xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 49c23519)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "extent-tree.h"
56 #include "root-tree.h"
57 #include "defrag.h"
58 #include "dir-item.h"
59 #include "uuid-tree.h"
60 #include "ioctl.h"
61 #include "file.h"
62 #include "scrub.h"
63 #include "super.h"
64 
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67  * structures are incorrect, as the timespec structure from userspace
68  * is 4 bytes too small. We define these alternatives here to teach
69  * the kernel about the 32-bit struct packing.
70  */
71 struct btrfs_ioctl_timespec_32 {
72 	__u64 sec;
73 	__u32 nsec;
74 } __attribute__ ((__packed__));
75 
76 struct btrfs_ioctl_received_subvol_args_32 {
77 	char	uuid[BTRFS_UUID_SIZE];	/* in */
78 	__u64	stransid;		/* in */
79 	__u64	rtransid;		/* out */
80 	struct btrfs_ioctl_timespec_32 stime; /* in */
81 	struct btrfs_ioctl_timespec_32 rtime; /* out */
82 	__u64	flags;			/* in */
83 	__u64	reserved[16];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 				struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89 
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92 	__s64 send_fd;			/* in */
93 	__u64 clone_sources_count;	/* in */
94 	compat_uptr_t clone_sources;	/* in */
95 	__u64 parent_root;		/* in */
96 	__u64 flags;			/* in */
97 	__u32 version;			/* in */
98 	__u8  reserved[28];		/* in */
99 } __attribute__ ((__packed__));
100 
101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 			       struct btrfs_ioctl_send_args_32)
103 
104 struct btrfs_ioctl_encoded_io_args_32 {
105 	compat_uptr_t iov;
106 	compat_ulong_t iovcnt;
107 	__s64 offset;
108 	__u64 flags;
109 	__u64 len;
110 	__u64 unencoded_len;
111 	__u64 unencoded_offset;
112 	__u32 compression;
113 	__u32 encryption;
114 	__u8 reserved[64];
115 };
116 
117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 				       struct btrfs_ioctl_encoded_io_args_32)
119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 					struct btrfs_ioctl_encoded_io_args_32)
121 #endif
122 
123 /* Mask out flags that are inappropriate for the given type of inode. */
124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125 		unsigned int flags)
126 {
127 	if (S_ISDIR(inode->i_mode))
128 		return flags;
129 	else if (S_ISREG(inode->i_mode))
130 		return flags & ~FS_DIRSYNC_FL;
131 	else
132 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133 }
134 
135 /*
136  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137  * ioctl.
138  */
139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140 {
141 	unsigned int iflags = 0;
142 	u32 flags = binode->flags;
143 	u32 ro_flags = binode->ro_flags;
144 
145 	if (flags & BTRFS_INODE_SYNC)
146 		iflags |= FS_SYNC_FL;
147 	if (flags & BTRFS_INODE_IMMUTABLE)
148 		iflags |= FS_IMMUTABLE_FL;
149 	if (flags & BTRFS_INODE_APPEND)
150 		iflags |= FS_APPEND_FL;
151 	if (flags & BTRFS_INODE_NODUMP)
152 		iflags |= FS_NODUMP_FL;
153 	if (flags & BTRFS_INODE_NOATIME)
154 		iflags |= FS_NOATIME_FL;
155 	if (flags & BTRFS_INODE_DIRSYNC)
156 		iflags |= FS_DIRSYNC_FL;
157 	if (flags & BTRFS_INODE_NODATACOW)
158 		iflags |= FS_NOCOW_FL;
159 	if (ro_flags & BTRFS_INODE_RO_VERITY)
160 		iflags |= FS_VERITY_FL;
161 
162 	if (flags & BTRFS_INODE_NOCOMPRESS)
163 		iflags |= FS_NOCOMP_FL;
164 	else if (flags & BTRFS_INODE_COMPRESS)
165 		iflags |= FS_COMPR_FL;
166 
167 	return iflags;
168 }
169 
170 /*
171  * Update inode->i_flags based on the btrfs internal flags.
172  */
173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174 {
175 	struct btrfs_inode *binode = BTRFS_I(inode);
176 	unsigned int new_fl = 0;
177 
178 	if (binode->flags & BTRFS_INODE_SYNC)
179 		new_fl |= S_SYNC;
180 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 		new_fl |= S_IMMUTABLE;
182 	if (binode->flags & BTRFS_INODE_APPEND)
183 		new_fl |= S_APPEND;
184 	if (binode->flags & BTRFS_INODE_NOATIME)
185 		new_fl |= S_NOATIME;
186 	if (binode->flags & BTRFS_INODE_DIRSYNC)
187 		new_fl |= S_DIRSYNC;
188 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189 		new_fl |= S_VERITY;
190 
191 	set_mask_bits(&inode->i_flags,
192 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 		      S_VERITY, new_fl);
194 }
195 
196 /*
197  * Check if @flags are a supported and valid set of FS_*_FL flags and that
198  * the old and new flags are not conflicting
199  */
200 static int check_fsflags(unsigned int old_flags, unsigned int flags)
201 {
202 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 		      FS_NOATIME_FL | FS_NODUMP_FL | \
204 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
205 		      FS_NOCOMP_FL | FS_COMPR_FL |
206 		      FS_NOCOW_FL))
207 		return -EOPNOTSUPP;
208 
209 	/* COMPR and NOCOMP on new/old are valid */
210 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 		return -EINVAL;
212 
213 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214 		return -EINVAL;
215 
216 	/* NOCOW and compression options are mutually exclusive */
217 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218 		return -EINVAL;
219 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220 		return -EINVAL;
221 
222 	return 0;
223 }
224 
225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226 				    unsigned int flags)
227 {
228 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229 		return -EPERM;
230 
231 	return 0;
232 }
233 
234 /*
235  * Set flags/xflags from the internal inode flags. The remaining items of
236  * fsxattr are zeroed.
237  */
238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239 {
240 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
241 
242 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
243 	return 0;
244 }
245 
246 int btrfs_fileattr_set(struct mnt_idmap *idmap,
247 		       struct dentry *dentry, struct fileattr *fa)
248 {
249 	struct inode *inode = d_inode(dentry);
250 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251 	struct btrfs_inode *binode = BTRFS_I(inode);
252 	struct btrfs_root *root = binode->root;
253 	struct btrfs_trans_handle *trans;
254 	unsigned int fsflags, old_fsflags;
255 	int ret;
256 	const char *comp = NULL;
257 	u32 binode_flags;
258 
259 	if (btrfs_root_readonly(root))
260 		return -EROFS;
261 
262 	if (fileattr_has_fsx(fa))
263 		return -EOPNOTSUPP;
264 
265 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 	ret = check_fsflags(old_fsflags, fsflags);
268 	if (ret)
269 		return ret;
270 
271 	ret = check_fsflags_compatible(fs_info, fsflags);
272 	if (ret)
273 		return ret;
274 
275 	binode_flags = binode->flags;
276 	if (fsflags & FS_SYNC_FL)
277 		binode_flags |= BTRFS_INODE_SYNC;
278 	else
279 		binode_flags &= ~BTRFS_INODE_SYNC;
280 	if (fsflags & FS_IMMUTABLE_FL)
281 		binode_flags |= BTRFS_INODE_IMMUTABLE;
282 	else
283 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 	if (fsflags & FS_APPEND_FL)
285 		binode_flags |= BTRFS_INODE_APPEND;
286 	else
287 		binode_flags &= ~BTRFS_INODE_APPEND;
288 	if (fsflags & FS_NODUMP_FL)
289 		binode_flags |= BTRFS_INODE_NODUMP;
290 	else
291 		binode_flags &= ~BTRFS_INODE_NODUMP;
292 	if (fsflags & FS_NOATIME_FL)
293 		binode_flags |= BTRFS_INODE_NOATIME;
294 	else
295 		binode_flags &= ~BTRFS_INODE_NOATIME;
296 
297 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 	if (!fa->flags_valid) {
299 		/* 1 item for the inode */
300 		trans = btrfs_start_transaction(root, 1);
301 		if (IS_ERR(trans))
302 			return PTR_ERR(trans);
303 		goto update_flags;
304 	}
305 
306 	if (fsflags & FS_DIRSYNC_FL)
307 		binode_flags |= BTRFS_INODE_DIRSYNC;
308 	else
309 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 	if (fsflags & FS_NOCOW_FL) {
311 		if (S_ISREG(inode->i_mode)) {
312 			/*
313 			 * It's safe to turn csums off here, no extents exist.
314 			 * Otherwise we want the flag to reflect the real COW
315 			 * status of the file and will not set it.
316 			 */
317 			if (inode->i_size == 0)
318 				binode_flags |= BTRFS_INODE_NODATACOW |
319 						BTRFS_INODE_NODATASUM;
320 		} else {
321 			binode_flags |= BTRFS_INODE_NODATACOW;
322 		}
323 	} else {
324 		/*
325 		 * Revert back under same assumptions as above
326 		 */
327 		if (S_ISREG(inode->i_mode)) {
328 			if (inode->i_size == 0)
329 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 						  BTRFS_INODE_NODATASUM);
331 		} else {
332 			binode_flags &= ~BTRFS_INODE_NODATACOW;
333 		}
334 	}
335 
336 	/*
337 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 	 * flag may be changed automatically if compression code won't make
339 	 * things smaller.
340 	 */
341 	if (fsflags & FS_NOCOMP_FL) {
342 		binode_flags &= ~BTRFS_INODE_COMPRESS;
343 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 	} else if (fsflags & FS_COMPR_FL) {
345 
346 		if (IS_SWAPFILE(inode))
347 			return -ETXTBSY;
348 
349 		binode_flags |= BTRFS_INODE_COMPRESS;
350 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351 
352 		comp = btrfs_compress_type2str(fs_info->compress_type);
353 		if (!comp || comp[0] == 0)
354 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
355 	} else {
356 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357 	}
358 
359 	/*
360 	 * 1 for inode item
361 	 * 2 for properties
362 	 */
363 	trans = btrfs_start_transaction(root, 3);
364 	if (IS_ERR(trans))
365 		return PTR_ERR(trans);
366 
367 	if (comp) {
368 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
369 				     strlen(comp), 0);
370 		if (ret) {
371 			btrfs_abort_transaction(trans, ret);
372 			goto out_end_trans;
373 		}
374 	} else {
375 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
376 				     0, 0);
377 		if (ret && ret != -ENODATA) {
378 			btrfs_abort_transaction(trans, ret);
379 			goto out_end_trans;
380 		}
381 	}
382 
383 update_flags:
384 	binode->flags = binode_flags;
385 	btrfs_sync_inode_flags_to_i_flags(inode);
386 	inode_inc_iversion(inode);
387 	inode_set_ctime_current(inode);
388 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
389 
390  out_end_trans:
391 	btrfs_end_transaction(trans);
392 	return ret;
393 }
394 
395 /*
396  * Start exclusive operation @type, return true on success
397  */
398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 			enum btrfs_exclusive_operation type)
400 {
401 	bool ret = false;
402 
403 	spin_lock(&fs_info->super_lock);
404 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 		fs_info->exclusive_operation = type;
406 		ret = true;
407 	}
408 	spin_unlock(&fs_info->super_lock);
409 
410 	return ret;
411 }
412 
413 /*
414  * Conditionally allow to enter the exclusive operation in case it's compatible
415  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
416  * btrfs_exclop_finish.
417  *
418  * Compatibility:
419  * - the same type is already running
420  * - when trying to add a device and balance has been paused
421  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422  *   must check the condition first that would allow none -> @type
423  */
424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 				 enum btrfs_exclusive_operation type)
426 {
427 	spin_lock(&fs_info->super_lock);
428 	if (fs_info->exclusive_operation == type ||
429 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 	     type == BTRFS_EXCLOP_DEV_ADD))
431 		return true;
432 
433 	spin_unlock(&fs_info->super_lock);
434 	return false;
435 }
436 
437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438 {
439 	spin_unlock(&fs_info->super_lock);
440 }
441 
442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443 {
444 	spin_lock(&fs_info->super_lock);
445 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 	spin_unlock(&fs_info->super_lock);
447 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
448 }
449 
450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 			  enum btrfs_exclusive_operation op)
452 {
453 	switch (op) {
454 	case BTRFS_EXCLOP_BALANCE_PAUSED:
455 		spin_lock(&fs_info->super_lock);
456 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
458 		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
459 		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
460 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
461 		spin_unlock(&fs_info->super_lock);
462 		break;
463 	case BTRFS_EXCLOP_BALANCE:
464 		spin_lock(&fs_info->super_lock);
465 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
466 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
467 		spin_unlock(&fs_info->super_lock);
468 		break;
469 	default:
470 		btrfs_warn(fs_info,
471 			"invalid exclop balance operation %d requested", op);
472 	}
473 }
474 
475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
476 {
477 	return put_user(inode->i_generation, arg);
478 }
479 
480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
481 					void __user *arg)
482 {
483 	struct btrfs_device *device;
484 	struct fstrim_range range;
485 	u64 minlen = ULLONG_MAX;
486 	u64 num_devices = 0;
487 	int ret;
488 
489 	if (!capable(CAP_SYS_ADMIN))
490 		return -EPERM;
491 
492 	/*
493 	 * btrfs_trim_block_group() depends on space cache, which is not
494 	 * available in zoned filesystem. So, disallow fitrim on a zoned
495 	 * filesystem for now.
496 	 */
497 	if (btrfs_is_zoned(fs_info))
498 		return -EOPNOTSUPP;
499 
500 	/*
501 	 * If the fs is mounted with nologreplay, which requires it to be
502 	 * mounted in RO mode as well, we can not allow discard on free space
503 	 * inside block groups, because log trees refer to extents that are not
504 	 * pinned in a block group's free space cache (pinning the extents is
505 	 * precisely the first phase of replaying a log tree).
506 	 */
507 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
508 		return -EROFS;
509 
510 	rcu_read_lock();
511 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
512 				dev_list) {
513 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
514 			continue;
515 		num_devices++;
516 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
517 				    minlen);
518 	}
519 	rcu_read_unlock();
520 
521 	if (!num_devices)
522 		return -EOPNOTSUPP;
523 	if (copy_from_user(&range, arg, sizeof(range)))
524 		return -EFAULT;
525 
526 	/*
527 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
528 	 * block group is in the logical address space, which can be any
529 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
530 	 */
531 	if (range.len < fs_info->sb->s_blocksize)
532 		return -EINVAL;
533 
534 	range.minlen = max(range.minlen, minlen);
535 	ret = btrfs_trim_fs(fs_info, &range);
536 	if (ret < 0)
537 		return ret;
538 
539 	if (copy_to_user(arg, &range, sizeof(range)))
540 		return -EFAULT;
541 
542 	return 0;
543 }
544 
545 int __pure btrfs_is_empty_uuid(u8 *uuid)
546 {
547 	int i;
548 
549 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
550 		if (uuid[i])
551 			return 0;
552 	}
553 	return 1;
554 }
555 
556 /*
557  * Calculate the number of transaction items to reserve for creating a subvolume
558  * or snapshot, not including the inode, directory entries, or parent directory.
559  */
560 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
561 {
562 	/*
563 	 * 1 to add root block
564 	 * 1 to add root item
565 	 * 1 to add root ref
566 	 * 1 to add root backref
567 	 * 1 to add UUID item
568 	 * 1 to add qgroup info
569 	 * 1 to add qgroup limit
570 	 *
571 	 * Ideally the last two would only be accounted if qgroups are enabled,
572 	 * but that can change between now and the time we would insert them.
573 	 */
574 	unsigned int num_items = 7;
575 
576 	if (inherit) {
577 		/* 2 to add qgroup relations for each inherited qgroup */
578 		num_items += 2 * inherit->num_qgroups;
579 	}
580 	return num_items;
581 }
582 
583 static noinline int create_subvol(struct mnt_idmap *idmap,
584 				  struct inode *dir, struct dentry *dentry,
585 				  struct btrfs_qgroup_inherit *inherit)
586 {
587 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
588 	struct btrfs_trans_handle *trans;
589 	struct btrfs_key key;
590 	struct btrfs_root_item *root_item;
591 	struct btrfs_inode_item *inode_item;
592 	struct extent_buffer *leaf;
593 	struct btrfs_root *root = BTRFS_I(dir)->root;
594 	struct btrfs_root *new_root;
595 	struct btrfs_block_rsv block_rsv;
596 	struct timespec64 cur_time = current_time(dir);
597 	struct btrfs_new_inode_args new_inode_args = {
598 		.dir = dir,
599 		.dentry = dentry,
600 		.subvol = true,
601 	};
602 	unsigned int trans_num_items;
603 	int ret;
604 	dev_t anon_dev;
605 	u64 objectid;
606 	u64 qgroup_reserved = 0;
607 
608 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
609 	if (!root_item)
610 		return -ENOMEM;
611 
612 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
613 	if (ret)
614 		goto out_root_item;
615 
616 	/*
617 	 * Don't create subvolume whose level is not zero. Or qgroup will be
618 	 * screwed up since it assumes subvolume qgroup's level to be 0.
