xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 400c2a45)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "export.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "volumes.h"
36 #include "locking.h"
37 #include "backref.h"
38 #include "rcu-string.h"
39 #include "send.h"
40 #include "dev-replace.h"
41 #include "props.h"
42 #include "sysfs.h"
43 #include "qgroup.h"
44 #include "tree-log.h"
45 #include "compression.h"
46 #include "space-info.h"
47 #include "delalloc-space.h"
48 #include "block-group.h"
49 
50 #ifdef CONFIG_64BIT
51 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
52  * structures are incorrect, as the timespec structure from userspace
53  * is 4 bytes too small. We define these alternatives here to teach
54  * the kernel about the 32-bit struct packing.
55  */
56 struct btrfs_ioctl_timespec_32 {
57 	__u64 sec;
58 	__u32 nsec;
59 } __attribute__ ((__packed__));
60 
61 struct btrfs_ioctl_received_subvol_args_32 {
62 	char	uuid[BTRFS_UUID_SIZE];	/* in */
63 	__u64	stransid;		/* in */
64 	__u64	rtransid;		/* out */
65 	struct btrfs_ioctl_timespec_32 stime; /* in */
66 	struct btrfs_ioctl_timespec_32 rtime; /* out */
67 	__u64	flags;			/* in */
68 	__u64	reserved[16];		/* in */
69 } __attribute__ ((__packed__));
70 
71 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
72 				struct btrfs_ioctl_received_subvol_args_32)
73 #endif
74 
75 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
76 struct btrfs_ioctl_send_args_32 {
77 	__s64 send_fd;			/* in */
78 	__u64 clone_sources_count;	/* in */
79 	compat_uptr_t clone_sources;	/* in */
80 	__u64 parent_root;		/* in */
81 	__u64 flags;			/* in */
82 	__u64 reserved[4];		/* in */
83 } __attribute__ ((__packed__));
84 
85 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
86 			       struct btrfs_ioctl_send_args_32)
87 #endif
88 
89 /* Mask out flags that are inappropriate for the given type of inode. */
90 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
91 		unsigned int flags)
92 {
93 	if (S_ISDIR(inode->i_mode))
94 		return flags;
95 	else if (S_ISREG(inode->i_mode))
96 		return flags & ~FS_DIRSYNC_FL;
97 	else
98 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
99 }
100 
101 /*
102  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
103  * ioctl.
104  */
105 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
106 {
107 	unsigned int iflags = 0;
108 
109 	if (flags & BTRFS_INODE_SYNC)
110 		iflags |= FS_SYNC_FL;
111 	if (flags & BTRFS_INODE_IMMUTABLE)
112 		iflags |= FS_IMMUTABLE_FL;
113 	if (flags & BTRFS_INODE_APPEND)
114 		iflags |= FS_APPEND_FL;
115 	if (flags & BTRFS_INODE_NODUMP)
116 		iflags |= FS_NODUMP_FL;
117 	if (flags & BTRFS_INODE_NOATIME)
118 		iflags |= FS_NOATIME_FL;
119 	if (flags & BTRFS_INODE_DIRSYNC)
120 		iflags |= FS_DIRSYNC_FL;
121 	if (flags & BTRFS_INODE_NODATACOW)
122 		iflags |= FS_NOCOW_FL;
123 
124 	if (flags & BTRFS_INODE_NOCOMPRESS)
125 		iflags |= FS_NOCOMP_FL;
126 	else if (flags & BTRFS_INODE_COMPRESS)
127 		iflags |= FS_COMPR_FL;
128 
129 	return iflags;
130 }
131 
132 /*
133  * Update inode->i_flags based on the btrfs internal flags.
134  */
135 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
136 {
137 	struct btrfs_inode *binode = BTRFS_I(inode);
138 	unsigned int new_fl = 0;
139 
140 	if (binode->flags & BTRFS_INODE_SYNC)
141 		new_fl |= S_SYNC;
142 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
143 		new_fl |= S_IMMUTABLE;
144 	if (binode->flags & BTRFS_INODE_APPEND)
145 		new_fl |= S_APPEND;
146 	if (binode->flags & BTRFS_INODE_NOATIME)
147 		new_fl |= S_NOATIME;
148 	if (binode->flags & BTRFS_INODE_DIRSYNC)
149 		new_fl |= S_DIRSYNC;
150 
151 	set_mask_bits(&inode->i_flags,
152 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
153 		      new_fl);
154 }
155 
156 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
157 {
158 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
159 	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
160 
161 	if (copy_to_user(arg, &flags, sizeof(flags)))
162 		return -EFAULT;
163 	return 0;
164 }
165 
166 /*
167  * Check if @flags are a supported and valid set of FS_*_FL flags and that
168  * the old and new flags are not conflicting
169  */
170 static int check_fsflags(unsigned int old_flags, unsigned int flags)
171 {
172 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
173 		      FS_NOATIME_FL | FS_NODUMP_FL | \
174 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
175 		      FS_NOCOMP_FL | FS_COMPR_FL |
176 		      FS_NOCOW_FL))
177 		return -EOPNOTSUPP;
178 
179 	/* COMPR and NOCOMP on new/old are valid */
180 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
181 		return -EINVAL;
182 
183 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
184 		return -EINVAL;
185 
186 	/* NOCOW and compression options are mutually exclusive */
187 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
188 		return -EINVAL;
189 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
190 		return -EINVAL;
191 
192 	return 0;
193 }
194 
195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
196 				    unsigned int flags)
197 {
198 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
199 		return -EPERM;
200 
201 	return 0;
202 }
203 
204 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
205 {
206 	struct inode *inode = file_inode(file);
207 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
208 	struct btrfs_inode *binode = BTRFS_I(inode);
209 	struct btrfs_root *root = binode->root;
210 	struct btrfs_trans_handle *trans;
211 	unsigned int fsflags, old_fsflags;
212 	int ret;
213 	const char *comp = NULL;
214 	u32 binode_flags;
215 
216 	if (!inode_owner_or_capable(inode))
217 		return -EPERM;
218 
219 	if (btrfs_root_readonly(root))
220 		return -EROFS;
221 
222 	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
223 		return -EFAULT;
224 
225 	ret = mnt_want_write_file(file);
226 	if (ret)
227 		return ret;
228 
229 	inode_lock(inode);
230 	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
231 	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
232 
233 	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
234 	if (ret)
235 		goto out_unlock;
236 
237 	ret = check_fsflags(old_fsflags, fsflags);
238 	if (ret)
239 		goto out_unlock;
240 
241 	ret = check_fsflags_compatible(fs_info, fsflags);
242 	if (ret)
243 		goto out_unlock;
244 
245 	binode_flags = binode->flags;
246 	if (fsflags & FS_SYNC_FL)
247 		binode_flags |= BTRFS_INODE_SYNC;
248 	else
249 		binode_flags &= ~BTRFS_INODE_SYNC;
250 	if (fsflags & FS_IMMUTABLE_FL)
251 		binode_flags |= BTRFS_INODE_IMMUTABLE;
252 	else
253 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
254 	if (fsflags & FS_APPEND_FL)
255 		binode_flags |= BTRFS_INODE_APPEND;
256 	else
257 		binode_flags &= ~BTRFS_INODE_APPEND;
258 	if (fsflags & FS_NODUMP_FL)
259 		binode_flags |= BTRFS_INODE_NODUMP;
260 	else
261 		binode_flags &= ~BTRFS_INODE_NODUMP;
262 	if (fsflags & FS_NOATIME_FL)
263 		binode_flags |= BTRFS_INODE_NOATIME;
264 	else
265 		binode_flags &= ~BTRFS_INODE_NOATIME;
266 	if (fsflags & FS_DIRSYNC_FL)
267 		binode_flags |= BTRFS_INODE_DIRSYNC;
268 	else
269 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
270 	if (fsflags & FS_NOCOW_FL) {
271 		if (S_ISREG(inode->i_mode)) {
272 			/*
273 			 * It's safe to turn csums off here, no extents exist.
274 			 * Otherwise we want the flag to reflect the real COW
275 			 * status of the file and will not set it.
276 			 */
277 			if (inode->i_size == 0)
278 				binode_flags |= BTRFS_INODE_NODATACOW |
279 						BTRFS_INODE_NODATASUM;
280 		} else {
281 			binode_flags |= BTRFS_INODE_NODATACOW;
282 		}
283 	} else {
284 		/*
285 		 * Revert back under same assumptions as above
286 		 */
287 		if (S_ISREG(inode->i_mode)) {
288 			if (inode->i_size == 0)
289 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
290 						  BTRFS_INODE_NODATASUM);
291 		} else {
292 			binode_flags &= ~BTRFS_INODE_NODATACOW;
293 		}
294 	}
295 
296 	/*
297 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
298 	 * flag may be changed automatically if compression code won't make
299 	 * things smaller.
300 	 */
301 	if (fsflags & FS_NOCOMP_FL) {
302 		binode_flags &= ~BTRFS_INODE_COMPRESS;
303 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
304 	} else if (fsflags & FS_COMPR_FL) {
305 
306 		if (IS_SWAPFILE(inode)) {
307 			ret = -ETXTBSY;
308 			goto out_unlock;
309 		}
310 
311 		binode_flags |= BTRFS_INODE_COMPRESS;
312 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
313 
314 		comp = btrfs_compress_type2str(fs_info->compress_type);
315 		if (!comp || comp[0] == 0)
316 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
317 	} else {
318 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
319 	}
320 
321 	/*
322 	 * 1 for inode item
323 	 * 2 for properties
324 	 */
325 	trans = btrfs_start_transaction(root, 3);
326 	if (IS_ERR(trans)) {
327 		ret = PTR_ERR(trans);
328 		goto out_unlock;
329 	}
330 
331 	if (comp) {
332 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
333 				     strlen(comp), 0);
334 		if (ret) {
335 			btrfs_abort_transaction(trans, ret);
336 			goto out_end_trans;
337 		}
338 	} else {
339 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
340 				     0, 0);
341 		if (ret && ret != -ENODATA) {
342 			btrfs_abort_transaction(trans, ret);
343 			goto out_end_trans;
344 		}
345 	}
346 
347 	binode->flags = binode_flags;
348 	btrfs_sync_inode_flags_to_i_flags(inode);
349 	inode_inc_iversion(inode);
350 	inode->i_ctime = current_time(inode);
351 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
352 
353  out_end_trans:
354 	btrfs_end_transaction(trans);
355  out_unlock:
356 	inode_unlock(inode);
357 	mnt_drop_write_file(file);
358 	return ret;
359 }
360 
361 /*
362  * Translate btrfs internal inode flags to xflags as expected by the
363  * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
364  * silently dropped.
365  */
366 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
367 {
368 	unsigned int xflags = 0;
369 
370 	if (flags & BTRFS_INODE_APPEND)
371 		xflags |= FS_XFLAG_APPEND;
372 	if (flags & BTRFS_INODE_IMMUTABLE)
373 		xflags |= FS_XFLAG_IMMUTABLE;
374 	if (flags & BTRFS_INODE_NOATIME)
375 		xflags |= FS_XFLAG_NOATIME;
376 	if (flags & BTRFS_INODE_NODUMP)
377 		xflags |= FS_XFLAG_NODUMP;
378 	if (flags & BTRFS_INODE_SYNC)
379 		xflags |= FS_XFLAG_SYNC;
380 
381 	return xflags;
382 }
383 
384 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
385 static int check_xflags(unsigned int flags)
386 {
387 	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
388 		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
389 		return -EOPNOTSUPP;
390 	return 0;
391 }
392 
393 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
394 			enum btrfs_exclusive_operation type)
395 {
396 	return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
397 }
398 
399 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
400 {
401 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
402 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
403 }
404 
405 /*
406  * Set the xflags from the internal inode flags. The remaining items of fsxattr
407  * are zeroed.
408  */
409 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
410 {
411 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
412 	struct fsxattr fa;
413 
414 	simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
415 	if (copy_to_user(arg, &fa, sizeof(fa)))
416 		return -EFAULT;
417 
418 	return 0;
419 }
420 
421 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
422 {
423 	struct inode *inode = file_inode(file);
424 	struct btrfs_inode *binode = BTRFS_I(inode);
425 	struct btrfs_root *root = binode->root;
426 	struct btrfs_trans_handle *trans;
427 	struct fsxattr fa, old_fa;
428 	unsigned old_flags;
429 	unsigned old_i_flags;
430 	int ret = 0;
431 
432 	if (!inode_owner_or_capable(inode))
433 		return -EPERM;
434 
435 	if (btrfs_root_readonly(root))
436 		return -EROFS;
437 
438 	if (copy_from_user(&fa, arg, sizeof(fa)))
439 		return -EFAULT;
440 
441 	ret = check_xflags(fa.fsx_xflags);
442 	if (ret)
443 		return ret;
444 
445 	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
446 		return -EOPNOTSUPP;
447 
448 	ret = mnt_want_write_file(file);
449 	if (ret)
450 		return ret;
451 
452 	inode_lock(inode);
453 
454 	old_flags = binode->flags;
455 	old_i_flags = inode->i_flags;
456 
457 	simple_fill_fsxattr(&old_fa,
458 			    btrfs_inode_flags_to_xflags(binode->flags));
459 	ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
460 	if (ret)
461 		goto out_unlock;
462 
463 	if (fa.fsx_xflags & FS_XFLAG_SYNC)
464 		binode->flags |= BTRFS_INODE_SYNC;
465 	else
466 		binode->flags &= ~BTRFS_INODE_SYNC;
467 	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
468 		binode->flags |= BTRFS_INODE_IMMUTABLE;
469 	else
470 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
471 	if (fa.fsx_xflags & FS_XFLAG_APPEND)
472 		binode->flags |= BTRFS_INODE_APPEND;
473 	else
474 		binode->flags &= ~BTRFS_INODE_APPEND;
475 	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
476 		binode->flags |= BTRFS_INODE_NODUMP;
477 	else
478 		binode->flags &= ~BTRFS_INODE_NODUMP;
479 	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
480 		binode->flags |= BTRFS_INODE_NOATIME;
481 	else
482 		binode->flags &= ~BTRFS_INODE_NOATIME;
483 
484 	/* 1 item for the inode */
485 	trans = btrfs_start_transaction(root, 1);
486 	if (IS_ERR(trans)) {
487 		ret = PTR_ERR(trans);
488 		goto out_unlock;
489 	}
490 
491 	btrfs_sync_inode_flags_to_i_flags(inode);
492 	inode_inc_iversion(inode);
493 	inode->i_ctime = current_time(inode);
494 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
495 
496 	btrfs_end_transaction(trans);
497 
498 out_unlock:
499 	if (ret) {
500 		binode->flags = old_flags;
501 		inode->i_flags = old_i_flags;
502 	}
503 
504 	inode_unlock(inode);
505 	mnt_drop_write_file(file);
506 
507 	return ret;
508 }
509 
510 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
511 {
512 	struct inode *inode = file_inode(file);
513 
514 	return put_user(inode->i_generation, arg);
515 }
516 
517 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
518 					void __user *arg)
519 {
520 	struct btrfs_device *device;
521 	struct request_queue *q;
522 	struct fstrim_range range;
523 	u64 minlen = ULLONG_MAX;
524 	u64 num_devices = 0;
525 	int ret;
526 
527 	if (!capable(CAP_SYS_ADMIN))
528 		return -EPERM;
529 
530 	/*
531 	 * If the fs is mounted with nologreplay, which requires it to be
532 	 * mounted in RO mode as well, we can not allow discard on free space
533 	 * inside block groups, because log trees refer to extents that are not
534 	 * pinned in a block group's free space cache (pinning the extents is
535 	 * precisely the first phase of replaying a log tree).
536 	 */
537 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
538 		return -EROFS;
539 
540 	rcu_read_lock();
541 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
542 				dev_list) {
543 		if (!device->bdev)
544 			continue;
545 		q = bdev_get_queue(device->bdev);
546 		if (blk_queue_discard(q)) {
547 			num_devices++;
548 			minlen = min_t(u64, q->limits.discard_granularity,
549 				     minlen);
550 		}
551 	}
552 	rcu_read_unlock();
553 
554 	if (!num_devices)
555 		return -EOPNOTSUPP;
556 	if (copy_from_user(&range, arg, sizeof(range)))
557 		return -EFAULT;
558 
559 	/*
560 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
561 	 * block group is in the logical address space, which can be any
562 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
563 	 */
564 	if (range.len < fs_info->sb->s_blocksize)
565 		return -EINVAL;
566 
567 	range.minlen = max(range.minlen, minlen);
568 	ret = btrfs_trim_fs(fs_info, &range);
569 	if (ret < 0)
570 		return ret;
571 
572 	if (copy_to_user(arg, &range, sizeof(range)))
573 		return -EFAULT;
574 
575 	return 0;
576 }
577 
578 int __pure btrfs_is_empty_uuid(u8 *uuid)
579 {
580 	int i;
581 
582 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
583 		if (uuid[i])
584 			return 0;
585 	}
586 	return 1;
587 }
588 
589 static noinline int create_subvol(struct inode *dir,
590 				  struct dentry *dentry,
591 				  const char *name, int namelen,
592 				  struct btrfs_qgroup_inherit *inherit)
593 {
594 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
595 	struct btrfs_trans_handle *trans;
596 	struct btrfs_key key;
597 	struct btrfs_root_item *root_item;
598 	struct btrfs_inode_item *inode_item;
599 	struct extent_buffer *leaf;
600 	struct btrfs_root *root = BTRFS_I(dir)->root;
601 	struct btrfs_root *new_root;
602 	struct btrfs_block_rsv block_rsv;
603 	struct timespec64 cur_time = current_time(dir);
604 	struct inode *inode;
605 	int ret;
606 	int err;
607 	dev_t anon_dev = 0;
608 	u64 objectid;
609 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
610 	u64 index = 0;
611 
612 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
613 	if (!root_item)
614 		return -ENOMEM;
615 
616 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
617 	if (ret)
618 		goto fail_free;
619 
620 	ret = get_anon_bdev(&anon_dev);
621 	if (ret < 0)
622 		goto fail_free;
623 
624 	/*
625 	 * Don't create subvolume whose level is not zero. Or qgroup will be
626 	 * screwed up since it assumes subvolume qgroup's level to be 0.
627 	 */
628 	if (btrfs_qgroup_level(objectid)) {
629 		ret = -ENOSPC;
630 		goto fail_free;
631 	}
632 
633 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
634 	/*
635 	 * The same as the snapshot creation, please see the comment
636 	 * of create_snapshot().
