1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "rcu-string.h" 42 #include "send.h" 43 #include "dev-replace.h" 44 #include "props.h" 45 #include "sysfs.h" 46 #include "qgroup.h" 47 #include "tree-log.h" 48 #include "compression.h" 49 #include "space-info.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "subpage.h" 53 #include "fs.h" 54 #include "accessors.h" 55 #include "extent-tree.h" 56 #include "root-tree.h" 57 #include "defrag.h" 58 #include "dir-item.h" 59 #include "uuid-tree.h" 60 #include "ioctl.h" 61 #include "file.h" 62 #include "scrub.h" 63 #include "super.h" 64 65 #ifdef CONFIG_64BIT 66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 67 * structures are incorrect, as the timespec structure from userspace 68 * is 4 bytes too small. We define these alternatives here to teach 69 * the kernel about the 32-bit struct packing. 70 */ 71 struct btrfs_ioctl_timespec_32 { 72 __u64 sec; 73 __u32 nsec; 74 } __attribute__ ((__packed__)); 75 76 struct btrfs_ioctl_received_subvol_args_32 { 77 char uuid[BTRFS_UUID_SIZE]; /* in */ 78 __u64 stransid; /* in */ 79 __u64 rtransid; /* out */ 80 struct btrfs_ioctl_timespec_32 stime; /* in */ 81 struct btrfs_ioctl_timespec_32 rtime; /* out */ 82 __u64 flags; /* in */ 83 __u64 reserved[16]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 87 struct btrfs_ioctl_received_subvol_args_32) 88 #endif 89 90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 91 struct btrfs_ioctl_send_args_32 { 92 __s64 send_fd; /* in */ 93 __u64 clone_sources_count; /* in */ 94 compat_uptr_t clone_sources; /* in */ 95 __u64 parent_root; /* in */ 96 __u64 flags; /* in */ 97 __u32 version; /* in */ 98 __u8 reserved[28]; /* in */ 99 } __attribute__ ((__packed__)); 100 101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 102 struct btrfs_ioctl_send_args_32) 103 104 struct btrfs_ioctl_encoded_io_args_32 { 105 compat_uptr_t iov; 106 compat_ulong_t iovcnt; 107 __s64 offset; 108 __u64 flags; 109 __u64 len; 110 __u64 unencoded_len; 111 __u64 unencoded_offset; 112 __u32 compression; 113 __u32 encryption; 114 __u8 reserved[64]; 115 }; 116 117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 118 struct btrfs_ioctl_encoded_io_args_32) 119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 120 struct btrfs_ioctl_encoded_io_args_32) 121 #endif 122 123 /* Mask out flags that are inappropriate for the given type of inode. */ 124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 125 unsigned int flags) 126 { 127 if (S_ISDIR(inode->i_mode)) 128 return flags; 129 else if (S_ISREG(inode->i_mode)) 130 return flags & ~FS_DIRSYNC_FL; 131 else 132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 133 } 134 135 /* 136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 137 * ioctl. 138 */ 139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 140 { 141 unsigned int iflags = 0; 142 u32 flags = binode->flags; 143 u32 ro_flags = binode->ro_flags; 144 145 if (flags & BTRFS_INODE_SYNC) 146 iflags |= FS_SYNC_FL; 147 if (flags & BTRFS_INODE_IMMUTABLE) 148 iflags |= FS_IMMUTABLE_FL; 149 if (flags & BTRFS_INODE_APPEND) 150 iflags |= FS_APPEND_FL; 151 if (flags & BTRFS_INODE_NODUMP) 152 iflags |= FS_NODUMP_FL; 153 if (flags & BTRFS_INODE_NOATIME) 154 iflags |= FS_NOATIME_FL; 155 if (flags & BTRFS_INODE_DIRSYNC) 156 iflags |= FS_DIRSYNC_FL; 157 if (flags & BTRFS_INODE_NODATACOW) 158 iflags |= FS_NOCOW_FL; 159 if (ro_flags & BTRFS_INODE_RO_VERITY) 160 iflags |= FS_VERITY_FL; 161 162 if (flags & BTRFS_INODE_NOCOMPRESS) 163 iflags |= FS_NOCOMP_FL; 164 else if (flags & BTRFS_INODE_COMPRESS) 165 iflags |= FS_COMPR_FL; 166 167 return iflags; 168 } 169 170 /* 171 * Update inode->i_flags based on the btrfs internal flags. 172 */ 173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 174 { 175 struct btrfs_inode *binode = BTRFS_I(inode); 176 unsigned int new_fl = 0; 177 178 if (binode->flags & BTRFS_INODE_SYNC) 179 new_fl |= S_SYNC; 180 if (binode->flags & BTRFS_INODE_IMMUTABLE) 181 new_fl |= S_IMMUTABLE; 182 if (binode->flags & BTRFS_INODE_APPEND) 183 new_fl |= S_APPEND; 184 if (binode->flags & BTRFS_INODE_NOATIME) 185 new_fl |= S_NOATIME; 186 if (binode->flags & BTRFS_INODE_DIRSYNC) 187 new_fl |= S_DIRSYNC; 188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 189 new_fl |= S_VERITY; 190 191 set_mask_bits(&inode->i_flags, 192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 193 S_VERITY, new_fl); 194 } 195 196 /* 197 * Check if @flags are a supported and valid set of FS_*_FL flags and that 198 * the old and new flags are not conflicting 199 */ 200 static int check_fsflags(unsigned int old_flags, unsigned int flags) 201 { 202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 203 FS_NOATIME_FL | FS_NODUMP_FL | \ 204 FS_SYNC_FL | FS_DIRSYNC_FL | \ 205 FS_NOCOMP_FL | FS_COMPR_FL | 206 FS_NOCOW_FL)) 207 return -EOPNOTSUPP; 208 209 /* COMPR and NOCOMP on new/old are valid */ 210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 211 return -EINVAL; 212 213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 214 return -EINVAL; 215 216 /* NOCOW and compression options are mutually exclusive */ 217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 218 return -EINVAL; 219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 220 return -EINVAL; 221 222 return 0; 223 } 224 225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 226 unsigned int flags) 227 { 228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 229 return -EPERM; 230 231 return 0; 232 } 233 234 /* 235 * Set flags/xflags from the internal inode flags. The remaining items of 236 * fsxattr are zeroed. 237 */ 238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 239 { 240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 241 242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 243 return 0; 244 } 245 246 int btrfs_fileattr_set(struct mnt_idmap *idmap, 247 struct dentry *dentry, struct fileattr *fa) 248 { 249 struct inode *inode = d_inode(dentry); 250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 251 struct btrfs_inode *binode = BTRFS_I(inode); 252 struct btrfs_root *root = binode->root; 253 struct btrfs_trans_handle *trans; 254 unsigned int fsflags, old_fsflags; 255 int ret; 256 const char *comp = NULL; 257 u32 binode_flags; 258 259 if (btrfs_root_readonly(root)) 260 return -EROFS; 261 262 if (fileattr_has_fsx(fa)) 263 return -EOPNOTSUPP; 264 265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 266 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 267 ret = check_fsflags(old_fsflags, fsflags); 268 if (ret) 269 return ret; 270 271 ret = check_fsflags_compatible(fs_info, fsflags); 272 if (ret) 273 return ret; 274 275 binode_flags = binode->flags; 276 if (fsflags & FS_SYNC_FL) 277 binode_flags |= BTRFS_INODE_SYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_SYNC; 280 if (fsflags & FS_IMMUTABLE_FL) 281 binode_flags |= BTRFS_INODE_IMMUTABLE; 282 else 283 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 284 if (fsflags & FS_APPEND_FL) 285 binode_flags |= BTRFS_INODE_APPEND; 286 else 287 binode_flags &= ~BTRFS_INODE_APPEND; 288 if (fsflags & FS_NODUMP_FL) 289 binode_flags |= BTRFS_INODE_NODUMP; 290 else 291 binode_flags &= ~BTRFS_INODE_NODUMP; 292 if (fsflags & FS_NOATIME_FL) 293 binode_flags |= BTRFS_INODE_NOATIME; 294 else 295 binode_flags &= ~BTRFS_INODE_NOATIME; 296 297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 298 if (!fa->flags_valid) { 299 /* 1 item for the inode */ 300 trans = btrfs_start_transaction(root, 1); 301 if (IS_ERR(trans)) 302 return PTR_ERR(trans); 303 goto update_flags; 304 } 305 306 if (fsflags & FS_DIRSYNC_FL) 307 binode_flags |= BTRFS_INODE_DIRSYNC; 308 else 309 binode_flags &= ~BTRFS_INODE_DIRSYNC; 310 if (fsflags & FS_NOCOW_FL) { 311 if (S_ISREG(inode->i_mode)) { 312 /* 313 * It's safe to turn csums off here, no extents exist. 314 * Otherwise we want the flag to reflect the real COW 315 * status of the file and will not set it. 316 */ 317 if (inode->i_size == 0) 318 binode_flags |= BTRFS_INODE_NODATACOW | 319 BTRFS_INODE_NODATASUM; 320 } else { 321 binode_flags |= BTRFS_INODE_NODATACOW; 322 } 323 } else { 324 /* 325 * Revert back under same assumptions as above 326 */ 327 if (S_ISREG(inode->i_mode)) { 328 if (inode->i_size == 0) 329 binode_flags &= ~(BTRFS_INODE_NODATACOW | 330 BTRFS_INODE_NODATASUM); 331 } else { 332 binode_flags &= ~BTRFS_INODE_NODATACOW; 333 } 334 } 335 336 /* 337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 338 * flag may be changed automatically if compression code won't make 339 * things smaller. 340 */ 341 if (fsflags & FS_NOCOMP_FL) { 342 binode_flags &= ~BTRFS_INODE_COMPRESS; 343 binode_flags |= BTRFS_INODE_NOCOMPRESS; 344 } else if (fsflags & FS_COMPR_FL) { 345 346 if (IS_SWAPFILE(inode)) 347 return -ETXTBSY; 348 349 binode_flags |= BTRFS_INODE_COMPRESS; 350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 351 352 comp = btrfs_compress_type2str(fs_info->compress_type); 353 if (!comp || comp[0] == 0) 354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 355 } else { 356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 357 } 358 359 /* 360 * 1 for inode item 361 * 2 for properties 362 */ 363 trans = btrfs_start_transaction(root, 3); 364 if (IS_ERR(trans)) 365 return PTR_ERR(trans); 366 367 if (comp) { 368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 369 strlen(comp), 0); 370 if (ret) { 371 btrfs_abort_transaction(trans, ret); 372 goto out_end_trans; 373 } 374 } else { 375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 376 0, 0); 377 if (ret && ret != -ENODATA) { 378 btrfs_abort_transaction(trans, ret); 379 goto out_end_trans; 380 } 381 } 382 383 update_flags: 384 binode->flags = binode_flags; 385 btrfs_sync_inode_flags_to_i_flags(inode); 386 inode_inc_iversion(inode); 387 inode_set_ctime_current(inode); 388 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 389 390 out_end_trans: 391 btrfs_end_transaction(trans); 392 return ret; 393 } 394 395 /* 396 * Start exclusive operation @type, return true on success 397 */ 398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 399 enum btrfs_exclusive_operation type) 400 { 401 bool ret = false; 402 403 spin_lock(&fs_info->super_lock); 404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 405 fs_info->exclusive_operation = type; 406 ret = true; 407 } 408 spin_unlock(&fs_info->super_lock); 409 410 return ret; 411 } 412 413 /* 414 * Conditionally allow to enter the exclusive operation in case it's compatible 415 * with the running one. This must be paired with btrfs_exclop_start_unlock and 416 * btrfs_exclop_finish. 417 * 418 * Compatibility: 419 * - the same type is already running 420 * - when trying to add a device and balance has been paused 421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 422 * must check the condition first that would allow none -> @type 423 */ 424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 425 enum btrfs_exclusive_operation type) 426 { 427 spin_lock(&fs_info->super_lock); 428 if (fs_info->exclusive_operation == type || 429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 430 type == BTRFS_EXCLOP_DEV_ADD)) 431 return true; 432 433 spin_unlock(&fs_info->super_lock); 434 return false; 435 } 436 437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 438 { 439 spin_unlock(&fs_info->super_lock); 440 } 441 442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 443 { 444 spin_lock(&fs_info->super_lock); 445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 446 spin_unlock(&fs_info->super_lock); 447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 448 } 449 450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 451 enum btrfs_exclusive_operation op) 452 { 453 switch (op) { 454 case BTRFS_EXCLOP_BALANCE_PAUSED: 455 spin_lock(&fs_info->super_lock); 456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || 458 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE || 459 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 460 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 461 spin_unlock(&fs_info->super_lock); 462 break; 463 case BTRFS_EXCLOP_BALANCE: 464 spin_lock(&fs_info->super_lock); 465 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 466 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 467 spin_unlock(&fs_info->super_lock); 468 break; 469 default: 470 btrfs_warn(fs_info, 471 "invalid exclop balance operation %d requested", op); 472 } 473 } 474 475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 476 { 477 return put_user(inode->i_generation, arg); 478 } 479 480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 481 void __user *arg) 482 { 483 struct btrfs_device *device; 484 struct fstrim_range range; 485 u64 minlen = ULLONG_MAX; 486 u64 num_devices = 0; 487 int ret; 488 489 if (!capable(CAP_SYS_ADMIN)) 490 return -EPERM; 491 492 /* 493 * btrfs_trim_block_group() depends on space cache, which is not 494 * available in zoned filesystem. So, disallow fitrim on a zoned 495 * filesystem for now. 496 */ 497 if (btrfs_is_zoned(fs_info)) 498 return -EOPNOTSUPP; 499 500 /* 501 * If the fs is mounted with nologreplay, which requires it to be 502 * mounted in RO mode as well, we can not allow discard on free space 503 * inside block groups, because log trees refer to extents that are not 504 * pinned in a block group's free space cache (pinning the extents is 505 * precisely the first phase of replaying a log tree). 506 */ 507 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 508 return -EROFS; 509 510 rcu_read_lock(); 511 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 512 dev_list) { 513 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 514 continue; 515 num_devices++; 516 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 517 minlen); 518 } 519 rcu_read_unlock(); 520 521 if (!num_devices) 522 return -EOPNOTSUPP; 523 if (copy_from_user(&range, arg, sizeof(range))) 524 return -EFAULT; 525 526 /* 527 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 528 * block group is in the logical address space, which can be any 529 * sectorsize aligned bytenr in the range [0, U64_MAX]. 530 */ 531 if (range.len < fs_info->sb->s_blocksize) 532 return -EINVAL; 533 534 range.minlen = max(range.minlen, minlen); 535 ret = btrfs_trim_fs(fs_info, &range); 536 if (ret < 0) 537 return ret; 538 539 if (copy_to_user(arg, &range, sizeof(range))) 540 return -EFAULT; 541 542 return 0; 543 } 544 545 int __pure btrfs_is_empty_uuid(u8 *uuid) 546 { 547 int i; 548 549 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 550 if (uuid[i]) 551 return 0; 552 } 553 return 1; 554 } 555 556 /* 557 * Calculate the number of transaction items to reserve for creating a subvolume 558 * or snapshot, not including the inode, directory entries, or parent directory. 559 */ 560 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 561 { 562 /* 563 * 1 to add root block 564 * 1 to add root item 565 * 1 to add root ref 566 * 1 to add root backref 567 * 1 to add UUID item 568 * 1 to add qgroup info 569 * 1 to add qgroup limit 570 * 571 * Ideally the last two would only be accounted if qgroups are enabled, 572 * but that can change between now and the time we would insert them. 573 */ 574 unsigned int num_items = 7; 575 576 if (inherit) { 577 /* 2 to add qgroup relations for each inherited qgroup */ 578 num_items += 2 * inherit->num_qgroups; 579 } 580 return num_items; 581 } 582 583 static noinline int create_subvol(struct mnt_idmap *idmap, 584 struct inode *dir, struct dentry *dentry, 585 struct btrfs_qgroup_inherit *inherit) 586 { 587 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 588 struct btrfs_trans_handle *trans; 589 struct btrfs_key key; 590 struct btrfs_root_item *root_item; 591 struct btrfs_inode_item *inode_item; 592 struct extent_buffer *leaf; 593 struct btrfs_root *root = BTRFS_I(dir)->root; 594 struct btrfs_root *new_root; 595 struct btrfs_block_rsv block_rsv; 596 struct timespec64 cur_time = current_time(dir); 597 struct btrfs_new_inode_args new_inode_args = { 598 .dir = dir, 599 .dentry = dentry, 600 .subvol = true, 601 }; 602 unsigned int trans_num_items; 603 int ret; 604 dev_t anon_dev; 605 u64 objectid; 606 u64 qgroup_reserved = 0; 607 608 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 609 if (!root_item) 610 return -ENOMEM; 611 612 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 613 if (ret) 614 goto out_root_item; 615 616 /* 617 * Don't create subvolume whose level is not zero. Or qgroup will be 618 * screwed up since it assumes subvolume qgroup's level to be 0. 