1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 #include "props.h" 60 #include "sysfs.h" 61 #include "qgroup.h" 62 63 #ifdef CONFIG_64BIT 64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 65 * structures are incorrect, as the timespec structure from userspace 66 * is 4 bytes too small. We define these alternatives here to teach 67 * the kernel about the 32-bit struct packing. 68 */ 69 struct btrfs_ioctl_timespec_32 { 70 __u64 sec; 71 __u32 nsec; 72 } __attribute__ ((__packed__)); 73 74 struct btrfs_ioctl_received_subvol_args_32 { 75 char uuid[BTRFS_UUID_SIZE]; /* in */ 76 __u64 stransid; /* in */ 77 __u64 rtransid; /* out */ 78 struct btrfs_ioctl_timespec_32 stime; /* in */ 79 struct btrfs_ioctl_timespec_32 rtime; /* out */ 80 __u64 flags; /* in */ 81 __u64 reserved[16]; /* in */ 82 } __attribute__ ((__packed__)); 83 84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 85 struct btrfs_ioctl_received_subvol_args_32) 86 #endif 87 88 89 static int btrfs_clone(struct inode *src, struct inode *inode, 90 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 91 int no_time_update); 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 95 { 96 if (S_ISDIR(mode)) 97 return flags; 98 else if (S_ISREG(mode)) 99 return flags & ~FS_DIRSYNC_FL; 100 else 101 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 102 } 103 104 /* 105 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 106 */ 107 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 108 { 109 unsigned int iflags = 0; 110 111 if (flags & BTRFS_INODE_SYNC) 112 iflags |= FS_SYNC_FL; 113 if (flags & BTRFS_INODE_IMMUTABLE) 114 iflags |= FS_IMMUTABLE_FL; 115 if (flags & BTRFS_INODE_APPEND) 116 iflags |= FS_APPEND_FL; 117 if (flags & BTRFS_INODE_NODUMP) 118 iflags |= FS_NODUMP_FL; 119 if (flags & BTRFS_INODE_NOATIME) 120 iflags |= FS_NOATIME_FL; 121 if (flags & BTRFS_INODE_DIRSYNC) 122 iflags |= FS_DIRSYNC_FL; 123 if (flags & BTRFS_INODE_NODATACOW) 124 iflags |= FS_NOCOW_FL; 125 126 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 127 iflags |= FS_COMPR_FL; 128 else if (flags & BTRFS_INODE_NOCOMPRESS) 129 iflags |= FS_NOCOMP_FL; 130 131 return iflags; 132 } 133 134 /* 135 * Update inode->i_flags based on the btrfs internal flags. 136 */ 137 void btrfs_update_iflags(struct inode *inode) 138 { 139 struct btrfs_inode *ip = BTRFS_I(inode); 140 unsigned int new_fl = 0; 141 142 if (ip->flags & BTRFS_INODE_SYNC) 143 new_fl |= S_SYNC; 144 if (ip->flags & BTRFS_INODE_IMMUTABLE) 145 new_fl |= S_IMMUTABLE; 146 if (ip->flags & BTRFS_INODE_APPEND) 147 new_fl |= S_APPEND; 148 if (ip->flags & BTRFS_INODE_NOATIME) 149 new_fl |= S_NOATIME; 150 if (ip->flags & BTRFS_INODE_DIRSYNC) 151 new_fl |= S_DIRSYNC; 152 153 set_mask_bits(&inode->i_flags, 154 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 155 new_fl); 156 } 157 158 /* 159 * Inherit flags from the parent inode. 160 * 161 * Currently only the compression flags and the cow flags are inherited. 162 */ 163 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 164 { 165 unsigned int flags; 166 167 if (!dir) 168 return; 169 170 flags = BTRFS_I(dir)->flags; 171 172 if (flags & BTRFS_INODE_NOCOMPRESS) { 173 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 174 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 175 } else if (flags & BTRFS_INODE_COMPRESS) { 176 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 177 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 178 } 179 180 if (flags & BTRFS_INODE_NODATACOW) { 181 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 182 if (S_ISREG(inode->i_mode)) 183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 184 } 185 186 btrfs_update_iflags(inode); 187 } 188 189 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 190 { 191 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 192 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 193 194 if (copy_to_user(arg, &flags, sizeof(flags))) 195 return -EFAULT; 196 return 0; 197 } 198 199 static int check_flags(unsigned int flags) 200 { 201 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 202 FS_NOATIME_FL | FS_NODUMP_FL | \ 203 FS_SYNC_FL | FS_DIRSYNC_FL | \ 204 FS_NOCOMP_FL | FS_COMPR_FL | 205 FS_NOCOW_FL)) 206 return -EOPNOTSUPP; 207 208 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 209 return -EINVAL; 210 211 return 0; 212 } 213 214 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 215 { 216 struct inode *inode = file_inode(file); 217 struct btrfs_inode *ip = BTRFS_I(inode); 218 struct btrfs_root *root = ip->root; 219 struct btrfs_trans_handle *trans; 220 unsigned int flags, oldflags; 221 int ret; 222 u64 ip_oldflags; 223 unsigned int i_oldflags; 224 umode_t mode; 225 226 if (!inode_owner_or_capable(inode)) 227 return -EPERM; 228 229 if (btrfs_root_readonly(root)) 230 return -EROFS; 231 232 if (copy_from_user(&flags, arg, sizeof(flags))) 233 return -EFAULT; 234 235 ret = check_flags(flags); 236 if (ret) 237 return ret; 238 239 ret = mnt_want_write_file(file); 240 if (ret) 241 return ret; 242 243 inode_lock(inode); 244 245 ip_oldflags = ip->flags; 246 i_oldflags = inode->i_flags; 247 mode = inode->i_mode; 248 249 flags = btrfs_mask_flags(inode->i_mode, flags); 250 oldflags = btrfs_flags_to_ioctl(ip->flags); 251 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 252 if (!capable(CAP_LINUX_IMMUTABLE)) { 253 ret = -EPERM; 254 goto out_unlock; 255 } 256 } 257 258 if (flags & FS_SYNC_FL) 259 ip->flags |= BTRFS_INODE_SYNC; 260 else 261 ip->flags &= ~BTRFS_INODE_SYNC; 262 if (flags & FS_IMMUTABLE_FL) 263 ip->flags |= BTRFS_INODE_IMMUTABLE; 264 else 265 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 266 if (flags & FS_APPEND_FL) 267 ip->flags |= BTRFS_INODE_APPEND; 268 else 269 ip->flags &= ~BTRFS_INODE_APPEND; 270 if (flags & FS_NODUMP_FL) 271 ip->flags |= BTRFS_INODE_NODUMP; 272 else 273 ip->flags &= ~BTRFS_INODE_NODUMP; 274 if (flags & FS_NOATIME_FL) 275 ip->flags |= BTRFS_INODE_NOATIME; 276 else 277 ip->flags &= ~BTRFS_INODE_NOATIME; 278 if (flags & FS_DIRSYNC_FL) 279 ip->flags |= BTRFS_INODE_DIRSYNC; 280 else 281 ip->flags &= ~BTRFS_INODE_DIRSYNC; 282 if (flags & FS_NOCOW_FL) { 283 if (S_ISREG(mode)) { 284 /* 285 * It's safe to turn csums off here, no extents exist. 