1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "transaction.h" 32 #include "btrfs_inode.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "locking.h" 36 #include "inode-map.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 47 #ifdef CONFIG_64BIT 48 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 49 * structures are incorrect, as the timespec structure from userspace 50 * is 4 bytes too small. We define these alternatives here to teach 51 * the kernel about the 32-bit struct packing. 52 */ 53 struct btrfs_ioctl_timespec_32 { 54 __u64 sec; 55 __u32 nsec; 56 } __attribute__ ((__packed__)); 57 58 struct btrfs_ioctl_received_subvol_args_32 { 59 char uuid[BTRFS_UUID_SIZE]; /* in */ 60 __u64 stransid; /* in */ 61 __u64 rtransid; /* out */ 62 struct btrfs_ioctl_timespec_32 stime; /* in */ 63 struct btrfs_ioctl_timespec_32 rtime; /* out */ 64 __u64 flags; /* in */ 65 __u64 reserved[16]; /* in */ 66 } __attribute__ ((__packed__)); 67 68 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 69 struct btrfs_ioctl_received_subvol_args_32) 70 #endif 71 72 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 73 struct btrfs_ioctl_send_args_32 { 74 __s64 send_fd; /* in */ 75 __u64 clone_sources_count; /* in */ 76 compat_uptr_t clone_sources; /* in */ 77 __u64 parent_root; /* in */ 78 __u64 flags; /* in */ 79 __u64 reserved[4]; /* in */ 80 } __attribute__ ((__packed__)); 81 82 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 83 struct btrfs_ioctl_send_args_32) 84 #endif 85 86 static int btrfs_clone(struct inode *src, struct inode *inode, 87 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 88 int no_time_update); 89 90 /* Mask out flags that are inappropriate for the given type of inode. */ 91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93 { 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100 } 101 102 /* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137 { 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 158 { 159 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 161 162 if (copy_to_user(arg, &flags, sizeof(flags))) 163 return -EFAULT; 164 return 0; 165 } 166 167 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 168 static int check_fsflags(unsigned int flags) 169 { 170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 171 FS_NOATIME_FL | FS_NODUMP_FL | \ 172 FS_SYNC_FL | FS_DIRSYNC_FL | \ 173 FS_NOCOMP_FL | FS_COMPR_FL | 174 FS_NOCOW_FL)) 175 return -EOPNOTSUPP; 176 177 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 178 return -EINVAL; 179 180 return 0; 181 } 182 183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 184 { 185 struct inode *inode = file_inode(file); 186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 187 struct btrfs_inode *binode = BTRFS_I(inode); 188 struct btrfs_root *root = binode->root; 189 struct btrfs_trans_handle *trans; 190 unsigned int fsflags; 191 int ret; 192 const char *comp = NULL; 193 u32 binode_flags = binode->flags; 194 195 if (!inode_owner_or_capable(inode)) 196 return -EPERM; 197 198 if (btrfs_root_readonly(root)) 199 return -EROFS; 200 201 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 202 return -EFAULT; 203 204 ret = check_fsflags(fsflags); 205 if (ret) 206 return ret; 207 208 ret = mnt_want_write_file(file); 209 if (ret) 210 return ret; 211 212 inode_lock(inode); 213 214 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 215 if ((fsflags ^ btrfs_inode_flags_to_fsflags(binode->flags)) & 216 (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 217 if (!capable(CAP_LINUX_IMMUTABLE)) { 218 ret = -EPERM; 219 goto out_unlock; 220 } 221 } 222 223 if (fsflags & FS_SYNC_FL) 224 binode_flags |= BTRFS_INODE_SYNC; 225 else 226 binode_flags &= ~BTRFS_INODE_SYNC; 227 if (fsflags & FS_IMMUTABLE_FL) 228 binode_flags |= BTRFS_INODE_IMMUTABLE; 229 else 230 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 231 if (fsflags & FS_APPEND_FL) 232 binode_flags |= BTRFS_INODE_APPEND; 233 else 234 binode_flags &= ~BTRFS_INODE_APPEND; 235 if (fsflags & FS_NODUMP_FL) 236 binode_flags |= BTRFS_INODE_NODUMP; 237 else 238 binode_flags &= ~BTRFS_INODE_NODUMP; 239 if (fsflags & FS_NOATIME_FL) 240 binode_flags |= BTRFS_INODE_NOATIME; 241 else 242 binode_flags &= ~BTRFS_INODE_NOATIME; 243 if (fsflags & FS_DIRSYNC_FL) 244 binode_flags |= BTRFS_INODE_DIRSYNC; 245 else 246 binode_flags &= ~BTRFS_INODE_DIRSYNC; 247 if (fsflags & FS_NOCOW_FL) { 248 if (S_ISREG(inode->i_mode)) { 249 /* 250 * It's safe to turn csums off here, no extents exist. 251 * Otherwise we want the flag to reflect the real COW 252 * status of the file and will not set it. 253 */ 254 if (inode->i_size == 0) 255 binode_flags |= BTRFS_INODE_NODATACOW | 256 BTRFS_INODE_NODATASUM; 257 } else { 258 binode_flags |= BTRFS_INODE_NODATACOW; 259 } 260 } else { 261 /* 262 * Revert back under same assumptions as above 263 */ 264 if (S_ISREG(inode->i_mode)) { 265 if (inode->i_size == 0) 266 binode_flags &= ~(BTRFS_INODE_NODATACOW | 267 BTRFS_INODE_NODATASUM); 268 } else { 269 binode_flags &= ~BTRFS_INODE_NODATACOW; 270 } 271 } 272 273 /* 274 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 275 * flag may be changed automatically if compression code won't make 276 * things smaller. 277 */ 278 if (fsflags & FS_NOCOMP_FL) { 279 binode_flags &= ~BTRFS_INODE_COMPRESS; 280 binode_flags |= BTRFS_INODE_NOCOMPRESS; 281 } else if (fsflags & FS_COMPR_FL) { 282 283 if (IS_SWAPFILE(inode)) { 284 ret = -ETXTBSY; 285 goto out_unlock; 286 } 287 288 binode_flags |= BTRFS_INODE_COMPRESS; 289 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 290 291 comp = btrfs_compress_type2str(fs_info->compress_type); 292 if (!comp || comp[0] == 0) 293 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 294 } else { 295 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 296 } 297 298 /* 299 * 1 for inode item 300 * 2 for properties 301 */ 302 trans = btrfs_start_transaction(root, 3); 303 if (IS_ERR(trans)) { 304 ret = PTR_ERR(trans); 305 goto out_unlock; 306 } 307 308 if (comp) { 309 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 310 strlen(comp), 0); 311 if (ret) { 312 btrfs_abort_transaction(trans, ret); 313 goto out_end_trans; 314 } 315 } else { 316 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 317 0, 0); 318 if (ret && ret != -ENODATA) { 319 btrfs_abort_transaction(trans, ret); 320 goto out_end_trans; 321 } 322 } 323 324 binode->flags = binode_flags; 325 btrfs_sync_inode_flags_to_i_flags(inode); 326 inode_inc_iversion(inode); 327 inode->i_ctime = current_time(inode); 328 ret = btrfs_update_inode(trans, root, inode); 329 330 out_end_trans: 331 btrfs_end_transaction(trans); 332 out_unlock: 333 inode_unlock(inode); 334 mnt_drop_write_file(file); 335 return ret; 336 } 337 338 /* 339 * Translate btrfs internal inode flags to xflags as expected by the 340 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 341 * silently dropped. 342 */ 343 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 344 { 345 unsigned int xflags = 0; 346 347 if (flags & BTRFS_INODE_APPEND) 348 xflags |= FS_XFLAG_APPEND; 349 if (flags & BTRFS_INODE_IMMUTABLE) 350 xflags |= FS_XFLAG_IMMUTABLE; 351 if (flags & BTRFS_INODE_NOATIME) 352 xflags |= FS_XFLAG_NOATIME; 353 if (flags & BTRFS_INODE_NODUMP) 354 xflags |= FS_XFLAG_NODUMP; 355 if (flags & BTRFS_INODE_SYNC) 356 xflags |= FS_XFLAG_SYNC; 357 358 return xflags; 359 } 360 361 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 362 static int check_xflags(unsigned int flags) 363 { 364 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 365 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 366 return -EOPNOTSUPP; 367 return 0; 368 } 369 370 /* 371 * Set the xflags from the internal inode flags. The remaining items of fsxattr 372 * are zeroed. 373 */ 374 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 375 { 376 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 377 struct fsxattr fa; 378 379 memset(&fa, 0, sizeof(fa)); 380 fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags); 381 382 if (copy_to_user(arg, &fa, sizeof(fa))) 383 return -EFAULT; 384 385 return 0; 386 } 387 388 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 389 { 390 struct inode *inode = file_inode(file); 391 struct btrfs_inode *binode = BTRFS_I(inode); 392 struct btrfs_root *root = binode->root; 393 struct btrfs_trans_handle *trans; 394 struct fsxattr fa; 395 unsigned old_flags; 396 unsigned old_i_flags; 397 int ret = 0; 398 399 if (!inode_owner_or_capable(inode)) 400 return -EPERM; 401 402 if (btrfs_root_readonly(root)) 403 return -EROFS; 404 405 memset(&fa, 0, sizeof(fa)); 406 if (copy_from_user(&fa, arg, sizeof(fa))) 407 return -EFAULT; 408 409 ret = check_xflags(fa.fsx_xflags); 410 if (ret) 411 return ret; 412 413 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 414 return -EOPNOTSUPP; 415 416 ret = mnt_want_write_file(file); 417 if (ret) 418 return ret; 419 420 inode_lock(inode); 421 422 old_flags = binode->flags; 423 old_i_flags = inode->i_flags; 424 425 /* We need the capabilities to change append-only or immutable inode */ 426 if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) || 427 (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) && 428 !capable(CAP_LINUX_IMMUTABLE)) { 429 ret = -EPERM; 430 goto out_unlock; 431 } 432 433 if (fa.fsx_xflags & FS_XFLAG_SYNC) 434 binode->flags |= BTRFS_INODE_SYNC; 435 else 436 binode->flags &= ~BTRFS_INODE_SYNC; 437 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 438 binode->flags |= BTRFS_INODE_IMMUTABLE; 439 else 440 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 441 if (fa.fsx_xflags & FS_XFLAG_APPEND) 442 binode->flags |= BTRFS_INODE_APPEND; 443 else 444 binode->flags &= ~BTRFS_INODE_APPEND; 445 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 446 binode->flags |= BTRFS_INODE_NODUMP; 447 else 448 binode->flags &= ~BTRFS_INODE_NODUMP; 449 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 450 binode->flags |= BTRFS_INODE_NOATIME; 451 else 452 binode->flags &= ~BTRFS_INODE_NOATIME; 453 454 /* 1 item for the inode */ 455 trans = btrfs_start_transaction(root, 1); 456 if (IS_ERR(trans)) { 457 ret = PTR_ERR(trans); 458 goto out_unlock; 459 } 460 461 btrfs_sync_inode_flags_to_i_flags(inode); 462 inode_inc_iversion(inode); 463 inode->i_ctime = current_time(inode); 464 ret = btrfs_update_inode(trans, root, inode); 465 466 btrfs_end_transaction(trans); 467 468 out_unlock: 469 if (ret) { 470 binode->flags = old_flags; 471 inode->i_flags = old_i_flags; 472 } 473 474 inode_unlock(inode); 475 mnt_drop_write_file(file); 476 477 return ret; 478 } 479 480 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 481 { 482 struct inode *inode = file_inode(file); 483 484 return put_user(inode->i_generation, arg); 485 } 486 487 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 488 { 489 struct inode *inode = file_inode(file); 490 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 491 struct btrfs_device *device; 492 struct request_queue *q; 493 struct fstrim_range range; 494 u64 minlen = ULLONG_MAX; 495 u64 num_devices = 0; 496 int ret; 497 498 if (!capable(CAP_SYS_ADMIN)) 499 return -EPERM; 500 501 /* 502 * If the fs is mounted with nologreplay, which requires it to be 503 * mounted in RO mode as well, we can not allow discard on free space 504 * inside block groups, because log trees refer to extents that are not 505 * pinned in a block group's free space cache (pinning the extents is 506 * precisely the first phase of replaying a log tree). 507 */ 508 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 509 return -EROFS; 510 511 rcu_read_lock(); 512 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 513 dev_list) { 514 if (!device->bdev) 515 continue; 516 q = bdev_get_queue(device->bdev); 517 if (blk_queue_discard(q)) { 518 num_devices++; 519 minlen = min_t(u64, q->limits.discard_granularity, 520 minlen); 521 } 522 } 523 rcu_read_unlock(); 524 525 if (!num_devices) 526 return -EOPNOTSUPP; 527 if (copy_from_user(&range, arg, sizeof(range))) 528 return -EFAULT; 529 530 /* 531 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 532 * block group is in the logical address space, which can be any 533 * sectorsize aligned bytenr in the range [0, U64_MAX]. 534 */ 535 if (range.len < fs_info->sb->s_blocksize) 536 return -EINVAL; 537 538 range.minlen = max(range.minlen, minlen); 539 ret = btrfs_trim_fs(fs_info, &range); 540 if (ret < 0) 541 return ret; 542 543 if (copy_to_user(arg, &range, sizeof(range))) 544 return -EFAULT; 545 546 return 0; 547 } 548 549 int btrfs_is_empty_uuid(u8 *uuid) 550 { 551 int i; 552 553 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 554 if (uuid[i]) 555 return 0; 556 } 557 return 1; 558 } 559 560 static noinline int create_subvol(struct inode *dir, 561 struct dentry *dentry, 562 const char *name, int namelen, 563 u64 *async_transid, 564 struct btrfs_qgroup_inherit *inherit) 565 { 566 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 567 struct btrfs_trans_handle *trans; 568 struct btrfs_key key; 569 struct btrfs_root_item *root_item; 570 struct btrfs_inode_item *inode_item; 571 struct extent_buffer *leaf; 572 struct btrfs_root *root = BTRFS_I(dir)->root; 573 struct btrfs_root *new_root; 574 struct btrfs_block_rsv block_rsv; 575 struct timespec64 cur_time = current_time(dir); 576 struct inode *inode; 577 int ret; 578 int err; 579 u64 objectid; 580 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 581 u64 index = 0; 582 uuid_le new_uuid; 583 584 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 585 if (!root_item) 586 return -ENOMEM; 587 588 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 589 if (ret) 590 goto fail_free; 591 592 /* 593 * Don't create subvolume whose level is not zero. Or qgroup will be 594 * screwed up since it assumes subvolume qgroup's level to be 0. 595 */ 596 if (btrfs_qgroup_level(objectid)) { 597 ret = -ENOSPC; 598 goto fail_free; 599 } 600 601 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 602 /* 603 * The same as the snapshot creation, please see the comment 604 * of create_snapshot(). 605 */ 606 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 607 if (ret) 608 goto fail_free; 609 610 trans = btrfs_start_transaction(root, 0); 611 if (IS_ERR(trans)) { 612 ret = PTR_ERR(trans); 613 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 614 goto fail_free; 615 } 616 trans->block_rsv = &block_rsv; 617 trans->bytes_reserved = block_rsv.size; 618 619 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 620 if (ret) 621 goto fail; 622 623 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 624 if (IS_ERR(leaf)) { 625 ret = PTR_ERR(leaf); 626 goto fail; 627 } 628 629 btrfs_mark_buffer_dirty(leaf); 630 631 inode_item = &root_item->inode; 632 btrfs_set_stack_inode_generation(inode_item, 1); 633 btrfs_set_stack_inode_size(inode_item, 3); 634 btrfs_set_stack_inode_nlink(inode_item, 1); 635 btrfs_set_stack_inode_nbytes(inode_item, 636 fs_info->nodesize); 637 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 638 639 btrfs_set_root_flags(root_item, 0); 640 btrfs_set_root_limit(root_item, 0); 641 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 642 643 btrfs_set_root_bytenr(root_item, leaf->start); 644 btrfs_set_root_generation(root_item, trans->transid); 645 btrfs_set_root_level(root_item, 0); 646 btrfs_set_root_refs(root_item, 1); 647 btrfs_set_root_used(root_item, leaf->len); 648 btrfs_set_root_last_snapshot(root_item, 0); 649 650 btrfs_set_root_generation_v2(root_item, 651 btrfs_root_generation(root_item)); 652 uuid_le_gen(&new_uuid); 653 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 654 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 655 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 656 root_item->ctime = root_item->otime; 657 btrfs_set_root_ctransid(root_item, trans->transid); 658 btrfs_set_root_otransid(root_item, trans->transid); 659 660 btrfs_tree_unlock(leaf); 661 free_extent_buffer(leaf); 662 leaf = NULL; 663 664 btrfs_set_root_dirid(root_item, new_dirid); 665 666 key.objectid = objectid; 667 key.offset = 0; 668 key.type = BTRFS_ROOT_ITEM_KEY; 669 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 670 root_item); 671 if (ret) 672 goto fail; 673 674 key.offset = (u64)-1; 675 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 676 if (IS_ERR(new_root)) { 677 ret = PTR_ERR(new_root); 678 btrfs_abort_transaction(trans, ret); 679 goto fail; 680 } 681 682 btrfs_record_root_in_trans(trans, new_root); 683 684 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 685 if (ret) { 686 /* We potentially lose an unused inode item here */ 687 btrfs_abort_transaction(trans, ret); 688 goto fail; 689 } 690 691 mutex_lock(&new_root->objectid_mutex); 692 new_root->highest_objectid = new_dirid; 693 mutex_unlock(&new_root->objectid_mutex); 694 695 /* 696 * insert the directory item 697 */ 698 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 699 if (ret) { 700 btrfs_abort_transaction(trans, ret); 701 goto fail; 702 } 703 704 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 705 BTRFS_FT_DIR, index); 706 if (ret) { 707 btrfs_abort_transaction(trans, ret); 708 goto fail; 709 } 710 711 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 712 ret = btrfs_update_inode(trans, root, dir); 713 BUG_ON(ret); 714 715 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 716 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 717 BUG_ON(ret); 718 719 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 720 BTRFS_UUID_KEY_SUBVOL, objectid); 721 if (ret) 722 btrfs_abort_transaction(trans, ret); 723 724 fail: 725 kfree(root_item); 726 trans->block_rsv = NULL; 727 trans->bytes_reserved = 0; 728 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 729 730 if (async_transid) { 731 *async_transid = trans->transid; 732 err = btrfs_commit_transaction_async(trans, 1); 733 if (err) 734 err = btrfs_commit_transaction(trans); 735 } else { 736 err = btrfs_commit_transaction(trans); 737 } 738 if (err && !ret) 739 ret = err; 740 741 if (!ret) { 742 inode = btrfs_lookup_dentry(dir, dentry); 743 if (IS_ERR(inode)) 744 return PTR_ERR(inode); 745 d_instantiate(dentry, inode); 746 } 747 return ret; 748 749 fail_free: 750 kfree(root_item); 751 return ret; 752 } 753 754 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 755 struct dentry *dentry, 756 u64 *async_transid, bool readonly, 757 struct btrfs_qgroup_inherit *inherit) 758 { 759 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 760 struct inode *inode; 761 struct btrfs_pending_snapshot *pending_snapshot; 762 struct btrfs_trans_handle *trans; 763 int ret; 764 bool snapshot_force_cow = false; 765 766 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 767 return -EINVAL; 768 769 if (atomic_read(&root->nr_swapfiles)) { 770 btrfs_warn(fs_info, 771 "cannot snapshot subvolume with active swapfile"); 772 return -ETXTBSY; 773 } 774 775 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 776 if (!pending_snapshot) 777 return -ENOMEM; 778 779 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 780 GFP_KERNEL); 781 pending_snapshot->path = btrfs_alloc_path(); 782 if (!pending_snapshot->root_item || !pending_snapshot->path) { 783 ret = -ENOMEM; 784 goto free_pending; 785 } 786 787 /* 788 * Force new buffered writes to reserve space even when NOCOW is 789 * possible. This is to avoid later writeback (running dealloc) to 790 * fallback to COW mode and unexpectedly fail with ENOSPC. 