1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "export.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "print-tree.h" 37 #include "volumes.h" 38 #include "locking.h" 39 #include "backref.h" 40 #include "rcu-string.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 #include "subpage.h" 52 53 #ifdef CONFIG_64BIT 54 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 55 * structures are incorrect, as the timespec structure from userspace 56 * is 4 bytes too small. We define these alternatives here to teach 57 * the kernel about the 32-bit struct packing. 58 */ 59 struct btrfs_ioctl_timespec_32 { 60 __u64 sec; 61 __u32 nsec; 62 } __attribute__ ((__packed__)); 63 64 struct btrfs_ioctl_received_subvol_args_32 { 65 char uuid[BTRFS_UUID_SIZE]; /* in */ 66 __u64 stransid; /* in */ 67 __u64 rtransid; /* out */ 68 struct btrfs_ioctl_timespec_32 stime; /* in */ 69 struct btrfs_ioctl_timespec_32 rtime; /* out */ 70 __u64 flags; /* in */ 71 __u64 reserved[16]; /* in */ 72 } __attribute__ ((__packed__)); 73 74 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 75 struct btrfs_ioctl_received_subvol_args_32) 76 #endif 77 78 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 79 struct btrfs_ioctl_send_args_32 { 80 __s64 send_fd; /* in */ 81 __u64 clone_sources_count; /* in */ 82 compat_uptr_t clone_sources; /* in */ 83 __u64 parent_root; /* in */ 84 __u64 flags; /* in */ 85 __u32 version; /* in */ 86 __u8 reserved[28]; /* in */ 87 } __attribute__ ((__packed__)); 88 89 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 90 struct btrfs_ioctl_send_args_32) 91 #endif 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 95 unsigned int flags) 96 { 97 if (S_ISDIR(inode->i_mode)) 98 return flags; 99 else if (S_ISREG(inode->i_mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 107 * ioctl. 108 */ 109 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 110 { 111 unsigned int iflags = 0; 112 u32 flags = binode->flags; 113 u32 ro_flags = binode->ro_flags; 114 115 if (flags & BTRFS_INODE_SYNC) 116 iflags |= FS_SYNC_FL; 117 if (flags & BTRFS_INODE_IMMUTABLE) 118 iflags |= FS_IMMUTABLE_FL; 119 if (flags & BTRFS_INODE_APPEND) 120 iflags |= FS_APPEND_FL; 121 if (flags & BTRFS_INODE_NODUMP) 122 iflags |= FS_NODUMP_FL; 123 if (flags & BTRFS_INODE_NOATIME) 124 iflags |= FS_NOATIME_FL; 125 if (flags & BTRFS_INODE_DIRSYNC) 126 iflags |= FS_DIRSYNC_FL; 127 if (flags & BTRFS_INODE_NODATACOW) 128 iflags |= FS_NOCOW_FL; 129 if (ro_flags & BTRFS_INODE_RO_VERITY) 130 iflags |= FS_VERITY_FL; 131 132 if (flags & BTRFS_INODE_NOCOMPRESS) 133 iflags |= FS_NOCOMP_FL; 134 else if (flags & BTRFS_INODE_COMPRESS) 135 iflags |= FS_COMPR_FL; 136 137 return iflags; 138 } 139 140 /* 141 * Update inode->i_flags based on the btrfs internal flags. 142 */ 143 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 144 { 145 struct btrfs_inode *binode = BTRFS_I(inode); 146 unsigned int new_fl = 0; 147 148 if (binode->flags & BTRFS_INODE_SYNC) 149 new_fl |= S_SYNC; 150 if (binode->flags & BTRFS_INODE_IMMUTABLE) 151 new_fl |= S_IMMUTABLE; 152 if (binode->flags & BTRFS_INODE_APPEND) 153 new_fl |= S_APPEND; 154 if (binode->flags & BTRFS_INODE_NOATIME) 155 new_fl |= S_NOATIME; 156 if (binode->flags & BTRFS_INODE_DIRSYNC) 157 new_fl |= S_DIRSYNC; 158 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 159 new_fl |= S_VERITY; 160 161 set_mask_bits(&inode->i_flags, 162 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 163 S_VERITY, new_fl); 164 } 165 166 /* 167 * Check if @flags are a supported and valid set of FS_*_FL flags and that 168 * the old and new flags are not conflicting 169 */ 170 static int check_fsflags(unsigned int old_flags, unsigned int flags) 171 { 172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 173 FS_NOATIME_FL | FS_NODUMP_FL | \ 174 FS_SYNC_FL | FS_DIRSYNC_FL | \ 175 FS_NOCOMP_FL | FS_COMPR_FL | 176 FS_NOCOW_FL)) 177 return -EOPNOTSUPP; 178 179 /* COMPR and NOCOMP on new/old are valid */ 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 184 return -EINVAL; 185 186 /* NOCOW and compression options are mutually exclusive */ 187 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 196 unsigned int flags) 197 { 198 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 199 return -EPERM; 200 201 return 0; 202 } 203 204 /* 205 * Set flags/xflags from the internal inode flags. The remaining items of 206 * fsxattr are zeroed. 207 */ 208 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 209 { 210 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 211 212 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 213 return 0; 214 } 215 216 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 217 struct dentry *dentry, struct fileattr *fa) 218 { 219 struct inode *inode = d_inode(dentry); 220 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 221 struct btrfs_inode *binode = BTRFS_I(inode); 222 struct btrfs_root *root = binode->root; 223 struct btrfs_trans_handle *trans; 224 unsigned int fsflags, old_fsflags; 225 int ret; 226 const char *comp = NULL; 227 u32 binode_flags; 228 229 if (btrfs_root_readonly(root)) 230 return -EROFS; 231 232 if (fileattr_has_fsx(fa)) 233 return -EOPNOTSUPP; 234 235 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 236 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 237 ret = check_fsflags(old_fsflags, fsflags); 238 if (ret) 239 return ret; 240 241 ret = check_fsflags_compatible(fs_info, fsflags); 242 if (ret) 243 return ret; 244 245 binode_flags = binode->flags; 246 if (fsflags & FS_SYNC_FL) 247 binode_flags |= BTRFS_INODE_SYNC; 248 else 249 binode_flags &= ~BTRFS_INODE_SYNC; 250 if (fsflags & FS_IMMUTABLE_FL) 251 binode_flags |= BTRFS_INODE_IMMUTABLE; 252 else 253 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 254 if (fsflags & FS_APPEND_FL) 255 binode_flags |= BTRFS_INODE_APPEND; 256 else 257 binode_flags &= ~BTRFS_INODE_APPEND; 258 if (fsflags & FS_NODUMP_FL) 259 binode_flags |= BTRFS_INODE_NODUMP; 260 else 261 binode_flags &= ~BTRFS_INODE_NODUMP; 262 if (fsflags & FS_NOATIME_FL) 263 binode_flags |= BTRFS_INODE_NOATIME; 264 else 265 binode_flags &= ~BTRFS_INODE_NOATIME; 266 267 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 268 if (!fa->flags_valid) { 269 /* 1 item for the inode */ 270 trans = btrfs_start_transaction(root, 1); 271 if (IS_ERR(trans)) 272 return PTR_ERR(trans); 273 goto update_flags; 274 } 275 276 if (fsflags & FS_DIRSYNC_FL) 277 binode_flags |= BTRFS_INODE_DIRSYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_DIRSYNC; 280 if (fsflags & FS_NOCOW_FL) { 281 if (S_ISREG(inode->i_mode)) { 282 /* 283 * It's safe to turn csums off here, no extents exist. 284 * Otherwise we want the flag to reflect the real COW 285 * status of the file and will not set it. 286 */ 287 if (inode->i_size == 0) 288 binode_flags |= BTRFS_INODE_NODATACOW | 289 BTRFS_INODE_NODATASUM; 290 } else { 291 binode_flags |= BTRFS_INODE_NODATACOW; 292 } 293 } else { 294 /* 295 * Revert back under same assumptions as above 296 */ 297 if (S_ISREG(inode->i_mode)) { 298 if (inode->i_size == 0) 299 binode_flags &= ~(BTRFS_INODE_NODATACOW | 300 BTRFS_INODE_NODATASUM); 301 } else { 302 binode_flags &= ~BTRFS_INODE_NODATACOW; 303 } 304 } 305 306 /* 307 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 308 * flag may be changed automatically if compression code won't make 309 * things smaller. 310 */ 311 if (fsflags & FS_NOCOMP_FL) { 312 binode_flags &= ~BTRFS_INODE_COMPRESS; 313 binode_flags |= BTRFS_INODE_NOCOMPRESS; 314 } else if (fsflags & FS_COMPR_FL) { 315 316 if (IS_SWAPFILE(inode)) 317 return -ETXTBSY; 318 319 binode_flags |= BTRFS_INODE_COMPRESS; 320 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 321 322 comp = btrfs_compress_type2str(fs_info->compress_type); 323 if (!comp || comp[0] == 0) 324 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 325 } else { 326 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 327 } 328 329 /* 330 * 1 for inode item 331 * 2 for properties 332 */ 333 trans = btrfs_start_transaction(root, 3); 334 if (IS_ERR(trans)) 335 return PTR_ERR(trans); 336 337 if (comp) { 338 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 339 strlen(comp), 0); 340 if (ret) { 341 btrfs_abort_transaction(trans, ret); 342 goto out_end_trans; 343 } 344 } else { 345 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 346 0, 0); 347 if (ret && ret != -ENODATA) { 348 btrfs_abort_transaction(trans, ret); 349 goto out_end_trans; 350 } 351 } 352 353 update_flags: 354 binode->flags = binode_flags; 355 btrfs_sync_inode_flags_to_i_flags(inode); 356 inode_inc_iversion(inode); 357 inode->i_ctime = current_time(inode); 358 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 359 360 out_end_trans: 361 btrfs_end_transaction(trans); 362 return ret; 363 } 364 365 /* 366 * Start exclusive operation @type, return true on success 367 */ 368 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 369 enum btrfs_exclusive_operation type) 370 { 371 bool ret = false; 372 373 spin_lock(&fs_info->super_lock); 374 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 375 fs_info->exclusive_operation = type; 376 ret = true; 377 } 378 spin_unlock(&fs_info->super_lock); 379 380 return ret; 381 } 382 383 /* 384 * Conditionally allow to enter the exclusive operation in case it's compatible 385 * with the running one. This must be paired with btrfs_exclop_start_unlock and 386 * btrfs_exclop_finish. 387 * 388 * Compatibility: 389 * - the same type is already running 390 * - when trying to add a device and balance has been paused 391 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 392 * must check the condition first that would allow none -> @type 393 */ 394 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 395 enum btrfs_exclusive_operation type) 396 { 397 spin_lock(&fs_info->super_lock); 398 if (fs_info->exclusive_operation == type || 399 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 400 type == BTRFS_EXCLOP_DEV_ADD)) 401 return true; 402 403 spin_unlock(&fs_info->super_lock); 404 return false; 405 } 406 407 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 408 { 409 spin_unlock(&fs_info->super_lock); 410 } 411 412 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 413 { 414 spin_lock(&fs_info->super_lock); 415 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 416 spin_unlock(&fs_info->super_lock); 417 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 418 } 419 420 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 421 enum btrfs_exclusive_operation op) 422 { 423 switch (op) { 424 case BTRFS_EXCLOP_BALANCE_PAUSED: 425 spin_lock(&fs_info->super_lock); 426 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 427 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD); 428 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 429 spin_unlock(&fs_info->super_lock); 430 break; 431 case BTRFS_EXCLOP_BALANCE: 432 spin_lock(&fs_info->super_lock); 433 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 434 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 435 spin_unlock(&fs_info->super_lock); 436 break; 437 default: 438 btrfs_warn(fs_info, 439 "invalid exclop balance operation %d requested", op); 440 } 441 } 442 443 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 444 { 445 struct inode *inode = file_inode(file); 446 447 return put_user(inode->i_generation, arg); 448 } 449 450 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 451 void __user *arg) 452 { 453 struct btrfs_device *device; 454 struct request_queue *q; 455 struct fstrim_range range; 456 u64 minlen = ULLONG_MAX; 457 u64 num_devices = 0; 458 int ret; 459 460 if (!capable(CAP_SYS_ADMIN)) 461 return -EPERM; 462 463 /* 464 * btrfs_trim_block_group() depends on space cache, which is not 465 * available in zoned filesystem. So, disallow fitrim on a zoned 466 * filesystem for now. 467 */ 468 if (btrfs_is_zoned(fs_info)) 469 return -EOPNOTSUPP; 470 471 /* 472 * If the fs is mounted with nologreplay, which requires it to be 473 * mounted in RO mode as well, we can not allow discard on free space 474 * inside block groups, because log trees refer to extents that are not 475 * pinned in a block group's free space cache (pinning the extents is 476 * precisely the first phase of replaying a log tree). 477 */ 478 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 479 return -EROFS; 480 481 rcu_read_lock(); 482 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 483 dev_list) { 484 if (!device->bdev) 485 continue; 486 q = bdev_get_queue(device->bdev); 487 if (blk_queue_discard(q)) { 488 num_devices++; 489 minlen = min_t(u64, q->limits.discard_granularity, 490 minlen); 491 } 492 } 493 rcu_read_unlock(); 494 495 if (!num_devices) 496 return -EOPNOTSUPP; 497 if (copy_from_user(&range, arg, sizeof(range))) 498 return -EFAULT; 499 500 /* 501 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 502 * block group is in the logical address space, which can be any 503 * sectorsize aligned bytenr in the range [0, U64_MAX]. 504 */ 505 if (range.len < fs_info->sb->s_blocksize) 506 return -EINVAL; 507 508 range.minlen = max(range.minlen, minlen); 509 ret = btrfs_trim_fs(fs_info, &range); 510 if (ret < 0) 511 return ret; 512 513 if (copy_to_user(arg, &range, sizeof(range))) 514 return -EFAULT; 515 516 return 0; 517 } 518 519 int __pure btrfs_is_empty_uuid(u8 *uuid) 520 { 521 int i; 522 523 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 524 if (uuid[i]) 525 return 0; 526 } 527 return 1; 528 } 529 530 static noinline int create_subvol(struct user_namespace *mnt_userns, 531 struct inode *dir, struct dentry *dentry, 532 const char *name, int namelen, 533 struct btrfs_qgroup_inherit *inherit) 534 { 535 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 536 struct btrfs_trans_handle *trans; 537 struct btrfs_key key; 538 struct btrfs_root_item *root_item; 539 struct btrfs_inode_item *inode_item; 540 struct extent_buffer *leaf; 541 struct btrfs_root *root = BTRFS_I(dir)->root; 542 struct btrfs_root *new_root; 543 struct btrfs_block_rsv block_rsv; 544 struct timespec64 cur_time = current_time(dir); 545 struct inode *inode; 546 int ret; 547 dev_t anon_dev = 0; 548 u64 objectid; 549 u64 index = 0; 550 551 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 552 if (!root_item) 553 return -ENOMEM; 554 555 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 556 if (ret) 557 goto fail_free; 558 559 ret = get_anon_bdev(&anon_dev); 560 if (ret < 0) 561 goto fail_free; 562 563 /* 564 * Don't create subvolume whose level is not zero. Or qgroup will be 565 * screwed up since it assumes subvolume qgroup's level to be 0. 566 */ 567 if (btrfs_qgroup_level(objectid)) { 568 ret = -ENOSPC; 569 goto fail_free; 570 } 571 572 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 573 /* 574 * The same as the snapshot creation, please see the comment 575 * of create_snapshot(). 576 */ 577 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 578 if (ret) 579 goto fail_free; 580 581 trans = btrfs_start_transaction(root, 0); 582 if (IS_ERR(trans)) { 583 ret = PTR_ERR(trans); 584 btrfs_subvolume_release_metadata(root, &block_rsv); 585 goto fail_free; 586 } 587 trans->block_rsv = &block_rsv; 588 trans->bytes_reserved = block_rsv.size; 589 590 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 591 if (ret) 592 goto fail; 593 594 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 595 BTRFS_NESTING_NORMAL); 596 if (IS_ERR(leaf)) { 597 ret = PTR_ERR(leaf); 598 goto fail; 599 } 600 601 btrfs_mark_buffer_dirty(leaf); 602 603 inode_item = &root_item->inode; 604 btrfs_set_stack_inode_generation(inode_item, 1); 605 btrfs_set_stack_inode_size(inode_item, 3); 606 btrfs_set_stack_inode_nlink(inode_item, 1); 607 btrfs_set_stack_inode_nbytes(inode_item, 608 fs_info->nodesize); 609 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 610 611 btrfs_set_root_flags(root_item, 0); 612 btrfs_set_root_limit(root_item, 0); 613 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 614 615 btrfs_set_root_bytenr(root_item, leaf->start); 616 btrfs_set_root_generation(root_item, trans->transid); 617 btrfs_set_root_level(root_item, 0); 618 btrfs_set_root_refs(root_item, 1); 619 btrfs_set_root_used(root_item, leaf->len); 620 btrfs_set_root_last_snapshot(root_item, 0); 621 622 btrfs_set_root_generation_v2(root_item, 623 btrfs_root_generation(root_item)); 624 generate_random_guid(root_item->uuid); 625 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 626 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 627 root_item->ctime = root_item->otime; 628 btrfs_set_root_ctransid(root_item, trans->transid); 629 btrfs_set_root_otransid(root_item, trans->transid); 630 631 btrfs_tree_unlock(leaf); 632 633 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 634 635 key.objectid = objectid; 636 key.offset = 0; 637 key.type = BTRFS_ROOT_ITEM_KEY; 638 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 639 root_item); 640 if (ret) { 641 /* 642 * Since we don't abort the transaction in this case, free the 643 * tree block so that we don't leak space and leave the 644 * filesystem in an inconsistent state (an extent item in the 645 * extent tree with a backreference for a root that does not 646 * exists). 