1009 
1010 	/* this is the last extent */
1011 	if (em->start + em->len >= i_size_read(inode))
1012 		return false;
1013 
1014 	next = defrag_lookup_extent(inode, em->start + em->len);
1015 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1016 		ret = false;
1017 	else if ((em->block_start + em->block_len == next->block_start) &&
1018 		 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024))
1019 		ret = false;
1020 
1021 	free_extent_map(next);
1022 	return ret;
1023 }
1024 
1025 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1026 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1027 			       int compress)
1028 {
1029 	struct extent_map *em;
1030 	int ret = 1;
1031 	bool next_mergeable = true;
1032 
1033 	/*
1034 	 * make sure that once we start defragging an extent, we keep on
1035 	 * defragging it
1036 	 */
1037 	if (start < *defrag_end)
1038 		return 1;
1039 
1040 	*skip = 0;
1041 
1042 	em = defrag_lookup_extent(inode, start);
1043 	if (!em)
1044 		return 0;
1045 
1046 	/* this will cover holes, and inline extents */
1047 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1048 		ret = 0;
1049 		goto out;
1050 	}
1051 
1052 	next_mergeable = defrag_check_next_extent(inode, em);
1053 	/*
1054 	 * we hit a real extent, if it is big or the next extent is not a
1055 	 * real extent, don't bother defragging it
1056 	 */
1057 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1058 	    (em->len >= thresh || !next_mergeable))
1059 		ret = 0;
1060 out:
1061 	/*
1062 	 * last_len ends up being a counter of how many bytes we've defragged.
1063 	 * every time we choose not to defrag an extent, we reset *last_len
1064 	 * so that the next tiny extent will force a defrag.
1065 	 *
1066 	 * The end result of this is that tiny extents before a single big
1067 	 * extent will force at least part of that big extent to be defragged.
1068 	 */
1069 	if (ret) {
1070 		*defrag_end = extent_map_end(em);
1071 	} else {
1072 		*last_len = 0;
1073 		*skip = extent_map_end(em);
1074 		*defrag_end = 0;
1075 	}
1076 
1077 	free_extent_map(em);
1078 	return ret;
1079 }
1080 
1081 /*
1082  * it doesn't do much good to defrag one or two pages
1083  * at a time.  This pulls in a nice chunk of pages
1084  * to COW and defrag.
1085  *
1086  * It also makes sure the delalloc code has enough
1087  * dirty data to avoid making new small extents as part
1088  * of the defrag
1089  *
1090  * It's a good idea to start RA on this range
1091  * before calling this.
1092  */
1093 static int cluster_pages_for_defrag(struct inode *inode,
1094 				    struct page **pages,
1095 				    unsigned long start_index,
1096 				    unsigned long num_pages)
1097 {
1098 	unsigned long file_end;
1099 	u64 isize = i_size_read(inode);
1100 	u64 page_start;
1101 	u64 page_end;
1102 	u64 page_cnt;
1103 	int ret;
1104 	int i;
1105 	int i_done;
1106 	struct btrfs_ordered_extent *ordered;
1107 	struct extent_state *cached_state = NULL;
1108 	struct extent_io_tree *tree;
1109 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1110 
1111 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1112 	if (!isize || start_index > file_end)
1113 		return 0;
1114 
1115 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1116 
1117 	ret = btrfs_delalloc_reserve_space(inode,
1118 					   page_cnt << PAGE_CACHE_SHIFT);
1119 	if (ret)
1120 		return ret;
1121 	i_done = 0;
1122 	tree = &BTRFS_I(inode)->io_tree;
1123 
1124 	/* step one, lock all the pages */
1125 	for (i = 0; i < page_cnt; i++) {
1126 		struct page *page;
1127 again:
1128 		page = find_or_create_page(inode->i_mapping,
1129 					   start_index + i, mask);
1130 		if (!page)
1131 			break;
1132 
1133 		page_start = page_offset(page);
1134 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1135 		while (1) {
1136 			lock_extent_bits(tree, page_start, page_end,
1137 					 0, &cached_state);
1138 			ordered = btrfs_lookup_ordered_extent(inode,
1139 							      page_start);
1140 			unlock_extent_cached(tree, page_start, page_end,
1141 					     &cached_state, GFP_NOFS);
1142 			if (!ordered)
1143 				break;
1144 
1145 			unlock_page(page);
1146 			btrfs_start_ordered_extent(inode, ordered, 1);
1147 			btrfs_put_ordered_extent(ordered);
1148 			lock_page(page);
1149 			/*
1150 			 * we unlocked the page above, so we need check if
1151 			 * it was released or not.
1152 			 */
1153 			if (page->mapping != inode->i_mapping) {
1154 				unlock_page(page);
1155 				page_cache_release(page);
1156 				goto again;
1157 			}
1158 		}
1159 
1160 		if (!PageUptodate(page)) {
1161 			btrfs_readpage(NULL, page);
1162 			lock_page(page);
1163 			if (!PageUptodate(page)) {
1164 				unlock_page(page);
1165 				page_cache_release(page);
1166 				ret = -EIO;
1167 				break;
1168 			}
1169 		}
1170 
1171 		if (page->mapping != inode->i_mapping) {
1172 			unlock_page(page);
1173 			page_cache_release(page);
1174 			goto again;
1175 		}
1176 
1177 		pages[i] = page;
1178 		i_done++;
1179 	}
1180 	if (!i_done || ret)
1181 		goto out;
1182 
1183 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1184 		goto out;
1185 
1186 	/*
1187 	 * so now we have a nice long stream of locked
1188 	 * and up to date pages, lets wait on them
1189 	 */
1190 	for (i = 0; i < i_done; i++)
1191 		wait_on_page_writeback(pages[i]);
1192 
1193 	page_start = page_offset(pages[0]);
1194 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1195 
1196 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1197 			 page_start, page_end - 1, 0, &cached_state);
1198 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1199 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1200 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1201 			  &cached_state, GFP_NOFS);
1202 
1203 	if (i_done != page_cnt) {
1204 		spin_lock(&BTRFS_I(inode)->lock);
1205 		BTRFS_I(inode)->outstanding_extents++;
1206 		spin_unlock(&BTRFS_I(inode)->lock);
1207 		btrfs_delalloc_release_space(inode,
1208 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1209 	}
1210 
1211 
1212 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1213 			  &cached_state, GFP_NOFS);
1214 
1215 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1216 			     page_start, page_end - 1, &cached_state,
1217 			     GFP_NOFS);
1218 
1219 	for (i = 0; i < i_done; i++) {
1220 		clear_page_dirty_for_io(pages[i]);
1221 		ClearPageChecked(pages[i]);
1222 		set_page_extent_mapped(pages[i]);
1223 		set_page_dirty(pages[i]);
1224 		unlock_page(pages[i]);
1225 		page_cache_release(pages[i]);
1226 	}
1227 	return i_done;
1228 out:
1229 	for (i = 0; i < i_done; i++) {
1230 		unlock_page(pages[i]);
1231 		page_cache_release(pages[i]);
1232 	}
1233 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1234 	return ret;
1235 
1236 }
1237 
1238 int btrfs_defrag_file(struct inode *inode, struct file *file,
1239 		      struct btrfs_ioctl_defrag_range_args *range,
1240 		      u64 newer_than, unsigned long max_to_defrag)
1241 {
1242 	struct btrfs_root *root = BTRFS_I(inode)->root;
1243 	struct file_ra_state *ra = NULL;
1244 	unsigned long last_index;
1245 	u64 isize = i_size_read(inode);
1246 	u64 last_len = 0;
1247 	u64 skip = 0;
1248 	u64 defrag_end = 0;
1249 	u64 newer_off = range->start;
1250 	unsigned long i;
1251 	unsigned long ra_index = 0;
1252 	int ret;
1253 	int defrag_count = 0;
1254 	int compress_type = BTRFS_COMPRESS_ZLIB;
1255 	u32 extent_thresh = range->extent_thresh;
1256 	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1257 	unsigned long cluster = max_cluster;
1258 	u64 new_align = ~((u64)128 * 1024 - 1);
1259 	struct page **pages = NULL;
1260 
1261 	if (isize == 0)
1262 		return 0;
1263 
1264 	if (range->start >= isize)
1265 		return -EINVAL;
1266 
1267 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1268 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1269 			return -EINVAL;
1270 		if (range->compress_type)
1271 			compress_type = range->compress_type;
1272 	}
1273 
1274 	if (extent_thresh == 0)
1275 		extent_thresh = 256 * 1024;
1276 
1277 	/*
1278 	 * if we were not given a file, allocate a readahead
1279 	 * context
1280 	 */
1281 	if (!file) {
1282 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1283 		if (!ra)
1284 			return -ENOMEM;
1285 		file_ra_state_init(ra, inode->i_mapping);
1286 	} else {
1287 		ra = &file->f_ra;
1288 	}
1289 
1290 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1291 			GFP_NOFS);
1292 	if (!pages) {
1293 		ret = -ENOMEM;
1294 		goto out_ra;
1295 	}
1296 
1297 	/* find the last page to defrag */
1298 	if (range->start + range->len > range->start) {
1299 		last_index = min_t(u64, isize - 1,
1300 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1301 	} else {
1302 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1303 	}
1304 
1305 	if (newer_than) {
1306 		ret = find_new_extents(root, inode, newer_than,
1307 				       &newer_off, 64 * 1024);
1308 		if (!ret) {
1309 			range->start = newer_off;
1310 			/*
1311 			 * we always align our defrag to help keep
1312 			 * the extents in the file evenly spaced
1313 			 */
1314 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1315 		} else
1316 			goto out_ra;
1317 	} else {
1318 		i = range->start >> PAGE_CACHE_SHIFT;
1319 	}
1320 	if (!max_to_defrag)
1321 		max_to_defrag = last_index + 1;
1322 
1323 	/*
1324 	 * make writeback starts from i, so the defrag range can be
1325 	 * written sequentially.
1326 	 */
1327 	if (i < inode->i_mapping->writeback_index)
1328 		inode->i_mapping->writeback_index = i;
1329 
1330 	while (i <= last_index && defrag_count < max_to_defrag &&
1331 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1332 		/*
1333 		 * make sure we stop running if someone unmounts
1334 		 * the FS
1335 		 */
1336 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1337 			break;
1338 
1339 		if (btrfs_defrag_cancelled(root->fs_info)) {
1340 			printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1341 			ret = -EAGAIN;
1342 			break;
1343 		}
1344 
1345 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1346 					 extent_thresh, &last_len, &skip,
1347 					 &defrag_end, range->flags &
1348 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1349 			unsigned long next;
1350 			/*
1351 			 * the should_defrag function tells us how much to skip
1352 			 * bump our counter by the suggested amount
1353 			 */
1354 			next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1355 			i = max(i + 1, next);
1356 			continue;
1357 		}
1358 
1359 		if (!newer_than) {
1360 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1361 				   PAGE_CACHE_SHIFT) - i;
1362 			cluster = min(cluster, max_cluster);
1363 		} else {
1364 			cluster = max_cluster;
1365 		}
1366 
1367 		if (i + cluster > ra_index) {
1368 			ra_index = max(i, ra_index);
1369 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1370 				       cluster);
1371 			ra_index += max_cluster;
1372 		}
1373 
1374 		mutex_lock(&inode->i_mutex);
1375 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1376 			BTRFS_I(inode)->force_compress = compress_type;
1377 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1378 		if (ret < 0) {
1379 			mutex_unlock(&inode->i_mutex);
1380 			goto out_ra;
1381 		}
1382 
1383 		defrag_count += ret;
1384 		balance_dirty_pages_ratelimited(inode->i_mapping);
1385 		mutex_unlock(&inode->i_mutex);
1386 
1387 		if (newer_than) {
1388 			if (newer_off == (u64)-1)
1389 				break;
1390 
1391 			if (ret > 0)
1392 				i += ret;
1393 
1394 			newer_off = max(newer_off + 1,
1395 					(u64)i << PAGE_CACHE_SHIFT);
1396 
1397 			ret = find_new_extents(root, inode,
1398 					       newer_than, &newer_off,
1399 					       64 * 1024);
1400 			if (!ret) {
1401 				range->start = newer_off;
1402 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1403 			} else {
1404 				break;
1405 			}
1406 		} else {
1407 			if (ret > 0) {
1408 				i += ret;
1409 				last_len += ret << PAGE_CACHE_SHIFT;
1410 			} else {
1411 				i++;
1412 				last_len = 0;
1413 			}
1414 		}
1415 	}
1416 
1417 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1418 		filemap_flush(inode->i_mapping);
1419 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1420 			     &BTRFS_I(inode)->runtime_flags))
1421 			filemap_flush(inode->i_mapping);
1422 	}
1423 
1424 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1425 		/* the filemap_flush will queue IO into the worker threads, but
1426 		 * we have to make sure the IO is actually started and that
1427 		 * ordered extents get created before we return
1428 		 */
1429 		atomic_inc(&root->fs_info->async_submit_draining);
1430 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1431 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1432 			wait_event(root->fs_info->async_submit_wait,
1433 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1434 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1435 		}
1436 		atomic_dec(&root->fs_info->async_submit_draining);
1437 	}
1438 
1439 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1440 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1441 	}
1442 
1443 	ret = defrag_count;
1444 
1445 out_ra:
1446 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1447 		mutex_lock(&inode->i_mutex);
1448 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1449 		mutex_unlock(&inode->i_mutex);
1450 	}
1451 	if (!file)
1452 		kfree(ra);
1453 	kfree(pages);
1454 	return ret;
1455 }
1456 
1457 static noinline int btrfs_ioctl_resize(struct file *file,
1458 					void __user *arg)
1459 {
1460 	u64 new_size;
1461 	u64 old_size;
1462 	u64 devid = 1;
1463 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1464 	struct btrfs_ioctl_vol_args *vol_args;
1465 	struct btrfs_trans_handle *trans;
1466 	struct btrfs_device *device = NULL;
1467 	char *sizestr;
1468 	char *retptr;
1469 	char *devstr = NULL;
1470 	int ret = 0;
1471 	int mod = 0;
1472 
1473 	if (!capable(CAP_SYS_ADMIN))
1474 		return -EPERM;
1475 
1476 	ret = mnt_want_write_file(file);
1477 	if (ret)
1478 		return ret;
1479 
1480 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1481 			1)) {
1482 		mnt_drop_write_file(file);
1483 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1484 	}
1485 
1486 	mutex_lock(&root->fs_info->volume_mutex);
1487 	vol_args = memdup_user(arg, sizeof(*vol_args));
1488 	if (IS_ERR(vol_args)) {
1489 		ret = PTR_ERR(vol_args);
1490 		goto out;
1491 	}
1492 
1493 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1494 
1495 	sizestr = vol_args->name;
1496 	devstr = strchr(sizestr, ':');
1497 	if (devstr) {
1498 		sizestr = devstr + 1;
1499 		*devstr = '\0';
1500 		devstr = vol_args->name;
1501 		ret = kstrtoull(devstr, 10, &devid);
1502 		if (ret)
1503 			goto out_free;
1504 		if (!devid) {
1505 			ret = -EINVAL;
1506 			goto out_free;
1507 		}
1508 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1509 	}
1510 
1511 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1512 	if (!device) {
1513 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1514 		       devid);
1515 		ret = -ENODEV;
1516 		goto out_free;
1517 	}
1518 
1519 	if (!device->writeable) {
1520 		btrfs_info(root->fs_info,
1521 			   "resizer unable to apply on readonly device %llu",
1522 		       devid);
1523 		ret = -EPERM;
1524 		goto out_free;
1525 	}
1526 
1527 	if (!strcmp(sizestr, "max"))
1528 		new_size = device->bdev->bd_inode->i_size;
1529 	else {
1530 		if (sizestr[0] == '-') {
1531 			mod = -1;
1532 			sizestr++;
1533 		} else if (sizestr[0] == '+') {
1534 			mod = 1;
1535 			sizestr++;
1536 		}
1537 		new_size = memparse(sizestr, &retptr);
1538 		if (*retptr != '\0' || new_size == 0) {
1539 			ret = -EINVAL;
1540 			goto out_free;
1541 		}
1542 	}
1543 
1544 	if (device->is_tgtdev_for_dev_replace) {
1545 		ret = -EPERM;
1546 		goto out_free;
1547 	}
1548 
1549 	old_size = btrfs_device_get_total_bytes(device);
1550 
1551 	if (mod < 0) {
1552 		if (new_size > old_size) {
1553 			ret = -EINVAL;
1554 			goto out_free;
1555 		}