791 */ 792 atomic_inc(&root->will_be_snapshotted); 793 smp_mb__after_atomic(); 794 /* wait for no snapshot writes */ 795 wait_event(root->subv_writers->wait, 796 percpu_counter_sum(&root->subv_writers->counter) == 0); 797 798 ret = btrfs_start_delalloc_snapshot(root); 799 if (ret) 800 goto dec_and_free; 801 802 /* 803 * All previous writes have started writeback in NOCOW mode, so now 804 * we force future writes to fallback to COW mode during snapshot 805 * creation. 806 */ 807 atomic_inc(&root->snapshot_force_cow); 808 snapshot_force_cow = true; 809 810 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 811 812 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 813 BTRFS_BLOCK_RSV_TEMP); 814 /* 815 * 1 - parent dir inode 816 * 2 - dir entries 817 * 1 - root item 818 * 2 - root ref/backref 819 * 1 - root of snapshot 820 * 1 - UUID item 821 */ 822 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 823 &pending_snapshot->block_rsv, 8, 824 false); 825 if (ret) 826 goto dec_and_free; 827 828 pending_snapshot->dentry = dentry; 829 pending_snapshot->root = root; 830 pending_snapshot->readonly = readonly; 831 pending_snapshot->dir = dir; 832 pending_snapshot->inherit = inherit; 833 834 trans = btrfs_start_transaction(root, 0); 835 if (IS_ERR(trans)) { 836 ret = PTR_ERR(trans); 837 goto fail; 838 } 839 840 spin_lock(&fs_info->trans_lock); 841 list_add(&pending_snapshot->list, 842 &trans->transaction->pending_snapshots); 843 spin_unlock(&fs_info->trans_lock); 844 if (async_transid) { 845 *async_transid = trans->transid; 846 ret = btrfs_commit_transaction_async(trans, 1); 847 if (ret) 848 ret = btrfs_commit_transaction(trans); 849 } else { 850 ret = btrfs_commit_transaction(trans); 851 } 852 if (ret) 853 goto fail; 854 855 ret = pending_snapshot->error; 856 if (ret) 857 goto fail; 858 859 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 860 if (ret) 861 goto fail; 862 863 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 864 if (IS_ERR(inode)) { 865 ret = PTR_ERR(inode); 866 goto fail; 867 } 868 869 d_instantiate(dentry, inode); 870 ret = 0; 871 fail: 872 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 873 dec_and_free: 874 if (snapshot_force_cow) 875 atomic_dec(&root->snapshot_force_cow); 876 if (atomic_dec_and_test(&root->will_be_snapshotted)) 877 wake_up_var(&root->will_be_snapshotted); 878 free_pending: 879 kfree(pending_snapshot->root_item); 880 btrfs_free_path(pending_snapshot->path); 881 kfree(pending_snapshot); 882 883 return ret; 884 } 885 886 /* copy of may_delete in fs/namei.c() 887 * Check whether we can remove a link victim from directory dir, check 888 * whether the type of victim is right. 889 * 1. We can't do it if dir is read-only (done in permission()) 890 * 2. We should have write and exec permissions on dir 891 * 3. We can't remove anything from append-only dir 892 * 4. We can't do anything with immutable dir (done in permission()) 893 * 5. If the sticky bit on dir is set we should either 894 * a. be owner of dir, or 895 * b. be owner of victim, or 896 * c. have CAP_FOWNER capability 897 * 6. If the victim is append-only or immutable we can't do anything with 898 * links pointing to it. 899 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 900 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 901 * 9. We can't remove a root or mountpoint. 902 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 903 * nfs_async_unlink(). 904 */ 905 906 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 907 { 908 int error; 909 910 if (d_really_is_negative(victim)) 911 return -ENOENT; 912 913 BUG_ON(d_inode(victim->d_parent) != dir); 914 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 915 916 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 917 if (error) 918 return error; 919 if (IS_APPEND(dir)) 920 return -EPERM; 921 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 922 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 923 return -EPERM; 924 if (isdir) { 925 if (!d_is_dir(victim)) 926 return -ENOTDIR; 927 if (IS_ROOT(victim)) 928 return -EBUSY; 929 } else if (d_is_dir(victim)) 930 return -EISDIR; 931 if (IS_DEADDIR(dir)) 932 return -ENOENT; 933 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 934 return -EBUSY; 935 return 0; 936 } 937 938 /* copy of may_create in fs/namei.c() */ 939 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 940 { 941 if (d_really_is_positive(child)) 942 return -EEXIST; 943 if (IS_DEADDIR(dir)) 944 return -ENOENT; 945 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 946 } 947 948 /* 949 * Create a new subvolume below @parent. This is largely modeled after 950 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 951 * inside this filesystem so it's quite a bit simpler. 952 */ 953 static noinline int btrfs_mksubvol(const struct path *parent, 954 const char *name, int namelen, 955 struct btrfs_root *snap_src, 956 u64 *async_transid, bool readonly, 957 struct btrfs_qgroup_inherit *inherit) 958 { 959 struct inode *dir = d_inode(parent->dentry); 960 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 961 struct dentry *dentry; 962 int error; 963 964 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 965 if (error == -EINTR) 966 return error; 967 968 dentry = lookup_one_len(name, parent->dentry, namelen); 969 error = PTR_ERR(dentry); 970 if (IS_ERR(dentry)) 971 goto out_unlock; 972 973 error = btrfs_may_create(dir, dentry); 974 if (error) 975 goto out_dput; 976 977 /* 978 * even if this name doesn't exist, we may get hash collisions. 979 * check for them now when we can safely fail 980 */ 981 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 982 dir->i_ino, name, 983 namelen); 984 if (error) 985 goto out_dput; 986 987 down_read(&fs_info->subvol_sem); 988 989 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 990 goto out_up_read; 991 992 if (snap_src) { 993 error = create_snapshot(snap_src, dir, dentry, 994 async_transid, readonly, inherit); 995 } else { 996 error = create_subvol(dir, dentry, name, namelen, 997 async_transid, inherit); 998 } 999 if (!error) 1000 fsnotify_mkdir(dir, dentry); 1001 out_up_read: 1002 up_read(&fs_info->subvol_sem); 1003 out_dput: 1004 dput(dentry); 1005 out_unlock: 1006 inode_unlock(dir); 1007 return error; 1008 } 1009 1010 /* 1011 * When we're defragging a range, we don't want to kick it off again 1012 * if it is really just waiting for delalloc to send it down. 1013 * If we find a nice big extent or delalloc range for the bytes in the 1014 * file you want to defrag, we return 0 to let you know to skip this 1015 * part of the file 1016 */ 1017 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1018 { 1019 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1020 struct extent_map *em = NULL; 1021 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1022 u64 end; 1023 1024 read_lock(&em_tree->lock); 1025 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1026 read_unlock(&em_tree->lock); 1027 1028 if (em) { 1029 end = extent_map_end(em); 1030 free_extent_map(em); 1031 if (end - offset > thresh) 1032 return 0; 1033 } 1034 /* if we already have a nice delalloc here, just stop */ 1035 thresh /= 2; 1036 end = count_range_bits(io_tree, &offset, offset + thresh, 1037 thresh, EXTENT_DELALLOC, 1); 1038 if (end >= thresh) 1039 return 0; 1040 return 1; 1041 } 1042 1043 /* 1044 * helper function to walk through a file and find extents 1045 * newer than a specific transid, and smaller than thresh. 1046 * 1047 * This is used by the defragging code to find new and small 1048 * extents 1049 */ 1050 static int find_new_extents(struct btrfs_root *root, 1051 struct inode *inode, u64 newer_than, 1052 u64 *off, u32 thresh) 1053 { 1054 struct btrfs_path *path; 1055 struct btrfs_key min_key; 1056 struct extent_buffer *leaf; 1057 struct btrfs_file_extent_item *extent; 1058 int type; 1059 int ret; 1060 u64 ino = btrfs_ino(BTRFS_I(inode)); 1061 1062 path = btrfs_alloc_path(); 1063 if (!path) 1064 return -ENOMEM; 1065 1066 min_key.objectid = ino; 1067 min_key.type = BTRFS_EXTENT_DATA_KEY; 1068 min_key.offset = *off; 1069 1070 while (1) { 1071 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1072 if (ret != 0) 1073 goto none; 1074 process_slot: 1075 if (min_key.objectid != ino) 1076 goto none; 1077 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1078 goto none; 1079 1080 leaf = path->nodes[0]; 1081 extent = btrfs_item_ptr(leaf, path->slots[0], 1082 struct btrfs_file_extent_item); 1083 1084 type = btrfs_file_extent_type(leaf, extent); 1085 if (type == BTRFS_FILE_EXTENT_REG && 1086 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1087 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1088 *off = min_key.offset; 1089 btrfs_free_path(path); 1090 return 0; 1091 } 1092 1093 path->slots[0]++; 1094 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1095 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1096 goto process_slot; 1097 } 1098 1099 if (min_key.offset == (u64)-1) 1100 goto none; 1101 1102 min_key.offset++; 1103 btrfs_release_path(path); 1104 } 1105 none: 1106 btrfs_free_path(path); 1107 return -ENOENT; 1108 } 1109 1110 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1111 { 1112 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1113 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1114 struct extent_map *em; 1115 u64 len = PAGE_SIZE; 1116 1117 /* 1118 * hopefully we have this extent in the tree already, try without 1119 * the full extent lock 1120 */ 1121 read_lock(&em_tree->lock); 1122 em = lookup_extent_mapping(em_tree, start, len); 1123 read_unlock(&em_tree->lock); 1124 1125 if (!em) { 1126 struct extent_state *cached = NULL; 1127 u64 end = start + len - 1; 1128 1129 /* get the big lock and read metadata off disk */ 1130 lock_extent_bits(io_tree, start, end, &cached); 1131 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 1132 unlock_extent_cached(io_tree, start, end, &cached); 1133 1134 if (IS_ERR(em)) 1135 return NULL; 1136 } 1137 1138 return em; 1139 } 1140 1141 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1142 { 1143 struct extent_map *next; 1144 bool ret = true; 1145 1146 /* this is the last extent */ 1147 if (em->start + em->len >= i_size_read(inode)) 1148 return false; 1149 1150 next = defrag_lookup_extent(inode, em->start + em->len); 1151 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1152 ret = false; 1153 else if ((em->block_start + em->block_len == next->block_start) && 1154 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1155 ret = false; 1156 1157 free_extent_map(next); 1158 return ret; 1159 } 1160 1161 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1162 u64 *last_len, u64 *skip, u64 *defrag_end, 1163 int compress) 1164 { 1165 struct extent_map *em; 1166 int ret = 1; 1167 bool next_mergeable = true; 1168 bool prev_mergeable = true; 1169 1170 /* 1171 * make sure that once we start defragging an extent, we keep on 1172 * defragging it 1173 */ 1174 if (start < *defrag_end) 1175 return 1; 1176 1177 *skip = 0; 1178 1179 em = defrag_lookup_extent(inode, start); 1180 if (!em) 1181 return 0; 1182 1183 /* this will cover holes, and inline extents */ 1184 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1185 ret = 0; 1186 goto out; 1187 } 1188 1189 if (!*defrag_end) 1190 prev_mergeable = false; 1191 1192 next_mergeable = defrag_check_next_extent(inode, em); 1193 /* 1194 * we hit a real extent, if it is big or the next extent is not a 1195 * real extent, don't bother defragging it 1196 */ 1197 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1198 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1199 ret = 0; 1200 out: 1201 /* 1202 * last_len ends up being a counter of how many bytes we've defragged. 1203 * every time we choose not to defrag an extent, we reset *last_len 1204 * so that the next tiny extent will force a defrag. 1205 * 1206 * The end result of this is that tiny extents before a single big 1207 * extent will force at least part of that big extent to be defragged. 1208 */ 1209 if (ret) { 1210 *defrag_end = extent_map_end(em); 1211 } else { 1212 *last_len = 0; 1213 *skip = extent_map_end(em); 1214 *defrag_end = 0; 1215 } 1216 1217 free_extent_map(em); 1218 return ret; 1219 } 1220 1221 /* 1222 * it doesn't do much good to defrag one or two pages 1223 * at a time. This pulls in a nice chunk of pages 1224 * to COW and defrag. 1225 * 1226 * It also makes sure the delalloc code has enough 1227 * dirty data to avoid making new small extents as part 1228 * of the defrag 1229 * 1230 * It's a good idea to start RA on this range 1231 * before calling this. 1232 */ 1233 static int cluster_pages_for_defrag(struct inode *inode, 1234 struct page **pages, 1235 unsigned long start_index, 1236 unsigned long num_pages) 1237 { 1238 unsigned long file_end; 1239 u64 isize = i_size_read(inode); 1240 u64 page_start; 1241 u64 page_end; 1242 u64 page_cnt; 1243 int ret; 1244 int i; 1245 int i_done; 1246 struct btrfs_ordered_extent *ordered; 1247 struct extent_state *cached_state = NULL; 1248 struct extent_io_tree *tree; 1249 struct extent_changeset *data_reserved = NULL; 1250 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1251 1252 file_end = (isize - 1) >> PAGE_SHIFT; 1253 if (!isize || start_index > file_end) 1254 return 0; 1255 1256 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1257 1258 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1259 start_index << PAGE_SHIFT, 1260 page_cnt << PAGE_SHIFT); 1261 if (ret) 1262 return ret; 1263 i_done = 0; 1264 tree = &BTRFS_I(inode)->io_tree; 1265 1266 /* step one, lock all the pages */ 1267 for (i = 0; i < page_cnt; i++) { 1268 struct page *page; 1269 again: 1270 page = find_or_create_page(inode->i_mapping, 1271 start_index + i, mask); 1272 if (!page) 1273 break; 1274 1275 page_start = page_offset(page); 1276 page_end = page_start + PAGE_SIZE - 1; 1277 while (1) { 1278 lock_extent_bits(tree, page_start, page_end, 1279 &cached_state); 1280 ordered = btrfs_lookup_ordered_extent(inode, 1281 page_start); 1282 unlock_extent_cached(tree, page_start, page_end, 1283 &cached_state); 1284 if (!ordered) 1285 break; 1286 1287 unlock_page(page); 1288 btrfs_start_ordered_extent(inode, ordered, 1); 1289 btrfs_put_ordered_extent(ordered); 1290 lock_page(page); 1291 /* 1292 * we unlocked the page above, so we need check if 1293 * it was released or not. 1294 */ 1295 if (page->mapping != inode->i_mapping) { 1296 unlock_page(page); 1297 put_page(page); 1298 goto again; 1299 } 1300 } 1301 1302 if (!PageUptodate(page)) { 1303 btrfs_readpage(NULL, page); 1304 lock_page(page); 1305 if (!PageUptodate(page)) { 1306 unlock_page(page); 1307 put_page(page); 1308 ret = -EIO; 1309 break; 1310 } 1311 } 1312 1313 if (page->mapping != inode->i_mapping) { 1314 unlock_page(page); 1315 put_page(page); 1316 goto again; 1317 } 1318 1319 pages[i] = page; 1320 i_done++; 1321 } 1322 if (!i_done || ret) 1323 goto out; 1324 1325 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1326 goto out; 1327 1328 /* 1329 * so now we have a nice long stream of locked 1330 * and up to date pages, lets wait on them 1331 */ 1332 for (i = 0; i < i_done; i++) 1333 wait_on_page_writeback(pages[i]); 1334 1335 page_start = page_offset(pages[0]); 1336 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1337 1338 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1339 page_start, page_end - 1, &cached_state); 1340 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1341 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1342 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1343 &cached_state); 1344 1345 if (i_done != page_cnt) { 1346 spin_lock(&BTRFS_I(inode)->lock); 1347 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1348 spin_unlock(&BTRFS_I(inode)->lock); 1349 btrfs_delalloc_release_space(inode, data_reserved, 1350 start_index << PAGE_SHIFT, 1351 (page_cnt - i_done) << PAGE_SHIFT, true); 1352 } 1353 1354 1355 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1356 &cached_state); 1357 1358 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1359 page_start, page_end - 1, &cached_state); 1360 1361 for (i = 0; i < i_done; i++) { 1362 clear_page_dirty_for_io(pages[i]); 1363 ClearPageChecked(pages[i]); 1364 set_page_extent_mapped(pages[i]); 1365 set_page_dirty(pages[i]); 1366 unlock_page(pages[i]); 1367 put_page(pages[i]); 1368 } 1369 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1370 false); 1371 extent_changeset_free(data_reserved); 1372 return i_done; 1373 out: 1374 for (i = 0; i < i_done; i++) { 1375 unlock_page(pages[i]); 1376 put_page(pages[i]); 1377 } 1378 btrfs_delalloc_release_space(inode, data_reserved, 1379 start_index << PAGE_SHIFT, 1380 page_cnt << PAGE_SHIFT, true); 1381 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1382 true); 1383 extent_changeset_free(data_reserved); 1384 return ret; 1385 1386 } 1387 1388 int btrfs_defrag_file(struct inode *inode, struct file *file, 1389 struct btrfs_ioctl_defrag_range_args *range, 1390 u64 newer_than, unsigned long max_to_defrag) 1391 { 1392 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1393 struct btrfs_root *root = BTRFS_I(inode)->root; 1394 struct file_ra_state *ra = NULL; 1395 unsigned long last_index; 1396 u64 isize = i_size_read(inode); 1397 u64 last_len = 0; 1398 u64 skip = 0; 1399 u64 defrag_end = 0; 1400 u64 newer_off = range->start; 1401 unsigned long i; 1402 unsigned long ra_index = 0; 1403 int ret; 1404 int defrag_count = 0; 1405 int compress_type = BTRFS_COMPRESS_ZLIB; 1406 u32 extent_thresh = range->extent_thresh; 1407 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1408 unsigned long cluster = max_cluster; 1409 u64 new_align = ~((u64)SZ_128K - 1); 1410 struct page **pages = NULL; 1411 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1412 1413 if (isize == 0) 1414 return 0; 1415 1416 if (range->start >= isize) 1417 return -EINVAL; 1418 1419 if (do_compress) { 1420 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1421 return -EINVAL; 1422 if (range->compress_type) 1423 compress_type = range->compress_type; 1424 } 1425 1426 if (extent_thresh == 0) 1427 extent_thresh = SZ_256K; 1428 1429 /* 1430 * If we were not given a file, allocate a readahead context. As 1431 * readahead is just an optimization, defrag will work without it so 1432 * we don't error out. 1433 */ 1434 if (!file) { 1435 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1436 if (ra) 1437 file_ra_state_init(ra, inode->i_mapping); 1438 } else { 1439 ra = &file->f_ra; 1440 } 1441 1442 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1443 if (!pages) { 1444 ret = -ENOMEM; 1445 goto out_ra; 1446 } 1447 1448 /* find the last page to defrag */ 1449 if (range->start + range->len > range->start) { 1450 last_index = min_t(u64, isize - 1, 1451 range->start + range->len - 1) >> PAGE_SHIFT; 1452 } else { 1453 last_index = (isize - 1) >> PAGE_SHIFT; 1454 } 1455 1456 if (newer_than) { 1457 ret = find_new_extents(root, inode, newer_than, 1458 &newer_off, SZ_64K); 1459 if (!ret) { 1460 range->start = newer_off; 1461 /* 1462 * we always align our defrag to help keep 1463 * the extents in the file evenly spaced 1464 */ 1465 i = (newer_off & new_align) >> PAGE_SHIFT; 1466 } else 1467 goto out_ra; 1468 } else { 1469 i = range->start >> PAGE_SHIFT; 1470 } 1471 if (!max_to_defrag) 1472 max_to_defrag = last_index - i + 1; 1473 1474 /* 1475 * make writeback starts from i, so the defrag range can be 1476 * written sequentially. 