637 	 */
638 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
639 	if (ret)
640 		goto fail_free;
641 
642 	trans = btrfs_start_transaction(root, 0);
643 	if (IS_ERR(trans)) {
644 		ret = PTR_ERR(trans);
645 		btrfs_subvolume_release_metadata(root, &block_rsv);
646 		goto fail_free;
647 	}
648 	trans->block_rsv = &block_rsv;
649 	trans->bytes_reserved = block_rsv.size;
650 
651 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
652 	if (ret)
653 		goto fail;
654 
655 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
656 				      BTRFS_NESTING_NORMAL);
657 	if (IS_ERR(leaf)) {
658 		ret = PTR_ERR(leaf);
659 		goto fail;
660 	}
661 
662 	btrfs_mark_buffer_dirty(leaf);
663 
664 	inode_item = &root_item->inode;
665 	btrfs_set_stack_inode_generation(inode_item, 1);
666 	btrfs_set_stack_inode_size(inode_item, 3);
667 	btrfs_set_stack_inode_nlink(inode_item, 1);
668 	btrfs_set_stack_inode_nbytes(inode_item,
669 				     fs_info->nodesize);
670 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
671 
672 	btrfs_set_root_flags(root_item, 0);
673 	btrfs_set_root_limit(root_item, 0);
674 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
675 
676 	btrfs_set_root_bytenr(root_item, leaf->start);
677 	btrfs_set_root_generation(root_item, trans->transid);
678 	btrfs_set_root_level(root_item, 0);
679 	btrfs_set_root_refs(root_item, 1);
680 	btrfs_set_root_used(root_item, leaf->len);
681 	btrfs_set_root_last_snapshot(root_item, 0);
682 
683 	btrfs_set_root_generation_v2(root_item,
684 			btrfs_root_generation(root_item));
685 	generate_random_guid(root_item->uuid);
686 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
687 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
688 	root_item->ctime = root_item->otime;
689 	btrfs_set_root_ctransid(root_item, trans->transid);
690 	btrfs_set_root_otransid(root_item, trans->transid);
691 
692 	btrfs_tree_unlock(leaf);
693 	free_extent_buffer(leaf);
694 	leaf = NULL;
695 
696 	btrfs_set_root_dirid(root_item, new_dirid);
697 
698 	key.objectid = objectid;
699 	key.offset = 0;
700 	key.type = BTRFS_ROOT_ITEM_KEY;
701 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
702 				root_item);
703 	if (ret)
704 		goto fail;
705 
706 	key.offset = (u64)-1;
707 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
708 	if (IS_ERR(new_root)) {
709 		free_anon_bdev(anon_dev);
710 		ret = PTR_ERR(new_root);
711 		btrfs_abort_transaction(trans, ret);
712 		goto fail;
713 	}
714 	/* Freeing will be done in btrfs_put_root() of new_root */
715 	anon_dev = 0;
716 
717 	btrfs_record_root_in_trans(trans, new_root);
718 
719 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
720 	btrfs_put_root(new_root);
721 	if (ret) {
722 		/* We potentially lose an unused inode item here */
723 		btrfs_abort_transaction(trans, ret);
724 		goto fail;
725 	}
726 
727 	mutex_lock(&new_root->objectid_mutex);
728 	new_root->highest_objectid = new_dirid;
729 	mutex_unlock(&new_root->objectid_mutex);
730 
731 	/*
732 	 * insert the directory item
733 	 */
734 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
735 	if (ret) {
736 		btrfs_abort_transaction(trans, ret);
737 		goto fail;
738 	}
739 
740 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
741 				    BTRFS_FT_DIR, index);
742 	if (ret) {
743 		btrfs_abort_transaction(trans, ret);
744 		goto fail;
745 	}
746 
747 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
748 	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
749 	if (ret) {
750 		btrfs_abort_transaction(trans, ret);
751 		goto fail;
752 	}
753 
754 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
755 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
756 	if (ret) {
757 		btrfs_abort_transaction(trans, ret);
758 		goto fail;
759 	}
760 
761 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
762 				  BTRFS_UUID_KEY_SUBVOL, objectid);
763 	if (ret)
764 		btrfs_abort_transaction(trans, ret);
765 
766 fail:
767 	kfree(root_item);
768 	trans->block_rsv = NULL;
769 	trans->bytes_reserved = 0;
770 	btrfs_subvolume_release_metadata(root, &block_rsv);
771 
772 	err = btrfs_commit_transaction(trans);
773 	if (err && !ret)
774 		ret = err;
775 
776 	if (!ret) {
777 		inode = btrfs_lookup_dentry(dir, dentry);
778 		if (IS_ERR(inode))
779 			return PTR_ERR(inode);
780 		d_instantiate(dentry, inode);
781 	}
782 	return ret;
783 
784 fail_free:
785 	if (anon_dev)
786 		free_anon_bdev(anon_dev);
787 	kfree(root_item);
788 	return ret;
789 }
790 
791 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
792 			   struct dentry *dentry, bool readonly,
793 			   struct btrfs_qgroup_inherit *inherit)
794 {
795 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
796 	struct inode *inode;
797 	struct btrfs_pending_snapshot *pending_snapshot;
798 	struct btrfs_trans_handle *trans;
799 	int ret;
800 
801 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
802 		return -EINVAL;
803 
804 	if (atomic_read(&root->nr_swapfiles)) {
805 		btrfs_warn(fs_info,
806 			   "cannot snapshot subvolume with active swapfile");
807 		return -ETXTBSY;
808 	}
809 
810 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
811 	if (!pending_snapshot)
812 		return -ENOMEM;
813 
814 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
815 	if (ret < 0)
816 		goto free_pending;
817 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
818 			GFP_KERNEL);
819 	pending_snapshot->path = btrfs_alloc_path();
820 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
821 		ret = -ENOMEM;
822 		goto free_pending;
823 	}
824 
825 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
826 			     BTRFS_BLOCK_RSV_TEMP);
827 	/*
828 	 * 1 - parent dir inode
829 	 * 2 - dir entries
830 	 * 1 - root item
831 	 * 2 - root ref/backref
832 	 * 1 - root of snapshot
833 	 * 1 - UUID item
834 	 */
835 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
836 					&pending_snapshot->block_rsv, 8,
837 					false);
838 	if (ret)
839 		goto free_pending;
840 
841 	pending_snapshot->dentry = dentry;
842 	pending_snapshot->root = root;
843 	pending_snapshot->readonly = readonly;
844 	pending_snapshot->dir = dir;
845 	pending_snapshot->inherit = inherit;
846 
847 	trans = btrfs_start_transaction(root, 0);
848 	if (IS_ERR(trans)) {
849 		ret = PTR_ERR(trans);
850 		goto fail;
851 	}
852 
853 	spin_lock(&fs_info->trans_lock);
854 	list_add(&pending_snapshot->list,
855 		 &trans->transaction->pending_snapshots);
856 	spin_unlock(&fs_info->trans_lock);
857 
858 	ret = btrfs_commit_transaction(trans);
859 	if (ret)
860 		goto fail;
861 
862 	ret = pending_snapshot->error;
863 	if (ret)
864 		goto fail;
865 
866 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
867 	if (ret)
868 		goto fail;
869 
870 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
871 	if (IS_ERR(inode)) {
872 		ret = PTR_ERR(inode);
873 		goto fail;
874 	}
875 
876 	d_instantiate(dentry, inode);
877 	ret = 0;
878 	pending_snapshot->anon_dev = 0;
879 fail:
880 	/* Prevent double freeing of anon_dev */
881 	if (ret && pending_snapshot->snap)
882 		pending_snapshot->snap->anon_dev = 0;
883 	btrfs_put_root(pending_snapshot->snap);
884 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
885 free_pending:
886 	if (pending_snapshot->anon_dev)
887 		free_anon_bdev(pending_snapshot->anon_dev);
888 	kfree(pending_snapshot->root_item);
889 	btrfs_free_path(pending_snapshot->path);
890 	kfree(pending_snapshot);
891 
892 	return ret;
893 }
894 
895 /*  copy of may_delete in fs/namei.c()
896  *	Check whether we can remove a link victim from directory dir, check
897  *  whether the type of victim is right.
898  *  1. We can't do it if dir is read-only (done in permission())
899  *  2. We should have write and exec permissions on dir
900  *  3. We can't remove anything from append-only dir
901  *  4. We can't do anything with immutable dir (done in permission())
902  *  5. If the sticky bit on dir is set we should either
903  *	a. be owner of dir, or
904  *	b. be owner of victim, or
905  *	c. have CAP_FOWNER capability
906  *  6. If the victim is append-only or immutable we can't do anything with
907  *     links pointing to it.
908  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
909  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
910  *  9. We can't remove a root or mountpoint.
911  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
912  *     nfs_async_unlink().
913  */
914 
915 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
916 {
917 	int error;
918 
919 	if (d_really_is_negative(victim))
920 		return -ENOENT;
921 
922 	BUG_ON(d_inode(victim->d_parent) != dir);
923 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
924 
925 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
926 	if (error)
927 		return error;
928 	if (IS_APPEND(dir))
929 		return -EPERM;
930 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
931 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
932 		return -EPERM;
933 	if (isdir) {
934 		if (!d_is_dir(victim))
935 			return -ENOTDIR;
936 		if (IS_ROOT(victim))
937 			return -EBUSY;
938 	} else if (d_is_dir(victim))
939 		return -EISDIR;
940 	if (IS_DEADDIR(dir))
941 		return -ENOENT;
942 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
943 		return -EBUSY;
944 	return 0;
945 }
946 
947 /* copy of may_create in fs/namei.c() */
948 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
949 {
950 	if (d_really_is_positive(child))
951 		return -EEXIST;
952 	if (IS_DEADDIR(dir))
953 		return -ENOENT;
954 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
955 }
956 
957 /*
958  * Create a new subvolume below @parent.  This is largely modeled after
959  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
960  * inside this filesystem so it's quite a bit simpler.
961  */
962 static noinline int btrfs_mksubvol(const struct path *parent,
963 				   const char *name, int namelen,
964 				   struct btrfs_root *snap_src,
965 				   bool readonly,
966 				   struct btrfs_qgroup_inherit *inherit)
967 {
968 	struct inode *dir = d_inode(parent->dentry);
969 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
970 	struct dentry *dentry;
971 	int error;
972 
973 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
974 	if (error == -EINTR)
975 		return error;
976 
977 	dentry = lookup_one_len(name, parent->dentry, namelen);
978 	error = PTR_ERR(dentry);
979 	if (IS_ERR(dentry))
980 		goto out_unlock;
981 
982 	error = btrfs_may_create(dir, dentry);
983 	if (error)
984 		goto out_dput;
985 
986 	/*
987 	 * even if this name doesn't exist, we may get hash collisions.
988 	 * check for them now when we can safely fail
989 	 */
990 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
991 					       dir->i_ino, name,
992 					       namelen);
993 	if (error)
994 		goto out_dput;
995 
996 	down_read(&fs_info->subvol_sem);
997 
998 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
999 		goto out_up_read;
1000 
1001 	if (snap_src)
1002 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1003 	else
1004 		error = create_subvol(dir, dentry, name, namelen, inherit);
1005 
1006 	if (!error)
1007 		fsnotify_mkdir(dir, dentry);
1008 out_up_read:
1009 	up_read(&fs_info->subvol_sem);
1010 out_dput:
1011 	dput(dentry);
1012 out_unlock:
1013 	inode_unlock(dir);
1014 	return error;
1015 }
1016 
1017 static noinline int btrfs_mksnapshot(const struct path *parent,
1018 				   const char *name, int namelen,
1019 				   struct btrfs_root *root,
1020 				   bool readonly,
1021 				   struct btrfs_qgroup_inherit *inherit)
1022 {
1023 	int ret;
1024 	bool snapshot_force_cow = false;
1025 
1026 	/*
1027 	 * Force new buffered writes to reserve space even when NOCOW is
1028 	 * possible. This is to avoid later writeback (running dealloc) to
1029 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1030 	 */
1031 	btrfs_drew_read_lock(&root->snapshot_lock);
1032 
1033 	ret = btrfs_start_delalloc_snapshot(root);
1034 	if (ret)
1035 		goto out;
1036 
1037 	/*
1038 	 * All previous writes have started writeback in NOCOW mode, so now
1039 	 * we force future writes to fallback to COW mode during snapshot
1040 	 * creation.
1041 	 */
1042 	atomic_inc(&root->snapshot_force_cow);
1043 	snapshot_force_cow = true;
1044 
1045 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1046 
1047 	ret = btrfs_mksubvol(parent, name, namelen,
1048 			     root, readonly, inherit);
1049 out:
1050 	if (snapshot_force_cow)
1051 		atomic_dec(&root->snapshot_force_cow);
1052 	btrfs_drew_read_unlock(&root->snapshot_lock);
1053 	return ret;
1054 }
1055 
1056 /*
1057  * When we're defragging a range, we don't want to kick it off again
1058  * if it is really just waiting for delalloc to send it down.
1059  * If we find a nice big extent or delalloc range for the bytes in the
1060  * file you want to defrag, we return 0 to let you know to skip this
1061  * part of the file
1062  */
1063 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1064 {
1065 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1066 	struct extent_map *em = NULL;
1067 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1068 	u64 end;
1069 
1070 	read_lock(&em_tree->lock);
1071 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1072 	read_unlock(&em_tree->lock);
1073 
1074 	if (em) {
1075 		end = extent_map_end(em);
1076 		free_extent_map(em);
1077 		if (end - offset > thresh)
1078 			return 0;
1079 	}
1080 	/* if we already have a nice delalloc here, just stop */
1081 	thresh /= 2;
1082 	end = count_range_bits(io_tree, &offset, offset + thresh,
1083 			       thresh, EXTENT_DELALLOC, 1);
1084 	if (end >= thresh)
1085 		return 0;
1086 	return 1;
1087 }
1088 
1089 /*
1090  * helper function to walk through a file and find extents
1091  * newer than a specific transid, and smaller than thresh.
1092  *
1093  * This is used by the defragging code to find new and small
1094  * extents
1095  */
1096 static int find_new_extents(struct btrfs_root *root,
1097 			    struct inode *inode, u64 newer_than,
1098 			    u64 *off, u32 thresh)
1099 {
1100 	struct btrfs_path *path;
1101 	struct btrfs_key min_key;
1102 	struct extent_buffer *leaf;
1103 	struct btrfs_file_extent_item *extent;
1104 	int type;
1105 	int ret;
1106 	u64 ino = btrfs_ino(BTRFS_I(inode));
1107 
1108 	path = btrfs_alloc_path();
1109 	if (!path)
1110 		return -ENOMEM;
1111 
1112 	min_key.objectid = ino;
1113 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1114 	min_key.offset = *off;
1115 
1116 	while (1) {
1117 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1118 		if (ret != 0)
1119 			goto none;
1120 process_slot:
1121 		if (min_key.objectid != ino)
1122 			goto none;
1123 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1124 			goto none;
1125 
1126 		leaf = path->nodes[0];
1127 		extent = btrfs_item_ptr(leaf, path->slots[0],
1128 					struct btrfs_file_extent_item);
1129 
1130 		type = btrfs_file_extent_type(leaf, extent);
1131 		if (type == BTRFS_FILE_EXTENT_REG &&
1132 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1133 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1134 			*off = min_key.offset;
1135 			btrfs_free_path(path);
1136 			return 0;
1137 		}
1138 
1139 		path->slots[0]++;
1140 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1141 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1142 			goto process_slot;
1143 		}
1144 
1145 		if (min_key.offset == (u64)-1)
1146 			goto none;
1147 
1148 		min_key.offset++;
1149 		btrfs_release_path(path);
1150 	}
1151 none:
1152 	btrfs_free_path(path);
1153 	return -ENOENT;
1154 }
1155 
1156 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1157 {
1158 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1159 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1160 	struct extent_map *em;
1161 	u64 len = PAGE_SIZE;
1162 
1163 	/*
1164 	 * hopefully we have this extent in the tree already, try without
1165 	 * the full extent lock
1166 	 */
1167 	read_lock(&em_tree->lock);
1168 	em = lookup_extent_mapping(em_tree, start, len);
1169 	read_unlock(&em_tree->lock);
1170 
1171 	if (!em) {
1172 		struct extent_state *cached = NULL;
1173 		u64 end = start + len - 1;
1174 
1175 		/* get the big lock and read metadata off disk */
1176 		lock_extent_bits(io_tree, start, end, &cached);
1177 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1178 		unlock_extent_cached(io_tree, start, end, &cached);
1179 
1180 		if (IS_ERR(em))
1181 			return NULL;
1182 	}
1183 
1184 	return em;
1185 }
1186 
1187 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1188 {
1189 	struct extent_map *next;
1190 	bool ret = true;
1191 
1192 	/* this is the last extent */
1193 	if (em->start + em->len >= i_size_read(inode))
1194 		return false;
1195 
1196 	next = defrag_lookup_extent(inode, em->start + em->len);
1197 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1198 		ret = false;
1199 	else if ((em->block_start + em->block_len == next->block_start) &&
1200 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1201 		ret = false;
1202 
1203 	free_extent_map(next);
1204 	return ret;
1205 }
1206 
1207 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1208 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1209 			       int compress)
1210 {
1211 	struct extent_map *em;
1212 	int ret = 1;
1213 	bool next_mergeable = true;
1214 	bool prev_mergeable = true;
1215 
1216 	/*
1217 	 * make sure that once we start defragging an extent, we keep on
1218 	 * defragging it
1219 	 */
1220 	if (start < *defrag_end)
1221 		return 1;
1222 
1223 	*skip = 0;
1224 
1225 	em = defrag_lookup_extent(inode, start);
1226 	if (!em)
1227 		return 0;
1228 
1229 	/* this will cover holes, and inline extents */
1230 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1231 		ret = 0;
1232 		goto out;
1233 	}
1234 
1235 	if (!*defrag_end)
1236 		prev_mergeable = false;
1237 
1238 	next_mergeable = defrag_check_next_extent(inode, em);
1239 	/*
1240 	 * we hit a real extent, if it is big or the next extent is not a
1241 	 * real extent, don't bother defragging it
1242 	 */
1243 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1244 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1245 		ret = 0;
1246 out:
1247 	/*
1248 	 * last_len ends up being a counter of how many bytes we've defragged.
1249 	 * every time we choose not to defrag an extent, we reset *last_len
1250 	 * so that the next tiny extent will force a defrag.
1251 	 *
1252 	 * The end result of this is that tiny extents before a single big
1253 	 * extent will force at least part of that big extent to be defragged.
1254 	 */
1255 	if (ret) {
1256 		*defrag_end = extent_map_end(em);
1257 	} else {
1258 		*last_len = 0;
1259 		*skip = extent_map_end(em);
1260 		*defrag_end = 0;
1261 	}
1262 
1263 	free_extent_map(em);
1264 	return ret;
1265 }
1266 
1267 /*
1268  * it doesn't do much good to defrag one or two pages
1269  * at a time.  This pulls in a nice chunk of pages
1270  * to COW and defrag.
1271  *
1272  * It also makes sure the delalloc code has enough
1273  * dirty data to avoid making new small extents as part
1274  * of the defrag
1275  *
1276  * It's a good idea to start RA on this range
1277  * before calling this.