619 */ 620 if (btrfs_qgroup_level(objectid)) { 621 ret = -ENOSPC; 622 goto out_root_item; 623 } 624 625 ret = get_anon_bdev(&anon_dev); 626 if (ret < 0) 627 goto out_root_item; 628 629 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 630 if (!new_inode_args.inode) { 631 ret = -ENOMEM; 632 goto out_anon_dev; 633 } 634 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 635 if (ret) 636 goto out_inode; 637 trans_num_items += create_subvol_num_items(inherit); 638 639 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 640 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 641 trans_num_items, false); 642 if (ret) 643 goto out_new_inode_args; 644 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 645 646 trans = btrfs_start_transaction(root, 0); 647 if (IS_ERR(trans)) { 648 ret = PTR_ERR(trans); 649 goto out_release_rsv; 650 } 651 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root); 652 if (ret) 653 goto out; 654 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 655 qgroup_reserved = 0; 656 trans->block_rsv = &block_rsv; 657 trans->bytes_reserved = block_rsv.size; 658 /* Tree log can't currently deal with an inode which is a new root. */ 659 btrfs_set_log_full_commit(trans); 660 661 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 662 if (ret) 663 goto out; 664 665 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 666 BTRFS_NESTING_NORMAL); 667 if (IS_ERR(leaf)) { 668 ret = PTR_ERR(leaf); 669 goto out; 670 } 671 672 btrfs_mark_buffer_dirty(trans, leaf); 673 674 inode_item = &root_item->inode; 675 btrfs_set_stack_inode_generation(inode_item, 1); 676 btrfs_set_stack_inode_size(inode_item, 3); 677 btrfs_set_stack_inode_nlink(inode_item, 1); 678 btrfs_set_stack_inode_nbytes(inode_item, 679 fs_info->nodesize); 680 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 681 682 btrfs_set_root_flags(root_item, 0); 683 btrfs_set_root_limit(root_item, 0); 684 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 685 686 btrfs_set_root_bytenr(root_item, leaf->start); 687 btrfs_set_root_generation(root_item, trans->transid); 688 btrfs_set_root_level(root_item, 0); 689 btrfs_set_root_refs(root_item, 1); 690 btrfs_set_root_used(root_item, leaf->len); 691 btrfs_set_root_last_snapshot(root_item, 0); 692 693 btrfs_set_root_generation_v2(root_item, 694 btrfs_root_generation(root_item)); 695 generate_random_guid(root_item->uuid); 696 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 697 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 698 root_item->ctime = root_item->otime; 699 btrfs_set_root_ctransid(root_item, trans->transid); 700 btrfs_set_root_otransid(root_item, trans->transid); 701 702 btrfs_tree_unlock(leaf); 703 704 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 705 706 key.objectid = objectid; 707 key.offset = 0; 708 key.type = BTRFS_ROOT_ITEM_KEY; 709 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 710 root_item); 711 if (ret) { 712 /* 713 * Since we don't abort the transaction in this case, free the 714 * tree block so that we don't leak space and leave the 715 * filesystem in an inconsistent state (an extent item in the 716 * extent tree with a backreference for a root that does not 717 * exists). 718 */ 719 btrfs_tree_lock(leaf); 720 btrfs_clear_buffer_dirty(trans, leaf); 721 btrfs_tree_unlock(leaf); 722 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 723 free_extent_buffer(leaf); 724 goto out; 725 } 726 727 free_extent_buffer(leaf); 728 leaf = NULL; 729 730 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev); 731 if (IS_ERR(new_root)) { 732 ret = PTR_ERR(new_root); 733 btrfs_abort_transaction(trans, ret); 734 goto out; 735 } 736 /* anon_dev is owned by new_root now. */ 737 anon_dev = 0; 738 BTRFS_I(new_inode_args.inode)->root = new_root; 739 /* ... and new_root is owned by new_inode_args.inode now. */ 740 741 ret = btrfs_record_root_in_trans(trans, new_root); 742 if (ret) { 743 btrfs_abort_transaction(trans, ret); 744 goto out; 745 } 746 747 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 748 BTRFS_UUID_KEY_SUBVOL, objectid); 749 if (ret) { 750 btrfs_abort_transaction(trans, ret); 751 goto out; 752 } 753 754 ret = btrfs_create_new_inode(trans, &new_inode_args); 755 if (ret) { 756 btrfs_abort_transaction(trans, ret); 757 goto out; 758 } 759 760 d_instantiate_new(dentry, new_inode_args.inode); 761 new_inode_args.inode = NULL; 762 763 out: 764 trans->block_rsv = NULL; 765 trans->bytes_reserved = 0; 766 btrfs_end_transaction(trans); 767 out_release_rsv: 768 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 769 if (qgroup_reserved) 770 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 771 out_new_inode_args: 772 btrfs_new_inode_args_destroy(&new_inode_args); 773 out_inode: 774 iput(new_inode_args.inode); 775 out_anon_dev: 776 if (anon_dev) 777 free_anon_bdev(anon_dev); 778 out_root_item: 779 kfree(root_item); 780 return ret; 781 } 782 783 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 784 struct dentry *dentry, bool readonly, 785 struct btrfs_qgroup_inherit *inherit) 786 { 787 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 788 struct inode *inode; 789 struct btrfs_pending_snapshot *pending_snapshot; 790 unsigned int trans_num_items; 791 struct btrfs_trans_handle *trans; 792 struct btrfs_block_rsv *block_rsv; 793 u64 qgroup_reserved = 0; 794 int ret; 795 796 /* We do not support snapshotting right now. */ 797 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 798 btrfs_warn(fs_info, 799 "extent tree v2 doesn't support snapshotting yet"); 800 return -EOPNOTSUPP; 801 } 802 803 if (btrfs_root_refs(&root->root_item) == 0) 804 return -ENOENT; 805 806 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 807 return -EINVAL; 808 809 if (atomic_read(&root->nr_swapfiles)) { 810 btrfs_warn(fs_info, 811 "cannot snapshot subvolume with active swapfile"); 812 return -ETXTBSY; 813 } 814 815 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 816 if (!pending_snapshot) 817 return -ENOMEM; 818 819 ret = get_anon_bdev(&pending_snapshot->anon_dev); 820 if (ret < 0) 821 goto free_pending; 822 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 823 GFP_KERNEL); 824 pending_snapshot->path = btrfs_alloc_path(); 825 if (!pending_snapshot->root_item || !pending_snapshot->path) { 826 ret = -ENOMEM; 827 goto free_pending; 828 } 829 830 block_rsv = &pending_snapshot->block_rsv; 831 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP); 832 /* 833 * 1 to add dir item 834 * 1 to add dir index 835 * 1 to update parent inode item 836 */ 837 trans_num_items = create_subvol_num_items(inherit) + 3; 838 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv, 839 trans_num_items, false); 840 if (ret) 841 goto free_pending; 842 qgroup_reserved = block_rsv->qgroup_rsv_reserved; 843 844 pending_snapshot->dentry = dentry; 845 pending_snapshot->root = root; 846 pending_snapshot->readonly = readonly; 847 pending_snapshot->dir = dir; 848 pending_snapshot->inherit = inherit; 849 850 trans = btrfs_start_transaction(root, 0); 851 if (IS_ERR(trans)) { 852 ret = PTR_ERR(trans); 853 goto fail; 854 } 855 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root); 856 if (ret) { 857 btrfs_end_transaction(trans); 858 goto fail; 859 } 860 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 861 qgroup_reserved = 0; 862 863 trans->pending_snapshot = pending_snapshot; 864 865 ret = btrfs_commit_transaction(trans); 866 if (ret) 867 goto fail; 868 869 ret = pending_snapshot->error; 870 if (ret) 871 goto fail; 872 873 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 874 if (ret) 875 goto fail; 876 877 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 878 if (IS_ERR(inode)) { 879 ret = PTR_ERR(inode); 880 goto fail; 881 } 882 883 d_instantiate(dentry, inode); 884 ret = 0; 885 pending_snapshot->anon_dev = 0; 886 fail: 887 /* Prevent double freeing of anon_dev */ 888 if (ret && pending_snapshot->snap) 889 pending_snapshot->snap->anon_dev = 0; 890 btrfs_put_root(pending_snapshot->snap); 891 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL); 892 if (qgroup_reserved) 893 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 894 free_pending: 895 if (pending_snapshot->anon_dev) 896 free_anon_bdev(pending_snapshot->anon_dev); 897 kfree(pending_snapshot->root_item); 898 btrfs_free_path(pending_snapshot->path); 899 kfree(pending_snapshot); 900 901 return ret; 902 } 903 904 /* copy of may_delete in fs/namei.c() 905 * Check whether we can remove a link victim from directory dir, check 906 * whether the type of victim is right. 907 * 1. We can't do it if dir is read-only (done in permission()) 908 * 2. We should have write and exec permissions on dir 909 * 3. We can't remove anything from append-only dir 910 * 4. We can't do anything with immutable dir (done in permission()) 911 * 5. If the sticky bit on dir is set we should either 912 * a. be owner of dir, or 913 * b. be owner of victim, or 914 * c. have CAP_FOWNER capability 915 * 6. If the victim is append-only or immutable we can't do anything with 916 * links pointing to it. 917 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 918 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 919 * 9. We can't remove a root or mountpoint. 920 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 921 * nfs_async_unlink(). 922 */ 923 924 static int btrfs_may_delete(struct mnt_idmap *idmap, 925 struct inode *dir, struct dentry *victim, int isdir) 926 { 927 int error; 928 929 if (d_really_is_negative(victim)) 930 return -ENOENT; 931 932 BUG_ON(d_inode(victim->d_parent) != dir); 933 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 934 935 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 936 if (error) 937 return error; 938 if (IS_APPEND(dir)) 939 return -EPERM; 940 if (check_sticky(idmap, dir, d_inode(victim)) || 941 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 942 IS_SWAPFILE(d_inode(victim))) 943 return -EPERM; 944 if (isdir) { 945 if (!d_is_dir(victim)) 946 return -ENOTDIR; 947 if (IS_ROOT(victim)) 948 return -EBUSY; 949 } else if (d_is_dir(victim)) 950 return -EISDIR; 951 if (IS_DEADDIR(dir)) 952 return -ENOENT; 953 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 954 return -EBUSY; 955 return 0; 956 } 957 958 /* copy of may_create in fs/namei.c() */ 959 static inline int btrfs_may_create(struct mnt_idmap *idmap, 960 struct inode *dir, struct dentry *child) 961 { 962 if (d_really_is_positive(child)) 963 return -EEXIST; 964 if (IS_DEADDIR(dir)) 965 return -ENOENT; 966 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 967 return -EOVERFLOW; 968 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 969 } 970 971 /* 972 * Create a new subvolume below @parent. This is largely modeled after 973 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 974 * inside this filesystem so it's quite a bit simpler. 975 */ 976 static noinline int btrfs_mksubvol(const struct path *parent, 977 struct mnt_idmap *idmap, 978 const char *name, int namelen, 979 struct btrfs_root *snap_src, 980 bool readonly, 981 struct btrfs_qgroup_inherit *inherit) 982 { 983 struct inode *dir = d_inode(parent->dentry); 984 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 985 struct dentry *dentry; 986 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 987 int error; 988 989 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 990 if (error == -EINTR) 991 return error; 992 993 dentry = lookup_one(idmap, name, parent->dentry, namelen); 994 error = PTR_ERR(dentry); 995 if (IS_ERR(dentry)) 996 goto out_unlock; 997 998 error = btrfs_may_create(idmap, dir, dentry); 999 if (error) 1000 goto out_dput; 1001 1002 /* 1003 * even if this name doesn't exist, we may get hash collisions. 1004 * check for them now when we can safely fail 1005 */ 1006 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 1007 dir->i_ino, &name_str); 1008 if (error) 1009 goto out_dput; 1010 1011 down_read(&fs_info->subvol_sem); 1012 1013 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 1014 goto out_up_read; 1015 1016 if (snap_src) 1017 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 1018 else 1019 error = create_subvol(idmap, dir, dentry, inherit); 1020 1021 if (!error) 1022 fsnotify_mkdir(dir, dentry); 1023 out_up_read: 1024 up_read(&fs_info->subvol_sem); 1025 out_dput: 1026 dput(dentry); 1027 out_unlock: 1028 btrfs_inode_unlock(BTRFS_I(dir), 0); 1029 return error; 1030 } 1031 1032 static noinline int btrfs_mksnapshot(const struct path *parent, 1033 struct mnt_idmap *idmap, 1034 const char *name, int namelen, 1035 struct btrfs_root *root, 1036 bool readonly, 1037 struct btrfs_qgroup_inherit *inherit) 1038 { 1039 int ret; 1040 bool snapshot_force_cow = false; 1041 1042 /* 1043 * Force new buffered writes to reserve space even when NOCOW is 1044 * possible. This is to avoid later writeback (running dealloc) to 1045 * fallback to COW mode and unexpectedly fail with ENOSPC. 1046 */ 1047 btrfs_drew_read_lock(&root->snapshot_lock); 1048 1049 ret = btrfs_start_delalloc_snapshot(root, false); 1050 if (ret) 1051 goto out; 1052 1053 /* 1054 * All previous writes have started writeback in NOCOW mode, so now 1055 * we force future writes to fallback to COW mode during snapshot 1056 * creation. 1057 */ 1058 atomic_inc(&root->snapshot_force_cow); 1059 snapshot_force_cow = true; 1060 1061 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1062 1063 ret = btrfs_mksubvol(parent, idmap, name, namelen, 1064 root, readonly, inherit); 1065 out: 1066 if (snapshot_force_cow) 1067 atomic_dec(&root->snapshot_force_cow); 1068 btrfs_drew_read_unlock(&root->snapshot_lock); 1069 return ret; 1070 } 1071 1072 /* 1073 * Try to start exclusive operation @type or cancel it if it's running. 1074 * 1075 * Return: 1076 * 0 - normal mode, newly claimed op started 1077 * >0 - normal mode, something else is running, 1078 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1079 * ECANCELED - cancel mode, successful cancel 1080 * ENOTCONN - cancel mode, operation not running anymore 1081 */ 1082 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1083 enum btrfs_exclusive_operation type, bool cancel) 1084 { 1085 if (!cancel) { 1086 /* Start normal op */ 1087 if (!btrfs_exclop_start(fs_info, type)) 1088 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1089 /* Exclusive operation is now claimed */ 1090 return 0; 1091 } 1092 1093 /* Cancel running op */ 1094 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1095 /* 1096 * This blocks any exclop finish from setting it to NONE, so we 1097 * request cancellation. Either it runs and we will wait for it, 1098 * or it has finished and no waiting will happen. 