286 * Otherwise we want the flag to reflect the real COW 287 * status of the file and will not set it. 288 */ 289 if (inode->i_size == 0) 290 ip->flags |= BTRFS_INODE_NODATACOW 291 | BTRFS_INODE_NODATASUM; 292 } else { 293 ip->flags |= BTRFS_INODE_NODATACOW; 294 } 295 } else { 296 /* 297 * Revert back under same assuptions as above 298 */ 299 if (S_ISREG(mode)) { 300 if (inode->i_size == 0) 301 ip->flags &= ~(BTRFS_INODE_NODATACOW 302 | BTRFS_INODE_NODATASUM); 303 } else { 304 ip->flags &= ~BTRFS_INODE_NODATACOW; 305 } 306 } 307 308 /* 309 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 310 * flag may be changed automatically if compression code won't make 311 * things smaller. 312 */ 313 if (flags & FS_NOCOMP_FL) { 314 ip->flags &= ~BTRFS_INODE_COMPRESS; 315 ip->flags |= BTRFS_INODE_NOCOMPRESS; 316 317 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 318 if (ret && ret != -ENODATA) 319 goto out_drop; 320 } else if (flags & FS_COMPR_FL) { 321 const char *comp; 322 323 ip->flags |= BTRFS_INODE_COMPRESS; 324 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 325 326 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 327 comp = "lzo"; 328 else 329 comp = "zlib"; 330 ret = btrfs_set_prop(inode, "btrfs.compression", 331 comp, strlen(comp), 0); 332 if (ret) 333 goto out_drop; 334 335 } else { 336 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 337 if (ret && ret != -ENODATA) 338 goto out_drop; 339 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 340 } 341 342 trans = btrfs_start_transaction(root, 1); 343 if (IS_ERR(trans)) { 344 ret = PTR_ERR(trans); 345 goto out_drop; 346 } 347 348 btrfs_update_iflags(inode); 349 inode_inc_iversion(inode); 350 inode->i_ctime = CURRENT_TIME; 351 ret = btrfs_update_inode(trans, root, inode); 352 353 btrfs_end_transaction(trans, root); 354 out_drop: 355 if (ret) { 356 ip->flags = ip_oldflags; 357 inode->i_flags = i_oldflags; 358 } 359 360 out_unlock: 361 inode_unlock(inode); 362 mnt_drop_write_file(file); 363 return ret; 364 } 365 366 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 367 { 368 struct inode *inode = file_inode(file); 369 370 return put_user(inode->i_generation, arg); 371 } 372 373 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 374 { 375 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 376 struct btrfs_device *device; 377 struct request_queue *q; 378 struct fstrim_range range; 379 u64 minlen = ULLONG_MAX; 380 u64 num_devices = 0; 381 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 382 int ret; 383 384 if (!capable(CAP_SYS_ADMIN)) 385 return -EPERM; 386 387 rcu_read_lock(); 388 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 389 dev_list) { 390 if (!device->bdev) 391 continue; 392 q = bdev_get_queue(device->bdev); 393 if (blk_queue_discard(q)) { 394 num_devices++; 395 minlen = min((u64)q->limits.discard_granularity, 396 minlen); 397 } 398 } 399 rcu_read_unlock(); 400 401 if (!num_devices) 402 return -EOPNOTSUPP; 403 if (copy_from_user(&range, arg, sizeof(range))) 404 return -EFAULT; 405 if (range.start > total_bytes || 406 range.len < fs_info->sb->s_blocksize) 407 return -EINVAL; 408 409 range.len = min(range.len, total_bytes - range.start); 410 range.minlen = max(range.minlen, minlen); 411 ret = btrfs_trim_fs(fs_info->tree_root, &range); 412 if (ret < 0) 413 return ret; 414 415 if (copy_to_user(arg, &range, sizeof(range))) 416 return -EFAULT; 417 418 return 0; 419 } 420 421 int btrfs_is_empty_uuid(u8 *uuid) 422 { 423 int i; 424 425 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 426 if (uuid[i]) 427 return 0; 428 } 429 return 1; 430 } 431 432 static noinline int create_subvol(struct inode *dir, 433 struct dentry *dentry, 434 char *name, int namelen, 435 u64 *async_transid, 436 struct btrfs_qgroup_inherit *inherit) 437 { 438 struct btrfs_trans_handle *trans; 439 struct btrfs_key key; 440 struct btrfs_root_item root_item; 441 struct btrfs_inode_item *inode_item; 442 struct extent_buffer *leaf; 443 struct btrfs_root *root = BTRFS_I(dir)->root; 444 struct btrfs_root *new_root; 445 struct btrfs_block_rsv block_rsv; 446 struct timespec cur_time = CURRENT_TIME; 447 struct inode *inode; 448 int ret; 449 int err; 450 u64 objectid; 451 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 452 u64 index = 0; 453 u64 qgroup_reserved; 454 uuid_le new_uuid; 455 456 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 457 if (ret) 458 return ret; 459 460 /* 461 * Don't create subvolume whose level is not zero. Or qgroup will be 462 * screwed up since it assume subvolme qgroup's level to be 0. 463 */ 464 if (btrfs_qgroup_level(objectid)) 465 return -ENOSPC; 466 467 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 468 /* 469 * The same as the snapshot creation, please see the comment 470 * of create_snapshot(). 471 */ 472 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 473 8, &qgroup_reserved, false); 474 if (ret) 475 return ret; 476 477 trans = btrfs_start_transaction(root, 0); 478 if (IS_ERR(trans)) { 479 ret = PTR_ERR(trans); 480 btrfs_subvolume_release_metadata(root, &block_rsv, 481 qgroup_reserved); 482 return ret; 483 } 484 trans->block_rsv = &block_rsv; 485 trans->bytes_reserved = block_rsv.size; 486 487 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 488 if (ret) 489 goto fail; 490 491 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 492 if (IS_ERR(leaf)) { 493 ret = PTR_ERR(leaf); 494 goto fail; 495 } 496 497 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 498 btrfs_set_header_bytenr(leaf, leaf->start); 499 btrfs_set_header_generation(leaf, trans->transid); 500 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 501 btrfs_set_header_owner(leaf, objectid); 502 503 