1278  */
1279 static int cluster_pages_for_defrag(struct inode *inode,
1280 				    struct page **pages,
1281 				    unsigned long start_index,
1282 				    unsigned long num_pages)
1283 {
1284 	unsigned long file_end;
1285 	u64 isize = i_size_read(inode);
1286 	u64 page_start;
1287 	u64 page_end;
1288 	u64 page_cnt;
1289 	u64 start = (u64)start_index << PAGE_SHIFT;
1290 	u64 search_start;
1291 	int ret;
1292 	int i;
1293 	int i_done;
1294 	struct btrfs_ordered_extent *ordered;
1295 	struct extent_state *cached_state = NULL;
1296 	struct extent_io_tree *tree;
1297 	struct extent_changeset *data_reserved = NULL;
1298 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1299 
1300 	file_end = (isize - 1) >> PAGE_SHIFT;
1301 	if (!isize || start_index > file_end)
1302 		return 0;
1303 
1304 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1305 
1306 	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1307 			start, page_cnt << PAGE_SHIFT);
1308 	if (ret)
1309 		return ret;
1310 	i_done = 0;
1311 	tree = &BTRFS_I(inode)->io_tree;
1312 
1313 	/* step one, lock all the pages */
1314 	for (i = 0; i < page_cnt; i++) {
1315 		struct page *page;
1316 again:
1317 		page = find_or_create_page(inode->i_mapping,
1318 					   start_index + i, mask);
1319 		if (!page)
1320 			break;
1321 
1322 		page_start = page_offset(page);
1323 		page_end = page_start + PAGE_SIZE - 1;
1324 		while (1) {
1325 			lock_extent_bits(tree, page_start, page_end,
1326 					 &cached_state);
1327 			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1328 							      page_start);
1329 			unlock_extent_cached(tree, page_start, page_end,
1330 					     &cached_state);
1331 			if (!ordered)
1332 				break;
1333 
1334 			unlock_page(page);
1335 			btrfs_start_ordered_extent(ordered, 1);
1336 			btrfs_put_ordered_extent(ordered);
1337 			lock_page(page);
1338 			/*
1339 			 * we unlocked the page above, so we need check if
1340 			 * it was released or not.
1341 			 */
1342 			if (page->mapping != inode->i_mapping) {
1343 				unlock_page(page);
1344 				put_page(page);
1345 				goto again;
1346 			}
1347 		}
1348 
1349 		if (!PageUptodate(page)) {
1350 			btrfs_readpage(NULL, page);
1351 			lock_page(page);
1352 			if (!PageUptodate(page)) {
1353 				unlock_page(page);
1354 				put_page(page);
1355 				ret = -EIO;
1356 				break;
1357 			}
1358 		}
1359 
1360 		if (page->mapping != inode->i_mapping) {
1361 			unlock_page(page);
1362 			put_page(page);
1363 			goto again;
1364 		}
1365 
1366 		pages[i] = page;
1367 		i_done++;
1368 	}
1369 	if (!i_done || ret)
1370 		goto out;
1371 
1372 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1373 		goto out;
1374 
1375 	/*
1376 	 * so now we have a nice long stream of locked
1377 	 * and up to date pages, lets wait on them
1378 	 */
1379 	for (i = 0; i < i_done; i++)
1380 		wait_on_page_writeback(pages[i]);
1381 
1382 	page_start = page_offset(pages[0]);
1383 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1384 
1385 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1386 			 page_start, page_end - 1, &cached_state);
1387 
1388 	/*
1389 	 * When defragmenting we skip ranges that have holes or inline extents,
1390 	 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1391 	 * space. At btrfs_defrag_file(), we check if a range should be defragged
1392 	 * before locking the inode and then, if it should, we trigger a sync
1393 	 * page cache readahead - we lock the inode only after that to avoid
1394 	 * blocking for too long other tasks that possibly want to operate on
1395 	 * other file ranges. But before we were able to get the inode lock,
1396 	 * some other task may have punched a hole in the range, or we may have
1397 	 * now an inline extent, in which case we should not defrag. So check
1398 	 * for that here, where we have the inode and the range locked, and bail
1399 	 * out if that happened.
1400 	 */
1401 	search_start = page_start;
1402 	while (search_start < page_end) {
1403 		struct extent_map *em;
1404 
1405 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1406 				      page_end - search_start);
1407 		if (IS_ERR(em)) {
1408 			ret = PTR_ERR(em);
1409 			goto out_unlock_range;
1410 		}
1411 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1412 			free_extent_map(em);
1413 			/* Ok, 0 means we did not defrag anything */
1414 			ret = 0;
1415 			goto out_unlock_range;
1416 		}
1417 		search_start = extent_map_end(em);
1418 		free_extent_map(em);
1419 	}
1420 
1421 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1422 			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1423 			  EXTENT_DEFRAG, 0, 0, &cached_state);
1424 
1425 	if (i_done != page_cnt) {
1426 		spin_lock(&BTRFS_I(inode)->lock);
1427 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1428 		spin_unlock(&BTRFS_I(inode)->lock);
1429 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1430 				start, (page_cnt - i_done) << PAGE_SHIFT, true);
1431 	}
1432 
1433 
1434 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1435 			  &cached_state);
1436 
1437 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1438 			     page_start, page_end - 1, &cached_state);
1439 
1440 	for (i = 0; i < i_done; i++) {
1441 		clear_page_dirty_for_io(pages[i]);
1442 		ClearPageChecked(pages[i]);
1443 		set_page_extent_mapped(pages[i]);
1444 		set_page_dirty(pages[i]);
1445 		unlock_page(pages[i]);
1446 		put_page(pages[i]);
1447 	}
1448 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1449 	extent_changeset_free(data_reserved);
1450 	return i_done;
1451 
1452 out_unlock_range:
1453 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1454 			     page_start, page_end - 1, &cached_state);
1455 out:
1456 	for (i = 0; i < i_done; i++) {
1457 		unlock_page(pages[i]);
1458 		put_page(pages[i]);
1459 	}
1460 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1461 			start, page_cnt << PAGE_SHIFT, true);
1462 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1463 	extent_changeset_free(data_reserved);
1464 	return ret;
1465 
1466 }
1467 
1468 int btrfs_defrag_file(struct inode *inode, struct file *file,
1469 		      struct btrfs_ioctl_defrag_range_args *range,
1470 		      u64 newer_than, unsigned long max_to_defrag)
1471 {
1472 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1473 	struct btrfs_root *root = BTRFS_I(inode)->root;
1474 	struct file_ra_state *ra = NULL;
1475 	unsigned long last_index;
1476 	u64 isize = i_size_read(inode);
1477 	u64 last_len = 0;
1478 	u64 skip = 0;
1479 	u64 defrag_end = 0;
1480 	u64 newer_off = range->start;
1481 	unsigned long i;
1482 	unsigned long ra_index = 0;
1483 	int ret;
1484 	int defrag_count = 0;
1485 	int compress_type = BTRFS_COMPRESS_ZLIB;
1486 	u32 extent_thresh = range->extent_thresh;
1487 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1488 	unsigned long cluster = max_cluster;
1489 	u64 new_align = ~((u64)SZ_128K - 1);
1490 	struct page **pages = NULL;
1491 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1492 
1493 	if (isize == 0)
1494 		return 0;
1495 
1496 	if (range->start >= isize)
1497 		return -EINVAL;
1498 
1499 	if (do_compress) {
1500 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1501 			return -EINVAL;
1502 		if (range->compress_type)
1503 			compress_type = range->compress_type;
1504 	}
1505 
1506 	if (extent_thresh == 0)
1507 		extent_thresh = SZ_256K;
1508 
1509 	/*
1510 	 * If we were not given a file, allocate a readahead context. As
1511 	 * readahead is just an optimization, defrag will work without it so
1512 	 * we don't error out.
1513 	 */
1514 	if (!file) {
1515 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1516 		if (ra)
1517 			file_ra_state_init(ra, inode->i_mapping);
1518 	} else {
1519 		ra = &file->f_ra;
1520 	}
1521 
1522 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1523 	if (!pages) {
1524 		ret = -ENOMEM;
1525 		goto out_ra;
1526 	}
1527 
1528 	/* find the last page to defrag */
1529 	if (range->start + range->len > range->start) {
1530 		last_index = min_t(u64, isize - 1,
1531 			 range->start + range->len - 1) >> PAGE_SHIFT;
1532 	} else {
1533 		last_index = (isize - 1) >> PAGE_SHIFT;
1534 	}
1535 
1536 	if (newer_than) {
1537 		ret = find_new_extents(root, inode, newer_than,
1538 				       &newer_off, SZ_64K);
1539 		if (!ret) {
1540 			range->start = newer_off;
1541 			/*
1542 			 * we always align our defrag to help keep
1543 			 * the extents in the file evenly spaced
1544 			 */
1545 			i = (newer_off & new_align) >> PAGE_SHIFT;
1546 		} else
1547 			goto out_ra;
1548 	} else {
1549 		i = range->start >> PAGE_SHIFT;
1550 	}
1551 	if (!max_to_defrag)
1552 		max_to_defrag = last_index - i + 1;
1553 
1554 	/*
1555 	 * make writeback starts from i, so the defrag range can be
1556 	 * written sequentially.
1557 	 */
1558 	if (i < inode->i_mapping->writeback_index)
1559 		inode->i_mapping->writeback_index = i;
1560 
1561 	while (i <= last_index && defrag_count < max_to_defrag &&
1562 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1563 		/*
1564 		 * make sure we stop running if someone unmounts
1565 		 * the FS
1566 		 */
1567 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1568 			break;
1569 
1570 		if (btrfs_defrag_cancelled(fs_info)) {
1571 			btrfs_debug(fs_info, "defrag_file cancelled");
1572 			ret = -EAGAIN;
1573 			break;
1574 		}
1575 
1576 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1577 					 extent_thresh, &last_len, &skip,
1578 					 &defrag_end, do_compress)){
1579 			unsigned long next;
1580 			/*
1581 			 * the should_defrag function tells us how much to skip
1582 			 * bump our counter by the suggested amount
1583 			 */
1584 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1585 			i = max(i + 1, next);
1586 			continue;
1587 		}
1588 
1589 		if (!newer_than) {
1590 			cluster = (PAGE_ALIGN(defrag_end) >>
1591 				   PAGE_SHIFT) - i;
1592 			cluster = min(cluster, max_cluster);
1593 		} else {
1594 			cluster = max_cluster;
1595 		}
1596 
1597 		if (i + cluster > ra_index) {
1598 			ra_index = max(i, ra_index);
1599 			if (ra)
1600 				page_cache_sync_readahead(inode->i_mapping, ra,
1601 						file, ra_index, cluster);
1602 			ra_index += cluster;
1603 		}
1604 
1605 		inode_lock(inode);
1606 		if (IS_SWAPFILE(inode)) {
1607 			ret = -ETXTBSY;
1608 		} else {
1609 			if (do_compress)
1610 				BTRFS_I(inode)->defrag_compress = compress_type;
1611 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1612 		}
1613 		if (ret < 0) {
1614 			inode_unlock(inode);
1615 			goto out_ra;
1616 		}
1617 
1618 		defrag_count += ret;
1619 		balance_dirty_pages_ratelimited(inode->i_mapping);
1620 		inode_unlock(inode);
1621 
1622 		if (newer_than) {
1623 			if (newer_off == (u64)-1)
1624 				break;
1625 
1626 			if (ret > 0)
1627 				i += ret;
1628 
1629 			newer_off = max(newer_off + 1,
1630 					(u64)i << PAGE_SHIFT);
1631 
1632 			ret = find_new_extents(root, inode, newer_than,
1633 					       &newer_off, SZ_64K);
1634 			if (!ret) {
1635 				range->start = newer_off;
1636 				i = (newer_off & new_align) >> PAGE_SHIFT;
1637 			} else {
1638 				break;
1639 			}
1640 		} else {
1641 			if (ret > 0) {
1642 				i += ret;
1643 				last_len += ret << PAGE_SHIFT;
1644 			} else {
1645 				i++;
1646 				last_len = 0;
1647 			}
1648 		}
1649 	}
1650 
1651 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1652 		filemap_flush(inode->i_mapping);
1653 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1654 			     &BTRFS_I(inode)->runtime_flags))
1655 			filemap_flush(inode->i_mapping);
1656 	}
1657 
1658 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1659 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1660 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1661 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1662 	}
1663 
1664 	ret = defrag_count;
1665 
1666 out_ra:
1667 	if (do_compress) {
1668 		inode_lock(inode);
1669 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1670 		inode_unlock(inode);
1671 	}
1672 	if (!file)
1673 		kfree(ra);
1674 	kfree(pages);
1675 	return ret;
1676 }
1677 
1678 static noinline int btrfs_ioctl_resize(struct file *file,
1679 					void __user *arg)
1680 {
1681 	struct inode *inode = file_inode(file);
1682 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1683 	u64 new_size;
1684 	u64 old_size;
1685 	u64 devid = 1;
1686 	struct btrfs_root *root = BTRFS_I(inode)->root;
1687 	struct btrfs_ioctl_vol_args *vol_args;
1688 	struct btrfs_trans_handle *trans;
1689 	struct btrfs_device *device = NULL;
1690 	char *sizestr;
1691 	char *retptr;
1692 	char *devstr = NULL;
1693 	int ret = 0;
1694 	int mod = 0;
1695 
1696 	if (!capable(CAP_SYS_ADMIN))
1697 		return -EPERM;
1698 
1699 	ret = mnt_want_write_file(file);
1700 	if (ret)
1701 		return ret;
1702 
1703 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
1704 		mnt_drop_write_file(file);
1705 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1706 	}
1707 
1708 	vol_args = memdup_user(arg, sizeof(*vol_args));
1709 	if (IS_ERR(vol_args)) {
1710 		ret = PTR_ERR(vol_args);
1711 		goto out;
1712 	}
1713 
1714 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1715 
1716 	sizestr = vol_args->name;
1717 	devstr = strchr(sizestr, ':');
1718 	if (devstr) {
1719 		sizestr = devstr + 1;
1720 		*devstr = '\0';
1721 		devstr = vol_args->name;
1722 		ret = kstrtoull(devstr, 10, &devid);
1723 		if (ret)
1724 			goto out_free;
1725 		if (!devid) {
1726 			ret = -EINVAL;
1727 			goto out_free;
1728 		}
1729 		btrfs_info(fs_info, "resizing devid %llu", devid);
1730 	}
1731 
1732 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
1733 	if (!device) {
1734 		btrfs_info(fs_info, "resizer unable to find device %llu",
1735 			   devid);
1736 		ret = -ENODEV;
1737 		goto out_free;
1738 	}
1739 
1740 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1741 		btrfs_info(fs_info,
1742 			   "resizer unable to apply on readonly device %llu",
1743 		       devid);
1744 		ret = -EPERM;
1745 		goto out_free;
1746 	}
1747 
1748 	if (!strcmp(sizestr, "max"))
1749 		new_size = device->bdev->bd_inode->i_size;
1750 	else {
1751 		if (sizestr[0] == '-') {
1752 			mod = -1;
1753 			sizestr++;
1754 		} else if (sizestr[0] == '+') {
1755 			mod = 1;
1756 			sizestr++;
1757 		}
1758 		new_size = memparse(sizestr, &retptr);
1759 		if (*retptr != '\0' || new_size == 0) {
1760 			ret = -EINVAL;
1761 			goto out_free;
1762 		}
1763 	}
1764 
1765 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1766 		ret = -EPERM;
1767 		goto out_free;
1768 	}
1769 
1770 	old_size = btrfs_device_get_total_bytes(device);
1771 
1772 	if (mod < 0) {
1773 		if (new_size > old_size) {
1774 			ret = -EINVAL;
1775 			goto out_free;
1776 		}
1777 		new_size = old_size - new_size;
1778 	} else if (mod > 0) {
1779 		if (new_size > ULLONG_MAX - old_size) {
1780 			ret = -ERANGE;
1781 			goto out_free;
1782 		}
1783 		new_size = old_size + new_size;
1784 	}
1785 
1786 	if (new_size < SZ_256M) {
1787 		ret = -EINVAL;
1788 		goto out_free;
1789 	}
1790 	if (new_size > device->bdev->bd_inode->i_size) {
1791 		ret = -EFBIG;
1792 		goto out_free;
1793 	}
1794 
1795 	new_size = round_down(new_size, fs_info->sectorsize);
1796 
1797 	if (new_size > old_size) {
1798 		trans = btrfs_start_transaction(root, 0);
1799 		if (IS_ERR(trans)) {
1800 			ret = PTR_ERR(trans);
1801 			goto out_free;
1802 		}
1803 		ret = btrfs_grow_device(trans, device, new_size);
1804 		btrfs_commit_transaction(trans);
1805 	} else if (new_size < old_size) {
1806 		ret = btrfs_shrink_device(device, new_size);
1807 	} /* equal, nothing need to do */
1808 
1809 	if (ret == 0 && new_size != old_size)
1810 		btrfs_info_in_rcu(fs_info,
1811 			"resize device %s (devid %llu) from %llu to %llu",
1812 			rcu_str_deref(device->name), device->devid,
1813 			old_size, new_size);
1814 out_free:
1815 	kfree(vol_args);
1816 out:
1817 	btrfs_exclop_finish(fs_info);
1818 	mnt_drop_write_file(file);
1819 	return ret;
1820 }
1821 
1822 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1823 				const char *name, unsigned long fd, int subvol,
1824 				bool readonly,
1825 				struct btrfs_qgroup_inherit *inherit)
1826 {
1827 	int namelen;
1828 	int ret = 0;
1829 
1830 	if (!S_ISDIR(file_inode(file)->i_mode))
1831 		return -ENOTDIR;
1832 
1833 	ret = mnt_want_write_file(file);
1834 	if (ret)
1835 		goto out;
1836 
1837 	namelen = strlen(name);
1838 	if (strchr(name, '/')) {
1839 		ret = -EINVAL;
1840 		goto out_drop_write;
1841 	}
1842 
1843 	if (name[0] == '.' &&
1844 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1845 		ret = -EEXIST;
1846 		goto out_drop_write;
1847 	}
1848 
1849 	if (subvol) {
1850 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1851 				     NULL, readonly, inherit);
1852 	} else {
1853 		struct fd src = fdget(fd);
1854 		struct inode *src_inode;
1855 		if (!src.file) {
1856 			ret = -EINVAL;
1857 			goto out_drop_write;
1858 		}
1859 