1099 */ 1100 atomic_inc(&fs_info->reloc_cancel_req); 1101 btrfs_exclop_start_unlock(fs_info); 1102 1103 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1104 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1105 TASK_INTERRUPTIBLE); 1106 1107 return -ECANCELED; 1108 } 1109 1110 /* Something else is running or none */ 1111 return -ENOTCONN; 1112 } 1113 1114 static noinline int btrfs_ioctl_resize(struct file *file, 1115 void __user *arg) 1116 { 1117 BTRFS_DEV_LOOKUP_ARGS(args); 1118 struct inode *inode = file_inode(file); 1119 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1120 u64 new_size; 1121 u64 old_size; 1122 u64 devid = 1; 1123 struct btrfs_root *root = BTRFS_I(inode)->root; 1124 struct btrfs_ioctl_vol_args *vol_args; 1125 struct btrfs_trans_handle *trans; 1126 struct btrfs_device *device = NULL; 1127 char *sizestr; 1128 char *retptr; 1129 char *devstr = NULL; 1130 int ret = 0; 1131 int mod = 0; 1132 bool cancel; 1133 1134 if (!capable(CAP_SYS_ADMIN)) 1135 return -EPERM; 1136 1137 ret = mnt_want_write_file(file); 1138 if (ret) 1139 return ret; 1140 1141 /* 1142 * Read the arguments before checking exclusivity to be able to 1143 * distinguish regular resize and cancel 1144 */ 1145 vol_args = memdup_user(arg, sizeof(*vol_args)); 1146 if (IS_ERR(vol_args)) { 1147 ret = PTR_ERR(vol_args); 1148 goto out_drop; 1149 } 1150 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1151 sizestr = vol_args->name; 1152 cancel = (strcmp("cancel", sizestr) == 0); 1153 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1154 if (ret) 1155 goto out_free; 1156 /* Exclusive operation is now claimed */ 1157 1158 devstr = strchr(sizestr, ':'); 1159 if (devstr) { 1160 sizestr = devstr + 1; 1161 *devstr = '\0'; 1162 devstr = vol_args->name; 1163 ret = kstrtoull(devstr, 10, &devid); 1164 if (ret) 1165 goto out_finish; 1166 if (!devid) { 1167 ret = -EINVAL; 1168 goto out_finish; 1169 } 1170 btrfs_info(fs_info, "resizing devid %llu", devid); 1171 } 1172 1173 args.devid = devid; 1174 device = btrfs_find_device(fs_info->fs_devices, &args); 1175 if (!device) { 1176 btrfs_info(fs_info, "resizer unable to find device %llu", 1177 devid); 1178 ret = -ENODEV; 1179 goto out_finish; 1180 } 1181 1182 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1183 btrfs_info(fs_info, 1184 "resizer unable to apply on readonly device %llu", 1185 devid); 1186 ret = -EPERM; 1187 goto out_finish; 1188 } 1189 1190 if (!strcmp(sizestr, "max")) 1191 new_size = bdev_nr_bytes(device->bdev); 1192 else { 1193 if (sizestr[0] == '-') { 1194 mod = -1; 1195 sizestr++; 1196 } else if (sizestr[0] == '+') { 1197 mod = 1; 1198 sizestr++; 1199 } 1200 new_size = memparse(sizestr, &retptr); 1201 if (*retptr != '\0' || new_size == 0) { 1202 ret = -EINVAL; 1203 goto out_finish; 1204 } 1205 } 1206 1207 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1208 ret = -EPERM; 1209 goto out_finish; 1210 } 1211 1212 old_size = btrfs_device_get_total_bytes(device); 1213 1214 if (mod < 0) { 1215 if (new_size > old_size) { 1216 ret = -EINVAL; 1217 goto out_finish; 1218 } 1219 new_size = old_size - new_size; 1220 } else if (mod > 0) { 1221 if (new_size > ULLONG_MAX - old_size) { 1222 ret = -ERANGE; 1223 goto out_finish; 1224 } 1225 new_size = old_size + new_size; 1226 } 1227 1228 if (new_size < SZ_256M) { 1229 ret = -EINVAL; 1230 goto out_finish; 1231 } 1232 if (new_size > bdev_nr_bytes(device->bdev)) { 1233 ret = -EFBIG; 1234 goto out_finish; 1235 } 1236 1237 new_size = round_down(new_size, fs_info->sectorsize); 1238 1239 if (new_size > old_size) { 1240 trans = btrfs_start_transaction(root, 0); 1241 if (IS_ERR(trans)) { 1242 ret = PTR_ERR(trans); 1243 goto out_finish; 1244 } 1245 ret = btrfs_grow_device(trans, device, new_size); 1246 btrfs_commit_transaction(trans); 1247 } else if (new_size < old_size) { 1248 ret = btrfs_shrink_device(device, new_size); 1249 } /* equal, nothing need to do */ 1250 1251 if (ret == 0 && new_size != old_size) 1252 btrfs_info_in_rcu(fs_info, 1253 "resize device %s (devid %llu) from %llu to %llu", 1254 btrfs_dev_name(device), device->devid, 1255 old_size, new_size); 1256 out_finish: 1257 btrfs_exclop_finish(fs_info); 1258 out_free: 1259 kfree(vol_args); 1260 out_drop: 1261 mnt_drop_write_file(file); 1262 return ret; 1263 } 1264 1265 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1266 struct mnt_idmap *idmap, 1267 const char *name, unsigned long fd, int subvol, 1268 bool readonly, 1269 struct btrfs_qgroup_inherit *inherit) 1270 { 1271 int namelen; 1272 int ret = 0; 1273 1274 if (!S_ISDIR(file_inode(file)->i_mode)) 1275 return -ENOTDIR; 1276 1277 ret = mnt_want_write_file(file); 1278 if (ret) 1279 goto out; 1280 1281 namelen = strlen(name); 1282 if (strchr(name, '/')) { 1283 ret = -EINVAL; 1284 goto out_drop_write; 1285 } 1286 1287 if (name[0] == '.' && 1288 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1289 ret = -EEXIST; 1290 goto out_drop_write; 1291 } 1292 1293 if (subvol) { 1294 ret = btrfs_mksubvol(&file->f_path, idmap, name, 1295 namelen, NULL, readonly, inherit); 1296 } else { 1297 struct fd src = fdget(fd); 1298 struct inode *src_inode; 1299 if (!src.file) { 1300 ret = -EINVAL; 1301 goto out_drop_write; 1302 } 1303 1304 src_inode = file_inode(src.file); 1305 if (src_inode->i_sb != file_inode(file)->i_sb) { 1306 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1307 "Snapshot src from another FS"); 1308 ret = -EXDEV; 1309 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1310 /* 1311 * Subvolume creation is not restricted, but snapshots 1312 * are limited to own subvolumes only 1313 */ 1314 ret = -EPERM; 1315 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1316 /* 1317 * Snapshots must be made with the src_inode referring 1318 * to the subvolume inode, otherwise the permission 1319 * checking above is useless because we may have 1320 * permission on a lower directory but not the subvol 1321 * itself. 1322 */ 1323 ret = -EINVAL; 1324 } else { 1325 ret = btrfs_mksnapshot(&file->f_path, idmap, 1326 name, namelen, 1327 BTRFS_I(src_inode)->root, 1328 readonly, inherit); 1329 } 1330 fdput(src); 1331 } 1332 out_drop_write: 1333 mnt_drop_write_file(file); 1334 out: 1335 return ret; 1336 } 1337 1338 static noinline int btrfs_ioctl_snap_create(struct file *file, 1339 void __user *arg, int subvol) 1340 { 1341 struct btrfs_ioctl_vol_args *vol_args; 1342 int ret; 1343 1344 if (!S_ISDIR(file_inode(file)->i_mode)) 1345 return -ENOTDIR; 1346 1347 vol_args = memdup_user(arg, sizeof(*vol_args)); 1348 if (IS_ERR(vol_args)) 1349 return PTR_ERR(vol_args); 1350 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1351 1352 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1353 vol_args->name, vol_args->fd, subvol, 1354 false, NULL); 1355 1356 kfree(vol_args); 1357 return ret; 1358 } 1359 1360 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1361 void __user *arg, int subvol) 1362 { 1363 struct btrfs_ioctl_vol_args_v2 *vol_args; 1364 int ret; 1365 bool readonly = false; 1366 struct btrfs_qgroup_inherit *inherit = NULL; 1367 1368 if (!S_ISDIR(file_inode(file)->i_mode)) 1369 return -ENOTDIR; 1370 1371 vol_args = memdup_user(arg, sizeof(*vol_args)); 1372 if (IS_ERR(vol_args)) 1373 return PTR_ERR(vol_args); 1374 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1375 1376 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1377 ret = -EOPNOTSUPP; 1378 goto free_args; 1379 } 1380 1381 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1382 readonly = true; 1383 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1384 u64 nums; 1385 1386 if (vol_args->size < sizeof(*inherit) || 1387 vol_args->size > PAGE_SIZE) { 1388 ret = -EINVAL; 1389 goto free_args; 1390 } 1391 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1392 if (IS_ERR(inherit)) { 1393 ret = PTR_ERR(inherit); 1394 goto free_args; 1395 } 1396 1397 if (inherit->num_qgroups > PAGE_SIZE || 1398 inherit->num_ref_copies > PAGE_SIZE || 1399 inherit->num_excl_copies > PAGE_SIZE) { 1400 ret = -EINVAL; 1401 goto free_inherit; 1402 } 1403 1404 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1405 2 * inherit->num_excl_copies; 1406 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1407 ret = -EINVAL; 1408 goto free_inherit; 1409 } 1410 } 1411 1412 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1413 vol_args->name, vol_args->fd, subvol, 1414 readonly, inherit); 1415 if (ret) 1416 goto free_inherit; 1417 free_inherit: 1418 kfree(inherit); 1419 free_args: 1420 kfree(vol_args); 1421 return ret; 1422 } 1423 1424 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1425 void __user *arg) 1426 { 1427 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1428 struct btrfs_root *root = BTRFS_I(inode)->root; 1429 int ret = 0; 1430 u64 flags = 0; 1431 1432 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1433 return -EINVAL; 1434 1435 down_read(&fs_info->subvol_sem); 1436 if (btrfs_root_readonly(root)) 1437 flags |= BTRFS_SUBVOL_RDONLY; 1438 up_read(&fs_info->subvol_sem); 1439 1440 if (copy_to_user(arg, &flags, sizeof(flags))) 1441 ret = -EFAULT; 1442 1443 return ret; 1444 } 1445 1446 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1447 void __user *arg) 1448 { 1449 struct inode *inode = file_inode(file); 1450 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1451 struct btrfs_root *root = BTRFS_I(inode)->root; 1452 struct btrfs_trans_handle *trans; 1453 u64 root_flags; 1454 u64 flags; 1455 int ret = 0; 1456 1457 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1458 return -EPERM; 1459 1460 ret = mnt_want_write_file(file); 1461 if (ret) 1462 goto out; 1463 1464 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1465 ret = -EINVAL; 1466 goto out_drop_write; 1467 } 1468 1469 if (copy_from_user(&flags, arg, sizeof(flags))) { 1470 ret = -EFAULT; 1471 goto out_drop_write; 1472 } 1473 1474 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1475 ret = -EOPNOTSUPP; 1476 goto out_drop_write; 1477 } 1478 1479 down_write(&fs_info->subvol_sem); 1480 1481 /* nothing to do */ 1482 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1483 goto out_drop_sem; 1484 1485 root_flags = btrfs_root_flags(&root->root_item); 1486 if (flags & BTRFS_SUBVOL_RDONLY) { 1487 btrfs_set_root_flags(&root->root_item, 1488 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1489 } else { 1490 /* 1491 * Block RO -> RW transition if this subvolume is involved in 1492 * send 1493 */ 1494 spin_lock(&root->root_item_lock); 1495 if (root->send_in_progress == 0) { 1496 btrfs_set_root_flags(&root->root_item, 1497 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1498 spin_unlock(&root->root_item_lock); 1499 } else { 1500 spin_unlock(&root->root_item_lock); 1501 btrfs_warn(fs_info, 1502 "Attempt to set subvolume %llu read-write during send", 1503 root->root_key.objectid); 1504 ret = -EPERM; 1505 goto out_drop_sem; 1506 } 1507 } 1508 1509 trans = btrfs_start_transaction(root, 1); 1510 if (IS_ERR(trans)) { 1511 ret = PTR_ERR(trans); 1512 goto out_reset; 1513 } 1514 1515 ret = btrfs_update_root(trans, fs_info->tree_root, 1516 &root->root_key, &root->root_item); 1517 if (ret < 0) { 1518 btrfs_end_transaction(trans); 1519 goto out_reset; 1520 } 1521 1522 ret = btrfs_commit_transaction(trans); 1523 1524 out_reset: 1525 if (ret) 1526 btrfs_set_root_flags(&root->root_item, root_flags); 1527 out_drop_sem: 1528 up_write(&fs_info->subvol_sem); 1529 out_drop_write: 1530 mnt_drop_write_file(file); 1531 out: 1532 return ret; 1533 } 1534 1535 static noinline int key_in_sk(struct btrfs_key *key, 1536 struct btrfs_ioctl_search_key *sk) 1537 { 1538 struct btrfs_key test; 1539 int ret; 1540 1541 test.objectid = sk->min_objectid; 1542 test.type = sk->min_type; 1543 test.offset = sk->min_offset; 1544 1545 ret = btrfs_comp_cpu_keys(key, &test); 1546 if (ret < 0) 1547 return 0; 1548 1549 test.objectid = sk->max_objectid; 1550 test.type = sk->max_type; 1551 test.offset = sk->max_offset; 1552 1553 ret = btrfs_comp_cpu_keys(key, &test); 1554 if (ret > 0) 1555 return 0; 1556 return 1; 1557 } 1558 1559 static noinline int copy_to_sk(struct btrfs_path *path, 1560 struct btrfs_key *key, 1561 struct btrfs_ioctl_search_key *sk, 1562 u64 *buf_size, 1563 char __user *ubuf, 1564 unsigned long *sk_offset, 1565 int *num_found) 1566 { 1567 u64 found_transid; 1568 struct extent_buffer *leaf; 1569 struct btrfs_ioctl_search_header sh; 1570 struct btrfs_key test; 1571 unsigned long item_off; 1572 unsigned long item_len; 1573 int nritems; 1574 int i; 1575 int slot; 1576 int ret = 0; 1577 1578 leaf = path->nodes[0]; 1579 slot = path->slots[0]; 1580 nritems = btrfs_header_nritems(leaf); 1581 1582 if (btrfs_header_generation(leaf) > sk->max_transid) { 1583 i = nritems; 1584 goto advance_key; 1585 } 1586 found_transid = btrfs_header_generation(leaf); 1587 1588 for (i = slot; i < nritems; i++) { 1589 item_off = btrfs_item_ptr_offset(leaf, i); 1590 item_len = btrfs_item_size(leaf, i); 1591 1592 btrfs_item_key_to_cpu(leaf, key, i); 1593 if (!key_in_sk(key, sk)) 1594 continue; 1595 1596 if (sizeof(sh) + item_len > *buf_size) { 1597 if (*num_found) { 1598 ret = 1; 1599 goto out; 1600 } 1601 1602 /* 1603 * return one empty item back for v1, which does not 1604 * handle -EOVERFLOW 1605 */ 1606 1607 *buf_size = sizeof(sh) + item_len; 1608 item_len = 0; 1609 ret = -EOVERFLOW; 1610 } 1611 1612 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1613 ret = 1; 1614 goto out; 1615 } 1616 1617 sh.objectid = key->objectid; 1618 sh.offset = key->offset; 1619 sh.type = key->type; 1620 sh.len = item_len; 1621 sh.transid = found_transid; 1622 1623 /* 1624 * Copy search result header. If we fault then loop again so we 1625 * can fault in the pages and -EFAULT there if there's a 1626 * problem. Otherwise we'll fault and then copy the buffer in 1627 * properly this next time through 1628 */ 1629 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1630 ret = 0; 1631 goto out; 1632 } 1633 1634 *sk_offset += sizeof(sh); 1635 1636 if (item_len) { 1637 char __user *up = ubuf + *sk_offset; 1638 /* 1639 * Copy the item, same behavior as above, but reset the 1640 * * sk_offset so we copy the full thing again. 1641 */ 1642 if (read_extent_buffer_to_user_nofault(leaf, up, 1643 item_off, item_len)) { 1644 ret = 0; 1645 *sk_offset -= sizeof(sh); 1646 goto out; 1647 } 1648 1649 *sk_offset += item_len; 1650 } 1651 (*num_found)++; 1652 1653 if (ret) /* -EOVERFLOW from above */ 1654 goto out; 1655 1656 if (*num_found >= sk->nr_items) { 1657 ret = 1; 1658 goto out; 1659 } 1660 } 1661 advance_key: 1662 ret = 0; 1663 test.objectid = sk->max_objectid; 1664 test.type = sk->max_type; 1665 test.offset = sk->max_offset; 1666 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1667 ret = 1; 1668 else if (key->offset < (u64)-1) 1669 key->offset++; 1670 else if (key->type < (u8)-1) { 1671 key->offset = 0; 1672 key->type++; 1673 } else if (key->objectid < (u64)-1) { 1674 key->offset = 0; 1675 key->type = 0; 1676 key->objectid++; 1677 } else 1678 ret = 1; 1679 out: 1680 /* 1681 * 0: all items from this leaf copied, continue with next 1682 * 1: * more items can be copied, but unused buffer is too small 1683 * * all items were found 1684 * Either way, it will stops the loop which iterates to the next 1685 * leaf 1686 * -EOVERFLOW: item was to large for buffer 1687 * -EFAULT: could not copy extent buffer back to userspace 1688 */ 1689 return ret; 1690 } 1691 1692 static noinline int search_ioctl(struct inode *inode, 1693 struct btrfs_ioctl_search_key *sk, 1694 u64 *buf_size, 1695 char __user *ubuf) 1696 { 1697 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 1698 struct btrfs_root *root; 1699 struct btrfs_key key; 1700 struct btrfs_path *path; 1701 int ret; 1702 int num_found = 0; 1703 unsigned long sk_offset = 0; 1704 1705 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1706 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1707 return -EOVERFLOW; 1708 } 1709 1710 path = btrfs_alloc_path(); 1711 if (!path) 1712 return -ENOMEM; 1713 1714 if (sk->tree_id == 0) { 1715 /* search the root of the inode that was passed */ 1716 root = btrfs_grab_root(BTRFS_I(inode)->root); 1717 } else { 1718 root = btrfs_get_fs_root(info, sk->tree_id, true); 1719 if (IS_ERR(root)) { 1720 btrfs_free_path(path); 1721 return PTR_ERR(root); 1722 } 1723 } 1724 1725 key.objectid = sk->min_objectid; 1726 key.type = sk->min_type; 1727 key.offset = sk->min_offset; 1728 1729 while (1) { 1730 ret = -EFAULT; 1731 /* 1732 * Ensure that the whole user buffer is faulted in at sub-page 1733 * granularity, otherwise the loop may live-lock. 1734 */ 1735 if (fault_in_subpage_writeable(ubuf + sk_offset, 1736 *buf_size - sk_offset)) 1737 break; 1738 1739 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1740 if (ret != 0) { 1741 if (ret > 0) 1742 ret = 0; 1743 goto err; 1744 } 1745 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1746 &sk_offset, &num_found); 1747 btrfs_release_path(path); 1748 if (ret) 1749 break; 1750 1751 } 1752 if (ret > 0) 1753 ret = 0; 1754 err: 1755 sk->nr_items = num_found; 1756 btrfs_put_root(root); 1757 btrfs_free_path(path); 1758 return ret; 1759 } 1760 1761 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1762 void __user *argp) 1763 { 1764 struct btrfs_ioctl_search_args __user *uargs = argp; 1765 struct btrfs_ioctl_search_key sk; 1766 int ret; 1767 u64 buf_size; 1768 1769 if (!capable(CAP_SYS_ADMIN)) 1770 return -EPERM; 1771 1772 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1773 return -EFAULT; 1774 1775 buf_size = sizeof(uargs->buf); 1776 1777 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1778 1779 /* 1780 * In the origin implementation an overflow is handled by returning a 1781 * search header with a len of zero, so reset ret. 1782 */ 1783 if (ret == -EOVERFLOW) 1784 ret = 0; 1785 1786 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1787 ret = -EFAULT; 1788 return ret; 1789 } 1790 1791 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1792 void __user *argp) 1793 { 1794 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1795 struct btrfs_ioctl_search_args_v2 args; 1796 int ret; 1797 u64 buf_size; 1798 const u64 buf_limit = SZ_16M; 1799 1800 if (!capable(CAP_SYS_ADMIN)) 1801 return -EPERM; 1802 1803 /* copy search header and buffer size */ 1804 if (copy_from_user(&args, uarg, sizeof(args))) 1805 return -EFAULT; 1806 1807 buf_size = args.buf_size; 1808 1809 /* limit result size to 16MB */ 1810 if (buf_size > buf_limit) 1811 buf_size = buf_limit; 1812 1813 ret = search_ioctl(inode, &args.key, &buf_size, 1814 (char __user *)(&uarg->buf[0])); 1815 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1816 ret = -EFAULT; 1817 else if (ret == -EOVERFLOW && 1818 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1819 ret = -EFAULT; 1820 1821 return ret; 1822 } 1823 1824 /* 1825 * Search INODE_REFs to identify path name of 'dirid' directory 1826 * in a 'tree_id' tree. and sets path name to 'name'. 