xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 4a0a1436)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "export.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "rcu-string.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "delalloc-space.h"
50 #include "block-group.h"
51 #include "subpage.h"
52 
53 #ifdef CONFIG_64BIT
54 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
55  * structures are incorrect, as the timespec structure from userspace
56  * is 4 bytes too small. We define these alternatives here to teach
57  * the kernel about the 32-bit struct packing.
58  */
59 struct btrfs_ioctl_timespec_32 {
60 	__u64 sec;
61 	__u32 nsec;
62 } __attribute__ ((__packed__));
63 
64 struct btrfs_ioctl_received_subvol_args_32 {
65 	char	uuid[BTRFS_UUID_SIZE];	/* in */
66 	__u64	stransid;		/* in */
67 	__u64	rtransid;		/* out */
68 	struct btrfs_ioctl_timespec_32 stime; /* in */
69 	struct btrfs_ioctl_timespec_32 rtime; /* out */
70 	__u64	flags;			/* in */
71 	__u64	reserved[16];		/* in */
72 } __attribute__ ((__packed__));
73 
74 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
75 				struct btrfs_ioctl_received_subvol_args_32)
76 #endif
77 
78 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
79 struct btrfs_ioctl_send_args_32 {
80 	__s64 send_fd;			/* in */
81 	__u64 clone_sources_count;	/* in */
82 	compat_uptr_t clone_sources;	/* in */
83 	__u64 parent_root;		/* in */
84 	__u64 flags;			/* in */
85 	__u32 version;			/* in */
86 	__u8  reserved[28];		/* in */
87 } __attribute__ ((__packed__));
88 
89 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
90 			       struct btrfs_ioctl_send_args_32)
91 #endif
92 
93 /* Mask out flags that are inappropriate for the given type of inode. */
94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
95 		unsigned int flags)
96 {
97 	if (S_ISDIR(inode->i_mode))
98 		return flags;
99 	else if (S_ISREG(inode->i_mode))
100 		return flags & ~FS_DIRSYNC_FL;
101 	else
102 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104 
105 /*
106  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
107  * ioctl.
108  */
109 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
110 {
111 	unsigned int iflags = 0;
112 	u32 flags = binode->flags;
113 	u32 ro_flags = binode->ro_flags;
114 
115 	if (flags & BTRFS_INODE_SYNC)
116 		iflags |= FS_SYNC_FL;
117 	if (flags & BTRFS_INODE_IMMUTABLE)
118 		iflags |= FS_IMMUTABLE_FL;
119 	if (flags & BTRFS_INODE_APPEND)
120 		iflags |= FS_APPEND_FL;
121 	if (flags & BTRFS_INODE_NODUMP)
122 		iflags |= FS_NODUMP_FL;
123 	if (flags & BTRFS_INODE_NOATIME)
124 		iflags |= FS_NOATIME_FL;
125 	if (flags & BTRFS_INODE_DIRSYNC)
126 		iflags |= FS_DIRSYNC_FL;
127 	if (flags & BTRFS_INODE_NODATACOW)
128 		iflags |= FS_NOCOW_FL;
129 	if (ro_flags & BTRFS_INODE_RO_VERITY)
130 		iflags |= FS_VERITY_FL;
131 
132 	if (flags & BTRFS_INODE_NOCOMPRESS)
133 		iflags |= FS_NOCOMP_FL;
134 	else if (flags & BTRFS_INODE_COMPRESS)
135 		iflags |= FS_COMPR_FL;
136 
137 	return iflags;
138 }
139 
140 /*
141  * Update inode->i_flags based on the btrfs internal flags.
142  */
143 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
144 {
145 	struct btrfs_inode *binode = BTRFS_I(inode);
146 	unsigned int new_fl = 0;
147 
148 	if (binode->flags & BTRFS_INODE_SYNC)
149 		new_fl |= S_SYNC;
150 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
151 		new_fl |= S_IMMUTABLE;
152 	if (binode->flags & BTRFS_INODE_APPEND)
153 		new_fl |= S_APPEND;
154 	if (binode->flags & BTRFS_INODE_NOATIME)
155 		new_fl |= S_NOATIME;
156 	if (binode->flags & BTRFS_INODE_DIRSYNC)
157 		new_fl |= S_DIRSYNC;
158 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
159 		new_fl |= S_VERITY;
160 
161 	set_mask_bits(&inode->i_flags,
162 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
163 		      S_VERITY, new_fl);
164 }
165 
166 /*
167  * Check if @flags are a supported and valid set of FS_*_FL flags and that
168  * the old and new flags are not conflicting
169  */
170 static int check_fsflags(unsigned int old_flags, unsigned int flags)
171 {
172 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
173 		      FS_NOATIME_FL | FS_NODUMP_FL | \
174 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
175 		      FS_NOCOMP_FL | FS_COMPR_FL |
176 		      FS_NOCOW_FL))
177 		return -EOPNOTSUPP;
178 
179 	/* COMPR and NOCOMP on new/old are valid */
180 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
181 		return -EINVAL;
182 
183 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
184 		return -EINVAL;
185 
186 	/* NOCOW and compression options are mutually exclusive */
187 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
188 		return -EINVAL;
189 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
190 		return -EINVAL;
191 
192 	return 0;
193 }
194 
195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
196 				    unsigned int flags)
197 {
198 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
199 		return -EPERM;
200 
201 	return 0;
202 }
203 
204 /*
205  * Set flags/xflags from the internal inode flags. The remaining items of
206  * fsxattr are zeroed.
207  */
208 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
209 {
210 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
211 
212 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
213 	return 0;
214 }
215 
216 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
217 		       struct dentry *dentry, struct fileattr *fa)
218 {
219 	struct inode *inode = d_inode(dentry);
220 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
221 	struct btrfs_inode *binode = BTRFS_I(inode);
222 	struct btrfs_root *root = binode->root;
223 	struct btrfs_trans_handle *trans;
224 	unsigned int fsflags, old_fsflags;
225 	int ret;
226 	const char *comp = NULL;
227 	u32 binode_flags;
228 
229 	if (btrfs_root_readonly(root))
230 		return -EROFS;
231 
232 	if (fileattr_has_fsx(fa))
233 		return -EOPNOTSUPP;
234 
235 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
236 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
237 	ret = check_fsflags(old_fsflags, fsflags);
238 	if (ret)
239 		return ret;
240 
241 	ret = check_fsflags_compatible(fs_info, fsflags);
242 	if (ret)
243 		return ret;
244 
245 	binode_flags = binode->flags;
246 	if (fsflags & FS_SYNC_FL)
247 		binode_flags |= BTRFS_INODE_SYNC;
248 	else
249 		binode_flags &= ~BTRFS_INODE_SYNC;
250 	if (fsflags & FS_IMMUTABLE_FL)
251 		binode_flags |= BTRFS_INODE_IMMUTABLE;
252 	else
253 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
254 	if (fsflags & FS_APPEND_FL)
255 		binode_flags |= BTRFS_INODE_APPEND;
256 	else
257 		binode_flags &= ~BTRFS_INODE_APPEND;
258 	if (fsflags & FS_NODUMP_FL)
259 		binode_flags |= BTRFS_INODE_NODUMP;
260 	else
261 		binode_flags &= ~BTRFS_INODE_NODUMP;
262 	if (fsflags & FS_NOATIME_FL)
263 		binode_flags |= BTRFS_INODE_NOATIME;
264 	else
265 		binode_flags &= ~BTRFS_INODE_NOATIME;
266 
267 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
268 	if (!fa->flags_valid) {
269 		/* 1 item for the inode */
270 		trans = btrfs_start_transaction(root, 1);
271 		if (IS_ERR(trans))
272 			return PTR_ERR(trans);
273 		goto update_flags;
274 	}
275 
276 	if (fsflags & FS_DIRSYNC_FL)
277 		binode_flags |= BTRFS_INODE_DIRSYNC;
278 	else
279 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
280 	if (fsflags & FS_NOCOW_FL) {
281 		if (S_ISREG(inode->i_mode)) {
282 			/*
283 			 * It's safe to turn csums off here, no extents exist.
284 			 * Otherwise we want the flag to reflect the real COW
285 			 * status of the file and will not set it.
286 			 */
287 			if (inode->i_size == 0)
288 				binode_flags |= BTRFS_INODE_NODATACOW |
289 						BTRFS_INODE_NODATASUM;
290 		} else {
291 			binode_flags |= BTRFS_INODE_NODATACOW;
292 		}
293 	} else {
294 		/*
295 		 * Revert back under same assumptions as above
296 		 */
297 		if (S_ISREG(inode->i_mode)) {
298 			if (inode->i_size == 0)
299 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
300 						  BTRFS_INODE_NODATASUM);
301 		} else {
302 			binode_flags &= ~BTRFS_INODE_NODATACOW;
303 		}
304 	}
305 
306 	/*
307 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
308 	 * flag may be changed automatically if compression code won't make
309 	 * things smaller.
310 	 */
311 	if (fsflags & FS_NOCOMP_FL) {
312 		binode_flags &= ~BTRFS_INODE_COMPRESS;
313 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
314 	} else if (fsflags & FS_COMPR_FL) {
315 
316 		if (IS_SWAPFILE(inode))
317 			return -ETXTBSY;
318 
319 		binode_flags |= BTRFS_INODE_COMPRESS;
320 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
321 
322 		comp = btrfs_compress_type2str(fs_info->compress_type);
323 		if (!comp || comp[0] == 0)
324 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
325 	} else {
326 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
327 	}
328 
329 	/*
330 	 * 1 for inode item
331 	 * 2 for properties
332 	 */
333 	trans = btrfs_start_transaction(root, 3);
334 	if (IS_ERR(trans))
335 		return PTR_ERR(trans);
336 
337 	if (comp) {
338 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
339 				     strlen(comp), 0);
340 		if (ret) {
341 			btrfs_abort_transaction(trans, ret);
342 			goto out_end_trans;
343 		}
344 	} else {
345 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
346 				     0, 0);
347 		if (ret && ret != -ENODATA) {
348 			btrfs_abort_transaction(trans, ret);
349 			goto out_end_trans;
350 		}
351 	}
352 
353 update_flags:
354 	binode->flags = binode_flags;
355 	btrfs_sync_inode_flags_to_i_flags(inode);
356 	inode_inc_iversion(inode);
357 	inode->i_ctime = current_time(inode);
358 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
359 
360  out_end_trans:
361 	btrfs_end_transaction(trans);
362 	return ret;
363 }
364 
365 /*
366  * Start exclusive operation @type, return true on success
367  */
368 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
369 			enum btrfs_exclusive_operation type)
370 {
371 	bool ret = false;
372 
373 	spin_lock(&fs_info->super_lock);
374 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
375 		fs_info->exclusive_operation = type;
376 		ret = true;
377 	}
378 	spin_unlock(&fs_info->super_lock);
379 
380 	return ret;
381 }
382 
383 /*
384  * Conditionally allow to enter the exclusive operation in case it's compatible
385  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
386  * btrfs_exclop_finish.
387  *
388  * Compatibility:
389  * - the same type is already running
390  * - when trying to add a device and balance has been paused
391  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
392  *   must check the condition first that would allow none -> @type
393  */
394 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
395 				 enum btrfs_exclusive_operation type)
396 {
397 	spin_lock(&fs_info->super_lock);
398 	if (fs_info->exclusive_operation == type ||
399 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
400 	     type == BTRFS_EXCLOP_DEV_ADD))
401 		return true;
402 
403 	spin_unlock(&fs_info->super_lock);
404 	return false;
405 }
406 
407 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
408 {
409 	spin_unlock(&fs_info->super_lock);
410 }
411 
412 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
413 {
414 	spin_lock(&fs_info->super_lock);
415 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
416 	spin_unlock(&fs_info->super_lock);
417 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
418 }
419 
420 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
421 			  enum btrfs_exclusive_operation op)
422 {
423 	switch (op) {
424 	case BTRFS_EXCLOP_BALANCE_PAUSED:
425 		spin_lock(&fs_info->super_lock);
426 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
427 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
428 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
429 		spin_unlock(&fs_info->super_lock);
430 		break;
431 	case BTRFS_EXCLOP_BALANCE:
432 		spin_lock(&fs_info->super_lock);
433 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
434 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
435 		spin_unlock(&fs_info->super_lock);
436 		break;
437 	default:
438 		btrfs_warn(fs_info,
439 			"invalid exclop balance operation %d requested", op);
440 	}
441 }
442 
443 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
444 {
445 	struct inode *inode = file_inode(file);
446 
447 	return put_user(inode->i_generation, arg);
448 }
449 
450 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
451 					void __user *arg)
452 {
453 	struct btrfs_device *device;
454 	struct request_queue *q;
455 	struct fstrim_range range;
456 	u64 minlen = ULLONG_MAX;
457 	u64 num_devices = 0;
458 	int ret;
459 
460 	if (!capable(CAP_SYS_ADMIN))
461 		return -EPERM;
462 
463 	/*
464 	 * btrfs_trim_block_group() depends on space cache, which is not
465 	 * available in zoned filesystem. So, disallow fitrim on a zoned
466 	 * filesystem for now.
467 	 */
468 	if (btrfs_is_zoned(fs_info))
469 		return -EOPNOTSUPP;
470 
471 	/*
472 	 * If the fs is mounted with nologreplay, which requires it to be
473 	 * mounted in RO mode as well, we can not allow discard on free space
474 	 * inside block groups, because log trees refer to extents that are not
475 	 * pinned in a block group's free space cache (pinning the extents is
476 	 * precisely the first phase of replaying a log tree).
477 	 */
478 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
479 		return -EROFS;
480 
481 	rcu_read_lock();
482 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
483 				dev_list) {
484 		if (!device->bdev)
485 			continue;
486 		q = bdev_get_queue(device->bdev);
487 		if (blk_queue_discard(q)) {
488 			num_devices++;
489 			minlen = min_t(u64, q->limits.discard_granularity,
490 				     minlen);
491 		}
492 	}
493 	rcu_read_unlock();
494 
495 	if (!num_devices)
496 		return -EOPNOTSUPP;
497 	if (copy_from_user(&range, arg, sizeof(range)))
498 		return -EFAULT;
499 
500 	/*
501 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
502 	 * block group is in the logical address space, which can be any
503 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
504 	 */
505 	if (range.len < fs_info->sb->s_blocksize)
506 		return -EINVAL;
507 
508 	range.minlen = max(range.minlen, minlen);
509 	ret = btrfs_trim_fs(fs_info, &range);
510 	if (ret < 0)
511 		return ret;
512 
513 	if (copy_to_user(arg, &range, sizeof(range)))
514 		return -EFAULT;
515 
516 	return 0;
517 }
518 
519 int __pure btrfs_is_empty_uuid(u8 *uuid)
520 {
521 	int i;
522 
523 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
524 		if (uuid[i])
525 			return 0;
526 	}
527 	return 1;
528 }
529 
530 static noinline int create_subvol(struct user_namespace *mnt_userns,
531 				  struct inode *dir, struct dentry *dentry,
532 				  const char *name, int namelen,
533 				  struct btrfs_qgroup_inherit *inherit)
534 {
535 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
536 	struct btrfs_trans_handle *trans;
537 	struct btrfs_key key;
538 	struct btrfs_root_item *root_item;
539 	struct btrfs_inode_item *inode_item;
540 	struct extent_buffer *leaf;
541 	struct btrfs_root *root = BTRFS_I(dir)->root;
542 	struct btrfs_root *new_root;
543 	struct btrfs_block_rsv block_rsv;
544 	struct timespec64 cur_time = current_time(dir);
545 	struct inode *inode;
546 	int ret;
547 	dev_t anon_dev = 0;
548 	u64 objectid;
549 	u64 index = 0;
550 
551 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
552 	if (!root_item)
553 		return -ENOMEM;
554 
555 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
556 	if (ret)
557 		goto fail_free;
558 
559 	ret = get_anon_bdev(&anon_dev);
560 	if (ret < 0)
561 		goto fail_free;
562 
563 	/*
564 	 * Don't create subvolume whose level is not zero. Or qgroup will be
565 	 * screwed up since it assumes subvolume qgroup's level to be 0.
566 	 */
567 	if (btrfs_qgroup_level(objectid)) {
568 		ret = -ENOSPC;
569 		goto fail_free;
570 	}
571 
572 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
573 	/*
574 	 * The same as the snapshot creation, please see the comment
575 	 * of create_snapshot().
576 	 */
577 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
578 	if (ret)
579 		goto fail_free;
580 
581 	trans = btrfs_start_transaction(root, 0);
582 	if (IS_ERR(trans)) {
583 		ret = PTR_ERR(trans);
584 		btrfs_subvolume_release_metadata(root, &block_rsv);
585 		goto fail_free;
586 	}
587 	trans->block_rsv = &block_rsv;
588 	trans->bytes_reserved = block_rsv.size;
589 
590 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
591 	if (ret)
592 		goto fail;
593 
594 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
595 				      BTRFS_NESTING_NORMAL);
596 	if (IS_ERR(leaf)) {
597 		ret = PTR_ERR(leaf);
598 		goto fail;
599 	}
600 
601 	btrfs_mark_buffer_dirty(leaf);
602 
603 	inode_item = &root_item->inode;
604 	btrfs_set_stack_inode_generation(inode_item, 1);
605 	btrfs_set_stack_inode_size(inode_item, 3);
606 	btrfs_set_stack_inode_nlink(inode_item, 1);
607 	btrfs_set_stack_inode_nbytes(inode_item,
608 				     fs_info->nodesize);
609 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
610 
611 	btrfs_set_root_flags(root_item, 0);
612 	btrfs_set_root_limit(root_item, 0);
613 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
614 
615 	btrfs_set_root_bytenr(root_item, leaf->start);
616 	btrfs_set_root_generation(root_item, trans->transid);
617 	btrfs_set_root_level(root_item, 0);
618 	btrfs_set_root_refs(root_item, 1);
619 	btrfs_set_root_used(root_item, leaf->len);
620 	btrfs_set_root_last_snapshot(root_item, 0);
621 
622 	btrfs_set_root_generation_v2(root_item,
623 			btrfs_root_generation(root_item));
624 	generate_random_guid(root_item->uuid);
625 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
626 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
627 	root_item->ctime = root_item->otime;
628 	btrfs_set_root_ctransid(root_item, trans->transid);
629 	btrfs_set_root_otransid(root_item, trans->transid);
630 
631 	btrfs_tree_unlock(leaf);
632 
633 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
634 
635 	key.objectid = objectid;
636 	key.offset = 0;
637 	key.type = BTRFS_ROOT_ITEM_KEY;
638 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
639 				root_item);
640 	if (ret) {
641 		/*
642 		 * Since we don't abort the transaction in this case, free the
643 		 * tree block so that we don't leak space and leave the
644 		 * filesystem in an inconsistent state (an extent item in the
645 		 * extent tree with a backreference for a root that does not
646 		 * exists).
