1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "export.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "print-tree.h" 37 #include "volumes.h" 38 #include "locking.h" 39 #include "backref.h" 40 #include "rcu-string.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 #include "subpage.h" 52 53 #ifdef CONFIG_64BIT 54 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 55 * structures are incorrect, as the timespec structure from userspace 56 * is 4 bytes too small. We define these alternatives here to teach 57 * the kernel about the 32-bit struct packing. 58 */ 59 struct btrfs_ioctl_timespec_32 { 60 __u64 sec; 61 __u32 nsec; 62 } __attribute__ ((__packed__)); 63 64 struct btrfs_ioctl_received_subvol_args_32 { 65 char uuid[BTRFS_UUID_SIZE]; /* in */ 66 __u64 stransid; /* in */ 67 __u64 rtransid; /* out */ 68 struct btrfs_ioctl_timespec_32 stime; /* in */ 69 struct btrfs_ioctl_timespec_32 rtime; /* out */ 70 __u64 flags; /* in */ 71 __u64 reserved[16]; /* in */ 72 } __attribute__ ((__packed__)); 73 74 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 75 struct btrfs_ioctl_received_subvol_args_32) 76 #endif 77 78 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 79 struct btrfs_ioctl_send_args_32 { 80 __s64 send_fd; /* in */ 81 __u64 clone_sources_count; /* in */ 82 compat_uptr_t clone_sources; /* in */ 83 __u64 parent_root; /* in */ 84 __u64 flags; /* in */ 85 __u32 version; /* in */ 86 __u8 reserved[28]; /* in */ 87 } __attribute__ ((__packed__)); 88 89 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 90 struct btrfs_ioctl_send_args_32) 91 #endif 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 95 unsigned int flags) 96 { 97 if (S_ISDIR(inode->i_mode)) 98 return flags; 99 else if (S_ISREG(inode->i_mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 107 * ioctl. 108 */ 109 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 110 { 111 unsigned int iflags = 0; 112 u32 flags = binode->flags; 113 u32 ro_flags = binode->ro_flags; 114 115 if (flags & BTRFS_INODE_SYNC) 116 iflags |= FS_SYNC_FL; 117 if (flags & BTRFS_INODE_IMMUTABLE) 118 iflags |= FS_IMMUTABLE_FL; 119 if (flags & BTRFS_INODE_APPEND) 120 iflags |= FS_APPEND_FL; 121 if (flags & BTRFS_INODE_NODUMP) 122 iflags |= FS_NODUMP_FL; 123 if (flags & BTRFS_INODE_NOATIME) 124 iflags |= FS_NOATIME_FL; 125 if (flags & BTRFS_INODE_DIRSYNC) 126 iflags |= FS_DIRSYNC_FL; 127 if (flags & BTRFS_INODE_NODATACOW) 128 iflags |= FS_NOCOW_FL; 129 if (ro_flags & BTRFS_INODE_RO_VERITY) 130 iflags |= FS_VERITY_FL; 131 132 if (flags & BTRFS_INODE_NOCOMPRESS) 133 iflags |= FS_NOCOMP_FL; 134 else if (flags & BTRFS_INODE_COMPRESS) 135 iflags |= FS_COMPR_FL; 136 137 return iflags; 138 } 139 140 /* 141 * Update inode->i_flags based on the btrfs internal flags. 142 */ 143 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 144 { 145 struct btrfs_inode *binode = BTRFS_I(inode); 146 unsigned int new_fl = 0; 147 148 if (binode->flags & BTRFS_INODE_SYNC) 149 new_fl |= S_SYNC; 150 if (binode->flags & BTRFS_INODE_IMMUTABLE) 151 new_fl |= S_IMMUTABLE; 152 if (binode->flags & BTRFS_INODE_APPEND) 153 new_fl |= S_APPEND; 154 if (binode->flags & BTRFS_INODE_NOATIME) 155 new_fl |= S_NOATIME; 156 if (binode->flags & BTRFS_INODE_DIRSYNC) 157 new_fl |= S_DIRSYNC; 158 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 159 new_fl |= S_VERITY; 160 161 set_mask_bits(&inode->i_flags, 162 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 163 S_VERITY, new_fl); 164 } 165 166 /* 167 * Check if @flags are a supported and valid set of FS_*_FL flags and that 168 * the old and new flags are not conflicting 169 */ 170 static int check_fsflags(unsigned int old_flags, unsigned int flags) 171 { 172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 173 FS_NOATIME_FL | FS_NODUMP_FL | \ 174 FS_SYNC_FL | FS_DIRSYNC_FL | \ 175 FS_NOCOMP_FL | FS_COMPR_FL | 176 FS_NOCOW_FL)) 177 return -EOPNOTSUPP; 178 179 /* COMPR and NOCOMP on new/old are valid */ 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 184 return -EINVAL; 185 186 /* NOCOW and compression options are mutually exclusive */ 187 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 196 unsigned int flags) 197 { 198 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 199 return -EPERM; 200 201 return 0; 202 } 203 204 /* 205 * Set flags/xflags from the internal inode flags. The remaining items of 206 * fsxattr are zeroed. 207 */ 208 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 209 { 210 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 211 212 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 213 return 0; 214 } 215 216 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 217 struct dentry *dentry, struct fileattr *fa) 218 { 219 struct inode *inode = d_inode(dentry); 220 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 221 struct btrfs_inode *binode = BTRFS_I(inode); 222 struct btrfs_root *root = binode->root; 223 struct btrfs_trans_handle *trans; 224 unsigned int fsflags, old_fsflags; 225 int ret; 226 const char *comp = NULL; 227 u32 binode_flags; 228 229 if (btrfs_root_readonly(root)) 230 return -EROFS; 231 232 if (fileattr_has_fsx(fa)) 233 return -EOPNOTSUPP; 234 235 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 236 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 237 ret = check_fsflags(old_fsflags, fsflags); 238 if (ret) 239 return ret; 240 241 ret = check_fsflags_compatible(fs_info, fsflags); 242 if (ret) 243 return ret; 244 245 binode_flags = binode->flags; 246 if (fsflags & FS_SYNC_FL) 247 binode_flags |= BTRFS_INODE_SYNC; 248 else 249 binode_flags &= ~BTRFS_INODE_SYNC; 250 if (fsflags & FS_IMMUTABLE_FL) 251 binode_flags |= BTRFS_INODE_IMMUTABLE; 252 else 253 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 254 if (fsflags & FS_APPEND_FL) 255 binode_flags |= BTRFS_INODE_APPEND; 256 else 257 binode_flags &= ~BTRFS_INODE_APPEND; 258 if (fsflags & FS_NODUMP_FL) 259 binode_flags |= BTRFS_INODE_NODUMP; 260 else 261 binode_flags &= ~BTRFS_INODE_NODUMP; 262 if (fsflags & FS_NOATIME_FL) 263 binode_flags |= BTRFS_INODE_NOATIME; 264 else 265 binode_flags &= ~BTRFS_INODE_NOATIME; 266 267 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 268 if (!fa->flags_valid) { 269 /* 1 item for the inode */ 270 trans = btrfs_start_transaction(root, 1); 271 if (IS_ERR(trans)) 272 return PTR_ERR(trans); 273 goto update_flags; 274 } 275 276 if (fsflags & FS_DIRSYNC_FL) 277 binode_flags |= BTRFS_INODE_DIRSYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_DIRSYNC; 280 if (fsflags & FS_NOCOW_FL) { 281 if (S_ISREG(inode->i_mode)) { 282 /* 283 * It's safe to turn csums off here, no extents exist. 284 * Otherwise we want the flag to reflect the real COW 285 * status of the file and will not set it. 286 */ 287 if (inode->i_size == 0) 288 binode_flags |= BTRFS_INODE_NODATACOW | 289 BTRFS_INODE_NODATASUM; 290 } else { 291 binode_flags |= BTRFS_INODE_NODATACOW; 292 } 293 } else { 294 /* 295 * Revert back under same assumptions as above 296 */ 297 if (S_ISREG(inode->i_mode)) { 298 if (inode->i_size == 0) 299 binode_flags &= ~(BTRFS_INODE_NODATACOW | 300 BTRFS_INODE_NODATASUM); 301 } else { 302 binode_flags &= ~BTRFS_INODE_NODATACOW; 303 } 304 } 305 306 /* 307 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 308 * flag may be changed automatically if compression code won't make 309 * things smaller. 310 */ 311 if (fsflags & FS_NOCOMP_FL) { 312 binode_flags &= ~BTRFS_INODE_COMPRESS; 313 binode_flags |= BTRFS_INODE_NOCOMPRESS; 314 } else if (fsflags & FS_COMPR_FL) { 315 316 if (IS_SWAPFILE(inode)) 317 return -ETXTBSY; 318 319 binode_flags |= BTRFS_INODE_COMPRESS; 320 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 321 322 comp = btrfs_compress_type2str(fs_info->compress_type); 323 if (!comp || comp[0] == 0) 324 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 325 } else { 326 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 327 } 328 329 /* 330 * 1 for inode item 331 * 2 for properties 332 */ 333 trans = btrfs_start_transaction(root, 3); 334 if (IS_ERR(trans)) 335 return PTR_ERR(trans); 336 337 if (comp) { 338 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 339 strlen(comp), 0); 340 if (ret) { 341 btrfs_abort_transaction(trans, ret); 342 goto out_end_trans; 343 } 344 } else { 345 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 346 0, 0); 347 if (ret && ret != -ENODATA) { 348 btrfs_abort_transaction(trans, ret); 349 goto out_end_trans; 350 } 351 } 352 353 update_flags: 354 binode->flags = binode_flags; 355 btrfs_sync_inode_flags_to_i_flags(inode); 356 inode_inc_iversion(inode); 357 inode->i_ctime = current_time(inode); 358 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 359 360 out_end_trans: 361 btrfs_end_transaction(trans); 362 return ret; 363 } 364 365 /* 366 * Start exclusive operation @type, return true on success 367 */ 368 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 369 enum btrfs_exclusive_operation type) 370 { 371 bool ret = false; 372 373 spin_lock(&fs_info->super_lock); 374 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 375 fs_info->exclusive_operation = type; 376 ret = true; 377 } 378 spin_unlock(&fs_info->super_lock); 379 380 return ret; 381 } 382 383 /* 384 * Conditionally allow to enter the exclusive operation in case it's compatible 385 * with the running one. This must be paired with btrfs_exclop_start_unlock and 386 * btrfs_exclop_finish. 387 * 388 * Compatibility: 389 * - the same type is already running 390 * - when trying to add a device and balance has been paused 391 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 392 * must check the condition first that would allow none -> @type 393 */ 394 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 395 enum btrfs_exclusive_operation type) 396 { 397 spin_lock(&fs_info->super_lock); 398 if (fs_info->exclusive_operation == type || 399 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 400 type == BTRFS_EXCLOP_DEV_ADD)) 401 return true; 402 403 spin_unlock(&fs_info->super_lock); 404 return false; 405 } 406 407 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 408 { 409 spin_unlock(&fs_info->super_lock); 410 } 411 412 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 413 { 414 spin_lock(&fs_info->super_lock); 415 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 416 spin_unlock(&fs_info->super_lock); 417 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 418 } 419 420 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 421 enum btrfs_exclusive_operation op) 422 { 423 switch (op) { 424 case BTRFS_EXCLOP_BALANCE_PAUSED: 425 spin_lock(&fs_info->super_lock); 426 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 427 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD); 428 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 429 spin_unlock(&fs_info->super_lock); 430 break; 431 case BTRFS_EXCLOP_BALANCE: 432 spin_lock(&fs_info->super_lock); 433 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 434 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 435 spin_unlock(&fs_info->super_lock); 436 break; 437 default: 438 btrfs_warn(fs_info, 439 "invalid exclop balance operation %d requested", op); 440 } 441 } 442 443 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 444 { 445 struct inode *inode = file_inode(file); 446 447 return put_user(inode->i_generation, arg); 448 } 449 450 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 451 void __user *arg) 452 { 453 struct btrfs_device *device; 454 struct request_queue *q; 455 struct fstrim_range range; 456 u64 minlen = ULLONG_MAX; 457 u64 num_devices = 0; 458 int ret; 459 460 if (!capable(CAP_SYS_ADMIN)) 461 return -EPERM; 462 463 /* 464 * btrfs_trim_block_group() depends on space cache, which is not 465 * available in zoned filesystem. So, disallow fitrim on a zoned 466 * filesystem for now. 467 */ 468 if (btrfs_is_zoned(fs_info)) 469 return -EOPNOTSUPP; 470 471 /* 472 * If the fs is mounted with nologreplay, which requires it to be 473 * mounted in RO mode as well, we can not allow discard on free space 474 * inside block groups, because log trees refer to extents that are not 475 * pinned in a block group's free space cache (pinning the extents is 476 * precisely the first phase of replaying a log tree). 477 */ 478 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 479 return -EROFS; 480 481 rcu_read_lock(); 482 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 483 dev_list) { 484 if (!device->bdev) 485 continue; 486 q = bdev_get_queue(device->bdev); 487 if (blk_queue_discard(q)) { 488 num_devices++; 489 minlen = min_t(u64, q->limits.discard_granularity, 490 minlen); 491 } 492 } 493 rcu_read_unlock(); 494 495 if (!num_devices) 496 return -EOPNOTSUPP; 497 if (copy_from_user(&range, arg, sizeof(range))) 498 return -EFAULT; 499 500 /* 501 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 502 * block group is in the logical address space, which can be any 503 * sectorsize aligned bytenr in the range [0, U64_MAX]. 504 */ 505 if (range.len < fs_info->sb->s_blocksize) 506 return -EINVAL; 507 508 range.minlen = max(range.minlen, minlen); 509 ret = btrfs_trim_fs(fs_info, &range); 510 if (ret < 0) 511 return ret; 512 513 if (copy_to_user(arg, &range, sizeof(range))) 514 return -EFAULT; 515 516 return 0; 517 } 518 519 int __pure btrfs_is_empty_uuid(u8 *uuid) 520 { 521 int i; 522 523 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 524 if (uuid[i]) 525 return 0; 526 } 527 return 1; 528 } 529 530 static noinline int create_subvol(struct user_namespace *mnt_userns, 531 struct inode *dir, struct dentry *dentry, 532 const char *name, int namelen, 533 struct btrfs_qgroup_inherit *inherit) 534 { 535 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 536 struct btrfs_trans_handle *trans; 537 struct btrfs_key key; 538 struct btrfs_root_item *root_item; 539 struct btrfs_inode_item *inode_item; 540 struct extent_buffer *leaf; 541 struct btrfs_root *root = BTRFS_I(dir)->root; 542 struct btrfs_root *new_root; 543 struct btrfs_block_rsv block_rsv; 544 struct timespec64 cur_time = current_time(dir); 545 struct inode *inode; 546 int ret; 547 dev_t anon_dev = 0; 548 u64 objectid; 549 u64 index = 0; 550 551 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 552 if (!root_item) 553 return -ENOMEM; 554 555 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 556 if (ret) 557 goto fail_free; 558 559 ret = get_anon_bdev(&anon_dev); 560 if (ret < 0) 561 goto fail_free; 562 563 /* 564 * Don't create subvolume whose level is not zero. Or qgroup will be 565 * screwed up since it assumes subvolume qgroup's level to be 0. 566 */ 567 if (btrfs_qgroup_level(objectid)) { 568 ret = -ENOSPC; 569 goto fail_free; 570 } 571 572 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 573 /* 574 * The same as the snapshot creation, please see the comment 575 * of create_snapshot(). 576 */ 577 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 578 if (ret) 579 goto fail_free; 580 581 trans = btrfs_start_transaction(root, 0); 582 if (IS_ERR(trans)) { 583 ret = PTR_ERR(trans); 584 btrfs_subvolume_release_metadata(root, &block_rsv); 585 goto fail_free; 586 } 587 trans->block_rsv = &block_rsv; 588 trans->bytes_reserved = block_rsv.size; 589 590 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 591 if (ret) 592 goto fail; 593 594 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 595 BTRFS_NESTING_NORMAL); 596 if (IS_ERR(leaf)) { 597 ret = PTR_ERR(leaf); 598 goto fail; 599 } 600 601 btrfs_mark_buffer_dirty(leaf); 602 603 inode_item = &root_item->inode; 604 btrfs_set_stack_inode_generation(inode_item, 1); 605 btrfs_set_stack_inode_size(inode_item, 3); 606 btrfs_set_stack_inode_nlink(inode_item, 1); 607 btrfs_set_stack_inode_nbytes(inode_item, 608 fs_info->nodesize); 609 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 610 611 btrfs_set_root_flags(root_item, 0); 612 btrfs_set_root_limit(root_item, 0); 613 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 614 615 btrfs_set_root_bytenr(root_item, leaf->start); 616 btrfs_set_root_generation(root_item, trans->transid); 617 btrfs_set_root_level(root_item, 0); 618 btrfs_set_root_refs(root_item, 1); 619 btrfs_set_root_used(root_item, leaf->len); 620 btrfs_set_root_last_snapshot(root_item, 0); 621 622 btrfs_set_root_generation_v2(root_item, 623 btrfs_root_generation(root_item)); 624 generate_random_guid(root_item->uuid); 625 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 626 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 627 root_item->ctime = root_item->otime; 628 btrfs_set_root_ctransid(root_item, trans->transid); 629 btrfs_set_root_otransid(root_item, trans->transid); 630 631 btrfs_tree_unlock(leaf); 632 633 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 634 635 key.objectid = objectid; 636 key.offset = 0; 637 key.type = BTRFS_ROOT_ITEM_KEY; 638 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 639 root_item); 640 if (ret) { 641 /* 642 * Since we don't abort the transaction in this case, free the 643 * tree block so that we don't leak space and leave the 644 * filesystem in an inconsistent state (an extent item in the 645 * extent tree with a backreference for a root that does not 646 * exists). 