619 	 */
620 	if (btrfs_qgroup_level(objectid)) {
621 		ret = -ENOSPC;
622 		goto out_root_item;
623 	}
624 
625 	ret = get_anon_bdev(&anon_dev);
626 	if (ret < 0)
627 		goto out_root_item;
628 
629 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
630 	if (!new_inode_args.inode) {
631 		ret = -ENOMEM;
632 		goto out_anon_dev;
633 	}
634 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
635 	if (ret)
636 		goto out_inode;
637 	trans_num_items += create_subvol_num_items(inherit);
638 
639 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
640 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
641 					       trans_num_items, false);
642 	if (ret)
643 		goto out_new_inode_args;
644 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
645 
646 	trans = btrfs_start_transaction(root, 0);
647 	if (IS_ERR(trans)) {
648 		ret = PTR_ERR(trans);
649 		goto out_release_rsv;
650 	}
651 	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
652 	if (ret)
653 		goto out;
654 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
655 	qgroup_reserved = 0;
656 	trans->block_rsv = &block_rsv;
657 	trans->bytes_reserved = block_rsv.size;
658 	/* Tree log can't currently deal with an inode which is a new root. */
659 	btrfs_set_log_full_commit(trans);
660 
661 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
662 	if (ret)
663 		goto out;
664 
665 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
666 				      BTRFS_NESTING_NORMAL);
667 	if (IS_ERR(leaf)) {
668 		ret = PTR_ERR(leaf);
669 		goto out;
670 	}
671 
672 	btrfs_mark_buffer_dirty(trans, leaf);
673 
674 	inode_item = &root_item->inode;
675 	btrfs_set_stack_inode_generation(inode_item, 1);
676 	btrfs_set_stack_inode_size(inode_item, 3);
677 	btrfs_set_stack_inode_nlink(inode_item, 1);
678 	btrfs_set_stack_inode_nbytes(inode_item,
679 				     fs_info->nodesize);
680 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
681 
682 	btrfs_set_root_flags(root_item, 0);
683 	btrfs_set_root_limit(root_item, 0);
684 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
685 
686 	btrfs_set_root_bytenr(root_item, leaf->start);
687 	btrfs_set_root_generation(root_item, trans->transid);
688 	btrfs_set_root_level(root_item, 0);
689 	btrfs_set_root_refs(root_item, 1);
690 	btrfs_set_root_used(root_item, leaf->len);
691 	btrfs_set_root_last_snapshot(root_item, 0);
692 
693 	btrfs_set_root_generation_v2(root_item,
694 			btrfs_root_generation(root_item));
695 	generate_random_guid(root_item->uuid);
696 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
697 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
698 	root_item->ctime = root_item->otime;
699 	btrfs_set_root_ctransid(root_item, trans->transid);
700 	btrfs_set_root_otransid(root_item, trans->transid);
701 
702 	btrfs_tree_unlock(leaf);
703 
704 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
705 
706 	key.objectid = objectid;
707 	key.offset = 0;
708 	key.type = BTRFS_ROOT_ITEM_KEY;
709 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
710 				root_item);
711 	if (ret) {
712 		/*
713 		 * Since we don't abort the transaction in this case, free the
714 		 * tree block so that we don't leak space and leave the
715 		 * filesystem in an inconsistent state (an extent item in the
716 		 * extent tree with a backreference for a root that does not
717 		 * exists).
718 		 */
719 		btrfs_tree_lock(leaf);
720 		btrfs_clear_buffer_dirty(trans, leaf);
721 		btrfs_tree_unlock(leaf);
722 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
723 		free_extent_buffer(leaf);
724 		goto out;
725 	}
726 
727 	free_extent_buffer(leaf);
728 	leaf = NULL;
729 
730 	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
731 	if (IS_ERR(new_root)) {
732 		ret = PTR_ERR(new_root);
733 		btrfs_abort_transaction(trans, ret);
734 		goto out;
735 	}
736 	/* anon_dev is owned by new_root now. */
737 	anon_dev = 0;
738 	BTRFS_I(new_inode_args.inode)->root = new_root;
739 	/* ... and new_root is owned by new_inode_args.inode now. */
740 
741 	ret = btrfs_record_root_in_trans(trans, new_root);
742 	if (ret) {
743 		btrfs_abort_transaction(trans, ret);
744 		goto out;
745 	}
746 
747 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
748 				  BTRFS_UUID_KEY_SUBVOL, objectid);
749 	if (ret) {
750 		btrfs_abort_transaction(trans, ret);
751 		goto out;
752 	}
753 
754 	ret = btrfs_create_new_inode(trans, &new_inode_args);
755 	if (ret) {
756 		btrfs_abort_transaction(trans, ret);
757 		goto out;
758 	}
759 
760 	d_instantiate_new(dentry, new_inode_args.inode);
761 	new_inode_args.inode = NULL;
762 
763 out:
764 	trans->block_rsv = NULL;
765 	trans->bytes_reserved = 0;
766 	btrfs_end_transaction(trans);
767 out_release_rsv:
768 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
769 	if (qgroup_reserved)
770 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
771 out_new_inode_args:
772 	btrfs_new_inode_args_destroy(&new_inode_args);
773 out_inode:
774 	iput(new_inode_args.inode);
775 out_anon_dev:
776 	if (anon_dev)
777 		free_anon_bdev(anon_dev);
778 out_root_item:
779 	kfree(root_item);
780 	return ret;
781 }
782 
783 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
784 			   struct dentry *dentry, bool readonly,
785 			   struct btrfs_qgroup_inherit *inherit)
786 {
787 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
788 	struct inode *inode;
789 	struct btrfs_pending_snapshot *pending_snapshot;
790 	unsigned int trans_num_items;
791 	struct btrfs_trans_handle *trans;
792 	struct btrfs_block_rsv *block_rsv;
793 	u64 qgroup_reserved = 0;
794 	int ret;
795 
796 	/* We do not support snapshotting right now. */
797 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
798 		btrfs_warn(fs_info,
799 			   "extent tree v2 doesn't support snapshotting yet");
800 		return -EOPNOTSUPP;
801 	}
802 
803 	if (btrfs_root_refs(&root->root_item) == 0)
804 		return -ENOENT;
805 
806 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
807 		return -EINVAL;
808 
809 	if (atomic_read(&root->nr_swapfiles)) {
810 		btrfs_warn(fs_info,
811 			   "cannot snapshot subvolume with active swapfile");
812 		return -ETXTBSY;
813 	}
814 
815 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
816 	if (!pending_snapshot)
817 		return -ENOMEM;
818 
819 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
820 	if (ret < 0)
821 		goto free_pending;
822 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
823 			GFP_KERNEL);
824 	pending_snapshot->path = btrfs_alloc_path();
825 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
826 		ret = -ENOMEM;
827 		goto free_pending;
828 	}
829 
830 	block_rsv = &pending_snapshot->block_rsv;
831 	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
832 	/*
833 	 * 1 to add dir item
834 	 * 1 to add dir index
835 	 * 1 to update parent inode item
836 	 */
837 	trans_num_items = create_subvol_num_items(inherit) + 3;
838 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
839 					       trans_num_items, false);
840 	if (ret)
841 		goto free_pending;
842 	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
843 
844 	pending_snapshot->dentry = dentry;
845 	pending_snapshot->root = root;
846 	pending_snapshot->readonly = readonly;
847 	pending_snapshot->dir = dir;
848 	pending_snapshot->inherit = inherit;
849 
850 	trans = btrfs_start_transaction(root, 0);
851 	if (IS_ERR(trans)) {
852 		ret = PTR_ERR(trans);
853 		goto fail;
854 	}
855 	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
856 	if (ret) {
857 		btrfs_end_transaction(trans);
858 		goto fail;
859 	}
860 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
861 	qgroup_reserved = 0;
862 
863 	trans->pending_snapshot = pending_snapshot;
864 
865 	ret = btrfs_commit_transaction(trans);
866 	if (ret)
867 		goto fail;
868 
869 	ret = pending_snapshot->error;
870 	if (ret)
871 		goto fail;
872 
873 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
874 	if (ret)
875 		goto fail;
876 
877 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
878 	if (IS_ERR(inode)) {
879 		ret = PTR_ERR(inode);
880 		goto fail;
881 	}
882 
883 	d_instantiate(dentry, inode);
884 	ret = 0;
885 	pending_snapshot->anon_dev = 0;
886 fail:
887 	/* Prevent double freeing of anon_dev */
888 	if (ret && pending_snapshot->snap)
889 		pending_snapshot->snap->anon_dev = 0;
890 	btrfs_put_root(pending_snapshot->snap);
891 	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
892 	if (qgroup_reserved)
893 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
894 free_pending:
895 	if (pending_snapshot->anon_dev)
896 		free_anon_bdev(pending_snapshot->anon_dev);
897 	kfree(pending_snapshot->root_item);
898 	btrfs_free_path(pending_snapshot->path);
899 	kfree(pending_snapshot);
900 
901 	return ret;
902 }
903 
904 /*  copy of may_delete in fs/namei.c()
905  *	Check whether we can remove a link victim from directory dir, check
906  *  whether the type of victim is right.
907  *  1. We can't do it if dir is read-only (done in permission())
908  *  2. We should have write and exec permissions on dir
909  *  3. We can't remove anything from append-only dir
910  *  4. We can't do anything with immutable dir (done in permission())
911  *  5. If the sticky bit on dir is set we should either
912  *	a. be owner of dir, or
913  *	b. be owner of victim, or
914  *	c. have CAP_FOWNER capability
915  *  6. If the victim is append-only or immutable we can't do anything with
916  *     links pointing to it.
917  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
918  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
919  *  9. We can't remove a root or mountpoint.
920  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
921  *     nfs_async_unlink().
922  */
923 
924 static int btrfs_may_delete(struct mnt_idmap *idmap,
925 			    struct inode *dir, struct dentry *victim, int isdir)
926 {
927 	int error;
928 
929 	if (d_really_is_negative(victim))
930 		return -ENOENT;
931 
932 	BUG_ON(d_inode(victim->d_parent) != dir);
933 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
934 
935 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
936 	if (error)
937 		return error;
938 	if (IS_APPEND(dir))
939 		return -EPERM;
940 	if (check_sticky(idmap, dir, d_inode(victim)) ||
941 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
942 	    IS_SWAPFILE(d_inode(victim)))
943 		return -EPERM;
944 	if (isdir) {
945 		if (!d_is_dir(victim))
946 			return -ENOTDIR;
947 		if (IS_ROOT(victim))
948 			return -EBUSY;
949 	} else if (d_is_dir(victim))
950 		return -EISDIR;
951 	if (IS_DEADDIR(dir))
952 		return -ENOENT;
953 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
954 		return -EBUSY;
955 	return 0;
956 }
957 
958 /* copy of may_create in fs/namei.c() */
959 static inline int btrfs_may_create(struct mnt_idmap *idmap,
960 				   struct inode *dir, struct dentry *child)
961 {
962 	if (d_really_is_positive(child))
963 		return -EEXIST;
964 	if (IS_DEADDIR(dir))
965 		return -ENOENT;
966 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
967 		return -EOVERFLOW;
968 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
969 }
970 
971 /*
972  * Create a new subvolume below @parent.  This is largely modeled after
973  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
974  * inside this filesystem so it's quite a bit simpler.
975  */
976 static noinline int btrfs_mksubvol(const struct path *parent,
977 				   struct mnt_idmap *idmap,
978 				   const char *name, int namelen,
979 				   struct btrfs_root *snap_src,
980 				   bool readonly,
981 				   struct btrfs_qgroup_inherit *inherit)
982 {
983 	struct inode *dir = d_inode(parent->dentry);
984 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
985 	struct dentry *dentry;
986 	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
987 	int error;
988 
989 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
990 	if (error == -EINTR)
991 		return error;
992 
993 	dentry = lookup_one(idmap, name, parent->dentry, namelen);
994 	error = PTR_ERR(dentry);
995 	if (IS_ERR(dentry))
996 		goto out_unlock;
997 
998 	error = btrfs_may_create(idmap, dir, dentry);
999 	if (error)
1000 		goto out_dput;
1001 
1002 	/*
1003 	 * even if this name doesn't exist, we may get hash collisions.
1004 	 * check for them now when we can safely fail
1005 	 */
1006 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1007 					       dir->i_ino, &name_str);
1008 	if (error)
1009 		goto out_dput;
1010 
1011 	down_read(&fs_info->subvol_sem);
1012 
1013 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1014 		goto out_up_read;
1015 
1016 	if (snap_src)
1017 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1018 	else
1019 		error = create_subvol(idmap, dir, dentry, inherit);
1020 
1021 	if (!error)
1022 		fsnotify_mkdir(dir, dentry);
1023 out_up_read:
1024 	up_read(&fs_info->subvol_sem);
1025 out_dput:
1026 	dput(dentry);
1027 out_unlock:
1028 	btrfs_inode_unlock(BTRFS_I(dir), 0);
1029 	return error;
1030 }
1031 
1032 static noinline int btrfs_mksnapshot(const struct path *parent,
1033 				   struct mnt_idmap *idmap,
1034 				   const char *name, int namelen,
1035 				   struct btrfs_root *root,
1036 				   bool readonly,
1037 				   struct btrfs_qgroup_inherit *inherit)
1038 {
1039 	int ret;
1040 	bool snapshot_force_cow = false;
1041 
1042 	/*
1043 	 * Force new buffered writes to reserve space even when NOCOW is
1044 	 * possible. This is to avoid later writeback (running dealloc) to
1045 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1046 	 */
1047 	btrfs_drew_read_lock(&root->snapshot_lock);
1048 
1049 	ret = btrfs_start_delalloc_snapshot(root, false);
1050 	if (ret)
1051 		goto out;
1052 
1053 	/*
1054 	 * All previous writes have started writeback in NOCOW mode, so now
1055 	 * we force future writes to fallback to COW mode during snapshot
1056 	 * creation.
1057 	 */
1058 	atomic_inc(&root->snapshot_force_cow);
1059 	snapshot_force_cow = true;
1060 
1061 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1062 
1063 	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1064 			     root, readonly, inherit);
1065 out:
1066 	if (snapshot_force_cow)
1067 		atomic_dec(&root->snapshot_force_cow);
1068 	btrfs_drew_read_unlock(&root->snapshot_lock);
1069 	return ret;
1070 }
1071 
1072 /*
1073  * Try to start exclusive operation @type or cancel it if it's running.
1074  *
1075  * Return:
1076  *   0        - normal mode, newly claimed op started
1077  *  >0        - normal mode, something else is running,
1078  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1079  * ECANCELED  - cancel mode, successful cancel
1080  * ENOTCONN   - cancel mode, operation not running anymore
1081  */
1082 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1083 			enum btrfs_exclusive_operation type, bool cancel)
1084 {
1085 	if (!cancel) {
1086 		/* Start normal op */
1087 		if (!btrfs_exclop_start(fs_info, type))
1088 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1089 		/* Exclusive operation is now claimed */
1090 		return 0;
1091 	}
1092 
1093 	/* Cancel running op */
1094 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1095 		/*
1096 		 * This blocks any exclop finish from setting it to NONE, so we
1097 		 * request cancellation. Either it runs and we will wait for it,
1098 		 * or it has finished and no waiting will happen.
1099 		 */
1100 		atomic_inc(&fs_info->reloc_cancel_req);
1101 		btrfs_exclop_start_unlock(fs_info);
1102 
1103 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1104 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1105 				    TASK_INTERRUPTIBLE);
1106 
1107 		return -ECANCELED;
1108 	}
1109 
1110 	/* Something else is running or none */
1111 	return -ENOTCONN;
1112 }
1113 
1114 static noinline int btrfs_ioctl_resize(struct file *file,
1115 					void __user *arg)
1116 {
1117 	BTRFS_DEV_LOOKUP_ARGS(args);
1118 	struct inode *inode = file_inode(file);
1119 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1120 	u64 new_size;
1121 	u64 old_size;
1122 	u64 devid = 1;
1123 	struct btrfs_root *root = BTRFS_I(inode)->root;
1124 	struct btrfs_ioctl_vol_args *vol_args;
1125 	struct btrfs_trans_handle *trans;
1126 	struct btrfs_device *device = NULL;
1127 	char *sizestr;
1128 	char *retptr;
1129 	char *devstr = NULL;
1130 	int ret = 0;
1131 	int mod = 0;
1132 	bool cancel;
1133 
1134 	if (!capable(CAP_SYS_ADMIN))
1135 		return -EPERM;
1136 
1137 	ret = mnt_want_write_file(file);
1138 	if (ret)
1139 		return ret;
1140 
1141 	/*
1142 	 * Read the arguments before checking exclusivity to be able to
1143 	 * distinguish regular resize and cancel
1144 	 */
1145 	vol_args = memdup_user(arg, sizeof(*vol_args));
1146 	if (IS_ERR(vol_args)) {
1147 		ret = PTR_ERR(vol_args);
1148 		goto out_drop;
1149 	}
1150 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1151 	sizestr = vol_args->name;
1152 	cancel = (strcmp("cancel", sizestr) == 0);
1153 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1154 	if (ret)
1155 		goto out_free;
1156 	/* Exclusive operation is now claimed */
1157 
1158 	devstr = strchr(sizestr, ':');
1159 	if (devstr) {
1160 		sizestr = devstr + 1;
1161 		*devstr = '\0';
1162 		devstr = vol_args->name;
1163 		ret = kstrtoull(devstr, 10, &devid);
1164 		if (ret)
1165 			goto out_finish;
1166 		if (!devid) {
1167 			ret = -EINVAL;
1168 			goto out_finish;
1169 		}
1170 		btrfs_info(fs_info, "resizing devid %llu", devid);
1171 	}
1172 
1173 	args.devid = devid;
1174 	device = btrfs_find_device(fs_info->fs_devices, &args);
1175 	if (!device) {
1176 		btrfs_info(fs_info, "resizer unable to find device %llu",
1177 			   devid);
1178 		ret = -ENODEV;
1179 		goto out_finish;
1180 	}
1181 
1182 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1183 		btrfs_info(fs_info,
1184 			   "resizer unable to apply on readonly device %llu",
1185 		       devid);
1186 		ret = -EPERM;
1187 		goto out_finish;
1188 	}
1189 
1190 	if (!strcmp(sizestr, "max"))
1191 		new_size = bdev_nr_bytes(device->bdev);
1192 	else {
1193 		if (sizestr[0] == '-') {
1194 			mod = -1;
1195 			sizestr++;
1196 		} else if (sizestr[0] == '+') {
1197 			mod = 1;
1198 			sizestr++;
1199 		}
1200 		new_size = memparse(sizestr, &retptr);
1201 		if (*retptr != '\0' || new_size == 0) {
1202 			ret = -EINVAL;
1203 			goto out_finish;
1204 		}
1205 	}
1206 
1207 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1208 		ret = -EPERM;
1209 		goto out_finish;
1210 	}
1211 
1212 	old_size = btrfs_device_get_total_bytes(device);
1213 
1214 	if (mod < 0) {
1215 		if (new_size > old_size) {
1216 			ret = -EINVAL;
1217 			goto out_finish;
1218 		}
1219 		new_size = old_size - new_size;
1220 	} else if (mod > 0) {
1221 		if (new_size > ULLONG_MAX - old_size) {
1222 			ret = -ERANGE;
1223 			goto out_finish;
1224 		}
1225 		new_size = old_size + new_size;
1226 	}
1227 
1228 	if (new_size < SZ_256M) {
1229 		ret = -EINVAL;
1230 		goto out_finish;
1231 	}
1232 	if (new_size > bdev_nr_bytes(device->bdev)) {
1233 		ret = -EFBIG;
1234 		goto out_finish;
1235 	}
1236 
1237 	new_size = round_down(new_size, fs_info->sectorsize);
1238 
1239 	if (new_size > old_size) {
1240 		trans = btrfs_start_transaction(root, 0);
1241 		if (IS_ERR(trans)) {
1242 			ret = PTR_ERR(trans);
1243 			goto out_finish;
1244 		}
1245 		ret = btrfs_grow_device(trans, device, new_size);
1246 		btrfs_commit_transaction(trans);
1247 	} else if (new_size < old_size) {
1248 		ret = btrfs_shrink_device(device, new_size);
1249 	} /* equal, nothing need to do */
1250 
1251 	if (ret == 0 && new_size != old_size)
1252 		btrfs_info_in_rcu(fs_info,
1253 			"resize device %s (devid %llu) from %llu to %llu",
1254 			btrfs_dev_name(device), device->devid,
1255 			old_size, new_size);
1256 out_finish:
1257 	btrfs_exclop_finish(fs_info);
1258 out_free:
1259 	kfree(vol_args);
1260 out_drop:
1261 	mnt_drop_write_file(file);
1262 	return ret;
1263 }
1264 
1265 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1266 				struct mnt_idmap *idmap,
1267 				const char *name, unsigned long fd, int subvol,
1268 				bool readonly,
1269 				struct btrfs_qgroup_inherit *inherit)
1270 {
1271 	int namelen;
1272 	int ret = 0;
1273 
1274 	if (!S_ISDIR(file_inode(file)->i_mode))
1275 		return -ENOTDIR;
1276 
1277 	ret = mnt_want_write_file(file);
1278 	if (ret)
1279 		goto out;
1280 
1281 	namelen = strlen(name);
1282 	if (strchr(name, '/')) {
1283 		ret = -EINVAL;
1284 		goto out_drop_write;
1285 	}
1286 
1287 	if (name[0] == '.' &&
1288 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1289 		ret = -EEXIST;
1290 		goto out_drop_write;
1291 	}
1292 
1293 	if (subvol) {
1294 		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1295 				     namelen, NULL, readonly, inherit);
1296 	} else {
1297 		struct fd src = fdget(fd);
1298 		struct inode *src_inode;
1299 		if (!src.file) {
1300 			ret = -EINVAL;
1301 			goto out_drop_write;
1302 		}
1303 
1304 		src_inode = file_inode(src.file);
1305 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1306 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1307 				   "Snapshot src from another FS");
1308 			ret = -EXDEV;
1309 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1310 			/*
1311 			 * Subvolume creation is not restricted, but snapshots
1312 			 * are limited to own subvolumes only
1313 			 */
1314 			ret = -EPERM;
1315 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1316 			/*
1317 			 * Snapshots must be made with the src_inode referring
1318 			 * to the subvolume inode, otherwise the permission
1319 			 * checking above is useless because we may have
1320 			 * permission on a lower directory but not the subvol
1321 			 * itself.