647 		 */
648 		btrfs_tree_lock(leaf);
649 		btrfs_clean_tree_block(leaf);
650 		btrfs_tree_unlock(leaf);
651 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
652 		free_extent_buffer(leaf);
653 		goto fail;
654 	}
655 
656 	free_extent_buffer(leaf);
657 	leaf = NULL;
658 
659 	key.offset = (u64)-1;
660 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
661 	if (IS_ERR(new_root)) {
662 		free_anon_bdev(anon_dev);
663 		ret = PTR_ERR(new_root);
664 		btrfs_abort_transaction(trans, ret);
665 		goto fail;
666 	}
667 	/* Freeing will be done in btrfs_put_root() of new_root */
668 	anon_dev = 0;
669 
670 	ret = btrfs_record_root_in_trans(trans, new_root);
671 	if (ret) {
672 		btrfs_put_root(new_root);
673 		btrfs_abort_transaction(trans, ret);
674 		goto fail;
675 	}
676 
677 	ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
678 	btrfs_put_root(new_root);
679 	if (ret) {
680 		/* We potentially lose an unused inode item here */
681 		btrfs_abort_transaction(trans, ret);
682 		goto fail;
683 	}
684 
685 	/*
686 	 * insert the directory item
687 	 */
688 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
689 	if (ret) {
690 		btrfs_abort_transaction(trans, ret);
691 		goto fail;
692 	}
693 
694 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
695 				    BTRFS_FT_DIR, index);
696 	if (ret) {
697 		btrfs_abort_transaction(trans, ret);
698 		goto fail;
699 	}
700 
701 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
702 	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
703 	if (ret) {
704 		btrfs_abort_transaction(trans, ret);
705 		goto fail;
706 	}
707 
708 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
709 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
710 	if (ret) {
711 		btrfs_abort_transaction(trans, ret);
712 		goto fail;
713 	}
714 
715 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
716 				  BTRFS_UUID_KEY_SUBVOL, objectid);
717 	if (ret)
718 		btrfs_abort_transaction(trans, ret);
719 
720 fail:
721 	kfree(root_item);
722 	trans->block_rsv = NULL;
723 	trans->bytes_reserved = 0;
724 	btrfs_subvolume_release_metadata(root, &block_rsv);
725 
726 	if (ret)
727 		btrfs_end_transaction(trans);
728 	else
729 		ret = btrfs_commit_transaction(trans);
730 
731 	if (!ret) {
732 		inode = btrfs_lookup_dentry(dir, dentry);
733 		if (IS_ERR(inode))
734 			return PTR_ERR(inode);
735 		d_instantiate(dentry, inode);
736 	}
737 	return ret;
738 
739 fail_free:
740 	if (anon_dev)
741 		free_anon_bdev(anon_dev);
742 	kfree(root_item);
743 	return ret;
744 }
745 
746 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
747 			   struct dentry *dentry, bool readonly,
748 			   struct btrfs_qgroup_inherit *inherit)
749 {
750 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
751 	struct inode *inode;
752 	struct btrfs_pending_snapshot *pending_snapshot;
753 	struct btrfs_trans_handle *trans;
754 	int ret;
755 
756 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
757 		return -EINVAL;
758 
759 	if (atomic_read(&root->nr_swapfiles)) {
760 		btrfs_warn(fs_info,
761 			   "cannot snapshot subvolume with active swapfile");
762 		return -ETXTBSY;
763 	}
764 
765 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
766 	if (!pending_snapshot)
767 		return -ENOMEM;
768 
769 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
770 	if (ret < 0)
771 		goto free_pending;
772 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
773 			GFP_KERNEL);
774 	pending_snapshot->path = btrfs_alloc_path();
775 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
776 		ret = -ENOMEM;
777 		goto free_pending;
778 	}
779 
780 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
781 			     BTRFS_BLOCK_RSV_TEMP);
782 	/*
783 	 * 1 - parent dir inode
784 	 * 2 - dir entries
785 	 * 1 - root item
786 	 * 2 - root ref/backref
787 	 * 1 - root of snapshot
788 	 * 1 - UUID item
789 	 */
790 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
791 					&pending_snapshot->block_rsv, 8,
792 					false);
793 	if (ret)
794 		goto free_pending;
795 
796 	pending_snapshot->dentry = dentry;
797 	pending_snapshot->root = root;
798 	pending_snapshot->readonly = readonly;
799 	pending_snapshot->dir = dir;
800 	pending_snapshot->inherit = inherit;
801 
802 	trans = btrfs_start_transaction(root, 0);
803 	if (IS_ERR(trans)) {
804 		ret = PTR_ERR(trans);
805 		goto fail;
806 	}
807 
808 	trans->pending_snapshot = pending_snapshot;
809 
810 	ret = btrfs_commit_transaction(trans);
811 	if (ret)
812 		goto fail;
813 
814 	ret = pending_snapshot->error;
815 	if (ret)
816 		goto fail;
817 
818 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
819 	if (ret)
820 		goto fail;
821 
822 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
823 	if (IS_ERR(inode)) {
824 		ret = PTR_ERR(inode);
825 		goto fail;
826 	}
827 
828 	d_instantiate(dentry, inode);
829 	ret = 0;
830 	pending_snapshot->anon_dev = 0;
831 fail:
832 	/* Prevent double freeing of anon_dev */
833 	if (ret && pending_snapshot->snap)
834 		pending_snapshot->snap->anon_dev = 0;
835 	btrfs_put_root(pending_snapshot->snap);
836 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
837 free_pending:
838 	if (pending_snapshot->anon_dev)
839 		free_anon_bdev(pending_snapshot->anon_dev);
840 	kfree(pending_snapshot->root_item);
841 	btrfs_free_path(pending_snapshot->path);
842 	kfree(pending_snapshot);
843 
844 	return ret;
845 }
846 
847 /*  copy of may_delete in fs/namei.c()
848  *	Check whether we can remove a link victim from directory dir, check
849  *  whether the type of victim is right.
850  *  1. We can't do it if dir is read-only (done in permission())
851  *  2. We should have write and exec permissions on dir
852  *  3. We can't remove anything from append-only dir
853  *  4. We can't do anything with immutable dir (done in permission())
854  *  5. If the sticky bit on dir is set we should either
855  *	a. be owner of dir, or
856  *	b. be owner of victim, or
857  *	c. have CAP_FOWNER capability
858  *  6. If the victim is append-only or immutable we can't do anything with
859  *     links pointing to it.
860  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
861  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
862  *  9. We can't remove a root or mountpoint.
863  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
864  *     nfs_async_unlink().
865  */
866 
867 static int btrfs_may_delete(struct user_namespace *mnt_userns,
868 			    struct inode *dir, struct dentry *victim, int isdir)
869 {
870 	int error;
871 
872 	if (d_really_is_negative(victim))
873 		return -ENOENT;
874 
875 	BUG_ON(d_inode(victim->d_parent) != dir);
876 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
877 
878 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
879 	if (error)
880 		return error;
881 	if (IS_APPEND(dir))
882 		return -EPERM;
883 	if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
884 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
885 	    IS_SWAPFILE(d_inode(victim)))
886 		return -EPERM;
887 	if (isdir) {
888 		if (!d_is_dir(victim))
889 			return -ENOTDIR;
890 		if (IS_ROOT(victim))
891 			return -EBUSY;
892 	} else if (d_is_dir(victim))
893 		return -EISDIR;
894 	if (IS_DEADDIR(dir))
895 		return -ENOENT;
896 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
897 		return -EBUSY;
898 	return 0;
899 }
900 
901 /* copy of may_create in fs/namei.c() */
902 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
903 				   struct inode *dir, struct dentry *child)
904 {
905 	if (d_really_is_positive(child))
906 		return -EEXIST;
907 	if (IS_DEADDIR(dir))
908 		return -ENOENT;
909 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
910 		return -EOVERFLOW;
911 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
912 }
913 
914 /*
915  * Create a new subvolume below @parent.  This is largely modeled after
916  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
917  * inside this filesystem so it's quite a bit simpler.
918  */
919 static noinline int btrfs_mksubvol(const struct path *parent,
920 				   struct user_namespace *mnt_userns,
921 				   const char *name, int namelen,
922 				   struct btrfs_root *snap_src,
923 				   bool readonly,
924 				   struct btrfs_qgroup_inherit *inherit)
925 {
926 	struct inode *dir = d_inode(parent->dentry);
927 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
928 	struct dentry *dentry;
929 	int error;
930 
931 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
932 	if (error == -EINTR)
933 		return error;
934 
935 	dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
936 	error = PTR_ERR(dentry);
937 	if (IS_ERR(dentry))
938 		goto out_unlock;
939 
940 	error = btrfs_may_create(mnt_userns, dir, dentry);
941 	if (error)
942 		goto out_dput;
943 
944 	/*
945 	 * even if this name doesn't exist, we may get hash collisions.
946 	 * check for them now when we can safely fail
947 	 */
948 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
949 					       dir->i_ino, name,
950 					       namelen);
951 	if (error)
952 		goto out_dput;
953 
954 	down_read(&fs_info->subvol_sem);
955 
956 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
957 		goto out_up_read;
958 
959 	if (snap_src)
960 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
961 	else
962 		error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
963 
964 	if (!error)
965 		fsnotify_mkdir(dir, dentry);
966 out_up_read:
967 	up_read(&fs_info->subvol_sem);
968 out_dput:
969 	dput(dentry);
970 out_unlock:
971 	btrfs_inode_unlock(dir, 0);
972 	return error;
973 }
974 
975 static noinline int btrfs_mksnapshot(const struct path *parent,
976 				   struct user_namespace *mnt_userns,
977 				   const char *name, int namelen,
978 				   struct btrfs_root *root,
979 				   bool readonly,
980 				   struct btrfs_qgroup_inherit *inherit)
981 {
982 	int ret;
983 	bool snapshot_force_cow = false;
984 
985 	/*
986 	 * Force new buffered writes to reserve space even when NOCOW is
987 	 * possible. This is to avoid later writeback (running dealloc) to
988 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
989 	 */
990 	btrfs_drew_read_lock(&root->snapshot_lock);
991 
992 	ret = btrfs_start_delalloc_snapshot(root, false);
993 	if (ret)
994 		goto out;
995 
996 	/*
997 	 * All previous writes have started writeback in NOCOW mode, so now
998 	 * we force future writes to fallback to COW mode during snapshot
999 	 * creation.
1000 	 */
1001 	atomic_inc(&root->snapshot_force_cow);
1002 	snapshot_force_cow = true;
1003 
1004 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1005 
1006 	ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1007 			     root, readonly, inherit);
1008 out:
1009 	if (snapshot_force_cow)
1010 		atomic_dec(&root->snapshot_force_cow);
1011 	btrfs_drew_read_unlock(&root->snapshot_lock);
1012 	return ret;
1013 }
1014 
1015 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1016 					       bool locked)
1017 {
1018 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1019 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1020 	struct extent_map *em;
1021 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1022 
1023 	/*
1024 	 * hopefully we have this extent in the tree already, try without
1025 	 * the full extent lock
1026 	 */
1027 	read_lock(&em_tree->lock);
1028 	em = lookup_extent_mapping(em_tree, start, sectorsize);
1029 	read_unlock(&em_tree->lock);
1030 
1031 	if (!em) {
1032 		struct extent_state *cached = NULL;
1033 		u64 end = start + sectorsize - 1;
1034 
1035 		/* get the big lock and read metadata off disk */
1036 		if (!locked)
1037 			lock_extent_bits(io_tree, start, end, &cached);
1038 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, sectorsize);
1039 		if (!locked)
1040 			unlock_extent_cached(io_tree, start, end, &cached);
1041 
1042 		if (IS_ERR(em))
1043 			return NULL;
1044 	}
1045 
1046 	return em;
1047 }
1048 
1049 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1050 				     bool locked)
1051 {
1052 	struct extent_map *next;
1053 	bool ret = true;
1054 
1055 	/* this is the last extent */
1056 	if (em->start + em->len >= i_size_read(inode))
1057 		return false;
1058 
1059 	next = defrag_lookup_extent(inode, em->start + em->len, locked);
1060 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1061 		ret = false;
1062 	else if ((em->block_start + em->block_len == next->block_start) &&
1063 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1064 		ret = false;
1065 
1066 	free_extent_map(next);
1067 	return ret;
1068 }
1069 
1070 /*
1071  * Prepare one page to be defragged.
1072  *
1073  * This will ensure:
1074  *
1075  * - Returned page is locked and has been set up properly.
1076  * - No ordered extent exists in the page.
1077  * - The page is uptodate.
1078  *
1079  * NOTE: Caller should also wait for page writeback after the cluster is
1080  * prepared, here we don't do writeback wait for each page.
1081  */
1082 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1083 					    pgoff_t index)
1084 {
1085 	struct address_space *mapping = inode->vfs_inode.i_mapping;
1086 	gfp_t mask = btrfs_alloc_write_mask(mapping);
1087 	u64 page_start = (u64)index << PAGE_SHIFT;
1088 	u64 page_end = page_start + PAGE_SIZE - 1;
1089 	struct extent_state *cached_state = NULL;
1090 	struct page *page;
1091 	int ret;
1092 
1093 again:
1094 	page = find_or_create_page(mapping, index, mask);
1095 	if (!page)
1096 		return ERR_PTR(-ENOMEM);
1097 
1098 	/*
1099 	 * Since we can defragment files opened read-only, we can encounter
1100 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1101 	 * can't do I/O using huge pages yet, so return an error for now.
1102 	 * Filesystem transparent huge pages are typically only used for
1103 	 * executables that explicitly enable them, so this isn't very
1104 	 * restrictive.
1105 	 */
1106 	if (PageCompound(page)) {
1107 		unlock_page(page);
1108 		put_page(page);
1109 		return ERR_PTR(-ETXTBSY);
1110 	}
1111 
1112 	ret = set_page_extent_mapped(page);
1113 	if (ret < 0) {
1114 		unlock_page(page);
1115 		put_page(page);
1116 		return ERR_PTR(ret);
1117 	}
1118 
1119 	/* Wait for any existing ordered extent in the range */
1120 	while (1) {
1121 		struct btrfs_ordered_extent *ordered;
1122 
1123 		lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1124 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1125 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
1126 				     &cached_state);
1127 		if (!ordered)
1128 			break;
1129 
1130 		unlock_page(page);
1131 		btrfs_start_ordered_extent(ordered, 1);
1132 		btrfs_put_ordered_extent(ordered);
1133 		lock_page(page);
1134 		/*
1135 		 * We unlocked the page above, so we need check if it was
1136 		 * released or not.
1137 		 */
1138 		if (page->mapping != mapping || !PagePrivate(page)) {
1139 			unlock_page(page);
1140 			put_page(page);
1141 			goto again;
1142 		}
1143 	}
1144 
1145 	/*
1146 	 * Now the page range has no ordered extent any more.  Read the page to
1147 	 * make it uptodate.
1148 	 */
1149 	if (!PageUptodate(page)) {
1150 		btrfs_readpage(NULL, page);
1151 		lock_page(page);
1152 		if (page->mapping != mapping || !PagePrivate(page)) {
1153 			unlock_page(page);
1154 			put_page(page);
1155 			goto again;
1156 		}
1157 		if (!PageUptodate(page)) {
1158 			unlock_page(page);
1159 			put_page(page);
1160 			return ERR_PTR(-EIO);
1161 		}
1162 	}
1163 	return page;
1164 }
1165 
1166 struct defrag_target_range {
1167 	struct list_head list;
1168 	u64 start;
1169 	u64 len;
1170 };
1171 
1172 /*
1173  * Collect all valid target extents.
1174  *
1175  * @start:	   file offset to lookup
1176  * @len:	   length to lookup
1177  * @extent_thresh: file extent size threshold, any extent size >= this value
1178  *		   will be ignored
1179  * @newer_than:    only defrag extents newer than this value
1180  * @do_compress:   whether the defrag is doing compression
1181  *		   if true, @extent_thresh will be ignored and all regular
1182  *		   file extents meeting @newer_than will be targets.
1183  * @locked:	   if the range has already held extent lock
1184  * @target_list:   list of targets file extents
1185  */
1186 static int defrag_collect_targets(struct btrfs_inode *inode,
1187 				  u64 start, u64 len, u32 extent_thresh,
1188 				  u64 newer_than, bool do_compress,
1189 				  bool locked, struct list_head *target_list)
1190 {
1191 	u64 cur = start;
1192 	int ret = 0;
1193 
1194 	while (cur < start + len) {
1195 		struct extent_map *em;
1196 		struct defrag_target_range *new;
1197 		bool next_mergeable = true;
1198 		u64 range_len;
1199 
1200 		em = defrag_lookup_extent(&inode->vfs_inode, cur, locked);
1201 		if (!em)
1202 			break;
1203 
1204 		/* Skip hole/inline/preallocated extents */
1205 		if (em->block_start >= EXTENT_MAP_LAST_BYTE ||
1206 		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1207 			goto next;
1208 
1209 		/* Skip older extent */
1210 		if (em->generation < newer_than)
1211 			goto next;
1212 
1213 		/*
1214 		 * Our start offset might be in the middle of an existing extent
1215 		 * map, so take that into account.
1216 		 */
1217 		range_len = em->len - (cur - em->start);
1218 		/*
1219 		 * If this range of the extent map is already flagged for delalloc,
1220 		 * skip it, because:
1221 		 *
1222 		 * 1) We could deadlock later, when trying to reserve space for
1223 		 *    delalloc, because in case we can't immediately reserve space
1224 		 *    the flusher can start delalloc and wait for the respective
1225 		 *    ordered extents to complete. The deadlock would happen
1226 		 *    because we do the space reservation while holding the range
1227 		 *    locked, and starting writeback, or finishing an ordered
1228 		 *    extent, requires locking the range;
1229 		 *
1230 		 * 2) If there's delalloc there, it means there's dirty pages for
1231 		 *    which writeback has not started yet (we clean the delalloc
1232 		 *    flag when starting writeback and after creating an ordered
1233 		 *    extent). If we mark pages in an adjacent range for defrag,
1234 		 *    then we will have a larger contiguous range for delalloc,
1235 		 *    very likely resulting in a larger extent after writeback is
1236 		 *    triggered (except in a case of free space fragmentation).
1237 		 */
1238 		if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
1239 				   EXTENT_DELALLOC, 0, NULL))
1240 			goto next;
1241 
1242 		/*
1243 		 * For do_compress case, we want to compress all valid file
1244 		 * extents, thus no @extent_thresh or mergeable check.
1245 		 */
1246 		if (do_compress)
1247 			goto add;
1248 
1249 		/* Skip too large extent */
1250 		if (range_len >= extent_thresh)
1251 			goto next;
1252 
1253 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1254 							  locked);
1255 		if (!next_mergeable) {
1256 			struct defrag_target_range *last;
1257 
1258 			/* Empty target list, no way to merge with last entry */
1259 			if (list_empty(target_list))
1260 				goto next;
1261 			last = list_entry(target_list->prev,
1262 					  struct defrag_target_range, list);
1263 			/* Not mergeable with last entry */
1264 			if (last->start + last->len != cur)
1265 				goto next;
1266 
1267 			/* Mergeable, fall through to add it to @target_list. */
1268 		}
1269 
1270 add:
1271 		range_len = min(extent_map_end(em), start + len) - cur;
1272 		/*
1273 		 * This one is a good target, check if it can be merged into
1274 		 * last range of the target list.
1275 		 */
1276 		if (!list_empty(target_list)) {
1277 			struct defrag_target_range *last;
1278 
1279 			last = list_entry(target_list->prev,
1280 					  struct defrag_target_range, list);
1281 			ASSERT(last->start + last->len <= cur);
1282 			if (last->start + last->len == cur) {
1283 				/* Mergeable, enlarge the last entry */
1284 				last->len += range_len;
1285 				goto next;
1286 			}
1287 			/* Fall through to allocate a new entry */
1288 		}
1289 
1290 		/* Allocate new defrag_target_range */
1291 		new = kmalloc(sizeof(*new), GFP_NOFS);
1292 		if (!new) {
1293 			free_extent_map(em);
1294 			ret = -ENOMEM;
1295 			break;
1296 		}
1297 		new->start = cur;
1298 		new->len = range_len;
1299 		list_add_tail(&new->list, target_list);
1300 
1301 next:
1302 		cur = extent_map_end(em);
1303 		free_extent_map(em);
1304 	}
1305 	if (ret < 0) {
1306 		struct defrag_target_range *entry;
1307 		struct defrag_target_range *tmp;
1308 
1309 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1310 			list_del_init(&entry->list);
1311 			kfree(entry);
1312 		}
1313 	}
1314 	return ret;
1315 }
1316 
1317 #define CLUSTER_SIZE	(SZ_256K)
1318 
1319 /*
1320  * Defrag one contiguous target range.