647 */ 648 btrfs_tree_lock(leaf); 649 btrfs_clean_tree_block(leaf); 650 btrfs_tree_unlock(leaf); 651 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 652 free_extent_buffer(leaf); 653 goto fail; 654 } 655 656 free_extent_buffer(leaf); 657 leaf = NULL; 658 659 key.offset = (u64)-1; 660 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 661 if (IS_ERR(new_root)) { 662 free_anon_bdev(anon_dev); 663 ret = PTR_ERR(new_root); 664 btrfs_abort_transaction(trans, ret); 665 goto fail; 666 } 667 /* Freeing will be done in btrfs_put_root() of new_root */ 668 anon_dev = 0; 669 670 ret = btrfs_record_root_in_trans(trans, new_root); 671 if (ret) { 672 btrfs_put_root(new_root); 673 btrfs_abort_transaction(trans, ret); 674 goto fail; 675 } 676 677 ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns); 678 btrfs_put_root(new_root); 679 if (ret) { 680 /* We potentially lose an unused inode item here */ 681 btrfs_abort_transaction(trans, ret); 682 goto fail; 683 } 684 685 /* 686 * insert the directory item 687 */ 688 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 689 if (ret) { 690 btrfs_abort_transaction(trans, ret); 691 goto fail; 692 } 693 694 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 695 BTRFS_FT_DIR, index); 696 if (ret) { 697 btrfs_abort_transaction(trans, ret); 698 goto fail; 699 } 700 701 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 702 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 703 if (ret) { 704 btrfs_abort_transaction(trans, ret); 705 goto fail; 706 } 707 708 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 709 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 710 if (ret) { 711 btrfs_abort_transaction(trans, ret); 712 goto fail; 713 } 714 715 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 716 BTRFS_UUID_KEY_SUBVOL, objectid); 717 if (ret) 718 btrfs_abort_transaction(trans, ret); 719 720 fail: 721 kfree(root_item); 722 trans->block_rsv = NULL; 723 trans->bytes_reserved = 0; 724 btrfs_subvolume_release_metadata(root, &block_rsv); 725 726 if (ret) 727 btrfs_end_transaction(trans); 728 else 729 ret = btrfs_commit_transaction(trans); 730 731 if (!ret) { 732 inode = btrfs_lookup_dentry(dir, dentry); 733 if (IS_ERR(inode)) 734 return PTR_ERR(inode); 735 d_instantiate(dentry, inode); 736 } 737 return ret; 738 739 fail_free: 740 if (anon_dev) 741 free_anon_bdev(anon_dev); 742 kfree(root_item); 743 return ret; 744 } 745 746 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 747 struct dentry *dentry, bool readonly, 748 struct btrfs_qgroup_inherit *inherit) 749 { 750 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 751 struct inode *inode; 752 struct btrfs_pending_snapshot *pending_snapshot; 753 struct btrfs_trans_handle *trans; 754 int ret; 755 756 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 757 return -EINVAL; 758 759 if (atomic_read(&root->nr_swapfiles)) { 760 btrfs_warn(fs_info, 761 "cannot snapshot subvolume with active swapfile"); 762 return -ETXTBSY; 763 } 764 765 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 766 if (!pending_snapshot) 767 return -ENOMEM; 768 769 ret = get_anon_bdev(&pending_snapshot->anon_dev); 770 if (ret < 0) 771 goto free_pending; 772 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 773 GFP_KERNEL); 774 pending_snapshot->path = btrfs_alloc_path(); 775 if (!pending_snapshot->root_item || !pending_snapshot->path) { 776 ret = -ENOMEM; 777 goto free_pending; 778 } 779 780 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 781 BTRFS_BLOCK_RSV_TEMP); 782 /* 783 * 1 - parent dir inode 784 * 2 - dir entries 785 * 1 - root item 786 * 2 - root ref/backref 787 * 1 - root of snapshot 788 * 1 - UUID item 789 */ 790 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 791 &pending_snapshot->block_rsv, 8, 792 false); 793 if (ret) 794 goto free_pending; 795 796 pending_snapshot->dentry = dentry; 797 pending_snapshot->root = root; 798 pending_snapshot->readonly = readonly; 799 pending_snapshot->dir = dir; 800 pending_snapshot->inherit = inherit; 801 802 trans = btrfs_start_transaction(root, 0); 803 if (IS_ERR(trans)) { 804 ret = PTR_ERR(trans); 805 goto fail; 806 } 807 808 trans->pending_snapshot = pending_snapshot; 809 810 ret = btrfs_commit_transaction(trans); 811 if (ret) 812 goto fail; 813 814 ret = pending_snapshot->error; 815 if (ret) 816 goto fail; 817 818 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 819 if (ret) 820 goto fail; 821 822 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 823 if (IS_ERR(inode)) { 824 ret = PTR_ERR(inode); 825 goto fail; 826 } 827 828 d_instantiate(dentry, inode); 829 ret = 0; 830 pending_snapshot->anon_dev = 0; 831 fail: 832 /* Prevent double freeing of anon_dev */ 833 if (ret && pending_snapshot->snap) 834 pending_snapshot->snap->anon_dev = 0; 835 btrfs_put_root(pending_snapshot->snap); 836 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 837 free_pending: 838 if (pending_snapshot->anon_dev) 839 free_anon_bdev(pending_snapshot->anon_dev); 840 kfree(pending_snapshot->root_item); 841 btrfs_free_path(pending_snapshot->path); 842 kfree(pending_snapshot); 843 844 return ret; 845 } 846 847 /* copy of may_delete in fs/namei.c() 848 * Check whether we can remove a link victim from directory dir, check 849 * whether the type of victim is right. 850 * 1. We can't do it if dir is read-only (done in permission()) 851 * 2. We should have write and exec permissions on dir 852 * 3. We can't remove anything from append-only dir 853 * 4. We can't do anything with immutable dir (done in permission()) 854 * 5. If the sticky bit on dir is set we should either 855 * a. be owner of dir, or 856 * b. be owner of victim, or 857 * c. have CAP_FOWNER capability 858 * 6. If the victim is append-only or immutable we can't do anything with 859 * links pointing to it. 860 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 861 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 862 * 9. We can't remove a root or mountpoint. 863 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 864 * nfs_async_unlink(). 865 */ 866 867 static int btrfs_may_delete(struct user_namespace *mnt_userns, 868 struct inode *dir, struct dentry *victim, int isdir) 869 { 870 int error; 871 872 if (d_really_is_negative(victim)) 873 return -ENOENT; 874 875 BUG_ON(d_inode(victim->d_parent) != dir); 876 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 877 878 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 879 if (error) 880 return error; 881 if (IS_APPEND(dir)) 882 return -EPERM; 883 if (check_sticky(mnt_userns, dir, d_inode(victim)) || 884 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 885 IS_SWAPFILE(d_inode(victim))) 886 return -EPERM; 887 if (isdir) { 888 if (!d_is_dir(victim)) 889 return -ENOTDIR; 890 if (IS_ROOT(victim)) 891 return -EBUSY; 892 } else if (d_is_dir(victim)) 893 return -EISDIR; 894 if (IS_DEADDIR(dir)) 895 return -ENOENT; 896 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 897 return -EBUSY; 898 return 0; 899 } 900 901 /* copy of may_create in fs/namei.c() */ 902 static inline int btrfs_may_create(struct user_namespace *mnt_userns, 903 struct inode *dir, struct dentry *child) 904 { 905 if (d_really_is_positive(child)) 906 return -EEXIST; 907 if (IS_DEADDIR(dir)) 908 return -ENOENT; 909 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 910 return -EOVERFLOW; 911 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 912 } 913 914 /* 915 * Create a new subvolume below @parent. This is largely modeled after 916 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 917 * inside this filesystem so it's quite a bit simpler. 918 */ 919 static noinline int btrfs_mksubvol(const struct path *parent, 920 struct user_namespace *mnt_userns, 921 const char *name, int namelen, 922 struct btrfs_root *snap_src, 923 bool readonly, 924 struct btrfs_qgroup_inherit *inherit) 925 { 926 struct inode *dir = d_inode(parent->dentry); 927 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 928 struct dentry *dentry; 929 int error; 930 931 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 932 if (error == -EINTR) 933 return error; 934 935 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); 936 error = PTR_ERR(dentry); 937 if (IS_ERR(dentry)) 938 goto out_unlock; 939 940 error = btrfs_may_create(mnt_userns, dir, dentry); 941 if (error) 942 goto out_dput; 943 944 /* 945 * even if this name doesn't exist, we may get hash collisions. 946 * check for them now when we can safely fail 947 */ 948 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 949 dir->i_ino, name, 950 namelen); 951 if (error) 952 goto out_dput; 953 954 down_read(&fs_info->subvol_sem); 955 956 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 957 goto out_up_read; 958 959 if (snap_src) 960 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 961 else 962 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit); 963 964 if (!error) 965 fsnotify_mkdir(dir, dentry); 966 out_up_read: 967 up_read(&fs_info->subvol_sem); 968 out_dput: 969 dput(dentry); 970 out_unlock: 971 btrfs_inode_unlock(dir, 0); 972 return error; 973 } 974 975 static noinline int btrfs_mksnapshot(const struct path *parent, 976 struct user_namespace *mnt_userns, 977 const char *name, int namelen, 978 struct btrfs_root *root, 979 bool readonly, 980 struct btrfs_qgroup_inherit *inherit) 981 { 982 int ret; 983 bool snapshot_force_cow = false; 984 985 /* 986 * Force new buffered writes to reserve space even when NOCOW is 987 * possible. This is to avoid later writeback (running dealloc) to 988 * fallback to COW mode and unexpectedly fail with ENOSPC. 989 */ 990 btrfs_drew_read_lock(&root->snapshot_lock); 991 992 ret = btrfs_start_delalloc_snapshot(root, false); 993 if (ret) 994 goto out; 995 996 /* 997 * All previous writes have started writeback in NOCOW mode, so now 998 * we force future writes to fallback to COW mode during snapshot 999 * creation. 1000 */ 1001 atomic_inc(&root->snapshot_force_cow); 1002 snapshot_force_cow = true; 1003 1004 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1005 1006 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, 1007 root, readonly, inherit); 1008 out: 1009 if (snapshot_force_cow) 1010 atomic_dec(&root->snapshot_force_cow); 1011 btrfs_drew_read_unlock(&root->snapshot_lock); 1012 return ret; 1013 } 1014 1015 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 1016 bool locked) 1017 { 1018 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1019 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1020 struct extent_map *em; 1021 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 1022 1023 /* 1024 * hopefully we have this extent in the tree already, try without 1025 * the full extent lock 1026 */ 1027 read_lock(&em_tree->lock); 1028 em = lookup_extent_mapping(em_tree, start, sectorsize); 1029 read_unlock(&em_tree->lock); 1030 1031 if (!em) { 1032 struct extent_state *cached = NULL; 1033 u64 end = start + sectorsize - 1; 1034 1035 /* get the big lock and read metadata off disk */ 1036 if (!locked) 1037 lock_extent_bits(io_tree, start, end, &cached); 1038 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, sectorsize); 1039 if (!locked) 1040 unlock_extent_cached(io_tree, start, end, &cached); 1041 1042 if (IS_ERR(em)) 1043 return NULL; 1044 } 1045 1046 return em; 1047 } 1048 1049 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 1050 bool locked) 1051 { 1052 struct extent_map *next; 1053 bool ret = true; 1054 1055 /* this is the last extent */ 1056 if (em->start + em->len >= i_size_read(inode)) 1057 return false; 1058 1059 next = defrag_lookup_extent(inode, em->start + em->len, locked); 1060 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1061 ret = false; 1062 else if ((em->block_start + em->block_len == next->block_start) && 1063 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1064 ret = false; 1065 1066 free_extent_map(next); 1067 return ret; 1068 } 1069 1070 /* 1071 * Prepare one page to be defragged. 1072 * 1073 * This will ensure: 1074 * 1075 * - Returned page is locked and has been set up properly. 1076 * - No ordered extent exists in the page. 1077 * - The page is uptodate. 1078 * 1079 * NOTE: Caller should also wait for page writeback after the cluster is 1080 * prepared, here we don't do writeback wait for each page. 1081 */ 1082 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, 1083 pgoff_t index) 1084 { 1085 struct address_space *mapping = inode->vfs_inode.i_mapping; 1086 gfp_t mask = btrfs_alloc_write_mask(mapping); 1087 u64 page_start = (u64)index << PAGE_SHIFT; 1088 u64 page_end = page_start + PAGE_SIZE - 1; 1089 struct extent_state *cached_state = NULL; 1090 struct page *page; 1091 int ret; 1092 1093 again: 1094 page = find_or_create_page(mapping, index, mask); 1095 if (!page) 1096 return ERR_PTR(-ENOMEM); 1097 1098 /* 1099 * Since we can defragment files opened read-only, we can encounter 1100 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We 1101 * can't do I/O using huge pages yet, so return an error for now. 1102 * Filesystem transparent huge pages are typically only used for 1103 * executables that explicitly enable them, so this isn't very 1104 * restrictive. 1105 */ 1106 if (PageCompound(page)) { 1107 unlock_page(page); 1108 put_page(page); 1109 return ERR_PTR(-ETXTBSY); 1110 } 1111 1112 ret = set_page_extent_mapped(page); 1113 if (ret < 0) { 1114 unlock_page(page); 1115 put_page(page); 1116 return ERR_PTR(ret); 1117 } 1118 1119 /* Wait for any existing ordered extent in the range */ 1120 while (1) { 1121 struct btrfs_ordered_extent *ordered; 1122 1123 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 1124 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 1125 unlock_extent_cached(&inode->io_tree, page_start, page_end, 1126 &cached_state); 1127 if (!ordered) 1128 break; 1129 1130 unlock_page(page); 1131 btrfs_start_ordered_extent(ordered, 1); 1132 btrfs_put_ordered_extent(ordered); 1133 lock_page(page); 1134 /* 1135 * We unlocked the page above, so we need check if it was 1136 * released or not. 1137 */ 1138 if (page->mapping != mapping || !PagePrivate(page)) { 1139 unlock_page(page); 1140 put_page(page); 1141 goto again; 1142 } 1143 } 1144 1145 /* 1146 * Now the page range has no ordered extent any more. Read the page to 1147 * make it uptodate. 1148 */ 1149 if (!PageUptodate(page)) { 1150 btrfs_readpage(NULL, page); 1151 lock_page(page); 1152 if (page->mapping != mapping || !PagePrivate(page)) { 1153 unlock_page(page); 1154 put_page(page); 1155 goto again; 1156 } 1157 if (!PageUptodate(page)) { 1158 unlock_page(page); 1159 put_page(page); 1160 return ERR_PTR(-EIO); 1161 } 1162 } 1163 return page; 1164 } 1165 1166 struct defrag_target_range { 1167 struct list_head list; 1168 u64 start; 1169 u64 len; 1170 }; 1171 1172 /* 1173 * Collect all valid target extents. 1174 * 1175 * @start: file offset to lookup 1176 * @len: length to lookup 1177 * @extent_thresh: file extent size threshold, any extent size >= this value 1178 * will be ignored 1179 * @newer_than: only defrag extents newer than this value 1180 * @do_compress: whether the defrag is doing compression 1181 * if true, @extent_thresh will be ignored and all regular 1182 * file extents meeting @newer_than will be targets. 1183 * @locked: if the range has already held extent lock 1184 * @target_list: list of targets file extents 1185 */ 1186 static int defrag_collect_targets(struct btrfs_inode *inode, 1187 u64 start, u64 len, u32 extent_thresh, 1188 u64 newer_than, bool do_compress, 1189 bool locked, struct list_head *target_list) 1190 { 1191 u64 cur = start; 1192 int ret = 0; 1193 1194 while (cur < start + len) { 1195 struct extent_map *em; 1196 struct defrag_target_range *new; 1197 bool next_mergeable = true; 1198 u64 range_len; 1199 1200 em = defrag_lookup_extent(&inode->vfs_inode, cur, locked); 1201 if (!em) 1202 break; 1203 1204 /* Skip hole/inline/preallocated extents */ 1205 if (em->block_start >= EXTENT_MAP_LAST_BYTE || 1206 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1207 goto next; 1208 1209 /* Skip older extent */ 1210 if (em->generation < newer_than) 1211 goto next; 1212 1213 /* This em is under writeback, no need to defrag */ 1214 if (em->generation == (u64)-1) 1215 goto next; 1216 1217 /* 1218 * Our start offset might be in the middle of an existing extent 1219 * map, so take that into account. 1220 */ 1221 range_len = em->len - (cur - em->start); 1222 /* 1223 * If this range of the extent map is already flagged for delalloc, 1224 * skip it, because: 1225 * 1226 * 1) We could deadlock later, when trying to reserve space for 1227 * delalloc, because in case we can't immediately reserve space 1228 * the flusher can start delalloc and wait for the respective 1229 * ordered extents to complete. The deadlock would happen 1230 * because we do the space reservation while holding the range 1231 * locked, and starting writeback, or finishing an ordered 1232 * extent, requires locking the range; 1233 * 1234 * 2) If there's delalloc there, it means there's dirty pages for 1235 * which writeback has not started yet (we clean the delalloc 1236 * flag when starting writeback and after creating an ordered 1237 * extent). If we mark pages in an adjacent range for defrag, 1238 * then we will have a larger contiguous range for delalloc, 1239 * very likely resulting in a larger extent after writeback is 1240 * triggered (except in a case of free space fragmentation). 1241 */ 1242 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1, 1243 EXTENT_DELALLOC, 0, NULL)) 1244 goto next; 1245 1246 /* 1247 * For do_compress case, we want to compress all valid file 1248 * extents, thus no @extent_thresh or mergeable check. 