1556 		new_size = old_size - new_size;
1557 	} else if (mod > 0) {
1558 		if (new_size > ULLONG_MAX - old_size) {
1559 			ret = -ERANGE;
1560 			goto out_free;
1561 		}
1562 		new_size = old_size + new_size;
1563 	}
1564 
1565 	if (new_size < 256 * 1024 * 1024) {
1566 		ret = -EINVAL;
1567 		goto out_free;
1568 	}
1569 	if (new_size > device->bdev->bd_inode->i_size) {
1570 		ret = -EFBIG;
1571 		goto out_free;
1572 	}
1573 
1574 	new_size = div_u64(new_size, root->sectorsize);
1575 	new_size *= root->sectorsize;
1576 
1577 	printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1578 		      rcu_str_deref(device->name), new_size);
1579 
1580 	if (new_size > old_size) {
1581 		trans = btrfs_start_transaction(root, 0);
1582 		if (IS_ERR(trans)) {
1583 			ret = PTR_ERR(trans);
1584 			goto out_free;
1585 		}
1586 		ret = btrfs_grow_device(trans, device, new_size);
1587 		btrfs_commit_transaction(trans, root);
1588 	} else if (new_size < old_size) {
1589 		ret = btrfs_shrink_device(device, new_size);
1590 	} /* equal, nothing need to do */
1591 
1592 out_free:
1593 	kfree(vol_args);
1594 out:
1595 	mutex_unlock(&root->fs_info->volume_mutex);
1596 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1597 	mnt_drop_write_file(file);
1598 	return ret;
1599 }
1600 
1601 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1602 				char *name, unsigned long fd, int subvol,
1603 				u64 *transid, bool readonly,
1604 				struct btrfs_qgroup_inherit *inherit)
1605 {
1606 	int namelen;
1607 	int ret = 0;
1608 
1609 	ret = mnt_want_write_file(file);
1610 	if (ret)
1611 		goto out;
1612 
1613 	namelen = strlen(name);
1614 	if (strchr(name, '/')) {
1615 		ret = -EINVAL;
1616 		goto out_drop_write;
1617 	}
1618 
1619 	if (name[0] == '.' &&
1620 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1621 		ret = -EEXIST;
1622 		goto out_drop_write;
1623 	}
1624 
1625 	if (subvol) {
1626 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1627 				     NULL, transid, readonly, inherit);
1628 	} else {
1629 		struct fd src = fdget(fd);
1630 		struct inode *src_inode;
1631 		if (!src.file) {
1632 			ret = -EINVAL;
1633 			goto out_drop_write;
1634 		}
1635 
1636 		src_inode = file_inode(src.file);
1637 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1638 			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1639 				   "Snapshot src from another FS");
1640 			ret = -EXDEV;
1641 		} else if (!inode_owner_or_capable(src_inode)) {
1642 			/*
1643 			 * Subvolume creation is not restricted, but snapshots
1644 			 * are limited to own subvolumes only
1645 			 */
1646 			ret = -EPERM;
1647 		} else {
1648 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1649 					     BTRFS_I(src_inode)->root,
1650 					     transid, readonly, inherit);
1651 		}
1652 		fdput(src);
1653 	}
1654 out_drop_write:
1655 	mnt_drop_write_file(file);
1656 out:
1657 	return ret;
1658 }
1659 
1660 static noinline int btrfs_ioctl_snap_create(struct file *file,
1661 					    void __user *arg, int subvol)
1662 {
1663 	struct btrfs_ioctl_vol_args *vol_args;
1664 	int ret;
1665 
1666 	vol_args = memdup_user(arg, sizeof(*vol_args));
1667 	if (IS_ERR(vol_args))
1668 		return PTR_ERR(vol_args);
1669 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1670 
1671 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1672 					      vol_args->fd, subvol,
1673 					      NULL, false, NULL);
1674 
1675 	kfree(vol_args);
1676 	return ret;
1677 }
1678 
1679 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1680 					       void __user *arg, int subvol)
1681 {
1682 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1683 	int ret;
1684 	u64 transid = 0;
1685 	u64 *ptr = NULL;
1686 	bool readonly = false;
1687 	struct btrfs_qgroup_inherit *inherit = NULL;
1688 
1689 	vol_args = memdup_user(arg, sizeof(*vol_args));
1690 	if (IS_ERR(vol_args))
1691 		return PTR_ERR(vol_args);
1692 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1693 
1694 	if (vol_args->flags &
1695 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1696 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1697 		ret = -EOPNOTSUPP;
1698 		goto free_args;
1699 	}
1700 
1701 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1702 		ptr = &transid;
1703 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1704 		readonly = true;
1705 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1706 		if (vol_args->size > PAGE_CACHE_SIZE) {
1707 			ret = -EINVAL;
1708 			goto free_args;
1709 		}
1710 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1711 		if (IS_ERR(inherit)) {
1712 			ret = PTR_ERR(inherit);
1713 			goto free_args;
1714 		}
1715 	}
1716 
1717 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1718 					      vol_args->fd, subvol, ptr,
1719 					      readonly, inherit);
1720 	if (ret)
1721 		goto free_inherit;
1722 
1723 	if (ptr && copy_to_user(arg +
1724 				offsetof(struct btrfs_ioctl_vol_args_v2,
1725 					transid),
1726 				ptr, sizeof(*ptr)))
1727 		ret = -EFAULT;
1728 
1729 free_inherit:
1730 	kfree(inherit);
1731 free_args:
1732 	kfree(vol_args);
1733 	return ret;
1734 }
1735 
1736 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1737 						void __user *arg)
1738 {
1739 	struct inode *inode = file_inode(file);
1740 	struct btrfs_root *root = BTRFS_I(inode)->root;
1741 	int ret = 0;
1742 	u64 flags = 0;
1743 
1744 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1745 		return -EINVAL;
1746 
1747 	down_read(&root->fs_info->subvol_sem);
1748 	if (btrfs_root_readonly(root))
1749 		flags |= BTRFS_SUBVOL_RDONLY;
1750 	up_read(&root->fs_info->subvol_sem);
1751 
1752 	if (copy_to_user(arg, &flags, sizeof(flags)))
1753 		ret = -EFAULT;
1754 
1755 	return ret;
1756 }
1757 
1758 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1759 					      void __user *arg)
1760 {
1761 	struct inode *inode = file_inode(file);
1762 	struct btrfs_root *root = BTRFS_I(inode)->root;
1763 	struct btrfs_trans_handle *trans;
1764 	u64 root_flags;
1765 	u64 flags;
1766 	int ret = 0;
1767 
1768 	if (!inode_owner_or_capable(inode))
1769 		return -EPERM;
1770 
1771 	ret = mnt_want_write_file(file);
1772 	if (ret)
1773 		goto out;
1774 
1775 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1776 		ret = -EINVAL;
1777 		goto out_drop_write;
1778 	}
1779 
1780 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1781 		ret = -EFAULT;
1782 		goto out_drop_write;
1783 	}
1784 
1785 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1786 		ret = -EINVAL;
1787 		goto out_drop_write;
1788 	}
1789 
1790 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1791 		ret = -EOPNOTSUPP;
1792 		goto out_drop_write;
1793 	}
1794 
1795 	down_write(&root->fs_info->subvol_sem);
1796 
1797 	/* nothing to do */
1798 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1799 		goto out_drop_sem;
1800 
1801 	root_flags = btrfs_root_flags(&root->root_item);
1802 	if (flags & BTRFS_SUBVOL_RDONLY) {
1803 		btrfs_set_root_flags(&root->root_item,
1804 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1805 	} else {
1806 		/*
1807 		 * Block RO -> RW transition if this subvolume is involved in
1808 		 * send
1809 		 */
1810 		spin_lock(&root->root_item_lock);
1811 		if (root->send_in_progress == 0) {
1812 			btrfs_set_root_flags(&root->root_item,
1813 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1814 			spin_unlock(&root->root_item_lock);
1815 		} else {
1816 			spin_unlock(&root->root_item_lock);
1817 			btrfs_warn(root->fs_info,
1818 			"Attempt to set subvolume %llu read-write during send",
1819 					root->root_key.objectid);
1820 			ret = -EPERM;
1821 			goto out_drop_sem;
1822 		}
1823 	}
1824 
1825 	trans = btrfs_start_transaction(root, 1);
1826 	if (IS_ERR(trans)) {
1827 		ret = PTR_ERR(trans);
1828 		goto out_reset;
1829 	}
1830 
1831 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1832 				&root->root_key, &root->root_item);
1833 
1834 	btrfs_commit_transaction(trans, root);
1835 out_reset:
1836 	if (ret)
1837 		btrfs_set_root_flags(&root->root_item, root_flags);
1838 out_drop_sem:
1839 	up_write(&root->fs_info->subvol_sem);
1840 out_drop_write:
1841 	mnt_drop_write_file(file);
1842 out:
1843 	return ret;
1844 }
1845 
1846 /*
1847  * helper to check if the subvolume references other subvolumes
1848  */
1849 static noinline int may_destroy_subvol(struct btrfs_root *root)
1850 {
1851 	struct btrfs_path *path;
1852 	struct btrfs_dir_item *di;
1853 	struct btrfs_key key;
1854 	u64 dir_id;
1855 	int ret;
1856 
1857 	path = btrfs_alloc_path();
1858 	if (!path)
1859 		return -ENOMEM;
1860 
1861 	/* Make sure this root isn't set as the default subvol */
1862 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1863 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1864 				   dir_id, "default", 7, 0);
1865 	if (di && !IS_ERR(di)) {
1866 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1867 		if (key.objectid == root->root_key.objectid) {
1868 			ret = -EPERM;
1869 			btrfs_err(root->fs_info, "deleting default subvolume "
1870 				  "%llu is not allowed", key.objectid);
1871 			goto out;
1872 		}
1873 		btrfs_release_path(path);
1874 	}
1875 
1876 	key.objectid = root->root_key.objectid;
1877 	key.type = BTRFS_ROOT_REF_KEY;
1878 	key.offset = (u64)-1;
1879 
1880 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1881 				&key, path, 0, 0);
1882 	if (ret < 0)
1883 		goto out;
1884 	BUG_ON(ret == 0);
1885 
1886 	ret = 0;
1887 	if (path->slots[0] > 0) {
1888 		path->slots[0]--;
1889 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1890 		if (key.objectid == root->root_key.objectid &&
1891 		    key.type == BTRFS_ROOT_REF_KEY)
1892 			ret = -ENOTEMPTY;
1893 	}
1894 out:
1895 	btrfs_free_path(path);
1896 	return ret;
1897 }
1898 
1899 static noinline int key_in_sk(struct btrfs_key *key,
1900 			      struct btrfs_ioctl_search_key *sk)
1901 {
1902 	struct btrfs_key test;
1903 	int ret;
1904 
1905 	test.objectid = sk->min_objectid;
1906 	test.type = sk->min_type;
1907 	test.offset = sk->min_offset;
1908 
1909 	ret = btrfs_comp_cpu_keys(key, &test);
1910 	if (ret < 0)
1911 		return 0;
1912 
1913 	test.objectid = sk->max_objectid;
1914 	test.type = sk->max_type;
1915 	test.offset = sk->max_offset;
1916 
1917 	ret = btrfs_comp_cpu_keys(key, &test);
1918 	if (ret > 0)
1919 		return 0;
1920 	return 1;
1921 }
1922 
1923 static noinline int copy_to_sk(struct btrfs_root *root,
1924 			       struct btrfs_path *path,
1925 			       struct btrfs_key *key,
1926 			       struct btrfs_ioctl_search_key *sk,
1927 			       size_t *buf_size,
1928 			       char __user *ubuf,
1929 			       unsigned long *sk_offset,
1930 			       int *num_found)
1931 {
1932 	u64 found_transid;
1933 	struct extent_buffer *leaf;
1934 	struct btrfs_ioctl_search_header sh;
1935 	unsigned long item_off;
1936 	unsigned long item_len;
1937 	int nritems;
1938 	int i;
1939 	int slot;
1940 	int ret = 0;
1941 
1942 	leaf = path->nodes[0];
1943 	slot = path->slots[0];
1944 	nritems = btrfs_header_nritems(leaf);
1945 
1946 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1947 		i = nritems;
1948 		goto advance_key;
1949 	}
1950 	found_transid = btrfs_header_generation(leaf);
1951 
1952 	for (i = slot; i < nritems; i++) {
1953 		item_off = btrfs_item_ptr_offset(leaf, i);
1954 		item_len = btrfs_item_size_nr(leaf, i);
1955 
1956 		btrfs_item_key_to_cpu(leaf, key, i);
1957 		if (!key_in_sk(key, sk))
1958 			continue;
1959 
1960 		if (sizeof(sh) + item_len > *buf_size) {
1961 			if (*num_found) {
1962 				ret = 1;
1963 				goto out;
1964 			}
1965 
1966 			/*
1967 			 * return one empty item back for v1, which does not
1968 			 * handle -EOVERFLOW
1969 			 */
1970 
1971 			*buf_size = sizeof(sh) + item_len;
1972 			item_len = 0;
1973 			ret = -EOVERFLOW;
1974 		}
1975 
1976 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1977 			ret = 1;
1978 			goto out;
1979 		}
1980 
1981 		sh.objectid = key->objectid;
1982 		sh.offset = key->offset;
1983 		sh.type = key->type;
1984 		sh.len = item_len;
1985 		sh.transid = found_transid;
1986 
1987 		/* copy search result header */
1988 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1989 			ret = -EFAULT;
1990 			goto out;
1991 		}
1992 
1993 		*sk_offset += sizeof(sh);
1994 
1995 		if (item_len) {
1996 			char __user *up = ubuf + *sk_offset;
1997 			/* copy the item */
1998 			if (read_extent_buffer_to_user(leaf, up,
1999 						       item_off, item_len)) {
2000 				ret = -EFAULT;
2001 				goto out;
2002 			}
2003 
2004 			*sk_offset += item_len;
2005 		}
2006 		(*num_found)++;
2007 
2008 		if (ret) /* -EOVERFLOW from above */
2009 			goto out;
2010 
2011 		if (*num_found >= sk->nr_items) {
2012 			ret = 1;
2013 			goto out;
2014 		}
2015 	}
2016 advance_key:
2017 	ret = 0;
2018 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
2019 		key->offset++;
2020 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
2021 		key->offset = 0;
2022 		key->type++;
2023 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2024 		key->offset = 0;
2025 		key->type = 0;
2026 		key->objectid++;
2027 	} else
2028 		ret = 1;
2029 out:
2030 	/*
2031 	 *  0: all items from this leaf copied, continue with next
2032 	 *  1: * more items can be copied, but unused buffer is too small
2033 	 *     * all items were found
2034 	 *     Either way, it will stops the loop which iterates to the next
2035 	 *     leaf
2036 	 *  -EOVERFLOW: item was to large for buffer
2037 	 *  -EFAULT: could not copy extent buffer back to userspace
2038 	 */
2039 	return ret;
2040 }
2041 
2042 static noinline int search_ioctl(struct inode *inode,
2043 				 struct btrfs_ioctl_search_key *sk,
2044 				 size_t *buf_size,
2045 				 char __user *ubuf)
2046 {
2047 	struct btrfs_root *root;
2048 	struct btrfs_key key;
2049 	struct btrfs_path *path;
2050 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2051 	int ret;
2052 	int num_found = 0;
2053 	unsigned long sk_offset = 0;
2054 
2055 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2056 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2057 		return -EOVERFLOW;
2058 	}
2059 
2060 	path = btrfs_alloc_path();
2061 	if (!path)
2062 		return -ENOMEM;
2063 
2064 	if (sk->tree_id == 0) {
2065 		/* search the root of the inode that was passed */
2066 		root = BTRFS_I(inode)->root;
2067 	} else {
2068 		key.objectid = sk->tree_id;
2069 		key.type = BTRFS_ROOT_ITEM_KEY;
2070 		key.offset = (u64)-1;
2071 		root = btrfs_read_fs_root_no_name(info, &key);
2072 		if (IS_ERR(root)) {
2073 			printk(KERN_ERR "BTRFS: could not find root %llu\n",
2074 			       sk->tree_id);
2075 			btrfs_free_path(path);
2076 			return -ENOENT;
2077 		}
2078 	}
2079 
2080 	key.objectid = sk->min_objectid;
2081 	key.type = sk->min_type;
2082 	key.offset = sk->min_offset;
2083 
2084 	while (1) {
2085 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2086 		if (ret != 0) {
2087 			if (ret > 0)
2088 				ret = 0;
2089 			goto err;
2090 		}
2091 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2092 				 &sk_offset, &num_found);
2093 		btrfs_release_path(path);
2094 		if (ret)
2095 			break;
2096 
2097 	}
2098 	if (ret > 0)
2099 		ret = 0;
2100 err:
2101 	sk->nr_items = num_found;
2102 	btrfs_free_path(path);
2103 	return ret;
2104 }
2105 
2106 static noinline int btrfs_ioctl_tree_search(struct file *file,
2107 					   void __user *argp)
2108 {
2109 	struct btrfs_ioctl_search_args __user *uargs;
2110 	struct btrfs_ioctl_search_key sk;
2111 	struct inode *inode;
2112 	int ret;
2113 	size_t buf_size;
2114 
2115 	if (!capable(CAP_SYS_ADMIN))
2116 		return -EPERM;
2117 
2118 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2119 
2120 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2121 		return -EFAULT;
2122 
2123 	buf_size = sizeof(uargs->buf);
2124 
2125 	inode = file_inode(file);
2126 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2127 
2128 	/*
2129 	 * In the origin implementation an overflow is handled by returning a
2130 	 * search header with a len of zero, so reset ret.