1322 			 */
1323 			ret = -EINVAL;
1324 		} else {
1325 			ret = btrfs_mksnapshot(&file->f_path, idmap,
1326 					       name, namelen,
1327 					       BTRFS_I(src_inode)->root,
1328 					       readonly, inherit);
1329 		}
1330 		fdput(src);
1331 	}
1332 out_drop_write:
1333 	mnt_drop_write_file(file);
1334 out:
1335 	return ret;
1336 }
1337 
1338 static noinline int btrfs_ioctl_snap_create(struct file *file,
1339 					    void __user *arg, int subvol)
1340 {
1341 	struct btrfs_ioctl_vol_args *vol_args;
1342 	int ret;
1343 
1344 	if (!S_ISDIR(file_inode(file)->i_mode))
1345 		return -ENOTDIR;
1346 
1347 	vol_args = memdup_user(arg, sizeof(*vol_args));
1348 	if (IS_ERR(vol_args))
1349 		return PTR_ERR(vol_args);
1350 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1351 
1352 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1353 					vol_args->name, vol_args->fd, subvol,
1354 					false, NULL);
1355 
1356 	kfree(vol_args);
1357 	return ret;
1358 }
1359 
1360 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1361 					       void __user *arg, int subvol)
1362 {
1363 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1364 	int ret;
1365 	bool readonly = false;
1366 	struct btrfs_qgroup_inherit *inherit = NULL;
1367 
1368 	if (!S_ISDIR(file_inode(file)->i_mode))
1369 		return -ENOTDIR;
1370 
1371 	vol_args = memdup_user(arg, sizeof(*vol_args));
1372 	if (IS_ERR(vol_args))
1373 		return PTR_ERR(vol_args);
1374 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1375 
1376 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1377 		ret = -EOPNOTSUPP;
1378 		goto free_args;
1379 	}
1380 
1381 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1382 		readonly = true;
1383 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1384 		u64 nums;
1385 
1386 		if (vol_args->size < sizeof(*inherit) ||
1387 		    vol_args->size > PAGE_SIZE) {
1388 			ret = -EINVAL;
1389 			goto free_args;
1390 		}
1391 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1392 		if (IS_ERR(inherit)) {
1393 			ret = PTR_ERR(inherit);
1394 			goto free_args;
1395 		}
1396 
1397 		if (inherit->num_qgroups > PAGE_SIZE ||
1398 		    inherit->num_ref_copies > PAGE_SIZE ||
1399 		    inherit->num_excl_copies > PAGE_SIZE) {
1400 			ret = -EINVAL;
1401 			goto free_inherit;
1402 		}
1403 
1404 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1405 		       2 * inherit->num_excl_copies;
1406 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1407 			ret = -EINVAL;
1408 			goto free_inherit;
1409 		}
1410 	}
1411 
1412 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1413 					vol_args->name, vol_args->fd, subvol,
1414 					readonly, inherit);
1415 	if (ret)
1416 		goto free_inherit;
1417 free_inherit:
1418 	kfree(inherit);
1419 free_args:
1420 	kfree(vol_args);
1421 	return ret;
1422 }
1423 
1424 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1425 						void __user *arg)
1426 {
1427 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1428 	struct btrfs_root *root = BTRFS_I(inode)->root;
1429 	int ret = 0;
1430 	u64 flags = 0;
1431 
1432 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1433 		return -EINVAL;
1434 
1435 	down_read(&fs_info->subvol_sem);
1436 	if (btrfs_root_readonly(root))
1437 		flags |= BTRFS_SUBVOL_RDONLY;
1438 	up_read(&fs_info->subvol_sem);
1439 
1440 	if (copy_to_user(arg, &flags, sizeof(flags)))
1441 		ret = -EFAULT;
1442 
1443 	return ret;
1444 }
1445 
1446 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1447 					      void __user *arg)
1448 {
1449 	struct inode *inode = file_inode(file);
1450 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1451 	struct btrfs_root *root = BTRFS_I(inode)->root;
1452 	struct btrfs_trans_handle *trans;
1453 	u64 root_flags;
1454 	u64 flags;
1455 	int ret = 0;
1456 
1457 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1458 		return -EPERM;
1459 
1460 	ret = mnt_want_write_file(file);
1461 	if (ret)
1462 		goto out;
1463 
1464 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1465 		ret = -EINVAL;
1466 		goto out_drop_write;
1467 	}
1468 
1469 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1470 		ret = -EFAULT;
1471 		goto out_drop_write;
1472 	}
1473 
1474 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1475 		ret = -EOPNOTSUPP;
1476 		goto out_drop_write;
1477 	}
1478 
1479 	down_write(&fs_info->subvol_sem);
1480 
1481 	/* nothing to do */
1482 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1483 		goto out_drop_sem;
1484 
1485 	root_flags = btrfs_root_flags(&root->root_item);
1486 	if (flags & BTRFS_SUBVOL_RDONLY) {
1487 		btrfs_set_root_flags(&root->root_item,
1488 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1489 	} else {
1490 		/*
1491 		 * Block RO -> RW transition if this subvolume is involved in
1492 		 * send
1493 		 */
1494 		spin_lock(&root->root_item_lock);
1495 		if (root->send_in_progress == 0) {
1496 			btrfs_set_root_flags(&root->root_item,
1497 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1498 			spin_unlock(&root->root_item_lock);
1499 		} else {
1500 			spin_unlock(&root->root_item_lock);
1501 			btrfs_warn(fs_info,
1502 				   "Attempt to set subvolume %llu read-write during send",
1503 				   root->root_key.objectid);
1504 			ret = -EPERM;
1505 			goto out_drop_sem;
1506 		}
1507 	}
1508 
1509 	trans = btrfs_start_transaction(root, 1);
1510 	if (IS_ERR(trans)) {
1511 		ret = PTR_ERR(trans);
1512 		goto out_reset;
1513 	}
1514 
1515 	ret = btrfs_update_root(trans, fs_info->tree_root,
1516 				&root->root_key, &root->root_item);
1517 	if (ret < 0) {
1518 		btrfs_end_transaction(trans);
1519 		goto out_reset;
1520 	}
1521 
1522 	ret = btrfs_commit_transaction(trans);
1523 
1524 out_reset:
1525 	if (ret)
1526 		btrfs_set_root_flags(&root->root_item, root_flags);
1527 out_drop_sem:
1528 	up_write(&fs_info->subvol_sem);
1529 out_drop_write:
1530 	mnt_drop_write_file(file);
1531 out:
1532 	return ret;
1533 }
1534 
1535 static noinline int key_in_sk(struct btrfs_key *key,
1536 			      struct btrfs_ioctl_search_key *sk)
1537 {
1538 	struct btrfs_key test;
1539 	int ret;
1540 
1541 	test.objectid = sk->min_objectid;
1542 	test.type = sk->min_type;
1543 	test.offset = sk->min_offset;
1544 
1545 	ret = btrfs_comp_cpu_keys(key, &test);
1546 	if (ret < 0)
1547 		return 0;
1548 
1549 	test.objectid = sk->max_objectid;
1550 	test.type = sk->max_type;
1551 	test.offset = sk->max_offset;
1552 
1553 	ret = btrfs_comp_cpu_keys(key, &test);
1554 	if (ret > 0)
1555 		return 0;
1556 	return 1;
1557 }
1558 
1559 static noinline int copy_to_sk(struct btrfs_path *path,
1560 			       struct btrfs_key *key,
1561 			       struct btrfs_ioctl_search_key *sk,
1562 			       u64 *buf_size,
1563 			       char __user *ubuf,
1564 			       unsigned long *sk_offset,
1565 			       int *num_found)
1566 {
1567 	u64 found_transid;
1568 	struct extent_buffer *leaf;
1569 	struct btrfs_ioctl_search_header sh;
1570 	struct btrfs_key test;
1571 	unsigned long item_off;
1572 	unsigned long item_len;
1573 	int nritems;
1574 	int i;
1575 	int slot;
1576 	int ret = 0;
1577 
1578 	leaf = path->nodes[0];
1579 	slot = path->slots[0];
1580 	nritems = btrfs_header_nritems(leaf);
1581 
1582 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1583 		i = nritems;
1584 		goto advance_key;
1585 	}
1586 	found_transid = btrfs_header_generation(leaf);
1587 
1588 	for (i = slot; i < nritems; i++) {
1589 		item_off = btrfs_item_ptr_offset(leaf, i);
1590 		item_len = btrfs_item_size(leaf, i);
1591 
1592 		btrfs_item_key_to_cpu(leaf, key, i);
1593 		if (!key_in_sk(key, sk))
1594 			continue;
1595 
1596 		if (sizeof(sh) + item_len > *buf_size) {
1597 			if (*num_found) {
1598 				ret = 1;
1599 				goto out;
1600 			}
1601 
1602 			/*
1603 			 * return one empty item back for v1, which does not
1604 			 * handle -EOVERFLOW
1605 			 */
1606 
1607 			*buf_size = sizeof(sh) + item_len;
1608 			item_len = 0;
1609 			ret = -EOVERFLOW;
1610 		}
1611 
1612 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1613 			ret = 1;
1614 			goto out;
1615 		}
1616 
1617 		sh.objectid = key->objectid;
1618 		sh.offset = key->offset;
1619 		sh.type = key->type;
1620 		sh.len = item_len;
1621 		sh.transid = found_transid;
1622 
1623 		/*
1624 		 * Copy search result header. If we fault then loop again so we
1625 		 * can fault in the pages and -EFAULT there if there's a
1626 		 * problem. Otherwise we'll fault and then copy the buffer in
1627 		 * properly this next time through
1628 		 */
1629 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1630 			ret = 0;
1631 			goto out;
1632 		}
1633 
1634 		*sk_offset += sizeof(sh);
1635 
1636 		if (item_len) {
1637 			char __user *up = ubuf + *sk_offset;
1638 			/*
1639 			 * Copy the item, same behavior as above, but reset the
1640 			 * * sk_offset so we copy the full thing again.
1641 			 */
1642 			if (read_extent_buffer_to_user_nofault(leaf, up,
1643 						item_off, item_len)) {
1644 				ret = 0;
1645 				*sk_offset -= sizeof(sh);
1646 				goto out;
1647 			}
1648 
1649 			*sk_offset += item_len;
1650 		}
1651 		(*num_found)++;
1652 
1653 		if (ret) /* -EOVERFLOW from above */
1654 			goto out;
1655 
1656 		if (*num_found >= sk->nr_items) {
1657 			ret = 1;
1658 			goto out;
1659 		}
1660 	}
1661 advance_key:
1662 	ret = 0;
1663 	test.objectid = sk->max_objectid;
1664 	test.type = sk->max_type;
1665 	test.offset = sk->max_offset;
1666 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1667 		ret = 1;
1668 	else if (key->offset < (u64)-1)
1669 		key->offset++;
1670 	else if (key->type < (u8)-1) {
1671 		key->offset = 0;
1672 		key->type++;
1673 	} else if (key->objectid < (u64)-1) {
1674 		key->offset = 0;
1675 		key->type = 0;
1676 		key->objectid++;
1677 	} else
1678 		ret = 1;
1679 out:
1680 	/*
1681 	 *  0: all items from this leaf copied, continue with next
1682 	 *  1: * more items can be copied, but unused buffer is too small
1683 	 *     * all items were found
1684 	 *     Either way, it will stops the loop which iterates to the next
1685 	 *     leaf
1686 	 *  -EOVERFLOW: item was to large for buffer
1687 	 *  -EFAULT: could not copy extent buffer back to userspace
1688 	 */
1689 	return ret;
1690 }
1691 
1692 static noinline int search_ioctl(struct inode *inode,
1693 				 struct btrfs_ioctl_search_key *sk,
1694 				 u64 *buf_size,
1695 				 char __user *ubuf)
1696 {
1697 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1698 	struct btrfs_root *root;
1699 	struct btrfs_key key;
1700 	struct btrfs_path *path;
1701 	int ret;
1702 	int num_found = 0;
1703 	unsigned long sk_offset = 0;
1704 
1705 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1706 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1707 		return -EOVERFLOW;
1708 	}
1709 
1710 	path = btrfs_alloc_path();
1711 	if (!path)
1712 		return -ENOMEM;
1713 
1714 	if (sk->tree_id == 0) {
1715 		/* search the root of the inode that was passed */
1716 		root = btrfs_grab_root(BTRFS_I(inode)->root);
1717 	} else {
1718 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1719 		if (IS_ERR(root)) {
1720 			btrfs_free_path(path);
1721 			return PTR_ERR(root);
1722 		}
1723 	}
1724 
1725 	key.objectid = sk->min_objectid;
1726 	key.type = sk->min_type;
1727 	key.offset = sk->min_offset;
1728 
1729 	while (1) {
1730 		ret = -EFAULT;
1731 		/*
1732 		 * Ensure that the whole user buffer is faulted in at sub-page
1733 		 * granularity, otherwise the loop may live-lock.
1734 		 */
1735 		if (fault_in_subpage_writeable(ubuf + sk_offset,
1736 					       *buf_size - sk_offset))
1737 			break;
1738 
1739 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1740 		if (ret != 0) {
1741 			if (ret > 0)
1742 				ret = 0;
1743 			goto err;
1744 		}
1745 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1746 				 &sk_offset, &num_found);
1747 		btrfs_release_path(path);
1748 		if (ret)
1749 			break;
1750 
1751 	}
1752 	if (ret > 0)
1753 		ret = 0;
1754 err:
1755 	sk->nr_items = num_found;
1756 	btrfs_put_root(root);
1757 	btrfs_free_path(path);
1758 	return ret;
1759 }
1760 
1761 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1762 					    void __user *argp)
1763 {
1764 	struct btrfs_ioctl_search_args __user *uargs = argp;
1765 	struct btrfs_ioctl_search_key sk;
1766 	int ret;
1767 	u64 buf_size;
1768 
1769 	if (!capable(CAP_SYS_ADMIN))
1770 		return -EPERM;
1771 
1772 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1773 		return -EFAULT;
1774 
1775 	buf_size = sizeof(uargs->buf);
1776 
1777 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1778 
1779 	/*
1780 	 * In the origin implementation an overflow is handled by returning a
1781 	 * search header with a len of zero, so reset ret.
1782 	 */
1783 	if (ret == -EOVERFLOW)
1784 		ret = 0;
1785 
1786 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1787 		ret = -EFAULT;
1788 	return ret;
1789 }
1790 
1791 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1792 					       void __user *argp)
1793 {
1794 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1795 	struct btrfs_ioctl_search_args_v2 args;
1796 	int ret;
1797 	u64 buf_size;
1798 	const u64 buf_limit = SZ_16M;
1799 
1800 	if (!capable(CAP_SYS_ADMIN))
1801 		return -EPERM;
1802 
1803 	/* copy search header and buffer size */
1804 	if (copy_from_user(&args, uarg, sizeof(args)))
1805 		return -EFAULT;
1806 
1807 	buf_size = args.buf_size;
1808 
1809 	/* limit result size to 16MB */
1810 	if (buf_size > buf_limit)
1811 		buf_size = buf_limit;
1812 
1813 	ret = search_ioctl(inode, &args.key, &buf_size,
1814 			   (char __user *)(&uarg->buf[0]));
1815 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1816 		ret = -EFAULT;
1817 	else if (ret == -EOVERFLOW &&
1818 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1819 		ret = -EFAULT;
1820 
1821 	return ret;
1822 }
1823 
1824 /*
1825  * Search INODE_REFs to identify path name of 'dirid' directory
1826  * in a 'tree_id' tree. and sets path name to 'name'.