1249 */ 1250 if (do_compress) 1251 goto add; 1252 1253 /* Skip too large extent */ 1254 if (range_len >= extent_thresh) 1255 goto next; 1256 1257 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1258 locked); 1259 if (!next_mergeable) { 1260 struct defrag_target_range *last; 1261 1262 /* Empty target list, no way to merge with last entry */ 1263 if (list_empty(target_list)) 1264 goto next; 1265 last = list_entry(target_list->prev, 1266 struct defrag_target_range, list); 1267 /* Not mergeable with last entry */ 1268 if (last->start + last->len != cur) 1269 goto next; 1270 1271 /* Mergeable, fall through to add it to @target_list. */ 1272 } 1273 1274 add: 1275 range_len = min(extent_map_end(em), start + len) - cur; 1276 /* 1277 * This one is a good target, check if it can be merged into 1278 * last range of the target list. 1279 */ 1280 if (!list_empty(target_list)) { 1281 struct defrag_target_range *last; 1282 1283 last = list_entry(target_list->prev, 1284 struct defrag_target_range, list); 1285 ASSERT(last->start + last->len <= cur); 1286 if (last->start + last->len == cur) { 1287 /* Mergeable, enlarge the last entry */ 1288 last->len += range_len; 1289 goto next; 1290 } 1291 /* Fall through to allocate a new entry */ 1292 } 1293 1294 /* Allocate new defrag_target_range */ 1295 new = kmalloc(sizeof(*new), GFP_NOFS); 1296 if (!new) { 1297 free_extent_map(em); 1298 ret = -ENOMEM; 1299 break; 1300 } 1301 new->start = cur; 1302 new->len = range_len; 1303 list_add_tail(&new->list, target_list); 1304 1305 next: 1306 cur = extent_map_end(em); 1307 free_extent_map(em); 1308 } 1309 if (ret < 0) { 1310 struct defrag_target_range *entry; 1311 struct defrag_target_range *tmp; 1312 1313 list_for_each_entry_safe(entry, tmp, target_list, list) { 1314 list_del_init(&entry->list); 1315 kfree(entry); 1316 } 1317 } 1318 return ret; 1319 } 1320 1321 #define CLUSTER_SIZE (SZ_256K) 1322 1323 /* 1324 * Defrag one contiguous target range. 1325 * 1326 * @inode: target inode 1327 * @target: target range to defrag 1328 * @pages: locked pages covering the defrag range 1329 * @nr_pages: number of locked pages 1330 * 1331 * Caller should ensure: 1332 * 1333 * - Pages are prepared 1334 * Pages should be locked, no ordered extent in the pages range, 1335 * no writeback. 1336 * 1337 * - Extent bits are locked 1338 */ 1339 static int defrag_one_locked_target(struct btrfs_inode *inode, 1340 struct defrag_target_range *target, 1341 struct page **pages, int nr_pages, 1342 struct extent_state **cached_state) 1343 { 1344 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1345 struct extent_changeset *data_reserved = NULL; 1346 const u64 start = target->start; 1347 const u64 len = target->len; 1348 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; 1349 unsigned long start_index = start >> PAGE_SHIFT; 1350 unsigned long first_index = page_index(pages[0]); 1351 int ret = 0; 1352 int i; 1353 1354 ASSERT(last_index - first_index + 1 <= nr_pages); 1355 1356 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1357 if (ret < 0) 1358 return ret; 1359 clear_extent_bit(&inode->io_tree, start, start + len - 1, 1360 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1361 EXTENT_DEFRAG, 0, 0, cached_state); 1362 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state); 1363 1364 /* Update the page status */ 1365 for (i = start_index - first_index; i <= last_index - first_index; i++) { 1366 ClearPageChecked(pages[i]); 1367 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); 1368 } 1369 btrfs_delalloc_release_extents(inode, len); 1370 extent_changeset_free(data_reserved); 1371 1372 return ret; 1373 } 1374 1375 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1376 u32 extent_thresh, u64 newer_than, bool do_compress) 1377 { 1378 struct extent_state *cached_state = NULL; 1379 struct defrag_target_range *entry; 1380 struct defrag_target_range *tmp; 1381 LIST_HEAD(target_list); 1382 struct page **pages; 1383 const u32 sectorsize = inode->root->fs_info->sectorsize; 1384 u64 last_index = (start + len - 1) >> PAGE_SHIFT; 1385 u64 start_index = start >> PAGE_SHIFT; 1386 unsigned int nr_pages = last_index - start_index + 1; 1387 int ret = 0; 1388 int i; 1389 1390 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1391 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1392 1393 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 1394 if (!pages) 1395 return -ENOMEM; 1396 1397 /* Prepare all pages */ 1398 for (i = 0; i < nr_pages; i++) { 1399 pages[i] = defrag_prepare_one_page(inode, start_index + i); 1400 if (IS_ERR(pages[i])) { 1401 ret = PTR_ERR(pages[i]); 1402 pages[i] = NULL; 1403 goto free_pages; 1404 } 1405 } 1406 for (i = 0; i < nr_pages; i++) 1407 wait_on_page_writeback(pages[i]); 1408 1409 /* Lock the pages range */ 1410 lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT, 1411 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1412 &cached_state); 1413 /* 1414 * Now we have a consistent view about the extent map, re-check 1415 * which range really needs to be defragged. 1416 * 1417 * And this time we have extent locked already, pass @locked = true 1418 * so that we won't relock the extent range and cause deadlock. 1419 */ 1420 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1421 newer_than, do_compress, true, 1422 &target_list); 1423 if (ret < 0) 1424 goto unlock_extent; 1425 1426 list_for_each_entry(entry, &target_list, list) { 1427 ret = defrag_one_locked_target(inode, entry, pages, nr_pages, 1428 &cached_state); 1429 if (ret < 0) 1430 break; 1431 } 1432 1433 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1434 list_del_init(&entry->list); 1435 kfree(entry); 1436 } 1437 unlock_extent: 1438 unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT, 1439 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1440 &cached_state); 1441 free_pages: 1442 for (i = 0; i < nr_pages; i++) { 1443 if (pages[i]) { 1444 unlock_page(pages[i]); 1445 put_page(pages[i]); 1446 } 1447 } 1448 kfree(pages); 1449 return ret; 1450 } 1451 1452 static int defrag_one_cluster(struct btrfs_inode *inode, 1453 struct file_ra_state *ra, 1454 u64 start, u32 len, u32 extent_thresh, 1455 u64 newer_than, bool do_compress, 1456 unsigned long *sectors_defragged, 1457 unsigned long max_sectors) 1458 { 1459 const u32 sectorsize = inode->root->fs_info->sectorsize; 1460 struct defrag_target_range *entry; 1461 struct defrag_target_range *tmp; 1462 LIST_HEAD(target_list); 1463 int ret; 1464 1465 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1466 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1467 newer_than, do_compress, false, 1468 &target_list); 1469 if (ret < 0) 1470 goto out; 1471 1472 list_for_each_entry(entry, &target_list, list) { 1473 u32 range_len = entry->len; 1474 1475 /* Reached or beyond the limit */ 1476 if (max_sectors && *sectors_defragged >= max_sectors) { 1477 ret = 1; 1478 break; 1479 } 1480 1481 if (max_sectors) 1482 range_len = min_t(u32, range_len, 1483 (max_sectors - *sectors_defragged) * sectorsize); 1484 1485 if (ra) 1486 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1487 ra, NULL, entry->start >> PAGE_SHIFT, 1488 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1489 (entry->start >> PAGE_SHIFT) + 1); 1490 /* 1491 * Here we may not defrag any range if holes are punched before 1492 * we locked the pages. 1493 * But that's fine, it only affects the @sectors_defragged 1494 * accounting. 1495 */ 1496 ret = defrag_one_range(inode, entry->start, range_len, 1497 extent_thresh, newer_than, do_compress); 1498 if (ret < 0) 1499 break; 1500 *sectors_defragged += range_len >> 1501 inode->root->fs_info->sectorsize_bits; 1502 } 1503 out: 1504 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1505 list_del_init(&entry->list); 1506 kfree(entry); 1507 } 1508 return ret; 1509 } 1510 1511 /* 1512 * Entry point to file defragmentation. 1513 * 1514 * @inode: inode to be defragged 1515 * @ra: readahead state (can be NUL) 1516 * @range: defrag options including range and flags 1517 * @newer_than: minimum transid to defrag 1518 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1519 * will be defragged. 1520 * 1521 * Return <0 for error. 1522 * Return >=0 for the number of sectors defragged, and range->start will be updated 1523 * to indicate the file offset where next defrag should be started at. 1524 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without 1525 * defragging all the range). 1526 */ 1527 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 1528 struct btrfs_ioctl_defrag_range_args *range, 1529 u64 newer_than, unsigned long max_to_defrag) 1530 { 1531 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1532 unsigned long sectors_defragged = 0; 1533 u64 isize = i_size_read(inode); 1534 u64 cur; 1535 u64 last_byte; 1536 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1537 bool ra_allocated = false; 1538 int compress_type = BTRFS_COMPRESS_ZLIB; 1539 int ret = 0; 1540 u32 extent_thresh = range->extent_thresh; 1541 pgoff_t start_index; 1542 1543 if (isize == 0) 1544 return 0; 1545 1546 if (range->start >= isize) 1547 return -EINVAL; 1548 1549 if (do_compress) { 1550 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1551 return -EINVAL; 1552 if (range->compress_type) 1553 compress_type = range->compress_type; 1554 } 1555 1556 if (extent_thresh == 0) 1557 extent_thresh = SZ_256K; 1558 1559 if (range->start + range->len > range->start) { 1560 /* Got a specific range */ 1561 last_byte = min(isize, range->start + range->len); 1562 } else { 1563 /* Defrag until file end */ 1564 last_byte = isize; 1565 } 1566 1567 /* Align the range */ 1568 cur = round_down(range->start, fs_info->sectorsize); 1569 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1570 1571 /* 1572 * If we were not given a ra, allocate a readahead context. As 1573 * readahead is just an optimization, defrag will work without it so 1574 * we don't error out. 1575 */ 1576 if (!ra) { 1577 ra_allocated = true; 1578 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1579 if (ra) 1580 file_ra_state_init(ra, inode->i_mapping); 1581 } 1582 1583 /* 1584 * Make writeback start from the beginning of the range, so that the 1585 * defrag range can be written sequentially. 1586 */ 1587 start_index = cur >> PAGE_SHIFT; 1588 if (start_index < inode->i_mapping->writeback_index) 1589 inode->i_mapping->writeback_index = start_index; 1590 1591 while (cur < last_byte) { 1592 const unsigned long prev_sectors_defragged = sectors_defragged; 1593 u64 cluster_end; 1594 1595 /* The cluster size 256K should always be page aligned */ 1596 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1597 1598 if (btrfs_defrag_cancelled(fs_info)) { 1599 ret = -EAGAIN; 1600 break; 1601 } 1602 1603 /* We want the cluster end at page boundary when possible */ 1604 cluster_end = (((cur >> PAGE_SHIFT) + 1605 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1606 cluster_end = min(cluster_end, last_byte); 1607 1608 btrfs_inode_lock(inode, 0); 1609 if (IS_SWAPFILE(inode)) { 1610 ret = -ETXTBSY; 1611 btrfs_inode_unlock(inode, 0); 1612 break; 1613 } 1614 if (!(inode->i_sb->s_flags & SB_ACTIVE)) { 1615 btrfs_inode_unlock(inode, 0); 1616 break; 1617 } 1618 if (do_compress) 1619 BTRFS_I(inode)->defrag_compress = compress_type; 1620 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, 1621 cluster_end + 1 - cur, extent_thresh, 1622 newer_than, do_compress, 1623 §ors_defragged, max_to_defrag); 1624 1625 if (sectors_defragged > prev_sectors_defragged) 1626 balance_dirty_pages_ratelimited(inode->i_mapping); 1627 1628 btrfs_inode_unlock(inode, 0); 1629 if (ret < 0) 1630 break; 1631 cur = cluster_end + 1; 1632 if (ret > 0) { 1633 ret = 0; 1634 break; 1635 } 1636 cond_resched(); 1637 } 1638 1639 if (ra_allocated) 1640 kfree(ra); 1641 /* 1642 * Update range.start for autodefrag, this will indicate where to start 1643 * in next run. 1644 */ 1645 range->start = cur; 1646 if (sectors_defragged) { 1647 /* 1648 * We have defragged some sectors, for compression case they 1649 * need to be written back immediately. 1650 */ 1651 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1652 filemap_flush(inode->i_mapping); 1653 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1654 &BTRFS_I(inode)->runtime_flags)) 1655 filemap_flush(inode->i_mapping); 1656 } 1657 if (range->compress_type == BTRFS_COMPRESS_LZO) 1658 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1659 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1660 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1661 ret = sectors_defragged; 1662 } 1663 if (do_compress) { 1664 btrfs_inode_lock(inode, 0); 1665 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1666 btrfs_inode_unlock(inode, 0); 1667 } 1668 return ret; 1669 } 1670 1671 /* 1672 * Try to start exclusive operation @type or cancel it if it's running. 1673 * 1674 * Return: 1675 * 0 - normal mode, newly claimed op started 1676 * >0 - normal mode, something else is running, 1677 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1678 * ECANCELED - cancel mode, successful cancel 1679 * ENOTCONN - cancel mode, operation not running anymore 1680 */ 1681 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1682 enum btrfs_exclusive_operation type, bool cancel) 1683 { 1684 if (!cancel) { 1685 /* Start normal op */ 1686 if (!btrfs_exclop_start(fs_info, type)) 1687 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1688 /* Exclusive operation is now claimed */ 1689 return 0; 1690 } 1691 1692 /* Cancel running op */ 1693 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1694 /* 1695 * This blocks any exclop finish from setting it to NONE, so we 1696 * request cancellation. Either it runs and we will wait for it, 1697 * or it has finished and no waiting will happen. 1698 */ 1699 atomic_inc(&fs_info->reloc_cancel_req); 1700 btrfs_exclop_start_unlock(fs_info); 1701 1702 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1703 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1704 TASK_INTERRUPTIBLE); 1705 1706 return -ECANCELED; 1707 } 1708 1709 /* Something else is running or none */ 1710 return -ENOTCONN; 1711 } 1712 1713 static noinline int btrfs_ioctl_resize(struct file *file, 1714 void __user *arg) 1715 { 1716 BTRFS_DEV_LOOKUP_ARGS(args); 1717 struct inode *inode = file_inode(file); 1718 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1719 u64 new_size; 1720 u64 old_size; 1721 u64 devid = 1; 1722 struct btrfs_root *root = BTRFS_I(inode)->root; 1723 struct btrfs_ioctl_vol_args *vol_args; 1724 struct btrfs_trans_handle *trans; 1725 struct btrfs_device *device = NULL; 1726 char *sizestr; 1727 char *retptr; 1728 char *devstr = NULL; 1729 int ret = 0; 1730 int mod = 0; 1731 bool cancel; 1732 1733 if (!capable(CAP_SYS_ADMIN)) 1734 return -EPERM; 1735 1736 ret = mnt_want_write_file(file); 1737 if (ret) 1738 return ret; 1739 1740 /* 1741 * Read the arguments before checking exclusivity to be able to 1742 * distinguish regular resize and cancel 1743 */ 1744 vol_args = memdup_user(arg, sizeof(*vol_args)); 1745 if (IS_ERR(vol_args)) { 1746 ret = PTR_ERR(vol_args); 1747 goto out_drop; 1748 } 1749 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1750 sizestr = vol_args->name; 1751 cancel = (strcmp("cancel", sizestr) == 0); 1752 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1753 if (ret) 1754 goto out_free; 1755 /* Exclusive operation is now claimed */ 1756 1757 devstr = strchr(sizestr, ':'); 1758 if (devstr) { 1759 sizestr = devstr + 1; 1760 *devstr = '\0'; 1761 devstr = vol_args->name; 1762 ret = kstrtoull(devstr, 10, &devid); 1763 if (ret) 1764 goto out_finish; 1765 if (!devid) { 1766 ret = -EINVAL; 1767 goto out_finish; 1768 } 1769 btrfs_info(fs_info, "resizing devid %llu", devid); 1770 } 1771 1772 args.devid = devid; 1773 device = btrfs_find_device(fs_info->fs_devices, &args); 1774 if (!device) { 1775 btrfs_info(fs_info, "resizer unable to find device %llu", 1776 devid); 1777 ret = -ENODEV; 1778 goto out_finish; 1779 } 1780 1781 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1782 btrfs_info(fs_info, 1783 "resizer unable to apply on readonly device %llu", 1784 devid); 1785 ret = -EPERM; 1786 goto out_finish; 1787 } 1788 1789 if (!strcmp(sizestr, "max")) 1790 new_size = bdev_nr_bytes(device->bdev); 1791 else { 1792 if (sizestr[0] == '-') { 1793 mod = -1; 1794 sizestr++; 1795 } else if (sizestr[0] == '+') { 1796 mod = 1; 1797 sizestr++; 1798 } 1799 new_size = memparse(sizestr, &retptr); 1800 if (*retptr != '\0' || new_size == 0) { 1801 ret = -EINVAL; 1802 goto out_finish; 1803 } 1804 } 1805 1806 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1807 ret = -EPERM; 1808 goto out_finish; 1809 } 1810 1811 old_size = btrfs_device_get_total_bytes(device); 1812 1813 if (mod < 0) { 1814 if (new_size > old_size) { 1815 ret = -EINVAL; 1816 goto out_finish; 1817 } 1818 new_size = old_size - new_size; 1819 } else if (mod > 0) { 1820 if (new_size > ULLONG_MAX - old_size) { 1821 ret = -ERANGE; 1822 goto out_finish; 1823 } 1824 new_size = old_size + new_size; 1825 } 1826 1827 if (new_size < SZ_256M) { 1828 ret = -EINVAL; 1829 goto out_finish; 1830 } 1831 if (new_size > bdev_nr_bytes(device->bdev)) { 1832 ret = -EFBIG; 1833 goto out_finish; 1834 } 1835 1836 new_size = round_down(new_size, fs_info->sectorsize); 1837 1838 if (new_size > old_size) { 1839 trans = btrfs_start_transaction(root, 0); 1840 if (IS_ERR(trans)) { 1841 ret = PTR_ERR(trans); 1842 goto out_finish; 1843 } 1844 ret = btrfs_grow_device(trans, device, new_size); 1845 btrfs_commit_transaction(trans); 1846 } else if (new_size < old_size) { 1847 ret = btrfs_shrink_device(device, new_size); 1848 } /* equal, nothing need to do */ 1849 1850 if (ret == 0 && new_size != old_size) 1851 btrfs_info_in_rcu(fs_info, 1852 "resize device %s (devid %llu) from %llu to %llu", 1853 rcu_str_deref(device->name), device->devid, 1854 old_size, new_size); 1855 out_finish: 1856 btrfs_exclop_finish(fs_info); 1857 out_free: 1858 kfree(vol_args); 1859 out_drop: 1860 mnt_drop_write_file(file); 1861 return ret; 1862 } 1863 1864 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1865 struct user_namespace *mnt_userns, 1866 const char *name, unsigned long fd, int subvol, 1867 bool readonly, 1868 struct btrfs_qgroup_inherit *inherit) 1869 { 1870 int namelen; 1871 int ret = 0; 1872 1873 if (!S_ISDIR(file_inode(file)->i_mode)) 