1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include "compat.h" 44 #include "ctree.h" 45 #include "disk-io.h" 46 #include "transaction.h" 47 #include "btrfs_inode.h" 48 #include "ioctl.h" 49 #include "print-tree.h" 50 #include "volumes.h" 51 #include "locking.h" 52 53 /* Mask out flags that are inappropriate for the given type of inode. */ 54 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 55 { 56 if (S_ISDIR(mode)) 57 return flags; 58 else if (S_ISREG(mode)) 59 return flags & ~FS_DIRSYNC_FL; 60 else 61 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 62 } 63 64 /* 65 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 66 */ 67 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 68 { 69 unsigned int iflags = 0; 70 71 if (flags & BTRFS_INODE_SYNC) 72 iflags |= FS_SYNC_FL; 73 if (flags & BTRFS_INODE_IMMUTABLE) 74 iflags |= FS_IMMUTABLE_FL; 75 if (flags & BTRFS_INODE_APPEND) 76 iflags |= FS_APPEND_FL; 77 if (flags & BTRFS_INODE_NODUMP) 78 iflags |= FS_NODUMP_FL; 79 if (flags & BTRFS_INODE_NOATIME) 80 iflags |= FS_NOATIME_FL; 81 if (flags & BTRFS_INODE_DIRSYNC) 82 iflags |= FS_DIRSYNC_FL; 83 84 return iflags; 85 } 86 87 /* 88 * Update inode->i_flags based on the btrfs internal flags. 89 */ 90 void btrfs_update_iflags(struct inode *inode) 91 { 92 struct btrfs_inode *ip = BTRFS_I(inode); 93 94 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 95 96 if (ip->flags & BTRFS_INODE_SYNC) 97 inode->i_flags |= S_SYNC; 98 if (ip->flags & BTRFS_INODE_IMMUTABLE) 99 inode->i_flags |= S_IMMUTABLE; 100 if (ip->flags & BTRFS_INODE_APPEND) 101 inode->i_flags |= S_APPEND; 102 if (ip->flags & BTRFS_INODE_NOATIME) 103 inode->i_flags |= S_NOATIME; 104 if (ip->flags & BTRFS_INODE_DIRSYNC) 105 inode->i_flags |= S_DIRSYNC; 106 } 107 108 /* 109 * Inherit flags from the parent inode. 110 * 111 * Unlike extN we don't have any flags we don't want to inherit currently. 112 */ 113 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 114 { 115 unsigned int flags; 116 117 if (!dir) 118 return; 119 120 flags = BTRFS_I(dir)->flags; 121 122 if (S_ISREG(inode->i_mode)) 123 flags &= ~BTRFS_INODE_DIRSYNC; 124 else if (!S_ISDIR(inode->i_mode)) 125 flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME); 126 127 BTRFS_I(inode)->flags = flags; 128 btrfs_update_iflags(inode); 129 } 130 131 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 132 { 133 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode); 134 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 135 136 if (copy_to_user(arg, &flags, sizeof(flags))) 137 return -EFAULT; 138 return 0; 139 } 140 141 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 142 { 143 struct inode *inode = file->f_path.dentry->d_inode; 144 struct btrfs_inode *ip = BTRFS_I(inode); 145 struct btrfs_root *root = ip->root; 146 struct btrfs_trans_handle *trans; 147 unsigned int flags, oldflags; 148 int ret; 149 150 if (btrfs_root_readonly(root)) 151 return -EROFS; 152 153 if (copy_from_user(&flags, arg, sizeof(flags))) 154 return -EFAULT; 155 156 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 157 FS_NOATIME_FL | FS_NODUMP_FL | \ 158 FS_SYNC_FL | FS_DIRSYNC_FL)) 159 return -EOPNOTSUPP; 160 161 if (!is_owner_or_cap(inode)) 162 return -EACCES; 163 164 mutex_lock(&inode->i_mutex); 165 166 flags = btrfs_mask_flags(inode->i_mode, flags); 167 oldflags = btrfs_flags_to_ioctl(ip->flags); 168 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 169 if (!capable(CAP_LINUX_IMMUTABLE)) { 170 ret = -EPERM; 171 goto out_unlock; 172 } 173 } 174 175 ret = mnt_want_write(file->f_path.mnt); 176 if (ret) 177 goto out_unlock; 178 179 if (flags & FS_SYNC_FL) 180 ip->flags |= BTRFS_INODE_SYNC; 181 else 182 ip->flags &= ~BTRFS_INODE_SYNC; 183 if (flags & FS_IMMUTABLE_FL) 184 ip->flags |= BTRFS_INODE_IMMUTABLE; 185 else 186 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 187 if (flags & FS_APPEND_FL) 188 ip->flags |= BTRFS_INODE_APPEND; 189 else 190 ip->flags &= ~BTRFS_INODE_APPEND; 191 if (flags & FS_NODUMP_FL) 192 ip->flags |= BTRFS_INODE_NODUMP; 193 else 194 ip->flags &= ~BTRFS_INODE_NODUMP; 195 if (flags & FS_NOATIME_FL) 196 ip->flags |= BTRFS_INODE_NOATIME; 197 else 198 ip->flags &= ~BTRFS_INODE_NOATIME; 199 if (flags & FS_DIRSYNC_FL) 200 ip->flags |= BTRFS_INODE_DIRSYNC; 201 else 202 ip->flags &= ~BTRFS_INODE_DIRSYNC; 203 204 205 trans = btrfs_join_transaction(root, 1); 206 BUG_ON(IS_ERR(trans)); 207 208 ret = btrfs_update_inode(trans, root, inode); 209 BUG_ON(ret); 210 211 btrfs_update_iflags(inode); 212 inode->i_ctime = CURRENT_TIME; 213 btrfs_end_transaction(trans, root); 214 215 mnt_drop_write(file->f_path.mnt); 216 out_unlock: 217 mutex_unlock(&inode->i_mutex); 218 return 0; 219 } 220 221 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 222 { 223 struct inode *inode = file->f_path.dentry->d_inode; 224 225 return put_user(inode->i_generation, arg); 226 } 227 228 static noinline int create_subvol(struct btrfs_root *root, 229 struct dentry *dentry, 230 char *name, int namelen, 231 u64 *async_transid) 232 { 233 struct btrfs_trans_handle *trans; 234 struct btrfs_key key; 235 struct btrfs_root_item root_item; 236 struct btrfs_inode_item *inode_item; 237 struct extent_buffer *leaf; 238 struct btrfs_root *new_root; 239 struct dentry *parent = dget_parent(dentry); 240 struct inode *dir; 241 int ret; 242 int err; 243 u64 objectid; 244 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 245 u64 index = 0; 246 247 ret = btrfs_find_free_objectid(NULL, root->fs_info->tree_root, 248 0, &objectid); 249 if (ret) { 250 dput(parent); 251 return ret; 252 } 253 254 dir = parent->d_inode; 255 256 /* 257 * 1 - inode item 258 * 2 - refs 259 * 1 - root item 260 * 2 - dir items 261 */ 262 trans = btrfs_start_transaction(root, 6); 263 if (IS_ERR(trans)) { 264 dput(parent); 265 return PTR_ERR(trans); 266 } 267 268 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 269 0, objectid, NULL, 0, 0, 0); 270 if (IS_ERR(leaf)) { 271 ret = PTR_ERR(leaf); 272 goto fail; 273 } 274 275 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 276 btrfs_set_header_bytenr(leaf, leaf->start); 277 btrfs_set_header_generation(leaf, trans->transid); 278 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 279 btrfs_set_header_owner(leaf, objectid); 280 281 write_extent_buffer(leaf, root->fs_info->fsid, 282 (unsigned long)btrfs_header_fsid(leaf), 283 BTRFS_FSID_SIZE); 284 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 285 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 286 BTRFS_UUID_SIZE); 287 btrfs_mark_buffer_dirty(leaf); 288 289 inode_item = &root_item.inode; 290 memset(inode_item, 0, sizeof(*inode_item)); 291 inode_item->generation = cpu_to_le64(1); 292 inode_item->size = cpu_to_le64(3); 293 inode_item->nlink = cpu_to_le32(1); 294 inode_item->nbytes = cpu_to_le64(root->leafsize); 295 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 296 297 btrfs_set_root_bytenr(&root_item, leaf->start); 298 btrfs_set_root_generation(&root_item, trans->transid); 299 btrfs_set_root_level(&root_item, 0); 300 btrfs_set_root_refs(&root_item, 1); 301 btrfs_set_root_used(&root_item, leaf->len); 302 btrfs_set_root_last_snapshot(&root_item, 0); 303 304 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); 305 root_item.drop_level = 0; 306 307 btrfs_tree_unlock(leaf); 308 free_extent_buffer(leaf); 309 leaf = NULL; 310 311 btrfs_set_root_dirid(&root_item, new_dirid); 312 313 key.objectid = objectid; 314 key.offset = 0; 315 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 316 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 317 &root_item); 318 if (ret) 319 goto fail; 320 321 key.offset = (u64)-1; 322 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 323 BUG_ON(IS_ERR(new_root)); 324 325 btrfs_record_root_in_trans(trans, new_root); 326 327 ret = btrfs_create_subvol_root(trans, new_root, new_dirid, 328 BTRFS_I(dir)->block_group); 329 /* 330 * insert the directory item 331 */ 332 ret = btrfs_set_inode_index(dir, &index); 333 BUG_ON(ret); 334 335 ret = btrfs_insert_dir_item(trans, root, 336 name, namelen, dir->i_ino, &key, 337 BTRFS_FT_DIR, index); 338 if (ret) 339 goto fail; 