2131 	 */
2132 	if (ret == -EOVERFLOW)
2133 		ret = 0;
2134 
2135 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2136 		ret = -EFAULT;
2137 	return ret;
2138 }
2139 
2140 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2141 					       void __user *argp)
2142 {
2143 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2144 	struct btrfs_ioctl_search_args_v2 args;
2145 	struct inode *inode;
2146 	int ret;
2147 	size_t buf_size;
2148 	const size_t buf_limit = 16 * 1024 * 1024;
2149 
2150 	if (!capable(CAP_SYS_ADMIN))
2151 		return -EPERM;
2152 
2153 	/* copy search header and buffer size */
2154 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2155 	if (copy_from_user(&args, uarg, sizeof(args)))
2156 		return -EFAULT;
2157 
2158 	buf_size = args.buf_size;
2159 
2160 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2161 		return -EOVERFLOW;
2162 
2163 	/* limit result size to 16MB */
2164 	if (buf_size > buf_limit)
2165 		buf_size = buf_limit;
2166 
2167 	inode = file_inode(file);
2168 	ret = search_ioctl(inode, &args.key, &buf_size,
2169 			   (char *)(&uarg->buf[0]));
2170 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2171 		ret = -EFAULT;
2172 	else if (ret == -EOVERFLOW &&
2173 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2174 		ret = -EFAULT;
2175 
2176 	return ret;
2177 }
2178 
2179 /*
2180  * Search INODE_REFs to identify path name of 'dirid' directory
2181  * in a 'tree_id' tree. and sets path name to 'name'.
2182  */
2183 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2184 				u64 tree_id, u64 dirid, char *name)
2185 {
2186 	struct btrfs_root *root;
2187 	struct btrfs_key key;
2188 	char *ptr;
2189 	int ret = -1;
2190 	int slot;
2191 	int len;
2192 	int total_len = 0;
2193 	struct btrfs_inode_ref *iref;
2194 	struct extent_buffer *l;
2195 	struct btrfs_path *path;
2196 
2197 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2198 		name[0]='\0';
2199 		return 0;
2200 	}
2201 
2202 	path = btrfs_alloc_path();
2203 	if (!path)
2204 		return -ENOMEM;
2205 
2206 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2207 
2208 	key.objectid = tree_id;
2209 	key.type = BTRFS_ROOT_ITEM_KEY;
2210 	key.offset = (u64)-1;
2211 	root = btrfs_read_fs_root_no_name(info, &key);
2212 	if (IS_ERR(root)) {
2213 		printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2214 		ret = -ENOENT;
2215 		goto out;
2216 	}
2217 
2218 	key.objectid = dirid;
2219 	key.type = BTRFS_INODE_REF_KEY;
2220 	key.offset = (u64)-1;
2221 
2222 	while (1) {
2223 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2224 		if (ret < 0)
2225 			goto out;
2226 		else if (ret > 0) {
2227 			ret = btrfs_previous_item(root, path, dirid,
2228 						  BTRFS_INODE_REF_KEY);
2229 			if (ret < 0)
2230 				goto out;
2231 			else if (ret > 0) {
2232 				ret = -ENOENT;
2233 				goto out;
2234 			}
2235 		}
2236 
2237 		l = path->nodes[0];
2238 		slot = path->slots[0];
2239 		btrfs_item_key_to_cpu(l, &key, slot);
2240 
2241 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2242 		len = btrfs_inode_ref_name_len(l, iref);
2243 		ptr -= len + 1;
2244 		total_len += len + 1;
2245 		if (ptr < name) {
2246 			ret = -ENAMETOOLONG;
2247 			goto out;
2248 		}
2249 
2250 		*(ptr + len) = '/';
2251 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2252 
2253 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2254 			break;
2255 
2256 		btrfs_release_path(path);
2257 		key.objectid = key.offset;
2258 		key.offset = (u64)-1;
2259 		dirid = key.objectid;
2260 	}
2261 	memmove(name, ptr, total_len);
2262 	name[total_len] = '\0';
2263 	ret = 0;
2264 out:
2265 	btrfs_free_path(path);
2266 	return ret;
2267 }
2268 
2269 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2270 					   void __user *argp)
2271 {
2272 	 struct btrfs_ioctl_ino_lookup_args *args;
2273 	 struct inode *inode;
2274 	 int ret;
2275 
2276 	if (!capable(CAP_SYS_ADMIN))
2277 		return -EPERM;
2278 
2279 	args = memdup_user(argp, sizeof(*args));
2280 	if (IS_ERR(args))
2281 		return PTR_ERR(args);
2282 
2283 	inode = file_inode(file);
2284 
2285 	if (args->treeid == 0)
2286 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2287 
2288 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2289 					args->treeid, args->objectid,
2290 					args->name);
2291 
2292 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2293 		ret = -EFAULT;
2294 
2295 	kfree(args);
2296 	return ret;
2297 }
2298 
2299 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2300 					     void __user *arg)
2301 {
2302 	struct dentry *parent = file->f_path.dentry;
2303 	struct dentry *dentry;
2304 	struct inode *dir = d_inode(parent);
2305 	struct inode *inode;
2306 	struct btrfs_root *root = BTRFS_I(dir)->root;
2307 	struct btrfs_root *dest = NULL;
2308 	struct btrfs_ioctl_vol_args *vol_args;
2309 	struct btrfs_trans_handle *trans;
2310 	struct btrfs_block_rsv block_rsv;
2311 	u64 root_flags;
2312 	u64 qgroup_reserved;
2313 	int namelen;
2314 	int ret;
2315 	int err = 0;
2316 
2317 	vol_args = memdup_user(arg, sizeof(*vol_args));
2318 	if (IS_ERR(vol_args))
2319 		return PTR_ERR(vol_args);
2320 
2321 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2322 	namelen = strlen(vol_args->name);
2323 	if (strchr(vol_args->name, '/') ||
2324 	    strncmp(vol_args->name, "..", namelen) == 0) {
2325 		err = -EINVAL;
2326 		goto out;
2327 	}
2328 
2329 	err = mnt_want_write_file(file);
2330 	if (err)
2331 		goto out;
2332 
2333 
2334 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2335 	if (err == -EINTR)
2336 		goto out_drop_write;
2337 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2338 	if (IS_ERR(dentry)) {
2339 		err = PTR_ERR(dentry);
2340 		goto out_unlock_dir;
2341 	}
2342 
2343 	if (d_really_is_negative(dentry)) {
2344 		err = -ENOENT;
2345 		goto out_dput;
2346 	}
2347 
2348 	inode = d_inode(dentry);
2349 	dest = BTRFS_I(inode)->root;
2350 	if (!capable(CAP_SYS_ADMIN)) {
2351 		/*
2352 		 * Regular user.  Only allow this with a special mount
2353 		 * option, when the user has write+exec access to the
2354 		 * subvol root, and when rmdir(2) would have been
2355 		 * allowed.
2356 		 *
2357 		 * Note that this is _not_ check that the subvol is
2358 		 * empty or doesn't contain data that we wouldn't
2359 		 * otherwise be able to delete.
2360 		 *
2361 		 * Users who want to delete empty subvols should try
2362 		 * rmdir(2).
2363 		 */
2364 		err = -EPERM;
2365 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2366 			goto out_dput;
2367 
2368 		/*
2369 		 * Do not allow deletion if the parent dir is the same
2370 		 * as the dir to be deleted.  That means the ioctl
2371 		 * must be called on the dentry referencing the root
2372 		 * of the subvol, not a random directory contained
2373 		 * within it.
2374 		 */
2375 		err = -EINVAL;
2376 		if (root == dest)
2377 			goto out_dput;
2378 
2379 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2380 		if (err)
2381 			goto out_dput;
2382 	}
2383 
2384 	/* check if subvolume may be deleted by a user */
2385 	err = btrfs_may_delete(dir, dentry, 1);
2386 	if (err)
2387 		goto out_dput;
2388 
2389 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2390 		err = -EINVAL;
2391 		goto out_dput;
2392 	}
2393 
2394 	mutex_lock(&inode->i_mutex);
2395 
2396 	/*
2397 	 * Don't allow to delete a subvolume with send in progress. This is
2398 	 * inside the i_mutex so the error handling that has to drop the bit
2399 	 * again is not run concurrently.
2400 	 */
2401 	spin_lock(&dest->root_item_lock);
2402 	root_flags = btrfs_root_flags(&dest->root_item);
2403 	if (dest->send_in_progress == 0) {
2404 		btrfs_set_root_flags(&dest->root_item,
2405 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2406 		spin_unlock(&dest->root_item_lock);
2407 	} else {
2408 		spin_unlock(&dest->root_item_lock);
2409 		btrfs_warn(root->fs_info,
2410 			"Attempt to delete subvolume %llu during send",
2411 			dest->root_key.objectid);
2412 		err = -EPERM;
2413 		goto out_dput;
2414 	}
2415 
2416 	d_invalidate(dentry);
2417 
2418 	down_write(&root->fs_info->subvol_sem);
2419 
2420 	err = may_destroy_subvol(dest);
2421 	if (err)
2422 		goto out_up_write;
2423 
2424 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2425 	/*
2426 	 * One for dir inode, two for dir entries, two for root
2427 	 * ref/backref.
2428 	 */
2429 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2430 					       5, &qgroup_reserved, true);
2431 	if (err)
2432 		goto out_up_write;
2433 
2434 	trans = btrfs_start_transaction(root, 0);
2435 	if (IS_ERR(trans)) {
2436 		err = PTR_ERR(trans);
2437 		goto out_release;
2438 	}
2439 	trans->block_rsv = &block_rsv;
2440 	trans->bytes_reserved = block_rsv.size;
2441 
2442 	ret = btrfs_unlink_subvol(trans, root, dir,
2443 				dest->root_key.objectid,
2444 				dentry->d_name.name,
2445 				dentry->d_name.len);
2446 	if (ret) {
2447 		err = ret;
2448 		btrfs_abort_transaction(trans, root, ret);
2449 		goto out_end_trans;
2450 	}
2451 
2452 	btrfs_record_root_in_trans(trans, dest);
2453 
2454 	memset(&dest->root_item.drop_progress, 0,
2455 		sizeof(dest->root_item.drop_progress));
2456 	dest->root_item.drop_level = 0;
2457 	btrfs_set_root_refs(&dest->root_item, 0);
2458 
2459 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2460 		ret = btrfs_insert_orphan_item(trans,
2461 					root->fs_info->tree_root,
2462 					dest->root_key.objectid);
2463 		if (ret) {
2464 			btrfs_abort_transaction(trans, root, ret);
2465 			err = ret;
2466 			goto out_end_trans;
2467 		}
2468 	}
2469 
2470 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2471 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2472 				  dest->root_key.objectid);
2473 	if (ret && ret != -ENOENT) {
2474 		btrfs_abort_transaction(trans, root, ret);
2475 		err = ret;
2476 		goto out_end_trans;
2477 	}
2478 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2479 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2480 					  dest->root_item.received_uuid,
2481 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2482 					  dest->root_key.objectid);
2483 		if (ret && ret != -ENOENT) {
2484 			btrfs_abort_transaction(trans, root, ret);
2485 			err = ret;
2486 			goto out_end_trans;
2487 		}
2488 	}
2489 
2490 out_end_trans:
2491 	trans->block_rsv = NULL;
2492 	trans->bytes_reserved = 0;
2493 	ret = btrfs_end_transaction(trans, root);
2494 	if (ret && !err)
2495 		err = ret;
2496 	inode->i_flags |= S_DEAD;
2497 out_release:
2498 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2499 out_up_write:
2500 	up_write(&root->fs_info->subvol_sem);
2501 	if (err) {
2502 		spin_lock(&dest->root_item_lock);
2503 		root_flags = btrfs_root_flags(&dest->root_item);
2504 		btrfs_set_root_flags(&dest->root_item,
2505 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2506 		spin_unlock(&dest->root_item_lock);
2507 	}
2508 	mutex_unlock(&inode->i_mutex);
2509 	if (!err) {
2510 		shrink_dcache_sb(root->fs_info->sb);
2511 		btrfs_invalidate_inodes(dest);
2512 		d_delete(dentry);
2513 		ASSERT(dest->send_in_progress == 0);
2514 
2515 		/* the last ref */
2516 		if (dest->ino_cache_inode) {
2517 			iput(dest->ino_cache_inode);
2518 			dest->ino_cache_inode = NULL;
2519 		}
2520 	}
2521 out_dput:
2522 	dput(dentry);
2523 out_unlock_dir:
2524 	mutex_unlock(&dir->i_mutex);
2525 out_drop_write:
2526 	mnt_drop_write_file(file);
2527 out:
2528 	kfree(vol_args);
2529 	return err;
2530 }
2531 
2532 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2533 {
2534 	struct inode *inode = file_inode(file);
2535 	struct btrfs_root *root = BTRFS_I(inode)->root;
2536 	struct btrfs_ioctl_defrag_range_args *range;
2537 	int ret;
2538 
2539 	ret = mnt_want_write_file(file);
2540 	if (ret)
2541 		return ret;
2542 
2543 	if (btrfs_root_readonly(root)) {
2544 		ret = -EROFS;
2545 		goto out;
2546 	}
2547 
2548 	switch (inode->i_mode & S_IFMT) {
2549 	case S_IFDIR:
2550 		if (!capable(CAP_SYS_ADMIN)) {
2551 			ret = -EPERM;
2552 			goto out;
2553 		}
2554 		ret = btrfs_defrag_root(root);
2555 		if (ret)
2556 			goto out;
2557 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2558 		break;
2559 	case S_IFREG:
2560 		if (!(file->f_mode & FMODE_WRITE)) {
2561 			ret = -EINVAL;
2562 			goto out;
2563 		}
2564 
2565 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2566 		if (!range) {
2567 			ret = -ENOMEM;
2568 			goto out;
2569 		}
2570 
2571 		if (argp) {
2572 			if (copy_from_user(range, argp,
2573 					   sizeof(*range))) {
2574 				ret = -EFAULT;
2575 				kfree(range);
2576 				goto out;
2577 			}
2578 			/* compression requires us to start the IO */
2579 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2580 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2581 				range->extent_thresh = (u32)-1;
2582 			}
2583 		} else {
2584 			/* the rest are all set to zero by kzalloc */
2585 			range->len = (u64)-1;
2586 		}
2587 		ret = btrfs_defrag_file(file_inode(file), file,
2588 					range, 0, 0);
2589 		if (ret > 0)
2590 			ret = 0;
2591 		kfree(range);
2592 		break;
2593 	default:
2594 		ret = -EINVAL;
2595 	}
2596 out:
2597 	mnt_drop_write_file(file);
2598 	return ret;
2599 }
2600 
2601 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2602 {
2603 	struct btrfs_ioctl_vol_args *vol_args;
2604 	int ret;
2605 
2606 	if (!capable(CAP_SYS_ADMIN))
2607 		return -EPERM;
2608 
2609 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2610 			1)) {
2611 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2612 	}
2613 
2614 	mutex_lock(&root->fs_info->volume_mutex);
2615 	vol_args = memdup_user(arg, sizeof(*vol_args));
2616 	if (IS_ERR(vol_args)) {
2617 		ret = PTR_ERR(vol_args);
2618 		goto out;
2619 	}
2620 
2621 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2622 	ret = btrfs_init_new_device(root, vol_args->name);
2623 
2624 	if (!ret)
2625 		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2626 
2627 	kfree(vol_args);
2628 out:
2629 	mutex_unlock(&root->fs_info->volume_mutex);
2630 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2631 	return ret;
2632 }
2633 
2634 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2635 {
2636 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2637 	struct btrfs_ioctl_vol_args *vol_args;
2638 	int ret;
2639 
2640 	if (!capable(CAP_SYS_ADMIN))
2641 		return -EPERM;
2642 
2643 	ret = mnt_want_write_file(file);
2644 	if (ret)
2645 		return ret;
2646 
2647 	vol_args = memdup_user(arg, sizeof(*vol_args));
2648 	if (IS_ERR(vol_args)) {
2649 		ret = PTR_ERR(vol_args);
2650 		goto err_drop;
2651 	}
2652 
2653 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2654 
2655 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2656 			1)) {
2657 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2658 		goto out;
2659 	}
2660 
2661 	mutex_lock(&root->fs_info->volume_mutex);
2662 	ret = btrfs_rm_device(root, vol_args->name);
2663 	mutex_unlock(&root->fs_info->volume_mutex);
2664 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2665 
2666 	if (!ret)
2667 		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2668 
2669 out:
2670 	kfree(vol_args);
2671 err_drop:
2672 	mnt_drop_write_file(file);
2673 	return ret;
2674 }
2675 
2676 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2677 {
2678 	struct btrfs_ioctl_fs_info_args *fi_args;
2679 	struct btrfs_device *device;
2680 	struct btrfs_device *next;
2681 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2682 	int ret = 0;
2683 
2684 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2685 	if (!fi_args)
2686 		return -ENOMEM;
2687 
2688 	mutex_lock(&fs_devices->device_list_mutex);
2689 	fi_args->num_devices = fs_devices->num_devices;