1477 */ 1478 if (i < inode->i_mapping->writeback_index) 1479 inode->i_mapping->writeback_index = i; 1480 1481 while (i <= last_index && defrag_count < max_to_defrag && 1482 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1483 /* 1484 * make sure we stop running if someone unmounts 1485 * the FS 1486 */ 1487 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1488 break; 1489 1490 if (btrfs_defrag_cancelled(fs_info)) { 1491 btrfs_debug(fs_info, "defrag_file cancelled"); 1492 ret = -EAGAIN; 1493 break; 1494 } 1495 1496 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1497 extent_thresh, &last_len, &skip, 1498 &defrag_end, do_compress)){ 1499 unsigned long next; 1500 /* 1501 * the should_defrag function tells us how much to skip 1502 * bump our counter by the suggested amount 1503 */ 1504 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1505 i = max(i + 1, next); 1506 continue; 1507 } 1508 1509 if (!newer_than) { 1510 cluster = (PAGE_ALIGN(defrag_end) >> 1511 PAGE_SHIFT) - i; 1512 cluster = min(cluster, max_cluster); 1513 } else { 1514 cluster = max_cluster; 1515 } 1516 1517 if (i + cluster > ra_index) { 1518 ra_index = max(i, ra_index); 1519 if (ra) 1520 page_cache_sync_readahead(inode->i_mapping, ra, 1521 file, ra_index, cluster); 1522 ra_index += cluster; 1523 } 1524 1525 inode_lock(inode); 1526 if (IS_SWAPFILE(inode)) { 1527 ret = -ETXTBSY; 1528 } else { 1529 if (do_compress) 1530 BTRFS_I(inode)->defrag_compress = compress_type; 1531 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1532 } 1533 if (ret < 0) { 1534 inode_unlock(inode); 1535 goto out_ra; 1536 } 1537 1538 defrag_count += ret; 1539 balance_dirty_pages_ratelimited(inode->i_mapping); 1540 inode_unlock(inode); 1541 1542 if (newer_than) { 1543 if (newer_off == (u64)-1) 1544 break; 1545 1546 if (ret > 0) 1547 i += ret; 1548 1549 newer_off = max(newer_off + 1, 1550 (u64)i << PAGE_SHIFT); 1551 1552 ret = find_new_extents(root, inode, newer_than, 1553 &newer_off, SZ_64K); 1554 if (!ret) { 1555 range->start = newer_off; 1556 i = (newer_off & new_align) >> PAGE_SHIFT; 1557 } else { 1558 break; 1559 } 1560 } else { 1561 if (ret > 0) { 1562 i += ret; 1563 last_len += ret << PAGE_SHIFT; 1564 } else { 1565 i++; 1566 last_len = 0; 1567 } 1568 } 1569 } 1570 1571 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1572 filemap_flush(inode->i_mapping); 1573 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1574 &BTRFS_I(inode)->runtime_flags)) 1575 filemap_flush(inode->i_mapping); 1576 } 1577 1578 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1579 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1580 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1581 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1582 } 1583 1584 ret = defrag_count; 1585 1586 out_ra: 1587 if (do_compress) { 1588 inode_lock(inode); 1589 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1590 inode_unlock(inode); 1591 } 1592 if (!file) 1593 kfree(ra); 1594 kfree(pages); 1595 return ret; 1596 } 1597 1598 static noinline int btrfs_ioctl_resize(struct file *file, 1599 void __user *arg) 1600 { 1601 struct inode *inode = file_inode(file); 1602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1603 u64 new_size; 1604 u64 old_size; 1605 u64 devid = 1; 1606 struct btrfs_root *root = BTRFS_I(inode)->root; 1607 struct btrfs_ioctl_vol_args *vol_args; 1608 struct btrfs_trans_handle *trans; 1609 struct btrfs_device *device = NULL; 1610 char *sizestr; 1611 char *retptr; 1612 char *devstr = NULL; 1613 int ret = 0; 1614 int mod = 0; 1615 1616 if (!capable(CAP_SYS_ADMIN)) 1617 return -EPERM; 1618 1619 ret = mnt_want_write_file(file); 1620 if (ret) 1621 return ret; 1622 1623 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1624 mnt_drop_write_file(file); 1625 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1626 } 1627 1628 vol_args = memdup_user(arg, sizeof(*vol_args)); 1629 if (IS_ERR(vol_args)) { 1630 ret = PTR_ERR(vol_args); 1631 goto out; 1632 } 1633 1634 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1635 1636 sizestr = vol_args->name; 1637 devstr = strchr(sizestr, ':'); 1638 if (devstr) { 1639 sizestr = devstr + 1; 1640 *devstr = '\0'; 1641 devstr = vol_args->name; 1642 ret = kstrtoull(devstr, 10, &devid); 1643 if (ret) 1644 goto out_free; 1645 if (!devid) { 1646 ret = -EINVAL; 1647 goto out_free; 1648 } 1649 btrfs_info(fs_info, "resizing devid %llu", devid); 1650 } 1651 1652 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1653 if (!device) { 1654 btrfs_info(fs_info, "resizer unable to find device %llu", 1655 devid); 1656 ret = -ENODEV; 1657 goto out_free; 1658 } 1659 1660 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1661 btrfs_info(fs_info, 1662 "resizer unable to apply on readonly device %llu", 1663 devid); 1664 ret = -EPERM; 1665 goto out_free; 1666 } 1667 1668 if (!strcmp(sizestr, "max")) 1669 new_size = device->bdev->bd_inode->i_size; 1670 else { 1671 if (sizestr[0] == '-') { 1672 mod = -1; 1673 sizestr++; 1674 } else if (sizestr[0] == '+') { 1675 mod = 1; 1676 sizestr++; 1677 } 1678 new_size = memparse(sizestr, &retptr); 1679 if (*retptr != '\0' || new_size == 0) { 1680 ret = -EINVAL; 1681 goto out_free; 1682 } 1683 } 1684 1685 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1686 ret = -EPERM; 1687 goto out_free; 1688 } 1689 1690 old_size = btrfs_device_get_total_bytes(device); 1691 1692 if (mod < 0) { 1693 if (new_size > old_size) { 1694 ret = -EINVAL; 1695 goto out_free; 1696 } 1697 new_size = old_size - new_size; 1698 } else if (mod > 0) { 1699 if (new_size > ULLONG_MAX - old_size) { 1700 ret = -ERANGE; 1701 goto out_free; 1702 } 1703 new_size = old_size + new_size; 1704 } 1705 1706 if (new_size < SZ_256M) { 1707 ret = -EINVAL; 1708 goto out_free; 1709 } 1710 if (new_size > device->bdev->bd_inode->i_size) { 1711 ret = -EFBIG; 1712 goto out_free; 1713 } 1714 1715 new_size = round_down(new_size, fs_info->sectorsize); 1716 1717 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1718 rcu_str_deref(device->name), new_size); 1719 1720 if (new_size > old_size) { 1721 trans = btrfs_start_transaction(root, 0); 1722 if (IS_ERR(trans)) { 1723 ret = PTR_ERR(trans); 1724 goto out_free; 1725 } 1726 ret = btrfs_grow_device(trans, device, new_size); 1727 btrfs_commit_transaction(trans); 1728 } else if (new_size < old_size) { 1729 ret = btrfs_shrink_device(device, new_size); 1730 } /* equal, nothing need to do */ 1731 1732 out_free: 1733 kfree(vol_args); 1734 out: 1735 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1736 mnt_drop_write_file(file); 1737 return ret; 1738 } 1739 1740 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1741 const char *name, unsigned long fd, int subvol, 1742 u64 *transid, bool readonly, 1743 struct btrfs_qgroup_inherit *inherit) 1744 { 1745 int namelen; 1746 int ret = 0; 1747 1748 if (!S_ISDIR(file_inode(file)->i_mode)) 1749 return -ENOTDIR; 1750 1751 ret = mnt_want_write_file(file); 1752 if (ret) 1753 goto out; 1754 1755 namelen = strlen(name); 1756 if (strchr(name, '/')) { 1757 ret = -EINVAL; 1758 goto out_drop_write; 1759 } 1760 1761 if (name[0] == '.' && 1762 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1763 ret = -EEXIST; 1764 goto out_drop_write; 1765 } 1766 1767 if (subvol) { 1768 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1769 NULL, transid, readonly, inherit); 1770 } else { 1771 struct fd src = fdget(fd); 1772 struct inode *src_inode; 1773 if (!src.file) { 1774 ret = -EINVAL; 1775 goto out_drop_write; 1776 } 1777 1778 src_inode = file_inode(src.file); 1779 if (src_inode->i_sb != file_inode(file)->i_sb) { 1780 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1781 "Snapshot src from another FS"); 1782 ret = -EXDEV; 1783 } else if (!inode_owner_or_capable(src_inode)) { 1784 /* 1785 * Subvolume creation is not restricted, but snapshots 1786 * are limited to own subvolumes only 1787 */ 1788 ret = -EPERM; 1789 } else { 1790 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1791 BTRFS_I(src_inode)->root, 1792 transid, readonly, inherit); 1793 } 1794 fdput(src); 1795 } 1796 out_drop_write: 1797 mnt_drop_write_file(file); 1798 out: 1799 return ret; 1800 } 1801 1802 static noinline int btrfs_ioctl_snap_create(struct file *file, 1803 void __user *arg, int subvol) 1804 { 1805 struct btrfs_ioctl_vol_args *vol_args; 1806 int ret; 1807 1808 if (!S_ISDIR(file_inode(file)->i_mode)) 1809 return -ENOTDIR; 1810 1811 vol_args = memdup_user(arg, sizeof(*vol_args)); 1812 if (IS_ERR(vol_args)) 1813 return PTR_ERR(vol_args); 1814 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1815 1816 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1817 vol_args->fd, subvol, 1818 NULL, false, NULL); 1819 1820 kfree(vol_args); 1821 return ret; 1822 } 1823 1824 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1825 void __user *arg, int subvol) 1826 { 1827 struct btrfs_ioctl_vol_args_v2 *vol_args; 1828 int ret; 1829 u64 transid = 0; 1830 u64 *ptr = NULL; 1831 bool readonly = false; 1832 struct btrfs_qgroup_inherit *inherit = NULL; 1833 1834 if (!S_ISDIR(file_inode(file)->i_mode)) 1835 return -ENOTDIR; 1836 1837 vol_args = memdup_user(arg, sizeof(*vol_args)); 1838 if (IS_ERR(vol_args)) 1839 return PTR_ERR(vol_args); 1840 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1841 1842 if (vol_args->flags & 1843 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1844 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1845 ret = -EOPNOTSUPP; 1846 goto free_args; 1847 } 1848 1849 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1850 ptr = &transid; 1851 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1852 readonly = true; 1853 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1854 if (vol_args->size > PAGE_SIZE) { 1855 ret = -EINVAL; 1856 goto free_args; 1857 } 1858 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1859 if (IS_ERR(inherit)) { 1860 ret = PTR_ERR(inherit); 1861 goto free_args; 1862 } 1863 } 1864 1865 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1866 vol_args->fd, subvol, ptr, 1867 readonly, inherit); 1868 if (ret) 1869 goto free_inherit; 1870 1871 if (ptr && copy_to_user(arg + 1872 offsetof(struct btrfs_ioctl_vol_args_v2, 1873 transid), 1874 ptr, sizeof(*ptr))) 1875 ret = -EFAULT; 1876 1877 free_inherit: 1878 kfree(inherit); 1879 free_args: 1880 kfree(vol_args); 1881 return ret; 1882 } 1883 1884 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1885 void __user *arg) 1886 { 1887 struct inode *inode = file_inode(file); 1888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1889 struct btrfs_root *root = BTRFS_I(inode)->root; 1890 int ret = 0; 1891 u64 flags = 0; 1892 1893 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1894 return -EINVAL; 1895 1896 down_read(&fs_info->subvol_sem); 1897 if (btrfs_root_readonly(root)) 1898 flags |= BTRFS_SUBVOL_RDONLY; 1899 up_read(&fs_info->subvol_sem); 1900 1901 if (copy_to_user(arg, &flags, sizeof(flags))) 1902 ret = -EFAULT; 1903 1904 return ret; 1905 } 1906 1907 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1908 void __user *arg) 1909 { 1910 struct inode *inode = file_inode(file); 1911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1912 struct btrfs_root *root = BTRFS_I(inode)->root; 1913 struct btrfs_trans_handle *trans; 1914 u64 root_flags; 1915 u64 flags; 1916 int ret = 0; 1917 1918 if (!inode_owner_or_capable(inode)) 1919 return -EPERM; 1920 1921 ret = mnt_want_write_file(file); 1922 if (ret) 1923 goto out; 1924 1925 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1926 ret = -EINVAL; 1927 goto out_drop_write; 1928 } 1929 1930 if (copy_from_user(&flags, arg, sizeof(flags))) { 1931 ret = -EFAULT; 1932 goto out_drop_write; 1933 } 1934 1935 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1936 ret = -EINVAL; 1937 goto out_drop_write; 1938 } 1939 1940 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1941 ret = -EOPNOTSUPP; 1942 goto out_drop_write; 1943 } 1944 1945 down_write(&fs_info->subvol_sem); 1946 1947 /* nothing to do */ 1948 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1949 goto out_drop_sem; 1950 1951 root_flags = btrfs_root_flags(&root->root_item); 1952 if (flags & BTRFS_SUBVOL_RDONLY) { 1953 btrfs_set_root_flags(&root->root_item, 1954 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1955 } else { 1956 /* 1957 * Block RO -> RW transition if this subvolume is involved in 1958 * send 1959 */ 1960 spin_lock(&root->root_item_lock); 1961 if (root->send_in_progress == 0) { 1962 btrfs_set_root_flags(&root->root_item, 1963 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1964 spin_unlock(&root->root_item_lock); 1965 } else { 1966 spin_unlock(&root->root_item_lock); 1967 btrfs_warn(fs_info, 1968 "Attempt to set subvolume %llu read-write during send", 1969 root->root_key.objectid); 1970 ret = -EPERM; 1971 goto out_drop_sem; 1972 } 1973 } 1974 1975 trans = btrfs_start_transaction(root, 1); 1976 if (IS_ERR(trans)) { 1977 ret = PTR_ERR(trans); 1978 goto out_reset; 1979 } 1980 1981 ret = btrfs_update_root(trans, fs_info->tree_root, 1982 &root->root_key, &root->root_item); 1983 if (ret < 0) { 1984 btrfs_end_transaction(trans); 1985 goto out_reset; 1986 } 1987 1988 ret = btrfs_commit_transaction(trans); 1989 1990 out_reset: 1991 if (ret) 1992 btrfs_set_root_flags(&root->root_item, root_flags); 1993 out_drop_sem: 1994 up_write(&fs_info->subvol_sem); 1995 out_drop_write: 1996 mnt_drop_write_file(file); 1997 out: 1998 return ret; 1999 } 2000 2001 static noinline int key_in_sk(struct btrfs_key *key, 2002 struct btrfs_ioctl_search_key *sk) 2003 { 2004 struct btrfs_key test; 2005 int ret; 2006 2007 test.objectid = sk->min_objectid; 2008 test.type = sk->min_type; 2009 test.offset = sk->min_offset; 2010 2011 ret = btrfs_comp_cpu_keys(key, &test); 2012 if (ret < 0) 2013 return 0; 2014 2015 test.objectid = sk->max_objectid; 2016 test.type = sk->max_type; 2017 test.offset = sk->max_offset; 2018 2019 ret = btrfs_comp_cpu_keys(key, &test); 2020 if (ret > 0) 2021 return 0; 2022 return 1; 2023 } 2024 2025 static noinline int copy_to_sk(struct btrfs_path *path, 2026 struct btrfs_key *key, 2027 struct btrfs_ioctl_search_key *sk, 2028 size_t *buf_size, 2029 char __user *ubuf, 2030 unsigned long *sk_offset, 2031 int *num_found) 2032 { 2033 u64 found_transid; 2034 struct extent_buffer *leaf; 2035 struct btrfs_ioctl_search_header sh; 2036 struct btrfs_key test; 2037 unsigned long item_off; 2038 unsigned long item_len; 2039 int nritems; 2040 int i; 2041 int slot; 2042 int ret = 0; 2043 2044 leaf = path->nodes[0]; 2045 slot = path->slots[0]; 2046 nritems = btrfs_header_nritems(leaf); 2047 2048 if (btrfs_header_generation(leaf) > sk->max_transid) { 2049 i = nritems; 2050 goto advance_key; 2051 } 2052 found_transid = btrfs_header_generation(leaf); 2053 2054 for (i = slot; i < nritems; i++) { 2055 item_off = btrfs_item_ptr_offset(leaf, i); 2056 item_len = btrfs_item_size_nr(leaf, i); 2057 2058 btrfs_item_key_to_cpu(leaf, key, i); 2059 if (!key_in_sk(key, sk)) 2060 continue; 2061 2062 if (sizeof(sh) + item_len > *buf_size) { 2063 if (*num_found) { 2064 ret = 1; 2065 goto out; 2066 } 2067 2068 /* 2069 * return one empty item back for v1, which does not 2070 * handle -EOVERFLOW 2071 */ 2072 2073 *buf_size = sizeof(sh) + item_len; 2074 item_len = 0; 2075 ret = -EOVERFLOW; 2076 } 2077 2078 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2079 ret = 1; 2080 goto out; 2081 } 2082 2083 sh.objectid = key->objectid; 2084 sh.offset = key->offset; 2085 sh.type = key->type; 2086 sh.len = item_len; 2087 sh.transid = found_transid; 2088 2089 /* copy search result header */ 2090 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2091 ret = -EFAULT; 2092 goto out; 2093 } 2094 2095 *sk_offset += sizeof(sh); 2096 2097 if (item_len) { 2098 char __user *up = ubuf + *sk_offset; 2099 /* copy the item */ 2100 if (read_extent_buffer_to_user(leaf, up, 2101 item_off, item_len)) { 2102 ret = -EFAULT; 2103 goto out; 2104 } 2105 2106 *sk_offset += item_len; 2107 } 2108 (*num_found)++; 2109 2110 if (ret) /* -EOVERFLOW from above */ 2111 goto out; 2112 2113 if (*num_found >= sk->nr_items) { 2114 ret = 1; 2115 goto out; 2116 } 2117 } 2118 advance_key: 2119 ret = 0; 2120 test.objectid = sk->max_objectid; 2121 test.type = sk->max_type; 2122 test.offset = sk->max_offset; 2123 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2124 ret = 1; 2125 else if (key->offset < (u64)-1) 2126 key->offset++; 2127 else if (key->type < (u8)-1) { 2128 key->offset = 0; 2129 key->type++; 2130 } else if (key->objectid < (u64)-1) { 2131 key->offset = 0; 2132 key->type = 0; 2133 key->objectid++; 2134 } else 2135 ret = 1; 2136 out: 2137 /* 2138 * 0: all items from this leaf copied, continue with next 2139 * 1: * more items can be copied, but unused buffer is too small 2140 * * all items were found 2141 * Either way, it will stops the loop which iterates to the next 2142 * leaf 2143 * -EOVERFLOW: item was to large for buffer 2144 * -EFAULT: could not copy extent buffer back to userspace 2145 */ 2146 return ret; 2147 } 2148 2149 static noinline int search_ioctl(struct inode *inode, 2150 struct btrfs_ioctl_search_key *sk, 2151 size_t *buf_size, 2152 char __user *ubuf) 2153 { 2154 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2155 struct btrfs_root *root; 2156 struct btrfs_key key; 2157 struct btrfs_path *path; 2158 int ret; 2159 int num_found = 0; 2160 unsigned long sk_offset = 0; 2161 2162 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2163 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2164 return -EOVERFLOW; 2165 } 2166 2167 path = btrfs_alloc_path(); 2168 if (!path) 2169 return -ENOMEM; 2170 2171 if (sk->tree_id == 0) { 2172 /* search the root of the inode that was passed */ 2173 root = BTRFS_I(inode)->root; 2174 } else { 2175 key.objectid = sk->tree_id; 2176 key.type = BTRFS_ROOT_ITEM_KEY; 2177 key.offset = (u64)-1; 2178 root = btrfs_read_fs_root_no_name(info, &key); 2179 if (IS_ERR(root)) { 2180 btrfs_free_path(path); 2181 return PTR_ERR(root); 2182 } 2183 } 2184 2185 key.objectid = sk->min_objectid; 2186 key.type = sk->min_type; 2187 key.offset = sk->min_offset; 2188 2189 while (1) { 2190 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2191 if (ret != 0) { 2192 if (ret > 0) 2193 ret = 0; 2194 goto err; 2195 } 2196 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2197 &sk_offset, &num_found); 2198 btrfs_release_path(path); 2199 if (ret) 2200 break; 2201 2202 } 2203 if (ret > 0) 2204 ret = 0; 2205 err: 2206 sk->nr_items = num_found; 2207 btrfs_free_path(path); 2208 return ret; 2209 } 2210 2211 static noinline int btrfs_ioctl_tree_search(struct file *file, 2212 void __user *argp) 2213 { 2214 struct btrfs_ioctl_search_args __user *uargs; 2215 struct btrfs_ioctl_search_key sk; 2216 struct inode *inode; 2217 int ret; 2218 size_t buf_size; 2219 2220 if (!capable(CAP_SYS_ADMIN)) 2221 return -EPERM; 2222 2223 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2224 2225 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2226 return -EFAULT; 2227 2228 buf_size = sizeof(uargs->buf); 2229 2230 inode = file_inode(file); 2231 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2232 2233 /* 2234 * In the origin implementation an overflow is handled by returning a 2235 * search header with a len of zero, so reset ret. 2236 */ 2237 if (ret == -EOVERFLOW) 2238 ret = 0; 2239 2240 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2241 ret = -EFAULT; 2242 return ret; 2243 } 2244 2245 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2246 void __user *argp) 2247 { 2248 struct btrfs_ioctl_search_args_v2 __user *uarg; 2249 struct btrfs_ioctl_search_args_v2 args; 2250 struct inode *inode; 2251 int ret; 2252 size_t buf_size; 2253 const size_t buf_limit = SZ_16M; 2254 2255 if (!capable(CAP_SYS_ADMIN)) 2256 return -EPERM; 2257 2258 /* copy search header and buffer size */ 2259 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2260 if (copy_from_user(&args, uarg, sizeof(args))) 2261 return -EFAULT; 2262 2263 buf_size = args.buf_size; 2264 2265 /* limit result size to 16MB */ 2266 if (buf_size > buf_limit) 2267 buf_size = buf_limit; 2268 2269 inode = file_inode(file); 2270 ret = search_ioctl(inode, &args.key, &buf_size, 2271 (char __user *)(&uarg->buf[0])); 2272 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2273 ret = -EFAULT; 2274 else if (ret == -EOVERFLOW && 2275 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2276 ret = -EFAULT; 2277 2278 return ret; 2279 } 2280 2281 /* 2282 * Search INODE_REFs to identify path name of 'dirid' directory 2283 * in a 'tree_id' tree. and sets path name to 'name'. 