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(), 504 BTRFS_FSID_SIZE); 505 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 506 btrfs_header_chunk_tree_uuid(leaf), 507 BTRFS_UUID_SIZE); 508 btrfs_mark_buffer_dirty(leaf); 509 510 memset(&root_item, 0, sizeof(root_item)); 511 512 inode_item = &root_item.inode; 513 btrfs_set_stack_inode_generation(inode_item, 1); 514 btrfs_set_stack_inode_size(inode_item, 3); 515 btrfs_set_stack_inode_nlink(inode_item, 1); 516 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 517 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 518 519 btrfs_set_root_flags(&root_item, 0); 520 btrfs_set_root_limit(&root_item, 0); 521 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 522 523 btrfs_set_root_bytenr(&root_item, leaf->start); 524 btrfs_set_root_generation(&root_item, trans->transid); 525 btrfs_set_root_level(&root_item, 0); 526 btrfs_set_root_refs(&root_item, 1); 527 btrfs_set_root_used(&root_item, leaf->len); 528 btrfs_set_root_last_snapshot(&root_item, 0); 529 530 btrfs_set_root_generation_v2(&root_item, 531 btrfs_root_generation(&root_item)); 532 uuid_le_gen(&new_uuid); 533 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 534 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec); 535 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec); 536 root_item.ctime = root_item.otime; 537 btrfs_set_root_ctransid(&root_item, trans->transid); 538 btrfs_set_root_otransid(&root_item, trans->transid); 539 540 btrfs_tree_unlock(leaf); 541 free_extent_buffer(leaf); 542 leaf = NULL; 543 544 btrfs_set_root_dirid(&root_item, new_dirid); 545 546 key.objectid = objectid; 547 key.offset = 0; 548 key.type = BTRFS_ROOT_ITEM_KEY; 549 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 550 &root_item); 551 if (ret) 552 goto fail; 553 554 key.offset = (u64)-1; 555 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 556 if (IS_ERR(new_root)) { 557 ret = PTR_ERR(new_root); 558 btrfs_abort_transaction(trans, root, ret); 559 goto fail; 560 } 561 562 btrfs_record_root_in_trans(trans, new_root); 563 564 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 565 if (ret) { 566 /* We potentially lose an unused inode item here */ 567 btrfs_abort_transaction(trans, root, ret); 568 goto fail; 569 } 570 571 mutex_lock(&new_root->objectid_mutex); 572 new_root->highest_objectid = new_dirid; 573 mutex_unlock(&new_root->objectid_mutex); 574 575 /* 576 * insert the directory item 577 */ 578 ret = btrfs_set_inode_index(dir, &index); 579 if (ret) { 580 btrfs_abort_transaction(trans, root, ret); 581 goto fail; 582 } 583 584 ret = btrfs_insert_dir_item(trans, root, 585 name, namelen, dir, &key, 586 BTRFS_FT_DIR, index); 587 if (ret) { 588 btrfs_abort_transaction(trans, root, ret); 589 goto fail; 590 } 591 592 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 593 ret = btrfs_update_inode(trans, root, dir); 594 BUG_ON(ret); 595 596 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 597 objectid, root->root_key.objectid, 598 btrfs_ino(dir), index, name, namelen); 599 BUG_ON(ret); 600 601 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 602 root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 603 objectid); 604 if (ret) 605 btrfs_abort_transaction(trans, root, ret); 606 607 fail: 608 trans->block_rsv = NULL; 609 trans->bytes_reserved = 0; 610 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 611 612 if (async_transid) { 613 *async_transid = trans->transid; 614 err = btrfs_commit_transaction_async(trans, root, 1); 615 if (err) 616 err = btrfs_commit_transaction(trans, root); 617 } else { 618 err = btrfs_commit_transaction(trans, root); 619 } 620 if (err && !ret) 621 ret = err; 622 623 if (!ret) { 624 inode = btrfs_lookup_dentry(dir, dentry); 625 if (IS_ERR(inode)) 626 return PTR_ERR(inode); 627 d_instantiate(dentry, inode); 628 } 629 return ret; 630 } 631 632 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root) 633 { 634 s64 writers; 635 DEFINE_WAIT(wait); 636 637 do { 638 prepare_to_wait(&root->subv_writers->wait, &wait, 639 TASK_UNINTERRUPTIBLE); 640 641 writers = percpu_counter_sum(&root->subv_writers->counter); 642 if (writers) 643 schedule(); 644 645 finish_wait(&root->subv_writers->wait, &wait); 646 } while (writers); 647 } 648 649 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 650 struct dentry *dentry, char *name, int namelen, 651 u64 *async_transid, bool readonly, 652 struct btrfs_qgroup_inherit *inherit) 653 { 654 struct inode *inode; 655 struct btrfs_pending_snapshot *pending_snapshot; 656 struct btrfs_trans_handle *trans; 657 int ret; 658 659 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 660 return -EINVAL; 661 662 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 663 if (!pending_snapshot) 664 return -ENOMEM; 665 666 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 667 GFP_NOFS); 668 pending_snapshot->path = btrfs_alloc_path(); 669 if (!pending_snapshot->root_item || !pending_snapshot->path) { 670 ret = -ENOMEM; 671 goto free_pending; 672 } 673 674 atomic_inc(&root->will_be_snapshoted); 675 smp_mb__after_atomic(); 676 btrfs_wait_for_no_snapshoting_writes(root); 677 678 ret = btrfs_start_delalloc_inodes(root, 0); 679 if (ret) 680 goto dec_and_free; 681 682 btrfs_wait_ordered_extents(root, -1); 683 684 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 685 BTRFS_BLOCK_RSV_TEMP); 686 /* 687 * 1 - parent dir inode 688 * 2 - dir entries 689 * 1 - root item 690 * 2 - root ref/backref 691 * 1 - root of snapshot 692 * 1 - UUID item 693 */ 694 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 695 &pending_snapshot->block_rsv, 8, 696 &pending_snapshot->qgroup_reserved, 697 false); 698 if (ret) 699 goto dec_and_free; 700 701 pending_snapshot->dentry = dentry; 702 pending_snapshot->root = root; 703 pending_snapshot->readonly = readonly; 704 pending_snapshot->dir = dir; 705 pending_snapshot->inherit = inherit; 706 707 trans = btrfs_start_transaction(root, 0); 708 if (IS_ERR(trans)) { 709 ret = PTR_ERR(trans); 710 goto fail; 711 } 712 713 spin_lock(&root->fs_info->trans_lock); 714 list_add(&pending_snapshot->list, 715 &trans->transaction->pending_snapshots); 716 spin_unlock(&root->fs_info->trans_lock); 717 if (async_transid) { 718 *async_transid = trans->transid; 719 ret = btrfs_commit_transaction_async(trans, 720 root->fs_info->extent_root, 1); 721 if (ret) 722 ret = btrfs_commit_transaction(trans, root); 723 } else { 724 ret = btrfs_commit_transaction(trans, 725 root->fs_info->extent_root); 726 } 727 if (ret) 728 goto fail; 729 730 ret = pending_snapshot->error; 731 if (ret) 732 goto fail; 733 734 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 735 if (ret) 736 goto fail; 737 738 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 739 if (IS_ERR(inode)) { 740 ret = PTR_ERR(inode); 741 goto fail; 742 } 743 744 d_instantiate(dentry, inode); 745 ret = 0; 746 fail: 747 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 748 &pending_snapshot->block_rsv, 749 pending_snapshot->qgroup_reserved); 750 dec_and_free: 751 if (atomic_dec_and_test(&root->will_be_snapshoted)) 752 wake_up_atomic_t(&root->will_be_snapshoted); 753 free_pending: 754 kfree(pending_snapshot->root_item); 755 btrfs_free_path(pending_snapshot->path); 756 kfree(pending_snapshot); 757 758 return ret; 759 } 760 761 /* copy of may_delete in fs/namei.c() 762 * Check whether we can remove a link victim from directory dir, check 763 * whether the type of victim is right. 764 * 1. We can't do it if dir is read-only (done in permission()) 765 * 2. We should have write and exec permissions on dir 766 * 3. We can't remove anything from append-only dir 767 * 4. We can't do anything with immutable dir (done in permission()) 768 * 5. If the sticky bit on dir is set we should either 769 * a. be owner of dir, or 770 * b. be owner of victim, or 771 * c. have CAP_FOWNER capability 772 * 6. If the victim is append-only or immutable we can't do antyhing with 773 * links pointing to it. 774 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 775 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 776 * 9. We can't remove a root or mountpoint. 777 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 778 * nfs_async_unlink(). 779 */ 780 781 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 782 { 783 int error; 784 785 if (d_really_is_negative(victim)) 786 return -ENOENT; 787 788 BUG_ON(d_inode(victim->d_parent) != dir); 789 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 790 791 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 792 if (error) 793 return error; 794 if (IS_APPEND(dir)) 795 return -EPERM; 796 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 797 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 798 return -EPERM; 799 if (isdir) { 800 if (!d_is_dir(victim)) 801 return -ENOTDIR; 802 if (IS_ROOT(victim)) 803 return -EBUSY; 804 } else if (d_is_dir(victim)) 805 return -EISDIR; 806 if (IS_DEADDIR(dir)) 807 return -ENOENT; 808 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 809 return -EBUSY; 810 return 0; 811 } 812 813 /* copy of may_create in fs/namei.c() */ 814 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 815 { 816 if (d_really_is_positive(child)) 817 return -EEXIST; 818 if (IS_DEADDIR(dir)) 819 return -ENOENT; 820 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 821 } 822 823 /* 824 * Create a new subvolume below @parent. This is largely modeled after 825 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 826 * inside this filesystem so it's quite a bit simpler. 827 */ 828 static noinline int btrfs_mksubvol(struct path *parent, 829 char *name, int namelen, 830 struct btrfs_root *snap_src, 831 u64 *async_transid, bool readonly, 832 struct btrfs_qgroup_inherit *inherit) 833 { 834 struct inode *dir = d_inode(parent->dentry); 835 struct dentry *dentry; 836 int error; 837 838 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 839 if (error == -EINTR) 840 return error; 841 842 dentry = lookup_one_len(name, parent->dentry, namelen); 843 error = PTR_ERR(dentry); 844 if (IS_ERR(dentry)) 845 goto out_unlock; 846 847 error = -EEXIST; 848 if (d_really_is_positive(dentry)) 849 goto out_dput; 850 851 error = btrfs_may_create(dir, dentry); 852 if (error) 853 goto out_dput; 854 855 /* 856 * even if this name doesn't exist, we may get hash collisions. 857 * check for them now when we can safely fail 858 */ 859 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 860 dir->i_ino, name, 861 namelen); 862 if (error) 863 goto out_dput; 864 865 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 866 867 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 868 goto out_up_read; 869 870 if (snap_src) { 871 error = create_snapshot(snap_src, dir, dentry, name, namelen, 872 async_transid, readonly, inherit); 873 } else { 874 error = create_subvol(dir, dentry, name, namelen, 875 async_transid, inherit); 876 } 877 if (!error) 878 fsnotify_mkdir(dir, dentry); 879 out_up_read: 880 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 881 out_dput: 882 dput(dentry); 883 out_unlock: 884 inode_unlock(dir); 885 return error; 886 } 887 888 /* 889 * When we're defragging a range, we don't want to kick it off again 890 * if it is really just waiting for delalloc to send it down. 891 * If we find a nice big extent or delalloc range for the bytes in the 892 * file you want to defrag, we return 0 to let you know to skip this 893 * part of the file 894 */ 895 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 896 { 897 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 898 struct extent_map *em = NULL; 899 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 900 u64 end; 901 902 read_lock(&em_tree->lock); 903 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 904 read_unlock(&em_tree->lock); 905 906 if (em) { 907 end = extent_map_end(em); 908 free_extent_map(em); 909 if (end - offset > thresh) 910 return 0; 911 } 912 /* if we already have a nice delalloc here, just stop */ 913 thresh /= 2; 914 end = count_range_bits(io_tree, &offset, offset + thresh, 915 thresh, EXTENT_DELALLOC, 1); 916 if (end >= thresh) 917 return 0; 918 return 1; 919 } 920 921 /* 922 * helper function to walk through a file and find extents 923 * newer than a specific transid, and smaller than thresh. 