647 */ 648 btrfs_tree_lock(leaf); 649 btrfs_clean_tree_block(leaf); 650 btrfs_tree_unlock(leaf); 651 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 652 free_extent_buffer(leaf); 653 goto fail; 654 } 655 656 free_extent_buffer(leaf); 657 leaf = NULL; 658 659 key.offset = (u64)-1; 660 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 661 if (IS_ERR(new_root)) { 662 free_anon_bdev(anon_dev); 663 ret = PTR_ERR(new_root); 664 btrfs_abort_transaction(trans, ret); 665 goto fail; 666 } 667 /* Freeing will be done in btrfs_put_root() of new_root */ 668 anon_dev = 0; 669 670 ret = btrfs_record_root_in_trans(trans, new_root); 671 if (ret) { 672 btrfs_put_root(new_root); 673 btrfs_abort_transaction(trans, ret); 674 goto fail; 675 } 676 677 ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns); 678 btrfs_put_root(new_root); 679 if (ret) { 680 /* We potentially lose an unused inode item here */ 681 btrfs_abort_transaction(trans, ret); 682 goto fail; 683 } 684 685 /* 686 * insert the directory item 687 */ 688 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 689 if (ret) { 690 btrfs_abort_transaction(trans, ret); 691 goto fail; 692 } 693 694 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 695 BTRFS_FT_DIR, index); 696 if (ret) { 697 btrfs_abort_transaction(trans, ret); 698 goto fail; 699 } 700 701 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 702 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 703 if (ret) { 704 btrfs_abort_transaction(trans, ret); 705 goto fail; 706 } 707 708 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 709 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 710 if (ret) { 711 btrfs_abort_transaction(trans, ret); 712 goto fail; 713 } 714 715 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 716 BTRFS_UUID_KEY_SUBVOL, objectid); 717 if (ret) 718 btrfs_abort_transaction(trans, ret); 719 720 fail: 721 kfree(root_item); 722 trans->block_rsv = NULL; 723 trans->bytes_reserved = 0; 724 btrfs_subvolume_release_metadata(root, &block_rsv); 725 726 if (ret) 727 btrfs_end_transaction(trans); 728 else 729 ret = btrfs_commit_transaction(trans); 730 731 if (!ret) { 732 inode = btrfs_lookup_dentry(dir, dentry); 733 if (IS_ERR(inode)) 734 return PTR_ERR(inode); 735 d_instantiate(dentry, inode); 736 } 737 return ret; 738 739 fail_free: 740 if (anon_dev) 741 free_anon_bdev(anon_dev); 742 kfree(root_item); 743 return ret; 744 } 745 746 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 747 struct dentry *dentry, bool readonly, 748 struct btrfs_qgroup_inherit *inherit) 749 { 750 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 751 struct inode *inode; 752 struct btrfs_pending_snapshot *pending_snapshot; 753 struct btrfs_trans_handle *trans; 754 int ret; 755 756 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 757 return -EINVAL; 758 759 if (atomic_read(&root->nr_swapfiles)) { 760 btrfs_warn(fs_info, 761 "cannot snapshot subvolume with active swapfile"); 762 return -ETXTBSY; 763 } 764 765 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 766 if (!pending_snapshot) 767 return -ENOMEM; 768 769 ret = get_anon_bdev(&pending_snapshot->anon_dev); 770 if (ret < 0) 771 goto free_pending; 772 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 773 GFP_KERNEL); 774 pending_snapshot->path = btrfs_alloc_path(); 775 if (!pending_snapshot->root_item || !pending_snapshot->path) { 776 ret = -ENOMEM; 777 goto free_pending; 778 } 779 780 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 781 BTRFS_BLOCK_RSV_TEMP); 782 /* 783 * 1 - parent dir inode 784 * 2 - dir entries 785 * 1 - root item 786 * 2 - root ref/backref 787 * 1 - root of snapshot 788 * 1 - UUID item 789 */ 790 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 791 &pending_snapshot->block_rsv, 8, 792 false); 793 if (ret) 794 goto free_pending; 795 796 pending_snapshot->dentry = dentry; 797 pending_snapshot->root = root; 798 pending_snapshot->readonly = readonly; 799 pending_snapshot->dir = dir; 800 pending_snapshot->inherit = inherit; 801 802 trans = btrfs_start_transaction(root, 0); 803 if (IS_ERR(trans)) { 804 ret = PTR_ERR(trans); 805 goto fail; 806 } 807 808 trans->pending_snapshot = pending_snapshot; 809 810 ret = btrfs_commit_transaction(trans); 811 if (ret) 812 goto fail; 813 814 ret = pending_snapshot->error; 815 if (ret) 816 goto fail; 817 818 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 819 if (ret) 820 goto fail; 821 822 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 823 if (IS_ERR(inode)) { 824 ret = PTR_ERR(inode); 825 goto fail; 826 } 827 828 d_instantiate(dentry, inode); 829 ret = 0; 830 pending_snapshot->anon_dev = 0; 831 fail: 832 /* Prevent double freeing of anon_dev */ 833 if (ret && pending_snapshot->snap) 834 pending_snapshot->snap->anon_dev = 0; 835 btrfs_put_root(pending_snapshot->snap); 836 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 837 free_pending: 838 if (pending_snapshot->anon_dev) 839 free_anon_bdev(pending_snapshot->anon_dev); 840 kfree(pending_snapshot->root_item); 841 btrfs_free_path(pending_snapshot->path); 842 kfree(pending_snapshot); 843 844 return ret; 845 } 846 847 /* copy of may_delete in fs/namei.c() 848 * Check whether we can remove a link victim from directory dir, check 849 * whether the type of victim is right. 850 * 1. We can't do it if dir is read-only (done in permission()) 851 * 2. We should have write and exec permissions on dir 852 * 3. We can't remove anything from append-only dir 853 * 4. We can't do anything with immutable dir (done in permission()) 854 * 5. If the sticky bit on dir is set we should either 855 * a. be owner of dir, or 856 * b. be owner of victim, or 857 * c. have CAP_FOWNER capability 858 * 6. If the victim is append-only or immutable we can't do anything with 859 * links pointing to it. 860 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 861 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 862 * 9. We can't remove a root or mountpoint. 863 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 864 * nfs_async_unlink(). 865 */ 866 867 static int btrfs_may_delete(struct user_namespace *mnt_userns, 868 struct inode *dir, struct dentry *victim, int isdir) 869 { 870 int error; 871 872 if (d_really_is_negative(victim)) 873 return -ENOENT; 874 875 BUG_ON(d_inode(victim->d_parent) != dir); 876 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 877 878 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 879 if (error) 880 return error; 881 if (IS_APPEND(dir)) 882 return -EPERM; 883 if (check_sticky(mnt_userns, dir, d_inode(victim)) || 884 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 885 IS_SWAPFILE(d_inode(victim))) 886 return -EPERM; 887 if (isdir) { 888 if (!d_is_dir(victim)) 889 return -ENOTDIR; 890 if (IS_ROOT(victim)) 891 return -EBUSY; 892 } else if (d_is_dir(victim)) 893 return -EISDIR; 894 if (IS_DEADDIR(dir)) 895 return -ENOENT; 896 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 897 return -EBUSY; 898 return 0; 899 } 900 901 /* copy of may_create in fs/namei.c() */ 902 static inline int btrfs_may_create(struct user_namespace *mnt_userns, 903 struct inode *dir, struct dentry *child) 904 { 905 if (d_really_is_positive(child)) 906 return -EEXIST; 907 if (IS_DEADDIR(dir)) 908 return -ENOENT; 909 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 910 return -EOVERFLOW; 911 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 912 } 913 914 /* 915 * Create a new subvolume below @parent. This is largely modeled after 916 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 917 * inside this filesystem so it's quite a bit simpler. 918 */ 919 static noinline int btrfs_mksubvol(const struct path *parent, 920 struct user_namespace *mnt_userns, 921 const char *name, int namelen, 922 struct btrfs_root *snap_src, 923 bool readonly, 924 struct btrfs_qgroup_inherit *inherit) 925 { 926 struct inode *dir = d_inode(parent->dentry); 927 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 928 struct dentry *dentry; 929 int error; 930 931 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 932 if (error == -EINTR) 933 return error; 934 935 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); 936 error = PTR_ERR(dentry); 937 if (IS_ERR(dentry)) 938 goto out_unlock; 939 940 error = btrfs_may_create(mnt_userns, dir, dentry); 941 if (error) 942 goto out_dput; 943 944 /* 945 * even if this name doesn't exist, we may get hash collisions. 946 * check for them now when we can safely fail 947 */ 948 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 949 dir->i_ino, name, 950 namelen); 951 if (error) 952 goto out_dput; 953 954 down_read(&fs_info->subvol_sem); 955 956 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 957 goto out_up_read; 958 959 if (snap_src) 960 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 961 else 962 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit); 963 964 if (!error) 965 fsnotify_mkdir(dir, dentry); 966 out_up_read: 967 up_read(&fs_info->subvol_sem); 968 out_dput: 969 dput(dentry); 970 out_unlock: 971 btrfs_inode_unlock(dir, 0); 972 return error; 973 } 974 975 static noinline int btrfs_mksnapshot(const struct path *parent, 976 struct user_namespace *mnt_userns, 977 const char *name, int namelen, 978 struct btrfs_root *root, 979 bool readonly, 980 struct btrfs_qgroup_inherit *inherit) 981 { 982 int ret; 983 bool snapshot_force_cow = false; 984 985 /* 986 * Force new buffered writes to reserve space even when NOCOW is 987 * possible. This is to avoid later writeback (running dealloc) to 988 * fallback to COW mode and unexpectedly fail with ENOSPC. 989 */ 990 btrfs_drew_read_lock(&root->snapshot_lock); 991 992 ret = btrfs_start_delalloc_snapshot(root, false); 993 if (ret) 994 goto out; 995 996 /* 997 * All previous writes have started writeback in NOCOW mode, so now 998 * we force future writes to fallback to COW mode during snapshot 999 * creation. 1000 */ 1001 atomic_inc(&root->snapshot_force_cow); 1002 snapshot_force_cow = true; 1003 1004 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1005 1006 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, 1007 root, readonly, inherit); 1008 out: 1009 if (snapshot_force_cow) 1010 atomic_dec(&root->snapshot_force_cow); 1011 btrfs_drew_read_unlock(&root->snapshot_lock); 1012 return ret; 1013 } 1014 1015 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 1016 bool locked) 1017 { 1018 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1019 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1020 struct extent_map *em; 1021 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 1022 1023 /* 1024 * hopefully we have this extent in the tree already, try without 1025 * the full extent lock 1026 */ 1027 read_lock(&em_tree->lock); 1028 em = lookup_extent_mapping(em_tree, start, sectorsize); 1029 read_unlock(&em_tree->lock); 1030 1031 if (!em) { 1032 struct extent_state *cached = NULL; 1033 u64 end = start + sectorsize - 1; 1034 1035 /* get the big lock and read metadata off disk */ 1036 if (!locked) 1037 lock_extent_bits(io_tree, start, end, &cached); 1038 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, sectorsize); 1039 if (!locked) 1040 unlock_extent_cached(io_tree, start, end, &cached); 1041 1042 if (IS_ERR(em)) 1043 return NULL; 1044 } 1045 1046 return em; 1047 } 1048 1049 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 1050 bool locked) 1051 { 1052 struct extent_map *next; 1053 bool ret = true; 1054 1055 /* this is the last extent */ 1056 if (em->start + em->len >= i_size_read(inode)) 1057 return false; 1058 1059 next = defrag_lookup_extent(inode, em->start + em->len, locked); 1060 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1061 ret = false; 1062 else if ((em->block_start + em->block_len == next->block_start) && 1063 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1064 ret = false; 1065 1066 free_extent_map(next); 1067 return ret; 1068 } 1069 1070 /* 1071 * Prepare one page to be defragged. 1072 * 1073 * This will ensure: 1074 * 1075 * - Returned page is locked and has been set up properly. 1076 * - No ordered extent exists in the page. 1077 * - The page is uptodate. 1078 * 1079 * NOTE: Caller should also wait for page writeback after the cluster is 1080 * prepared, here we don't do writeback wait for each page. 1081 */ 1082 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, 1083 pgoff_t index) 1084 { 1085 struct address_space *mapping = inode->vfs_inode.i_mapping; 1086 gfp_t mask = btrfs_alloc_write_mask(mapping); 1087 u64 page_start = (u64)index << PAGE_SHIFT; 1088 u64 page_end = page_start + PAGE_SIZE - 1; 1089 struct extent_state *cached_state = NULL; 1090 struct page *page; 1091 int ret; 1092 1093 again: 1094 page = find_or_create_page(mapping, index, mask); 1095 if (!page) 1096 return ERR_PTR(-ENOMEM); 1097 1098 /* 1099 * Since we can defragment files opened read-only, we can encounter 1100 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We 1101 * can't do I/O using huge pages yet, so return an error for now. 1102 * Filesystem transparent huge pages are typically only used for 1103 * executables that explicitly enable them, so this isn't very 1104 * restrictive. 1105 */ 1106 if (PageCompound(page)) { 1107 unlock_page(page); 1108 put_page(page); 1109 return ERR_PTR(-ETXTBSY); 1110 } 1111 1112 ret = set_page_extent_mapped(page); 1113 if (ret < 0) { 1114 unlock_page(page); 1115 put_page(page); 1116 return ERR_PTR(ret); 1117 } 1118 1119 /* Wait for any existing ordered extent in the range */ 1120 while (1) { 1121 struct btrfs_ordered_extent *ordered; 1122 1123 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 1124 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 1125 unlock_extent_cached(&inode->io_tree, page_start, page_end, 1126 &cached_state); 1127 if (!ordered) 1128 break; 1129 1130 unlock_page(page); 1131 btrfs_start_ordered_extent(ordered, 1); 1132 btrfs_put_ordered_extent(ordered); 1133 lock_page(page); 1134 /* 1135 * We unlocked the page above, so we need check if it was 1136 * released or not. 1137 */ 1138 if (page->mapping != mapping || !PagePrivate(page)) { 1139 unlock_page(page); 1140 put_page(page); 1141 goto again; 1142 } 1143 } 1144 1145 /* 1146 * Now the page range has no ordered extent any more. Read the page to 1147 * make it uptodate. 1148 */ 1149 if (!PageUptodate(page)) { 1150 btrfs_readpage(NULL, page); 1151 lock_page(page); 1152 if (page->mapping != mapping || !PagePrivate(page)) { 1153 unlock_page(page); 1154 put_page(page); 1155 goto again; 1156 } 1157 if (!PageUptodate(page)) { 1158 unlock_page(page); 1159 put_page(page); 1160 return ERR_PTR(-EIO); 1161 } 1162 } 1163 return page; 1164 } 1165 1166 struct defrag_target_range { 1167 struct list_head list; 1168 u64 start; 1169 u64 len; 1170 }; 1171 1172 /* 1173 * Collect all valid target extents. 1174 * 1175 * @start: file offset to lookup 1176 * @len: length to lookup 1177 * @extent_thresh: file extent size threshold, any extent size >= this value 1178 * will be ignored 1179 * @newer_than: only defrag extents newer than this value 1180 * @do_compress: whether the defrag is doing compression 1181 * if true, @extent_thresh will be ignored and all regular 1182 * file extents meeting @newer_than will be targets. 1183 * @locked: if the range has already held extent lock 1184 * @target_list: list of targets file extents 1185 */ 1186 static int defrag_collect_targets(struct btrfs_inode *inode, 1187 u64 start, u64 len, u32 extent_thresh, 1188 u64 newer_than, bool do_compress, 1189 bool locked, struct list_head *target_list) 1190 { 1191 u64 cur = start; 1192 int ret = 0; 1193 1194 while (cur < start + len) { 1195 struct extent_map *em; 1196 struct defrag_target_range *new; 1197 bool next_mergeable = true; 1198 u64 range_len; 1199 1200 em = defrag_lookup_extent(&inode->vfs_inode, cur, locked); 1201 if (!em) 1202 break; 1203 1204 /* Skip hole/inline/preallocated extents */ 1205 if (em->block_start >= EXTENT_MAP_LAST_BYTE || 1206 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1207 goto next; 1208 1209 /* Skip older extent */ 1210 if (em->generation < newer_than) 1211 goto next; 1212 1213 /* 1214 * Our start offset might be in the middle of an existing extent 1215 * map, so take that into account. 1216 */ 1217 range_len = em->len - (cur - em->start); 1218 /* 1219 * If this range of the extent map is already flagged for delalloc, 1220 * skip it, because: 1221 * 1222 * 1) We could deadlock later, when trying to reserve space for 1223 * delalloc, because in case we can't immediately reserve space 1224 * the flusher can start delalloc and wait for the respective 1225 * ordered extents to complete. The deadlock would happen 1226 * because we do the space reservation while holding the range 1227 * locked, and starting writeback, or finishing an ordered 1228 * extent, requires locking the range; 1229 * 1230 * 2) If there's delalloc there, it means there's dirty pages for 1231 * which writeback has not started yet (we clean the delalloc 1232 * flag when starting writeback and after creating an ordered 1233 * extent). If we mark pages in an adjacent range for defrag, 1234 * then we will have a larger contiguous range for delalloc, 1235 * very likely resulting in a larger extent after writeback is 1236 * triggered (except in a case of free space fragmentation). 1237 */ 1238 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1, 1239 EXTENT_DELALLOC, 0, NULL)) 1240 goto next; 1241 1242 /* 1243 * For do_compress case, we want to compress all valid file 1244 * extents, thus no @extent_thresh or mergeable check. 