1874 return -ENOTDIR; 1875 1876 ret = mnt_want_write_file(file); 1877 if (ret) 1878 goto out; 1879 1880 namelen = strlen(name); 1881 if (strchr(name, '/')) { 1882 ret = -EINVAL; 1883 goto out_drop_write; 1884 } 1885 1886 if (name[0] == '.' && 1887 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1888 ret = -EEXIST; 1889 goto out_drop_write; 1890 } 1891 1892 if (subvol) { 1893 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, 1894 namelen, NULL, readonly, inherit); 1895 } else { 1896 struct fd src = fdget(fd); 1897 struct inode *src_inode; 1898 if (!src.file) { 1899 ret = -EINVAL; 1900 goto out_drop_write; 1901 } 1902 1903 src_inode = file_inode(src.file); 1904 if (src_inode->i_sb != file_inode(file)->i_sb) { 1905 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1906 "Snapshot src from another FS"); 1907 ret = -EXDEV; 1908 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { 1909 /* 1910 * Subvolume creation is not restricted, but snapshots 1911 * are limited to own subvolumes only 1912 */ 1913 ret = -EPERM; 1914 } else { 1915 ret = btrfs_mksnapshot(&file->f_path, mnt_userns, 1916 name, namelen, 1917 BTRFS_I(src_inode)->root, 1918 readonly, inherit); 1919 } 1920 fdput(src); 1921 } 1922 out_drop_write: 1923 mnt_drop_write_file(file); 1924 out: 1925 return ret; 1926 } 1927 1928 static noinline int btrfs_ioctl_snap_create(struct file *file, 1929 void __user *arg, int subvol) 1930 { 1931 struct btrfs_ioctl_vol_args *vol_args; 1932 int ret; 1933 1934 if (!S_ISDIR(file_inode(file)->i_mode)) 1935 return -ENOTDIR; 1936 1937 vol_args = memdup_user(arg, sizeof(*vol_args)); 1938 if (IS_ERR(vol_args)) 1939 return PTR_ERR(vol_args); 1940 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1941 1942 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1943 vol_args->name, vol_args->fd, subvol, 1944 false, NULL); 1945 1946 kfree(vol_args); 1947 return ret; 1948 } 1949 1950 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1951 void __user *arg, int subvol) 1952 { 1953 struct btrfs_ioctl_vol_args_v2 *vol_args; 1954 int ret; 1955 bool readonly = false; 1956 struct btrfs_qgroup_inherit *inherit = NULL; 1957 1958 if (!S_ISDIR(file_inode(file)->i_mode)) 1959 return -ENOTDIR; 1960 1961 vol_args = memdup_user(arg, sizeof(*vol_args)); 1962 if (IS_ERR(vol_args)) 1963 return PTR_ERR(vol_args); 1964 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1965 1966 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1967 ret = -EOPNOTSUPP; 1968 goto free_args; 1969 } 1970 1971 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1972 readonly = true; 1973 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1974 u64 nums; 1975 1976 if (vol_args->size < sizeof(*inherit) || 1977 vol_args->size > PAGE_SIZE) { 1978 ret = -EINVAL; 1979 goto free_args; 1980 } 1981 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1982 if (IS_ERR(inherit)) { 1983 ret = PTR_ERR(inherit); 1984 goto free_args; 1985 } 1986 1987 if (inherit->num_qgroups > PAGE_SIZE || 1988 inherit->num_ref_copies > PAGE_SIZE || 1989 inherit->num_excl_copies > PAGE_SIZE) { 1990 ret = -EINVAL; 1991 goto free_inherit; 1992 } 1993 1994 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1995 2 * inherit->num_excl_copies; 1996 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1997 ret = -EINVAL; 1998 goto free_inherit; 1999 } 2000 } 2001 2002 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 2003 vol_args->name, vol_args->fd, subvol, 2004 readonly, inherit); 2005 if (ret) 2006 goto free_inherit; 2007 free_inherit: 2008 kfree(inherit); 2009 free_args: 2010 kfree(vol_args); 2011 return ret; 2012 } 2013 2014 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 2015 void __user *arg) 2016 { 2017 struct inode *inode = file_inode(file); 2018 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2019 struct btrfs_root *root = BTRFS_I(inode)->root; 2020 int ret = 0; 2021 u64 flags = 0; 2022 2023 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 2024 return -EINVAL; 2025 2026 down_read(&fs_info->subvol_sem); 2027 if (btrfs_root_readonly(root)) 2028 flags |= BTRFS_SUBVOL_RDONLY; 2029 up_read(&fs_info->subvol_sem); 2030 2031 if (copy_to_user(arg, &flags, sizeof(flags))) 2032 ret = -EFAULT; 2033 2034 return ret; 2035 } 2036 2037 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 2038 void __user *arg) 2039 { 2040 struct inode *inode = file_inode(file); 2041 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2042 struct btrfs_root *root = BTRFS_I(inode)->root; 2043 struct btrfs_trans_handle *trans; 2044 u64 root_flags; 2045 u64 flags; 2046 int ret = 0; 2047 2048 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) 2049 return -EPERM; 2050 2051 ret = mnt_want_write_file(file); 2052 if (ret) 2053 goto out; 2054 2055 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2056 ret = -EINVAL; 2057 goto out_drop_write; 2058 } 2059 2060 if (copy_from_user(&flags, arg, sizeof(flags))) { 2061 ret = -EFAULT; 2062 goto out_drop_write; 2063 } 2064 2065 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2066 ret = -EOPNOTSUPP; 2067 goto out_drop_write; 2068 } 2069 2070 down_write(&fs_info->subvol_sem); 2071 2072 /* nothing to do */ 2073 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2074 goto out_drop_sem; 2075 2076 root_flags = btrfs_root_flags(&root->root_item); 2077 if (flags & BTRFS_SUBVOL_RDONLY) { 2078 btrfs_set_root_flags(&root->root_item, 2079 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2080 } else { 2081 /* 2082 * Block RO -> RW transition if this subvolume is involved in 2083 * send 2084 */ 2085 spin_lock(&root->root_item_lock); 2086 if (root->send_in_progress == 0) { 2087 btrfs_set_root_flags(&root->root_item, 2088 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2089 spin_unlock(&root->root_item_lock); 2090 } else { 2091 spin_unlock(&root->root_item_lock); 2092 btrfs_warn(fs_info, 2093 "Attempt to set subvolume %llu read-write during send", 2094 root->root_key.objectid); 2095 ret = -EPERM; 2096 goto out_drop_sem; 2097 } 2098 } 2099 2100 trans = btrfs_start_transaction(root, 1); 2101 if (IS_ERR(trans)) { 2102 ret = PTR_ERR(trans); 2103 goto out_reset; 2104 } 2105 2106 ret = btrfs_update_root(trans, fs_info->tree_root, 2107 &root->root_key, &root->root_item); 2108 if (ret < 0) { 2109 btrfs_end_transaction(trans); 2110 goto out_reset; 2111 } 2112 2113 ret = btrfs_commit_transaction(trans); 2114 2115 out_reset: 2116 if (ret) 2117 btrfs_set_root_flags(&root->root_item, root_flags); 2118 out_drop_sem: 2119 up_write(&fs_info->subvol_sem); 2120 out_drop_write: 2121 mnt_drop_write_file(file); 2122 out: 2123 return ret; 2124 } 2125 2126 static noinline int key_in_sk(struct btrfs_key *key, 2127 struct btrfs_ioctl_search_key *sk) 2128 { 2129 struct btrfs_key test; 2130 int ret; 2131 2132 test.objectid = sk->min_objectid; 2133 test.type = sk->min_type; 2134 test.offset = sk->min_offset; 2135 2136 ret = btrfs_comp_cpu_keys(key, &test); 2137 if (ret < 0) 2138 return 0; 2139 2140 test.objectid = sk->max_objectid; 2141 test.type = sk->max_type; 2142 test.offset = sk->max_offset; 2143 2144 ret = btrfs_comp_cpu_keys(key, &test); 2145 if (ret > 0) 2146 return 0; 2147 return 1; 2148 } 2149 2150 static noinline int copy_to_sk(struct btrfs_path *path, 2151 struct btrfs_key *key, 2152 struct btrfs_ioctl_search_key *sk, 2153 size_t *buf_size, 2154 char __user *ubuf, 2155 unsigned long *sk_offset, 2156 int *num_found) 2157 { 2158 u64 found_transid; 2159 struct extent_buffer *leaf; 2160 struct btrfs_ioctl_search_header sh; 2161 struct btrfs_key test; 2162 unsigned long item_off; 2163 unsigned long item_len; 2164 int nritems; 2165 int i; 2166 int slot; 2167 int ret = 0; 2168 2169 leaf = path->nodes[0]; 2170 slot = path->slots[0]; 2171 nritems = btrfs_header_nritems(leaf); 2172 2173 if (btrfs_header_generation(leaf) > sk->max_transid) { 2174 i = nritems; 2175 goto advance_key; 2176 } 2177 found_transid = btrfs_header_generation(leaf); 2178 2179 for (i = slot; i < nritems; i++) { 2180 item_off = btrfs_item_ptr_offset(leaf, i); 2181 item_len = btrfs_item_size(leaf, i); 2182 2183 btrfs_item_key_to_cpu(leaf, key, i); 2184 if (!key_in_sk(key, sk)) 2185 continue; 2186 2187 if (sizeof(sh) + item_len > *buf_size) { 2188 if (*num_found) { 2189 ret = 1; 2190 goto out; 2191 } 2192 2193 /* 2194 * return one empty item back for v1, which does not 2195 * handle -EOVERFLOW 2196 */ 2197 2198 *buf_size = sizeof(sh) + item_len; 2199 item_len = 0; 2200 ret = -EOVERFLOW; 2201 } 2202 2203 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2204 ret = 1; 2205 goto out; 2206 } 2207 2208 sh.objectid = key->objectid; 2209 sh.offset = key->offset; 2210 sh.type = key->type; 2211 sh.len = item_len; 2212 sh.transid = found_transid; 2213 2214 /* 2215 * Copy search result header. If we fault then loop again so we 2216 * can fault in the pages and -EFAULT there if there's a 2217 * problem. Otherwise we'll fault and then copy the buffer in 2218 * properly this next time through 2219 */ 2220 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2221 ret = 0; 2222 goto out; 2223 } 2224 2225 *sk_offset += sizeof(sh); 2226 2227 if (item_len) { 2228 char __user *up = ubuf + *sk_offset; 2229 /* 2230 * Copy the item, same behavior as above, but reset the 2231 * * sk_offset so we copy the full thing again. 2232 */ 2233 if (read_extent_buffer_to_user_nofault(leaf, up, 2234 item_off, item_len)) { 2235 ret = 0; 2236 *sk_offset -= sizeof(sh); 2237 goto out; 2238 } 2239 2240 *sk_offset += item_len; 2241 } 2242 (*num_found)++; 2243 2244 if (ret) /* -EOVERFLOW from above */ 2245 goto out; 2246 2247 if (*num_found >= sk->nr_items) { 2248 ret = 1; 2249 goto out; 2250 } 2251 } 2252 advance_key: 2253 ret = 0; 2254 test.objectid = sk->max_objectid; 2255 test.type = sk->max_type; 2256 test.offset = sk->max_offset; 2257 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2258 ret = 1; 2259 else if (key->offset < (u64)-1) 2260 key->offset++; 2261 else if (key->type < (u8)-1) { 2262 key->offset = 0; 2263 key->type++; 2264 } else if (key->objectid < (u64)-1) { 2265 key->offset = 0; 2266 key->type = 0; 2267 key->objectid++; 2268 } else 2269 ret = 1; 2270 out: 2271 /* 2272 * 0: all items from this leaf copied, continue with next 2273 * 1: * more items can be copied, but unused buffer is too small 2274 * * all items were found 2275 * Either way, it will stops the loop which iterates to the next 2276 * leaf 2277 * -EOVERFLOW: item was to large for buffer 2278 * -EFAULT: could not copy extent buffer back to userspace 2279 */ 2280 return ret; 2281 } 2282 2283 static noinline int search_ioctl(struct inode *inode, 2284 struct btrfs_ioctl_search_key *sk, 2285 size_t *buf_size, 2286 char __user *ubuf) 2287 { 2288 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2289 struct btrfs_root *root; 2290 struct btrfs_key key; 2291 struct btrfs_path *path; 2292 int ret; 2293 int num_found = 0; 2294 unsigned long sk_offset = 0; 2295 2296 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2297 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2298 return -EOVERFLOW; 2299 } 2300 2301 path = btrfs_alloc_path(); 2302 if (!path) 2303 return -ENOMEM; 2304 2305 if (sk->tree_id == 0) { 2306 /* search the root of the inode that was passed */ 2307 root = btrfs_grab_root(BTRFS_I(inode)->root); 2308 } else { 2309 root = btrfs_get_fs_root(info, sk->tree_id, true); 2310 if (IS_ERR(root)) { 2311 btrfs_free_path(path); 2312 return PTR_ERR(root); 2313 } 2314 } 2315 2316 key.objectid = sk->min_objectid; 2317 key.type = sk->min_type; 2318 key.offset = sk->min_offset; 2319 2320 while (1) { 2321 ret = -EFAULT; 2322 if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset)) 2323 break; 2324 2325 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2326 if (ret != 0) { 2327 if (ret > 0) 2328 ret = 0; 2329 goto err; 2330 } 2331 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2332 &sk_offset, &num_found); 2333 btrfs_release_path(path); 2334 if (ret) 2335 break; 2336 2337 } 2338 if (ret > 0) 2339 ret = 0; 2340 err: 2341 sk->nr_items = num_found; 2342 btrfs_put_root(root); 2343 btrfs_free_path(path); 2344 return ret; 2345 } 2346 2347 static noinline int btrfs_ioctl_tree_search(struct file *file, 2348 void __user *argp) 2349 { 2350 struct btrfs_ioctl_search_args __user *uargs; 2351 struct btrfs_ioctl_search_key sk; 2352 struct inode *inode; 2353 int ret; 2354 size_t buf_size; 2355 2356 if (!capable(CAP_SYS_ADMIN)) 2357 return -EPERM; 2358 2359 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2360 2361 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2362 return -EFAULT; 2363 2364 buf_size = sizeof(uargs->buf); 2365 2366 inode = file_inode(file); 2367 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2368 2369 /* 2370 * In the origin implementation an overflow is handled by returning a 2371 * search header with a len of zero, so reset ret. 2372 */ 2373 if (ret == -EOVERFLOW) 2374 ret = 0; 2375 2376 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2377 ret = -EFAULT; 2378 return ret; 2379 } 2380 2381 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2382 void __user *argp) 2383 { 2384 struct btrfs_ioctl_search_args_v2 __user *uarg; 2385 struct btrfs_ioctl_search_args_v2 args; 2386 struct inode *inode; 2387 int ret; 2388 size_t buf_size; 2389 const size_t buf_limit = SZ_16M; 2390 2391 if (!capable(CAP_SYS_ADMIN)) 2392 return -EPERM; 2393 2394 /* copy search header and buffer size */ 2395 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2396 if (copy_from_user(&args, uarg, sizeof(args))) 2397 return -EFAULT; 2398 2399 buf_size = args.buf_size; 2400 2401 /* limit result size to 16MB */ 2402 if (buf_size > buf_limit) 2403 buf_size = buf_limit; 2404 2405 inode = file_inode(file); 2406 ret = search_ioctl(inode, &args.key, &buf_size, 2407 (char __user *)(&uarg->buf[0])); 2408 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2409 ret = -EFAULT; 2410 else if (ret == -EOVERFLOW && 2411 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2412 ret = -EFAULT; 2413 2414 return ret; 2415 } 2416 2417 /* 2418 * Search INODE_REFs to identify path name of 'dirid' directory 2419 * in a 'tree_id' tree. and sets path name to 'name'. 2420 */ 2421 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2422 u64 tree_id, u64 dirid, char *name) 2423 { 2424 struct btrfs_root *root; 2425 struct btrfs_key key; 2426 char *ptr; 2427 int ret = -1; 2428 int slot; 2429 int len; 2430 int total_len = 0; 2431 struct btrfs_inode_ref *iref; 2432 struct extent_buffer *l; 2433 struct btrfs_path *path; 2434 2435 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2436 name[0]='\0'; 2437 return 0; 2438 } 2439 2440 path = btrfs_alloc_path(); 2441 if (!path) 2442 return -ENOMEM; 2443 2444 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2445 2446 root = btrfs_get_fs_root(info, tree_id, true); 2447 if (IS_ERR(root)) { 2448 ret = PTR_ERR(root); 2449 root = NULL; 2450 goto out; 2451 } 2452 2453 key.objectid = dirid; 2454 key.type = BTRFS_INODE_REF_KEY; 2455 key.offset = (u64)-1; 2456 2457 while (1) { 2458 ret = btrfs_search_backwards(root, &key, path); 2459 if (ret < 0) 2460 goto out; 2461 else if (ret > 0) { 2462 ret = -ENOENT; 2463 goto out; 2464 } 2465 2466 l = path->nodes[0]; 2467 slot = path->slots[0]; 2468 2469 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2470 len = btrfs_inode_ref_name_len(l, iref); 2471 ptr -= len + 1; 2472 total_len += len + 1; 2473 if (ptr < name) { 2474 ret = -ENAMETOOLONG; 2475 goto out; 2476 } 2477 2478 *(ptr + len) = '/'; 2479 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2480 2481 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2482 break; 2483 2484 btrfs_release_path(path); 2485 key.objectid = key.offset; 2486 key.offset = (u64)-1; 2487 dirid = key.objectid; 2488 } 2489 memmove(name, ptr, total_len); 2490 name[total_len] = '\0'; 2491 ret = 0; 2492 out: 2493 btrfs_put_root(root); 2494 btrfs_free_path(path); 2495 return ret; 2496 } 2497 2498 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, 2499 struct inode *inode, 2500 struct btrfs_ioctl_ino_lookup_user_args *args) 2501 { 2502 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2503 struct super_block *sb = inode->i_sb; 2504 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2505 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2506 u64 dirid = args->dirid; 2507 unsigned long item_off; 2508 unsigned long item_len; 2509 struct btrfs_inode_ref *iref; 2510 struct btrfs_root_ref *rref; 2511 struct btrfs_root *root = NULL; 2512 struct btrfs_path *path; 2513 struct btrfs_key key, key2; 2514 struct extent_buffer *leaf; 2515 struct inode *temp_inode; 2516 char *ptr; 2517 int slot; 2518 int len; 2519 int total_len = 0; 2520 int ret; 2521 2522 path = btrfs_alloc_path(); 2523 if (!path) 2524 return -ENOMEM; 2525 2526 /* 2527 * If the bottom subvolume does not exist directly under upper_limit, 2528 * construct the path in from the bottom up. 2529 */ 2530 if (dirid != upper_limit.objectid) { 2531 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2532 2533 root = btrfs_get_fs_root(fs_info, treeid, true); 2534 if (IS_ERR(root)) { 2535 ret = PTR_ERR(root); 2536 goto out; 2537 } 2538 2539 key.objectid = dirid; 2540 key.type = BTRFS_INODE_REF_KEY; 2541 key.offset = (u64)-1; 2542 while (1) { 2543 ret = btrfs_search_backwards(root, &key, path); 2544 if (ret < 0) 2545 goto out_put; 2546 else if (ret > 0) { 2547 ret = -ENOENT; 2548 goto out_put; 2549 } 2550 2551 leaf = path->nodes[0]; 2552 slot = path->slots[0]; 2553 2554 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2555 len = btrfs_inode_ref_name_len(leaf, iref); 2556 ptr -= len + 1; 2557 total_len += len + 1; 2558 if (ptr < args->path) { 2559 ret = -ENAMETOOLONG; 2560 goto out_put; 2561 } 