xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 4b4f3acc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "btrfs_inode.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "locking.h"
36 #include "inode-map.h"
37 #include "backref.h"
38 #include "rcu-string.h"
39 #include "send.h"
40 #include "dev-replace.h"
41 #include "props.h"
42 #include "sysfs.h"
43 #include "qgroup.h"
44 #include "tree-log.h"
45 #include "compression.h"
46 
47 #ifdef CONFIG_64BIT
48 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
49  * structures are incorrect, as the timespec structure from userspace
50  * is 4 bytes too small. We define these alternatives here to teach
51  * the kernel about the 32-bit struct packing.
52  */
53 struct btrfs_ioctl_timespec_32 {
54 	__u64 sec;
55 	__u32 nsec;
56 } __attribute__ ((__packed__));
57 
58 struct btrfs_ioctl_received_subvol_args_32 {
59 	char	uuid[BTRFS_UUID_SIZE];	/* in */
60 	__u64	stransid;		/* in */
61 	__u64	rtransid;		/* out */
62 	struct btrfs_ioctl_timespec_32 stime; /* in */
63 	struct btrfs_ioctl_timespec_32 rtime; /* out */
64 	__u64	flags;			/* in */
65 	__u64	reserved[16];		/* in */
66 } __attribute__ ((__packed__));
67 
68 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
69 				struct btrfs_ioctl_received_subvol_args_32)
70 #endif
71 
72 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
73 struct btrfs_ioctl_send_args_32 {
74 	__s64 send_fd;			/* in */
75 	__u64 clone_sources_count;	/* in */
76 	compat_uptr_t clone_sources;	/* in */
77 	__u64 parent_root;		/* in */
78 	__u64 flags;			/* in */
79 	__u64 reserved[4];		/* in */
80 } __attribute__ ((__packed__));
81 
82 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
83 			       struct btrfs_ioctl_send_args_32)
84 #endif
85 
86 static int btrfs_clone(struct inode *src, struct inode *inode,
87 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
88 		       int no_time_update);
89 
90 /* Mask out flags that are inappropriate for the given type of inode. */
91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 		unsigned int flags)
93 {
94 	if (S_ISDIR(inode->i_mode))
95 		return flags;
96 	else if (S_ISREG(inode->i_mode))
97 		return flags & ~FS_DIRSYNC_FL;
98 	else
99 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101 
102 /*
103  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104  * ioctl.
105  */
106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if (flags & BTRFS_INODE_NOCOMPRESS)
126 		iflags |= FS_NOCOMP_FL;
127 	else if (flags & BTRFS_INODE_COMPRESS)
128 		iflags |= FS_COMPR_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 	struct btrfs_inode *binode = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (binode->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (binode->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (binode->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (binode->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161 
162 	if (copy_to_user(arg, &flags, sizeof(flags)))
163 		return -EFAULT;
164 	return 0;
165 }
166 
167 /* Check if @flags are a supported and valid set of FS_*_FL flags */
168 static int check_fsflags(unsigned int flags)
169 {
170 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 		      FS_NOATIME_FL | FS_NODUMP_FL | \
172 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
173 		      FS_NOCOMP_FL | FS_COMPR_FL |
174 		      FS_NOCOW_FL))
175 		return -EOPNOTSUPP;
176 
177 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
178 		return -EINVAL;
179 
180 	return 0;
181 }
182 
183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
184 {
185 	struct inode *inode = file_inode(file);
186 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
187 	struct btrfs_inode *binode = BTRFS_I(inode);
188 	struct btrfs_root *root = binode->root;
189 	struct btrfs_trans_handle *trans;
190 	unsigned int fsflags;
191 	int ret;
192 	const char *comp = NULL;
193 	u32 binode_flags = binode->flags;
194 
195 	if (!inode_owner_or_capable(inode))
196 		return -EPERM;
197 
198 	if (btrfs_root_readonly(root))
199 		return -EROFS;
200 
201 	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
202 		return -EFAULT;
203 
204 	ret = check_fsflags(fsflags);
205 	if (ret)
206 		return ret;
207 
208 	ret = mnt_want_write_file(file);
209 	if (ret)
210 		return ret;
211 
212 	inode_lock(inode);
213 
214 	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
215 	if ((fsflags ^ btrfs_inode_flags_to_fsflags(binode->flags)) &
216 	    (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
217 		if (!capable(CAP_LINUX_IMMUTABLE)) {
218 			ret = -EPERM;
219 			goto out_unlock;
220 		}
221 	}
222 
223 	if (fsflags & FS_SYNC_FL)
224 		binode_flags |= BTRFS_INODE_SYNC;
225 	else
226 		binode_flags &= ~BTRFS_INODE_SYNC;
227 	if (fsflags & FS_IMMUTABLE_FL)
228 		binode_flags |= BTRFS_INODE_IMMUTABLE;
229 	else
230 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
231 	if (fsflags & FS_APPEND_FL)
232 		binode_flags |= BTRFS_INODE_APPEND;
233 	else
234 		binode_flags &= ~BTRFS_INODE_APPEND;
235 	if (fsflags & FS_NODUMP_FL)
236 		binode_flags |= BTRFS_INODE_NODUMP;
237 	else
238 		binode_flags &= ~BTRFS_INODE_NODUMP;
239 	if (fsflags & FS_NOATIME_FL)
240 		binode_flags |= BTRFS_INODE_NOATIME;
241 	else
242 		binode_flags &= ~BTRFS_INODE_NOATIME;
243 	if (fsflags & FS_DIRSYNC_FL)
244 		binode_flags |= BTRFS_INODE_DIRSYNC;
245 	else
246 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
247 	if (fsflags & FS_NOCOW_FL) {
248 		if (S_ISREG(inode->i_mode)) {
249 			/*
250 			 * It's safe to turn csums off here, no extents exist.
251 			 * Otherwise we want the flag to reflect the real COW
252 			 * status of the file and will not set it.
253 			 */
254 			if (inode->i_size == 0)
255 				binode_flags |= BTRFS_INODE_NODATACOW |
256 						BTRFS_INODE_NODATASUM;
257 		} else {
258 			binode_flags |= BTRFS_INODE_NODATACOW;
259 		}
260 	} else {
261 		/*
262 		 * Revert back under same assumptions as above
263 		 */
264 		if (S_ISREG(inode->i_mode)) {
265 			if (inode->i_size == 0)
266 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
267 						  BTRFS_INODE_NODATASUM);
268 		} else {
269 			binode_flags &= ~BTRFS_INODE_NODATACOW;
270 		}
271 	}
272 
273 	/*
274 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
275 	 * flag may be changed automatically if compression code won't make
276 	 * things smaller.
277 	 */
278 	if (fsflags & FS_NOCOMP_FL) {
279 		binode_flags &= ~BTRFS_INODE_COMPRESS;
280 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
281 	} else if (fsflags & FS_COMPR_FL) {
282 
283 		if (IS_SWAPFILE(inode)) {
284 			ret = -ETXTBSY;
285 			goto out_unlock;
286 		}
287 
288 		binode_flags |= BTRFS_INODE_COMPRESS;
289 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
290 
291 		comp = btrfs_compress_type2str(fs_info->compress_type);
292 		if (!comp || comp[0] == 0)
293 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
294 	} else {
295 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
296 	}
297 
298 	/*
299 	 * 1 for inode item
300 	 * 2 for properties
301 	 */
302 	trans = btrfs_start_transaction(root, 3);
303 	if (IS_ERR(trans)) {
304 		ret = PTR_ERR(trans);
305 		goto out_unlock;
306 	}
307 
308 	if (comp) {
309 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
310 				     strlen(comp), 0);
311 		if (ret) {
312 			btrfs_abort_transaction(trans, ret);
313 			goto out_end_trans;
314 		}
315 	} else {
316 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
317 				     0, 0);
318 		if (ret && ret != -ENODATA) {
319 			btrfs_abort_transaction(trans, ret);
320 			goto out_end_trans;
321 		}
322 	}
323 
324 	binode->flags = binode_flags;
325 	btrfs_sync_inode_flags_to_i_flags(inode);
326 	inode_inc_iversion(inode);
327 	inode->i_ctime = current_time(inode);
328 	ret = btrfs_update_inode(trans, root, inode);
329 
330  out_end_trans:
331 	btrfs_end_transaction(trans);
332  out_unlock:
333 	inode_unlock(inode);
334 	mnt_drop_write_file(file);
335 	return ret;
336 }
337 
338 /*
339  * Translate btrfs internal inode flags to xflags as expected by the
340  * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
341  * silently dropped.
342  */
343 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
344 {
345 	unsigned int xflags = 0;
346 
347 	if (flags & BTRFS_INODE_APPEND)
348 		xflags |= FS_XFLAG_APPEND;
349 	if (flags & BTRFS_INODE_IMMUTABLE)
350 		xflags |= FS_XFLAG_IMMUTABLE;
351 	if (flags & BTRFS_INODE_NOATIME)
352 		xflags |= FS_XFLAG_NOATIME;
353 	if (flags & BTRFS_INODE_NODUMP)
354 		xflags |= FS_XFLAG_NODUMP;
355 	if (flags & BTRFS_INODE_SYNC)
356 		xflags |= FS_XFLAG_SYNC;
357 
358 	return xflags;
359 }
360 
361 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
362 static int check_xflags(unsigned int flags)
363 {
364 	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
365 		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
366 		return -EOPNOTSUPP;
367 	return 0;
368 }
369 
370 /*
371  * Set the xflags from the internal inode flags. The remaining items of fsxattr
372  * are zeroed.
373  */
374 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
375 {
376 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
377 	struct fsxattr fa;
378 
379 	memset(&fa, 0, sizeof(fa));
380 	fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags);
381 
382 	if (copy_to_user(arg, &fa, sizeof(fa)))
383 		return -EFAULT;
384 
385 	return 0;
386 }
387 
388 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
389 {
390 	struct inode *inode = file_inode(file);
391 	struct btrfs_inode *binode = BTRFS_I(inode);
392 	struct btrfs_root *root = binode->root;
393 	struct btrfs_trans_handle *trans;
394 	struct fsxattr fa;
395 	unsigned old_flags;
396 	unsigned old_i_flags;
397 	int ret = 0;
398 
399 	if (!inode_owner_or_capable(inode))
400 		return -EPERM;
401 
402 	if (btrfs_root_readonly(root))
403 		return -EROFS;
404 
405 	memset(&fa, 0, sizeof(fa));
406 	if (copy_from_user(&fa, arg, sizeof(fa)))
407 		return -EFAULT;
408 
409 	ret = check_xflags(fa.fsx_xflags);
410 	if (ret)
411 		return ret;
412 
413 	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
414 		return -EOPNOTSUPP;
415 
416 	ret = mnt_want_write_file(file);
417 	if (ret)
418 		return ret;
419 
420 	inode_lock(inode);
421 
422 	old_flags = binode->flags;
423 	old_i_flags = inode->i_flags;
424 
425 	/* We need the capabilities to change append-only or immutable inode */
426 	if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) ||
427 	     (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) &&
428 	    !capable(CAP_LINUX_IMMUTABLE)) {
429 		ret = -EPERM;
430 		goto out_unlock;
431 	}
432 
433 	if (fa.fsx_xflags & FS_XFLAG_SYNC)
434 		binode->flags |= BTRFS_INODE_SYNC;
435 	else
436 		binode->flags &= ~BTRFS_INODE_SYNC;
437 	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
438 		binode->flags |= BTRFS_INODE_IMMUTABLE;
439 	else
440 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
441 	if (fa.fsx_xflags & FS_XFLAG_APPEND)
442 		binode->flags |= BTRFS_INODE_APPEND;
443 	else
444 		binode->flags &= ~BTRFS_INODE_APPEND;
445 	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
446 		binode->flags |= BTRFS_INODE_NODUMP;
447 	else
448 		binode->flags &= ~BTRFS_INODE_NODUMP;
449 	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
450 		binode->flags |= BTRFS_INODE_NOATIME;
451 	else
452 		binode->flags &= ~BTRFS_INODE_NOATIME;
453 
454 	/* 1 item for the inode */
455 	trans = btrfs_start_transaction(root, 1);
456 	if (IS_ERR(trans)) {
457 		ret = PTR_ERR(trans);
458 		goto out_unlock;
459 	}
460 
461 	btrfs_sync_inode_flags_to_i_flags(inode);
462 	inode_inc_iversion(inode);
463 	inode->i_ctime = current_time(inode);
464 	ret = btrfs_update_inode(trans, root, inode);
465 
466 	btrfs_end_transaction(trans);
467 
468 out_unlock:
469 	if (ret) {
470 		binode->flags = old_flags;
471 		inode->i_flags = old_i_flags;
472 	}
473 
474 	inode_unlock(inode);
475 	mnt_drop_write_file(file);
476 
477 	return ret;
478 }
479 
480 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
481 {
482 	struct inode *inode = file_inode(file);
483 
484 	return put_user(inode->i_generation, arg);
485 }
486 
487 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
488 {
489 	struct inode *inode = file_inode(file);
490 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
491 	struct btrfs_device *device;
492 	struct request_queue *q;
493 	struct fstrim_range range;
494 	u64 minlen = ULLONG_MAX;
495 	u64 num_devices = 0;
496 	int ret;
497 
498 	if (!capable(CAP_SYS_ADMIN))
499 		return -EPERM;
500 
501 	/*
502 	 * If the fs is mounted with nologreplay, which requires it to be
503 	 * mounted in RO mode as well, we can not allow discard on free space
504 	 * inside block groups, because log trees refer to extents that are not
505 	 * pinned in a block group's free space cache (pinning the extents is
506 	 * precisely the first phase of replaying a log tree).
507 	 */
508 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
509 		return -EROFS;
510 
511 	rcu_read_lock();
512 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
513 				dev_list) {
514 		if (!device->bdev)
515 			continue;
516 		q = bdev_get_queue(device->bdev);
517 		if (blk_queue_discard(q)) {
518 			num_devices++;
519 			minlen = min_t(u64, q->limits.discard_granularity,
520 				     minlen);
521 		}
522 	}
523 	rcu_read_unlock();
524 
525 	if (!num_devices)
526 		return -EOPNOTSUPP;
527 	if (copy_from_user(&range, arg, sizeof(range)))
528 		return -EFAULT;
529 
530 	/*
531 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
532 	 * block group is in the logical address space, which can be any
533 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
534 	 */
535 	if (range.len < fs_info->sb->s_blocksize)
536 		return -EINVAL;
537 
538 	range.minlen = max(range.minlen, minlen);
539 	ret = btrfs_trim_fs(fs_info, &range);
540 	if (ret < 0)
541 		return ret;
542 
543 	if (copy_to_user(arg, &range, sizeof(range)))
544 		return -EFAULT;
545 
546 	return 0;
547 }
548 
549 int btrfs_is_empty_uuid(u8 *uuid)
550 {
551 	int i;
552 
553 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
554 		if (uuid[i])
555 			return 0;
556 	}
557 	return 1;
558 }
559 
560 static noinline int create_subvol(struct inode *dir,
561 				  struct dentry *dentry,
562 				  const char *name, int namelen,
563 				  u64 *async_transid,
564 				  struct btrfs_qgroup_inherit *inherit)
565 {
566 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
567 	struct btrfs_trans_handle *trans;
568 	struct btrfs_key key;
569 	struct btrfs_root_item *root_item;
570 	struct btrfs_inode_item *inode_item;
571 	struct extent_buffer *leaf;
572 	struct btrfs_root *root = BTRFS_I(dir)->root;
573 	struct btrfs_root *new_root;
574 	struct btrfs_block_rsv block_rsv;
575 	struct timespec64 cur_time = current_time(dir);
576 	struct inode *inode;
577 	int ret;
578 	int err;
579 	u64 objectid;
580 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
581 	u64 index = 0;
582 	uuid_le new_uuid;
583 
584 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
585 	if (!root_item)
586 		return -ENOMEM;
587 
588 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
589 	if (ret)
590 		goto fail_free;
591 
592 	/*
593 	 * Don't create subvolume whose level is not zero. Or qgroup will be
594 	 * screwed up since it assumes subvolume qgroup's level to be 0.
595 	 */
596 	if (btrfs_qgroup_level(objectid)) {
597 		ret = -ENOSPC;
598 		goto fail_free;
599 	}
600 
601 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
602 	/*
603 	 * The same as the snapshot creation, please see the comment
604 	 * of create_snapshot().
605 	 */
606 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
607 	if (ret)
608 		goto fail_free;
609 
610 	trans = btrfs_start_transaction(root, 0);
611 	if (IS_ERR(trans)) {
612 		ret = PTR_ERR(trans);
613 		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
614 		goto fail_free;
615 	}
616 	trans->block_rsv = &block_rsv;
617 	trans->bytes_reserved = block_rsv.size;
618 
619 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
620 	if (ret)
621 		goto fail;
622 
623 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
624 	if (IS_ERR(leaf)) {
625 		ret = PTR_ERR(leaf);
626 		goto fail;
627 	}
628 
629 	btrfs_mark_buffer_dirty(leaf);
630 
631 	inode_item = &root_item->inode;
632 	btrfs_set_stack_inode_generation(inode_item, 1);
633 	btrfs_set_stack_inode_size(inode_item, 3);
634 	btrfs_set_stack_inode_nlink(inode_item, 1);
635 	btrfs_set_stack_inode_nbytes(inode_item,
636 				     fs_info->nodesize);
637 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
638 
639 	btrfs_set_root_flags(root_item, 0);
640 	btrfs_set_root_limit(root_item, 0);
641 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
642 
643 	btrfs_set_root_bytenr(root_item, leaf->start);
644 	btrfs_set_root_generation(root_item, trans->transid);
645 	btrfs_set_root_level(root_item, 0);
646 	btrfs_set_root_refs(root_item, 1);
647 	btrfs_set_root_used(root_item, leaf->len);
648 	btrfs_set_root_last_snapshot(root_item, 0);
649 
650 	btrfs_set_root_generation_v2(root_item,
651 			btrfs_root_generation(root_item));
652 	uuid_le_gen(&new_uuid);
653 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
654 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
655 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
656 	root_item->ctime = root_item->otime;
657 	btrfs_set_root_ctransid(root_item, trans->transid);
658 	btrfs_set_root_otransid(root_item, trans->transid);
659 
660 	btrfs_tree_unlock(leaf);
661 	free_extent_buffer(leaf);
662 	leaf = NULL;
663 
664 	btrfs_set_root_dirid(root_item, new_dirid);
665 
666 	key.objectid = objectid;
667 	key.offset = 0;
668 	key.type = BTRFS_ROOT_ITEM_KEY;
669 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
670 				root_item);
671 	if (ret)
672 		goto fail;
673 
674 	key.offset = (u64)-1;
675 	new_root = btrfs_read_fs_root_no_name(fs_info, &key);
676 	if (IS_ERR(new_root)) {
677 		ret = PTR_ERR(new_root);
678 		btrfs_abort_transaction(trans, ret);
679 		goto fail;
680 	}
681 
682 	btrfs_record_root_in_trans(trans, new_root);
683 
684 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
685 	if (ret) {
686 		/* We potentially lose an unused inode item here */
687 		btrfs_abort_transaction(trans, ret);
688 		goto fail;
689 	}
690 
691 	mutex_lock(&new_root->objectid_mutex);
692 	new_root->highest_objectid = new_dirid;
693 	mutex_unlock(&new_root->objectid_mutex);
694 
695 	/*
696 	 * insert the directory item
697 	 */
698 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
699 	if (ret) {
700 		btrfs_abort_transaction(trans, ret);
701 		goto fail;
702 	}
703 
704 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
705 				    BTRFS_FT_DIR, index);
706 	if (ret) {
707 		btrfs_abort_transaction(trans, ret);
708 		goto fail;
709 	}
710 
711 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
712 	ret = btrfs_update_inode(trans, root, dir);
713 	BUG_ON(ret);
714 
715 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
716 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
717 	BUG_ON(ret);
718 
719 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
720 				  BTRFS_UUID_KEY_SUBVOL, objectid);
721 	if (ret)
722 		btrfs_abort_transaction(trans, ret);
723 
724 fail:
725 	kfree(root_item);
726 	trans->block_rsv = NULL;
727 	trans->bytes_reserved = 0;
728 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
729 
730 	if (async_transid) {
731 		*async_transid = trans->transid;
732 		err = btrfs_commit_transaction_async(trans, 1);
733 		if (err)
734 			err = btrfs_commit_transaction(trans);
735 	} else {
736 		err = btrfs_commit_transaction(trans);
737 	}
738 	if (err && !ret)
739 		ret = err;
740 
741 	if (!ret) {
742 		inode = btrfs_lookup_dentry(dir, dentry);
743 		if (IS_ERR(inode))
744 			return PTR_ERR(inode);
745 		d_instantiate(dentry, inode);
746 	}
747 	return ret;
748 
749 fail_free:
750 	kfree(root_item);
751 	return ret;
752 }
753 
754 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
755 			   struct dentry *dentry,
756 			   u64 *async_transid, bool readonly,
757 			   struct btrfs_qgroup_inherit *inherit)
758 {
759 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
760 	struct inode *inode;
761 	struct btrfs_pending_snapshot *pending_snapshot;
762 	struct btrfs_trans_handle *trans;
763 	int ret;
764 	bool snapshot_force_cow = false;
765 
766 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
767 		return -EINVAL;
768 
769 	if (atomic_read(&root->nr_swapfiles)) {
770 		btrfs_warn(fs_info,
771 			   "cannot snapshot subvolume with active swapfile");
772 		return -ETXTBSY;
773 	}
774 
775 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
776 	if (!pending_snapshot)
777 		return -ENOMEM;
778 
779 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
780 			GFP_KERNEL);
781 	pending_snapshot->path = btrfs_alloc_path();
782 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
783 		ret = -ENOMEM;
784 		goto free_pending;
785 	}
786 
787 	/*
788 	 * Force new buffered writes to reserve space even when NOCOW is
789 	 * possible. This is to avoid later writeback (running dealloc) to
790 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
791 	 */
792 	atomic_inc(&root->will_be_snapshotted);
793 	smp_mb__after_atomic();
794 	/* wait for no snapshot writes */
795 	wait_event(root->subv_writers->wait,
796 		   percpu_counter_sum(&root->subv_writers->counter) == 0);
797 
798 	ret = btrfs_start_delalloc_snapshot(root);
799 	if (ret)
800 		goto dec_and_free;
801 
802 	/*
803 	 * All previous writes have started writeback in NOCOW mode, so now
804 	 * we force future writes to fallback to COW mode during snapshot
805 	 * creation.