1827  */
1828 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1829 				u64 tree_id, u64 dirid, char *name)
1830 {
1831 	struct btrfs_root *root;
1832 	struct btrfs_key key;
1833 	char *ptr;
1834 	int ret = -1;
1835 	int slot;
1836 	int len;
1837 	int total_len = 0;
1838 	struct btrfs_inode_ref *iref;
1839 	struct extent_buffer *l;
1840 	struct btrfs_path *path;
1841 
1842 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1843 		name[0]='\0';
1844 		return 0;
1845 	}
1846 
1847 	path = btrfs_alloc_path();
1848 	if (!path)
1849 		return -ENOMEM;
1850 
1851 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1852 
1853 	root = btrfs_get_fs_root(info, tree_id, true);
1854 	if (IS_ERR(root)) {
1855 		ret = PTR_ERR(root);
1856 		root = NULL;
1857 		goto out;
1858 	}
1859 
1860 	key.objectid = dirid;
1861 	key.type = BTRFS_INODE_REF_KEY;
1862 	key.offset = (u64)-1;
1863 
1864 	while (1) {
1865 		ret = btrfs_search_backwards(root, &key, path);
1866 		if (ret < 0)
1867 			goto out;
1868 		else if (ret > 0) {
1869 			ret = -ENOENT;
1870 			goto out;
1871 		}
1872 
1873 		l = path->nodes[0];
1874 		slot = path->slots[0];
1875 
1876 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1877 		len = btrfs_inode_ref_name_len(l, iref);
1878 		ptr -= len + 1;
1879 		total_len += len + 1;
1880 		if (ptr < name) {
1881 			ret = -ENAMETOOLONG;
1882 			goto out;
1883 		}
1884 
1885 		*(ptr + len) = '/';
1886 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1887 
1888 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1889 			break;
1890 
1891 		btrfs_release_path(path);
1892 		key.objectid = key.offset;
1893 		key.offset = (u64)-1;
1894 		dirid = key.objectid;
1895 	}
1896 	memmove(name, ptr, total_len);
1897 	name[total_len] = '\0';
1898 	ret = 0;
1899 out:
1900 	btrfs_put_root(root);
1901 	btrfs_free_path(path);
1902 	return ret;
1903 }
1904 
1905 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1906 				struct inode *inode,
1907 				struct btrfs_ioctl_ino_lookup_user_args *args)
1908 {
1909 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1910 	struct super_block *sb = inode->i_sb;
1911 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1912 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1913 	u64 dirid = args->dirid;
1914 	unsigned long item_off;
1915 	unsigned long item_len;
1916 	struct btrfs_inode_ref *iref;
1917 	struct btrfs_root_ref *rref;
1918 	struct btrfs_root *root = NULL;
1919 	struct btrfs_path *path;
1920 	struct btrfs_key key, key2;
1921 	struct extent_buffer *leaf;
1922 	struct inode *temp_inode;
1923 	char *ptr;
1924 	int slot;
1925 	int len;
1926 	int total_len = 0;
1927 	int ret;
1928 
1929 	path = btrfs_alloc_path();
1930 	if (!path)
1931 		return -ENOMEM;
1932 
1933 	/*
1934 	 * If the bottom subvolume does not exist directly under upper_limit,
1935 	 * construct the path in from the bottom up.
1936 	 */
1937 	if (dirid != upper_limit.objectid) {
1938 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1939 
1940 		root = btrfs_get_fs_root(fs_info, treeid, true);
1941 		if (IS_ERR(root)) {
1942 			ret = PTR_ERR(root);
1943 			goto out;
1944 		}
1945 
1946 		key.objectid = dirid;
1947 		key.type = BTRFS_INODE_REF_KEY;
1948 		key.offset = (u64)-1;
1949 		while (1) {
1950 			ret = btrfs_search_backwards(root, &key, path);
1951 			if (ret < 0)
1952 				goto out_put;
1953 			else if (ret > 0) {
1954 				ret = -ENOENT;
1955 				goto out_put;
1956 			}
1957 
1958 			leaf = path->nodes[0];
1959 			slot = path->slots[0];
1960 
1961 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1962 			len = btrfs_inode_ref_name_len(leaf, iref);
1963 			ptr -= len + 1;
1964 			total_len += len + 1;
1965 			if (ptr < args->path) {
1966 				ret = -ENAMETOOLONG;
1967 				goto out_put;
1968 			}
1969 
1970 			*(ptr + len) = '/';
1971 			read_extent_buffer(leaf, ptr,
1972 					(unsigned long)(iref + 1), len);
1973 
1974 			/* Check the read+exec permission of this directory */
1975 			ret = btrfs_previous_item(root, path, dirid,
1976 						  BTRFS_INODE_ITEM_KEY);
1977 			if (ret < 0) {
1978 				goto out_put;
1979 			} else if (ret > 0) {
1980 				ret = -ENOENT;
1981 				goto out_put;
1982 			}
1983 
1984 			leaf = path->nodes[0];
1985 			slot = path->slots[0];
1986 			btrfs_item_key_to_cpu(leaf, &key2, slot);
1987 			if (key2.objectid != dirid) {
1988 				ret = -ENOENT;
1989 				goto out_put;
1990 			}
1991 
1992 			/*
1993 			 * We don't need the path anymore, so release it and
1994 			 * avoid deadlocks and lockdep warnings in case
1995 			 * btrfs_iget() needs to lookup the inode from its root
1996 			 * btree and lock the same leaf.
1997 			 */
1998 			btrfs_release_path(path);
1999 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2000 			if (IS_ERR(temp_inode)) {
2001 				ret = PTR_ERR(temp_inode);
2002 				goto out_put;
2003 			}
2004 			ret = inode_permission(idmap, temp_inode,
2005 					       MAY_READ | MAY_EXEC);
2006 			iput(temp_inode);
2007 			if (ret) {
2008 				ret = -EACCES;
2009 				goto out_put;
2010 			}
2011 
2012 			if (key.offset == upper_limit.objectid)
2013 				break;
2014 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2015 				ret = -EACCES;
2016 				goto out_put;
2017 			}
2018 
2019 			key.objectid = key.offset;
2020 			key.offset = (u64)-1;
2021 			dirid = key.objectid;
2022 		}
2023 
2024 		memmove(args->path, ptr, total_len);
2025 		args->path[total_len] = '\0';
2026 		btrfs_put_root(root);
2027 		root = NULL;
2028 		btrfs_release_path(path);
2029 	}
2030 
2031 	/* Get the bottom subvolume's name from ROOT_REF */
2032 	key.objectid = treeid;
2033 	key.type = BTRFS_ROOT_REF_KEY;
2034 	key.offset = args->treeid;
2035 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2036 	if (ret < 0) {
2037 		goto out;
2038 	} else if (ret > 0) {
2039 		ret = -ENOENT;
2040 		goto out;
2041 	}
2042 
2043 	leaf = path->nodes[0];
2044 	slot = path->slots[0];
2045 	btrfs_item_key_to_cpu(leaf, &key, slot);
2046 
2047 	item_off = btrfs_item_ptr_offset(leaf, slot);
2048 	item_len = btrfs_item_size(leaf, slot);
2049 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2050 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2051 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2052 		ret = -EINVAL;
2053 		goto out;
2054 	}
2055 
2056 	/* Copy subvolume's name */
2057 	item_off += sizeof(struct btrfs_root_ref);
2058 	item_len -= sizeof(struct btrfs_root_ref);
2059 	read_extent_buffer(leaf, args->name, item_off, item_len);
2060 	args->name[item_len] = 0;
2061 
2062 out_put:
2063 	btrfs_put_root(root);
2064 out:
2065 	btrfs_free_path(path);
2066 	return ret;
2067 }
2068 
2069 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2070 					   void __user *argp)
2071 {
2072 	struct btrfs_ioctl_ino_lookup_args *args;
2073 	int ret = 0;
2074 
2075 	args = memdup_user(argp, sizeof(*args));
2076 	if (IS_ERR(args))
2077 		return PTR_ERR(args);
2078 
2079 	/*
2080 	 * Unprivileged query to obtain the containing subvolume root id. The
2081 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2082 	 */
2083 	if (args->treeid == 0)
2084 		args->treeid = root->root_key.objectid;
2085 
2086 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2087 		args->name[0] = 0;
2088 		goto out;
2089 	}
2090 
2091 	if (!capable(CAP_SYS_ADMIN)) {
2092 		ret = -EPERM;
2093 		goto out;
2094 	}
2095 
2096 	ret = btrfs_search_path_in_tree(root->fs_info,
2097 					args->treeid, args->objectid,
2098 					args->name);
2099 
2100 out:
2101 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2102 		ret = -EFAULT;
2103 
2104 	kfree(args);
2105 	return ret;
2106 }
2107 
2108 /*
2109  * Version of ino_lookup ioctl (unprivileged)
2110  *
2111  * The main differences from ino_lookup ioctl are:
2112  *
2113  *   1. Read + Exec permission will be checked using inode_permission() during
2114  *      path construction. -EACCES will be returned in case of failure.
2115  *   2. Path construction will be stopped at the inode number which corresponds
2116  *      to the fd with which this ioctl is called. If constructed path does not
2117  *      exist under fd's inode, -EACCES will be returned.
2118  *   3. The name of bottom subvolume is also searched and filled.
2119  */
2120 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2121 {
2122 	struct btrfs_ioctl_ino_lookup_user_args *args;
2123 	struct inode *inode;
2124 	int ret;
2125 
2126 	args = memdup_user(argp, sizeof(*args));
2127 	if (IS_ERR(args))
2128 		return PTR_ERR(args);
2129 
2130 	inode = file_inode(file);
2131 
2132 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2133 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2134 		/*
2135 		 * The subvolume does not exist under fd with which this is
2136 		 * called
2137 		 */
2138 		kfree(args);
2139 		return -EACCES;
2140 	}
2141 
2142 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2143 
2144 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2145 		ret = -EFAULT;
2146 
2147 	kfree(args);
2148 	return ret;
2149 }
2150 
2151 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2152 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2153 {
2154 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2155 	struct btrfs_fs_info *fs_info;
2156 	struct btrfs_root *root;
2157 	struct btrfs_path *path;
2158 	struct btrfs_key key;
2159 	struct btrfs_root_item *root_item;
2160 	struct btrfs_root_ref *rref;
2161 	struct extent_buffer *leaf;
2162 	unsigned long item_off;
2163 	unsigned long item_len;
2164 	int slot;
2165 	int ret = 0;
2166 
2167 	path = btrfs_alloc_path();
2168 	if (!path)
2169 		return -ENOMEM;
2170 
2171 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2172 	if (!subvol_info) {
2173 		btrfs_free_path(path);
2174 		return -ENOMEM;
2175 	}
2176 
2177 	fs_info = BTRFS_I(inode)->root->fs_info;
2178 
2179 	/* Get root_item of inode's subvolume */
2180 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2181 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2182 	if (IS_ERR(root)) {
2183 		ret = PTR_ERR(root);
2184 		goto out_free;
2185 	}
2186 	root_item = &root->root_item;
2187 
2188 	subvol_info->treeid = key.objectid;
2189 
2190 	subvol_info->generation = btrfs_root_generation(root_item);
2191 	subvol_info->flags = btrfs_root_flags(root_item);
2192 
2193 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2194 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2195 						    BTRFS_UUID_SIZE);
2196 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2197 						    BTRFS_UUID_SIZE);
2198 
2199 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2200 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2201 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2202 
2203 	subvol_info->otransid = btrfs_root_otransid(root_item);
2204 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2205 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2206 
2207 	subvol_info->stransid = btrfs_root_stransid(root_item);
2208 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2209 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2210 
2211 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2212 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2213 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2214 
2215 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2216 		/* Search root tree for ROOT_BACKREF of this subvolume */
2217 		key.type = BTRFS_ROOT_BACKREF_KEY;
2218 		key.offset = 0;
2219 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2220 		if (ret < 0) {
2221 			goto out;
2222 		} else if (path->slots[0] >=
2223 			   btrfs_header_nritems(path->nodes[0])) {
2224 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2225 			if (ret < 0) {
2226 				goto out;
2227 			} else if (ret > 0) {
2228 				ret = -EUCLEAN;
2229 				goto out;
2230 			}
2231 		}
2232 
2233 		leaf = path->nodes[0];
2234 		slot = path->slots[0];
2235 		btrfs_item_key_to_cpu(leaf, &key, slot);
2236 		if (key.objectid == subvol_info->treeid &&
2237 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2238 			subvol_info->parent_id = key.offset;
2239 
2240 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2241 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2242 
2243 			item_off = btrfs_item_ptr_offset(leaf, slot)
2244 					+ sizeof(struct btrfs_root_ref);
2245 			item_len = btrfs_item_size(leaf, slot)
2246 					- sizeof(struct btrfs_root_ref);
2247 			read_extent_buffer(leaf, subvol_info->name,
2248 					   item_off, item_len);
2249 		} else {
2250 			ret = -ENOENT;
2251 			goto out;
2252 		}
2253 	}
2254 
2255 	btrfs_free_path(path);
2256 	path = NULL;
2257 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2258 		ret = -EFAULT;
2259 
2260 out:
2261 	btrfs_put_root(root);
2262 out_free:
2263 	btrfs_free_path(path);
2264 	kfree(subvol_info);
2265 	return ret;
2266 }
2267 
2268 /*
2269  * Return ROOT_REF information of the subvolume containing this inode
2270  * except the subvolume name.
2271  */
2272 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2273 					  void __user *argp)
2274 {
2275 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2276 	struct btrfs_root_ref *rref;
2277 	struct btrfs_path *path;
2278 	struct btrfs_key key;
2279 	struct extent_buffer *leaf;
2280 	u64 objectid;
2281 	int slot;
2282 	int ret;
2283 	u8 found;
2284 
2285 	path = btrfs_alloc_path();
2286 	if (!path)
2287 		return -ENOMEM;
2288 
2289 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2290 	if (IS_ERR(rootrefs)) {
2291 		btrfs_free_path(path);
2292 		return PTR_ERR(rootrefs);
2293 	}
2294 
2295 	objectid = root->root_key.objectid;
2296 	key.objectid = objectid;
2297 	key.type = BTRFS_ROOT_REF_KEY;
2298 	key.offset = rootrefs->min_treeid;
2299 	found = 0;
2300 
2301 	root = root->fs_info->tree_root;
2302 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2303 	if (ret < 0) {
2304 		goto out;
2305 	} else if (path->slots[0] >=
2306 		   btrfs_header_nritems(path->nodes[0])) {
2307 		ret = btrfs_next_leaf(root, path);
2308 		if (ret < 0) {
2309 			goto out;
2310 		} else if (ret > 0) {
2311 			ret = -EUCLEAN;
2312 			goto out;
2313 		}
2314 	}
2315 	while (1) {
2316 		leaf = path->nodes[0];
2317 		slot = path->slots[0];
2318 
2319 		btrfs_item_key_to_cpu(leaf, &key, slot);
2320 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2321 			ret = 0;
2322 			goto out;
2323 		}
2324 
2325 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2326 			ret = -EOVERFLOW;
2327 			goto out;
2328 		}
2329 
2330 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2331 		rootrefs->rootref[found].treeid = key.offset;
2332 		rootrefs->rootref[found].dirid =
2333 				  btrfs_root_ref_dirid(leaf, rref);
2334 		found++;
2335 
2336 		ret = btrfs_next_item(root, path);
2337 		if (ret < 0) {
2338 			goto out;
2339 		} else if (ret > 0) {
2340 			ret = -EUCLEAN;
2341 			goto out;
2342 		}
2343 	}
2344 
2345 out:
2346 	btrfs_free_path(path);
2347 
2348 	if (!ret || ret == -EOVERFLOW) {
2349 		rootrefs->num_items = found;
2350 		/* update min_treeid for next search */
2351 		if (found)
2352 			rootrefs->min_treeid =
2353 				rootrefs->rootref[found - 1].treeid + 1;
2354 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2355 			ret = -EFAULT;
2356 	}
2357 
2358 	kfree(rootrefs);
2359 
2360 	return ret;
2361 }
2362 
2363 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2364 					     void __user *arg,
2365 					     bool destroy_v2)
2366 {
2367 	struct dentry *parent = file->f_path.dentry;
2368 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2369 	struct dentry *dentry;
2370 	struct inode *dir = d_inode(parent);
2371 	struct inode *inode;
2372 	struct btrfs_root *root = BTRFS_I(dir)->root;
2373 	struct btrfs_root *dest = NULL;
2374 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2375 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2376 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2377 	char *subvol_name, *subvol_name_ptr = NULL;
2378 	int subvol_namelen;
2379 	int err = 0;
2380 	bool destroy_parent = false;
2381 
2382 	/* We don't support snapshots with extent tree v2 yet. */
2383 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2384 		btrfs_err(fs_info,
2385 			  "extent tree v2 doesn't support snapshot deletion yet");
2386 		return -EOPNOTSUPP;
2387 	}
2388 
2389 	if (destroy_v2) {
2390 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2391 		if (IS_ERR(vol_args2))
2392 			return PTR_ERR(vol_args2);
2393 
2394 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2395 			err = -EOPNOTSUPP;
2396 			goto out;
2397 		}
2398 
2399 		/*
2400 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2401 		 * name, same as v1 currently does.