1827 */ 1828 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1829 u64 tree_id, u64 dirid, char *name) 1830 { 1831 struct btrfs_root *root; 1832 struct btrfs_key key; 1833 char *ptr; 1834 int ret = -1; 1835 int slot; 1836 int len; 1837 int total_len = 0; 1838 struct btrfs_inode_ref *iref; 1839 struct extent_buffer *l; 1840 struct btrfs_path *path; 1841 1842 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1843 name[0]='\0'; 1844 return 0; 1845 } 1846 1847 path = btrfs_alloc_path(); 1848 if (!path) 1849 return -ENOMEM; 1850 1851 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1852 1853 root = btrfs_get_fs_root(info, tree_id, true); 1854 if (IS_ERR(root)) { 1855 ret = PTR_ERR(root); 1856 root = NULL; 1857 goto out; 1858 } 1859 1860 key.objectid = dirid; 1861 key.type = BTRFS_INODE_REF_KEY; 1862 key.offset = (u64)-1; 1863 1864 while (1) { 1865 ret = btrfs_search_backwards(root, &key, path); 1866 if (ret < 0) 1867 goto out; 1868 else if (ret > 0) { 1869 ret = -ENOENT; 1870 goto out; 1871 } 1872 1873 l = path->nodes[0]; 1874 slot = path->slots[0]; 1875 1876 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1877 len = btrfs_inode_ref_name_len(l, iref); 1878 ptr -= len + 1; 1879 total_len += len + 1; 1880 if (ptr < name) { 1881 ret = -ENAMETOOLONG; 1882 goto out; 1883 } 1884 1885 *(ptr + len) = '/'; 1886 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1887 1888 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1889 break; 1890 1891 btrfs_release_path(path); 1892 key.objectid = key.offset; 1893 key.offset = (u64)-1; 1894 dirid = key.objectid; 1895 } 1896 memmove(name, ptr, total_len); 1897 name[total_len] = '\0'; 1898 ret = 0; 1899 out: 1900 btrfs_put_root(root); 1901 btrfs_free_path(path); 1902 return ret; 1903 } 1904 1905 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1906 struct inode *inode, 1907 struct btrfs_ioctl_ino_lookup_user_args *args) 1908 { 1909 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1910 struct super_block *sb = inode->i_sb; 1911 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 1912 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 1913 u64 dirid = args->dirid; 1914 unsigned long item_off; 1915 unsigned long item_len; 1916 struct btrfs_inode_ref *iref; 1917 struct btrfs_root_ref *rref; 1918 struct btrfs_root *root = NULL; 1919 struct btrfs_path *path; 1920 struct btrfs_key key, key2; 1921 struct extent_buffer *leaf; 1922 struct inode *temp_inode; 1923 char *ptr; 1924 int slot; 1925 int len; 1926 int total_len = 0; 1927 int ret; 1928 1929 path = btrfs_alloc_path(); 1930 if (!path) 1931 return -ENOMEM; 1932 1933 /* 1934 * If the bottom subvolume does not exist directly under upper_limit, 1935 * construct the path in from the bottom up. 1936 */ 1937 if (dirid != upper_limit.objectid) { 1938 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1939 1940 root = btrfs_get_fs_root(fs_info, treeid, true); 1941 if (IS_ERR(root)) { 1942 ret = PTR_ERR(root); 1943 goto out; 1944 } 1945 1946 key.objectid = dirid; 1947 key.type = BTRFS_INODE_REF_KEY; 1948 key.offset = (u64)-1; 1949 while (1) { 1950 ret = btrfs_search_backwards(root, &key, path); 1951 if (ret < 0) 1952 goto out_put; 1953 else if (ret > 0) { 1954 ret = -ENOENT; 1955 goto out_put; 1956 } 1957 1958 leaf = path->nodes[0]; 1959 slot = path->slots[0]; 1960 1961 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1962 len = btrfs_inode_ref_name_len(leaf, iref); 1963 ptr -= len + 1; 1964 total_len += len + 1; 1965 if (ptr < args->path) { 1966 ret = -ENAMETOOLONG; 1967 goto out_put; 1968 } 1969 1970 *(ptr + len) = '/'; 1971 read_extent_buffer(leaf, ptr, 1972 (unsigned long)(iref + 1), len); 1973 1974 /* Check the read+exec permission of this directory */ 1975 ret = btrfs_previous_item(root, path, dirid, 1976 BTRFS_INODE_ITEM_KEY); 1977 if (ret < 0) { 1978 goto out_put; 1979 } else if (ret > 0) { 1980 ret = -ENOENT; 1981 goto out_put; 1982 } 1983 1984 leaf = path->nodes[0]; 1985 slot = path->slots[0]; 1986 btrfs_item_key_to_cpu(leaf, &key2, slot); 1987 if (key2.objectid != dirid) { 1988 ret = -ENOENT; 1989 goto out_put; 1990 } 1991 1992 /* 1993 * We don't need the path anymore, so release it and 1994 * avoid deadlocks and lockdep warnings in case 1995 * btrfs_iget() needs to lookup the inode from its root 1996 * btree and lock the same leaf. 1997 */ 1998 btrfs_release_path(path); 1999 temp_inode = btrfs_iget(sb, key2.objectid, root); 2000 if (IS_ERR(temp_inode)) { 2001 ret = PTR_ERR(temp_inode); 2002 goto out_put; 2003 } 2004 ret = inode_permission(idmap, temp_inode, 2005 MAY_READ | MAY_EXEC); 2006 iput(temp_inode); 2007 if (ret) { 2008 ret = -EACCES; 2009 goto out_put; 2010 } 2011 2012 if (key.offset == upper_limit.objectid) 2013 break; 2014 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2015 ret = -EACCES; 2016 goto out_put; 2017 } 2018 2019 key.objectid = key.offset; 2020 key.offset = (u64)-1; 2021 dirid = key.objectid; 2022 } 2023 2024 memmove(args->path, ptr, total_len); 2025 args->path[total_len] = '\0'; 2026 btrfs_put_root(root); 2027 root = NULL; 2028 btrfs_release_path(path); 2029 } 2030 2031 /* Get the bottom subvolume's name from ROOT_REF */ 2032 key.objectid = treeid; 2033 key.type = BTRFS_ROOT_REF_KEY; 2034 key.offset = args->treeid; 2035 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2036 if (ret < 0) { 2037 goto out; 2038 } else if (ret > 0) { 2039 ret = -ENOENT; 2040 goto out; 2041 } 2042 2043 leaf = path->nodes[0]; 2044 slot = path->slots[0]; 2045 btrfs_item_key_to_cpu(leaf, &key, slot); 2046 2047 item_off = btrfs_item_ptr_offset(leaf, slot); 2048 item_len = btrfs_item_size(leaf, slot); 2049 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2050 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2051 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2052 ret = -EINVAL; 2053 goto out; 2054 } 2055 2056 /* Copy subvolume's name */ 2057 item_off += sizeof(struct btrfs_root_ref); 2058 item_len -= sizeof(struct btrfs_root_ref); 2059 read_extent_buffer(leaf, args->name, item_off, item_len); 2060 args->name[item_len] = 0; 2061 2062 out_put: 2063 btrfs_put_root(root); 2064 out: 2065 btrfs_free_path(path); 2066 return ret; 2067 } 2068 2069 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2070 void __user *argp) 2071 { 2072 struct btrfs_ioctl_ino_lookup_args *args; 2073 int ret = 0; 2074 2075 args = memdup_user(argp, sizeof(*args)); 2076 if (IS_ERR(args)) 2077 return PTR_ERR(args); 2078 2079 /* 2080 * Unprivileged query to obtain the containing subvolume root id. The 2081 * path is reset so it's consistent with btrfs_search_path_in_tree. 2082 */ 2083 if (args->treeid == 0) 2084 args->treeid = root->root_key.objectid; 2085 2086 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2087 args->name[0] = 0; 2088 goto out; 2089 } 2090 2091 if (!capable(CAP_SYS_ADMIN)) { 2092 ret = -EPERM; 2093 goto out; 2094 } 2095 2096 ret = btrfs_search_path_in_tree(root->fs_info, 2097 args->treeid, args->objectid, 2098 args->name); 2099 2100 out: 2101 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2102 ret = -EFAULT; 2103 2104 kfree(args); 2105 return ret; 2106 } 2107 2108 /* 2109 * Version of ino_lookup ioctl (unprivileged) 2110 * 2111 * The main differences from ino_lookup ioctl are: 2112 * 2113 * 1. Read + Exec permission will be checked using inode_permission() during 2114 * path construction. -EACCES will be returned in case of failure. 2115 * 2. Path construction will be stopped at the inode number which corresponds 2116 * to the fd with which this ioctl is called. If constructed path does not 2117 * exist under fd's inode, -EACCES will be returned. 2118 * 3. The name of bottom subvolume is also searched and filled. 2119 */ 2120 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2121 { 2122 struct btrfs_ioctl_ino_lookup_user_args *args; 2123 struct inode *inode; 2124 int ret; 2125 2126 args = memdup_user(argp, sizeof(*args)); 2127 if (IS_ERR(args)) 2128 return PTR_ERR(args); 2129 2130 inode = file_inode(file); 2131 2132 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2133 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2134 /* 2135 * The subvolume does not exist under fd with which this is 2136 * called 2137 */ 2138 kfree(args); 2139 return -EACCES; 2140 } 2141 2142 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2143 2144 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2145 ret = -EFAULT; 2146 2147 kfree(args); 2148 return ret; 2149 } 2150 2151 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2152 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2153 { 2154 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2155 struct btrfs_fs_info *fs_info; 2156 struct btrfs_root *root; 2157 struct btrfs_path *path; 2158 struct btrfs_key key; 2159 struct btrfs_root_item *root_item; 2160 struct btrfs_root_ref *rref; 2161 struct extent_buffer *leaf; 2162 unsigned long item_off; 2163 unsigned long item_len; 2164 int slot; 2165 int ret = 0; 2166 2167 path = btrfs_alloc_path(); 2168 if (!path) 2169 return -ENOMEM; 2170 2171 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2172 if (!subvol_info) { 2173 btrfs_free_path(path); 2174 return -ENOMEM; 2175 } 2176 2177 fs_info = BTRFS_I(inode)->root->fs_info; 2178 2179 /* Get root_item of inode's subvolume */ 2180 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2181 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2182 if (IS_ERR(root)) { 2183 ret = PTR_ERR(root); 2184 goto out_free; 2185 } 2186 root_item = &root->root_item; 2187 2188 subvol_info->treeid = key.objectid; 2189 2190 subvol_info->generation = btrfs_root_generation(root_item); 2191 subvol_info->flags = btrfs_root_flags(root_item); 2192 2193 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2194 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2195 BTRFS_UUID_SIZE); 2196 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2197 BTRFS_UUID_SIZE); 2198 2199 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2200 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2201 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2202 2203 subvol_info->otransid = btrfs_root_otransid(root_item); 2204 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2205 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2206 2207 subvol_info->stransid = btrfs_root_stransid(root_item); 2208 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2209 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2210 2211 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2212 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2213 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2214 2215 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2216 /* Search root tree for ROOT_BACKREF of this subvolume */ 2217 key.type = BTRFS_ROOT_BACKREF_KEY; 2218 key.offset = 0; 2219 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2220 if (ret < 0) { 2221 goto out; 2222 } else if (path->slots[0] >= 2223 btrfs_header_nritems(path->nodes[0])) { 2224 ret = btrfs_next_leaf(fs_info->tree_root, path); 2225 if (ret < 0) { 2226 goto out; 2227 } else if (ret > 0) { 2228 ret = -EUCLEAN; 2229 goto out; 2230 } 2231 } 2232 2233 leaf = path->nodes[0]; 2234 slot = path->slots[0]; 2235 btrfs_item_key_to_cpu(leaf, &key, slot); 2236 if (key.objectid == subvol_info->treeid && 2237 key.type == BTRFS_ROOT_BACKREF_KEY) { 2238 subvol_info->parent_id = key.offset; 2239 2240 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2241 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2242 2243 item_off = btrfs_item_ptr_offset(leaf, slot) 2244 + sizeof(struct btrfs_root_ref); 2245 item_len = btrfs_item_size(leaf, slot) 2246 - sizeof(struct btrfs_root_ref); 2247 read_extent_buffer(leaf, subvol_info->name, 2248 item_off, item_len); 2249 } else { 2250 ret = -ENOENT; 2251 goto out; 2252 } 2253 } 2254 2255 btrfs_free_path(path); 2256 path = NULL; 2257 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2258 ret = -EFAULT; 2259 2260 out: 2261 btrfs_put_root(root); 2262 out_free: 2263 btrfs_free_path(path); 2264 kfree(subvol_info); 2265 return ret; 2266 } 2267 2268 /* 2269 * Return ROOT_REF information of the subvolume containing this inode 2270 * except the subvolume name. 2271 */ 2272 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2273 void __user *argp) 2274 { 2275 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2276 struct btrfs_root_ref *rref; 2277 struct btrfs_path *path; 2278 struct btrfs_key key; 2279 struct extent_buffer *leaf; 2280 u64 objectid; 2281 int slot; 2282 int ret; 2283 u8 found; 2284 2285 path = btrfs_alloc_path(); 2286 if (!path) 2287 return -ENOMEM; 2288 2289 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2290 if (IS_ERR(rootrefs)) { 2291 btrfs_free_path(path); 2292 return PTR_ERR(rootrefs); 2293 } 2294 2295 objectid = root->root_key.objectid; 2296 key.objectid = objectid; 2297 key.type = BTRFS_ROOT_REF_KEY; 2298 key.offset = rootrefs->min_treeid; 2299 found = 0; 2300 2301 root = root->fs_info->tree_root; 2302 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2303 if (ret < 0) { 2304 goto out; 2305 } else if (path->slots[0] >= 2306 btrfs_header_nritems(path->nodes[0])) { 2307 ret = btrfs_next_leaf(root, path); 2308 if (ret < 0) { 2309 goto out; 2310 } else if (ret > 0) { 2311 ret = -EUCLEAN; 2312 goto out; 2313 } 2314 } 2315 while (1) { 2316 leaf = path->nodes[0]; 2317 slot = path->slots[0]; 2318 2319 btrfs_item_key_to_cpu(leaf, &key, slot); 2320 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2321 ret = 0; 2322 goto out; 2323 } 2324 2325 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2326 ret = -EOVERFLOW; 2327 goto out; 2328 } 2329 2330 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2331 rootrefs->rootref[found].treeid = key.offset; 2332 rootrefs->rootref[found].dirid = 2333 btrfs_root_ref_dirid(leaf, rref); 2334 found++; 2335 2336 ret = btrfs_next_item(root, path); 2337 if (ret < 0) { 2338 goto out; 2339 } else if (ret > 0) { 2340 ret = -EUCLEAN; 2341 goto out; 2342 } 2343 } 2344 2345 out: 2346 btrfs_free_path(path); 2347 2348 if (!ret || ret == -EOVERFLOW) { 2349 rootrefs->num_items = found; 2350 /* update min_treeid for next search */ 2351 if (found) 2352 rootrefs->min_treeid = 2353 rootrefs->rootref[found - 1].treeid + 1; 2354 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2355 ret = -EFAULT; 2356 } 2357 2358 kfree(rootrefs); 2359 2360 return ret; 2361 } 2362 2363 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2364 void __user *arg, 2365 bool destroy_v2) 2366 { 2367 struct dentry *parent = file->f_path.dentry; 2368 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2369 struct dentry *dentry; 2370 struct inode *dir = d_inode(parent); 2371 struct inode *inode; 2372 struct btrfs_root *root = BTRFS_I(dir)->root; 2373 struct btrfs_root *dest = NULL; 2374 struct btrfs_ioctl_vol_args *vol_args = NULL; 2375 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2376 struct mnt_idmap *idmap = file_mnt_idmap(file); 2377 char *subvol_name, *subvol_name_ptr = NULL; 2378 int subvol_namelen; 2379 int err = 0; 2380 bool destroy_parent = false; 2381 2382 /* We don't support snapshots with extent tree v2 yet. */ 2383 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2384 btrfs_err(fs_info, 2385 "extent tree v2 doesn't support snapshot deletion yet"); 2386 return -EOPNOTSUPP; 2387 } 2388 2389 if (destroy_v2) { 2390 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2391 if (IS_ERR(vol_args2)) 2392 return PTR_ERR(vol_args2); 2393 2394 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2395 err = -EOPNOTSUPP; 2396 goto out; 2397 } 2398 2399 /* 2400 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2401 * name, same as v1 currently does. 2402 */ 2403 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2404 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2405 subvol_name = vol_args2->name; 2406 2407 err = mnt_want_write_file(file); 2408 if (err) 2409 goto out; 2410 } else { 2411 struct inode *old_dir; 2412 2413 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2414 err = -EINVAL; 2415 goto out; 2416 } 2417 2418 err = mnt_want_write_file(file); 2419 if (err) 2420 goto out; 2421 2422 dentry = btrfs_get_dentry(fs_info->sb, 2423 BTRFS_FIRST_FREE_OBJECTID, 2424 vol_args2->subvolid, 0); 2425 if (IS_ERR(dentry)) { 2426 err = PTR_ERR(dentry); 2427 goto out_drop_write; 2428 } 2429 2430 /* 2431 * Change the default parent since the subvolume being 2432 * deleted can be outside of the current mount point. 