806 	 */
807 	atomic_inc(&root->snapshot_force_cow);
808 	snapshot_force_cow = true;
809 
810 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
811 
812 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
813 			     BTRFS_BLOCK_RSV_TEMP);
814 	/*
815 	 * 1 - parent dir inode
816 	 * 2 - dir entries
817 	 * 1 - root item
818 	 * 2 - root ref/backref
819 	 * 1 - root of snapshot
820 	 * 1 - UUID item
821 	 */
822 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
823 					&pending_snapshot->block_rsv, 8,
824 					false);
825 	if (ret)
826 		goto dec_and_free;
827 
828 	pending_snapshot->dentry = dentry;
829 	pending_snapshot->root = root;
830 	pending_snapshot->readonly = readonly;
831 	pending_snapshot->dir = dir;
832 	pending_snapshot->inherit = inherit;
833 
834 	trans = btrfs_start_transaction(root, 0);
835 	if (IS_ERR(trans)) {
836 		ret = PTR_ERR(trans);
837 		goto fail;
838 	}
839 
840 	spin_lock(&fs_info->trans_lock);
841 	list_add(&pending_snapshot->list,
842 		 &trans->transaction->pending_snapshots);
843 	spin_unlock(&fs_info->trans_lock);
844 	if (async_transid) {
845 		*async_transid = trans->transid;
846 		ret = btrfs_commit_transaction_async(trans, 1);
847 		if (ret)
848 			ret = btrfs_commit_transaction(trans);
849 	} else {
850 		ret = btrfs_commit_transaction(trans);
851 	}
852 	if (ret)
853 		goto fail;
854 
855 	ret = pending_snapshot->error;
856 	if (ret)
857 		goto fail;
858 
859 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
860 	if (ret)
861 		goto fail;
862 
863 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
864 	if (IS_ERR(inode)) {
865 		ret = PTR_ERR(inode);
866 		goto fail;
867 	}
868 
869 	d_instantiate(dentry, inode);
870 	ret = 0;
871 fail:
872 	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
873 dec_and_free:
874 	if (snapshot_force_cow)
875 		atomic_dec(&root->snapshot_force_cow);
876 	if (atomic_dec_and_test(&root->will_be_snapshotted))
877 		wake_up_var(&root->will_be_snapshotted);
878 free_pending:
879 	kfree(pending_snapshot->root_item);
880 	btrfs_free_path(pending_snapshot->path);
881 	kfree(pending_snapshot);
882 
883 	return ret;
884 }
885 
886 /*  copy of may_delete in fs/namei.c()
887  *	Check whether we can remove a link victim from directory dir, check
888  *  whether the type of victim is right.
889  *  1. We can't do it if dir is read-only (done in permission())
890  *  2. We should have write and exec permissions on dir
891  *  3. We can't remove anything from append-only dir
892  *  4. We can't do anything with immutable dir (done in permission())
893  *  5. If the sticky bit on dir is set we should either
894  *	a. be owner of dir, or
895  *	b. be owner of victim, or
896  *	c. have CAP_FOWNER capability
897  *  6. If the victim is append-only or immutable we can't do anything with
898  *     links pointing to it.
899  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
900  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
901  *  9. We can't remove a root or mountpoint.
902  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
903  *     nfs_async_unlink().
904  */
905 
906 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
907 {
908 	int error;
909 
910 	if (d_really_is_negative(victim))
911 		return -ENOENT;
912 
913 	BUG_ON(d_inode(victim->d_parent) != dir);
914 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
915 
916 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
917 	if (error)
918 		return error;
919 	if (IS_APPEND(dir))
920 		return -EPERM;
921 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
922 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
923 		return -EPERM;
924 	if (isdir) {
925 		if (!d_is_dir(victim))
926 			return -ENOTDIR;
927 		if (IS_ROOT(victim))
928 			return -EBUSY;
929 	} else if (d_is_dir(victim))
930 		return -EISDIR;
931 	if (IS_DEADDIR(dir))
932 		return -ENOENT;
933 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
934 		return -EBUSY;
935 	return 0;
936 }
937 
938 /* copy of may_create in fs/namei.c() */
939 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
940 {
941 	if (d_really_is_positive(child))
942 		return -EEXIST;
943 	if (IS_DEADDIR(dir))
944 		return -ENOENT;
945 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
946 }
947 
948 /*
949  * Create a new subvolume below @parent.  This is largely modeled after
950  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
951  * inside this filesystem so it's quite a bit simpler.
952  */
953 static noinline int btrfs_mksubvol(const struct path *parent,
954 				   const char *name, int namelen,
955 				   struct btrfs_root *snap_src,
956 				   u64 *async_transid, bool readonly,
957 				   struct btrfs_qgroup_inherit *inherit)
958 {
959 	struct inode *dir = d_inode(parent->dentry);
960 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
961 	struct dentry *dentry;
962 	int error;
963 
964 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
965 	if (error == -EINTR)
966 		return error;
967 
968 	dentry = lookup_one_len(name, parent->dentry, namelen);
969 	error = PTR_ERR(dentry);
970 	if (IS_ERR(dentry))
971 		goto out_unlock;
972 
973 	error = btrfs_may_create(dir, dentry);
974 	if (error)
975 		goto out_dput;
976 
977 	/*
978 	 * even if this name doesn't exist, we may get hash collisions.
979 	 * check for them now when we can safely fail
980 	 */
981 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
982 					       dir->i_ino, name,
983 					       namelen);
984 	if (error)
985 		goto out_dput;
986 
987 	down_read(&fs_info->subvol_sem);
988 
989 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
990 		goto out_up_read;
991 
992 	if (snap_src) {
993 		error = create_snapshot(snap_src, dir, dentry,
994 					async_transid, readonly, inherit);
995 	} else {
996 		error = create_subvol(dir, dentry, name, namelen,
997 				      async_transid, inherit);
998 	}
999 	if (!error)
1000 		fsnotify_mkdir(dir, dentry);
1001 out_up_read:
1002 	up_read(&fs_info->subvol_sem);
1003 out_dput:
1004 	dput(dentry);
1005 out_unlock:
1006 	inode_unlock(dir);
1007 	return error;
1008 }
1009 
1010 /*
1011  * When we're defragging a range, we don't want to kick it off again
1012  * if it is really just waiting for delalloc to send it down.
1013  * If we find a nice big extent or delalloc range for the bytes in the
1014  * file you want to defrag, we return 0 to let you know to skip this
1015  * part of the file
1016  */
1017 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1018 {
1019 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1020 	struct extent_map *em = NULL;
1021 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1022 	u64 end;
1023 
1024 	read_lock(&em_tree->lock);
1025 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1026 	read_unlock(&em_tree->lock);
1027 
1028 	if (em) {
1029 		end = extent_map_end(em);
1030 		free_extent_map(em);
1031 		if (end - offset > thresh)
1032 			return 0;
1033 	}
1034 	/* if we already have a nice delalloc here, just stop */
1035 	thresh /= 2;
1036 	end = count_range_bits(io_tree, &offset, offset + thresh,
1037 			       thresh, EXTENT_DELALLOC, 1);
1038 	if (end >= thresh)
1039 		return 0;
1040 	return 1;
1041 }
1042 
1043 /*
1044  * helper function to walk through a file and find extents
1045  * newer than a specific transid, and smaller than thresh.
1046  *
1047  * This is used by the defragging code to find new and small
1048  * extents
1049  */
1050 static int find_new_extents(struct btrfs_root *root,
1051 			    struct inode *inode, u64 newer_than,
1052 			    u64 *off, u32 thresh)
1053 {
1054 	struct btrfs_path *path;
1055 	struct btrfs_key min_key;
1056 	struct extent_buffer *leaf;
1057 	struct btrfs_file_extent_item *extent;
1058 	int type;
1059 	int ret;
1060 	u64 ino = btrfs_ino(BTRFS_I(inode));
1061 
1062 	path = btrfs_alloc_path();
1063 	if (!path)
1064 		return -ENOMEM;
1065 
1066 	min_key.objectid = ino;
1067 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1068 	min_key.offset = *off;
1069 
1070 	while (1) {
1071 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1072 		if (ret != 0)
1073 			goto none;
1074 process_slot:
1075 		if (min_key.objectid != ino)
1076 			goto none;
1077 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1078 			goto none;
1079 
1080 		leaf = path->nodes[0];
1081 		extent = btrfs_item_ptr(leaf, path->slots[0],
1082 					struct btrfs_file_extent_item);
1083 
1084 		type = btrfs_file_extent_type(leaf, extent);
1085 		if (type == BTRFS_FILE_EXTENT_REG &&
1086 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1087 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1088 			*off = min_key.offset;
1089 			btrfs_free_path(path);
1090 			return 0;
1091 		}
1092 
1093 		path->slots[0]++;
1094 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1095 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1096 			goto process_slot;
1097 		}
1098 
1099 		if (min_key.offset == (u64)-1)
1100 			goto none;
1101 
1102 		min_key.offset++;
1103 		btrfs_release_path(path);
1104 	}
1105 none:
1106 	btrfs_free_path(path);
1107 	return -ENOENT;
1108 }
1109 
1110 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1111 {
1112 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1113 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1114 	struct extent_map *em;
1115 	u64 len = PAGE_SIZE;
1116 
1117 	/*
1118 	 * hopefully we have this extent in the tree already, try without
1119 	 * the full extent lock
1120 	 */
1121 	read_lock(&em_tree->lock);
1122 	em = lookup_extent_mapping(em_tree, start, len);
1123 	read_unlock(&em_tree->lock);
1124 
1125 	if (!em) {
1126 		struct extent_state *cached = NULL;
1127 		u64 end = start + len - 1;
1128 
1129 		/* get the big lock and read metadata off disk */
1130 		lock_extent_bits(io_tree, start, end, &cached);
1131 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1132 		unlock_extent_cached(io_tree, start, end, &cached);
1133 
1134 		if (IS_ERR(em))
1135 			return NULL;
1136 	}
1137 
1138 	return em;
1139 }
1140 
1141 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1142 {
1143 	struct extent_map *next;
1144 	bool ret = true;
1145 
1146 	/* this is the last extent */
1147 	if (em->start + em->len >= i_size_read(inode))
1148 		return false;
1149 
1150 	next = defrag_lookup_extent(inode, em->start + em->len);
1151 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1152 		ret = false;
1153 	else if ((em->block_start + em->block_len == next->block_start) &&
1154 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1155 		ret = false;
1156 
1157 	free_extent_map(next);
1158 	return ret;
1159 }
1160 
1161 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1162 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1163 			       int compress)
1164 {
1165 	struct extent_map *em;
1166 	int ret = 1;
1167 	bool next_mergeable = true;
1168 	bool prev_mergeable = true;
1169 
1170 	/*
1171 	 * make sure that once we start defragging an extent, we keep on
1172 	 * defragging it
1173 	 */
1174 	if (start < *defrag_end)
1175 		return 1;
1176 
1177 	*skip = 0;
1178 
1179 	em = defrag_lookup_extent(inode, start);
1180 	if (!em)
1181 		return 0;
1182 
1183 	/* this will cover holes, and inline extents */
1184 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1185 		ret = 0;
1186 		goto out;
1187 	}
1188 
1189 	if (!*defrag_end)
1190 		prev_mergeable = false;
1191 
1192 	next_mergeable = defrag_check_next_extent(inode, em);
1193 	/*
1194 	 * we hit a real extent, if it is big or the next extent is not a
1195 	 * real extent, don't bother defragging it
1196 	 */
1197 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1198 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1199 		ret = 0;
1200 out:
1201 	/*
1202 	 * last_len ends up being a counter of how many bytes we've defragged.
1203 	 * every time we choose not to defrag an extent, we reset *last_len
1204 	 * so that the next tiny extent will force a defrag.
1205 	 *
1206 	 * The end result of this is that tiny extents before a single big
1207 	 * extent will force at least part of that big extent to be defragged.
1208 	 */
1209 	if (ret) {
1210 		*defrag_end = extent_map_end(em);
1211 	} else {
1212 		*last_len = 0;
1213 		*skip = extent_map_end(em);
1214 		*defrag_end = 0;
1215 	}
1216 
1217 	free_extent_map(em);
1218 	return ret;
1219 }
1220 
1221 /*
1222  * it doesn't do much good to defrag one or two pages
1223  * at a time.  This pulls in a nice chunk of pages
1224  * to COW and defrag.
1225  *
1226  * It also makes sure the delalloc code has enough
1227  * dirty data to avoid making new small extents as part
1228  * of the defrag
1229  *
1230  * It's a good idea to start RA on this range
1231  * before calling this.
1232  */
1233 static int cluster_pages_for_defrag(struct inode *inode,
1234 				    struct page **pages,
1235 				    unsigned long start_index,
1236 				    unsigned long num_pages)
1237 {
1238 	unsigned long file_end;
1239 	u64 isize = i_size_read(inode);
1240 	u64 page_start;
1241 	u64 page_end;
1242 	u64 page_cnt;
1243 	int ret;
1244 	int i;
1245 	int i_done;
1246 	struct btrfs_ordered_extent *ordered;
1247 	struct extent_state *cached_state = NULL;
1248 	struct extent_io_tree *tree;
1249 	struct extent_changeset *data_reserved = NULL;
1250 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1251 
1252 	file_end = (isize - 1) >> PAGE_SHIFT;
1253 	if (!isize || start_index > file_end)
1254 		return 0;
1255 
1256 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1257 
1258 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1259 			start_index << PAGE_SHIFT,
1260 			page_cnt << PAGE_SHIFT);
1261 	if (ret)
1262 		return ret;
1263 	i_done = 0;
1264 	tree = &BTRFS_I(inode)->io_tree;
1265 
1266 	/* step one, lock all the pages */
1267 	for (i = 0; i < page_cnt; i++) {
1268 		struct page *page;
1269 again:
1270 		page = find_or_create_page(inode->i_mapping,
1271 					   start_index + i, mask);
1272 		if (!page)
1273 			break;
1274 
1275 		page_start = page_offset(page);
1276 		page_end = page_start + PAGE_SIZE - 1;
1277 		while (1) {
1278 			lock_extent_bits(tree, page_start, page_end,
1279 					 &cached_state);
1280 			ordered = btrfs_lookup_ordered_extent(inode,
1281 							      page_start);
1282 			unlock_extent_cached(tree, page_start, page_end,
1283 					     &cached_state);
1284 			if (!ordered)
1285 				break;
1286 
1287 			unlock_page(page);
1288 			btrfs_start_ordered_extent(inode, ordered, 1);
1289 			btrfs_put_ordered_extent(ordered);
1290 			lock_page(page);
1291 			/*
1292 			 * we unlocked the page above, so we need check if
1293 			 * it was released or not.
1294 			 */
1295 			if (page->mapping != inode->i_mapping) {
1296 				unlock_page(page);
1297 				put_page(page);
1298 				goto again;
1299 			}
1300 		}
1301 
1302 		if (!PageUptodate(page)) {
1303 			btrfs_readpage(NULL, page);
1304 			lock_page(page);
1305 			if (!PageUptodate(page)) {
1306 				unlock_page(page);
1307 				put_page(page);
1308 				ret = -EIO;
1309 				break;
1310 			}
1311 		}
1312 
1313 		if (page->mapping != inode->i_mapping) {
1314 			unlock_page(page);
1315 			put_page(page);
1316 			goto again;
1317 		}
1318 
1319 		pages[i] = page;
1320 		i_done++;
1321 	}
1322 	if (!i_done || ret)
1323 		goto out;
1324 
1325 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1326 		goto out;
1327 
1328 	/*
1329 	 * so now we have a nice long stream of locked
1330 	 * and up to date pages, lets wait on them
1331 	 */
1332 	for (i = 0; i < i_done; i++)
1333 		wait_on_page_writeback(pages[i]);
1334 
1335 	page_start = page_offset(pages[0]);
1336 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1337 
1338 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1339 			 page_start, page_end - 1, &cached_state);
1340 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1341 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1342 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1343 			  &cached_state);
1344 
1345 	if (i_done != page_cnt) {
1346 		spin_lock(&BTRFS_I(inode)->lock);
1347 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1348 		spin_unlock(&BTRFS_I(inode)->lock);
1349 		btrfs_delalloc_release_space(inode, data_reserved,
1350 				start_index << PAGE_SHIFT,
1351 				(page_cnt - i_done) << PAGE_SHIFT, true);
1352 	}
1353 
1354 
1355 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1356 			  &cached_state);
1357 
1358 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1359 			     page_start, page_end - 1, &cached_state);
1360 
1361 	for (i = 0; i < i_done; i++) {
1362 		clear_page_dirty_for_io(pages[i]);
1363 		ClearPageChecked(pages[i]);
1364 		set_page_extent_mapped(pages[i]);
1365 		set_page_dirty(pages[i]);
1366 		unlock_page(pages[i]);
1367 		put_page(pages[i]);
1368 	}
1369 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1370 				       false);
1371 	extent_changeset_free(data_reserved);
1372 	return i_done;
1373 out:
1374 	for (i = 0; i < i_done; i++) {
1375 		unlock_page(pages[i]);
1376 		put_page(pages[i]);
1377 	}
1378 	btrfs_delalloc_release_space(inode, data_reserved,
1379 			start_index << PAGE_SHIFT,
1380 			page_cnt << PAGE_SHIFT, true);
1381 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1382 				       true);
1383 	extent_changeset_free(data_reserved);
1384 	return ret;
1385 
1386 }
1387 
1388 int btrfs_defrag_file(struct inode *inode, struct file *file,
1389 		      struct btrfs_ioctl_defrag_range_args *range,
1390 		      u64 newer_than, unsigned long max_to_defrag)
1391 {
1392 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1393 	struct btrfs_root *root = BTRFS_I(inode)->root;
1394 	struct file_ra_state *ra = NULL;
1395 	unsigned long last_index;
1396 	u64 isize = i_size_read(inode);
1397 	u64 last_len = 0;
1398 	u64 skip = 0;
1399 	u64 defrag_end = 0;
1400 	u64 newer_off = range->start;
1401 	unsigned long i;
1402 	unsigned long ra_index = 0;
1403 	int ret;
1404 	int defrag_count = 0;
1405 	int compress_type = BTRFS_COMPRESS_ZLIB;
1406 	u32 extent_thresh = range->extent_thresh;
1407 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1408 	unsigned long cluster = max_cluster;
1409 	u64 new_align = ~((u64)SZ_128K - 1);
1410 	struct page **pages = NULL;
1411 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1412 
1413 	if (isize == 0)
1414 		return 0;
1415 
1416 	if (range->start >= isize)
1417 		return -EINVAL;
1418 
1419 	if (do_compress) {
1420 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1421 			return -EINVAL;
1422 		if (range->compress_type)
1423 			compress_type = range->compress_type;
1424 	}
1425 
1426 	if (extent_thresh == 0)
1427 		extent_thresh = SZ_256K;
1428 
1429 	/*
1430 	 * If we were not given a file, allocate a readahead context. As
1431 	 * readahead is just an optimization, defrag will work without it so
1432 	 * we don't error out.
1433 	 */
1434 	if (!file) {
1435 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1436 		if (ra)
1437 			file_ra_state_init(ra, inode->i_mapping);
1438 	} else {
1439 		ra = &file->f_ra;
1440 	}
1441 
1442 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1443 	if (!pages) {
1444 		ret = -ENOMEM;
1445 		goto out_ra;
1446 	}
1447 
1448 	/* find the last page to defrag */
1449 	if (range->start + range->len > range->start) {
1450 		last_index = min_t(u64, isize - 1,
1451 			 range->start + range->len - 1) >> PAGE_SHIFT;
1452 	} else {
1453 		last_index = (isize - 1) >> PAGE_SHIFT;
1454 	}
1455 
1456 	if (newer_than) {
1457 		ret = find_new_extents(root, inode, newer_than,
1458 				       &newer_off, SZ_64K);
1459 		if (!ret) {
1460 			range->start = newer_off;
1461 			/*
1462 			 * we always align our defrag to help keep
1463 			 * the extents in the file evenly spaced
1464 			 */
1465 			i = (newer_off & new_align) >> PAGE_SHIFT;
1466 		} else
1467 			goto out_ra;
1468 	} else {
1469 		i = range->start >> PAGE_SHIFT;
1470 	}
1471 	if (!max_to_defrag)
1472 		max_to_defrag = last_index - i + 1;
1473 
1474 	/*
1475 	 * make writeback starts from i, so the defrag range can be
1476 	 * written sequentially.