340 341 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 342 ret = btrfs_update_inode(trans, root, dir); 343 BUG_ON(ret); 344 345 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 346 objectid, root->root_key.objectid, 347 dir->i_ino, index, name, namelen); 348 349 BUG_ON(ret); 350 351 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry)); 352 fail: 353 dput(parent); 354 if (async_transid) { 355 *async_transid = trans->transid; 356 err = btrfs_commit_transaction_async(trans, root, 1); 357 } else { 358 err = btrfs_commit_transaction(trans, root); 359 } 360 if (err && !ret) 361 ret = err; 362 return ret; 363 } 364 365 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry, 366 char *name, int namelen, u64 *async_transid, 367 bool readonly) 368 { 369 struct inode *inode; 370 struct dentry *parent; 371 struct btrfs_pending_snapshot *pending_snapshot; 372 struct btrfs_trans_handle *trans; 373 int ret; 374 375 if (!root->ref_cows) 376 return -EINVAL; 377 378 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 379 if (!pending_snapshot) 380 return -ENOMEM; 381 382 btrfs_init_block_rsv(&pending_snapshot->block_rsv); 383 pending_snapshot->dentry = dentry; 384 pending_snapshot->root = root; 385 pending_snapshot->readonly = readonly; 386 387 trans = btrfs_start_transaction(root->fs_info->extent_root, 5); 388 if (IS_ERR(trans)) { 389 ret = PTR_ERR(trans); 390 goto fail; 391 } 392 393 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot); 394 BUG_ON(ret); 395 396 list_add(&pending_snapshot->list, 397 &trans->transaction->pending_snapshots); 398 if (async_transid) { 399 *async_transid = trans->transid; 400 ret = btrfs_commit_transaction_async(trans, 401 root->fs_info->extent_root, 1); 402 } else { 403 ret = btrfs_commit_transaction(trans, 404 root->fs_info->extent_root); 405 } 406 BUG_ON(ret); 407 408 ret = pending_snapshot->error; 409 if (ret) 410 goto fail; 411 412 btrfs_orphan_cleanup(pending_snapshot->snap); 413 414 parent = dget_parent(dentry); 415 inode = btrfs_lookup_dentry(parent->d_inode, dentry); 416 dput(parent); 417 if (IS_ERR(inode)) { 418 ret = PTR_ERR(inode); 419 goto fail; 420 } 421 BUG_ON(!inode); 422 d_instantiate(dentry, inode); 423 ret = 0; 424 fail: 425 kfree(pending_snapshot); 426 return ret; 427 } 428 429 /* copy of check_sticky in fs/namei.c() 430 * It's inline, so penalty for filesystems that don't use sticky bit is 431 * minimal. 432 */ 433 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 434 { 435 uid_t fsuid = current_fsuid(); 436 437 if (!(dir->i_mode & S_ISVTX)) 438 return 0; 439 if (inode->i_uid == fsuid) 440 return 0; 441 if (dir->i_uid == fsuid) 442 return 0; 443 return !capable(CAP_FOWNER); 444 } 445 446 /* copy of may_delete in fs/namei.c() 447 * Check whether we can remove a link victim from directory dir, check 448 * whether the type of victim is right. 449 * 1. We can't do it if dir is read-only (done in permission()) 450 * 2. We should have write and exec permissions on dir 451 * 3. We can't remove anything from append-only dir 452 * 4. We can't do anything with immutable dir (done in permission()) 453 * 5. If the sticky bit on dir is set we should either 454 * a. be owner of dir, or 455 * b. be owner of victim, or 456 * c. have CAP_FOWNER capability 457 * 6. If the victim is append-only or immutable we can't do antyhing with 458 * links pointing to it. 459 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 460 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 461 * 9. We can't remove a root or mountpoint. 462 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 463 * nfs_async_unlink(). 464 */ 465 466 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir) 467 { 468 int error; 469 470 if (!victim->d_inode) 471 return -ENOENT; 472 473 BUG_ON(victim->d_parent->d_inode != dir); 474 audit_inode_child(victim, dir); 475 476 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 477 if (error) 478 return error; 479 if (IS_APPEND(dir)) 480 return -EPERM; 481 if (btrfs_check_sticky(dir, victim->d_inode)|| 482 IS_APPEND(victim->d_inode)|| 483 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 484 return -EPERM; 485 if (isdir) { 486 if (!S_ISDIR(victim->d_inode->i_mode)) 487 return -ENOTDIR; 488 if (IS_ROOT(victim)) 489 return -EBUSY; 490 } else if (S_ISDIR(victim->d_inode->i_mode)) 491 return -EISDIR; 492 if (IS_DEADDIR(dir)) 493 return -ENOENT; 494 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 495 return -EBUSY; 496 return 0; 497 } 498 499 /* copy of may_create in fs/namei.c() */ 500 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 501 { 502 if (child->d_inode) 503 return -EEXIST; 504 if (IS_DEADDIR(dir)) 505 return -ENOENT; 506 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 507 } 508 509 /* 510 * Create a new subvolume below @parent. This is largely modeled after 511 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 512 * inside this filesystem so it's quite a bit simpler. 513 */ 514 static noinline int btrfs_mksubvol(struct path *parent, 515 char *name, int namelen, 516 struct btrfs_root *snap_src, 517 u64 *async_transid, bool readonly) 518 { 519 struct inode *dir = parent->dentry->d_inode; 520 struct dentry *dentry; 521 int error; 522 523 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 524 525 dentry = lookup_one_len(name, parent->dentry, namelen); 526 error = PTR_ERR(dentry); 527 if (IS_ERR(dentry)) 528 goto out_unlock; 529 530 error = -EEXIST; 531 if (dentry->d_inode) 532 goto out_dput; 533 534 error = mnt_want_write(parent->mnt); 535 if (error) 536 goto out_dput; 537 538 error = btrfs_may_create(dir, dentry); 539 if (error) 540 goto out_drop_write; 541 542 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 543 544 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 545 goto out_up_read; 546 547 if (snap_src) { 548 error = create_snapshot(snap_src, dentry, 549 name, namelen, async_transid, readonly); 550 } else { 551 error = create_subvol(BTRFS_I(dir)->root, dentry, 552 name, namelen, async_transid); 553 } 554 if (!error) 555 fsnotify_mkdir(dir, dentry); 556 out_up_read: 557 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 558 out_drop_write: 559 mnt_drop_write(parent->mnt); 560 out_dput: 561 dput(dentry); 562 out_unlock: 563 mutex_unlock(&dir->i_mutex); 564 return error; 565 } 566 567 static int should_defrag_range(struct inode *inode, u64 start, u64 len, 568 int thresh, u64 *last_len, u64 *skip, 569 u64 *defrag_end) 570 { 571 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 572 struct extent_map *em = NULL; 573 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 574 int ret = 1; 575 576 577 if (thresh == 0) 578 thresh = 256 * 1024; 579 580 /* 581 * make sure that once we start defragging and extent, we keep on 582 * defragging it 583 */ 584 if (start < *defrag_end) 585 return 1; 586 587 *skip = 0; 588 589 /* 590 * hopefully we have this extent in the tree already, try without 591 * the full extent lock 592 */ 593 read_lock(&em_tree->lock); 594 em = lookup_extent_mapping(em_tree, start, len); 595 read_unlock(&em_tree->lock); 596 597 if (!em) { 598 /* get the big lock and read metadata off disk */ 599 lock_extent(io_tree, start, start + len - 1, GFP_NOFS); 600 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 601 unlock_extent(io_tree, start, start + len - 1, GFP_NOFS); 602 603 if (IS_ERR(em)) 604 return 0; 605 } 606 607 /* this will cover holes, and inline extents */ 608 if (em->block_start >= EXTENT_MAP_LAST_BYTE) 609 ret = 0; 610 611 /* 612 * we hit a real extent, if it is big don't bother defragging it again 613 */ 614 if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh) 615 ret = 0; 616 617 /* 618 * last_len ends up being a counter of how many bytes we've defragged. 619 * every time we choose not to defrag an extent, we reset *last_len 620 * so that the next tiny extent will force a defrag. 621 * 622 * The end result of this is that tiny extents before a single big 623 * extent will force at least part of that big extent to be defragged. 