1860 		src_inode = file_inode(src.file);
1861 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1862 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1863 				   "Snapshot src from another FS");
1864 			ret = -EXDEV;
1865 		} else if (!inode_owner_or_capable(src_inode)) {
1866 			/*
1867 			 * Subvolume creation is not restricted, but snapshots
1868 			 * are limited to own subvolumes only
1869 			 */
1870 			ret = -EPERM;
1871 		} else {
1872 			ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1873 					     BTRFS_I(src_inode)->root,
1874 					     readonly, inherit);
1875 		}
1876 		fdput(src);
1877 	}
1878 out_drop_write:
1879 	mnt_drop_write_file(file);
1880 out:
1881 	return ret;
1882 }
1883 
1884 static noinline int btrfs_ioctl_snap_create(struct file *file,
1885 					    void __user *arg, int subvol)
1886 {
1887 	struct btrfs_ioctl_vol_args *vol_args;
1888 	int ret;
1889 
1890 	if (!S_ISDIR(file_inode(file)->i_mode))
1891 		return -ENOTDIR;
1892 
1893 	vol_args = memdup_user(arg, sizeof(*vol_args));
1894 	if (IS_ERR(vol_args))
1895 		return PTR_ERR(vol_args);
1896 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1897 
1898 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1899 					subvol, false, NULL);
1900 
1901 	kfree(vol_args);
1902 	return ret;
1903 }
1904 
1905 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1906 					       void __user *arg, int subvol)
1907 {
1908 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1909 	int ret;
1910 	bool readonly = false;
1911 	struct btrfs_qgroup_inherit *inherit = NULL;
1912 
1913 	if (!S_ISDIR(file_inode(file)->i_mode))
1914 		return -ENOTDIR;
1915 
1916 	vol_args = memdup_user(arg, sizeof(*vol_args));
1917 	if (IS_ERR(vol_args))
1918 		return PTR_ERR(vol_args);
1919 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1920 
1921 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1922 		ret = -EOPNOTSUPP;
1923 		goto free_args;
1924 	}
1925 
1926 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1927 		readonly = true;
1928 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1929 		if (vol_args->size > PAGE_SIZE) {
1930 			ret = -EINVAL;
1931 			goto free_args;
1932 		}
1933 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1934 		if (IS_ERR(inherit)) {
1935 			ret = PTR_ERR(inherit);
1936 			goto free_args;
1937 		}
1938 	}
1939 
1940 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1941 					subvol, readonly, inherit);
1942 	if (ret)
1943 		goto free_inherit;
1944 free_inherit:
1945 	kfree(inherit);
1946 free_args:
1947 	kfree(vol_args);
1948 	return ret;
1949 }
1950 
1951 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1952 						void __user *arg)
1953 {
1954 	struct inode *inode = file_inode(file);
1955 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1956 	struct btrfs_root *root = BTRFS_I(inode)->root;
1957 	int ret = 0;
1958 	u64 flags = 0;
1959 
1960 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1961 		return -EINVAL;
1962 
1963 	down_read(&fs_info->subvol_sem);
1964 	if (btrfs_root_readonly(root))
1965 		flags |= BTRFS_SUBVOL_RDONLY;
1966 	up_read(&fs_info->subvol_sem);
1967 
1968 	if (copy_to_user(arg, &flags, sizeof(flags)))
1969 		ret = -EFAULT;
1970 
1971 	return ret;
1972 }
1973 
1974 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1975 					      void __user *arg)
1976 {
1977 	struct inode *inode = file_inode(file);
1978 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1979 	struct btrfs_root *root = BTRFS_I(inode)->root;
1980 	struct btrfs_trans_handle *trans;
1981 	u64 root_flags;
1982 	u64 flags;
1983 	int ret = 0;
1984 
1985 	if (!inode_owner_or_capable(inode))
1986 		return -EPERM;
1987 
1988 	ret = mnt_want_write_file(file);
1989 	if (ret)
1990 		goto out;
1991 
1992 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1993 		ret = -EINVAL;
1994 		goto out_drop_write;
1995 	}
1996 
1997 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1998 		ret = -EFAULT;
1999 		goto out_drop_write;
2000 	}
2001 
2002 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
2003 		ret = -EOPNOTSUPP;
2004 		goto out_drop_write;
2005 	}
2006 
2007 	down_write(&fs_info->subvol_sem);
2008 
2009 	/* nothing to do */
2010 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2011 		goto out_drop_sem;
2012 
2013 	root_flags = btrfs_root_flags(&root->root_item);
2014 	if (flags & BTRFS_SUBVOL_RDONLY) {
2015 		btrfs_set_root_flags(&root->root_item,
2016 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2017 	} else {
2018 		/*
2019 		 * Block RO -> RW transition if this subvolume is involved in
2020 		 * send
2021 		 */
2022 		spin_lock(&root->root_item_lock);
2023 		if (root->send_in_progress == 0) {
2024 			btrfs_set_root_flags(&root->root_item,
2025 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2026 			spin_unlock(&root->root_item_lock);
2027 		} else {
2028 			spin_unlock(&root->root_item_lock);
2029 			btrfs_warn(fs_info,
2030 				   "Attempt to set subvolume %llu read-write during send",
2031 				   root->root_key.objectid);
2032 			ret = -EPERM;
2033 			goto out_drop_sem;
2034 		}
2035 	}
2036 
2037 	trans = btrfs_start_transaction(root, 1);
2038 	if (IS_ERR(trans)) {
2039 		ret = PTR_ERR(trans);
2040 		goto out_reset;
2041 	}
2042 
2043 	ret = btrfs_update_root(trans, fs_info->tree_root,
2044 				&root->root_key, &root->root_item);
2045 	if (ret < 0) {
2046 		btrfs_end_transaction(trans);
2047 		goto out_reset;
2048 	}
2049 
2050 	ret = btrfs_commit_transaction(trans);
2051 
2052 out_reset:
2053 	if (ret)
2054 		btrfs_set_root_flags(&root->root_item, root_flags);
2055 out_drop_sem:
2056 	up_write(&fs_info->subvol_sem);
2057 out_drop_write:
2058 	mnt_drop_write_file(file);
2059 out:
2060 	return ret;
2061 }
2062 
2063 static noinline int key_in_sk(struct btrfs_key *key,
2064 			      struct btrfs_ioctl_search_key *sk)
2065 {
2066 	struct btrfs_key test;
2067 	int ret;
2068 
2069 	test.objectid = sk->min_objectid;
2070 	test.type = sk->min_type;
2071 	test.offset = sk->min_offset;
2072 
2073 	ret = btrfs_comp_cpu_keys(key, &test);
2074 	if (ret < 0)
2075 		return 0;
2076 
2077 	test.objectid = sk->max_objectid;
2078 	test.type = sk->max_type;
2079 	test.offset = sk->max_offset;
2080 
2081 	ret = btrfs_comp_cpu_keys(key, &test);
2082 	if (ret > 0)
2083 		return 0;
2084 	return 1;
2085 }
2086 
2087 static noinline int copy_to_sk(struct btrfs_path *path,
2088 			       struct btrfs_key *key,
2089 			       struct btrfs_ioctl_search_key *sk,
2090 			       size_t *buf_size,
2091 			       char __user *ubuf,
2092 			       unsigned long *sk_offset,
2093 			       int *num_found)
2094 {
2095 	u64 found_transid;
2096 	struct extent_buffer *leaf;
2097 	struct btrfs_ioctl_search_header sh;
2098 	struct btrfs_key test;
2099 	unsigned long item_off;
2100 	unsigned long item_len;
2101 	int nritems;
2102 	int i;
2103 	int slot;
2104 	int ret = 0;
2105 
2106 	leaf = path->nodes[0];
2107 	slot = path->slots[0];
2108 	nritems = btrfs_header_nritems(leaf);
2109 
2110 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2111 		i = nritems;
2112 		goto advance_key;
2113 	}
2114 	found_transid = btrfs_header_generation(leaf);
2115 
2116 	for (i = slot; i < nritems; i++) {
2117 		item_off = btrfs_item_ptr_offset(leaf, i);
2118 		item_len = btrfs_item_size_nr(leaf, i);
2119 
2120 		btrfs_item_key_to_cpu(leaf, key, i);
2121 		if (!key_in_sk(key, sk))
2122 			continue;
2123 
2124 		if (sizeof(sh) + item_len > *buf_size) {
2125 			if (*num_found) {
2126 				ret = 1;
2127 				goto out;
2128 			}
2129 
2130 			/*
2131 			 * return one empty item back for v1, which does not
2132 			 * handle -EOVERFLOW
2133 			 */
2134 
2135 			*buf_size = sizeof(sh) + item_len;
2136 			item_len = 0;
2137 			ret = -EOVERFLOW;
2138 		}
2139 
2140 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2141 			ret = 1;
2142 			goto out;
2143 		}
2144 
2145 		sh.objectid = key->objectid;
2146 		sh.offset = key->offset;
2147 		sh.type = key->type;
2148 		sh.len = item_len;
2149 		sh.transid = found_transid;
2150 
2151 		/*
2152 		 * Copy search result header. If we fault then loop again so we
2153 		 * can fault in the pages and -EFAULT there if there's a
2154 		 * problem. Otherwise we'll fault and then copy the buffer in
2155 		 * properly this next time through
2156 		 */
2157 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2158 			ret = 0;
2159 			goto out;
2160 		}
2161 
2162 		*sk_offset += sizeof(sh);
2163 
2164 		if (item_len) {
2165 			char __user *up = ubuf + *sk_offset;
2166 			/*
2167 			 * Copy the item, same behavior as above, but reset the
2168 			 * * sk_offset so we copy the full thing again.
2169 			 */
2170 			if (read_extent_buffer_to_user_nofault(leaf, up,
2171 						item_off, item_len)) {
2172 				ret = 0;
2173 				*sk_offset -= sizeof(sh);
2174 				goto out;
2175 			}
2176 
2177 			*sk_offset += item_len;
2178 		}
2179 		(*num_found)++;
2180 
2181 		if (ret) /* -EOVERFLOW from above */
2182 			goto out;
2183 
2184 		if (*num_found >= sk->nr_items) {
2185 			ret = 1;
2186 			goto out;
2187 		}
2188 	}
2189 advance_key:
2190 	ret = 0;
2191 	test.objectid = sk->max_objectid;
2192 	test.type = sk->max_type;
2193 	test.offset = sk->max_offset;
2194 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2195 		ret = 1;
2196 	else if (key->offset < (u64)-1)
2197 		key->offset++;
2198 	else if (key->type < (u8)-1) {
2199 		key->offset = 0;
2200 		key->type++;
2201 	} else if (key->objectid < (u64)-1) {
2202 		key->offset = 0;
2203 		key->type = 0;
2204 		key->objectid++;
2205 	} else
2206 		ret = 1;
2207 out:
2208 	/*
2209 	 *  0: all items from this leaf copied, continue with next
2210 	 *  1: * more items can be copied, but unused buffer is too small
2211 	 *     * all items were found
2212 	 *     Either way, it will stops the loop which iterates to the next
2213 	 *     leaf
2214 	 *  -EOVERFLOW: item was to large for buffer
2215 	 *  -EFAULT: could not copy extent buffer back to userspace
2216 	 */
2217 	return ret;
2218 }
2219 
2220 static noinline int search_ioctl(struct inode *inode,
2221 				 struct btrfs_ioctl_search_key *sk,
2222 				 size_t *buf_size,
2223 				 char __user *ubuf)
2224 {
2225 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2226 	struct btrfs_root *root;
2227 	struct btrfs_key key;
2228 	struct btrfs_path *path;
2229 	int ret;
2230 	int num_found = 0;
2231 	unsigned long sk_offset = 0;
2232 
2233 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2234 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2235 		return -EOVERFLOW;
2236 	}
2237 
2238 	path = btrfs_alloc_path();
2239 	if (!path)
2240 		return -ENOMEM;
2241 
2242 	if (sk->tree_id == 0) {
2243 		/* search the root of the inode that was passed */
2244 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2245 	} else {
2246 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2247 		if (IS_ERR(root)) {
2248 			btrfs_free_path(path);
2249 			return PTR_ERR(root);
2250 		}
2251 	}
2252 
2253 	key.objectid = sk->min_objectid;
2254 	key.type = sk->min_type;
2255 	key.offset = sk->min_offset;
2256 
2257 	while (1) {
2258 		ret = fault_in_pages_writeable(ubuf + sk_offset,
2259 					       *buf_size - sk_offset);
2260 		if (ret)
2261 			break;
2262 
2263 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2264 		if (ret != 0) {
2265 			if (ret > 0)
2266 				ret = 0;
2267 			goto err;
2268 		}
2269 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2270 				 &sk_offset, &num_found);
2271 		btrfs_release_path(path);
2272 		if (ret)
2273 			break;
2274 
2275 	}
2276 	if (ret > 0)
2277 		ret = 0;
2278 err:
2279 	sk->nr_items = num_found;
2280 	btrfs_put_root(root);
2281 	btrfs_free_path(path);
2282 	return ret;
2283 }
2284 
2285 static noinline int btrfs_ioctl_tree_search(struct file *file,
2286 					   void __user *argp)
2287 {
2288 	struct btrfs_ioctl_search_args __user *uargs;
2289 	struct btrfs_ioctl_search_key sk;
2290 	struct inode *inode;
2291 	int ret;
2292 	size_t buf_size;
2293 
2294 	if (!capable(CAP_SYS_ADMIN))
2295 		return -EPERM;
2296 
2297 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2298 
2299 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2300 		return -EFAULT;
2301 
2302 	buf_size = sizeof(uargs->buf);
2303 
2304 	inode = file_inode(file);
2305 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2306 
2307 	/*
2308 	 * In the origin implementation an overflow is handled by returning a
2309 	 * search header with a len of zero, so reset ret.
2310 	 */
2311 	if (ret == -EOVERFLOW)
2312 		ret = 0;
2313 
2314 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2315 		ret = -EFAULT;
2316 	return ret;
2317 }
2318 
2319 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2320 					       void __user *argp)
2321 {
2322 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2323 	struct btrfs_ioctl_search_args_v2 args;
2324 	struct inode *inode;
2325 	int ret;
2326 	size_t buf_size;
2327 	const size_t buf_limit = SZ_16M;
2328 
2329 	if (!capable(CAP_SYS_ADMIN))
2330 		return -EPERM;
2331 
2332 	/* copy search header and buffer size */
2333 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2334 	if (copy_from_user(&args, uarg, sizeof(args)))
2335 		return -EFAULT;
2336 
2337 	buf_size = args.buf_size;
2338 
2339 	/* limit result size to 16MB */
2340 	if (buf_size > buf_limit)
2341 		buf_size = buf_limit;
2342 
2343 	inode = file_inode(file);
2344 	ret = search_ioctl(inode, &args.key, &buf_size,
2345 			   (char __user *)(&uarg->buf[0]));
2346 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2347 		ret = -EFAULT;
2348 	else if (ret == -EOVERFLOW &&
2349 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2350 		ret = -EFAULT;
2351 
2352 	return ret;
2353 }
2354 
2355 /*
2356  * Search INODE_REFs to identify path name of 'dirid' directory
2357  * in a 'tree_id' tree. and sets path name to 'name'.
2358  */
2359 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2360 				u64 tree_id, u64 dirid, char *name)
2361 {
2362 	struct btrfs_root *root;
2363 	struct btrfs_key key;
2364 	char *ptr;
2365 	int ret = -1;
2366 	int slot;
2367 	int len;
2368 	int total_len = 0;
2369 	struct btrfs_inode_ref *iref;
2370 	struct extent_buffer *l;
2371 	struct btrfs_path *path;
2372 
2373 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2374 		name[0]='\0';
2375 		return 0;
2376 	}
2377 
2378 	path = btrfs_alloc_path();
2379 	if (!path)
2380 		return -ENOMEM;
2381 
2382 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2383 
2384 	root = btrfs_get_fs_root(info, tree_id, true);
2385 	if (IS_ERR(root)) {
2386 		ret = PTR_ERR(root);
2387 		root = NULL;
2388 		goto out;
2389 	}
2390 
2391 	key.objectid = dirid;
2392 	key.type = BTRFS_INODE_REF_KEY;
2393 	key.offset = (u64)-1;
2394 
2395 	while (1) {
2396 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2397 		if (ret < 0)
2398 			goto out;
2399 		else if (ret > 0) {
2400 			ret = btrfs_previous_item(root, path, dirid,
2401 						  BTRFS_INODE_REF_KEY);
2402 			if (ret < 0)
2403 				goto out;
2404 			else if (ret > 0) {
2405 				ret = -ENOENT;
2406 				goto out;
2407 			}
2408 		}
2409 
2410 		l = path->nodes[0];
2411 		slot = path->slots[0];
2412 		btrfs_item_key_to_cpu(l, &key, slot);
2413 
2414 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2415 		len = btrfs_inode_ref_name_len(l, iref);
2416 		ptr -= len + 1;
2417 		total_len += len + 1;
2418 		if (ptr < name) {
2419 			ret = -ENAMETOOLONG;
2420 			goto out;
2421 		}
2422 
2423 		*(ptr + len) = '/';
2424 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2425 
2426 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2427 			break;
2428 
2429 		btrfs_release_path(path);
2430 		key.objectid = key.offset;
2431 		key.offset = (u64)-1;
2432 		dirid = key.objectid;
2433 	}
2434 	memmove(name, ptr, total_len);
2435 	name[total_len] = '\0';
2436 	ret = 0;
2437 out:
2438 	btrfs_put_root(root);
2439 	btrfs_free_path(path);
2440 	return ret;
2441 }
2442 
2443 static int btrfs_search_path_in_tree_user(struct inode *inode,
2444 				struct btrfs_ioctl_ino_lookup_user_args *args)
2445 {
2446 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2447 	struct super_block *sb = inode->i_sb;
2448 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2449 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2450 	u64 dirid = args->dirid;
2451 	unsigned long item_off;
2452 	unsigned long item_len;
2453 	struct btrfs_inode_ref *iref;
2454 	struct btrfs_root_ref *rref;
2455 	struct btrfs_root *root = NULL;
2456 	struct btrfs_path *path;
2457 	struct btrfs_key key, key2;
2458 	struct extent_buffer *leaf;
2459 	struct inode *temp_inode;
2460 	char *ptr;
2461 	int slot;
2462 	int len;
2463 	int total_len = 0;
2464 	int ret;
2465 
2466 	path = btrfs_alloc_path();
2467 	if (!path)
2468 		return -ENOMEM;
2469 
2470 	/*
2471 	 * If the bottom subvolume does not exist directly under upper_limit,
2472 	 * construct the path in from the bottom up.