1477 	 */
1478 	if (i < inode->i_mapping->writeback_index)
1479 		inode->i_mapping->writeback_index = i;
1480 
1481 	while (i <= last_index && defrag_count < max_to_defrag &&
1482 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1483 		/*
1484 		 * make sure we stop running if someone unmounts
1485 		 * the FS
1486 		 */
1487 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1488 			break;
1489 
1490 		if (btrfs_defrag_cancelled(fs_info)) {
1491 			btrfs_debug(fs_info, "defrag_file cancelled");
1492 			ret = -EAGAIN;
1493 			break;
1494 		}
1495 
1496 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1497 					 extent_thresh, &last_len, &skip,
1498 					 &defrag_end, do_compress)){
1499 			unsigned long next;
1500 			/*
1501 			 * the should_defrag function tells us how much to skip
1502 			 * bump our counter by the suggested amount
1503 			 */
1504 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1505 			i = max(i + 1, next);
1506 			continue;
1507 		}
1508 
1509 		if (!newer_than) {
1510 			cluster = (PAGE_ALIGN(defrag_end) >>
1511 				   PAGE_SHIFT) - i;
1512 			cluster = min(cluster, max_cluster);
1513 		} else {
1514 			cluster = max_cluster;
1515 		}
1516 
1517 		if (i + cluster > ra_index) {
1518 			ra_index = max(i, ra_index);
1519 			if (ra)
1520 				page_cache_sync_readahead(inode->i_mapping, ra,
1521 						file, ra_index, cluster);
1522 			ra_index += cluster;
1523 		}
1524 
1525 		inode_lock(inode);
1526 		if (IS_SWAPFILE(inode)) {
1527 			ret = -ETXTBSY;
1528 		} else {
1529 			if (do_compress)
1530 				BTRFS_I(inode)->defrag_compress = compress_type;
1531 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1532 		}
1533 		if (ret < 0) {
1534 			inode_unlock(inode);
1535 			goto out_ra;
1536 		}
1537 
1538 		defrag_count += ret;
1539 		balance_dirty_pages_ratelimited(inode->i_mapping);
1540 		inode_unlock(inode);
1541 
1542 		if (newer_than) {
1543 			if (newer_off == (u64)-1)
1544 				break;
1545 
1546 			if (ret > 0)
1547 				i += ret;
1548 
1549 			newer_off = max(newer_off + 1,
1550 					(u64)i << PAGE_SHIFT);
1551 
1552 			ret = find_new_extents(root, inode, newer_than,
1553 					       &newer_off, SZ_64K);
1554 			if (!ret) {
1555 				range->start = newer_off;
1556 				i = (newer_off & new_align) >> PAGE_SHIFT;
1557 			} else {
1558 				break;
1559 			}
1560 		} else {
1561 			if (ret > 0) {
1562 				i += ret;
1563 				last_len += ret << PAGE_SHIFT;
1564 			} else {
1565 				i++;
1566 				last_len = 0;
1567 			}
1568 		}
1569 	}
1570 
1571 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1572 		filemap_flush(inode->i_mapping);
1573 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1574 			     &BTRFS_I(inode)->runtime_flags))
1575 			filemap_flush(inode->i_mapping);
1576 	}
1577 
1578 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1579 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1580 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1581 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1582 	}
1583 
1584 	ret = defrag_count;
1585 
1586 out_ra:
1587 	if (do_compress) {
1588 		inode_lock(inode);
1589 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1590 		inode_unlock(inode);
1591 	}
1592 	if (!file)
1593 		kfree(ra);
1594 	kfree(pages);
1595 	return ret;
1596 }
1597 
1598 static noinline int btrfs_ioctl_resize(struct file *file,
1599 					void __user *arg)
1600 {
1601 	struct inode *inode = file_inode(file);
1602 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1603 	u64 new_size;
1604 	u64 old_size;
1605 	u64 devid = 1;
1606 	struct btrfs_root *root = BTRFS_I(inode)->root;
1607 	struct btrfs_ioctl_vol_args *vol_args;
1608 	struct btrfs_trans_handle *trans;
1609 	struct btrfs_device *device = NULL;
1610 	char *sizestr;
1611 	char *retptr;
1612 	char *devstr = NULL;
1613 	int ret = 0;
1614 	int mod = 0;
1615 
1616 	if (!capable(CAP_SYS_ADMIN))
1617 		return -EPERM;
1618 
1619 	ret = mnt_want_write_file(file);
1620 	if (ret)
1621 		return ret;
1622 
1623 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1624 		mnt_drop_write_file(file);
1625 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1626 	}
1627 
1628 	vol_args = memdup_user(arg, sizeof(*vol_args));
1629 	if (IS_ERR(vol_args)) {
1630 		ret = PTR_ERR(vol_args);
1631 		goto out;
1632 	}
1633 
1634 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1635 
1636 	sizestr = vol_args->name;
1637 	devstr = strchr(sizestr, ':');
1638 	if (devstr) {
1639 		sizestr = devstr + 1;
1640 		*devstr = '\0';
1641 		devstr = vol_args->name;
1642 		ret = kstrtoull(devstr, 10, &devid);
1643 		if (ret)
1644 			goto out_free;
1645 		if (!devid) {
1646 			ret = -EINVAL;
1647 			goto out_free;
1648 		}
1649 		btrfs_info(fs_info, "resizing devid %llu", devid);
1650 	}
1651 
1652 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1653 	if (!device) {
1654 		btrfs_info(fs_info, "resizer unable to find device %llu",
1655 			   devid);
1656 		ret = -ENODEV;
1657 		goto out_free;
1658 	}
1659 
1660 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1661 		btrfs_info(fs_info,
1662 			   "resizer unable to apply on readonly device %llu",
1663 		       devid);
1664 		ret = -EPERM;
1665 		goto out_free;
1666 	}
1667 
1668 	if (!strcmp(sizestr, "max"))
1669 		new_size = device->bdev->bd_inode->i_size;
1670 	else {
1671 		if (sizestr[0] == '-') {
1672 			mod = -1;
1673 			sizestr++;
1674 		} else if (sizestr[0] == '+') {
1675 			mod = 1;
1676 			sizestr++;
1677 		}
1678 		new_size = memparse(sizestr, &retptr);
1679 		if (*retptr != '\0' || new_size == 0) {
1680 			ret = -EINVAL;
1681 			goto out_free;
1682 		}
1683 	}
1684 
1685 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1686 		ret = -EPERM;
1687 		goto out_free;
1688 	}
1689 
1690 	old_size = btrfs_device_get_total_bytes(device);
1691 
1692 	if (mod < 0) {
1693 		if (new_size > old_size) {
1694 			ret = -EINVAL;
1695 			goto out_free;
1696 		}
1697 		new_size = old_size - new_size;
1698 	} else if (mod > 0) {
1699 		if (new_size > ULLONG_MAX - old_size) {
1700 			ret = -ERANGE;
1701 			goto out_free;
1702 		}
1703 		new_size = old_size + new_size;
1704 	}
1705 
1706 	if (new_size < SZ_256M) {
1707 		ret = -EINVAL;
1708 		goto out_free;
1709 	}
1710 	if (new_size > device->bdev->bd_inode->i_size) {
1711 		ret = -EFBIG;
1712 		goto out_free;
1713 	}
1714 
1715 	new_size = round_down(new_size, fs_info->sectorsize);
1716 
1717 	btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1718 			  rcu_str_deref(device->name), new_size);
1719 
1720 	if (new_size > old_size) {
1721 		trans = btrfs_start_transaction(root, 0);
1722 		if (IS_ERR(trans)) {
1723 			ret = PTR_ERR(trans);
1724 			goto out_free;
1725 		}
1726 		ret = btrfs_grow_device(trans, device, new_size);
1727 		btrfs_commit_transaction(trans);
1728 	} else if (new_size < old_size) {
1729 		ret = btrfs_shrink_device(device, new_size);
1730 	} /* equal, nothing need to do */
1731 
1732 out_free:
1733 	kfree(vol_args);
1734 out:
1735 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1736 	mnt_drop_write_file(file);
1737 	return ret;
1738 }
1739 
1740 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1741 				const char *name, unsigned long fd, int subvol,
1742 				u64 *transid, bool readonly,
1743 				struct btrfs_qgroup_inherit *inherit)
1744 {
1745 	int namelen;
1746 	int ret = 0;
1747 
1748 	if (!S_ISDIR(file_inode(file)->i_mode))
1749 		return -ENOTDIR;
1750 
1751 	ret = mnt_want_write_file(file);
1752 	if (ret)
1753 		goto out;
1754 
1755 	namelen = strlen(name);
1756 	if (strchr(name, '/')) {
1757 		ret = -EINVAL;
1758 		goto out_drop_write;
1759 	}
1760 
1761 	if (name[0] == '.' &&
1762 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1763 		ret = -EEXIST;
1764 		goto out_drop_write;
1765 	}
1766 
1767 	if (subvol) {
1768 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1769 				     NULL, transid, readonly, inherit);
1770 	} else {
1771 		struct fd src = fdget(fd);
1772 		struct inode *src_inode;
1773 		if (!src.file) {
1774 			ret = -EINVAL;
1775 			goto out_drop_write;
1776 		}
1777 
1778 		src_inode = file_inode(src.file);
1779 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1780 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1781 				   "Snapshot src from another FS");
1782 			ret = -EXDEV;
1783 		} else if (!inode_owner_or_capable(src_inode)) {
1784 			/*
1785 			 * Subvolume creation is not restricted, but snapshots
1786 			 * are limited to own subvolumes only
1787 			 */
1788 			ret = -EPERM;
1789 		} else {
1790 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1791 					     BTRFS_I(src_inode)->root,
1792 					     transid, readonly, inherit);
1793 		}
1794 		fdput(src);
1795 	}
1796 out_drop_write:
1797 	mnt_drop_write_file(file);
1798 out:
1799 	return ret;
1800 }
1801 
1802 static noinline int btrfs_ioctl_snap_create(struct file *file,
1803 					    void __user *arg, int subvol)
1804 {
1805 	struct btrfs_ioctl_vol_args *vol_args;
1806 	int ret;
1807 
1808 	if (!S_ISDIR(file_inode(file)->i_mode))
1809 		return -ENOTDIR;
1810 
1811 	vol_args = memdup_user(arg, sizeof(*vol_args));
1812 	if (IS_ERR(vol_args))
1813 		return PTR_ERR(vol_args);
1814 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1815 
1816 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1817 					      vol_args->fd, subvol,
1818 					      NULL, false, NULL);
1819 
1820 	kfree(vol_args);
1821 	return ret;
1822 }
1823 
1824 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1825 					       void __user *arg, int subvol)
1826 {
1827 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1828 	int ret;
1829 	u64 transid = 0;
1830 	u64 *ptr = NULL;
1831 	bool readonly = false;
1832 	struct btrfs_qgroup_inherit *inherit = NULL;
1833 
1834 	if (!S_ISDIR(file_inode(file)->i_mode))
1835 		return -ENOTDIR;
1836 
1837 	vol_args = memdup_user(arg, sizeof(*vol_args));
1838 	if (IS_ERR(vol_args))
1839 		return PTR_ERR(vol_args);
1840 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1841 
1842 	if (vol_args->flags &
1843 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1844 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1845 		ret = -EOPNOTSUPP;
1846 		goto free_args;
1847 	}
1848 
1849 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1850 		ptr = &transid;
1851 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1852 		readonly = true;
1853 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1854 		if (vol_args->size > PAGE_SIZE) {
1855 			ret = -EINVAL;
1856 			goto free_args;
1857 		}
1858 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1859 		if (IS_ERR(inherit)) {
1860 			ret = PTR_ERR(inherit);
1861 			goto free_args;
1862 		}
1863 	}
1864 
1865 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1866 					      vol_args->fd, subvol, ptr,
1867 					      readonly, inherit);
1868 	if (ret)
1869 		goto free_inherit;
1870 
1871 	if (ptr && copy_to_user(arg +
1872 				offsetof(struct btrfs_ioctl_vol_args_v2,
1873 					transid),
1874 				ptr, sizeof(*ptr)))
1875 		ret = -EFAULT;
1876 
1877 free_inherit:
1878 	kfree(inherit);
1879 free_args:
1880 	kfree(vol_args);
1881 	return ret;
1882 }
1883 
1884 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1885 						void __user *arg)
1886 {
1887 	struct inode *inode = file_inode(file);
1888 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1889 	struct btrfs_root *root = BTRFS_I(inode)->root;
1890 	int ret = 0;
1891 	u64 flags = 0;
1892 
1893 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1894 		return -EINVAL;
1895 
1896 	down_read(&fs_info->subvol_sem);
1897 	if (btrfs_root_readonly(root))
1898 		flags |= BTRFS_SUBVOL_RDONLY;
1899 	up_read(&fs_info->subvol_sem);
1900 
1901 	if (copy_to_user(arg, &flags, sizeof(flags)))
1902 		ret = -EFAULT;
1903 
1904 	return ret;
1905 }
1906 
1907 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1908 					      void __user *arg)
1909 {
1910 	struct inode *inode = file_inode(file);
1911 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1912 	struct btrfs_root *root = BTRFS_I(inode)->root;
1913 	struct btrfs_trans_handle *trans;
1914 	u64 root_flags;
1915 	u64 flags;
1916 	int ret = 0;
1917 
1918 	if (!inode_owner_or_capable(inode))
1919 		return -EPERM;
1920 
1921 	ret = mnt_want_write_file(file);
1922 	if (ret)
1923 		goto out;
1924 
1925 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1926 		ret = -EINVAL;
1927 		goto out_drop_write;
1928 	}
1929 
1930 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1931 		ret = -EFAULT;
1932 		goto out_drop_write;
1933 	}
1934 
1935 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1936 		ret = -EINVAL;
1937 		goto out_drop_write;
1938 	}
1939 
1940 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1941 		ret = -EOPNOTSUPP;
1942 		goto out_drop_write;
1943 	}
1944 
1945 	down_write(&fs_info->subvol_sem);
1946 
1947 	/* nothing to do */
1948 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1949 		goto out_drop_sem;
1950 
1951 	root_flags = btrfs_root_flags(&root->root_item);
1952 	if (flags & BTRFS_SUBVOL_RDONLY) {
1953 		btrfs_set_root_flags(&root->root_item,
1954 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1955 	} else {
1956 		/*
1957 		 * Block RO -> RW transition if this subvolume is involved in
1958 		 * send
1959 		 */
1960 		spin_lock(&root->root_item_lock);
1961 		if (root->send_in_progress == 0) {
1962 			btrfs_set_root_flags(&root->root_item,
1963 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1964 			spin_unlock(&root->root_item_lock);
1965 		} else {
1966 			spin_unlock(&root->root_item_lock);
1967 			btrfs_warn(fs_info,
1968 				   "Attempt to set subvolume %llu read-write during send",
1969 				   root->root_key.objectid);
1970 			ret = -EPERM;
1971 			goto out_drop_sem;
1972 		}
1973 	}
1974 
1975 	trans = btrfs_start_transaction(root, 1);
1976 	if (IS_ERR(trans)) {
1977 		ret = PTR_ERR(trans);
1978 		goto out_reset;
1979 	}
1980 
1981 	ret = btrfs_update_root(trans, fs_info->tree_root,
1982 				&root->root_key, &root->root_item);
1983 	if (ret < 0) {
1984 		btrfs_end_transaction(trans);
1985 		goto out_reset;
1986 	}
1987 
1988 	ret = btrfs_commit_transaction(trans);
1989 
1990 out_reset:
1991 	if (ret)
1992 		btrfs_set_root_flags(&root->root_item, root_flags);
1993 out_drop_sem:
1994 	up_write(&fs_info->subvol_sem);
1995 out_drop_write:
1996 	mnt_drop_write_file(file);
1997 out:
1998 	return ret;
1999 }
2000 
2001 static noinline int key_in_sk(struct btrfs_key *key,
2002 			      struct btrfs_ioctl_search_key *sk)
2003 {
2004 	struct btrfs_key test;
2005 	int ret;
2006 
2007 	test.objectid = sk->min_objectid;
2008 	test.type = sk->min_type;
2009 	test.offset = sk->min_offset;
2010 
2011 	ret = btrfs_comp_cpu_keys(key, &test);
2012 	if (ret < 0)
2013 		return 0;
2014 
2015 	test.objectid = sk->max_objectid;
2016 	test.type = sk->max_type;
2017 	test.offset = sk->max_offset;
2018 
2019 	ret = btrfs_comp_cpu_keys(key, &test);
2020 	if (ret > 0)
2021 		return 0;
2022 	return 1;
2023 }
2024 
2025 static noinline int copy_to_sk(struct btrfs_path *path,
2026 			       struct btrfs_key *key,
2027 			       struct btrfs_ioctl_search_key *sk,
2028 			       size_t *buf_size,
2029 			       char __user *ubuf,
2030 			       unsigned long *sk_offset,
2031 			       int *num_found)
2032 {
2033 	u64 found_transid;
2034 	struct extent_buffer *leaf;
2035 	struct btrfs_ioctl_search_header sh;
2036 	struct btrfs_key test;
2037 	unsigned long item_off;
2038 	unsigned long item_len;
2039 	int nritems;
2040 	int i;
2041 	int slot;
2042 	int ret = 0;
2043 
2044 	leaf = path->nodes[0];
2045 	slot = path->slots[0];
2046 	nritems = btrfs_header_nritems(leaf);
2047 
2048 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2049 		i = nritems;
2050 		goto advance_key;
2051 	}
2052 	found_transid = btrfs_header_generation(leaf);
2053 
2054 	for (i = slot; i < nritems; i++) {
2055 		item_off = btrfs_item_ptr_offset(leaf, i);
2056 		item_len = btrfs_item_size_nr(leaf, i);
2057 
2058 		btrfs_item_key_to_cpu(leaf, key, i);
2059 		if (!key_in_sk(key, sk))
2060 			continue;
2061 
2062 		if (sizeof(sh) + item_len > *buf_size) {
2063 			if (*num_found) {
2064 				ret = 1;
2065 				goto out;
2066 			}
2067 
2068 			/*
2069 			 * return one empty item back for v1, which does not
2070 			 * handle -EOVERFLOW
2071 			 */
2072 
2073 			*buf_size = sizeof(sh) + item_len;
2074 			item_len = 0;
2075 			ret = -EOVERFLOW;
2076 		}
2077 
2078 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2079 			ret = 1;
2080 			goto out;
2081 		}
2082 
2083 		sh.objectid = key->objectid;
2084 		sh.offset = key->offset;
2085 		sh.type = key->type;
2086 		sh.len = item_len;
2087 		sh.transid = found_transid;
2088 
2089 		/* copy search result header */
2090 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2091 			ret = -EFAULT;
2092 			goto out;
2093 		}
2094 
2095 		*sk_offset += sizeof(sh);
2096 
2097 		if (item_len) {
2098 			char __user *up = ubuf + *sk_offset;
2099 			/* copy the item */
2100 			if (read_extent_buffer_to_user(leaf, up,
2101 						       item_off, item_len)) {
2102 				ret = -EFAULT;
2103 				goto out;
2104 			}
2105 
2106 			*sk_offset += item_len;
2107 		}
2108 		(*num_found)++;
2109 
2110 		if (ret) /* -EOVERFLOW from above */
2111 			goto out;
2112 
2113 		if (*num_found >= sk->nr_items) {
2114 			ret = 1;
2115 			goto out;
2116 		}
2117 	}
2118 advance_key:
2119 	ret = 0;
2120 	test.objectid = sk->max_objectid;
2121 	test.type = sk->max_type;
2122 	test.offset = sk->max_offset;
2123 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2124 		ret = 1;
2125 	else if (key->offset < (u64)-1)
2126 		key->offset++;
2127 	else if (key->type < (u8)-1) {
2128 		key->offset = 0;
2129 		key->type++;
2130 	} else if (key->objectid < (u64)-1) {
2131 		key->offset = 0;
2132 		key->type = 0;
2133 		key->objectid++;
2134 	} else
2135 		ret = 1;
2136 out:
2137 	/*
2138 	 *  0: all items from this leaf copied, continue with next
2139 	 *  1: * more items can be copied, but unused buffer is too small
2140 	 *     * all items were found
2141 	 *     Either way, it will stops the loop which iterates to the next
2142 	 *     leaf
2143 	 *  -EOVERFLOW: item was to large for buffer
2144 	 *  -EFAULT: could not copy extent buffer back to userspace
2145 	 */
2146 	return ret;
2147 }
2148 
2149 static noinline int search_ioctl(struct inode *inode,
2150 				 struct btrfs_ioctl_search_key *sk,
2151 				 size_t *buf_size,
2152 				 char __user *ubuf)
2153 {
2154 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2155 	struct btrfs_root *root;
2156 	struct btrfs_key key;
2157 	struct btrfs_path *path;
2158 	int ret;
2159 	int num_found = 0;
2160 	unsigned long sk_offset = 0;
2161 
2162 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2163 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2164 		return -EOVERFLOW;
2165 	}
2166 
2167 	path = btrfs_alloc_path();
2168 	if (!path)
2169 		return -ENOMEM;
2170 
2171 	if (sk->tree_id == 0) {
2172 		/* search the root of the inode that was passed */
2173 		root = BTRFS_I(inode)->root;
2174 	} else {
2175 		key.objectid = sk->tree_id;
2176 		key.type = BTRFS_ROOT_ITEM_KEY;
2177 		key.offset = (u64)-1;
2178 		root = btrfs_read_fs_root_no_name(info, &key);
2179 		if (IS_ERR(root)) {
2180 			btrfs_free_path(path);
2181 			return PTR_ERR(root);
2182 		}
2183 	}
2184 
2185 	key.objectid = sk->min_objectid;
2186 	key.type = sk->min_type;
2187 	key.offset = sk->min_offset;
2188 
2189 	while (1) {
2190 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2191 		if (ret != 0) {
2192 			if (ret > 0)
2193 				ret = 0;
2194 			goto err;
2195 		}
2196 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2197 				 &sk_offset, &num_found);
2198 		btrfs_release_path(path);
2199 		if (ret)
2200 			break;
2201 
2202 	}
2203 	if (ret > 0)
2204 		ret = 0;
2205 err:
2206 	sk->nr_items = num_found;
2207 	btrfs_free_path(path);
2208 	return ret;
2209 }
2210 
2211 static noinline int btrfs_ioctl_tree_search(struct file *file,
2212 					   void __user *argp)
2213 {
2214 	struct btrfs_ioctl_search_args __user *uargs;
2215 	struct btrfs_ioctl_search_key sk;
2216 	struct inode *inode;
2217 	int ret;
2218 	size_t buf_size;
2219 
2220 	if (!capable(CAP_SYS_ADMIN))
2221 		return -EPERM;
2222 
2223 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2224 
2225 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2226 		return -EFAULT;
2227 
2228 	buf_size = sizeof(uargs->buf);
2229 
2230 	inode = file_inode(file);
2231 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2232 
2233 	/*
2234 	 * In the origin implementation an overflow is handled by returning a
2235 	 * search header with a len of zero, so reset ret.