624 */ 625 if (ret) { 626 *last_len += len; 627 *defrag_end = extent_map_end(em); 628 } else { 629 *last_len = 0; 630 *skip = extent_map_end(em); 631 *defrag_end = 0; 632 } 633 634 free_extent_map(em); 635 return ret; 636 } 637 638 static int btrfs_defrag_file(struct file *file, 639 struct btrfs_ioctl_defrag_range_args *range) 640 { 641 struct inode *inode = fdentry(file)->d_inode; 642 struct btrfs_root *root = BTRFS_I(inode)->root; 643 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 644 struct btrfs_ordered_extent *ordered; 645 struct page *page; 646 struct btrfs_super_block *disk_super; 647 unsigned long last_index; 648 unsigned long ra_pages = root->fs_info->bdi.ra_pages; 649 unsigned long total_read = 0; 650 u64 features; 651 u64 page_start; 652 u64 page_end; 653 u64 last_len = 0; 654 u64 skip = 0; 655 u64 defrag_end = 0; 656 unsigned long i; 657 int ret; 658 int compress_type = BTRFS_COMPRESS_ZLIB; 659 660 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 661 if (range->compress_type > BTRFS_COMPRESS_TYPES) 662 return -EINVAL; 663 if (range->compress_type) 664 compress_type = range->compress_type; 665 } 666 667 if (inode->i_size == 0) 668 return 0; 669 670 if (range->start + range->len > range->start) { 671 last_index = min_t(u64, inode->i_size - 1, 672 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 673 } else { 674 last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT; 675 } 676 677 i = range->start >> PAGE_CACHE_SHIFT; 678 while (i <= last_index) { 679 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 680 PAGE_CACHE_SIZE, 681 range->extent_thresh, 682 &last_len, &skip, 683 &defrag_end)) { 684 unsigned long next; 685 /* 686 * the should_defrag function tells us how much to skip 687 * bump our counter by the suggested amount 688 */ 689 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 690 i = max(i + 1, next); 691 continue; 692 } 693 694 if (total_read % ra_pages == 0) { 695 btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i, 696 min(last_index, i + ra_pages - 1)); 697 } 698 total_read++; 699 mutex_lock(&inode->i_mutex); 700 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 701 BTRFS_I(inode)->force_compress = compress_type; 702 703 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 704 if (ret) 705 goto err_unlock; 706 again: 707 if (inode->i_size == 0 || 708 i > ((inode->i_size - 1) >> PAGE_CACHE_SHIFT)) { 709 ret = 0; 710 goto err_reservations; 711 } 712 713 page = grab_cache_page(inode->i_mapping, i); 714 if (!page) { 715 ret = -ENOMEM; 716 goto err_reservations; 717 } 718 719 if (!PageUptodate(page)) { 720 btrfs_readpage(NULL, page); 721 lock_page(page); 722 if (!PageUptodate(page)) { 723 unlock_page(page); 724 page_cache_release(page); 725 ret = -EIO; 726 goto err_reservations; 727 } 728 } 729 730 if (page->mapping != inode->i_mapping) { 731 unlock_page(page); 732 page_cache_release(page); 733 goto again; 734 } 735 736 wait_on_page_writeback(page); 737 738 if (PageDirty(page)) { 739 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 740 goto loop_unlock; 741 } 742 743 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 744 page_end = page_start + PAGE_CACHE_SIZE - 1; 745 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 746 747 ordered = btrfs_lookup_ordered_extent(inode, page_start); 748 if (ordered) { 749 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 750 unlock_page(page); 751 page_cache_release(page); 752 btrfs_start_ordered_extent(inode, ordered, 1); 753 btrfs_put_ordered_extent(ordered); 754 goto again; 755 } 756 set_page_extent_mapped(page); 757 758 /* 759 * this makes sure page_mkwrite is called on the 760 * page if it is dirtied again later 761 */ 762 clear_page_dirty_for_io(page); 763 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, 764 page_end, EXTENT_DIRTY | EXTENT_DELALLOC | 765 EXTENT_DO_ACCOUNTING, GFP_NOFS); 766 767 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 768 ClearPageChecked(page); 769 set_page_dirty(page); 770 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 771 772 loop_unlock: 773 unlock_page(page); 774 page_cache_release(page); 775 mutex_unlock(&inode->i_mutex); 776 777 balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1); 778 i++; 779 } 780 781 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 782 filemap_flush(inode->i_mapping); 783 784 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 785 /* the filemap_flush will queue IO into the worker threads, but 786 * we have to make sure the IO is actually started and that 787 * ordered extents get created before we return 788 */ 789 atomic_inc(&root->fs_info->async_submit_draining); 790 while (atomic_read(&root->fs_info->nr_async_submits) || 791 atomic_read(&root->fs_info->async_delalloc_pages)) { 792 wait_event(root->fs_info->async_submit_wait, 793 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 794 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 795 } 796 atomic_dec(&root->fs_info->async_submit_draining); 797 798 mutex_lock(&inode->i_mutex); 799 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 800 mutex_unlock(&inode->i_mutex); 801 } 802 803 disk_super = &root->fs_info->super_copy; 804 features = btrfs_super_incompat_flags(disk_super); 805 if (range->compress_type == BTRFS_COMPRESS_LZO) { 806 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 807 btrfs_set_super_incompat_flags(disk_super, features); 808 } 809 810 return 0; 811 812 err_reservations: 813 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 814 err_unlock: 815 mutex_unlock(&inode->i_mutex); 816 return ret; 817 } 818 819 static noinline int btrfs_ioctl_resize(struct btrfs_root *root, 820 void __user *arg) 821 { 822 u64 new_size; 823 u64 old_size; 824 u64 devid = 1; 825 struct btrfs_ioctl_vol_args *vol_args; 826 struct btrfs_trans_handle *trans; 827 struct btrfs_device *device = NULL; 828 char *sizestr; 829 char *devstr = NULL; 830 int ret = 0; 831 int mod = 0; 832 833 if (root->fs_info->sb->s_flags & MS_RDONLY) 834 return -EROFS; 835 836 if (!capable(CAP_SYS_ADMIN)) 837 return -EPERM; 838 839 vol_args = memdup_user(arg, sizeof(*vol_args)); 840 if (IS_ERR(vol_args)) 841 return PTR_ERR(vol_args); 842 843 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 844 845 mutex_lock(&root->fs_info->volume_mutex); 846 sizestr = vol_args->name; 847 devstr = strchr(sizestr, ':'); 848 if (devstr) { 849 char *end; 850 sizestr = devstr + 1; 851 *devstr = '\0'; 852 devstr = vol_args->name; 853 devid = simple_strtoull(devstr, &end, 10); 854 printk(KERN_INFO "resizing devid %llu\n", 855 (unsigned long long)devid); 856 } 857 device = btrfs_find_device(root, devid, NULL, NULL); 858 if (!device) { 859 printk(KERN_INFO "resizer unable to find device %llu\n", 860 (unsigned long long)devid); 861 ret = -EINVAL; 862 goto out_unlock; 863 } 864 if (!strcmp(sizestr, "max")) 865 new_size = device->bdev->bd_inode->i_size; 866 else { 867 if (sizestr[0] == '-') { 868 mod = -1; 869 sizestr++; 870 } else if (sizestr[0] == '+') { 871 mod = 1; 872 sizestr++; 873 } 874 new_size = memparse(sizestr, NULL); 875 if (new_size == 0) { 876 ret = -EINVAL; 877 goto out_unlock; 878 } 879 } 880 881 old_size = device->total_bytes; 882 883 if (mod < 0) { 884 if (new_size > old_size) { 885 ret = -EINVAL; 886 goto out_unlock; 887 } 888 new_size = old_size - new_size; 889 } else if (mod > 0) { 890 new_size = old_size + new_size; 891 } 892 893 if (new_size < 256 * 1024 * 1024) { 894 ret = -EINVAL; 895 goto out_unlock; 896 } 897 if (new_size > device->bdev->bd_inode->i_size) { 898 ret = -EFBIG; 899 goto out_unlock; 900 } 901 902 do_div(new_size, root->sectorsize); 903 new_size *= root->sectorsize; 904 905 printk(KERN_INFO "new size for %s is %llu\n", 906 device->name, (unsigned long long)new_size); 907 908 if (new_size > old_size) { 909 trans = btrfs_start_transaction(root, 0); 910 if (IS_ERR(trans)) { 911 ret = PTR_ERR(trans); 912 goto out_unlock; 913 } 914 ret = btrfs_grow_device(trans, device, new_size); 915 btrfs_commit_transaction(trans, root); 916 } else { 917 ret = btrfs_shrink_device(device, new_size); 918 } 919 920 out_unlock: 921 mutex_unlock(&root->fs_info->volume_mutex); 922 kfree(vol_args); 923 return ret; 924 } 925 926 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 