1245 */ 1246 if (do_compress) 1247 goto add; 1248 1249 /* Skip too large extent */ 1250 if (range_len >= extent_thresh) 1251 goto next; 1252 1253 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1254 locked); 1255 if (!next_mergeable) { 1256 struct defrag_target_range *last; 1257 1258 /* Empty target list, no way to merge with last entry */ 1259 if (list_empty(target_list)) 1260 goto next; 1261 last = list_entry(target_list->prev, 1262 struct defrag_target_range, list); 1263 /* Not mergeable with last entry */ 1264 if (last->start + last->len != cur) 1265 goto next; 1266 1267 /* Mergeable, fall through to add it to @target_list. */ 1268 } 1269 1270 add: 1271 range_len = min(extent_map_end(em), start + len) - cur; 1272 /* 1273 * This one is a good target, check if it can be merged into 1274 * last range of the target list. 1275 */ 1276 if (!list_empty(target_list)) { 1277 struct defrag_target_range *last; 1278 1279 last = list_entry(target_list->prev, 1280 struct defrag_target_range, list); 1281 ASSERT(last->start + last->len <= cur); 1282 if (last->start + last->len == cur) { 1283 /* Mergeable, enlarge the last entry */ 1284 last->len += range_len; 1285 goto next; 1286 } 1287 /* Fall through to allocate a new entry */ 1288 } 1289 1290 /* Allocate new defrag_target_range */ 1291 new = kmalloc(sizeof(*new), GFP_NOFS); 1292 if (!new) { 1293 free_extent_map(em); 1294 ret = -ENOMEM; 1295 break; 1296 } 1297 new->start = cur; 1298 new->len = range_len; 1299 list_add_tail(&new->list, target_list); 1300 1301 next: 1302 cur = extent_map_end(em); 1303 free_extent_map(em); 1304 } 1305 if (ret < 0) { 1306 struct defrag_target_range *entry; 1307 struct defrag_target_range *tmp; 1308 1309 list_for_each_entry_safe(entry, tmp, target_list, list) { 1310 list_del_init(&entry->list); 1311 kfree(entry); 1312 } 1313 } 1314 return ret; 1315 } 1316 1317 #define CLUSTER_SIZE (SZ_256K) 1318 1319 /* 1320 * Defrag one contiguous target range. 1321 * 1322 * @inode: target inode 1323 * @target: target range to defrag 1324 * @pages: locked pages covering the defrag range 1325 * @nr_pages: number of locked pages 1326 * 1327 * Caller should ensure: 1328 * 1329 * - Pages are prepared 1330 * Pages should be locked, no ordered extent in the pages range, 1331 * no writeback. 1332 * 1333 * - Extent bits are locked 1334 */ 1335 static int defrag_one_locked_target(struct btrfs_inode *inode, 1336 struct defrag_target_range *target, 1337 struct page **pages, int nr_pages, 1338 struct extent_state **cached_state) 1339 { 1340 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1341 struct extent_changeset *data_reserved = NULL; 1342 const u64 start = target->start; 1343 const u64 len = target->len; 1344 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; 1345 unsigned long start_index = start >> PAGE_SHIFT; 1346 unsigned long first_index = page_index(pages[0]); 1347 int ret = 0; 1348 int i; 1349 1350 ASSERT(last_index - first_index + 1 <= nr_pages); 1351 1352 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1353 if (ret < 0) 1354 return ret; 1355 clear_extent_bit(&inode->io_tree, start, start + len - 1, 1356 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1357 EXTENT_DEFRAG, 0, 0, cached_state); 1358 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state); 1359 1360 /* Update the page status */ 1361 for (i = start_index - first_index; i <= last_index - first_index; i++) { 1362 ClearPageChecked(pages[i]); 1363 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); 1364 } 1365 btrfs_delalloc_release_extents(inode, len); 1366 extent_changeset_free(data_reserved); 1367 1368 return ret; 1369 } 1370 1371 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1372 u32 extent_thresh, u64 newer_than, bool do_compress) 1373 { 1374 struct extent_state *cached_state = NULL; 1375 struct defrag_target_range *entry; 1376 struct defrag_target_range *tmp; 1377 LIST_HEAD(target_list); 1378 struct page **pages; 1379 const u32 sectorsize = inode->root->fs_info->sectorsize; 1380 u64 last_index = (start + len - 1) >> PAGE_SHIFT; 1381 u64 start_index = start >> PAGE_SHIFT; 1382 unsigned int nr_pages = last_index - start_index + 1; 1383 int ret = 0; 1384 int i; 1385 1386 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1387 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1388 1389 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 1390 if (!pages) 1391 return -ENOMEM; 1392 1393 /* Prepare all pages */ 1394 for (i = 0; i < nr_pages; i++) { 1395 pages[i] = defrag_prepare_one_page(inode, start_index + i); 1396 if (IS_ERR(pages[i])) { 1397 ret = PTR_ERR(pages[i]); 1398 pages[i] = NULL; 1399 goto free_pages; 1400 } 1401 } 1402 for (i = 0; i < nr_pages; i++) 1403 wait_on_page_writeback(pages[i]); 1404 1405 /* Lock the pages range */ 1406 lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT, 1407 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1408 &cached_state); 1409 /* 1410 * Now we have a consistent view about the extent map, re-check 1411 * which range really needs to be defragged. 1412 * 1413 * And this time we have extent locked already, pass @locked = true 1414 * so that we won't relock the extent range and cause deadlock. 1415 */ 1416 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1417 newer_than, do_compress, true, 1418 &target_list); 1419 if (ret < 0) 1420 goto unlock_extent; 1421 1422 list_for_each_entry(entry, &target_list, list) { 1423 ret = defrag_one_locked_target(inode, entry, pages, nr_pages, 1424 &cached_state); 1425 if (ret < 0) 1426 break; 1427 } 1428 1429 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1430 list_del_init(&entry->list); 1431 kfree(entry); 1432 } 1433 unlock_extent: 1434 unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT, 1435 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1436 &cached_state); 1437 free_pages: 1438 for (i = 0; i < nr_pages; i++) { 1439 if (pages[i]) { 1440 unlock_page(pages[i]); 1441 put_page(pages[i]); 1442 } 1443 } 1444 kfree(pages); 1445 return ret; 1446 } 1447 1448 static int defrag_one_cluster(struct btrfs_inode *inode, 1449 struct file_ra_state *ra, 1450 u64 start, u32 len, u32 extent_thresh, 1451 u64 newer_than, bool do_compress, 1452 unsigned long *sectors_defragged, 1453 unsigned long max_sectors) 1454 { 1455 const u32 sectorsize = inode->root->fs_info->sectorsize; 1456 struct defrag_target_range *entry; 1457 struct defrag_target_range *tmp; 1458 LIST_HEAD(target_list); 1459 int ret; 1460 1461 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1462 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1463 newer_than, do_compress, false, 1464 &target_list); 1465 if (ret < 0) 1466 goto out; 1467 1468 list_for_each_entry(entry, &target_list, list) { 1469 u32 range_len = entry->len; 1470 1471 /* Reached or beyond the limit */ 1472 if (max_sectors && *sectors_defragged >= max_sectors) { 1473 ret = 1; 1474 break; 1475 } 1476 1477 if (max_sectors) 1478 range_len = min_t(u32, range_len, 1479 (max_sectors - *sectors_defragged) * sectorsize); 1480 1481 if (ra) 1482 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1483 ra, NULL, entry->start >> PAGE_SHIFT, 1484 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1485 (entry->start >> PAGE_SHIFT) + 1); 1486 /* 1487 * Here we may not defrag any range if holes are punched before 1488 * we locked the pages. 1489 * But that's fine, it only affects the @sectors_defragged 1490 * accounting. 1491 */ 1492 ret = defrag_one_range(inode, entry->start, range_len, 1493 extent_thresh, newer_than, do_compress); 1494 if (ret < 0) 1495 break; 1496 *sectors_defragged += range_len >> 1497 inode->root->fs_info->sectorsize_bits; 1498 } 1499 out: 1500 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1501 list_del_init(&entry->list); 1502 kfree(entry); 1503 } 1504 return ret; 1505 } 1506 1507 /* 1508 * Entry point to file defragmentation. 1509 * 1510 * @inode: inode to be defragged 1511 * @ra: readahead state (can be NUL) 1512 * @range: defrag options including range and flags 1513 * @newer_than: minimum transid to defrag 1514 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1515 * will be defragged. 1516 * 1517 * Return <0 for error. 1518 * Return >=0 for the number of sectors defragged, and range->start will be updated 1519 * to indicate the file offset where next defrag should be started at. 1520 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without 1521 * defragging all the range). 1522 */ 1523 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 1524 struct btrfs_ioctl_defrag_range_args *range, 1525 u64 newer_than, unsigned long max_to_defrag) 1526 { 1527 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1528 unsigned long sectors_defragged = 0; 1529 u64 isize = i_size_read(inode); 1530 u64 cur; 1531 u64 last_byte; 1532 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1533 bool ra_allocated = false; 1534 int compress_type = BTRFS_COMPRESS_ZLIB; 1535 int ret = 0; 1536 u32 extent_thresh = range->extent_thresh; 1537 pgoff_t start_index; 1538 1539 if (isize == 0) 1540 return 0; 1541 1542 if (range->start >= isize) 1543 return -EINVAL; 1544 1545 if (do_compress) { 1546 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1547 return -EINVAL; 1548 if (range->compress_type) 1549 compress_type = range->compress_type; 1550 } 1551 1552 if (extent_thresh == 0) 1553 extent_thresh = SZ_256K; 1554 1555 if (range->start + range->len > range->start) { 1556 /* Got a specific range */ 1557 last_byte = min(isize, range->start + range->len); 1558 } else { 1559 /* Defrag until file end */ 1560 last_byte = isize; 1561 } 1562 1563 /* Align the range */ 1564 cur = round_down(range->start, fs_info->sectorsize); 1565 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1566 1567 /* 1568 * If we were not given a ra, allocate a readahead context. As 1569 * readahead is just an optimization, defrag will work without it so 1570 * we don't error out. 1571 */ 1572 if (!ra) { 1573 ra_allocated = true; 1574 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1575 if (ra) 1576 file_ra_state_init(ra, inode->i_mapping); 1577 } 1578 1579 /* 1580 * Make writeback start from the beginning of the range, so that the 1581 * defrag range can be written sequentially. 1582 */ 1583 start_index = cur >> PAGE_SHIFT; 1584 if (start_index < inode->i_mapping->writeback_index) 1585 inode->i_mapping->writeback_index = start_index; 1586 1587 while (cur < last_byte) { 1588 const unsigned long prev_sectors_defragged = sectors_defragged; 1589 u64 cluster_end; 1590 1591 /* The cluster size 256K should always be page aligned */ 1592 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1593 1594 if (btrfs_defrag_cancelled(fs_info)) { 1595 ret = -EAGAIN; 1596 break; 1597 } 1598 1599 /* We want the cluster end at page boundary when possible */ 1600 cluster_end = (((cur >> PAGE_SHIFT) + 1601 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1602 cluster_end = min(cluster_end, last_byte); 1603 1604 btrfs_inode_lock(inode, 0); 1605 if (IS_SWAPFILE(inode)) { 1606 ret = -ETXTBSY; 1607 btrfs_inode_unlock(inode, 0); 1608 break; 1609 } 1610 if (!(inode->i_sb->s_flags & SB_ACTIVE)) { 1611 btrfs_inode_unlock(inode, 0); 1612 break; 1613 } 1614 if (do_compress) 1615 BTRFS_I(inode)->defrag_compress = compress_type; 1616 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, 1617 cluster_end + 1 - cur, extent_thresh, 1618 newer_than, do_compress, 1619 §ors_defragged, max_to_defrag); 1620 1621 if (sectors_defragged > prev_sectors_defragged) 1622 balance_dirty_pages_ratelimited(inode->i_mapping); 1623 1624 btrfs_inode_unlock(inode, 0); 1625 if (ret < 0) 1626 break; 1627 cur = cluster_end + 1; 1628 if (ret > 0) { 1629 ret = 0; 1630 break; 1631 } 1632 } 1633 1634 if (ra_allocated) 1635 kfree(ra); 1636 /* 1637 * Update range.start for autodefrag, this will indicate where to start 1638 * in next run. 1639 */ 1640 range->start = cur; 1641 if (sectors_defragged) { 1642 /* 1643 * We have defragged some sectors, for compression case they 1644 * need to be written back immediately. 1645 */ 1646 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1647 filemap_flush(inode->i_mapping); 1648 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1649 &BTRFS_I(inode)->runtime_flags)) 1650 filemap_flush(inode->i_mapping); 1651 } 1652 if (range->compress_type == BTRFS_COMPRESS_LZO) 1653 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1654 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1655 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1656 ret = sectors_defragged; 1657 } 1658 if (do_compress) { 1659 btrfs_inode_lock(inode, 0); 1660 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1661 btrfs_inode_unlock(inode, 0); 1662 } 1663 return ret; 1664 } 1665 1666 /* 1667 * Try to start exclusive operation @type or cancel it if it's running. 1668 * 1669 * Return: 1670 * 0 - normal mode, newly claimed op started 1671 * >0 - normal mode, something else is running, 1672 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1673 * ECANCELED - cancel mode, successful cancel 1674 * ENOTCONN - cancel mode, operation not running anymore 1675 */ 1676 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1677 enum btrfs_exclusive_operation type, bool cancel) 1678 { 1679 if (!cancel) { 1680 /* Start normal op */ 1681 if (!btrfs_exclop_start(fs_info, type)) 1682 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1683 /* Exclusive operation is now claimed */ 1684 return 0; 1685 } 1686 1687 /* Cancel running op */ 1688 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1689 /* 1690 * This blocks any exclop finish from setting it to NONE, so we 1691 * request cancellation. Either it runs and we will wait for it, 1692 * or it has finished and no waiting will happen. 1693 */ 1694 atomic_inc(&fs_info->reloc_cancel_req); 1695 btrfs_exclop_start_unlock(fs_info); 1696 1697 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1698 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1699 TASK_INTERRUPTIBLE); 1700 1701 return -ECANCELED; 1702 } 1703 1704 /* Something else is running or none */ 1705 return -ENOTCONN; 1706 } 1707 1708 static noinline int btrfs_ioctl_resize(struct file *file, 1709 void __user *arg) 1710 { 1711 BTRFS_DEV_LOOKUP_ARGS(args); 1712 struct inode *inode = file_inode(file); 1713 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1714 u64 new_size; 1715 u64 old_size; 1716 u64 devid = 1; 1717 struct btrfs_root *root = BTRFS_I(inode)->root; 1718 struct btrfs_ioctl_vol_args *vol_args; 1719 struct btrfs_trans_handle *trans; 1720 struct btrfs_device *device = NULL; 1721 char *sizestr; 1722 char *retptr; 1723 char *devstr = NULL; 1724 int ret = 0; 1725 int mod = 0; 1726 bool cancel; 1727 1728 if (!capable(CAP_SYS_ADMIN)) 1729 return -EPERM; 1730 1731 ret = mnt_want_write_file(file); 1732 if (ret) 1733 return ret; 1734 1735 /* 1736 * Read the arguments before checking exclusivity to be able to 1737 * distinguish regular resize and cancel 1738 */ 1739 vol_args = memdup_user(arg, sizeof(*vol_args)); 1740 if (IS_ERR(vol_args)) { 1741 ret = PTR_ERR(vol_args); 1742 goto out_drop; 1743 } 1744 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1745 sizestr = vol_args->name; 1746 cancel = (strcmp("cancel", sizestr) == 0); 1747 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1748 if (ret) 1749 goto out_free; 1750 /* Exclusive operation is now claimed */ 1751 1752 devstr = strchr(sizestr, ':'); 1753 if (devstr) { 1754 sizestr = devstr + 1; 1755 *devstr = '\0'; 1756 devstr = vol_args->name; 1757 ret = kstrtoull(devstr, 10, &devid); 1758 if (ret) 1759 goto out_finish; 1760 if (!devid) { 1761 ret = -EINVAL; 1762 goto out_finish; 1763 } 1764 btrfs_info(fs_info, "resizing devid %llu", devid); 1765 } 1766 1767 args.devid = devid; 1768 device = btrfs_find_device(fs_info->fs_devices, &args); 1769 if (!device) { 1770 btrfs_info(fs_info, "resizer unable to find device %llu", 1771 devid); 1772 ret = -ENODEV; 1773 goto out_finish; 1774 } 1775 1776 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1777 btrfs_info(fs_info, 1778 "resizer unable to apply on readonly device %llu", 1779 devid); 1780 ret = -EPERM; 1781 goto out_finish; 1782 } 1783 1784 if (!strcmp(sizestr, "max")) 1785 new_size = bdev_nr_bytes(device->bdev); 1786 else { 1787 if (sizestr[0] == '-') { 1788 mod = -1; 1789 sizestr++; 1790 } else if (sizestr[0] == '+') { 1791 mod = 1; 1792 sizestr++; 1793 } 1794 new_size = memparse(sizestr, &retptr); 1795 if (*retptr != '\0' || new_size == 0) { 1796 ret = -EINVAL; 1797 goto out_finish; 1798 } 1799 } 1800 1801 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1802 ret = -EPERM; 1803 goto out_finish; 1804 } 1805 1806 old_size = btrfs_device_get_total_bytes(device); 1807 1808 if (mod < 0) { 1809 if (new_size > old_size) { 1810 ret = -EINVAL; 1811 goto out_finish; 1812 } 1813 new_size = old_size - new_size; 1814 } else if (mod > 0) { 1815 if (new_size > ULLONG_MAX - old_size) { 1816 ret = -ERANGE; 1817 goto out_finish; 1818 } 1819 new_size = old_size + new_size; 1820 } 1821 1822 if (new_size < SZ_256M) { 1823 ret = -EINVAL; 1824 goto out_finish; 1825 } 1826 if (new_size > bdev_nr_bytes(device->bdev)) { 1827 ret = -EFBIG; 1828 goto out_finish; 1829 } 1830 1831 new_size = round_down(new_size, fs_info->sectorsize); 1832 1833 if (new_size > old_size) { 1834 trans = btrfs_start_transaction(root, 0); 1835 if (IS_ERR(trans)) { 1836 ret = PTR_ERR(trans); 1837 goto out_finish; 1838 } 1839 ret = btrfs_grow_device(trans, device, new_size); 1840 btrfs_commit_transaction(trans); 1841 } else if (new_size < old_size) { 1842 ret = btrfs_shrink_device(device, new_size); 1843 } /* equal, nothing need to do */ 1844 1845 if (ret == 0 && new_size != old_size) 1846 btrfs_info_in_rcu(fs_info, 1847 "resize device %s (devid %llu) from %llu to %llu", 1848 rcu_str_deref(device->name), device->devid, 1849 old_size, new_size); 1850 out_finish: 1851 btrfs_exclop_finish(fs_info); 1852 out_free: 1853 kfree(vol_args); 1854 out_drop: 1855 mnt_drop_write_file(file); 1856 return ret; 1857 } 1858 1859 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1860 struct user_namespace *mnt_userns, 1861 const char *name, unsigned long fd, int subvol, 1862 bool readonly, 1863 struct btrfs_qgroup_inherit *inherit) 1864 { 1865 int namelen; 1866 int ret = 0; 1867 1868 if (!S_ISDIR(file_inode(file)->i_mode)) 1869 return -ENOTDIR; 1870 1871 ret = mnt_want_write_file(file); 1872 