1321  *
1322  * @inode:	target inode
1323  * @target:	target range to defrag
1324  * @pages:	locked pages covering the defrag range
1325  * @nr_pages:	number of locked pages
1326  *
1327  * Caller should ensure:
1328  *
1329  * - Pages are prepared
1330  *   Pages should be locked, no ordered extent in the pages range,
1331  *   no writeback.
1332  *
1333  * - Extent bits are locked
1334  */
1335 static int defrag_one_locked_target(struct btrfs_inode *inode,
1336 				    struct defrag_target_range *target,
1337 				    struct page **pages, int nr_pages,
1338 				    struct extent_state **cached_state)
1339 {
1340 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1341 	struct extent_changeset *data_reserved = NULL;
1342 	const u64 start = target->start;
1343 	const u64 len = target->len;
1344 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1345 	unsigned long start_index = start >> PAGE_SHIFT;
1346 	unsigned long first_index = page_index(pages[0]);
1347 	int ret = 0;
1348 	int i;
1349 
1350 	ASSERT(last_index - first_index + 1 <= nr_pages);
1351 
1352 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1353 	if (ret < 0)
1354 		return ret;
1355 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1356 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1357 			 EXTENT_DEFRAG, 0, 0, cached_state);
1358 	set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1359 
1360 	/* Update the page status */
1361 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1362 		ClearPageChecked(pages[i]);
1363 		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1364 	}
1365 	btrfs_delalloc_release_extents(inode, len);
1366 	extent_changeset_free(data_reserved);
1367 
1368 	return ret;
1369 }
1370 
1371 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1372 			    u32 extent_thresh, u64 newer_than, bool do_compress)
1373 {
1374 	struct extent_state *cached_state = NULL;
1375 	struct defrag_target_range *entry;
1376 	struct defrag_target_range *tmp;
1377 	LIST_HEAD(target_list);
1378 	struct page **pages;
1379 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1380 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1381 	u64 start_index = start >> PAGE_SHIFT;
1382 	unsigned int nr_pages = last_index - start_index + 1;
1383 	int ret = 0;
1384 	int i;
1385 
1386 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1387 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1388 
1389 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1390 	if (!pages)
1391 		return -ENOMEM;
1392 
1393 	/* Prepare all pages */
1394 	for (i = 0; i < nr_pages; i++) {
1395 		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1396 		if (IS_ERR(pages[i])) {
1397 			ret = PTR_ERR(pages[i]);
1398 			pages[i] = NULL;
1399 			goto free_pages;
1400 		}
1401 	}
1402 	for (i = 0; i < nr_pages; i++)
1403 		wait_on_page_writeback(pages[i]);
1404 
1405 	/* Lock the pages range */
1406 	lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1407 			 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1408 			 &cached_state);
1409 	/*
1410 	 * Now we have a consistent view about the extent map, re-check
1411 	 * which range really needs to be defragged.
1412 	 *
1413 	 * And this time we have extent locked already, pass @locked = true
1414 	 * so that we won't relock the extent range and cause deadlock.
1415 	 */
1416 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1417 				     newer_than, do_compress, true,
1418 				     &target_list);
1419 	if (ret < 0)
1420 		goto unlock_extent;
1421 
1422 	list_for_each_entry(entry, &target_list, list) {
1423 		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1424 					       &cached_state);
1425 		if (ret < 0)
1426 			break;
1427 	}
1428 
1429 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1430 		list_del_init(&entry->list);
1431 		kfree(entry);
1432 	}
1433 unlock_extent:
1434 	unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1435 			     (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1436 			     &cached_state);
1437 free_pages:
1438 	for (i = 0; i < nr_pages; i++) {
1439 		if (pages[i]) {
1440 			unlock_page(pages[i]);
1441 			put_page(pages[i]);
1442 		}
1443 	}
1444 	kfree(pages);
1445 	return ret;
1446 }
1447 
1448 static int defrag_one_cluster(struct btrfs_inode *inode,
1449 			      struct file_ra_state *ra,
1450 			      u64 start, u32 len, u32 extent_thresh,
1451 			      u64 newer_than, bool do_compress,
1452 			      unsigned long *sectors_defragged,
1453 			      unsigned long max_sectors)
1454 {
1455 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1456 	struct defrag_target_range *entry;
1457 	struct defrag_target_range *tmp;
1458 	LIST_HEAD(target_list);
1459 	int ret;
1460 
1461 	BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1462 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1463 				     newer_than, do_compress, false,
1464 				     &target_list);
1465 	if (ret < 0)
1466 		goto out;
1467 
1468 	list_for_each_entry(entry, &target_list, list) {
1469 		u32 range_len = entry->len;
1470 
1471 		/* Reached or beyond the limit */
1472 		if (max_sectors && *sectors_defragged >= max_sectors) {
1473 			ret = 1;
1474 			break;
1475 		}
1476 
1477 		if (max_sectors)
1478 			range_len = min_t(u32, range_len,
1479 				(max_sectors - *sectors_defragged) * sectorsize);
1480 
1481 		if (ra)
1482 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1483 				ra, NULL, entry->start >> PAGE_SHIFT,
1484 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1485 				(entry->start >> PAGE_SHIFT) + 1);
1486 		/*
1487 		 * Here we may not defrag any range if holes are punched before
1488 		 * we locked the pages.
1489 		 * But that's fine, it only affects the @sectors_defragged
1490 		 * accounting.
1491 		 */
1492 		ret = defrag_one_range(inode, entry->start, range_len,
1493 				       extent_thresh, newer_than, do_compress);
1494 		if (ret < 0)
1495 			break;
1496 		*sectors_defragged += range_len >>
1497 				      inode->root->fs_info->sectorsize_bits;
1498 	}
1499 out:
1500 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1501 		list_del_init(&entry->list);
1502 		kfree(entry);
1503 	}
1504 	return ret;
1505 }
1506 
1507 /*
1508  * Entry point to file defragmentation.
1509  *
1510  * @inode:	   inode to be defragged
1511  * @ra:		   readahead state (can be NUL)
1512  * @range:	   defrag options including range and flags
1513  * @newer_than:	   minimum transid to defrag
1514  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1515  *		   will be defragged.
1516  *
1517  * Return <0 for error.
1518  * Return >=0 for the number of sectors defragged, and range->start will be updated
1519  * to indicate the file offset where next defrag should be started at.
1520  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1521  *  defragging all the range).
1522  */
1523 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1524 		      struct btrfs_ioctl_defrag_range_args *range,
1525 		      u64 newer_than, unsigned long max_to_defrag)
1526 {
1527 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1528 	unsigned long sectors_defragged = 0;
1529 	u64 isize = i_size_read(inode);
1530 	u64 cur;
1531 	u64 last_byte;
1532 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1533 	bool ra_allocated = false;
1534 	int compress_type = BTRFS_COMPRESS_ZLIB;
1535 	int ret = 0;
1536 	u32 extent_thresh = range->extent_thresh;
1537 	pgoff_t start_index;
1538 
1539 	if (isize == 0)
1540 		return 0;
1541 
1542 	if (range->start >= isize)
1543 		return -EINVAL;
1544 
1545 	if (do_compress) {
1546 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1547 			return -EINVAL;
1548 		if (range->compress_type)
1549 			compress_type = range->compress_type;
1550 	}
1551 
1552 	if (extent_thresh == 0)
1553 		extent_thresh = SZ_256K;
1554 
1555 	if (range->start + range->len > range->start) {
1556 		/* Got a specific range */
1557 		last_byte = min(isize, range->start + range->len);
1558 	} else {
1559 		/* Defrag until file end */
1560 		last_byte = isize;
1561 	}
1562 
1563 	/* Align the range */
1564 	cur = round_down(range->start, fs_info->sectorsize);
1565 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1566 
1567 	/*
1568 	 * If we were not given a ra, allocate a readahead context. As
1569 	 * readahead is just an optimization, defrag will work without it so
1570 	 * we don't error out.
1571 	 */
1572 	if (!ra) {
1573 		ra_allocated = true;
1574 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1575 		if (ra)
1576 			file_ra_state_init(ra, inode->i_mapping);
1577 	}
1578 
1579 	/*
1580 	 * Make writeback start from the beginning of the range, so that the
1581 	 * defrag range can be written sequentially.
1582 	 */
1583 	start_index = cur >> PAGE_SHIFT;
1584 	if (start_index < inode->i_mapping->writeback_index)
1585 		inode->i_mapping->writeback_index = start_index;
1586 
1587 	while (cur < last_byte) {
1588 		const unsigned long prev_sectors_defragged = sectors_defragged;
1589 		u64 cluster_end;
1590 
1591 		/* The cluster size 256K should always be page aligned */
1592 		BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1593 
1594 		if (btrfs_defrag_cancelled(fs_info)) {
1595 			ret = -EAGAIN;
1596 			break;
1597 		}
1598 
1599 		/* We want the cluster end at page boundary when possible */
1600 		cluster_end = (((cur >> PAGE_SHIFT) +
1601 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1602 		cluster_end = min(cluster_end, last_byte);
1603 
1604 		btrfs_inode_lock(inode, 0);
1605 		if (IS_SWAPFILE(inode)) {
1606 			ret = -ETXTBSY;
1607 			btrfs_inode_unlock(inode, 0);
1608 			break;
1609 		}
1610 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1611 			btrfs_inode_unlock(inode, 0);
1612 			break;
1613 		}
1614 		if (do_compress)
1615 			BTRFS_I(inode)->defrag_compress = compress_type;
1616 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1617 				cluster_end + 1 - cur, extent_thresh,
1618 				newer_than, do_compress,
1619 				&sectors_defragged, max_to_defrag);
1620 
1621 		if (sectors_defragged > prev_sectors_defragged)
1622 			balance_dirty_pages_ratelimited(inode->i_mapping);
1623 
1624 		btrfs_inode_unlock(inode, 0);
1625 		if (ret < 0)
1626 			break;
1627 		cur = cluster_end + 1;
1628 		if (ret > 0) {
1629 			ret = 0;
1630 			break;
1631 		}
1632 	}
1633 
1634 	if (ra_allocated)
1635 		kfree(ra);
1636 	/*
1637 	 * Update range.start for autodefrag, this will indicate where to start
1638 	 * in next run.
1639 	 */
1640 	range->start = cur;
1641 	if (sectors_defragged) {
1642 		/*
1643 		 * We have defragged some sectors, for compression case they
1644 		 * need to be written back immediately.
1645 		 */
1646 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1647 			filemap_flush(inode->i_mapping);
1648 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1649 				     &BTRFS_I(inode)->runtime_flags))
1650 				filemap_flush(inode->i_mapping);
1651 		}
1652 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1653 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1654 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1655 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1656 		ret = sectors_defragged;
1657 	}
1658 	if (do_compress) {
1659 		btrfs_inode_lock(inode, 0);
1660 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1661 		btrfs_inode_unlock(inode, 0);
1662 	}
1663 	return ret;
1664 }
1665 
1666 /*
1667  * Try to start exclusive operation @type or cancel it if it's running.
1668  *
1669  * Return:
1670  *   0        - normal mode, newly claimed op started
1671  *  >0        - normal mode, something else is running,
1672  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1673  * ECANCELED  - cancel mode, successful cancel
1674  * ENOTCONN   - cancel mode, operation not running anymore
1675  */
1676 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1677 			enum btrfs_exclusive_operation type, bool cancel)
1678 {
1679 	if (!cancel) {
1680 		/* Start normal op */
1681 		if (!btrfs_exclop_start(fs_info, type))
1682 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1683 		/* Exclusive operation is now claimed */
1684 		return 0;
1685 	}
1686 
1687 	/* Cancel running op */
1688 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1689 		/*
1690 		 * This blocks any exclop finish from setting it to NONE, so we
1691 		 * request cancellation. Either it runs and we will wait for it,
1692 		 * or it has finished and no waiting will happen.
1693 		 */
1694 		atomic_inc(&fs_info->reloc_cancel_req);
1695 		btrfs_exclop_start_unlock(fs_info);
1696 
1697 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1698 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1699 				    TASK_INTERRUPTIBLE);
1700 
1701 		return -ECANCELED;
1702 	}
1703 
1704 	/* Something else is running or none */
1705 	return -ENOTCONN;
1706 }
1707 
1708 static noinline int btrfs_ioctl_resize(struct file *file,
1709 					void __user *arg)
1710 {
1711 	BTRFS_DEV_LOOKUP_ARGS(args);
1712 	struct inode *inode = file_inode(file);
1713 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1714 	u64 new_size;
1715 	u64 old_size;
1716 	u64 devid = 1;
1717 	struct btrfs_root *root = BTRFS_I(inode)->root;
1718 	struct btrfs_ioctl_vol_args *vol_args;
1719 	struct btrfs_trans_handle *trans;
1720 	struct btrfs_device *device = NULL;
1721 	char *sizestr;
1722 	char *retptr;
1723 	char *devstr = NULL;
1724 	int ret = 0;
1725 	int mod = 0;
1726 	bool cancel;
1727 
1728 	if (!capable(CAP_SYS_ADMIN))
1729 		return -EPERM;
1730 
1731 	ret = mnt_want_write_file(file);
1732 	if (ret)
1733 		return ret;
1734 
1735 	/*
1736 	 * Read the arguments before checking exclusivity to be able to
1737 	 * distinguish regular resize and cancel
1738 	 */
1739 	vol_args = memdup_user(arg, sizeof(*vol_args));
1740 	if (IS_ERR(vol_args)) {
1741 		ret = PTR_ERR(vol_args);
1742 		goto out_drop;
1743 	}
1744 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1745 	sizestr = vol_args->name;
1746 	cancel = (strcmp("cancel", sizestr) == 0);
1747 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1748 	if (ret)
1749 		goto out_free;
1750 	/* Exclusive operation is now claimed */
1751 
1752 	devstr = strchr(sizestr, ':');
1753 	if (devstr) {
1754 		sizestr = devstr + 1;
1755 		*devstr = '\0';
1756 		devstr = vol_args->name;
1757 		ret = kstrtoull(devstr, 10, &devid);
1758 		if (ret)
1759 			goto out_finish;
1760 		if (!devid) {
1761 			ret = -EINVAL;
1762 			goto out_finish;
1763 		}
1764 		btrfs_info(fs_info, "resizing devid %llu", devid);
1765 	}
1766 
1767 	args.devid = devid;
1768 	device = btrfs_find_device(fs_info->fs_devices, &args);
1769 	if (!device) {
1770 		btrfs_info(fs_info, "resizer unable to find device %llu",
1771 			   devid);
1772 		ret = -ENODEV;
1773 		goto out_finish;
1774 	}
1775 
1776 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1777 		btrfs_info(fs_info,
1778 			   "resizer unable to apply on readonly device %llu",
1779 		       devid);
1780 		ret = -EPERM;
1781 		goto out_finish;
1782 	}
1783 
1784 	if (!strcmp(sizestr, "max"))
1785 		new_size = bdev_nr_bytes(device->bdev);
1786 	else {
1787 		if (sizestr[0] == '-') {
1788 			mod = -1;
1789 			sizestr++;
1790 		} else if (sizestr[0] == '+') {
1791 			mod = 1;
1792 			sizestr++;
1793 		}
1794 		new_size = memparse(sizestr, &retptr);
1795 		if (*retptr != '\0' || new_size == 0) {
1796 			ret = -EINVAL;
1797 			goto out_finish;
1798 		}
1799 	}
1800 
1801 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1802 		ret = -EPERM;
1803 		goto out_finish;
1804 	}
1805 
1806 	old_size = btrfs_device_get_total_bytes(device);
1807 
1808 	if (mod < 0) {
1809 		if (new_size > old_size) {
1810 			ret = -EINVAL;
1811 			goto out_finish;
1812 		}
1813 		new_size = old_size - new_size;
1814 	} else if (mod > 0) {
1815 		if (new_size > ULLONG_MAX - old_size) {
1816 			ret = -ERANGE;
1817 			goto out_finish;
1818 		}
1819 		new_size = old_size + new_size;
1820 	}
1821 
1822 	if (new_size < SZ_256M) {
1823 		ret = -EINVAL;
1824 		goto out_finish;
1825 	}
1826 	if (new_size > bdev_nr_bytes(device->bdev)) {
1827 		ret = -EFBIG;
1828 		goto out_finish;
1829 	}
1830 
1831 	new_size = round_down(new_size, fs_info->sectorsize);
1832 
1833 	if (new_size > old_size) {
1834 		trans = btrfs_start_transaction(root, 0);
1835 		if (IS_ERR(trans)) {
1836 			ret = PTR_ERR(trans);
1837 			goto out_finish;
1838 		}
1839 		ret = btrfs_grow_device(trans, device, new_size);
1840 		btrfs_commit_transaction(trans);
1841 	} else if (new_size < old_size) {
1842 		ret = btrfs_shrink_device(device, new_size);
1843 	} /* equal, nothing need to do */
1844 
1845 	if (ret == 0 && new_size != old_size)
1846 		btrfs_info_in_rcu(fs_info,
1847 			"resize device %s (devid %llu) from %llu to %llu",
1848 			rcu_str_deref(device->name), device->devid,
1849 			old_size, new_size);
1850 out_finish:
1851 	btrfs_exclop_finish(fs_info);
1852 out_free:
1853 	kfree(vol_args);
1854 out_drop:
1855 	mnt_drop_write_file(file);
1856 	return ret;
1857 }
1858 
1859 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1860 				struct user_namespace *mnt_userns,
1861 				const char *name, unsigned long fd, int subvol,
1862 				bool readonly,
1863 				struct btrfs_qgroup_inherit *inherit)
1864 {
1865 	int namelen;
1866 	int ret = 0;
1867 
1868 	if (!S_ISDIR(file_inode(file)->i_mode))
1869 		return -ENOTDIR;
1870 
1871 	ret = mnt_want_write_file(file);
1872 	if (ret)
1873 		goto out;
1874 
1875 	namelen = strlen(name);
1876 	if (strchr(name, '/')) {
1877 		ret = -EINVAL;
1878 		goto out_drop_write;
1879 	}
1880 
1881 	if (name[0] == '.' &&
1882 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1883 		ret = -EEXIST;
1884 		goto out_drop_write;