2562 2563 *(ptr + len) = '/'; 2564 read_extent_buffer(leaf, ptr, 2565 (unsigned long)(iref + 1), len); 2566 2567 /* Check the read+exec permission of this directory */ 2568 ret = btrfs_previous_item(root, path, dirid, 2569 BTRFS_INODE_ITEM_KEY); 2570 if (ret < 0) { 2571 goto out_put; 2572 } else if (ret > 0) { 2573 ret = -ENOENT; 2574 goto out_put; 2575 } 2576 2577 leaf = path->nodes[0]; 2578 slot = path->slots[0]; 2579 btrfs_item_key_to_cpu(leaf, &key2, slot); 2580 if (key2.objectid != dirid) { 2581 ret = -ENOENT; 2582 goto out_put; 2583 } 2584 2585 temp_inode = btrfs_iget(sb, key2.objectid, root); 2586 if (IS_ERR(temp_inode)) { 2587 ret = PTR_ERR(temp_inode); 2588 goto out_put; 2589 } 2590 ret = inode_permission(mnt_userns, temp_inode, 2591 MAY_READ | MAY_EXEC); 2592 iput(temp_inode); 2593 if (ret) { 2594 ret = -EACCES; 2595 goto out_put; 2596 } 2597 2598 if (key.offset == upper_limit.objectid) 2599 break; 2600 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2601 ret = -EACCES; 2602 goto out_put; 2603 } 2604 2605 btrfs_release_path(path); 2606 key.objectid = key.offset; 2607 key.offset = (u64)-1; 2608 dirid = key.objectid; 2609 } 2610 2611 memmove(args->path, ptr, total_len); 2612 args->path[total_len] = '\0'; 2613 btrfs_put_root(root); 2614 root = NULL; 2615 btrfs_release_path(path); 2616 } 2617 2618 /* Get the bottom subvolume's name from ROOT_REF */ 2619 key.objectid = treeid; 2620 key.type = BTRFS_ROOT_REF_KEY; 2621 key.offset = args->treeid; 2622 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2623 if (ret < 0) { 2624 goto out; 2625 } else if (ret > 0) { 2626 ret = -ENOENT; 2627 goto out; 2628 } 2629 2630 leaf = path->nodes[0]; 2631 slot = path->slots[0]; 2632 btrfs_item_key_to_cpu(leaf, &key, slot); 2633 2634 item_off = btrfs_item_ptr_offset(leaf, slot); 2635 item_len = btrfs_item_size(leaf, slot); 2636 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2637 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2638 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2639 ret = -EINVAL; 2640 goto out; 2641 } 2642 2643 /* Copy subvolume's name */ 2644 item_off += sizeof(struct btrfs_root_ref); 2645 item_len -= sizeof(struct btrfs_root_ref); 2646 read_extent_buffer(leaf, args->name, item_off, item_len); 2647 args->name[item_len] = 0; 2648 2649 out_put: 2650 btrfs_put_root(root); 2651 out: 2652 btrfs_free_path(path); 2653 return ret; 2654 } 2655 2656 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2657 void __user *argp) 2658 { 2659 struct btrfs_ioctl_ino_lookup_args *args; 2660 struct inode *inode; 2661 int ret = 0; 2662 2663 args = memdup_user(argp, sizeof(*args)); 2664 if (IS_ERR(args)) 2665 return PTR_ERR(args); 2666 2667 inode = file_inode(file); 2668 2669 /* 2670 * Unprivileged query to obtain the containing subvolume root id. The 2671 * path is reset so it's consistent with btrfs_search_path_in_tree. 2672 */ 2673 if (args->treeid == 0) 2674 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2675 2676 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2677 args->name[0] = 0; 2678 goto out; 2679 } 2680 2681 if (!capable(CAP_SYS_ADMIN)) { 2682 ret = -EPERM; 2683 goto out; 2684 } 2685 2686 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2687 args->treeid, args->objectid, 2688 args->name); 2689 2690 out: 2691 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2692 ret = -EFAULT; 2693 2694 kfree(args); 2695 return ret; 2696 } 2697 2698 /* 2699 * Version of ino_lookup ioctl (unprivileged) 2700 * 2701 * The main differences from ino_lookup ioctl are: 2702 * 2703 * 1. Read + Exec permission will be checked using inode_permission() during 2704 * path construction. -EACCES will be returned in case of failure. 2705 * 2. Path construction will be stopped at the inode number which corresponds 2706 * to the fd with which this ioctl is called. If constructed path does not 2707 * exist under fd's inode, -EACCES will be returned. 2708 * 3. The name of bottom subvolume is also searched and filled. 2709 */ 2710 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2711 { 2712 struct btrfs_ioctl_ino_lookup_user_args *args; 2713 struct inode *inode; 2714 int ret; 2715 2716 args = memdup_user(argp, sizeof(*args)); 2717 if (IS_ERR(args)) 2718 return PTR_ERR(args); 2719 2720 inode = file_inode(file); 2721 2722 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2723 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2724 /* 2725 * The subvolume does not exist under fd with which this is 2726 * called 2727 */ 2728 kfree(args); 2729 return -EACCES; 2730 } 2731 2732 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); 2733 2734 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2735 ret = -EFAULT; 2736 2737 kfree(args); 2738 return ret; 2739 } 2740 2741 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2742 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2743 { 2744 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2745 struct btrfs_fs_info *fs_info; 2746 struct btrfs_root *root; 2747 struct btrfs_path *path; 2748 struct btrfs_key key; 2749 struct btrfs_root_item *root_item; 2750 struct btrfs_root_ref *rref; 2751 struct extent_buffer *leaf; 2752 unsigned long item_off; 2753 unsigned long item_len; 2754 struct inode *inode; 2755 int slot; 2756 int ret = 0; 2757 2758 path = btrfs_alloc_path(); 2759 if (!path) 2760 return -ENOMEM; 2761 2762 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2763 if (!subvol_info) { 2764 btrfs_free_path(path); 2765 return -ENOMEM; 2766 } 2767 2768 inode = file_inode(file); 2769 fs_info = BTRFS_I(inode)->root->fs_info; 2770 2771 /* Get root_item of inode's subvolume */ 2772 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2773 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2774 if (IS_ERR(root)) { 2775 ret = PTR_ERR(root); 2776 goto out_free; 2777 } 2778 root_item = &root->root_item; 2779 2780 subvol_info->treeid = key.objectid; 2781 2782 subvol_info->generation = btrfs_root_generation(root_item); 2783 subvol_info->flags = btrfs_root_flags(root_item); 2784 2785 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2786 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2787 BTRFS_UUID_SIZE); 2788 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2789 BTRFS_UUID_SIZE); 2790 2791 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2792 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2793 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2794 2795 subvol_info->otransid = btrfs_root_otransid(root_item); 2796 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2797 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2798 2799 subvol_info->stransid = btrfs_root_stransid(root_item); 2800 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2801 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2802 2803 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2804 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2805 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2806 2807 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2808 /* Search root tree for ROOT_BACKREF of this subvolume */ 2809 key.type = BTRFS_ROOT_BACKREF_KEY; 2810 key.offset = 0; 2811 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2812 if (ret < 0) { 2813 goto out; 2814 } else if (path->slots[0] >= 2815 btrfs_header_nritems(path->nodes[0])) { 2816 ret = btrfs_next_leaf(fs_info->tree_root, path); 2817 if (ret < 0) { 2818 goto out; 2819 } else if (ret > 0) { 2820 ret = -EUCLEAN; 2821 goto out; 2822 } 2823 } 2824 2825 leaf = path->nodes[0]; 2826 slot = path->slots[0]; 2827 btrfs_item_key_to_cpu(leaf, &key, slot); 2828 if (key.objectid == subvol_info->treeid && 2829 key.type == BTRFS_ROOT_BACKREF_KEY) { 2830 subvol_info->parent_id = key.offset; 2831 2832 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2833 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2834 2835 item_off = btrfs_item_ptr_offset(leaf, slot) 2836 + sizeof(struct btrfs_root_ref); 2837 item_len = btrfs_item_size(leaf, slot) 2838 - sizeof(struct btrfs_root_ref); 2839 read_extent_buffer(leaf, subvol_info->name, 2840 item_off, item_len); 2841 } else { 2842 ret = -ENOENT; 2843 goto out; 2844 } 2845 } 2846 2847 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2848 ret = -EFAULT; 2849 2850 out: 2851 btrfs_put_root(root); 2852 out_free: 2853 btrfs_free_path(path); 2854 kfree(subvol_info); 2855 return ret; 2856 } 2857 2858 /* 2859 * Return ROOT_REF information of the subvolume containing this inode 2860 * except the subvolume name. 2861 */ 2862 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2863 { 2864 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2865 struct btrfs_root_ref *rref; 2866 struct btrfs_root *root; 2867 struct btrfs_path *path; 2868 struct btrfs_key key; 2869 struct extent_buffer *leaf; 2870 struct inode *inode; 2871 u64 objectid; 2872 int slot; 2873 int ret; 2874 u8 found; 2875 2876 path = btrfs_alloc_path(); 2877 if (!path) 2878 return -ENOMEM; 2879 2880 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2881 if (IS_ERR(rootrefs)) { 2882 btrfs_free_path(path); 2883 return PTR_ERR(rootrefs); 2884 } 2885 2886 inode = file_inode(file); 2887 root = BTRFS_I(inode)->root->fs_info->tree_root; 2888 objectid = BTRFS_I(inode)->root->root_key.objectid; 2889 2890 key.objectid = objectid; 2891 key.type = BTRFS_ROOT_REF_KEY; 2892 key.offset = rootrefs->min_treeid; 2893 found = 0; 2894 2895 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2896 if (ret < 0) { 2897 goto out; 2898 } else if (path->slots[0] >= 2899 btrfs_header_nritems(path->nodes[0])) { 2900 ret = btrfs_next_leaf(root, path); 2901 if (ret < 0) { 2902 goto out; 2903 } else if (ret > 0) { 2904 ret = -EUCLEAN; 2905 goto out; 2906 } 2907 } 2908 while (1) { 2909 leaf = path->nodes[0]; 2910 slot = path->slots[0]; 2911 2912 btrfs_item_key_to_cpu(leaf, &key, slot); 2913 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2914 ret = 0; 2915 goto out; 2916 } 2917 2918 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2919 ret = -EOVERFLOW; 2920 goto out; 2921 } 2922 2923 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2924 rootrefs->rootref[found].treeid = key.offset; 2925 rootrefs->rootref[found].dirid = 2926 btrfs_root_ref_dirid(leaf, rref); 2927 found++; 2928 2929 ret = btrfs_next_item(root, path); 2930 if (ret < 0) { 2931 goto out; 2932 } else if (ret > 0) { 2933 ret = -EUCLEAN; 2934 goto out; 2935 } 2936 } 2937 2938 out: 2939 if (!ret || ret == -EOVERFLOW) { 2940 rootrefs->num_items = found; 2941 /* update min_treeid for next search */ 2942 if (found) 2943 rootrefs->min_treeid = 2944 rootrefs->rootref[found - 1].treeid + 1; 2945 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2946 ret = -EFAULT; 2947 } 2948 2949 kfree(rootrefs); 2950 btrfs_free_path(path); 2951 2952 return ret; 2953 } 2954 2955 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2956 void __user *arg, 2957 bool destroy_v2) 2958 { 2959 struct dentry *parent = file->f_path.dentry; 2960 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2961 struct dentry *dentry; 2962 struct inode *dir = d_inode(parent); 2963 struct inode *inode; 2964 struct btrfs_root *root = BTRFS_I(dir)->root; 2965 struct btrfs_root *dest = NULL; 2966 struct btrfs_ioctl_vol_args *vol_args = NULL; 2967 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2968 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 2969 char *subvol_name, *subvol_name_ptr = NULL; 2970 int subvol_namelen; 2971 int err = 0; 2972 bool destroy_parent = false; 2973 2974 if (destroy_v2) { 2975 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2976 if (IS_ERR(vol_args2)) 2977 return PTR_ERR(vol_args2); 2978 2979 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2980 err = -EOPNOTSUPP; 2981 goto out; 2982 } 2983 2984 /* 2985 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2986 * name, same as v1 currently does. 2987 */ 2988 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2989 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2990 subvol_name = vol_args2->name; 2991 2992 err = mnt_want_write_file(file); 2993 if (err) 2994 goto out; 2995 } else { 2996 struct inode *old_dir; 2997 2998 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2999 err = -EINVAL; 3000 goto out; 3001 } 3002 3003 err = mnt_want_write_file(file); 3004 if (err) 3005 goto out; 3006 3007 dentry = btrfs_get_dentry(fs_info->sb, 3008 BTRFS_FIRST_FREE_OBJECTID, 3009 vol_args2->subvolid, 0, 0); 3010 if (IS_ERR(dentry)) { 3011 err = PTR_ERR(dentry); 3012 goto out_drop_write; 3013 } 3014 3015 /* 3016 * Change the default parent since the subvolume being 3017 * deleted can be outside of the current mount point. 3018 */ 3019 parent = btrfs_get_parent(dentry); 3020 3021 /* 3022 * At this point dentry->d_name can point to '/' if the 3023 * subvolume we want to destroy is outsite of the 3024 * current mount point, so we need to release the 3025 * current dentry and execute the lookup to return a new 3026 * one with ->d_name pointing to the 3027 * <mount point>/subvol_name. 3028 */ 3029 dput(dentry); 3030 if (IS_ERR(parent)) { 3031 err = PTR_ERR(parent); 3032 goto out_drop_write; 3033 } 3034 old_dir = dir; 3035 dir = d_inode(parent); 3036 3037 /* 3038 * If v2 was used with SPEC_BY_ID, a new parent was 3039 * allocated since the subvolume can be outside of the 3040 * current mount point. Later on we need to release this 3041 * new parent dentry. 3042 */ 3043 destroy_parent = true; 3044 3045 /* 3046 * On idmapped mounts, deletion via subvolid is 3047 * restricted to subvolumes that are immediate 3048 * ancestors of the inode referenced by the file 3049 * descriptor in the ioctl. Otherwise the idmapping 3050 * could potentially be abused to delete subvolumes 3051 * anywhere in the filesystem the user wouldn't be able 3052 * to delete without an idmapped mount. 3053 */ 3054 if (old_dir != dir && mnt_userns != &init_user_ns) { 3055 err = -EOPNOTSUPP; 3056 goto free_parent; 3057 } 3058 3059 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 3060 fs_info, vol_args2->subvolid); 3061 if (IS_ERR(subvol_name_ptr)) { 3062 err = PTR_ERR(subvol_name_ptr); 3063 goto free_parent; 3064 } 3065 /* subvol_name_ptr is already nul terminated */ 3066 subvol_name = (char *)kbasename(subvol_name_ptr); 3067 } 3068 } else { 3069 vol_args = memdup_user(arg, sizeof(*vol_args)); 3070 if (IS_ERR(vol_args)) 3071 return PTR_ERR(vol_args); 3072 3073 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3074 subvol_name = vol_args->name; 3075 3076 err = mnt_want_write_file(file); 3077 if (err) 3078 goto out; 3079 } 3080 3081 subvol_namelen = strlen(subvol_name); 3082 3083 if (strchr(subvol_name, '/') || 3084 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3085 err = -EINVAL; 3086 goto free_subvol_name; 3087 } 3088 3089 if (!S_ISDIR(dir->i_mode)) { 3090 err = -ENOTDIR; 3091 goto free_subvol_name; 3092 } 3093 3094 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3095 if (err == -EINTR) 3096 goto free_subvol_name; 3097 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); 3098 if (IS_ERR(dentry)) { 3099 err = PTR_ERR(dentry); 3100 goto out_unlock_dir; 3101 } 3102 3103 if (d_really_is_negative(dentry)) { 3104 err = -ENOENT; 3105 goto out_dput; 3106 } 3107 3108 inode = d_inode(dentry); 3109 dest = BTRFS_I(inode)->root; 3110 if (!capable(CAP_SYS_ADMIN)) { 3111 /* 3112 * Regular user. Only allow this with a special mount 3113 * option, when the user has write+exec access to the 3114 * subvol root, and when rmdir(2) would have been 3115 * allowed. 3116 * 3117 * Note that this is _not_ check that the subvol is 3118 * empty or doesn't contain data that we wouldn't 3119 * otherwise be able to delete. 3120 * 3121 * Users who want to delete empty subvols should try 3122 * rmdir(2). 