if (ret) 1873 goto out; 1874 1875 namelen = strlen(name); 1876 if (strchr(name, '/')) { 1877 ret = -EINVAL; 1878 goto out_drop_write; 1879 } 1880 1881 if (name[0] == '.' && 1882 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1883 ret = -EEXIST; 1884 goto out_drop_write; 1885 } 1886 1887 if (subvol) { 1888 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, 1889 namelen, NULL, readonly, inherit); 1890 } else { 1891 struct fd src = fdget(fd); 1892 struct inode *src_inode; 1893 if (!src.file) { 1894 ret = -EINVAL; 1895 goto out_drop_write; 1896 } 1897 1898 src_inode = file_inode(src.file); 1899 if (src_inode->i_sb != file_inode(file)->i_sb) { 1900 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1901 "Snapshot src from another FS"); 1902 ret = -EXDEV; 1903 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { 1904 /* 1905 * Subvolume creation is not restricted, but snapshots 1906 * are limited to own subvolumes only 1907 */ 1908 ret = -EPERM; 1909 } else { 1910 ret = btrfs_mksnapshot(&file->f_path, mnt_userns, 1911 name, namelen, 1912 BTRFS_I(src_inode)->root, 1913 readonly, inherit); 1914 } 1915 fdput(src); 1916 } 1917 out_drop_write: 1918 mnt_drop_write_file(file); 1919 out: 1920 return ret; 1921 } 1922 1923 static noinline int btrfs_ioctl_snap_create(struct file *file, 1924 void __user *arg, int subvol) 1925 { 1926 struct btrfs_ioctl_vol_args *vol_args; 1927 int ret; 1928 1929 if (!S_ISDIR(file_inode(file)->i_mode)) 1930 return -ENOTDIR; 1931 1932 vol_args = memdup_user(arg, sizeof(*vol_args)); 1933 if (IS_ERR(vol_args)) 1934 return PTR_ERR(vol_args); 1935 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1936 1937 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1938 vol_args->name, vol_args->fd, subvol, 1939 false, NULL); 1940 1941 kfree(vol_args); 1942 return ret; 1943 } 1944 1945 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1946 void __user *arg, int subvol) 1947 { 1948 struct btrfs_ioctl_vol_args_v2 *vol_args; 1949 int ret; 1950 bool readonly = false; 1951 struct btrfs_qgroup_inherit *inherit = NULL; 1952 1953 if (!S_ISDIR(file_inode(file)->i_mode)) 1954 return -ENOTDIR; 1955 1956 vol_args = memdup_user(arg, sizeof(*vol_args)); 1957 if (IS_ERR(vol_args)) 1958 return PTR_ERR(vol_args); 1959 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1960 1961 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1962 ret = -EOPNOTSUPP; 1963 goto free_args; 1964 } 1965 1966 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1967 readonly = true; 1968 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1969 u64 nums; 1970 1971 if (vol_args->size < sizeof(*inherit) || 1972 vol_args->size > PAGE_SIZE) { 1973 ret = -EINVAL; 1974 goto free_args; 1975 } 1976 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1977 if (IS_ERR(inherit)) { 1978 ret = PTR_ERR(inherit); 1979 goto free_args; 1980 } 1981 1982 if (inherit->num_qgroups > PAGE_SIZE || 1983 inherit->num_ref_copies > PAGE_SIZE || 1984 inherit->num_excl_copies > PAGE_SIZE) { 1985 ret = -EINVAL; 1986 goto free_inherit; 1987 } 1988 1989 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1990 2 * inherit->num_excl_copies; 1991 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1992 ret = -EINVAL; 1993 goto free_inherit; 1994 } 1995 } 1996 1997 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1998 vol_args->name, vol_args->fd, subvol, 1999 readonly, inherit); 2000 if (ret) 2001 goto free_inherit; 2002 free_inherit: 2003 kfree(inherit); 2004 free_args: 2005 kfree(vol_args); 2006 return ret; 2007 } 2008 2009 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 2010 void __user *arg) 2011 { 2012 struct inode *inode = file_inode(file); 2013 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2014 struct btrfs_root *root = BTRFS_I(inode)->root; 2015 int ret = 0; 2016 u64 flags = 0; 2017 2018 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 2019 return -EINVAL; 2020 2021 down_read(&fs_info->subvol_sem); 2022 if (btrfs_root_readonly(root)) 2023 flags |= BTRFS_SUBVOL_RDONLY; 2024 up_read(&fs_info->subvol_sem); 2025 2026 if (copy_to_user(arg, &flags, sizeof(flags))) 2027 ret = -EFAULT; 2028 2029 return ret; 2030 } 2031 2032 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 2033 void __user *arg) 2034 { 2035 struct inode *inode = file_inode(file); 2036 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2037 struct btrfs_root *root = BTRFS_I(inode)->root; 2038 struct btrfs_trans_handle *trans; 2039 u64 root_flags; 2040 u64 flags; 2041 int ret = 0; 2042 2043 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) 2044 return -EPERM; 2045 2046 ret = mnt_want_write_file(file); 2047 if (ret) 2048 goto out; 2049 2050 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2051 ret = -EINVAL; 2052 goto out_drop_write; 2053 } 2054 2055 if (copy_from_user(&flags, arg, sizeof(flags))) { 2056 ret = -EFAULT; 2057 goto out_drop_write; 2058 } 2059 2060 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2061 ret = -EOPNOTSUPP; 2062 goto out_drop_write; 2063 } 2064 2065 down_write(&fs_info->subvol_sem); 2066 2067 /* nothing to do */ 2068 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2069 goto out_drop_sem; 2070 2071 root_flags = btrfs_root_flags(&root->root_item); 2072 if (flags & BTRFS_SUBVOL_RDONLY) { 2073 btrfs_set_root_flags(&root->root_item, 2074 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2075 } else { 2076 /* 2077 * Block RO -> RW transition if this subvolume is involved in 2078 * send 2079 */ 2080 spin_lock(&root->root_item_lock); 2081 if (root->send_in_progress == 0) { 2082 btrfs_set_root_flags(&root->root_item, 2083 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2084 spin_unlock(&root->root_item_lock); 2085 } else { 2086 spin_unlock(&root->root_item_lock); 2087 btrfs_warn(fs_info, 2088 "Attempt to set subvolume %llu read-write during send", 2089 root->root_key.objectid); 2090 ret = -EPERM; 2091 goto out_drop_sem; 2092 } 2093 } 2094 2095 trans = btrfs_start_transaction(root, 1); 2096 if (IS_ERR(trans)) { 2097 ret = PTR_ERR(trans); 2098 goto out_reset; 2099 } 2100 2101 ret = btrfs_update_root(trans, fs_info->tree_root, 2102 &root->root_key, &root->root_item); 2103 if (ret < 0) { 2104 btrfs_end_transaction(trans); 2105 goto out_reset; 2106 } 2107 2108 ret = btrfs_commit_transaction(trans); 2109 2110 out_reset: 2111 if (ret) 2112 btrfs_set_root_flags(&root->root_item, root_flags); 2113 out_drop_sem: 2114 up_write(&fs_info->subvol_sem); 2115 out_drop_write: 2116 mnt_drop_write_file(file); 2117 out: 2118 return ret; 2119 } 2120 2121 static noinline int key_in_sk(struct btrfs_key *key, 2122 struct btrfs_ioctl_search_key *sk) 2123 { 2124 struct btrfs_key test; 2125 int ret; 2126 2127 test.objectid = sk->min_objectid; 2128 test.type = sk->min_type; 2129 test.offset = sk->min_offset; 2130 2131 ret = btrfs_comp_cpu_keys(key, &test); 2132 if (ret < 0) 2133 return 0; 2134 2135 test.objectid = sk->max_objectid; 2136 test.type = sk->max_type; 2137 test.offset = sk->max_offset; 2138 2139 ret = btrfs_comp_cpu_keys(key, &test); 2140 if (ret > 0) 2141 return 0; 2142 return 1; 2143 } 2144 2145 static noinline int copy_to_sk(struct btrfs_path *path, 2146 struct btrfs_key *key, 2147 struct btrfs_ioctl_search_key *sk, 2148 size_t *buf_size, 2149 char __user *ubuf, 2150 unsigned long *sk_offset, 2151 int *num_found) 2152 { 2153 u64 found_transid; 2154 struct extent_buffer *leaf; 2155 struct btrfs_ioctl_search_header sh; 2156 struct btrfs_key test; 2157 unsigned long item_off; 2158 unsigned long item_len; 2159 int nritems; 2160 int i; 2161 int slot; 2162 int ret = 0; 2163 2164 leaf = path->nodes[0]; 2165 slot = path->slots[0]; 2166 nritems = btrfs_header_nritems(leaf); 2167 2168 if (btrfs_header_generation(leaf) > sk->max_transid) { 2169 i = nritems; 2170 goto advance_key; 2171 } 2172 found_transid = btrfs_header_generation(leaf); 2173 2174 for (i = slot; i < nritems; i++) { 2175 item_off = btrfs_item_ptr_offset(leaf, i); 2176 item_len = btrfs_item_size(leaf, i); 2177 2178 btrfs_item_key_to_cpu(leaf, key, i); 2179 if (!key_in_sk(key, sk)) 2180 continue; 2181 2182 if (sizeof(sh) + item_len > *buf_size) { 2183 if (*num_found) { 2184 ret = 1; 2185 goto out; 2186 } 2187 2188 /* 2189 * return one empty item back for v1, which does not 2190 * handle -EOVERFLOW 2191 */ 2192 2193 *buf_size = sizeof(sh) + item_len; 2194 item_len = 0; 2195 ret = -EOVERFLOW; 2196 } 2197 2198 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2199 ret = 1; 2200 goto out; 2201 } 2202 2203 sh.objectid = key->objectid; 2204 sh.offset = key->offset; 2205 sh.type = key->type; 2206 sh.len = item_len; 2207 sh.transid = found_transid; 2208 2209 /* 2210 * Copy search result header. If we fault then loop again so we 2211 * can fault in the pages and -EFAULT there if there's a 2212 * problem. Otherwise we'll fault and then copy the buffer in 2213 * properly this next time through 2214 */ 2215 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2216 ret = 0; 2217 goto out; 2218 } 2219 2220 *sk_offset += sizeof(sh); 2221 2222 if (item_len) { 2223 char __user *up = ubuf + *sk_offset; 2224 /* 2225 * Copy the item, same behavior as above, but reset the 2226 * * sk_offset so we copy the full thing again. 2227 */ 2228 if (read_extent_buffer_to_user_nofault(leaf, up, 2229 item_off, item_len)) { 2230 ret = 0; 2231 *sk_offset -= sizeof(sh); 2232 goto out; 2233 } 2234 2235 *sk_offset += item_len; 2236 } 2237 (*num_found)++; 2238 2239 if (ret) /* -EOVERFLOW from above */ 2240 goto out; 2241 2242 if (*num_found >= sk->nr_items) { 2243 ret = 1; 2244 goto out; 2245 } 2246 } 2247 advance_key: 2248 ret = 0; 2249 test.objectid = sk->max_objectid; 2250 test.type = sk->max_type; 2251 test.offset = sk->max_offset; 2252 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2253 ret = 1; 2254 else if (key->offset < (u64)-1) 2255 key->offset++; 2256 else if (key->type < (u8)-1) { 2257 key->offset = 0; 2258 key->type++; 2259 } else if (key->objectid < (u64)-1) { 2260 key->offset = 0; 2261 key->type = 0; 2262 key->objectid++; 2263 } else 2264 ret = 1; 2265 out: 2266 /* 2267 * 0: all items from this leaf copied, continue with next 2268 * 1: * more items can be copied, but unused buffer is too small 2269 * * all items were found 2270 * Either way, it will stops the loop which iterates to the next 2271 * leaf 2272 * -EOVERFLOW: item was to large for buffer 2273 * -EFAULT: could not copy extent buffer back to userspace 2274 */ 2275 return ret; 2276 } 2277 2278 static noinline int search_ioctl(struct inode *inode, 2279 struct btrfs_ioctl_search_key *sk, 2280 size_t *buf_size, 2281 char __user *ubuf) 2282 { 2283 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2284 struct btrfs_root *root; 2285 struct btrfs_key key; 2286 struct btrfs_path *path; 2287 int ret; 2288 int num_found = 0; 2289 unsigned long sk_offset = 0; 2290 2291 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2292 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2293 return -EOVERFLOW; 2294 } 2295 2296 path = btrfs_alloc_path(); 2297 if (!path) 2298 return -ENOMEM; 2299 2300 if (sk->tree_id == 0) { 2301 /* search the root of the inode that was passed */ 2302 root = btrfs_grab_root(BTRFS_I(inode)->root); 2303 } else { 2304 root = btrfs_get_fs_root(info, sk->tree_id, true); 2305 if (IS_ERR(root)) { 2306 btrfs_free_path(path); 2307 return PTR_ERR(root); 2308 } 2309 } 2310 2311 key.objectid = sk->min_objectid; 2312 key.type = sk->min_type; 2313 key.offset = sk->min_offset; 2314 2315 while (1) { 2316 ret = -EFAULT; 2317 if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset)) 2318 break; 2319 2320 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2321 if (ret != 0) { 2322 if (ret > 0) 2323 ret = 0; 2324 goto err; 2325 } 2326 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2327 &sk_offset, &num_found); 2328 btrfs_release_path(path); 2329 if (ret) 2330 break; 2331 2332 } 2333 if (ret > 0) 2334 ret = 0; 2335 err: 2336 sk->nr_items = num_found; 2337 btrfs_put_root(root); 2338 btrfs_free_path(path); 2339 return ret; 2340 } 2341 2342 static noinline int btrfs_ioctl_tree_search(struct file *file, 2343 void __user *argp) 2344 { 2345 struct btrfs_ioctl_search_args __user *uargs; 2346 struct btrfs_ioctl_search_key sk; 2347 struct inode *inode; 2348 int ret; 2349 size_t buf_size; 2350 2351 if (!capable(CAP_SYS_ADMIN)) 2352 return -EPERM; 2353 2354 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2355 2356 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2357 return -EFAULT; 2358 2359 buf_size = sizeof(uargs->buf); 2360 2361 inode = file_inode(file); 2362 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2363 2364 /* 2365 * In the origin implementation an overflow is handled by returning a 2366 * search header with a len of zero, so reset ret. 2367 */ 2368 if (ret == -EOVERFLOW) 2369 ret = 0; 2370 2371 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2372 ret = -EFAULT; 2373 return ret; 2374 } 2375 2376 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2377 void __user *argp) 2378 { 2379 struct btrfs_ioctl_search_args_v2 __user *uarg; 2380 struct btrfs_ioctl_search_args_v2 args; 2381 struct inode *inode; 2382 int ret; 2383 size_t buf_size; 2384 const size_t buf_limit = SZ_16M; 2385 2386 if (!capable(CAP_SYS_ADMIN)) 2387 return -EPERM; 2388 2389 /* copy search header and buffer size */ 2390 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2391 if (copy_from_user(&args, uarg, sizeof(args))) 2392 return -EFAULT; 2393 2394 buf_size = args.buf_size; 2395 2396 /* limit result size to 16MB */ 2397 if (buf_size > buf_limit) 2398 buf_size = buf_limit; 2399 2400 inode = file_inode(file); 2401 ret = search_ioctl(inode, &args.key, &buf_size, 2402 (char __user *)(&uarg->buf[0])); 2403 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2404 ret = -EFAULT; 2405 else if (ret == -EOVERFLOW && 2406 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2407 ret = -EFAULT; 2408 2409 return ret; 2410 } 2411 2412 /* 2413 * Search INODE_REFs to identify path name of 'dirid' directory 2414 * in a 'tree_id' tree. and sets path name to 'name'. 2415 */ 2416 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2417 u64 tree_id, u64 dirid, char *name) 2418 { 2419 struct btrfs_root *root; 2420 struct btrfs_key key; 2421 char *ptr; 2422 int ret = -1; 2423 int slot; 2424 int len; 2425 int total_len = 0; 2426 struct btrfs_inode_ref *iref; 2427 struct extent_buffer *l; 2428 struct btrfs_path *path; 2429 2430 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2431 name[0]='\0'; 2432 return 0; 2433 } 2434 2435 path = btrfs_alloc_path(); 2436 if (!path) 2437 return -ENOMEM; 2438 2439 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2440 2441 root = btrfs_get_fs_root(info, tree_id, true); 2442 if (IS_ERR(root)) { 2443 ret = PTR_ERR(root); 2444 root = NULL; 2445 goto out; 2446 } 2447 2448 key.objectid = dirid; 2449 key.type = BTRFS_INODE_REF_KEY; 2450 key.offset = (u64)-1; 2451 2452 while (1) { 2453 ret = btrfs_search_backwards(root, &key, path); 2454 if (ret < 0) 2455 goto out; 2456 else if (ret > 0) { 2457 ret = -ENOENT; 2458 goto out; 2459 } 2460 2461 l = path->nodes[0]; 2462 slot = path->slots[0]; 2463 2464 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2465 len = btrfs_inode_ref_name_len(l, iref); 2466 ptr -= len + 1; 2467 total_len += len + 1; 2468 if (ptr < name) { 2469 ret = -ENAMETOOLONG; 2470 goto out; 2471 } 2472 2473 *(ptr + len) = '/'; 2474 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2475 2476 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2477 break; 2478 2479 btrfs_release_path(path); 2480 key.objectid = key.offset; 2481 key.offset = (u64)-1; 2482 dirid = key.objectid; 2483 } 2484 memmove(name, ptr, total_len); 2485 name[total_len] = '\0'; 2486 ret = 0; 2487 out: 2488 btrfs_put_root(root); 2489 btrfs_free_path(path); 2490 return ret; 2491 } 2492 2493 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, 2494 struct inode *inode, 2495 struct btrfs_ioctl_ino_lookup_user_args *args) 2496 { 2497 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2498 struct super_block *sb = inode->i_sb; 2499 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2500 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2501 u64 dirid = args->dirid; 2502 unsigned long item_off; 2503 unsigned long item_len; 2504 struct btrfs_inode_ref *iref; 2505 struct btrfs_root_ref *rref; 2506 struct btrfs_root *root = NULL; 2507 struct btrfs_path *path; 2508 struct btrfs_key key, key2; 2509 struct extent_buffer *leaf; 2510 struct inode *temp_inode; 2511 char *ptr; 2512 int slot; 2513 int len; 2514 int total_len = 0; 2515 int ret; 2516 2517 path = btrfs_alloc_path(); 2518 if (!path) 2519 return -ENOMEM; 2520 2521 /* 2522 * If the bottom subvolume does not exist directly under upper_limit, 2523 * construct the path in from the bottom up. 2524 */ 2525 if (dirid != upper_limit.objectid) { 2526 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2527 2528 root = btrfs_get_fs_root(fs_info, treeid, true); 2529 if (IS_ERR(root)) { 2530 ret = PTR_ERR(root); 2531 goto out; 2532 } 2533 2534 key.objectid = dirid; 2535 key.type = BTRFS_INODE_REF_KEY; 2536 key.offset = (u64)-1; 2537 while (1) { 2538 ret = btrfs_search_backwards(root, &key, path); 2539 if (ret < 0) 2540 goto out_put; 2541 else if (ret > 0) { 2542 ret = -ENOENT; 2543 goto out_put; 2544 } 2545 2546 leaf = path->nodes[0]; 2547 slot = path->slots[0]; 2548 2549 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2550 len = btrfs_inode_ref_name_len(leaf, iref); 2551 ptr -= len + 1; 2552 total_len += len + 1; 2553 if (ptr < args->path) { 2554 ret = -ENAMETOOLONG; 2555 goto out_put; 2556 } 2557 2558 *(ptr + len) = '/'; 2559 read_extent_buffer(leaf, ptr, 2560 (unsigned long)(iref + 1), len); 2561 2562 /* Check the read+exec permission of this directory */ 2563 ret = btrfs_previous_item(root, path, dirid, 2564 BTRFS_INODE_ITEM_KEY); 2565 if (ret < 0) { 2566 goto out_put; 2567 } else if (ret > 0) { 2568 ret = -ENOENT; 2569 goto out_put; 2570 } 2571 2572 leaf = path->nodes[0]; 2573 slot = path->slots[0]; 2574 btrfs_item_key_to_cpu(leaf, &key2, slot); 2575 if (key2.objectid != dirid) { 2576 ret = -ENOENT; 2577 goto out_put; 2578 } 2579 2580 temp_inode = btrfs_iget(sb, key2.objectid, root); 2581 if (IS_ERR(temp_inode)) { 2582 ret = PTR_ERR(temp_inode); 2583 goto out_put; 2584 } 2585 ret = inode_permission(mnt_userns, temp_inode, 2586 MAY_READ | MAY_EXEC); 2587 iput(temp_inode); 2588 if (ret) { 2589 ret = -EACCES; 2590 goto out_put; 2591 } 2592 2593 if (key.offset == upper_limit.objectid) 2594 break; 2595 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2596 ret = -EACCES; 2597 goto out_put; 2598 } 2599 2600 btrfs_release_path(path); 2601 key.objectid = key.offset; 2602 key.offset = (u64)-1; 2603 dirid = key.objectid; 2604 } 2605 2606 memmove(args->path, ptr, total_len); 2607 args->path[total_len] = '\0'; 2608 btrfs_put_root(root); 2609 root = NULL; 2610 btrfs_release_path(path); 2611 } 2612 2613 /* Get the bottom subvolume's name from ROOT_REF */ 2614 key.objectid = treeid; 2615 key.type = BTRFS_ROOT_REF_KEY; 2616 key.offset = args->treeid; 2617 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2618 if (ret < 0) { 2619 goto out; 2620 } else if (ret > 0) { 2621 ret = -ENOENT; 2622 goto out; 2623 } 2624 2625 leaf = path->nodes[0]; 2626 slot = path->slots[0]; 2627 btrfs_item_key_to_cpu(leaf, &key, slot); 2628 2629 item_off = btrfs_item_ptr_offset(leaf, slot); 2630 item_len = btrfs_item_size(leaf, slot); 2631 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2632 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2633 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2634 ret = -EINVAL; 2635 goto out; 2636 } 2637 2638 /* Copy subvolume's name */ 2639 item_off += sizeof(struct btrfs_root_ref); 2640 item_len -= sizeof(struct btrfs_root_ref); 2641 read_extent_buffer(leaf, args->name, item_off, item_len); 2642 args->name[item_len] = 0; 2643 2644 out_put: 2645 btrfs_put_root(root); 2646 out: 2647 btrfs_free_path(path); 2648 return ret; 2649 } 2650 2651 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2652 void __user *argp) 2653 { 2654 struct btrfs_ioctl_ino_lookup_args *args; 2655 struct inode *inode; 2656 int ret = 0; 2657 2658 args = memdup_user(argp, sizeof(*args)); 2659 if (IS_ERR(args)) 2660 return PTR_ERR(args); 2661 2662 inode = file_inode(file); 2663 2664 /* 2665 * Unprivileged query to obtain the containing subvolume root id. The 2666 * path is reset so it's consistent with btrfs_search_path_in_tree. 2667 */ 2668 if (args->treeid == 0) 2669 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2670 2671 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2672 args->name[0] = 0; 2673 goto out; 2674 } 2675 2676 if (!capable(CAP_SYS_ADMIN)) { 2677 ret = -EPERM; 2678 goto out; 2679 } 2680 2681 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2682 args->treeid, args->objectid, 2683 args->name); 2684 2685 out: 2686 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2687 ret = -EFAULT; 2688 2689 kfree(args); 2690 return ret; 2691 } 2692 2693 /* 2694 * Version of ino_lookup ioctl (unprivileged) 2695 * 2696 * The main differences from ino_lookup ioctl are: 2697 * 2698 * 1. Read + Exec permission will be checked using inode_permission() during 2699 * path construction. -EACCES will be returned in case of failure. 2700 * 2. Path construction will be stopped at the inode number which corresponds 2701 * to the fd with which this ioctl is called. If constructed path does not 2702 * exist under fd's inode, -EACCES will be returned. 2703 * 3. The name of bottom subvolume is also searched and filled. 2704 */ 2705 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2706 { 2707 struct btrfs_ioctl_ino_lookup_user_args *args; 2708 struct inode *inode; 2709 int ret; 2710 2711 args = memdup_user(argp, sizeof(*args)); 2712 if (IS_ERR(args)) 2713 return PTR_ERR(args); 2714 2715 inode = file_inode(file); 2716 2717 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2718 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2719 /* 2720 * The subvolume does not exist under fd with which this is 2721 * called 2722 */ 2723 kfree(args); 2724 return -EACCES; 2725 } 2726 2727 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); 2728 2729 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2730 ret = -EFAULT; 2731 2732 kfree(args); 2733 return ret; 2734 } 2735 2736 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2737 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2738 { 2739 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2740 struct btrfs_fs_info *fs_info; 2741 struct btrfs_root *root; 2742 struct btrfs_path *path; 2743 struct btrfs_key key; 2744 struct btrfs_root_item *root_item; 2745 struct btrfs_root_ref *rref; 2746 struct extent_buffer *leaf; 2747 unsigned long item_off; 2748 unsigned long item_len; 2749 struct inode *inode; 2750 int slot; 2751 int ret = 0; 2752 2753 path = btrfs_alloc_path(); 2754 if (!path) 2755 return -ENOMEM; 2756 2757 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2758 if (!subvol_info) { 2759 btrfs_free_path(path); 2760 return -ENOMEM; 2761 } 2762 2763 inode = file_inode(file); 2764 fs_info = BTRFS_I(inode)->root->fs_info; 2765 2766 /* Get root_item of inode's subvolume */ 2767 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2768 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2769 if (IS_ERR(root)) { 2770 ret = PTR_ERR(root); 2771 goto out_free; 2772 } 2773 root_item = &root->root_item; 2774 2775 subvol_info->treeid = key.objectid; 2776 2777 subvol_info->generation = btrfs_root_generation(root_item); 2778 subvol_info->flags = btrfs_root_flags(root_item); 2779 2780 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2781 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2782 BTRFS_UUID_SIZE); 2783 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2784 BTRFS_UUID_SIZE); 2785 2786 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2787 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2788 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2789 2790 subvol_info->otransid = btrfs_root_otransid(root_item); 2791 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2792 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2793 2794 subvol_info->stransid = btrfs_root_stransid(root_item); 2795 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2796 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2797 2798 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2799 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2800 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2801 2802 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2803 /* Search root tree for ROOT_BACKREF of this subvolume */ 2804 key.type = BTRFS_ROOT_BACKREF_KEY; 2805 key.offset = 0; 2806 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2807 if (ret < 0) { 2808 goto out; 2809 } else if (path->slots[0] >= 2810 btrfs_header_nritems(path->nodes[0])) { 2811 ret = btrfs_next_leaf(fs_info->tree_root, path); 2812 if (ret < 0) { 2813 goto out; 2814 } else if (ret > 0) { 2815 ret = -EUCLEAN; 2816 goto out; 2817 } 2818 } 2819 2820 leaf = path->nodes[0]; 2821 slot = path->slots[0]; 2822 btrfs_item_key_to_cpu(leaf, &key, slot); 2823 if (key.objectid == subvol_info->treeid && 2824 key.type == BTRFS_ROOT_BACKREF_KEY) { 2825 subvol_info->parent_id = key.offset; 2826 2827 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2828 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2829 2830 item_off = btrfs_item_ptr_offset(leaf, slot) 2831 + sizeof(struct btrfs_root_ref); 2832 item_len = btrfs_item_size(leaf, slot) 2833 - sizeof(struct btrfs_root_ref); 2834 read_extent_buffer(leaf, subvol_info->name, 2835 item_off, item_len); 2836 } else { 2837 ret = -ENOENT; 2838 goto out; 2839 } 2840 } 2841 2842 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2843 ret = -EFAULT; 2844 2845 out: 2846 btrfs_put_root(root); 2847 out_free: 2848 btrfs_free_path(path); 2849 kfree(subvol_info); 2850 return ret; 2851 } 2852 2853 /* 2854 * Return ROOT_REF information of the subvolume containing this inode 2855 * except the subvolume name. 2856 */ 2857 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2858 { 2859 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2860 struct btrfs_root_ref *rref; 2861 struct btrfs_root *root; 2862 struct btrfs_path *path; 2863 struct btrfs_key key; 2864 struct extent_buffer *leaf; 2865 struct inode *inode; 2866 u64 objectid; 2867 int slot; 2868 int ret; 2869 u8 found; 2870 2871 path = btrfs_alloc_path(); 2872 if (!path) 2873 return -ENOMEM; 2874 2875 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2876 if (IS_ERR(rootrefs)) { 2877 btrfs_free_path(path); 2878 return PTR_ERR(rootrefs); 2879 } 2880 2881 inode = file_inode(file); 2882 root = BTRFS_I(inode)->root->fs_info->tree_root; 2883 objectid = BTRFS_I(inode)->root->root_key.objectid; 2884 2885 key.objectid = objectid; 2886 key.type = BTRFS_ROOT_REF_KEY; 2887 key.offset = rootrefs->min_treeid; 2888 found = 0; 2889 2890 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2891 if (ret < 0) { 2892 goto out; 2893 } else if (path->slots[0] >= 2894 btrfs_header_nritems(path->nodes[0])) { 2895 ret = btrfs_next_leaf(root, path); 2896 if (ret < 0) { 2897 goto out; 2898 } else if (ret > 0) { 2899 ret = -EUCLEAN; 2900 goto out; 2901 } 2902 } 2903 while (1) { 2904 leaf = path->nodes[0]; 2905 slot = path->slots[0]; 2906 2907 btrfs_item_key_to_cpu(leaf, &key, slot); 2908 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2909 ret = 0; 2910 goto out; 2911 } 2912 2913 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2914 ret = -EOVERFLOW; 2915 goto out; 2916 } 2917 2918 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2919 rootrefs->rootref[found].treeid = key.offset; 2920 rootrefs->rootref[found].dirid = 2921 btrfs_root_ref_dirid(leaf, rref); 2922 found++; 2923 2924 ret = btrfs_next_item(root, path); 2925 if (ret < 0) { 2926 goto out; 2927 } else if (ret > 0) { 2928 ret = -EUCLEAN; 2929 goto out; 2930 } 2931 } 2932 2933 out: 2934 if (!ret || ret == -EOVERFLOW) { 2935 rootrefs->num_items = found; 2936 /* update min_treeid for next search */ 2937 if (found) 2938 rootrefs->min_treeid = 2939 rootrefs->rootref[found - 1].treeid + 1; 2940 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2941 ret = -EFAULT; 2942 } 2943 2944 kfree(rootrefs); 2945 btrfs_free_path(path); 2946 2947 return ret; 2948 } 2949 2950 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2951 void __user *arg, 2952 bool destroy_v2) 2953 { 2954 struct dentry *parent = file->f_path.dentry; 2955 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2956 struct dentry *dentry; 2957 struct inode *dir = d_inode(parent); 2958 struct inode *inode; 2959 struct btrfs_root *root = BTRFS_I(dir)->root; 2960 struct btrfs_root *dest = NULL; 2961 struct btrfs_ioctl_vol_args *vol_args = NULL; 2962 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2963 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 2964 char *subvol_name, *subvol_name_ptr = NULL; 2965 int subvol_namelen; 2966 int err = 0; 2967 bool destroy_parent = false; 2968 2969 if (destroy_v2) { 2970 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2971 if (IS_ERR(vol_args2)) 2972 return PTR_ERR(vol_args2); 2973 2974 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2975 err = -EOPNOTSUPP; 2976 goto out; 2977 } 2978 2979 /* 2980 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2981 * name, same as v1 currently does. 2982 */ 2983 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2984 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2985 subvol_name = vol_args2->name; 2986 2987 err = mnt_want_write_file(file); 2988 if (err) 2989 goto out; 2990 } else { 2991 struct inode *old_dir; 2992 2993 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2994 err = -EINVAL; 2995 goto out; 2996 } 2997 2998 err = mnt_want_write_file(file); 2999 if (err) 3000 goto out; 3001 3002 dentry = btrfs_get_dentry(fs_info->sb, 3003 BTRFS_FIRST_FREE_OBJECTID, 3004 vol_args2->subvolid, 0, 0); 3005 if (IS_ERR(dentry)) { 3006 err = PTR_ERR(dentry); 3007 goto out_drop_write; 3008 } 3009 3010 /* 3011 * Change the default parent since the subvolume being 3012 * deleted can be outside of the current mount point. 3013 */ 3014 parent = btrfs_get_parent(dentry); 3015 3016 /* 3017 * At this point dentry->d_name can point to '/' if the 3018 * subvolume we want to destroy is outsite of the 3019 * current mount point, so we need to release the 3020 * current dentry and execute the lookup to return a new 3021 * one with ->d_name pointing to the 3022 * <mount point>/subvol_name. 3023 */ 3024 dput(dentry); 3025 if (IS_ERR(parent)) { 3026 err = PTR_ERR(parent); 3027 goto out_drop_write; 3028 } 3029 old_dir = dir; 3030 dir = d_inode(parent); 3031 3032 /* 3033 * If v2 was used with SPEC_BY_ID, a new parent was 3034 * allocated since the subvolume can be outside of the 3035 * current mount point. Later on we need to release this 3036 * new parent dentry. 3037 */ 3038 destroy_parent = true; 3039 3040 /* 3041 * On idmapped mounts, deletion via subvolid is 3042 * restricted to subvolumes that are immediate 3043 * ancestors of the inode referenced by the file 3044 * descriptor in the ioctl. Otherwise the idmapping 3045 * could potentially be abused to delete subvolumes 3046 * anywhere in the filesystem the user wouldn't be able 3047 * to delete without an idmapped mount. 3048 */ 3049 if (old_dir != dir && mnt_userns != &init_user_ns) { 3050 err = -EOPNOTSUPP; 3051 goto free_parent; 3052 } 3053 3054 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 3055 fs_info, vol_args2->subvolid); 3056 if (IS_ERR(subvol_name_ptr)) { 3057 err = PTR_ERR(subvol_name_ptr); 3058 goto free_parent; 3059 } 3060 /* subvol_name_ptr is already nul terminated */ 3061 subvol_name = (char *)kbasename(subvol_name_ptr); 3062 } 3063 } else { 3064 vol_args = memdup_user(arg, sizeof(*vol_args)); 3065 if (IS_ERR(vol_args)) 3066 return PTR_ERR(vol_args); 3067 3068 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3069 subvol_name = vol_args->name; 3070 3071 err = mnt_want_write_file(file); 3072 if (err) 3073 goto out; 3074 } 3075 3076 subvol_namelen = strlen(subvol_name); 3077 3078 if (strchr(subvol_name, '/') || 3079 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3080 err = -EINVAL; 3081 goto free_subvol_name; 3082 } 3083 3084 if (!S_ISDIR(dir->i_mode)) { 3085 err = -ENOTDIR; 3086 goto free_subvol_name; 3087 } 3088 3089 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3090 if (err == -EINTR) 3091 goto free_subvol_name; 3092 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); 3093 if (IS_ERR(dentry)) { 3094 err = PTR_ERR(dentry); 3095 goto out_unlock_dir; 3096 } 3097 3098 if (d_really_is_negative(dentry)) { 3099 err = -ENOENT; 3100 goto out_dput; 3101 } 3102 3103 inode = d_inode(dentry); 3104 dest = BTRFS_I(inode)->root; 3105 if (!capable(CAP_SYS_ADMIN)) { 3106 /* 3107 * Regular user. Only allow this with a special mount 3108 * option, when the user has write+exec access to the 3109 * subvol root, and when rmdir(2) would have been 3110 * allowed. 3111 * 3112 * Note that this is _not_ check that the subvol is 3113 * empty or doesn't contain data that we wouldn't 3114 * otherwise be able to delete. 3115 * 3116 * Users who want to delete empty subvols should try 3117 * rmdir(2). 