1885 	}
1886 
1887 	if (subvol) {
1888 		ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1889 				     namelen, NULL, readonly, inherit);
1890 	} else {
1891 		struct fd src = fdget(fd);
1892 		struct inode *src_inode;
1893 		if (!src.file) {
1894 			ret = -EINVAL;
1895 			goto out_drop_write;
1896 		}
1897 
1898 		src_inode = file_inode(src.file);
1899 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1900 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1901 				   "Snapshot src from another FS");
1902 			ret = -EXDEV;
1903 		} else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1904 			/*
1905 			 * Subvolume creation is not restricted, but snapshots
1906 			 * are limited to own subvolumes only
1907 			 */
1908 			ret = -EPERM;
1909 		} else {
1910 			ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1911 					       name, namelen,
1912 					       BTRFS_I(src_inode)->root,
1913 					       readonly, inherit);
1914 		}
1915 		fdput(src);
1916 	}
1917 out_drop_write:
1918 	mnt_drop_write_file(file);
1919 out:
1920 	return ret;
1921 }
1922 
1923 static noinline int btrfs_ioctl_snap_create(struct file *file,
1924 					    void __user *arg, int subvol)
1925 {
1926 	struct btrfs_ioctl_vol_args *vol_args;
1927 	int ret;
1928 
1929 	if (!S_ISDIR(file_inode(file)->i_mode))
1930 		return -ENOTDIR;
1931 
1932 	vol_args = memdup_user(arg, sizeof(*vol_args));
1933 	if (IS_ERR(vol_args))
1934 		return PTR_ERR(vol_args);
1935 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1936 
1937 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1938 					vol_args->name, vol_args->fd, subvol,
1939 					false, NULL);
1940 
1941 	kfree(vol_args);
1942 	return ret;
1943 }
1944 
1945 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1946 					       void __user *arg, int subvol)
1947 {
1948 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1949 	int ret;
1950 	bool readonly = false;
1951 	struct btrfs_qgroup_inherit *inherit = NULL;
1952 
1953 	if (!S_ISDIR(file_inode(file)->i_mode))
1954 		return -ENOTDIR;
1955 
1956 	vol_args = memdup_user(arg, sizeof(*vol_args));
1957 	if (IS_ERR(vol_args))
1958 		return PTR_ERR(vol_args);
1959 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1960 
1961 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1962 		ret = -EOPNOTSUPP;
1963 		goto free_args;
1964 	}
1965 
1966 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1967 		readonly = true;
1968 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1969 		u64 nums;
1970 
1971 		if (vol_args->size < sizeof(*inherit) ||
1972 		    vol_args->size > PAGE_SIZE) {
1973 			ret = -EINVAL;
1974 			goto free_args;
1975 		}
1976 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1977 		if (IS_ERR(inherit)) {
1978 			ret = PTR_ERR(inherit);
1979 			goto free_args;
1980 		}
1981 
1982 		if (inherit->num_qgroups > PAGE_SIZE ||
1983 		    inherit->num_ref_copies > PAGE_SIZE ||
1984 		    inherit->num_excl_copies > PAGE_SIZE) {
1985 			ret = -EINVAL;
1986 			goto free_inherit;
1987 		}
1988 
1989 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1990 		       2 * inherit->num_excl_copies;
1991 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1992 			ret = -EINVAL;
1993 			goto free_inherit;
1994 		}
1995 	}
1996 
1997 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1998 					vol_args->name, vol_args->fd, subvol,
1999 					readonly, inherit);
2000 	if (ret)
2001 		goto free_inherit;
2002 free_inherit:
2003 	kfree(inherit);
2004 free_args:
2005 	kfree(vol_args);
2006 	return ret;
2007 }
2008 
2009 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
2010 						void __user *arg)
2011 {
2012 	struct inode *inode = file_inode(file);
2013 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2014 	struct btrfs_root *root = BTRFS_I(inode)->root;
2015 	int ret = 0;
2016 	u64 flags = 0;
2017 
2018 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
2019 		return -EINVAL;
2020 
2021 	down_read(&fs_info->subvol_sem);
2022 	if (btrfs_root_readonly(root))
2023 		flags |= BTRFS_SUBVOL_RDONLY;
2024 	up_read(&fs_info->subvol_sem);
2025 
2026 	if (copy_to_user(arg, &flags, sizeof(flags)))
2027 		ret = -EFAULT;
2028 
2029 	return ret;
2030 }
2031 
2032 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2033 					      void __user *arg)
2034 {
2035 	struct inode *inode = file_inode(file);
2036 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2037 	struct btrfs_root *root = BTRFS_I(inode)->root;
2038 	struct btrfs_trans_handle *trans;
2039 	u64 root_flags;
2040 	u64 flags;
2041 	int ret = 0;
2042 
2043 	if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2044 		return -EPERM;
2045 
2046 	ret = mnt_want_write_file(file);
2047 	if (ret)
2048 		goto out;
2049 
2050 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2051 		ret = -EINVAL;
2052 		goto out_drop_write;
2053 	}
2054 
2055 	if (copy_from_user(&flags, arg, sizeof(flags))) {
2056 		ret = -EFAULT;
2057 		goto out_drop_write;
2058 	}
2059 
2060 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
2061 		ret = -EOPNOTSUPP;
2062 		goto out_drop_write;
2063 	}
2064 
2065 	down_write(&fs_info->subvol_sem);
2066 
2067 	/* nothing to do */
2068 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2069 		goto out_drop_sem;
2070 
2071 	root_flags = btrfs_root_flags(&root->root_item);
2072 	if (flags & BTRFS_SUBVOL_RDONLY) {
2073 		btrfs_set_root_flags(&root->root_item,
2074 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2075 	} else {
2076 		/*
2077 		 * Block RO -> RW transition if this subvolume is involved in
2078 		 * send
2079 		 */
2080 		spin_lock(&root->root_item_lock);
2081 		if (root->send_in_progress == 0) {
2082 			btrfs_set_root_flags(&root->root_item,
2083 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2084 			spin_unlock(&root->root_item_lock);
2085 		} else {
2086 			spin_unlock(&root->root_item_lock);
2087 			btrfs_warn(fs_info,
2088 				   "Attempt to set subvolume %llu read-write during send",
2089 				   root->root_key.objectid);
2090 			ret = -EPERM;
2091 			goto out_drop_sem;
2092 		}
2093 	}
2094 
2095 	trans = btrfs_start_transaction(root, 1);
2096 	if (IS_ERR(trans)) {
2097 		ret = PTR_ERR(trans);
2098 		goto out_reset;
2099 	}
2100 
2101 	ret = btrfs_update_root(trans, fs_info->tree_root,
2102 				&root->root_key, &root->root_item);
2103 	if (ret < 0) {
2104 		btrfs_end_transaction(trans);
2105 		goto out_reset;
2106 	}
2107 
2108 	ret = btrfs_commit_transaction(trans);
2109 
2110 out_reset:
2111 	if (ret)
2112 		btrfs_set_root_flags(&root->root_item, root_flags);
2113 out_drop_sem:
2114 	up_write(&fs_info->subvol_sem);
2115 out_drop_write:
2116 	mnt_drop_write_file(file);
2117 out:
2118 	return ret;
2119 }
2120 
2121 static noinline int key_in_sk(struct btrfs_key *key,
2122 			      struct btrfs_ioctl_search_key *sk)
2123 {
2124 	struct btrfs_key test;
2125 	int ret;
2126 
2127 	test.objectid = sk->min_objectid;
2128 	test.type = sk->min_type;
2129 	test.offset = sk->min_offset;
2130 
2131 	ret = btrfs_comp_cpu_keys(key, &test);
2132 	if (ret < 0)
2133 		return 0;
2134 
2135 	test.objectid = sk->max_objectid;
2136 	test.type = sk->max_type;
2137 	test.offset = sk->max_offset;
2138 
2139 	ret = btrfs_comp_cpu_keys(key, &test);
2140 	if (ret > 0)
2141 		return 0;
2142 	return 1;
2143 }
2144 
2145 static noinline int copy_to_sk(struct btrfs_path *path,
2146 			       struct btrfs_key *key,
2147 			       struct btrfs_ioctl_search_key *sk,
2148 			       size_t *buf_size,
2149 			       char __user *ubuf,
2150 			       unsigned long *sk_offset,
2151 			       int *num_found)
2152 {
2153 	u64 found_transid;
2154 	struct extent_buffer *leaf;
2155 	struct btrfs_ioctl_search_header sh;
2156 	struct btrfs_key test;
2157 	unsigned long item_off;
2158 	unsigned long item_len;
2159 	int nritems;
2160 	int i;
2161 	int slot;
2162 	int ret = 0;
2163 
2164 	leaf = path->nodes[0];
2165 	slot = path->slots[0];
2166 	nritems = btrfs_header_nritems(leaf);
2167 
2168 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2169 		i = nritems;
2170 		goto advance_key;
2171 	}
2172 	found_transid = btrfs_header_generation(leaf);
2173 
2174 	for (i = slot; i < nritems; i++) {
2175 		item_off = btrfs_item_ptr_offset(leaf, i);
2176 		item_len = btrfs_item_size(leaf, i);
2177 
2178 		btrfs_item_key_to_cpu(leaf, key, i);
2179 		if (!key_in_sk(key, sk))
2180 			continue;
2181 
2182 		if (sizeof(sh) + item_len > *buf_size) {
2183 			if (*num_found) {
2184 				ret = 1;
2185 				goto out;
2186 			}
2187 
2188 			/*
2189 			 * return one empty item back for v1, which does not
2190 			 * handle -EOVERFLOW
2191 			 */
2192 
2193 			*buf_size = sizeof(sh) + item_len;
2194 			item_len = 0;
2195 			ret = -EOVERFLOW;
2196 		}
2197 
2198 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2199 			ret = 1;
2200 			goto out;
2201 		}
2202 
2203 		sh.objectid = key->objectid;
2204 		sh.offset = key->offset;
2205 		sh.type = key->type;
2206 		sh.len = item_len;
2207 		sh.transid = found_transid;
2208 
2209 		/*
2210 		 * Copy search result header. If we fault then loop again so we
2211 		 * can fault in the pages and -EFAULT there if there's a
2212 		 * problem. Otherwise we'll fault and then copy the buffer in
2213 		 * properly this next time through
2214 		 */
2215 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2216 			ret = 0;
2217 			goto out;
2218 		}
2219 
2220 		*sk_offset += sizeof(sh);
2221 
2222 		if (item_len) {
2223 			char __user *up = ubuf + *sk_offset;
2224 			/*
2225 			 * Copy the item, same behavior as above, but reset the
2226 			 * * sk_offset so we copy the full thing again.
2227 			 */
2228 			if (read_extent_buffer_to_user_nofault(leaf, up,
2229 						item_off, item_len)) {
2230 				ret = 0;
2231 				*sk_offset -= sizeof(sh);
2232 				goto out;
2233 			}
2234 
2235 			*sk_offset += item_len;
2236 		}
2237 		(*num_found)++;
2238 
2239 		if (ret) /* -EOVERFLOW from above */
2240 			goto out;
2241 
2242 		if (*num_found >= sk->nr_items) {
2243 			ret = 1;
2244 			goto out;
2245 		}
2246 	}
2247 advance_key:
2248 	ret = 0;
2249 	test.objectid = sk->max_objectid;
2250 	test.type = sk->max_type;
2251 	test.offset = sk->max_offset;
2252 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2253 		ret = 1;
2254 	else if (key->offset < (u64)-1)
2255 		key->offset++;
2256 	else if (key->type < (u8)-1) {
2257 		key->offset = 0;
2258 		key->type++;
2259 	} else if (key->objectid < (u64)-1) {
2260 		key->offset = 0;
2261 		key->type = 0;
2262 		key->objectid++;
2263 	} else
2264 		ret = 1;
2265 out:
2266 	/*
2267 	 *  0: all items from this leaf copied, continue with next
2268 	 *  1: * more items can be copied, but unused buffer is too small
2269 	 *     * all items were found
2270 	 *     Either way, it will stops the loop which iterates to the next
2271 	 *     leaf
2272 	 *  -EOVERFLOW: item was to large for buffer
2273 	 *  -EFAULT: could not copy extent buffer back to userspace
2274 	 */
2275 	return ret;
2276 }
2277 
2278 static noinline int search_ioctl(struct inode *inode,
2279 				 struct btrfs_ioctl_search_key *sk,
2280 				 size_t *buf_size,
2281 				 char __user *ubuf)
2282 {
2283 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2284 	struct btrfs_root *root;
2285 	struct btrfs_key key;
2286 	struct btrfs_path *path;
2287 	int ret;
2288 	int num_found = 0;
2289 	unsigned long sk_offset = 0;
2290 
2291 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2292 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2293 		return -EOVERFLOW;
2294 	}
2295 
2296 	path = btrfs_alloc_path();
2297 	if (!path)
2298 		return -ENOMEM;
2299 
2300 	if (sk->tree_id == 0) {
2301 		/* search the root of the inode that was passed */
2302 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2303 	} else {
2304 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2305 		if (IS_ERR(root)) {
2306 			btrfs_free_path(path);
2307 			return PTR_ERR(root);
2308 		}
2309 	}
2310 
2311 	key.objectid = sk->min_objectid;
2312 	key.type = sk->min_type;
2313 	key.offset = sk->min_offset;
2314 
2315 	while (1) {
2316 		ret = -EFAULT;
2317 		if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset))
2318 			break;
2319 
2320 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2321 		if (ret != 0) {
2322 			if (ret > 0)
2323 				ret = 0;
2324 			goto err;
2325 		}
2326 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2327 				 &sk_offset, &num_found);
2328 		btrfs_release_path(path);
2329 		if (ret)
2330 			break;
2331 
2332 	}
2333 	if (ret > 0)
2334 		ret = 0;
2335 err:
2336 	sk->nr_items = num_found;
2337 	btrfs_put_root(root);
2338 	btrfs_free_path(path);
2339 	return ret;
2340 }
2341 
2342 static noinline int btrfs_ioctl_tree_search(struct file *file,
2343 					   void __user *argp)
2344 {
2345 	struct btrfs_ioctl_search_args __user *uargs;
2346 	struct btrfs_ioctl_search_key sk;
2347 	struct inode *inode;
2348 	int ret;
2349 	size_t buf_size;
2350 
2351 	if (!capable(CAP_SYS_ADMIN))
2352 		return -EPERM;
2353 
2354 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2355 
2356 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2357 		return -EFAULT;
2358 
2359 	buf_size = sizeof(uargs->buf);
2360 
2361 	inode = file_inode(file);
2362 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2363 
2364 	/*
2365 	 * In the origin implementation an overflow is handled by returning a
2366 	 * search header with a len of zero, so reset ret.
2367 	 */
2368 	if (ret == -EOVERFLOW)
2369 		ret = 0;
2370 
2371 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2372 		ret = -EFAULT;
2373 	return ret;
2374 }
2375 
2376 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2377 					       void __user *argp)
2378 {
2379 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2380 	struct btrfs_ioctl_search_args_v2 args;
2381 	struct inode *inode;
2382 	int ret;
2383 	size_t buf_size;
2384 	const size_t buf_limit = SZ_16M;
2385 
2386 	if (!capable(CAP_SYS_ADMIN))
2387 		return -EPERM;
2388 
2389 	/* copy search header and buffer size */
2390 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2391 	if (copy_from_user(&args, uarg, sizeof(args)))
2392 		return -EFAULT;
2393 
2394 	buf_size = args.buf_size;
2395 
2396 	/* limit result size to 16MB */
2397 	if (buf_size > buf_limit)
2398 		buf_size = buf_limit;
2399 
2400 	inode = file_inode(file);
2401 	ret = search_ioctl(inode, &args.key, &buf_size,
2402 			   (char __user *)(&uarg->buf[0]));
2403 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2404 		ret = -EFAULT;
2405 	else if (ret == -EOVERFLOW &&
2406 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2407 		ret = -EFAULT;
2408 
2409 	return ret;
2410 }
2411 
2412 /*
2413  * Search INODE_REFs to identify path name of 'dirid' directory
2414  * in a 'tree_id' tree. and sets path name to 'name'.
2415  */
2416 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2417 				u64 tree_id, u64 dirid, char *name)
2418 {
2419 	struct btrfs_root *root;
2420 	struct btrfs_key key;
2421 	char *ptr;
2422 	int ret = -1;
2423 	int slot;
2424 	int len;
2425 	int total_len = 0;
2426 	struct btrfs_inode_ref *iref;
2427 	struct extent_buffer *l;
2428 	struct btrfs_path *path;
2429 
2430 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2431 		name[0]='\0';
2432 		return 0;
2433 	}
2434 
2435 	path = btrfs_alloc_path();
2436 	if (!path)
2437 		return -ENOMEM;
2438 
2439 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2440 
2441 	root = btrfs_get_fs_root(info, tree_id, true);
2442 	if (IS_ERR(root)) {
2443 		ret = PTR_ERR(root);
2444 		root = NULL;
2445 		goto out;
2446 	}
2447 
2448 	key.objectid = dirid;
2449 	key.type = BTRFS_INODE_REF_KEY;
2450 	key.offset = (u64)-1;
2451 
2452 	while (1) {
2453 		ret = btrfs_search_backwards(root, &key, path);
2454 		if (ret < 0)
2455 			goto out;
2456 		else if (ret > 0) {
2457 			ret = -ENOENT;
2458 			goto out;
2459 		}
2460 
2461 		l = path->nodes[0];
2462 		slot = path->slots[0];
2463 
2464 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2465 		len = btrfs_inode_ref_name_len(l, iref);
2466 		ptr -= len + 1;
2467 		total_len += len + 1;
2468 		if (ptr < name) {
2469 			ret = -ENAMETOOLONG;
2470 			goto out;
2471 		}
2472 
2473 		*(ptr + len) = '/';
2474 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2475 
2476 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2477 			break;
2478 
2479 		btrfs_release_path(path);
2480 		key.objectid = key.offset;
2481 		key.offset = (u64)-1;
2482 		dirid = key.objectid;
2483 	}
2484 	memmove(name, ptr, total_len);
2485 	name[total_len] = '\0';
2486 	ret = 0;
2487 out:
2488 	btrfs_put_root(root);
2489 	btrfs_free_path(path);
2490 	return ret;
2491 }
2492 
2493 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2494 				struct inode *inode,
2495 				struct btrfs_ioctl_ino_lookup_user_args *args)
2496 {
2497 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2498 	struct super_block *sb = inode->i_sb;
2499 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2500 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2501 	u64 dirid = args->dirid;
2502 	unsigned long item_off;
2503 	unsigned long item_len;
2504 	struct btrfs_inode_ref *iref;
2505 	struct btrfs_root_ref *rref;
2506 	struct btrfs_root *root = NULL;
2507 	struct btrfs_path *path;
2508 	struct btrfs_key key, key2;
2509 	struct extent_buffer *leaf;
2510 	struct inode *temp_inode;
2511 	char *ptr;
2512 	int slot;
2513 	int len;
2514 	int total_len = 0;
2515 	int ret;
2516 
2517 	path = btrfs_alloc_path();
2518 	if (!path)
2519 		return -ENOMEM;
2520 
2521 	/*
2522 	 * If the bottom subvolume does not exist directly under upper_limit,
2523 	 * construct the path in from the bottom up.