2690 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2691 
2692 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2693 		if (device->devid > fi_args->max_id)
2694 			fi_args->max_id = device->devid;
2695 	}
2696 	mutex_unlock(&fs_devices->device_list_mutex);
2697 
2698 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2699 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2700 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2701 
2702 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2703 		ret = -EFAULT;
2704 
2705 	kfree(fi_args);
2706 	return ret;
2707 }
2708 
2709 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2710 {
2711 	struct btrfs_ioctl_dev_info_args *di_args;
2712 	struct btrfs_device *dev;
2713 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2714 	int ret = 0;
2715 	char *s_uuid = NULL;
2716 
2717 	di_args = memdup_user(arg, sizeof(*di_args));
2718 	if (IS_ERR(di_args))
2719 		return PTR_ERR(di_args);
2720 
2721 	if (!btrfs_is_empty_uuid(di_args->uuid))
2722 		s_uuid = di_args->uuid;
2723 
2724 	mutex_lock(&fs_devices->device_list_mutex);
2725 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2726 
2727 	if (!dev) {
2728 		ret = -ENODEV;
2729 		goto out;
2730 	}
2731 
2732 	di_args->devid = dev->devid;
2733 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2734 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2735 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2736 	if (dev->name) {
2737 		struct rcu_string *name;
2738 
2739 		rcu_read_lock();
2740 		name = rcu_dereference(dev->name);
2741 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2742 		rcu_read_unlock();
2743 		di_args->path[sizeof(di_args->path) - 1] = 0;
2744 	} else {
2745 		di_args->path[0] = '\0';
2746 	}
2747 
2748 out:
2749 	mutex_unlock(&fs_devices->device_list_mutex);
2750 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2751 		ret = -EFAULT;
2752 
2753 	kfree(di_args);
2754 	return ret;
2755 }
2756 
2757 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2758 {
2759 	struct page *page;
2760 	pgoff_t index;
2761 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2762 
2763 	index = off >> PAGE_CACHE_SHIFT;
2764 
2765 	page = grab_cache_page(inode->i_mapping, index);
2766 	if (!page)
2767 		return NULL;
2768 
2769 	if (!PageUptodate(page)) {
2770 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2771 						 0))
2772 			return NULL;
2773 		lock_page(page);
2774 		if (!PageUptodate(page)) {
2775 			unlock_page(page);
2776 			page_cache_release(page);
2777 			return NULL;
2778 		}
2779 	}
2780 	unlock_page(page);
2781 
2782 	return page;
2783 }
2784 
2785 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2786 {
2787 	/* do any pending delalloc/csum calc on src, one way or
2788 	   another, and lock file content */
2789 	while (1) {
2790 		struct btrfs_ordered_extent *ordered;
2791 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2792 		ordered = btrfs_lookup_first_ordered_extent(inode,
2793 							    off + len - 1);
2794 		if ((!ordered ||
2795 		     ordered->file_offset + ordered->len <= off ||
2796 		     ordered->file_offset >= off + len) &&
2797 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2798 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2799 			if (ordered)
2800 				btrfs_put_ordered_extent(ordered);
2801 			break;
2802 		}
2803 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2804 		if (ordered)
2805 			btrfs_put_ordered_extent(ordered);
2806 		btrfs_wait_ordered_range(inode, off, len);
2807 	}
2808 }
2809 
2810 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2811 				struct inode *inode2, u64 loff2, u64 len)
2812 {
2813 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2814 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2815 
2816 	mutex_unlock(&inode1->i_mutex);
2817 	mutex_unlock(&inode2->i_mutex);
2818 }
2819 
2820 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2821 			      struct inode *inode2, u64 loff2, u64 len)
2822 {
2823 	if (inode1 < inode2) {
2824 		swap(inode1, inode2);
2825 		swap(loff1, loff2);
2826 	}
2827 
2828 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2829 	lock_extent_range(inode1, loff1, len);
2830 	if (inode1 != inode2) {
2831 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2832 		lock_extent_range(inode2, loff2, len);
2833 	}
2834 }
2835 
2836 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2837 			  u64 dst_loff, u64 len)
2838 {
2839 	int ret = 0;
2840 	struct page *src_page, *dst_page;
2841 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2842 	void *addr, *dst_addr;
2843 
2844 	while (len) {
2845 		if (len < PAGE_CACHE_SIZE)
2846 			cmp_len = len;
2847 
2848 		src_page = extent_same_get_page(src, loff);
2849 		if (!src_page)
2850 			return -EINVAL;
2851 		dst_page = extent_same_get_page(dst, dst_loff);
2852 		if (!dst_page) {
2853 			page_cache_release(src_page);
2854 			return -EINVAL;
2855 		}
2856 		addr = kmap_atomic(src_page);
2857 		dst_addr = kmap_atomic(dst_page);
2858 
2859 		flush_dcache_page(src_page);
2860 		flush_dcache_page(dst_page);
2861 
2862 		if (memcmp(addr, dst_addr, cmp_len))
2863 			ret = BTRFS_SAME_DATA_DIFFERS;
2864 
2865 		kunmap_atomic(addr);
2866 		kunmap_atomic(dst_addr);
2867 		page_cache_release(src_page);
2868 		page_cache_release(dst_page);
2869 
2870 		if (ret)
2871 			break;
2872 
2873 		loff += cmp_len;
2874 		dst_loff += cmp_len;
2875 		len -= cmp_len;
2876 	}
2877 
2878 	return ret;
2879 }
2880 
2881 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2882 {
2883 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2884 
2885 	if (off + len > inode->i_size || off + len < off)
2886 		return -EINVAL;
2887 	/* Check that we are block aligned - btrfs_clone() requires this */
2888 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2889 		return -EINVAL;
2890 
2891 	return 0;
2892 }
2893 
2894 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2895 			     struct inode *dst, u64 dst_loff)
2896 {
2897 	int ret;
2898 
2899 	/*
2900 	 * btrfs_clone() can't handle extents in the same file
2901 	 * yet. Once that works, we can drop this check and replace it
2902 	 * with a check for the same inode, but overlapping extents.
2903 	 */
2904 	if (src == dst)
2905 		return -EINVAL;
2906 
2907 	if (len == 0)
2908 		return 0;
2909 
2910 	btrfs_double_lock(src, loff, dst, dst_loff, len);
2911 
2912 	ret = extent_same_check_offsets(src, loff, len);
2913 	if (ret)
2914 		goto out_unlock;
2915 
2916 	ret = extent_same_check_offsets(dst, dst_loff, len);
2917 	if (ret)
2918 		goto out_unlock;
2919 
2920 	/* don't make the dst file partly checksummed */
2921 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2922 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2923 		ret = -EINVAL;
2924 		goto out_unlock;
2925 	}
2926 
2927 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2928 	if (ret == 0)
2929 		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2930 
2931 out_unlock:
2932 	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2933 
2934 	return ret;
2935 }
2936 
2937 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2938 
2939 static long btrfs_ioctl_file_extent_same(struct file *file,
2940 			struct btrfs_ioctl_same_args __user *argp)
2941 {
2942 	struct btrfs_ioctl_same_args *same;
2943 	struct btrfs_ioctl_same_extent_info *info;
2944 	struct inode *src = file_inode(file);
2945 	u64 off;
2946 	u64 len;
2947 	int i;
2948 	int ret;
2949 	unsigned long size;
2950 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2951 	bool is_admin = capable(CAP_SYS_ADMIN);
2952 	u16 count;
2953 
2954 	if (!(file->f_mode & FMODE_READ))
2955 		return -EINVAL;
2956 
2957 	ret = mnt_want_write_file(file);
2958 	if (ret)
2959 		return ret;
2960 
2961 	if (get_user(count, &argp->dest_count)) {
2962 		ret = -EFAULT;
2963 		goto out;
2964 	}
2965 
2966 	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2967 
2968 	same = memdup_user(argp, size);
2969 
2970 	if (IS_ERR(same)) {
2971 		ret = PTR_ERR(same);
2972 		goto out;
2973 	}
2974 
2975 	off = same->logical_offset;
2976 	len = same->length;
2977 
2978 	/*
2979 	 * Limit the total length we will dedupe for each operation.
2980 	 * This is intended to bound the total time spent in this
2981 	 * ioctl to something sane.
2982 	 */
2983 	if (len > BTRFS_MAX_DEDUPE_LEN)
2984 		len = BTRFS_MAX_DEDUPE_LEN;
2985 
2986 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2987 		/*
2988 		 * Btrfs does not support blocksize < page_size. As a
2989 		 * result, btrfs_cmp_data() won't correctly handle
2990 		 * this situation without an update.
2991 		 */
2992 		ret = -EINVAL;
2993 		goto out;
2994 	}
2995 
2996 	ret = -EISDIR;
2997 	if (S_ISDIR(src->i_mode))
2998 		goto out;
2999 
3000 	ret = -EACCES;
3001 	if (!S_ISREG(src->i_mode))
3002 		goto out;
3003 
3004 	/* pre-format output fields to sane values */
3005 	for (i = 0; i < count; i++) {
3006 		same->info[i].bytes_deduped = 0ULL;
3007 		same->info[i].status = 0;
3008 	}
3009 
3010 	for (i = 0, info = same->info; i < count; i++, info++) {
3011 		struct inode *dst;
3012 		struct fd dst_file = fdget(info->fd);
3013 		if (!dst_file.file) {
3014 			info->status = -EBADF;
3015 			continue;
3016 		}
3017 		dst = file_inode(dst_file.file);
3018 
3019 		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3020 			info->status = -EINVAL;
3021 		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3022 			info->status = -EXDEV;
3023 		} else if (S_ISDIR(dst->i_mode)) {
3024 			info->status = -EISDIR;
3025 		} else if (!S_ISREG(dst->i_mode)) {
3026 			info->status = -EACCES;
3027 		} else {
3028 			info->status = btrfs_extent_same(src, off, len, dst,
3029 							info->logical_offset);
3030 			if (info->status == 0)
3031 				info->bytes_deduped += len;
3032 		}
3033 		fdput(dst_file);
3034 	}
3035 
3036 	ret = copy_to_user(argp, same, size);
3037 	if (ret)
3038 		ret = -EFAULT;
3039 
3040 out:
3041 	mnt_drop_write_file(file);
3042 	return ret;
3043 }
3044 
3045 /* Helper to check and see if this root currently has a ref on the given disk
3046  * bytenr.  If it does then we need to update the quota for this root.  This
3047  * doesn't do anything if quotas aren't enabled.
3048  */
3049 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3050 		     u64 disko)
3051 {
3052 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
3053 	struct ulist *roots;
3054 	struct ulist_iterator uiter;
3055 	struct ulist_node *root_node = NULL;
3056 	int ret;
3057 
3058 	if (!root->fs_info->quota_enabled)
3059 		return 1;
3060 
3061 	btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3062 	ret = btrfs_find_all_roots(trans, root->fs_info, disko,
3063 				   tree_mod_seq_elem.seq, &roots);
3064 	if (ret < 0)
3065 		goto out;
3066 	ret = 0;
3067 	ULIST_ITER_INIT(&uiter);
3068 	while ((root_node = ulist_next(roots, &uiter))) {
3069 		if (root_node->val == root->objectid) {
3070 			ret = 1;
3071 			break;
3072 		}
3073 	}
3074 	ulist_free(roots);
3075 out:
3076 	btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3077 	return ret;
3078 }
3079 
3080 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3081 				     struct inode *inode,
3082 				     u64 endoff,
3083 				     const u64 destoff,
3084 				     const u64 olen)
3085 {
3086 	struct btrfs_root *root = BTRFS_I(inode)->root;
3087 	int ret;
3088 
3089 	inode_inc_iversion(inode);
3090 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3091 	/*
3092 	 * We round up to the block size at eof when determining which
3093 	 * extents to clone above, but shouldn't round up the file size.
3094 	 */
3095 	if (endoff > destoff + olen)
3096 		endoff = destoff + olen;
3097 	if (endoff > inode->i_size)
3098 		btrfs_i_size_write(inode, endoff);
3099 
3100 	ret = btrfs_update_inode(trans, root, inode);
3101 	if (ret) {
3102 		btrfs_abort_transaction(trans, root, ret);
3103 		btrfs_end_transaction(trans, root);
3104 		goto out;
3105 	}
3106 	ret = btrfs_end_transaction(trans, root);
3107 out:
3108 	return ret;
3109 }
3110 
3111 static void clone_update_extent_map(struct inode *inode,
3112 				    const struct btrfs_trans_handle *trans,
3113 				    const struct btrfs_path *path,
3114 				    const u64 hole_offset,
3115 				    const u64 hole_len)
3116 {
3117 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3118 	struct extent_map *em;
3119 	int ret;
3120 
3121 	em = alloc_extent_map();
3122 	if (!em) {
3123 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3124 			&BTRFS_I(inode)->runtime_flags);
3125 		return;
3126 	}
3127 
3128 	if (path) {
3129 		struct btrfs_file_extent_item *fi;
3130 
3131 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3132 				    struct btrfs_file_extent_item);
3133 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3134 		em->generation = -1;
3135 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3136 		    BTRFS_FILE_EXTENT_INLINE)
3137 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3138 				&BTRFS_I(inode)->runtime_flags);
3139 	} else {
3140 		em->start = hole_offset;
3141 		em->len = hole_len;
3142 		em->ram_bytes = em->len;
3143 		em->orig_start = hole_offset;
3144 		em->block_start = EXTENT_MAP_HOLE;
3145 		em->block_len = 0;
3146 		em->orig_block_len = 0;
3147 		em->compress_type = BTRFS_COMPRESS_NONE;
3148 		em->generation = trans->transid;
3149 	}
3150 
3151 	while (1) {
3152 		write_lock(&em_tree->lock);
3153 		ret = add_extent_mapping(em_tree, em, 1);
3154 		write_unlock(&em_tree->lock);
3155 		if (ret != -EEXIST) {
3156 			free_extent_map(em);
3157 			break;
3158 		}
3159 		btrfs_drop_extent_cache(inode, em->start,
3160 					em->start + em->len - 1, 0);
3161 	}
3162 
3163 	if (ret)
3164 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3165 			&BTRFS_I(inode)->runtime_flags);
3166 }
3167 
3168 /**
3169  * btrfs_clone() - clone a range from inode file to another
3170  *
3171  * @src: Inode to clone from
3172  * @inode: Inode to clone to
3173  * @off: Offset within source to start clone from
3174  * @olen: Original length, passed by user, of range to clone
3175  * @olen_aligned: Block-aligned value of olen, extent_same uses
3176  *               identical values here
3177  * @destoff: Offset within @inode to start clone
3178  */
3179 static int btrfs_clone(struct inode *src, struct inode *inode,
3180 		       const u64 off, const u64 olen, const u64 olen_aligned,
3181 		       const u64 destoff)
3182 {
3183 	struct btrfs_root *root = BTRFS_I(inode)->root;
3184 	struct btrfs_path *path = NULL;
3185 	struct extent_buffer *leaf;
3186 	struct btrfs_trans_handle *trans;
3187 	char *buf = NULL;
3188 	struct btrfs_key key;
3189 	u32 nritems;
3190 	int slot;
3191 	int ret;
3192 	int no_quota;
3193 	const u64 len = olen_aligned;
3194 	u64 last_disko = 0;
3195 	u64 last_dest_end = destoff;
3196 
3197 	ret = -ENOMEM;
3198 	buf = vmalloc(root->nodesize);
3199 	if (!buf)
3200 		return ret;
3201 
3202 	path = btrfs_alloc_path();
3203 	if (!path) {
3204 		vfree(buf);
3205 		return ret;
3206 	}
3207 
3208 	path->reada = 2;
3209 	/* clone data */
3210 	key.objectid = btrfs_ino(src);
3211 	key.type = BTRFS_EXTENT_DATA_KEY;
3212 	key.offset = off;
3213 
3214 	while (1) {
3215 		u64 next_key_min_offset = key.offset + 1;
3216 
3217 		/*
3218 		 * note the key will change type as we walk through the
3219 		 * tree.
3220 		 */
3221 		path->leave_spinning = 1;
3222 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3223 				0, 0);
3224 		if (ret < 0)
3225 			goto out;
3226 		/*
3227 		 * First search, if no extent item that starts at offset off was
3228 		 * found but the previous item is an extent item, it's possible
3229 		 * it might overlap our target range, therefore process it.