2284 */ 2285 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2286 u64 tree_id, u64 dirid, char *name) 2287 { 2288 struct btrfs_root *root; 2289 struct btrfs_key key; 2290 char *ptr; 2291 int ret = -1; 2292 int slot; 2293 int len; 2294 int total_len = 0; 2295 struct btrfs_inode_ref *iref; 2296 struct extent_buffer *l; 2297 struct btrfs_path *path; 2298 2299 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2300 name[0]='\0'; 2301 return 0; 2302 } 2303 2304 path = btrfs_alloc_path(); 2305 if (!path) 2306 return -ENOMEM; 2307 2308 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2309 2310 key.objectid = tree_id; 2311 key.type = BTRFS_ROOT_ITEM_KEY; 2312 key.offset = (u64)-1; 2313 root = btrfs_read_fs_root_no_name(info, &key); 2314 if (IS_ERR(root)) { 2315 ret = PTR_ERR(root); 2316 goto out; 2317 } 2318 2319 key.objectid = dirid; 2320 key.type = BTRFS_INODE_REF_KEY; 2321 key.offset = (u64)-1; 2322 2323 while (1) { 2324 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2325 if (ret < 0) 2326 goto out; 2327 else if (ret > 0) { 2328 ret = btrfs_previous_item(root, path, dirid, 2329 BTRFS_INODE_REF_KEY); 2330 if (ret < 0) 2331 goto out; 2332 else if (ret > 0) { 2333 ret = -ENOENT; 2334 goto out; 2335 } 2336 } 2337 2338 l = path->nodes[0]; 2339 slot = path->slots[0]; 2340 btrfs_item_key_to_cpu(l, &key, slot); 2341 2342 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2343 len = btrfs_inode_ref_name_len(l, iref); 2344 ptr -= len + 1; 2345 total_len += len + 1; 2346 if (ptr < name) { 2347 ret = -ENAMETOOLONG; 2348 goto out; 2349 } 2350 2351 *(ptr + len) = '/'; 2352 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2353 2354 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2355 break; 2356 2357 btrfs_release_path(path); 2358 key.objectid = key.offset; 2359 key.offset = (u64)-1; 2360 dirid = key.objectid; 2361 } 2362 memmove(name, ptr, total_len); 2363 name[total_len] = '\0'; 2364 ret = 0; 2365 out: 2366 btrfs_free_path(path); 2367 return ret; 2368 } 2369 2370 static int btrfs_search_path_in_tree_user(struct inode *inode, 2371 struct btrfs_ioctl_ino_lookup_user_args *args) 2372 { 2373 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2374 struct super_block *sb = inode->i_sb; 2375 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2376 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2377 u64 dirid = args->dirid; 2378 unsigned long item_off; 2379 unsigned long item_len; 2380 struct btrfs_inode_ref *iref; 2381 struct btrfs_root_ref *rref; 2382 struct btrfs_root *root; 2383 struct btrfs_path *path; 2384 struct btrfs_key key, key2; 2385 struct extent_buffer *leaf; 2386 struct inode *temp_inode; 2387 char *ptr; 2388 int slot; 2389 int len; 2390 int total_len = 0; 2391 int ret; 2392 2393 path = btrfs_alloc_path(); 2394 if (!path) 2395 return -ENOMEM; 2396 2397 /* 2398 * If the bottom subvolume does not exist directly under upper_limit, 2399 * construct the path in from the bottom up. 2400 */ 2401 if (dirid != upper_limit.objectid) { 2402 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2403 2404 key.objectid = treeid; 2405 key.type = BTRFS_ROOT_ITEM_KEY; 2406 key.offset = (u64)-1; 2407 root = btrfs_read_fs_root_no_name(fs_info, &key); 2408 if (IS_ERR(root)) { 2409 ret = PTR_ERR(root); 2410 goto out; 2411 } 2412 2413 key.objectid = dirid; 2414 key.type = BTRFS_INODE_REF_KEY; 2415 key.offset = (u64)-1; 2416 while (1) { 2417 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2418 if (ret < 0) { 2419 goto out; 2420 } else if (ret > 0) { 2421 ret = btrfs_previous_item(root, path, dirid, 2422 BTRFS_INODE_REF_KEY); 2423 if (ret < 0) { 2424 goto out; 2425 } else if (ret > 0) { 2426 ret = -ENOENT; 2427 goto out; 2428 } 2429 } 2430 2431 leaf = path->nodes[0]; 2432 slot = path->slots[0]; 2433 btrfs_item_key_to_cpu(leaf, &key, slot); 2434 2435 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2436 len = btrfs_inode_ref_name_len(leaf, iref); 2437 ptr -= len + 1; 2438 total_len += len + 1; 2439 if (ptr < args->path) { 2440 ret = -ENAMETOOLONG; 2441 goto out; 2442 } 2443 2444 *(ptr + len) = '/'; 2445 read_extent_buffer(leaf, ptr, 2446 (unsigned long)(iref + 1), len); 2447 2448 /* Check the read+exec permission of this directory */ 2449 ret = btrfs_previous_item(root, path, dirid, 2450 BTRFS_INODE_ITEM_KEY); 2451 if (ret < 0) { 2452 goto out; 2453 } else if (ret > 0) { 2454 ret = -ENOENT; 2455 goto out; 2456 } 2457 2458 leaf = path->nodes[0]; 2459 slot = path->slots[0]; 2460 btrfs_item_key_to_cpu(leaf, &key2, slot); 2461 if (key2.objectid != dirid) { 2462 ret = -ENOENT; 2463 goto out; 2464 } 2465 2466 temp_inode = btrfs_iget(sb, &key2, root, NULL); 2467 if (IS_ERR(temp_inode)) { 2468 ret = PTR_ERR(temp_inode); 2469 goto out; 2470 } 2471 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2472 iput(temp_inode); 2473 if (ret) { 2474 ret = -EACCES; 2475 goto out; 2476 } 2477 2478 if (key.offset == upper_limit.objectid) 2479 break; 2480 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2481 ret = -EACCES; 2482 goto out; 2483 } 2484 2485 btrfs_release_path(path); 2486 key.objectid = key.offset; 2487 key.offset = (u64)-1; 2488 dirid = key.objectid; 2489 } 2490 2491 memmove(args->path, ptr, total_len); 2492 args->path[total_len] = '\0'; 2493 btrfs_release_path(path); 2494 } 2495 2496 /* Get the bottom subvolume's name from ROOT_REF */ 2497 root = fs_info->tree_root; 2498 key.objectid = treeid; 2499 key.type = BTRFS_ROOT_REF_KEY; 2500 key.offset = args->treeid; 2501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2502 if (ret < 0) { 2503 goto out; 2504 } else if (ret > 0) { 2505 ret = -ENOENT; 2506 goto out; 2507 } 2508 2509 leaf = path->nodes[0]; 2510 slot = path->slots[0]; 2511 btrfs_item_key_to_cpu(leaf, &key, slot); 2512 2513 item_off = btrfs_item_ptr_offset(leaf, slot); 2514 item_len = btrfs_item_size_nr(leaf, slot); 2515 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2516 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2517 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2518 ret = -EINVAL; 2519 goto out; 2520 } 2521 2522 /* Copy subvolume's name */ 2523 item_off += sizeof(struct btrfs_root_ref); 2524 item_len -= sizeof(struct btrfs_root_ref); 2525 read_extent_buffer(leaf, args->name, item_off, item_len); 2526 args->name[item_len] = 0; 2527 2528 out: 2529 btrfs_free_path(path); 2530 return ret; 2531 } 2532 2533 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2534 void __user *argp) 2535 { 2536 struct btrfs_ioctl_ino_lookup_args *args; 2537 struct inode *inode; 2538 int ret = 0; 2539 2540 args = memdup_user(argp, sizeof(*args)); 2541 if (IS_ERR(args)) 2542 return PTR_ERR(args); 2543 2544 inode = file_inode(file); 2545 2546 /* 2547 * Unprivileged query to obtain the containing subvolume root id. The 2548 * path is reset so it's consistent with btrfs_search_path_in_tree. 2549 */ 2550 if (args->treeid == 0) 2551 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2552 2553 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2554 args->name[0] = 0; 2555 goto out; 2556 } 2557 2558 if (!capable(CAP_SYS_ADMIN)) { 2559 ret = -EPERM; 2560 goto out; 2561 } 2562 2563 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2564 args->treeid, args->objectid, 2565 args->name); 2566 2567 out: 2568 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2569 ret = -EFAULT; 2570 2571 kfree(args); 2572 return ret; 2573 } 2574 2575 /* 2576 * Version of ino_lookup ioctl (unprivileged) 2577 * 2578 * The main differences from ino_lookup ioctl are: 2579 * 2580 * 1. Read + Exec permission will be checked using inode_permission() during 2581 * path construction. -EACCES will be returned in case of failure. 2582 * 2. Path construction will be stopped at the inode number which corresponds 2583 * to the fd with which this ioctl is called. If constructed path does not 2584 * exist under fd's inode, -EACCES will be returned. 2585 * 3. The name of bottom subvolume is also searched and filled. 2586 */ 2587 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2588 { 2589 struct btrfs_ioctl_ino_lookup_user_args *args; 2590 struct inode *inode; 2591 int ret; 2592 2593 args = memdup_user(argp, sizeof(*args)); 2594 if (IS_ERR(args)) 2595 return PTR_ERR(args); 2596 2597 inode = file_inode(file); 2598 2599 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2600 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2601 /* 2602 * The subvolume does not exist under fd with which this is 2603 * called 2604 */ 2605 kfree(args); 2606 return -EACCES; 2607 } 2608 2609 ret = btrfs_search_path_in_tree_user(inode, args); 2610 2611 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2612 ret = -EFAULT; 2613 2614 kfree(args); 2615 return ret; 2616 } 2617 2618 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2619 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2620 { 2621 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2622 struct btrfs_fs_info *fs_info; 2623 struct btrfs_root *root; 2624 struct btrfs_path *path; 2625 struct btrfs_key key; 2626 struct btrfs_root_item *root_item; 2627 struct btrfs_root_ref *rref; 2628 struct extent_buffer *leaf; 2629 unsigned long item_off; 2630 unsigned long item_len; 2631 struct inode *inode; 2632 int slot; 2633 int ret = 0; 2634 2635 path = btrfs_alloc_path(); 2636 if (!path) 2637 return -ENOMEM; 2638 2639 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2640 if (!subvol_info) { 2641 btrfs_free_path(path); 2642 return -ENOMEM; 2643 } 2644 2645 inode = file_inode(file); 2646 fs_info = BTRFS_I(inode)->root->fs_info; 2647 2648 /* Get root_item of inode's subvolume */ 2649 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2650 key.type = BTRFS_ROOT_ITEM_KEY; 2651 key.offset = (u64)-1; 2652 root = btrfs_read_fs_root_no_name(fs_info, &key); 2653 if (IS_ERR(root)) { 2654 ret = PTR_ERR(root); 2655 goto out; 2656 } 2657 root_item = &root->root_item; 2658 2659 subvol_info->treeid = key.objectid; 2660 2661 subvol_info->generation = btrfs_root_generation(root_item); 2662 subvol_info->flags = btrfs_root_flags(root_item); 2663 2664 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2665 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2666 BTRFS_UUID_SIZE); 2667 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2668 BTRFS_UUID_SIZE); 2669 2670 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2671 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2672 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2673 2674 subvol_info->otransid = btrfs_root_otransid(root_item); 2675 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2676 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2677 2678 subvol_info->stransid = btrfs_root_stransid(root_item); 2679 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2680 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2681 2682 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2683 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2684 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2685 2686 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2687 /* Search root tree for ROOT_BACKREF of this subvolume */ 2688 root = fs_info->tree_root; 2689 2690 key.type = BTRFS_ROOT_BACKREF_KEY; 2691 key.offset = 0; 2692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2693 if (ret < 0) { 2694 goto out; 2695 } else if (path->slots[0] >= 2696 btrfs_header_nritems(path->nodes[0])) { 2697 ret = btrfs_next_leaf(root, path); 2698 if (ret < 0) { 2699 goto out; 2700 } else if (ret > 0) { 2701 ret = -EUCLEAN; 2702 goto out; 2703 } 2704 } 2705 2706 leaf = path->nodes[0]; 2707 slot = path->slots[0]; 2708 btrfs_item_key_to_cpu(leaf, &key, slot); 2709 if (key.objectid == subvol_info->treeid && 2710 key.type == BTRFS_ROOT_BACKREF_KEY) { 2711 subvol_info->parent_id = key.offset; 2712 2713 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2714 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2715 2716 item_off = btrfs_item_ptr_offset(leaf, slot) 2717 + sizeof(struct btrfs_root_ref); 2718 item_len = btrfs_item_size_nr(leaf, slot) 2719 - sizeof(struct btrfs_root_ref); 2720 read_extent_buffer(leaf, subvol_info->name, 2721 item_off, item_len); 2722 } else { 2723 ret = -ENOENT; 2724 goto out; 2725 } 2726 } 2727 2728 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2729 ret = -EFAULT; 2730 2731 out: 2732 btrfs_free_path(path); 2733 kzfree(subvol_info); 2734 return ret; 2735 } 2736 2737 /* 2738 * Return ROOT_REF information of the subvolume containing this inode 2739 * except the subvolume name. 2740 */ 2741 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2742 { 2743 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2744 struct btrfs_root_ref *rref; 2745 struct btrfs_root *root; 2746 struct btrfs_path *path; 2747 struct btrfs_key key; 2748 struct extent_buffer *leaf; 2749 struct inode *inode; 2750 u64 objectid; 2751 int slot; 2752 int ret; 2753 u8 found; 2754 2755 path = btrfs_alloc_path(); 2756 if (!path) 2757 return -ENOMEM; 2758 2759 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2760 if (IS_ERR(rootrefs)) { 2761 btrfs_free_path(path); 2762 return PTR_ERR(rootrefs); 2763 } 2764 2765 inode = file_inode(file); 2766 root = BTRFS_I(inode)->root->fs_info->tree_root; 2767 objectid = BTRFS_I(inode)->root->root_key.objectid; 2768 2769 key.objectid = objectid; 2770 key.type = BTRFS_ROOT_REF_KEY; 2771 key.offset = rootrefs->min_treeid; 2772 found = 0; 2773 2774 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2775 if (ret < 0) { 2776 goto out; 2777 } else if (path->slots[0] >= 2778 btrfs_header_nritems(path->nodes[0])) { 2779 ret = btrfs_next_leaf(root, path); 2780 if (ret < 0) { 2781 goto out; 2782 } else if (ret > 0) { 2783 ret = -EUCLEAN; 2784 goto out; 2785 } 2786 } 2787 while (1) { 2788 leaf = path->nodes[0]; 2789 slot = path->slots[0]; 2790 2791 btrfs_item_key_to_cpu(leaf, &key, slot); 2792 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2793 ret = 0; 2794 goto out; 2795 } 2796 2797 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2798 ret = -EOVERFLOW; 2799 goto out; 2800 } 2801 2802 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2803 rootrefs->rootref[found].treeid = key.offset; 2804 rootrefs->rootref[found].dirid = 2805 btrfs_root_ref_dirid(leaf, rref); 2806 found++; 2807 2808 ret = btrfs_next_item(root, path); 2809 if (ret < 0) { 2810 goto out; 2811 } else if (ret > 0) { 2812 ret = -EUCLEAN; 2813 goto out; 2814 } 2815 } 2816 2817 out: 2818 if (!ret || ret == -EOVERFLOW) { 2819 rootrefs->num_items = found; 2820 /* update min_treeid for next search */ 2821 if (found) 2822 rootrefs->min_treeid = 2823 rootrefs->rootref[found - 1].treeid + 1; 2824 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2825 ret = -EFAULT; 2826 } 2827 2828 kfree(rootrefs); 2829 btrfs_free_path(path); 2830 2831 return ret; 2832 } 2833 2834 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2835 void __user *arg) 2836 { 2837 struct dentry *parent = file->f_path.dentry; 2838 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2839 struct dentry *dentry; 2840 struct inode *dir = d_inode(parent); 2841 struct inode *inode; 2842 struct btrfs_root *root = BTRFS_I(dir)->root; 2843 struct btrfs_root *dest = NULL; 2844 struct btrfs_ioctl_vol_args *vol_args; 2845 int namelen; 2846 int err = 0; 2847 2848 if (!S_ISDIR(dir->i_mode)) 2849 return -ENOTDIR; 2850 2851 vol_args = memdup_user(arg, sizeof(*vol_args)); 2852 if (IS_ERR(vol_args)) 2853 return PTR_ERR(vol_args); 2854 2855 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2856 namelen = strlen(vol_args->name); 2857 if (strchr(vol_args->name, '/') || 2858 strncmp(vol_args->name, "..", namelen) == 0) { 2859 err = -EINVAL; 2860 goto out; 2861 } 2862 2863 err = mnt_want_write_file(file); 2864 if (err) 2865 goto out; 2866 2867 2868 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2869 if (err == -EINTR) 2870 goto out_drop_write; 2871 dentry = lookup_one_len(vol_args->name, parent, namelen); 2872 if (IS_ERR(dentry)) { 2873 err = PTR_ERR(dentry); 2874 goto out_unlock_dir; 2875 } 2876 2877 if (d_really_is_negative(dentry)) { 2878 err = -ENOENT; 2879 goto out_dput; 2880 } 2881 2882 inode = d_inode(dentry); 2883 dest = BTRFS_I(inode)->root; 2884 if (!capable(CAP_SYS_ADMIN)) { 2885 /* 2886 * Regular user. Only allow this with a special mount 2887 * option, when the user has write+exec access to the 2888 * subvol root, and when rmdir(2) would have been 2889 * allowed. 2890 * 2891 * Note that this is _not_ check that the subvol is 2892 * empty or doesn't contain data that we wouldn't 2893 * otherwise be able to delete. 2894 * 2895 * Users who want to delete empty subvols should try 2896 * rmdir(2). 