2473 	 */
2474 	if (dirid != upper_limit.objectid) {
2475 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2476 
2477 		root = btrfs_get_fs_root(fs_info, treeid, true);
2478 		if (IS_ERR(root)) {
2479 			ret = PTR_ERR(root);
2480 			goto out;
2481 		}
2482 
2483 		key.objectid = dirid;
2484 		key.type = BTRFS_INODE_REF_KEY;
2485 		key.offset = (u64)-1;
2486 		while (1) {
2487 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2488 			if (ret < 0) {
2489 				goto out_put;
2490 			} else if (ret > 0) {
2491 				ret = btrfs_previous_item(root, path, dirid,
2492 							  BTRFS_INODE_REF_KEY);
2493 				if (ret < 0) {
2494 					goto out_put;
2495 				} else if (ret > 0) {
2496 					ret = -ENOENT;
2497 					goto out_put;
2498 				}
2499 			}
2500 
2501 			leaf = path->nodes[0];
2502 			slot = path->slots[0];
2503 			btrfs_item_key_to_cpu(leaf, &key, slot);
2504 
2505 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2506 			len = btrfs_inode_ref_name_len(leaf, iref);
2507 			ptr -= len + 1;
2508 			total_len += len + 1;
2509 			if (ptr < args->path) {
2510 				ret = -ENAMETOOLONG;
2511 				goto out_put;
2512 			}
2513 
2514 			*(ptr + len) = '/';
2515 			read_extent_buffer(leaf, ptr,
2516 					(unsigned long)(iref + 1), len);
2517 
2518 			/* Check the read+exec permission of this directory */
2519 			ret = btrfs_previous_item(root, path, dirid,
2520 						  BTRFS_INODE_ITEM_KEY);
2521 			if (ret < 0) {
2522 				goto out_put;
2523 			} else if (ret > 0) {
2524 				ret = -ENOENT;
2525 				goto out_put;
2526 			}
2527 
2528 			leaf = path->nodes[0];
2529 			slot = path->slots[0];
2530 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2531 			if (key2.objectid != dirid) {
2532 				ret = -ENOENT;
2533 				goto out_put;
2534 			}
2535 
2536 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2537 			if (IS_ERR(temp_inode)) {
2538 				ret = PTR_ERR(temp_inode);
2539 				goto out_put;
2540 			}
2541 			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2542 			iput(temp_inode);
2543 			if (ret) {
2544 				ret = -EACCES;
2545 				goto out_put;
2546 			}
2547 
2548 			if (key.offset == upper_limit.objectid)
2549 				break;
2550 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2551 				ret = -EACCES;
2552 				goto out_put;
2553 			}
2554 
2555 			btrfs_release_path(path);
2556 			key.objectid = key.offset;
2557 			key.offset = (u64)-1;
2558 			dirid = key.objectid;
2559 		}
2560 
2561 		memmove(args->path, ptr, total_len);
2562 		args->path[total_len] = '\0';
2563 		btrfs_put_root(root);
2564 		root = NULL;
2565 		btrfs_release_path(path);
2566 	}
2567 
2568 	/* Get the bottom subvolume's name from ROOT_REF */
2569 	key.objectid = treeid;
2570 	key.type = BTRFS_ROOT_REF_KEY;
2571 	key.offset = args->treeid;
2572 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2573 	if (ret < 0) {
2574 		goto out;
2575 	} else if (ret > 0) {
2576 		ret = -ENOENT;
2577 		goto out;
2578 	}
2579 
2580 	leaf = path->nodes[0];
2581 	slot = path->slots[0];
2582 	btrfs_item_key_to_cpu(leaf, &key, slot);
2583 
2584 	item_off = btrfs_item_ptr_offset(leaf, slot);
2585 	item_len = btrfs_item_size_nr(leaf, slot);
2586 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2587 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2588 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2589 		ret = -EINVAL;
2590 		goto out;
2591 	}
2592 
2593 	/* Copy subvolume's name */
2594 	item_off += sizeof(struct btrfs_root_ref);
2595 	item_len -= sizeof(struct btrfs_root_ref);
2596 	read_extent_buffer(leaf, args->name, item_off, item_len);
2597 	args->name[item_len] = 0;
2598 
2599 out_put:
2600 	btrfs_put_root(root);
2601 out:
2602 	btrfs_free_path(path);
2603 	return ret;
2604 }
2605 
2606 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2607 					   void __user *argp)
2608 {
2609 	struct btrfs_ioctl_ino_lookup_args *args;
2610 	struct inode *inode;
2611 	int ret = 0;
2612 
2613 	args = memdup_user(argp, sizeof(*args));
2614 	if (IS_ERR(args))
2615 		return PTR_ERR(args);
2616 
2617 	inode = file_inode(file);
2618 
2619 	/*
2620 	 * Unprivileged query to obtain the containing subvolume root id. The
2621 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2622 	 */
2623 	if (args->treeid == 0)
2624 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2625 
2626 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2627 		args->name[0] = 0;
2628 		goto out;
2629 	}
2630 
2631 	if (!capable(CAP_SYS_ADMIN)) {
2632 		ret = -EPERM;
2633 		goto out;
2634 	}
2635 
2636 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2637 					args->treeid, args->objectid,
2638 					args->name);
2639 
2640 out:
2641 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2642 		ret = -EFAULT;
2643 
2644 	kfree(args);
2645 	return ret;
2646 }
2647 
2648 /*
2649  * Version of ino_lookup ioctl (unprivileged)
2650  *
2651  * The main differences from ino_lookup ioctl are:
2652  *
2653  *   1. Read + Exec permission will be checked using inode_permission() during
2654  *      path construction. -EACCES will be returned in case of failure.
2655  *   2. Path construction will be stopped at the inode number which corresponds
2656  *      to the fd with which this ioctl is called. If constructed path does not
2657  *      exist under fd's inode, -EACCES will be returned.
2658  *   3. The name of bottom subvolume is also searched and filled.
2659  */
2660 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2661 {
2662 	struct btrfs_ioctl_ino_lookup_user_args *args;
2663 	struct inode *inode;
2664 	int ret;
2665 
2666 	args = memdup_user(argp, sizeof(*args));
2667 	if (IS_ERR(args))
2668 		return PTR_ERR(args);
2669 
2670 	inode = file_inode(file);
2671 
2672 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2673 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2674 		/*
2675 		 * The subvolume does not exist under fd with which this is
2676 		 * called
2677 		 */
2678 		kfree(args);
2679 		return -EACCES;
2680 	}
2681 
2682 	ret = btrfs_search_path_in_tree_user(inode, args);
2683 
2684 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2685 		ret = -EFAULT;
2686 
2687 	kfree(args);
2688 	return ret;
2689 }
2690 
2691 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2692 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2693 {
2694 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2695 	struct btrfs_fs_info *fs_info;
2696 	struct btrfs_root *root;
2697 	struct btrfs_path *path;
2698 	struct btrfs_key key;
2699 	struct btrfs_root_item *root_item;
2700 	struct btrfs_root_ref *rref;
2701 	struct extent_buffer *leaf;
2702 	unsigned long item_off;
2703 	unsigned long item_len;
2704 	struct inode *inode;
2705 	int slot;
2706 	int ret = 0;
2707 
2708 	path = btrfs_alloc_path();
2709 	if (!path)
2710 		return -ENOMEM;
2711 
2712 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2713 	if (!subvol_info) {
2714 		btrfs_free_path(path);
2715 		return -ENOMEM;
2716 	}
2717 
2718 	inode = file_inode(file);
2719 	fs_info = BTRFS_I(inode)->root->fs_info;
2720 
2721 	/* Get root_item of inode's subvolume */
2722 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2723 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2724 	if (IS_ERR(root)) {
2725 		ret = PTR_ERR(root);
2726 		goto out_free;
2727 	}
2728 	root_item = &root->root_item;
2729 
2730 	subvol_info->treeid = key.objectid;
2731 
2732 	subvol_info->generation = btrfs_root_generation(root_item);
2733 	subvol_info->flags = btrfs_root_flags(root_item);
2734 
2735 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2736 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2737 						    BTRFS_UUID_SIZE);
2738 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2739 						    BTRFS_UUID_SIZE);
2740 
2741 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2742 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2743 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2744 
2745 	subvol_info->otransid = btrfs_root_otransid(root_item);
2746 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2747 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2748 
2749 	subvol_info->stransid = btrfs_root_stransid(root_item);
2750 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2751 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2752 
2753 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2754 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2755 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2756 
2757 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2758 		/* Search root tree for ROOT_BACKREF of this subvolume */
2759 		key.type = BTRFS_ROOT_BACKREF_KEY;
2760 		key.offset = 0;
2761 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2762 		if (ret < 0) {
2763 			goto out;
2764 		} else if (path->slots[0] >=
2765 			   btrfs_header_nritems(path->nodes[0])) {
2766 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2767 			if (ret < 0) {
2768 				goto out;
2769 			} else if (ret > 0) {
2770 				ret = -EUCLEAN;
2771 				goto out;
2772 			}
2773 		}
2774 
2775 		leaf = path->nodes[0];
2776 		slot = path->slots[0];
2777 		btrfs_item_key_to_cpu(leaf, &key, slot);
2778 		if (key.objectid == subvol_info->treeid &&
2779 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2780 			subvol_info->parent_id = key.offset;
2781 
2782 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2783 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2784 
2785 			item_off = btrfs_item_ptr_offset(leaf, slot)
2786 					+ sizeof(struct btrfs_root_ref);
2787 			item_len = btrfs_item_size_nr(leaf, slot)
2788 					- sizeof(struct btrfs_root_ref);
2789 			read_extent_buffer(leaf, subvol_info->name,
2790 					   item_off, item_len);
2791 		} else {
2792 			ret = -ENOENT;
2793 			goto out;
2794 		}
2795 	}
2796 
2797 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2798 		ret = -EFAULT;
2799 
2800 out:
2801 	btrfs_put_root(root);
2802 out_free:
2803 	btrfs_free_path(path);
2804 	kfree(subvol_info);
2805 	return ret;
2806 }
2807 
2808 /*
2809  * Return ROOT_REF information of the subvolume containing this inode
2810  * except the subvolume name.
2811  */
2812 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2813 {
2814 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2815 	struct btrfs_root_ref *rref;
2816 	struct btrfs_root *root;
2817 	struct btrfs_path *path;
2818 	struct btrfs_key key;
2819 	struct extent_buffer *leaf;
2820 	struct inode *inode;
2821 	u64 objectid;
2822 	int slot;
2823 	int ret;
2824 	u8 found;
2825 
2826 	path = btrfs_alloc_path();
2827 	if (!path)
2828 		return -ENOMEM;
2829 
2830 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2831 	if (IS_ERR(rootrefs)) {
2832 		btrfs_free_path(path);
2833 		return PTR_ERR(rootrefs);
2834 	}
2835 
2836 	inode = file_inode(file);
2837 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2838 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2839 
2840 	key.objectid = objectid;
2841 	key.type = BTRFS_ROOT_REF_KEY;
2842 	key.offset = rootrefs->min_treeid;
2843 	found = 0;
2844 
2845 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2846 	if (ret < 0) {
2847 		goto out;
2848 	} else if (path->slots[0] >=
2849 		   btrfs_header_nritems(path->nodes[0])) {
2850 		ret = btrfs_next_leaf(root, path);
2851 		if (ret < 0) {
2852 			goto out;
2853 		} else if (ret > 0) {
2854 			ret = -EUCLEAN;
2855 			goto out;
2856 		}
2857 	}
2858 	while (1) {
2859 		leaf = path->nodes[0];
2860 		slot = path->slots[0];
2861 
2862 		btrfs_item_key_to_cpu(leaf, &key, slot);
2863 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2864 			ret = 0;
2865 			goto out;
2866 		}
2867 
2868 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2869 			ret = -EOVERFLOW;
2870 			goto out;
2871 		}
2872 
2873 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2874 		rootrefs->rootref[found].treeid = key.offset;
2875 		rootrefs->rootref[found].dirid =
2876 				  btrfs_root_ref_dirid(leaf, rref);
2877 		found++;
2878 
2879 		ret = btrfs_next_item(root, path);
2880 		if (ret < 0) {
2881 			goto out;
2882 		} else if (ret > 0) {
2883 			ret = -EUCLEAN;
2884 			goto out;
2885 		}
2886 	}
2887 
2888 out:
2889 	if (!ret || ret == -EOVERFLOW) {
2890 		rootrefs->num_items = found;
2891 		/* update min_treeid for next search */
2892 		if (found)
2893 			rootrefs->min_treeid =
2894 				rootrefs->rootref[found - 1].treeid + 1;
2895 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2896 			ret = -EFAULT;
2897 	}
2898 
2899 	kfree(rootrefs);
2900 	btrfs_free_path(path);
2901 
2902 	return ret;
2903 }
2904 
2905 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2906 					     void __user *arg,
2907 					     bool destroy_v2)
2908 {
2909 	struct dentry *parent = file->f_path.dentry;
2910 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2911 	struct dentry *dentry;
2912 	struct inode *dir = d_inode(parent);
2913 	struct inode *inode;
2914 	struct btrfs_root *root = BTRFS_I(dir)->root;
2915 	struct btrfs_root *dest = NULL;
2916 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2917 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2918 	char *subvol_name, *subvol_name_ptr = NULL;
2919 	int subvol_namelen;
2920 	int err = 0;
2921 	bool destroy_parent = false;
2922 
2923 	if (destroy_v2) {
2924 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2925 		if (IS_ERR(vol_args2))
2926 			return PTR_ERR(vol_args2);
2927 
2928 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2929 			err = -EOPNOTSUPP;
2930 			goto out;
2931 		}
2932 
2933 		/*
2934 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2935 		 * name, same as v1 currently does.
2936 		 */
2937 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2938 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2939 			subvol_name = vol_args2->name;
2940 
2941 			err = mnt_want_write_file(file);
2942 			if (err)
2943 				goto out;
2944 		} else {
2945 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2946 				err = -EINVAL;
2947 				goto out;
2948 			}
2949 
2950 			err = mnt_want_write_file(file);
2951 			if (err)
2952 				goto out;
2953 
2954 			dentry = btrfs_get_dentry(fs_info->sb,
2955 					BTRFS_FIRST_FREE_OBJECTID,
2956 					vol_args2->subvolid, 0, 0);
2957 			if (IS_ERR(dentry)) {
2958 				err = PTR_ERR(dentry);
2959 				goto out_drop_write;
2960 			}
2961 
2962 			/*
2963 			 * Change the default parent since the subvolume being
2964 			 * deleted can be outside of the current mount point.
2965 			 */
2966 			parent = btrfs_get_parent(dentry);
2967 
2968 			/*
2969 			 * At this point dentry->d_name can point to '/' if the
2970 			 * subvolume we want to destroy is outsite of the
2971 			 * current mount point, so we need to release the
2972 			 * current dentry and execute the lookup to return a new
2973 			 * one with ->d_name pointing to the
2974 			 * <mount point>/subvol_name.
2975 			 */
2976 			dput(dentry);
2977 			if (IS_ERR(parent)) {
2978 				err = PTR_ERR(parent);
2979 				goto out_drop_write;
2980 			}
2981 			dir = d_inode(parent);
2982 
2983 			/*
2984 			 * If v2 was used with SPEC_BY_ID, a new parent was
2985 			 * allocated since the subvolume can be outside of the
2986 			 * current mount point. Later on we need to release this
2987 			 * new parent dentry.
2988 			 */
2989 			destroy_parent = true;
2990 
2991 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2992 						fs_info, vol_args2->subvolid);
2993 			if (IS_ERR(subvol_name_ptr)) {
2994 				err = PTR_ERR(subvol_name_ptr);
2995 				goto free_parent;
2996 			}
2997 			/* subvol_name_ptr is already NULL termined */
2998 			subvol_name = (char *)kbasename(subvol_name_ptr);
2999 		}
3000 	} else {
3001 		vol_args = memdup_user(arg, sizeof(*vol_args));
3002 		if (IS_ERR(vol_args))
3003 			return PTR_ERR(vol_args);
3004 
3005 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3006 		subvol_name = vol_args->name;
3007 
3008 		err = mnt_want_write_file(file);
3009 		if (err)
3010 			goto out;
3011 	}
3012 
3013 	subvol_namelen = strlen(subvol_name);
3014 
3015 	if (strchr(subvol_name, '/') ||
3016 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3017 		err = -EINVAL;
3018 		goto free_subvol_name;
3019 	}
3020 
3021 	if (!S_ISDIR(dir->i_mode)) {
3022 		err = -ENOTDIR;
3023 		goto free_subvol_name;
3024 	}
3025 
3026 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3027 	if (err == -EINTR)
3028 		goto free_subvol_name;
3029 	dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
3030 	if (IS_ERR(dentry)) {
3031 		err = PTR_ERR(dentry);
3032 		goto out_unlock_dir;
3033 	}
3034 
3035 	if (d_really_is_negative(dentry)) {
3036 		err = -ENOENT;
3037 		goto out_dput;
3038 	}
3039 
3040 	inode = d_inode(dentry);
3041 	dest = BTRFS_I(inode)->root;
3042 	if (!capable(CAP_SYS_ADMIN)) {
3043 		/*
3044 		 * Regular user.  Only allow this with a special mount
3045 		 * option, when the user has write+exec access to the
3046 		 * subvol root, and when rmdir(2) would have been
3047 		 * allowed.
3048 		 *
3049 		 * Note that this is _not_ check that the subvol is
3050 		 * empty or doesn't contain data that we wouldn't
3051 		 * otherwise be able to delete.
3052 		 *
3053 		 * Users who want to delete empty subvols should try
3054 		 * rmdir(2).
3055 		 */
3056 		err = -EPERM;
3057 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3058 			goto out_dput;
3059 
3060 		/*
3061 		 * Do not allow deletion if the parent dir is the same
3062 		 * as the dir to be deleted.  That means the ioctl
3063 		 * must be called on the dentry referencing the root
3064 		 * of the subvol, not a random directory contained
3065 		 * within it.
3066 		 */
3067 		err = -EINVAL;
3068 		if (root == dest)
3069 			goto out_dput;
3070 
3071 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3072 		if (err)
3073 			goto out_dput;
3074 	}
3075 
3076 	/* check if subvolume may be deleted by a user */
3077 	err = btrfs_may_delete(dir, dentry, 1);
3078 	if (err)
3079 		goto out_dput;
3080 
3081 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3082 		err = -EINVAL;
3083 		goto out_dput;
3084 	}
3085 
3086 	inode_lock(inode);
3087 	err = btrfs_delete_subvolume(dir, dentry);
3088 	inode_unlock(inode);
3089 	if (!err) {
3090 		fsnotify_rmdir(dir, dentry);
3091 		d_delete(dentry);
3092 	}
3093 
3094 out_dput:
3095 	dput(dentry);
3096 out_unlock_dir:
3097 	inode_unlock(dir);
3098 free_subvol_name:
3099 	kfree(subvol_name_ptr);
3100 free_parent:
3101 	if (destroy_parent)
3102 		dput(parent);
3103 out_drop_write:
3104 	mnt_drop_write_file(file);
3105 out:
3106 	kfree(vol_args2);
3107 	kfree(vol_args);
3108 	return err;
3109 }
3110 
3111 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3112 {
3113 	struct inode *inode = file_inode(file);
3114 	struct btrfs_root *root = BTRFS_I(inode)->root;
3115 	struct btrfs_ioctl_defrag_range_args *range;
3116 	int ret;
3117 
3118 	ret = mnt_want_write_file(file);
3119 	if (ret)
3120 		return ret;
3121 
3122 	if (btrfs_root_readonly(root)) {
3123 		ret = -EROFS;
3124 		goto out;
3125 	}
3126 
3127 	switch (inode->i_mode & S_IFMT) {
3128 	case S_IFDIR:
3129 		if (!capable(CAP_SYS_ADMIN)) {
3130 			ret = -EPERM;
3131 			goto out;
3132 		}
3133 		ret = btrfs_defrag_root(root);
3134 		break;
3135 	case S_IFREG:
3136 		/*
3137 		 * Note that this does not check the file descriptor for write
3138 		 * access. This prevents defragmenting executables that are
3139 		 * running and allows defrag on files open in read-only mode.