2433 */ 2434 parent = btrfs_get_parent(dentry); 2435 2436 /* 2437 * At this point dentry->d_name can point to '/' if the 2438 * subvolume we want to destroy is outsite of the 2439 * current mount point, so we need to release the 2440 * current dentry and execute the lookup to return a new 2441 * one with ->d_name pointing to the 2442 * <mount point>/subvol_name. 2443 */ 2444 dput(dentry); 2445 if (IS_ERR(parent)) { 2446 err = PTR_ERR(parent); 2447 goto out_drop_write; 2448 } 2449 old_dir = dir; 2450 dir = d_inode(parent); 2451 2452 /* 2453 * If v2 was used with SPEC_BY_ID, a new parent was 2454 * allocated since the subvolume can be outside of the 2455 * current mount point. Later on we need to release this 2456 * new parent dentry. 2457 */ 2458 destroy_parent = true; 2459 2460 /* 2461 * On idmapped mounts, deletion via subvolid is 2462 * restricted to subvolumes that are immediate 2463 * ancestors of the inode referenced by the file 2464 * descriptor in the ioctl. Otherwise the idmapping 2465 * could potentially be abused to delete subvolumes 2466 * anywhere in the filesystem the user wouldn't be able 2467 * to delete without an idmapped mount. 2468 */ 2469 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2470 err = -EOPNOTSUPP; 2471 goto free_parent; 2472 } 2473 2474 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2475 fs_info, vol_args2->subvolid); 2476 if (IS_ERR(subvol_name_ptr)) { 2477 err = PTR_ERR(subvol_name_ptr); 2478 goto free_parent; 2479 } 2480 /* subvol_name_ptr is already nul terminated */ 2481 subvol_name = (char *)kbasename(subvol_name_ptr); 2482 } 2483 } else { 2484 vol_args = memdup_user(arg, sizeof(*vol_args)); 2485 if (IS_ERR(vol_args)) 2486 return PTR_ERR(vol_args); 2487 2488 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2489 subvol_name = vol_args->name; 2490 2491 err = mnt_want_write_file(file); 2492 if (err) 2493 goto out; 2494 } 2495 2496 subvol_namelen = strlen(subvol_name); 2497 2498 if (strchr(subvol_name, '/') || 2499 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2500 err = -EINVAL; 2501 goto free_subvol_name; 2502 } 2503 2504 if (!S_ISDIR(dir->i_mode)) { 2505 err = -ENOTDIR; 2506 goto free_subvol_name; 2507 } 2508 2509 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2510 if (err == -EINTR) 2511 goto free_subvol_name; 2512 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen); 2513 if (IS_ERR(dentry)) { 2514 err = PTR_ERR(dentry); 2515 goto out_unlock_dir; 2516 } 2517 2518 if (d_really_is_negative(dentry)) { 2519 err = -ENOENT; 2520 goto out_dput; 2521 } 2522 2523 inode = d_inode(dentry); 2524 dest = BTRFS_I(inode)->root; 2525 if (!capable(CAP_SYS_ADMIN)) { 2526 /* 2527 * Regular user. Only allow this with a special mount 2528 * option, when the user has write+exec access to the 2529 * subvol root, and when rmdir(2) would have been 2530 * allowed. 2531 * 2532 * Note that this is _not_ check that the subvol is 2533 * empty or doesn't contain data that we wouldn't 2534 * otherwise be able to delete. 2535 * 2536 * Users who want to delete empty subvols should try 2537 * rmdir(2). 2538 */ 2539 err = -EPERM; 2540 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2541 goto out_dput; 2542 2543 /* 2544 * Do not allow deletion if the parent dir is the same 2545 * as the dir to be deleted. That means the ioctl 2546 * must be called on the dentry referencing the root 2547 * of the subvol, not a random directory contained 2548 * within it. 2549 */ 2550 err = -EINVAL; 2551 if (root == dest) 2552 goto out_dput; 2553 2554 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2555 if (err) 2556 goto out_dput; 2557 } 2558 2559 /* check if subvolume may be deleted by a user */ 2560 err = btrfs_may_delete(idmap, dir, dentry, 1); 2561 if (err) 2562 goto out_dput; 2563 2564 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2565 err = -EINVAL; 2566 goto out_dput; 2567 } 2568 2569 btrfs_inode_lock(BTRFS_I(inode), 0); 2570 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2571 btrfs_inode_unlock(BTRFS_I(inode), 0); 2572 if (!err) 2573 d_delete_notify(dir, dentry); 2574 2575 out_dput: 2576 dput(dentry); 2577 out_unlock_dir: 2578 btrfs_inode_unlock(BTRFS_I(dir), 0); 2579 free_subvol_name: 2580 kfree(subvol_name_ptr); 2581 free_parent: 2582 if (destroy_parent) 2583 dput(parent); 2584 out_drop_write: 2585 mnt_drop_write_file(file); 2586 out: 2587 kfree(vol_args2); 2588 kfree(vol_args); 2589 return err; 2590 } 2591 2592 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2593 { 2594 struct inode *inode = file_inode(file); 2595 struct btrfs_root *root = BTRFS_I(inode)->root; 2596 struct btrfs_ioctl_defrag_range_args range = {0}; 2597 int ret; 2598 2599 ret = mnt_want_write_file(file); 2600 if (ret) 2601 return ret; 2602 2603 if (btrfs_root_readonly(root)) { 2604 ret = -EROFS; 2605 goto out; 2606 } 2607 2608 switch (inode->i_mode & S_IFMT) { 2609 case S_IFDIR: 2610 if (!capable(CAP_SYS_ADMIN)) { 2611 ret = -EPERM; 2612 goto out; 2613 } 2614 ret = btrfs_defrag_root(root); 2615 break; 2616 case S_IFREG: 2617 /* 2618 * Note that this does not check the file descriptor for write 2619 * access. This prevents defragmenting executables that are 2620 * running and allows defrag on files open in read-only mode. 2621 */ 2622 if (!capable(CAP_SYS_ADMIN) && 2623 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2624 ret = -EPERM; 2625 goto out; 2626 } 2627 2628 if (argp) { 2629 if (copy_from_user(&range, argp, sizeof(range))) { 2630 ret = -EFAULT; 2631 goto out; 2632 } 2633 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) { 2634 ret = -EOPNOTSUPP; 2635 goto out; 2636 } 2637 /* compression requires us to start the IO */ 2638 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2639 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2640 range.extent_thresh = (u32)-1; 2641 } 2642 } else { 2643 /* the rest are all set to zero by kzalloc */ 2644 range.len = (u64)-1; 2645 } 2646 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2647 &range, BTRFS_OLDEST_GENERATION, 0); 2648 if (ret > 0) 2649 ret = 0; 2650 break; 2651 default: 2652 ret = -EINVAL; 2653 } 2654 out: 2655 mnt_drop_write_file(file); 2656 return ret; 2657 } 2658 2659 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2660 { 2661 struct btrfs_ioctl_vol_args *vol_args; 2662 bool restore_op = false; 2663 int ret; 2664 2665 if (!capable(CAP_SYS_ADMIN)) 2666 return -EPERM; 2667 2668 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2669 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2670 return -EINVAL; 2671 } 2672 2673 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2674 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2675 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2676 2677 /* 2678 * We can do the device add because we have a paused balanced, 2679 * change the exclusive op type and remember we should bring 2680 * back the paused balance 2681 */ 2682 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2683 btrfs_exclop_start_unlock(fs_info); 2684 restore_op = true; 2685 } 2686 2687 vol_args = memdup_user(arg, sizeof(*vol_args)); 2688 if (IS_ERR(vol_args)) { 2689 ret = PTR_ERR(vol_args); 2690 goto out; 2691 } 2692 2693 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2694 ret = btrfs_init_new_device(fs_info, vol_args->name); 2695 2696 if (!ret) 2697 btrfs_info(fs_info, "disk added %s", vol_args->name); 2698 2699 kfree(vol_args); 2700 out: 2701 if (restore_op) 2702 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2703 else 2704 btrfs_exclop_finish(fs_info); 2705 return ret; 2706 } 2707 2708 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2709 { 2710 BTRFS_DEV_LOOKUP_ARGS(args); 2711 struct inode *inode = file_inode(file); 2712 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2713 struct btrfs_ioctl_vol_args_v2 *vol_args; 2714 struct block_device *bdev = NULL; 2715 void *holder; 2716 int ret; 2717 bool cancel = false; 2718 2719 if (!capable(CAP_SYS_ADMIN)) 2720 return -EPERM; 2721 2722 vol_args = memdup_user(arg, sizeof(*vol_args)); 2723 if (IS_ERR(vol_args)) 2724 return PTR_ERR(vol_args); 2725 2726 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2727 ret = -EOPNOTSUPP; 2728 goto out; 2729 } 2730 2731 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2732 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2733 args.devid = vol_args->devid; 2734 } else if (!strcmp("cancel", vol_args->name)) { 2735 cancel = true; 2736 } else { 2737 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2738 if (ret) 2739 goto out; 2740 } 2741 2742 ret = mnt_want_write_file(file); 2743 if (ret) 2744 goto out; 2745 2746 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2747 cancel); 2748 if (ret) 2749 goto err_drop; 2750 2751 /* Exclusive operation is now claimed */ 2752 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder); 2753 2754 btrfs_exclop_finish(fs_info); 2755 2756 if (!ret) { 2757 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2758 btrfs_info(fs_info, "device deleted: id %llu", 2759 vol_args->devid); 2760 else 2761 btrfs_info(fs_info, "device deleted: %s", 2762 vol_args->name); 2763 } 2764 err_drop: 2765 mnt_drop_write_file(file); 2766 if (bdev) 2767 blkdev_put(bdev, holder); 2768 out: 2769 btrfs_put_dev_args_from_path(&args); 2770 kfree(vol_args); 2771 return ret; 2772 } 2773 2774 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2775 { 2776 BTRFS_DEV_LOOKUP_ARGS(args); 2777 struct inode *inode = file_inode(file); 2778 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2779 struct btrfs_ioctl_vol_args *vol_args; 2780 struct block_device *bdev = NULL; 2781 void *holder; 2782 int ret; 2783 bool cancel = false; 2784 2785 if (!capable(CAP_SYS_ADMIN)) 2786 return -EPERM; 2787 2788 vol_args = memdup_user(arg, sizeof(*vol_args)); 2789 if (IS_ERR(vol_args)) 2790 return PTR_ERR(vol_args); 2791 2792 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2793 if (!strcmp("cancel", vol_args->name)) { 2794 cancel = true; 2795 } else { 2796 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2797 if (ret) 2798 goto out; 2799 } 2800 2801 ret = mnt_want_write_file(file); 2802 if (ret) 2803 goto out; 2804 2805 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2806 cancel); 2807 if (ret == 0) { 2808 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder); 2809 if (!ret) 2810 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2811 btrfs_exclop_finish(fs_info); 2812 } 2813 2814 mnt_drop_write_file(file); 2815 if (bdev) 2816 blkdev_put(bdev, holder); 2817 out: 2818 btrfs_put_dev_args_from_path(&args); 2819 kfree(vol_args); 2820 return ret; 2821 } 2822 2823 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2824 void __user *arg) 2825 { 2826 struct btrfs_ioctl_fs_info_args *fi_args; 2827 struct btrfs_device *device; 2828 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2829 u64 flags_in; 2830 int ret = 0; 2831 2832 fi_args = memdup_user(arg, sizeof(*fi_args)); 2833 if (IS_ERR(fi_args)) 2834 return PTR_ERR(fi_args); 2835 2836 flags_in = fi_args->flags; 2837 memset(fi_args, 0, sizeof(*fi_args)); 2838 2839 rcu_read_lock(); 2840 fi_args->num_devices = fs_devices->num_devices; 2841 2842 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2843 if (device->devid > fi_args->max_id) 2844 fi_args->max_id = device->devid; 2845 } 2846 rcu_read_unlock(); 2847 2848 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2849 fi_args->nodesize = fs_info->nodesize; 2850 fi_args->sectorsize = fs_info->sectorsize; 2851 fi_args->clone_alignment = fs_info->sectorsize; 2852 2853 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2854 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2855 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2856 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2857 } 2858 2859 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2860 fi_args->generation = fs_info->generation; 2861 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2862 } 2863 2864 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2865 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2866 sizeof(fi_args->metadata_uuid)); 2867 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2868 } 2869 2870 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2871 ret = -EFAULT; 2872 2873 kfree(fi_args); 2874 return ret; 2875 } 2876 2877 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2878 void __user *arg) 2879 { 2880 BTRFS_DEV_LOOKUP_ARGS(args); 2881 struct btrfs_ioctl_dev_info_args *di_args; 2882 struct btrfs_device *dev; 2883 int ret = 0; 2884 2885 di_args = memdup_user(arg, sizeof(*di_args)); 2886 if (IS_ERR(di_args)) 2887 return PTR_ERR(di_args); 2888 2889 args.devid = di_args->devid; 2890 if (!btrfs_is_empty_uuid(di_args->uuid)) 2891 args.uuid = di_args->uuid; 2892 2893 rcu_read_lock(); 2894 dev = btrfs_find_device(fs_info->fs_devices, &args); 2895 if (!dev) { 2896 ret = -ENODEV; 2897 goto out; 2898 } 2899 2900 di_args->devid = dev->devid; 2901 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2902 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2903 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2904 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2905 if (dev->name) 2906 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2907 else 2908 di_args->path[0] = '\0'; 2909 2910 out: 2911 rcu_read_unlock(); 2912 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2913 ret = -EFAULT; 2914 2915 kfree(di_args); 2916 return ret; 2917 } 2918 2919 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2920 { 2921 struct inode *inode = file_inode(file); 2922 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2923 struct btrfs_root *root = BTRFS_I(inode)->root; 2924 struct btrfs_root *new_root; 2925 struct btrfs_dir_item *di; 2926 struct btrfs_trans_handle *trans; 2927 struct btrfs_path *path = NULL; 2928 struct btrfs_disk_key disk_key; 2929 struct fscrypt_str name = FSTR_INIT("default", 7); 2930 u64 objectid = 0; 2931 u64 dir_id; 2932 int ret; 2933 2934 if (!capable(CAP_SYS_ADMIN)) 2935 return -EPERM; 2936 2937 ret = mnt_want_write_file(file); 2938 if (ret) 2939 return ret; 2940 2941 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2942 ret = -EFAULT; 2943 goto out; 2944 } 2945 2946 if (!objectid) 2947 objectid = BTRFS_FS_TREE_OBJECTID; 2948 2949 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2950 if (IS_ERR(new_root)) { 2951 ret = PTR_ERR(new_root); 2952 goto out; 2953 } 2954 if (!is_fstree(new_root->root_key.objectid)) { 2955 ret = -ENOENT; 2956 goto out_free; 2957 } 2958 2959 path = btrfs_alloc_path(); 2960 if (!path) { 2961 ret = -ENOMEM; 2962 goto out_free; 2963 } 2964 2965 trans = btrfs_start_transaction(root, 1); 2966 if (IS_ERR(trans)) { 2967 ret = PTR_ERR(trans); 2968 goto out_free; 2969 } 2970 2971 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2972 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2973 dir_id, &name, 1); 2974 if (IS_ERR_OR_NULL(di)) { 2975 btrfs_release_path(path); 2976 btrfs_end_transaction(trans); 2977 btrfs_err(fs_info, 2978 "Umm, you don't have the default diritem, this isn't going to work"); 2979 ret = -ENOENT; 2980 goto out_free; 2981 } 2982 2983 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2984 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2985 