3230 		 */
3231 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3232 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3233 					      path->slots[0] - 1);
3234 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3235 				path->slots[0]--;
3236 		}
3237 
3238 		nritems = btrfs_header_nritems(path->nodes[0]);
3239 process_slot:
3240 		no_quota = 1;
3241 		if (path->slots[0] >= nritems) {
3242 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3243 			if (ret < 0)
3244 				goto out;
3245 			if (ret > 0)
3246 				break;
3247 			nritems = btrfs_header_nritems(path->nodes[0]);
3248 		}
3249 		leaf = path->nodes[0];
3250 		slot = path->slots[0];
3251 
3252 		btrfs_item_key_to_cpu(leaf, &key, slot);
3253 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3254 		    key.objectid != btrfs_ino(src))
3255 			break;
3256 
3257 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3258 			struct btrfs_file_extent_item *extent;
3259 			int type;
3260 			u32 size;
3261 			struct btrfs_key new_key;
3262 			u64 disko = 0, diskl = 0;
3263 			u64 datao = 0, datal = 0;
3264 			u8 comp;
3265 			u64 drop_start;
3266 
3267 			extent = btrfs_item_ptr(leaf, slot,
3268 						struct btrfs_file_extent_item);
3269 			comp = btrfs_file_extent_compression(leaf, extent);
3270 			type = btrfs_file_extent_type(leaf, extent);
3271 			if (type == BTRFS_FILE_EXTENT_REG ||
3272 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3273 				disko = btrfs_file_extent_disk_bytenr(leaf,
3274 								      extent);
3275 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3276 								 extent);
3277 				datao = btrfs_file_extent_offset(leaf, extent);
3278 				datal = btrfs_file_extent_num_bytes(leaf,
3279 								    extent);
3280 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3281 				/* take upper bound, may be compressed */
3282 				datal = btrfs_file_extent_ram_bytes(leaf,
3283 								    extent);
3284 			}
3285 
3286 			/*
3287 			 * The first search might have left us at an extent
3288 			 * item that ends before our target range's start, can
3289 			 * happen if we have holes and NO_HOLES feature enabled.
3290 			 */
3291 			if (key.offset + datal <= off) {
3292 				path->slots[0]++;
3293 				goto process_slot;
3294 			} else if (key.offset >= off + len) {
3295 				break;
3296 			}
3297 			next_key_min_offset = key.offset + datal;
3298 			size = btrfs_item_size_nr(leaf, slot);
3299 			read_extent_buffer(leaf, buf,
3300 					   btrfs_item_ptr_offset(leaf, slot),
3301 					   size);
3302 
3303 			btrfs_release_path(path);
3304 			path->leave_spinning = 0;
3305 
3306 			memcpy(&new_key, &key, sizeof(new_key));
3307 			new_key.objectid = btrfs_ino(inode);
3308 			if (off <= key.offset)
3309 				new_key.offset = key.offset + destoff - off;
3310 			else
3311 				new_key.offset = destoff;
3312 
3313 			/*
3314 			 * Deal with a hole that doesn't have an extent item
3315 			 * that represents it (NO_HOLES feature enabled).
3316 			 * This hole is either in the middle of the cloning
3317 			 * range or at the beginning (fully overlaps it or
3318 			 * partially overlaps it).
3319 			 */
3320 			if (new_key.offset != last_dest_end)
3321 				drop_start = last_dest_end;
3322 			else
3323 				drop_start = new_key.offset;
3324 
3325 			/*
3326 			 * 1 - adjusting old extent (we may have to split it)
3327 			 * 1 - add new extent
3328 			 * 1 - inode update
3329 			 */
3330 			trans = btrfs_start_transaction(root, 3);
3331 			if (IS_ERR(trans)) {
3332 				ret = PTR_ERR(trans);
3333 				goto out;
3334 			}
3335 
3336 			if (type == BTRFS_FILE_EXTENT_REG ||
3337 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3338 				/*
3339 				 *    a  | --- range to clone ---|  b
3340 				 * | ------------- extent ------------- |
3341 				 */
3342 
3343 				/* subtract range b */
3344 				if (key.offset + datal > off + len)
3345 					datal = off + len - key.offset;
3346 
3347 				/* subtract range a */
3348 				if (off > key.offset) {
3349 					datao += off - key.offset;
3350 					datal -= off - key.offset;
3351 				}
3352 
3353 				ret = btrfs_drop_extents(trans, root, inode,
3354 							 drop_start,
3355 							 new_key.offset + datal,
3356 							 1);
3357 				if (ret) {
3358 					if (ret != -EOPNOTSUPP)
3359 						btrfs_abort_transaction(trans,
3360 								root, ret);
3361 					btrfs_end_transaction(trans, root);
3362 					goto out;
3363 				}
3364 
3365 				ret = btrfs_insert_empty_item(trans, root, path,
3366 							      &new_key, size);
3367 				if (ret) {
3368 					btrfs_abort_transaction(trans, root,
3369 								ret);
3370 					btrfs_end_transaction(trans, root);
3371 					goto out;
3372 				}
3373 
3374 				leaf = path->nodes[0];
3375 				slot = path->slots[0];
3376 				write_extent_buffer(leaf, buf,
3377 					    btrfs_item_ptr_offset(leaf, slot),
3378 					    size);
3379 
3380 				extent = btrfs_item_ptr(leaf, slot,
3381 						struct btrfs_file_extent_item);
3382 
3383 				/* disko == 0 means it's a hole */
3384 				if (!disko)
3385 					datao = 0;
3386 
3387 				btrfs_set_file_extent_offset(leaf, extent,
3388 							     datao);
3389 				btrfs_set_file_extent_num_bytes(leaf, extent,
3390 								datal);
3391 
3392 				/*
3393 				 * We need to look up the roots that point at
3394 				 * this bytenr and see if the new root does.  If
3395 				 * it does not we need to make sure we update
3396 				 * quotas appropriately.
3397 				 */
3398 				if (disko && root != BTRFS_I(src)->root &&
3399 				    disko != last_disko) {
3400 					no_quota = check_ref(trans, root,
3401 							     disko);
3402 					if (no_quota < 0) {
3403 						btrfs_abort_transaction(trans,
3404 									root,
3405 									ret);
3406 						btrfs_end_transaction(trans,
3407 								      root);
3408 						ret = no_quota;
3409 						goto out;
3410 					}
3411 				}
3412 
3413 				if (disko) {
3414 					inode_add_bytes(inode, datal);
3415 					ret = btrfs_inc_extent_ref(trans, root,
3416 							disko, diskl, 0,
3417 							root->root_key.objectid,
3418 							btrfs_ino(inode),
3419 							new_key.offset - datao,
3420 							no_quota);
3421 					if (ret) {
3422 						btrfs_abort_transaction(trans,
3423 									root,
3424 									ret);
3425 						btrfs_end_transaction(trans,
3426 								      root);
3427 						goto out;
3428 
3429 					}
3430 				}
3431 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3432 				u64 skip = 0;
3433 				u64 trim = 0;
3434 				u64 aligned_end = 0;
3435 
3436 				if (off > key.offset) {
3437 					skip = off - key.offset;
3438 					new_key.offset += skip;
3439 				}
3440 
3441 				if (key.offset + datal > off + len)
3442 					trim = key.offset + datal - (off + len);
3443 
3444 				if (comp && (skip || trim)) {
3445 					ret = -EINVAL;
3446 					btrfs_end_transaction(trans, root);
3447 					goto out;
3448 				}
3449 				size -= skip + trim;
3450 				datal -= skip + trim;
3451 
3452 				aligned_end = ALIGN(new_key.offset + datal,
3453 						    root->sectorsize);
3454 				ret = btrfs_drop_extents(trans, root, inode,
3455 							 drop_start,
3456 							 aligned_end,
3457 							 1);
3458 				if (ret) {
3459 					if (ret != -EOPNOTSUPP)
3460 						btrfs_abort_transaction(trans,
3461 							root, ret);
3462 					btrfs_end_transaction(trans, root);
3463 					goto out;
3464 				}
3465 
3466 				ret = btrfs_insert_empty_item(trans, root, path,
3467 							      &new_key, size);
3468 				if (ret) {
3469 					btrfs_abort_transaction(trans, root,
3470 								ret);
3471 					btrfs_end_transaction(trans, root);
3472 					goto out;
3473 				}
3474 
3475 				if (skip) {
3476 					u32 start =
3477 					  btrfs_file_extent_calc_inline_size(0);
3478 					memmove(buf+start, buf+start+skip,
3479 						datal);
3480 				}
3481 
3482 				leaf = path->nodes[0];
3483 				slot = path->slots[0];
3484 				write_extent_buffer(leaf, buf,
3485 					    btrfs_item_ptr_offset(leaf, slot),
3486 					    size);
3487 				inode_add_bytes(inode, datal);
3488 			}
3489 
3490 			/* If we have an implicit hole (NO_HOLES feature). */
3491 			if (drop_start < new_key.offset)
3492 				clone_update_extent_map(inode, trans,
3493 						NULL, drop_start,
3494 						new_key.offset - drop_start);
3495 
3496 			clone_update_extent_map(inode, trans, path, 0, 0);
3497 
3498 			btrfs_mark_buffer_dirty(leaf);
3499 			btrfs_release_path(path);
3500 
3501 			last_dest_end = ALIGN(new_key.offset + datal,
3502 					      root->sectorsize);
3503 			ret = clone_finish_inode_update(trans, inode,
3504 							last_dest_end,
3505 							destoff, olen);
3506 			if (ret)
3507 				goto out;
3508 			if (new_key.offset + datal >= destoff + len)
3509 				break;
3510 		}
3511 		btrfs_release_path(path);
3512 		key.offset = next_key_min_offset;
3513 	}
3514 	ret = 0;
3515 
3516 	if (last_dest_end < destoff + len) {
3517 		/*
3518 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3519 		 * fully or partially overlaps our cloning range at its end.
3520 		 */
3521 		btrfs_release_path(path);
3522 
3523 		/*
3524 		 * 1 - remove extent(s)
3525 		 * 1 - inode update
3526 		 */
3527 		trans = btrfs_start_transaction(root, 2);
3528 		if (IS_ERR(trans)) {
3529 			ret = PTR_ERR(trans);
3530 			goto out;
3531 		}
3532 		ret = btrfs_drop_extents(trans, root, inode,
3533 					 last_dest_end, destoff + len, 1);
3534 		if (ret) {
3535 			if (ret != -EOPNOTSUPP)
3536 				btrfs_abort_transaction(trans, root, ret);
3537 			btrfs_end_transaction(trans, root);
3538 			goto out;
3539 		}
3540 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3541 					destoff + len - last_dest_end);
3542 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3543 						destoff, olen);
3544 	}
3545 
3546 out:
3547 	btrfs_free_path(path);
3548 	vfree(buf);
3549 	return ret;
3550 }
3551 
3552 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3553 				       u64 off, u64 olen, u64 destoff)
3554 {
3555 	struct inode *inode = file_inode(file);
3556 	struct btrfs_root *root = BTRFS_I(inode)->root;
3557 	struct fd src_file;
3558 	struct inode *src;
3559 	int ret;
3560 	u64 len = olen;
3561 	u64 bs = root->fs_info->sb->s_blocksize;
3562 	int same_inode = 0;
3563 
3564 	/*
3565 	 * TODO:
3566 	 * - split compressed inline extents.  annoying: we need to
3567 	 *   decompress into destination's address_space (the file offset
3568 	 *   may change, so source mapping won't do), then recompress (or
3569 	 *   otherwise reinsert) a subrange.
3570 	 *
3571 	 * - split destination inode's inline extents.  The inline extents can
3572 	 *   be either compressed or non-compressed.
3573 	 */
3574 
3575 	/* the destination must be opened for writing */
3576 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3577 		return -EINVAL;
3578 
3579 	if (btrfs_root_readonly(root))
3580 		return -EROFS;
3581 
3582 	ret = mnt_want_write_file(file);
3583 	if (ret)
3584 		return ret;
3585 
3586 	src_file = fdget(srcfd);
3587 	if (!src_file.file) {
3588 		ret = -EBADF;
3589 		goto out_drop_write;
3590 	}
3591 
3592 	ret = -EXDEV;
3593 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3594 		goto out_fput;
3595 
3596 	src = file_inode(src_file.file);
3597 
3598 	ret = -EINVAL;
3599 	if (src == inode)
3600 		same_inode = 1;
3601 
3602 	/* the src must be open for reading */
3603 	if (!(src_file.file->f_mode & FMODE_READ))
3604 		goto out_fput;
3605 
3606 	/* don't make the dst file partly checksummed */
3607 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3608 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3609 		goto out_fput;
3610 
3611 	ret = -EISDIR;
3612 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3613 		goto out_fput;
3614 
3615 	ret = -EXDEV;
3616 	if (src->i_sb != inode->i_sb)
3617 		goto out_fput;
3618 
3619 	if (!same_inode) {
3620 		if (inode < src) {
3621 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3622 			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3623 		} else {
3624 			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3625 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3626 		}
3627 	} else {
3628 		mutex_lock(&src->i_mutex);
3629 	}
3630 
3631 	/* determine range to clone */
3632 	ret = -EINVAL;
3633 	if (off + len > src->i_size || off + len < off)
3634 		goto out_unlock;
3635 	if (len == 0)
3636 		olen = len = src->i_size - off;
3637 	/* if we extend to eof, continue to block boundary */
3638 	if (off + len == src->i_size)
3639 		len = ALIGN(src->i_size, bs) - off;
3640 
3641 	if (len == 0) {
3642 		ret = 0;
3643 		goto out_unlock;
3644 	}
3645 
3646 	/* verify the end result is block aligned */
3647 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3648 	    !IS_ALIGNED(destoff, bs))
3649 		goto out_unlock;
3650 
3651 	/* verify if ranges are overlapped within the same file */
3652 	if (same_inode) {
3653 		if (destoff + len > off && destoff < off + len)
3654 			goto out_unlock;
3655 	}
3656 
3657 	if (destoff > inode->i_size) {
3658 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3659 		if (ret)
3660 			goto out_unlock;
3661 	}
3662 
3663 	/*
3664 	 * Lock the target range too. Right after we replace the file extent
3665 	 * items in the fs tree (which now point to the cloned data), we might
3666 	 * have a worker replace them with extent items relative to a write
3667 	 * operation that was issued before this clone operation (i.e. confront
3668 	 * with inode.c:btrfs_finish_ordered_io).
3669 	 */
3670 	if (same_inode) {
3671 		u64 lock_start = min_t(u64, off, destoff);
3672 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3673 
3674 		lock_extent_range(src, lock_start, lock_len);
3675 	} else {
3676 		lock_extent_range(src, off, len);
3677 		lock_extent_range(inode, destoff, len);
3678 	}
3679 
3680 	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3681 
3682 	if (same_inode) {
3683 		u64 lock_start = min_t(u64, off, destoff);
3684 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3685 
3686 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3687 	} else {
3688 		unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3689 		unlock_extent(&BTRFS_I(inode)->io_tree, destoff,
3690 			      destoff + len - 1);
3691 	}
3692 	/*
3693 	 * Truncate page cache pages so that future reads will see the cloned
3694 	 * data immediately and not the previous data.
3695 	 */
3696 	truncate_inode_pages_range(&inode->i_data, destoff,
3697 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3698 out_unlock:
3699 	if (!same_inode) {
3700 		if (inode < src) {
3701 			mutex_unlock(&src->i_mutex);
3702 			mutex_unlock(&inode->i_mutex);
3703 		} else {
3704 			mutex_unlock(&inode->i_mutex);
3705 			mutex_unlock(&src->i_mutex);
3706 		}
3707 	} else {
3708 		mutex_unlock(&src->i_mutex);
3709 	}
3710 out_fput:
3711 	fdput(src_file);
3712 out_drop_write:
3713 	mnt_drop_write_file(file);
3714 	return ret;
3715 }
3716 
3717 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3718 {
3719 	struct btrfs_ioctl_clone_range_args args;
3720 
3721 	if (copy_from_user(&args, argp, sizeof(args)))
3722 		return -EFAULT;
3723 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3724 				 args.src_length, args.dest_offset);
3725 }
3726 
3727 /*
3728  * there are many ways the trans_start and trans_end ioctls can lead
3729  * to deadlocks.  They should only be used by applications that
3730  * basically own the machine, and have a very in depth understanding
3731  * of all the possible deadlocks and enospc problems.