3140 		 */
3141 		if (!capable(CAP_SYS_ADMIN) &&
3142 		    inode_permission(inode, MAY_WRITE)) {
3143 			ret = -EPERM;
3144 			goto out;
3145 		}
3146 
3147 		range = kzalloc(sizeof(*range), GFP_KERNEL);
3148 		if (!range) {
3149 			ret = -ENOMEM;
3150 			goto out;
3151 		}
3152 
3153 		if (argp) {
3154 			if (copy_from_user(range, argp,
3155 					   sizeof(*range))) {
3156 				ret = -EFAULT;
3157 				kfree(range);
3158 				goto out;
3159 			}
3160 			/* compression requires us to start the IO */
3161 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3162 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3163 				range->extent_thresh = (u32)-1;
3164 			}
3165 		} else {
3166 			/* the rest are all set to zero by kzalloc */
3167 			range->len = (u64)-1;
3168 		}
3169 		ret = btrfs_defrag_file(file_inode(file), file,
3170 					range, BTRFS_OLDEST_GENERATION, 0);
3171 		if (ret > 0)
3172 			ret = 0;
3173 		kfree(range);
3174 		break;
3175 	default:
3176 		ret = -EINVAL;
3177 	}
3178 out:
3179 	mnt_drop_write_file(file);
3180 	return ret;
3181 }
3182 
3183 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3184 {
3185 	struct btrfs_ioctl_vol_args *vol_args;
3186 	int ret;
3187 
3188 	if (!capable(CAP_SYS_ADMIN))
3189 		return -EPERM;
3190 
3191 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3192 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3193 
3194 	vol_args = memdup_user(arg, sizeof(*vol_args));
3195 	if (IS_ERR(vol_args)) {
3196 		ret = PTR_ERR(vol_args);
3197 		goto out;
3198 	}
3199 
3200 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3201 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3202 
3203 	if (!ret)
3204 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3205 
3206 	kfree(vol_args);
3207 out:
3208 	btrfs_exclop_finish(fs_info);
3209 	return ret;
3210 }
3211 
3212 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3213 {
3214 	struct inode *inode = file_inode(file);
3215 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3216 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3217 	int ret;
3218 
3219 	if (!capable(CAP_SYS_ADMIN))
3220 		return -EPERM;
3221 
3222 	ret = mnt_want_write_file(file);
3223 	if (ret)
3224 		return ret;
3225 
3226 	vol_args = memdup_user(arg, sizeof(*vol_args));
3227 	if (IS_ERR(vol_args)) {
3228 		ret = PTR_ERR(vol_args);
3229 		goto err_drop;
3230 	}
3231 
3232 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3233 		ret = -EOPNOTSUPP;
3234 		goto out;
3235 	}
3236 
3237 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3238 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3239 		goto out;
3240 	}
3241 
3242 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3243 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3244 	} else {
3245 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3246 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3247 	}
3248 	btrfs_exclop_finish(fs_info);
3249 
3250 	if (!ret) {
3251 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3252 			btrfs_info(fs_info, "device deleted: id %llu",
3253 					vol_args->devid);
3254 		else
3255 			btrfs_info(fs_info, "device deleted: %s",
3256 					vol_args->name);
3257 	}
3258 out:
3259 	kfree(vol_args);
3260 err_drop:
3261 	mnt_drop_write_file(file);
3262 	return ret;
3263 }
3264 
3265 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3266 {
3267 	struct inode *inode = file_inode(file);
3268 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3269 	struct btrfs_ioctl_vol_args *vol_args;
3270 	int ret;
3271 
3272 	if (!capable(CAP_SYS_ADMIN))
3273 		return -EPERM;
3274 
3275 	ret = mnt_want_write_file(file);
3276 	if (ret)
3277 		return ret;
3278 
3279 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3280 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3281 		goto out_drop_write;
3282 	}
3283 
3284 	vol_args = memdup_user(arg, sizeof(*vol_args));
3285 	if (IS_ERR(vol_args)) {
3286 		ret = PTR_ERR(vol_args);
3287 		goto out;
3288 	}
3289 
3290 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3291 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3292 
3293 	if (!ret)
3294 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3295 	kfree(vol_args);
3296 out:
3297 	btrfs_exclop_finish(fs_info);
3298 out_drop_write:
3299 	mnt_drop_write_file(file);
3300 
3301 	return ret;
3302 }
3303 
3304 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3305 				void __user *arg)
3306 {
3307 	struct btrfs_ioctl_fs_info_args *fi_args;
3308 	struct btrfs_device *device;
3309 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3310 	u64 flags_in;
3311 	int ret = 0;
3312 
3313 	fi_args = memdup_user(arg, sizeof(*fi_args));
3314 	if (IS_ERR(fi_args))
3315 		return PTR_ERR(fi_args);
3316 
3317 	flags_in = fi_args->flags;
3318 	memset(fi_args, 0, sizeof(*fi_args));
3319 
3320 	rcu_read_lock();
3321 	fi_args->num_devices = fs_devices->num_devices;
3322 
3323 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3324 		if (device->devid > fi_args->max_id)
3325 			fi_args->max_id = device->devid;
3326 	}
3327 	rcu_read_unlock();
3328 
3329 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3330 	fi_args->nodesize = fs_info->nodesize;
3331 	fi_args->sectorsize = fs_info->sectorsize;
3332 	fi_args->clone_alignment = fs_info->sectorsize;
3333 
3334 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3335 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3336 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3337 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3338 	}
3339 
3340 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3341 		fi_args->generation = fs_info->generation;
3342 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3343 	}
3344 
3345 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3346 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3347 		       sizeof(fi_args->metadata_uuid));
3348 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3349 	}
3350 
3351 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3352 		ret = -EFAULT;
3353 
3354 	kfree(fi_args);
3355 	return ret;
3356 }
3357 
3358 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3359 				 void __user *arg)
3360 {
3361 	struct btrfs_ioctl_dev_info_args *di_args;
3362 	struct btrfs_device *dev;
3363 	int ret = 0;
3364 	char *s_uuid = NULL;
3365 
3366 	di_args = memdup_user(arg, sizeof(*di_args));
3367 	if (IS_ERR(di_args))
3368 		return PTR_ERR(di_args);
3369 
3370 	if (!btrfs_is_empty_uuid(di_args->uuid))
3371 		s_uuid = di_args->uuid;
3372 
3373 	rcu_read_lock();
3374 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3375 				NULL);
3376 
3377 	if (!dev) {
3378 		ret = -ENODEV;
3379 		goto out;
3380 	}
3381 
3382 	di_args->devid = dev->devid;
3383 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3384 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3385 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3386 	if (dev->name) {
3387 		strncpy(di_args->path, rcu_str_deref(dev->name),
3388 				sizeof(di_args->path) - 1);
3389 		di_args->path[sizeof(di_args->path) - 1] = 0;
3390 	} else {
3391 		di_args->path[0] = '\0';
3392 	}
3393 
3394 out:
3395 	rcu_read_unlock();
3396 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3397 		ret = -EFAULT;
3398 
3399 	kfree(di_args);
3400 	return ret;
3401 }
3402 
3403 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3404 {
3405 	struct inode *inode = file_inode(file);
3406 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3407 	struct btrfs_root *root = BTRFS_I(inode)->root;
3408 	struct btrfs_root *new_root;
3409 	struct btrfs_dir_item *di;
3410 	struct btrfs_trans_handle *trans;
3411 	struct btrfs_path *path = NULL;
3412 	struct btrfs_disk_key disk_key;
3413 	u64 objectid = 0;
3414 	u64 dir_id;
3415 	int ret;
3416 
3417 	if (!capable(CAP_SYS_ADMIN))
3418 		return -EPERM;
3419 
3420 	ret = mnt_want_write_file(file);
3421 	if (ret)
3422 		return ret;
3423 
3424 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3425 		ret = -EFAULT;
3426 		goto out;
3427 	}
3428 
3429 	if (!objectid)
3430 		objectid = BTRFS_FS_TREE_OBJECTID;
3431 
3432 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3433 	if (IS_ERR(new_root)) {
3434 		ret = PTR_ERR(new_root);
3435 		goto out;
3436 	}
3437 	if (!is_fstree(new_root->root_key.objectid)) {
3438 		ret = -ENOENT;
3439 		goto out_free;
3440 	}
3441 
3442 	path = btrfs_alloc_path();
3443 	if (!path) {
3444 		ret = -ENOMEM;
3445 		goto out_free;
3446 	}
3447 
3448 	trans = btrfs_start_transaction(root, 1);
3449 	if (IS_ERR(trans)) {
3450 		ret = PTR_ERR(trans);
3451 		goto out_free;
3452 	}
3453 
3454 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3455 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3456 				   dir_id, "default", 7, 1);
3457 	if (IS_ERR_OR_NULL(di)) {
3458 		btrfs_release_path(path);
3459 		btrfs_end_transaction(trans);
3460 		btrfs_err(fs_info,
3461 			  "Umm, you don't have the default diritem, this isn't going to work");
3462 		ret = -ENOENT;
3463 		goto out_free;
3464 	}
3465 
3466 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3467 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3468 	btrfs_mark_buffer_dirty(path->nodes[0]);
3469 	btrfs_release_path(path);
3470 
3471 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3472 	btrfs_end_transaction(trans);
3473 out_free:
3474 	btrfs_put_root(new_root);
3475 	btrfs_free_path(path);
3476 out:
3477 	mnt_drop_write_file(file);
3478 	return ret;
3479 }
3480 
3481 static void get_block_group_info(struct list_head *groups_list,
3482 				 struct btrfs_ioctl_space_info *space)
3483 {
3484 	struct btrfs_block_group *block_group;
3485 
3486 	space->total_bytes = 0;
3487 	space->used_bytes = 0;
3488 	space->flags = 0;
3489 	list_for_each_entry(block_group, groups_list, list) {
3490 		space->flags = block_group->flags;
3491 		space->total_bytes += block_group->length;
3492 		space->used_bytes += block_group->used;
3493 	}
3494 }
3495 
3496 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3497 				   void __user *arg)
3498 {
3499 	struct btrfs_ioctl_space_args space_args;
3500 	struct btrfs_ioctl_space_info space;
3501 	struct btrfs_ioctl_space_info *dest;
3502 	struct btrfs_ioctl_space_info *dest_orig;
3503 	struct btrfs_ioctl_space_info __user *user_dest;
3504 	struct btrfs_space_info *info;
3505 	static const u64 types[] = {
3506 		BTRFS_BLOCK_GROUP_DATA,
3507 		BTRFS_BLOCK_GROUP_SYSTEM,
3508 		BTRFS_BLOCK_GROUP_METADATA,
3509 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3510 	};
3511 	int num_types = 4;
3512 	int alloc_size;
3513 	int ret = 0;
3514 	u64 slot_count = 0;
3515 	int i, c;
3516 
3517 	if (copy_from_user(&space_args,
3518 			   (struct btrfs_ioctl_space_args __user *)arg,
3519 			   sizeof(space_args)))
3520 		return -EFAULT;
3521 
3522 	for (i = 0; i < num_types; i++) {
3523 		struct btrfs_space_info *tmp;
3524 
3525 		info = NULL;
3526 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3527 			if (tmp->flags == types[i]) {
3528 				info = tmp;
3529 				break;
3530 			}
3531 		}
3532 
3533 		if (!info)
3534 			continue;
3535 
3536 		down_read(&info->groups_sem);
3537 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3538 			if (!list_empty(&info->block_groups[c]))
3539 				slot_count++;
3540 		}
3541 		up_read(&info->groups_sem);
3542 	}
3543 
3544 	/*
3545 	 * Global block reserve, exported as a space_info
3546 	 */
3547 	slot_count++;
3548 
3549 	/* space_slots == 0 means they are asking for a count */
3550 	if (space_args.space_slots == 0) {
3551 		space_args.total_spaces = slot_count;
3552 		goto out;
3553 	}
3554 
3555 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3556 
3557 	alloc_size = sizeof(*dest) * slot_count;
3558 
3559 	/* we generally have at most 6 or so space infos, one for each raid
3560 	 * level.  So, a whole page should be more than enough for everyone
3561 	 */
3562 	if (alloc_size > PAGE_SIZE)
3563 		return -ENOMEM;
3564 
3565 	space_args.total_spaces = 0;
3566 	dest = kmalloc(alloc_size, GFP_KERNEL);
3567 	if (!dest)
3568 		return -ENOMEM;
3569 	dest_orig = dest;
3570 
3571 	/* now we have a buffer to copy into */
3572 	for (i = 0; i < num_types; i++) {
3573 		struct btrfs_space_info *tmp;
3574 
3575 		if (!slot_count)
3576 			break;
3577 
3578 		info = NULL;
3579 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3580 			if (tmp->flags == types[i]) {
3581 				info = tmp;
3582 				break;
3583 			}
3584 		}
3585 
3586 		if (!info)
3587 			continue;
3588 		down_read(&info->groups_sem);
3589 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3590 			if (!list_empty(&info->block_groups[c])) {
3591 				get_block_group_info(&info->block_groups[c],
3592 						     &space);
3593 				memcpy(dest, &space, sizeof(space));
3594 				dest++;
3595 				space_args.total_spaces++;
3596 				slot_count--;
3597 			}
3598 			if (!slot_count)
3599 				break;
3600 		}
3601 		up_read(&info->groups_sem);
3602 	}
3603 
3604 	/*
3605 	 * Add global block reserve
3606 	 */
3607 	if (slot_count) {
3608 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3609 
3610 		spin_lock(&block_rsv->lock);
3611 		space.total_bytes = block_rsv->size;
3612 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3613 		spin_unlock(&block_rsv->lock);
3614 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3615 		memcpy(dest, &space, sizeof(space));
3616 		space_args.total_spaces++;
3617 	}
3618 
3619 	user_dest = (struct btrfs_ioctl_space_info __user *)
3620 		(arg + sizeof(struct btrfs_ioctl_space_args));
3621 
3622 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3623 		ret = -EFAULT;
3624 
3625 	kfree(dest_orig);
3626 out:
3627 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3628 		ret = -EFAULT;
3629 
3630 	return ret;
3631 }
3632 
3633 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3634 					    void __user *argp)
3635 {
3636 	struct btrfs_trans_handle *trans;
3637 	u64 transid;
3638 	int ret;
3639 
3640 	trans = btrfs_attach_transaction_barrier(root);
3641 	if (IS_ERR(trans)) {
3642 		if (PTR_ERR(trans) != -ENOENT)
3643 			return PTR_ERR(trans);
3644 
3645 		/* No running transaction, don't bother */
3646 		transid = root->fs_info->last_trans_committed;
3647 		goto out;
3648 	}
3649 	transid = trans->transid;
3650 	ret = btrfs_commit_transaction_async(trans, 0);
3651 	if (ret) {
3652 		btrfs_end_transaction(trans);
3653 		return ret;
3654 	}
3655 out:
3656 	if (argp)
3657 		if (copy_to_user(argp, &transid, sizeof(transid)))
3658 			return -EFAULT;
3659 	return 0;
3660 }
3661 
3662 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3663 					   void __user *argp)
3664 {
3665 	u64 transid;
3666 
3667 	if (argp) {
3668 		if (copy_from_user(&transid, argp, sizeof(transid)))
3669 			return -EFAULT;
3670 	} else {
3671 		transid = 0;  /* current trans */
3672 	}
3673 	return btrfs_wait_for_commit(fs_info, transid);
3674 }
3675 
3676 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3677 {
3678 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3679 	struct btrfs_ioctl_scrub_args *sa;
3680 	int ret;
3681 
3682 	if (!capable(CAP_SYS_ADMIN))
3683 		return -EPERM;
3684 
3685 	sa = memdup_user(arg, sizeof(*sa));
3686 	if (IS_ERR(sa))
3687 		return PTR_ERR(sa);
3688 
3689 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3690 		ret = mnt_want_write_file(file);
3691 		if (ret)
3692 			goto out;
3693 	}
3694 
3695 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3696 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3697 			      0);
3698 
3699 	/*
3700 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3701 	 * error. This is important as it allows user space to know how much
3702 	 * progress scrub has done. For example, if scrub is canceled we get
3703 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3704 	 * space. Later user space can inspect the progress from the structure
3705 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3706 	 * previously (btrfs-progs does this).
3707 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3708 	 * then return -EFAULT to signal the structure was not copied or it may
3709 	 * be corrupt and unreliable due to a partial copy.