3123 */ 3124 err = -EPERM; 3125 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3126 goto out_dput; 3127 3128 /* 3129 * Do not allow deletion if the parent dir is the same 3130 * as the dir to be deleted. That means the ioctl 3131 * must be called on the dentry referencing the root 3132 * of the subvol, not a random directory contained 3133 * within it. 3134 */ 3135 err = -EINVAL; 3136 if (root == dest) 3137 goto out_dput; 3138 3139 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); 3140 if (err) 3141 goto out_dput; 3142 } 3143 3144 /* check if subvolume may be deleted by a user */ 3145 err = btrfs_may_delete(mnt_userns, dir, dentry, 1); 3146 if (err) 3147 goto out_dput; 3148 3149 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3150 err = -EINVAL; 3151 goto out_dput; 3152 } 3153 3154 btrfs_inode_lock(inode, 0); 3155 err = btrfs_delete_subvolume(dir, dentry); 3156 btrfs_inode_unlock(inode, 0); 3157 if (!err) 3158 d_delete_notify(dir, dentry); 3159 3160 out_dput: 3161 dput(dentry); 3162 out_unlock_dir: 3163 btrfs_inode_unlock(dir, 0); 3164 free_subvol_name: 3165 kfree(subvol_name_ptr); 3166 free_parent: 3167 if (destroy_parent) 3168 dput(parent); 3169 out_drop_write: 3170 mnt_drop_write_file(file); 3171 out: 3172 kfree(vol_args2); 3173 kfree(vol_args); 3174 return err; 3175 } 3176 3177 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3178 { 3179 struct inode *inode = file_inode(file); 3180 struct btrfs_root *root = BTRFS_I(inode)->root; 3181 struct btrfs_ioctl_defrag_range_args range = {0}; 3182 int ret; 3183 3184 ret = mnt_want_write_file(file); 3185 if (ret) 3186 return ret; 3187 3188 if (btrfs_root_readonly(root)) { 3189 ret = -EROFS; 3190 goto out; 3191 } 3192 3193 switch (inode->i_mode & S_IFMT) { 3194 case S_IFDIR: 3195 if (!capable(CAP_SYS_ADMIN)) { 3196 ret = -EPERM; 3197 goto out; 3198 } 3199 ret = btrfs_defrag_root(root); 3200 break; 3201 case S_IFREG: 3202 /* 3203 * Note that this does not check the file descriptor for write 3204 * access. This prevents defragmenting executables that are 3205 * running and allows defrag on files open in read-only mode. 3206 */ 3207 if (!capable(CAP_SYS_ADMIN) && 3208 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3209 ret = -EPERM; 3210 goto out; 3211 } 3212 3213 if (argp) { 3214 if (copy_from_user(&range, argp, sizeof(range))) { 3215 ret = -EFAULT; 3216 goto out; 3217 } 3218 /* compression requires us to start the IO */ 3219 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3220 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 3221 range.extent_thresh = (u32)-1; 3222 } 3223 } else { 3224 /* the rest are all set to zero by kzalloc */ 3225 range.len = (u64)-1; 3226 } 3227 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 3228 &range, BTRFS_OLDEST_GENERATION, 0); 3229 if (ret > 0) 3230 ret = 0; 3231 break; 3232 default: 3233 ret = -EINVAL; 3234 } 3235 out: 3236 mnt_drop_write_file(file); 3237 return ret; 3238 } 3239 3240 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3241 { 3242 struct btrfs_ioctl_vol_args *vol_args; 3243 bool restore_op = false; 3244 int ret; 3245 3246 if (!capable(CAP_SYS_ADMIN)) 3247 return -EPERM; 3248 3249 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 3250 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3251 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3252 3253 /* 3254 * We can do the device add because we have a paused balanced, 3255 * change the exclusive op type and remember we should bring 3256 * back the paused balance 3257 */ 3258 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 3259 btrfs_exclop_start_unlock(fs_info); 3260 restore_op = true; 3261 } 3262 3263 vol_args = memdup_user(arg, sizeof(*vol_args)); 3264 if (IS_ERR(vol_args)) { 3265 ret = PTR_ERR(vol_args); 3266 goto out; 3267 } 3268 3269 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3270 ret = btrfs_init_new_device(fs_info, vol_args->name); 3271 3272 if (!ret) 3273 btrfs_info(fs_info, "disk added %s", vol_args->name); 3274 3275 kfree(vol_args); 3276 out: 3277 if (restore_op) 3278 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 3279 else 3280 btrfs_exclop_finish(fs_info); 3281 return ret; 3282 } 3283 3284 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3285 { 3286 BTRFS_DEV_LOOKUP_ARGS(args); 3287 struct inode *inode = file_inode(file); 3288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3289 struct btrfs_ioctl_vol_args_v2 *vol_args; 3290 struct block_device *bdev = NULL; 3291 fmode_t mode; 3292 int ret; 3293 bool cancel = false; 3294 3295 if (!capable(CAP_SYS_ADMIN)) 3296 return -EPERM; 3297 3298 vol_args = memdup_user(arg, sizeof(*vol_args)); 3299 if (IS_ERR(vol_args)) 3300 return PTR_ERR(vol_args); 3301 3302 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3303 ret = -EOPNOTSUPP; 3304 goto out; 3305 } 3306 3307 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3308 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3309 args.devid = vol_args->devid; 3310 } else if (!strcmp("cancel", vol_args->name)) { 3311 cancel = true; 3312 } else { 3313 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3314 if (ret) 3315 goto out; 3316 } 3317 3318 ret = mnt_want_write_file(file); 3319 if (ret) 3320 goto out; 3321 3322 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3323 cancel); 3324 if (ret) 3325 goto err_drop; 3326 3327 /* Exclusive operation is now claimed */ 3328 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3329 3330 btrfs_exclop_finish(fs_info); 3331 3332 if (!ret) { 3333 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3334 btrfs_info(fs_info, "device deleted: id %llu", 3335 vol_args->devid); 3336 else 3337 btrfs_info(fs_info, "device deleted: %s", 3338 vol_args->name); 3339 } 3340 err_drop: 3341 mnt_drop_write_file(file); 3342 if (bdev) 3343 blkdev_put(bdev, mode); 3344 out: 3345 btrfs_put_dev_args_from_path(&args); 3346 kfree(vol_args); 3347 return ret; 3348 } 3349 3350 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3351 { 3352 BTRFS_DEV_LOOKUP_ARGS(args); 3353 struct inode *inode = file_inode(file); 3354 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3355 struct btrfs_ioctl_vol_args *vol_args; 3356 struct block_device *bdev = NULL; 3357 fmode_t mode; 3358 int ret; 3359 bool cancel = false; 3360 3361 if (!capable(CAP_SYS_ADMIN)) 3362 return -EPERM; 3363 3364 vol_args = memdup_user(arg, sizeof(*vol_args)); 3365 if (IS_ERR(vol_args)) 3366 return PTR_ERR(vol_args); 3367 3368 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3369 if (!strcmp("cancel", vol_args->name)) { 3370 cancel = true; 3371 } else { 3372 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3373 if (ret) 3374 goto out; 3375 } 3376 3377 ret = mnt_want_write_file(file); 3378 if (ret) 3379 goto out; 3380 3381 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3382 cancel); 3383 if (ret == 0) { 3384 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3385 if (!ret) 3386 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3387 btrfs_exclop_finish(fs_info); 3388 } 3389 3390 mnt_drop_write_file(file); 3391 if (bdev) 3392 blkdev_put(bdev, mode); 3393 out: 3394 btrfs_put_dev_args_from_path(&args); 3395 kfree(vol_args); 3396 return ret; 3397 } 3398 3399 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3400 void __user *arg) 3401 { 3402 struct btrfs_ioctl_fs_info_args *fi_args; 3403 struct btrfs_device *device; 3404 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3405 u64 flags_in; 3406 int ret = 0; 3407 3408 fi_args = memdup_user(arg, sizeof(*fi_args)); 3409 if (IS_ERR(fi_args)) 3410 return PTR_ERR(fi_args); 3411 3412 flags_in = fi_args->flags; 3413 memset(fi_args, 0, sizeof(*fi_args)); 3414 3415 rcu_read_lock(); 3416 fi_args->num_devices = fs_devices->num_devices; 3417 3418 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3419 if (device->devid > fi_args->max_id) 3420 fi_args->max_id = device->devid; 3421 } 3422 rcu_read_unlock(); 3423 3424 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3425 fi_args->nodesize = fs_info->nodesize; 3426 fi_args->sectorsize = fs_info->sectorsize; 3427 fi_args->clone_alignment = fs_info->sectorsize; 3428 3429 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3430 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3431 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3432 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3433 } 3434 3435 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3436 fi_args->generation = fs_info->generation; 3437 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3438 } 3439 3440 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3441 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3442 sizeof(fi_args->metadata_uuid)); 3443 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3444 } 3445 3446 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3447 ret = -EFAULT; 3448 3449 kfree(fi_args); 3450 return ret; 3451 } 3452 3453 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3454 void __user *arg) 3455 { 3456 BTRFS_DEV_LOOKUP_ARGS(args); 3457 struct btrfs_ioctl_dev_info_args *di_args; 3458 struct btrfs_device *dev; 3459 int ret = 0; 3460 3461 di_args = memdup_user(arg, sizeof(*di_args)); 3462 if (IS_ERR(di_args)) 3463 return PTR_ERR(di_args); 3464 3465 args.devid = di_args->devid; 3466 if (!btrfs_is_empty_uuid(di_args->uuid)) 3467 args.uuid = di_args->uuid; 3468 3469 rcu_read_lock(); 3470 dev = btrfs_find_device(fs_info->fs_devices, &args); 3471 if (!dev) { 3472 ret = -ENODEV; 3473 goto out; 3474 } 3475 3476 di_args->devid = dev->devid; 3477 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3478 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3479 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3480 if (dev->name) { 3481 strncpy(di_args->path, rcu_str_deref(dev->name), 3482 sizeof(di_args->path) - 1); 3483 di_args->path[sizeof(di_args->path) - 1] = 0; 3484 } else { 3485 di_args->path[0] = '\0'; 3486 } 3487 3488 out: 3489 rcu_read_unlock(); 3490 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3491 ret = -EFAULT; 3492 3493 kfree(di_args); 3494 return ret; 3495 } 3496 3497 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3498 { 3499 struct inode *inode = file_inode(file); 3500 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3501 struct btrfs_root *root = BTRFS_I(inode)->root; 3502 struct btrfs_root *new_root; 3503 struct btrfs_dir_item *di; 3504 struct btrfs_trans_handle *trans; 3505 struct btrfs_path *path = NULL; 3506 struct btrfs_disk_key disk_key; 3507 u64 objectid = 0; 3508 u64 dir_id; 3509 int ret; 3510 3511 if (!capable(CAP_SYS_ADMIN)) 3512 return -EPERM; 3513 3514 ret = mnt_want_write_file(file); 3515 if (ret) 3516 return ret; 3517 3518 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3519 ret = -EFAULT; 3520 goto out; 3521 } 3522 3523 if (!objectid) 3524 objectid = BTRFS_FS_TREE_OBJECTID; 3525 3526 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3527 if (IS_ERR(new_root)) { 3528 ret = PTR_ERR(new_root); 3529 goto out; 3530 } 3531 if (!is_fstree(new_root->root_key.objectid)) { 3532 ret = -ENOENT; 3533 goto out_free; 3534 } 3535 3536 path = btrfs_alloc_path(); 3537 if (!path) { 3538 ret = -ENOMEM; 3539 goto out_free; 3540 } 3541 3542 trans = btrfs_start_transaction(root, 1); 3543 if (IS_ERR(trans)) { 3544 ret = PTR_ERR(trans); 3545 goto out_free; 3546 } 3547 3548 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3549 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3550 dir_id, "default", 7, 1); 3551 if (IS_ERR_OR_NULL(di)) { 3552 btrfs_release_path(path); 3553 btrfs_end_transaction(trans); 3554 btrfs_err(fs_info, 3555 "Umm, you don't have the default diritem, this isn't going to work"); 3556 ret = -ENOENT; 3557 goto out_free; 3558 } 3559 3560 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3561 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3562 btrfs_mark_buffer_dirty(path->nodes[0]); 3563 btrfs_release_path(path); 3564 3565 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3566 btrfs_end_transaction(trans); 3567 out_free: 3568 btrfs_put_root(new_root); 3569 btrfs_free_path(path); 3570 out: 3571 mnt_drop_write_file(file); 3572 return ret; 3573 } 3574 3575 static void get_block_group_info(struct list_head *groups_list, 3576 struct btrfs_ioctl_space_info *space) 3577 { 3578 struct btrfs_block_group *block_group; 3579 3580 space->total_bytes = 0; 3581 space->used_bytes = 0; 3582 space->flags = 0; 3583 list_for_each_entry(block_group, groups_list, list) { 3584 space->flags = block_group->flags; 3585 space->total_bytes += block_group->length; 3586 space->used_bytes += block_group->used; 3587 } 3588 } 3589 3590 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3591 void __user *arg) 3592 { 3593 struct btrfs_ioctl_space_args space_args; 3594 struct btrfs_ioctl_space_info space; 3595 struct btrfs_ioctl_space_info *dest; 3596 struct btrfs_ioctl_space_info *dest_orig; 3597 struct btrfs_ioctl_space_info __user *user_dest; 3598 struct btrfs_space_info *info; 3599 static const u64 types[] = { 3600 BTRFS_BLOCK_GROUP_DATA, 3601 BTRFS_BLOCK_GROUP_SYSTEM, 3602 BTRFS_BLOCK_GROUP_METADATA, 3603 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3604 }; 3605 int num_types = 4; 3606 int alloc_size; 3607 int ret = 0; 3608 u64 slot_count = 0; 3609 int i, c; 3610 3611 if (copy_from_user(&space_args, 3612 (struct btrfs_ioctl_space_args __user *)arg, 3613 sizeof(space_args))) 3614 return -EFAULT; 3615 3616 for (i = 0; i < num_types; i++) { 3617 struct btrfs_space_info *tmp; 3618 3619 info = NULL; 3620 list_for_each_entry(tmp, &fs_info->space_info, list) { 3621 if (tmp->flags == types[i]) { 3622 info = tmp; 3623 break; 3624 } 3625 } 3626 3627 if (!info) 3628 continue; 3629 3630 down_read(&info->groups_sem); 3631 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3632 if (!list_empty(&info->block_groups[c])) 3633 slot_count++; 3634 } 3635 up_read(&info->groups_sem); 3636 } 3637 3638 /* 3639 * Global block reserve, exported as a space_info 3640 */ 3641 slot_count++; 3642 3643 /* space_slots == 0 means they are asking for a count */ 3644 if (space_args.space_slots == 0) { 3645 space_args.total_spaces = slot_count; 3646 goto out; 3647 } 3648 3649 slot_count = min_t(u64, space_args.space_slots, slot_count); 3650 3651 alloc_size = sizeof(*dest) * slot_count; 3652 3653 /* we generally have at most 6 or so space infos, one for each raid 3654 * level. So, a whole page should be more than enough for everyone 3655 */ 3656 if (alloc_size > PAGE_SIZE) 3657 return -ENOMEM; 3658 3659 space_args.total_spaces = 0; 3660 dest = kmalloc(alloc_size, GFP_KERNEL); 3661 if (!dest) 3662 return -ENOMEM; 3663 dest_orig = dest; 3664 3665 /* now we have a buffer to copy into */ 3666 for (i = 0; i < num_types; i++) { 3667 struct btrfs_space_info *tmp; 3668 3669 if (!slot_count) 3670 break; 3671 3672 info = NULL; 3673 list_for_each_entry(tmp, &fs_info->space_info, list) { 3674 if (tmp->flags == types[i]) { 3675 info = tmp; 3676 break; 3677 } 3678 } 3679 3680 if (!info) 3681 continue; 3682 down_read(&info->groups_sem); 3683 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3684 if (!list_empty(&info->block_groups[c])) { 3685 get_block_group_info(&info->block_groups[c], 3686 &space); 3687 memcpy(dest, &space, sizeof(space)); 3688 dest++; 3689 space_args.total_spaces++; 3690 slot_count--; 3691 } 3692 if (!slot_count) 3693 break; 3694 } 3695 up_read(&info->groups_sem); 3696 } 3697 3698 /* 3699 * Add global block reserve 3700 */ 3701 if (slot_count) { 3702 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3703 3704 spin_lock(&block_rsv->lock); 3705 space.total_bytes = block_rsv->size; 3706 space.used_bytes = block_rsv->size - block_rsv->reserved; 3707 spin_unlock(&block_rsv->lock); 3708 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3709 memcpy(dest, &space, sizeof(space)); 3710 space_args.total_spaces++; 3711 } 3712 3713 user_dest = (struct btrfs_ioctl_space_info __user *) 3714 (arg + sizeof(struct btrfs_ioctl_space_args)); 3715 3716 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3717 ret = -EFAULT; 3718 3719 kfree(dest_orig); 3720 out: 3721 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3722 ret = -EFAULT; 3723 3724 return ret; 3725 } 3726 3727 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3728 void __user *argp) 3729 { 3730 struct btrfs_trans_handle *trans; 3731 u64 transid; 3732 3733 trans = btrfs_attach_transaction_barrier(root); 3734 if (IS_ERR(trans)) { 3735 if (PTR_ERR(trans) != -ENOENT) 3736 return PTR_ERR(trans); 3737 3738 /* No running transaction, don't bother */ 3739 transid = root->fs_info->last_trans_committed; 3740 goto out; 3741 } 3742 transid = trans->transid; 3743 btrfs_commit_transaction_async(trans); 3744 out: 3745 if (argp) 3746 if (copy_to_user(argp, &transid, sizeof(transid))) 3747 return -EFAULT; 3748 return 0; 3749 } 3750 3751 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3752 void __user *argp) 3753 { 3754 u64 transid; 3755 3756 if (argp) { 3757 if (copy_from_user(&transid, argp, sizeof(transid))) 3758 return -EFAULT; 3759 } else { 3760 transid = 0; /* current trans */ 3761 } 3762 return btrfs_wait_for_commit(fs_info, transid); 3763 } 3764 3765 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3766 { 3767 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3768 struct btrfs_ioctl_scrub_args *sa; 3769 int ret; 3770 3771 if (!capable(CAP_SYS_ADMIN)) 3772 return -EPERM; 3773 3774 sa = memdup_user(arg, sizeof(*sa)); 3775 if (IS_ERR(sa)) 3776 return PTR_ERR(sa); 3777 3778 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3779 ret = mnt_want_write_file(file); 3780 if (ret) 3781 goto out; 3782 } 3783 3784 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3785 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3786 0); 3787 3788 /* 3789 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3790 * error. This is important as it allows user space to know how much 3791 * progress scrub has done. For example, if scrub is canceled we get 3792 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3793 * space. Later user space can inspect the progress from the structure 3794 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3795 * previously (btrfs-progs does this). 