927 char *name, 928 unsigned long fd, 929 int subvol, 930 u64 *transid, 931 bool readonly) 932 { 933 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 934 struct file *src_file; 935 int namelen; 936 int ret = 0; 937 938 if (root->fs_info->sb->s_flags & MS_RDONLY) 939 return -EROFS; 940 941 namelen = strlen(name); 942 if (strchr(name, '/')) { 943 ret = -EINVAL; 944 goto out; 945 } 946 947 if (subvol) { 948 ret = btrfs_mksubvol(&file->f_path, name, namelen, 949 NULL, transid, readonly); 950 } else { 951 struct inode *src_inode; 952 src_file = fget(fd); 953 if (!src_file) { 954 ret = -EINVAL; 955 goto out; 956 } 957 958 src_inode = src_file->f_path.dentry->d_inode; 959 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) { 960 printk(KERN_INFO "btrfs: Snapshot src from " 961 "another FS\n"); 962 ret = -EINVAL; 963 fput(src_file); 964 goto out; 965 } 966 ret = btrfs_mksubvol(&file->f_path, name, namelen, 967 BTRFS_I(src_inode)->root, 968 transid, readonly); 969 fput(src_file); 970 } 971 out: 972 return ret; 973 } 974 975 static noinline int btrfs_ioctl_snap_create(struct file *file, 976 void __user *arg, int subvol) 977 { 978 struct btrfs_ioctl_vol_args *vol_args; 979 int ret; 980 981 vol_args = memdup_user(arg, sizeof(*vol_args)); 982 if (IS_ERR(vol_args)) 983 return PTR_ERR(vol_args); 984 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 985 986 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 987 vol_args->fd, subvol, 988 NULL, false); 989 990 kfree(vol_args); 991 return ret; 992 } 993 994 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 995 void __user *arg, int subvol) 996 { 997 struct btrfs_ioctl_vol_args_v2 *vol_args; 998 int ret; 999 u64 transid = 0; 1000 u64 *ptr = NULL; 1001 bool readonly = false; 1002 1003 vol_args = memdup_user(arg, sizeof(*vol_args)); 1004 if (IS_ERR(vol_args)) 1005 return PTR_ERR(vol_args); 1006 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1007 1008 if (vol_args->flags & 1009 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) { 1010 ret = -EOPNOTSUPP; 1011 goto out; 1012 } 1013 1014 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1015 ptr = &transid; 1016 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1017 readonly = true; 1018 1019 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1020 vol_args->fd, subvol, 1021 ptr, readonly); 1022 1023 if (ret == 0 && ptr && 1024 copy_to_user(arg + 1025 offsetof(struct btrfs_ioctl_vol_args_v2, 1026 transid), ptr, sizeof(*ptr))) 1027 ret = -EFAULT; 1028 out: 1029 kfree(vol_args); 1030 return ret; 1031 } 1032 1033 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1034 void __user *arg) 1035 { 1036 struct inode *inode = fdentry(file)->d_inode; 1037 struct btrfs_root *root = BTRFS_I(inode)->root; 1038 int ret = 0; 1039 u64 flags = 0; 1040 1041 if (inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) 1042 return -EINVAL; 1043 1044 down_read(&root->fs_info->subvol_sem); 1045 if (btrfs_root_readonly(root)) 1046 flags |= BTRFS_SUBVOL_RDONLY; 1047 up_read(&root->fs_info->subvol_sem); 1048 1049 if (copy_to_user(arg, &flags, sizeof(flags))) 1050 ret = -EFAULT; 1051 1052 return ret; 1053 } 1054 1055 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1056 void __user *arg) 1057 { 1058 struct inode *inode = fdentry(file)->d_inode; 1059 struct btrfs_root *root = BTRFS_I(inode)->root; 1060 struct btrfs_trans_handle *trans; 1061 u64 root_flags; 1062 u64 flags; 1063 int ret = 0; 1064 1065 if (root->fs_info->sb->s_flags & MS_RDONLY) 1066 return -EROFS; 1067 1068 if (inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) 1069 return -EINVAL; 1070 1071 if (copy_from_user(&flags, arg, sizeof(flags))) 1072 return -EFAULT; 1073 1074 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) 1075 return -EINVAL; 1076 1077 if (flags & ~BTRFS_SUBVOL_RDONLY) 1078 return -EOPNOTSUPP; 1079 1080 if (!is_owner_or_cap(inode)) 1081 return -EACCES; 1082 1083 down_write(&root->fs_info->subvol_sem); 1084 1085 /* nothing to do */ 1086 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1087 goto out; 1088 1089 root_flags = btrfs_root_flags(&root->root_item); 1090 if (flags & BTRFS_SUBVOL_RDONLY) 1091 btrfs_set_root_flags(&root->root_item, 1092 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1093 else 1094 btrfs_set_root_flags(&root->root_item, 1095 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1096 1097 trans = btrfs_start_transaction(root, 1); 1098 if (IS_ERR(trans)) { 1099 ret = PTR_ERR(trans); 1100 goto out_reset; 1101 } 1102 1103 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1104 &root->root_key, &root->root_item); 1105 1106 btrfs_commit_transaction(trans, root); 1107 out_reset: 1108 if (ret) 1109 btrfs_set_root_flags(&root->root_item, root_flags); 1110 out: 1111 up_write(&root->fs_info->subvol_sem); 1112 return ret; 1113 } 1114 1115 /* 1116 * helper to check if the subvolume references other subvolumes 1117 */ 1118 static noinline int may_destroy_subvol(struct btrfs_root *root) 1119 { 1120 struct btrfs_path *path; 1121 struct btrfs_key key; 1122 int ret; 1123 1124 path = btrfs_alloc_path(); 1125 if (!path) 1126 return -ENOMEM; 1127 1128 key.objectid = root->root_key.objectid; 1129 key.type = BTRFS_ROOT_REF_KEY; 1130 key.offset = (u64)-1; 1131 1132 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1133 &key, path, 0, 0); 1134 if (ret < 0) 1135 goto out; 1136 BUG_ON(ret == 0); 1137 1138 ret = 0; 1139 if (path->slots[0] > 0) { 1140 path->slots[0]--; 1141 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1142 if (key.objectid == root->root_key.objectid && 1143 key.type == BTRFS_ROOT_REF_KEY) 1144 ret = -ENOTEMPTY; 1145 } 1146 out: 1147 btrfs_free_path(path); 1148 return ret; 1149 } 1150 1151 static noinline int key_in_sk(struct btrfs_key *key, 1152 struct btrfs_ioctl_search_key *sk) 1153 { 1154 struct btrfs_key test; 1155 int ret; 1156 1157 test.objectid = sk->min_objectid; 1158 test.type = sk->min_type; 1159 test.offset = sk->min_offset; 1160 1161 ret = btrfs_comp_cpu_keys(key, &test); 1162 if (ret < 0) 1163 return 0; 1164 1165 test.objectid = sk->max_objectid; 1166 test.type = sk->max_type; 1167 test.offset = sk->max_offset; 1168 1169 ret = btrfs_comp_cpu_keys(key, &test); 1170 if (ret > 0) 1171 return 0; 1172 return 1; 1173 } 1174 1175 static noinline int copy_to_sk(struct btrfs_root *root, 1176 struct btrfs_path *path, 1177 struct btrfs_key *key, 1178 struct btrfs_ioctl_search_key *sk, 1179 char *buf, 1180 unsigned long *sk_offset, 1181 int *num_found) 1182 { 1183 u64 found_transid; 1184 struct extent_buffer *leaf; 1185 struct btrfs_ioctl_search_header sh; 1186 unsigned long item_off; 1187 unsigned long item_len; 1188 int nritems; 1189 int i; 1190 int slot; 1191 int found = 0; 1192 int ret = 0; 1193 1194 leaf = path->nodes[0]; 1195 slot = path->slots[0]; 1196 nritems = btrfs_header_nritems(leaf); 1197 1198 if (btrfs_header_generation(leaf) > sk->max_transid) { 1199 i = nritems; 1200 goto advance_key; 1201 } 1202 found_transid = btrfs_header_generation(leaf); 1203 1204 for (i = slot; i < nritems; i++) { 1205 item_off = btrfs_item_ptr_offset(leaf, i); 1206 item_len = btrfs_item_size_nr(leaf, i); 1207 1208 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1209 item_len = 0; 1210 1211 if (sizeof(sh) + item_len + *sk_offset > 1212 BTRFS_SEARCH_ARGS_BUFSIZE) { 1213 ret = 1; 1214 goto overflow; 1215 } 1216 1217 btrfs_item_key_to_cpu(leaf, key, i); 1218 if (!key_in_sk(key, sk)) 1219 continue; 1220 1221 sh.objectid = key->objectid; 1222 sh.offset = key->offset; 1223 sh.type = key->type; 1224 sh.len = item_len; 1225 sh.transid = found_transid; 1226 1227 /* copy search result header */ 1228 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1229 *sk_offset += sizeof(sh); 1230 1231 if (item_len) { 1232 char *p = buf + *sk_offset; 1233 /* copy the item */ 1234 read_extent_buffer(leaf, p, 1235 item_off, item_len); 1236 *sk_offset += item_len; 1237 } 1238 found++; 1239 1240 if (*num_found >= sk->nr_items) 1241 break; 1242 } 1243 advance_key: 1244 ret = 0; 1245 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1246 key->offset++; 1247 