3710 	 */
3711 	if (copy_to_user(arg, sa, sizeof(*sa)))
3712 		ret = -EFAULT;
3713 
3714 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3715 		mnt_drop_write_file(file);
3716 out:
3717 	kfree(sa);
3718 	return ret;
3719 }
3720 
3721 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3722 {
3723 	if (!capable(CAP_SYS_ADMIN))
3724 		return -EPERM;
3725 
3726 	return btrfs_scrub_cancel(fs_info);
3727 }
3728 
3729 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3730 				       void __user *arg)
3731 {
3732 	struct btrfs_ioctl_scrub_args *sa;
3733 	int ret;
3734 
3735 	if (!capable(CAP_SYS_ADMIN))
3736 		return -EPERM;
3737 
3738 	sa = memdup_user(arg, sizeof(*sa));
3739 	if (IS_ERR(sa))
3740 		return PTR_ERR(sa);
3741 
3742 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3743 
3744 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3745 		ret = -EFAULT;
3746 
3747 	kfree(sa);
3748 	return ret;
3749 }
3750 
3751 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3752 				      void __user *arg)
3753 {
3754 	struct btrfs_ioctl_get_dev_stats *sa;
3755 	int ret;
3756 
3757 	sa = memdup_user(arg, sizeof(*sa));
3758 	if (IS_ERR(sa))
3759 		return PTR_ERR(sa);
3760 
3761 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3762 		kfree(sa);
3763 		return -EPERM;
3764 	}
3765 
3766 	ret = btrfs_get_dev_stats(fs_info, sa);
3767 
3768 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3769 		ret = -EFAULT;
3770 
3771 	kfree(sa);
3772 	return ret;
3773 }
3774 
3775 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3776 				    void __user *arg)
3777 {
3778 	struct btrfs_ioctl_dev_replace_args *p;
3779 	int ret;
3780 
3781 	if (!capable(CAP_SYS_ADMIN))
3782 		return -EPERM;
3783 
3784 	p = memdup_user(arg, sizeof(*p));
3785 	if (IS_ERR(p))
3786 		return PTR_ERR(p);
3787 
3788 	switch (p->cmd) {
3789 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3790 		if (sb_rdonly(fs_info->sb)) {
3791 			ret = -EROFS;
3792 			goto out;
3793 		}
3794 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3795 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3796 		} else {
3797 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3798 			btrfs_exclop_finish(fs_info);
3799 		}
3800 		break;
3801 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3802 		btrfs_dev_replace_status(fs_info, p);
3803 		ret = 0;
3804 		break;
3805 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3806 		p->result = btrfs_dev_replace_cancel(fs_info);
3807 		ret = 0;
3808 		break;
3809 	default:
3810 		ret = -EINVAL;
3811 		break;
3812 	}
3813 
3814 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3815 		ret = -EFAULT;
3816 out:
3817 	kfree(p);
3818 	return ret;
3819 }
3820 
3821 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3822 {
3823 	int ret = 0;
3824 	int i;
3825 	u64 rel_ptr;
3826 	int size;
3827 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3828 	struct inode_fs_paths *ipath = NULL;
3829 	struct btrfs_path *path;
3830 
3831 	if (!capable(CAP_DAC_READ_SEARCH))
3832 		return -EPERM;
3833 
3834 	path = btrfs_alloc_path();
3835 	if (!path) {
3836 		ret = -ENOMEM;
3837 		goto out;
3838 	}
3839 
3840 	ipa = memdup_user(arg, sizeof(*ipa));
3841 	if (IS_ERR(ipa)) {
3842 		ret = PTR_ERR(ipa);
3843 		ipa = NULL;
3844 		goto out;
3845 	}
3846 
3847 	size = min_t(u32, ipa->size, 4096);
3848 	ipath = init_ipath(size, root, path);
3849 	if (IS_ERR(ipath)) {
3850 		ret = PTR_ERR(ipath);
3851 		ipath = NULL;
3852 		goto out;
3853 	}
3854 
3855 	ret = paths_from_inode(ipa->inum, ipath);
3856 	if (ret < 0)
3857 		goto out;
3858 
3859 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3860 		rel_ptr = ipath->fspath->val[i] -
3861 			  (u64)(unsigned long)ipath->fspath->val;
3862 		ipath->fspath->val[i] = rel_ptr;
3863 	}
3864 
3865 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3866 			   ipath->fspath, size);
3867 	if (ret) {
3868 		ret = -EFAULT;
3869 		goto out;
3870 	}
3871 
3872 out:
3873 	btrfs_free_path(path);
3874 	free_ipath(ipath);
3875 	kfree(ipa);
3876 
3877 	return ret;
3878 }
3879 
3880 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3881 {
3882 	struct btrfs_data_container *inodes = ctx;
3883 	const size_t c = 3 * sizeof(u64);
3884 
3885 	if (inodes->bytes_left >= c) {
3886 		inodes->bytes_left -= c;
3887 		inodes->val[inodes->elem_cnt] = inum;
3888 		inodes->val[inodes->elem_cnt + 1] = offset;
3889 		inodes->val[inodes->elem_cnt + 2] = root;
3890 		inodes->elem_cnt += 3;
3891 	} else {
3892 		inodes->bytes_missing += c - inodes->bytes_left;
3893 		inodes->bytes_left = 0;
3894 		inodes->elem_missed += 3;
3895 	}
3896 
3897 	return 0;
3898 }
3899 
3900 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3901 					void __user *arg, int version)
3902 {
3903 	int ret = 0;
3904 	int size;
3905 	struct btrfs_ioctl_logical_ino_args *loi;
3906 	struct btrfs_data_container *inodes = NULL;
3907 	struct btrfs_path *path = NULL;
3908 	bool ignore_offset;
3909 
3910 	if (!capable(CAP_SYS_ADMIN))
3911 		return -EPERM;
3912 
3913 	loi = memdup_user(arg, sizeof(*loi));
3914 	if (IS_ERR(loi))
3915 		return PTR_ERR(loi);
3916 
3917 	if (version == 1) {
3918 		ignore_offset = false;
3919 		size = min_t(u32, loi->size, SZ_64K);
3920 	} else {
3921 		/* All reserved bits must be 0 for now */
3922 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3923 			ret = -EINVAL;
3924 			goto out_loi;
3925 		}
3926 		/* Only accept flags we have defined so far */
3927 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3928 			ret = -EINVAL;
3929 			goto out_loi;
3930 		}
3931 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3932 		size = min_t(u32, loi->size, SZ_16M);
3933 	}
3934 
3935 	path = btrfs_alloc_path();
3936 	if (!path) {
3937 		ret = -ENOMEM;
3938 		goto out;
3939 	}
3940 
3941 	inodes = init_data_container(size);
3942 	if (IS_ERR(inodes)) {
3943 		ret = PTR_ERR(inodes);
3944 		inodes = NULL;
3945 		goto out;
3946 	}
3947 
3948 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3949 					  build_ino_list, inodes, ignore_offset);
3950 	if (ret == -EINVAL)
3951 		ret = -ENOENT;
3952 	if (ret < 0)
3953 		goto out;
3954 
3955 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3956 			   size);
3957 	if (ret)
3958 		ret = -EFAULT;
3959 
3960 out:
3961 	btrfs_free_path(path);
3962 	kvfree(inodes);
3963 out_loi:
3964 	kfree(loi);
3965 
3966 	return ret;
3967 }
3968 
3969 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3970 			       struct btrfs_ioctl_balance_args *bargs)
3971 {
3972 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3973 
3974 	bargs->flags = bctl->flags;
3975 
3976 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3977 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3978 	if (atomic_read(&fs_info->balance_pause_req))
3979 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3980 	if (atomic_read(&fs_info->balance_cancel_req))
3981 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3982 
3983 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3984 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3985 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3986 
3987 	spin_lock(&fs_info->balance_lock);
3988 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3989 	spin_unlock(&fs_info->balance_lock);
3990 }
3991 
3992 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3993 {
3994 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3995 	struct btrfs_fs_info *fs_info = root->fs_info;
3996 	struct btrfs_ioctl_balance_args *bargs;
3997 	struct btrfs_balance_control *bctl;
3998 	bool need_unlock; /* for mut. excl. ops lock */
3999 	int ret;
4000 
4001 	if (!capable(CAP_SYS_ADMIN))
4002 		return -EPERM;
4003 
4004 	ret = mnt_want_write_file(file);
4005 	if (ret)
4006 		return ret;
4007 
4008 again:
4009 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4010 		mutex_lock(&fs_info->balance_mutex);
4011 		need_unlock = true;
4012 		goto locked;
4013 	}
4014 
4015 	/*
4016 	 * mut. excl. ops lock is locked.  Three possibilities:
4017 	 *   (1) some other op is running
4018 	 *   (2) balance is running
4019 	 *   (3) balance is paused -- special case (think resume)
4020 	 */
4021 	mutex_lock(&fs_info->balance_mutex);
4022 	if (fs_info->balance_ctl) {
4023 		/* this is either (2) or (3) */
4024 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4025 			mutex_unlock(&fs_info->balance_mutex);
4026 			/*
4027 			 * Lock released to allow other waiters to continue,
4028 			 * we'll reexamine the status again.
4029 			 */
4030 			mutex_lock(&fs_info->balance_mutex);
4031 
4032 			if (fs_info->balance_ctl &&
4033 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4034 				/* this is (3) */
4035 				need_unlock = false;
4036 				goto locked;
4037 			}
4038 
4039 			mutex_unlock(&fs_info->balance_mutex);
4040 			goto again;
4041 		} else {
4042 			/* this is (2) */
4043 			mutex_unlock(&fs_info->balance_mutex);
4044 			ret = -EINPROGRESS;
4045 			goto out;
4046 		}
4047 	} else {
4048 		/* this is (1) */
4049 		mutex_unlock(&fs_info->balance_mutex);
4050 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4051 		goto out;
4052 	}
4053 
4054 locked:
4055 
4056 	if (arg) {
4057 		bargs = memdup_user(arg, sizeof(*bargs));
4058 		if (IS_ERR(bargs)) {
4059 			ret = PTR_ERR(bargs);
4060 			goto out_unlock;
4061 		}
4062 
4063 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4064 			if (!fs_info->balance_ctl) {
4065 				ret = -ENOTCONN;
4066 				goto out_bargs;
4067 			}
4068 
4069 			bctl = fs_info->balance_ctl;
4070 			spin_lock(&fs_info->balance_lock);
4071 			bctl->flags |= BTRFS_BALANCE_RESUME;
4072 			spin_unlock(&fs_info->balance_lock);
4073 
4074 			goto do_balance;
4075 		}
4076 	} else {
4077 		bargs = NULL;
4078 	}
4079 
4080 	if (fs_info->balance_ctl) {
4081 		ret = -EINPROGRESS;
4082 		goto out_bargs;
4083 	}
4084 
4085 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4086 	if (!bctl) {
4087 		ret = -ENOMEM;
4088 		goto out_bargs;
4089 	}
4090 
4091 	if (arg) {
4092 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4093 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4094 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4095 
4096 		bctl->flags = bargs->flags;
4097 	} else {
4098 		/* balance everything - no filters */
4099 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4100 	}
4101 
4102 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4103 		ret = -EINVAL;
4104 		goto out_bctl;
4105 	}
4106 
4107 do_balance:
4108 	/*
4109 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4110 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4111 	 * all the way until unmount, in free_fs_info.  The flag should be
4112 	 * cleared after reset_balance_state.
4113 	 */
4114 	need_unlock = false;
4115 
4116 	ret = btrfs_balance(fs_info, bctl, bargs);
4117 	bctl = NULL;
4118 
4119 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4120 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4121 			ret = -EFAULT;
4122 	}
4123 
4124 out_bctl:
4125 	kfree(bctl);
4126 out_bargs:
4127 	kfree(bargs);
4128 out_unlock:
4129 	mutex_unlock(&fs_info->balance_mutex);
4130 	if (need_unlock)
4131 		btrfs_exclop_finish(fs_info);
4132 out:
4133 	mnt_drop_write_file(file);
4134 	return ret;
4135 }
4136 
4137 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4138 {
4139 	if (!capable(CAP_SYS_ADMIN))
4140 		return -EPERM;
4141 
4142 	switch (cmd) {
4143 	case BTRFS_BALANCE_CTL_PAUSE:
4144 		return btrfs_pause_balance(fs_info);
4145 	case BTRFS_BALANCE_CTL_CANCEL:
4146 		return btrfs_cancel_balance(fs_info);
4147 	}
4148 
4149 	return -EINVAL;
4150 }
4151 
4152 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4153 					 void __user *arg)
4154 {
4155 	struct btrfs_ioctl_balance_args *bargs;
4156 	int ret = 0;
4157 
4158 	if (!capable(CAP_SYS_ADMIN))
4159 		return -EPERM;
4160 
4161 	mutex_lock(&fs_info->balance_mutex);
4162 	if (!fs_info->balance_ctl) {
4163 		ret = -ENOTCONN;
4164 		goto out;
4165 	}
4166 
4167 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4168 	if (!bargs) {
4169 		ret = -ENOMEM;
4170 		goto out;
4171 	}
4172 
4173 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4174 
4175 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4176 		ret = -EFAULT;
4177 
4178 	kfree(bargs);
4179 out:
4180 	mutex_unlock(&fs_info->balance_mutex);
4181 	return ret;
4182 }
4183 
4184 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4185 {
4186 	struct inode *inode = file_inode(file);
4187 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4188 	struct btrfs_ioctl_quota_ctl_args *sa;
4189 	int ret;
4190 
4191 	if (!capable(CAP_SYS_ADMIN))
4192 		return -EPERM;
4193 
4194 	ret = mnt_want_write_file(file);
4195 	if (ret)
4196 		return ret;
4197 
4198 	sa = memdup_user(arg, sizeof(*sa));
4199 	if (IS_ERR(sa)) {
4200 		ret = PTR_ERR(sa);
4201 		goto drop_write;
4202 	}
4203 
4204 	down_write(&fs_info->subvol_sem);
4205 
4206 	switch (sa->cmd) {
4207 	case BTRFS_QUOTA_CTL_ENABLE:
4208 		ret = btrfs_quota_enable(fs_info);
4209 		break;
4210 	case BTRFS_QUOTA_CTL_DISABLE:
4211 		ret = btrfs_quota_disable(fs_info);
4212 		break;
4213 	default:
4214 		ret = -EINVAL;
4215 		break;
4216 	}
4217 
4218 	kfree(sa);
4219 	up_write(&fs_info->subvol_sem);
4220 drop_write:
4221 	mnt_drop_write_file(file);
4222 	return ret;
4223 }
4224 
4225 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4226 {
4227 	struct inode *inode = file_inode(file);
4228 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4229 	struct btrfs_root *root = BTRFS_I(inode)->root;
4230 	struct btrfs_ioctl_qgroup_assign_args *sa;
4231 	struct btrfs_trans_handle *trans;
4232 	int ret;
4233 	int err;
4234 
4235 	if (!capable(CAP_SYS_ADMIN))
4236 		return -EPERM;
4237 
4238 	ret = mnt_want_write_file(file);
4239 	if (ret)
4240 		return ret;
4241 
4242 	sa = memdup_user(arg, sizeof(*sa));
4243 	if (IS_ERR(sa)) {
4244 		ret = PTR_ERR(sa);
4245 		goto drop_write;
4246 	}
4247 
4248 	trans = btrfs_join_transaction(root);
4249 	if (IS_ERR(trans)) {
4250 		ret = PTR_ERR(trans);
4251 		goto out;
4252 	}
4253 
4254 	if (sa->assign) {
4255 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4256 	} else {
4257 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4258 	}
4259 
4260 	/* update qgroup status and info */
4261 	err = btrfs_run_qgroups(trans);
4262 	if (err < 0)
4263 		btrfs_handle_fs_error(fs_info, err,
4264 				      "failed to update qgroup status and info");
4265 	err = btrfs_end_transaction(trans);
4266 	if (err && !ret)
4267 		ret = err;
4268 
4269 out:
4270 	kfree(sa);
4271 drop_write:
4272 	mnt_drop_write_file(file);
4273 	return ret;
4274 }
4275 
4276 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4277 {
4278 	struct inode *inode = file_inode(file);
4279 	struct btrfs_root *root = BTRFS_I(inode)->root;
4280 	struct btrfs_ioctl_qgroup_create_args *sa;
4281 	struct btrfs_trans_handle *trans;
4282 	int ret;
4283 	int err;
4284 
4285 	if (!capable(CAP_SYS_ADMIN))
4286 		return -EPERM;
4287 
4288 	ret = mnt_want_write_file(file);
4289 	if (ret)
4290 		return ret;
4291 
4292 	sa = memdup_user(arg, sizeof(*sa));
4293 	if (IS_ERR(sa)) {
4294 		ret = PTR_ERR(sa);
4295 		goto drop_write;
4296 	}
4297 
4298 	if (!sa->qgroupid) {
4299 		ret = -EINVAL;
4300 		goto out;
4301 	}
4302 
4303 	trans = btrfs_join_transaction(root);
4304 	if (IS_ERR(trans)) {
4305 		ret = PTR_ERR(trans);
4306 		goto out;
4307 	}
4308 
4309 	if (sa->create) {
4310 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4311 	} else {
4312 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4313 	}
4314 
4315 	err = btrfs_end_transaction(trans);
4316 	if (err && !ret)
4317 		ret = err;
4318 
4319 out:
4320 	kfree(sa);
4321 drop_write:
4322 	mnt_drop_write_file(file);
4323 	return ret;
4324 }
4325 
4326 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4327 {
4328 	struct inode *inode = file_inode(file);
4329 	struct btrfs_root *root = BTRFS_I(inode)->root;
4330 	struct btrfs_ioctl_qgroup_limit_args *sa;
4331 	struct btrfs_trans_handle *trans;
4332 	int ret;
4333 	int err;
4334 	u64 qgroupid;
4335 
4336 	if (!capable(CAP_SYS_ADMIN))
4337 		return -EPERM;
4338 
4339 	ret = mnt_want_write_file(file);
4340 	if (ret)
4341 		return ret;
4342 
4343 	sa = memdup_user(arg, sizeof(*sa));
4344 	if (IS_ERR(sa)) {
4345 		ret = PTR_ERR(sa);
4346 		goto drop_write;
4347 	}
4348 
4349 	trans = btrfs_join_transaction(root);
4350 	if (IS_ERR(trans)) {
4351 		ret = PTR_ERR(trans);
4352 		goto out;
4353 	}
4354 
4355 	qgroupid = sa->qgroupid;
4356 	if (!qgroupid) {
4357 		/* take the current subvol as qgroup */
4358 		qgroupid = root->root_key.objectid;
4359 	}
4360 
4361 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4362 
4363 	err = btrfs_end_transaction(trans);
4364 	if (err && !ret)
4365 		ret = err;
4366 
4367 out:
4368 	kfree(sa);
4369 drop_write:
4370 	mnt_drop_write_file(file);
4371 	return ret;
4372 }
4373 
4374 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4375 {
4376 	struct inode *inode = file_inode(file);
4377 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4378 	struct btrfs_ioctl_quota_rescan_args *qsa;
4379 	int ret;
4380 
4381 	if (!capable(CAP_SYS_ADMIN))
4382 		return -EPERM;
4383 
4384 	ret = mnt_want_write_file(file);
4385 	if (ret)
4386 		return ret;
4387 
4388 	qsa = memdup_user(arg, sizeof(*qsa));
4389 	if (IS_ERR(qsa)) {
4390 		ret = PTR_ERR(qsa);
4391 		goto drop_write;
4392 	}
4393 
4394 	if (qsa->flags) {
4395 		ret = -EINVAL;
4396 		goto out;
4397 	}
4398 
4399 	ret = btrfs_qgroup_rescan(fs_info);
4400 
4401 out:
4402 	kfree(qsa);
4403 drop_write:
4404 	mnt_drop_write_file(file);
4405 	return ret;
4406 }
4407 
4408 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4409 						void __user *arg)
4410 {
4411 	struct btrfs_ioctl_quota_rescan_args *qsa;
4412 	int ret = 0;
4413 
4414 	if (!capable(CAP_SYS_ADMIN))
4415 		return -EPERM;
4416 
4417 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4418 	if (!qsa)
4419 		return -ENOMEM;
4420 
4421 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4422 		qsa->flags = 1;
4423 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4424 	}
4425 
4426 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4427 		ret = -EFAULT;
4428 
4429 	kfree(qsa);
4430 	return ret;
4431 }
4432 
4433 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4434 						void __user *arg)
4435 {
4436 	if (!capable(CAP_SYS_ADMIN))
4437 		return -EPERM;
4438 
4439 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4440 }
4441 
4442 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4443 					    struct btrfs_ioctl_received_subvol_args *sa)
4444 {
4445 	struct inode *inode = file_inode(file);
4446 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4447 	struct btrfs_root *root = BTRFS_I(inode)->root;
4448 	struct btrfs_root_item *root_item = &root->root_item;
4449 	struct btrfs_trans_handle *trans;
4450 	struct timespec64 ct = current_time(inode);
4451 	int ret = 0;
4452 	int received_uuid_changed;
4453 
4454 	if (!inode_owner_or_capable(inode))
4455 		return -EPERM;
4456 
4457 	ret = mnt_want_write_file(file);
4458 	if (ret < 0)
4459 		return ret;
4460 
4461 	down_write(&fs_info->subvol_sem);
4462 
4463 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4464 		ret = -EINVAL;
4465 		goto out;
4466 	}
4467 
4468 	if (btrfs_root_readonly(root)) {
4469 		ret = -EROFS;
4470 		goto out;
4471 	}
4472 
4473 	/*