2236 	 */
2237 	if (ret == -EOVERFLOW)
2238 		ret = 0;
2239 
2240 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2241 		ret = -EFAULT;
2242 	return ret;
2243 }
2244 
2245 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2246 					       void __user *argp)
2247 {
2248 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2249 	struct btrfs_ioctl_search_args_v2 args;
2250 	struct inode *inode;
2251 	int ret;
2252 	size_t buf_size;
2253 	const size_t buf_limit = SZ_16M;
2254 
2255 	if (!capable(CAP_SYS_ADMIN))
2256 		return -EPERM;
2257 
2258 	/* copy search header and buffer size */
2259 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2260 	if (copy_from_user(&args, uarg, sizeof(args)))
2261 		return -EFAULT;
2262 
2263 	buf_size = args.buf_size;
2264 
2265 	/* limit result size to 16MB */
2266 	if (buf_size > buf_limit)
2267 		buf_size = buf_limit;
2268 
2269 	inode = file_inode(file);
2270 	ret = search_ioctl(inode, &args.key, &buf_size,
2271 			   (char __user *)(&uarg->buf[0]));
2272 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2273 		ret = -EFAULT;
2274 	else if (ret == -EOVERFLOW &&
2275 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2276 		ret = -EFAULT;
2277 
2278 	return ret;
2279 }
2280 
2281 /*
2282  * Search INODE_REFs to identify path name of 'dirid' directory
2283  * in a 'tree_id' tree. and sets path name to 'name'.
2284  */
2285 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2286 				u64 tree_id, u64 dirid, char *name)
2287 {
2288 	struct btrfs_root *root;
2289 	struct btrfs_key key;
2290 	char *ptr;
2291 	int ret = -1;
2292 	int slot;
2293 	int len;
2294 	int total_len = 0;
2295 	struct btrfs_inode_ref *iref;
2296 	struct extent_buffer *l;
2297 	struct btrfs_path *path;
2298 
2299 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2300 		name[0]='\0';
2301 		return 0;
2302 	}
2303 
2304 	path = btrfs_alloc_path();
2305 	if (!path)
2306 		return -ENOMEM;
2307 
2308 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2309 
2310 	key.objectid = tree_id;
2311 	key.type = BTRFS_ROOT_ITEM_KEY;
2312 	key.offset = (u64)-1;
2313 	root = btrfs_read_fs_root_no_name(info, &key);
2314 	if (IS_ERR(root)) {
2315 		ret = PTR_ERR(root);
2316 		goto out;
2317 	}
2318 
2319 	key.objectid = dirid;
2320 	key.type = BTRFS_INODE_REF_KEY;
2321 	key.offset = (u64)-1;
2322 
2323 	while (1) {
2324 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2325 		if (ret < 0)
2326 			goto out;
2327 		else if (ret > 0) {
2328 			ret = btrfs_previous_item(root, path, dirid,
2329 						  BTRFS_INODE_REF_KEY);
2330 			if (ret < 0)
2331 				goto out;
2332 			else if (ret > 0) {
2333 				ret = -ENOENT;
2334 				goto out;
2335 			}
2336 		}
2337 
2338 		l = path->nodes[0];
2339 		slot = path->slots[0];
2340 		btrfs_item_key_to_cpu(l, &key, slot);
2341 
2342 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2343 		len = btrfs_inode_ref_name_len(l, iref);
2344 		ptr -= len + 1;
2345 		total_len += len + 1;
2346 		if (ptr < name) {
2347 			ret = -ENAMETOOLONG;
2348 			goto out;
2349 		}
2350 
2351 		*(ptr + len) = '/';
2352 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2353 
2354 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2355 			break;
2356 
2357 		btrfs_release_path(path);
2358 		key.objectid = key.offset;
2359 		key.offset = (u64)-1;
2360 		dirid = key.objectid;
2361 	}
2362 	memmove(name, ptr, total_len);
2363 	name[total_len] = '\0';
2364 	ret = 0;
2365 out:
2366 	btrfs_free_path(path);
2367 	return ret;
2368 }
2369 
2370 static int btrfs_search_path_in_tree_user(struct inode *inode,
2371 				struct btrfs_ioctl_ino_lookup_user_args *args)
2372 {
2373 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2374 	struct super_block *sb = inode->i_sb;
2375 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2376 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2377 	u64 dirid = args->dirid;
2378 	unsigned long item_off;
2379 	unsigned long item_len;
2380 	struct btrfs_inode_ref *iref;
2381 	struct btrfs_root_ref *rref;
2382 	struct btrfs_root *root;
2383 	struct btrfs_path *path;
2384 	struct btrfs_key key, key2;
2385 	struct extent_buffer *leaf;
2386 	struct inode *temp_inode;
2387 	char *ptr;
2388 	int slot;
2389 	int len;
2390 	int total_len = 0;
2391 	int ret;
2392 
2393 	path = btrfs_alloc_path();
2394 	if (!path)
2395 		return -ENOMEM;
2396 
2397 	/*
2398 	 * If the bottom subvolume does not exist directly under upper_limit,
2399 	 * construct the path in from the bottom up.
2400 	 */
2401 	if (dirid != upper_limit.objectid) {
2402 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2403 
2404 		key.objectid = treeid;
2405 		key.type = BTRFS_ROOT_ITEM_KEY;
2406 		key.offset = (u64)-1;
2407 		root = btrfs_read_fs_root_no_name(fs_info, &key);
2408 		if (IS_ERR(root)) {
2409 			ret = PTR_ERR(root);
2410 			goto out;
2411 		}
2412 
2413 		key.objectid = dirid;
2414 		key.type = BTRFS_INODE_REF_KEY;
2415 		key.offset = (u64)-1;
2416 		while (1) {
2417 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2418 			if (ret < 0) {
2419 				goto out;
2420 			} else if (ret > 0) {
2421 				ret = btrfs_previous_item(root, path, dirid,
2422 							  BTRFS_INODE_REF_KEY);
2423 				if (ret < 0) {
2424 					goto out;
2425 				} else if (ret > 0) {
2426 					ret = -ENOENT;
2427 					goto out;
2428 				}
2429 			}
2430 
2431 			leaf = path->nodes[0];
2432 			slot = path->slots[0];
2433 			btrfs_item_key_to_cpu(leaf, &key, slot);
2434 
2435 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2436 			len = btrfs_inode_ref_name_len(leaf, iref);
2437 			ptr -= len + 1;
2438 			total_len += len + 1;
2439 			if (ptr < args->path) {
2440 				ret = -ENAMETOOLONG;
2441 				goto out;
2442 			}
2443 
2444 			*(ptr + len) = '/';
2445 			read_extent_buffer(leaf, ptr,
2446 					(unsigned long)(iref + 1), len);
2447 
2448 			/* Check the read+exec permission of this directory */
2449 			ret = btrfs_previous_item(root, path, dirid,
2450 						  BTRFS_INODE_ITEM_KEY);
2451 			if (ret < 0) {
2452 				goto out;
2453 			} else if (ret > 0) {
2454 				ret = -ENOENT;
2455 				goto out;
2456 			}
2457 
2458 			leaf = path->nodes[0];
2459 			slot = path->slots[0];
2460 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2461 			if (key2.objectid != dirid) {
2462 				ret = -ENOENT;
2463 				goto out;
2464 			}
2465 
2466 			temp_inode = btrfs_iget(sb, &key2, root, NULL);
2467 			if (IS_ERR(temp_inode)) {
2468 				ret = PTR_ERR(temp_inode);
2469 				goto out;
2470 			}
2471 			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2472 			iput(temp_inode);
2473 			if (ret) {
2474 				ret = -EACCES;
2475 				goto out;
2476 			}
2477 
2478 			if (key.offset == upper_limit.objectid)
2479 				break;
2480 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2481 				ret = -EACCES;
2482 				goto out;
2483 			}
2484 
2485 			btrfs_release_path(path);
2486 			key.objectid = key.offset;
2487 			key.offset = (u64)-1;
2488 			dirid = key.objectid;
2489 		}
2490 
2491 		memmove(args->path, ptr, total_len);
2492 		args->path[total_len] = '\0';
2493 		btrfs_release_path(path);
2494 	}
2495 
2496 	/* Get the bottom subvolume's name from ROOT_REF */
2497 	root = fs_info->tree_root;
2498 	key.objectid = treeid;
2499 	key.type = BTRFS_ROOT_REF_KEY;
2500 	key.offset = args->treeid;
2501 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2502 	if (ret < 0) {
2503 		goto out;
2504 	} else if (ret > 0) {
2505 		ret = -ENOENT;
2506 		goto out;
2507 	}
2508 
2509 	leaf = path->nodes[0];
2510 	slot = path->slots[0];
2511 	btrfs_item_key_to_cpu(leaf, &key, slot);
2512 
2513 	item_off = btrfs_item_ptr_offset(leaf, slot);
2514 	item_len = btrfs_item_size_nr(leaf, slot);
2515 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2516 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2517 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2518 		ret = -EINVAL;
2519 		goto out;
2520 	}
2521 
2522 	/* Copy subvolume's name */
2523 	item_off += sizeof(struct btrfs_root_ref);
2524 	item_len -= sizeof(struct btrfs_root_ref);
2525 	read_extent_buffer(leaf, args->name, item_off, item_len);
2526 	args->name[item_len] = 0;
2527 
2528 out:
2529 	btrfs_free_path(path);
2530 	return ret;
2531 }
2532 
2533 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2534 					   void __user *argp)
2535 {
2536 	struct btrfs_ioctl_ino_lookup_args *args;
2537 	struct inode *inode;
2538 	int ret = 0;
2539 
2540 	args = memdup_user(argp, sizeof(*args));
2541 	if (IS_ERR(args))
2542 		return PTR_ERR(args);
2543 
2544 	inode = file_inode(file);
2545 
2546 	/*
2547 	 * Unprivileged query to obtain the containing subvolume root id. The
2548 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2549 	 */
2550 	if (args->treeid == 0)
2551 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2552 
2553 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2554 		args->name[0] = 0;
2555 		goto out;
2556 	}
2557 
2558 	if (!capable(CAP_SYS_ADMIN)) {
2559 		ret = -EPERM;
2560 		goto out;
2561 	}
2562 
2563 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2564 					args->treeid, args->objectid,
2565 					args->name);
2566 
2567 out:
2568 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2569 		ret = -EFAULT;
2570 
2571 	kfree(args);
2572 	return ret;
2573 }
2574 
2575 /*
2576  * Version of ino_lookup ioctl (unprivileged)
2577  *
2578  * The main differences from ino_lookup ioctl are:
2579  *
2580  *   1. Read + Exec permission will be checked using inode_permission() during
2581  *      path construction. -EACCES will be returned in case of failure.
2582  *   2. Path construction will be stopped at the inode number which corresponds
2583  *      to the fd with which this ioctl is called. If constructed path does not
2584  *      exist under fd's inode, -EACCES will be returned.
2585  *   3. The name of bottom subvolume is also searched and filled.
2586  */
2587 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2588 {
2589 	struct btrfs_ioctl_ino_lookup_user_args *args;
2590 	struct inode *inode;
2591 	int ret;
2592 
2593 	args = memdup_user(argp, sizeof(*args));
2594 	if (IS_ERR(args))
2595 		return PTR_ERR(args);
2596 
2597 	inode = file_inode(file);
2598 
2599 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2600 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2601 		/*
2602 		 * The subvolume does not exist under fd with which this is
2603 		 * called
2604 		 */
2605 		kfree(args);
2606 		return -EACCES;
2607 	}
2608 
2609 	ret = btrfs_search_path_in_tree_user(inode, args);
2610 
2611 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2612 		ret = -EFAULT;
2613 
2614 	kfree(args);
2615 	return ret;
2616 }
2617 
2618 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2619 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2620 {
2621 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2622 	struct btrfs_fs_info *fs_info;
2623 	struct btrfs_root *root;
2624 	struct btrfs_path *path;
2625 	struct btrfs_key key;
2626 	struct btrfs_root_item *root_item;
2627 	struct btrfs_root_ref *rref;
2628 	struct extent_buffer *leaf;
2629 	unsigned long item_off;
2630 	unsigned long item_len;
2631 	struct inode *inode;
2632 	int slot;
2633 	int ret = 0;
2634 
2635 	path = btrfs_alloc_path();
2636 	if (!path)
2637 		return -ENOMEM;
2638 
2639 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2640 	if (!subvol_info) {
2641 		btrfs_free_path(path);
2642 		return -ENOMEM;
2643 	}
2644 
2645 	inode = file_inode(file);
2646 	fs_info = BTRFS_I(inode)->root->fs_info;
2647 
2648 	/* Get root_item of inode's subvolume */
2649 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2650 	key.type = BTRFS_ROOT_ITEM_KEY;
2651 	key.offset = (u64)-1;
2652 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2653 	if (IS_ERR(root)) {
2654 		ret = PTR_ERR(root);
2655 		goto out;
2656 	}
2657 	root_item = &root->root_item;
2658 
2659 	subvol_info->treeid = key.objectid;
2660 
2661 	subvol_info->generation = btrfs_root_generation(root_item);
2662 	subvol_info->flags = btrfs_root_flags(root_item);
2663 
2664 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2665 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2666 						    BTRFS_UUID_SIZE);
2667 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2668 						    BTRFS_UUID_SIZE);
2669 
2670 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2671 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2672 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2673 
2674 	subvol_info->otransid = btrfs_root_otransid(root_item);
2675 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2676 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2677 
2678 	subvol_info->stransid = btrfs_root_stransid(root_item);
2679 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2680 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2681 
2682 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2683 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2684 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2685 
2686 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2687 		/* Search root tree for ROOT_BACKREF of this subvolume */
2688 		root = fs_info->tree_root;
2689 
2690 		key.type = BTRFS_ROOT_BACKREF_KEY;
2691 		key.offset = 0;
2692 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2693 		if (ret < 0) {
2694 			goto out;
2695 		} else if (path->slots[0] >=
2696 			   btrfs_header_nritems(path->nodes[0])) {
2697 			ret = btrfs_next_leaf(root, path);
2698 			if (ret < 0) {
2699 				goto out;
2700 			} else if (ret > 0) {
2701 				ret = -EUCLEAN;
2702 				goto out;
2703 			}
2704 		}
2705 
2706 		leaf = path->nodes[0];
2707 		slot = path->slots[0];
2708 		btrfs_item_key_to_cpu(leaf, &key, slot);
2709 		if (key.objectid == subvol_info->treeid &&
2710 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2711 			subvol_info->parent_id = key.offset;
2712 
2713 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2714 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2715 
2716 			item_off = btrfs_item_ptr_offset(leaf, slot)
2717 					+ sizeof(struct btrfs_root_ref);
2718 			item_len = btrfs_item_size_nr(leaf, slot)
2719 					- sizeof(struct btrfs_root_ref);
2720 			read_extent_buffer(leaf, subvol_info->name,
2721 					   item_off, item_len);
2722 		} else {
2723 			ret = -ENOENT;
2724 			goto out;
2725 		}
2726 	}
2727 
2728 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2729 		ret = -EFAULT;
2730 
2731 out:
2732 	btrfs_free_path(path);
2733 	kzfree(subvol_info);
2734 	return ret;
2735 }
2736 
2737 /*
2738  * Return ROOT_REF information of the subvolume containing this inode
2739  * except the subvolume name.
2740  */
2741 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2742 {
2743 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2744 	struct btrfs_root_ref *rref;
2745 	struct btrfs_root *root;
2746 	struct btrfs_path *path;
2747 	struct btrfs_key key;
2748 	struct extent_buffer *leaf;
2749 	struct inode *inode;
2750 	u64 objectid;
2751 	int slot;
2752 	int ret;
2753 	u8 found;
2754 
2755 	path = btrfs_alloc_path();
2756 	if (!path)
2757 		return -ENOMEM;
2758 
2759 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2760 	if (IS_ERR(rootrefs)) {
2761 		btrfs_free_path(path);
2762 		return PTR_ERR(rootrefs);
2763 	}
2764 
2765 	inode = file_inode(file);
2766 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2767 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2768 
2769 	key.objectid = objectid;
2770 	key.type = BTRFS_ROOT_REF_KEY;
2771 	key.offset = rootrefs->min_treeid;
2772 	found = 0;
2773 
2774 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2775 	if (ret < 0) {
2776 		goto out;
2777 	} else if (path->slots[0] >=
2778 		   btrfs_header_nritems(path->nodes[0])) {
2779 		ret = btrfs_next_leaf(root, path);
2780 		if (ret < 0) {
2781 			goto out;
2782 		} else if (ret > 0) {
2783 			ret = -EUCLEAN;
2784 			goto out;
2785 		}
2786 	}
2787 	while (1) {
2788 		leaf = path->nodes[0];
2789 		slot = path->slots[0];
2790 
2791 		btrfs_item_key_to_cpu(leaf, &key, slot);
2792 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2793 			ret = 0;
2794 			goto out;
2795 		}
2796 
2797 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2798 			ret = -EOVERFLOW;
2799 			goto out;
2800 		}
2801 
2802 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2803 		rootrefs->rootref[found].treeid = key.offset;
2804 		rootrefs->rootref[found].dirid =
2805 				  btrfs_root_ref_dirid(leaf, rref);
2806 		found++;
2807 
2808 		ret = btrfs_next_item(root, path);
2809 		if (ret < 0) {
2810 			goto out;
2811 		} else if (ret > 0) {
2812 			ret = -EUCLEAN;
2813 			goto out;
2814 		}
2815 	}
2816 
2817 out:
2818 	if (!ret || ret == -EOVERFLOW) {
2819 		rootrefs->num_items = found;
2820 		/* update min_treeid for next search */
2821 		if (found)
2822 			rootrefs->min_treeid =
2823 				rootrefs->rootref[found - 1].treeid + 1;
2824 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2825 			ret = -EFAULT;
2826 	}
2827 
2828 	kfree(rootrefs);
2829 	btrfs_free_path(path);
2830 
2831 	return ret;
2832 }
2833 
2834 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2835 					     void __user *arg)
2836 {
2837 	struct dentry *parent = file->f_path.dentry;
2838 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2839 	struct dentry *dentry;
2840 	struct inode *dir = d_inode(parent);
2841 	struct inode *inode;
2842 	struct btrfs_root *root = BTRFS_I(dir)->root;
2843 	struct btrfs_root *dest = NULL;
2844 	struct btrfs_ioctl_vol_args *vol_args;
2845 	int namelen;
2846 	int err = 0;
2847 
2848 	if (!S_ISDIR(dir->i_mode))
2849 		return -ENOTDIR;
2850 
2851 	vol_args = memdup_user(arg, sizeof(*vol_args));
2852 	if (IS_ERR(vol_args))
2853 		return PTR_ERR(vol_args);
2854 
2855 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2856 	namelen = strlen(vol_args->name);
2857 	if (strchr(vol_args->name, '/') ||
2858 	    strncmp(vol_args->name, "..", namelen) == 0) {
2859 		err = -EINVAL;
2860 		goto out;
2861 	}
2862 
2863 	err = mnt_want_write_file(file);
2864 	if (err)
2865 		goto out;
2866 
2867 
2868 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2869 	if (err == -EINTR)
2870 		goto out_drop_write;
2871 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2872 	if (IS_ERR(dentry)) {
2873 		err = PTR_ERR(dentry);
2874 		goto out_unlock_dir;
2875 	}
2876 
2877 	if (d_really_is_negative(dentry)) {
2878 		err = -ENOENT;
2879 		goto out_dput;
2880 	}
2881 
2882 	inode = d_inode(dentry);
2883 	dest = BTRFS_I(inode)->root;
2884 	if (!capable(CAP_SYS_ADMIN)) {
2885 		/*
2886 		 * Regular user.  Only allow this with a special mount
2887 		 * option, when the user has write+exec access to the
2888 		 * subvol root, and when rmdir(2) would have been
2889 		 * allowed.
2890 		 *
2891 		 * Note that this is _not_ check that the subvol is
2892 		 * empty or doesn't contain data that we wouldn't
2893 		 * otherwise be able to delete.
2894 		 *
2895 		 * Users who want to delete empty subvols should try
2896 		 * rmdir(2).
2897 		 */
2898 		err = -EPERM;
2899 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2900 			goto out_dput;
2901 
2902 		/*
2903 		 * Do not allow deletion if the parent dir is the same
2904 		 * as the dir to be deleted.  That means the ioctl
2905 		 * must be called on the dentry referencing the root
2906 		 * of the subvol, not a random directory contained
2907 		 * within it.