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 2986 btrfs_release_path(path); 2987 2988 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 2989 btrfs_end_transaction(trans); 2990 out_free: 2991 btrfs_put_root(new_root); 2992 btrfs_free_path(path); 2993 out: 2994 mnt_drop_write_file(file); 2995 return ret; 2996 } 2997 2998 static void get_block_group_info(struct list_head *groups_list, 2999 struct btrfs_ioctl_space_info *space) 3000 { 3001 struct btrfs_block_group *block_group; 3002 3003 space->total_bytes = 0; 3004 space->used_bytes = 0; 3005 space->flags = 0; 3006 list_for_each_entry(block_group, groups_list, list) { 3007 space->flags = block_group->flags; 3008 space->total_bytes += block_group->length; 3009 space->used_bytes += block_group->used; 3010 } 3011 } 3012 3013 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3014 void __user *arg) 3015 { 3016 struct btrfs_ioctl_space_args space_args = { 0 }; 3017 struct btrfs_ioctl_space_info space; 3018 struct btrfs_ioctl_space_info *dest; 3019 struct btrfs_ioctl_space_info *dest_orig; 3020 struct btrfs_ioctl_space_info __user *user_dest; 3021 struct btrfs_space_info *info; 3022 static const u64 types[] = { 3023 BTRFS_BLOCK_GROUP_DATA, 3024 BTRFS_BLOCK_GROUP_SYSTEM, 3025 BTRFS_BLOCK_GROUP_METADATA, 3026 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3027 }; 3028 int num_types = 4; 3029 int alloc_size; 3030 int ret = 0; 3031 u64 slot_count = 0; 3032 int i, c; 3033 3034 if (copy_from_user(&space_args, 3035 (struct btrfs_ioctl_space_args __user *)arg, 3036 sizeof(space_args))) 3037 return -EFAULT; 3038 3039 for (i = 0; i < num_types; i++) { 3040 struct btrfs_space_info *tmp; 3041 3042 info = NULL; 3043 list_for_each_entry(tmp, &fs_info->space_info, list) { 3044 if (tmp->flags == types[i]) { 3045 info = tmp; 3046 break; 3047 } 3048 } 3049 3050 if (!info) 3051 continue; 3052 3053 down_read(&info->groups_sem); 3054 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3055 if (!list_empty(&info->block_groups[c])) 3056 slot_count++; 3057 } 3058 up_read(&info->groups_sem); 3059 } 3060 3061 /* 3062 * Global block reserve, exported as a space_info 3063 */ 3064 slot_count++; 3065 3066 /* space_slots == 0 means they are asking for a count */ 3067 if (space_args.space_slots == 0) { 3068 space_args.total_spaces = slot_count; 3069 goto out; 3070 } 3071 3072 slot_count = min_t(u64, space_args.space_slots, slot_count); 3073 3074 alloc_size = sizeof(*dest) * slot_count; 3075 3076 /* we generally have at most 6 or so space infos, one for each raid 3077 * level. So, a whole page should be more than enough for everyone 3078 */ 3079 if (alloc_size > PAGE_SIZE) 3080 return -ENOMEM; 3081 3082 space_args.total_spaces = 0; 3083 dest = kmalloc(alloc_size, GFP_KERNEL); 3084 if (!dest) 3085 return -ENOMEM; 3086 dest_orig = dest; 3087 3088 /* now we have a buffer to copy into */ 3089 for (i = 0; i < num_types; i++) { 3090 struct btrfs_space_info *tmp; 3091 3092 if (!slot_count) 3093 break; 3094 3095 info = NULL; 3096 list_for_each_entry(tmp, &fs_info->space_info, list) { 3097 if (tmp->flags == types[i]) { 3098 info = tmp; 3099 break; 3100 } 3101 } 3102 3103 if (!info) 3104 continue; 3105 down_read(&info->groups_sem); 3106 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3107 if (!list_empty(&info->block_groups[c])) { 3108 get_block_group_info(&info->block_groups[c], 3109 &space); 3110 memcpy(dest, &space, sizeof(space)); 3111 dest++; 3112 space_args.total_spaces++; 3113 slot_count--; 3114 } 3115 if (!slot_count) 3116 break; 3117 } 3118 up_read(&info->groups_sem); 3119 } 3120 3121 /* 3122 * Add global block reserve 3123 */ 3124 if (slot_count) { 3125 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3126 3127 spin_lock(&block_rsv->lock); 3128 space.total_bytes = block_rsv->size; 3129 space.used_bytes = block_rsv->size - block_rsv->reserved; 3130 spin_unlock(&block_rsv->lock); 3131 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3132 memcpy(dest, &space, sizeof(space)); 3133 space_args.total_spaces++; 3134 } 3135 3136 user_dest = (struct btrfs_ioctl_space_info __user *) 3137 (arg + sizeof(struct btrfs_ioctl_space_args)); 3138 3139 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3140 ret = -EFAULT; 3141 3142 kfree(dest_orig); 3143 out: 3144 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3145 ret = -EFAULT; 3146 3147 return ret; 3148 } 3149 3150 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3151 void __user *argp) 3152 { 3153 struct btrfs_trans_handle *trans; 3154 u64 transid; 3155 3156 /* 3157 * Start orphan cleanup here for the given root in case it hasn't been 3158 * started already by other means. Errors are handled in the other 3159 * functions during transaction commit. 3160 */ 3161 btrfs_orphan_cleanup(root); 3162 3163 trans = btrfs_attach_transaction_barrier(root); 3164 if (IS_ERR(trans)) { 3165 if (PTR_ERR(trans) != -ENOENT) 3166 return PTR_ERR(trans); 3167 3168 /* No running transaction, don't bother */ 3169 transid = root->fs_info->last_trans_committed; 3170 goto out; 3171 } 3172 transid = trans->transid; 3173 btrfs_commit_transaction_async(trans); 3174 out: 3175 if (argp) 3176 if (copy_to_user(argp, &transid, sizeof(transid))) 3177 return -EFAULT; 3178 return 0; 3179 } 3180 3181 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3182 void __user *argp) 3183 { 3184 /* By default wait for the current transaction. */ 3185 u64 transid = 0; 3186 3187 if (argp) 3188 if (copy_from_user(&transid, argp, sizeof(transid))) 3189 return -EFAULT; 3190 3191 return btrfs_wait_for_commit(fs_info, transid); 3192 } 3193 3194 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3195 { 3196 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3197 struct btrfs_ioctl_scrub_args *sa; 3198 int ret; 3199 3200 if (!capable(CAP_SYS_ADMIN)) 3201 return -EPERM; 3202 3203 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3204 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3205 return -EINVAL; 3206 } 3207 3208 sa = memdup_user(arg, sizeof(*sa)); 3209 if (IS_ERR(sa)) 3210 return PTR_ERR(sa); 3211 3212 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3213 ret = -EOPNOTSUPP; 3214 goto out; 3215 } 3216 3217 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3218 ret = mnt_want_write_file(file); 3219 if (ret) 3220 goto out; 3221 } 3222 3223 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3224 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3225 0); 3226 3227 /* 3228 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3229 * error. This is important as it allows user space to know how much 3230 * progress scrub has done. For example, if scrub is canceled we get 3231 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3232 * space. Later user space can inspect the progress from the structure 3233 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3234 * previously (btrfs-progs does this). 3235 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3236 * then return -EFAULT to signal the structure was not copied or it may 3237 * be corrupt and unreliable due to a partial copy. 3238 */ 3239 if (copy_to_user(arg, sa, sizeof(*sa))) 3240 ret = -EFAULT; 3241 3242 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3243 mnt_drop_write_file(file); 3244 out: 3245 kfree(sa); 3246 return ret; 3247 } 3248 3249 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3250 { 3251 if (!capable(CAP_SYS_ADMIN)) 3252 return -EPERM; 3253 3254 return btrfs_scrub_cancel(fs_info); 3255 } 3256 3257 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3258 void __user *arg) 3259 { 3260 struct btrfs_ioctl_scrub_args *sa; 3261 int ret; 3262 3263 if (!capable(CAP_SYS_ADMIN)) 3264 return -EPERM; 3265 3266 sa = memdup_user(arg, sizeof(*sa)); 3267 if (IS_ERR(sa)) 3268 return PTR_ERR(sa); 3269 3270 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3271 3272 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3273 ret = -EFAULT; 3274 3275 kfree(sa); 3276 return ret; 3277 } 3278 3279 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3280 void __user *arg) 3281 { 3282 struct btrfs_ioctl_get_dev_stats *sa; 3283 int ret; 3284 3285 sa = memdup_user(arg, sizeof(*sa)); 3286 if (IS_ERR(sa)) 3287 return PTR_ERR(sa); 3288 3289 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3290 kfree(sa); 3291 return -EPERM; 3292 } 3293 3294 ret = btrfs_get_dev_stats(fs_info, sa); 3295 3296 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3297 ret = -EFAULT; 3298 3299 kfree(sa); 3300 return ret; 3301 } 3302 3303 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3304 void __user *arg) 3305 { 3306 struct btrfs_ioctl_dev_replace_args *p; 3307 int ret; 3308 3309 if (!capable(CAP_SYS_ADMIN)) 3310 return -EPERM; 3311 3312 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3313 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3314 return -EINVAL; 3315 } 3316 3317 p = memdup_user(arg, sizeof(*p)); 3318 if (IS_ERR(p)) 3319 return PTR_ERR(p); 3320 3321 switch (p->cmd) { 3322 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3323 if (sb_rdonly(fs_info->sb)) { 3324 ret = -EROFS; 3325 goto out; 3326 } 3327 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3328 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3329 } else { 3330 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3331 btrfs_exclop_finish(fs_info); 3332 } 3333 break; 3334 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3335 btrfs_dev_replace_status(fs_info, p); 3336 ret = 0; 3337 break; 3338 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3339 p->result = btrfs_dev_replace_cancel(fs_info); 3340 ret = 0; 3341 break; 3342 default: 3343 ret = -EINVAL; 3344 break; 3345 } 3346 3347 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3348 ret = -EFAULT; 3349 out: 3350 kfree(p); 3351 return ret; 3352 } 3353 3354 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3355 { 3356 int ret = 0; 3357 int i; 3358 u64 rel_ptr; 3359 int size; 3360 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3361 struct inode_fs_paths *ipath = NULL; 3362 struct btrfs_path *path; 3363 3364 if (!capable(CAP_DAC_READ_SEARCH)) 3365 return -EPERM; 3366 3367 path = btrfs_alloc_path(); 3368 if (!path) { 3369 ret = -ENOMEM; 3370 goto out; 3371 } 3372 3373 ipa = memdup_user(arg, sizeof(*ipa)); 3374 if (IS_ERR(ipa)) { 3375 ret = PTR_ERR(ipa); 3376 ipa = NULL; 3377 goto out; 3378 } 3379 3380 size = min_t(u32, ipa->size, 4096); 3381 ipath = init_ipath(size, root, path); 3382 if (IS_ERR(ipath)) { 3383 ret = PTR_ERR(ipath); 3384 ipath = NULL; 3385 goto out; 3386 } 3387 3388 ret = paths_from_inode(ipa->inum, ipath); 3389 if (ret < 0) 3390 goto out; 3391 3392 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3393 rel_ptr = ipath->fspath->val[i] - 3394 (u64)(unsigned long)ipath->fspath->val; 3395 ipath->fspath->val[i] = rel_ptr; 3396 } 3397 3398 btrfs_free_path(path); 3399 path = NULL; 3400 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3401 ipath->fspath, size); 3402 if (ret) { 3403 ret = -EFAULT; 3404 goto out; 3405 } 3406 3407 out: 3408 btrfs_free_path(path); 3409 free_ipath(ipath); 3410 kfree(ipa); 3411 3412 return ret; 3413 } 3414 3415 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3416 void __user *arg, int version) 3417 { 3418 int ret = 0; 3419 int size; 3420 struct btrfs_ioctl_logical_ino_args *loi; 3421 struct btrfs_data_container *inodes = NULL; 3422 struct btrfs_path *path = NULL; 3423 bool ignore_offset; 3424 3425 if (!capable(CAP_SYS_ADMIN)) 3426 return -EPERM; 3427 3428 loi = memdup_user(arg, sizeof(*loi)); 3429 if (IS_ERR(loi)) 3430 return PTR_ERR(loi); 3431 3432 if (version == 1) { 3433 ignore_offset = false; 3434 size = min_t(u32, loi->size, SZ_64K); 3435 } else { 3436 /* All reserved bits must be 0 for now */ 3437 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3438 ret = -EINVAL; 3439 goto out_loi; 3440 } 3441 /* Only accept flags we have defined so far */ 3442 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3443 ret = -EINVAL; 3444 goto out_loi; 3445 } 3446 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3447 size = min_t(u32, loi->size, SZ_16M); 3448 } 3449 3450 inodes = init_data_container(size); 3451 if (IS_ERR(inodes)) { 3452 ret = PTR_ERR(inodes); 3453 goto out_loi; 3454 } 3455 3456 path = btrfs_alloc_path(); 3457 if (!path) { 3458 ret = -ENOMEM; 3459 goto out; 3460 } 3461 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3462 inodes, ignore_offset); 3463 btrfs_free_path(path); 3464 if (ret == -EINVAL) 3465 ret = -ENOENT; 3466 if (ret < 0) 3467 goto out; 3468 3469 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3470 size); 3471 if (ret) 3472 ret = -EFAULT; 3473 3474 out: 3475 kvfree(inodes); 3476 out_loi: 3477 kfree(loi); 3478 3479 return ret; 3480 } 3481 3482 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3483 struct btrfs_ioctl_balance_args *bargs) 3484 { 3485 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3486 3487 bargs->flags = bctl->flags; 3488 3489 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3490 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3491 if (atomic_read(&fs_info->balance_pause_req)) 3492 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3493 if (atomic_read(&fs_info->balance_cancel_req)) 3494 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3495 3496 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3497 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3498 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3499 3500 spin_lock(&fs_info->balance_lock); 3501 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3502 spin_unlock(&fs_info->balance_lock); 3503 } 3504 3505 /* 3506 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3507 * required. 3508 * 3509 * @fs_info: the filesystem 3510 * @excl_acquired: ptr to boolean value which is set to false in case balance 3511 * is being resumed 3512 * 3513 * Return 0 on success in which case both fs_info::balance is acquired as well 3514 * as exclusive ops are blocked. In case of failure return an error code. 3515 */ 3516 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3517 { 3518 int ret; 3519 3520 /* 3521 * Exclusive operation is locked. Three possibilities: 3522 * (1) some other op is running 3523 * (2) balance is running 3524 * (3) balance is paused -- special case (think resume) 3525 */ 3526 while (1) { 3527 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3528 *excl_acquired = true; 3529 mutex_lock(&fs_info->balance_mutex); 3530 return 0; 3531 } 3532 3533 mutex_lock(&fs_info->balance_mutex); 3534 if (fs_info->balance_ctl) { 3535 /* This is either (2) or (3) */ 3536 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3537 /* This is (2) */ 3538 ret = -EINPROGRESS; 3539 goto out_failure; 3540 3541 } else { 3542 mutex_unlock(&fs_info->balance_mutex); 3543 /* 3544 * Lock released to allow other waiters to 3545 * continue, we'll reexamine the status again. 3546 */ 3547 mutex_lock(&fs_info->balance_mutex); 3548 3549 if (fs_info->balance_ctl && 3550 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3551 /* This is (3) */ 3552 *excl_acquired = false; 3553 return 0; 3554 } 3555 } 3556 } else { 3557 /* This is (1) */ 3558 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3559 goto out_failure; 3560 } 3561 3562 mutex_unlock(&fs_info->balance_mutex); 3563 } 3564 3565 out_failure: 3566 mutex_unlock(&fs_info->balance_mutex); 3567 *excl_acquired = false; 3568 return ret; 3569 } 3570 3571 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3572 { 3573 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3574 struct btrfs_fs_info *fs_info = root->fs_info; 3575 struct btrfs_ioctl_balance_args *bargs; 3576 struct btrfs_balance_control *bctl; 3577 bool need_unlock = true; 3578 int ret; 3579 3580 if (!capable(CAP_SYS_ADMIN)) 3581 return -EPERM; 3582 3583 ret = mnt_want_write_file(file); 3584 if (ret) 3585 return ret; 3586 3587 bargs = memdup_user(arg, sizeof(*bargs)); 3588 if (IS_ERR(bargs)) { 3589 ret = PTR_ERR(bargs); 3590 bargs = NULL; 3591 goto out; 3592 } 3593 3594 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3595 if (ret) 3596 goto out; 3597 3598 lockdep_assert_held(&fs_info->balance_mutex); 3599 3600 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3601 if (!fs_info->balance_ctl) { 3602 ret = -ENOTCONN; 3603 goto out_unlock; 3604 } 3605 3606 bctl = fs_info->balance_ctl; 3607 spin_lock(&fs_info->balance_lock); 3608 bctl->flags |= BTRFS_BALANCE_RESUME; 3609 spin_unlock(&fs_info->balance_lock); 3610 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3611 3612 goto do_balance; 3613 } 3614 3615 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3616 ret = -EINVAL; 3617 goto out_unlock; 3618 } 3619 3620 if (fs_info->balance_ctl) { 3621 ret = -EINPROGRESS; 3622 goto out_unlock; 3623 } 3624 3625 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3626 if (!bctl) { 3627 ret = -ENOMEM; 3628 goto out_unlock; 3629 } 3630 3631 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3632 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3633 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3634 3635 bctl->flags = bargs->flags; 3636 do_balance: 3637 /* 3638 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3639 * bctl is freed in reset_balance_state, or, if restriper was paused 3640 * all the way until unmount, in free_fs_info. The flag should be 3641 * cleared after reset_balance_state. 