924 * 925 * This is used by the defragging code to find new and small 926 * extents 927 */ 928 static int find_new_extents(struct btrfs_root *root, 929 struct inode *inode, u64 newer_than, 930 u64 *off, u32 thresh) 931 { 932 struct btrfs_path *path; 933 struct btrfs_key min_key; 934 struct extent_buffer *leaf; 935 struct btrfs_file_extent_item *extent; 936 int type; 937 int ret; 938 u64 ino = btrfs_ino(inode); 939 940 path = btrfs_alloc_path(); 941 if (!path) 942 return -ENOMEM; 943 944 min_key.objectid = ino; 945 min_key.type = BTRFS_EXTENT_DATA_KEY; 946 min_key.offset = *off; 947 948 while (1) { 949 ret = btrfs_search_forward(root, &min_key, path, newer_than); 950 if (ret != 0) 951 goto none; 952 process_slot: 953 if (min_key.objectid != ino) 954 goto none; 955 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 956 goto none; 957 958 leaf = path->nodes[0]; 959 extent = btrfs_item_ptr(leaf, path->slots[0], 960 struct btrfs_file_extent_item); 961 962 type = btrfs_file_extent_type(leaf, extent); 963 if (type == BTRFS_FILE_EXTENT_REG && 964 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 965 check_defrag_in_cache(inode, min_key.offset, thresh)) { 966 *off = min_key.offset; 967 btrfs_free_path(path); 968 return 0; 969 } 970 971 path->slots[0]++; 972 if (path->slots[0] < btrfs_header_nritems(leaf)) { 973 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 974 goto process_slot; 975 } 976 977 if (min_key.offset == (u64)-1) 978 goto none; 979 980 min_key.offset++; 981 btrfs_release_path(path); 982 } 983 none: 984 btrfs_free_path(path); 985 return -ENOENT; 986 } 987 988 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 989 { 990 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 991 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 992 struct extent_map *em; 993 u64 len = PAGE_CACHE_SIZE; 994 995 /* 996 * hopefully we have this extent in the tree already, try without 997 * the full extent lock 998 */ 999 read_lock(&em_tree->lock); 1000 em = lookup_extent_mapping(em_tree, start, len); 1001 read_unlock(&em_tree->lock); 1002 1003 if (!em) { 1004 struct extent_state *cached = NULL; 1005 u64 end = start + len - 1; 1006 1007 /* get the big lock and read metadata off disk */ 1008 lock_extent_bits(io_tree, start, end, &cached); 1009 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 1010 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 1011 1012 if (IS_ERR(em)) 1013 return NULL; 1014 } 1015 1016 return em; 1017 } 1018 1019 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1020 { 1021 struct extent_map *next; 1022 bool ret = true; 1023 1024 /* this is the last extent */ 1025 if (em->start + em->len >= i_size_read(inode)) 1026 return false; 1027 1028 next = defrag_lookup_extent(inode, em->start + em->len); 1029 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1030 ret = false; 1031 else if ((em->block_start + em->block_len == next->block_start) && 1032 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1033 ret = false; 1034 1035 free_extent_map(next); 1036 return ret; 1037 } 1038 1039 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1040 u64 *last_len, u64 *skip, u64 *defrag_end, 1041 int compress) 1042 { 1043 struct extent_map *em; 1044 int ret = 1; 1045 bool next_mergeable = true; 1046 bool prev_mergeable = true; 1047 1048 /* 1049 * make sure that once we start defragging an extent, we keep on 1050 * defragging it 1051 */ 1052 if (start < *defrag_end) 1053 return 1; 1054 1055 *skip = 0; 1056 1057 em = defrag_lookup_extent(inode, start); 1058 if (!em) 1059 return 0; 1060 1061 /* this will cover holes, and inline extents */ 1062 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1063 ret = 0; 1064 goto out; 1065 } 1066 1067 if (!*defrag_end) 1068 prev_mergeable = false; 1069 1070 next_mergeable = defrag_check_next_extent(inode, em); 1071 /* 1072 * we hit a real extent, if it is big or the next extent is not a 1073 * real extent, don't bother defragging it 1074 */ 1075 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1076 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1077 ret = 0; 1078 out: 1079 /* 1080 * last_len ends up being a counter of how many bytes we've defragged. 1081 * every time we choose not to defrag an extent, we reset *last_len 1082 * so that the next tiny extent will force a defrag. 1083 * 1084 * The end result of this is that tiny extents before a single big 1085 * extent will force at least part of that big extent to be defragged. 1086 */ 1087 if (ret) { 1088 *defrag_end = extent_map_end(em); 1089 } else { 1090 *last_len = 0; 1091 *skip = extent_map_end(em); 1092 *defrag_end = 0; 1093 } 1094 1095 free_extent_map(em); 1096 return ret; 1097 } 1098 1099 /* 1100 * it doesn't do much good to defrag one or two pages 1101 * at a time. This pulls in a nice chunk of pages 1102 * to COW and defrag. 