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1248 key->offset = 0; 1249 key->type++; 1250 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1251 key->offset = 0; 1252 key->type = 0; 1253 key->objectid++; 1254 } else 1255 ret = 1; 1256 overflow: 1257 *num_found += found; 1258 return ret; 1259 } 1260 1261 static noinline int search_ioctl(struct inode *inode, 1262 struct btrfs_ioctl_search_args *args) 1263 { 1264 struct btrfs_root *root; 1265 struct btrfs_key key; 1266 struct btrfs_key max_key; 1267 struct btrfs_path *path; 1268 struct btrfs_ioctl_search_key *sk = &args->key; 1269 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1270 int ret; 1271 int num_found = 0; 1272 unsigned long sk_offset = 0; 1273 1274 path = btrfs_alloc_path(); 1275 if (!path) 1276 return -ENOMEM; 1277 1278 if (sk->tree_id == 0) { 1279 /* search the root of the inode that was passed */ 1280 root = BTRFS_I(inode)->root; 1281 } else { 1282 key.objectid = sk->tree_id; 1283 key.type = BTRFS_ROOT_ITEM_KEY; 1284 key.offset = (u64)-1; 1285 root = btrfs_read_fs_root_no_name(info, &key); 1286 if (IS_ERR(root)) { 1287 printk(KERN_ERR "could not find root %llu\n", 1288 sk->tree_id); 1289 btrfs_free_path(path); 1290 return -ENOENT; 1291 } 1292 } 1293 1294 key.objectid = sk->min_objectid; 1295 key.type = sk->min_type; 1296 key.offset = sk->min_offset; 1297 1298 max_key.objectid = sk->max_objectid; 1299 max_key.type = sk->max_type; 1300 max_key.offset = sk->max_offset; 1301 1302 path->keep_locks = 1; 1303 1304 while(1) { 1305 ret = btrfs_search_forward(root, &key, &max_key, path, 0, 1306 sk->min_transid); 1307 if (ret != 0) { 1308 if (ret > 0) 1309 ret = 0; 1310 goto err; 1311 } 1312 ret = copy_to_sk(root, path, &key, sk, args->buf, 1313 &sk_offset, &num_found); 1314 btrfs_release_path(root, path); 1315 if (ret || num_found >= sk->nr_items) 1316 break; 1317 1318 } 1319 ret = 0; 1320 err: 1321 sk->nr_items = num_found; 1322 btrfs_free_path(path); 1323 return ret; 1324 } 1325 1326 static noinline int btrfs_ioctl_tree_search(struct file *file, 1327 void __user *argp) 1328 { 1329 struct btrfs_ioctl_search_args *args; 1330 struct inode *inode; 1331 int ret; 1332 1333 if (!capable(CAP_SYS_ADMIN)) 1334 return -EPERM; 1335 1336 args = memdup_user(argp, sizeof(*args)); 1337 if (IS_ERR(args)) 1338 return PTR_ERR(args); 1339 1340 inode = fdentry(file)->d_inode; 1341 ret = search_ioctl(inode, args); 1342 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1343 ret = -EFAULT; 1344 kfree(args); 1345 return ret; 1346 } 1347 1348 /* 1349 * Search INODE_REFs to identify path name of 'dirid' directory 1350 * in a 'tree_id' tree. and sets path name to 'name'. 1351 */ 1352 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1353 u64 tree_id, u64 dirid, char *name) 1354 { 1355 struct btrfs_root *root; 1356 struct btrfs_key key; 1357 char *ptr; 1358 int ret = -1; 1359 int slot; 1360 int len; 1361 int total_len = 0; 1362 struct btrfs_inode_ref *iref; 1363 struct extent_buffer *l; 1364 struct btrfs_path *path; 1365 1366 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1367 name[0]='\0'; 1368 return 0; 1369 } 1370 1371 path = btrfs_alloc_path(); 1372 if (!path) 1373 return -ENOMEM; 1374 1375 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 1376 1377 key.objectid = tree_id; 1378 key.type = BTRFS_ROOT_ITEM_KEY; 1379 key.offset = (u64)-1; 1380 root = btrfs_read_fs_root_no_name(info, &key); 1381 if (IS_ERR(root)) { 1382 printk(KERN_ERR "could not find root %llu\n", tree_id); 1383 ret = -ENOENT; 1384 goto out; 1385 } 1386 1387 key.objectid = dirid; 1388 key.type = BTRFS_INODE_REF_KEY; 1389 key.offset = (u64)-1; 1390 1391 while(1) { 1392 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1393 if (ret < 0) 1394 goto out; 1395 1396 l = path->nodes[0]; 1397 slot = path->slots[0]; 1398 if (ret > 0 && slot > 0) 1399 slot--; 1400 btrfs_item_key_to_cpu(l, &key, slot); 1401 1402 if (ret > 0 && (key.objectid != dirid || 1403 key.type != BTRFS_INODE_REF_KEY)) { 1404 ret = -ENOENT; 1405 goto out; 1406 } 1407 1408 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1409 len = btrfs_inode_ref_name_len(l, iref); 1410 ptr -= len + 1; 1411 total_len += len + 1; 1412 if (ptr < name) 1413 goto out; 1414 1415 *(ptr + len) = '/'; 1416 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len); 1417 1418 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1419 break; 1420 1421 btrfs_release_path(root, path); 1422 key.objectid = key.offset; 1423 key.offset = (u64)-1; 1424 dirid = key.objectid; 1425 1426 } 1427 if (ptr < name) 1428 goto out; 1429 memcpy(name, ptr, total_len); 1430 name[total_len]='\0'; 1431 ret = 0; 1432 out: 1433 btrfs_free_path(path); 1434 return ret; 1435 } 1436 1437 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 1438 void __user *argp) 1439 { 1440 struct btrfs_ioctl_ino_lookup_args *args; 1441 struct inode *inode; 1442 int ret; 1443 1444 if (!capable(CAP_SYS_ADMIN)) 1445 return -EPERM; 1446 1447 args = memdup_user(argp, sizeof(*args)); 1448 if (IS_ERR(args)) 1449 return PTR_ERR(args); 1450 1451 inode = fdentry(file)->d_inode; 1452 1453 if (args->treeid == 0) 1454 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 1455 1456 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 1457 args->treeid, args->objectid, 1458 args->name); 1459 1460 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1461 ret = -EFAULT; 1462 1463 kfree(args); 1464 return ret; 1465 } 1466 1467 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 1468 void __user *arg) 1469 { 1470 struct dentry *parent = fdentry(file); 1471 struct dentry *dentry; 1472 struct inode *dir = parent->d_inode; 1473 struct inode *inode; 1474 struct btrfs_root *root = BTRFS_I(dir)->root; 1475 struct btrfs_root *dest = NULL; 1476 struct btrfs_ioctl_vol_args *vol_args; 1477 struct btrfs_trans_handle *trans; 1478 int namelen; 1479 int ret; 1480 int err = 0; 1481 1482 vol_args = memdup_user(arg, sizeof(*vol_args)); 1483 if (IS_ERR(vol_args)) 1484 return PTR_ERR(vol_args); 1485 1486 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1487 namelen = strlen(vol_args->name); 1488 if (strchr(vol_args->name, '/') || 1489 strncmp(vol_args->name, "..", namelen) == 0) { 1490 err = -EINVAL; 1491 goto out; 1492 } 1493 1494 err = mnt_want_write(file->f_path.mnt); 1495 if (err) 1496 goto out; 1497 1498 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 1499 dentry = lookup_one_len(vol_args->name, parent, namelen); 1500 if (IS_ERR(dentry)) { 1501 err = PTR_ERR(dentry); 1502 goto out_unlock_dir; 1503 } 1504 1505 if (!dentry->d_inode) { 1506 err = -ENOENT; 1507 goto out_dput; 1508 } 1509 1510 inode = dentry->d_inode; 1511 dest = BTRFS_I(inode)->root; 1512 if (!capable(CAP_SYS_ADMIN)){ 1513 /* 1514 * Regular user. Only allow this with a special mount 1515 * option, when the user has write+exec access to the 1516 * subvol root, and when rmdir(2) would have been 1517 * allowed. 1518 * 1519 * Note that this is _not_ check that the subvol is 1520 * empty or doesn't contain data that we wouldn't 1521 * otherwise be able to delete. 1522 * 1523 * Users who want to delete empty subvols should try 1524 * rmdir(2). 