2908 		 */
2909 		err = -EINVAL;
2910 		if (root == dest)
2911 			goto out_dput;
2912 
2913 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2914 		if (err)
2915 			goto out_dput;
2916 	}
2917 
2918 	/* check if subvolume may be deleted by a user */
2919 	err = btrfs_may_delete(dir, dentry, 1);
2920 	if (err)
2921 		goto out_dput;
2922 
2923 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2924 		err = -EINVAL;
2925 		goto out_dput;
2926 	}
2927 
2928 	inode_lock(inode);
2929 	err = btrfs_delete_subvolume(dir, dentry);
2930 	inode_unlock(inode);
2931 	if (!err)
2932 		d_delete(dentry);
2933 
2934 out_dput:
2935 	dput(dentry);
2936 out_unlock_dir:
2937 	inode_unlock(dir);
2938 out_drop_write:
2939 	mnt_drop_write_file(file);
2940 out:
2941 	kfree(vol_args);
2942 	return err;
2943 }
2944 
2945 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2946 {
2947 	struct inode *inode = file_inode(file);
2948 	struct btrfs_root *root = BTRFS_I(inode)->root;
2949 	struct btrfs_ioctl_defrag_range_args *range;
2950 	int ret;
2951 
2952 	ret = mnt_want_write_file(file);
2953 	if (ret)
2954 		return ret;
2955 
2956 	if (btrfs_root_readonly(root)) {
2957 		ret = -EROFS;
2958 		goto out;
2959 	}
2960 
2961 	switch (inode->i_mode & S_IFMT) {
2962 	case S_IFDIR:
2963 		if (!capable(CAP_SYS_ADMIN)) {
2964 			ret = -EPERM;
2965 			goto out;
2966 		}
2967 		ret = btrfs_defrag_root(root);
2968 		break;
2969 	case S_IFREG:
2970 		/*
2971 		 * Note that this does not check the file descriptor for write
2972 		 * access. This prevents defragmenting executables that are
2973 		 * running and allows defrag on files open in read-only mode.
2974 		 */
2975 		if (!capable(CAP_SYS_ADMIN) &&
2976 		    inode_permission(inode, MAY_WRITE)) {
2977 			ret = -EPERM;
2978 			goto out;
2979 		}
2980 
2981 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2982 		if (!range) {
2983 			ret = -ENOMEM;
2984 			goto out;
2985 		}
2986 
2987 		if (argp) {
2988 			if (copy_from_user(range, argp,
2989 					   sizeof(*range))) {
2990 				ret = -EFAULT;
2991 				kfree(range);
2992 				goto out;
2993 			}
2994 			/* compression requires us to start the IO */
2995 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2996 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2997 				range->extent_thresh = (u32)-1;
2998 			}
2999 		} else {
3000 			/* the rest are all set to zero by kzalloc */
3001 			range->len = (u64)-1;
3002 		}
3003 		ret = btrfs_defrag_file(file_inode(file), file,
3004 					range, BTRFS_OLDEST_GENERATION, 0);
3005 		if (ret > 0)
3006 			ret = 0;
3007 		kfree(range);
3008 		break;
3009 	default:
3010 		ret = -EINVAL;
3011 	}
3012 out:
3013 	mnt_drop_write_file(file);
3014 	return ret;
3015 }
3016 
3017 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3018 {
3019 	struct btrfs_ioctl_vol_args *vol_args;
3020 	int ret;
3021 
3022 	if (!capable(CAP_SYS_ADMIN))
3023 		return -EPERM;
3024 
3025 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3026 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3027 
3028 	vol_args = memdup_user(arg, sizeof(*vol_args));
3029 	if (IS_ERR(vol_args)) {
3030 		ret = PTR_ERR(vol_args);
3031 		goto out;
3032 	}
3033 
3034 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3035 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3036 
3037 	if (!ret)
3038 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3039 
3040 	kfree(vol_args);
3041 out:
3042 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3043 	return ret;
3044 }
3045 
3046 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3047 {
3048 	struct inode *inode = file_inode(file);
3049 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3050 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3051 	int ret;
3052 
3053 	if (!capable(CAP_SYS_ADMIN))
3054 		return -EPERM;
3055 
3056 	ret = mnt_want_write_file(file);
3057 	if (ret)
3058 		return ret;
3059 
3060 	vol_args = memdup_user(arg, sizeof(*vol_args));
3061 	if (IS_ERR(vol_args)) {
3062 		ret = PTR_ERR(vol_args);
3063 		goto err_drop;
3064 	}
3065 
3066 	/* Check for compatibility reject unknown flags */
3067 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
3068 		ret = -EOPNOTSUPP;
3069 		goto out;
3070 	}
3071 
3072 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3073 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3074 		goto out;
3075 	}
3076 
3077 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3078 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3079 	} else {
3080 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3081 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3082 	}
3083 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3084 
3085 	if (!ret) {
3086 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3087 			btrfs_info(fs_info, "device deleted: id %llu",
3088 					vol_args->devid);
3089 		else
3090 			btrfs_info(fs_info, "device deleted: %s",
3091 					vol_args->name);
3092 	}
3093 out:
3094 	kfree(vol_args);
3095 err_drop:
3096 	mnt_drop_write_file(file);
3097 	return ret;
3098 }
3099 
3100 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3101 {
3102 	struct inode *inode = file_inode(file);
3103 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3104 	struct btrfs_ioctl_vol_args *vol_args;
3105 	int ret;
3106 
3107 	if (!capable(CAP_SYS_ADMIN))
3108 		return -EPERM;
3109 
3110 	ret = mnt_want_write_file(file);
3111 	if (ret)
3112 		return ret;
3113 
3114 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3115 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3116 		goto out_drop_write;
3117 	}
3118 
3119 	vol_args = memdup_user(arg, sizeof(*vol_args));
3120 	if (IS_ERR(vol_args)) {
3121 		ret = PTR_ERR(vol_args);
3122 		goto out;
3123 	}
3124 
3125 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3126 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3127 
3128 	if (!ret)
3129 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3130 	kfree(vol_args);
3131 out:
3132 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3133 out_drop_write:
3134 	mnt_drop_write_file(file);
3135 
3136 	return ret;
3137 }
3138 
3139 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3140 				void __user *arg)
3141 {
3142 	struct btrfs_ioctl_fs_info_args *fi_args;
3143 	struct btrfs_device *device;
3144 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3145 	int ret = 0;
3146 
3147 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3148 	if (!fi_args)
3149 		return -ENOMEM;
3150 
3151 	rcu_read_lock();
3152 	fi_args->num_devices = fs_devices->num_devices;
3153 
3154 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3155 		if (device->devid > fi_args->max_id)
3156 			fi_args->max_id = device->devid;
3157 	}
3158 	rcu_read_unlock();
3159 
3160 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3161 	fi_args->nodesize = fs_info->nodesize;
3162 	fi_args->sectorsize = fs_info->sectorsize;
3163 	fi_args->clone_alignment = fs_info->sectorsize;
3164 
3165 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3166 		ret = -EFAULT;
3167 
3168 	kfree(fi_args);
3169 	return ret;
3170 }
3171 
3172 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3173 				 void __user *arg)
3174 {
3175 	struct btrfs_ioctl_dev_info_args *di_args;
3176 	struct btrfs_device *dev;
3177 	int ret = 0;
3178 	char *s_uuid = NULL;
3179 
3180 	di_args = memdup_user(arg, sizeof(*di_args));
3181 	if (IS_ERR(di_args))
3182 		return PTR_ERR(di_args);
3183 
3184 	if (!btrfs_is_empty_uuid(di_args->uuid))
3185 		s_uuid = di_args->uuid;
3186 
3187 	rcu_read_lock();
3188 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3189 				NULL, true);
3190 
3191 	if (!dev) {
3192 		ret = -ENODEV;
3193 		goto out;
3194 	}
3195 
3196 	di_args->devid = dev->devid;
3197 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3198 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3199 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3200 	if (dev->name) {
3201 		strncpy(di_args->path, rcu_str_deref(dev->name),
3202 				sizeof(di_args->path) - 1);
3203 		di_args->path[sizeof(di_args->path) - 1] = 0;
3204 	} else {
3205 		di_args->path[0] = '\0';
3206 	}
3207 
3208 out:
3209 	rcu_read_unlock();
3210 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3211 		ret = -EFAULT;
3212 
3213 	kfree(di_args);
3214 	return ret;
3215 }
3216 
3217 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
3218 				       struct inode *inode2, u64 loff2, u64 len)
3219 {
3220 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3221 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3222 }
3223 
3224 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
3225 				     struct inode *inode2, u64 loff2, u64 len)
3226 {
3227 	if (inode1 < inode2) {
3228 		swap(inode1, inode2);
3229 		swap(loff1, loff2);
3230 	} else if (inode1 == inode2 && loff2 < loff1) {
3231 		swap(loff1, loff2);
3232 	}
3233 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3234 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3235 }
3236 
3237 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
3238 				   struct inode *dst, u64 dst_loff)
3239 {
3240 	int ret;
3241 
3242 	/*
3243 	 * Lock destination range to serialize with concurrent readpages() and
3244 	 * source range to serialize with relocation.
3245 	 */
3246 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
3247 	ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1);
3248 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3249 
3250 	return ret;
3251 }
3252 
3253 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3254 
3255 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3256 			     struct inode *dst, u64 dst_loff)
3257 {
3258 	int ret;
3259 	u64 i, tail_len, chunk_count;
3260 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
3261 
3262 	spin_lock(&root_dst->root_item_lock);
3263 	if (root_dst->send_in_progress) {
3264 		btrfs_warn_rl(root_dst->fs_info,
3265 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
3266 			      root_dst->root_key.objectid,
3267 			      root_dst->send_in_progress);
3268 		spin_unlock(&root_dst->root_item_lock);
3269 		return -EAGAIN;
3270 	}
3271 	root_dst->dedupe_in_progress++;
3272 	spin_unlock(&root_dst->root_item_lock);
3273 
3274 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
3275 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
3276 
3277 	for (i = 0; i < chunk_count; i++) {
3278 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
3279 					      dst, dst_loff);
3280 		if (ret)
3281 			goto out;
3282 
3283 		loff += BTRFS_MAX_DEDUPE_LEN;
3284 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
3285 	}
3286 
3287 	if (tail_len > 0)
3288 		ret = btrfs_extent_same_range(src, loff, tail_len, dst,
3289 					      dst_loff);
3290 out:
3291 	spin_lock(&root_dst->root_item_lock);
3292 	root_dst->dedupe_in_progress--;
3293 	spin_unlock(&root_dst->root_item_lock);
3294 
3295 	return ret;
3296 }
3297 
3298 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3299 				     struct inode *inode,
3300 				     u64 endoff,
3301 				     const u64 destoff,
3302 				     const u64 olen,
3303 				     int no_time_update)
3304 {
3305 	struct btrfs_root *root = BTRFS_I(inode)->root;
3306 	int ret;
3307 
3308 	inode_inc_iversion(inode);
3309 	if (!no_time_update)
3310 		inode->i_mtime = inode->i_ctime = current_time(inode);
3311 	/*
3312 	 * We round up to the block size at eof when determining which
3313 	 * extents to clone above, but shouldn't round up the file size.
3314 	 */
3315 	if (endoff > destoff + olen)
3316 		endoff = destoff + olen;
3317 	if (endoff > inode->i_size)
3318 		btrfs_i_size_write(BTRFS_I(inode), endoff);
3319 
3320 	ret = btrfs_update_inode(trans, root, inode);
3321 	if (ret) {
3322 		btrfs_abort_transaction(trans, ret);
3323 		btrfs_end_transaction(trans);
3324 		goto out;
3325 	}
3326 	ret = btrfs_end_transaction(trans);
3327 out:
3328 	return ret;
3329 }
3330 
3331 static void clone_update_extent_map(struct btrfs_inode *inode,
3332 				    const struct btrfs_trans_handle *trans,
3333 				    const struct btrfs_path *path,
3334 				    const u64 hole_offset,
3335 				    const u64 hole_len)
3336 {
3337 	struct extent_map_tree *em_tree = &inode->extent_tree;
3338 	struct extent_map *em;
3339 	int ret;
3340 
3341 	em = alloc_extent_map();
3342 	if (!em) {
3343 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3344 		return;
3345 	}
3346 
3347 	if (path) {
3348 		struct btrfs_file_extent_item *fi;
3349 
3350 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3351 				    struct btrfs_file_extent_item);
3352 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3353 		em->generation = -1;
3354 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3355 		    BTRFS_FILE_EXTENT_INLINE)
3356 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3357 					&inode->runtime_flags);
3358 	} else {
3359 		em->start = hole_offset;
3360 		em->len = hole_len;
3361 		em->ram_bytes = em->len;
3362 		em->orig_start = hole_offset;
3363 		em->block_start = EXTENT_MAP_HOLE;
3364 		em->block_len = 0;
3365 		em->orig_block_len = 0;
3366 		em->compress_type = BTRFS_COMPRESS_NONE;
3367 		em->generation = trans->transid;
3368 	}
3369 
3370 	while (1) {
3371 		write_lock(&em_tree->lock);
3372 		ret = add_extent_mapping(em_tree, em, 1);
3373 		write_unlock(&em_tree->lock);
3374 		if (ret != -EEXIST) {
3375 			free_extent_map(em);
3376 			break;
3377 		}
3378 		btrfs_drop_extent_cache(inode, em->start,
3379 					em->start + em->len - 1, 0);
3380 	}
3381 
3382 	if (ret)
3383 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3384 }
3385 
3386 /*
3387  * Make sure we do not end up inserting an inline extent into a file that has
3388  * already other (non-inline) extents. If a file has an inline extent it can
3389  * not have any other extents and the (single) inline extent must start at the
3390  * file offset 0. Failing to respect these rules will lead to file corruption,
3391  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3392  *
3393  * We can have extents that have been already written to disk or we can have
3394  * dirty ranges still in delalloc, in which case the extent maps and items are
3395  * created only when we run delalloc, and the delalloc ranges might fall outside
3396  * the range we are currently locking in the inode's io tree. So we check the
3397  * inode's i_size because of that (i_size updates are done while holding the
3398  * i_mutex, which we are holding here).
3399  * We also check to see if the inode has a size not greater than "datal" but has
3400  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3401  * protected against such concurrent fallocate calls by the i_mutex).
3402  *
3403  * If the file has no extents but a size greater than datal, do not allow the
3404  * copy because we would need turn the inline extent into a non-inline one (even
3405  * with NO_HOLES enabled). If we find our destination inode only has one inline
3406  * extent, just overwrite it with the source inline extent if its size is less
3407  * than the source extent's size, or we could copy the source inline extent's
3408  * data into the destination inode's inline extent if the later is greater then
3409  * the former.
3410  */
3411 static int clone_copy_inline_extent(struct inode *dst,
3412 				    struct btrfs_trans_handle *trans,
3413 				    struct btrfs_path *path,
3414 				    struct btrfs_key *new_key,
3415 				    const u64 drop_start,
3416 				    const u64 datal,
3417 				    const u64 skip,
3418 				    const u64 size,
3419 				    char *inline_data)
3420 {
3421 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3422 	struct btrfs_root *root = BTRFS_I(dst)->root;
3423 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3424 				      fs_info->sectorsize);
3425 	int ret;
3426 	struct btrfs_key key;
3427 
3428 	if (new_key->offset > 0)
3429 		return -EOPNOTSUPP;
3430 
3431 	key.objectid = btrfs_ino(BTRFS_I(dst));
3432 	key.type = BTRFS_EXTENT_DATA_KEY;
3433 	key.offset = 0;
3434 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3435 	if (ret < 0) {
3436 		return ret;
3437 	} else if (ret > 0) {
3438 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3439 			ret = btrfs_next_leaf(root, path);
3440 			if (ret < 0)
3441 				return ret;
3442 			else if (ret > 0)
3443 				goto copy_inline_extent;
3444 		}
3445 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3446 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3447 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3448 			ASSERT(key.offset > 0);
3449 			return -EOPNOTSUPP;
3450 		}
3451 	} else if (i_size_read(dst) <= datal) {
3452 		struct btrfs_file_extent_item *ei;
3453 		u64 ext_len;
3454 
3455 		/*
3456 		 * If the file size is <= datal, make sure there are no other
3457 		 * extents following (can happen do to an fallocate call with
3458 		 * the flag FALLOC_FL_KEEP_SIZE).
3459 		 */
3460 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3461 				    struct btrfs_file_extent_item);
3462 		/*
3463 		 * If it's an inline extent, it can not have other extents
3464 		 * following it.
3465 		 */
3466 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3467 		    BTRFS_FILE_EXTENT_INLINE)
3468 			goto copy_inline_extent;
3469 
3470 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3471 		if (ext_len > aligned_end)
3472 			return -EOPNOTSUPP;
3473 
3474 		ret = btrfs_next_item(root, path);
3475 		if (ret < 0) {
3476 			return ret;
3477 		} else if (ret == 0) {
3478 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3479 					      path->slots[0]);
3480 			if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3481 			    key.type == BTRFS_EXTENT_DATA_KEY)
3482 				return -EOPNOTSUPP;
3483 		}
3484 	}
3485 
3486 copy_inline_extent:
3487 	/*
3488 	 * We have no extent items, or we have an extent at offset 0 which may
3489 	 * or may not be inlined. All these cases are dealt the same way.
3490 	 */
3491 	if (i_size_read(dst) > datal) {
3492 		/*
3493 		 * If the destination inode has an inline extent...
3494 		 * This would require copying the data from the source inline
3495 		 * extent into the beginning of the destination's inline extent.
3496 		 * But this is really complex, both extents can be compressed
3497 		 * or just one of them, which would require decompressing and
3498 		 * re-compressing data (which could increase the new compressed
3499 		 * size, not allowing the compressed data to fit anymore in an
3500 		 * inline extent).
3501 		 * So just don't support this case for now (it should be rare,
3502 		 * we are not really saving space when cloning inline extents).
3503 		 */
3504 		return -EOPNOTSUPP;
3505 	}
3506 
3507 	btrfs_release_path(path);
3508 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3509 	if (ret)
3510 		return ret;
3511 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3512 	if (ret)
3513 		return ret;
3514 
3515 	if (skip) {
3516 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3517 
3518 		memmove(inline_data + start, inline_data + start + skip, datal);
3519 	}
3520 
3521 	write_extent_buffer(path->nodes[0], inline_data,
3522 			    btrfs_item_ptr_offset(path->nodes[0],
3523 						  path->slots[0]),
3524 			    size);
3525 	inode_add_bytes(dst, datal);
3526 
3527 	return 0;
3528 }
3529 
3530 /**
3531  * btrfs_clone() - clone a range from inode file to another
3532  *
3533  * @src: Inode to clone from
3534  * @inode: Inode to clone to
3535  * @off: Offset within source to start clone from
3536  * @olen: Original length, passed by user, of range to clone
3537  * @olen_aligned: Block-aligned value of olen
3538  * @destoff: Offset within @inode to start clone
3539  * @no_time_update: Whether to update mtime/ctime on the target inode
3540  */
3541 static int btrfs_clone(struct inode *src, struct inode *inode,
3542 		       const u64 off, const u64 olen, const u64 olen_aligned,
3543 		       const u64 destoff, int no_time_update)
3544 {
3545 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3546 	struct btrfs_root *root = BTRFS_I(inode)->root;
3547 	struct btrfs_path *path = NULL;
3548 	struct extent_buffer *leaf;
3549 	struct btrfs_trans_handle *trans;
3550 	char *buf = NULL;
3551 	struct btrfs_key key;
3552 	u32 nritems;
3553 	int slot;
3554 	int ret;
3555 	const u64 len = olen_aligned;
3556 	u64 last_dest_end = destoff;
3557 
3558 	ret = -ENOMEM;
3559 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3560 	if (!buf)
3561 		return ret;
3562 
3563 	path = btrfs_alloc_path();
3564 	if (!path) {
3565 		kvfree(buf);
3566 		return ret;
3567 	}
3568 
3569 	path->reada = READA_FORWARD;
3570 	/* clone data */
3571 	key.objectid = btrfs_ino(BTRFS_I(src));
3572 	key.type = BTRFS_EXTENT_DATA_KEY;
3573 	key.offset = off;
3574 
3575 	while (1) {
3576 		u64 next_key_min_offset = key.offset + 1;
3577 
3578 		/*
3579 		 * note the key will change type as we walk through the
3580 		 * tree.
3581 		 */
3582 		path->leave_spinning = 1;
3583 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3584 				0, 0);
3585 		if (ret < 0)
3586 			goto out;
3587 		/*
3588 		 * First search, if no extent item that starts at offset off was
3589 		 * found but the previous item is an extent item, it's possible
3590 		 * it might overlap our target range, therefore process it.
3591 		 */
3592 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3593 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3594 					      path->slots[0] - 1);
3595 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3596 				path->slots[0]--;
3597 		}
3598 
3599 		nritems = btrfs_header_nritems(path->nodes[0]);
3600 process_slot:
3601 		if (path->slots[0] >= nritems) {
3602 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3603 			if (ret < 0)
3604 				goto out;
3605 			if (ret > 0)
3606 				break;
3607 			nritems = btrfs_header_nritems(path->nodes[0]);
3608 		}
3609 		leaf = path->nodes[0];
3610 		slot = path->slots[0];
3611 
3612 		btrfs_item_key_to_cpu(leaf, &key, slot);
3613 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3614 		    key.objectid != btrfs_ino(BTRFS_I(src)))
3615 			break;
3616 
3617 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3618 			struct btrfs_file_extent_item *extent;
3619 			int type;
3620 			u32 size;
3621 			struct btrfs_key new_key;
3622 			u64 disko = 0, diskl = 0;
3623 			u64 datao = 0, datal = 0;
3624 			u8 comp;
3625 			u64 drop_start;
3626 
3627 			extent = btrfs_item_ptr(leaf, slot,
3628 						struct btrfs_file_extent_item);
3629 			comp = btrfs_file_extent_compression(leaf, extent);
3630 			type = btrfs_file_extent_type(leaf, extent);
3631 			if (type == BTRFS_FILE_EXTENT_REG ||
3632 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3633 				disko = btrfs_file_extent_disk_bytenr(leaf,
3634 								      extent);
3635 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3636 								 extent);
3637 				datao = btrfs_file_extent_offset(leaf, extent);
3638 				datal = btrfs_file_extent_num_bytes(leaf,
3639 								    extent);
3640 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3641 				/* take upper bound, may be compressed */
3642 				datal = btrfs_file_extent_ram_bytes(leaf,
3643 								    extent);
3644 			}
3645 
3646 			/*
3647 			 * The first search might have left us at an extent
3648 			 * item that ends before our target range's start, can
3649 			 * happen if we have holes and NO_HOLES feature enabled.