3118 */ 3119 err = -EPERM; 3120 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3121 goto out_dput; 3122 3123 /* 3124 * Do not allow deletion if the parent dir is the same 3125 * as the dir to be deleted. That means the ioctl 3126 * must be called on the dentry referencing the root 3127 * of the subvol, not a random directory contained 3128 * within it. 3129 */ 3130 err = -EINVAL; 3131 if (root == dest) 3132 goto out_dput; 3133 3134 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); 3135 if (err) 3136 goto out_dput; 3137 } 3138 3139 /* check if subvolume may be deleted by a user */ 3140 err = btrfs_may_delete(mnt_userns, dir, dentry, 1); 3141 if (err) 3142 goto out_dput; 3143 3144 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3145 err = -EINVAL; 3146 goto out_dput; 3147 } 3148 3149 btrfs_inode_lock(inode, 0); 3150 err = btrfs_delete_subvolume(dir, dentry); 3151 btrfs_inode_unlock(inode, 0); 3152 if (!err) 3153 d_delete_notify(dir, dentry); 3154 3155 out_dput: 3156 dput(dentry); 3157 out_unlock_dir: 3158 btrfs_inode_unlock(dir, 0); 3159 free_subvol_name: 3160 kfree(subvol_name_ptr); 3161 free_parent: 3162 if (destroy_parent) 3163 dput(parent); 3164 out_drop_write: 3165 mnt_drop_write_file(file); 3166 out: 3167 kfree(vol_args2); 3168 kfree(vol_args); 3169 return err; 3170 } 3171 3172 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3173 { 3174 struct inode *inode = file_inode(file); 3175 struct btrfs_root *root = BTRFS_I(inode)->root; 3176 struct btrfs_ioctl_defrag_range_args range = {0}; 3177 int ret; 3178 3179 ret = mnt_want_write_file(file); 3180 if (ret) 3181 return ret; 3182 3183 if (btrfs_root_readonly(root)) { 3184 ret = -EROFS; 3185 goto out; 3186 } 3187 3188 switch (inode->i_mode & S_IFMT) { 3189 case S_IFDIR: 3190 if (!capable(CAP_SYS_ADMIN)) { 3191 ret = -EPERM; 3192 goto out; 3193 } 3194 ret = btrfs_defrag_root(root); 3195 break; 3196 case S_IFREG: 3197 /* 3198 * Note that this does not check the file descriptor for write 3199 * access. This prevents defragmenting executables that are 3200 * running and allows defrag on files open in read-only mode. 3201 */ 3202 if (!capable(CAP_SYS_ADMIN) && 3203 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3204 ret = -EPERM; 3205 goto out; 3206 } 3207 3208 if (argp) { 3209 if (copy_from_user(&range, argp, sizeof(range))) { 3210 ret = -EFAULT; 3211 goto out; 3212 } 3213 /* compression requires us to start the IO */ 3214 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3215 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 3216 range.extent_thresh = (u32)-1; 3217 } 3218 } else { 3219 /* the rest are all set to zero by kzalloc */ 3220 range.len = (u64)-1; 3221 } 3222 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 3223 &range, BTRFS_OLDEST_GENERATION, 0); 3224 if (ret > 0) 3225 ret = 0; 3226 break; 3227 default: 3228 ret = -EINVAL; 3229 } 3230 out: 3231 mnt_drop_write_file(file); 3232 return ret; 3233 } 3234 3235 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3236 { 3237 struct btrfs_ioctl_vol_args *vol_args; 3238 bool restore_op = false; 3239 int ret; 3240 3241 if (!capable(CAP_SYS_ADMIN)) 3242 return -EPERM; 3243 3244 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 3245 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3246 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3247 3248 /* 3249 * We can do the device add because we have a paused balanced, 3250 * change the exclusive op type and remember we should bring 3251 * back the paused balance 3252 */ 3253 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 3254 btrfs_exclop_start_unlock(fs_info); 3255 restore_op = true; 3256 } 3257 3258 vol_args = memdup_user(arg, sizeof(*vol_args)); 3259 if (IS_ERR(vol_args)) { 3260 ret = PTR_ERR(vol_args); 3261 goto out; 3262 } 3263 3264 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3265 ret = btrfs_init_new_device(fs_info, vol_args->name); 3266 3267 if (!ret) 3268 btrfs_info(fs_info, "disk added %s", vol_args->name); 3269 3270 kfree(vol_args); 3271 out: 3272 if (restore_op) 3273 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 3274 else 3275 btrfs_exclop_finish(fs_info); 3276 return ret; 3277 } 3278 3279 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3280 { 3281 BTRFS_DEV_LOOKUP_ARGS(args); 3282 struct inode *inode = file_inode(file); 3283 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3284 struct btrfs_ioctl_vol_args_v2 *vol_args; 3285 struct block_device *bdev = NULL; 3286 fmode_t mode; 3287 int ret; 3288 bool cancel = false; 3289 3290 if (!capable(CAP_SYS_ADMIN)) 3291 return -EPERM; 3292 3293 vol_args = memdup_user(arg, sizeof(*vol_args)); 3294 if (IS_ERR(vol_args)) 3295 return PTR_ERR(vol_args); 3296 3297 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3298 ret = -EOPNOTSUPP; 3299 goto out; 3300 } 3301 3302 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3303 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3304 args.devid = vol_args->devid; 3305 } else if (!strcmp("cancel", vol_args->name)) { 3306 cancel = true; 3307 } else { 3308 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3309 if (ret) 3310 goto out; 3311 } 3312 3313 ret = mnt_want_write_file(file); 3314 if (ret) 3315 goto out; 3316 3317 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3318 cancel); 3319 if (ret) 3320 goto err_drop; 3321 3322 /* Exclusive operation is now claimed */ 3323 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3324 3325 btrfs_exclop_finish(fs_info); 3326 3327 if (!ret) { 3328 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3329 btrfs_info(fs_info, "device deleted: id %llu", 3330 vol_args->devid); 3331 else 3332 btrfs_info(fs_info, "device deleted: %s", 3333 vol_args->name); 3334 } 3335 err_drop: 3336 mnt_drop_write_file(file); 3337 if (bdev) 3338 blkdev_put(bdev, mode); 3339 out: 3340 btrfs_put_dev_args_from_path(&args); 3341 kfree(vol_args); 3342 return ret; 3343 } 3344 3345 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3346 { 3347 BTRFS_DEV_LOOKUP_ARGS(args); 3348 struct inode *inode = file_inode(file); 3349 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3350 struct btrfs_ioctl_vol_args *vol_args; 3351 struct block_device *bdev = NULL; 3352 fmode_t mode; 3353 int ret; 3354 bool cancel = false; 3355 3356 if (!capable(CAP_SYS_ADMIN)) 3357 return -EPERM; 3358 3359 vol_args = memdup_user(arg, sizeof(*vol_args)); 3360 if (IS_ERR(vol_args)) 3361 return PTR_ERR(vol_args); 3362 3363 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3364 if (!strcmp("cancel", vol_args->name)) { 3365 cancel = true; 3366 } else { 3367 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3368 if (ret) 3369 goto out; 3370 } 3371 3372 ret = mnt_want_write_file(file); 3373 if (ret) 3374 goto out; 3375 3376 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3377 cancel); 3378 if (ret == 0) { 3379 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3380 if (!ret) 3381 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3382 btrfs_exclop_finish(fs_info); 3383 } 3384 3385 mnt_drop_write_file(file); 3386 if (bdev) 3387 blkdev_put(bdev, mode); 3388 out: 3389 btrfs_put_dev_args_from_path(&args); 3390 kfree(vol_args); 3391 return ret; 3392 } 3393 3394 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3395 void __user *arg) 3396 { 3397 struct btrfs_ioctl_fs_info_args *fi_args; 3398 struct btrfs_device *device; 3399 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3400 u64 flags_in; 3401 int ret = 0; 3402 3403 fi_args = memdup_user(arg, sizeof(*fi_args)); 3404 if (IS_ERR(fi_args)) 3405 return PTR_ERR(fi_args); 3406 3407 flags_in = fi_args->flags; 3408 memset(fi_args, 0, sizeof(*fi_args)); 3409 3410 rcu_read_lock(); 3411 fi_args->num_devices = fs_devices->num_devices; 3412 3413 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3414 if (device->devid > fi_args->max_id) 3415 fi_args->max_id = device->devid; 3416 } 3417 rcu_read_unlock(); 3418 3419 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3420 fi_args->nodesize = fs_info->nodesize; 3421 fi_args->sectorsize = fs_info->sectorsize; 3422 fi_args->clone_alignment = fs_info->sectorsize; 3423 3424 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3425 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3426 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3427 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3428 } 3429 3430 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3431 fi_args->generation = fs_info->generation; 3432 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3433 } 3434 3435 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3436 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3437 sizeof(fi_args->metadata_uuid)); 3438 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3439 } 3440 3441 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3442 ret = -EFAULT; 3443 3444 kfree(fi_args); 3445 return ret; 3446 } 3447 3448 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3449 void __user *arg) 3450 { 3451 BTRFS_DEV_LOOKUP_ARGS(args); 3452 struct btrfs_ioctl_dev_info_args *di_args; 3453 struct btrfs_device *dev; 3454 int ret = 0; 3455 3456 di_args = memdup_user(arg, sizeof(*di_args)); 3457 if (IS_ERR(di_args)) 3458 return PTR_ERR(di_args); 3459 3460 args.devid = di_args->devid; 3461 if (!btrfs_is_empty_uuid(di_args->uuid)) 3462 args.uuid = di_args->uuid; 3463 3464 rcu_read_lock(); 3465 dev = btrfs_find_device(fs_info->fs_devices, &args); 3466 if (!dev) { 3467 ret = -ENODEV; 3468 goto out; 3469 } 3470 3471 di_args->devid = dev->devid; 3472 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3473 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3474 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3475 if (dev->name) { 3476 strncpy(di_args->path, rcu_str_deref(dev->name), 3477 sizeof(di_args->path) - 1); 3478 di_args->path[sizeof(di_args->path) - 1] = 0; 3479 } else { 3480 di_args->path[0] = '\0'; 3481 } 3482 3483 out: 3484 rcu_read_unlock(); 3485 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3486 ret = -EFAULT; 3487 3488 kfree(di_args); 3489 return ret; 3490 } 3491 3492 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3493 { 3494 struct inode *inode = file_inode(file); 3495 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3496 struct btrfs_root *root = BTRFS_I(inode)->root; 3497 struct btrfs_root *new_root; 3498 struct btrfs_dir_item *di; 3499 struct btrfs_trans_handle *trans; 3500 struct btrfs_path *path = NULL; 3501 struct btrfs_disk_key disk_key; 3502 u64 objectid = 0; 3503 u64 dir_id; 3504 int ret; 3505 3506 if (!capable(CAP_SYS_ADMIN)) 3507 return -EPERM; 3508 3509 ret = mnt_want_write_file(file); 3510 if (ret) 3511 return ret; 3512 3513 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3514 ret = -EFAULT; 3515 goto out; 3516 } 3517 3518 if (!objectid) 3519 objectid = BTRFS_FS_TREE_OBJECTID; 3520 3521 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3522 if (IS_ERR(new_root)) { 3523 ret = PTR_ERR(new_root); 3524 goto out; 3525 } 3526 if (!is_fstree(new_root->root_key.objectid)) { 3527 ret = -ENOENT; 3528 goto out_free; 3529 } 3530 3531 path = btrfs_alloc_path(); 3532 if (!path) { 3533 ret = -ENOMEM; 3534 goto out_free; 3535 } 3536 3537 trans = btrfs_start_transaction(root, 1); 3538 if (IS_ERR(trans)) { 3539 ret = PTR_ERR(trans); 3540 goto out_free; 3541 } 3542 3543 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3544 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3545 dir_id, "default", 7, 1); 3546 if (IS_ERR_OR_NULL(di)) { 3547 btrfs_release_path(path); 3548 btrfs_end_transaction(trans); 3549 btrfs_err(fs_info, 3550 "Umm, you don't have the default diritem, this isn't going to work"); 3551 ret = -ENOENT; 3552 goto out_free; 3553 } 3554 3555 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3556 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3557 btrfs_mark_buffer_dirty(path->nodes[0]); 3558 btrfs_release_path(path); 3559 3560 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3561 btrfs_end_transaction(trans); 3562 out_free: 3563 btrfs_put_root(new_root); 3564 btrfs_free_path(path); 3565 out: 3566 mnt_drop_write_file(file); 3567 return ret; 3568 } 3569 3570 static void get_block_group_info(struct list_head *groups_list, 3571 struct btrfs_ioctl_space_info *space) 3572 { 3573 struct btrfs_block_group *block_group; 3574 3575 space->total_bytes = 0; 3576 space->used_bytes = 0; 3577 space->flags = 0; 3578 list_for_each_entry(block_group, groups_list, list) { 3579 space->flags = block_group->flags; 3580 space->total_bytes += block_group->length; 3581 space->used_bytes += block_group->used; 3582 } 3583 } 3584 3585 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3586 void __user *arg) 3587 { 3588 struct btrfs_ioctl_space_args space_args; 3589 struct btrfs_ioctl_space_info space; 3590 struct btrfs_ioctl_space_info *dest; 3591 struct btrfs_ioctl_space_info *dest_orig; 3592 struct btrfs_ioctl_space_info __user *user_dest; 3593 struct btrfs_space_info *info; 3594 static const u64 types[] = { 3595 BTRFS_BLOCK_GROUP_DATA, 3596 BTRFS_BLOCK_GROUP_SYSTEM, 3597 BTRFS_BLOCK_GROUP_METADATA, 3598 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3599 }; 3600 int num_types = 4; 3601 int alloc_size; 3602 int ret = 0; 3603 u64 slot_count = 0; 3604 int i, c; 3605 3606 if (copy_from_user(&space_args, 3607 (struct btrfs_ioctl_space_args __user *)arg, 3608 sizeof(space_args))) 3609 return -EFAULT; 3610 3611 for (i = 0; i < num_types; i++) { 3612 struct btrfs_space_info *tmp; 3613 3614 info = NULL; 3615 list_for_each_entry(tmp, &fs_info->space_info, list) { 3616 if (tmp->flags == types[i]) { 3617 info = tmp; 3618 break; 3619 } 3620 } 3621 3622 if (!info) 3623 continue; 3624 3625 down_read(&info->groups_sem); 3626 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3627 if (!list_empty(&info->block_groups[c])) 3628 slot_count++; 3629 } 3630 up_read(&info->groups_sem); 3631 } 3632 3633 /* 3634 * Global block reserve, exported as a space_info 3635 */ 3636 slot_count++; 3637 3638 /* space_slots == 0 means they are asking for a count */ 3639 if (space_args.space_slots == 0) { 3640 space_args.total_spaces = slot_count; 3641 goto out; 3642 } 3643 3644 slot_count = min_t(u64, space_args.space_slots, slot_count); 3645 3646 alloc_size = sizeof(*dest) * slot_count; 3647 3648 /* we generally have at most 6 or so space infos, one for each raid 3649 * level. So, a whole page should be more than enough for everyone 3650 */ 3651 if (alloc_size > PAGE_SIZE) 3652 return -ENOMEM; 3653 3654 space_args.total_spaces = 0; 3655 dest = kmalloc(alloc_size, GFP_KERNEL); 3656 if (!dest) 3657 return -ENOMEM; 3658 dest_orig = dest; 3659 3660 /* now we have a buffer to copy into */ 3661 for (i = 0; i < num_types; i++) { 3662 struct btrfs_space_info *tmp; 3663 3664 if (!slot_count) 3665 break; 3666 3667 info = NULL; 3668 list_for_each_entry(tmp, &fs_info->space_info, list) { 3669 if (tmp->flags == types[i]) { 3670 info = tmp; 3671 break; 3672 } 3673 } 3674 3675 if (!info) 3676 continue; 3677 down_read(&info->groups_sem); 3678 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3679 if (!list_empty(&info->block_groups[c])) { 3680 get_block_group_info(&info->block_groups[c], 3681 &space); 3682 memcpy(dest, &space, sizeof(space)); 3683 dest++; 3684 space_args.total_spaces++; 3685 slot_count--; 3686 } 3687 if (!slot_count) 3688 break; 3689 } 3690 up_read(&info->groups_sem); 3691 } 3692 3693 /* 3694 * Add global block reserve 3695 */ 3696 if (slot_count) { 3697 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3698 3699 spin_lock(&block_rsv->lock); 3700 space.total_bytes = block_rsv->size; 3701 space.used_bytes = block_rsv->size - block_rsv->reserved; 3702 spin_unlock(&block_rsv->lock); 3703 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3704 memcpy(dest, &space, sizeof(space)); 3705 space_args.total_spaces++; 3706 } 3707 3708 user_dest = (struct btrfs_ioctl_space_info __user *) 3709 (arg + sizeof(struct btrfs_ioctl_space_args)); 3710 3711 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3712 ret = -EFAULT; 3713 3714 kfree(dest_orig); 3715 out: 3716 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3717 ret = -EFAULT; 3718 3719 return ret; 3720 } 3721 3722 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3723 void __user *argp) 3724 { 3725 struct btrfs_trans_handle *trans; 3726 u64 transid; 3727 3728 trans = btrfs_attach_transaction_barrier(root); 3729 if (IS_ERR(trans)) { 3730 if (PTR_ERR(trans) != -ENOENT) 3731 return PTR_ERR(trans); 3732 3733 /* No running transaction, don't bother */ 3734 transid = root->fs_info->last_trans_committed; 3735 goto out; 3736 } 3737 transid = trans->transid; 3738 btrfs_commit_transaction_async(trans); 3739 out: 3740 if (argp) 3741 if (copy_to_user(argp, &transid, sizeof(transid))) 3742 return -EFAULT; 3743 return 0; 3744 } 3745 3746 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3747 void __user *argp) 3748 { 3749 u64 transid; 3750 3751 if (argp) { 3752 if (copy_from_user(&transid, argp, sizeof(transid))) 3753 return -EFAULT; 3754 } else { 3755 transid = 0; /* current trans */ 3756 } 3757 return btrfs_wait_for_commit(fs_info, transid); 3758 } 3759 3760 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3761 { 3762 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3763 struct btrfs_ioctl_scrub_args *sa; 3764 int ret; 3765 3766 if (!capable(CAP_SYS_ADMIN)) 3767 return -EPERM; 3768 3769 sa = memdup_user(arg, sizeof(*sa)); 3770 if (IS_ERR(sa)) 3771 return PTR_ERR(sa); 3772 3773 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3774 ret = mnt_want_write_file(file); 3775 if (ret) 3776 goto out; 3777 } 3778 3779 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3780 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3781 0); 3782 3783 /* 3784 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3785 * error. This is important as it allows user space to know how much 3786 * progress scrub has done. For example, if scrub is canceled we get 3787 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3788 * space. Later user space can inspect the progress from the structure 3789 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3790 * previously (btrfs-progs does this). 