2524 	 */
2525 	if (dirid != upper_limit.objectid) {
2526 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2527 
2528 		root = btrfs_get_fs_root(fs_info, treeid, true);
2529 		if (IS_ERR(root)) {
2530 			ret = PTR_ERR(root);
2531 			goto out;
2532 		}
2533 
2534 		key.objectid = dirid;
2535 		key.type = BTRFS_INODE_REF_KEY;
2536 		key.offset = (u64)-1;
2537 		while (1) {
2538 			ret = btrfs_search_backwards(root, &key, path);
2539 			if (ret < 0)
2540 				goto out_put;
2541 			else if (ret > 0) {
2542 				ret = -ENOENT;
2543 				goto out_put;
2544 			}
2545 
2546 			leaf = path->nodes[0];
2547 			slot = path->slots[0];
2548 
2549 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2550 			len = btrfs_inode_ref_name_len(leaf, iref);
2551 			ptr -= len + 1;
2552 			total_len += len + 1;
2553 			if (ptr < args->path) {
2554 				ret = -ENAMETOOLONG;
2555 				goto out_put;
2556 			}
2557 
2558 			*(ptr + len) = '/';
2559 			read_extent_buffer(leaf, ptr,
2560 					(unsigned long)(iref + 1), len);
2561 
2562 			/* Check the read+exec permission of this directory */
2563 			ret = btrfs_previous_item(root, path, dirid,
2564 						  BTRFS_INODE_ITEM_KEY);
2565 			if (ret < 0) {
2566 				goto out_put;
2567 			} else if (ret > 0) {
2568 				ret = -ENOENT;
2569 				goto out_put;
2570 			}
2571 
2572 			leaf = path->nodes[0];
2573 			slot = path->slots[0];
2574 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2575 			if (key2.objectid != dirid) {
2576 				ret = -ENOENT;
2577 				goto out_put;
2578 			}
2579 
2580 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2581 			if (IS_ERR(temp_inode)) {
2582 				ret = PTR_ERR(temp_inode);
2583 				goto out_put;
2584 			}
2585 			ret = inode_permission(mnt_userns, temp_inode,
2586 					       MAY_READ | MAY_EXEC);
2587 			iput(temp_inode);
2588 			if (ret) {
2589 				ret = -EACCES;
2590 				goto out_put;
2591 			}
2592 
2593 			if (key.offset == upper_limit.objectid)
2594 				break;
2595 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2596 				ret = -EACCES;
2597 				goto out_put;
2598 			}
2599 
2600 			btrfs_release_path(path);
2601 			key.objectid = key.offset;
2602 			key.offset = (u64)-1;
2603 			dirid = key.objectid;
2604 		}
2605 
2606 		memmove(args->path, ptr, total_len);
2607 		args->path[total_len] = '\0';
2608 		btrfs_put_root(root);
2609 		root = NULL;
2610 		btrfs_release_path(path);
2611 	}
2612 
2613 	/* Get the bottom subvolume's name from ROOT_REF */
2614 	key.objectid = treeid;
2615 	key.type = BTRFS_ROOT_REF_KEY;
2616 	key.offset = args->treeid;
2617 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2618 	if (ret < 0) {
2619 		goto out;
2620 	} else if (ret > 0) {
2621 		ret = -ENOENT;
2622 		goto out;
2623 	}
2624 
2625 	leaf = path->nodes[0];
2626 	slot = path->slots[0];
2627 	btrfs_item_key_to_cpu(leaf, &key, slot);
2628 
2629 	item_off = btrfs_item_ptr_offset(leaf, slot);
2630 	item_len = btrfs_item_size(leaf, slot);
2631 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2632 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2633 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2634 		ret = -EINVAL;
2635 		goto out;
2636 	}
2637 
2638 	/* Copy subvolume's name */
2639 	item_off += sizeof(struct btrfs_root_ref);
2640 	item_len -= sizeof(struct btrfs_root_ref);
2641 	read_extent_buffer(leaf, args->name, item_off, item_len);
2642 	args->name[item_len] = 0;
2643 
2644 out_put:
2645 	btrfs_put_root(root);
2646 out:
2647 	btrfs_free_path(path);
2648 	return ret;
2649 }
2650 
2651 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2652 					   void __user *argp)
2653 {
2654 	struct btrfs_ioctl_ino_lookup_args *args;
2655 	struct inode *inode;
2656 	int ret = 0;
2657 
2658 	args = memdup_user(argp, sizeof(*args));
2659 	if (IS_ERR(args))
2660 		return PTR_ERR(args);
2661 
2662 	inode = file_inode(file);
2663 
2664 	/*
2665 	 * Unprivileged query to obtain the containing subvolume root id. The
2666 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2667 	 */
2668 	if (args->treeid == 0)
2669 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2670 
2671 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2672 		args->name[0] = 0;
2673 		goto out;
2674 	}
2675 
2676 	if (!capable(CAP_SYS_ADMIN)) {
2677 		ret = -EPERM;
2678 		goto out;
2679 	}
2680 
2681 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2682 					args->treeid, args->objectid,
2683 					args->name);
2684 
2685 out:
2686 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2687 		ret = -EFAULT;
2688 
2689 	kfree(args);
2690 	return ret;
2691 }
2692 
2693 /*
2694  * Version of ino_lookup ioctl (unprivileged)
2695  *
2696  * The main differences from ino_lookup ioctl are:
2697  *
2698  *   1. Read + Exec permission will be checked using inode_permission() during
2699  *      path construction. -EACCES will be returned in case of failure.
2700  *   2. Path construction will be stopped at the inode number which corresponds
2701  *      to the fd with which this ioctl is called. If constructed path does not
2702  *      exist under fd's inode, -EACCES will be returned.
2703  *   3. The name of bottom subvolume is also searched and filled.
2704  */
2705 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2706 {
2707 	struct btrfs_ioctl_ino_lookup_user_args *args;
2708 	struct inode *inode;
2709 	int ret;
2710 
2711 	args = memdup_user(argp, sizeof(*args));
2712 	if (IS_ERR(args))
2713 		return PTR_ERR(args);
2714 
2715 	inode = file_inode(file);
2716 
2717 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2718 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2719 		/*
2720 		 * The subvolume does not exist under fd with which this is
2721 		 * called
2722 		 */
2723 		kfree(args);
2724 		return -EACCES;
2725 	}
2726 
2727 	ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2728 
2729 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2730 		ret = -EFAULT;
2731 
2732 	kfree(args);
2733 	return ret;
2734 }
2735 
2736 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2737 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2738 {
2739 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2740 	struct btrfs_fs_info *fs_info;
2741 	struct btrfs_root *root;
2742 	struct btrfs_path *path;
2743 	struct btrfs_key key;
2744 	struct btrfs_root_item *root_item;
2745 	struct btrfs_root_ref *rref;
2746 	struct extent_buffer *leaf;
2747 	unsigned long item_off;
2748 	unsigned long item_len;
2749 	struct inode *inode;
2750 	int slot;
2751 	int ret = 0;
2752 
2753 	path = btrfs_alloc_path();
2754 	if (!path)
2755 		return -ENOMEM;
2756 
2757 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2758 	if (!subvol_info) {
2759 		btrfs_free_path(path);
2760 		return -ENOMEM;
2761 	}
2762 
2763 	inode = file_inode(file);
2764 	fs_info = BTRFS_I(inode)->root->fs_info;
2765 
2766 	/* Get root_item of inode's subvolume */
2767 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2768 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2769 	if (IS_ERR(root)) {
2770 		ret = PTR_ERR(root);
2771 		goto out_free;
2772 	}
2773 	root_item = &root->root_item;
2774 
2775 	subvol_info->treeid = key.objectid;
2776 
2777 	subvol_info->generation = btrfs_root_generation(root_item);
2778 	subvol_info->flags = btrfs_root_flags(root_item);
2779 
2780 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2781 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2782 						    BTRFS_UUID_SIZE);
2783 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2784 						    BTRFS_UUID_SIZE);
2785 
2786 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2787 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2788 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2789 
2790 	subvol_info->otransid = btrfs_root_otransid(root_item);
2791 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2792 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2793 
2794 	subvol_info->stransid = btrfs_root_stransid(root_item);
2795 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2796 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2797 
2798 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2799 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2800 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2801 
2802 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2803 		/* Search root tree for ROOT_BACKREF of this subvolume */
2804 		key.type = BTRFS_ROOT_BACKREF_KEY;
2805 		key.offset = 0;
2806 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2807 		if (ret < 0) {
2808 			goto out;
2809 		} else if (path->slots[0] >=
2810 			   btrfs_header_nritems(path->nodes[0])) {
2811 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2812 			if (ret < 0) {
2813 				goto out;
2814 			} else if (ret > 0) {
2815 				ret = -EUCLEAN;
2816 				goto out;
2817 			}
2818 		}
2819 
2820 		leaf = path->nodes[0];
2821 		slot = path->slots[0];
2822 		btrfs_item_key_to_cpu(leaf, &key, slot);
2823 		if (key.objectid == subvol_info->treeid &&
2824 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2825 			subvol_info->parent_id = key.offset;
2826 
2827 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2828 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2829 
2830 			item_off = btrfs_item_ptr_offset(leaf, slot)
2831 					+ sizeof(struct btrfs_root_ref);
2832 			item_len = btrfs_item_size(leaf, slot)
2833 					- sizeof(struct btrfs_root_ref);
2834 			read_extent_buffer(leaf, subvol_info->name,
2835 					   item_off, item_len);
2836 		} else {
2837 			ret = -ENOENT;
2838 			goto out;
2839 		}
2840 	}
2841 
2842 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2843 		ret = -EFAULT;
2844 
2845 out:
2846 	btrfs_put_root(root);
2847 out_free:
2848 	btrfs_free_path(path);
2849 	kfree(subvol_info);
2850 	return ret;
2851 }
2852 
2853 /*
2854  * Return ROOT_REF information of the subvolume containing this inode
2855  * except the subvolume name.
2856  */
2857 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2858 {
2859 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2860 	struct btrfs_root_ref *rref;
2861 	struct btrfs_root *root;
2862 	struct btrfs_path *path;
2863 	struct btrfs_key key;
2864 	struct extent_buffer *leaf;
2865 	struct inode *inode;
2866 	u64 objectid;
2867 	int slot;
2868 	int ret;
2869 	u8 found;
2870 
2871 	path = btrfs_alloc_path();
2872 	if (!path)
2873 		return -ENOMEM;
2874 
2875 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2876 	if (IS_ERR(rootrefs)) {
2877 		btrfs_free_path(path);
2878 		return PTR_ERR(rootrefs);
2879 	}
2880 
2881 	inode = file_inode(file);
2882 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2883 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2884 
2885 	key.objectid = objectid;
2886 	key.type = BTRFS_ROOT_REF_KEY;
2887 	key.offset = rootrefs->min_treeid;
2888 	found = 0;
2889 
2890 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2891 	if (ret < 0) {
2892 		goto out;
2893 	} else if (path->slots[0] >=
2894 		   btrfs_header_nritems(path->nodes[0])) {
2895 		ret = btrfs_next_leaf(root, path);
2896 		if (ret < 0) {
2897 			goto out;
2898 		} else if (ret > 0) {
2899 			ret = -EUCLEAN;
2900 			goto out;
2901 		}
2902 	}
2903 	while (1) {
2904 		leaf = path->nodes[0];
2905 		slot = path->slots[0];
2906 
2907 		btrfs_item_key_to_cpu(leaf, &key, slot);
2908 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2909 			ret = 0;
2910 			goto out;
2911 		}
2912 
2913 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2914 			ret = -EOVERFLOW;
2915 			goto out;
2916 		}
2917 
2918 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2919 		rootrefs->rootref[found].treeid = key.offset;
2920 		rootrefs->rootref[found].dirid =
2921 				  btrfs_root_ref_dirid(leaf, rref);
2922 		found++;
2923 
2924 		ret = btrfs_next_item(root, path);
2925 		if (ret < 0) {
2926 			goto out;
2927 		} else if (ret > 0) {
2928 			ret = -EUCLEAN;
2929 			goto out;
2930 		}
2931 	}
2932 
2933 out:
2934 	if (!ret || ret == -EOVERFLOW) {
2935 		rootrefs->num_items = found;
2936 		/* update min_treeid for next search */
2937 		if (found)
2938 			rootrefs->min_treeid =
2939 				rootrefs->rootref[found - 1].treeid + 1;
2940 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2941 			ret = -EFAULT;
2942 	}
2943 
2944 	kfree(rootrefs);
2945 	btrfs_free_path(path);
2946 
2947 	return ret;
2948 }
2949 
2950 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2951 					     void __user *arg,
2952 					     bool destroy_v2)
2953 {
2954 	struct dentry *parent = file->f_path.dentry;
2955 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2956 	struct dentry *dentry;
2957 	struct inode *dir = d_inode(parent);
2958 	struct inode *inode;
2959 	struct btrfs_root *root = BTRFS_I(dir)->root;
2960 	struct btrfs_root *dest = NULL;
2961 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2962 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2963 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2964 	char *subvol_name, *subvol_name_ptr = NULL;
2965 	int subvol_namelen;
2966 	int err = 0;
2967 	bool destroy_parent = false;
2968 
2969 	if (destroy_v2) {
2970 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2971 		if (IS_ERR(vol_args2))
2972 			return PTR_ERR(vol_args2);
2973 
2974 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2975 			err = -EOPNOTSUPP;
2976 			goto out;
2977 		}
2978 
2979 		/*
2980 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2981 		 * name, same as v1 currently does.
2982 		 */
2983 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2984 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2985 			subvol_name = vol_args2->name;
2986 
2987 			err = mnt_want_write_file(file);
2988 			if (err)
2989 				goto out;
2990 		} else {
2991 			struct inode *old_dir;
2992 
2993 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2994 				err = -EINVAL;
2995 				goto out;
2996 			}
2997 
2998 			err = mnt_want_write_file(file);
2999 			if (err)
3000 				goto out;
3001 
3002 			dentry = btrfs_get_dentry(fs_info->sb,
3003 					BTRFS_FIRST_FREE_OBJECTID,
3004 					vol_args2->subvolid, 0, 0);
3005 			if (IS_ERR(dentry)) {
3006 				err = PTR_ERR(dentry);
3007 				goto out_drop_write;
3008 			}
3009 
3010 			/*
3011 			 * Change the default parent since the subvolume being
3012 			 * deleted can be outside of the current mount point.
3013 			 */
3014 			parent = btrfs_get_parent(dentry);
3015 
3016 			/*
3017 			 * At this point dentry->d_name can point to '/' if the
3018 			 * subvolume we want to destroy is outsite of the
3019 			 * current mount point, so we need to release the
3020 			 * current dentry and execute the lookup to return a new
3021 			 * one with ->d_name pointing to the
3022 			 * <mount point>/subvol_name.
3023 			 */
3024 			dput(dentry);
3025 			if (IS_ERR(parent)) {
3026 				err = PTR_ERR(parent);
3027 				goto out_drop_write;
3028 			}
3029 			old_dir = dir;
3030 			dir = d_inode(parent);
3031 
3032 			/*
3033 			 * If v2 was used with SPEC_BY_ID, a new parent was
3034 			 * allocated since the subvolume can be outside of the
3035 			 * current mount point. Later on we need to release this
3036 			 * new parent dentry.
3037 			 */
3038 			destroy_parent = true;
3039 
3040 			/*
3041 			 * On idmapped mounts, deletion via subvolid is
3042 			 * restricted to subvolumes that are immediate
3043 			 * ancestors of the inode referenced by the file
3044 			 * descriptor in the ioctl. Otherwise the idmapping
3045 			 * could potentially be abused to delete subvolumes
3046 			 * anywhere in the filesystem the user wouldn't be able
3047 			 * to delete without an idmapped mount.
3048 			 */
3049 			if (old_dir != dir && mnt_userns != &init_user_ns) {
3050 				err = -EOPNOTSUPP;
3051 				goto free_parent;
3052 			}
3053 
3054 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3055 						fs_info, vol_args2->subvolid);
3056 			if (IS_ERR(subvol_name_ptr)) {
3057 				err = PTR_ERR(subvol_name_ptr);
3058 				goto free_parent;
3059 			}
3060 			/* subvol_name_ptr is already nul terminated */
3061 			subvol_name = (char *)kbasename(subvol_name_ptr);
3062 		}
3063 	} else {
3064 		vol_args = memdup_user(arg, sizeof(*vol_args));
3065 		if (IS_ERR(vol_args))
3066 			return PTR_ERR(vol_args);
3067 
3068 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3069 		subvol_name = vol_args->name;
3070 
3071 		err = mnt_want_write_file(file);
3072 		if (err)
3073 			goto out;
3074 	}
3075 
3076 	subvol_namelen = strlen(subvol_name);
3077 
3078 	if (strchr(subvol_name, '/') ||
3079 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3080 		err = -EINVAL;
3081 		goto free_subvol_name;
3082 	}
3083 
3084 	if (!S_ISDIR(dir->i_mode)) {
3085 		err = -ENOTDIR;
3086 		goto free_subvol_name;
3087 	}
3088 
3089 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3090 	if (err == -EINTR)
3091 		goto free_subvol_name;
3092 	dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3093 	if (IS_ERR(dentry)) {
3094 		err = PTR_ERR(dentry);
3095 		goto out_unlock_dir;
3096 	}
3097 
3098 	if (d_really_is_negative(dentry)) {
3099 		err = -ENOENT;
3100 		goto out_dput;
3101 	}
3102 
3103 	inode = d_inode(dentry);
3104 	dest = BTRFS_I(inode)->root;
3105 	if (!capable(CAP_SYS_ADMIN)) {
3106 		/*
3107 		 * Regular user.  Only allow this with a special mount
3108 		 * option, when the user has write+exec access to the
3109 		 * subvol root, and when rmdir(2) would have been
3110 		 * allowed.
3111 		 *
3112 		 * Note that this is _not_ check that the subvol is
3113 		 * empty or doesn't contain data that we wouldn't
3114 		 * otherwise be able to delete.
3115 		 *
3116 		 * Users who want to delete empty subvols should try
3117 		 * rmdir(2).
3118 		 */
3119 		err = -EPERM;
3120 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3121 			goto out_dput;
3122 
3123 		/*
3124 		 * Do not allow deletion if the parent dir is the same
3125 		 * as the dir to be deleted.  That means the ioctl
3126 		 * must be called on the dentry referencing the root
3127 		 * of the subvol, not a random directory contained
3128 		 * within it.
3129 		 */
3130 		err = -EINVAL;
3131 		if (root == dest)
3132 			goto out_dput;
3133 
3134 		err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3135 		if (err)
3136 			goto out_dput;
3137 	}
3138 
3139 	/* check if subvolume may be deleted by a user */
3140 	err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3141 	if (err)
3142 		goto out_dput;
3143 
3144 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3145 		err = -EINVAL;
3146 		goto out_dput;
3147 	}
3148 
3149 	btrfs_inode_lock(inode, 0);
3150 	err = btrfs_delete_subvolume(dir, dentry);
3151 	btrfs_inode_unlock(inode, 0);
3152 	if (!err)
3153 		d_delete_notify(dir, dentry);
3154 
3155 out_dput:
3156 	dput(dentry);
3157 out_unlock_dir:
3158 	btrfs_inode_unlock(dir, 0);
3159 free_subvol_name:
3160 	kfree(subvol_name_ptr);
3161 free_parent:
3162 	if (destroy_parent)
3163 		dput(parent);
3164 out_drop_write:
3165 	mnt_drop_write_file(file);
3166 out:
3167 	kfree(vol_args2);
3168 	kfree(vol_args);
3169 	return err;
3170 }
3171 
3172 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3173 {
3174 	struct inode *inode = file_inode(file);
3175 	struct btrfs_root *root = BTRFS_I(inode)->root;
3176 	struct btrfs_ioctl_defrag_range_args range = {0};
3177 	int ret;
3178 
3179 	ret = mnt_want_write_file(file);
3180 	if (ret)
3181 		return ret;
3182 
3183 	if (btrfs_root_readonly(root)) {
3184 		ret = -EROFS;
3185 		goto out;
3186 	}
3187 
3188 	switch (inode->i_mode & S_IFMT) {
3189 	case S_IFDIR:
3190 		if (!capable(CAP_SYS_ADMIN)) {
3191 			ret = -EPERM;
3192 			goto out;
3193 		}
3194 		ret = btrfs_defrag_root(root);
3195 		break;
3196 	case S_IFREG:
3197 		/*
3198 		 * Note that this does not check the file descriptor for write
3199 		 * access. This prevents defragmenting executables that are
3200 		 * running and allows defrag on files open in read-only mode.