2402 		 */
2403 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2404 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2405 			subvol_name = vol_args2->name;
2406 
2407 			err = mnt_want_write_file(file);
2408 			if (err)
2409 				goto out;
2410 		} else {
2411 			struct inode *old_dir;
2412 
2413 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2414 				err = -EINVAL;
2415 				goto out;
2416 			}
2417 
2418 			err = mnt_want_write_file(file);
2419 			if (err)
2420 				goto out;
2421 
2422 			dentry = btrfs_get_dentry(fs_info->sb,
2423 					BTRFS_FIRST_FREE_OBJECTID,
2424 					vol_args2->subvolid, 0);
2425 			if (IS_ERR(dentry)) {
2426 				err = PTR_ERR(dentry);
2427 				goto out_drop_write;
2428 			}
2429 
2430 			/*
2431 			 * Change the default parent since the subvolume being
2432 			 * deleted can be outside of the current mount point.
2433 			 */
2434 			parent = btrfs_get_parent(dentry);
2435 
2436 			/*
2437 			 * At this point dentry->d_name can point to '/' if the
2438 			 * subvolume we want to destroy is outsite of the
2439 			 * current mount point, so we need to release the
2440 			 * current dentry and execute the lookup to return a new
2441 			 * one with ->d_name pointing to the
2442 			 * <mount point>/subvol_name.
2443 			 */
2444 			dput(dentry);
2445 			if (IS_ERR(parent)) {
2446 				err = PTR_ERR(parent);
2447 				goto out_drop_write;
2448 			}
2449 			old_dir = dir;
2450 			dir = d_inode(parent);
2451 
2452 			/*
2453 			 * If v2 was used with SPEC_BY_ID, a new parent was
2454 			 * allocated since the subvolume can be outside of the
2455 			 * current mount point. Later on we need to release this
2456 			 * new parent dentry.
2457 			 */
2458 			destroy_parent = true;
2459 
2460 			/*
2461 			 * On idmapped mounts, deletion via subvolid is
2462 			 * restricted to subvolumes that are immediate
2463 			 * ancestors of the inode referenced by the file
2464 			 * descriptor in the ioctl. Otherwise the idmapping
2465 			 * could potentially be abused to delete subvolumes
2466 			 * anywhere in the filesystem the user wouldn't be able
2467 			 * to delete without an idmapped mount.
2468 			 */
2469 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2470 				err = -EOPNOTSUPP;
2471 				goto free_parent;
2472 			}
2473 
2474 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2475 						fs_info, vol_args2->subvolid);
2476 			if (IS_ERR(subvol_name_ptr)) {
2477 				err = PTR_ERR(subvol_name_ptr);
2478 				goto free_parent;
2479 			}
2480 			/* subvol_name_ptr is already nul terminated */
2481 			subvol_name = (char *)kbasename(subvol_name_ptr);
2482 		}
2483 	} else {
2484 		vol_args = memdup_user(arg, sizeof(*vol_args));
2485 		if (IS_ERR(vol_args))
2486 			return PTR_ERR(vol_args);
2487 
2488 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2489 		subvol_name = vol_args->name;
2490 
2491 		err = mnt_want_write_file(file);
2492 		if (err)
2493 			goto out;
2494 	}
2495 
2496 	subvol_namelen = strlen(subvol_name);
2497 
2498 	if (strchr(subvol_name, '/') ||
2499 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2500 		err = -EINVAL;
2501 		goto free_subvol_name;
2502 	}
2503 
2504 	if (!S_ISDIR(dir->i_mode)) {
2505 		err = -ENOTDIR;
2506 		goto free_subvol_name;
2507 	}
2508 
2509 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2510 	if (err == -EINTR)
2511 		goto free_subvol_name;
2512 	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2513 	if (IS_ERR(dentry)) {
2514 		err = PTR_ERR(dentry);
2515 		goto out_unlock_dir;
2516 	}
2517 
2518 	if (d_really_is_negative(dentry)) {
2519 		err = -ENOENT;
2520 		goto out_dput;
2521 	}
2522 
2523 	inode = d_inode(dentry);
2524 	dest = BTRFS_I(inode)->root;
2525 	if (!capable(CAP_SYS_ADMIN)) {
2526 		/*
2527 		 * Regular user.  Only allow this with a special mount
2528 		 * option, when the user has write+exec access to the
2529 		 * subvol root, and when rmdir(2) would have been
2530 		 * allowed.
2531 		 *
2532 		 * Note that this is _not_ check that the subvol is
2533 		 * empty or doesn't contain data that we wouldn't
2534 		 * otherwise be able to delete.
2535 		 *
2536 		 * Users who want to delete empty subvols should try
2537 		 * rmdir(2).
2538 		 */
2539 		err = -EPERM;
2540 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2541 			goto out_dput;
2542 
2543 		/*
2544 		 * Do not allow deletion if the parent dir is the same
2545 		 * as the dir to be deleted.  That means the ioctl
2546 		 * must be called on the dentry referencing the root
2547 		 * of the subvol, not a random directory contained
2548 		 * within it.
2549 		 */
2550 		err = -EINVAL;
2551 		if (root == dest)
2552 			goto out_dput;
2553 
2554 		err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2555 		if (err)
2556 			goto out_dput;
2557 	}
2558 
2559 	/* check if subvolume may be deleted by a user */
2560 	err = btrfs_may_delete(idmap, dir, dentry, 1);
2561 	if (err)
2562 		goto out_dput;
2563 
2564 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2565 		err = -EINVAL;
2566 		goto out_dput;
2567 	}
2568 
2569 	btrfs_inode_lock(BTRFS_I(inode), 0);
2570 	err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2571 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2572 	if (!err)
2573 		d_delete_notify(dir, dentry);
2574 
2575 out_dput:
2576 	dput(dentry);
2577 out_unlock_dir:
2578 	btrfs_inode_unlock(BTRFS_I(dir), 0);
2579 free_subvol_name:
2580 	kfree(subvol_name_ptr);
2581 free_parent:
2582 	if (destroy_parent)
2583 		dput(parent);
2584 out_drop_write:
2585 	mnt_drop_write_file(file);
2586 out:
2587 	kfree(vol_args2);
2588 	kfree(vol_args);
2589 	return err;
2590 }
2591 
2592 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2593 {
2594 	struct inode *inode = file_inode(file);
2595 	struct btrfs_root *root = BTRFS_I(inode)->root;
2596 	struct btrfs_ioctl_defrag_range_args range = {0};
2597 	int ret;
2598 
2599 	ret = mnt_want_write_file(file);
2600 	if (ret)
2601 		return ret;
2602 
2603 	if (btrfs_root_readonly(root)) {
2604 		ret = -EROFS;
2605 		goto out;
2606 	}
2607 
2608 	switch (inode->i_mode & S_IFMT) {
2609 	case S_IFDIR:
2610 		if (!capable(CAP_SYS_ADMIN)) {
2611 			ret = -EPERM;
2612 			goto out;
2613 		}
2614 		ret = btrfs_defrag_root(root);
2615 		break;
2616 	case S_IFREG:
2617 		/*
2618 		 * Note that this does not check the file descriptor for write
2619 		 * access. This prevents defragmenting executables that are
2620 		 * running and allows defrag on files open in read-only mode.
2621 		 */
2622 		if (!capable(CAP_SYS_ADMIN) &&
2623 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2624 			ret = -EPERM;
2625 			goto out;
2626 		}
2627 
2628 		if (argp) {
2629 			if (copy_from_user(&range, argp, sizeof(range))) {
2630 				ret = -EFAULT;
2631 				goto out;
2632 			}
2633 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2634 				ret = -EOPNOTSUPP;
2635 				goto out;
2636 			}
2637 			/* compression requires us to start the IO */
2638 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2639 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2640 				range.extent_thresh = (u32)-1;
2641 			}
2642 		} else {
2643 			/* the rest are all set to zero by kzalloc */
2644 			range.len = (u64)-1;
2645 		}
2646 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2647 					&range, BTRFS_OLDEST_GENERATION, 0);
2648 		if (ret > 0)
2649 			ret = 0;
2650 		break;
2651 	default:
2652 		ret = -EINVAL;
2653 	}
2654 out:
2655 	mnt_drop_write_file(file);
2656 	return ret;
2657 }
2658 
2659 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2660 {
2661 	struct btrfs_ioctl_vol_args *vol_args;
2662 	bool restore_op = false;
2663 	int ret;
2664 
2665 	if (!capable(CAP_SYS_ADMIN))
2666 		return -EPERM;
2667 
2668 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2669 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2670 		return -EINVAL;
2671 	}
2672 
2673 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2674 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2675 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2676 
2677 		/*
2678 		 * We can do the device add because we have a paused balanced,
2679 		 * change the exclusive op type and remember we should bring
2680 		 * back the paused balance
2681 		 */
2682 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2683 		btrfs_exclop_start_unlock(fs_info);
2684 		restore_op = true;
2685 	}
2686 
2687 	vol_args = memdup_user(arg, sizeof(*vol_args));
2688 	if (IS_ERR(vol_args)) {
2689 		ret = PTR_ERR(vol_args);
2690 		goto out;
2691 	}
2692 
2693 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2694 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2695 
2696 	if (!ret)
2697 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2698 
2699 	kfree(vol_args);
2700 out:
2701 	if (restore_op)
2702 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2703 	else
2704 		btrfs_exclop_finish(fs_info);
2705 	return ret;
2706 }
2707 
2708 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2709 {
2710 	BTRFS_DEV_LOOKUP_ARGS(args);
2711 	struct inode *inode = file_inode(file);
2712 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2713 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2714 	struct block_device *bdev = NULL;
2715 	void *holder;
2716 	int ret;
2717 	bool cancel = false;
2718 
2719 	if (!capable(CAP_SYS_ADMIN))
2720 		return -EPERM;
2721 
2722 	vol_args = memdup_user(arg, sizeof(*vol_args));
2723 	if (IS_ERR(vol_args))
2724 		return PTR_ERR(vol_args);
2725 
2726 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2727 		ret = -EOPNOTSUPP;
2728 		goto out;
2729 	}
2730 
2731 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2732 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2733 		args.devid = vol_args->devid;
2734 	} else if (!strcmp("cancel", vol_args->name)) {
2735 		cancel = true;
2736 	} else {
2737 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2738 		if (ret)
2739 			goto out;
2740 	}
2741 
2742 	ret = mnt_want_write_file(file);
2743 	if (ret)
2744 		goto out;
2745 
2746 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2747 					   cancel);
2748 	if (ret)
2749 		goto err_drop;
2750 
2751 	/* Exclusive operation is now claimed */
2752 	ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2753 
2754 	btrfs_exclop_finish(fs_info);
2755 
2756 	if (!ret) {
2757 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2758 			btrfs_info(fs_info, "device deleted: id %llu",
2759 					vol_args->devid);
2760 		else
2761 			btrfs_info(fs_info, "device deleted: %s",
2762 					vol_args->name);
2763 	}
2764 err_drop:
2765 	mnt_drop_write_file(file);
2766 	if (bdev)
2767 		blkdev_put(bdev, holder);
2768 out:
2769 	btrfs_put_dev_args_from_path(&args);
2770 	kfree(vol_args);
2771 	return ret;
2772 }
2773 
2774 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2775 {
2776 	BTRFS_DEV_LOOKUP_ARGS(args);
2777 	struct inode *inode = file_inode(file);
2778 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2779 	struct btrfs_ioctl_vol_args *vol_args;
2780 	struct block_device *bdev = NULL;
2781 	void *holder;
2782 	int ret;
2783 	bool cancel = false;
2784 
2785 	if (!capable(CAP_SYS_ADMIN))
2786 		return -EPERM;
2787 
2788 	vol_args = memdup_user(arg, sizeof(*vol_args));
2789 	if (IS_ERR(vol_args))
2790 		return PTR_ERR(vol_args);
2791 
2792 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2793 	if (!strcmp("cancel", vol_args->name)) {
2794 		cancel = true;
2795 	} else {
2796 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2797 		if (ret)
2798 			goto out;
2799 	}
2800 
2801 	ret = mnt_want_write_file(file);
2802 	if (ret)
2803 		goto out;
2804 
2805 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2806 					   cancel);
2807 	if (ret == 0) {
2808 		ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2809 		if (!ret)
2810 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2811 		btrfs_exclop_finish(fs_info);
2812 	}
2813 
2814 	mnt_drop_write_file(file);
2815 	if (bdev)
2816 		blkdev_put(bdev, holder);
2817 out:
2818 	btrfs_put_dev_args_from_path(&args);
2819 	kfree(vol_args);
2820 	return ret;
2821 }
2822 
2823 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2824 				void __user *arg)
2825 {
2826 	struct btrfs_ioctl_fs_info_args *fi_args;
2827 	struct btrfs_device *device;
2828 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2829 	u64 flags_in;
2830 	int ret = 0;
2831 
2832 	fi_args = memdup_user(arg, sizeof(*fi_args));
2833 	if (IS_ERR(fi_args))
2834 		return PTR_ERR(fi_args);
2835 
2836 	flags_in = fi_args->flags;
2837 	memset(fi_args, 0, sizeof(*fi_args));
2838 
2839 	rcu_read_lock();
2840 	fi_args->num_devices = fs_devices->num_devices;
2841 
2842 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2843 		if (device->devid > fi_args->max_id)
2844 			fi_args->max_id = device->devid;
2845 	}
2846 	rcu_read_unlock();
2847 
2848 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2849 	fi_args->nodesize = fs_info->nodesize;
2850 	fi_args->sectorsize = fs_info->sectorsize;
2851 	fi_args->clone_alignment = fs_info->sectorsize;
2852 
2853 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2854 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2855 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2856 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2857 	}
2858 
2859 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2860 		fi_args->generation = fs_info->generation;
2861 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2862 	}
2863 
2864 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2865 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2866 		       sizeof(fi_args->metadata_uuid));
2867 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2868 	}
2869 
2870 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2871 		ret = -EFAULT;
2872 
2873 	kfree(fi_args);
2874 	return ret;
2875 }
2876 
2877 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2878 				 void __user *arg)
2879 {
2880 	BTRFS_DEV_LOOKUP_ARGS(args);
2881 	struct btrfs_ioctl_dev_info_args *di_args;
2882 	struct btrfs_device *dev;
2883 	int ret = 0;
2884 
2885 	di_args = memdup_user(arg, sizeof(*di_args));
2886 	if (IS_ERR(di_args))
2887 		return PTR_ERR(di_args);
2888 
2889 	args.devid = di_args->devid;
2890 	if (!btrfs_is_empty_uuid(di_args->uuid))
2891 		args.uuid = di_args->uuid;
2892 
2893 	rcu_read_lock();
2894 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2895 	if (!dev) {
2896 		ret = -ENODEV;
2897 		goto out;
2898 	}
2899 
2900 	di_args->devid = dev->devid;
2901 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2902 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2903 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2904 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2905 	if (dev->name)
2906 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2907 	else
2908 		di_args->path[0] = '\0';
2909 
2910 out:
2911 	rcu_read_unlock();
2912 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2913 		ret = -EFAULT;
2914 
2915 	kfree(di_args);
2916 	return ret;
2917 }
2918 
2919 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2920 {
2921 	struct inode *inode = file_inode(file);
2922 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2923 	struct btrfs_root *root = BTRFS_I(inode)->root;
2924 	struct btrfs_root *new_root;
2925 	struct btrfs_dir_item *di;
2926 	struct btrfs_trans_handle *trans;
2927 	struct btrfs_path *path = NULL;
2928 	struct btrfs_disk_key disk_key;
2929 	struct fscrypt_str name = FSTR_INIT("default", 7);
2930 	u64 objectid = 0;
2931 	u64 dir_id;
2932 	int ret;
2933 
2934 	if (!capable(CAP_SYS_ADMIN))
2935 		return -EPERM;
2936 
2937 	ret = mnt_want_write_file(file);
2938 	if (ret)
2939 		return ret;
2940 
2941 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2942 		ret = -EFAULT;
2943 		goto out;
2944 	}
2945 
2946 	if (!objectid)
2947 		objectid = BTRFS_FS_TREE_OBJECTID;
2948 
2949 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2950 	if (IS_ERR(new_root)) {
2951 		ret = PTR_ERR(new_root);
2952 		goto out;
2953 	}
2954 	if (!is_fstree(new_root->root_key.objectid)) {
2955 		ret = -ENOENT;
2956 		goto out_free;
2957 	}
2958 
2959 	path = btrfs_alloc_path();
2960 	if (!path) {
2961 		ret = -ENOMEM;
2962 		goto out_free;
2963 	}
2964 
2965 	trans = btrfs_start_transaction(root, 1);
2966 	if (IS_ERR(trans)) {
2967 		ret = PTR_ERR(trans);
2968 		goto out_free;
2969 	}
2970 
2971 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2972 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2973 				   dir_id, &name, 1);
2974 	if (IS_ERR_OR_NULL(di)) {
2975 		btrfs_release_path(path);
2976 		btrfs_end_transaction(trans);
2977 		btrfs_err(fs_info,
2978 			  "Umm, you don't have the default diritem, this isn't going to work");
2979 		ret = -ENOENT;
2980 		goto out_free;
2981 	}
2982 
2983 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2984 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2985 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
2986 	btrfs_release_path(path);
2987 
2988 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2989 	btrfs_end_transaction(trans);
2990 out_free:
2991 	btrfs_put_root(new_root);
2992 	btrfs_free_path(path);
2993 out:
2994 	mnt_drop_write_file(file);
2995 	return ret;
2996 }
2997 
2998 static void get_block_group_info(struct list_head *groups_list,
2999 				 struct btrfs_ioctl_space_info *space)
3000 {
3001 	struct btrfs_block_group *block_group;
3002 
3003 	space->total_bytes = 0;
3004 	space->used_bytes = 0;
3005 	space->flags = 0;
3006 	list_for_each_entry(block_group, groups_list, list) {
3007 		space->flags = block_group->flags;
3008 		space->total_bytes += block_group->length;
3009 		space->used_bytes += block_group->used;
3010 	}
3011 }
3012 
3013 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3014 				   void __user *arg)
3015 {
3016 	struct btrfs_ioctl_space_args space_args = { 0 };
3017 	struct btrfs_ioctl_space_info space;
3018 	struct btrfs_ioctl_space_info *dest;
3019 	struct btrfs_ioctl_space_info *dest_orig;
3020 	struct btrfs_ioctl_space_info __user *user_dest;
3021 	struct btrfs_space_info *info;
3022 	static const u64 types[] = {
3023 		BTRFS_BLOCK_GROUP_DATA,
3024 		BTRFS_BLOCK_GROUP_SYSTEM,
3025 		BTRFS_BLOCK_GROUP_METADATA,
3026 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3027 	};
3028 	int num_types = 4;
3029 	int alloc_size;
3030 	int ret = 0;
3031 	u64 slot_count = 0;
3032 	int i, c;
3033 
3034 	if (copy_from_user(&space_args,
3035 			   (struct btrfs_ioctl_space_args __user *)arg,
3036 			   sizeof(space_args)))
3037 		return -EFAULT;
3038 
3039 	for (i = 0; i < num_types; i++) {
3040 		struct btrfs_space_info *tmp;
3041 
3042 		info = NULL;
3043 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3044 			if (tmp->flags == types[i]) {
3045 				info = tmp;
3046 				break;
3047 			}
3048 		}
3049 
3050 		if (!info)
3051 			continue;
3052 
3053 		down_read(&info->groups_sem);
3054 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3055 			if (!list_empty(&info->block_groups[c]))
3056 				slot_count++;
3057 		}
3058 		up_read(&info->groups_sem);
3059 	}
3060 
3061 	/*
3062 	 * Global block reserve, exported as a space_info
3063 	 */
3064 	slot_count++;
3065 
3066 	/* space_slots == 0 means they are asking for a count */
3067 	if (space_args.space_slots == 0) {
3068 		space_args.total_spaces = slot_count;
3069 		goto out;
3070 	}
3071 
3072 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3073 
3074 	alloc_size = sizeof(*dest) * slot_count;
3075 
3076 	/* we generally have at most 6 or so space infos, one for each raid
3077 	 * level.  So, a whole page should be more than enough for everyone
3078 	 */
3079 	if (alloc_size > PAGE_SIZE)
3080 		return -ENOMEM;
3081 
3082 	space_args.total_spaces = 0;
3083 	dest = kmalloc(alloc_size, GFP_KERNEL);
3084 	if (!dest)
3085 		return -ENOMEM;
3086 	dest_orig = dest;
3087 
3088 	/* now we have a buffer to copy into */
3089 	for (i = 0; i < num_types; i++) {
3090 		struct btrfs_space_info *tmp;
3091 
3092 		if (!slot_count)
3093 			break;
3094 
3095 		info = NULL;
3096 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3097 			if (tmp->flags == types[i]) {
3098 				info = tmp;
3099 				break;
3100 			}
3101 		}
3102 
3103 		if (!info)
3104 			continue;
3105 		down_read(&info->groups_sem);
3106 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3107 			if (!list_empty(&info->block_groups[c])) {
3108 				get_block_group_info(&info->block_groups[c],
3109 						     &space);
3110 				memcpy(dest, &space, sizeof(space));
3111 				dest++;
3112 				space_args.total_spaces++;
3113 				slot_count--;
3114 			}
3115 			if (!slot_count)
3116 				break;
3117 		}
3118 		up_read(&info->groups_sem);
3119 	}
3120 
3121 	/*
3122 	 * Add global block reserve
3123 	 */
3124 	if (slot_count) {
3125 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3126 
3127 		spin_lock(&block_rsv->lock);
3128 		space.total_bytes = block_rsv->size;
3129 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3130 		spin_unlock(&block_rsv->lock);
3131 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3132 		memcpy(dest, &space, sizeof(space));
3133 		space_args.total_spaces++;
3134 	}
3135 
3136 	user_dest = (struct btrfs_ioctl_space_info __user *)
3137 		(arg + sizeof(struct btrfs_ioctl_space_args));
3138 
3139 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3140 		ret = -EFAULT;
3141 
3142 	kfree(dest_orig);
3143 out:
3144 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3145 		ret = -EFAULT;
3146 
3147 	return ret;
3148 }
3149 
3150 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3151 					    void __user *argp)
3152 {
3153 	struct btrfs_trans_handle *trans;
3154 	u64 transid;
3155 
3156 	/*
3157 	 * Start orphan cleanup here for the given root in case it hasn't been
3158 	 * started already by other means. Errors are handled in the other
3159 	 * functions during transaction commit.