3796 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3797 * then return -EFAULT to signal the structure was not copied or it may 3798 * be corrupt and unreliable due to a partial copy. 3799 */ 3800 if (copy_to_user(arg, sa, sizeof(*sa))) 3801 ret = -EFAULT; 3802 3803 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3804 mnt_drop_write_file(file); 3805 out: 3806 kfree(sa); 3807 return ret; 3808 } 3809 3810 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3811 { 3812 if (!capable(CAP_SYS_ADMIN)) 3813 return -EPERM; 3814 3815 return btrfs_scrub_cancel(fs_info); 3816 } 3817 3818 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3819 void __user *arg) 3820 { 3821 struct btrfs_ioctl_scrub_args *sa; 3822 int ret; 3823 3824 if (!capable(CAP_SYS_ADMIN)) 3825 return -EPERM; 3826 3827 sa = memdup_user(arg, sizeof(*sa)); 3828 if (IS_ERR(sa)) 3829 return PTR_ERR(sa); 3830 3831 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3832 3833 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3834 ret = -EFAULT; 3835 3836 kfree(sa); 3837 return ret; 3838 } 3839 3840 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3841 void __user *arg) 3842 { 3843 struct btrfs_ioctl_get_dev_stats *sa; 3844 int ret; 3845 3846 sa = memdup_user(arg, sizeof(*sa)); 3847 if (IS_ERR(sa)) 3848 return PTR_ERR(sa); 3849 3850 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3851 kfree(sa); 3852 return -EPERM; 3853 } 3854 3855 ret = btrfs_get_dev_stats(fs_info, sa); 3856 3857 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3858 ret = -EFAULT; 3859 3860 kfree(sa); 3861 return ret; 3862 } 3863 3864 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3865 void __user *arg) 3866 { 3867 struct btrfs_ioctl_dev_replace_args *p; 3868 int ret; 3869 3870 if (!capable(CAP_SYS_ADMIN)) 3871 return -EPERM; 3872 3873 p = memdup_user(arg, sizeof(*p)); 3874 if (IS_ERR(p)) 3875 return PTR_ERR(p); 3876 3877 switch (p->cmd) { 3878 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3879 if (sb_rdonly(fs_info->sb)) { 3880 ret = -EROFS; 3881 goto out; 3882 } 3883 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3884 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3885 } else { 3886 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3887 btrfs_exclop_finish(fs_info); 3888 } 3889 break; 3890 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3891 btrfs_dev_replace_status(fs_info, p); 3892 ret = 0; 3893 break; 3894 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3895 p->result = btrfs_dev_replace_cancel(fs_info); 3896 ret = 0; 3897 break; 3898 default: 3899 ret = -EINVAL; 3900 break; 3901 } 3902 3903 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3904 ret = -EFAULT; 3905 out: 3906 kfree(p); 3907 return ret; 3908 } 3909 3910 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3911 { 3912 int ret = 0; 3913 int i; 3914 u64 rel_ptr; 3915 int size; 3916 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3917 struct inode_fs_paths *ipath = NULL; 3918 struct btrfs_path *path; 3919 3920 if (!capable(CAP_DAC_READ_SEARCH)) 3921 return -EPERM; 3922 3923 path = btrfs_alloc_path(); 3924 if (!path) { 3925 ret = -ENOMEM; 3926 goto out; 3927 } 3928 3929 ipa = memdup_user(arg, sizeof(*ipa)); 3930 if (IS_ERR(ipa)) { 3931 ret = PTR_ERR(ipa); 3932 ipa = NULL; 3933 goto out; 3934 } 3935 3936 size = min_t(u32, ipa->size, 4096); 3937 ipath = init_ipath(size, root, path); 3938 if (IS_ERR(ipath)) { 3939 ret = PTR_ERR(ipath); 3940 ipath = NULL; 3941 goto out; 3942 } 3943 3944 ret = paths_from_inode(ipa->inum, ipath); 3945 if (ret < 0) 3946 goto out; 3947 3948 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3949 rel_ptr = ipath->fspath->val[i] - 3950 (u64)(unsigned long)ipath->fspath->val; 3951 ipath->fspath->val[i] = rel_ptr; 3952 } 3953 3954 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3955 ipath->fspath, size); 3956 if (ret) { 3957 ret = -EFAULT; 3958 goto out; 3959 } 3960 3961 out: 3962 btrfs_free_path(path); 3963 free_ipath(ipath); 3964 kfree(ipa); 3965 3966 return ret; 3967 } 3968 3969 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3970 { 3971 struct btrfs_data_container *inodes = ctx; 3972 const size_t c = 3 * sizeof(u64); 3973 3974 if (inodes->bytes_left >= c) { 3975 inodes->bytes_left -= c; 3976 inodes->val[inodes->elem_cnt] = inum; 3977 inodes->val[inodes->elem_cnt + 1] = offset; 3978 inodes->val[inodes->elem_cnt + 2] = root; 3979 inodes->elem_cnt += 3; 3980 } else { 3981 inodes->bytes_missing += c - inodes->bytes_left; 3982 inodes->bytes_left = 0; 3983 inodes->elem_missed += 3; 3984 } 3985 3986 return 0; 3987 } 3988 3989 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3990 void __user *arg, int version) 3991 { 3992 int ret = 0; 3993 int size; 3994 struct btrfs_ioctl_logical_ino_args *loi; 3995 struct btrfs_data_container *inodes = NULL; 3996 struct btrfs_path *path = NULL; 3997 bool ignore_offset; 3998 3999 if (!capable(CAP_SYS_ADMIN)) 4000 return -EPERM; 4001 4002 loi = memdup_user(arg, sizeof(*loi)); 4003 if (IS_ERR(loi)) 4004 return PTR_ERR(loi); 4005 4006 if (version == 1) { 4007 ignore_offset = false; 4008 size = min_t(u32, loi->size, SZ_64K); 4009 } else { 4010 /* All reserved bits must be 0 for now */ 4011 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4012 ret = -EINVAL; 4013 goto out_loi; 4014 } 4015 /* Only accept flags we have defined so far */ 4016 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4017 ret = -EINVAL; 4018 goto out_loi; 4019 } 4020 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4021 size = min_t(u32, loi->size, SZ_16M); 4022 } 4023 4024 path = btrfs_alloc_path(); 4025 if (!path) { 4026 ret = -ENOMEM; 4027 goto out; 4028 } 4029 4030 inodes = init_data_container(size); 4031 if (IS_ERR(inodes)) { 4032 ret = PTR_ERR(inodes); 4033 inodes = NULL; 4034 goto out; 4035 } 4036 4037 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4038 build_ino_list, inodes, ignore_offset); 4039 if (ret == -EINVAL) 4040 ret = -ENOENT; 4041 if (ret < 0) 4042 goto out; 4043 4044 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4045 size); 4046 if (ret) 4047 ret = -EFAULT; 4048 4049 out: 4050 btrfs_free_path(path); 4051 kvfree(inodes); 4052 out_loi: 4053 kfree(loi); 4054 4055 return ret; 4056 } 4057 4058 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4059 struct btrfs_ioctl_balance_args *bargs) 4060 { 4061 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4062 4063 bargs->flags = bctl->flags; 4064 4065 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4066 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4067 if (atomic_read(&fs_info->balance_pause_req)) 4068 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4069 if (atomic_read(&fs_info->balance_cancel_req)) 4070 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4071 4072 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4073 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4074 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4075 4076 spin_lock(&fs_info->balance_lock); 4077 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4078 spin_unlock(&fs_info->balance_lock); 4079 } 4080 4081 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4082 { 4083 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4084 struct btrfs_fs_info *fs_info = root->fs_info; 4085 struct btrfs_ioctl_balance_args *bargs; 4086 struct btrfs_balance_control *bctl; 4087 bool need_unlock; /* for mut. excl. ops lock */ 4088 int ret; 4089 4090 if (!arg) 4091 btrfs_warn(fs_info, 4092 "IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18"); 4093 4094 if (!capable(CAP_SYS_ADMIN)) 4095 return -EPERM; 4096 4097 ret = mnt_want_write_file(file); 4098 if (ret) 4099 return ret; 4100 4101 again: 4102 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4103 mutex_lock(&fs_info->balance_mutex); 4104 need_unlock = true; 4105 goto locked; 4106 } 4107 4108 /* 4109 * mut. excl. ops lock is locked. Three possibilities: 4110 * (1) some other op is running 4111 * (2) balance is running 4112 * (3) balance is paused -- special case (think resume) 4113 */ 4114 mutex_lock(&fs_info->balance_mutex); 4115 if (fs_info->balance_ctl) { 4116 /* this is either (2) or (3) */ 4117 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4118 mutex_unlock(&fs_info->balance_mutex); 4119 /* 4120 * Lock released to allow other waiters to continue, 4121 * we'll reexamine the status again. 4122 */ 4123 mutex_lock(&fs_info->balance_mutex); 4124 4125 if (fs_info->balance_ctl && 4126 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4127 /* this is (3) */ 4128 need_unlock = false; 4129 goto locked; 4130 } 4131 4132 mutex_unlock(&fs_info->balance_mutex); 4133 goto again; 4134 } else { 4135 /* this is (2) */ 4136 mutex_unlock(&fs_info->balance_mutex); 4137 ret = -EINPROGRESS; 4138 goto out; 4139 } 4140 } else { 4141 /* this is (1) */ 4142 mutex_unlock(&fs_info->balance_mutex); 4143 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4144 goto out; 4145 } 4146 4147 locked: 4148 4149 if (arg) { 4150 bargs = memdup_user(arg, sizeof(*bargs)); 4151 if (IS_ERR(bargs)) { 4152 ret = PTR_ERR(bargs); 4153 goto out_unlock; 4154 } 4155 4156 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4157 if (!fs_info->balance_ctl) { 4158 ret = -ENOTCONN; 4159 goto out_bargs; 4160 } 4161 4162 bctl = fs_info->balance_ctl; 4163 spin_lock(&fs_info->balance_lock); 4164 bctl->flags |= BTRFS_BALANCE_RESUME; 4165 spin_unlock(&fs_info->balance_lock); 4166 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 4167 4168 goto do_balance; 4169 } 4170 } else { 4171 bargs = NULL; 4172 } 4173 4174 if (fs_info->balance_ctl) { 4175 ret = -EINPROGRESS; 4176 goto out_bargs; 4177 } 4178 4179 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4180 if (!bctl) { 4181 ret = -ENOMEM; 4182 goto out_bargs; 4183 } 4184 4185 if (arg) { 4186 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4187 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4188 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4189 4190 bctl->flags = bargs->flags; 4191 } else { 4192 /* balance everything - no filters */ 4193 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4194 } 4195 4196 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4197 ret = -EINVAL; 4198 goto out_bctl; 4199 } 4200 4201 do_balance: 4202 /* 4203 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4204 * bctl is freed in reset_balance_state, or, if restriper was paused 4205 * all the way until unmount, in free_fs_info. The flag should be 4206 * cleared after reset_balance_state. 4207 */ 4208 need_unlock = false; 4209 4210 ret = btrfs_balance(fs_info, bctl, bargs); 4211 bctl = NULL; 4212 4213 if ((ret == 0 || ret == -ECANCELED) && arg) { 4214 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4215 ret = -EFAULT; 4216 } 4217 4218 out_bctl: 4219 kfree(bctl); 4220 out_bargs: 4221 kfree(bargs); 4222 out_unlock: 4223 mutex_unlock(&fs_info->balance_mutex); 4224 if (need_unlock) 4225 btrfs_exclop_finish(fs_info); 4226 out: 4227 mnt_drop_write_file(file); 4228 return ret; 4229 } 4230 4231 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4232 { 4233 if (!capable(CAP_SYS_ADMIN)) 4234 return -EPERM; 4235 4236 switch (cmd) { 4237 case BTRFS_BALANCE_CTL_PAUSE: 4238 return btrfs_pause_balance(fs_info); 4239 case BTRFS_BALANCE_CTL_CANCEL: 4240 return btrfs_cancel_balance(fs_info); 4241 } 4242 4243 return -EINVAL; 4244 } 4245 4246 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4247 void __user *arg) 4248 { 4249 struct btrfs_ioctl_balance_args *bargs; 4250 int ret = 0; 4251 4252 if (!capable(CAP_SYS_ADMIN)) 4253 return -EPERM; 4254 4255 mutex_lock(&fs_info->balance_mutex); 4256 if (!fs_info->balance_ctl) { 4257 ret = -ENOTCONN; 4258 goto out; 4259 } 4260 4261 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4262 if (!bargs) { 4263 ret = -ENOMEM; 4264 goto out; 4265 } 4266 4267 btrfs_update_ioctl_balance_args(fs_info, bargs); 4268 4269 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4270 ret = -EFAULT; 4271 4272 kfree(bargs); 4273 out: 4274 mutex_unlock(&fs_info->balance_mutex); 4275 return ret; 4276 } 4277 4278 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4279 { 4280 struct inode *inode = file_inode(file); 4281 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4282 struct btrfs_ioctl_quota_ctl_args *sa; 4283 int ret; 4284 4285 if (!capable(CAP_SYS_ADMIN)) 4286 return -EPERM; 4287 4288 ret = mnt_want_write_file(file); 4289 if (ret) 4290 return ret; 4291 4292 sa = memdup_user(arg, sizeof(*sa)); 4293 if (IS_ERR(sa)) { 4294 ret = PTR_ERR(sa); 4295 goto drop_write; 4296 } 4297 4298 down_write(&fs_info->subvol_sem); 4299 4300 switch (sa->cmd) { 4301 case BTRFS_QUOTA_CTL_ENABLE: 4302 ret = btrfs_quota_enable(fs_info); 4303 break; 4304 case BTRFS_QUOTA_CTL_DISABLE: 4305 ret = btrfs_quota_disable(fs_info); 4306 break; 4307 default: 4308 ret = -EINVAL; 4309 break; 4310 } 4311 4312 kfree(sa); 4313 up_write(&fs_info->subvol_sem); 4314 drop_write: 4315 mnt_drop_write_file(file); 4316 return ret; 4317 } 4318 4319 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4320 { 4321 struct inode *inode = file_inode(file); 4322 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4323 struct btrfs_root *root = BTRFS_I(inode)->root; 4324 struct btrfs_ioctl_qgroup_assign_args *sa; 4325 struct btrfs_trans_handle *trans; 4326 int ret; 4327 int err; 4328 4329 if (!capable(CAP_SYS_ADMIN)) 4330 return -EPERM; 4331 4332 ret = mnt_want_write_file(file); 4333 if (ret) 4334 return ret; 4335 4336 sa = memdup_user(arg, sizeof(*sa)); 4337 if (IS_ERR(sa)) { 4338 ret = PTR_ERR(sa); 4339 goto drop_write; 4340 } 4341 4342 trans = btrfs_join_transaction(root); 4343 if (IS_ERR(trans)) { 4344 ret = PTR_ERR(trans); 4345 goto out; 4346 } 4347 4348 if (sa->assign) { 4349 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4350 } else { 4351 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4352 } 4353 4354 /* update qgroup status and info */ 4355 err = btrfs_run_qgroups(trans); 4356 if (err < 0) 4357 btrfs_handle_fs_error(fs_info, err, 4358 "failed to update qgroup status and info"); 4359 err = btrfs_end_transaction(trans); 4360 if (err && !ret) 4361 ret = err; 4362 4363 out: 4364 kfree(sa); 4365 drop_write: 4366 mnt_drop_write_file(file); 4367 return ret; 4368 } 4369 4370 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4371 { 4372 struct inode *inode = file_inode(file); 4373 struct btrfs_root *root = BTRFS_I(inode)->root; 4374 struct btrfs_ioctl_qgroup_create_args *sa; 4375 struct btrfs_trans_handle *trans; 4376 int ret; 4377 int err; 4378 4379 if (!capable(CAP_SYS_ADMIN)) 4380 return -EPERM; 4381 4382 ret = mnt_want_write_file(file); 4383 if (ret) 4384 return ret; 4385 4386 sa = memdup_user(arg, sizeof(*sa)); 4387 if (IS_ERR(sa)) { 4388 ret = PTR_ERR(sa); 4389 goto drop_write; 4390 } 4391 4392 if (!sa->qgroupid) { 4393 ret = -EINVAL; 4394 goto out; 4395 } 4396 4397 trans = btrfs_join_transaction(root); 4398 if (IS_ERR(trans)) { 4399 ret = PTR_ERR(trans); 4400 goto out; 4401 } 4402 4403 if (sa->create) { 4404 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4405 } else { 4406 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4407 } 4408 4409 err = btrfs_end_transaction(trans); 4410 if (err && !ret) 4411 ret = err; 4412 4413 out: 4414 kfree(sa); 4415 drop_write: 4416 mnt_drop_write_file(file); 4417 return ret; 4418 } 4419 4420 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4421 { 4422 struct inode *inode = file_inode(file); 4423 struct btrfs_root *root = BTRFS_I(inode)->root; 4424 struct btrfs_ioctl_qgroup_limit_args *sa; 4425 struct btrfs_trans_handle *trans; 4426 int ret; 4427 int err; 4428 u64 qgroupid; 4429 4430 if (!capable(CAP_SYS_ADMIN)) 4431 return -EPERM; 4432 4433 ret = mnt_want_write_file(file); 4434 if (ret) 4435 return ret; 4436 4437 sa = memdup_user(arg, sizeof(*sa)); 4438 if (IS_ERR(sa)) { 4439 ret = PTR_ERR(sa); 4440 goto drop_write; 4441 } 4442 4443 trans = btrfs_join_transaction(root); 4444 if (IS_ERR(trans)) { 4445 ret = PTR_ERR(trans); 4446 goto out; 4447 } 4448 4449 qgroupid = sa->qgroupid; 4450 if (!qgroupid) { 4451 /* take the current subvol as qgroup */ 4452 qgroupid = root->root_key.objectid; 4453 } 4454 4455 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4456 4457 err = btrfs_end_transaction(trans); 4458 if (err && !ret) 4459 ret = err; 4460 4461 out: 4462 kfree(sa); 4463 drop_write: 4464 mnt_drop_write_file(file); 4465 return ret; 4466 } 4467 4468 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4469 { 4470 struct inode *inode = file_inode(file); 4471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4472 struct btrfs_ioctl_quota_rescan_args *qsa; 4473 int ret; 4474 4475 if (!capable(CAP_SYS_ADMIN)) 4476 return -EPERM; 4477 4478 ret = mnt_want_write_file(file); 4479 if (ret) 4480 return ret; 4481 4482 qsa = memdup_user(arg, sizeof(*qsa)); 4483 if (IS_ERR(qsa)) { 4484 ret = PTR_ERR(qsa); 4485 goto drop_write; 4486 } 4487 4488 if (qsa->flags) { 4489 ret = -EINVAL; 4490 goto out; 4491 } 4492 4493 ret = btrfs_qgroup_rescan(fs_info); 4494 4495 out: 4496 kfree(qsa); 4497 drop_write: 4498 mnt_drop_write_file(file); 4499 return ret; 4500 } 4501 4502 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4503 void __user *arg) 4504 { 4505 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4506 4507 if (!capable(CAP_SYS_ADMIN)) 4508 return -EPERM; 4509 4510 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4511 qsa.flags = 1; 4512 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4513 } 4514 4515 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4516 return -EFAULT; 4517 4518 return 0; 4519 } 4520 4521 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4522 void __user *arg) 4523 { 4524 if (!capable(CAP_SYS_ADMIN)) 4525 return -EPERM; 4526 4527 return btrfs_qgroup_wait_for_completion(fs_info, true); 4528 } 4529 4530 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4531 struct user_namespace *mnt_userns, 4532 struct btrfs_ioctl_received_subvol_args *sa) 4533 { 4534 struct inode *inode = file_inode(file); 4535 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4536 struct btrfs_root *root = BTRFS_I(inode)->root; 4537 struct btrfs_root_item *root_item = &root->root_item; 4538 struct btrfs_trans_handle *trans; 4539 struct timespec64 ct = current_time(inode); 4540 int ret = 0; 4541 int received_uuid_changed; 4542 4543 if (!inode_owner_or_capable(mnt_userns, inode)) 4544 return -EPERM; 4545 4546 ret = mnt_want_write_file(file); 4547 if (ret < 0) 4548 return ret; 4549 4550 down_write(&fs_info->subvol_sem); 4551 4552 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4553 ret = -EINVAL; 4554 goto out; 4555 } 4556 4557 if (btrfs_root_readonly(root)) { 4558 ret = -EROFS; 4559 goto out; 4560 } 4561 4562 /* 4563 * 1 - root item 4564 * 2 - uuid items (received uuid + subvol uuid) 4565 */ 4566 trans = btrfs_start_transaction(root, 3); 4567 if (IS_ERR(trans)) { 4568 ret = PTR_ERR(trans); 4569 trans = NULL; 4570 goto out; 4571 } 4572 4573 sa->rtransid = trans->transid; 4574 sa->rtime.sec = ct.tv_sec; 4575 sa->rtime.nsec = ct.tv_nsec; 4576 4577 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4578 BTRFS_UUID_SIZE); 4579 if (received_uuid_changed && 4580 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4581 