1525 */ 1526 err = -EPERM; 1527 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1528 goto out_dput; 1529 1530 /* 1531 * Do not allow deletion if the parent dir is the same 1532 * as the dir to be deleted. That means the ioctl 1533 * must be called on the dentry referencing the root 1534 * of the subvol, not a random directory contained 1535 * within it. 1536 */ 1537 err = -EINVAL; 1538 if (root == dest) 1539 goto out_dput; 1540 1541 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 1542 if (err) 1543 goto out_dput; 1544 1545 /* check if subvolume may be deleted by a non-root user */ 1546 err = btrfs_may_delete(dir, dentry, 1); 1547 if (err) 1548 goto out_dput; 1549 } 1550 1551 if (inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) { 1552 err = -EINVAL; 1553 goto out_dput; 1554 } 1555 1556 mutex_lock(&inode->i_mutex); 1557 err = d_invalidate(dentry); 1558 if (err) 1559 goto out_unlock; 1560 1561 down_write(&root->fs_info->subvol_sem); 1562 1563 err = may_destroy_subvol(dest); 1564 if (err) 1565 goto out_up_write; 1566 1567 trans = btrfs_start_transaction(root, 0); 1568 if (IS_ERR(trans)) { 1569 err = PTR_ERR(trans); 1570 goto out_up_write; 1571 } 1572 trans->block_rsv = &root->fs_info->global_block_rsv; 1573 1574 ret = btrfs_unlink_subvol(trans, root, dir, 1575 dest->root_key.objectid, 1576 dentry->d_name.name, 1577 dentry->d_name.len); 1578 BUG_ON(ret); 1579 1580 btrfs_record_root_in_trans(trans, dest); 1581 1582 memset(&dest->root_item.drop_progress, 0, 1583 sizeof(dest->root_item.drop_progress)); 1584 dest->root_item.drop_level = 0; 1585 btrfs_set_root_refs(&dest->root_item, 0); 1586 1587 if (!xchg(&dest->orphan_item_inserted, 1)) { 1588 ret = btrfs_insert_orphan_item(trans, 1589 root->fs_info->tree_root, 1590 dest->root_key.objectid); 1591 BUG_ON(ret); 1592 } 1593 1594 ret = btrfs_end_transaction(trans, root); 1595 BUG_ON(ret); 1596 inode->i_flags |= S_DEAD; 1597 out_up_write: 1598 up_write(&root->fs_info->subvol_sem); 1599 out_unlock: 1600 mutex_unlock(&inode->i_mutex); 1601 if (!err) { 1602 shrink_dcache_sb(root->fs_info->sb); 1603 btrfs_invalidate_inodes(dest); 1604 d_delete(dentry); 1605 } 1606 out_dput: 1607 dput(dentry); 1608 out_unlock_dir: 1609 mutex_unlock(&dir->i_mutex); 1610 mnt_drop_write(file->f_path.mnt); 1611 out: 1612 kfree(vol_args); 1613 return err; 1614 } 1615 1616 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 1617 { 1618 struct inode *inode = fdentry(file)->d_inode; 1619 struct btrfs_root *root = BTRFS_I(inode)->root; 1620 struct btrfs_ioctl_defrag_range_args *range; 1621 int ret; 1622 1623 if (btrfs_root_readonly(root)) 1624 return -EROFS; 1625 1626 ret = mnt_want_write(file->f_path.mnt); 1627 if (ret) 1628 return ret; 1629 1630 switch (inode->i_mode & S_IFMT) { 1631 case S_IFDIR: 1632 if (!capable(CAP_SYS_ADMIN)) { 1633 ret = -EPERM; 1634 goto out; 1635 } 1636 ret = btrfs_defrag_root(root, 0); 1637 if (ret) 1638 goto out; 1639 ret = btrfs_defrag_root(root->fs_info->extent_root, 0); 1640 break; 1641 case S_IFREG: 1642 if (!(file->f_mode & FMODE_WRITE)) { 1643 ret = -EINVAL; 1644 goto out; 1645 } 1646 1647 range = kzalloc(sizeof(*range), GFP_KERNEL); 1648 if (!range) { 1649 ret = -ENOMEM; 1650 goto out; 1651 } 1652 1653 if (argp) { 1654 if (copy_from_user(range, argp, 1655 sizeof(*range))) { 1656 ret = -EFAULT; 1657 kfree(range); 1658 goto out; 1659 } 1660 /* compression requires us to start the IO */ 1661 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1662 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 1663 range->extent_thresh = (u32)-1; 1664 } 1665 } else { 1666 /* the rest are all set to zero by kzalloc */ 1667 range->len = (u64)-1; 1668 } 1669 ret = btrfs_defrag_file(file, range); 1670 kfree(range); 1671 break; 1672 default: 1673 ret = -EINVAL; 1674 } 1675 out: 1676 mnt_drop_write(file->f_path.mnt); 1677 return ret; 1678 } 1679 1680 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 1681 { 1682 struct btrfs_ioctl_vol_args *vol_args; 1683 int ret; 1684 1685 if (!capable(CAP_SYS_ADMIN)) 1686 return -EPERM; 1687 1688 vol_args = memdup_user(arg, sizeof(*vol_args)); 1689 if (IS_ERR(vol_args)) 1690 return PTR_ERR(vol_args); 1691 1692 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1693 ret = btrfs_init_new_device(root, vol_args->name); 1694 1695 kfree(vol_args); 1696 return ret; 1697 } 1698 1699 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg) 1700 { 1701 struct btrfs_ioctl_vol_args *vol_args; 1702 int ret; 1703 1704 if (!capable(CAP_SYS_ADMIN)) 1705 return -EPERM; 1706 1707 if (root->fs_info->sb->s_flags & MS_RDONLY) 1708 return -EROFS; 1709 1710 vol_args = memdup_user(arg, sizeof(*vol_args)); 1711 if (IS_ERR(vol_args)) 1712 return PTR_ERR(vol_args); 1713 1714 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1715 ret = btrfs_rm_device(root, vol_args->name); 1716 1717 kfree(vol_args); 1718 return ret; 1719 } 1720 1721 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 1722 u64 off, u64 olen, u64 destoff) 1723 { 1724 struct inode *inode = fdentry(file)->d_inode; 1725 struct btrfs_root *root = BTRFS_I(inode)->root; 1726 struct file *src_file; 1727 struct inode *src; 1728 struct btrfs_trans_handle *trans; 1729 struct btrfs_path *path; 1730 struct extent_buffer *leaf; 1731 char *buf; 1732 struct btrfs_key key; 1733 u32 nritems; 1734 int slot; 1735 int ret; 1736 u64 len = olen; 1737 u64 bs = root->fs_info->sb->s_blocksize; 1738 u64 hint_byte; 1739 1740 /* 1741 * TODO: 1742 * - split compressed inline extents. annoying: we need to 1743 * decompress into destination's address_space (the file offset 1744 * may change, so source mapping won't do), then recompress (or 1745 * otherwise reinsert) a subrange. 1746 * - allow ranges within the same file to be cloned (provided 1747 * they don't overlap)? 1748 */ 1749 1750 /* the destination must be opened for writing */ 1751 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 1752 return -EINVAL; 1753 1754 if (btrfs_root_readonly(root)) 1755 return -EROFS; 1756 1757 ret = mnt_want_write(file->f_path.mnt); 1758 if (ret) 1759 return ret; 1760 1761 src_file = fget(srcfd); 1762 if (!src_file) { 1763 ret = -EBADF; 1764 goto out_drop_write; 1765 } 1766 1767 src = src_file->f_dentry->d_inode; 1768 1769 ret = -EINVAL; 1770 if (src == inode) 1771 goto out_fput; 1772 1773 /* the src must be open for reading */ 1774 if (!(src_file->f_mode & FMODE_READ)) 1775 goto out_fput; 1776 1777 ret = -EISDIR; 1778 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 1779 goto out_fput; 1780 1781 ret = -EXDEV; 1782 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root) 1783 goto out_fput; 1784 1785 ret = -ENOMEM; 1786 buf = vmalloc(btrfs_level_size(root, 0)); 1787 if (!buf) 1788 goto out_fput; 1789 1790 path = btrfs_alloc_path(); 1791 if (!path) { 1792 vfree(buf); 1793 goto out_fput; 1794 } 1795 path->reada = 2; 1796 1797 if (inode < src) { 1798 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 1799 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 1800 } else { 1801 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 1802 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 1803 } 1804 1805 /* determine range to clone */ 1806 ret = -EINVAL; 1807 if (off + len > src->i_size || off + len < off) 1808 goto out_unlock; 1809 if (len == 0) 1810 olen = len = src->i_size - off; 1811 /* if we extend to eof, continue to block boundary */ 1812 if (off + len == src->i_size) 1813 len = ALIGN(src->i_size, bs) - off; 1814 1815 /* verify the end result is block aligned */ 1816 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 1817 !IS_ALIGNED(destoff, bs)) 1818 goto out_unlock; 1819 1820 /* do any pending delalloc/csum calc on src, one way or 1821 another, and lock file content */ 1822 while (1) { 1823 struct btrfs_ordered_extent *ordered; 1824 lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 1825 ordered = btrfs_lookup_first_ordered_extent(src, off+len); 1826 if (!ordered && 1827 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len, 1828 EXTENT_DELALLOC, 0, NULL)) 1829 break; 1830 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 1831 if (ordered) 1832 btrfs_put_ordered_extent(ordered); 1833 btrfs_wait_ordered_range(src, off, len); 1834 } 1835 1836 /* clone data */ 1837 key.objectid = src->i_ino; 1838 key.type = BTRFS_EXTENT_DATA_KEY; 1839 key.offset = 0; 1840 1841 while (1) { 1842 /* 1843 * note the key will change type as we walk through the 1844 * tree. 1845 */ 1846 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1847 if (ret < 0) 1848 goto out; 1849 1850 nritems = btrfs_header_nritems(path->nodes[0]); 1851 if (path->slots[0] >= nritems) { 1852 ret = btrfs_next_leaf(root, path); 1853 if (ret < 0) 1854 goto out; 1855 if (ret > 0) 1856 break; 1857 nritems = btrfs_header_nritems(path->nodes[0]); 1858 } 1859 leaf = path->nodes[0]; 1860 slot = path->slots[0]; 1861 1862 btrfs_item_key_to_cpu(leaf, &key, slot); 1863 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 1864 key.objectid != src->i_ino) 1865 break; 1866 1867 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 1868 struct btrfs_file_extent_item *extent; 1869 int type; 1870 u32 