3732  */
3733 static long btrfs_ioctl_trans_start(struct file *file)
3734 {
3735 	struct inode *inode = file_inode(file);
3736 	struct btrfs_root *root = BTRFS_I(inode)->root;
3737 	struct btrfs_trans_handle *trans;
3738 	int ret;
3739 
3740 	ret = -EPERM;
3741 	if (!capable(CAP_SYS_ADMIN))
3742 		goto out;
3743 
3744 	ret = -EINPROGRESS;
3745 	if (file->private_data)
3746 		goto out;
3747 
3748 	ret = -EROFS;
3749 	if (btrfs_root_readonly(root))
3750 		goto out;
3751 
3752 	ret = mnt_want_write_file(file);
3753 	if (ret)
3754 		goto out;
3755 
3756 	atomic_inc(&root->fs_info->open_ioctl_trans);
3757 
3758 	ret = -ENOMEM;
3759 	trans = btrfs_start_ioctl_transaction(root);
3760 	if (IS_ERR(trans))
3761 		goto out_drop;
3762 
3763 	file->private_data = trans;
3764 	return 0;
3765 
3766 out_drop:
3767 	atomic_dec(&root->fs_info->open_ioctl_trans);
3768 	mnt_drop_write_file(file);
3769 out:
3770 	return ret;
3771 }
3772 
3773 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3774 {
3775 	struct inode *inode = file_inode(file);
3776 	struct btrfs_root *root = BTRFS_I(inode)->root;
3777 	struct btrfs_root *new_root;
3778 	struct btrfs_dir_item *di;
3779 	struct btrfs_trans_handle *trans;
3780 	struct btrfs_path *path;
3781 	struct btrfs_key location;
3782 	struct btrfs_disk_key disk_key;
3783 	u64 objectid = 0;
3784 	u64 dir_id;
3785 	int ret;
3786 
3787 	if (!capable(CAP_SYS_ADMIN))
3788 		return -EPERM;
3789 
3790 	ret = mnt_want_write_file(file);
3791 	if (ret)
3792 		return ret;
3793 
3794 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3795 		ret = -EFAULT;
3796 		goto out;
3797 	}
3798 
3799 	if (!objectid)
3800 		objectid = BTRFS_FS_TREE_OBJECTID;
3801 
3802 	location.objectid = objectid;
3803 	location.type = BTRFS_ROOT_ITEM_KEY;
3804 	location.offset = (u64)-1;
3805 
3806 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3807 	if (IS_ERR(new_root)) {
3808 		ret = PTR_ERR(new_root);
3809 		goto out;
3810 	}
3811 
3812 	path = btrfs_alloc_path();
3813 	if (!path) {
3814 		ret = -ENOMEM;
3815 		goto out;
3816 	}
3817 	path->leave_spinning = 1;
3818 
3819 	trans = btrfs_start_transaction(root, 1);
3820 	if (IS_ERR(trans)) {
3821 		btrfs_free_path(path);
3822 		ret = PTR_ERR(trans);
3823 		goto out;
3824 	}
3825 
3826 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3827 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3828 				   dir_id, "default", 7, 1);
3829 	if (IS_ERR_OR_NULL(di)) {
3830 		btrfs_free_path(path);
3831 		btrfs_end_transaction(trans, root);
3832 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3833 			   "item, this isn't going to work");
3834 		ret = -ENOENT;
3835 		goto out;
3836 	}
3837 
3838 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3839 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3840 	btrfs_mark_buffer_dirty(path->nodes[0]);
3841 	btrfs_free_path(path);
3842 
3843 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3844 	btrfs_end_transaction(trans, root);
3845 out:
3846 	mnt_drop_write_file(file);
3847 	return ret;
3848 }
3849 
3850 void btrfs_get_block_group_info(struct list_head *groups_list,
3851 				struct btrfs_ioctl_space_info *space)
3852 {
3853 	struct btrfs_block_group_cache *block_group;
3854 
3855 	space->total_bytes = 0;
3856 	space->used_bytes = 0;
3857 	space->flags = 0;
3858 	list_for_each_entry(block_group, groups_list, list) {
3859 		space->flags = block_group->flags;
3860 		space->total_bytes += block_group->key.offset;
3861 		space->used_bytes +=
3862 			btrfs_block_group_used(&block_group->item);
3863 	}
3864 }
3865 
3866 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3867 {
3868 	struct btrfs_ioctl_space_args space_args;
3869 	struct btrfs_ioctl_space_info space;
3870 	struct btrfs_ioctl_space_info *dest;
3871 	struct btrfs_ioctl_space_info *dest_orig;
3872 	struct btrfs_ioctl_space_info __user *user_dest;
3873 	struct btrfs_space_info *info;
3874 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3875 		       BTRFS_BLOCK_GROUP_SYSTEM,
3876 		       BTRFS_BLOCK_GROUP_METADATA,
3877 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3878 	int num_types = 4;
3879 	int alloc_size;
3880 	int ret = 0;
3881 	u64 slot_count = 0;
3882 	int i, c;
3883 
3884 	if (copy_from_user(&space_args,
3885 			   (struct btrfs_ioctl_space_args __user *)arg,
3886 			   sizeof(space_args)))
3887 		return -EFAULT;
3888 
3889 	for (i = 0; i < num_types; i++) {
3890 		struct btrfs_space_info *tmp;
3891 
3892 		info = NULL;
3893 		rcu_read_lock();
3894 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3895 					list) {
3896 			if (tmp->flags == types[i]) {
3897 				info = tmp;
3898 				break;
3899 			}
3900 		}
3901 		rcu_read_unlock();
3902 
3903 		if (!info)
3904 			continue;
3905 
3906 		down_read(&info->groups_sem);
3907 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3908 			if (!list_empty(&info->block_groups[c]))
3909 				slot_count++;
3910 		}
3911 		up_read(&info->groups_sem);
3912 	}
3913 
3914 	/*
3915 	 * Global block reserve, exported as a space_info
3916 	 */
3917 	slot_count++;
3918 
3919 	/* space_slots == 0 means they are asking for a count */
3920 	if (space_args.space_slots == 0) {
3921 		space_args.total_spaces = slot_count;
3922 		goto out;
3923 	}
3924 
3925 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3926 
3927 	alloc_size = sizeof(*dest) * slot_count;
3928 
3929 	/* we generally have at most 6 or so space infos, one for each raid
3930 	 * level.  So, a whole page should be more than enough for everyone
3931 	 */
3932 	if (alloc_size > PAGE_CACHE_SIZE)
3933 		return -ENOMEM;
3934 
3935 	space_args.total_spaces = 0;
3936 	dest = kmalloc(alloc_size, GFP_NOFS);
3937 	if (!dest)
3938 		return -ENOMEM;
3939 	dest_orig = dest;
3940 
3941 	/* now we have a buffer to copy into */
3942 	for (i = 0; i < num_types; i++) {
3943 		struct btrfs_space_info *tmp;
3944 
3945 		if (!slot_count)
3946 			break;
3947 
3948 		info = NULL;
3949 		rcu_read_lock();
3950 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3951 					list) {
3952 			if (tmp->flags == types[i]) {
3953 				info = tmp;
3954 				break;
3955 			}
3956 		}
3957 		rcu_read_unlock();
3958 
3959 		if (!info)
3960 			continue;
3961 		down_read(&info->groups_sem);
3962 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3963 			if (!list_empty(&info->block_groups[c])) {
3964 				btrfs_get_block_group_info(
3965 					&info->block_groups[c], &space);
3966 				memcpy(dest, &space, sizeof(space));
3967 				dest++;
3968 				space_args.total_spaces++;
3969 				slot_count--;
3970 			}
3971 			if (!slot_count)
3972 				break;
3973 		}
3974 		up_read(&info->groups_sem);
3975 	}
3976 
3977 	/*
3978 	 * Add global block reserve
3979 	 */
3980 	if (slot_count) {
3981 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
3982 
3983 		spin_lock(&block_rsv->lock);
3984 		space.total_bytes = block_rsv->size;
3985 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3986 		spin_unlock(&block_rsv->lock);
3987 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3988 		memcpy(dest, &space, sizeof(space));
3989 		space_args.total_spaces++;
3990 	}
3991 
3992 	user_dest = (struct btrfs_ioctl_space_info __user *)
3993 		(arg + sizeof(struct btrfs_ioctl_space_args));
3994 
3995 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3996 		ret = -EFAULT;
3997 
3998 	kfree(dest_orig);
3999 out:
4000 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4001 		ret = -EFAULT;
4002 
4003 	return ret;
4004 }
4005 
4006 /*
4007  * there are many ways the trans_start and trans_end ioctls can lead
4008  * to deadlocks.  They should only be used by applications that
4009  * basically own the machine, and have a very in depth understanding
4010  * of all the possible deadlocks and enospc problems.
4011  */
4012 long btrfs_ioctl_trans_end(struct file *file)
4013 {
4014 	struct inode *inode = file_inode(file);
4015 	struct btrfs_root *root = BTRFS_I(inode)->root;
4016 	struct btrfs_trans_handle *trans;
4017 
4018 	trans = file->private_data;
4019 	if (!trans)
4020 		return -EINVAL;
4021 	file->private_data = NULL;
4022 
4023 	btrfs_end_transaction(trans, root);
4024 
4025 	atomic_dec(&root->fs_info->open_ioctl_trans);
4026 
4027 	mnt_drop_write_file(file);
4028 	return 0;
4029 }
4030 
4031 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4032 					    void __user *argp)
4033 {
4034 	struct btrfs_trans_handle *trans;
4035 	u64 transid;
4036 	int ret;
4037 
4038 	trans = btrfs_attach_transaction_barrier(root);
4039 	if (IS_ERR(trans)) {
4040 		if (PTR_ERR(trans) != -ENOENT)
4041 			return PTR_ERR(trans);
4042 
4043 		/* No running transaction, don't bother */
4044 		transid = root->fs_info->last_trans_committed;
4045 		goto out;
4046 	}
4047 	transid = trans->transid;
4048 	ret = btrfs_commit_transaction_async(trans, root, 0);
4049 	if (ret) {
4050 		btrfs_end_transaction(trans, root);
4051 		return ret;
4052 	}
4053 out:
4054 	if (argp)
4055 		if (copy_to_user(argp, &transid, sizeof(transid)))
4056 			return -EFAULT;
4057 	return 0;
4058 }
4059 
4060 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4061 					   void __user *argp)
4062 {
4063 	u64 transid;
4064 
4065 	if (argp) {
4066 		if (copy_from_user(&transid, argp, sizeof(transid)))
4067 			return -EFAULT;
4068 	} else {
4069 		transid = 0;  /* current trans */
4070 	}
4071 	return btrfs_wait_for_commit(root, transid);
4072 }
4073 
4074 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4075 {
4076 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4077 	struct btrfs_ioctl_scrub_args *sa;
4078 	int ret;
4079 
4080 	if (!capable(CAP_SYS_ADMIN))
4081 		return -EPERM;
4082 
4083 	sa = memdup_user(arg, sizeof(*sa));
4084 	if (IS_ERR(sa))
4085 		return PTR_ERR(sa);
4086 
4087 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4088 		ret = mnt_want_write_file(file);
4089 		if (ret)
4090 			goto out;
4091 	}
4092 
4093 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4094 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4095 			      0);
4096 
4097 	if (copy_to_user(arg, sa, sizeof(*sa)))
4098 		ret = -EFAULT;
4099 
4100 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4101 		mnt_drop_write_file(file);
4102 out:
4103 	kfree(sa);
4104 	return ret;
4105 }
4106 
4107 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4108 {
4109 	if (!capable(CAP_SYS_ADMIN))
4110 		return -EPERM;
4111 
4112 	return btrfs_scrub_cancel(root->fs_info);
4113 }
4114 
4115 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4116 				       void __user *arg)
4117 {
4118 	struct btrfs_ioctl_scrub_args *sa;
4119 	int ret;
4120 
4121 	if (!capable(CAP_SYS_ADMIN))
4122 		return -EPERM;
4123 
4124 	sa = memdup_user(arg, sizeof(*sa));
4125 	if (IS_ERR(sa))
4126 		return PTR_ERR(sa);
4127 
4128 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4129 
4130 	if (copy_to_user(arg, sa, sizeof(*sa)))
4131 		ret = -EFAULT;
4132 
4133 	kfree(sa);
4134 	return ret;
4135 }
4136 
4137 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4138 				      void __user *arg)
4139 {
4140 	struct btrfs_ioctl_get_dev_stats *sa;
4141 	int ret;
4142 
4143 	sa = memdup_user(arg, sizeof(*sa));
4144 	if (IS_ERR(sa))
4145 		return PTR_ERR(sa);
4146 
4147 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4148 		kfree(sa);
4149 		return -EPERM;
4150 	}
4151 
4152 	ret = btrfs_get_dev_stats(root, sa);
4153 
4154 	if (copy_to_user(arg, sa, sizeof(*sa)))
4155 		ret = -EFAULT;
4156 
4157 	kfree(sa);
4158 	return ret;
4159 }
4160 
4161 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4162 {
4163 	struct btrfs_ioctl_dev_replace_args *p;
4164 	int ret;
4165 
4166 	if (!capable(CAP_SYS_ADMIN))
4167 		return -EPERM;
4168 
4169 	p = memdup_user(arg, sizeof(*p));
4170 	if (IS_ERR(p))
4171 		return PTR_ERR(p);
4172 
4173 	switch (p->cmd) {
4174 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4175 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4176 			ret = -EROFS;
4177 			goto out;
4178 		}
4179 		if (atomic_xchg(
4180 			&root->fs_info->mutually_exclusive_operation_running,
4181 			1)) {
4182 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4183 		} else {
4184 			ret = btrfs_dev_replace_start(root, p);
4185 			atomic_set(
4186 			 &root->fs_info->mutually_exclusive_operation_running,
4187 			 0);
4188 		}
4189 		break;
4190 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4191 		btrfs_dev_replace_status(root->fs_info, p);
4192 		ret = 0;
4193 		break;
4194 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4195 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4196 		break;
4197 	default:
4198 		ret = -EINVAL;
4199 		break;
4200 	}
4201 
4202 	if (copy_to_user(arg, p, sizeof(*p)))
4203 		ret = -EFAULT;
4204 out:
4205 	kfree(p);
4206 	return ret;
4207 }
4208 
4209 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4210 {
4211 	int ret = 0;
4212 	int i;
4213 	u64 rel_ptr;
4214 	int size;
4215 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4216 	struct inode_fs_paths *ipath = NULL;
4217 	struct btrfs_path *path;
4218 
4219 	if (!capable(CAP_DAC_READ_SEARCH))
4220 		return -EPERM;
4221 
4222 	path = btrfs_alloc_path();
4223 	if (!path) {
4224 		ret = -ENOMEM;
4225 		goto out;
4226 	}
4227 
4228 	ipa = memdup_user(arg, sizeof(*ipa));
4229 	if (IS_ERR(ipa)) {
4230 		ret = PTR_ERR(ipa);
4231 		ipa = NULL;
4232 		goto out;
4233 	}
4234 
4235 	size = min_t(u32, ipa->size, 4096);
4236 	ipath = init_ipath(size, root, path);
4237 	if (IS_ERR(ipath)) {
4238 		ret = PTR_ERR(ipath);
4239 		ipath = NULL;
4240 		goto out;
4241 	}
4242 
4243 	ret = paths_from_inode(ipa->inum, ipath);
4244 	if (ret < 0)
4245 		goto out;
4246 
4247 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4248 		rel_ptr = ipath->fspath->val[i] -
4249 			  (u64)(unsigned long)ipath->fspath->val;
4250 		ipath->fspath->val[i] = rel_ptr;
4251 	}
4252 
4253 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4254 			   (void *)(unsigned long)ipath->fspath, size);
4255 	if (ret) {
4256 		ret = -EFAULT;
4257 		goto out;
4258 	}
4259 
4260 out:
4261 	btrfs_free_path(path);
4262 	free_ipath(ipath);
4263 	kfree(ipa);
4264 
4265 	return ret;
4266 }
4267 
4268 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4269 {
4270 	struct btrfs_data_container *inodes = ctx;
4271 	const size_t c = 3 * sizeof(u64);
4272 
4273 	if (inodes->bytes_left >= c) {
4274 		inodes->bytes_left -= c;
4275 		inodes->val[inodes->elem_cnt] = inum;
4276 		inodes->val[inodes->elem_cnt + 1] = offset;
4277 		inodes->val[inodes->elem_cnt + 2] = root;
4278 		inodes->elem_cnt += 3;
4279 	} else {
4280 		inodes->bytes_missing += c - inodes->bytes_left;
4281 		inodes->bytes_left = 0;
4282 		inodes->elem_missed += 3;
4283 	}
4284 
4285 	return 0;
4286 }
4287 
4288 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4289 					void __user *arg)
4290 {
4291 	int ret = 0;
4292 	int size;
4293 	struct btrfs_ioctl_logical_ino_args *loi;
4294 	struct btrfs_data_container *inodes = NULL;
4295 	struct btrfs_path *path = NULL;
4296 
4297 	if (!capable(CAP_SYS_ADMIN))
4298 		return -EPERM;
4299 
4300 	loi = memdup_user(arg, sizeof(*loi));
4301 	if (IS_ERR(loi)) {
4302 		ret = PTR_ERR(loi);
4303 		loi = NULL;
4304 		goto out;
4305 	}
4306 
4307 	path = btrfs_alloc_path();
4308 	if (!path) {
4309 		ret = -ENOMEM;
4310 		goto out;
4311 	}
4312 
4313 	size = min_t(u32, loi->size, 64 * 1024);
4314 	inodes = init_data_container(size);
4315 	if (IS_ERR(inodes)) {
4316 		ret = PTR_ERR(inodes);
4317 		inodes = NULL;
4318 		goto out;
4319 	}
4320 
4321 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4322 					  build_ino_list, inodes);
4323 	if (ret == -EINVAL)
4324 		ret = -ENOENT;
4325 	if (ret < 0)
4326 		goto out;
4327 
4328 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4329 			   (void *)(unsigned long)inodes, size);
4330 	if (ret)
4331 		ret = -EFAULT;
4332 
4333 out:
4334 	btrfs_free_path(path);
4335 	vfree(inodes);
4336 	kfree(loi);
4337 
4338 	return ret;
4339 }
4340 
4341 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4342 			       struct btrfs_ioctl_balance_args *bargs)
4343 {
4344 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4345 
4346 	bargs->flags = bctl->flags;
4347 
4348 	if (atomic_read(&fs_info->balance_running))
4349 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4350 	if (atomic_read(&fs_info->balance_pause_req))
4351 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4352 	if (atomic_read(&fs_info->balance_cancel_req))
4353 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4354 
4355 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4356 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4357 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4358 
4359 	if (lock) {
4360 		spin_lock(&fs_info->balance_lock);
4361 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4362 		spin_unlock(&fs_info->balance_lock);
4363 	} else {
4364 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4365 	}
4366 }
4367 
4368 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4369 {
4370 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4371 	struct btrfs_fs_info *fs_info = root->fs_info;
4372 	struct btrfs_ioctl_balance_args *bargs;
4373 	struct btrfs_balance_control *bctl;
4374 	bool need_unlock; /* for mut. excl. ops lock */
4375 	int ret;
4376 
4377 	if (!capable(CAP_SYS_ADMIN))
4378 		return -EPERM;
4379 
4380 	ret = mnt_want_write_file(file);
4381 	if (ret)
4382 		return ret;
4383 
4384 again:
4385 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4386 		mutex_lock(&fs_info->volume_mutex);
4387 		mutex_lock(&fs_info->balance_mutex);
4388 		need_unlock = true;
4389 		goto locked;
4390 	}
4391 
4392 	/*
4393 	 * mut. excl. ops lock is locked.  Three possibilites:
4394 	 *   (1) some other op is running
4395 	 *   (2) balance is running
4396 	 *   (3) balance is paused -- special case (think resume)
4397 	 */
4398 	mutex_lock(&fs_info->balance_mutex);
4399 	if (fs_info->balance_ctl) {
4400 		/* this is either (2) or (3) */
4401 		if (!atomic_read(&fs_info->balance_running)) {
4402 			mutex_unlock(&fs_info->balance_mutex);
4403 			if (!mutex_trylock(&fs_info->volume_mutex))
4404 				goto again;
4405 			mutex_lock(&fs_info->balance_mutex);
4406 
4407 			if (fs_info->balance_ctl &&
4408 			    !atomic_read(&fs_info->balance_running)) {
4409 				/* this is (3) */
4410 				need_unlock = false;
4411 				goto locked;
4412 			}
4413 
4414 			mutex_unlock(&fs_info->balance_mutex);
4415 			mutex_unlock(&fs_info->volume_mutex);
4416 			goto again;
4417 		} else {
4418 			/* this is (2) */
4419 			mutex_unlock(&fs_info->balance_mutex);
4420 			ret = -EINPROGRESS;
4421 			goto out;
4422 		}
4423 	} else {
4424 		/* this is (1) */
4425 		mutex_unlock(&fs_info->balance_mutex);
4426 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4427 		goto out;
4428 	}
4429 
4430 locked:
4431 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4432 
4433 	if (arg) {
4434 		bargs = memdup_user(arg, sizeof(*bargs));
4435 		if (IS_ERR(bargs)) {
4436 			ret = PTR_ERR(bargs);
4437 			goto out_unlock;
4438 		}
4439 
4440 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4441 			if (!fs_info->balance_ctl) {
4442 				ret = -ENOTCONN;
4443 				goto out_bargs;
4444 			}
4445 
4446 			bctl = fs_info->balance_ctl;
4447 			spin_lock(&fs_info->balance_lock);
4448 			bctl->flags |= BTRFS_BALANCE_RESUME;
4449 			spin_unlock(&fs_info->balance_lock);
4450 
4451 			goto do_balance;
4452 		}
4453 	} else {
4454 		bargs = NULL;
4455 	}
4456 
4457 	if (fs_info->balance_ctl) {
4458 		ret = -EINPROGRESS;
4459 		goto out_bargs;
4460 	}
4461 
4462 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4463 	if (!bctl) {
4464 		ret = -ENOMEM;
4465 		goto out_bargs;
4466 	}
4467 
4468 	bctl->fs_info = fs_info;
4469 	if (arg) {
4470 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4471 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4472 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4473 
4474 		bctl->flags = bargs->flags;
4475 	} else {
4476 		/* balance everything - no filters */
4477 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4478 	}
4479 
4480 do_balance:
4481 	/*
4482 	 * Ownership of bctl and mutually_exclusive_operation_running
4483 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4484 	 * or, if restriper was paused all the way until unmount, in
4485 	 * free_fs_info.  mutually_exclusive_operation_running is
4486 	 * cleared in __cancel_balance.