3160 	 */
3161 	btrfs_orphan_cleanup(root);
3162 
3163 	trans = btrfs_attach_transaction_barrier(root);
3164 	if (IS_ERR(trans)) {
3165 		if (PTR_ERR(trans) != -ENOENT)
3166 			return PTR_ERR(trans);
3167 
3168 		/* No running transaction, don't bother */
3169 		transid = root->fs_info->last_trans_committed;
3170 		goto out;
3171 	}
3172 	transid = trans->transid;
3173 	btrfs_commit_transaction_async(trans);
3174 out:
3175 	if (argp)
3176 		if (copy_to_user(argp, &transid, sizeof(transid)))
3177 			return -EFAULT;
3178 	return 0;
3179 }
3180 
3181 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3182 					   void __user *argp)
3183 {
3184 	/* By default wait for the current transaction. */
3185 	u64 transid = 0;
3186 
3187 	if (argp)
3188 		if (copy_from_user(&transid, argp, sizeof(transid)))
3189 			return -EFAULT;
3190 
3191 	return btrfs_wait_for_commit(fs_info, transid);
3192 }
3193 
3194 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3195 {
3196 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3197 	struct btrfs_ioctl_scrub_args *sa;
3198 	int ret;
3199 
3200 	if (!capable(CAP_SYS_ADMIN))
3201 		return -EPERM;
3202 
3203 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3204 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3205 		return -EINVAL;
3206 	}
3207 
3208 	sa = memdup_user(arg, sizeof(*sa));
3209 	if (IS_ERR(sa))
3210 		return PTR_ERR(sa);
3211 
3212 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3213 		ret = -EOPNOTSUPP;
3214 		goto out;
3215 	}
3216 
3217 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3218 		ret = mnt_want_write_file(file);
3219 		if (ret)
3220 			goto out;
3221 	}
3222 
3223 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3224 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3225 			      0);
3226 
3227 	/*
3228 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3229 	 * error. This is important as it allows user space to know how much
3230 	 * progress scrub has done. For example, if scrub is canceled we get
3231 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3232 	 * space. Later user space can inspect the progress from the structure
3233 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3234 	 * previously (btrfs-progs does this).
3235 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3236 	 * then return -EFAULT to signal the structure was not copied or it may
3237 	 * be corrupt and unreliable due to a partial copy.
3238 	 */
3239 	if (copy_to_user(arg, sa, sizeof(*sa)))
3240 		ret = -EFAULT;
3241 
3242 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3243 		mnt_drop_write_file(file);
3244 out:
3245 	kfree(sa);
3246 	return ret;
3247 }
3248 
3249 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3250 {
3251 	if (!capable(CAP_SYS_ADMIN))
3252 		return -EPERM;
3253 
3254 	return btrfs_scrub_cancel(fs_info);
3255 }
3256 
3257 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3258 				       void __user *arg)
3259 {
3260 	struct btrfs_ioctl_scrub_args *sa;
3261 	int ret;
3262 
3263 	if (!capable(CAP_SYS_ADMIN))
3264 		return -EPERM;
3265 
3266 	sa = memdup_user(arg, sizeof(*sa));
3267 	if (IS_ERR(sa))
3268 		return PTR_ERR(sa);
3269 
3270 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3271 
3272 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3273 		ret = -EFAULT;
3274 
3275 	kfree(sa);
3276 	return ret;
3277 }
3278 
3279 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3280 				      void __user *arg)
3281 {
3282 	struct btrfs_ioctl_get_dev_stats *sa;
3283 	int ret;
3284 
3285 	sa = memdup_user(arg, sizeof(*sa));
3286 	if (IS_ERR(sa))
3287 		return PTR_ERR(sa);
3288 
3289 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3290 		kfree(sa);
3291 		return -EPERM;
3292 	}
3293 
3294 	ret = btrfs_get_dev_stats(fs_info, sa);
3295 
3296 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3297 		ret = -EFAULT;
3298 
3299 	kfree(sa);
3300 	return ret;
3301 }
3302 
3303 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3304 				    void __user *arg)
3305 {
3306 	struct btrfs_ioctl_dev_replace_args *p;
3307 	int ret;
3308 
3309 	if (!capable(CAP_SYS_ADMIN))
3310 		return -EPERM;
3311 
3312 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3313 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3314 		return -EINVAL;
3315 	}
3316 
3317 	p = memdup_user(arg, sizeof(*p));
3318 	if (IS_ERR(p))
3319 		return PTR_ERR(p);
3320 
3321 	switch (p->cmd) {
3322 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3323 		if (sb_rdonly(fs_info->sb)) {
3324 			ret = -EROFS;
3325 			goto out;
3326 		}
3327 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3328 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3329 		} else {
3330 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3331 			btrfs_exclop_finish(fs_info);
3332 		}
3333 		break;
3334 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3335 		btrfs_dev_replace_status(fs_info, p);
3336 		ret = 0;
3337 		break;
3338 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3339 		p->result = btrfs_dev_replace_cancel(fs_info);
3340 		ret = 0;
3341 		break;
3342 	default:
3343 		ret = -EINVAL;
3344 		break;
3345 	}
3346 
3347 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3348 		ret = -EFAULT;
3349 out:
3350 	kfree(p);
3351 	return ret;
3352 }
3353 
3354 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3355 {
3356 	int ret = 0;
3357 	int i;
3358 	u64 rel_ptr;
3359 	int size;
3360 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3361 	struct inode_fs_paths *ipath = NULL;
3362 	struct btrfs_path *path;
3363 
3364 	if (!capable(CAP_DAC_READ_SEARCH))
3365 		return -EPERM;
3366 
3367 	path = btrfs_alloc_path();
3368 	if (!path) {
3369 		ret = -ENOMEM;
3370 		goto out;
3371 	}
3372 
3373 	ipa = memdup_user(arg, sizeof(*ipa));
3374 	if (IS_ERR(ipa)) {
3375 		ret = PTR_ERR(ipa);
3376 		ipa = NULL;
3377 		goto out;
3378 	}
3379 
3380 	size = min_t(u32, ipa->size, 4096);
3381 	ipath = init_ipath(size, root, path);
3382 	if (IS_ERR(ipath)) {
3383 		ret = PTR_ERR(ipath);
3384 		ipath = NULL;
3385 		goto out;
3386 	}
3387 
3388 	ret = paths_from_inode(ipa->inum, ipath);
3389 	if (ret < 0)
3390 		goto out;
3391 
3392 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3393 		rel_ptr = ipath->fspath->val[i] -
3394 			  (u64)(unsigned long)ipath->fspath->val;
3395 		ipath->fspath->val[i] = rel_ptr;
3396 	}
3397 
3398 	btrfs_free_path(path);
3399 	path = NULL;
3400 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3401 			   ipath->fspath, size);
3402 	if (ret) {
3403 		ret = -EFAULT;
3404 		goto out;
3405 	}
3406 
3407 out:
3408 	btrfs_free_path(path);
3409 	free_ipath(ipath);
3410 	kfree(ipa);
3411 
3412 	return ret;
3413 }
3414 
3415 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3416 					void __user *arg, int version)
3417 {
3418 	int ret = 0;
3419 	int size;
3420 	struct btrfs_ioctl_logical_ino_args *loi;
3421 	struct btrfs_data_container *inodes = NULL;
3422 	struct btrfs_path *path = NULL;
3423 	bool ignore_offset;
3424 
3425 	if (!capable(CAP_SYS_ADMIN))
3426 		return -EPERM;
3427 
3428 	loi = memdup_user(arg, sizeof(*loi));
3429 	if (IS_ERR(loi))
3430 		return PTR_ERR(loi);
3431 
3432 	if (version == 1) {
3433 		ignore_offset = false;
3434 		size = min_t(u32, loi->size, SZ_64K);
3435 	} else {
3436 		/* All reserved bits must be 0 for now */
3437 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3438 			ret = -EINVAL;
3439 			goto out_loi;
3440 		}
3441 		/* Only accept flags we have defined so far */
3442 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3443 			ret = -EINVAL;
3444 			goto out_loi;
3445 		}
3446 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3447 		size = min_t(u32, loi->size, SZ_16M);
3448 	}
3449 
3450 	inodes = init_data_container(size);
3451 	if (IS_ERR(inodes)) {
3452 		ret = PTR_ERR(inodes);
3453 		goto out_loi;
3454 	}
3455 
3456 	path = btrfs_alloc_path();
3457 	if (!path) {
3458 		ret = -ENOMEM;
3459 		goto out;
3460 	}
3461 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3462 					  inodes, ignore_offset);
3463 	btrfs_free_path(path);
3464 	if (ret == -EINVAL)
3465 		ret = -ENOENT;
3466 	if (ret < 0)
3467 		goto out;
3468 
3469 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3470 			   size);
3471 	if (ret)
3472 		ret = -EFAULT;
3473 
3474 out:
3475 	kvfree(inodes);
3476 out_loi:
3477 	kfree(loi);
3478 
3479 	return ret;
3480 }
3481 
3482 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3483 			       struct btrfs_ioctl_balance_args *bargs)
3484 {
3485 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3486 
3487 	bargs->flags = bctl->flags;
3488 
3489 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3490 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3491 	if (atomic_read(&fs_info->balance_pause_req))
3492 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3493 	if (atomic_read(&fs_info->balance_cancel_req))
3494 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3495 
3496 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3497 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3498 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3499 
3500 	spin_lock(&fs_info->balance_lock);
3501 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3502 	spin_unlock(&fs_info->balance_lock);
3503 }
3504 
3505 /*
3506  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3507  * required.
3508  *
3509  * @fs_info:       the filesystem
3510  * @excl_acquired: ptr to boolean value which is set to false in case balance
3511  *                 is being resumed
3512  *
3513  * Return 0 on success in which case both fs_info::balance is acquired as well
3514  * as exclusive ops are blocked. In case of failure return an error code.
3515  */
3516 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3517 {
3518 	int ret;
3519 
3520 	/*
3521 	 * Exclusive operation is locked. Three possibilities:
3522 	 *   (1) some other op is running
3523 	 *   (2) balance is running
3524 	 *   (3) balance is paused -- special case (think resume)
3525 	 */
3526 	while (1) {
3527 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3528 			*excl_acquired = true;
3529 			mutex_lock(&fs_info->balance_mutex);
3530 			return 0;
3531 		}
3532 
3533 		mutex_lock(&fs_info->balance_mutex);
3534 		if (fs_info->balance_ctl) {
3535 			/* This is either (2) or (3) */
3536 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3537 				/* This is (2) */
3538 				ret = -EINPROGRESS;
3539 				goto out_failure;
3540 
3541 			} else {
3542 				mutex_unlock(&fs_info->balance_mutex);
3543 				/*
3544 				 * Lock released to allow other waiters to
3545 				 * continue, we'll reexamine the status again.
3546 				 */
3547 				mutex_lock(&fs_info->balance_mutex);
3548 
3549 				if (fs_info->balance_ctl &&
3550 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3551 					/* This is (3) */
3552 					*excl_acquired = false;
3553 					return 0;
3554 				}
3555 			}
3556 		} else {
3557 			/* This is (1) */
3558 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3559 			goto out_failure;
3560 		}
3561 
3562 		mutex_unlock(&fs_info->balance_mutex);
3563 	}
3564 
3565 out_failure:
3566 	mutex_unlock(&fs_info->balance_mutex);
3567 	*excl_acquired = false;
3568 	return ret;
3569 }
3570 
3571 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3572 {
3573 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3574 	struct btrfs_fs_info *fs_info = root->fs_info;
3575 	struct btrfs_ioctl_balance_args *bargs;
3576 	struct btrfs_balance_control *bctl;
3577 	bool need_unlock = true;
3578 	int ret;
3579 
3580 	if (!capable(CAP_SYS_ADMIN))
3581 		return -EPERM;
3582 
3583 	ret = mnt_want_write_file(file);
3584 	if (ret)
3585 		return ret;
3586 
3587 	bargs = memdup_user(arg, sizeof(*bargs));
3588 	if (IS_ERR(bargs)) {
3589 		ret = PTR_ERR(bargs);
3590 		bargs = NULL;
3591 		goto out;
3592 	}
3593 
3594 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3595 	if (ret)
3596 		goto out;
3597 
3598 	lockdep_assert_held(&fs_info->balance_mutex);
3599 
3600 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3601 		if (!fs_info->balance_ctl) {
3602 			ret = -ENOTCONN;
3603 			goto out_unlock;
3604 		}
3605 
3606 		bctl = fs_info->balance_ctl;
3607 		spin_lock(&fs_info->balance_lock);
3608 		bctl->flags |= BTRFS_BALANCE_RESUME;
3609 		spin_unlock(&fs_info->balance_lock);
3610 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3611 
3612 		goto do_balance;
3613 	}
3614 
3615 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3616 		ret = -EINVAL;
3617 		goto out_unlock;
3618 	}
3619 
3620 	if (fs_info->balance_ctl) {
3621 		ret = -EINPROGRESS;
3622 		goto out_unlock;
3623 	}
3624 
3625 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3626 	if (!bctl) {
3627 		ret = -ENOMEM;
3628 		goto out_unlock;
3629 	}
3630 
3631 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3632 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3633 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3634 
3635 	bctl->flags = bargs->flags;
3636 do_balance:
3637 	/*
3638 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3639 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3640 	 * all the way until unmount, in free_fs_info.  The flag should be
3641 	 * cleared after reset_balance_state.