3791 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3792 * then return -EFAULT to signal the structure was not copied or it may 3793 * be corrupt and unreliable due to a partial copy. 3794 */ 3795 if (copy_to_user(arg, sa, sizeof(*sa))) 3796 ret = -EFAULT; 3797 3798 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3799 mnt_drop_write_file(file); 3800 out: 3801 kfree(sa); 3802 return ret; 3803 } 3804 3805 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3806 { 3807 if (!capable(CAP_SYS_ADMIN)) 3808 return -EPERM; 3809 3810 return btrfs_scrub_cancel(fs_info); 3811 } 3812 3813 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3814 void __user *arg) 3815 { 3816 struct btrfs_ioctl_scrub_args *sa; 3817 int ret; 3818 3819 if (!capable(CAP_SYS_ADMIN)) 3820 return -EPERM; 3821 3822 sa = memdup_user(arg, sizeof(*sa)); 3823 if (IS_ERR(sa)) 3824 return PTR_ERR(sa); 3825 3826 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3827 3828 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3829 ret = -EFAULT; 3830 3831 kfree(sa); 3832 return ret; 3833 } 3834 3835 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3836 void __user *arg) 3837 { 3838 struct btrfs_ioctl_get_dev_stats *sa; 3839 int ret; 3840 3841 sa = memdup_user(arg, sizeof(*sa)); 3842 if (IS_ERR(sa)) 3843 return PTR_ERR(sa); 3844 3845 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3846 kfree(sa); 3847 return -EPERM; 3848 } 3849 3850 ret = btrfs_get_dev_stats(fs_info, sa); 3851 3852 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3853 ret = -EFAULT; 3854 3855 kfree(sa); 3856 return ret; 3857 } 3858 3859 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3860 void __user *arg) 3861 { 3862 struct btrfs_ioctl_dev_replace_args *p; 3863 int ret; 3864 3865 if (!capable(CAP_SYS_ADMIN)) 3866 return -EPERM; 3867 3868 p = memdup_user(arg, sizeof(*p)); 3869 if (IS_ERR(p)) 3870 return PTR_ERR(p); 3871 3872 switch (p->cmd) { 3873 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3874 if (sb_rdonly(fs_info->sb)) { 3875 ret = -EROFS; 3876 goto out; 3877 } 3878 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3879 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3880 } else { 3881 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3882 btrfs_exclop_finish(fs_info); 3883 } 3884 break; 3885 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3886 btrfs_dev_replace_status(fs_info, p); 3887 ret = 0; 3888 break; 3889 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3890 p->result = btrfs_dev_replace_cancel(fs_info); 3891 ret = 0; 3892 break; 3893 default: 3894 ret = -EINVAL; 3895 break; 3896 } 3897 3898 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3899 ret = -EFAULT; 3900 out: 3901 kfree(p); 3902 return ret; 3903 } 3904 3905 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3906 { 3907 int ret = 0; 3908 int i; 3909 u64 rel_ptr; 3910 int size; 3911 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3912 struct inode_fs_paths *ipath = NULL; 3913 struct btrfs_path *path; 3914 3915 if (!capable(CAP_DAC_READ_SEARCH)) 3916 return -EPERM; 3917 3918 path = btrfs_alloc_path(); 3919 if (!path) { 3920 ret = -ENOMEM; 3921 goto out; 3922 } 3923 3924 ipa = memdup_user(arg, sizeof(*ipa)); 3925 if (IS_ERR(ipa)) { 3926 ret = PTR_ERR(ipa); 3927 ipa = NULL; 3928 goto out; 3929 } 3930 3931 size = min_t(u32, ipa->size, 4096); 3932 ipath = init_ipath(size, root, path); 3933 if (IS_ERR(ipath)) { 3934 ret = PTR_ERR(ipath); 3935 ipath = NULL; 3936 goto out; 3937 } 3938 3939 ret = paths_from_inode(ipa->inum, ipath); 3940 if (ret < 0) 3941 goto out; 3942 3943 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3944 rel_ptr = ipath->fspath->val[i] - 3945 (u64)(unsigned long)ipath->fspath->val; 3946 ipath->fspath->val[i] = rel_ptr; 3947 } 3948 3949 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3950 ipath->fspath, size); 3951 if (ret) { 3952 ret = -EFAULT; 3953 goto out; 3954 } 3955 3956 out: 3957 btrfs_free_path(path); 3958 free_ipath(ipath); 3959 kfree(ipa); 3960 3961 return ret; 3962 } 3963 3964 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3965 { 3966 struct btrfs_data_container *inodes = ctx; 3967 const size_t c = 3 * sizeof(u64); 3968 3969 if (inodes->bytes_left >= c) { 3970 inodes->bytes_left -= c; 3971 inodes->val[inodes->elem_cnt] = inum; 3972 inodes->val[inodes->elem_cnt + 1] = offset; 3973 inodes->val[inodes->elem_cnt + 2] = root; 3974 inodes->elem_cnt += 3; 3975 } else { 3976 inodes->bytes_missing += c - inodes->bytes_left; 3977 inodes->bytes_left = 0; 3978 inodes->elem_missed += 3; 3979 } 3980 3981 return 0; 3982 } 3983 3984 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3985 void __user *arg, int version) 3986 { 3987 int ret = 0; 3988 int size; 3989 struct btrfs_ioctl_logical_ino_args *loi; 3990 struct btrfs_data_container *inodes = NULL; 3991 struct btrfs_path *path = NULL; 3992 bool ignore_offset; 3993 3994 if (!capable(CAP_SYS_ADMIN)) 3995 return -EPERM; 3996 3997 loi = memdup_user(arg, sizeof(*loi)); 3998 if (IS_ERR(loi)) 3999 return PTR_ERR(loi); 4000 4001 if (version == 1) { 4002 ignore_offset = false; 4003 size = min_t(u32, loi->size, SZ_64K); 4004 } else { 4005 /* All reserved bits must be 0 for now */ 4006 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4007 ret = -EINVAL; 4008 goto out_loi; 4009 } 4010 /* Only accept flags we have defined so far */ 4011 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4012 ret = -EINVAL; 4013 goto out_loi; 4014 } 4015 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4016 size = min_t(u32, loi->size, SZ_16M); 4017 } 4018 4019 path = btrfs_alloc_path(); 4020 if (!path) { 4021 ret = -ENOMEM; 4022 goto out; 4023 } 4024 4025 inodes = init_data_container(size); 4026 if (IS_ERR(inodes)) { 4027 ret = PTR_ERR(inodes); 4028 inodes = NULL; 4029 goto out; 4030 } 4031 4032 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4033 build_ino_list, inodes, ignore_offset); 4034 if (ret == -EINVAL) 4035 ret = -ENOENT; 4036 if (ret < 0) 4037 goto out; 4038 4039 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4040 size); 4041 if (ret) 4042 ret = -EFAULT; 4043 4044 out: 4045 btrfs_free_path(path); 4046 kvfree(inodes); 4047 out_loi: 4048 kfree(loi); 4049 4050 return ret; 4051 } 4052 4053 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4054 struct btrfs_ioctl_balance_args *bargs) 4055 { 4056 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4057 4058 bargs->flags = bctl->flags; 4059 4060 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4061 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4062 if (atomic_read(&fs_info->balance_pause_req)) 4063 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4064 if (atomic_read(&fs_info->balance_cancel_req)) 4065 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4066 4067 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4068 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4069 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4070 4071 spin_lock(&fs_info->balance_lock); 4072 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4073 spin_unlock(&fs_info->balance_lock); 4074 } 4075 4076 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4077 { 4078 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4079 struct btrfs_fs_info *fs_info = root->fs_info; 4080 struct btrfs_ioctl_balance_args *bargs; 4081 struct btrfs_balance_control *bctl; 4082 bool need_unlock; /* for mut. excl. ops lock */ 4083 int ret; 4084 4085 if (!arg) 4086 btrfs_warn(fs_info, 4087 "IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18"); 4088 4089 if (!capable(CAP_SYS_ADMIN)) 4090 return -EPERM; 4091 4092 ret = mnt_want_write_file(file); 4093 if (ret) 4094 return ret; 4095 4096 again: 4097 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4098 mutex_lock(&fs_info->balance_mutex); 4099 need_unlock = true; 4100 goto locked; 4101 } 4102 4103 /* 4104 * mut. excl. ops lock is locked. Three possibilities: 4105 * (1) some other op is running 4106 * (2) balance is running 4107 * (3) balance is paused -- special case (think resume) 4108 */ 4109 mutex_lock(&fs_info->balance_mutex); 4110 if (fs_info->balance_ctl) { 4111 /* this is either (2) or (3) */ 4112 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4113 mutex_unlock(&fs_info->balance_mutex); 4114 /* 4115 * Lock released to allow other waiters to continue, 4116 * we'll reexamine the status again. 4117 */ 4118 mutex_lock(&fs_info->balance_mutex); 4119 4120 if (fs_info->balance_ctl && 4121 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4122 /* this is (3) */ 4123 need_unlock = false; 4124 goto locked; 4125 } 4126 4127 mutex_unlock(&fs_info->balance_mutex); 4128 goto again; 4129 } else { 4130 /* this is (2) */ 4131 mutex_unlock(&fs_info->balance_mutex); 4132 ret = -EINPROGRESS; 4133 goto out; 4134 } 4135 } else { 4136 /* this is (1) */ 4137 mutex_unlock(&fs_info->balance_mutex); 4138 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4139 goto out; 4140 } 4141 4142 locked: 4143 4144 if (arg) { 4145 bargs = memdup_user(arg, sizeof(*bargs)); 4146 if (IS_ERR(bargs)) { 4147 ret = PTR_ERR(bargs); 4148 goto out_unlock; 4149 } 4150 4151 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4152 if (!fs_info->balance_ctl) { 4153 ret = -ENOTCONN; 4154 goto out_bargs; 4155 } 4156 4157 bctl = fs_info->balance_ctl; 4158 spin_lock(&fs_info->balance_lock); 4159 bctl->flags |= BTRFS_BALANCE_RESUME; 4160 spin_unlock(&fs_info->balance_lock); 4161 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 4162 4163 goto do_balance; 4164 } 4165 } else { 4166 bargs = NULL; 4167 } 4168 4169 if (fs_info->balance_ctl) { 4170 ret = -EINPROGRESS; 4171 goto out_bargs; 4172 } 4173 4174 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4175 if (!bctl) { 4176 ret = -ENOMEM; 4177 goto out_bargs; 4178 } 4179 4180 if (arg) { 4181 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4182 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4183 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4184 4185 bctl->flags = bargs->flags; 4186 } else { 4187 /* balance everything - no filters */ 4188 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4189 } 4190 4191 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4192 ret = -EINVAL; 4193 goto out_bctl; 4194 } 4195 4196 do_balance: 4197 /* 4198 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4199 * bctl is freed in reset_balance_state, or, if restriper was paused 4200 * all the way until unmount, in free_fs_info. The flag should be 4201 * cleared after reset_balance_state. 4202 */ 4203 need_unlock = false; 4204 4205 ret = btrfs_balance(fs_info, bctl, bargs); 4206 bctl = NULL; 4207 4208 if ((ret == 0 || ret == -ECANCELED) && arg) { 4209 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4210 ret = -EFAULT; 4211 } 4212 4213 out_bctl: 4214 kfree(bctl); 4215 out_bargs: 4216 kfree(bargs); 4217 out_unlock: 4218 mutex_unlock(&fs_info->balance_mutex); 4219 if (need_unlock) 4220 btrfs_exclop_finish(fs_info); 4221 out: 4222 mnt_drop_write_file(file); 4223 return ret; 4224 } 4225 4226 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4227 { 4228 if (!capable(CAP_SYS_ADMIN)) 4229 return -EPERM; 4230 4231 switch (cmd) { 4232 case BTRFS_BALANCE_CTL_PAUSE: 4233 return btrfs_pause_balance(fs_info); 4234 case BTRFS_BALANCE_CTL_CANCEL: 4235 return btrfs_cancel_balance(fs_info); 4236 } 4237 4238 return -EINVAL; 4239 } 4240 4241 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4242 void __user *arg) 4243 { 4244 struct btrfs_ioctl_balance_args *bargs; 4245 int ret = 0; 4246 4247 if (!capable(CAP_SYS_ADMIN)) 4248 return -EPERM; 4249 4250 mutex_lock(&fs_info->balance_mutex); 4251 if (!fs_info->balance_ctl) { 4252 ret = -ENOTCONN; 4253 goto out; 4254 } 4255 4256 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4257 if (!bargs) { 4258 ret = -ENOMEM; 4259 goto out; 4260 } 4261 4262 btrfs_update_ioctl_balance_args(fs_info, bargs); 4263 4264 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4265 ret = -EFAULT; 4266 4267 kfree(bargs); 4268 out: 4269 mutex_unlock(&fs_info->balance_mutex); 4270 return ret; 4271 } 4272 4273 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4274 { 4275 struct inode *inode = file_inode(file); 4276 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4277 struct btrfs_ioctl_quota_ctl_args *sa; 4278 int ret; 4279 4280 if (!capable(CAP_SYS_ADMIN)) 4281 return -EPERM; 4282 4283 ret = mnt_want_write_file(file); 4284 if (ret) 4285 return ret; 4286 4287 sa = memdup_user(arg, sizeof(*sa)); 4288 if (IS_ERR(sa)) { 4289 ret = PTR_ERR(sa); 4290 goto drop_write; 4291 } 4292 4293 down_write(&fs_info->subvol_sem); 4294 4295 switch (sa->cmd) { 4296 case BTRFS_QUOTA_CTL_ENABLE: 4297 ret = btrfs_quota_enable(fs_info); 4298 break; 4299 case BTRFS_QUOTA_CTL_DISABLE: 4300 ret = btrfs_quota_disable(fs_info); 4301 break; 4302 default: 4303 ret = -EINVAL; 4304 break; 4305 } 4306 4307 kfree(sa); 4308 up_write(&fs_info->subvol_sem); 4309 drop_write: 4310 mnt_drop_write_file(file); 4311 return ret; 4312 } 4313 4314 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4315 { 4316 struct inode *inode = file_inode(file); 4317 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4318 struct btrfs_root *root = BTRFS_I(inode)->root; 4319 struct btrfs_ioctl_qgroup_assign_args *sa; 4320 struct btrfs_trans_handle *trans; 4321 int ret; 4322 int err; 4323 4324 if (!capable(CAP_SYS_ADMIN)) 4325 return -EPERM; 4326 4327 ret = mnt_want_write_file(file); 4328 if (ret) 4329 return ret; 4330 4331 sa = memdup_user(arg, sizeof(*sa)); 4332 if (IS_ERR(sa)) { 4333 ret = PTR_ERR(sa); 4334 goto drop_write; 4335 } 4336 4337 trans = btrfs_join_transaction(root); 4338 if (IS_ERR(trans)) { 4339 ret = PTR_ERR(trans); 4340 goto out; 4341 } 4342 4343 if (sa->assign) { 4344 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4345 } else { 4346 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4347 } 4348 4349 /* update qgroup status and info */ 4350 err = btrfs_run_qgroups(trans); 4351 if (err < 0) 4352 btrfs_handle_fs_error(fs_info, err, 4353 "failed to update qgroup status and info"); 4354 err = btrfs_end_transaction(trans); 4355 if (err && !ret) 4356 ret = err; 4357 4358 out: 4359 kfree(sa); 4360 drop_write: 4361 mnt_drop_write_file(file); 4362 return ret; 4363 } 4364 4365 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4366 { 4367 struct inode *inode = file_inode(file); 4368 struct btrfs_root *root = BTRFS_I(inode)->root; 4369 struct btrfs_ioctl_qgroup_create_args *sa; 4370 struct btrfs_trans_handle *trans; 4371 int ret; 4372 int err; 4373 4374 if (!capable(CAP_SYS_ADMIN)) 4375 return -EPERM; 4376 4377 ret = mnt_want_write_file(file); 4378 if (ret) 4379 return ret; 4380 4381 sa = memdup_user(arg, sizeof(*sa)); 4382 if (IS_ERR(sa)) { 4383 ret = PTR_ERR(sa); 4384 goto drop_write; 4385 } 4386 4387 if (!sa->qgroupid) { 4388 ret = -EINVAL; 4389 goto out; 4390 } 4391 4392 trans = btrfs_join_transaction(root); 4393 if (IS_ERR(trans)) { 4394 ret = PTR_ERR(trans); 4395 goto out; 4396 } 4397 4398 if (sa->create) { 4399 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4400 } else { 4401 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4402 } 4403 4404 err = btrfs_end_transaction(trans); 4405 if (err && !ret) 4406 ret = err; 4407 4408 out: 4409 kfree(sa); 4410 drop_write: 4411 mnt_drop_write_file(file); 4412 return ret; 4413 } 4414 4415 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4416 { 4417 struct inode *inode = file_inode(file); 4418 struct btrfs_root *root = BTRFS_I(inode)->root; 4419 struct btrfs_ioctl_qgroup_limit_args *sa; 4420 struct btrfs_trans_handle *trans; 4421 int ret; 4422 int err; 4423 u64 qgroupid; 4424 4425 if (!capable(CAP_SYS_ADMIN)) 4426 return -EPERM; 4427 4428 ret = mnt_want_write_file(file); 4429 if (ret) 4430 return ret; 4431 4432 sa = memdup_user(arg, sizeof(*sa)); 4433 if (IS_ERR(sa)) { 4434 ret = PTR_ERR(sa); 4435 goto drop_write; 4436 } 4437 4438 trans = btrfs_join_transaction(root); 4439 if (IS_ERR(trans)) { 4440 ret = PTR_ERR(trans); 4441 goto out; 4442 } 4443 4444 qgroupid = sa->qgroupid; 4445 if (!qgroupid) { 4446 /* take the current subvol as qgroup */ 4447 qgroupid = root->root_key.objectid; 4448 } 4449 4450 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4451 4452 err = btrfs_end_transaction(trans); 4453 if (err && !ret) 4454 ret = err; 4455 4456 out: 4457 kfree(sa); 4458 drop_write: 4459 mnt_drop_write_file(file); 4460 return ret; 4461 } 4462 4463 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4464 { 4465 struct inode *inode = file_inode(file); 4466 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4467 struct btrfs_ioctl_quota_rescan_args *qsa; 4468 int ret; 4469 4470 if (!capable(CAP_SYS_ADMIN)) 4471 return -EPERM; 4472 4473 ret = mnt_want_write_file(file); 4474 if (ret) 4475 return ret; 4476 4477 qsa = memdup_user(arg, sizeof(*qsa)); 4478 if (IS_ERR(qsa)) { 4479 ret = PTR_ERR(qsa); 4480 goto drop_write; 4481 } 4482 4483 if (qsa->flags) { 4484 ret = -EINVAL; 4485 goto out; 4486 } 4487 4488 ret = btrfs_qgroup_rescan(fs_info); 4489 4490 out: 4491 kfree(qsa); 4492 drop_write: 4493 mnt_drop_write_file(file); 4494 return ret; 4495 } 4496 4497 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4498 void __user *arg) 4499 { 4500 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4501 4502 if (!capable(CAP_SYS_ADMIN)) 4503 return -EPERM; 4504 4505 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4506 qsa.flags = 1; 4507 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4508 } 4509 4510 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4511 return -EFAULT; 4512 4513 return 0; 4514 } 4515 4516 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4517 void __user *arg) 4518 { 4519 if (!capable(CAP_SYS_ADMIN)) 4520 return -EPERM; 4521 4522 return btrfs_qgroup_wait_for_completion(fs_info, true); 4523 } 4524 4525 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4526 struct user_namespace *mnt_userns, 4527 struct btrfs_ioctl_received_subvol_args *sa) 4528 { 4529 struct inode *inode = file_inode(file); 4530 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4531 struct btrfs_root *root = BTRFS_I(inode)->root; 4532 struct btrfs_root_item *root_item = &root->root_item; 4533 struct btrfs_trans_handle *trans; 4534 struct timespec64 ct = current_time(inode); 4535 int ret = 0; 4536 int received_uuid_changed; 4537 4538 if (!inode_owner_or_capable(mnt_userns, inode)) 4539 return -EPERM; 4540 4541 ret = mnt_want_write_file(file); 4542 if (ret < 0) 4543 return ret; 4544 4545 down_write(&fs_info->subvol_sem); 4546 4547 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4548 ret = -EINVAL; 4549 goto out; 4550 } 4551 4552 if (btrfs_root_readonly(root)) { 4553 ret = -EROFS; 4554 goto out; 4555 } 4556 4557 /* 4558 * 1 - root item 4559 * 2 - uuid items (received uuid + subvol uuid) 4560 */ 4561 trans = btrfs_start_transaction(root, 3); 4562 if (IS_ERR(trans)) { 4563 ret = PTR_ERR(trans); 4564 trans = NULL; 4565 goto out; 4566 } 4567 4568 sa->rtransid = trans->transid; 4569 sa->rtime.sec = ct.tv_sec; 4570 sa->rtime.nsec = ct.tv_nsec; 4571 4572 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4573 BTRFS_UUID_SIZE); 4574 if (received_uuid_changed && 4575 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4576 