2897 */ 2898 err = -EPERM; 2899 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2900 goto out_dput; 2901 2902 /* 2903 * Do not allow deletion if the parent dir is the same 2904 * as the dir to be deleted. That means the ioctl 2905 * must be called on the dentry referencing the root 2906 * of the subvol, not a random directory contained 2907 * within it. 2908 */ 2909 err = -EINVAL; 2910 if (root == dest) 2911 goto out_dput; 2912 2913 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2914 if (err) 2915 goto out_dput; 2916 } 2917 2918 /* check if subvolume may be deleted by a user */ 2919 err = btrfs_may_delete(dir, dentry, 1); 2920 if (err) 2921 goto out_dput; 2922 2923 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2924 err = -EINVAL; 2925 goto out_dput; 2926 } 2927 2928 inode_lock(inode); 2929 err = btrfs_delete_subvolume(dir, dentry); 2930 inode_unlock(inode); 2931 if (!err) 2932 d_delete(dentry); 2933 2934 out_dput: 2935 dput(dentry); 2936 out_unlock_dir: 2937 inode_unlock(dir); 2938 out_drop_write: 2939 mnt_drop_write_file(file); 2940 out: 2941 kfree(vol_args); 2942 return err; 2943 } 2944 2945 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2946 { 2947 struct inode *inode = file_inode(file); 2948 struct btrfs_root *root = BTRFS_I(inode)->root; 2949 struct btrfs_ioctl_defrag_range_args *range; 2950 int ret; 2951 2952 ret = mnt_want_write_file(file); 2953 if (ret) 2954 return ret; 2955 2956 if (btrfs_root_readonly(root)) { 2957 ret = -EROFS; 2958 goto out; 2959 } 2960 2961 switch (inode->i_mode & S_IFMT) { 2962 case S_IFDIR: 2963 if (!capable(CAP_SYS_ADMIN)) { 2964 ret = -EPERM; 2965 goto out; 2966 } 2967 ret = btrfs_defrag_root(root); 2968 break; 2969 case S_IFREG: 2970 /* 2971 * Note that this does not check the file descriptor for write 2972 * access. This prevents defragmenting executables that are 2973 * running and allows defrag on files open in read-only mode. 2974 */ 2975 if (!capable(CAP_SYS_ADMIN) && 2976 inode_permission(inode, MAY_WRITE)) { 2977 ret = -EPERM; 2978 goto out; 2979 } 2980 2981 range = kzalloc(sizeof(*range), GFP_KERNEL); 2982 if (!range) { 2983 ret = -ENOMEM; 2984 goto out; 2985 } 2986 2987 if (argp) { 2988 if (copy_from_user(range, argp, 2989 sizeof(*range))) { 2990 ret = -EFAULT; 2991 kfree(range); 2992 goto out; 2993 } 2994 /* compression requires us to start the IO */ 2995 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2996 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2997 range->extent_thresh = (u32)-1; 2998 } 2999 } else { 3000 /* the rest are all set to zero by kzalloc */ 3001 range->len = (u64)-1; 3002 } 3003 ret = btrfs_defrag_file(file_inode(file), file, 3004 range, BTRFS_OLDEST_GENERATION, 0); 3005 if (ret > 0) 3006 ret = 0; 3007 kfree(range); 3008 break; 3009 default: 3010 ret = -EINVAL; 3011 } 3012 out: 3013 mnt_drop_write_file(file); 3014 return ret; 3015 } 3016 3017 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3018 { 3019 struct btrfs_ioctl_vol_args *vol_args; 3020 int ret; 3021 3022 if (!capable(CAP_SYS_ADMIN)) 3023 return -EPERM; 3024 3025 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3026 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3027 3028 vol_args = memdup_user(arg, sizeof(*vol_args)); 3029 if (IS_ERR(vol_args)) { 3030 ret = PTR_ERR(vol_args); 3031 goto out; 3032 } 3033 3034 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3035 ret = btrfs_init_new_device(fs_info, vol_args->name); 3036 3037 if (!ret) 3038 btrfs_info(fs_info, "disk added %s", vol_args->name); 3039 3040 kfree(vol_args); 3041 out: 3042 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3043 return ret; 3044 } 3045 3046 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3047 { 3048 struct inode *inode = file_inode(file); 3049 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3050 struct btrfs_ioctl_vol_args_v2 *vol_args; 3051 int ret; 3052 3053 if (!capable(CAP_SYS_ADMIN)) 3054 return -EPERM; 3055 3056 ret = mnt_want_write_file(file); 3057 if (ret) 3058 return ret; 3059 3060 vol_args = memdup_user(arg, sizeof(*vol_args)); 3061 if (IS_ERR(vol_args)) { 3062 ret = PTR_ERR(vol_args); 3063 goto err_drop; 3064 } 3065 3066 /* Check for compatibility reject unknown flags */ 3067 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) { 3068 ret = -EOPNOTSUPP; 3069 goto out; 3070 } 3071 3072 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3073 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3074 goto out; 3075 } 3076 3077 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3078 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3079 } else { 3080 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3081 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3082 } 3083 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3084 3085 if (!ret) { 3086 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3087 btrfs_info(fs_info, "device deleted: id %llu", 3088 vol_args->devid); 3089 else 3090 btrfs_info(fs_info, "device deleted: %s", 3091 vol_args->name); 3092 } 3093 out: 3094 kfree(vol_args); 3095 err_drop: 3096 mnt_drop_write_file(file); 3097 return ret; 3098 } 3099 3100 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3101 { 3102 struct inode *inode = file_inode(file); 3103 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3104 struct btrfs_ioctl_vol_args *vol_args; 3105 int ret; 3106 3107 if (!capable(CAP_SYS_ADMIN)) 3108 return -EPERM; 3109 3110 ret = mnt_want_write_file(file); 3111 if (ret) 3112 return ret; 3113 3114 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3115 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3116 goto out_drop_write; 3117 } 3118 3119 vol_args = memdup_user(arg, sizeof(*vol_args)); 3120 if (IS_ERR(vol_args)) { 3121 ret = PTR_ERR(vol_args); 3122 goto out; 3123 } 3124 3125 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3126 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3127 3128 if (!ret) 3129 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3130 kfree(vol_args); 3131 out: 3132 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3133 out_drop_write: 3134 mnt_drop_write_file(file); 3135 3136 return ret; 3137 } 3138 3139 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3140 void __user *arg) 3141 { 3142 struct btrfs_ioctl_fs_info_args *fi_args; 3143 struct btrfs_device *device; 3144 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3145 int ret = 0; 3146 3147 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3148 if (!fi_args) 3149 return -ENOMEM; 3150 3151 rcu_read_lock(); 3152 fi_args->num_devices = fs_devices->num_devices; 3153 3154 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3155 if (device->devid > fi_args->max_id) 3156 fi_args->max_id = device->devid; 3157 } 3158 rcu_read_unlock(); 3159 3160 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3161 fi_args->nodesize = fs_info->nodesize; 3162 fi_args->sectorsize = fs_info->sectorsize; 3163 fi_args->clone_alignment = fs_info->sectorsize; 3164 3165 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3166 ret = -EFAULT; 3167 3168 kfree(fi_args); 3169 return ret; 3170 } 3171 3172 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3173 void __user *arg) 3174 { 3175 struct btrfs_ioctl_dev_info_args *di_args; 3176 struct btrfs_device *dev; 3177 int ret = 0; 3178 char *s_uuid = NULL; 3179 3180 di_args = memdup_user(arg, sizeof(*di_args)); 3181 if (IS_ERR(di_args)) 3182 return PTR_ERR(di_args); 3183 3184 if (!btrfs_is_empty_uuid(di_args->uuid)) 3185 s_uuid = di_args->uuid; 3186 3187 rcu_read_lock(); 3188 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3189 NULL, true); 3190 3191 if (!dev) { 3192 ret = -ENODEV; 3193 goto out; 3194 } 3195 3196 di_args->devid = dev->devid; 3197 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3198 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3199 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3200 if (dev->name) { 3201 strncpy(di_args->path, rcu_str_deref(dev->name), 3202 sizeof(di_args->path) - 1); 3203 di_args->path[sizeof(di_args->path) - 1] = 0; 3204 } else { 3205 di_args->path[0] = '\0'; 3206 } 3207 3208 out: 3209 rcu_read_unlock(); 3210 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3211 ret = -EFAULT; 3212 3213 kfree(di_args); 3214 return ret; 3215 } 3216 3217 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 3218 struct inode *inode2, u64 loff2, u64 len) 3219 { 3220 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3221 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3222 } 3223 3224 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 3225 struct inode *inode2, u64 loff2, u64 len) 3226 { 3227 if (inode1 < inode2) { 3228 swap(inode1, inode2); 3229 swap(loff1, loff2); 3230 } else if (inode1 == inode2 && loff2 < loff1) { 3231 swap(loff1, loff2); 3232 } 3233 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3234 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3235 } 3236 3237 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 3238 struct inode *dst, u64 dst_loff) 3239 { 3240 int ret; 3241 3242 /* 3243 * Lock destination range to serialize with concurrent readpages() and 3244 * source range to serialize with relocation. 3245 */ 3246 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 3247 ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1); 3248 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3249 3250 return ret; 3251 } 3252 3253 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3254 3255 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3256 struct inode *dst, u64 dst_loff) 3257 { 3258 int ret; 3259 u64 i, tail_len, chunk_count; 3260 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 3261 3262 spin_lock(&root_dst->root_item_lock); 3263 if (root_dst->send_in_progress) { 3264 btrfs_warn_rl(root_dst->fs_info, 3265 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 3266 root_dst->root_key.objectid, 3267 root_dst->send_in_progress); 3268 spin_unlock(&root_dst->root_item_lock); 3269 return -EAGAIN; 3270 } 3271 root_dst->dedupe_in_progress++; 3272 spin_unlock(&root_dst->root_item_lock); 3273 3274 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 3275 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 3276 3277 for (i = 0; i < chunk_count; i++) { 3278 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 3279 dst, dst_loff); 3280 if (ret) 3281 goto out; 3282 3283 loff += BTRFS_MAX_DEDUPE_LEN; 3284 dst_loff += BTRFS_MAX_DEDUPE_LEN; 3285 } 3286 3287 if (tail_len > 0) 3288 ret = btrfs_extent_same_range(src, loff, tail_len, dst, 3289 dst_loff); 3290 out: 3291 spin_lock(&root_dst->root_item_lock); 3292 root_dst->dedupe_in_progress--; 3293 spin_unlock(&root_dst->root_item_lock); 3294 3295 return ret; 3296 } 3297 3298 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3299 struct inode *inode, 3300 u64 endoff, 3301 const u64 destoff, 3302 const u64 olen, 3303 int no_time_update) 3304 { 3305 struct btrfs_root *root = BTRFS_I(inode)->root; 3306 int ret; 3307 3308 inode_inc_iversion(inode); 3309 if (!no_time_update) 3310 inode->i_mtime = inode->i_ctime = current_time(inode); 3311 /* 3312 * We round up to the block size at eof when determining which 3313 * extents to clone above, but shouldn't round up the file size. 3314 */ 3315 if (endoff > destoff + olen) 3316 endoff = destoff + olen; 3317 if (endoff > inode->i_size) 3318 btrfs_i_size_write(BTRFS_I(inode), endoff); 3319 3320 ret = btrfs_update_inode(trans, root, inode); 3321 if (ret) { 3322 btrfs_abort_transaction(trans, ret); 3323 btrfs_end_transaction(trans); 3324 goto out; 3325 } 3326 ret = btrfs_end_transaction(trans); 3327 out: 3328 return ret; 3329 } 3330 3331 static void clone_update_extent_map(struct btrfs_inode *inode, 3332 const struct btrfs_trans_handle *trans, 3333 const struct btrfs_path *path, 3334 const u64 hole_offset, 3335 const u64 hole_len) 3336 { 3337 struct extent_map_tree *em_tree = &inode->extent_tree; 3338 struct extent_map *em; 3339 int ret; 3340 3341 em = alloc_extent_map(); 3342 if (!em) { 3343 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3344 return; 3345 } 3346 3347 if (path) { 3348 struct btrfs_file_extent_item *fi; 3349 3350 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3351 struct btrfs_file_extent_item); 3352 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3353 em->generation = -1; 3354 if (btrfs_file_extent_type(path->nodes[0], fi) == 3355 BTRFS_FILE_EXTENT_INLINE) 3356 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3357 &inode->runtime_flags); 3358 } else { 3359 em->start = hole_offset; 3360 em->len = hole_len; 3361 em->ram_bytes = em->len; 3362 em->orig_start = hole_offset; 3363 em->block_start = EXTENT_MAP_HOLE; 3364 em->block_len = 0; 3365 em->orig_block_len = 0; 3366 em->compress_type = BTRFS_COMPRESS_NONE; 3367 em->generation = trans->transid; 3368 } 3369 3370 while (1) { 3371 write_lock(&em_tree->lock); 3372 ret = add_extent_mapping(em_tree, em, 1); 3373 write_unlock(&em_tree->lock); 3374 if (ret != -EEXIST) { 3375 free_extent_map(em); 3376 break; 3377 } 3378 btrfs_drop_extent_cache(inode, em->start, 3379 em->start + em->len - 1, 0); 3380 } 3381 3382 if (ret) 3383 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3384 } 3385 3386 /* 3387 * Make sure we do not end up inserting an inline extent into a file that has 3388 * already other (non-inline) extents. If a file has an inline extent it can 3389 * not have any other extents and the (single) inline extent must start at the 3390 * file offset 0. Failing to respect these rules will lead to file corruption, 3391 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3392 * 3393 * We can have extents that have been already written to disk or we can have 3394 * dirty ranges still in delalloc, in which case the extent maps and items are 3395 * created only when we run delalloc, and the delalloc ranges might fall outside 3396 * the range we are currently locking in the inode's io tree. So we check the 3397 * inode's i_size because of that (i_size updates are done while holding the 3398 * i_mutex, which we are holding here). 3399 * We also check to see if the inode has a size not greater than "datal" but has 3400 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3401 * protected against such concurrent fallocate calls by the i_mutex). 3402 * 3403 * If the file has no extents but a size greater than datal, do not allow the 3404 * copy because we would need turn the inline extent into a non-inline one (even 3405 * with NO_HOLES enabled). If we find our destination inode only has one inline 3406 * extent, just overwrite it with the source inline extent if its size is less 3407 * than the source extent's size, or we could copy the source inline extent's 3408 * data into the destination inode's inline extent if the later is greater then 3409 * the former. 3410 */ 3411 static int clone_copy_inline_extent(struct inode *dst, 3412 struct btrfs_trans_handle *trans, 3413 struct btrfs_path *path, 3414 struct btrfs_key *new_key, 3415 const u64 drop_start, 3416 const u64 datal, 3417 const u64 skip, 3418 const u64 size, 3419 char *inline_data) 3420 { 3421 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3422 struct btrfs_root *root = BTRFS_I(dst)->root; 3423 const u64 aligned_end = ALIGN(new_key->offset + datal, 3424 fs_info->sectorsize); 3425 int ret; 3426 struct btrfs_key key; 3427 3428 if (new_key->offset > 0) 3429 return -EOPNOTSUPP; 3430 3431 key.objectid = btrfs_ino(BTRFS_I(dst)); 3432 key.type = BTRFS_EXTENT_DATA_KEY; 3433 key.offset = 0; 3434 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3435 if (ret < 0) { 3436 return ret; 3437 } else if (ret > 0) { 3438 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3439 ret = btrfs_next_leaf(root, path); 3440 if (ret < 0) 3441 return ret; 3442 else if (ret > 0) 3443 goto copy_inline_extent; 3444 } 3445 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3446 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3447 key.type == BTRFS_EXTENT_DATA_KEY) { 3448 ASSERT(key.offset > 0); 3449 return -EOPNOTSUPP; 3450 } 3451 } else if (i_size_read(dst) <= datal) { 3452 struct btrfs_file_extent_item *ei; 3453 u64 ext_len; 3454 3455 /* 3456 * If the file size is <= datal, make sure there are no other 3457 * extents following (can happen do to an fallocate call with 3458 * the flag FALLOC_FL_KEEP_SIZE). 3459 */ 3460 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3461 struct btrfs_file_extent_item); 3462 /* 3463 * If it's an inline extent, it can not have other extents 3464 * following it. 3465 */ 3466 if (btrfs_file_extent_type(path->nodes[0], ei) == 3467 BTRFS_FILE_EXTENT_INLINE) 3468 goto copy_inline_extent; 3469 3470 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3471 if (ext_len > aligned_end) 3472 return -EOPNOTSUPP; 3473 3474 ret = btrfs_next_item(root, path); 3475 if (ret < 0) { 3476 return ret; 3477 } else if (ret == 0) { 3478 btrfs_item_key_to_cpu(path->nodes[0], &key, 3479 path->slots[0]); 3480 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3481 key.type == BTRFS_EXTENT_DATA_KEY) 3482 return -EOPNOTSUPP; 3483 } 3484 } 3485 3486 copy_inline_extent: 3487 /* 3488 * We have no extent items, or we have an extent at offset 0 which may 3489 * or may not be inlined. All these cases are dealt the same way. 3490 */ 3491 if (i_size_read(dst) > datal) { 3492 /* 3493 * If the destination inode has an inline extent... 3494 * This would require copying the data from the source inline 3495 * extent into the beginning of the destination's inline extent. 3496 * But this is really complex, both extents can be compressed 3497 * or just one of them, which would require decompressing and 3498 * re-compressing data (which could increase the new compressed 3499 * size, not allowing the compressed data to fit anymore in an 3500 * inline extent). 3501 * So just don't support this case for now (it should be rare, 3502 * we are not really saving space when cloning inline extents). 3503 */ 3504 return -EOPNOTSUPP; 3505 } 3506 3507 btrfs_release_path(path); 3508 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3509 if (ret) 3510 return ret; 3511 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3512 if (ret) 3513 return ret; 3514 3515 if (skip) { 3516 const u32 start = btrfs_file_extent_calc_inline_size(0); 3517 3518 memmove(inline_data + start, inline_data + start + skip, datal); 3519 } 3520 3521 write_extent_buffer(path->nodes[0], inline_data, 3522 btrfs_item_ptr_offset(path->nodes[0], 3523 path->slots[0]), 3524 size); 3525 inode_add_bytes(dst, datal); 3526 3527 return 0; 3528 } 3529 3530 /** 3531 * btrfs_clone() - clone a range from inode file to another 3532 * 3533 * @src: Inode to clone from 3534 * @inode: Inode to clone to 3535 * @off: Offset within source to start clone from 3536 * @olen: Original length, passed by user, of range to clone 3537 * @olen_aligned: Block-aligned value of olen 3538 * @destoff: Offset within @inode to start clone 3539 * @no_time_update: Whether to update mtime/ctime on the target inode 3540 */ 3541 static int btrfs_clone(struct inode *src, struct inode *inode, 3542 const u64 off, const u64 olen, const u64 olen_aligned, 3543 const u64 destoff, int no_time_update) 3544 { 3545 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3546 struct btrfs_root *root = BTRFS_I(inode)->root; 3547 struct btrfs_path *path = NULL; 3548 struct extent_buffer *leaf; 3549 struct btrfs_trans_handle *trans; 3550 char *buf = NULL; 3551 struct btrfs_key key; 3552 u32 nritems; 3553 int slot; 3554 int ret; 3555 const u64 len = olen_aligned; 3556 u64 last_dest_end = destoff; 3557 3558 ret = -ENOMEM; 3559 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3560 if (!buf) 3561 return ret; 3562 3563 path = btrfs_alloc_path(); 3564 if (!path) { 3565 kvfree(buf); 3566 return ret; 3567 } 3568 3569 path->reada = READA_FORWARD; 3570 /* clone data */ 3571 key.objectid = btrfs_ino(BTRFS_I(src)); 3572 key.type = BTRFS_EXTENT_DATA_KEY; 3573 key.offset = off; 3574 3575 while (1) { 3576 u64 next_key_min_offset = key.offset + 1; 3577 3578 /* 3579 * note the key will change type as we walk through the 3580 * tree. 3581 */ 3582 path->leave_spinning = 1; 3583 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3584 0, 0); 3585 if (ret < 0) 3586 goto out; 3587 /* 3588 * First search, if no extent item that starts at offset off was 3589 * found but the previous item is an extent item, it's possible 3590 * it might overlap our target range, therefore process it. 3591 */ 3592 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3593 btrfs_item_key_to_cpu(path->nodes[0], &key, 3594 path->slots[0] - 1); 3595 if (key.type == BTRFS_EXTENT_DATA_KEY) 3596 path->slots[0]--; 3597 } 3598 3599 nritems = btrfs_header_nritems(path->nodes[0]); 3600 process_slot: 3601 if (path->slots[0] >= nritems) { 3602 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3603 if (ret < 0) 3604 goto out; 3605 if (ret > 0) 3606 break; 3607 nritems = btrfs_header_nritems(path->nodes[0]); 3608 } 3609 leaf = path->nodes[0]; 3610 slot = path->slots[0]; 3611 3612 btrfs_item_key_to_cpu(leaf, &key, slot); 3613 if (key.type > BTRFS_EXTENT_DATA_KEY || 3614 key.objectid != btrfs_ino(BTRFS_I(src))) 3615 break; 3616 3617 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3618 struct btrfs_file_extent_item *extent; 3619 int type; 3620 u32 size; 3621 struct btrfs_key new_key; 3622 u64 disko = 0, diskl = 0; 3623 u64 datao = 0, datal = 0; 3624 u8 comp; 3625 u64 drop_start; 3626 3627 extent = btrfs_item_ptr(leaf, slot, 3628 struct btrfs_file_extent_item); 3629 comp = btrfs_file_extent_compression(leaf, extent); 3630 type = btrfs_file_extent_type(leaf, extent); 3631 if (type == BTRFS_FILE_EXTENT_REG || 3632 type == BTRFS_FILE_EXTENT_PREALLOC) { 3633 disko = btrfs_file_extent_disk_bytenr(leaf, 3634 extent); 3635 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3636 extent); 3637 datao = btrfs_file_extent_offset(leaf, extent); 3638 datal = btrfs_file_extent_num_bytes(leaf, 3639 extent); 3640 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3641 /* take upper bound, may be compressed */ 3642 datal = btrfs_file_extent_ram_bytes(leaf, 3643 extent); 3644 } 3645 3646 /* 3647 * The first search might have left us at an extent 3648 * item that ends before our target range's start, can 3649 * happen if we have holes and NO_HOLES feature enabled. 