1103 * 1104 * It also makes sure the delalloc code has enough 1105 * dirty data to avoid making new small extents as part 1106 * of the defrag 1107 * 1108 * It's a good idea to start RA on this range 1109 * before calling this. 1110 */ 1111 static int cluster_pages_for_defrag(struct inode *inode, 1112 struct page **pages, 1113 unsigned long start_index, 1114 unsigned long num_pages) 1115 { 1116 unsigned long file_end; 1117 u64 isize = i_size_read(inode); 1118 u64 page_start; 1119 u64 page_end; 1120 u64 page_cnt; 1121 int ret; 1122 int i; 1123 int i_done; 1124 struct btrfs_ordered_extent *ordered; 1125 struct extent_state *cached_state = NULL; 1126 struct extent_io_tree *tree; 1127 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1128 1129 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 1130 if (!isize || start_index > file_end) 1131 return 0; 1132 1133 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1134 1135 ret = btrfs_delalloc_reserve_space(inode, 1136 start_index << PAGE_CACHE_SHIFT, 1137 page_cnt << PAGE_CACHE_SHIFT); 1138 if (ret) 1139 return ret; 1140 i_done = 0; 1141 tree = &BTRFS_I(inode)->io_tree; 1142 1143 /* step one, lock all the pages */ 1144 for (i = 0; i < page_cnt; i++) { 1145 struct page *page; 1146 again: 1147 page = find_or_create_page(inode->i_mapping, 1148 start_index + i, mask); 1149 if (!page) 1150 break; 1151 1152 page_start = page_offset(page); 1153 page_end = page_start + PAGE_CACHE_SIZE - 1; 1154 while (1) { 1155 lock_extent_bits(tree, page_start, page_end, 1156 &cached_state); 1157 ordered = btrfs_lookup_ordered_extent(inode, 1158 page_start); 1159 unlock_extent_cached(tree, page_start, page_end, 1160 &cached_state, GFP_NOFS); 1161 if (!ordered) 1162 break; 1163 1164 unlock_page(page); 1165 btrfs_start_ordered_extent(inode, ordered, 1); 1166 btrfs_put_ordered_extent(ordered); 1167 lock_page(page); 1168 /* 1169 * we unlocked the page above, so we need check if 1170 * it was released or not. 1171 */ 1172 if (page->mapping != inode->i_mapping) { 1173 unlock_page(page); 1174 page_cache_release(page); 1175 goto again; 1176 } 1177 } 1178 1179 if (!PageUptodate(page)) { 1180 btrfs_readpage(NULL, page); 1181 lock_page(page); 1182 if (!PageUptodate(page)) { 1183 unlock_page(page); 1184 page_cache_release(page); 1185 ret = -EIO; 1186 break; 1187 } 1188 } 1189 1190 if (page->mapping != inode->i_mapping) { 1191 unlock_page(page); 1192 page_cache_release(page); 1193 goto again; 1194 } 1195 1196 pages[i] = page; 1197 i_done++; 1198 } 1199 if (!i_done || ret) 1200 goto out; 1201 1202 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1203 goto out; 1204 1205 /* 1206 * so now we have a nice long stream of locked 1207 * and up to date pages, lets wait on them 1208 */ 1209 for (i = 0; i < i_done; i++) 1210 wait_on_page_writeback(pages[i]); 1211 1212 page_start = page_offset(pages[0]); 1213 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1214 1215 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1216 page_start, page_end - 1, &cached_state); 1217 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1218 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1219 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1220 &cached_state, GFP_NOFS); 1221 1222 if (i_done != page_cnt) { 1223 spin_lock(&BTRFS_I(inode)->lock); 1224 BTRFS_I(inode)->outstanding_extents++; 1225 spin_unlock(&BTRFS_I(inode)->lock); 1226 btrfs_delalloc_release_space(inode, 1227 start_index << PAGE_CACHE_SHIFT, 1228 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1229 } 1230 1231 1232 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1233 &cached_state, GFP_NOFS); 1234 1235 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1236 page_start, page_end - 1, &cached_state, 1237 GFP_NOFS); 1238 1239 for (i = 0; i < i_done; i++) { 1240 clear_page_dirty_for_io(pages[i]); 1241 ClearPageChecked(pages[i]); 1242 set_page_extent_mapped(pages[i]); 1243 set_page_dirty(pages[i]); 1244 unlock_page(pages[i]); 1245 page_cache_release(pages[i]); 1246 } 1247 return i_done; 1248 out: 1249 for (i = 0; i < i_done; i++) { 1250 unlock_page(pages[i]); 1251 page_cache_release(pages[i]); 1252 } 1253 btrfs_delalloc_release_space(inode, 1254 start_index << PAGE_CACHE_SHIFT, 1255 page_cnt << PAGE_CACHE_SHIFT); 1256 return ret; 1257 1258 } 1259 1260 int btrfs_defrag_file(struct inode *inode, struct file *file, 1261 struct btrfs_ioctl_defrag_range_args *range, 1262 u64 newer_than, unsigned long max_to_defrag) 1263 { 1264 struct btrfs_root *root = BTRFS_I(inode)->root; 1265 struct file_ra_state *ra = NULL; 1266 unsigned long last_index; 1267 u64 isize = i_size_read(inode); 1268 u64 last_len = 0; 1269 u64 skip = 0; 1270 u64 defrag_end = 0; 1271 u64 newer_off = range->start; 1272 unsigned long i; 1273 unsigned long ra_index = 0; 1274 int ret; 1275 int defrag_count = 0; 1276 int compress_type = BTRFS_COMPRESS_ZLIB; 1277 u32 extent_thresh = range->extent_thresh; 1278 unsigned long max_cluster = SZ_256K >> PAGE_CACHE_SHIFT; 1279 unsigned long cluster = max_cluster; 1280 u64 new_align = ~((u64)SZ_128K - 1); 1281 struct page **pages = NULL; 1282 1283 if (isize == 0) 1284 return 0; 1285 1286 if (range->start >= isize) 1287 return -EINVAL; 1288 1289 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1290 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1291 return -EINVAL; 1292 if (range->compress_type) 1293 compress_type = range->compress_type; 1294 } 1295 1296 if (extent_thresh == 0) 1297 extent_thresh = SZ_256K; 1298 1299 /* 1300 * if we were not given a file, allocate a readahead 1301 * context 1302 */ 1303 if (!file) { 1304 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1305 if (!ra) 1306 return -ENOMEM; 1307 file_ra_state_init(ra, inode->i_mapping); 1308 } else { 1309 ra = &file->f_ra; 1310 } 1311 1312 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1313 GFP_NOFS); 1314 if (!pages) { 1315 ret = -ENOMEM; 1316 goto out_ra; 1317 } 1318 1319 /* find the last page to defrag */ 1320 if (range->start + range->len > range->start) { 1321 last_index = min_t(u64, isize - 1, 1322 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1323 } else { 1324 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1325 } 1326 1327 if (newer_than) { 1328 ret = find_new_extents(root, inode, newer_than, 1329 &newer_off, SZ_64K); 1330 if (!ret) { 1331 range->start = newer_off; 1332 /* 1333 * we always align our defrag to help keep 1334 * the extents in the file evenly spaced 1335 */ 1336 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1337 } else 1338 goto out_ra; 1339 } else { 1340 i = range->start >> PAGE_CACHE_SHIFT; 1341 } 1342 if (!max_to_defrag) 1343 max_to_defrag = last_index - i + 1; 1344 1345 /* 1346 * make writeback starts from i, so the defrag range can be 1347 * written sequentially. 