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4582 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4583 root->root_key.objectid); 4584 if (ret && ret != -ENOENT) { 4585 btrfs_abort_transaction(trans, ret); 4586 btrfs_end_transaction(trans); 4587 goto out; 4588 } 4589 } 4590 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4591 btrfs_set_root_stransid(root_item, sa->stransid); 4592 btrfs_set_root_rtransid(root_item, sa->rtransid); 4593 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4594 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4595 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4596 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4597 4598 ret = btrfs_update_root(trans, fs_info->tree_root, 4599 &root->root_key, &root->root_item); 4600 if (ret < 0) { 4601 btrfs_end_transaction(trans); 4602 goto out; 4603 } 4604 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4605 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4606 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4607 root->root_key.objectid); 4608 if (ret < 0 && ret != -EEXIST) { 4609 btrfs_abort_transaction(trans, ret); 4610 btrfs_end_transaction(trans); 4611 goto out; 4612 } 4613 } 4614 ret = btrfs_commit_transaction(trans); 4615 out: 4616 up_write(&fs_info->subvol_sem); 4617 mnt_drop_write_file(file); 4618 return ret; 4619 } 4620 4621 #ifdef CONFIG_64BIT 4622 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4623 void __user *arg) 4624 { 4625 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4626 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4627 int ret = 0; 4628 4629 args32 = memdup_user(arg, sizeof(*args32)); 4630 if (IS_ERR(args32)) 4631 return PTR_ERR(args32); 4632 4633 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4634 if (!args64) { 4635 ret = -ENOMEM; 4636 goto out; 4637 } 4638 4639 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4640 args64->stransid = args32->stransid; 4641 args64->rtransid = args32->rtransid; 4642 args64->stime.sec = args32->stime.sec; 4643 args64->stime.nsec = args32->stime.nsec; 4644 args64->rtime.sec = args32->rtime.sec; 4645 args64->rtime.nsec = args32->rtime.nsec; 4646 args64->flags = args32->flags; 4647 4648 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); 4649 if (ret) 4650 goto out; 4651 4652 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4653 args32->stransid = args64->stransid; 4654 args32->rtransid = args64->rtransid; 4655 args32->stime.sec = args64->stime.sec; 4656 args32->stime.nsec = args64->stime.nsec; 4657 args32->rtime.sec = args64->rtime.sec; 4658 args32->rtime.nsec = args64->rtime.nsec; 4659 args32->flags = args64->flags; 4660 4661 ret = copy_to_user(arg, args32, sizeof(*args32)); 4662 if (ret) 4663 ret = -EFAULT; 4664 4665 out: 4666 kfree(args32); 4667 kfree(args64); 4668 return ret; 4669 } 4670 #endif 4671 4672 static long btrfs_ioctl_set_received_subvol(struct file *file, 4673 void __user *arg) 4674 { 4675 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4676 int ret = 0; 4677 4678 sa = memdup_user(arg, sizeof(*sa)); 4679 if (IS_ERR(sa)) 4680 return PTR_ERR(sa); 4681 4682 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); 4683 4684 if (ret) 4685 goto out; 4686 4687 ret = copy_to_user(arg, sa, sizeof(*sa)); 4688 if (ret) 4689 ret = -EFAULT; 4690 4691 out: 4692 kfree(sa); 4693 return ret; 4694 } 4695 4696 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4697 void __user *arg) 4698 { 4699 size_t len; 4700 int ret; 4701 char label[BTRFS_LABEL_SIZE]; 4702 4703 spin_lock(&fs_info->super_lock); 4704 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4705 spin_unlock(&fs_info->super_lock); 4706 4707 len = strnlen(label, BTRFS_LABEL_SIZE); 4708 4709 if (len == BTRFS_LABEL_SIZE) { 4710 btrfs_warn(fs_info, 4711 "label is too long, return the first %zu bytes", 4712 --len); 4713 } 4714 4715 ret = copy_to_user(arg, label, len); 4716 4717 return ret ? -EFAULT : 0; 4718 } 4719 4720 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4721 { 4722 struct inode *inode = file_inode(file); 4723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4724 struct btrfs_root *root = BTRFS_I(inode)->root; 4725 struct btrfs_super_block *super_block = fs_info->super_copy; 4726 struct btrfs_trans_handle *trans; 4727 char label[BTRFS_LABEL_SIZE]; 4728 int ret; 4729 4730 if (!capable(CAP_SYS_ADMIN)) 4731 return -EPERM; 4732 4733 if (copy_from_user(label, arg, sizeof(label))) 4734 return -EFAULT; 4735 4736 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4737 btrfs_err(fs_info, 4738 "unable to set label with more than %d bytes", 4739 BTRFS_LABEL_SIZE - 1); 4740 return -EINVAL; 4741 } 4742 4743 ret = mnt_want_write_file(file); 4744 if (ret) 4745 return ret; 4746 4747 trans = btrfs_start_transaction(root, 0); 4748 if (IS_ERR(trans)) { 4749 ret = PTR_ERR(trans); 4750 goto out_unlock; 4751 } 4752 4753 spin_lock(&fs_info->super_lock); 4754 strcpy(super_block->label, label); 4755 spin_unlock(&fs_info->super_lock); 4756 ret = btrfs_commit_transaction(trans); 4757 4758 out_unlock: 4759 mnt_drop_write_file(file); 4760 return ret; 4761 } 4762 4763 #define INIT_FEATURE_FLAGS(suffix) \ 4764 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4765 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4766 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4767 4768 int btrfs_ioctl_get_supported_features(void __user *arg) 4769 { 4770 static const struct btrfs_ioctl_feature_flags features[3] = { 4771 INIT_FEATURE_FLAGS(SUPP), 4772 INIT_FEATURE_FLAGS(SAFE_SET), 4773 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4774 }; 4775 4776 if (copy_to_user(arg, &features, sizeof(features))) 4777 return -EFAULT; 4778 4779 return 0; 4780 } 4781 4782 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4783 void __user *arg) 4784 { 4785 struct btrfs_super_block *super_block = fs_info->super_copy; 4786 struct btrfs_ioctl_feature_flags features; 4787 4788 features.compat_flags = btrfs_super_compat_flags(super_block); 4789 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4790 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4791 4792 if (copy_to_user(arg, &features, sizeof(features))) 4793 return -EFAULT; 4794 4795 return 0; 4796 } 4797 4798 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4799 enum btrfs_feature_set set, 4800 u64 change_mask, u64 flags, u64 supported_flags, 4801 u64 safe_set, u64 safe_clear) 4802 { 4803 const char *type = btrfs_feature_set_name(set); 4804 char *names; 4805 u64 disallowed, unsupported; 4806 u64 set_mask = flags & change_mask; 4807 u64 clear_mask = ~flags & change_mask; 4808 4809 unsupported = set_mask & ~supported_flags; 4810 if (unsupported) { 4811 names = btrfs_printable_features(set, unsupported); 4812 if (names) { 4813 btrfs_warn(fs_info, 4814 "this kernel does not support the %s feature bit%s", 4815 names, strchr(names, ',') ? "s" : ""); 4816 kfree(names); 4817 } else 4818 btrfs_warn(fs_info, 4819 "this kernel does not support %s bits 0x%llx", 4820 type, unsupported); 4821 return -EOPNOTSUPP; 4822 } 4823 4824 disallowed = set_mask & ~safe_set; 4825 if (disallowed) { 4826 names = btrfs_printable_features(set, disallowed); 4827 if (names) { 4828 btrfs_warn(fs_info, 4829 "can't set the %s feature bit%s while mounted", 4830 names, strchr(names, ',') ? "s" : ""); 4831 kfree(names); 4832 } else 4833 btrfs_warn(fs_info, 4834 "can't set %s bits 0x%llx while mounted", 4835 type, disallowed); 4836 return -EPERM; 4837 } 4838 4839 disallowed = clear_mask & ~safe_clear; 4840 if (disallowed) { 4841 names = btrfs_printable_features(set, disallowed); 4842 if (names) { 4843 btrfs_warn(fs_info, 4844 "can't clear the %s feature bit%s while mounted", 4845 names, strchr(names, ',') ? "s" : ""); 4846 kfree(names); 4847 } else 4848 btrfs_warn(fs_info, 4849 "can't clear %s bits 0x%llx while mounted", 4850 type, disallowed); 4851 return -EPERM; 4852 } 4853 4854 return 0; 4855 } 4856 4857 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4858 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4859 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4860 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4861 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4862 4863 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4864 { 4865 struct inode *inode = file_inode(file); 4866 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4867 struct btrfs_root *root = BTRFS_I(inode)->root; 4868 struct btrfs_super_block *super_block = fs_info->super_copy; 4869 struct btrfs_ioctl_feature_flags flags[2]; 4870 struct btrfs_trans_handle *trans; 4871 u64 newflags; 4872 int ret; 4873 4874 if (!capable(CAP_SYS_ADMIN)) 4875 return -EPERM; 4876 4877 if (copy_from_user(flags, arg, sizeof(flags))) 4878 return -EFAULT; 4879 4880 /* Nothing to do */ 4881 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4882 !flags[0].incompat_flags) 4883 return 0; 4884 4885 ret = check_feature(fs_info, flags[0].compat_flags, 4886 flags[1].compat_flags, COMPAT); 4887 if (ret) 4888 return ret; 4889 4890 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4891 flags[1].compat_ro_flags, COMPAT_RO); 4892 if (ret) 4893 return ret; 4894 4895 ret = check_feature(fs_info, flags[0].incompat_flags, 4896 flags[1].incompat_flags, INCOMPAT); 4897 if (ret) 4898 return ret; 4899 4900 ret = mnt_want_write_file(file); 4901 if (ret) 4902 return ret; 4903 4904 trans = btrfs_start_transaction(root, 0); 4905 if (IS_ERR(trans)) { 4906 ret = PTR_ERR(trans); 4907 goto out_drop_write; 4908 } 4909 4910 spin_lock(&fs_info->super_lock); 4911 newflags = btrfs_super_compat_flags(super_block); 4912 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4913 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4914 btrfs_set_super_compat_flags(super_block, newflags); 4915 4916 newflags = btrfs_super_compat_ro_flags(super_block); 4917 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4918 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4919 btrfs_set_super_compat_ro_flags(super_block, newflags); 4920 4921 newflags = btrfs_super_incompat_flags(super_block); 4922 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4923 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4924 btrfs_set_super_incompat_flags(super_block, newflags); 4925 spin_unlock(&fs_info->super_lock); 4926 4927 ret = btrfs_commit_transaction(trans); 4928 out_drop_write: 4929 mnt_drop_write_file(file); 4930 4931 return ret; 4932 } 4933 4934 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4935 { 4936 struct btrfs_ioctl_send_args *arg; 4937 int ret; 4938 4939 if (compat) { 4940 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4941 struct btrfs_ioctl_send_args_32 args32; 4942 4943 ret = copy_from_user(&args32, argp, sizeof(args32)); 4944 if (ret) 4945 return -EFAULT; 4946 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4947 if (!arg) 4948 return -ENOMEM; 4949 arg->send_fd = args32.send_fd; 4950 arg->clone_sources_count = args32.clone_sources_count; 4951 arg->clone_sources = compat_ptr(args32.clone_sources); 4952 arg->parent_root = args32.parent_root; 4953 arg->flags = args32.flags; 4954 memcpy(arg->reserved, args32.reserved, 4955 sizeof(args32.reserved)); 4956 #else 4957 return -ENOTTY; 4958 #endif 4959 } else { 4960 arg = memdup_user(argp, sizeof(*arg)); 4961 if (IS_ERR(arg)) 4962 return PTR_ERR(arg); 4963 } 4964 ret = btrfs_ioctl_send(file, arg); 4965 kfree(arg); 4966 return ret; 4967 } 4968 4969 long btrfs_ioctl(struct file *file, unsigned int 4970 cmd, unsigned long arg) 4971 { 4972 struct inode *inode = file_inode(file); 4973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4974 struct btrfs_root *root = BTRFS_I(inode)->root; 4975 void __user *argp = (void __user *)arg; 4976 4977 switch (cmd) { 4978 case FS_IOC_GETVERSION: 4979 return btrfs_ioctl_getversion(file, argp); 4980 case FS_IOC_GETFSLABEL: 4981 return btrfs_ioctl_get_fslabel(fs_info, argp); 4982 case FS_IOC_SETFSLABEL: 4983 return btrfs_ioctl_set_fslabel(file, argp); 4984 case FITRIM: 4985 return btrfs_ioctl_fitrim(fs_info, argp); 4986 case BTRFS_IOC_SNAP_CREATE: 4987 return btrfs_ioctl_snap_create(file, argp, 0); 4988 case BTRFS_IOC_SNAP_CREATE_V2: 4989 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4990 case BTRFS_IOC_SUBVOL_CREATE: 4991 return btrfs_ioctl_snap_create(file, argp, 1); 4992 case BTRFS_IOC_SUBVOL_CREATE_V2: 4993 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4994 case BTRFS_IOC_SNAP_DESTROY: 4995 return btrfs_ioctl_snap_destroy(file, argp, false); 4996 case BTRFS_IOC_SNAP_DESTROY_V2: 4997 return btrfs_ioctl_snap_destroy(file, argp, true); 4998 case BTRFS_IOC_SUBVOL_GETFLAGS: 4999 return btrfs_ioctl_subvol_getflags(file, argp); 5000 case BTRFS_IOC_SUBVOL_SETFLAGS: 5001 return btrfs_ioctl_subvol_setflags(file, argp); 5002 case BTRFS_IOC_DEFAULT_SUBVOL: 5003 return btrfs_ioctl_default_subvol(file, argp); 5004 case BTRFS_IOC_DEFRAG: 5005 return btrfs_ioctl_defrag(file, NULL); 5006 case BTRFS_IOC_DEFRAG_RANGE: 5007 return btrfs_ioctl_defrag(file, argp); 5008 case BTRFS_IOC_RESIZE: 5009 return btrfs_ioctl_resize(file, argp); 5010 case BTRFS_IOC_ADD_DEV: 5011 return btrfs_ioctl_add_dev(fs_info, argp); 5012 case BTRFS_IOC_RM_DEV: 5013 return btrfs_ioctl_rm_dev(file, argp); 5014 case BTRFS_IOC_RM_DEV_V2: 5015 return btrfs_ioctl_rm_dev_v2(file, argp); 5016 case BTRFS_IOC_FS_INFO: 5017 return btrfs_ioctl_fs_info(fs_info, argp); 5018 case BTRFS_IOC_DEV_INFO: 5019 return btrfs_ioctl_dev_info(fs_info, argp); 5020 case BTRFS_IOC_BALANCE: 5021 return btrfs_ioctl_balance(file, NULL); 5022 case BTRFS_IOC_TREE_SEARCH: 5023 return btrfs_ioctl_tree_search(file, argp); 5024 case BTRFS_IOC_TREE_SEARCH_V2: 5025 return btrfs_ioctl_tree_search_v2(file, argp); 5026 case BTRFS_IOC_INO_LOOKUP: 5027 return btrfs_ioctl_ino_lookup(file, argp); 5028 case BTRFS_IOC_INO_PATHS: 5029 return btrfs_ioctl_ino_to_path(root, argp); 5030 case BTRFS_IOC_LOGICAL_INO: 5031 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5032 case BTRFS_IOC_LOGICAL_INO_V2: 5033 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5034 case BTRFS_IOC_SPACE_INFO: 5035 return btrfs_ioctl_space_info(fs_info, argp); 5036 case BTRFS_IOC_SYNC: { 5037 int ret; 5038 5039 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 5040 if (ret) 5041 return ret; 5042 ret = btrfs_sync_fs(inode->i_sb, 1); 5043 /* 5044 * The transaction thread may want to do more work, 5045 * namely it pokes the cleaner kthread that will start 5046 * processing uncleaned subvols. 5047 */ 5048 wake_up_process(fs_info->transaction_kthread); 5049 return ret; 5050 } 5051 case BTRFS_IOC_START_SYNC: 5052 return btrfs_ioctl_start_sync(root, argp); 5053 case BTRFS_IOC_WAIT_SYNC: 5054 return btrfs_ioctl_wait_sync(fs_info, argp); 5055 case BTRFS_IOC_SCRUB: 5056 return btrfs_ioctl_scrub(file, argp); 5057 case BTRFS_IOC_SCRUB_CANCEL: 5058 return btrfs_ioctl_scrub_cancel(fs_info); 5059 case BTRFS_IOC_SCRUB_PROGRESS: 5060 return btrfs_ioctl_scrub_progress(fs_info, argp); 5061 case BTRFS_IOC_BALANCE_V2: 5062 return btrfs_ioctl_balance(file, argp); 5063 case BTRFS_IOC_BALANCE_CTL: 5064 return btrfs_ioctl_balance_ctl(fs_info, arg); 5065 case BTRFS_IOC_BALANCE_PROGRESS: 5066 return btrfs_ioctl_balance_progress(fs_info, argp); 5067 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5068 return btrfs_ioctl_set_received_subvol(file, argp); 5069 #ifdef CONFIG_64BIT 5070 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5071 return btrfs_ioctl_set_received_subvol_32(file, argp); 5072 #endif 5073 case BTRFS_IOC_SEND: 5074 return _btrfs_ioctl_send(file, argp, false); 5075 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5076 case BTRFS_IOC_SEND_32: 5077 return _btrfs_ioctl_send(file, argp, true); 5078 #endif 5079 case BTRFS_IOC_GET_DEV_STATS: 5080 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5081 case BTRFS_IOC_QUOTA_CTL: 5082 return btrfs_ioctl_quota_ctl(file, argp); 5083 case BTRFS_IOC_QGROUP_ASSIGN: 5084 return btrfs_ioctl_qgroup_assign(file, argp); 5085 case BTRFS_IOC_QGROUP_CREATE: 5086 return btrfs_ioctl_qgroup_create(file, argp); 5087 case BTRFS_IOC_QGROUP_LIMIT: 5088 return btrfs_ioctl_qgroup_limit(file, argp); 5089 case BTRFS_IOC_QUOTA_RESCAN: 5090 return btrfs_ioctl_quota_rescan(file, argp); 5091 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5092 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5093 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5094 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5095 case BTRFS_IOC_DEV_REPLACE: 5096 return btrfs_ioctl_dev_replace(fs_info, argp); 5097 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5098 return btrfs_ioctl_get_supported_features(argp); 5099 case BTRFS_IOC_GET_FEATURES: 5100 return btrfs_ioctl_get_features(fs_info, argp); 5101 case BTRFS_IOC_SET_FEATURES: 5102 return btrfs_ioctl_set_features(file, argp); 5103 case BTRFS_IOC_GET_SUBVOL_INFO: 5104 return btrfs_ioctl_get_subvol_info(file, argp); 5105 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5106 return btrfs_ioctl_get_subvol_rootref(file, argp); 5107 case BTRFS_IOC_INO_LOOKUP_USER: 5108 return btrfs_ioctl_ino_lookup_user(file, argp); 5109 case FS_IOC_ENABLE_VERITY: 5110 return fsverity_ioctl_enable(file, (const void __user *)argp); 5111 case FS_IOC_MEASURE_VERITY: 5112 return fsverity_ioctl_measure(file, argp); 5113 } 5114 5115 return -ENOTTY; 5116 } 5117 5118 #ifdef CONFIG_COMPAT 5119 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5120 { 5121 /* 5122 * These all access 32-bit values anyway so no further 5123 * handling is necessary. 5124 */ 5125 switch (cmd) { 5126 case FS_IOC32_GETVERSION: 5127 cmd = FS_IOC_GETVERSION; 5128 break; 5129 } 5130 5131 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5132 } 5133 #endif 5134