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4577 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4578 root->root_key.objectid); 4579 if (ret && ret != -ENOENT) { 4580 btrfs_abort_transaction(trans, ret); 4581 btrfs_end_transaction(trans); 4582 goto out; 4583 } 4584 } 4585 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4586 btrfs_set_root_stransid(root_item, sa->stransid); 4587 btrfs_set_root_rtransid(root_item, sa->rtransid); 4588 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4589 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4590 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4591 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4592 4593 ret = btrfs_update_root(trans, fs_info->tree_root, 4594 &root->root_key, &root->root_item); 4595 if (ret < 0) { 4596 btrfs_end_transaction(trans); 4597 goto out; 4598 } 4599 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4600 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4601 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4602 root->root_key.objectid); 4603 if (ret < 0 && ret != -EEXIST) { 4604 btrfs_abort_transaction(trans, ret); 4605 btrfs_end_transaction(trans); 4606 goto out; 4607 } 4608 } 4609 ret = btrfs_commit_transaction(trans); 4610 out: 4611 up_write(&fs_info->subvol_sem); 4612 mnt_drop_write_file(file); 4613 return ret; 4614 } 4615 4616 #ifdef CONFIG_64BIT 4617 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4618 void __user *arg) 4619 { 4620 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4621 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4622 int ret = 0; 4623 4624 args32 = memdup_user(arg, sizeof(*args32)); 4625 if (IS_ERR(args32)) 4626 return PTR_ERR(args32); 4627 4628 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4629 if (!args64) { 4630 ret = -ENOMEM; 4631 goto out; 4632 } 4633 4634 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4635 args64->stransid = args32->stransid; 4636 args64->rtransid = args32->rtransid; 4637 args64->stime.sec = args32->stime.sec; 4638 args64->stime.nsec = args32->stime.nsec; 4639 args64->rtime.sec = args32->rtime.sec; 4640 args64->rtime.nsec = args32->rtime.nsec; 4641 args64->flags = args32->flags; 4642 4643 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); 4644 if (ret) 4645 goto out; 4646 4647 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4648 args32->stransid = args64->stransid; 4649 args32->rtransid = args64->rtransid; 4650 args32->stime.sec = args64->stime.sec; 4651 args32->stime.nsec = args64->stime.nsec; 4652 args32->rtime.sec = args64->rtime.sec; 4653 args32->rtime.nsec = args64->rtime.nsec; 4654 args32->flags = args64->flags; 4655 4656 ret = copy_to_user(arg, args32, sizeof(*args32)); 4657 if (ret) 4658 ret = -EFAULT; 4659 4660 out: 4661 kfree(args32); 4662 kfree(args64); 4663 return ret; 4664 } 4665 #endif 4666 4667 static long btrfs_ioctl_set_received_subvol(struct file *file, 4668 void __user *arg) 4669 { 4670 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4671 int ret = 0; 4672 4673 sa = memdup_user(arg, sizeof(*sa)); 4674 if (IS_ERR(sa)) 4675 return PTR_ERR(sa); 4676 4677 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); 4678 4679 if (ret) 4680 goto out; 4681 4682 ret = copy_to_user(arg, sa, sizeof(*sa)); 4683 if (ret) 4684 ret = -EFAULT; 4685 4686 out: 4687 kfree(sa); 4688 return ret; 4689 } 4690 4691 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4692 void __user *arg) 4693 { 4694 size_t len; 4695 int ret; 4696 char label[BTRFS_LABEL_SIZE]; 4697 4698 spin_lock(&fs_info->super_lock); 4699 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4700 spin_unlock(&fs_info->super_lock); 4701 4702 len = strnlen(label, BTRFS_LABEL_SIZE); 4703 4704 if (len == BTRFS_LABEL_SIZE) { 4705 btrfs_warn(fs_info, 4706 "label is too long, return the first %zu bytes", 4707 --len); 4708 } 4709 4710 ret = copy_to_user(arg, label, len); 4711 4712 return ret ? -EFAULT : 0; 4713 } 4714 4715 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4716 { 4717 struct inode *inode = file_inode(file); 4718 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4719 struct btrfs_root *root = BTRFS_I(inode)->root; 4720 struct btrfs_super_block *super_block = fs_info->super_copy; 4721 struct btrfs_trans_handle *trans; 4722 char label[BTRFS_LABEL_SIZE]; 4723 int ret; 4724 4725 if (!capable(CAP_SYS_ADMIN)) 4726 return -EPERM; 4727 4728 if (copy_from_user(label, arg, sizeof(label))) 4729 return -EFAULT; 4730 4731 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4732 btrfs_err(fs_info, 4733 "unable to set label with more than %d bytes", 4734 BTRFS_LABEL_SIZE - 1); 4735 return -EINVAL; 4736 } 4737 4738 ret = mnt_want_write_file(file); 4739 if (ret) 4740 return ret; 4741 4742 trans = btrfs_start_transaction(root, 0); 4743 if (IS_ERR(trans)) { 4744 ret = PTR_ERR(trans); 4745 goto out_unlock; 4746 } 4747 4748 spin_lock(&fs_info->super_lock); 4749 strcpy(super_block->label, label); 4750 spin_unlock(&fs_info->super_lock); 4751 ret = btrfs_commit_transaction(trans); 4752 4753 out_unlock: 4754 mnt_drop_write_file(file); 4755 return ret; 4756 } 4757 4758 #define INIT_FEATURE_FLAGS(suffix) \ 4759 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4760 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4761 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4762 4763 int btrfs_ioctl_get_supported_features(void __user *arg) 4764 { 4765 static const struct btrfs_ioctl_feature_flags features[3] = { 4766 INIT_FEATURE_FLAGS(SUPP), 4767 INIT_FEATURE_FLAGS(SAFE_SET), 4768 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4769 }; 4770 4771 if (copy_to_user(arg, &features, sizeof(features))) 4772 return -EFAULT; 4773 4774 return 0; 4775 } 4776 4777 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4778 void __user *arg) 4779 { 4780 struct btrfs_super_block *super_block = fs_info->super_copy; 4781 struct btrfs_ioctl_feature_flags features; 4782 4783 features.compat_flags = btrfs_super_compat_flags(super_block); 4784 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4785 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4786 4787 if (copy_to_user(arg, &features, sizeof(features))) 4788 return -EFAULT; 4789 4790 return 0; 4791 } 4792 4793 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4794 enum btrfs_feature_set set, 4795 u64 change_mask, u64 flags, u64 supported_flags, 4796 u64 safe_set, u64 safe_clear) 4797 { 4798 const char *type = btrfs_feature_set_name(set); 4799 char *names; 4800 u64 disallowed, unsupported; 4801 u64 set_mask = flags & change_mask; 4802 u64 clear_mask = ~flags & change_mask; 4803 4804 unsupported = set_mask & ~supported_flags; 4805 if (unsupported) { 4806 names = btrfs_printable_features(set, unsupported); 4807 if (names) { 4808 btrfs_warn(fs_info, 4809 "this kernel does not support the %s feature bit%s", 4810 names, strchr(names, ',') ? "s" : ""); 4811 kfree(names); 4812 } else 4813 btrfs_warn(fs_info, 4814 "this kernel does not support %s bits 0x%llx", 4815 type, unsupported); 4816 return -EOPNOTSUPP; 4817 } 4818 4819 disallowed = set_mask & ~safe_set; 4820 if (disallowed) { 4821 names = btrfs_printable_features(set, disallowed); 4822 if (names) { 4823 btrfs_warn(fs_info, 4824 "can't set the %s feature bit%s while mounted", 4825 names, strchr(names, ',') ? "s" : ""); 4826 kfree(names); 4827 } else 4828 btrfs_warn(fs_info, 4829 "can't set %s bits 0x%llx while mounted", 4830 type, disallowed); 4831 return -EPERM; 4832 } 4833 4834 disallowed = clear_mask & ~safe_clear; 4835 if (disallowed) { 4836 names = btrfs_printable_features(set, disallowed); 4837 if (names) { 4838 btrfs_warn(fs_info, 4839 "can't clear the %s feature bit%s while mounted", 4840 names, strchr(names, ',') ? "s" : ""); 4841 kfree(names); 4842 } else 4843 btrfs_warn(fs_info, 4844 "can't clear %s bits 0x%llx while mounted", 4845 type, disallowed); 4846 return -EPERM; 4847 } 4848 4849 return 0; 4850 } 4851 4852 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4853 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4854 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4855 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4856 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4857 4858 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4859 { 4860 struct inode *inode = file_inode(file); 4861 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4862 struct btrfs_root *root = BTRFS_I(inode)->root; 4863 struct btrfs_super_block *super_block = fs_info->super_copy; 4864 struct btrfs_ioctl_feature_flags flags[2]; 4865 struct btrfs_trans_handle *trans; 4866 u64 newflags; 4867 int ret; 4868 4869 if (!capable(CAP_SYS_ADMIN)) 4870 return -EPERM; 4871 4872 if (copy_from_user(flags, arg, sizeof(flags))) 4873 return -EFAULT; 4874 4875 /* Nothing to do */ 4876 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4877 !flags[0].incompat_flags) 4878 return 0; 4879 4880 ret = check_feature(fs_info, flags[0].compat_flags, 4881 flags[1].compat_flags, COMPAT); 4882 if (ret) 4883 return ret; 4884 4885 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4886 flags[1].compat_ro_flags, COMPAT_RO); 4887 if (ret) 4888 return ret; 4889 4890 ret = check_feature(fs_info, flags[0].incompat_flags, 4891 flags[1].incompat_flags, INCOMPAT); 4892 if (ret) 4893 return ret; 4894 4895 ret = mnt_want_write_file(file); 4896 if (ret) 4897 return ret; 4898 4899 trans = btrfs_start_transaction(root, 0); 4900 if (IS_ERR(trans)) { 4901 ret = PTR_ERR(trans); 4902 goto out_drop_write; 4903 } 4904 4905 spin_lock(&fs_info->super_lock); 4906 newflags = btrfs_super_compat_flags(super_block); 4907 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4908 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4909 btrfs_set_super_compat_flags(super_block, newflags); 4910 4911 newflags = btrfs_super_compat_ro_flags(super_block); 4912 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4913 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4914 btrfs_set_super_compat_ro_flags(super_block, newflags); 4915 4916 newflags = btrfs_super_incompat_flags(super_block); 4917 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4918 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4919 btrfs_set_super_incompat_flags(super_block, newflags); 4920 spin_unlock(&fs_info->super_lock); 4921 4922 ret = btrfs_commit_transaction(trans); 4923 out_drop_write: 4924 mnt_drop_write_file(file); 4925 4926 return ret; 4927 } 4928 4929 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4930 { 4931 struct btrfs_ioctl_send_args *arg; 4932 int ret; 4933 4934 if (compat) { 4935 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4936 struct btrfs_ioctl_send_args_32 args32; 4937 4938 ret = copy_from_user(&args32, argp, sizeof(args32)); 4939 if (ret) 4940 return -EFAULT; 4941 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4942 if (!arg) 4943 return -ENOMEM; 4944 arg->send_fd = args32.send_fd; 4945 arg->clone_sources_count = args32.clone_sources_count; 4946 arg->clone_sources = compat_ptr(args32.clone_sources); 4947 arg->parent_root = args32.parent_root; 4948 arg->flags = args32.flags; 4949 memcpy(arg->reserved, args32.reserved, 4950 sizeof(args32.reserved)); 4951 #else 4952 return -ENOTTY; 4953 #endif 4954 } else { 4955 arg = memdup_user(argp, sizeof(*arg)); 4956 if (IS_ERR(arg)) 4957 return PTR_ERR(arg); 4958 } 4959 ret = btrfs_ioctl_send(file, arg); 4960 kfree(arg); 4961 return ret; 4962 } 4963 4964 long btrfs_ioctl(struct file *file, unsigned int 4965 cmd, unsigned long arg) 4966 { 4967 struct inode *inode = file_inode(file); 4968 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4969 struct btrfs_root *root = BTRFS_I(inode)->root; 4970 void __user *argp = (void __user *)arg; 4971 4972 switch (cmd) { 4973 case FS_IOC_GETVERSION: 4974 return btrfs_ioctl_getversion(file, argp); 4975 case FS_IOC_GETFSLABEL: 4976 return btrfs_ioctl_get_fslabel(fs_info, argp); 4977 case FS_IOC_SETFSLABEL: 4978 return btrfs_ioctl_set_fslabel(file, argp); 4979 case FITRIM: 4980 return btrfs_ioctl_fitrim(fs_info, argp); 4981 case BTRFS_IOC_SNAP_CREATE: 4982 return btrfs_ioctl_snap_create(file, argp, 0); 4983 case BTRFS_IOC_SNAP_CREATE_V2: 4984 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4985 case BTRFS_IOC_SUBVOL_CREATE: 4986 return btrfs_ioctl_snap_create(file, argp, 1); 4987 case BTRFS_IOC_SUBVOL_CREATE_V2: 4988 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4989 case BTRFS_IOC_SNAP_DESTROY: 4990 return btrfs_ioctl_snap_destroy(file, argp, false); 4991 case BTRFS_IOC_SNAP_DESTROY_V2: 4992 return btrfs_ioctl_snap_destroy(file, argp, true); 4993 case BTRFS_IOC_SUBVOL_GETFLAGS: 4994 return btrfs_ioctl_subvol_getflags(file, argp); 4995 case BTRFS_IOC_SUBVOL_SETFLAGS: 4996 return btrfs_ioctl_subvol_setflags(file, argp); 4997 case BTRFS_IOC_DEFAULT_SUBVOL: 4998 return btrfs_ioctl_default_subvol(file, argp); 4999 case BTRFS_IOC_DEFRAG: 5000 return btrfs_ioctl_defrag(file, NULL); 5001 case BTRFS_IOC_DEFRAG_RANGE: 5002 return btrfs_ioctl_defrag(file, argp); 5003 case BTRFS_IOC_RESIZE: 5004 return btrfs_ioctl_resize(file, argp); 5005 case BTRFS_IOC_ADD_DEV: 5006 return btrfs_ioctl_add_dev(fs_info, argp); 5007 case BTRFS_IOC_RM_DEV: 5008 return btrfs_ioctl_rm_dev(file, argp); 5009 case BTRFS_IOC_RM_DEV_V2: 5010 return btrfs_ioctl_rm_dev_v2(file, argp); 5011 case BTRFS_IOC_FS_INFO: 5012 return btrfs_ioctl_fs_info(fs_info, argp); 5013 case BTRFS_IOC_DEV_INFO: 5014 return btrfs_ioctl_dev_info(fs_info, argp); 5015 case BTRFS_IOC_BALANCE: 5016 return btrfs_ioctl_balance(file, NULL); 5017 case BTRFS_IOC_TREE_SEARCH: 5018 return btrfs_ioctl_tree_search(file, argp); 5019 case BTRFS_IOC_TREE_SEARCH_V2: 5020 return btrfs_ioctl_tree_search_v2(file, argp); 5021 case BTRFS_IOC_INO_LOOKUP: 5022 return btrfs_ioctl_ino_lookup(file, argp); 5023 case BTRFS_IOC_INO_PATHS: 5024 return btrfs_ioctl_ino_to_path(root, argp); 5025 case BTRFS_IOC_LOGICAL_INO: 5026 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5027 case BTRFS_IOC_LOGICAL_INO_V2: 5028 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5029 case BTRFS_IOC_SPACE_INFO: 5030 return btrfs_ioctl_space_info(fs_info, argp); 5031 case BTRFS_IOC_SYNC: { 5032 int ret; 5033 5034 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 5035 if (ret) 5036 return ret; 5037 ret = btrfs_sync_fs(inode->i_sb, 1); 5038 /* 5039 * The transaction thread may want to do more work, 5040 * namely it pokes the cleaner kthread that will start 5041 * processing uncleaned subvols. 5042 */ 5043 wake_up_process(fs_info->transaction_kthread); 5044 return ret; 5045 } 5046 case BTRFS_IOC_START_SYNC: 5047 return btrfs_ioctl_start_sync(root, argp); 5048 case BTRFS_IOC_WAIT_SYNC: 5049 return btrfs_ioctl_wait_sync(fs_info, argp); 5050 case BTRFS_IOC_SCRUB: 5051 return btrfs_ioctl_scrub(file, argp); 5052 case BTRFS_IOC_SCRUB_CANCEL: 5053 return btrfs_ioctl_scrub_cancel(fs_info); 5054 case BTRFS_IOC_SCRUB_PROGRESS: 5055 return btrfs_ioctl_scrub_progress(fs_info, argp); 5056 case BTRFS_IOC_BALANCE_V2: 5057 return btrfs_ioctl_balance(file, argp); 5058 case BTRFS_IOC_BALANCE_CTL: 5059 return btrfs_ioctl_balance_ctl(fs_info, arg); 5060 case BTRFS_IOC_BALANCE_PROGRESS: 5061 return btrfs_ioctl_balance_progress(fs_info, argp); 5062 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5063 return btrfs_ioctl_set_received_subvol(file, argp); 5064 #ifdef CONFIG_64BIT 5065 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5066 return btrfs_ioctl_set_received_subvol_32(file, argp); 5067 #endif 5068 case BTRFS_IOC_SEND: 5069 return _btrfs_ioctl_send(file, argp, false); 5070 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5071 case BTRFS_IOC_SEND_32: 5072 return _btrfs_ioctl_send(file, argp, true); 5073 #endif 5074 case BTRFS_IOC_GET_DEV_STATS: 5075 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5076 case BTRFS_IOC_QUOTA_CTL: 5077 return btrfs_ioctl_quota_ctl(file, argp); 5078 case BTRFS_IOC_QGROUP_ASSIGN: 5079 return btrfs_ioctl_qgroup_assign(file, argp); 5080 case BTRFS_IOC_QGROUP_CREATE: 5081 return btrfs_ioctl_qgroup_create(file, argp); 5082 case BTRFS_IOC_QGROUP_LIMIT: 5083 return btrfs_ioctl_qgroup_limit(file, argp); 5084 case BTRFS_IOC_QUOTA_RESCAN: 5085 return btrfs_ioctl_quota_rescan(file, argp); 5086 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5087 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5088 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5089 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5090 case BTRFS_IOC_DEV_REPLACE: 5091 return btrfs_ioctl_dev_replace(fs_info, argp); 5092 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5093 return btrfs_ioctl_get_supported_features(argp); 5094 case BTRFS_IOC_GET_FEATURES: 5095 return btrfs_ioctl_get_features(fs_info, argp); 5096 case BTRFS_IOC_SET_FEATURES: 5097 return btrfs_ioctl_set_features(file, argp); 5098 case BTRFS_IOC_GET_SUBVOL_INFO: 5099 return btrfs_ioctl_get_subvol_info(file, argp); 5100 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5101 return btrfs_ioctl_get_subvol_rootref(file, argp); 5102 case BTRFS_IOC_INO_LOOKUP_USER: 5103 return btrfs_ioctl_ino_lookup_user(file, argp); 5104 case FS_IOC_ENABLE_VERITY: 5105 return fsverity_ioctl_enable(file, (const void __user *)argp); 5106 case FS_IOC_MEASURE_VERITY: 5107 return fsverity_ioctl_measure(file, argp); 5108 } 5109 5110 return -ENOTTY; 5111 } 5112 5113 #ifdef CONFIG_COMPAT 5114 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5115 { 5116 /* 5117 * These all access 32-bit values anyway so no further 5118 * handling is necessary. 5119 */ 5120 switch (cmd) { 5121 case FS_IOC32_GETVERSION: 5122 cmd = FS_IOC_GETVERSION; 5123 break; 5124 } 5125 5126 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5127 } 5128 #endif 5129