1348 */ 1349 if (i < inode->i_mapping->writeback_index) 1350 inode->i_mapping->writeback_index = i; 1351 1352 while (i <= last_index && defrag_count < max_to_defrag && 1353 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) { 1354 /* 1355 * make sure we stop running if someone unmounts 1356 * the FS 1357 */ 1358 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1359 break; 1360 1361 if (btrfs_defrag_cancelled(root->fs_info)) { 1362 btrfs_debug(root->fs_info, "defrag_file cancelled"); 1363 ret = -EAGAIN; 1364 break; 1365 } 1366 1367 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1368 extent_thresh, &last_len, &skip, 1369 &defrag_end, range->flags & 1370 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1371 unsigned long next; 1372 /* 1373 * the should_defrag function tells us how much to skip 1374 * bump our counter by the suggested amount 1375 */ 1376 next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE); 1377 i = max(i + 1, next); 1378 continue; 1379 } 1380 1381 if (!newer_than) { 1382 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1383 PAGE_CACHE_SHIFT) - i; 1384 cluster = min(cluster, max_cluster); 1385 } else { 1386 cluster = max_cluster; 1387 } 1388 1389 if (i + cluster > ra_index) { 1390 ra_index = max(i, ra_index); 1391 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1392 cluster); 1393 ra_index += cluster; 1394 } 1395 1396 inode_lock(inode); 1397 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1398 BTRFS_I(inode)->force_compress = compress_type; 1399 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1400 if (ret < 0) { 1401 inode_unlock(inode); 1402 goto out_ra; 1403 } 1404 1405 defrag_count += ret; 1406 balance_dirty_pages_ratelimited(inode->i_mapping); 1407 inode_unlock(inode); 1408 1409 if (newer_than) { 1410 if (newer_off == (u64)-1) 1411 break; 1412 1413 if (ret > 0) 1414 i += ret; 1415 1416 newer_off = max(newer_off + 1, 1417 (u64)i << PAGE_CACHE_SHIFT); 1418 1419 ret = find_new_extents(root, inode, newer_than, 1420 &newer_off, SZ_64K); 1421 if (!ret) { 1422 range->start = newer_off; 1423 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1424 } else { 1425 break; 1426 } 1427 } else { 1428 if (ret > 0) { 1429 i += ret; 1430 last_len += ret << PAGE_CACHE_SHIFT; 1431 } else { 1432 i++; 1433 last_len = 0; 1434 } 1435 } 1436 } 1437 1438 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1439 filemap_flush(inode->i_mapping); 1440 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1441 &BTRFS_I(inode)->runtime_flags)) 1442 filemap_flush(inode->i_mapping); 1443 } 1444 1445 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1446 /* the filemap_flush will queue IO into the worker threads, but 1447 * we have to make sure the IO is actually started and that 1448 * ordered extents get created before we return 1449 */ 1450 atomic_inc(&root->fs_info->async_submit_draining); 1451 while (atomic_read(&root->fs_info->nr_async_submits) || 1452 atomic_read(&root->fs_info->async_delalloc_pages)) { 1453 wait_event(root->fs_info->async_submit_wait, 1454 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1455 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1456 } 1457 atomic_dec(&root->fs_info->async_submit_draining); 1458 } 1459 1460 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1461 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1462 } 1463 1464 ret = defrag_count; 1465 1466 out_ra: 1467 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1468 inode_lock(inode); 1469 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1470 inode_unlock(inode); 1471 } 1472 if (!file) 1473 kfree(ra); 1474 kfree(pages); 1475 return ret; 1476 } 1477 1478 static noinline int btrfs_ioctl_resize(struct file *file, 1479 void __user *arg) 1480 { 1481 u64 new_size; 1482 u64 old_size; 1483 u64 devid = 1; 1484 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1485 struct btrfs_ioctl_vol_args *vol_args; 1486 struct btrfs_trans_handle *trans; 1487 struct btrfs_device *device = NULL; 1488 char *sizestr; 1489 char *retptr; 1490 char *devstr = NULL; 1491 int ret = 0; 1492 int mod = 0; 1493 1494 if (!capable(CAP_SYS_ADMIN)) 1495 return -EPERM; 1496 1497 ret = mnt_want_write_file(file); 1498 if (ret) 1499 return ret; 1500 1501 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1502 1)) { 1503 mnt_drop_write_file(file); 1504 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1505 } 1506 1507 mutex_lock(&root->fs_info->volume_mutex); 1508 vol_args = memdup_user(arg, sizeof(*vol_args)); 1509 if (IS_ERR(vol_args)) { 1510 ret = PTR_ERR(vol_args); 1511 goto out; 1512 } 1513 1514 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1515 1516 sizestr = vol_args->name; 1517 devstr = strchr(sizestr, ':'); 1518 if (devstr) { 1519 sizestr = devstr + 1; 1520 *devstr = '\0'; 1521 devstr = vol_args->name; 1522 ret = kstrtoull(devstr, 10, &devid); 1523 if (ret) 1524 goto out_free; 1525 if (!devid) { 1526 ret = -EINVAL; 1527 goto out_free; 1528 } 1529 btrfs_info(root->fs_info, "resizing devid %llu", devid); 1530 } 1531 1532 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1533 if (!device) { 1534 btrfs_info(root->fs_info, "resizer unable to find device %llu", 1535 devid); 1536 ret = -ENODEV; 1537 goto out_free; 1538 } 1539 1540 if (!device->writeable) { 1541 btrfs_info(root->fs_info, 1542 "resizer unable to apply on readonly device %llu", 1543 devid); 1544 ret = -EPERM; 1545 goto out_free; 1546 } 1547 1548 if (!strcmp(sizestr, "max")) 1549 new_size = device->bdev->bd_inode->i_size; 1550 else { 1551 if (sizestr[0] == '-') { 1552 mod = -1; 1553 sizestr++; 1554 } else if (sizestr[0] == '+') { 1555 mod = 1; 1556 sizestr++; 1557 } 1558 new_size = memparse(sizestr, &retptr); 1559 if (*retptr != '\0' || new_size == 0) { 1560 ret = -EINVAL; 1561 goto out_free; 1562 } 1563 } 1564 1565 if (device->is_tgtdev_for_dev_replace) { 1566 ret = -EPERM; 1567 goto out_free; 1568 } 1569 1570 old_size = btrfs_device_get_total_bytes(device); 