4474 	 * 1 - root item
4475 	 * 2 - uuid items (received uuid + subvol uuid)
4476 	 */
4477 	trans = btrfs_start_transaction(root, 3);
4478 	if (IS_ERR(trans)) {
4479 		ret = PTR_ERR(trans);
4480 		trans = NULL;
4481 		goto out;
4482 	}
4483 
4484 	sa->rtransid = trans->transid;
4485 	sa->rtime.sec = ct.tv_sec;
4486 	sa->rtime.nsec = ct.tv_nsec;
4487 
4488 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4489 				       BTRFS_UUID_SIZE);
4490 	if (received_uuid_changed &&
4491 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4492 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4493 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4494 					  root->root_key.objectid);
4495 		if (ret && ret != -ENOENT) {
4496 		        btrfs_abort_transaction(trans, ret);
4497 		        btrfs_end_transaction(trans);
4498 		        goto out;
4499 		}
4500 	}
4501 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4502 	btrfs_set_root_stransid(root_item, sa->stransid);
4503 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4504 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4505 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4506 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4507 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4508 
4509 	ret = btrfs_update_root(trans, fs_info->tree_root,
4510 				&root->root_key, &root->root_item);
4511 	if (ret < 0) {
4512 		btrfs_end_transaction(trans);
4513 		goto out;
4514 	}
4515 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4516 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4517 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4518 					  root->root_key.objectid);
4519 		if (ret < 0 && ret != -EEXIST) {
4520 			btrfs_abort_transaction(trans, ret);
4521 			btrfs_end_transaction(trans);
4522 			goto out;
4523 		}
4524 	}
4525 	ret = btrfs_commit_transaction(trans);
4526 out:
4527 	up_write(&fs_info->subvol_sem);
4528 	mnt_drop_write_file(file);
4529 	return ret;
4530 }
4531 
4532 #ifdef CONFIG_64BIT
4533 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4534 						void __user *arg)
4535 {
4536 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4537 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4538 	int ret = 0;
4539 
4540 	args32 = memdup_user(arg, sizeof(*args32));
4541 	if (IS_ERR(args32))
4542 		return PTR_ERR(args32);
4543 
4544 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4545 	if (!args64) {
4546 		ret = -ENOMEM;
4547 		goto out;
4548 	}
4549 
4550 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4551 	args64->stransid = args32->stransid;
4552 	args64->rtransid = args32->rtransid;
4553 	args64->stime.sec = args32->stime.sec;
4554 	args64->stime.nsec = args32->stime.nsec;
4555 	args64->rtime.sec = args32->rtime.sec;
4556 	args64->rtime.nsec = args32->rtime.nsec;
4557 	args64->flags = args32->flags;
4558 
4559 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4560 	if (ret)
4561 		goto out;
4562 
4563 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4564 	args32->stransid = args64->stransid;
4565 	args32->rtransid = args64->rtransid;
4566 	args32->stime.sec = args64->stime.sec;
4567 	args32->stime.nsec = args64->stime.nsec;
4568 	args32->rtime.sec = args64->rtime.sec;
4569 	args32->rtime.nsec = args64->rtime.nsec;
4570 	args32->flags = args64->flags;
4571 
4572 	ret = copy_to_user(arg, args32, sizeof(*args32));
4573 	if (ret)
4574 		ret = -EFAULT;
4575 
4576 out:
4577 	kfree(args32);
4578 	kfree(args64);
4579 	return ret;
4580 }
4581 #endif
4582 
4583 static long btrfs_ioctl_set_received_subvol(struct file *file,
4584 					    void __user *arg)
4585 {
4586 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4587 	int ret = 0;
4588 
4589 	sa = memdup_user(arg, sizeof(*sa));
4590 	if (IS_ERR(sa))
4591 		return PTR_ERR(sa);
4592 
4593 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4594 
4595 	if (ret)
4596 		goto out;
4597 
4598 	ret = copy_to_user(arg, sa, sizeof(*sa));
4599 	if (ret)
4600 		ret = -EFAULT;
4601 
4602 out:
4603 	kfree(sa);
4604 	return ret;
4605 }
4606 
4607 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4608 					void __user *arg)
4609 {
4610 	size_t len;
4611 	int ret;
4612 	char label[BTRFS_LABEL_SIZE];
4613 
4614 	spin_lock(&fs_info->super_lock);
4615 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4616 	spin_unlock(&fs_info->super_lock);
4617 
4618 	len = strnlen(label, BTRFS_LABEL_SIZE);
4619 
4620 	if (len == BTRFS_LABEL_SIZE) {
4621 		btrfs_warn(fs_info,
4622 			   "label is too long, return the first %zu bytes",
4623 			   --len);
4624 	}
4625 
4626 	ret = copy_to_user(arg, label, len);
4627 
4628 	return ret ? -EFAULT : 0;
4629 }
4630 
4631 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4632 {
4633 	struct inode *inode = file_inode(file);
4634 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4635 	struct btrfs_root *root = BTRFS_I(inode)->root;
4636 	struct btrfs_super_block *super_block = fs_info->super_copy;
4637 	struct btrfs_trans_handle *trans;
4638 	char label[BTRFS_LABEL_SIZE];
4639 	int ret;
4640 
4641 	if (!capable(CAP_SYS_ADMIN))
4642 		return -EPERM;
4643 
4644 	if (copy_from_user(label, arg, sizeof(label)))
4645 		return -EFAULT;
4646 
4647 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4648 		btrfs_err(fs_info,
4649 			  "unable to set label with more than %d bytes",
4650 			  BTRFS_LABEL_SIZE - 1);
4651 		return -EINVAL;
4652 	}
4653 
4654 	ret = mnt_want_write_file(file);
4655 	if (ret)
4656 		return ret;
4657 
4658 	trans = btrfs_start_transaction(root, 0);
4659 	if (IS_ERR(trans)) {
4660 		ret = PTR_ERR(trans);
4661 		goto out_unlock;
4662 	}
4663 
4664 	spin_lock(&fs_info->super_lock);
4665 	strcpy(super_block->label, label);
4666 	spin_unlock(&fs_info->super_lock);
4667 	ret = btrfs_commit_transaction(trans);
4668 
4669 out_unlock:
4670 	mnt_drop_write_file(file);
4671 	return ret;
4672 }
4673 
4674 #define INIT_FEATURE_FLAGS(suffix) \
4675 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4676 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4677 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4678 
4679 int btrfs_ioctl_get_supported_features(void __user *arg)
4680 {
4681 	static const struct btrfs_ioctl_feature_flags features[3] = {
4682 		INIT_FEATURE_FLAGS(SUPP),
4683 		INIT_FEATURE_FLAGS(SAFE_SET),
4684 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4685 	};
4686 
4687 	if (copy_to_user(arg, &features, sizeof(features)))
4688 		return -EFAULT;
4689 
4690 	return 0;
4691 }
4692 
4693 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4694 					void __user *arg)
4695 {
4696 	struct btrfs_super_block *super_block = fs_info->super_copy;
4697 	struct btrfs_ioctl_feature_flags features;
4698 
4699 	features.compat_flags = btrfs_super_compat_flags(super_block);
4700 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4701 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4702 
4703 	if (copy_to_user(arg, &features, sizeof(features)))
4704 		return -EFAULT;
4705 
4706 	return 0;
4707 }
4708 
4709 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4710 			      enum btrfs_feature_set set,
4711 			      u64 change_mask, u64 flags, u64 supported_flags,
4712 			      u64 safe_set, u64 safe_clear)
4713 {
4714 	const char *type = btrfs_feature_set_name(set);
4715 	char *names;
4716 	u64 disallowed, unsupported;
4717 	u64 set_mask = flags & change_mask;
4718 	u64 clear_mask = ~flags & change_mask;
4719 
4720 	unsupported = set_mask & ~supported_flags;
4721 	if (unsupported) {
4722 		names = btrfs_printable_features(set, unsupported);
4723 		if (names) {
4724 			btrfs_warn(fs_info,
4725 				   "this kernel does not support the %s feature bit%s",
4726 				   names, strchr(names, ',') ? "s" : "");
4727 			kfree(names);
4728 		} else
4729 			btrfs_warn(fs_info,
4730 				   "this kernel does not support %s bits 0x%llx",
4731 				   type, unsupported);
4732 		return -EOPNOTSUPP;
4733 	}
4734 
4735 	disallowed = set_mask & ~safe_set;
4736 	if (disallowed) {
4737 		names = btrfs_printable_features(set, disallowed);
4738 		if (names) {
4739 			btrfs_warn(fs_info,
4740 				   "can't set the %s feature bit%s while mounted",
4741 				   names, strchr(names, ',') ? "s" : "");
4742 			kfree(names);
4743 		} else
4744 			btrfs_warn(fs_info,
4745 				   "can't set %s bits 0x%llx while mounted",
4746 				   type, disallowed);
4747 		return -EPERM;
4748 	}
4749 
4750 	disallowed = clear_mask & ~safe_clear;
4751 	if (disallowed) {
4752 		names = btrfs_printable_features(set, disallowed);
4753 		if (names) {
4754 			btrfs_warn(fs_info,
4755 				   "can't clear the %s feature bit%s while mounted",
4756 				   names, strchr(names, ',') ? "s" : "");
4757 			kfree(names);
4758 		} else
4759 			btrfs_warn(fs_info,
4760 				   "can't clear %s bits 0x%llx while mounted",
4761 				   type, disallowed);
4762 		return -EPERM;
4763 	}
4764 
4765 	return 0;
4766 }
4767 
4768 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4769 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4770 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4771 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4772 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4773 
4774 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4775 {
4776 	struct inode *inode = file_inode(file);
4777 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4778 	struct btrfs_root *root = BTRFS_I(inode)->root;
4779 	struct btrfs_super_block *super_block = fs_info->super_copy;
4780 	struct btrfs_ioctl_feature_flags flags[2];
4781 	struct btrfs_trans_handle *trans;
4782 	u64 newflags;
4783 	int ret;
4784 
4785 	if (!capable(CAP_SYS_ADMIN))
4786 		return -EPERM;
4787 
4788 	if (copy_from_user(flags, arg, sizeof(flags)))
4789 		return -EFAULT;
4790 
4791 	/* Nothing to do */
4792 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4793 	    !flags[0].incompat_flags)
4794 		return 0;
4795 
4796 	ret = check_feature(fs_info, flags[0].compat_flags,
4797 			    flags[1].compat_flags, COMPAT);
4798 	if (ret)
4799 		return ret;
4800 
4801 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4802 			    flags[1].compat_ro_flags, COMPAT_RO);
4803 	if (ret)
4804 		return ret;
4805 
4806 	ret = check_feature(fs_info, flags[0].incompat_flags,
4807 			    flags[1].incompat_flags, INCOMPAT);
4808 	if (ret)
4809 		return ret;
4810 
4811 	ret = mnt_want_write_file(file);
4812 	if (ret)
4813 		return ret;
4814 
4815 	trans = btrfs_start_transaction(root, 0);
4816 	if (IS_ERR(trans)) {
4817 		ret = PTR_ERR(trans);
4818 		goto out_drop_write;
4819 	}
4820 
4821 	spin_lock(&fs_info->super_lock);
4822 	newflags = btrfs_super_compat_flags(super_block);
4823 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4824 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4825 	btrfs_set_super_compat_flags(super_block, newflags);
4826 
4827 	newflags = btrfs_super_compat_ro_flags(super_block);
4828 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4829 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4830 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4831 
4832 	newflags = btrfs_super_incompat_flags(super_block);
4833 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4834 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4835 	btrfs_set_super_incompat_flags(super_block, newflags);
4836 	spin_unlock(&fs_info->super_lock);
4837 
4838 	ret = btrfs_commit_transaction(trans);
4839 out_drop_write:
4840 	mnt_drop_write_file(file);
4841 
4842 	return ret;
4843 }
4844 
4845 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4846 {
4847 	struct btrfs_ioctl_send_args *arg;
4848 	int ret;
4849 
4850 	if (compat) {
4851 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4852 		struct btrfs_ioctl_send_args_32 args32;
4853 
4854 		ret = copy_from_user(&args32, argp, sizeof(args32));
4855 		if (ret)
4856 			return -EFAULT;
4857 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4858 		if (!arg)
4859 			return -ENOMEM;
4860 		arg->send_fd = args32.send_fd;
4861 		arg->clone_sources_count = args32.clone_sources_count;
4862 		arg->clone_sources = compat_ptr(args32.clone_sources);
4863 		arg->parent_root = args32.parent_root;
4864 		arg->flags = args32.flags;
4865 		memcpy(arg->reserved, args32.reserved,
4866 		       sizeof(args32.reserved));
4867 #else
4868 		return -ENOTTY;
4869 #endif
4870 	} else {
4871 		arg = memdup_user(argp, sizeof(*arg));
4872 		if (IS_ERR(arg))
4873 			return PTR_ERR(arg);
4874 	}
4875 	ret = btrfs_ioctl_send(file, arg);
4876 	kfree(arg);
4877 	return ret;
4878 }
4879 
4880 long btrfs_ioctl(struct file *file, unsigned int
4881 		cmd, unsigned long arg)
4882 {
4883 	struct inode *inode = file_inode(file);
4884 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4885 	struct btrfs_root *root = BTRFS_I(inode)->root;
4886 	void __user *argp = (void __user *)arg;
4887 
4888 	switch (cmd) {
4889 	case FS_IOC_GETFLAGS:
4890 		return btrfs_ioctl_getflags(file, argp);
4891 	case FS_IOC_SETFLAGS:
4892 		return btrfs_ioctl_setflags(file, argp);
4893 	case FS_IOC_GETVERSION:
4894 		return btrfs_ioctl_getversion(file, argp);
4895 	case FS_IOC_GETFSLABEL:
4896 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4897 	case FS_IOC_SETFSLABEL:
4898 		return btrfs_ioctl_set_fslabel(file, argp);
4899 	case FITRIM:
4900 		return btrfs_ioctl_fitrim(fs_info, argp);
4901 	case BTRFS_IOC_SNAP_CREATE:
4902 		return btrfs_ioctl_snap_create(file, argp, 0);
4903 	case BTRFS_IOC_SNAP_CREATE_V2:
4904 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4905 	case BTRFS_IOC_SUBVOL_CREATE:
4906 		return btrfs_ioctl_snap_create(file, argp, 1);
4907 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4908 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4909 	case BTRFS_IOC_SNAP_DESTROY:
4910 		return btrfs_ioctl_snap_destroy(file, argp, false);
4911 	case BTRFS_IOC_SNAP_DESTROY_V2:
4912 		return btrfs_ioctl_snap_destroy(file, argp, true);
4913 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4914 		return btrfs_ioctl_subvol_getflags(file, argp);
4915 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4916 		return btrfs_ioctl_subvol_setflags(file, argp);
4917 	case BTRFS_IOC_DEFAULT_SUBVOL:
4918 		return btrfs_ioctl_default_subvol(file, argp);
4919 	case BTRFS_IOC_DEFRAG:
4920 		return btrfs_ioctl_defrag(file, NULL);
4921 	case BTRFS_IOC_DEFRAG_RANGE:
4922 		return btrfs_ioctl_defrag(file, argp);
4923 	case BTRFS_IOC_RESIZE:
4924 		return btrfs_ioctl_resize(file, argp);
4925 	case BTRFS_IOC_ADD_DEV:
4926 		return btrfs_ioctl_add_dev(fs_info, argp);
4927 	case BTRFS_IOC_RM_DEV:
4928 		return btrfs_ioctl_rm_dev(file, argp);
4929 	case BTRFS_IOC_RM_DEV_V2:
4930 		return btrfs_ioctl_rm_dev_v2(file, argp);
4931 	case BTRFS_IOC_FS_INFO:
4932 		return btrfs_ioctl_fs_info(fs_info, argp);
4933 	case BTRFS_IOC_DEV_INFO:
4934 		return btrfs_ioctl_dev_info(fs_info, argp);
4935 	case BTRFS_IOC_BALANCE:
4936 		return btrfs_ioctl_balance(file, NULL);
4937 	case BTRFS_IOC_TREE_SEARCH:
4938 		return btrfs_ioctl_tree_search(file, argp);
4939 	case BTRFS_IOC_TREE_SEARCH_V2:
4940 		return btrfs_ioctl_tree_search_v2(file, argp);
4941 	case BTRFS_IOC_INO_LOOKUP:
4942 		return btrfs_ioctl_ino_lookup(file, argp);
4943 	case BTRFS_IOC_INO_PATHS:
4944 		return btrfs_ioctl_ino_to_path(root, argp);
4945 	case BTRFS_IOC_LOGICAL_INO:
4946 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4947 	case BTRFS_IOC_LOGICAL_INO_V2:
4948 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4949 	case BTRFS_IOC_SPACE_INFO:
4950 		return btrfs_ioctl_space_info(fs_info, argp);
4951 	case BTRFS_IOC_SYNC: {
4952 		int ret;
4953 
4954 		ret = btrfs_start_delalloc_roots(fs_info, U64_MAX, false);
4955 		if (ret)
4956 			return ret;
4957 		ret = btrfs_sync_fs(inode->i_sb, 1);
4958 		/*
4959 		 * The transaction thread may want to do more work,
4960 		 * namely it pokes the cleaner kthread that will start
4961 		 * processing uncleaned subvols.
4962 		 */
4963 		wake_up_process(fs_info->transaction_kthread);
4964 		return ret;
4965 	}
4966 	case BTRFS_IOC_START_SYNC:
4967 		return btrfs_ioctl_start_sync(root, argp);
4968 	case BTRFS_IOC_WAIT_SYNC:
4969 		return btrfs_ioctl_wait_sync(fs_info, argp);
4970 	case BTRFS_IOC_SCRUB:
4971 		return btrfs_ioctl_scrub(file, argp);
4972 	case BTRFS_IOC_SCRUB_CANCEL:
4973 		return btrfs_ioctl_scrub_cancel(fs_info);
4974 	case BTRFS_IOC_SCRUB_PROGRESS:
4975 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4976 	case BTRFS_IOC_BALANCE_V2:
4977 		return btrfs_ioctl_balance(file, argp);
4978 	case BTRFS_IOC_BALANCE_CTL:
4979 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4980 	case BTRFS_IOC_BALANCE_PROGRESS:
4981 		return btrfs_ioctl_balance_progress(fs_info, argp);
4982 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4983 		return btrfs_ioctl_set_received_subvol(file, argp);
4984 #ifdef CONFIG_64BIT
4985 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4986 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4987 #endif
4988 	case BTRFS_IOC_SEND:
4989 		return _btrfs_ioctl_send(file, argp, false);
4990 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4991 	case BTRFS_IOC_SEND_32:
4992 		return _btrfs_ioctl_send(file, argp, true);
4993 #endif
4994 	case BTRFS_IOC_GET_DEV_STATS:
4995 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4996 	case BTRFS_IOC_QUOTA_CTL:
4997 		return btrfs_ioctl_quota_ctl(file, argp);
4998 	case BTRFS_IOC_QGROUP_ASSIGN:
4999 		return btrfs_ioctl_qgroup_assign(file, argp);
5000 	case BTRFS_IOC_QGROUP_CREATE:
5001 		return btrfs_ioctl_qgroup_create(file, argp);
5002 	case BTRFS_IOC_QGROUP_LIMIT:
5003 		return btrfs_ioctl_qgroup_limit(file, argp);
5004 	case BTRFS_IOC_QUOTA_RESCAN:
5005 		return btrfs_ioctl_quota_rescan(file, argp);
5006 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5007 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5008 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5009 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5010 	case BTRFS_IOC_DEV_REPLACE:
5011 		return btrfs_ioctl_dev_replace(fs_info, argp);
5012 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5013 		return btrfs_ioctl_get_supported_features(argp);
5014 	case BTRFS_IOC_GET_FEATURES:
5015 		return btrfs_ioctl_get_features(fs_info, argp);
5016 	case BTRFS_IOC_SET_FEATURES:
5017 		return btrfs_ioctl_set_features(file, argp);
5018 	case FS_IOC_FSGETXATTR:
5019 		return btrfs_ioctl_fsgetxattr(file, argp);
5020 	case FS_IOC_FSSETXATTR:
5021 		return btrfs_ioctl_fssetxattr(file, argp);
5022 	case BTRFS_IOC_GET_SUBVOL_INFO:
5023 		return btrfs_ioctl_get_subvol_info(file, argp);
5024 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5025 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5026 	case BTRFS_IOC_INO_LOOKUP_USER:
5027 		return btrfs_ioctl_ino_lookup_user(file, argp);
5028 	}
5029 
5030 	return -ENOTTY;
5031 }
5032 
5033 #ifdef CONFIG_COMPAT
5034 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5035 {
5036 	/*
5037 	 * These all access 32-bit values anyway so no further
5038 	 * handling is necessary.
5039 	 */
5040 	switch (cmd) {
5041 	case FS_IOC32_GETFLAGS:
5042 		cmd = FS_IOC_GETFLAGS;
5043 		break;
5044 	case FS_IOC32_SETFLAGS:
5045 		cmd = FS_IOC_SETFLAGS;
5046 		break;
5047 	case FS_IOC32_GETVERSION:
5048 		cmd = FS_IOC_GETVERSION;
5049 		break;
5050 	}
5051 
5052 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5053 }
5054 #endif
5055