3650 			 */
3651 			if (key.offset + datal <= off) {
3652 				path->slots[0]++;
3653 				goto process_slot;
3654 			} else if (key.offset >= off + len) {
3655 				break;
3656 			}
3657 			next_key_min_offset = key.offset + datal;
3658 			size = btrfs_item_size_nr(leaf, slot);
3659 			read_extent_buffer(leaf, buf,
3660 					   btrfs_item_ptr_offset(leaf, slot),
3661 					   size);
3662 
3663 			btrfs_release_path(path);
3664 			path->leave_spinning = 0;
3665 
3666 			memcpy(&new_key, &key, sizeof(new_key));
3667 			new_key.objectid = btrfs_ino(BTRFS_I(inode));
3668 			if (off <= key.offset)
3669 				new_key.offset = key.offset + destoff - off;
3670 			else
3671 				new_key.offset = destoff;
3672 
3673 			/*
3674 			 * Deal with a hole that doesn't have an extent item
3675 			 * that represents it (NO_HOLES feature enabled).
3676 			 * This hole is either in the middle of the cloning
3677 			 * range or at the beginning (fully overlaps it or
3678 			 * partially overlaps it).
3679 			 */
3680 			if (new_key.offset != last_dest_end)
3681 				drop_start = last_dest_end;
3682 			else
3683 				drop_start = new_key.offset;
3684 
3685 			/*
3686 			 * 1 - adjusting old extent (we may have to split it)
3687 			 * 1 - add new extent
3688 			 * 1 - inode update
3689 			 */
3690 			trans = btrfs_start_transaction(root, 3);
3691 			if (IS_ERR(trans)) {
3692 				ret = PTR_ERR(trans);
3693 				goto out;
3694 			}
3695 
3696 			if (type == BTRFS_FILE_EXTENT_REG ||
3697 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3698 				/*
3699 				 *    a  | --- range to clone ---|  b
3700 				 * | ------------- extent ------------- |
3701 				 */
3702 
3703 				/* subtract range b */
3704 				if (key.offset + datal > off + len)
3705 					datal = off + len - key.offset;
3706 
3707 				/* subtract range a */
3708 				if (off > key.offset) {
3709 					datao += off - key.offset;
3710 					datal -= off - key.offset;
3711 				}
3712 
3713 				ret = btrfs_drop_extents(trans, root, inode,
3714 							 drop_start,
3715 							 new_key.offset + datal,
3716 							 1);
3717 				if (ret) {
3718 					if (ret != -EOPNOTSUPP)
3719 						btrfs_abort_transaction(trans,
3720 									ret);
3721 					btrfs_end_transaction(trans);
3722 					goto out;
3723 				}
3724 
3725 				ret = btrfs_insert_empty_item(trans, root, path,
3726 							      &new_key, size);
3727 				if (ret) {
3728 					btrfs_abort_transaction(trans, ret);
3729 					btrfs_end_transaction(trans);
3730 					goto out;
3731 				}
3732 
3733 				leaf = path->nodes[0];
3734 				slot = path->slots[0];
3735 				write_extent_buffer(leaf, buf,
3736 					    btrfs_item_ptr_offset(leaf, slot),
3737 					    size);
3738 
3739 				extent = btrfs_item_ptr(leaf, slot,
3740 						struct btrfs_file_extent_item);
3741 
3742 				/* disko == 0 means it's a hole */
3743 				if (!disko)
3744 					datao = 0;
3745 
3746 				btrfs_set_file_extent_offset(leaf, extent,
3747 							     datao);
3748 				btrfs_set_file_extent_num_bytes(leaf, extent,
3749 								datal);
3750 
3751 				if (disko) {
3752 					struct btrfs_ref ref = { 0 };
3753 					inode_add_bytes(inode, datal);
3754 					btrfs_init_generic_ref(&ref,
3755 						BTRFS_ADD_DELAYED_REF, disko,
3756 						diskl, 0);
3757 					btrfs_init_data_ref(&ref,
3758 						root->root_key.objectid,
3759 						btrfs_ino(BTRFS_I(inode)),
3760 						new_key.offset - datao);
3761 					ret = btrfs_inc_extent_ref(trans, &ref);
3762 					if (ret) {
3763 						btrfs_abort_transaction(trans,
3764 									ret);
3765 						btrfs_end_transaction(trans);
3766 						goto out;
3767 
3768 					}
3769 				}
3770 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3771 				u64 skip = 0;
3772 				u64 trim = 0;
3773 
3774 				if (off > key.offset) {
3775 					skip = off - key.offset;
3776 					new_key.offset += skip;
3777 				}
3778 
3779 				if (key.offset + datal > off + len)
3780 					trim = key.offset + datal - (off + len);
3781 
3782 				if (comp && (skip || trim)) {
3783 					ret = -EINVAL;
3784 					btrfs_end_transaction(trans);
3785 					goto out;
3786 				}
3787 				size -= skip + trim;
3788 				datal -= skip + trim;
3789 
3790 				ret = clone_copy_inline_extent(inode,
3791 							       trans, path,
3792 							       &new_key,
3793 							       drop_start,
3794 							       datal,
3795 							       skip, size, buf);
3796 				if (ret) {
3797 					if (ret != -EOPNOTSUPP)
3798 						btrfs_abort_transaction(trans,
3799 									ret);
3800 					btrfs_end_transaction(trans);
3801 					goto out;
3802 				}
3803 				leaf = path->nodes[0];
3804 				slot = path->slots[0];
3805 			}
3806 
3807 			/* If we have an implicit hole (NO_HOLES feature). */
3808 			if (drop_start < new_key.offset)
3809 				clone_update_extent_map(BTRFS_I(inode), trans,
3810 						NULL, drop_start,
3811 						new_key.offset - drop_start);
3812 
3813 			clone_update_extent_map(BTRFS_I(inode), trans,
3814 					path, 0, 0);
3815 
3816 			btrfs_mark_buffer_dirty(leaf);
3817 			btrfs_release_path(path);
3818 
3819 			last_dest_end = ALIGN(new_key.offset + datal,
3820 					      fs_info->sectorsize);
3821 			ret = clone_finish_inode_update(trans, inode,
3822 							last_dest_end,
3823 							destoff, olen,
3824 							no_time_update);
3825 			if (ret)
3826 				goto out;
3827 			if (new_key.offset + datal >= destoff + len)
3828 				break;
3829 		}
3830 		btrfs_release_path(path);
3831 		key.offset = next_key_min_offset;
3832 
3833 		if (fatal_signal_pending(current)) {
3834 			ret = -EINTR;
3835 			goto out;
3836 		}
3837 	}
3838 	ret = 0;
3839 
3840 	if (last_dest_end < destoff + len) {
3841 		/*
3842 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3843 		 * fully or partially overlaps our cloning range at its end.
3844 		 */
3845 		btrfs_release_path(path);
3846 
3847 		/*
3848 		 * 1 - remove extent(s)
3849 		 * 1 - inode update
3850 		 */
3851 		trans = btrfs_start_transaction(root, 2);
3852 		if (IS_ERR(trans)) {
3853 			ret = PTR_ERR(trans);
3854 			goto out;
3855 		}
3856 		ret = btrfs_drop_extents(trans, root, inode,
3857 					 last_dest_end, destoff + len, 1);
3858 		if (ret) {
3859 			if (ret != -EOPNOTSUPP)
3860 				btrfs_abort_transaction(trans, ret);
3861 			btrfs_end_transaction(trans);
3862 			goto out;
3863 		}
3864 		clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3865 				last_dest_end,
3866 				destoff + len - last_dest_end);
3867 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3868 						destoff, olen, no_time_update);
3869 	}
3870 
3871 out:
3872 	btrfs_free_path(path);
3873 	kvfree(buf);
3874 	return ret;
3875 }
3876 
3877 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3878 					u64 off, u64 olen, u64 destoff)
3879 {
3880 	struct inode *inode = file_inode(file);
3881 	struct inode *src = file_inode(file_src);
3882 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3883 	int ret;
3884 	u64 len = olen;
3885 	u64 bs = fs_info->sb->s_blocksize;
3886 
3887 	/*
3888 	 * TODO:
3889 	 * - split compressed inline extents.  annoying: we need to
3890 	 *   decompress into destination's address_space (the file offset
3891 	 *   may change, so source mapping won't do), then recompress (or
3892 	 *   otherwise reinsert) a subrange.
3893 	 *
3894 	 * - split destination inode's inline extents.  The inline extents can
3895 	 *   be either compressed or non-compressed.
3896 	 */
3897 
3898 	/*
3899 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
3900 	 * eof block into the middle of a file, which would result in corruption
3901 	 * if the file size is not blocksize aligned. So we don't need to check
3902 	 * for that case here.
3903 	 */
3904 	if (off + len == src->i_size)
3905 		len = ALIGN(src->i_size, bs) - off;
3906 
3907 	if (destoff > inode->i_size) {
3908 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
3909 
3910 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3911 		if (ret)
3912 			return ret;
3913 		/*
3914 		 * We may have truncated the last block if the inode's size is
3915 		 * not sector size aligned, so we need to wait for writeback to
3916 		 * complete before proceeding further, otherwise we can race
3917 		 * with cloning and attempt to increment a reference to an
3918 		 * extent that no longer exists (writeback completed right after
3919 		 * we found the previous extent covering eof and before we
3920 		 * attempted to increment its reference count).
3921 		 */
3922 		ret = btrfs_wait_ordered_range(inode, wb_start,
3923 					       destoff - wb_start);
3924 		if (ret)
3925 			return ret;
3926 	}
3927 
3928 	/*
3929 	 * Lock destination range to serialize with concurrent readpages() and
3930 	 * source range to serialize with relocation.
3931 	 */
3932 	btrfs_double_extent_lock(src, off, inode, destoff, len);
3933 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3934 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
3935 	/*
3936 	 * Truncate page cache pages so that future reads will see the cloned
3937 	 * data immediately and not the previous data.
3938 	 */
3939 	truncate_inode_pages_range(&inode->i_data,
3940 				round_down(destoff, PAGE_SIZE),
3941 				round_up(destoff + len, PAGE_SIZE) - 1);
3942 
3943 	return ret;
3944 }
3945 
3946 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
3947 				       struct file *file_out, loff_t pos_out,
3948 				       loff_t *len, unsigned int remap_flags)
3949 {
3950 	struct inode *inode_in = file_inode(file_in);
3951 	struct inode *inode_out = file_inode(file_out);
3952 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
3953 	bool same_inode = inode_out == inode_in;
3954 	u64 wb_len;
3955 	int ret;
3956 
3957 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
3958 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
3959 
3960 		if (btrfs_root_readonly(root_out))
3961 			return -EROFS;
3962 
3963 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
3964 		    inode_in->i_sb != inode_out->i_sb)
3965 			return -EXDEV;
3966 	}
3967 
3968 	/* don't make the dst file partly checksummed */
3969 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
3970 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
3971 		return -EINVAL;
3972 	}
3973 
3974 	/*
3975 	 * Now that the inodes are locked, we need to start writeback ourselves
3976 	 * and can not rely on the writeback from the VFS's generic helper
3977 	 * generic_remap_file_range_prep() because:
3978 	 *
3979 	 * 1) For compression we must call filemap_fdatawrite_range() range
3980 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
3981 	 *    helper only calls it once;
3982 	 *
3983 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
3984 	 *    waits for the writeback to complete, i.e. for IO to be done, and
3985 	 *    not for the ordered extents to complete. We need to wait for them
3986 	 *    to complete so that new file extent items are in the fs tree.
3987 	 */
3988 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
3989 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
3990 	else
3991 		wb_len = ALIGN(*len, bs);
3992 
3993 	/*
3994 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
3995 	 * any in progress could create its ordered extents after we wait for
3996 	 * existing ordered extents below).
3997 	 */
3998 	inode_dio_wait(inode_in);
3999 	if (!same_inode)
4000 		inode_dio_wait(inode_out);
4001 
4002 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
4003 				       wb_len);
4004 	if (ret < 0)
4005 		return ret;
4006 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
4007 				       wb_len);
4008 	if (ret < 0)
4009 		return ret;
4010 
4011 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
4012 					    len, remap_flags);
4013 }
4014 
4015 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
4016 		struct file *dst_file, loff_t destoff, loff_t len,
4017 		unsigned int remap_flags)
4018 {
4019 	struct inode *src_inode = file_inode(src_file);
4020 	struct inode *dst_inode = file_inode(dst_file);
4021 	bool same_inode = dst_inode == src_inode;
4022 	int ret;
4023 
4024 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
4025 		return -EINVAL;
4026 
4027 	if (same_inode)
4028 		inode_lock(src_inode);
4029 	else
4030 		lock_two_nondirectories(src_inode, dst_inode);
4031 
4032 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
4033 					  &len, remap_flags);
4034 	if (ret < 0 || len == 0)
4035 		goto out_unlock;
4036 
4037 	if (remap_flags & REMAP_FILE_DEDUP)
4038 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
4039 	else
4040 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
4041 
4042 out_unlock:
4043 	if (same_inode)
4044 		inode_unlock(src_inode);
4045 	else
4046 		unlock_two_nondirectories(src_inode, dst_inode);
4047 
4048 	return ret < 0 ? ret : len;
4049 }
4050 
4051 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4052 {
4053 	struct inode *inode = file_inode(file);
4054 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4055 	struct btrfs_root *root = BTRFS_I(inode)->root;
4056 	struct btrfs_root *new_root;
4057 	struct btrfs_dir_item *di;
4058 	struct btrfs_trans_handle *trans;
4059 	struct btrfs_path *path;
4060 	struct btrfs_key location;
4061 	struct btrfs_disk_key disk_key;
4062 	u64 objectid = 0;
4063 	u64 dir_id;
4064 	int ret;
4065 
4066 	if (!capable(CAP_SYS_ADMIN))
4067 		return -EPERM;
4068 
4069 	ret = mnt_want_write_file(file);
4070 	if (ret)
4071 		return ret;
4072 
4073 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4074 		ret = -EFAULT;
4075 		goto out;
4076 	}
4077 
4078 	if (!objectid)
4079 		objectid = BTRFS_FS_TREE_OBJECTID;
4080 
4081 	location.objectid = objectid;
4082 	location.type = BTRFS_ROOT_ITEM_KEY;
4083 	location.offset = (u64)-1;
4084 
4085 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4086 	if (IS_ERR(new_root)) {
4087 		ret = PTR_ERR(new_root);
4088 		goto out;
4089 	}
4090 	if (!is_fstree(new_root->root_key.objectid)) {
4091 		ret = -ENOENT;
4092 		goto out;
4093 	}
4094 
4095 	path = btrfs_alloc_path();
4096 	if (!path) {
4097 		ret = -ENOMEM;
4098 		goto out;
4099 	}
4100 	path->leave_spinning = 1;
4101 
4102 	trans = btrfs_start_transaction(root, 1);
4103 	if (IS_ERR(trans)) {
4104 		btrfs_free_path(path);
4105 		ret = PTR_ERR(trans);
4106 		goto out;
4107 	}
4108 
4109 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4110 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4111 				   dir_id, "default", 7, 1);
4112 	if (IS_ERR_OR_NULL(di)) {
4113 		btrfs_free_path(path);
4114 		btrfs_end_transaction(trans);
4115 		btrfs_err(fs_info,
4116 			  "Umm, you don't have the default diritem, this isn't going to work");
4117 		ret = -ENOENT;
4118 		goto out;
4119 	}
4120 
4121 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4122 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4123 	btrfs_mark_buffer_dirty(path->nodes[0]);
4124 	btrfs_free_path(path);
4125 
4126 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4127 	btrfs_end_transaction(trans);
4128 out:
4129 	mnt_drop_write_file(file);
4130 	return ret;
4131 }
4132 
4133 static void get_block_group_info(struct list_head *groups_list,
4134 				 struct btrfs_ioctl_space_info *space)
4135 {
4136 	struct btrfs_block_group_cache *block_group;
4137 
4138 	space->total_bytes = 0;
4139 	space->used_bytes = 0;
4140 	space->flags = 0;
4141 	list_for_each_entry(block_group, groups_list, list) {
4142 		space->flags = block_group->flags;
4143 		space->total_bytes += block_group->key.offset;
4144 		space->used_bytes +=
4145 			btrfs_block_group_used(&block_group->item);
4146 	}
4147 }
4148 
4149 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4150 				   void __user *arg)
4151 {
4152 	struct btrfs_ioctl_space_args space_args;
4153 	struct btrfs_ioctl_space_info space;
4154 	struct btrfs_ioctl_space_info *dest;
4155 	struct btrfs_ioctl_space_info *dest_orig;
4156 	struct btrfs_ioctl_space_info __user *user_dest;
4157 	struct btrfs_space_info *info;
4158 	static const u64 types[] = {
4159 		BTRFS_BLOCK_GROUP_DATA,
4160 		BTRFS_BLOCK_GROUP_SYSTEM,
4161 		BTRFS_BLOCK_GROUP_METADATA,
4162 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4163 	};
4164 	int num_types = 4;
4165 	int alloc_size;
4166 	int ret = 0;
4167 	u64 slot_count = 0;
4168 	int i, c;
4169 
4170 	if (copy_from_user(&space_args,
4171 			   (struct btrfs_ioctl_space_args __user *)arg,
4172 			   sizeof(space_args)))
4173 		return -EFAULT;
4174 
4175 	for (i = 0; i < num_types; i++) {
4176 		struct btrfs_space_info *tmp;
4177 
4178 		info = NULL;
4179 		rcu_read_lock();
4180 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4181 					list) {
4182 			if (tmp->flags == types[i]) {
4183 				info = tmp;
4184 				break;
4185 			}
4186 		}
4187 		rcu_read_unlock();
4188 
4189 		if (!info)
4190 			continue;
4191 
4192 		down_read(&info->groups_sem);
4193 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4194 			if (!list_empty(&info->block_groups[c]))
4195 				slot_count++;
4196 		}
4197 		up_read(&info->groups_sem);
4198 	}
4199 
4200 	/*
4201 	 * Global block reserve, exported as a space_info
4202 	 */
4203 	slot_count++;
4204 
4205 	/* space_slots == 0 means they are asking for a count */
4206 	if (space_args.space_slots == 0) {
4207 		space_args.total_spaces = slot_count;
4208 		goto out;
4209 	}
4210 
4211 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4212 
4213 	alloc_size = sizeof(*dest) * slot_count;
4214 
4215 	/* we generally have at most 6 or so space infos, one for each raid
4216 	 * level.  So, a whole page should be more than enough for everyone
4217 	 */
4218 	if (alloc_size > PAGE_SIZE)
4219 		return -ENOMEM;
4220 
4221 	space_args.total_spaces = 0;
4222 	dest = kmalloc(alloc_size, GFP_KERNEL);
4223 	if (!dest)
4224 		return -ENOMEM;
4225 	dest_orig = dest;
4226 
4227 	/* now we have a buffer to copy into */
4228 	for (i = 0; i < num_types; i++) {
4229 		struct btrfs_space_info *tmp;
4230 
4231 		if (!slot_count)
4232 			break;
4233 
4234 		info = NULL;
4235 		rcu_read_lock();
4236 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4237 					list) {
4238 			if (tmp->flags == types[i]) {
4239 				info = tmp;
4240 				break;
4241 			}
4242 		}
4243 		rcu_read_unlock();
4244 
4245 		if (!info)
4246 			continue;
4247 		down_read(&info->groups_sem);
4248 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4249 			if (!list_empty(&info->block_groups[c])) {
4250 				get_block_group_info(&info->block_groups[c],
4251 						     &space);
4252 				memcpy(dest, &space, sizeof(space));
4253 				dest++;
4254 				space_args.total_spaces++;
4255 				slot_count--;
4256 			}
4257 			if (!slot_count)
4258 				break;
4259 		}
4260 		up_read(&info->groups_sem);
4261 	}
4262 
4263 	/*
4264 	 * Add global block reserve
4265 	 */
4266 	if (slot_count) {
4267 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4268 
4269 		spin_lock(&block_rsv->lock);
4270 		space.total_bytes = block_rsv->size;
4271 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4272 		spin_unlock(&block_rsv->lock);
4273 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4274 		memcpy(dest, &space, sizeof(space));
4275 		space_args.total_spaces++;
4276 	}
4277 
4278 	user_dest = (struct btrfs_ioctl_space_info __user *)
4279 		(arg + sizeof(struct btrfs_ioctl_space_args));
4280 
4281 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4282 		ret = -EFAULT;
4283 
4284 	kfree(dest_orig);
4285 out:
4286 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4287 		ret = -EFAULT;
4288 
4289 	return ret;
4290 }
4291 
4292 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4293 					    void __user *argp)
4294 {
4295 	struct btrfs_trans_handle *trans;
4296 	u64 transid;
4297 	int ret;
4298 
4299 	trans = btrfs_attach_transaction_barrier(root);
4300 	if (IS_ERR(trans)) {
4301 		if (PTR_ERR(trans) != -ENOENT)
4302 			return PTR_ERR(trans);
4303 
4304 		/* No running transaction, don't bother */
4305 		transid = root->fs_info->last_trans_committed;
4306 		goto out;
4307 	}
4308 	transid = trans->transid;
4309 	ret = btrfs_commit_transaction_async(trans, 0);
4310 	if (ret) {
4311 		btrfs_end_transaction(trans);
4312 		return ret;
4313 	}
4314 out:
4315 	if (argp)