3201 		 */
3202 		if (!capable(CAP_SYS_ADMIN) &&
3203 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3204 			ret = -EPERM;
3205 			goto out;
3206 		}
3207 
3208 		if (argp) {
3209 			if (copy_from_user(&range, argp, sizeof(range))) {
3210 				ret = -EFAULT;
3211 				goto out;
3212 			}
3213 			/* compression requires us to start the IO */
3214 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3215 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3216 				range.extent_thresh = (u32)-1;
3217 			}
3218 		} else {
3219 			/* the rest are all set to zero by kzalloc */
3220 			range.len = (u64)-1;
3221 		}
3222 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3223 					&range, BTRFS_OLDEST_GENERATION, 0);
3224 		if (ret > 0)
3225 			ret = 0;
3226 		break;
3227 	default:
3228 		ret = -EINVAL;
3229 	}
3230 out:
3231 	mnt_drop_write_file(file);
3232 	return ret;
3233 }
3234 
3235 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3236 {
3237 	struct btrfs_ioctl_vol_args *vol_args;
3238 	bool restore_op = false;
3239 	int ret;
3240 
3241 	if (!capable(CAP_SYS_ADMIN))
3242 		return -EPERM;
3243 
3244 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3245 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3246 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3247 
3248 		/*
3249 		 * We can do the device add because we have a paused balanced,
3250 		 * change the exclusive op type and remember we should bring
3251 		 * back the paused balance
3252 		 */
3253 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3254 		btrfs_exclop_start_unlock(fs_info);
3255 		restore_op = true;
3256 	}
3257 
3258 	vol_args = memdup_user(arg, sizeof(*vol_args));
3259 	if (IS_ERR(vol_args)) {
3260 		ret = PTR_ERR(vol_args);
3261 		goto out;
3262 	}
3263 
3264 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3265 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3266 
3267 	if (!ret)
3268 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3269 
3270 	kfree(vol_args);
3271 out:
3272 	if (restore_op)
3273 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3274 	else
3275 		btrfs_exclop_finish(fs_info);
3276 	return ret;
3277 }
3278 
3279 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3280 {
3281 	BTRFS_DEV_LOOKUP_ARGS(args);
3282 	struct inode *inode = file_inode(file);
3283 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3284 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3285 	struct block_device *bdev = NULL;
3286 	fmode_t mode;
3287 	int ret;
3288 	bool cancel = false;
3289 
3290 	if (!capable(CAP_SYS_ADMIN))
3291 		return -EPERM;
3292 
3293 	vol_args = memdup_user(arg, sizeof(*vol_args));
3294 	if (IS_ERR(vol_args))
3295 		return PTR_ERR(vol_args);
3296 
3297 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3298 		ret = -EOPNOTSUPP;
3299 		goto out;
3300 	}
3301 
3302 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3303 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3304 		args.devid = vol_args->devid;
3305 	} else if (!strcmp("cancel", vol_args->name)) {
3306 		cancel = true;
3307 	} else {
3308 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3309 		if (ret)
3310 			goto out;
3311 	}
3312 
3313 	ret = mnt_want_write_file(file);
3314 	if (ret)
3315 		goto out;
3316 
3317 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3318 					   cancel);
3319 	if (ret)
3320 		goto err_drop;
3321 
3322 	/* Exclusive operation is now claimed */
3323 	ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3324 
3325 	btrfs_exclop_finish(fs_info);
3326 
3327 	if (!ret) {
3328 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3329 			btrfs_info(fs_info, "device deleted: id %llu",
3330 					vol_args->devid);
3331 		else
3332 			btrfs_info(fs_info, "device deleted: %s",
3333 					vol_args->name);
3334 	}
3335 err_drop:
3336 	mnt_drop_write_file(file);
3337 	if (bdev)
3338 		blkdev_put(bdev, mode);
3339 out:
3340 	btrfs_put_dev_args_from_path(&args);
3341 	kfree(vol_args);
3342 	return ret;
3343 }
3344 
3345 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3346 {
3347 	BTRFS_DEV_LOOKUP_ARGS(args);
3348 	struct inode *inode = file_inode(file);
3349 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3350 	struct btrfs_ioctl_vol_args *vol_args;
3351 	struct block_device *bdev = NULL;
3352 	fmode_t mode;
3353 	int ret;
3354 	bool cancel = false;
3355 
3356 	if (!capable(CAP_SYS_ADMIN))
3357 		return -EPERM;
3358 
3359 	vol_args = memdup_user(arg, sizeof(*vol_args));
3360 	if (IS_ERR(vol_args))
3361 		return PTR_ERR(vol_args);
3362 
3363 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3364 	if (!strcmp("cancel", vol_args->name)) {
3365 		cancel = true;
3366 	} else {
3367 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3368 		if (ret)
3369 			goto out;
3370 	}
3371 
3372 	ret = mnt_want_write_file(file);
3373 	if (ret)
3374 		goto out;
3375 
3376 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3377 					   cancel);
3378 	if (ret == 0) {
3379 		ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3380 		if (!ret)
3381 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3382 		btrfs_exclop_finish(fs_info);
3383 	}
3384 
3385 	mnt_drop_write_file(file);
3386 	if (bdev)
3387 		blkdev_put(bdev, mode);
3388 out:
3389 	btrfs_put_dev_args_from_path(&args);
3390 	kfree(vol_args);
3391 	return ret;
3392 }
3393 
3394 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3395 				void __user *arg)
3396 {
3397 	struct btrfs_ioctl_fs_info_args *fi_args;
3398 	struct btrfs_device *device;
3399 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3400 	u64 flags_in;
3401 	int ret = 0;
3402 
3403 	fi_args = memdup_user(arg, sizeof(*fi_args));
3404 	if (IS_ERR(fi_args))
3405 		return PTR_ERR(fi_args);
3406 
3407 	flags_in = fi_args->flags;
3408 	memset(fi_args, 0, sizeof(*fi_args));
3409 
3410 	rcu_read_lock();
3411 	fi_args->num_devices = fs_devices->num_devices;
3412 
3413 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3414 		if (device->devid > fi_args->max_id)
3415 			fi_args->max_id = device->devid;
3416 	}
3417 	rcu_read_unlock();
3418 
3419 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3420 	fi_args->nodesize = fs_info->nodesize;
3421 	fi_args->sectorsize = fs_info->sectorsize;
3422 	fi_args->clone_alignment = fs_info->sectorsize;
3423 
3424 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3425 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3426 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3427 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3428 	}
3429 
3430 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3431 		fi_args->generation = fs_info->generation;
3432 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3433 	}
3434 
3435 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3436 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3437 		       sizeof(fi_args->metadata_uuid));
3438 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3439 	}
3440 
3441 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3442 		ret = -EFAULT;
3443 
3444 	kfree(fi_args);
3445 	return ret;
3446 }
3447 
3448 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3449 				 void __user *arg)
3450 {
3451 	BTRFS_DEV_LOOKUP_ARGS(args);
3452 	struct btrfs_ioctl_dev_info_args *di_args;
3453 	struct btrfs_device *dev;
3454 	int ret = 0;
3455 
3456 	di_args = memdup_user(arg, sizeof(*di_args));
3457 	if (IS_ERR(di_args))
3458 		return PTR_ERR(di_args);
3459 
3460 	args.devid = di_args->devid;
3461 	if (!btrfs_is_empty_uuid(di_args->uuid))
3462 		args.uuid = di_args->uuid;
3463 
3464 	rcu_read_lock();
3465 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3466 	if (!dev) {
3467 		ret = -ENODEV;
3468 		goto out;
3469 	}
3470 
3471 	di_args->devid = dev->devid;
3472 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3473 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3474 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3475 	if (dev->name) {
3476 		strncpy(di_args->path, rcu_str_deref(dev->name),
3477 				sizeof(di_args->path) - 1);
3478 		di_args->path[sizeof(di_args->path) - 1] = 0;
3479 	} else {
3480 		di_args->path[0] = '\0';
3481 	}
3482 
3483 out:
3484 	rcu_read_unlock();
3485 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3486 		ret = -EFAULT;
3487 
3488 	kfree(di_args);
3489 	return ret;
3490 }
3491 
3492 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3493 {
3494 	struct inode *inode = file_inode(file);
3495 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3496 	struct btrfs_root *root = BTRFS_I(inode)->root;
3497 	struct btrfs_root *new_root;
3498 	struct btrfs_dir_item *di;
3499 	struct btrfs_trans_handle *trans;
3500 	struct btrfs_path *path = NULL;
3501 	struct btrfs_disk_key disk_key;
3502 	u64 objectid = 0;
3503 	u64 dir_id;
3504 	int ret;
3505 
3506 	if (!capable(CAP_SYS_ADMIN))
3507 		return -EPERM;
3508 
3509 	ret = mnt_want_write_file(file);
3510 	if (ret)
3511 		return ret;
3512 
3513 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3514 		ret = -EFAULT;
3515 		goto out;
3516 	}
3517 
3518 	if (!objectid)
3519 		objectid = BTRFS_FS_TREE_OBJECTID;
3520 
3521 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3522 	if (IS_ERR(new_root)) {
3523 		ret = PTR_ERR(new_root);
3524 		goto out;
3525 	}
3526 	if (!is_fstree(new_root->root_key.objectid)) {
3527 		ret = -ENOENT;
3528 		goto out_free;
3529 	}
3530 
3531 	path = btrfs_alloc_path();
3532 	if (!path) {
3533 		ret = -ENOMEM;
3534 		goto out_free;
3535 	}
3536 
3537 	trans = btrfs_start_transaction(root, 1);
3538 	if (IS_ERR(trans)) {
3539 		ret = PTR_ERR(trans);
3540 		goto out_free;
3541 	}
3542 
3543 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3544 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3545 				   dir_id, "default", 7, 1);
3546 	if (IS_ERR_OR_NULL(di)) {
3547 		btrfs_release_path(path);
3548 		btrfs_end_transaction(trans);
3549 		btrfs_err(fs_info,
3550 			  "Umm, you don't have the default diritem, this isn't going to work");
3551 		ret = -ENOENT;
3552 		goto out_free;
3553 	}
3554 
3555 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3556 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3557 	btrfs_mark_buffer_dirty(path->nodes[0]);
3558 	btrfs_release_path(path);
3559 
3560 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3561 	btrfs_end_transaction(trans);
3562 out_free:
3563 	btrfs_put_root(new_root);
3564 	btrfs_free_path(path);
3565 out:
3566 	mnt_drop_write_file(file);
3567 	return ret;
3568 }
3569 
3570 static void get_block_group_info(struct list_head *groups_list,
3571 				 struct btrfs_ioctl_space_info *space)
3572 {
3573 	struct btrfs_block_group *block_group;
3574 
3575 	space->total_bytes = 0;
3576 	space->used_bytes = 0;
3577 	space->flags = 0;
3578 	list_for_each_entry(block_group, groups_list, list) {
3579 		space->flags = block_group->flags;
3580 		space->total_bytes += block_group->length;
3581 		space->used_bytes += block_group->used;
3582 	}
3583 }
3584 
3585 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3586 				   void __user *arg)
3587 {
3588 	struct btrfs_ioctl_space_args space_args;
3589 	struct btrfs_ioctl_space_info space;
3590 	struct btrfs_ioctl_space_info *dest;
3591 	struct btrfs_ioctl_space_info *dest_orig;
3592 	struct btrfs_ioctl_space_info __user *user_dest;
3593 	struct btrfs_space_info *info;
3594 	static const u64 types[] = {
3595 		BTRFS_BLOCK_GROUP_DATA,
3596 		BTRFS_BLOCK_GROUP_SYSTEM,
3597 		BTRFS_BLOCK_GROUP_METADATA,
3598 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3599 	};
3600 	int num_types = 4;
3601 	int alloc_size;
3602 	int ret = 0;
3603 	u64 slot_count = 0;
3604 	int i, c;
3605 
3606 	if (copy_from_user(&space_args,
3607 			   (struct btrfs_ioctl_space_args __user *)arg,
3608 			   sizeof(space_args)))
3609 		return -EFAULT;
3610 
3611 	for (i = 0; i < num_types; i++) {
3612 		struct btrfs_space_info *tmp;
3613 
3614 		info = NULL;
3615 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3616 			if (tmp->flags == types[i]) {
3617 				info = tmp;
3618 				break;
3619 			}
3620 		}
3621 
3622 		if (!info)
3623 			continue;
3624 
3625 		down_read(&info->groups_sem);
3626 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3627 			if (!list_empty(&info->block_groups[c]))
3628 				slot_count++;
3629 		}
3630 		up_read(&info->groups_sem);
3631 	}
3632 
3633 	/*
3634 	 * Global block reserve, exported as a space_info
3635 	 */
3636 	slot_count++;
3637 
3638 	/* space_slots == 0 means they are asking for a count */
3639 	if (space_args.space_slots == 0) {
3640 		space_args.total_spaces = slot_count;
3641 		goto out;
3642 	}
3643 
3644 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3645 
3646 	alloc_size = sizeof(*dest) * slot_count;
3647 
3648 	/* we generally have at most 6 or so space infos, one for each raid
3649 	 * level.  So, a whole page should be more than enough for everyone
3650 	 */
3651 	if (alloc_size > PAGE_SIZE)
3652 		return -ENOMEM;
3653 
3654 	space_args.total_spaces = 0;
3655 	dest = kmalloc(alloc_size, GFP_KERNEL);
3656 	if (!dest)
3657 		return -ENOMEM;
3658 	dest_orig = dest;
3659 
3660 	/* now we have a buffer to copy into */
3661 	for (i = 0; i < num_types; i++) {
3662 		struct btrfs_space_info *tmp;
3663 
3664 		if (!slot_count)
3665 			break;
3666 
3667 		info = NULL;
3668 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3669 			if (tmp->flags == types[i]) {
3670 				info = tmp;
3671 				break;
3672 			}
3673 		}
3674 
3675 		if (!info)
3676 			continue;
3677 		down_read(&info->groups_sem);
3678 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3679 			if (!list_empty(&info->block_groups[c])) {
3680 				get_block_group_info(&info->block_groups[c],
3681 						     &space);
3682 				memcpy(dest, &space, sizeof(space));
3683 				dest++;
3684 				space_args.total_spaces++;
3685 				slot_count--;
3686 			}
3687 			if (!slot_count)
3688 				break;
3689 		}
3690 		up_read(&info->groups_sem);
3691 	}
3692 
3693 	/*
3694 	 * Add global block reserve
3695 	 */
3696 	if (slot_count) {
3697 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3698 
3699 		spin_lock(&block_rsv->lock);
3700 		space.total_bytes = block_rsv->size;
3701 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3702 		spin_unlock(&block_rsv->lock);
3703 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3704 		memcpy(dest, &space, sizeof(space));
3705 		space_args.total_spaces++;
3706 	}
3707 
3708 	user_dest = (struct btrfs_ioctl_space_info __user *)
3709 		(arg + sizeof(struct btrfs_ioctl_space_args));
3710 
3711 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3712 		ret = -EFAULT;
3713 
3714 	kfree(dest_orig);
3715 out:
3716 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3717 		ret = -EFAULT;
3718 
3719 	return ret;
3720 }
3721 
3722 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3723 					    void __user *argp)
3724 {
3725 	struct btrfs_trans_handle *trans;
3726 	u64 transid;
3727 
3728 	trans = btrfs_attach_transaction_barrier(root);
3729 	if (IS_ERR(trans)) {
3730 		if (PTR_ERR(trans) != -ENOENT)
3731 			return PTR_ERR(trans);
3732 
3733 		/* No running transaction, don't bother */
3734 		transid = root->fs_info->last_trans_committed;
3735 		goto out;
3736 	}
3737 	transid = trans->transid;
3738 	btrfs_commit_transaction_async(trans);
3739 out:
3740 	if (argp)
3741 		if (copy_to_user(argp, &transid, sizeof(transid)))
3742 			return -EFAULT;
3743 	return 0;
3744 }
3745 
3746 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3747 					   void __user *argp)
3748 {
3749 	u64 transid;
3750 
3751 	if (argp) {
3752 		if (copy_from_user(&transid, argp, sizeof(transid)))
3753 			return -EFAULT;
3754 	} else {
3755 		transid = 0;  /* current trans */
3756 	}
3757 	return btrfs_wait_for_commit(fs_info, transid);
3758 }
3759 
3760 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3761 {
3762 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3763 	struct btrfs_ioctl_scrub_args *sa;
3764 	int ret;
3765 
3766 	if (!capable(CAP_SYS_ADMIN))
3767 		return -EPERM;
3768 
3769 	sa = memdup_user(arg, sizeof(*sa));
3770 	if (IS_ERR(sa))
3771 		return PTR_ERR(sa);
3772 
3773 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3774 		ret = mnt_want_write_file(file);
3775 		if (ret)
3776 			goto out;
3777 	}
3778 
3779 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3780 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3781 			      0);
3782 
3783 	/*
3784 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3785 	 * error. This is important as it allows user space to know how much
3786 	 * progress scrub has done. For example, if scrub is canceled we get
3787 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3788 	 * space. Later user space can inspect the progress from the structure
3789 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3790 	 * previously (btrfs-progs does this).
3791 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3792 	 * then return -EFAULT to signal the structure was not copied or it may
3793 	 * be corrupt and unreliable due to a partial copy.