3650 */ 3651 if (key.offset + datal <= off) { 3652 path->slots[0]++; 3653 goto process_slot; 3654 } else if (key.offset >= off + len) { 3655 break; 3656 } 3657 next_key_min_offset = key.offset + datal; 3658 size = btrfs_item_size_nr(leaf, slot); 3659 read_extent_buffer(leaf, buf, 3660 btrfs_item_ptr_offset(leaf, slot), 3661 size); 3662 3663 btrfs_release_path(path); 3664 path->leave_spinning = 0; 3665 3666 memcpy(&new_key, &key, sizeof(new_key)); 3667 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3668 if (off <= key.offset) 3669 new_key.offset = key.offset + destoff - off; 3670 else 3671 new_key.offset = destoff; 3672 3673 /* 3674 * Deal with a hole that doesn't have an extent item 3675 * that represents it (NO_HOLES feature enabled). 3676 * This hole is either in the middle of the cloning 3677 * range or at the beginning (fully overlaps it or 3678 * partially overlaps it). 3679 */ 3680 if (new_key.offset != last_dest_end) 3681 drop_start = last_dest_end; 3682 else 3683 drop_start = new_key.offset; 3684 3685 /* 3686 * 1 - adjusting old extent (we may have to split it) 3687 * 1 - add new extent 3688 * 1 - inode update 3689 */ 3690 trans = btrfs_start_transaction(root, 3); 3691 if (IS_ERR(trans)) { 3692 ret = PTR_ERR(trans); 3693 goto out; 3694 } 3695 3696 if (type == BTRFS_FILE_EXTENT_REG || 3697 type == BTRFS_FILE_EXTENT_PREALLOC) { 3698 /* 3699 * a | --- range to clone ---| b 3700 * | ------------- extent ------------- | 3701 */ 3702 3703 /* subtract range b */ 3704 if (key.offset + datal > off + len) 3705 datal = off + len - key.offset; 3706 3707 /* subtract range a */ 3708 if (off > key.offset) { 3709 datao += off - key.offset; 3710 datal -= off - key.offset; 3711 } 3712 3713 ret = btrfs_drop_extents(trans, root, inode, 3714 drop_start, 3715 new_key.offset + datal, 3716 1); 3717 if (ret) { 3718 if (ret != -EOPNOTSUPP) 3719 btrfs_abort_transaction(trans, 3720 ret); 3721 btrfs_end_transaction(trans); 3722 goto out; 3723 } 3724 3725 ret = btrfs_insert_empty_item(trans, root, path, 3726 &new_key, size); 3727 if (ret) { 3728 btrfs_abort_transaction(trans, ret); 3729 btrfs_end_transaction(trans); 3730 goto out; 3731 } 3732 3733 leaf = path->nodes[0]; 3734 slot = path->slots[0]; 3735 write_extent_buffer(leaf, buf, 3736 btrfs_item_ptr_offset(leaf, slot), 3737 size); 3738 3739 extent = btrfs_item_ptr(leaf, slot, 3740 struct btrfs_file_extent_item); 3741 3742 /* disko == 0 means it's a hole */ 3743 if (!disko) 3744 datao = 0; 3745 3746 btrfs_set_file_extent_offset(leaf, extent, 3747 datao); 3748 btrfs_set_file_extent_num_bytes(leaf, extent, 3749 datal); 3750 3751 if (disko) { 3752 struct btrfs_ref ref = { 0 }; 3753 inode_add_bytes(inode, datal); 3754 btrfs_init_generic_ref(&ref, 3755 BTRFS_ADD_DELAYED_REF, disko, 3756 diskl, 0); 3757 btrfs_init_data_ref(&ref, 3758 root->root_key.objectid, 3759 btrfs_ino(BTRFS_I(inode)), 3760 new_key.offset - datao); 3761 ret = btrfs_inc_extent_ref(trans, &ref); 3762 if (ret) { 3763 btrfs_abort_transaction(trans, 3764 ret); 3765 btrfs_end_transaction(trans); 3766 goto out; 3767 3768 } 3769 } 3770 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3771 u64 skip = 0; 3772 u64 trim = 0; 3773 3774 if (off > key.offset) { 3775 skip = off - key.offset; 3776 new_key.offset += skip; 3777 } 3778 3779 if (key.offset + datal > off + len) 3780 trim = key.offset + datal - (off + len); 3781 3782 if (comp && (skip || trim)) { 3783 ret = -EINVAL; 3784 btrfs_end_transaction(trans); 3785 goto out; 3786 } 3787 size -= skip + trim; 3788 datal -= skip + trim; 3789 3790 ret = clone_copy_inline_extent(inode, 3791 trans, path, 3792 &new_key, 3793 drop_start, 3794 datal, 3795 skip, size, buf); 3796 if (ret) { 3797 if (ret != -EOPNOTSUPP) 3798 btrfs_abort_transaction(trans, 3799 ret); 3800 btrfs_end_transaction(trans); 3801 goto out; 3802 } 3803 leaf = path->nodes[0]; 3804 slot = path->slots[0]; 3805 } 3806 3807 /* If we have an implicit hole (NO_HOLES feature). */ 3808 if (drop_start < new_key.offset) 3809 clone_update_extent_map(BTRFS_I(inode), trans, 3810 NULL, drop_start, 3811 new_key.offset - drop_start); 3812 3813 clone_update_extent_map(BTRFS_I(inode), trans, 3814 path, 0, 0); 3815 3816 btrfs_mark_buffer_dirty(leaf); 3817 btrfs_release_path(path); 3818 3819 last_dest_end = ALIGN(new_key.offset + datal, 3820 fs_info->sectorsize); 3821 ret = clone_finish_inode_update(trans, inode, 3822 last_dest_end, 3823 destoff, olen, 3824 no_time_update); 3825 if (ret) 3826 goto out; 3827 if (new_key.offset + datal >= destoff + len) 3828 break; 3829 } 3830 btrfs_release_path(path); 3831 key.offset = next_key_min_offset; 3832 3833 if (fatal_signal_pending(current)) { 3834 ret = -EINTR; 3835 goto out; 3836 } 3837 } 3838 ret = 0; 3839 3840 if (last_dest_end < destoff + len) { 3841 /* 3842 * We have an implicit hole (NO_HOLES feature is enabled) that 3843 * fully or partially overlaps our cloning range at its end. 3844 */ 3845 btrfs_release_path(path); 3846 3847 /* 3848 * 1 - remove extent(s) 3849 * 1 - inode update 3850 */ 3851 trans = btrfs_start_transaction(root, 2); 3852 if (IS_ERR(trans)) { 3853 ret = PTR_ERR(trans); 3854 goto out; 3855 } 3856 ret = btrfs_drop_extents(trans, root, inode, 3857 last_dest_end, destoff + len, 1); 3858 if (ret) { 3859 if (ret != -EOPNOTSUPP) 3860 btrfs_abort_transaction(trans, ret); 3861 btrfs_end_transaction(trans); 3862 goto out; 3863 } 3864 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 3865 last_dest_end, 3866 destoff + len - last_dest_end); 3867 ret = clone_finish_inode_update(trans, inode, destoff + len, 3868 destoff, olen, no_time_update); 3869 } 3870 3871 out: 3872 btrfs_free_path(path); 3873 kvfree(buf); 3874 return ret; 3875 } 3876 3877 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3878 u64 off, u64 olen, u64 destoff) 3879 { 3880 struct inode *inode = file_inode(file); 3881 struct inode *src = file_inode(file_src); 3882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3883 int ret; 3884 u64 len = olen; 3885 u64 bs = fs_info->sb->s_blocksize; 3886 3887 /* 3888 * TODO: 3889 * - split compressed inline extents. annoying: we need to 3890 * decompress into destination's address_space (the file offset 3891 * may change, so source mapping won't do), then recompress (or 3892 * otherwise reinsert) a subrange. 3893 * 3894 * - split destination inode's inline extents. The inline extents can 3895 * be either compressed or non-compressed. 3896 */ 3897 3898 /* 3899 * VFS's generic_remap_file_range_prep() protects us from cloning the 3900 * eof block into the middle of a file, which would result in corruption 3901 * if the file size is not blocksize aligned. So we don't need to check 3902 * for that case here. 3903 */ 3904 if (off + len == src->i_size) 3905 len = ALIGN(src->i_size, bs) - off; 3906 3907 if (destoff > inode->i_size) { 3908 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 3909 3910 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3911 if (ret) 3912 return ret; 3913 /* 3914 * We may have truncated the last block if the inode's size is 3915 * not sector size aligned, so we need to wait for writeback to 3916 * complete before proceeding further, otherwise we can race 3917 * with cloning and attempt to increment a reference to an 3918 * extent that no longer exists (writeback completed right after 3919 * we found the previous extent covering eof and before we 3920 * attempted to increment its reference count). 3921 */ 3922 ret = btrfs_wait_ordered_range(inode, wb_start, 3923 destoff - wb_start); 3924 if (ret) 3925 return ret; 3926 } 3927 3928 /* 3929 * Lock destination range to serialize with concurrent readpages() and 3930 * source range to serialize with relocation. 3931 */ 3932 btrfs_double_extent_lock(src, off, inode, destoff, len); 3933 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3934 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3935 /* 3936 * Truncate page cache pages so that future reads will see the cloned 3937 * data immediately and not the previous data. 3938 */ 3939 truncate_inode_pages_range(&inode->i_data, 3940 round_down(destoff, PAGE_SIZE), 3941 round_up(destoff + len, PAGE_SIZE) - 1); 3942 3943 return ret; 3944 } 3945 3946 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 3947 struct file *file_out, loff_t pos_out, 3948 loff_t *len, unsigned int remap_flags) 3949 { 3950 struct inode *inode_in = file_inode(file_in); 3951 struct inode *inode_out = file_inode(file_out); 3952 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 3953 bool same_inode = inode_out == inode_in; 3954 u64 wb_len; 3955 int ret; 3956 3957 if (!(remap_flags & REMAP_FILE_DEDUP)) { 3958 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 3959 3960 if (btrfs_root_readonly(root_out)) 3961 return -EROFS; 3962 3963 if (file_in->f_path.mnt != file_out->f_path.mnt || 3964 inode_in->i_sb != inode_out->i_sb) 3965 return -EXDEV; 3966 } 3967 3968 /* don't make the dst file partly checksummed */ 3969 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 3970 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 3971 return -EINVAL; 3972 } 3973 3974 /* 3975 * Now that the inodes are locked, we need to start writeback ourselves 3976 * and can not rely on the writeback from the VFS's generic helper 3977 * generic_remap_file_range_prep() because: 3978 * 3979 * 1) For compression we must call filemap_fdatawrite_range() range 3980 * twice (btrfs_fdatawrite_range() does it for us), and the generic 3981 * helper only calls it once; 3982 * 3983 * 2) filemap_fdatawrite_range(), called by the generic helper only 3984 * waits for the writeback to complete, i.e. for IO to be done, and 3985 * not for the ordered extents to complete. We need to wait for them 3986 * to complete so that new file extent items are in the fs tree. 3987 */ 3988 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 3989 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 3990 else 3991 wb_len = ALIGN(*len, bs); 3992 3993 /* 3994 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 3995 * any in progress could create its ordered extents after we wait for 3996 * existing ordered extents below). 3997 */ 3998 inode_dio_wait(inode_in); 3999 if (!same_inode) 4000 inode_dio_wait(inode_out); 4001 4002 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 4003 wb_len); 4004 if (ret < 0) 4005 return ret; 4006 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 4007 wb_len); 4008 if (ret < 0) 4009 return ret; 4010 4011 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 4012 len, remap_flags); 4013 } 4014 4015 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 4016 struct file *dst_file, loff_t destoff, loff_t len, 4017 unsigned int remap_flags) 4018 { 4019 struct inode *src_inode = file_inode(src_file); 4020 struct inode *dst_inode = file_inode(dst_file); 4021 bool same_inode = dst_inode == src_inode; 4022 int ret; 4023 4024 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 4025 return -EINVAL; 4026 4027 if (same_inode) 4028 inode_lock(src_inode); 4029 else 4030 lock_two_nondirectories(src_inode, dst_inode); 4031 4032 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 4033 &len, remap_flags); 4034 if (ret < 0 || len == 0) 4035 goto out_unlock; 4036 4037 if (remap_flags & REMAP_FILE_DEDUP) 4038 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 4039 else 4040 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 4041 4042 out_unlock: 4043 if (same_inode) 4044 inode_unlock(src_inode); 4045 else 4046 unlock_two_nondirectories(src_inode, dst_inode); 4047 4048 return ret < 0 ? ret : len; 4049 } 4050 4051 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4052 { 4053 struct inode *inode = file_inode(file); 4054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4055 struct btrfs_root *root = BTRFS_I(inode)->root; 4056 struct btrfs_root *new_root; 4057 struct btrfs_dir_item *di; 4058 struct btrfs_trans_handle *trans; 4059 struct btrfs_path *path; 4060 struct btrfs_key location; 4061 struct btrfs_disk_key disk_key; 4062 u64 objectid = 0; 4063 u64 dir_id; 4064 int ret; 4065 4066 if (!capable(CAP_SYS_ADMIN)) 4067 return -EPERM; 4068 4069 ret = mnt_want_write_file(file); 4070 if (ret) 4071 return ret; 4072 4073 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4074 ret = -EFAULT; 4075 goto out; 4076 } 4077 4078 if (!objectid) 4079 objectid = BTRFS_FS_TREE_OBJECTID; 4080 4081 location.objectid = objectid; 4082 location.type = BTRFS_ROOT_ITEM_KEY; 4083 location.offset = (u64)-1; 4084 4085 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4086 if (IS_ERR(new_root)) { 4087 ret = PTR_ERR(new_root); 4088 goto out; 4089 } 4090 if (!is_fstree(new_root->root_key.objectid)) { 4091 ret = -ENOENT; 4092 goto out; 4093 } 4094 4095 path = btrfs_alloc_path(); 4096 if (!path) { 4097 ret = -ENOMEM; 4098 goto out; 4099 } 4100 path->leave_spinning = 1; 4101 4102 trans = btrfs_start_transaction(root, 1); 4103 if (IS_ERR(trans)) { 4104 btrfs_free_path(path); 4105 ret = PTR_ERR(trans); 4106 goto out; 4107 } 4108 4109 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4110 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4111 dir_id, "default", 7, 1); 4112 if (IS_ERR_OR_NULL(di)) { 4113 btrfs_free_path(path); 4114 btrfs_end_transaction(trans); 4115 btrfs_err(fs_info, 4116 "Umm, you don't have the default diritem, this isn't going to work"); 4117 ret = -ENOENT; 4118 goto out; 4119 } 4120 4121 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4122 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4123 btrfs_mark_buffer_dirty(path->nodes[0]); 4124 btrfs_free_path(path); 4125 4126 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4127 btrfs_end_transaction(trans); 4128 out: 4129 mnt_drop_write_file(file); 4130 return ret; 4131 } 4132 4133 static void get_block_group_info(struct list_head *groups_list, 4134 struct btrfs_ioctl_space_info *space) 4135 { 4136 struct btrfs_block_group_cache *block_group; 4137 4138 space->total_bytes = 0; 4139 space->used_bytes = 0; 4140 space->flags = 0; 4141 list_for_each_entry(block_group, groups_list, list) { 4142 space->flags = block_group->flags; 4143 space->total_bytes += block_group->key.offset; 4144 space->used_bytes += 4145 btrfs_block_group_used(&block_group->item); 4146 } 4147 } 4148 4149 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4150 void __user *arg) 4151 { 4152 struct btrfs_ioctl_space_args space_args; 4153 struct btrfs_ioctl_space_info space; 4154 struct btrfs_ioctl_space_info *dest; 4155 struct btrfs_ioctl_space_info *dest_orig; 4156 struct btrfs_ioctl_space_info __user *user_dest; 4157 struct btrfs_space_info *info; 4158 static const u64 types[] = { 4159 BTRFS_BLOCK_GROUP_DATA, 4160 BTRFS_BLOCK_GROUP_SYSTEM, 4161 BTRFS_BLOCK_GROUP_METADATA, 4162 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4163 }; 4164 int num_types = 4; 4165 int alloc_size; 4166 int ret = 0; 4167 u64 slot_count = 0; 4168 int i, c; 4169 4170 if (copy_from_user(&space_args, 4171 (struct btrfs_ioctl_space_args __user *)arg, 4172 sizeof(space_args))) 4173 return -EFAULT; 4174 4175 for (i = 0; i < num_types; i++) { 4176 struct btrfs_space_info *tmp; 4177 4178 info = NULL; 4179 rcu_read_lock(); 4180 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4181 list) { 4182 if (tmp->flags == types[i]) { 4183 info = tmp; 4184 break; 4185 } 4186 } 4187 rcu_read_unlock(); 4188 4189 if (!info) 4190 continue; 4191 4192 down_read(&info->groups_sem); 4193 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4194 if (!list_empty(&info->block_groups[c])) 4195 slot_count++; 4196 } 4197 up_read(&info->groups_sem); 4198 } 4199 4200 /* 4201 * Global block reserve, exported as a space_info 4202 */ 4203 slot_count++; 4204 4205 /* space_slots == 0 means they are asking for a count */ 4206 if (space_args.space_slots == 0) { 4207 space_args.total_spaces = slot_count; 4208 goto out; 4209 } 4210 4211 slot_count = min_t(u64, space_args.space_slots, slot_count); 4212 4213 alloc_size = sizeof(*dest) * slot_count; 4214 4215 /* we generally have at most 6 or so space infos, one for each raid 4216 * level. So, a whole page should be more than enough for everyone 4217 */ 4218 if (alloc_size > PAGE_SIZE) 4219 return -ENOMEM; 4220 4221 space_args.total_spaces = 0; 4222 dest = kmalloc(alloc_size, GFP_KERNEL); 4223 if (!dest) 4224 return -ENOMEM; 4225 dest_orig = dest; 4226 4227 /* now we have a buffer to copy into */ 4228 for (i = 0; i < num_types; i++) { 4229 struct btrfs_space_info *tmp; 4230 4231 if (!slot_count) 4232 break; 4233 4234 info = NULL; 4235 rcu_read_lock(); 4236 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4237 list) { 4238 if (tmp->flags == types[i]) { 4239 info = tmp; 4240 break; 4241 } 4242 } 4243 rcu_read_unlock(); 4244 4245 if (!info) 4246 continue; 4247 down_read(&info->groups_sem); 4248 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4249 if (!list_empty(&info->block_groups[c])) { 4250 get_block_group_info(&info->block_groups[c], 4251 &space); 4252 memcpy(dest, &space, sizeof(space)); 4253 dest++; 4254 space_args.total_spaces++; 4255 slot_count--; 4256 } 4257 if (!slot_count) 4258 break; 4259 } 4260 up_read(&info->groups_sem); 4261 } 4262 4263 /* 4264 * Add global block reserve 4265 */ 4266 if (slot_count) { 4267 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4268 4269 spin_lock(&block_rsv->lock); 4270 space.total_bytes = block_rsv->size; 4271 space.used_bytes = block_rsv->size - block_rsv->reserved; 4272 spin_unlock(&block_rsv->lock); 4273 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4274 memcpy(dest, &space, sizeof(space)); 4275 space_args.total_spaces++; 4276 } 4277 4278 user_dest = (struct btrfs_ioctl_space_info __user *) 4279 (arg + sizeof(struct btrfs_ioctl_space_args)); 4280 4281 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4282 ret = -EFAULT; 4283 4284 kfree(dest_orig); 4285 out: 4286 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4287 ret = -EFAULT; 4288 4289 return ret; 4290 } 4291 4292 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4293 void __user *argp) 4294 { 4295 struct btrfs_trans_handle *trans; 4296 u64 transid; 4297 int ret; 4298 4299 trans = btrfs_attach_transaction_barrier(root); 4300 if (IS_ERR(trans)) { 4301 if (PTR_ERR(trans) != -ENOENT) 4302 return PTR_ERR(trans); 4303 4304 /* No running transaction, don't bother */ 4305 transid = root->fs_info->last_trans_committed; 4306 goto out; 4307 } 4308 transid = trans->transid; 4309 ret = btrfs_commit_transaction_async(trans, 0); 4310 if (ret) { 4311 btrfs_end_transaction(trans); 4312 return ret; 4313 } 4314 out: 4315 if (argp) 4316 if (copy_to_user(argp, &transid, sizeof(transid))) 4317 return -EFAULT; 4318 return 0; 4319 } 4320 4321 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4322 void __user *argp) 4323 { 4324 u64 transid; 4325 4326 if (argp) { 4327 if (copy_from_user(&transid, argp, sizeof(transid))) 4328 return -EFAULT; 4329 } else { 4330 transid = 0; /* current trans */ 4331 } 4332 return btrfs_wait_for_commit(fs_info, transid); 4333 } 4334 4335 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4336 { 4337 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4338 struct btrfs_ioctl_scrub_args *sa; 4339 int ret; 4340 4341 if (!capable(CAP_SYS_ADMIN)) 4342 return -EPERM; 4343 4344 sa = memdup_user(arg, sizeof(*sa)); 4345 if (IS_ERR(sa)) 4346 return PTR_ERR(sa); 4347 4348 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4349 ret = mnt_want_write_file(file); 4350 if (ret) 4351 goto out; 4352 } 4353 4354 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4355 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4356 0); 4357 4358 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4359 ret = -EFAULT; 4360 4361 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4362 mnt_drop_write_file(file); 4363 out: 4364 kfree(sa); 4365 return ret; 4366 } 4367 4368 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4369 { 4370 if (!capable(CAP_SYS_ADMIN)) 4371 return -EPERM; 4372 4373 return btrfs_scrub_cancel(fs_info); 4374 } 4375 4376 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4377 void __user *arg) 4378 { 4379 struct btrfs_ioctl_scrub_args *sa; 4380 int ret; 4381 4382 if (!capable(CAP_SYS_ADMIN)) 4383 return -EPERM; 4384 4385 sa = memdup_user(arg, sizeof(*sa)); 4386 if (IS_ERR(sa)) 4387 return PTR_ERR(sa); 4388 4389 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4390 4391 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4392 ret = -EFAULT; 4393 4394 kfree(sa); 4395 return ret; 4396 } 4397 4398 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4399 void __user *arg) 4400 { 4401 struct btrfs_ioctl_get_dev_stats *sa; 4402 int ret; 4403 4404 sa = memdup_user(arg, sizeof(*sa)); 4405 if (IS_ERR(sa)) 4406 return PTR_ERR(sa); 4407 4408 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4409 kfree(sa); 4410 return -EPERM; 4411 } 4412 4413 ret = btrfs_get_dev_stats(fs_info, sa); 4414 4415 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4416 ret = -EFAULT; 4417 4418 kfree(sa); 4419 return ret; 4420 } 4421 4422 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4423 void __user *arg) 4424 { 4425 struct btrfs_ioctl_dev_replace_args *p; 4426 int ret; 4427 4428 if (!capable(CAP_SYS_ADMIN)) 4429 return -EPERM; 4430 4431 p = memdup_user(arg, sizeof(*p)); 4432 if (IS_ERR(p)) 4433 return PTR_ERR(p); 4434 4435 switch (p->cmd) { 4436 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4437 if (sb_rdonly(fs_info->sb)) { 4438 ret = -EROFS; 4439 goto out; 4440 } 4441 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4442 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4443 } else { 4444 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4445 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4446 } 4447 break; 4448 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4449 btrfs_dev_replace_status(fs_info, p); 4450 ret = 0; 4451 break; 4452 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4453 p->result = btrfs_dev_replace_cancel(fs_info); 4454 ret = 0; 4455 break; 4456 default: 4457 ret = -EINVAL; 4458 break; 4459 } 4460 4461 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4462 ret = -EFAULT; 4463 out: 4464 kfree(p); 4465 return ret; 4466 } 4467 4468 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4469 { 4470 int ret = 0; 4471 int i; 4472 u64 rel_ptr; 4473 int size; 4474 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4475 struct inode_fs_paths *ipath = NULL; 4476 struct btrfs_path *path; 4477 4478 if (!capable(CAP_DAC_READ_SEARCH)) 4479 return -EPERM; 4480 4481 path = btrfs_alloc_path(); 4482 if (!path) { 4483 ret = -ENOMEM; 4484 goto out; 4485 } 4486 4487 ipa = memdup_user(arg, sizeof(*ipa)); 4488 if (IS_ERR(ipa)) { 4489 ret = PTR_ERR(ipa); 4490 ipa = NULL; 4491 goto out; 4492 } 4493 4494 size = min_t(u32, ipa->size, 4096); 4495 ipath = init_ipath(size, root, path); 4496 if (IS_ERR(ipath)) { 4497 ret = PTR_ERR(ipath); 4498 ipath = NULL; 4499 goto out; 4500 } 4501 4502 ret = paths_from_inode(ipa->inum, ipath); 4503 if (ret < 0) 4504 goto out; 4505 4506 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4507 rel_ptr = ipath->fspath->val[i] - 4508 (u64)(unsigned long)ipath->fspath->val; 4509 ipath->fspath->val[i] = rel_ptr; 4510 } 4511 4512 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4513 ipath->fspath, size); 4514 if (ret) { 4515 ret = -EFAULT; 4516 goto out; 4517 } 4518 4519 out: 4520 btrfs_free_path(path); 4521 free_ipath(ipath); 4522 kfree(ipa); 4523 4524 return ret; 4525 } 4526 4527 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4528 { 4529 struct btrfs_data_container *inodes = ctx; 4530 const size_t c = 3 * sizeof(u64); 4531 4532 if (inodes->bytes_left >= c) { 4533 inodes->bytes_left -= c; 4534 inodes->val[inodes->elem_cnt] = inum; 4535 inodes->val[inodes->elem_cnt + 1] = offset; 4536 inodes->val[inodes->elem_cnt + 2] = root; 4537 inodes->elem_cnt += 3; 4538 } else { 4539 inodes->bytes_missing += c - inodes->bytes_left; 4540 inodes->bytes_left = 0; 4541 inodes->elem_missed += 3; 4542 } 4543 4544 return 0; 4545 } 4546 4547 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4548 void __user *arg, int version) 4549 { 4550 int ret = 0; 4551 int size; 4552 struct btrfs_ioctl_logical_ino_args *loi; 4553 struct btrfs_data_container *inodes = NULL; 4554 struct btrfs_path *path = NULL; 4555 bool ignore_offset; 4556 4557 if (!capable(CAP_SYS_ADMIN)) 4558 return -EPERM; 4559 4560 loi = memdup_user(arg, sizeof(*loi)); 4561 if (IS_ERR(loi)) 4562 return PTR_ERR(loi); 4563 4564 if (version == 1) { 4565 ignore_offset = false; 4566 size = min_t(u32, loi->size, SZ_64K); 4567 } else { 4568 /* All reserved bits must be 0 for now */ 4569 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4570 ret = -EINVAL; 4571 goto out_loi; 4572 } 4573 /* Only accept flags we have defined so far */ 4574 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4575 ret = -EINVAL; 4576 goto out_loi; 4577 } 4578 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4579 size = min_t(u32, loi->size, SZ_16M); 4580 } 4581 4582 path = btrfs_alloc_path(); 4583 if (!path) { 4584 ret = -ENOMEM; 4585 goto out; 4586 } 4587 4588 inodes = init_data_container(size); 4589 if (IS_ERR(inodes)) { 4590 ret = PTR_ERR(inodes); 4591 inodes = NULL; 4592 goto out; 4593 } 4594 4595 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4596 build_ino_list, inodes, ignore_offset); 4597 if (ret == -EINVAL) 4598 ret = -ENOENT; 4599 if (ret < 0) 4600 goto out; 4601 4602 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4603 size); 4604 if (ret) 4605 ret = -EFAULT; 4606 4607 out: 4608 btrfs_free_path(path); 4609 kvfree(inodes); 4610 out_loi: 4611 kfree(loi); 4612 4613 return ret; 4614 } 4615 4616 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4617 struct btrfs_ioctl_balance_args *bargs) 4618 { 4619 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4620 4621 bargs->flags = bctl->flags; 4622 4623 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4624 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4625 if (atomic_read(&fs_info->balance_pause_req)) 4626 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4627 if (atomic_read(&fs_info->balance_cancel_req)) 4628 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4629 4630 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4631 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4632 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4633 4634 spin_lock(&fs_info->balance_lock); 4635 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4636 spin_unlock(&fs_info->balance_lock); 4637 } 4638 4639 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4640 { 4641 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4642 struct btrfs_fs_info *fs_info = root->fs_info; 4643 struct btrfs_ioctl_balance_args *bargs; 4644 struct btrfs_balance_control *bctl; 4645 bool need_unlock; /* for mut. excl. ops lock */ 4646 int ret; 4647 4648 if (!capable(CAP_SYS_ADMIN)) 4649 return -EPERM; 4650 4651 ret = mnt_want_write_file(file); 4652 if (ret) 4653 return ret; 4654 4655 again: 4656 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4657 mutex_lock(&fs_info->balance_mutex); 4658 need_unlock = true; 4659 goto locked; 4660 } 4661 4662 /* 4663 * mut. excl. ops lock is locked. Three possibilities: 4664 * (1) some other op is running 4665 * (2) balance is running 4666 * (3) balance is paused -- special case (think resume) 4667 */ 4668 mutex_lock(&fs_info->balance_mutex); 4669 if (fs_info->balance_ctl) { 4670 /* this is either (2) or (3) */ 4671 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4672 mutex_unlock(&fs_info->balance_mutex); 4673 /* 4674 * Lock released to allow other waiters to continue, 4675 * we'll reexamine the status again. 4676 */ 4677 mutex_lock(&fs_info->balance_mutex); 4678 4679 if (fs_info->balance_ctl && 4680 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4681 /* this is (3) */ 4682 need_unlock = false; 4683 goto locked; 4684 } 4685 4686 mutex_unlock(&fs_info->balance_mutex); 4687 goto again; 4688 } else { 4689 /* this is (2) */ 4690 mutex_unlock(&fs_info->balance_mutex); 4691 ret = -EINPROGRESS; 4692 goto out; 4693 } 4694 } else { 4695 /* this is (1) */ 4696 mutex_unlock(&fs_info->balance_mutex); 4697 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4698 goto out; 4699 } 4700 4701 locked: 4702 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4703 4704 if (arg) { 4705 bargs = memdup_user(arg, sizeof(*bargs)); 4706 if (IS_ERR(bargs)) { 4707 ret = PTR_ERR(bargs); 4708 goto out_unlock; 4709 } 4710 4711 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4712 if (!fs_info->balance_ctl) { 4713 ret = -ENOTCONN; 4714 goto out_bargs; 4715 } 4716 4717 bctl = fs_info->balance_ctl; 4718 spin_lock(&fs_info->balance_lock); 4719 bctl->flags |= BTRFS_BALANCE_RESUME; 4720 spin_unlock(&fs_info->balance_lock); 4721 4722 goto do_balance; 4723 } 4724 } else { 4725 bargs = NULL; 4726 } 4727 4728 if (fs_info->balance_ctl) { 4729 ret = -EINPROGRESS; 4730 goto out_bargs; 4731 } 4732 4733 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4734 if (!bctl) { 4735 ret = -ENOMEM; 4736 goto out_bargs; 4737 } 4738 4739 if (arg) { 4740 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4741 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4742 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4743 4744 bctl->flags = bargs->flags; 4745 } else { 4746 /* balance everything - no filters */ 4747 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4748 } 4749 4750 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4751 ret = -EINVAL; 4752 goto out_bctl; 4753 } 4754 4755 do_balance: 4756 /* 4757 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 4758 * btrfs_balance. bctl is freed in reset_balance_state, or, if 4759 * restriper was paused all the way until unmount, in free_fs_info. 4760 * The flag should be cleared after reset_balance_state. 4761 */ 4762 need_unlock = false; 4763 4764 ret = btrfs_balance(fs_info, bctl, bargs); 4765 bctl = NULL; 4766 4767 if ((ret == 0 || ret == -ECANCELED) && arg) { 4768 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4769 ret = -EFAULT; 4770 } 4771 4772 out_bctl: 4773 kfree(bctl); 4774 out_bargs: 4775 kfree(bargs); 4776 out_unlock: 4777 mutex_unlock(&fs_info->balance_mutex); 4778 if (need_unlock) 4779 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4780 out: 4781 mnt_drop_write_file(file); 4782 return ret; 4783 } 4784 4785 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4786 { 4787 if (!capable(CAP_SYS_ADMIN)) 4788 return -EPERM; 4789 4790 switch (cmd) { 4791 case BTRFS_BALANCE_CTL_PAUSE: 4792 return btrfs_pause_balance(fs_info); 4793 case BTRFS_BALANCE_CTL_CANCEL: 4794 return btrfs_cancel_balance(fs_info); 4795 } 4796 4797 return -EINVAL; 4798 } 4799 4800 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4801 void __user *arg) 4802 { 4803 struct btrfs_ioctl_balance_args *bargs; 4804 int ret = 0; 4805 4806 if (!capable(CAP_SYS_ADMIN)) 4807 return -EPERM; 4808 4809 mutex_lock(&fs_info->balance_mutex); 4810 if (!fs_info->balance_ctl) { 4811 ret = -ENOTCONN; 4812 goto out; 4813 } 4814 4815 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4816 if (!bargs) { 4817 ret = -ENOMEM; 4818 goto out; 4819 } 4820 4821 btrfs_update_ioctl_balance_args(fs_info, bargs); 4822 4823 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4824 ret = -EFAULT; 4825 4826 kfree(bargs); 4827 out: 4828 mutex_unlock(&fs_info->balance_mutex); 4829 return ret; 4830 } 4831 4832 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4833 { 4834 struct inode *inode = file_inode(file); 4835 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4836 struct btrfs_ioctl_quota_ctl_args *sa; 4837 int ret; 4838 4839 if (!capable(CAP_SYS_ADMIN)) 4840 return -EPERM; 4841 4842 ret = mnt_want_write_file(file); 4843 if (ret) 4844 return ret; 4845 4846 sa = memdup_user(arg, sizeof(*sa)); 4847 if (IS_ERR(sa)) { 4848 ret = PTR_ERR(sa); 4849 goto drop_write; 4850 } 4851 4852 down_write(&fs_info->subvol_sem); 4853 4854 switch (sa->cmd) { 4855 case BTRFS_QUOTA_CTL_ENABLE: 4856 ret = btrfs_quota_enable(fs_info); 4857 break; 4858 case BTRFS_QUOTA_CTL_DISABLE: 4859 ret = btrfs_quota_disable(fs_info); 4860 break; 4861 default: 4862 ret = -EINVAL; 4863 break; 4864 } 4865 4866 kfree(sa); 4867 up_write(&fs_info->subvol_sem); 4868 drop_write: 4869 mnt_drop_write_file(file); 4870 return ret; 4871 } 4872 4873 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4874 { 4875 struct inode *inode = file_inode(file); 4876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4877 struct btrfs_root *root = BTRFS_I(inode)->root; 4878 struct btrfs_ioctl_qgroup_assign_args *sa; 4879 struct btrfs_trans_handle *trans; 4880 int ret; 4881 int err; 4882 4883 if (!capable(CAP_SYS_ADMIN)) 4884 return -EPERM; 4885 4886 ret = mnt_want_write_file(file); 4887 if (ret) 4888 return ret; 4889 4890 sa = memdup_user(arg, sizeof(*sa)); 4891 if (IS_ERR(sa)) { 4892 ret = PTR_ERR(sa); 4893 goto drop_write; 4894 } 4895 4896 trans = btrfs_join_transaction(root); 4897 if (IS_ERR(trans)) { 4898 ret = PTR_ERR(trans); 4899 goto out; 4900 } 4901 4902 if (sa->assign) { 4903 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4904 } else { 4905 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4906 } 4907 4908 /* update qgroup status and info */ 4909 err = btrfs_run_qgroups(trans); 4910 if (err < 0) 4911 btrfs_handle_fs_error(fs_info, err, 4912 "failed to update qgroup status and info"); 4913 err = btrfs_end_transaction(trans); 4914 if (err && !ret) 4915 ret = err; 4916 4917 out: 4918 kfree(sa); 4919 drop_write: 4920 mnt_drop_write_file(file); 4921 return ret; 4922 } 4923 4924 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4925 { 4926 struct inode *inode = file_inode(file); 4927 struct btrfs_root *root = BTRFS_I(inode)->root; 4928 struct btrfs_ioctl_qgroup_create_args *sa; 4929 struct btrfs_trans_handle *trans; 4930 int ret; 4931 int err; 4932 4933 if (!capable(CAP_SYS_ADMIN)) 4934 return -EPERM; 4935 4936 ret = mnt_want_write_file(file); 4937 if (ret) 4938 return ret; 4939 4940 sa = memdup_user(arg, sizeof(*sa)); 4941 if (IS_ERR(sa)) { 4942 ret = PTR_ERR(sa); 4943 goto drop_write; 4944 } 4945 4946 if (!sa->qgroupid) { 4947 ret = -EINVAL; 4948 goto out; 4949 } 4950 4951 trans = btrfs_join_transaction(root); 4952 if (IS_ERR(trans)) { 4953 ret = PTR_ERR(trans); 4954 goto out; 4955 } 4956 4957 if (sa->create) { 4958 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4959 } else { 4960 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4961 } 4962 4963 err = btrfs_end_transaction(trans); 4964 if (err && !ret) 4965 ret = err; 4966 4967 out: 4968 kfree(sa); 4969 drop_write: 4970 mnt_drop_write_file(file); 4971 return ret; 4972 } 4973 4974 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4975 { 4976 struct inode *inode = file_inode(file); 4977 struct btrfs_root *root = BTRFS_I(inode)->root; 4978 struct btrfs_ioctl_qgroup_limit_args *sa; 4979 struct btrfs_trans_handle *trans; 4980 int ret; 4981 int err; 4982 u64 qgroupid; 4983 4984 if (!capable(CAP_SYS_ADMIN)) 4985 return -EPERM; 4986 4987 ret = mnt_want_write_file(file); 4988 if (ret) 4989 return ret; 4990 4991 sa = memdup_user(arg, sizeof(*sa)); 4992 if (IS_ERR(sa)) { 4993 ret = PTR_ERR(sa); 4994 goto drop_write; 4995 } 4996 4997 trans = btrfs_join_transaction(root); 4998 if (IS_ERR(trans)) { 4999 ret = PTR_ERR(trans); 5000 goto out; 5001 } 5002 5003 qgroupid = sa->qgroupid; 5004 if (!qgroupid) { 5005 /* take the current subvol as qgroup */ 5006 qgroupid = root->root_key.objectid; 5007 } 5008 5009 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 5010 5011 err = btrfs_end_transaction(trans); 5012 if (err && !ret) 5013 ret = err; 5014 5015 out: 5016 kfree(sa); 5017 drop_write: 5018 mnt_drop_write_file(file); 5019 return ret; 5020 } 5021 5022 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5023 { 5024 struct inode *inode = file_inode(file); 5025 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5026 struct btrfs_ioctl_quota_rescan_args *qsa; 5027 int ret; 5028 5029 if (!capable(CAP_SYS_ADMIN)) 5030 return -EPERM; 5031 5032 ret = mnt_want_write_file(file); 5033 if (ret) 5034 return ret; 5035 5036 qsa = memdup_user(arg, sizeof(*qsa)); 5037 if (IS_ERR(qsa)) { 5038 ret = PTR_ERR(qsa); 5039 goto drop_write; 5040 } 5041 5042 if (qsa->flags) { 5043 ret = -EINVAL; 5044 goto out; 5045 } 5046 5047 ret = btrfs_qgroup_rescan(fs_info); 5048 5049 out: 5050 kfree(qsa); 5051 drop_write: 5052 mnt_drop_write_file(file); 5053 return ret; 5054 } 5055 5056 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5057 { 5058 struct inode *inode = file_inode(file); 5059 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5060 struct btrfs_ioctl_quota_rescan_args *qsa; 5061 int ret = 0; 5062 5063 if (!capable(CAP_SYS_ADMIN)) 5064 return -EPERM; 5065 5066 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5067 if (!qsa) 5068 return -ENOMEM; 5069 5070 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5071 qsa->flags = 1; 5072 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5073 } 5074 5075 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5076 ret = -EFAULT; 5077 5078 kfree(qsa); 5079 return ret; 5080 } 5081 5082 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5083 { 5084 struct inode *inode = file_inode(file); 5085 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5086 5087 if (!capable(CAP_SYS_ADMIN)) 5088 return -EPERM; 5089 5090 return btrfs_qgroup_wait_for_completion(fs_info, true); 