4316 		if (copy_to_user(argp, &transid, sizeof(transid)))
4317 			return -EFAULT;
4318 	return 0;
4319 }
4320 
4321 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4322 					   void __user *argp)
4323 {
4324 	u64 transid;
4325 
4326 	if (argp) {
4327 		if (copy_from_user(&transid, argp, sizeof(transid)))
4328 			return -EFAULT;
4329 	} else {
4330 		transid = 0;  /* current trans */
4331 	}
4332 	return btrfs_wait_for_commit(fs_info, transid);
4333 }
4334 
4335 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4336 {
4337 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4338 	struct btrfs_ioctl_scrub_args *sa;
4339 	int ret;
4340 
4341 	if (!capable(CAP_SYS_ADMIN))
4342 		return -EPERM;
4343 
4344 	sa = memdup_user(arg, sizeof(*sa));
4345 	if (IS_ERR(sa))
4346 		return PTR_ERR(sa);
4347 
4348 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4349 		ret = mnt_want_write_file(file);
4350 		if (ret)
4351 			goto out;
4352 	}
4353 
4354 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4355 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4356 			      0);
4357 
4358 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4359 		ret = -EFAULT;
4360 
4361 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4362 		mnt_drop_write_file(file);
4363 out:
4364 	kfree(sa);
4365 	return ret;
4366 }
4367 
4368 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4369 {
4370 	if (!capable(CAP_SYS_ADMIN))
4371 		return -EPERM;
4372 
4373 	return btrfs_scrub_cancel(fs_info);
4374 }
4375 
4376 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4377 				       void __user *arg)
4378 {
4379 	struct btrfs_ioctl_scrub_args *sa;
4380 	int ret;
4381 
4382 	if (!capable(CAP_SYS_ADMIN))
4383 		return -EPERM;
4384 
4385 	sa = memdup_user(arg, sizeof(*sa));
4386 	if (IS_ERR(sa))
4387 		return PTR_ERR(sa);
4388 
4389 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4390 
4391 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4392 		ret = -EFAULT;
4393 
4394 	kfree(sa);
4395 	return ret;
4396 }
4397 
4398 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4399 				      void __user *arg)
4400 {
4401 	struct btrfs_ioctl_get_dev_stats *sa;
4402 	int ret;
4403 
4404 	sa = memdup_user(arg, sizeof(*sa));
4405 	if (IS_ERR(sa))
4406 		return PTR_ERR(sa);
4407 
4408 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4409 		kfree(sa);
4410 		return -EPERM;
4411 	}
4412 
4413 	ret = btrfs_get_dev_stats(fs_info, sa);
4414 
4415 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4416 		ret = -EFAULT;
4417 
4418 	kfree(sa);
4419 	return ret;
4420 }
4421 
4422 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4423 				    void __user *arg)
4424 {
4425 	struct btrfs_ioctl_dev_replace_args *p;
4426 	int ret;
4427 
4428 	if (!capable(CAP_SYS_ADMIN))
4429 		return -EPERM;
4430 
4431 	p = memdup_user(arg, sizeof(*p));
4432 	if (IS_ERR(p))
4433 		return PTR_ERR(p);
4434 
4435 	switch (p->cmd) {
4436 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4437 		if (sb_rdonly(fs_info->sb)) {
4438 			ret = -EROFS;
4439 			goto out;
4440 		}
4441 		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4442 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4443 		} else {
4444 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4445 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4446 		}
4447 		break;
4448 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4449 		btrfs_dev_replace_status(fs_info, p);
4450 		ret = 0;
4451 		break;
4452 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4453 		p->result = btrfs_dev_replace_cancel(fs_info);
4454 		ret = 0;
4455 		break;
4456 	default:
4457 		ret = -EINVAL;
4458 		break;
4459 	}
4460 
4461 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4462 		ret = -EFAULT;
4463 out:
4464 	kfree(p);
4465 	return ret;
4466 }
4467 
4468 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4469 {
4470 	int ret = 0;
4471 	int i;
4472 	u64 rel_ptr;
4473 	int size;
4474 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4475 	struct inode_fs_paths *ipath = NULL;
4476 	struct btrfs_path *path;
4477 
4478 	if (!capable(CAP_DAC_READ_SEARCH))
4479 		return -EPERM;
4480 
4481 	path = btrfs_alloc_path();
4482 	if (!path) {
4483 		ret = -ENOMEM;
4484 		goto out;
4485 	}
4486 
4487 	ipa = memdup_user(arg, sizeof(*ipa));
4488 	if (IS_ERR(ipa)) {
4489 		ret = PTR_ERR(ipa);
4490 		ipa = NULL;
4491 		goto out;
4492 	}
4493 
4494 	size = min_t(u32, ipa->size, 4096);
4495 	ipath = init_ipath(size, root, path);
4496 	if (IS_ERR(ipath)) {
4497 		ret = PTR_ERR(ipath);
4498 		ipath = NULL;
4499 		goto out;
4500 	}
4501 
4502 	ret = paths_from_inode(ipa->inum, ipath);
4503 	if (ret < 0)
4504 		goto out;
4505 
4506 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4507 		rel_ptr = ipath->fspath->val[i] -
4508 			  (u64)(unsigned long)ipath->fspath->val;
4509 		ipath->fspath->val[i] = rel_ptr;
4510 	}
4511 
4512 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4513 			   ipath->fspath, size);
4514 	if (ret) {
4515 		ret = -EFAULT;
4516 		goto out;
4517 	}
4518 
4519 out:
4520 	btrfs_free_path(path);
4521 	free_ipath(ipath);
4522 	kfree(ipa);
4523 
4524 	return ret;
4525 }
4526 
4527 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4528 {
4529 	struct btrfs_data_container *inodes = ctx;
4530 	const size_t c = 3 * sizeof(u64);
4531 
4532 	if (inodes->bytes_left >= c) {
4533 		inodes->bytes_left -= c;
4534 		inodes->val[inodes->elem_cnt] = inum;
4535 		inodes->val[inodes->elem_cnt + 1] = offset;
4536 		inodes->val[inodes->elem_cnt + 2] = root;
4537 		inodes->elem_cnt += 3;
4538 	} else {
4539 		inodes->bytes_missing += c - inodes->bytes_left;
4540 		inodes->bytes_left = 0;
4541 		inodes->elem_missed += 3;
4542 	}
4543 
4544 	return 0;
4545 }
4546 
4547 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4548 					void __user *arg, int version)
4549 {
4550 	int ret = 0;
4551 	int size;
4552 	struct btrfs_ioctl_logical_ino_args *loi;
4553 	struct btrfs_data_container *inodes = NULL;
4554 	struct btrfs_path *path = NULL;
4555 	bool ignore_offset;
4556 
4557 	if (!capable(CAP_SYS_ADMIN))
4558 		return -EPERM;
4559 
4560 	loi = memdup_user(arg, sizeof(*loi));
4561 	if (IS_ERR(loi))
4562 		return PTR_ERR(loi);
4563 
4564 	if (version == 1) {
4565 		ignore_offset = false;
4566 		size = min_t(u32, loi->size, SZ_64K);
4567 	} else {
4568 		/* All reserved bits must be 0 for now */
4569 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4570 			ret = -EINVAL;
4571 			goto out_loi;
4572 		}
4573 		/* Only accept flags we have defined so far */
4574 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4575 			ret = -EINVAL;
4576 			goto out_loi;
4577 		}
4578 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4579 		size = min_t(u32, loi->size, SZ_16M);
4580 	}
4581 
4582 	path = btrfs_alloc_path();
4583 	if (!path) {
4584 		ret = -ENOMEM;
4585 		goto out;
4586 	}
4587 
4588 	inodes = init_data_container(size);
4589 	if (IS_ERR(inodes)) {
4590 		ret = PTR_ERR(inodes);
4591 		inodes = NULL;
4592 		goto out;
4593 	}
4594 
4595 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4596 					  build_ino_list, inodes, ignore_offset);
4597 	if (ret == -EINVAL)
4598 		ret = -ENOENT;
4599 	if (ret < 0)
4600 		goto out;
4601 
4602 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4603 			   size);
4604 	if (ret)
4605 		ret = -EFAULT;
4606 
4607 out:
4608 	btrfs_free_path(path);
4609 	kvfree(inodes);
4610 out_loi:
4611 	kfree(loi);
4612 
4613 	return ret;
4614 }
4615 
4616 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4617 			       struct btrfs_ioctl_balance_args *bargs)
4618 {
4619 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4620 
4621 	bargs->flags = bctl->flags;
4622 
4623 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4624 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4625 	if (atomic_read(&fs_info->balance_pause_req))
4626 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4627 	if (atomic_read(&fs_info->balance_cancel_req))
4628 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4629 
4630 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4631 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4632 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4633 
4634 	spin_lock(&fs_info->balance_lock);
4635 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4636 	spin_unlock(&fs_info->balance_lock);
4637 }
4638 
4639 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4640 {
4641 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4642 	struct btrfs_fs_info *fs_info = root->fs_info;
4643 	struct btrfs_ioctl_balance_args *bargs;
4644 	struct btrfs_balance_control *bctl;
4645 	bool need_unlock; /* for mut. excl. ops lock */
4646 	int ret;
4647 
4648 	if (!capable(CAP_SYS_ADMIN))
4649 		return -EPERM;
4650 
4651 	ret = mnt_want_write_file(file);
4652 	if (ret)
4653 		return ret;
4654 
4655 again:
4656 	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4657 		mutex_lock(&fs_info->balance_mutex);
4658 		need_unlock = true;
4659 		goto locked;
4660 	}
4661 
4662 	/*
4663 	 * mut. excl. ops lock is locked.  Three possibilities:
4664 	 *   (1) some other op is running
4665 	 *   (2) balance is running
4666 	 *   (3) balance is paused -- special case (think resume)
4667 	 */
4668 	mutex_lock(&fs_info->balance_mutex);
4669 	if (fs_info->balance_ctl) {
4670 		/* this is either (2) or (3) */
4671 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4672 			mutex_unlock(&fs_info->balance_mutex);
4673 			/*
4674 			 * Lock released to allow other waiters to continue,
4675 			 * we'll reexamine the status again.
4676 			 */
4677 			mutex_lock(&fs_info->balance_mutex);
4678 
4679 			if (fs_info->balance_ctl &&
4680 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4681 				/* this is (3) */
4682 				need_unlock = false;
4683 				goto locked;
4684 			}
4685 
4686 			mutex_unlock(&fs_info->balance_mutex);
4687 			goto again;
4688 		} else {
4689 			/* this is (2) */
4690 			mutex_unlock(&fs_info->balance_mutex);
4691 			ret = -EINPROGRESS;
4692 			goto out;
4693 		}
4694 	} else {
4695 		/* this is (1) */
4696 		mutex_unlock(&fs_info->balance_mutex);
4697 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4698 		goto out;
4699 	}
4700 
4701 locked:
4702 	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4703 
4704 	if (arg) {
4705 		bargs = memdup_user(arg, sizeof(*bargs));
4706 		if (IS_ERR(bargs)) {
4707 			ret = PTR_ERR(bargs);
4708 			goto out_unlock;
4709 		}
4710 
4711 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4712 			if (!fs_info->balance_ctl) {
4713 				ret = -ENOTCONN;
4714 				goto out_bargs;
4715 			}
4716 
4717 			bctl = fs_info->balance_ctl;
4718 			spin_lock(&fs_info->balance_lock);
4719 			bctl->flags |= BTRFS_BALANCE_RESUME;
4720 			spin_unlock(&fs_info->balance_lock);
4721 
4722 			goto do_balance;
4723 		}
4724 	} else {
4725 		bargs = NULL;
4726 	}
4727 
4728 	if (fs_info->balance_ctl) {
4729 		ret = -EINPROGRESS;
4730 		goto out_bargs;
4731 	}
4732 
4733 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4734 	if (!bctl) {
4735 		ret = -ENOMEM;
4736 		goto out_bargs;
4737 	}
4738 
4739 	if (arg) {
4740 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4741 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4742 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4743 
4744 		bctl->flags = bargs->flags;
4745 	} else {
4746 		/* balance everything - no filters */
4747 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4748 	}
4749 
4750 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4751 		ret = -EINVAL;
4752 		goto out_bctl;
4753 	}
4754 
4755 do_balance:
4756 	/*
4757 	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
4758 	 * btrfs_balance.  bctl is freed in reset_balance_state, or, if
4759 	 * restriper was paused all the way until unmount, in free_fs_info.
4760 	 * The flag should be cleared after reset_balance_state.
4761 	 */
4762 	need_unlock = false;
4763 
4764 	ret = btrfs_balance(fs_info, bctl, bargs);
4765 	bctl = NULL;
4766 
4767 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4768 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4769 			ret = -EFAULT;
4770 	}
4771 
4772 out_bctl:
4773 	kfree(bctl);
4774 out_bargs:
4775 	kfree(bargs);
4776 out_unlock:
4777 	mutex_unlock(&fs_info->balance_mutex);
4778 	if (need_unlock)
4779 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4780 out:
4781 	mnt_drop_write_file(file);
4782 	return ret;
4783 }
4784 
4785 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4786 {
4787 	if (!capable(CAP_SYS_ADMIN))
4788 		return -EPERM;
4789 
4790 	switch (cmd) {
4791 	case BTRFS_BALANCE_CTL_PAUSE:
4792 		return btrfs_pause_balance(fs_info);
4793 	case BTRFS_BALANCE_CTL_CANCEL:
4794 		return btrfs_cancel_balance(fs_info);
4795 	}
4796 
4797 	return -EINVAL;
4798 }
4799 
4800 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4801 					 void __user *arg)
4802 {
4803 	struct btrfs_ioctl_balance_args *bargs;
4804 	int ret = 0;
4805 
4806 	if (!capable(CAP_SYS_ADMIN))
4807 		return -EPERM;
4808 
4809 	mutex_lock(&fs_info->balance_mutex);
4810 	if (!fs_info->balance_ctl) {
4811 		ret = -ENOTCONN;
4812 		goto out;
4813 	}
4814 
4815 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4816 	if (!bargs) {
4817 		ret = -ENOMEM;
4818 		goto out;
4819 	}
4820 
4821 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4822 
4823 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4824 		ret = -EFAULT;
4825 
4826 	kfree(bargs);
4827 out:
4828 	mutex_unlock(&fs_info->balance_mutex);
4829 	return ret;
4830 }
4831 
4832 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4833 {
4834 	struct inode *inode = file_inode(file);
4835 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4836 	struct btrfs_ioctl_quota_ctl_args *sa;
4837 	int ret;
4838 
4839 	if (!capable(CAP_SYS_ADMIN))
4840 		return -EPERM;
4841 
4842 	ret = mnt_want_write_file(file);
4843 	if (ret)
4844 		return ret;
4845 
4846 	sa = memdup_user(arg, sizeof(*sa));
4847 	if (IS_ERR(sa)) {
4848 		ret = PTR_ERR(sa);
4849 		goto drop_write;
4850 	}
4851 
4852 	down_write(&fs_info->subvol_sem);
4853 
4854 	switch (sa->cmd) {
4855 	case BTRFS_QUOTA_CTL_ENABLE:
4856 		ret = btrfs_quota_enable(fs_info);
4857 		break;
4858 	case BTRFS_QUOTA_CTL_DISABLE:
4859 		ret = btrfs_quota_disable(fs_info);
4860 		break;
4861 	default:
4862 		ret = -EINVAL;
4863 		break;
4864 	}
4865 
4866 	kfree(sa);
4867 	up_write(&fs_info->subvol_sem);
4868 drop_write:
4869 	mnt_drop_write_file(file);
4870 	return ret;
4871 }
4872 
4873 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4874 {
4875 	struct inode *inode = file_inode(file);
4876 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4877 	struct btrfs_root *root = BTRFS_I(inode)->root;
4878 	struct btrfs_ioctl_qgroup_assign_args *sa;
4879 	struct btrfs_trans_handle *trans;
4880 	int ret;
4881 	int err;
4882 
4883 	if (!capable(CAP_SYS_ADMIN))
4884 		return -EPERM;
4885 
4886 	ret = mnt_want_write_file(file);
4887 	if (ret)
4888 		return ret;
4889 
4890 	sa = memdup_user(arg, sizeof(*sa));
4891 	if (IS_ERR(sa)) {
4892 		ret = PTR_ERR(sa);
4893 		goto drop_write;
4894 	}
4895 
4896 	trans = btrfs_join_transaction(root);
4897 	if (IS_ERR(trans)) {
4898 		ret = PTR_ERR(trans);
4899 		goto out;
4900 	}
4901 
4902 	if (sa->assign) {
4903 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4904 	} else {
4905 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4906 	}
4907 
4908 	/* update qgroup status and info */
4909 	err = btrfs_run_qgroups(trans);
4910 	if (err < 0)
4911 		btrfs_handle_fs_error(fs_info, err,
4912 				      "failed to update qgroup status and info");
4913 	err = btrfs_end_transaction(trans);
4914 	if (err && !ret)
4915 		ret = err;
4916 
4917 out:
4918 	kfree(sa);
4919 drop_write:
4920 	mnt_drop_write_file(file);
4921 	return ret;
4922 }
4923 
4924 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4925 {
4926 	struct inode *inode = file_inode(file);
4927 	struct btrfs_root *root = BTRFS_I(inode)->root;
4928 	struct btrfs_ioctl_qgroup_create_args *sa;
4929 	struct btrfs_trans_handle *trans;
4930 	int ret;
4931 	int err;
4932 
4933 	if (!capable(CAP_SYS_ADMIN))
4934 		return -EPERM;
4935 
4936 	ret = mnt_want_write_file(file);
4937 	if (ret)
4938 		return ret;
4939 
4940 	sa = memdup_user(arg, sizeof(*sa));
4941 	if (IS_ERR(sa)) {
4942 		ret = PTR_ERR(sa);
4943 		goto drop_write;
4944 	}
4945 
4946 	if (!sa->qgroupid) {
4947 		ret = -EINVAL;
4948 		goto out;
4949 	}
4950 
4951 	trans = btrfs_join_transaction(root);
4952 	if (IS_ERR(trans)) {
4953 		ret = PTR_ERR(trans);
4954 		goto out;
4955 	}
4956 
4957 	if (sa->create) {
4958 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4959 	} else {
4960 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4961 	}
4962 
4963 	err = btrfs_end_transaction(trans);
4964 	if (err && !ret)
4965 		ret = err;
4966 
4967 out:
4968 	kfree(sa);
4969 drop_write:
4970 	mnt_drop_write_file(file);
4971 	return ret;
4972 }
4973 
4974 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4975 {
4976 	struct inode *inode = file_inode(file);
4977 	struct btrfs_root *root = BTRFS_I(inode)->root;
4978 	struct btrfs_ioctl_qgroup_limit_args *sa;
4979 	struct btrfs_trans_handle *trans;
4980 	int ret;
4981 	int err;
4982 	u64 qgroupid;
4983 
4984 	if (!capable(CAP_SYS_ADMIN))
4985 		return -EPERM;
4986 
4987 	ret = mnt_want_write_file(file);
4988 	if (ret)
4989 		return ret;
4990 
4991 	sa = memdup_user(arg, sizeof(*sa));
4992 	if (IS_ERR(sa)) {
4993 		ret = PTR_ERR(sa);
4994 		goto drop_write;
4995 	}
4996 
4997 	trans = btrfs_join_transaction(root);
4998 	if (IS_ERR(trans)) {
4999 		ret = PTR_ERR(trans);
5000 		goto out;
5001 	}
5002 
5003 	qgroupid = sa->qgroupid;
5004 	if (!qgroupid) {
5005 		/* take the current subvol as qgroup */
5006 		qgroupid = root->root_key.objectid;
5007 	}
5008 
5009 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
5010 
5011 	err = btrfs_end_transaction(trans);
5012 	if (err && !ret)
5013 		ret = err;
5014 
5015 out:
5016 	kfree(sa);
5017 drop_write:
5018 	mnt_drop_write_file(file);
5019 	return ret;
5020 }
5021 
5022 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5023 {
5024 	struct inode *inode = file_inode(file);
5025 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5026 	struct btrfs_ioctl_quota_rescan_args *qsa;
5027 	int ret;
5028 
5029 	if (!capable(CAP_SYS_ADMIN))
5030 		return -EPERM;
5031 
5032 	ret = mnt_want_write_file(file);
5033 	if (ret)
5034 		return ret;
5035 
5036 	qsa = memdup_user(arg, sizeof(*qsa));
5037 	if (IS_ERR(qsa)) {
5038 		ret = PTR_ERR(qsa);
5039 		goto drop_write;
5040 	}
5041 
5042 	if (qsa->flags) {
5043 		ret = -EINVAL;
5044 		goto out;
5045 	}
5046 
5047 	ret = btrfs_qgroup_rescan(fs_info);
5048 
5049 out:
5050 	kfree(qsa);
5051 drop_write:
5052 	mnt_drop_write_file(file);
5053 	return ret;
5054 }
5055 
5056 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5057 {
5058 	struct inode *inode = file_inode(file);
5059 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5060 	struct btrfs_ioctl_quota_rescan_args *qsa;
5061 	int ret = 0;
5062 
5063 	if (!capable(CAP_SYS_ADMIN))
5064 		return -EPERM;
5065 
5066 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5067 	if (!qsa)
5068 		return -ENOMEM;
5069 
5070 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5071 		qsa->flags = 1;
5072 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5073 	}
5074 
5075 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5076 		ret = -EFAULT;
5077 
5078 	kfree(qsa);
5079 	return ret;
5080 }
5081 
5082 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5083 {
5084 	struct inode *inode = file_inode(file);
5085 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5086 
5087 	if (!capable(CAP_SYS_ADMIN))
5088 		return -EPERM;
5089 
5090 	return btrfs_qgroup_wait_for_completion(fs_info, true);
5091 }
5092 
5093 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5094 					    struct btrfs_ioctl_received_subvol_args *sa)
5095 {
5096 	struct inode *inode = file_inode(file);