4487 	 */
4488 	need_unlock = false;
4489 
4490 	ret = btrfs_balance(bctl, bargs);
4491 
4492 	if (arg) {
4493 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4494 			ret = -EFAULT;
4495 	}
4496 
4497 out_bargs:
4498 	kfree(bargs);
4499 out_unlock:
4500 	mutex_unlock(&fs_info->balance_mutex);
4501 	mutex_unlock(&fs_info->volume_mutex);
4502 	if (need_unlock)
4503 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4504 out:
4505 	mnt_drop_write_file(file);
4506 	return ret;
4507 }
4508 
4509 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4510 {
4511 	if (!capable(CAP_SYS_ADMIN))
4512 		return -EPERM;
4513 
4514 	switch (cmd) {
4515 	case BTRFS_BALANCE_CTL_PAUSE:
4516 		return btrfs_pause_balance(root->fs_info);
4517 	case BTRFS_BALANCE_CTL_CANCEL:
4518 		return btrfs_cancel_balance(root->fs_info);
4519 	}
4520 
4521 	return -EINVAL;
4522 }
4523 
4524 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4525 					 void __user *arg)
4526 {
4527 	struct btrfs_fs_info *fs_info = root->fs_info;
4528 	struct btrfs_ioctl_balance_args *bargs;
4529 	int ret = 0;
4530 
4531 	if (!capable(CAP_SYS_ADMIN))
4532 		return -EPERM;
4533 
4534 	mutex_lock(&fs_info->balance_mutex);
4535 	if (!fs_info->balance_ctl) {
4536 		ret = -ENOTCONN;
4537 		goto out;
4538 	}
4539 
4540 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4541 	if (!bargs) {
4542 		ret = -ENOMEM;
4543 		goto out;
4544 	}
4545 
4546 	update_ioctl_balance_args(fs_info, 1, bargs);
4547 
4548 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4549 		ret = -EFAULT;
4550 
4551 	kfree(bargs);
4552 out:
4553 	mutex_unlock(&fs_info->balance_mutex);
4554 	return ret;
4555 }
4556 
4557 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4558 {
4559 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4560 	struct btrfs_ioctl_quota_ctl_args *sa;
4561 	struct btrfs_trans_handle *trans = NULL;
4562 	int ret;
4563 	int err;
4564 
4565 	if (!capable(CAP_SYS_ADMIN))
4566 		return -EPERM;
4567 
4568 	ret = mnt_want_write_file(file);
4569 	if (ret)
4570 		return ret;
4571 
4572 	sa = memdup_user(arg, sizeof(*sa));
4573 	if (IS_ERR(sa)) {
4574 		ret = PTR_ERR(sa);
4575 		goto drop_write;
4576 	}
4577 
4578 	down_write(&root->fs_info->subvol_sem);
4579 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4580 	if (IS_ERR(trans)) {
4581 		ret = PTR_ERR(trans);
4582 		goto out;
4583 	}
4584 
4585 	switch (sa->cmd) {
4586 	case BTRFS_QUOTA_CTL_ENABLE:
4587 		ret = btrfs_quota_enable(trans, root->fs_info);
4588 		break;
4589 	case BTRFS_QUOTA_CTL_DISABLE:
4590 		ret = btrfs_quota_disable(trans, root->fs_info);
4591 		break;
4592 	default:
4593 		ret = -EINVAL;
4594 		break;
4595 	}
4596 
4597 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4598 	if (err && !ret)
4599 		ret = err;
4600 out:
4601 	kfree(sa);
4602 	up_write(&root->fs_info->subvol_sem);
4603 drop_write:
4604 	mnt_drop_write_file(file);
4605 	return ret;
4606 }
4607 
4608 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4609 {
4610 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4611 	struct btrfs_ioctl_qgroup_assign_args *sa;
4612 	struct btrfs_trans_handle *trans;
4613 	int ret;
4614 	int err;
4615 
4616 	if (!capable(CAP_SYS_ADMIN))
4617 		return -EPERM;
4618 
4619 	ret = mnt_want_write_file(file);
4620 	if (ret)
4621 		return ret;
4622 
4623 	sa = memdup_user(arg, sizeof(*sa));
4624 	if (IS_ERR(sa)) {
4625 		ret = PTR_ERR(sa);
4626 		goto drop_write;
4627 	}
4628 
4629 	trans = btrfs_join_transaction(root);
4630 	if (IS_ERR(trans)) {
4631 		ret = PTR_ERR(trans);
4632 		goto out;
4633 	}
4634 
4635 	/* FIXME: check if the IDs really exist */
4636 	if (sa->assign) {
4637 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4638 						sa->src, sa->dst);
4639 	} else {
4640 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4641 						sa->src, sa->dst);
4642 	}
4643 
4644 	/* update qgroup status and info */
4645 	err = btrfs_run_qgroups(trans, root->fs_info);
4646 	if (err < 0)
4647 		btrfs_error(root->fs_info, ret,
4648 			    "failed to update qgroup status and info\n");
4649 	err = btrfs_end_transaction(trans, root);
4650 	if (err && !ret)
4651 		ret = err;
4652 
4653 out:
4654 	kfree(sa);
4655 drop_write:
4656 	mnt_drop_write_file(file);
4657 	return ret;
4658 }
4659 
4660 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4661 {
4662 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4663 	struct btrfs_ioctl_qgroup_create_args *sa;
4664 	struct btrfs_trans_handle *trans;
4665 	int ret;
4666 	int err;
4667 
4668 	if (!capable(CAP_SYS_ADMIN))
4669 		return -EPERM;
4670 
4671 	ret = mnt_want_write_file(file);
4672 	if (ret)
4673 		return ret;
4674 
4675 	sa = memdup_user(arg, sizeof(*sa));
4676 	if (IS_ERR(sa)) {
4677 		ret = PTR_ERR(sa);
4678 		goto drop_write;
4679 	}
4680 
4681 	if (!sa->qgroupid) {
4682 		ret = -EINVAL;
4683 		goto out;
4684 	}
4685 
4686 	trans = btrfs_join_transaction(root);
4687 	if (IS_ERR(trans)) {
4688 		ret = PTR_ERR(trans);
4689 		goto out;
4690 	}
4691 
4692 	/* FIXME: check if the IDs really exist */
4693 	if (sa->create) {
4694 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4695 	} else {
4696 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4697 	}
4698 
4699 	err = btrfs_end_transaction(trans, root);
4700 	if (err && !ret)
4701 		ret = err;
4702 
4703 out:
4704 	kfree(sa);
4705 drop_write:
4706 	mnt_drop_write_file(file);
4707 	return ret;
4708 }
4709 
4710 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4711 {
4712 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4713 	struct btrfs_ioctl_qgroup_limit_args *sa;
4714 	struct btrfs_trans_handle *trans;
4715 	int ret;
4716 	int err;
4717 	u64 qgroupid;
4718 
4719 	if (!capable(CAP_SYS_ADMIN))
4720 		return -EPERM;
4721 
4722 	ret = mnt_want_write_file(file);
4723 	if (ret)
4724 		return ret;
4725 
4726 	sa = memdup_user(arg, sizeof(*sa));
4727 	if (IS_ERR(sa)) {
4728 		ret = PTR_ERR(sa);
4729 		goto drop_write;
4730 	}
4731 
4732 	trans = btrfs_join_transaction(root);
4733 	if (IS_ERR(trans)) {
4734 		ret = PTR_ERR(trans);
4735 		goto out;
4736 	}
4737 
4738 	qgroupid = sa->qgroupid;
4739 	if (!qgroupid) {
4740 		/* take the current subvol as qgroup */
4741 		qgroupid = root->root_key.objectid;
4742 	}
4743 
4744 	/* FIXME: check if the IDs really exist */
4745 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4746 
4747 	err = btrfs_end_transaction(trans, root);
4748 	if (err && !ret)
4749 		ret = err;
4750 
4751 out:
4752 	kfree(sa);
4753 drop_write:
4754 	mnt_drop_write_file(file);
4755 	return ret;
4756 }
4757 
4758 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4759 {
4760 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4761 	struct btrfs_ioctl_quota_rescan_args *qsa;
4762 	int ret;
4763 
4764 	if (!capable(CAP_SYS_ADMIN))
4765 		return -EPERM;
4766 
4767 	ret = mnt_want_write_file(file);
4768 	if (ret)
4769 		return ret;
4770 
4771 	qsa = memdup_user(arg, sizeof(*qsa));
4772 	if (IS_ERR(qsa)) {
4773 		ret = PTR_ERR(qsa);
4774 		goto drop_write;
4775 	}
4776 
4777 	if (qsa->flags) {
4778 		ret = -EINVAL;
4779 		goto out;
4780 	}
4781 
4782 	ret = btrfs_qgroup_rescan(root->fs_info);
4783 
4784 out:
4785 	kfree(qsa);
4786 drop_write:
4787 	mnt_drop_write_file(file);
4788 	return ret;
4789 }
4790 
4791 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4792 {
4793 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4794 	struct btrfs_ioctl_quota_rescan_args *qsa;
4795 	int ret = 0;
4796 
4797 	if (!capable(CAP_SYS_ADMIN))
4798 		return -EPERM;
4799 
4800 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4801 	if (!qsa)
4802 		return -ENOMEM;
4803 
4804 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4805 		qsa->flags = 1;
4806 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4807 	}
4808 
4809 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4810 		ret = -EFAULT;
4811 
4812 	kfree(qsa);
4813 	return ret;
4814 }
4815 
4816 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4817 {
4818 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4819 
4820 	if (!capable(CAP_SYS_ADMIN))
4821 		return -EPERM;
4822 
4823 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4824 }
4825 
4826 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4827 					    struct btrfs_ioctl_received_subvol_args *sa)
4828 {
4829 	struct inode *inode = file_inode(file);
4830 	struct btrfs_root *root = BTRFS_I(inode)->root;
4831 	struct btrfs_root_item *root_item = &root->root_item;
4832 	struct btrfs_trans_handle *trans;
4833 	struct timespec ct = CURRENT_TIME;
4834 	int ret = 0;
4835 	int received_uuid_changed;
4836 
4837 	if (!inode_owner_or_capable(inode))
4838 		return -EPERM;
4839 
4840 	ret = mnt_want_write_file(file);
4841 	if (ret < 0)
4842 		return ret;
4843 
4844 	down_write(&root->fs_info->subvol_sem);
4845 
4846 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4847 		ret = -EINVAL;
4848 		goto out;
4849 	}
4850 
4851 	if (btrfs_root_readonly(root)) {
4852 		ret = -EROFS;
4853 		goto out;
4854 	}
4855 
4856 	/*
4857 	 * 1 - root item
4858 	 * 2 - uuid items (received uuid + subvol uuid)
4859 	 */
4860 	trans = btrfs_start_transaction(root, 3);
4861 	if (IS_ERR(trans)) {
4862 		ret = PTR_ERR(trans);
4863 		trans = NULL;
4864 		goto out;
4865 	}
4866 
4867 	sa->rtransid = trans->transid;
4868 	sa->rtime.sec = ct.tv_sec;
4869 	sa->rtime.nsec = ct.tv_nsec;
4870 
4871 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4872 				       BTRFS_UUID_SIZE);
4873 	if (received_uuid_changed &&
4874 	    !btrfs_is_empty_uuid(root_item->received_uuid))
4875 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4876 				    root_item->received_uuid,
4877 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4878 				    root->root_key.objectid);
4879 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4880 	btrfs_set_root_stransid(root_item, sa->stransid);
4881 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4882 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4883 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4884 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4885 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4886 
4887 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4888 				&root->root_key, &root->root_item);
4889 	if (ret < 0) {
4890 		btrfs_end_transaction(trans, root);
4891 		goto out;
4892 	}
4893 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4894 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4895 					  sa->uuid,
4896 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4897 					  root->root_key.objectid);
4898 		if (ret < 0 && ret != -EEXIST) {
4899 			btrfs_abort_transaction(trans, root, ret);
4900 			goto out;
4901 		}
4902 	}
4903 	ret = btrfs_commit_transaction(trans, root);
4904 	if (ret < 0) {
4905 		btrfs_abort_transaction(trans, root, ret);
4906 		goto out;
4907 	}
4908 
4909 out:
4910 	up_write(&root->fs_info->subvol_sem);
4911 	mnt_drop_write_file(file);
4912 	return ret;
4913 }
4914 
4915 #ifdef CONFIG_64BIT
4916 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4917 						void __user *arg)
4918 {
4919 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4920 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4921 	int ret = 0;
4922 
4923 	args32 = memdup_user(arg, sizeof(*args32));
4924 	if (IS_ERR(args32)) {
4925 		ret = PTR_ERR(args32);
4926 		args32 = NULL;
4927 		goto out;
4928 	}
4929 
4930 	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
4931 	if (!args64) {
4932 		ret = -ENOMEM;
4933 		goto out;
4934 	}
4935 
4936 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4937 	args64->stransid = args32->stransid;
4938 	args64->rtransid = args32->rtransid;
4939 	args64->stime.sec = args32->stime.sec;
4940 	args64->stime.nsec = args32->stime.nsec;
4941 	args64->rtime.sec = args32->rtime.sec;
4942 	args64->rtime.nsec = args32->rtime.nsec;
4943 	args64->flags = args32->flags;
4944 
4945 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4946 	if (ret)
4947 		goto out;
4948 
4949 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4950 	args32->stransid = args64->stransid;
4951 	args32->rtransid = args64->rtransid;
4952 	args32->stime.sec = args64->stime.sec;
4953 	args32->stime.nsec = args64->stime.nsec;
4954 	args32->rtime.sec = args64->rtime.sec;
4955 	args32->rtime.nsec = args64->rtime.nsec;
4956 	args32->flags = args64->flags;
4957 
4958 	ret = copy_to_user(arg, args32, sizeof(*args32));
4959 	if (ret)
4960 		ret = -EFAULT;
4961 
4962 out:
4963 	kfree(args32);
4964 	kfree(args64);
4965 	return ret;
4966 }
4967 #endif
4968 
4969 static long btrfs_ioctl_set_received_subvol(struct file *file,
4970 					    void __user *arg)
4971 {
4972 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4973 	int ret = 0;
4974 
4975 	sa = memdup_user(arg, sizeof(*sa));
4976 	if (IS_ERR(sa)) {
4977 		ret = PTR_ERR(sa);
4978 		sa = NULL;
4979 		goto out;
4980 	}
4981 
4982 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4983 
4984 	if (ret)
4985 		goto out;
4986 