5091 } 5092 5093 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5094 struct btrfs_ioctl_received_subvol_args *sa) 5095 { 5096 struct inode *inode = file_inode(file); 5097 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5098 struct btrfs_root *root = BTRFS_I(inode)->root; 5099 struct btrfs_root_item *root_item = &root->root_item; 5100 struct btrfs_trans_handle *trans; 5101 struct timespec64 ct = current_time(inode); 5102 int ret = 0; 5103 int received_uuid_changed; 5104 5105 if (!inode_owner_or_capable(inode)) 5106 return -EPERM; 5107 5108 ret = mnt_want_write_file(file); 5109 if (ret < 0) 5110 return ret; 5111 5112 down_write(&fs_info->subvol_sem); 5113 5114 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5115 ret = -EINVAL; 5116 goto out; 5117 } 5118 5119 if (btrfs_root_readonly(root)) { 5120 ret = -EROFS; 5121 goto out; 5122 } 5123 5124 /* 5125 * 1 - root item 5126 * 2 - uuid items (received uuid + subvol uuid) 5127 */ 5128 trans = btrfs_start_transaction(root, 3); 5129 if (IS_ERR(trans)) { 5130 ret = PTR_ERR(trans); 5131 trans = NULL; 5132 goto out; 5133 } 5134 5135 sa->rtransid = trans->transid; 5136 sa->rtime.sec = ct.tv_sec; 5137 sa->rtime.nsec = ct.tv_nsec; 5138 5139 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5140 BTRFS_UUID_SIZE); 5141 if (received_uuid_changed && 5142 !btrfs_is_empty_uuid(root_item->received_uuid)) { 5143 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 5144 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5145 root->root_key.objectid); 5146 if (ret && ret != -ENOENT) { 5147 btrfs_abort_transaction(trans, ret); 5148 btrfs_end_transaction(trans); 5149 goto out; 5150 } 5151 } 5152 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5153 btrfs_set_root_stransid(root_item, sa->stransid); 5154 btrfs_set_root_rtransid(root_item, sa->rtransid); 5155 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5156 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5157 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5158 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5159 5160 ret = btrfs_update_root(trans, fs_info->tree_root, 5161 &root->root_key, &root->root_item); 5162 if (ret < 0) { 5163 btrfs_end_transaction(trans); 5164 goto out; 5165 } 5166 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5167 ret = btrfs_uuid_tree_add(trans, sa->uuid, 5168 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5169 root->root_key.objectid); 5170 if (ret < 0 && ret != -EEXIST) { 5171 btrfs_abort_transaction(trans, ret); 5172 btrfs_end_transaction(trans); 5173 goto out; 5174 } 5175 } 5176 ret = btrfs_commit_transaction(trans); 5177 out: 5178 up_write(&fs_info->subvol_sem); 5179 mnt_drop_write_file(file); 5180 return ret; 5181 } 5182 5183 #ifdef CONFIG_64BIT 5184 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5185 void __user *arg) 5186 { 5187 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5188 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5189 int ret = 0; 5190 5191 args32 = memdup_user(arg, sizeof(*args32)); 5192 if (IS_ERR(args32)) 5193 return PTR_ERR(args32); 5194 5195 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5196 if (!args64) { 5197 ret = -ENOMEM; 5198 goto out; 5199 } 5200 5201 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5202 args64->stransid = args32->stransid; 5203 args64->rtransid = args32->rtransid; 5204 args64->stime.sec = args32->stime.sec; 5205 args64->stime.nsec = args32->stime.nsec; 5206 args64->rtime.sec = args32->rtime.sec; 5207 args64->rtime.nsec = args32->rtime.nsec; 5208 args64->flags = args32->flags; 5209 5210 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5211 if (ret) 5212 goto out; 5213 5214 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5215 args32->stransid = args64->stransid; 5216 args32->rtransid = args64->rtransid; 5217 args32->stime.sec = args64->stime.sec; 5218 args32->stime.nsec = args64->stime.nsec; 5219 args32->rtime.sec = args64->rtime.sec; 5220 args32->rtime.nsec = args64->rtime.nsec; 5221 args32->flags = args64->flags; 5222 5223 ret = copy_to_user(arg, args32, sizeof(*args32)); 5224 if (ret) 5225 ret = -EFAULT; 5226 5227 out: 5228 kfree(args32); 5229 kfree(args64); 5230 return ret; 5231 } 5232 #endif 5233 5234 static long btrfs_ioctl_set_received_subvol(struct file *file, 5235 void __user *arg) 5236 { 5237 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5238 int ret = 0; 5239 5240 sa = memdup_user(arg, sizeof(*sa)); 5241 if (IS_ERR(sa)) 5242 return PTR_ERR(sa); 5243 5244 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5245 5246 if (ret) 5247 goto out; 5248 5249 ret = copy_to_user(arg, sa, sizeof(*sa)); 5250 if (ret) 5251 ret = -EFAULT; 5252 5253 out: 5254 kfree(sa); 5255 return ret; 5256 } 5257 5258 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5259 { 5260 struct inode *inode = file_inode(file); 5261 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5262 size_t len; 5263 int ret; 5264 char label[BTRFS_LABEL_SIZE]; 5265 5266 spin_lock(&fs_info->super_lock); 5267 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5268 spin_unlock(&fs_info->super_lock); 5269 5270 len = strnlen(label, BTRFS_LABEL_SIZE); 5271 5272 if (len == BTRFS_LABEL_SIZE) { 5273 btrfs_warn(fs_info, 5274 "label is too long, return the first %zu bytes", 5275 --len); 5276 } 5277 5278 ret = copy_to_user(arg, label, len); 5279 5280 return ret ? -EFAULT : 0; 5281 } 5282 5283 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5284 { 5285 struct inode *inode = file_inode(file); 5286 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5287 struct btrfs_root *root = BTRFS_I(inode)->root; 5288 struct btrfs_super_block *super_block = fs_info->super_copy; 5289 struct btrfs_trans_handle *trans; 5290 char label[BTRFS_LABEL_SIZE]; 5291 int ret; 5292 5293 if (!capable(CAP_SYS_ADMIN)) 5294 return -EPERM; 5295 5296 if (copy_from_user(label, arg, sizeof(label))) 5297 return -EFAULT; 5298 5299 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5300 btrfs_err(fs_info, 5301 "unable to set label with more than %d bytes", 5302 BTRFS_LABEL_SIZE - 1); 5303 return -EINVAL; 5304 } 5305 5306 ret = mnt_want_write_file(file); 5307 if (ret) 5308 return ret; 5309 5310 trans = btrfs_start_transaction(root, 0); 5311 if (IS_ERR(trans)) { 5312 ret = PTR_ERR(trans); 5313 goto out_unlock; 5314 } 5315 5316 spin_lock(&fs_info->super_lock); 5317 strcpy(super_block->label, label); 5318 spin_unlock(&fs_info->super_lock); 5319 ret = btrfs_commit_transaction(trans); 5320 5321 out_unlock: 5322 mnt_drop_write_file(file); 5323 return ret; 5324 } 5325 5326 #define INIT_FEATURE_FLAGS(suffix) \ 5327 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5328 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5329 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5330 5331 int btrfs_ioctl_get_supported_features(void __user *arg) 5332 { 5333 static const struct btrfs_ioctl_feature_flags features[3] = { 5334 INIT_FEATURE_FLAGS(SUPP), 5335 INIT_FEATURE_FLAGS(SAFE_SET), 5336 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5337 }; 5338 5339 if (copy_to_user(arg, &features, sizeof(features))) 5340 return -EFAULT; 5341 5342 return 0; 5343 } 5344 5345 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5346 { 5347 struct inode *inode = file_inode(file); 5348 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5349 struct btrfs_super_block *super_block = fs_info->super_copy; 5350 struct btrfs_ioctl_feature_flags features; 5351 5352 features.compat_flags = btrfs_super_compat_flags(super_block); 5353 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5354 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5355 5356 if (copy_to_user(arg, &features, sizeof(features))) 5357 return -EFAULT; 5358 5359 return 0; 5360 } 5361 5362 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5363 enum btrfs_feature_set set, 5364 u64 change_mask, u64 flags, u64 supported_flags, 5365 u64 safe_set, u64 safe_clear) 5366 { 5367 const char *type = btrfs_feature_set_names[set]; 5368 char *names; 5369 u64 disallowed, unsupported; 5370 u64 set_mask = flags & change_mask; 5371 u64 clear_mask = ~flags & change_mask; 5372 5373 unsupported = set_mask & ~supported_flags; 5374 if (unsupported) { 5375 names = btrfs_printable_features(set, unsupported); 5376 if (names) { 5377 btrfs_warn(fs_info, 5378 "this kernel does not support the %s feature bit%s", 5379 names, strchr(names, ',') ? "s" : ""); 5380 kfree(names); 5381 } else 5382 btrfs_warn(fs_info, 5383 "this kernel does not support %s bits 0x%llx", 5384 type, unsupported); 5385 return -EOPNOTSUPP; 5386 } 5387 5388 disallowed = set_mask & ~safe_set; 5389 if (disallowed) { 5390 names = btrfs_printable_features(set, disallowed); 5391 if (names) { 5392 btrfs_warn(fs_info, 5393 "can't set the %s feature bit%s while mounted", 5394 names, strchr(names, ',') ? "s" : ""); 5395 kfree(names); 5396 } else 5397 btrfs_warn(fs_info, 5398 "can't set %s bits 0x%llx while mounted", 5399 type, disallowed); 5400 return -EPERM; 5401 } 5402 5403 disallowed = clear_mask & ~safe_clear; 5404 if (disallowed) { 5405 names = btrfs_printable_features(set, disallowed); 5406 if (names) { 5407 btrfs_warn(fs_info, 5408 "can't clear the %s feature bit%s while mounted", 5409 names, strchr(names, ',') ? "s" : ""); 5410 kfree(names); 5411 } else 5412 btrfs_warn(fs_info, 5413 "can't clear %s bits 0x%llx while mounted", 5414 type, disallowed); 5415 return -EPERM; 5416 } 5417 5418 return 0; 5419 } 5420 5421 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5422 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5423 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5424 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5425 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5426 5427 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5428 { 5429 struct inode *inode = file_inode(file); 5430 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5431 struct btrfs_root *root = BTRFS_I(inode)->root; 5432 struct btrfs_super_block *super_block = fs_info->super_copy; 5433 struct btrfs_ioctl_feature_flags flags[2]; 5434 struct btrfs_trans_handle *trans; 5435 u64 newflags; 5436 int ret; 5437 5438 if (!capable(CAP_SYS_ADMIN)) 5439 return -EPERM; 5440 5441 if (copy_from_user(flags, arg, sizeof(flags))) 5442 return -EFAULT; 5443 5444 /* Nothing to do */ 5445 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5446 !flags[0].incompat_flags) 5447 return 0; 5448 5449 ret = check_feature(fs_info, flags[0].compat_flags, 5450 flags[1].compat_flags, COMPAT); 5451 if (ret) 5452 return ret; 5453 5454 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5455 flags[1].compat_ro_flags, COMPAT_RO); 5456 if (ret) 5457 return ret; 5458 5459 ret = check_feature(fs_info, flags[0].incompat_flags, 5460 flags[1].incompat_flags, INCOMPAT); 5461 if (ret) 5462 return ret; 5463 5464 ret = mnt_want_write_file(file); 5465 if (ret) 5466 return ret; 5467 5468 trans = btrfs_start_transaction(root, 0); 5469 if (IS_ERR(trans)) { 5470 ret = PTR_ERR(trans); 5471 goto out_drop_write; 5472 } 5473 5474 spin_lock(&fs_info->super_lock); 5475 newflags = btrfs_super_compat_flags(super_block); 5476 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5477 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5478 btrfs_set_super_compat_flags(super_block, newflags); 5479 5480 newflags = btrfs_super_compat_ro_flags(super_block); 5481 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5482 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5483 btrfs_set_super_compat_ro_flags(super_block, newflags); 5484 5485 newflags = btrfs_super_incompat_flags(super_block); 5486 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5487 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5488 btrfs_set_super_incompat_flags(super_block, newflags); 5489 spin_unlock(&fs_info->super_lock); 5490 5491 ret = btrfs_commit_transaction(trans); 5492 out_drop_write: 5493 mnt_drop_write_file(file); 5494 5495 return ret; 5496 } 5497 5498 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5499 { 5500 struct btrfs_ioctl_send_args *arg; 5501 int ret; 5502 5503 if (compat) { 5504 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5505 struct btrfs_ioctl_send_args_32 args32; 5506 5507 ret = copy_from_user(&args32, argp, sizeof(args32)); 5508 if (ret) 5509 return -EFAULT; 5510 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5511 if (!arg) 5512 return -ENOMEM; 5513 arg->send_fd = args32.send_fd; 5514 arg->clone_sources_count = args32.clone_sources_count; 5515 arg->clone_sources = compat_ptr(args32.clone_sources); 5516 arg->parent_root = args32.parent_root; 5517 arg->flags = args32.flags; 5518 memcpy(arg->reserved, args32.reserved, 5519 sizeof(args32.reserved)); 5520 #else 5521 return -ENOTTY; 5522 #endif 5523 } else { 5524 arg = memdup_user(argp, sizeof(*arg)); 5525 if (IS_ERR(arg)) 5526 return PTR_ERR(arg); 5527 } 5528 ret = btrfs_ioctl_send(file, arg); 5529 kfree(arg); 5530 return ret; 5531 } 5532 5533 long btrfs_ioctl(struct file *file, unsigned int 5534 cmd, unsigned long arg) 5535 { 5536 struct inode *inode = file_inode(file); 5537 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5538 struct btrfs_root *root = BTRFS_I(inode)->root; 5539 void __user *argp = (void __user *)arg; 5540 5541 switch (cmd) { 5542 case FS_IOC_GETFLAGS: 5543 return btrfs_ioctl_getflags(file, argp); 5544 case FS_IOC_SETFLAGS: 5545 return btrfs_ioctl_setflags(file, argp); 5546 case FS_IOC_GETVERSION: 5547 return btrfs_ioctl_getversion(file, argp); 5548 case FITRIM: 5549 return btrfs_ioctl_fitrim(file, argp); 5550 case BTRFS_IOC_SNAP_CREATE: 5551 return btrfs_ioctl_snap_create(file, argp, 0); 5552 case BTRFS_IOC_SNAP_CREATE_V2: 5553 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5554 case BTRFS_IOC_SUBVOL_CREATE: 5555 return btrfs_ioctl_snap_create(file, argp, 1); 5556 case BTRFS_IOC_SUBVOL_CREATE_V2: 5557 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5558 case BTRFS_IOC_SNAP_DESTROY: 5559 return btrfs_ioctl_snap_destroy(file, argp); 5560 case BTRFS_IOC_SUBVOL_GETFLAGS: 5561 return btrfs_ioctl_subvol_getflags(file, argp); 5562 case BTRFS_IOC_SUBVOL_SETFLAGS: 5563 return btrfs_ioctl_subvol_setflags(file, argp); 5564 case BTRFS_IOC_DEFAULT_SUBVOL: 5565 return btrfs_ioctl_default_subvol(file, argp); 5566 case BTRFS_IOC_DEFRAG: 5567 return btrfs_ioctl_defrag(file, NULL); 5568 case BTRFS_IOC_DEFRAG_RANGE: 5569 return btrfs_ioctl_defrag(file, argp); 5570 case BTRFS_IOC_RESIZE: 5571 return btrfs_ioctl_resize(file, argp); 5572 case BTRFS_IOC_ADD_DEV: 5573 return btrfs_ioctl_add_dev(fs_info, argp); 5574 case BTRFS_IOC_RM_DEV: 5575 return btrfs_ioctl_rm_dev(file, argp); 5576 case BTRFS_IOC_RM_DEV_V2: 5577 return btrfs_ioctl_rm_dev_v2(file, argp); 5578 case BTRFS_IOC_FS_INFO: 5579 return btrfs_ioctl_fs_info(fs_info, argp); 5580 case BTRFS_IOC_DEV_INFO: 5581 return btrfs_ioctl_dev_info(fs_info, argp); 5582 case BTRFS_IOC_BALANCE: 5583 return btrfs_ioctl_balance(file, NULL); 5584 case BTRFS_IOC_TREE_SEARCH: 5585 return btrfs_ioctl_tree_search(file, argp); 5586 case BTRFS_IOC_TREE_SEARCH_V2: 5587 return btrfs_ioctl_tree_search_v2(file, argp); 5588 case BTRFS_IOC_INO_LOOKUP: 5589 return btrfs_ioctl_ino_lookup(file, argp); 5590 case BTRFS_IOC_INO_PATHS: 5591 return btrfs_ioctl_ino_to_path(root, argp); 5592 case BTRFS_IOC_LOGICAL_INO: 5593 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5594 case BTRFS_IOC_LOGICAL_INO_V2: 5595 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5596 case BTRFS_IOC_SPACE_INFO: 5597 return btrfs_ioctl_space_info(fs_info, argp); 5598 case BTRFS_IOC_SYNC: { 5599 int ret; 5600 5601 ret = btrfs_start_delalloc_roots(fs_info, -1); 5602 if (ret) 5603 return ret; 5604 ret = btrfs_sync_fs(inode->i_sb, 1); 5605 /* 5606 * The transaction thread may want to do more work, 5607 * namely it pokes the cleaner kthread that will start 5608 * processing uncleaned subvols. 5609 */ 5610 wake_up_process(fs_info->transaction_kthread); 5611 return ret; 5612 } 5613 case BTRFS_IOC_START_SYNC: 5614 return btrfs_ioctl_start_sync(root, argp); 5615 case BTRFS_IOC_WAIT_SYNC: 5616 return btrfs_ioctl_wait_sync(fs_info, argp); 5617 case BTRFS_IOC_SCRUB: 5618 return btrfs_ioctl_scrub(file, argp); 5619 case BTRFS_IOC_SCRUB_CANCEL: 5620 return btrfs_ioctl_scrub_cancel(fs_info); 5621 case BTRFS_IOC_SCRUB_PROGRESS: 5622 return btrfs_ioctl_scrub_progress(fs_info, argp); 5623 case BTRFS_IOC_BALANCE_V2: 5624 return btrfs_ioctl_balance(file, argp); 5625 case BTRFS_IOC_BALANCE_CTL: 5626 return btrfs_ioctl_balance_ctl(fs_info, arg); 5627 case BTRFS_IOC_BALANCE_PROGRESS: 5628 return btrfs_ioctl_balance_progress(fs_info, argp); 5629 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5630 return btrfs_ioctl_set_received_subvol(file, argp); 5631 #ifdef CONFIG_64BIT 5632 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5633 return btrfs_ioctl_set_received_subvol_32(file, argp); 5634 #endif 5635 case BTRFS_IOC_SEND: 5636 return _btrfs_ioctl_send(file, argp, false); 5637 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5638 case BTRFS_IOC_SEND_32: 5639 return _btrfs_ioctl_send(file, argp, true); 5640 #endif 5641 case BTRFS_IOC_GET_DEV_STATS: 5642 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5643 case BTRFS_IOC_QUOTA_CTL: 5644 return btrfs_ioctl_quota_ctl(file, argp); 5645 case BTRFS_IOC_QGROUP_ASSIGN: 5646 return btrfs_ioctl_qgroup_assign(file, argp); 5647 case BTRFS_IOC_QGROUP_CREATE: 5648 return btrfs_ioctl_qgroup_create(file, argp); 5649 case BTRFS_IOC_QGROUP_LIMIT: 5650 return btrfs_ioctl_qgroup_limit(file, argp); 5651 case BTRFS_IOC_QUOTA_RESCAN: 5652 return btrfs_ioctl_quota_rescan(file, argp); 5653 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5654 return btrfs_ioctl_quota_rescan_status(file, argp); 5655 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5656 return btrfs_ioctl_quota_rescan_wait(file, argp); 5657 case BTRFS_IOC_DEV_REPLACE: 5658 return btrfs_ioctl_dev_replace(fs_info, argp); 5659 case BTRFS_IOC_GET_FSLABEL: 5660 return btrfs_ioctl_get_fslabel(file, argp); 5661 case BTRFS_IOC_SET_FSLABEL: 5662 return btrfs_ioctl_set_fslabel(file, argp); 5663 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5664 return btrfs_ioctl_get_supported_features(argp); 5665 case BTRFS_IOC_GET_FEATURES: 5666 return btrfs_ioctl_get_features(file, argp); 5667 case BTRFS_IOC_SET_FEATURES: 5668 return btrfs_ioctl_set_features(file, argp); 5669 case FS_IOC_FSGETXATTR: 5670 return btrfs_ioctl_fsgetxattr(file, argp); 5671 case FS_IOC_FSSETXATTR: 5672 return btrfs_ioctl_fssetxattr(file, argp); 5673 case BTRFS_IOC_GET_SUBVOL_INFO: 5674 return btrfs_ioctl_get_subvol_info(file, argp); 5675 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5676 return btrfs_ioctl_get_subvol_rootref(file, argp); 5677 case BTRFS_IOC_INO_LOOKUP_USER: 5678 return btrfs_ioctl_ino_lookup_user(file, argp); 5679 } 5680 5681 return -ENOTTY; 5682 } 5683 5684 #ifdef CONFIG_COMPAT 5685 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5686 { 5687 /* 5688 * These all access 32-bit values anyway so no further 5689 * handling is necessary. 5690 */ 5691 switch (cmd) { 5692 case FS_IOC32_GETFLAGS: 5693 cmd = FS_IOC_GETFLAGS; 5694 break; 5695 case FS_IOC32_SETFLAGS: 5696 cmd = FS_IOC_SETFLAGS; 5697 break; 5698 case FS_IOC32_GETVERSION: 5699 cmd = FS_IOC_GETVERSION; 5700 break; 5701 } 5702 5703 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5704 } 5705 #endif 5706