size; 1871 struct btrfs_key new_key; 1872 u64 disko = 0, diskl = 0; 1873 u64 datao = 0, datal = 0; 1874 u8 comp; 1875 u64 endoff; 1876 1877 size = btrfs_item_size_nr(leaf, slot); 1878 read_extent_buffer(leaf, buf, 1879 btrfs_item_ptr_offset(leaf, slot), 1880 size); 1881 1882 extent = btrfs_item_ptr(leaf, slot, 1883 struct btrfs_file_extent_item); 1884 comp = btrfs_file_extent_compression(leaf, extent); 1885 type = btrfs_file_extent_type(leaf, extent); 1886 if (type == BTRFS_FILE_EXTENT_REG || 1887 type == BTRFS_FILE_EXTENT_PREALLOC) { 1888 disko = btrfs_file_extent_disk_bytenr(leaf, 1889 extent); 1890 diskl = btrfs_file_extent_disk_num_bytes(leaf, 1891 extent); 1892 datao = btrfs_file_extent_offset(leaf, extent); 1893 datal = btrfs_file_extent_num_bytes(leaf, 1894 extent); 1895 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1896 /* take upper bound, may be compressed */ 1897 datal = btrfs_file_extent_ram_bytes(leaf, 1898 extent); 1899 } 1900 btrfs_release_path(root, path); 1901 1902 if (key.offset + datal <= off || 1903 key.offset >= off+len) 1904 goto next; 1905 1906 memcpy(&new_key, &key, sizeof(new_key)); 1907 new_key.objectid = inode->i_ino; 1908 if (off <= key.offset) 1909 new_key.offset = key.offset + destoff - off; 1910 else 1911 new_key.offset = destoff; 1912 1913 trans = btrfs_start_transaction(root, 1); 1914 if (IS_ERR(trans)) { 1915 ret = PTR_ERR(trans); 1916 goto out; 1917 } 1918 1919 if (type == BTRFS_FILE_EXTENT_REG || 1920 type == BTRFS_FILE_EXTENT_PREALLOC) { 1921 if (off > key.offset) { 1922 datao += off - key.offset; 1923 datal -= off - key.offset; 1924 } 1925 1926 if (key.offset + datal > off + len) 1927 datal = off + len - key.offset; 1928 1929 ret = btrfs_drop_extents(trans, inode, 1930 new_key.offset, 1931 new_key.offset + datal, 1932 &hint_byte, 1); 1933 BUG_ON(ret); 1934 1935 ret = btrfs_insert_empty_item(trans, root, path, 1936 &new_key, size); 1937 BUG_ON(ret); 1938 1939 leaf = path->nodes[0]; 1940 slot = path->slots[0]; 1941 write_extent_buffer(leaf, buf, 1942 btrfs_item_ptr_offset(leaf, slot), 1943 size); 1944 1945 extent = btrfs_item_ptr(leaf, slot, 1946 struct btrfs_file_extent_item); 1947 1948 /* disko == 0 means it's a hole */ 1949 if (!disko) 1950 datao = 0; 1951 1952 btrfs_set_file_extent_offset(leaf, extent, 1953 datao); 1954 btrfs_set_file_extent_num_bytes(leaf, extent, 1955 datal); 1956 if (disko) { 1957 inode_add_bytes(inode, datal); 1958 ret = btrfs_inc_extent_ref(trans, root, 1959 disko, diskl, 0, 1960 root->root_key.objectid, 1961 inode->i_ino, 1962 new_key.offset - datao); 1963 BUG_ON(ret); 1964 } 1965 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1966 u64 skip = 0; 1967 u64 trim = 0; 1968 if (off > key.offset) { 1969 skip = off - key.offset; 1970 new_key.offset += skip; 1971 } 1972 1973 if (key.offset + datal > off+len) 1974 trim = key.offset + datal - (off+len); 1975 1976 if (comp && (skip || trim)) { 1977 ret = -EINVAL; 1978 btrfs_end_transaction(trans, root); 1979 goto out; 1980 } 1981 size -= skip + trim; 1982 datal -= skip + trim; 1983 1984 ret = btrfs_drop_extents(trans, inode, 1985 new_key.offset, 1986 new_key.offset + datal, 1987 &hint_byte, 1); 1988 BUG_ON(ret); 1989 1990 ret = btrfs_insert_empty_item(trans, root, path, 1991 &new_key, size); 1992 BUG_ON(ret); 1993 1994 if (skip) { 1995 u32 start = 1996 btrfs_file_extent_calc_inline_size(0); 1997 memmove(buf+start, buf+start+skip, 1998 datal); 1999 } 2000 2001 leaf = path->nodes[0]; 2002 slot = path->slots[0]; 2003 write_extent_buffer(leaf, buf, 2004 btrfs_item_ptr_offset(leaf, slot), 2005 size); 2006 inode_add_bytes(inode, datal); 2007 } 2008 2009 btrfs_mark_buffer_dirty(leaf); 2010 btrfs_release_path(root, path); 2011 2012 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2013 2014 /* 2015 * we round up to the block size at eof when 2016 * determining which extents to clone above, 2017 * but shouldn't round up the file size 2018 */ 2019 endoff = new_key.offset + datal; 2020 if (endoff > destoff+olen) 2021 endoff = destoff+olen; 2022 if (endoff > inode->i_size) 2023 btrfs_i_size_write(inode, endoff); 2024 2025 BTRFS_I(inode)->flags = BTRFS_I(src)->flags; 2026 ret = btrfs_update_inode(trans, root, inode); 2027 BUG_ON(ret); 2028 btrfs_end_transaction(trans, root); 2029 } 2030 next: 2031 btrfs_release_path(root, path); 2032 key.offset++; 2033 } 2034 ret = 0; 2035 out: 2036 btrfs_release_path(root, path); 2037 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2038 out_unlock: 2039 mutex_unlock(&src->i_mutex); 2040 mutex_unlock(&inode->i_mutex); 2041 vfree(buf); 2042 btrfs_free_path(path); 2043 out_fput: 2044 fput(src_file); 2045 out_drop_write: 2046 mnt_drop_write(file->f_path.mnt); 2047 return ret; 2048 } 2049 2050 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 2051 { 2052 struct btrfs_ioctl_clone_range_args args; 2053 2054 if (copy_from_user(&args, argp, sizeof(args))) 2055 return -EFAULT; 2056 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 2057 args.src_length, args.dest_offset); 2058 } 2059 2060 /* 2061 * there are many ways the trans_start and trans_end ioctls can lead 2062 * to deadlocks. They should only be used by applications that 2063 * basically own the machine, and have a very in depth understanding 2064 * of all the possible deadlocks and enospc problems. 2065 */ 2066 static long btrfs_ioctl_trans_start(struct file *file) 2067 { 2068 struct inode *inode = fdentry(file)->d_inode; 2069 struct btrfs_root *root = BTRFS_I(inode)->root; 2070 struct btrfs_trans_handle *trans; 2071 int ret; 2072 2073 ret = -EPERM; 2074 if (!capable(CAP_SYS_ADMIN)) 2075 goto out; 2076 2077 ret = -EINPROGRESS; 2078 if (file->private_data) 2079 goto out; 2080 2081 ret = -EROFS; 2082 if (btrfs_root_readonly(root)) 2083 goto out; 2084 2085 ret = mnt_want_write(file->f_path.mnt); 2086 if (ret) 2087 goto out; 2088 2089 mutex_lock(&root->fs_info->trans_mutex); 2090 root->fs_info->open_ioctl_trans++; 2091 mutex_unlock(&root->fs_info->trans_mutex); 2092 2093 ret = -ENOMEM; 2094 trans = btrfs_start_ioctl_transaction(root, 0); 2095 if (IS_ERR(trans)) 2096 goto out_drop; 2097 2098 file->private_data = trans; 2099 return 0; 2100 2101 out_drop: 2102 mutex_lock(&root->fs_info->trans_mutex); 2103 root->fs_info->open_ioctl_trans--; 2104 mutex_unlock(&root->fs_info->trans_mutex); 2105 mnt_drop_write(file->f_path.mnt); 2106 out: 2107 return ret; 2108 } 2109 2110 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2111 { 2112 struct inode *inode = fdentry(file)->d_inode; 2113 struct btrfs_root *root = BTRFS_I(inode)->root; 2114 struct btrfs_root *new_root; 2115 struct btrfs_dir_item *di; 2116 struct btrfs_trans_handle *trans; 2117 struct btrfs_path *path; 2118 struct btrfs_key location; 2119 struct btrfs_disk_key disk_key; 2120 struct btrfs_super_block *disk_super; 2121 u64 features; 2122 u64 objectid = 0; 2123 u64 dir_id; 2124 2125 if (!capable(CAP_SYS_ADMIN)) 2126 return -EPERM; 2127 2128 if (copy_from_user(&objectid, argp, sizeof(objectid))) 2129 return -EFAULT; 2130 2131 if (!objectid) 2132 objectid = root->root_key.objectid; 2133 2134 location.objectid = objectid; 2135 location.type = BTRFS_ROOT_ITEM_KEY; 2136 location.offset = (u64)-1; 2137 2138 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 2139 if (IS_ERR(new_root)) 2140 return PTR_ERR(new_root); 2141 2142 if (btrfs_root_refs(&new_root->root_item) == 0) 2143 return -ENOENT; 2144 2145 path = btrfs_alloc_path(); 2146 if (!path) 2147 return -ENOMEM; 2148 path->leave_spinning = 1; 2149 2150 trans = btrfs_start_transaction(root, 1); 2151 if (IS_ERR(trans)) { 2152 btrfs_free_path(path); 2153 return PTR_ERR(trans); 2154 } 2155 2156 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy); 2157 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 2158 dir_id, "default", 7, 1); 2159 if (IS_ERR_OR_NULL(di)) { 2160 btrfs_free_path(path); 2161 btrfs_end_transaction(trans, root); 2162 printk(KERN_ERR "Umm, you don't have the default dir item, " 2163 "this isn't going to work\n"); 2164 return -ENOENT; 2165 } 2166 2167 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2168 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2169 