3642 */ 3643 need_unlock = false; 3644 3645 ret = btrfs_balance(fs_info, bctl, bargs); 3646 bctl = NULL; 3647 3648 if (ret == 0 || ret == -ECANCELED) { 3649 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3650 ret = -EFAULT; 3651 } 3652 3653 kfree(bctl); 3654 out_unlock: 3655 mutex_unlock(&fs_info->balance_mutex); 3656 if (need_unlock) 3657 btrfs_exclop_finish(fs_info); 3658 out: 3659 mnt_drop_write_file(file); 3660 kfree(bargs); 3661 return ret; 3662 } 3663 3664 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3665 { 3666 if (!capable(CAP_SYS_ADMIN)) 3667 return -EPERM; 3668 3669 switch (cmd) { 3670 case BTRFS_BALANCE_CTL_PAUSE: 3671 return btrfs_pause_balance(fs_info); 3672 case BTRFS_BALANCE_CTL_CANCEL: 3673 return btrfs_cancel_balance(fs_info); 3674 } 3675 3676 return -EINVAL; 3677 } 3678 3679 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3680 void __user *arg) 3681 { 3682 struct btrfs_ioctl_balance_args *bargs; 3683 int ret = 0; 3684 3685 if (!capable(CAP_SYS_ADMIN)) 3686 return -EPERM; 3687 3688 mutex_lock(&fs_info->balance_mutex); 3689 if (!fs_info->balance_ctl) { 3690 ret = -ENOTCONN; 3691 goto out; 3692 } 3693 3694 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3695 if (!bargs) { 3696 ret = -ENOMEM; 3697 goto out; 3698 } 3699 3700 btrfs_update_ioctl_balance_args(fs_info, bargs); 3701 3702 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3703 ret = -EFAULT; 3704 3705 kfree(bargs); 3706 out: 3707 mutex_unlock(&fs_info->balance_mutex); 3708 return ret; 3709 } 3710 3711 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3712 { 3713 struct inode *inode = file_inode(file); 3714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3715 struct btrfs_ioctl_quota_ctl_args *sa; 3716 int ret; 3717 3718 if (!capable(CAP_SYS_ADMIN)) 3719 return -EPERM; 3720 3721 ret = mnt_want_write_file(file); 3722 if (ret) 3723 return ret; 3724 3725 sa = memdup_user(arg, sizeof(*sa)); 3726 if (IS_ERR(sa)) { 3727 ret = PTR_ERR(sa); 3728 goto drop_write; 3729 } 3730 3731 down_write(&fs_info->subvol_sem); 3732 3733 switch (sa->cmd) { 3734 case BTRFS_QUOTA_CTL_ENABLE: 3735 ret = btrfs_quota_enable(fs_info); 3736 break; 3737 case BTRFS_QUOTA_CTL_DISABLE: 3738 ret = btrfs_quota_disable(fs_info); 3739 break; 3740 default: 3741 ret = -EINVAL; 3742 break; 3743 } 3744 3745 kfree(sa); 3746 up_write(&fs_info->subvol_sem); 3747 drop_write: 3748 mnt_drop_write_file(file); 3749 return ret; 3750 } 3751 3752 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3753 { 3754 struct inode *inode = file_inode(file); 3755 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3756 struct btrfs_root *root = BTRFS_I(inode)->root; 3757 struct btrfs_ioctl_qgroup_assign_args *sa; 3758 struct btrfs_trans_handle *trans; 3759 int ret; 3760 int err; 3761 3762 if (!capable(CAP_SYS_ADMIN)) 3763 return -EPERM; 3764 3765 ret = mnt_want_write_file(file); 3766 if (ret) 3767 return ret; 3768 3769 sa = memdup_user(arg, sizeof(*sa)); 3770 if (IS_ERR(sa)) { 3771 ret = PTR_ERR(sa); 3772 goto drop_write; 3773 } 3774 3775 trans = btrfs_join_transaction(root); 3776 if (IS_ERR(trans)) { 3777 ret = PTR_ERR(trans); 3778 goto out; 3779 } 3780 3781 if (sa->assign) { 3782 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 3783 } else { 3784 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3785 } 3786 3787 /* update qgroup status and info */ 3788 mutex_lock(&fs_info->qgroup_ioctl_lock); 3789 err = btrfs_run_qgroups(trans); 3790 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3791 if (err < 0) 3792 btrfs_handle_fs_error(fs_info, err, 3793 "failed to update qgroup status and info"); 3794 err = btrfs_end_transaction(trans); 3795 if (err && !ret) 3796 ret = err; 3797 3798 out: 3799 kfree(sa); 3800 drop_write: 3801 mnt_drop_write_file(file); 3802 return ret; 3803 } 3804 3805 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3806 { 3807 struct inode *inode = file_inode(file); 3808 struct btrfs_root *root = BTRFS_I(inode)->root; 3809 struct btrfs_ioctl_qgroup_create_args *sa; 3810 struct btrfs_trans_handle *trans; 3811 int ret; 3812 int err; 3813 3814 if (!capable(CAP_SYS_ADMIN)) 3815 return -EPERM; 3816 3817 ret = mnt_want_write_file(file); 3818 if (ret) 3819 return ret; 3820 3821 sa = memdup_user(arg, sizeof(*sa)); 3822 if (IS_ERR(sa)) { 3823 ret = PTR_ERR(sa); 3824 goto drop_write; 3825 } 3826 3827 if (!sa->qgroupid) { 3828 ret = -EINVAL; 3829 goto out; 3830 } 3831 3832 if (sa->create && is_fstree(sa->qgroupid)) { 3833 ret = -EINVAL; 3834 goto out; 3835 } 3836 3837 trans = btrfs_join_transaction(root); 3838 if (IS_ERR(trans)) { 3839 ret = PTR_ERR(trans); 3840 goto out; 3841 } 3842 3843 if (sa->create) { 3844 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3845 } else { 3846 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3847 } 3848 3849 err = btrfs_end_transaction(trans); 3850 if (err && !ret) 3851 ret = err; 3852 3853 out: 3854 kfree(sa); 3855 drop_write: 3856 mnt_drop_write_file(file); 3857 return ret; 3858 } 3859 3860 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3861 { 3862 struct inode *inode = file_inode(file); 3863 struct btrfs_root *root = BTRFS_I(inode)->root; 3864 struct btrfs_ioctl_qgroup_limit_args *sa; 3865 struct btrfs_trans_handle *trans; 3866 int ret; 3867 int err; 3868 u64 qgroupid; 3869 3870 if (!capable(CAP_SYS_ADMIN)) 3871 return -EPERM; 3872 3873 ret = mnt_want_write_file(file); 3874 if (ret) 3875 return ret; 3876 3877 sa = memdup_user(arg, sizeof(*sa)); 3878 if (IS_ERR(sa)) { 3879 ret = PTR_ERR(sa); 3880 goto drop_write; 3881 } 3882 3883 trans = btrfs_join_transaction(root); 3884 if (IS_ERR(trans)) { 3885 ret = PTR_ERR(trans); 3886 goto out; 3887 } 3888 3889 qgroupid = sa->qgroupid; 3890 if (!qgroupid) { 3891 /* take the current subvol as qgroup */ 3892 qgroupid = root->root_key.objectid; 3893 } 3894 3895 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3896 3897 err = btrfs_end_transaction(trans); 3898 if (err && !ret) 3899 ret = err; 3900 3901 out: 3902 kfree(sa); 3903 drop_write: 3904 mnt_drop_write_file(file); 3905 return ret; 3906 } 3907 3908 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3909 { 3910 struct inode *inode = file_inode(file); 3911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3912 struct btrfs_ioctl_quota_rescan_args *qsa; 3913 int ret; 3914 3915 if (!capable(CAP_SYS_ADMIN)) 3916 return -EPERM; 3917 3918 ret = mnt_want_write_file(file); 3919 if (ret) 3920 return ret; 3921 3922 qsa = memdup_user(arg, sizeof(*qsa)); 3923 if (IS_ERR(qsa)) { 3924 ret = PTR_ERR(qsa); 3925 goto drop_write; 3926 } 3927 3928 if (qsa->flags) { 3929 ret = -EINVAL; 3930 goto out; 3931 } 3932 3933 ret = btrfs_qgroup_rescan(fs_info); 3934 3935 out: 3936 kfree(qsa); 3937 drop_write: 3938 mnt_drop_write_file(file); 3939 return ret; 3940 } 3941 3942 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 3943 void __user *arg) 3944 { 3945 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 3946 3947 if (!capable(CAP_SYS_ADMIN)) 3948 return -EPERM; 3949 3950 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3951 qsa.flags = 1; 3952 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 3953 } 3954 3955 if (copy_to_user(arg, &qsa, sizeof(qsa))) 3956 return -EFAULT; 3957 3958 return 0; 3959 } 3960 3961 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 3962 void __user *arg) 3963 { 3964 if (!capable(CAP_SYS_ADMIN)) 3965 return -EPERM; 3966 3967 return btrfs_qgroup_wait_for_completion(fs_info, true); 3968 } 3969 3970 static long _btrfs_ioctl_set_received_subvol(struct file *file, 3971 struct mnt_idmap *idmap, 3972 struct btrfs_ioctl_received_subvol_args *sa) 3973 { 3974 struct inode *inode = file_inode(file); 3975 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3976 struct btrfs_root *root = BTRFS_I(inode)->root; 3977 struct btrfs_root_item *root_item = &root->root_item; 3978 struct btrfs_trans_handle *trans; 3979 struct timespec64 ct = current_time(inode); 3980 int ret = 0; 3981 int received_uuid_changed; 3982 3983 if (!inode_owner_or_capable(idmap, inode)) 3984 return -EPERM; 3985 3986 ret = mnt_want_write_file(file); 3987 if (ret < 0) 3988 return ret; 3989 3990 down_write(&fs_info->subvol_sem); 3991 3992 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3993 ret = -EINVAL; 3994 goto out; 3995 } 3996 3997 if (btrfs_root_readonly(root)) { 3998 ret = -EROFS; 3999 goto out; 4000 } 4001 4002 /* 4003 * 1 - root item 4004 * 2 - uuid items (received uuid + subvol uuid) 4005 */ 4006 trans = btrfs_start_transaction(root, 3); 4007 if (IS_ERR(trans)) { 4008 ret = PTR_ERR(trans); 4009 trans = NULL; 4010 goto out; 4011 } 4012 4013 sa->rtransid = trans->transid; 4014 sa->rtime.sec = ct.tv_sec; 4015 sa->rtime.nsec = ct.tv_nsec; 4016 4017 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4018 BTRFS_UUID_SIZE); 4019 if (received_uuid_changed && 4020 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4021 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4022 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4023 root->root_key.objectid); 4024 if (ret && ret != -ENOENT) { 4025 btrfs_abort_transaction(trans, ret); 4026 btrfs_end_transaction(trans); 4027 goto out; 4028 } 4029 } 4030 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4031 btrfs_set_root_stransid(root_item, sa->stransid); 4032 btrfs_set_root_rtransid(root_item, sa->rtransid); 4033 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4034 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4035 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4036 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4037 4038 ret = btrfs_update_root(trans, fs_info->tree_root, 4039 &root->root_key, &root->root_item); 4040 if (ret < 0) { 4041 btrfs_end_transaction(trans); 4042 goto out; 4043 } 4044 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4045 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4046 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4047 root->root_key.objectid); 4048 if (ret < 0 && ret != -EEXIST) { 4049 btrfs_abort_transaction(trans, ret); 4050 btrfs_end_transaction(trans); 4051 goto out; 4052 } 4053 } 4054 ret = btrfs_commit_transaction(trans); 4055 out: 4056 up_write(&fs_info->subvol_sem); 4057 mnt_drop_write_file(file); 4058 return ret; 4059 } 4060 4061 #ifdef CONFIG_64BIT 4062 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4063 void __user *arg) 4064 { 4065 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4066 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4067 int ret = 0; 4068 4069 args32 = memdup_user(arg, sizeof(*args32)); 4070 if (IS_ERR(args32)) 4071 return PTR_ERR(args32); 4072 4073 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4074 if (!args64) { 4075 ret = -ENOMEM; 4076 goto out; 4077 } 4078 4079 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4080 args64->stransid = args32->stransid; 4081 args64->rtransid = args32->rtransid; 4082 args64->stime.sec = args32->stime.sec; 4083 args64->stime.nsec = args32->stime.nsec; 4084 args64->rtime.sec = args32->rtime.sec; 4085 args64->rtime.nsec = args32->rtime.nsec; 4086 args64->flags = args32->flags; 4087 4088 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4089 if (ret) 4090 goto out; 4091 4092 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4093 args32->stransid = args64->stransid; 4094 args32->rtransid = args64->rtransid; 4095 args32->stime.sec = args64->stime.sec; 4096 args32->stime.nsec = args64->stime.nsec; 4097 args32->rtime.sec = args64->rtime.sec; 4098 args32->rtime.nsec = args64->rtime.nsec; 4099 args32->flags = args64->flags; 4100 4101 ret = copy_to_user(arg, args32, sizeof(*args32)); 4102 if (ret) 4103 ret = -EFAULT; 4104 4105 out: 4106 kfree(args32); 4107 kfree(args64); 4108 return ret; 4109 } 4110 #endif 4111 4112 static long btrfs_ioctl_set_received_subvol(struct file *file, 4113 void __user *arg) 4114 { 4115 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4116 int ret = 0; 4117 4118 sa = memdup_user(arg, sizeof(*sa)); 4119 if (IS_ERR(sa)) 4120 return PTR_ERR(sa); 4121 4122 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4123 4124 if (ret) 4125 goto out; 4126 4127 ret = copy_to_user(arg, sa, sizeof(*sa)); 4128 if (ret) 4129 ret = -EFAULT; 4130 4131 out: 4132 kfree(sa); 4133 return ret; 4134 } 4135 4136 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4137 void __user *arg) 4138 { 4139 size_t len; 4140 int ret; 4141 char label[BTRFS_LABEL_SIZE]; 4142 4143 spin_lock(&fs_info->super_lock); 4144 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4145 spin_unlock(&fs_info->super_lock); 4146 4147 len = strnlen(label, BTRFS_LABEL_SIZE); 4148 4149 if (len == BTRFS_LABEL_SIZE) { 4150 btrfs_warn(fs_info, 4151 "label is too long, return the first %zu bytes", 4152 --len); 4153 } 4154 4155 ret = copy_to_user(arg, label, len); 4156 4157 return ret ? -EFAULT : 0; 4158 } 4159 4160 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4161 { 4162 struct inode *inode = file_inode(file); 4163 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4164 struct btrfs_root *root = BTRFS_I(inode)->root; 4165 struct btrfs_super_block *super_block = fs_info->super_copy; 4166 struct btrfs_trans_handle *trans; 4167 char label[BTRFS_LABEL_SIZE]; 4168 int ret; 4169 4170 if (!capable(CAP_SYS_ADMIN)) 4171 return -EPERM; 4172 4173 if (copy_from_user(label, arg, sizeof(label))) 4174 return -EFAULT; 4175 4176 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4177 btrfs_err(fs_info, 4178 "unable to set label with more than %d bytes", 4179 BTRFS_LABEL_SIZE - 1); 4180 return -EINVAL; 4181 } 4182 4183 ret = mnt_want_write_file(file); 4184 if (ret) 4185 return ret; 4186 4187 trans = btrfs_start_transaction(root, 0); 4188 if (IS_ERR(trans)) { 4189 ret = PTR_ERR(trans); 4190 goto out_unlock; 4191 } 4192 4193 spin_lock(&fs_info->super_lock); 4194 strcpy(super_block->label, label); 4195 spin_unlock(&fs_info->super_lock); 4196 ret = btrfs_commit_transaction(trans); 4197 4198 out_unlock: 4199 mnt_drop_write_file(file); 4200 return ret; 4201 } 4202 4203 #define INIT_FEATURE_FLAGS(suffix) \ 4204 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4205 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4206 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4207 4208 int btrfs_ioctl_get_supported_features(void __user *arg) 4209 { 4210 static const struct btrfs_ioctl_feature_flags features[3] = { 4211 INIT_FEATURE_FLAGS(SUPP), 4212 INIT_FEATURE_FLAGS(SAFE_SET), 4213 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4214 }; 4215 4216 if (copy_to_user(arg, &features, sizeof(features))) 4217 return -EFAULT; 4218 4219 return 0; 4220 } 4221 4222 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4223 void __user *arg) 4224 { 4225 struct btrfs_super_block *super_block = fs_info->super_copy; 4226 struct btrfs_ioctl_feature_flags features; 4227 4228 features.compat_flags = btrfs_super_compat_flags(super_block); 4229 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4230 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4231 4232 if (copy_to_user(arg, &features, sizeof(features))) 4233 return -EFAULT; 4234 4235 return 0; 4236 } 4237 4238 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4239 enum btrfs_feature_set set, 4240 u64 change_mask, u64 flags, u64 supported_flags, 4241 u64 safe_set, u64 safe_clear) 4242 { 4243 const char *type = btrfs_feature_set_name(set); 4244 char *names; 4245 u64 disallowed, unsupported; 4246 u64 set_mask = flags & change_mask; 4247 u64 clear_mask = ~flags & change_mask; 4248 4249 unsupported = set_mask & ~supported_flags; 4250 if (unsupported) { 4251 names = btrfs_printable_features(set, unsupported); 4252 if (names) { 4253 btrfs_warn(fs_info, 4254 "this kernel does not support the %s feature bit%s", 4255 names, strchr(names, ',') ? "s" : ""); 4256 kfree(names); 4257 } else 4258 btrfs_warn(fs_info, 4259 "this kernel does not support %s bits 0x%llx", 4260 type, unsupported); 4261 return -EOPNOTSUPP; 4262 } 4263 4264 disallowed = set_mask & ~safe_set; 4265 if (disallowed) { 4266 names = btrfs_printable_features(set, disallowed); 4267 if (names) { 4268 btrfs_warn(fs_info, 4269 "can't set the %s feature bit%s while mounted", 4270 names, strchr(names, ',') ? "s" : ""); 4271 kfree(names); 4272 } else 4273 btrfs_warn(fs_info, 4274 "can't set %s bits 0x%llx while mounted", 4275 type, disallowed); 4276 return -EPERM; 4277 } 4278 4279 disallowed = clear_mask & ~safe_clear; 4280 if (disallowed) { 4281 names = btrfs_printable_features(set, disallowed); 4282 if (names) { 4283 btrfs_warn(fs_info, 4284 "can't clear the %s feature bit%s while mounted", 4285 names, strchr(names, ',') ? "s" : ""); 4286 kfree(names); 4287 } else 4288 btrfs_warn(fs_info, 4289 "can't clear %s bits 0x%llx while mounted", 4290 type, disallowed); 4291 return -EPERM; 4292 } 4293 4294 return 0; 4295 } 4296 4297 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4298 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4299 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4300 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4301 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4302 4303 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4304 { 4305 struct inode *inode = file_inode(file); 4306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4307 struct btrfs_root *root = BTRFS_I(inode)->root; 4308 struct btrfs_super_block *super_block = fs_info->super_copy; 4309 struct btrfs_ioctl_feature_flags flags[2]; 4310 struct btrfs_trans_handle *trans; 4311 u64 newflags; 4312 int ret; 4313 4314 if (!capable(CAP_SYS_ADMIN)) 4315 return -EPERM; 4316 4317 if (copy_from_user(flags, arg, sizeof(flags))) 4318 return -EFAULT; 4319 4320 /* Nothing to do */ 4321 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4322 !flags[0].incompat_flags) 4323 return 0; 4324 4325 ret = check_feature(fs_info, flags[0].compat_flags, 4326 flags[1].compat_flags, COMPAT); 4327 if (ret) 4328 return ret; 4329 4330 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4331 flags[1].compat_ro_flags, COMPAT_RO); 4332 if (ret) 4333 return ret; 4334 4335 ret = check_feature(fs_info, flags[0].incompat_flags, 4336 flags[1].incompat_flags, INCOMPAT); 4337 if (ret) 4338 return ret; 4339 4340 ret = mnt_want_write_file(file); 4341 if (ret) 4342 return ret; 4343 4344 trans = btrfs_start_transaction(root, 0); 4345 if (IS_ERR(trans)) { 4346 ret = PTR_ERR(trans); 4347 goto out_drop_write; 4348 } 4349 4350 spin_lock(&fs_info->super_lock); 4351 newflags = btrfs_super_compat_flags(super_block); 4352 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4353 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4354 btrfs_set_super_compat_flags(super_block, newflags); 4355 4356 newflags = btrfs_super_compat_ro_flags(super_block); 4357 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4358 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4359 btrfs_set_super_compat_ro_flags(super_block, newflags); 4360 4361 newflags = btrfs_super_incompat_flags(super_block); 4362 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4363 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4364 btrfs_set_super_incompat_flags(super_block, newflags); 4365 spin_unlock(&fs_info->super_lock); 4366 4367 ret = btrfs_commit_transaction(trans); 4368 out_drop_write: 4369 mnt_drop_write_file(file); 4370 4371 return ret; 4372 } 4373 4374 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 4375 { 4376 struct btrfs_ioctl_send_args *arg; 4377 int ret; 4378 4379 if (compat) { 4380 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4381 struct btrfs_ioctl_send_args_32 args32 = { 0 }; 4382 4383 ret = copy_from_user(&args32, argp, sizeof(args32)); 4384 if (ret) 4385 return -EFAULT; 4386 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4387 if (!arg) 4388 return -ENOMEM; 4389 arg->send_fd = args32.send_fd; 4390 arg->clone_sources_count = args32.clone_sources_count; 4391 arg->clone_sources = compat_ptr(args32.clone_sources); 4392 arg->parent_root = args32.parent_root; 4393 arg->flags = args32.flags; 4394 arg->version = args32.version; 4395 memcpy(arg->reserved, args32.reserved, 4396 sizeof(args32.reserved)); 4397 #else 4398 return -ENOTTY; 4399 #endif 4400 } else { 4401 arg = memdup_user(argp, sizeof(*arg)); 4402 if (IS_ERR(arg)) 4403 return PTR_ERR(arg); 4404 } 4405 ret = btrfs_ioctl_send(inode, arg); 4406 kfree(arg); 4407 return ret; 4408 } 4409 4410 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4411 bool compat) 4412 { 4413 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4414 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4415 flags); 4416 size_t copy_end; 4417 struct iovec iovstack[UIO_FASTIOV]; 4418 struct iovec *iov = iovstack; 4419 struct iov_iter iter; 4420 loff_t pos; 4421 struct kiocb kiocb; 4422 ssize_t ret; 4423 4424 if (!capable(CAP_SYS_ADMIN)) { 4425 ret = -EPERM; 4426 goto out_acct; 4427 } 4428 4429 if (compat) { 4430 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4431 struct btrfs_ioctl_encoded_io_args_32 args32; 4432 4433 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4434 flags); 4435 if (copy_from_user(&args32, argp, copy_end)) { 4436 ret = -EFAULT; 4437 goto out_acct; 4438 } 4439 args.iov = compat_ptr(args32.iov); 4440 args.iovcnt = args32.iovcnt; 4441 args.offset = args32.offset; 4442 args.flags = args32.flags; 4443 #else 4444 return -ENOTTY; 4445 #endif 4446 } else { 4447 copy_end = copy_end_kernel; 4448 if (copy_from_user(&args, argp, copy_end)) { 4449 ret = -EFAULT; 4450 goto out_acct; 4451 } 4452 } 4453 if (args.flags != 0) { 4454 ret = -EINVAL; 4455 goto out_acct; 4456 } 4457 4458 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4459 &iov, &iter); 4460 if (ret < 0) 4461 goto out_acct; 4462 4463 if (iov_iter_count(&iter) == 0) { 4464 ret = 0; 4465 goto out_iov; 4466 } 4467 pos = args.offset; 4468 ret = rw_verify_area(READ, file, &pos, args.len); 4469 if (ret < 0) 4470 goto out_iov; 4471 4472 init_sync_kiocb(&kiocb, file); 4473 kiocb.ki_pos = pos; 4474 4475 ret = btrfs_encoded_read(&kiocb, &iter, &args); 4476 if (ret >= 0) { 4477 fsnotify_access(file); 4478 if (copy_to_user(argp + copy_end, 4479 (char *)&args + copy_end_kernel, 4480 sizeof(args) - copy_end_kernel)) 4481 ret = -EFAULT; 4482 } 4483 4484 out_iov: 4485 kfree(iov); 4486 out_acct: 4487 if (ret > 0) 4488 add_rchar(current, ret); 4489 inc_syscr(current); 4490 return ret; 4491 } 4492 4493 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4494 { 4495 struct btrfs_ioctl_encoded_io_args args; 4496 struct iovec iovstack[UIO_FASTIOV]; 4497 struct iovec *iov = iovstack; 4498 struct iov_iter iter; 4499 loff_t pos; 4500 struct kiocb kiocb; 4501 ssize_t ret; 4502 4503 if (!capable(CAP_SYS_ADMIN)) { 4504 ret = -EPERM; 4505 goto out_acct; 4506 } 4507 4508 if (!(file->f_mode & FMODE_WRITE)) { 4509 ret = -EBADF; 4510 goto out_acct; 4511 } 4512 4513 if (compat) { 4514 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4515 struct btrfs_ioctl_encoded_io_args_32 args32; 4516 4517 if (copy_from_user(&args32, argp, sizeof(args32))) { 4518 ret = -EFAULT; 4519 goto out_acct; 4520 } 4521 args.iov = compat_ptr(args32.iov); 4522 args.iovcnt = args32.iovcnt; 4523 args.offset = args32.offset; 4524 args.flags = args32.flags; 4525 args.len = args32.len; 4526 args.unencoded_len = args32.unencoded_len; 4527 args.unencoded_offset = args32.unencoded_offset; 4528 args.compression = args32.compression; 4529 args.encryption = args32.encryption; 4530 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4531 #else 4532 return -ENOTTY; 4533 #endif 4534 } else { 4535 if (copy_from_user(&args, argp, sizeof(args))) { 4536 ret = -EFAULT; 4537 goto out_acct; 4538 } 4539 } 4540 4541 ret = -EINVAL; 4542 if (args.flags != 0) 4543 goto out_acct; 4544 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4545 goto out_acct; 4546 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4547 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4548 goto out_acct; 4549 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4550 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4551 goto out_acct; 4552 if (args.unencoded_offset > args.unencoded_len) 4553 goto out_acct; 4554 if (args.len > args.unencoded_len - args.unencoded_offset) 4555 goto out_acct; 4556 4557 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4558 &iov, &iter); 4559 if (ret < 0) 4560 goto out_acct; 4561 4562 file_start_write(file); 4563 4564 if (iov_iter_count(&iter) == 0) { 4565 ret = 0; 4566 goto out_end_write; 4567 } 4568 pos = args.offset; 4569 ret = rw_verify_area(WRITE, file, &pos, args.len); 4570 if (ret < 0) 4571 goto out_end_write; 4572 4573 init_sync_kiocb(&kiocb, file); 4574 ret = kiocb_set_rw_flags(&kiocb, 0); 4575 if (ret) 4576 goto out_end_write; 4577 kiocb.ki_pos = pos; 4578 4579 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4580 if (ret > 0) 4581 fsnotify_modify(file); 4582 4583 out_end_write: 4584 file_end_write(file); 4585 kfree(iov); 4586 out_acct: 4587 if (ret > 0) 4588 add_wchar(current, ret); 4589 inc_syscw(current); 4590 return ret; 4591 } 4592 4593 long btrfs_ioctl(struct file *file, unsigned int 4594 cmd, unsigned long arg) 4595 { 4596 struct inode *inode = file_inode(file); 4597 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4598 struct btrfs_root *root = BTRFS_I(inode)->root; 4599 void __user *argp = (void __user *)arg; 4600 4601 switch (cmd) { 4602 case FS_IOC_GETVERSION: 4603 return btrfs_ioctl_getversion(inode, argp); 4604 case FS_IOC_GETFSLABEL: 4605 return btrfs_ioctl_get_fslabel(fs_info, argp); 4606 case FS_IOC_SETFSLABEL: 4607 return btrfs_ioctl_set_fslabel(file, argp); 4608 case FITRIM: 4609 return btrfs_ioctl_fitrim(fs_info, argp); 4610 case BTRFS_IOC_SNAP_CREATE: 4611 return btrfs_ioctl_snap_create(file, argp, 0); 4612 case BTRFS_IOC_SNAP_CREATE_V2: 4613 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4614 case BTRFS_IOC_SUBVOL_CREATE: 4615 return btrfs_ioctl_snap_create(file, argp, 1); 4616 case BTRFS_IOC_SUBVOL_CREATE_V2: 4617 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4618 case BTRFS_IOC_SNAP_DESTROY: 4619 return btrfs_ioctl_snap_destroy(file, argp, false); 4620 case BTRFS_IOC_SNAP_DESTROY_V2: 4621 return btrfs_ioctl_snap_destroy(file, argp, true); 4622 case BTRFS_IOC_SUBVOL_GETFLAGS: 4623 return btrfs_ioctl_subvol_getflags(inode, argp); 4624 case BTRFS_IOC_SUBVOL_SETFLAGS: 4625 return btrfs_ioctl_subvol_setflags(file, argp); 4626 case BTRFS_IOC_DEFAULT_SUBVOL: 4627 return btrfs_ioctl_default_subvol(file, argp); 4628 case BTRFS_IOC_DEFRAG: 4629 return btrfs_ioctl_defrag(file, NULL); 4630 case BTRFS_IOC_DEFRAG_RANGE: 4631 return btrfs_ioctl_defrag(file, argp); 4632 case BTRFS_IOC_RESIZE: 4633 return btrfs_ioctl_resize(file, argp); 4634 case BTRFS_IOC_ADD_DEV: 4635 return btrfs_ioctl_add_dev(fs_info, argp); 4636 case BTRFS_IOC_RM_DEV: 4637 return btrfs_ioctl_rm_dev(file, argp); 4638 case BTRFS_IOC_RM_DEV_V2: 4639 return btrfs_ioctl_rm_dev_v2(file, argp); 4640 case BTRFS_IOC_FS_INFO: 4641 return btrfs_ioctl_fs_info(fs_info, argp); 4642 case BTRFS_IOC_DEV_INFO: 4643 return btrfs_ioctl_dev_info(fs_info, argp); 4644 case BTRFS_IOC_TREE_SEARCH: 4645 return btrfs_ioctl_tree_search(inode, argp); 4646 case BTRFS_IOC_TREE_SEARCH_V2: 4647 return btrfs_ioctl_tree_search_v2(inode, argp); 4648 case BTRFS_IOC_INO_LOOKUP: 4649 return btrfs_ioctl_ino_lookup(root, argp); 4650 case BTRFS_IOC_INO_PATHS: 4651 return btrfs_ioctl_ino_to_path(root, argp); 4652 case BTRFS_IOC_LOGICAL_INO: 4653 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4654 case BTRFS_IOC_LOGICAL_INO_V2: 4655 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4656 case BTRFS_IOC_SPACE_INFO: 4657 return btrfs_ioctl_space_info(fs_info, argp); 4658 case BTRFS_IOC_SYNC: { 4659 int ret; 4660 4661 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4662 if (ret) 4663 return ret; 4664 ret = btrfs_sync_fs(inode->i_sb, 1); 4665 /* 4666 * The transaction thread may want to do more work, 4667 * namely it pokes the cleaner kthread that will start 4668 * processing uncleaned subvols. 4669 */ 4670 wake_up_process(fs_info->transaction_kthread); 4671 return ret; 4672 } 4673 case BTRFS_IOC_START_SYNC: 4674 return btrfs_ioctl_start_sync(root, argp); 4675 case BTRFS_IOC_WAIT_SYNC: 4676 return btrfs_ioctl_wait_sync(fs_info, argp); 4677 case BTRFS_IOC_SCRUB: 4678 return btrfs_ioctl_scrub(file, argp); 4679 case BTRFS_IOC_SCRUB_CANCEL: 4680 return btrfs_ioctl_scrub_cancel(fs_info); 4681 case BTRFS_IOC_SCRUB_PROGRESS: 4682 return btrfs_ioctl_scrub_progress(fs_info, argp); 4683 case BTRFS_IOC_BALANCE_V2: 4684 return btrfs_ioctl_balance(file, argp); 4685 case BTRFS_IOC_BALANCE_CTL: 4686 return btrfs_ioctl_balance_ctl(fs_info, arg); 4687 case BTRFS_IOC_BALANCE_PROGRESS: 4688 return btrfs_ioctl_balance_progress(fs_info, argp); 4689 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4690 return btrfs_ioctl_set_received_subvol(file, argp); 4691 #ifdef CONFIG_64BIT 4692 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4693 return btrfs_ioctl_set_received_subvol_32(file, argp); 4694 #endif 4695 case BTRFS_IOC_SEND: 4696 return _btrfs_ioctl_send(inode, argp, false); 4697 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4698 case BTRFS_IOC_SEND_32: 4699 return _btrfs_ioctl_send(inode, argp, true); 4700 #endif 4701 case BTRFS_IOC_GET_DEV_STATS: 4702 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4703 case BTRFS_IOC_QUOTA_CTL: 4704 return btrfs_ioctl_quota_ctl(file, argp); 4705 case BTRFS_IOC_QGROUP_ASSIGN: 4706 return btrfs_ioctl_qgroup_assign(file, argp); 4707 case BTRFS_IOC_QGROUP_CREATE: 4708 return btrfs_ioctl_qgroup_create(file, argp); 4709 case BTRFS_IOC_QGROUP_LIMIT: 4710 return btrfs_ioctl_qgroup_limit(file, argp); 4711 case BTRFS_IOC_QUOTA_RESCAN: 4712 return btrfs_ioctl_quota_rescan(file, argp); 4713 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4714 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4715 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4716 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4717 case BTRFS_IOC_DEV_REPLACE: 4718 return btrfs_ioctl_dev_replace(fs_info, argp); 4719 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4720 return btrfs_ioctl_get_supported_features(argp); 4721 case BTRFS_IOC_GET_FEATURES: 4722 return btrfs_ioctl_get_features(fs_info, argp); 4723 case BTRFS_IOC_SET_FEATURES: 4724 return btrfs_ioctl_set_features(file, argp); 4725 case BTRFS_IOC_GET_SUBVOL_INFO: 4726 return btrfs_ioctl_get_subvol_info(inode, argp); 4727 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4728 return btrfs_ioctl_get_subvol_rootref(root, argp); 4729 case BTRFS_IOC_INO_LOOKUP_USER: 4730 return btrfs_ioctl_ino_lookup_user(file, argp); 4731 case FS_IOC_ENABLE_VERITY: 4732 return fsverity_ioctl_enable(file, (const void __user *)argp); 4733 case FS_IOC_MEASURE_VERITY: 4734 return fsverity_ioctl_measure(file, argp); 4735 case BTRFS_IOC_ENCODED_READ: 4736 return btrfs_ioctl_encoded_read(file, argp, false); 4737 case BTRFS_IOC_ENCODED_WRITE: 4738 return btrfs_ioctl_encoded_write(file, argp, false); 4739 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4740 case BTRFS_IOC_ENCODED_READ_32: 4741 return btrfs_ioctl_encoded_read(file, argp, true); 4742 case BTRFS_IOC_ENCODED_WRITE_32: 4743 return btrfs_ioctl_encoded_write(file, argp, true); 4744 #endif 4745 } 4746 4747 return -ENOTTY; 4748 } 4749 4750 #ifdef CONFIG_COMPAT 4751 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4752 { 4753 /* 4754 * These all access 32-bit values anyway so no further 4755 * handling is necessary. 4756 */ 4757 switch (cmd) { 4758 case FS_IOC32_GETVERSION: 4759 cmd = FS_IOC_GETVERSION; 4760 break; 4761 } 4762 4763 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4764 } 4765 #endif 4766