3642 	 */
3643 	need_unlock = false;
3644 
3645 	ret = btrfs_balance(fs_info, bctl, bargs);
3646 	bctl = NULL;
3647 
3648 	if (ret == 0 || ret == -ECANCELED) {
3649 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3650 			ret = -EFAULT;
3651 	}
3652 
3653 	kfree(bctl);
3654 out_unlock:
3655 	mutex_unlock(&fs_info->balance_mutex);
3656 	if (need_unlock)
3657 		btrfs_exclop_finish(fs_info);
3658 out:
3659 	mnt_drop_write_file(file);
3660 	kfree(bargs);
3661 	return ret;
3662 }
3663 
3664 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3665 {
3666 	if (!capable(CAP_SYS_ADMIN))
3667 		return -EPERM;
3668 
3669 	switch (cmd) {
3670 	case BTRFS_BALANCE_CTL_PAUSE:
3671 		return btrfs_pause_balance(fs_info);
3672 	case BTRFS_BALANCE_CTL_CANCEL:
3673 		return btrfs_cancel_balance(fs_info);
3674 	}
3675 
3676 	return -EINVAL;
3677 }
3678 
3679 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3680 					 void __user *arg)
3681 {
3682 	struct btrfs_ioctl_balance_args *bargs;
3683 	int ret = 0;
3684 
3685 	if (!capable(CAP_SYS_ADMIN))
3686 		return -EPERM;
3687 
3688 	mutex_lock(&fs_info->balance_mutex);
3689 	if (!fs_info->balance_ctl) {
3690 		ret = -ENOTCONN;
3691 		goto out;
3692 	}
3693 
3694 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3695 	if (!bargs) {
3696 		ret = -ENOMEM;
3697 		goto out;
3698 	}
3699 
3700 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3701 
3702 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3703 		ret = -EFAULT;
3704 
3705 	kfree(bargs);
3706 out:
3707 	mutex_unlock(&fs_info->balance_mutex);
3708 	return ret;
3709 }
3710 
3711 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3712 {
3713 	struct inode *inode = file_inode(file);
3714 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3715 	struct btrfs_ioctl_quota_ctl_args *sa;
3716 	int ret;
3717 
3718 	if (!capable(CAP_SYS_ADMIN))
3719 		return -EPERM;
3720 
3721 	ret = mnt_want_write_file(file);
3722 	if (ret)
3723 		return ret;
3724 
3725 	sa = memdup_user(arg, sizeof(*sa));
3726 	if (IS_ERR(sa)) {
3727 		ret = PTR_ERR(sa);
3728 		goto drop_write;
3729 	}
3730 
3731 	down_write(&fs_info->subvol_sem);
3732 
3733 	switch (sa->cmd) {
3734 	case BTRFS_QUOTA_CTL_ENABLE:
3735 		ret = btrfs_quota_enable(fs_info);
3736 		break;
3737 	case BTRFS_QUOTA_CTL_DISABLE:
3738 		ret = btrfs_quota_disable(fs_info);
3739 		break;
3740 	default:
3741 		ret = -EINVAL;
3742 		break;
3743 	}
3744 
3745 	kfree(sa);
3746 	up_write(&fs_info->subvol_sem);
3747 drop_write:
3748 	mnt_drop_write_file(file);
3749 	return ret;
3750 }
3751 
3752 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3753 {
3754 	struct inode *inode = file_inode(file);
3755 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3756 	struct btrfs_root *root = BTRFS_I(inode)->root;
3757 	struct btrfs_ioctl_qgroup_assign_args *sa;
3758 	struct btrfs_trans_handle *trans;
3759 	int ret;
3760 	int err;
3761 
3762 	if (!capable(CAP_SYS_ADMIN))
3763 		return -EPERM;
3764 
3765 	ret = mnt_want_write_file(file);
3766 	if (ret)
3767 		return ret;
3768 
3769 	sa = memdup_user(arg, sizeof(*sa));
3770 	if (IS_ERR(sa)) {
3771 		ret = PTR_ERR(sa);
3772 		goto drop_write;
3773 	}
3774 
3775 	trans = btrfs_join_transaction(root);
3776 	if (IS_ERR(trans)) {
3777 		ret = PTR_ERR(trans);
3778 		goto out;
3779 	}
3780 
3781 	if (sa->assign) {
3782 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3783 	} else {
3784 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3785 	}
3786 
3787 	/* update qgroup status and info */
3788 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3789 	err = btrfs_run_qgroups(trans);
3790 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3791 	if (err < 0)
3792 		btrfs_handle_fs_error(fs_info, err,
3793 				      "failed to update qgroup status and info");
3794 	err = btrfs_end_transaction(trans);
3795 	if (err && !ret)
3796 		ret = err;
3797 
3798 out:
3799 	kfree(sa);
3800 drop_write:
3801 	mnt_drop_write_file(file);
3802 	return ret;
3803 }
3804 
3805 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3806 {
3807 	struct inode *inode = file_inode(file);
3808 	struct btrfs_root *root = BTRFS_I(inode)->root;
3809 	struct btrfs_ioctl_qgroup_create_args *sa;
3810 	struct btrfs_trans_handle *trans;
3811 	int ret;
3812 	int err;
3813 
3814 	if (!capable(CAP_SYS_ADMIN))
3815 		return -EPERM;
3816 
3817 	ret = mnt_want_write_file(file);
3818 	if (ret)
3819 		return ret;
3820 
3821 	sa = memdup_user(arg, sizeof(*sa));
3822 	if (IS_ERR(sa)) {
3823 		ret = PTR_ERR(sa);
3824 		goto drop_write;
3825 	}
3826 
3827 	if (!sa->qgroupid) {
3828 		ret = -EINVAL;
3829 		goto out;
3830 	}
3831 
3832 	if (sa->create && is_fstree(sa->qgroupid)) {
3833 		ret = -EINVAL;
3834 		goto out;
3835 	}
3836 
3837 	trans = btrfs_join_transaction(root);
3838 	if (IS_ERR(trans)) {
3839 		ret = PTR_ERR(trans);
3840 		goto out;
3841 	}
3842 
3843 	if (sa->create) {
3844 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3845 	} else {
3846 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3847 	}
3848 
3849 	err = btrfs_end_transaction(trans);
3850 	if (err && !ret)
3851 		ret = err;
3852 
3853 out:
3854 	kfree(sa);
3855 drop_write:
3856 	mnt_drop_write_file(file);
3857 	return ret;
3858 }
3859 
3860 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3861 {
3862 	struct inode *inode = file_inode(file);
3863 	struct btrfs_root *root = BTRFS_I(inode)->root;
3864 	struct btrfs_ioctl_qgroup_limit_args *sa;
3865 	struct btrfs_trans_handle *trans;
3866 	int ret;
3867 	int err;
3868 	u64 qgroupid;
3869 
3870 	if (!capable(CAP_SYS_ADMIN))
3871 		return -EPERM;
3872 
3873 	ret = mnt_want_write_file(file);
3874 	if (ret)
3875 		return ret;
3876 
3877 	sa = memdup_user(arg, sizeof(*sa));
3878 	if (IS_ERR(sa)) {
3879 		ret = PTR_ERR(sa);
3880 		goto drop_write;
3881 	}
3882 
3883 	trans = btrfs_join_transaction(root);
3884 	if (IS_ERR(trans)) {
3885 		ret = PTR_ERR(trans);
3886 		goto out;
3887 	}
3888 
3889 	qgroupid = sa->qgroupid;
3890 	if (!qgroupid) {
3891 		/* take the current subvol as qgroup */
3892 		qgroupid = root->root_key.objectid;
3893 	}
3894 
3895 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3896 
3897 	err = btrfs_end_transaction(trans);
3898 	if (err && !ret)
3899 		ret = err;
3900 
3901 out:
3902 	kfree(sa);
3903 drop_write:
3904 	mnt_drop_write_file(file);
3905 	return ret;
3906 }
3907 
3908 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3909 {
3910 	struct inode *inode = file_inode(file);
3911 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3912 	struct btrfs_ioctl_quota_rescan_args *qsa;
3913 	int ret;
3914 
3915 	if (!capable(CAP_SYS_ADMIN))
3916 		return -EPERM;
3917 
3918 	ret = mnt_want_write_file(file);
3919 	if (ret)
3920 		return ret;
3921 
3922 	qsa = memdup_user(arg, sizeof(*qsa));
3923 	if (IS_ERR(qsa)) {
3924 		ret = PTR_ERR(qsa);
3925 		goto drop_write;
3926 	}
3927 
3928 	if (qsa->flags) {
3929 		ret = -EINVAL;
3930 		goto out;
3931 	}
3932 
3933 	ret = btrfs_qgroup_rescan(fs_info);
3934 
3935 out:
3936 	kfree(qsa);
3937 drop_write:
3938 	mnt_drop_write_file(file);
3939 	return ret;
3940 }
3941 
3942 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3943 						void __user *arg)
3944 {
3945 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
3946 
3947 	if (!capable(CAP_SYS_ADMIN))
3948 		return -EPERM;
3949 
3950 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3951 		qsa.flags = 1;
3952 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3953 	}
3954 
3955 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3956 		return -EFAULT;
3957 
3958 	return 0;
3959 }
3960 
3961 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3962 						void __user *arg)
3963 {
3964 	if (!capable(CAP_SYS_ADMIN))
3965 		return -EPERM;
3966 
3967 	return btrfs_qgroup_wait_for_completion(fs_info, true);
3968 }
3969 
3970 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3971 					    struct mnt_idmap *idmap,
3972 					    struct btrfs_ioctl_received_subvol_args *sa)
3973 {
3974 	struct inode *inode = file_inode(file);
3975 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3976 	struct btrfs_root *root = BTRFS_I(inode)->root;
3977 	struct btrfs_root_item *root_item = &root->root_item;
3978 	struct btrfs_trans_handle *trans;
3979 	struct timespec64 ct = current_time(inode);
3980 	int ret = 0;
3981 	int received_uuid_changed;
3982 
3983 	if (!inode_owner_or_capable(idmap, inode))
3984 		return -EPERM;
3985 
3986 	ret = mnt_want_write_file(file);
3987 	if (ret < 0)
3988 		return ret;
3989 
3990 	down_write(&fs_info->subvol_sem);
3991 
3992 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3993 		ret = -EINVAL;
3994 		goto out;
3995 	}
3996 
3997 	if (btrfs_root_readonly(root)) {
3998 		ret = -EROFS;
3999 		goto out;
4000 	}
4001 
4002 	/*
4003 	 * 1 - root item
4004 	 * 2 - uuid items (received uuid + subvol uuid)
4005 	 */
4006 	trans = btrfs_start_transaction(root, 3);
4007 	if (IS_ERR(trans)) {
4008 		ret = PTR_ERR(trans);
4009 		trans = NULL;
4010 		goto out;
4011 	}
4012 
4013 	sa->rtransid = trans->transid;
4014 	sa->rtime.sec = ct.tv_sec;
4015 	sa->rtime.nsec = ct.tv_nsec;
4016 
4017 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4018 				       BTRFS_UUID_SIZE);
4019 	if (received_uuid_changed &&
4020 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4021 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4022 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4023 					  root->root_key.objectid);
4024 		if (ret && ret != -ENOENT) {
4025 		        btrfs_abort_transaction(trans, ret);
4026 		        btrfs_end_transaction(trans);
4027 		        goto out;
4028 		}
4029 	}
4030 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4031 	btrfs_set_root_stransid(root_item, sa->stransid);
4032 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4033 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4034 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4035 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4036 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4037 
4038 	ret = btrfs_update_root(trans, fs_info->tree_root,
4039 				&root->root_key, &root->root_item);
4040 	if (ret < 0) {
4041 		btrfs_end_transaction(trans);
4042 		goto out;
4043 	}
4044 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4045 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4046 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4047 					  root->root_key.objectid);
4048 		if (ret < 0 && ret != -EEXIST) {
4049 			btrfs_abort_transaction(trans, ret);
4050 			btrfs_end_transaction(trans);
4051 			goto out;
4052 		}
4053 	}
4054 	ret = btrfs_commit_transaction(trans);
4055 out:
4056 	up_write(&fs_info->subvol_sem);
4057 	mnt_drop_write_file(file);
4058 	return ret;
4059 }
4060 
4061 #ifdef CONFIG_64BIT
4062 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4063 						void __user *arg)
4064 {
4065 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4066 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4067 	int ret = 0;
4068 
4069 	args32 = memdup_user(arg, sizeof(*args32));
4070 	if (IS_ERR(args32))
4071 		return PTR_ERR(args32);
4072 
4073 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4074 	if (!args64) {
4075 		ret = -ENOMEM;
4076 		goto out;
4077 	}
4078 
4079 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4080 	args64->stransid = args32->stransid;
4081 	args64->rtransid = args32->rtransid;
4082 	args64->stime.sec = args32->stime.sec;
4083 	args64->stime.nsec = args32->stime.nsec;
4084 	args64->rtime.sec = args32->rtime.sec;
4085 	args64->rtime.nsec = args32->rtime.nsec;
4086 	args64->flags = args32->flags;
4087 
4088 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4089 	if (ret)
4090 		goto out;
4091 
4092 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4093 	args32->stransid = args64->stransid;
4094 	args32->rtransid = args64->rtransid;
4095 	args32->stime.sec = args64->stime.sec;
4096 	args32->stime.nsec = args64->stime.nsec;
4097 	args32->rtime.sec = args64->rtime.sec;
4098 	args32->rtime.nsec = args64->rtime.nsec;
4099 	args32->flags = args64->flags;
4100 
4101 	ret = copy_to_user(arg, args32, sizeof(*args32));
4102 	if (ret)
4103 		ret = -EFAULT;
4104 
4105 out:
4106 	kfree(args32);
4107 	kfree(args64);
4108 	return ret;
4109 }
4110 #endif
4111 
4112 static long btrfs_ioctl_set_received_subvol(struct file *file,
4113 					    void __user *arg)
4114 {
4115 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4116 	int ret = 0;
4117 
4118 	sa = memdup_user(arg, sizeof(*sa));
4119 	if (IS_ERR(sa))
4120 		return PTR_ERR(sa);
4121 
4122 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4123 
4124 	if (ret)
4125 		goto out;
4126 
4127 	ret = copy_to_user(arg, sa, sizeof(*sa));
4128 	if (ret)
4129 		ret = -EFAULT;
4130 
4131 out:
4132 	kfree(sa);
4133 	return ret;
4134 }
4135 
4136 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4137 					void __user *arg)
4138 {
4139 	size_t len;
4140 	int ret;
4141 	char label[BTRFS_LABEL_SIZE];
4142 
4143 	spin_lock(&fs_info->super_lock);
4144 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4145 	spin_unlock(&fs_info->super_lock);
4146 
4147 	len = strnlen(label, BTRFS_LABEL_SIZE);
4148 
4149 	if (len == BTRFS_LABEL_SIZE) {
4150 		btrfs_warn(fs_info,
4151 			   "label is too long, return the first %zu bytes",
4152 			   --len);
4153 	}
4154 
4155 	ret = copy_to_user(arg, label, len);
4156 
4157 	return ret ? -EFAULT : 0;
4158 }
4159 
4160 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4161 {
4162 	struct inode *inode = file_inode(file);
4163 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4164 	struct btrfs_root *root = BTRFS_I(inode)->root;
4165 	struct btrfs_super_block *super_block = fs_info->super_copy;
4166 	struct btrfs_trans_handle *trans;
4167 	char label[BTRFS_LABEL_SIZE];
4168 	int ret;
4169 
4170 	if (!capable(CAP_SYS_ADMIN))
4171 		return -EPERM;
4172 
4173 	if (copy_from_user(label, arg, sizeof(label)))
4174 		return -EFAULT;
4175 
4176 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4177 		btrfs_err(fs_info,
4178 			  "unable to set label with more than %d bytes",
4179 			  BTRFS_LABEL_SIZE - 1);
4180 		return -EINVAL;
4181 	}
4182 
4183 	ret = mnt_want_write_file(file);
4184 	if (ret)
4185 		return ret;
4186 
4187 	trans = btrfs_start_transaction(root, 0);
4188 	if (IS_ERR(trans)) {
4189 		ret = PTR_ERR(trans);
4190 		goto out_unlock;
4191 	}
4192 
4193 	spin_lock(&fs_info->super_lock);
4194 	strcpy(super_block->label, label);
4195 	spin_unlock(&fs_info->super_lock);
4196 	ret = btrfs_commit_transaction(trans);
4197 
4198 out_unlock:
4199 	mnt_drop_write_file(file);
4200 	return ret;
4201 }
4202 
4203 #define INIT_FEATURE_FLAGS(suffix) \
4204 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4205 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4206 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4207 
4208 int btrfs_ioctl_get_supported_features(void __user *arg)
4209 {
4210 	static const struct btrfs_ioctl_feature_flags features[3] = {
4211 		INIT_FEATURE_FLAGS(SUPP),
4212 		INIT_FEATURE_FLAGS(SAFE_SET),
4213 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4214 	};
4215 
4216 	if (copy_to_user(arg, &features, sizeof(features)))
4217 		return -EFAULT;
4218 
4219 	return 0;
4220 }
4221 
4222 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4223 					void __user *arg)
4224 {
4225 	struct btrfs_super_block *super_block = fs_info->super_copy;
4226 	struct btrfs_ioctl_feature_flags features;
4227 
4228 	features.compat_flags = btrfs_super_compat_flags(super_block);
4229 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4230 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4231 
4232 	if (copy_to_user(arg, &features, sizeof(features)))
4233 		return -EFAULT;
4234 
4235 	return 0;
4236 }
4237 
4238 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4239 			      enum btrfs_feature_set set,
4240 			      u64 change_mask, u64 flags, u64 supported_flags,
4241 			      u64 safe_set, u64 safe_clear)
4242 {
4243 	const char *type = btrfs_feature_set_name(set);
4244 	char *names;
4245 	u64 disallowed, unsupported;
4246 	u64 set_mask = flags & change_mask;
4247 	u64 clear_mask = ~flags & change_mask;
4248 
4249 	unsupported = set_mask & ~supported_flags;
4250 	if (unsupported) {
4251 		names = btrfs_printable_features(set, unsupported);
4252 		if (names) {
4253 			btrfs_warn(fs_info,
4254 				   "this kernel does not support the %s feature bit%s",
4255 				   names, strchr(names, ',') ? "s" : "");
4256 			kfree(names);
4257 		} else
4258 			btrfs_warn(fs_info,
4259 				   "this kernel does not support %s bits 0x%llx",