btrfs_mark_buffer_dirty(path->nodes[0]); 2170 btrfs_free_path(path); 2171 2172 disk_super = &root->fs_info->super_copy; 2173 features = btrfs_super_incompat_flags(disk_super); 2174 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) { 2175 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL; 2176 btrfs_set_super_incompat_flags(disk_super, features); 2177 } 2178 btrfs_end_transaction(trans, root); 2179 2180 return 0; 2181 } 2182 2183 static void get_block_group_info(struct list_head *groups_list, 2184 struct btrfs_ioctl_space_info *space) 2185 { 2186 struct btrfs_block_group_cache *block_group; 2187 2188 space->total_bytes = 0; 2189 space->used_bytes = 0; 2190 space->flags = 0; 2191 list_for_each_entry(block_group, groups_list, list) { 2192 space->flags = block_group->flags; 2193 space->total_bytes += block_group->key.offset; 2194 space->used_bytes += 2195 btrfs_block_group_used(&block_group->item); 2196 } 2197 } 2198 2199 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 2200 { 2201 struct btrfs_ioctl_space_args space_args; 2202 struct btrfs_ioctl_space_info space; 2203 struct btrfs_ioctl_space_info *dest; 2204 struct btrfs_ioctl_space_info *dest_orig; 2205 struct btrfs_ioctl_space_info *user_dest; 2206 struct btrfs_space_info *info; 2207 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 2208 BTRFS_BLOCK_GROUP_SYSTEM, 2209 BTRFS_BLOCK_GROUP_METADATA, 2210 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 2211 int num_types = 4; 2212 int alloc_size; 2213 int ret = 0; 2214 u64 slot_count = 0; 2215 int i, c; 2216 2217 if (copy_from_user(&space_args, 2218 (struct btrfs_ioctl_space_args __user *)arg, 2219 sizeof(space_args))) 2220 return -EFAULT; 2221 2222 for (i = 0; i < num_types; i++) { 2223 struct btrfs_space_info *tmp; 2224 2225 info = NULL; 2226 rcu_read_lock(); 2227 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2228 list) { 2229 if (tmp->flags == types[i]) { 2230 info = tmp; 2231 break; 2232 } 2233 } 2234 rcu_read_unlock(); 2235 2236 if (!info) 2237 continue; 2238 2239 down_read(&info->groups_sem); 2240 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2241 if (!list_empty(&info->block_groups[c])) 2242 slot_count++; 2243 } 2244 up_read(&info->groups_sem); 2245 } 2246 2247 /* space_slots == 0 means they are asking for a count */ 2248 if (space_args.space_slots == 0) { 2249 space_args.total_spaces = slot_count; 2250 goto out; 2251 } 2252 2253 slot_count = min_t(u64, space_args.space_slots, slot_count); 2254 2255 alloc_size = sizeof(*dest) * slot_count; 2256 2257 /* we generally have at most 6 or so space infos, one for each raid 2258 * level. So, a whole page should be more than enough for everyone 2259 */ 2260 if (alloc_size > PAGE_CACHE_SIZE) 2261 return -ENOMEM; 2262 2263 space_args.total_spaces = 0; 2264 dest = kmalloc(alloc_size, GFP_NOFS); 2265 if (!dest) 2266 return -ENOMEM; 2267 dest_orig = dest; 2268 2269 /* now we have a buffer to copy into */ 2270 for (i = 0; i < num_types; i++) { 2271 struct btrfs_space_info *tmp; 2272 2273 if (!slot_count) 2274 break; 2275 2276 info = NULL; 2277 rcu_read_lock(); 2278 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2279 list) { 2280 if (tmp->flags == types[i]) { 2281 info = tmp; 2282 break; 2283 } 2284 } 2285 rcu_read_unlock(); 2286 2287 if (!info) 2288 continue; 2289 down_read(&info->groups_sem); 2290 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2291 if (!list_empty(&info->block_groups[c])) { 2292 get_block_group_info(&info->block_groups[c], 2293 &space); 2294 memcpy(dest, &space, sizeof(space)); 2295 dest++; 2296 space_args.total_spaces++; 2297 slot_count--; 2298 } 2299 if (!slot_count) 2300 break; 2301 } 2302 up_read(&info->groups_sem); 2303 } 2304 2305 user_dest = (struct btrfs_ioctl_space_info *) 2306 (arg + sizeof(struct btrfs_ioctl_space_args)); 2307 2308 if (copy_to_user(user_dest, dest_orig, alloc_size)) 2309 ret = -EFAULT; 2310 2311 kfree(dest_orig); 2312 out: 2313 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 2314 ret = -EFAULT; 2315 2316 return ret; 2317 } 2318 2319 /* 2320 * there are many ways the trans_start and trans_end ioctls can lead 2321 * to deadlocks. They should only be used by applications that 2322 * basically own the machine, and have a very in depth understanding 2323 * of all the possible deadlocks and enospc problems. 2324 */ 2325 long btrfs_ioctl_trans_end(struct file *file) 2326 { 2327 struct inode *inode = fdentry(file)->d_inode; 2328 struct btrfs_root *root = BTRFS_I(inode)->root; 2329 struct btrfs_trans_handle *trans; 2330 2331 trans = file->private_data; 2332 if (!trans) 2333 return -EINVAL; 2334 file->private_data = NULL; 2335 2336 btrfs_end_transaction(trans, root); 2337 2338 mutex_lock(&root->fs_info->trans_mutex); 2339 root->fs_info->open_ioctl_trans--; 2340 mutex_unlock(&root->fs_info->trans_mutex); 2341 2342 mnt_drop_write(file->f_path.mnt); 2343 return 0; 2344 } 2345 2346 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp) 2347 { 2348 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 2349 struct btrfs_trans_handle *trans; 2350 u64 transid; 2351 2352 trans = btrfs_start_transaction(root, 0); 2353 if (IS_ERR(trans)) 2354 return PTR_ERR(trans); 2355 transid = trans->transid; 2356 btrfs_commit_transaction_async(trans, root, 0); 2357 2358 if (argp) 2359 if (copy_to_user(argp, &transid, sizeof(transid))) 2360 return -EFAULT; 2361 return 0; 2362 } 2363 2364 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp) 2365 { 2366 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 2367 u64 transid; 2368 2369 if (argp) { 2370 if (copy_from_user(&transid, argp, sizeof(transid))) 2371 return -EFAULT; 2372 } else { 2373 transid = 0; /* current trans */ 2374 } 2375 return btrfs_wait_for_commit(root, transid); 2376 } 2377 2378 long btrfs_ioctl(struct file *file, unsigned int 2379 cmd, unsigned long arg) 2380 { 2381 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 2382 void __user *argp = (void __user *)arg; 2383 2384 switch (cmd) { 2385 case FS_IOC_GETFLAGS: 2386 return btrfs_ioctl_getflags(file, argp); 2387 case FS_IOC_SETFLAGS: 2388 return btrfs_ioctl_setflags(file, argp); 2389 case FS_IOC_GETVERSION: 2390 return btrfs_ioctl_getversion(file, argp); 2391 case BTRFS_IOC_SNAP_CREATE: 2392 return btrfs_ioctl_snap_create(file, argp, 0); 2393 case BTRFS_IOC_SNAP_CREATE_V2: 2394 return btrfs_ioctl_snap_create_v2(file, argp, 0); 2395 case BTRFS_IOC_SUBVOL_CREATE: 2396 return btrfs_ioctl_snap_create(file, argp, 1); 2397 case BTRFS_IOC_SNAP_DESTROY: 2398 return btrfs_ioctl_snap_destroy(file, argp); 2399 case BTRFS_IOC_SUBVOL_GETFLAGS: 2400 return btrfs_ioctl_subvol_getflags(file, argp); 2401 case BTRFS_IOC_SUBVOL_SETFLAGS: 2402 return btrfs_ioctl_subvol_setflags(file, argp); 2403 case BTRFS_IOC_DEFAULT_SUBVOL: 2404 return btrfs_ioctl_default_subvol(file, argp); 2405 case BTRFS_IOC_DEFRAG: 2406 return btrfs_ioctl_defrag(file, NULL); 2407 case BTRFS_IOC_DEFRAG_RANGE: 2408 return btrfs_ioctl_defrag(file, argp); 2409 case BTRFS_IOC_RESIZE: 2410 return btrfs_ioctl_resize(root, argp); 2411 case BTRFS_IOC_ADD_DEV: 2412 return btrfs_ioctl_add_dev(root, argp); 2413 case BTRFS_IOC_RM_DEV: 2414 return btrfs_ioctl_rm_dev(root, argp); 2415 case BTRFS_IOC_BALANCE: 2416 return btrfs_balance(root->fs_info->dev_root); 2417 case BTRFS_IOC_CLONE: 2418 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 2419 case BTRFS_IOC_CLONE_RANGE: 2420 return btrfs_ioctl_clone_range(file, argp); 2421 case BTRFS_IOC_TRANS_START: 2422 return btrfs_ioctl_trans_start(file); 2423 case BTRFS_IOC_TRANS_END: 2424 return btrfs_ioctl_trans_end(file); 2425 case BTRFS_IOC_TREE_SEARCH: 2426 return btrfs_ioctl_tree_search(file, argp); 2427 case BTRFS_IOC_INO_LOOKUP: 2428 return btrfs_ioctl_ino_lookup(file, argp); 2429 case BTRFS_IOC_SPACE_INFO: 2430 return btrfs_ioctl_space_info(root, argp); 2431 case BTRFS_IOC_SYNC: 2432 btrfs_sync_fs(file->f_dentry->d_sb, 1); 2433 return 0; 2434 case BTRFS_IOC_START_SYNC: 2435 return btrfs_ioctl_start_sync(file, argp); 2436 case BTRFS_IOC_WAIT_SYNC: 2437 return btrfs_ioctl_wait_sync(file, argp); 2438 } 2439 2440 return -ENOTTY; 2441 } 2442