3794 	 */
3795 	if (copy_to_user(arg, sa, sizeof(*sa)))
3796 		ret = -EFAULT;
3797 
3798 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3799 		mnt_drop_write_file(file);
3800 out:
3801 	kfree(sa);
3802 	return ret;
3803 }
3804 
3805 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3806 {
3807 	if (!capable(CAP_SYS_ADMIN))
3808 		return -EPERM;
3809 
3810 	return btrfs_scrub_cancel(fs_info);
3811 }
3812 
3813 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3814 				       void __user *arg)
3815 {
3816 	struct btrfs_ioctl_scrub_args *sa;
3817 	int ret;
3818 
3819 	if (!capable(CAP_SYS_ADMIN))
3820 		return -EPERM;
3821 
3822 	sa = memdup_user(arg, sizeof(*sa));
3823 	if (IS_ERR(sa))
3824 		return PTR_ERR(sa);
3825 
3826 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3827 
3828 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3829 		ret = -EFAULT;
3830 
3831 	kfree(sa);
3832 	return ret;
3833 }
3834 
3835 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3836 				      void __user *arg)
3837 {
3838 	struct btrfs_ioctl_get_dev_stats *sa;
3839 	int ret;
3840 
3841 	sa = memdup_user(arg, sizeof(*sa));
3842 	if (IS_ERR(sa))
3843 		return PTR_ERR(sa);
3844 
3845 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3846 		kfree(sa);
3847 		return -EPERM;
3848 	}
3849 
3850 	ret = btrfs_get_dev_stats(fs_info, sa);
3851 
3852 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3853 		ret = -EFAULT;
3854 
3855 	kfree(sa);
3856 	return ret;
3857 }
3858 
3859 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3860 				    void __user *arg)
3861 {
3862 	struct btrfs_ioctl_dev_replace_args *p;
3863 	int ret;
3864 
3865 	if (!capable(CAP_SYS_ADMIN))
3866 		return -EPERM;
3867 
3868 	p = memdup_user(arg, sizeof(*p));
3869 	if (IS_ERR(p))
3870 		return PTR_ERR(p);
3871 
3872 	switch (p->cmd) {
3873 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3874 		if (sb_rdonly(fs_info->sb)) {
3875 			ret = -EROFS;
3876 			goto out;
3877 		}
3878 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3879 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3880 		} else {
3881 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3882 			btrfs_exclop_finish(fs_info);
3883 		}
3884 		break;
3885 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3886 		btrfs_dev_replace_status(fs_info, p);
3887 		ret = 0;
3888 		break;
3889 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3890 		p->result = btrfs_dev_replace_cancel(fs_info);
3891 		ret = 0;
3892 		break;
3893 	default:
3894 		ret = -EINVAL;
3895 		break;
3896 	}
3897 
3898 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3899 		ret = -EFAULT;
3900 out:
3901 	kfree(p);
3902 	return ret;
3903 }
3904 
3905 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3906 {
3907 	int ret = 0;
3908 	int i;
3909 	u64 rel_ptr;
3910 	int size;
3911 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3912 	struct inode_fs_paths *ipath = NULL;
3913 	struct btrfs_path *path;
3914 
3915 	if (!capable(CAP_DAC_READ_SEARCH))
3916 		return -EPERM;
3917 
3918 	path = btrfs_alloc_path();
3919 	if (!path) {
3920 		ret = -ENOMEM;
3921 		goto out;
3922 	}
3923 
3924 	ipa = memdup_user(arg, sizeof(*ipa));
3925 	if (IS_ERR(ipa)) {
3926 		ret = PTR_ERR(ipa);
3927 		ipa = NULL;
3928 		goto out;
3929 	}
3930 
3931 	size = min_t(u32, ipa->size, 4096);
3932 	ipath = init_ipath(size, root, path);
3933 	if (IS_ERR(ipath)) {
3934 		ret = PTR_ERR(ipath);
3935 		ipath = NULL;
3936 		goto out;
3937 	}
3938 
3939 	ret = paths_from_inode(ipa->inum, ipath);
3940 	if (ret < 0)
3941 		goto out;
3942 
3943 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3944 		rel_ptr = ipath->fspath->val[i] -
3945 			  (u64)(unsigned long)ipath->fspath->val;
3946 		ipath->fspath->val[i] = rel_ptr;
3947 	}
3948 
3949 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3950 			   ipath->fspath, size);
3951 	if (ret) {
3952 		ret = -EFAULT;
3953 		goto out;
3954 	}
3955 
3956 out:
3957 	btrfs_free_path(path);
3958 	free_ipath(ipath);
3959 	kfree(ipa);
3960 
3961 	return ret;
3962 }
3963 
3964 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3965 {
3966 	struct btrfs_data_container *inodes = ctx;
3967 	const size_t c = 3 * sizeof(u64);
3968 
3969 	if (inodes->bytes_left >= c) {
3970 		inodes->bytes_left -= c;
3971 		inodes->val[inodes->elem_cnt] = inum;
3972 		inodes->val[inodes->elem_cnt + 1] = offset;
3973 		inodes->val[inodes->elem_cnt + 2] = root;
3974 		inodes->elem_cnt += 3;
3975 	} else {
3976 		inodes->bytes_missing += c - inodes->bytes_left;
3977 		inodes->bytes_left = 0;
3978 		inodes->elem_missed += 3;
3979 	}
3980 
3981 	return 0;
3982 }
3983 
3984 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3985 					void __user *arg, int version)
3986 {
3987 	int ret = 0;
3988 	int size;
3989 	struct btrfs_ioctl_logical_ino_args *loi;
3990 	struct btrfs_data_container *inodes = NULL;
3991 	struct btrfs_path *path = NULL;
3992 	bool ignore_offset;
3993 
3994 	if (!capable(CAP_SYS_ADMIN))
3995 		return -EPERM;
3996 
3997 	loi = memdup_user(arg, sizeof(*loi));
3998 	if (IS_ERR(loi))
3999 		return PTR_ERR(loi);
4000 
4001 	if (version == 1) {
4002 		ignore_offset = false;
4003 		size = min_t(u32, loi->size, SZ_64K);
4004 	} else {
4005 		/* All reserved bits must be 0 for now */
4006 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4007 			ret = -EINVAL;
4008 			goto out_loi;
4009 		}
4010 		/* Only accept flags we have defined so far */
4011 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4012 			ret = -EINVAL;
4013 			goto out_loi;
4014 		}
4015 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4016 		size = min_t(u32, loi->size, SZ_16M);
4017 	}
4018 
4019 	path = btrfs_alloc_path();
4020 	if (!path) {
4021 		ret = -ENOMEM;
4022 		goto out;
4023 	}
4024 
4025 	inodes = init_data_container(size);
4026 	if (IS_ERR(inodes)) {
4027 		ret = PTR_ERR(inodes);
4028 		inodes = NULL;
4029 		goto out;
4030 	}
4031 
4032 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4033 					  build_ino_list, inodes, ignore_offset);
4034 	if (ret == -EINVAL)
4035 		ret = -ENOENT;
4036 	if (ret < 0)
4037 		goto out;
4038 
4039 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4040 			   size);
4041 	if (ret)
4042 		ret = -EFAULT;
4043 
4044 out:
4045 	btrfs_free_path(path);
4046 	kvfree(inodes);
4047 out_loi:
4048 	kfree(loi);
4049 
4050 	return ret;
4051 }
4052 
4053 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4054 			       struct btrfs_ioctl_balance_args *bargs)
4055 {
4056 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4057 
4058 	bargs->flags = bctl->flags;
4059 
4060 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4061 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4062 	if (atomic_read(&fs_info->balance_pause_req))
4063 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4064 	if (atomic_read(&fs_info->balance_cancel_req))
4065 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4066 
4067 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4068 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4069 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4070 
4071 	spin_lock(&fs_info->balance_lock);
4072 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4073 	spin_unlock(&fs_info->balance_lock);
4074 }
4075 
4076 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4077 {
4078 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4079 	struct btrfs_fs_info *fs_info = root->fs_info;
4080 	struct btrfs_ioctl_balance_args *bargs;
4081 	struct btrfs_balance_control *bctl;
4082 	bool need_unlock; /* for mut. excl. ops lock */
4083 	int ret;
4084 
4085 	if (!arg)
4086 		btrfs_warn(fs_info,
4087 	"IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18");
4088 
4089 	if (!capable(CAP_SYS_ADMIN))
4090 		return -EPERM;
4091 
4092 	ret = mnt_want_write_file(file);
4093 	if (ret)
4094 		return ret;
4095 
4096 again:
4097 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4098 		mutex_lock(&fs_info->balance_mutex);
4099 		need_unlock = true;
4100 		goto locked;
4101 	}
4102 
4103 	/*
4104 	 * mut. excl. ops lock is locked.  Three possibilities:
4105 	 *   (1) some other op is running
4106 	 *   (2) balance is running
4107 	 *   (3) balance is paused -- special case (think resume)
4108 	 */
4109 	mutex_lock(&fs_info->balance_mutex);
4110 	if (fs_info->balance_ctl) {
4111 		/* this is either (2) or (3) */
4112 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4113 			mutex_unlock(&fs_info->balance_mutex);
4114 			/*
4115 			 * Lock released to allow other waiters to continue,
4116 			 * we'll reexamine the status again.
4117 			 */
4118 			mutex_lock(&fs_info->balance_mutex);
4119 
4120 			if (fs_info->balance_ctl &&
4121 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4122 				/* this is (3) */
4123 				need_unlock = false;
4124 				goto locked;
4125 			}
4126 
4127 			mutex_unlock(&fs_info->balance_mutex);
4128 			goto again;
4129 		} else {
4130 			/* this is (2) */
4131 			mutex_unlock(&fs_info->balance_mutex);
4132 			ret = -EINPROGRESS;
4133 			goto out;
4134 		}
4135 	} else {
4136 		/* this is (1) */
4137 		mutex_unlock(&fs_info->balance_mutex);
4138 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4139 		goto out;
4140 	}
4141 
4142 locked:
4143 
4144 	if (arg) {
4145 		bargs = memdup_user(arg, sizeof(*bargs));
4146 		if (IS_ERR(bargs)) {
4147 			ret = PTR_ERR(bargs);
4148 			goto out_unlock;
4149 		}
4150 
4151 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4152 			if (!fs_info->balance_ctl) {
4153 				ret = -ENOTCONN;
4154 				goto out_bargs;
4155 			}
4156 
4157 			bctl = fs_info->balance_ctl;
4158 			spin_lock(&fs_info->balance_lock);
4159 			bctl->flags |= BTRFS_BALANCE_RESUME;
4160 			spin_unlock(&fs_info->balance_lock);
4161 			btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4162 
4163 			goto do_balance;
4164 		}
4165 	} else {
4166 		bargs = NULL;
4167 	}
4168 
4169 	if (fs_info->balance_ctl) {
4170 		ret = -EINPROGRESS;
4171 		goto out_bargs;
4172 	}
4173 
4174 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4175 	if (!bctl) {
4176 		ret = -ENOMEM;
4177 		goto out_bargs;
4178 	}
4179 
4180 	if (arg) {
4181 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4182 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4183 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4184 
4185 		bctl->flags = bargs->flags;
4186 	} else {
4187 		/* balance everything - no filters */
4188 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4189 	}
4190 
4191 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4192 		ret = -EINVAL;
4193 		goto out_bctl;
4194 	}
4195 
4196 do_balance:
4197 	/*
4198 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4199 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4200 	 * all the way until unmount, in free_fs_info.  The flag should be
4201 	 * cleared after reset_balance_state.
4202 	 */
4203 	need_unlock = false;
4204 
4205 	ret = btrfs_balance(fs_info, bctl, bargs);
4206 	bctl = NULL;
4207 
4208 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4209 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4210 			ret = -EFAULT;
4211 	}
4212 
4213 out_bctl:
4214 	kfree(bctl);
4215 out_bargs:
4216 	kfree(bargs);
4217 out_unlock:
4218 	mutex_unlock(&fs_info->balance_mutex);
4219 	if (need_unlock)
4220 		btrfs_exclop_finish(fs_info);
4221 out:
4222 	mnt_drop_write_file(file);
4223 	return ret;
4224 }
4225 
4226 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4227 {
4228 	if (!capable(CAP_SYS_ADMIN))
4229 		return -EPERM;
4230 
4231 	switch (cmd) {
4232 	case BTRFS_BALANCE_CTL_PAUSE:
4233 		return btrfs_pause_balance(fs_info);
4234 	case BTRFS_BALANCE_CTL_CANCEL:
4235 		return btrfs_cancel_balance(fs_info);
4236 	}
4237 
4238 	return -EINVAL;
4239 }
4240 
4241 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4242 					 void __user *arg)
4243 {
4244 	struct btrfs_ioctl_balance_args *bargs;
4245 	int ret = 0;
4246 
4247 	if (!capable(CAP_SYS_ADMIN))
4248 		return -EPERM;
4249 
4250 	mutex_lock(&fs_info->balance_mutex);
4251 	if (!fs_info->balance_ctl) {
4252 		ret = -ENOTCONN;
4253 		goto out;
4254 	}
4255 
4256 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4257 	if (!bargs) {
4258 		ret = -ENOMEM;
4259 		goto out;
4260 	}
4261 
4262 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4263 
4264 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4265 		ret = -EFAULT;
4266 
4267 	kfree(bargs);
4268 out:
4269 	mutex_unlock(&fs_info->balance_mutex);
4270 	return ret;
4271 }
4272 
4273 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4274 {
4275 	struct inode *inode = file_inode(file);
4276 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4277 	struct btrfs_ioctl_quota_ctl_args *sa;
4278 	int ret;
4279 
4280 	if (!capable(CAP_SYS_ADMIN))
4281 		return -EPERM;
4282 
4283 	ret = mnt_want_write_file(file);
4284 	if (ret)
4285 		return ret;
4286 
4287 	sa = memdup_user(arg, sizeof(*sa));
4288 	if (IS_ERR(sa)) {
4289 		ret = PTR_ERR(sa);
4290 		goto drop_write;
4291 	}
4292 
4293 	down_write(&fs_info->subvol_sem);
4294 
4295 	switch (sa->cmd) {
4296 	case BTRFS_QUOTA_CTL_ENABLE:
4297 		ret = btrfs_quota_enable(fs_info);
4298 		break;
4299 	case BTRFS_QUOTA_CTL_DISABLE:
4300 		ret = btrfs_quota_disable(fs_info);
4301 		break;
4302 	default:
4303 		ret = -EINVAL;
4304 		break;
4305 	}
4306 
4307 	kfree(sa);
4308 	up_write(&fs_info->subvol_sem);
4309 drop_write:
4310 	mnt_drop_write_file(file);
4311 	return ret;
4312 }
4313 
4314 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4315 {
4316 	struct inode *inode = file_inode(file);
4317 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4318 	struct btrfs_root *root = BTRFS_I(inode)->root;
4319 	struct btrfs_ioctl_qgroup_assign_args *sa;
4320 	struct btrfs_trans_handle *trans;
4321 	int ret;
4322 	int err;
4323 
4324 	if (!capable(CAP_SYS_ADMIN))
4325 		return -EPERM;
4326 
4327 	ret = mnt_want_write_file(file);
4328 	if (ret)
4329 		return ret;
4330 
4331 	sa = memdup_user(arg, sizeof(*sa));
4332 	if (IS_ERR(sa)) {
4333 		ret = PTR_ERR(sa);
4334 		goto drop_write;
4335 	}
4336 
4337 	trans = btrfs_join_transaction(root);
4338 	if (IS_ERR(trans)) {
4339 		ret = PTR_ERR(trans);
4340 		goto out;
4341 	}
4342 
4343 	if (sa->assign) {
4344 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4345 	} else {
4346 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4347 	}
4348 
4349 	/* update qgroup status and info */
4350 	err = btrfs_run_qgroups(trans);
4351 	if (err < 0)
4352 		btrfs_handle_fs_error(fs_info, err,
4353 				      "failed to update qgroup status and info");
4354 	err = btrfs_end_transaction(trans);
4355 	if (err && !ret)
4356 		ret = err;
4357 
4358 out:
4359 	kfree(sa);
4360 drop_write:
4361 	mnt_drop_write_file(file);
4362 	return ret;
4363 }
4364 
4365 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4366 {
4367 	struct inode *inode = file_inode(file);
4368 	struct btrfs_root *root = BTRFS_I(inode)->root;
4369 	struct btrfs_ioctl_qgroup_create_args *sa;
4370 	struct btrfs_trans_handle *trans;
4371 	int ret;
4372 	int err;
4373 
4374 	if (!capable(CAP_SYS_ADMIN))
4375 		return -EPERM;
4376 
4377 	ret = mnt_want_write_file(file);
4378 	if (ret)
4379 		return ret;
4380 
4381 	sa = memdup_user(arg, sizeof(*sa));
4382 	if (IS_ERR(sa)) {
4383 		ret = PTR_ERR(sa);
4384 		goto drop_write;
4385 	}
4386 
4387 	if (!sa->qgroupid) {
4388 		ret = -EINVAL;
4389 		goto out;
4390 	}
4391 
4392 	trans = btrfs_join_transaction(root);
4393 	if (IS_ERR(trans)) {
4394 		ret = PTR_ERR(trans);
4395 		goto out;
4396 	}
4397 
4398 	if (sa->create) {
4399 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4400 	} else {
4401 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4402 	}
4403 
4404 	err = btrfs_end_transaction(trans);
4405 	if (err && !ret)
4406 		ret = err;
4407 
4408 out:
4409 	kfree(sa);
4410 drop_write:
4411 	mnt_drop_write_file(file);
4412 	return ret;
4413 }
4414 
4415 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4416 {
4417 	struct inode *inode = file_inode(file);
4418 	struct btrfs_root *root = BTRFS_I(inode)->root;
4419 	struct btrfs_ioctl_qgroup_limit_args *sa;
4420 	struct btrfs_trans_handle *trans;
4421 	int ret;
4422 	int err;
4423 	u64 qgroupid;
4424 
4425 	if (!capable(CAP_SYS_ADMIN))
4426 		return -EPERM;
4427 
4428 	ret = mnt_want_write_file(file);
4429 	if (ret)
4430 		return ret;
4431 
4432 	sa = memdup_user(arg, sizeof(*sa));
4433 	if (IS_ERR(sa)) {
4434 		ret = PTR_ERR(sa);
4435 		goto drop_write;
4436 	}
4437 
4438 	trans = btrfs_join_transaction(root);
4439 	if (IS_ERR(trans)) {
4440 		ret = PTR_ERR(trans);
4441 		goto out;
4442 	}
4443 
4444 	qgroupid = sa->qgroupid;
4445 	if (!qgroupid) {
4446 		/* take the current subvol as qgroup */
4447 		qgroupid = root->root_key.objectid;
4448 	}
4449 
4450 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4451 
4452 	err = btrfs_end_transaction(trans);
4453 	if (err && !ret)
4454 		ret = err;
4455 
4456 out:
4457 	kfree(sa);
4458 drop_write:
4459 	mnt_drop_write_file(file);
4460 	return ret;
4461 }
4462 
4463 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4464 {
4465 	struct inode *inode = file_inode(file);
4466 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4467 	struct btrfs_ioctl_quota_rescan_args *qsa;
4468 	int ret;
4469 
4470 	if (!capable(CAP_SYS_ADMIN))
4471 		return -EPERM;
4472 
4473 	ret = mnt_want_write_file(file);
4474 	if (ret)
4475 		return ret;
4476 
4477 	qsa = memdup_user(arg, sizeof(*qsa));
4478 	if (IS_ERR(qsa)) {
4479 		ret = PTR_ERR(qsa);
4480 		goto drop_write;
4481 	}
4482 
4483 	if (qsa->flags) {
4484 		ret = -EINVAL;
4485 		goto out;
4486 	}
4487 
4488 	ret = btrfs_qgroup_rescan(fs_info);
4489 
4490 out:
4491 	kfree(qsa);
4492 drop_write:
4493 	mnt_drop_write_file(file);
4494 	return ret;
4495 }
4496 
4497 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4498 						void __user *arg)
4499 {
4500 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4501 
4502 	if (!capable(CAP_SYS_ADMIN))
4503 		return -EPERM;
4504 
4505 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4506 		qsa.flags = 1;
4507 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4508 	}
4509 
4510 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4511 		return -EFAULT;
4512 
4513 	return 0;
4514 }
4515 
4516 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4517 						void __user *arg)
4518 {
4519 	if (!capable(CAP_SYS_ADMIN))
4520 		return -EPERM;
4521 
4522 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4523 }
4524 
4525 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4526 					    struct user_namespace *mnt_userns,
4527 					    struct btrfs_ioctl_received_subvol_args *sa)
4528 {
4529 	struct inode *inode = file_inode(file);
4530 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4531 	struct btrfs_root *root = BTRFS_I(inode)->root;
4532 	struct btrfs_root_item *root_item = &root->root_item;
4533 	struct btrfs_trans_handle *trans;
4534 	struct timespec64 ct = current_time(inode);
4535 	int ret = 0;
4536 	int received_uuid_changed;
4537 
4538 	if (!inode_owner_or_capable(mnt_userns, inode))
4539 		return -EPERM;
4540 
4541 	ret = mnt_want_write_file(file);
4542 	if (ret < 0)
4543 		return ret;
4544 
4545 	down_write(&fs_info->subvol_sem);
4546 