5097 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5098 	struct btrfs_root *root = BTRFS_I(inode)->root;
5099 	struct btrfs_root_item *root_item = &root->root_item;
5100 	struct btrfs_trans_handle *trans;
5101 	struct timespec64 ct = current_time(inode);
5102 	int ret = 0;
5103 	int received_uuid_changed;
5104 
5105 	if (!inode_owner_or_capable(inode))
5106 		return -EPERM;
5107 
5108 	ret = mnt_want_write_file(file);
5109 	if (ret < 0)
5110 		return ret;
5111 
5112 	down_write(&fs_info->subvol_sem);
5113 
5114 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5115 		ret = -EINVAL;
5116 		goto out;
5117 	}
5118 
5119 	if (btrfs_root_readonly(root)) {
5120 		ret = -EROFS;
5121 		goto out;
5122 	}
5123 
5124 	/*
5125 	 * 1 - root item
5126 	 * 2 - uuid items (received uuid + subvol uuid)
5127 	 */
5128 	trans = btrfs_start_transaction(root, 3);
5129 	if (IS_ERR(trans)) {
5130 		ret = PTR_ERR(trans);
5131 		trans = NULL;
5132 		goto out;
5133 	}
5134 
5135 	sa->rtransid = trans->transid;
5136 	sa->rtime.sec = ct.tv_sec;
5137 	sa->rtime.nsec = ct.tv_nsec;
5138 
5139 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5140 				       BTRFS_UUID_SIZE);
5141 	if (received_uuid_changed &&
5142 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
5143 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
5144 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5145 					  root->root_key.objectid);
5146 		if (ret && ret != -ENOENT) {
5147 		        btrfs_abort_transaction(trans, ret);
5148 		        btrfs_end_transaction(trans);
5149 		        goto out;
5150 		}
5151 	}
5152 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5153 	btrfs_set_root_stransid(root_item, sa->stransid);
5154 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5155 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5156 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5157 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5158 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5159 
5160 	ret = btrfs_update_root(trans, fs_info->tree_root,
5161 				&root->root_key, &root->root_item);
5162 	if (ret < 0) {
5163 		btrfs_end_transaction(trans);
5164 		goto out;
5165 	}
5166 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5167 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
5168 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5169 					  root->root_key.objectid);
5170 		if (ret < 0 && ret != -EEXIST) {
5171 			btrfs_abort_transaction(trans, ret);
5172 			btrfs_end_transaction(trans);
5173 			goto out;
5174 		}
5175 	}
5176 	ret = btrfs_commit_transaction(trans);
5177 out:
5178 	up_write(&fs_info->subvol_sem);
5179 	mnt_drop_write_file(file);
5180 	return ret;
5181 }
5182 
5183 #ifdef CONFIG_64BIT
5184 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5185 						void __user *arg)
5186 {
5187 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5188 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5189 	int ret = 0;
5190 
5191 	args32 = memdup_user(arg, sizeof(*args32));
5192 	if (IS_ERR(args32))
5193 		return PTR_ERR(args32);
5194 
5195 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5196 	if (!args64) {
5197 		ret = -ENOMEM;
5198 		goto out;
5199 	}
5200 
5201 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5202 	args64->stransid = args32->stransid;
5203 	args64->rtransid = args32->rtransid;
5204 	args64->stime.sec = args32->stime.sec;
5205 	args64->stime.nsec = args32->stime.nsec;
5206 	args64->rtime.sec = args32->rtime.sec;
5207 	args64->rtime.nsec = args32->rtime.nsec;
5208 	args64->flags = args32->flags;
5209 
5210 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5211 	if (ret)
5212 		goto out;
5213 
5214 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5215 	args32->stransid = args64->stransid;
5216 	args32->rtransid = args64->rtransid;
5217 	args32->stime.sec = args64->stime.sec;
5218 	args32->stime.nsec = args64->stime.nsec;
5219 	args32->rtime.sec = args64->rtime.sec;
5220 	args32->rtime.nsec = args64->rtime.nsec;
5221 	args32->flags = args64->flags;
5222 
5223 	ret = copy_to_user(arg, args32, sizeof(*args32));
5224 	if (ret)
5225 		ret = -EFAULT;
5226 
5227 out:
5228 	kfree(args32);
5229 	kfree(args64);
5230 	return ret;
5231 }
5232 #endif
5233 
5234 static long btrfs_ioctl_set_received_subvol(struct file *file,
5235 					    void __user *arg)
5236 {
5237 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5238 	int ret = 0;
5239 
5240 	sa = memdup_user(arg, sizeof(*sa));
5241 	if (IS_ERR(sa))
5242 		return PTR_ERR(sa);
5243 
5244 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5245 
5246 	if (ret)
5247 		goto out;
5248 
5249 	ret = copy_to_user(arg, sa, sizeof(*sa));
5250 	if (ret)
5251 		ret = -EFAULT;
5252 
5253 out:
5254 	kfree(sa);
5255 	return ret;
5256 }
5257 
5258 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5259 {
5260 	struct inode *inode = file_inode(file);
5261 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5262 	size_t len;
5263 	int ret;
5264 	char label[BTRFS_LABEL_SIZE];
5265 
5266 	spin_lock(&fs_info->super_lock);
5267 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5268 	spin_unlock(&fs_info->super_lock);
5269 
5270 	len = strnlen(label, BTRFS_LABEL_SIZE);
5271 
5272 	if (len == BTRFS_LABEL_SIZE) {
5273 		btrfs_warn(fs_info,
5274 			   "label is too long, return the first %zu bytes",
5275 			   --len);
5276 	}
5277 
5278 	ret = copy_to_user(arg, label, len);
5279 
5280 	return ret ? -EFAULT : 0;
5281 }
5282 
5283 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5284 {
5285 	struct inode *inode = file_inode(file);
5286 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5287 	struct btrfs_root *root = BTRFS_I(inode)->root;
5288 	struct btrfs_super_block *super_block = fs_info->super_copy;
5289 	struct btrfs_trans_handle *trans;
5290 	char label[BTRFS_LABEL_SIZE];
5291 	int ret;
5292 
5293 	if (!capable(CAP_SYS_ADMIN))
5294 		return -EPERM;
5295 
5296 	if (copy_from_user(label, arg, sizeof(label)))
5297 		return -EFAULT;
5298 
5299 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5300 		btrfs_err(fs_info,
5301 			  "unable to set label with more than %d bytes",
5302 			  BTRFS_LABEL_SIZE - 1);
5303 		return -EINVAL;
5304 	}
5305 
5306 	ret = mnt_want_write_file(file);
5307 	if (ret)
5308 		return ret;
5309 
5310 	trans = btrfs_start_transaction(root, 0);
5311 	if (IS_ERR(trans)) {
5312 		ret = PTR_ERR(trans);
5313 		goto out_unlock;
5314 	}
5315 
5316 	spin_lock(&fs_info->super_lock);
5317 	strcpy(super_block->label, label);
5318 	spin_unlock(&fs_info->super_lock);
5319 	ret = btrfs_commit_transaction(trans);
5320 
5321 out_unlock:
5322 	mnt_drop_write_file(file);
5323 	return ret;
5324 }
5325 
5326 #define INIT_FEATURE_FLAGS(suffix) \
5327 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5328 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5329 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5330 
5331 int btrfs_ioctl_get_supported_features(void __user *arg)
5332 {
5333 	static const struct btrfs_ioctl_feature_flags features[3] = {
5334 		INIT_FEATURE_FLAGS(SUPP),
5335 		INIT_FEATURE_FLAGS(SAFE_SET),
5336 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5337 	};
5338 
5339 	if (copy_to_user(arg, &features, sizeof(features)))
5340 		return -EFAULT;
5341 
5342 	return 0;
5343 }
5344 
5345 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5346 {
5347 	struct inode *inode = file_inode(file);
5348 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5349 	struct btrfs_super_block *super_block = fs_info->super_copy;
5350 	struct btrfs_ioctl_feature_flags features;
5351 
5352 	features.compat_flags = btrfs_super_compat_flags(super_block);
5353 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5354 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5355 
5356 	if (copy_to_user(arg, &features, sizeof(features)))
5357 		return -EFAULT;
5358 
5359 	return 0;
5360 }
5361 
5362 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5363 			      enum btrfs_feature_set set,
5364 			      u64 change_mask, u64 flags, u64 supported_flags,
5365 			      u64 safe_set, u64 safe_clear)
5366 {
5367 	const char *type = btrfs_feature_set_names[set];
5368 	char *names;
5369 	u64 disallowed, unsupported;
5370 	u64 set_mask = flags & change_mask;
5371 	u64 clear_mask = ~flags & change_mask;
5372 
5373 	unsupported = set_mask & ~supported_flags;
5374 	if (unsupported) {
5375 		names = btrfs_printable_features(set, unsupported);
5376 		if (names) {
5377 			btrfs_warn(fs_info,
5378 				   "this kernel does not support the %s feature bit%s",
5379 				   names, strchr(names, ',') ? "s" : "");
5380 			kfree(names);
5381 		} else
5382 			btrfs_warn(fs_info,
5383 				   "this kernel does not support %s bits 0x%llx",
5384 				   type, unsupported);
5385 		return -EOPNOTSUPP;
5386 	}
5387 
5388 	disallowed = set_mask & ~safe_set;
5389 	if (disallowed) {
5390 		names = btrfs_printable_features(set, disallowed);
5391 		if (names) {
5392 			btrfs_warn(fs_info,
5393 				   "can't set the %s feature bit%s while mounted",
5394 				   names, strchr(names, ',') ? "s" : "");
5395 			kfree(names);
5396 		} else
5397 			btrfs_warn(fs_info,
5398 				   "can't set %s bits 0x%llx while mounted",
5399 				   type, disallowed);
5400 		return -EPERM;
5401 	}
5402 
5403 	disallowed = clear_mask & ~safe_clear;
5404 	if (disallowed) {
5405 		names = btrfs_printable_features(set, disallowed);
5406 		if (names) {
5407 			btrfs_warn(fs_info,
5408 				   "can't clear the %s feature bit%s while mounted",
5409 				   names, strchr(names, ',') ? "s" : "");
5410 			kfree(names);
5411 		} else
5412 			btrfs_warn(fs_info,
5413 				   "can't clear %s bits 0x%llx while mounted",
5414 				   type, disallowed);
5415 		return -EPERM;
5416 	}
5417 
5418 	return 0;
5419 }
5420 
5421 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5422 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5423 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5424 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5425 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5426 
5427 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5428 {
5429 	struct inode *inode = file_inode(file);
5430 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5431 	struct btrfs_root *root = BTRFS_I(inode)->root;
5432 	struct btrfs_super_block *super_block = fs_info->super_copy;
5433 	struct btrfs_ioctl_feature_flags flags[2];
5434 	struct btrfs_trans_handle *trans;
5435 	u64 newflags;
5436 	int ret;
5437 
5438 	if (!capable(CAP_SYS_ADMIN))
5439 		return -EPERM;
5440 
5441 	if (copy_from_user(flags, arg, sizeof(flags)))
5442 		return -EFAULT;
5443 
5444 	/* Nothing to do */
5445 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5446 	    !flags[0].incompat_flags)
5447 		return 0;
5448 
5449 	ret = check_feature(fs_info, flags[0].compat_flags,
5450 			    flags[1].compat_flags, COMPAT);
5451 	if (ret)
5452 		return ret;
5453 
5454 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5455 			    flags[1].compat_ro_flags, COMPAT_RO);
5456 	if (ret)
5457 		return ret;
5458 
5459 	ret = check_feature(fs_info, flags[0].incompat_flags,
5460 			    flags[1].incompat_flags, INCOMPAT);
5461 	if (ret)
5462 		return ret;
5463 
5464 	ret = mnt_want_write_file(file);
5465 	if (ret)
5466 		return ret;
5467 
5468 	trans = btrfs_start_transaction(root, 0);
5469 	if (IS_ERR(trans)) {
5470 		ret = PTR_ERR(trans);
5471 		goto out_drop_write;
5472 	}
5473 
5474 	spin_lock(&fs_info->super_lock);
5475 	newflags = btrfs_super_compat_flags(super_block);
5476 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5477 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5478 	btrfs_set_super_compat_flags(super_block, newflags);
5479 
5480 	newflags = btrfs_super_compat_ro_flags(super_block);
5481 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5482 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5483 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5484 
5485 	newflags = btrfs_super_incompat_flags(super_block);
5486 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5487 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5488 	btrfs_set_super_incompat_flags(super_block, newflags);
5489 	spin_unlock(&fs_info->super_lock);
5490 
5491 	ret = btrfs_commit_transaction(trans);
5492 out_drop_write:
5493 	mnt_drop_write_file(file);
5494 
5495 	return ret;
5496 }
5497 
5498 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5499 {
5500 	struct btrfs_ioctl_send_args *arg;
5501 	int ret;
5502 
5503 	if (compat) {
5504 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5505 		struct btrfs_ioctl_send_args_32 args32;
5506 
5507 		ret = copy_from_user(&args32, argp, sizeof(args32));
5508 		if (ret)
5509 			return -EFAULT;
5510 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5511 		if (!arg)
5512 			return -ENOMEM;
5513 		arg->send_fd = args32.send_fd;
5514 		arg->clone_sources_count = args32.clone_sources_count;
5515 		arg->clone_sources = compat_ptr(args32.clone_sources);
5516 		arg->parent_root = args32.parent_root;
5517 		arg->flags = args32.flags;
5518 		memcpy(arg->reserved, args32.reserved,
5519 		       sizeof(args32.reserved));
5520 #else
5521 		return -ENOTTY;
5522 #endif
5523 	} else {
5524 		arg = memdup_user(argp, sizeof(*arg));
5525 		if (IS_ERR(arg))
5526 			return PTR_ERR(arg);
5527 	}
5528 	ret = btrfs_ioctl_send(file, arg);
5529 	kfree(arg);
5530 	return ret;
5531 }
5532 
5533 long btrfs_ioctl(struct file *file, unsigned int
5534 		cmd, unsigned long arg)
5535 {
5536 	struct inode *inode = file_inode(file);
5537 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5538 	struct btrfs_root *root = BTRFS_I(inode)->root;
5539 	void __user *argp = (void __user *)arg;
5540 
5541 	switch (cmd) {
5542 	case FS_IOC_GETFLAGS:
5543 		return btrfs_ioctl_getflags(file, argp);
5544 	case FS_IOC_SETFLAGS:
5545 		return btrfs_ioctl_setflags(file, argp);
5546 	case FS_IOC_GETVERSION:
5547 		return btrfs_ioctl_getversion(file, argp);
5548 	case FITRIM:
5549 		return btrfs_ioctl_fitrim(file, argp);
5550 	case BTRFS_IOC_SNAP_CREATE:
5551 		return btrfs_ioctl_snap_create(file, argp, 0);
5552 	case BTRFS_IOC_SNAP_CREATE_V2:
5553 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5554 	case BTRFS_IOC_SUBVOL_CREATE:
5555 		return btrfs_ioctl_snap_create(file, argp, 1);
5556 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5557 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5558 	case BTRFS_IOC_SNAP_DESTROY:
5559 		return btrfs_ioctl_snap_destroy(file, argp);
5560 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5561 		return btrfs_ioctl_subvol_getflags(file, argp);
5562 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5563 		return btrfs_ioctl_subvol_setflags(file, argp);
5564 	case BTRFS_IOC_DEFAULT_SUBVOL:
5565 		return btrfs_ioctl_default_subvol(file, argp);
5566 	case BTRFS_IOC_DEFRAG:
5567 		return btrfs_ioctl_defrag(file, NULL);
5568 	case BTRFS_IOC_DEFRAG_RANGE:
5569 		return btrfs_ioctl_defrag(file, argp);
5570 	case BTRFS_IOC_RESIZE:
5571 		return btrfs_ioctl_resize(file, argp);
5572 	case BTRFS_IOC_ADD_DEV:
5573 		return btrfs_ioctl_add_dev(fs_info, argp);
5574 	case BTRFS_IOC_RM_DEV:
5575 		return btrfs_ioctl_rm_dev(file, argp);
5576 	case BTRFS_IOC_RM_DEV_V2:
5577 		return btrfs_ioctl_rm_dev_v2(file, argp);
5578 	case BTRFS_IOC_FS_INFO:
5579 		return btrfs_ioctl_fs_info(fs_info, argp);
5580 	case BTRFS_IOC_DEV_INFO:
5581 		return btrfs_ioctl_dev_info(fs_info, argp);
5582 	case BTRFS_IOC_BALANCE:
5583 		return btrfs_ioctl_balance(file, NULL);
5584 	case BTRFS_IOC_TREE_SEARCH:
5585 		return btrfs_ioctl_tree_search(file, argp);
5586 	case BTRFS_IOC_TREE_SEARCH_V2:
5587 		return btrfs_ioctl_tree_search_v2(file, argp);
5588 	case BTRFS_IOC_INO_LOOKUP:
5589 		return btrfs_ioctl_ino_lookup(file, argp);
5590 	case BTRFS_IOC_INO_PATHS:
5591 		return btrfs_ioctl_ino_to_path(root, argp);
5592 	case BTRFS_IOC_LOGICAL_INO:
5593 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5594 	case BTRFS_IOC_LOGICAL_INO_V2:
5595 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5596 	case BTRFS_IOC_SPACE_INFO:
5597 		return btrfs_ioctl_space_info(fs_info, argp);
5598 	case BTRFS_IOC_SYNC: {
5599 		int ret;
5600 
5601 		ret = btrfs_start_delalloc_roots(fs_info, -1);
5602 		if (ret)
5603 			return ret;
5604 		ret = btrfs_sync_fs(inode->i_sb, 1);
5605 		/*
5606 		 * The transaction thread may want to do more work,
5607 		 * namely it pokes the cleaner kthread that will start
5608 		 * processing uncleaned subvols.
5609 		 */
5610 		wake_up_process(fs_info->transaction_kthread);
5611 		return ret;
5612 	}
5613 	case BTRFS_IOC_START_SYNC:
5614 		return btrfs_ioctl_start_sync(root, argp);
5615 	case BTRFS_IOC_WAIT_SYNC:
5616 		return btrfs_ioctl_wait_sync(fs_info, argp);
5617 	case BTRFS_IOC_SCRUB:
5618 		return btrfs_ioctl_scrub(file, argp);
5619 	case BTRFS_IOC_SCRUB_CANCEL:
5620 		return btrfs_ioctl_scrub_cancel(fs_info);
5621 	case BTRFS_IOC_SCRUB_PROGRESS:
5622 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5623 	case BTRFS_IOC_BALANCE_V2:
5624 		return btrfs_ioctl_balance(file, argp);
5625 	case BTRFS_IOC_BALANCE_CTL:
5626 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5627 	case BTRFS_IOC_BALANCE_PROGRESS:
5628 		return btrfs_ioctl_balance_progress(fs_info, argp);
5629 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5630 		return btrfs_ioctl_set_received_subvol(file, argp);
5631 #ifdef CONFIG_64BIT
5632 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5633 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5634 #endif
5635 	case BTRFS_IOC_SEND:
5636 		return _btrfs_ioctl_send(file, argp, false);
5637 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5638 	case BTRFS_IOC_SEND_32:
5639 		return _btrfs_ioctl_send(file, argp, true);
5640 #endif
5641 	case BTRFS_IOC_GET_DEV_STATS:
5642 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5643 	case BTRFS_IOC_QUOTA_CTL:
5644 		return btrfs_ioctl_quota_ctl(file, argp);
5645 	case BTRFS_IOC_QGROUP_ASSIGN:
5646 		return btrfs_ioctl_qgroup_assign(file, argp);
5647 	case BTRFS_IOC_QGROUP_CREATE:
5648 		return btrfs_ioctl_qgroup_create(file, argp);
5649 	case BTRFS_IOC_QGROUP_LIMIT:
5650 		return btrfs_ioctl_qgroup_limit(file, argp);
5651 	case BTRFS_IOC_QUOTA_RESCAN:
5652 		return btrfs_ioctl_quota_rescan(file, argp);
5653 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5654 		return btrfs_ioctl_quota_rescan_status(file, argp);
5655 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5656 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5657 	case BTRFS_IOC_DEV_REPLACE:
5658 		return btrfs_ioctl_dev_replace(fs_info, argp);
5659 	case BTRFS_IOC_GET_FSLABEL:
5660 		return btrfs_ioctl_get_fslabel(file, argp);
5661 	case BTRFS_IOC_SET_FSLABEL:
5662 		return btrfs_ioctl_set_fslabel(file, argp);
5663 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5664 		return btrfs_ioctl_get_supported_features(argp);
5665 	case BTRFS_IOC_GET_FEATURES:
5666 		return btrfs_ioctl_get_features(file, argp);
5667 	case BTRFS_IOC_SET_FEATURES:
5668 		return btrfs_ioctl_set_features(file, argp);
5669 	case FS_IOC_FSGETXATTR:
5670 		return btrfs_ioctl_fsgetxattr(file, argp);
5671 	case FS_IOC_FSSETXATTR:
5672 		return btrfs_ioctl_fssetxattr(file, argp);
5673 	case BTRFS_IOC_GET_SUBVOL_INFO:
5674 		return btrfs_ioctl_get_subvol_info(file, argp);
5675 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5676 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5677 	case BTRFS_IOC_INO_LOOKUP_USER:
5678 		return btrfs_ioctl_ino_lookup_user(file, argp);
5679 	}
5680 
5681 	return -ENOTTY;
5682 }
5683 
5684 #ifdef CONFIG_COMPAT
5685 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5686 {
5687 	/*
5688 	 * These all access 32-bit values anyway so no further
5689 	 * handling is necessary.
5690 	 */
5691 	switch (cmd) {
5692 	case FS_IOC32_GETFLAGS:
5693 		cmd = FS_IOC_GETFLAGS;
5694 		break;
5695 	case FS_IOC32_SETFLAGS:
5696 		cmd = FS_IOC_SETFLAGS;
5697 		break;
5698 	case FS_IOC32_GETVERSION:
5699 		cmd = FS_IOC_GETVERSION;
5700 		break;
5701 	}
5702 
5703 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5704 }
5705 #endif
5706