4260 				   type, unsupported);
4261 		return -EOPNOTSUPP;
4262 	}
4263 
4264 	disallowed = set_mask & ~safe_set;
4265 	if (disallowed) {
4266 		names = btrfs_printable_features(set, disallowed);
4267 		if (names) {
4268 			btrfs_warn(fs_info,
4269 				   "can't set the %s feature bit%s while mounted",
4270 				   names, strchr(names, ',') ? "s" : "");
4271 			kfree(names);
4272 		} else
4273 			btrfs_warn(fs_info,
4274 				   "can't set %s bits 0x%llx while mounted",
4275 				   type, disallowed);
4276 		return -EPERM;
4277 	}
4278 
4279 	disallowed = clear_mask & ~safe_clear;
4280 	if (disallowed) {
4281 		names = btrfs_printable_features(set, disallowed);
4282 		if (names) {
4283 			btrfs_warn(fs_info,
4284 				   "can't clear the %s feature bit%s while mounted",
4285 				   names, strchr(names, ',') ? "s" : "");
4286 			kfree(names);
4287 		} else
4288 			btrfs_warn(fs_info,
4289 				   "can't clear %s bits 0x%llx while mounted",
4290 				   type, disallowed);
4291 		return -EPERM;
4292 	}
4293 
4294 	return 0;
4295 }
4296 
4297 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4298 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4299 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4300 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4301 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4302 
4303 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4304 {
4305 	struct inode *inode = file_inode(file);
4306 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4307 	struct btrfs_root *root = BTRFS_I(inode)->root;
4308 	struct btrfs_super_block *super_block = fs_info->super_copy;
4309 	struct btrfs_ioctl_feature_flags flags[2];
4310 	struct btrfs_trans_handle *trans;
4311 	u64 newflags;
4312 	int ret;
4313 
4314 	if (!capable(CAP_SYS_ADMIN))
4315 		return -EPERM;
4316 
4317 	if (copy_from_user(flags, arg, sizeof(flags)))
4318 		return -EFAULT;
4319 
4320 	/* Nothing to do */
4321 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4322 	    !flags[0].incompat_flags)
4323 		return 0;
4324 
4325 	ret = check_feature(fs_info, flags[0].compat_flags,
4326 			    flags[1].compat_flags, COMPAT);
4327 	if (ret)
4328 		return ret;
4329 
4330 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4331 			    flags[1].compat_ro_flags, COMPAT_RO);
4332 	if (ret)
4333 		return ret;
4334 
4335 	ret = check_feature(fs_info, flags[0].incompat_flags,
4336 			    flags[1].incompat_flags, INCOMPAT);
4337 	if (ret)
4338 		return ret;
4339 
4340 	ret = mnt_want_write_file(file);
4341 	if (ret)
4342 		return ret;
4343 
4344 	trans = btrfs_start_transaction(root, 0);
4345 	if (IS_ERR(trans)) {
4346 		ret = PTR_ERR(trans);
4347 		goto out_drop_write;
4348 	}
4349 
4350 	spin_lock(&fs_info->super_lock);
4351 	newflags = btrfs_super_compat_flags(super_block);
4352 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4353 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4354 	btrfs_set_super_compat_flags(super_block, newflags);
4355 
4356 	newflags = btrfs_super_compat_ro_flags(super_block);
4357 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4358 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4359 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4360 
4361 	newflags = btrfs_super_incompat_flags(super_block);
4362 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4363 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4364 	btrfs_set_super_incompat_flags(super_block, newflags);
4365 	spin_unlock(&fs_info->super_lock);
4366 
4367 	ret = btrfs_commit_transaction(trans);
4368 out_drop_write:
4369 	mnt_drop_write_file(file);
4370 
4371 	return ret;
4372 }
4373 
4374 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4375 {
4376 	struct btrfs_ioctl_send_args *arg;
4377 	int ret;
4378 
4379 	if (compat) {
4380 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4381 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4382 
4383 		ret = copy_from_user(&args32, argp, sizeof(args32));
4384 		if (ret)
4385 			return -EFAULT;
4386 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4387 		if (!arg)
4388 			return -ENOMEM;
4389 		arg->send_fd = args32.send_fd;
4390 		arg->clone_sources_count = args32.clone_sources_count;
4391 		arg->clone_sources = compat_ptr(args32.clone_sources);
4392 		arg->parent_root = args32.parent_root;
4393 		arg->flags = args32.flags;
4394 		arg->version = args32.version;
4395 		memcpy(arg->reserved, args32.reserved,
4396 		       sizeof(args32.reserved));
4397 #else
4398 		return -ENOTTY;
4399 #endif
4400 	} else {
4401 		arg = memdup_user(argp, sizeof(*arg));
4402 		if (IS_ERR(arg))
4403 			return PTR_ERR(arg);
4404 	}
4405 	ret = btrfs_ioctl_send(inode, arg);
4406 	kfree(arg);
4407 	return ret;
4408 }
4409 
4410 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4411 				    bool compat)
4412 {
4413 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4414 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4415 					     flags);
4416 	size_t copy_end;
4417 	struct iovec iovstack[UIO_FASTIOV];
4418 	struct iovec *iov = iovstack;
4419 	struct iov_iter iter;
4420 	loff_t pos;
4421 	struct kiocb kiocb;
4422 	ssize_t ret;
4423 
4424 	if (!capable(CAP_SYS_ADMIN)) {
4425 		ret = -EPERM;
4426 		goto out_acct;
4427 	}
4428 
4429 	if (compat) {
4430 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4431 		struct btrfs_ioctl_encoded_io_args_32 args32;
4432 
4433 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4434 				       flags);
4435 		if (copy_from_user(&args32, argp, copy_end)) {
4436 			ret = -EFAULT;
4437 			goto out_acct;
4438 		}
4439 		args.iov = compat_ptr(args32.iov);
4440 		args.iovcnt = args32.iovcnt;
4441 		args.offset = args32.offset;
4442 		args.flags = args32.flags;
4443 #else
4444 		return -ENOTTY;
4445 #endif
4446 	} else {
4447 		copy_end = copy_end_kernel;
4448 		if (copy_from_user(&args, argp, copy_end)) {
4449 			ret = -EFAULT;
4450 			goto out_acct;
4451 		}
4452 	}
4453 	if (args.flags != 0) {
4454 		ret = -EINVAL;
4455 		goto out_acct;
4456 	}
4457 
4458 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4459 			   &iov, &iter);
4460 	if (ret < 0)
4461 		goto out_acct;
4462 
4463 	if (iov_iter_count(&iter) == 0) {
4464 		ret = 0;
4465 		goto out_iov;
4466 	}
4467 	pos = args.offset;
4468 	ret = rw_verify_area(READ, file, &pos, args.len);
4469 	if (ret < 0)
4470 		goto out_iov;
4471 
4472 	init_sync_kiocb(&kiocb, file);
4473 	kiocb.ki_pos = pos;
4474 
4475 	ret = btrfs_encoded_read(&kiocb, &iter, &args);
4476 	if (ret >= 0) {
4477 		fsnotify_access(file);
4478 		if (copy_to_user(argp + copy_end,
4479 				 (char *)&args + copy_end_kernel,
4480 				 sizeof(args) - copy_end_kernel))
4481 			ret = -EFAULT;
4482 	}
4483 
4484 out_iov:
4485 	kfree(iov);
4486 out_acct:
4487 	if (ret > 0)
4488 		add_rchar(current, ret);
4489 	inc_syscr(current);
4490 	return ret;
4491 }
4492 
4493 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4494 {
4495 	struct btrfs_ioctl_encoded_io_args args;
4496 	struct iovec iovstack[UIO_FASTIOV];
4497 	struct iovec *iov = iovstack;
4498 	struct iov_iter iter;
4499 	loff_t pos;
4500 	struct kiocb kiocb;
4501 	ssize_t ret;
4502 
4503 	if (!capable(CAP_SYS_ADMIN)) {
4504 		ret = -EPERM;
4505 		goto out_acct;
4506 	}
4507 
4508 	if (!(file->f_mode & FMODE_WRITE)) {
4509 		ret = -EBADF;
4510 		goto out_acct;
4511 	}
4512 
4513 	if (compat) {
4514 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4515 		struct btrfs_ioctl_encoded_io_args_32 args32;
4516 
4517 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4518 			ret = -EFAULT;
4519 			goto out_acct;
4520 		}
4521 		args.iov = compat_ptr(args32.iov);
4522 		args.iovcnt = args32.iovcnt;
4523 		args.offset = args32.offset;
4524 		args.flags = args32.flags;
4525 		args.len = args32.len;
4526 		args.unencoded_len = args32.unencoded_len;
4527 		args.unencoded_offset = args32.unencoded_offset;
4528 		args.compression = args32.compression;
4529 		args.encryption = args32.encryption;
4530 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4531 #else
4532 		return -ENOTTY;
4533 #endif
4534 	} else {
4535 		if (copy_from_user(&args, argp, sizeof(args))) {
4536 			ret = -EFAULT;
4537 			goto out_acct;
4538 		}
4539 	}
4540 
4541 	ret = -EINVAL;
4542 	if (args.flags != 0)
4543 		goto out_acct;
4544 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4545 		goto out_acct;
4546 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4547 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4548 		goto out_acct;
4549 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4550 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4551 		goto out_acct;
4552 	if (args.unencoded_offset > args.unencoded_len)
4553 		goto out_acct;
4554 	if (args.len > args.unencoded_len - args.unencoded_offset)
4555 		goto out_acct;
4556 
4557 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4558 			   &iov, &iter);
4559 	if (ret < 0)
4560 		goto out_acct;
4561 
4562 	file_start_write(file);
4563 
4564 	if (iov_iter_count(&iter) == 0) {
4565 		ret = 0;
4566 		goto out_end_write;
4567 	}
4568 	pos = args.offset;
4569 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4570 	if (ret < 0)
4571 		goto out_end_write;
4572 
4573 	init_sync_kiocb(&kiocb, file);
4574 	ret = kiocb_set_rw_flags(&kiocb, 0);
4575 	if (ret)
4576 		goto out_end_write;
4577 	kiocb.ki_pos = pos;
4578 
4579 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4580 	if (ret > 0)
4581 		fsnotify_modify(file);
4582 
4583 out_end_write:
4584 	file_end_write(file);
4585 	kfree(iov);
4586 out_acct:
4587 	if (ret > 0)
4588 		add_wchar(current, ret);
4589 	inc_syscw(current);
4590 	return ret;
4591 }
4592 
4593 long btrfs_ioctl(struct file *file, unsigned int
4594 		cmd, unsigned long arg)
4595 {
4596 	struct inode *inode = file_inode(file);
4597 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4598 	struct btrfs_root *root = BTRFS_I(inode)->root;
4599 	void __user *argp = (void __user *)arg;
4600 
4601 	switch (cmd) {
4602 	case FS_IOC_GETVERSION:
4603 		return btrfs_ioctl_getversion(inode, argp);
4604 	case FS_IOC_GETFSLABEL:
4605 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4606 	case FS_IOC_SETFSLABEL:
4607 		return btrfs_ioctl_set_fslabel(file, argp);
4608 	case FITRIM:
4609 		return btrfs_ioctl_fitrim(fs_info, argp);
4610 	case BTRFS_IOC_SNAP_CREATE:
4611 		return btrfs_ioctl_snap_create(file, argp, 0);
4612 	case BTRFS_IOC_SNAP_CREATE_V2:
4613 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4614 	case BTRFS_IOC_SUBVOL_CREATE:
4615 		return btrfs_ioctl_snap_create(file, argp, 1);
4616 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4617 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4618 	case BTRFS_IOC_SNAP_DESTROY:
4619 		return btrfs_ioctl_snap_destroy(file, argp, false);
4620 	case BTRFS_IOC_SNAP_DESTROY_V2:
4621 		return btrfs_ioctl_snap_destroy(file, argp, true);
4622 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4623 		return btrfs_ioctl_subvol_getflags(inode, argp);
4624 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4625 		return btrfs_ioctl_subvol_setflags(file, argp);
4626 	case BTRFS_IOC_DEFAULT_SUBVOL:
4627 		return btrfs_ioctl_default_subvol(file, argp);
4628 	case BTRFS_IOC_DEFRAG:
4629 		return btrfs_ioctl_defrag(file, NULL);
4630 	case BTRFS_IOC_DEFRAG_RANGE:
4631 		return btrfs_ioctl_defrag(file, argp);
4632 	case BTRFS_IOC_RESIZE:
4633 		return btrfs_ioctl_resize(file, argp);
4634 	case BTRFS_IOC_ADD_DEV:
4635 		return btrfs_ioctl_add_dev(fs_info, argp);
4636 	case BTRFS_IOC_RM_DEV:
4637 		return btrfs_ioctl_rm_dev(file, argp);
4638 	case BTRFS_IOC_RM_DEV_V2:
4639 		return btrfs_ioctl_rm_dev_v2(file, argp);
4640 	case BTRFS_IOC_FS_INFO:
4641 		return btrfs_ioctl_fs_info(fs_info, argp);
4642 	case BTRFS_IOC_DEV_INFO:
4643 		return btrfs_ioctl_dev_info(fs_info, argp);
4644 	case BTRFS_IOC_TREE_SEARCH:
4645 		return btrfs_ioctl_tree_search(inode, argp);
4646 	case BTRFS_IOC_TREE_SEARCH_V2:
4647 		return btrfs_ioctl_tree_search_v2(inode, argp);
4648 	case BTRFS_IOC_INO_LOOKUP:
4649 		return btrfs_ioctl_ino_lookup(root, argp);
4650 	case BTRFS_IOC_INO_PATHS:
4651 		return btrfs_ioctl_ino_to_path(root, argp);
4652 	case BTRFS_IOC_LOGICAL_INO:
4653 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4654 	case BTRFS_IOC_LOGICAL_INO_V2:
4655 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4656 	case BTRFS_IOC_SPACE_INFO:
4657 		return btrfs_ioctl_space_info(fs_info, argp);
4658 	case BTRFS_IOC_SYNC: {
4659 		int ret;
4660 
4661 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4662 		if (ret)
4663 			return ret;
4664 		ret = btrfs_sync_fs(inode->i_sb, 1);
4665 		/*
4666 		 * The transaction thread may want to do more work,
4667 		 * namely it pokes the cleaner kthread that will start
4668 		 * processing uncleaned subvols.
4669 		 */
4670 		wake_up_process(fs_info->transaction_kthread);
4671 		return ret;
4672 	}
4673 	case BTRFS_IOC_START_SYNC:
4674 		return btrfs_ioctl_start_sync(root, argp);
4675 	case BTRFS_IOC_WAIT_SYNC:
4676 		return btrfs_ioctl_wait_sync(fs_info, argp);
4677 	case BTRFS_IOC_SCRUB:
4678 		return btrfs_ioctl_scrub(file, argp);
4679 	case BTRFS_IOC_SCRUB_CANCEL:
4680 		return btrfs_ioctl_scrub_cancel(fs_info);
4681 	case BTRFS_IOC_SCRUB_PROGRESS:
4682 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4683 	case BTRFS_IOC_BALANCE_V2:
4684 		return btrfs_ioctl_balance(file, argp);
4685 	case BTRFS_IOC_BALANCE_CTL:
4686 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4687 	case BTRFS_IOC_BALANCE_PROGRESS:
4688 		return btrfs_ioctl_balance_progress(fs_info, argp);
4689 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4690 		return btrfs_ioctl_set_received_subvol(file, argp);
4691 #ifdef CONFIG_64BIT
4692 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4693 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4694 #endif
4695 	case BTRFS_IOC_SEND:
4696 		return _btrfs_ioctl_send(inode, argp, false);
4697 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4698 	case BTRFS_IOC_SEND_32:
4699 		return _btrfs_ioctl_send(inode, argp, true);
4700 #endif
4701 	case BTRFS_IOC_GET_DEV_STATS:
4702 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4703 	case BTRFS_IOC_QUOTA_CTL:
4704 		return btrfs_ioctl_quota_ctl(file, argp);
4705 	case BTRFS_IOC_QGROUP_ASSIGN:
4706 		return btrfs_ioctl_qgroup_assign(file, argp);
4707 	case BTRFS_IOC_QGROUP_CREATE:
4708 		return btrfs_ioctl_qgroup_create(file, argp);
4709 	case BTRFS_IOC_QGROUP_LIMIT:
4710 		return btrfs_ioctl_qgroup_limit(file, argp);
4711 	case BTRFS_IOC_QUOTA_RESCAN:
4712 		return btrfs_ioctl_quota_rescan(file, argp);
4713 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4714 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4715 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4716 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4717 	case BTRFS_IOC_DEV_REPLACE:
4718 		return btrfs_ioctl_dev_replace(fs_info, argp);
4719 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4720 		return btrfs_ioctl_get_supported_features(argp);
4721 	case BTRFS_IOC_GET_FEATURES:
4722 		return btrfs_ioctl_get_features(fs_info, argp);
4723 	case BTRFS_IOC_SET_FEATURES:
4724 		return btrfs_ioctl_set_features(file, argp);
4725 	case BTRFS_IOC_GET_SUBVOL_INFO:
4726 		return btrfs_ioctl_get_subvol_info(inode, argp);
4727 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4728 		return btrfs_ioctl_get_subvol_rootref(root, argp);
4729 	case BTRFS_IOC_INO_LOOKUP_USER:
4730 		return btrfs_ioctl_ino_lookup_user(file, argp);
4731 	case FS_IOC_ENABLE_VERITY:
4732 		return fsverity_ioctl_enable(file, (const void __user *)argp);
4733 	case FS_IOC_MEASURE_VERITY:
4734 		return fsverity_ioctl_measure(file, argp);
4735 	case BTRFS_IOC_ENCODED_READ:
4736 		return btrfs_ioctl_encoded_read(file, argp, false);
4737 	case BTRFS_IOC_ENCODED_WRITE:
4738 		return btrfs_ioctl_encoded_write(file, argp, false);
4739 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4740 	case BTRFS_IOC_ENCODED_READ_32:
4741 		return btrfs_ioctl_encoded_read(file, argp, true);
4742 	case BTRFS_IOC_ENCODED_WRITE_32:
4743 		return btrfs_ioctl_encoded_write(file, argp, true);
4744 #endif
4745 	}
4746 
4747 	return -ENOTTY;
4748 }
4749 
4750 #ifdef CONFIG_COMPAT
4751 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4752 {
4753 	/*
4754 	 * These all access 32-bit values anyway so no further
4755 	 * handling is necessary.
4756 	 */
4757 	switch (cmd) {
4758 	case FS_IOC32_GETVERSION:
4759 		cmd = FS_IOC_GETVERSION;
4760 		break;
4761 	}
4762 
4763 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4764 }
4765 #endif
4766