4547 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4548 		ret = -EINVAL;
4549 		goto out;
4550 	}
4551 
4552 	if (btrfs_root_readonly(root)) {
4553 		ret = -EROFS;
4554 		goto out;
4555 	}
4556 
4557 	/*
4558 	 * 1 - root item
4559 	 * 2 - uuid items (received uuid + subvol uuid)
4560 	 */
4561 	trans = btrfs_start_transaction(root, 3);
4562 	if (IS_ERR(trans)) {
4563 		ret = PTR_ERR(trans);
4564 		trans = NULL;
4565 		goto out;
4566 	}
4567 
4568 	sa->rtransid = trans->transid;
4569 	sa->rtime.sec = ct.tv_sec;
4570 	sa->rtime.nsec = ct.tv_nsec;
4571 
4572 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4573 				       BTRFS_UUID_SIZE);
4574 	if (received_uuid_changed &&
4575 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4576 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4577 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4578 					  root->root_key.objectid);
4579 		if (ret && ret != -ENOENT) {
4580 		        btrfs_abort_transaction(trans, ret);
4581 		        btrfs_end_transaction(trans);
4582 		        goto out;
4583 		}
4584 	}
4585 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4586 	btrfs_set_root_stransid(root_item, sa->stransid);
4587 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4588 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4589 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4590 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4591 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4592 
4593 	ret = btrfs_update_root(trans, fs_info->tree_root,
4594 				&root->root_key, &root->root_item);
4595 	if (ret < 0) {
4596 		btrfs_end_transaction(trans);
4597 		goto out;
4598 	}
4599 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4600 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4601 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4602 					  root->root_key.objectid);
4603 		if (ret < 0 && ret != -EEXIST) {
4604 			btrfs_abort_transaction(trans, ret);
4605 			btrfs_end_transaction(trans);
4606 			goto out;
4607 		}
4608 	}
4609 	ret = btrfs_commit_transaction(trans);
4610 out:
4611 	up_write(&fs_info->subvol_sem);
4612 	mnt_drop_write_file(file);
4613 	return ret;
4614 }
4615 
4616 #ifdef CONFIG_64BIT
4617 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4618 						void __user *arg)
4619 {
4620 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4621 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4622 	int ret = 0;
4623 
4624 	args32 = memdup_user(arg, sizeof(*args32));
4625 	if (IS_ERR(args32))
4626 		return PTR_ERR(args32);
4627 
4628 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4629 	if (!args64) {
4630 		ret = -ENOMEM;
4631 		goto out;
4632 	}
4633 
4634 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4635 	args64->stransid = args32->stransid;
4636 	args64->rtransid = args32->rtransid;
4637 	args64->stime.sec = args32->stime.sec;
4638 	args64->stime.nsec = args32->stime.nsec;
4639 	args64->rtime.sec = args32->rtime.sec;
4640 	args64->rtime.nsec = args32->rtime.nsec;
4641 	args64->flags = args32->flags;
4642 
4643 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4644 	if (ret)
4645 		goto out;
4646 
4647 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4648 	args32->stransid = args64->stransid;
4649 	args32->rtransid = args64->rtransid;
4650 	args32->stime.sec = args64->stime.sec;
4651 	args32->stime.nsec = args64->stime.nsec;
4652 	args32->rtime.sec = args64->rtime.sec;
4653 	args32->rtime.nsec = args64->rtime.nsec;
4654 	args32->flags = args64->flags;
4655 
4656 	ret = copy_to_user(arg, args32, sizeof(*args32));
4657 	if (ret)
4658 		ret = -EFAULT;
4659 
4660 out:
4661 	kfree(args32);
4662 	kfree(args64);
4663 	return ret;
4664 }
4665 #endif
4666 
4667 static long btrfs_ioctl_set_received_subvol(struct file *file,
4668 					    void __user *arg)
4669 {
4670 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4671 	int ret = 0;
4672 
4673 	sa = memdup_user(arg, sizeof(*sa));
4674 	if (IS_ERR(sa))
4675 		return PTR_ERR(sa);
4676 
4677 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4678 
4679 	if (ret)
4680 		goto out;
4681 
4682 	ret = copy_to_user(arg, sa, sizeof(*sa));
4683 	if (ret)
4684 		ret = -EFAULT;
4685 
4686 out:
4687 	kfree(sa);
4688 	return ret;
4689 }
4690 
4691 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4692 					void __user *arg)
4693 {
4694 	size_t len;
4695 	int ret;
4696 	char label[BTRFS_LABEL_SIZE];
4697 
4698 	spin_lock(&fs_info->super_lock);
4699 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4700 	spin_unlock(&fs_info->super_lock);
4701 
4702 	len = strnlen(label, BTRFS_LABEL_SIZE);
4703 
4704 	if (len == BTRFS_LABEL_SIZE) {
4705 		btrfs_warn(fs_info,
4706 			   "label is too long, return the first %zu bytes",
4707 			   --len);
4708 	}
4709 
4710 	ret = copy_to_user(arg, label, len);
4711 
4712 	return ret ? -EFAULT : 0;
4713 }
4714 
4715 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4716 {
4717 	struct inode *inode = file_inode(file);
4718 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4719 	struct btrfs_root *root = BTRFS_I(inode)->root;
4720 	struct btrfs_super_block *super_block = fs_info->super_copy;
4721 	struct btrfs_trans_handle *trans;
4722 	char label[BTRFS_LABEL_SIZE];
4723 	int ret;
4724 
4725 	if (!capable(CAP_SYS_ADMIN))
4726 		return -EPERM;
4727 
4728 	if (copy_from_user(label, arg, sizeof(label)))
4729 		return -EFAULT;
4730 
4731 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4732 		btrfs_err(fs_info,
4733 			  "unable to set label with more than %d bytes",
4734 			  BTRFS_LABEL_SIZE - 1);
4735 		return -EINVAL;
4736 	}
4737 
4738 	ret = mnt_want_write_file(file);
4739 	if (ret)
4740 		return ret;
4741 
4742 	trans = btrfs_start_transaction(root, 0);
4743 	if (IS_ERR(trans)) {
4744 		ret = PTR_ERR(trans);
4745 		goto out_unlock;
4746 	}
4747 
4748 	spin_lock(&fs_info->super_lock);
4749 	strcpy(super_block->label, label);
4750 	spin_unlock(&fs_info->super_lock);
4751 	ret = btrfs_commit_transaction(trans);
4752 
4753 out_unlock:
4754 	mnt_drop_write_file(file);
4755 	return ret;
4756 }
4757 
4758 #define INIT_FEATURE_FLAGS(suffix) \
4759 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4760 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4761 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4762 
4763 int btrfs_ioctl_get_supported_features(void __user *arg)
4764 {
4765 	static const struct btrfs_ioctl_feature_flags features[3] = {
4766 		INIT_FEATURE_FLAGS(SUPP),
4767 		INIT_FEATURE_FLAGS(SAFE_SET),
4768 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4769 	};
4770 
4771 	if (copy_to_user(arg, &features, sizeof(features)))
4772 		return -EFAULT;
4773 
4774 	return 0;
4775 }
4776 
4777 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4778 					void __user *arg)
4779 {
4780 	struct btrfs_super_block *super_block = fs_info->super_copy;
4781 	struct btrfs_ioctl_feature_flags features;
4782 
4783 	features.compat_flags = btrfs_super_compat_flags(super_block);
4784 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4785 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4786 
4787 	if (copy_to_user(arg, &features, sizeof(features)))
4788 		return -EFAULT;
4789 
4790 	return 0;
4791 }
4792 
4793 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4794 			      enum btrfs_feature_set set,
4795 			      u64 change_mask, u64 flags, u64 supported_flags,
4796 			      u64 safe_set, u64 safe_clear)
4797 {
4798 	const char *type = btrfs_feature_set_name(set);
4799 	char *names;
4800 	u64 disallowed, unsupported;
4801 	u64 set_mask = flags & change_mask;
4802 	u64 clear_mask = ~flags & change_mask;
4803 
4804 	unsupported = set_mask & ~supported_flags;
4805 	if (unsupported) {
4806 		names = btrfs_printable_features(set, unsupported);
4807 		if (names) {
4808 			btrfs_warn(fs_info,
4809 				   "this kernel does not support the %s feature bit%s",
4810 				   names, strchr(names, ',') ? "s" : "");
4811 			kfree(names);
4812 		} else
4813 			btrfs_warn(fs_info,
4814 				   "this kernel does not support %s bits 0x%llx",
4815 				   type, unsupported);
4816 		return -EOPNOTSUPP;
4817 	}
4818 
4819 	disallowed = set_mask & ~safe_set;
4820 	if (disallowed) {
4821 		names = btrfs_printable_features(set, disallowed);
4822 		if (names) {
4823 			btrfs_warn(fs_info,
4824 				   "can't set the %s feature bit%s while mounted",
4825 				   names, strchr(names, ',') ? "s" : "");
4826 			kfree(names);
4827 		} else
4828 			btrfs_warn(fs_info,
4829 				   "can't set %s bits 0x%llx while mounted",
4830 				   type, disallowed);
4831 		return -EPERM;
4832 	}
4833 
4834 	disallowed = clear_mask & ~safe_clear;
4835 	if (disallowed) {
4836 		names = btrfs_printable_features(set, disallowed);
4837 		if (names) {
4838 			btrfs_warn(fs_info,
4839 				   "can't clear the %s feature bit%s while mounted",
4840 				   names, strchr(names, ',') ? "s" : "");
4841 			kfree(names);
4842 		} else
4843 			btrfs_warn(fs_info,
4844 				   "can't clear %s bits 0x%llx while mounted",
4845 				   type, disallowed);
4846 		return -EPERM;
4847 	}
4848 
4849 	return 0;
4850 }
4851 
4852 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4853 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4854 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4855 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4856 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4857 
4858 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4859 {
4860 	struct inode *inode = file_inode(file);
4861 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4862 	struct btrfs_root *root = BTRFS_I(inode)->root;
4863 	struct btrfs_super_block *super_block = fs_info->super_copy;
4864 	struct btrfs_ioctl_feature_flags flags[2];
4865 	struct btrfs_trans_handle *trans;
4866 	u64 newflags;
4867 	int ret;
4868 
4869 	if (!capable(CAP_SYS_ADMIN))
4870 		return -EPERM;
4871 
4872 	if (copy_from_user(flags, arg, sizeof(flags)))
4873 		return -EFAULT;
4874 
4875 	/* Nothing to do */
4876 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4877 	    !flags[0].incompat_flags)
4878 		return 0;
4879 
4880 	ret = check_feature(fs_info, flags[0].compat_flags,
4881 			    flags[1].compat_flags, COMPAT);
4882 	if (ret)
4883 		return ret;
4884 
4885 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4886 			    flags[1].compat_ro_flags, COMPAT_RO);
4887 	if (ret)
4888 		return ret;
4889 
4890 	ret = check_feature(fs_info, flags[0].incompat_flags,
4891 			    flags[1].incompat_flags, INCOMPAT);
4892 	if (ret)
4893 		return ret;
4894 
4895 	ret = mnt_want_write_file(file);
4896 	if (ret)
4897 		return ret;
4898 
4899 	trans = btrfs_start_transaction(root, 0);
4900 	if (IS_ERR(trans)) {
4901 		ret = PTR_ERR(trans);
4902 		goto out_drop_write;
4903 	}
4904 
4905 	spin_lock(&fs_info->super_lock);
4906 	newflags = btrfs_super_compat_flags(super_block);
4907 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4908 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4909 	btrfs_set_super_compat_flags(super_block, newflags);
4910 
4911 	newflags = btrfs_super_compat_ro_flags(super_block);
4912 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4913 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4914 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4915 
4916 	newflags = btrfs_super_incompat_flags(super_block);
4917 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4918 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4919 	btrfs_set_super_incompat_flags(super_block, newflags);
4920 	spin_unlock(&fs_info->super_lock);
4921 
4922 	ret = btrfs_commit_transaction(trans);
4923 out_drop_write:
4924 	mnt_drop_write_file(file);
4925 
4926 	return ret;
4927 }
4928 
4929 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4930 {
4931 	struct btrfs_ioctl_send_args *arg;
4932 	int ret;
4933 
4934 	if (compat) {
4935 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4936 		struct btrfs_ioctl_send_args_32 args32;
4937 
4938 		ret = copy_from_user(&args32, argp, sizeof(args32));
4939 		if (ret)
4940 			return -EFAULT;
4941 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4942 		if (!arg)
4943 			return -ENOMEM;
4944 		arg->send_fd = args32.send_fd;
4945 		arg->clone_sources_count = args32.clone_sources_count;
4946 		arg->clone_sources = compat_ptr(args32.clone_sources);
4947 		arg->parent_root = args32.parent_root;
4948 		arg->flags = args32.flags;
4949 		memcpy(arg->reserved, args32.reserved,
4950 		       sizeof(args32.reserved));
4951 #else
4952 		return -ENOTTY;
4953 #endif
4954 	} else {
4955 		arg = memdup_user(argp, sizeof(*arg));
4956 		if (IS_ERR(arg))
4957 			return PTR_ERR(arg);
4958 	}
4959 	ret = btrfs_ioctl_send(file, arg);
4960 	kfree(arg);
4961 	return ret;
4962 }
4963 
4964 long btrfs_ioctl(struct file *file, unsigned int
4965 		cmd, unsigned long arg)
4966 {
4967 	struct inode *inode = file_inode(file);
4968 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4969 	struct btrfs_root *root = BTRFS_I(inode)->root;
4970 	void __user *argp = (void __user *)arg;
4971 
4972 	switch (cmd) {
4973 	case FS_IOC_GETVERSION:
4974 		return btrfs_ioctl_getversion(file, argp);
4975 	case FS_IOC_GETFSLABEL:
4976 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4977 	case FS_IOC_SETFSLABEL:
4978 		return btrfs_ioctl_set_fslabel(file, argp);
4979 	case FITRIM:
4980 		return btrfs_ioctl_fitrim(fs_info, argp);
4981 	case BTRFS_IOC_SNAP_CREATE:
4982 		return btrfs_ioctl_snap_create(file, argp, 0);
4983 	case BTRFS_IOC_SNAP_CREATE_V2:
4984 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4985 	case BTRFS_IOC_SUBVOL_CREATE:
4986 		return btrfs_ioctl_snap_create(file, argp, 1);
4987 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4988 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4989 	case BTRFS_IOC_SNAP_DESTROY:
4990 		return btrfs_ioctl_snap_destroy(file, argp, false);
4991 	case BTRFS_IOC_SNAP_DESTROY_V2:
4992 		return btrfs_ioctl_snap_destroy(file, argp, true);
4993 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4994 		return btrfs_ioctl_subvol_getflags(file, argp);
4995 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4996 		return btrfs_ioctl_subvol_setflags(file, argp);
4997 	case BTRFS_IOC_DEFAULT_SUBVOL:
4998 		return btrfs_ioctl_default_subvol(file, argp);
4999 	case BTRFS_IOC_DEFRAG:
5000 		return btrfs_ioctl_defrag(file, NULL);
5001 	case BTRFS_IOC_DEFRAG_RANGE:
5002 		return btrfs_ioctl_defrag(file, argp);
5003 	case BTRFS_IOC_RESIZE:
5004 		return btrfs_ioctl_resize(file, argp);
5005 	case BTRFS_IOC_ADD_DEV:
5006 		return btrfs_ioctl_add_dev(fs_info, argp);
5007 	case BTRFS_IOC_RM_DEV:
5008 		return btrfs_ioctl_rm_dev(file, argp);
5009 	case BTRFS_IOC_RM_DEV_V2:
5010 		return btrfs_ioctl_rm_dev_v2(file, argp);
5011 	case BTRFS_IOC_FS_INFO:
5012 		return btrfs_ioctl_fs_info(fs_info, argp);
5013 	case BTRFS_IOC_DEV_INFO:
5014 		return btrfs_ioctl_dev_info(fs_info, argp);
5015 	case BTRFS_IOC_BALANCE:
5016 		return btrfs_ioctl_balance(file, NULL);
5017 	case BTRFS_IOC_TREE_SEARCH:
5018 		return btrfs_ioctl_tree_search(file, argp);
5019 	case BTRFS_IOC_TREE_SEARCH_V2:
5020 		return btrfs_ioctl_tree_search_v2(file, argp);
5021 	case BTRFS_IOC_INO_LOOKUP:
5022 		return btrfs_ioctl_ino_lookup(file, argp);
5023 	case BTRFS_IOC_INO_PATHS:
5024 		return btrfs_ioctl_ino_to_path(root, argp);
5025 	case BTRFS_IOC_LOGICAL_INO:
5026 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5027 	case BTRFS_IOC_LOGICAL_INO_V2:
5028 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5029 	case BTRFS_IOC_SPACE_INFO:
5030 		return btrfs_ioctl_space_info(fs_info, argp);
5031 	case BTRFS_IOC_SYNC: {
5032 		int ret;
5033 
5034 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5035 		if (ret)
5036 			return ret;
5037 		ret = btrfs_sync_fs(inode->i_sb, 1);
5038 		/*
5039 		 * The transaction thread may want to do more work,
5040 		 * namely it pokes the cleaner kthread that will start
5041 		 * processing uncleaned subvols.
5042 		 */
5043 		wake_up_process(fs_info->transaction_kthread);
5044 		return ret;
5045 	}
5046 	case BTRFS_IOC_START_SYNC:
5047 		return btrfs_ioctl_start_sync(root, argp);
5048 	case BTRFS_IOC_WAIT_SYNC:
5049 		return btrfs_ioctl_wait_sync(fs_info, argp);
5050 	case BTRFS_IOC_SCRUB:
5051 		return btrfs_ioctl_scrub(file, argp);
5052 	case BTRFS_IOC_SCRUB_CANCEL:
5053 		return btrfs_ioctl_scrub_cancel(fs_info);
5054 	case BTRFS_IOC_SCRUB_PROGRESS:
5055 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5056 	case BTRFS_IOC_BALANCE_V2:
5057 		return btrfs_ioctl_balance(file, argp);
5058 	case BTRFS_IOC_BALANCE_CTL:
5059 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5060 	case BTRFS_IOC_BALANCE_PROGRESS:
5061 		return btrfs_ioctl_balance_progress(fs_info, argp);
5062 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5063 		return btrfs_ioctl_set_received_subvol(file, argp);
5064 #ifdef CONFIG_64BIT
5065 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5066 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5067 #endif
5068 	case BTRFS_IOC_SEND:
5069 		return _btrfs_ioctl_send(file, argp, false);
5070 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5071 	case BTRFS_IOC_SEND_32:
5072 		return _btrfs_ioctl_send(file, argp, true);
5073 #endif
5074 	case BTRFS_IOC_GET_DEV_STATS:
5075 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5076 	case BTRFS_IOC_QUOTA_CTL:
5077 		return btrfs_ioctl_quota_ctl(file, argp);
5078 	case BTRFS_IOC_QGROUP_ASSIGN:
5079 		return btrfs_ioctl_qgroup_assign(file, argp);
5080 	case BTRFS_IOC_QGROUP_CREATE:
5081 		return btrfs_ioctl_qgroup_create(file, argp);
5082 	case BTRFS_IOC_QGROUP_LIMIT:
5083 		return btrfs_ioctl_qgroup_limit(file, argp);
5084 	case BTRFS_IOC_QUOTA_RESCAN:
5085 		return btrfs_ioctl_quota_rescan(file, argp);
5086 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5087 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5088 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5089 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5090 	case BTRFS_IOC_DEV_REPLACE:
5091 		return btrfs_ioctl_dev_replace(fs_info, argp);
5092 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5093 		return btrfs_ioctl_get_supported_features(argp);
5094 	case BTRFS_IOC_GET_FEATURES:
5095 		return btrfs_ioctl_get_features(fs_info, argp);
5096 	case BTRFS_IOC_SET_FEATURES:
5097 		return btrfs_ioctl_set_features(file, argp);
5098 	case BTRFS_IOC_GET_SUBVOL_INFO:
5099 		return btrfs_ioctl_get_subvol_info(file, argp);
5100 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5101 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5102 	case BTRFS_IOC_INO_LOOKUP_USER:
5103 		return btrfs_ioctl_ino_lookup_user(file, argp);
5104 	case FS_IOC_ENABLE_VERITY:
5105 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5106 	case FS_IOC_MEASURE_VERITY:
5107 		return fsverity_ioctl_measure(file, argp);
5108 	}
5109 
5110 	return -ENOTTY;
5111 }
5112 
5113 #ifdef CONFIG_COMPAT
5114 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5115 {
5116 	/*
5117 	 * These all access 32-bit values anyway so no further
5118 	 * handling is necessary.
5119 	 */
5120 	switch (cmd) {
5121 	case FS_IOC32_GETVERSION:
5122 		cmd = FS_IOC_GETVERSION;
5123 		break;
5124 	}
5125 
5126 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5127 }
5128 #endif
5129