4987 	ret = copy_to_user(arg, sa, sizeof(*sa));
4988 	if (ret)
4989 		ret = -EFAULT;
4990 
4991 out:
4992 	kfree(sa);
4993 	return ret;
4994 }
4995 
4996 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4997 {
4998 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4999 	size_t len;
5000 	int ret;
5001 	char label[BTRFS_LABEL_SIZE];
5002 
5003 	spin_lock(&root->fs_info->super_lock);
5004 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5005 	spin_unlock(&root->fs_info->super_lock);
5006 
5007 	len = strnlen(label, BTRFS_LABEL_SIZE);
5008 
5009 	if (len == BTRFS_LABEL_SIZE) {
5010 		btrfs_warn(root->fs_info,
5011 			"label is too long, return the first %zu bytes", --len);
5012 	}
5013 
5014 	ret = copy_to_user(arg, label, len);
5015 
5016 	return ret ? -EFAULT : 0;
5017 }
5018 
5019 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5020 {
5021 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5022 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5023 	struct btrfs_trans_handle *trans;
5024 	char label[BTRFS_LABEL_SIZE];
5025 	int ret;
5026 
5027 	if (!capable(CAP_SYS_ADMIN))
5028 		return -EPERM;
5029 
5030 	if (copy_from_user(label, arg, sizeof(label)))
5031 		return -EFAULT;
5032 
5033 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5034 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5035 		       BTRFS_LABEL_SIZE - 1);
5036 		return -EINVAL;
5037 	}
5038 
5039 	ret = mnt_want_write_file(file);
5040 	if (ret)
5041 		return ret;
5042 
5043 	trans = btrfs_start_transaction(root, 0);
5044 	if (IS_ERR(trans)) {
5045 		ret = PTR_ERR(trans);
5046 		goto out_unlock;
5047 	}
5048 
5049 	spin_lock(&root->fs_info->super_lock);
5050 	strcpy(super_block->label, label);
5051 	spin_unlock(&root->fs_info->super_lock);
5052 	ret = btrfs_commit_transaction(trans, root);
5053 
5054 out_unlock:
5055 	mnt_drop_write_file(file);
5056 	return ret;
5057 }
5058 
5059 #define INIT_FEATURE_FLAGS(suffix) \
5060 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5061 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5062 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5063 
5064 static int btrfs_ioctl_get_supported_features(struct file *file,
5065 					      void __user *arg)
5066 {
5067 	static struct btrfs_ioctl_feature_flags features[3] = {
5068 		INIT_FEATURE_FLAGS(SUPP),
5069 		INIT_FEATURE_FLAGS(SAFE_SET),
5070 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5071 	};
5072 
5073 	if (copy_to_user(arg, &features, sizeof(features)))
5074 		return -EFAULT;
5075 
5076 	return 0;
5077 }
5078 
5079 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5080 {
5081 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5082 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5083 	struct btrfs_ioctl_feature_flags features;
5084 
5085 	features.compat_flags = btrfs_super_compat_flags(super_block);
5086 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5087 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5088 
5089 	if (copy_to_user(arg, &features, sizeof(features)))
5090 		return -EFAULT;
5091 
5092 	return 0;
5093 }
5094 
5095 static int check_feature_bits(struct btrfs_root *root,
5096 			      enum btrfs_feature_set set,
5097 			      u64 change_mask, u64 flags, u64 supported_flags,
5098 			      u64 safe_set, u64 safe_clear)
5099 {
5100 	const char *type = btrfs_feature_set_names[set];
5101 	char *names;
5102 	u64 disallowed, unsupported;
5103 	u64 set_mask = flags & change_mask;
5104 	u64 clear_mask = ~flags & change_mask;
5105 
5106 	unsupported = set_mask & ~supported_flags;
5107 	if (unsupported) {
5108 		names = btrfs_printable_features(set, unsupported);
5109 		if (names) {
5110 			btrfs_warn(root->fs_info,
5111 			   "this kernel does not support the %s feature bit%s",
5112 			   names, strchr(names, ',') ? "s" : "");
5113 			kfree(names);
5114 		} else
5115 			btrfs_warn(root->fs_info,
5116 			   "this kernel does not support %s bits 0x%llx",
5117 			   type, unsupported);
5118 		return -EOPNOTSUPP;
5119 	}
5120 
5121 	disallowed = set_mask & ~safe_set;
5122 	if (disallowed) {
5123 		names = btrfs_printable_features(set, disallowed);
5124 		if (names) {
5125 			btrfs_warn(root->fs_info,
5126 			   "can't set the %s feature bit%s while mounted",
5127 			   names, strchr(names, ',') ? "s" : "");
5128 			kfree(names);
5129 		} else
5130 			btrfs_warn(root->fs_info,
5131 			   "can't set %s bits 0x%llx while mounted",
5132 			   type, disallowed);
5133 		return -EPERM;
5134 	}
5135 
5136 	disallowed = clear_mask & ~safe_clear;
5137 	if (disallowed) {
5138 		names = btrfs_printable_features(set, disallowed);
5139 		if (names) {
5140 			btrfs_warn(root->fs_info,
5141 			   "can't clear the %s feature bit%s while mounted",
5142 			   names, strchr(names, ',') ? "s" : "");
5143 			kfree(names);
5144 		} else
5145 			btrfs_warn(root->fs_info,
5146 			   "can't clear %s bits 0x%llx while mounted",
5147 			   type, disallowed);
5148 		return -EPERM;
5149 	}
5150 
5151 	return 0;
5152 }
5153 
5154 #define check_feature(root, change_mask, flags, mask_base)	\
5155 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5156 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5157 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5158 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5159 
5160 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5161 {
5162 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5163 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5164 	struct btrfs_ioctl_feature_flags flags[2];
5165 	struct btrfs_trans_handle *trans;
5166 	u64 newflags;
5167 	int ret;
5168 
5169 	if (!capable(CAP_SYS_ADMIN))
5170 		return -EPERM;
5171 
5172 	if (copy_from_user(flags, arg, sizeof(flags)))
5173 		return -EFAULT;
5174 
5175 	/* Nothing to do */
5176 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5177 	    !flags[0].incompat_flags)
5178 		return 0;
5179 
5180 	ret = check_feature(root, flags[0].compat_flags,
5181 			    flags[1].compat_flags, COMPAT);
5182 	if (ret)
5183 		return ret;
5184 
5185 	ret = check_feature(root, flags[0].compat_ro_flags,
5186 			    flags[1].compat_ro_flags, COMPAT_RO);
5187 	if (ret)
5188 		return ret;
5189 
5190 	ret = check_feature(root, flags[0].incompat_flags,
5191 			    flags[1].incompat_flags, INCOMPAT);
5192 	if (ret)
5193 		return ret;
5194 
5195 	trans = btrfs_start_transaction(root, 0);
5196 	if (IS_ERR(trans))
5197 		return PTR_ERR(trans);
5198 
5199 	spin_lock(&root->fs_info->super_lock);
5200 	newflags = btrfs_super_compat_flags(super_block);
5201 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5202 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5203 	btrfs_set_super_compat_flags(super_block, newflags);
5204 
5205 	newflags = btrfs_super_compat_ro_flags(super_block);
5206 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5207 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5208 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5209 
5210 	newflags = btrfs_super_incompat_flags(super_block);
5211 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5212 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5213 	btrfs_set_super_incompat_flags(super_block, newflags);
5214 	spin_unlock(&root->fs_info->super_lock);
5215 
5216 	return btrfs_commit_transaction(trans, root);
5217 }
5218 
5219 long btrfs_ioctl(struct file *file, unsigned int
5220 		cmd, unsigned long arg)
5221 {
5222 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5223 	void __user *argp = (void __user *)arg;
5224 
5225 	switch (cmd) {
5226 	case FS_IOC_GETFLAGS:
5227 		return btrfs_ioctl_getflags(file, argp);
5228 	case FS_IOC_SETFLAGS:
5229 		return btrfs_ioctl_setflags(file, argp);
5230 	case FS_IOC_GETVERSION:
5231 		return btrfs_ioctl_getversion(file, argp);
5232 	case FITRIM:
5233 		return btrfs_ioctl_fitrim(file, argp);
5234 	case BTRFS_IOC_SNAP_CREATE:
5235 		return btrfs_ioctl_snap_create(file, argp, 0);
5236 	case BTRFS_IOC_SNAP_CREATE_V2:
5237 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5238 	case BTRFS_IOC_SUBVOL_CREATE:
5239 		return btrfs_ioctl_snap_create(file, argp, 1);
5240 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5241 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5242 	case BTRFS_IOC_SNAP_DESTROY:
5243 		return btrfs_ioctl_snap_destroy(file, argp);
5244 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5245 		return btrfs_ioctl_subvol_getflags(file, argp);
5246 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5247 		return btrfs_ioctl_subvol_setflags(file, argp);
5248 	case BTRFS_IOC_DEFAULT_SUBVOL:
5249 		return btrfs_ioctl_default_subvol(file, argp);
5250 	case BTRFS_IOC_DEFRAG:
5251 		return btrfs_ioctl_defrag(file, NULL);
5252 	case BTRFS_IOC_DEFRAG_RANGE:
5253 		return btrfs_ioctl_defrag(file, argp);
5254 	case BTRFS_IOC_RESIZE:
5255 		return btrfs_ioctl_resize(file, argp);
5256 	case BTRFS_IOC_ADD_DEV:
5257 		return btrfs_ioctl_add_dev(root, argp);
5258 	case BTRFS_IOC_RM_DEV:
5259 		return btrfs_ioctl_rm_dev(file, argp);
5260 	case BTRFS_IOC_FS_INFO:
5261 		return btrfs_ioctl_fs_info(root, argp);
5262 	case BTRFS_IOC_DEV_INFO:
5263 		return btrfs_ioctl_dev_info(root, argp);
5264 	case BTRFS_IOC_BALANCE:
5265 		return btrfs_ioctl_balance(file, NULL);
5266 	case BTRFS_IOC_CLONE:
5267 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5268 	case BTRFS_IOC_CLONE_RANGE:
5269 		return btrfs_ioctl_clone_range(file, argp);
5270 	case BTRFS_IOC_TRANS_START:
5271 		return btrfs_ioctl_trans_start(file);
5272 	case BTRFS_IOC_TRANS_END:
5273 		return btrfs_ioctl_trans_end(file);
5274 	case BTRFS_IOC_TREE_SEARCH:
5275 		return btrfs_ioctl_tree_search(file, argp);
5276 	case BTRFS_IOC_TREE_SEARCH_V2:
5277 		return btrfs_ioctl_tree_search_v2(file, argp);
5278 	case BTRFS_IOC_INO_LOOKUP:
5279 		return btrfs_ioctl_ino_lookup(file, argp);
5280 	case BTRFS_IOC_INO_PATHS:
5281 		return btrfs_ioctl_ino_to_path(root, argp);
5282 	case BTRFS_IOC_LOGICAL_INO:
5283 		return btrfs_ioctl_logical_to_ino(root, argp);
5284 	case BTRFS_IOC_SPACE_INFO:
5285 		return btrfs_ioctl_space_info(root, argp);
5286 	case BTRFS_IOC_SYNC: {
5287 		int ret;
5288 
5289 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5290 		if (ret)
5291 			return ret;
5292 		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5293 		/*
5294 		 * The transaction thread may want to do more work,
5295 		 * namely it pokes the cleaner ktread that will start
5296 		 * processing uncleaned subvols.
5297 		 */
5298 		wake_up_process(root->fs_info->transaction_kthread);
5299 		return ret;
5300 	}
5301 	case BTRFS_IOC_START_SYNC:
5302 		return btrfs_ioctl_start_sync(root, argp);
5303 	case BTRFS_IOC_WAIT_SYNC:
5304 		return btrfs_ioctl_wait_sync(root, argp);
5305 	case BTRFS_IOC_SCRUB:
5306 		return btrfs_ioctl_scrub(file, argp);
5307 	case BTRFS_IOC_SCRUB_CANCEL:
5308 		return btrfs_ioctl_scrub_cancel(root, argp);
5309 	case BTRFS_IOC_SCRUB_PROGRESS:
5310 		return btrfs_ioctl_scrub_progress(root, argp);
5311 	case BTRFS_IOC_BALANCE_V2:
5312 		return btrfs_ioctl_balance(file, argp);
5313 	case BTRFS_IOC_BALANCE_CTL:
5314 		return btrfs_ioctl_balance_ctl(root, arg);
5315 	case BTRFS_IOC_BALANCE_PROGRESS:
5316 		return btrfs_ioctl_balance_progress(root, argp);
5317 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5318 		return btrfs_ioctl_set_received_subvol(file, argp);
5319 #ifdef CONFIG_64BIT
5320 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5321 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5322 #endif
5323 	case BTRFS_IOC_SEND:
5324 		return btrfs_ioctl_send(file, argp);
5325 	case BTRFS_IOC_GET_DEV_STATS:
5326 		return btrfs_ioctl_get_dev_stats(root, argp);
5327 	case BTRFS_IOC_QUOTA_CTL:
5328 		return btrfs_ioctl_quota_ctl(file, argp);
5329 	case BTRFS_IOC_QGROUP_ASSIGN:
5330 		return btrfs_ioctl_qgroup_assign(file, argp);
5331 	case BTRFS_IOC_QGROUP_CREATE:
5332 		return btrfs_ioctl_qgroup_create(file, argp);
5333 	case BTRFS_IOC_QGROUP_LIMIT:
5334 		return btrfs_ioctl_qgroup_limit(file, argp);
5335 	case BTRFS_IOC_QUOTA_RESCAN:
5336 		return btrfs_ioctl_quota_rescan(file, argp);
5337 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5338 		return btrfs_ioctl_quota_rescan_status(file, argp);
5339 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5340 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5341 	case BTRFS_IOC_DEV_REPLACE:
5342 		return btrfs_ioctl_dev_replace(root, argp);
5343 	case BTRFS_IOC_GET_FSLABEL:
5344 		return btrfs_ioctl_get_fslabel(file, argp);
5345 	case BTRFS_IOC_SET_FSLABEL:
5346 		return btrfs_ioctl_set_fslabel(file, argp);
5347 	case BTRFS_IOC_FILE_EXTENT_SAME:
5348 		return btrfs_ioctl_file_extent_same(file, argp);
5349 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5350 		return btrfs_ioctl_get_supported_features(file, argp);
5351 	case BTRFS_IOC_GET_FEATURES:
5352 		return btrfs_ioctl_get_features(file, argp);
5353 	case BTRFS_IOC_SET_FEATURES:
5354 		return btrfs_ioctl_set_features(file, argp);
5355 	}
5356 
5357 	return -ENOTTY;
5358 }
5359