1571 1572 if (mod < 0) { 1573 if (new_size > old_size) { 1574 ret = -EINVAL; 1575 goto out_free; 1576 } 1577 new_size = old_size - new_size; 1578 } else if (mod > 0) { 1579 if (new_size > ULLONG_MAX - old_size) { 1580 ret = -ERANGE; 1581 goto out_free; 1582 } 1583 new_size = old_size + new_size; 1584 } 1585 1586 if (new_size < SZ_256M) { 1587 ret = -EINVAL; 1588 goto out_free; 1589 } 1590 if (new_size > device->bdev->bd_inode->i_size) { 1591 ret = -EFBIG; 1592 goto out_free; 1593 } 1594 1595 new_size = div_u64(new_size, root->sectorsize); 1596 new_size *= root->sectorsize; 1597 1598 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu", 1599 rcu_str_deref(device->name), new_size); 1600 1601 if (new_size > old_size) { 1602 trans = btrfs_start_transaction(root, 0); 1603 if (IS_ERR(trans)) { 1604 ret = PTR_ERR(trans); 1605 goto out_free; 1606 } 1607 ret = btrfs_grow_device(trans, device, new_size); 1608 btrfs_commit_transaction(trans, root); 1609 } else if (new_size < old_size) { 1610 ret = btrfs_shrink_device(device, new_size); 1611 } /* equal, nothing need to do */ 1612 1613 out_free: 1614 kfree(vol_args); 1615 out: 1616 mutex_unlock(&root->fs_info->volume_mutex); 1617 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1618 mnt_drop_write_file(file); 1619 return ret; 1620 } 1621 1622 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1623 char *name, unsigned long fd, int subvol, 1624 u64 *transid, bool readonly, 1625 struct btrfs_qgroup_inherit *inherit) 1626 { 1627 int namelen; 1628 int ret = 0; 1629 1630 ret = mnt_want_write_file(file); 1631 if (ret) 1632 goto out; 1633 1634 namelen = strlen(name); 1635 if (strchr(name, '/')) { 1636 ret = -EINVAL; 1637 goto out_drop_write; 1638 } 1639 1640 if (name[0] == '.' && 1641 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1642 ret = -EEXIST; 1643 goto out_drop_write; 1644 } 1645 1646 if (subvol) { 1647 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1648 NULL, transid, readonly, inherit); 1649 } else { 1650 struct fd src = fdget(fd); 1651 struct inode *src_inode; 1652 if (!src.file) { 1653 ret = -EINVAL; 1654 goto out_drop_write; 1655 } 1656 1657 src_inode = file_inode(src.file); 1658 if (src_inode->i_sb != file_inode(file)->i_sb) { 1659 btrfs_info(BTRFS_I(src_inode)->root->fs_info, 1660 "Snapshot src from another FS"); 1661 ret = -EXDEV; 1662 } else if (!inode_owner_or_capable(src_inode)) { 1663 /* 1664 * Subvolume creation is not restricted, but snapshots 1665 * are limited to own subvolumes only 1666 */ 1667 ret = -EPERM; 1668 } else { 1669 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1670 BTRFS_I(src_inode)->root, 1671 transid, readonly, inherit); 1672 } 1673 fdput(src); 1674 } 1675 out_drop_write: 1676 mnt_drop_write_file(file); 1677 out: 1678 return ret; 1679 } 1680 1681 static noinline int btrfs_ioctl_snap_create(struct file *file, 1682 void __user *arg, int subvol) 1683 { 1684 struct btrfs_ioctl_vol_args *vol_args; 1685 int ret; 1686 1687 vol_args = memdup_user(arg, sizeof(*vol_args)); 1688 if (IS_ERR(vol_args)) 1689 return PTR_ERR(vol_args); 1690 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1691 1692 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1693 vol_args->fd, subvol, 1694 NULL, false, NULL); 1695 1696 kfree(vol_args); 1697 return ret; 1698 } 1699 1700 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1701 void __user *arg, int subvol) 1702 { 1703 struct btrfs_ioctl_vol_args_v2 *vol_args; 1704 int ret; 1705 u64 transid = 0; 1706 u64 *ptr = NULL; 1707 bool readonly = false; 1708 struct btrfs_qgroup_inherit *inherit = NULL; 1709 1710 vol_args = memdup_user(arg, sizeof(*vol_args)); 1711 if (IS_ERR(vol_args)) 1712 return PTR_ERR(vol_args); 1713 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1714 1715 if (vol_args->flags & 1716 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1717 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1718 ret = -EOPNOTSUPP; 1719 goto free_args; 1720 } 1721 1722 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1723 ptr = &transid; 1724 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1725 readonly = true; 1726 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1727 if (vol_args->size > PAGE_CACHE_SIZE) { 1728 ret = -EINVAL; 1729 goto free_args; 1730 } 1731 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1732 if (IS_ERR(inherit)) { 1733 ret = PTR_ERR(inherit); 1734 goto free_args; 1735 } 1736 } 1737 1738 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1739 vol_args->fd, subvol, ptr, 1740 readonly, inherit); 1741 if (ret) 1742 goto free_inherit; 1743 1744 if (ptr && copy_to_user(arg + 1745 offsetof(struct btrfs_ioctl_vol_args_v2, 1746 transid), 1747 ptr, sizeof(*ptr))) 1748 ret = -EFAULT; 1749 1750 free_inherit: 1751 kfree(inherit); 1752 free_args: 1753 kfree(vol_args); 1754 return ret; 1755 } 1756 1757 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1758 void __user *arg) 1759 { 1760 struct inode *inode = file_inode(file); 1761 struct btrfs_root *root = BTRFS_I(inode)->root; 1762 int ret = 0; 1763 u64 flags = 0; 1764 1765 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1766 return -EINVAL; 1767 1768 down_read(&root->fs_info->subvol_sem); 1769 if (btrfs_root_readonly(root)) 1770 flags |= BTRFS_SUBVOL_RDONLY; 1771 up_read(&root->fs_info->subvol_sem); 1772 1773 if (copy_to_user(arg, &flags, sizeof(flags))) 1774 ret = -EFAULT; 1775 1776 return ret; 1777 } 1778 1779 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1780 void __user *arg) 1781 { 1782 struct inode *inode = file_inode(file); 1783 struct btrfs_root *root = BTRFS_I(inode)->root; 1784 struct btrfs_trans_handle *trans; 1785 u64 root_flags; 1786 u64 flags; 1787 int ret = 0; 1788 1789 if (!inode_owner_or_capable(inode)) 1790 return -EPERM; 1791 1792 ret = mnt_want_write_file(file); 1793 if (ret) 1794 goto out; 1795 1796 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1797 ret = -EINVAL; 1798 goto out_drop_write; 1799 } 1800 1801 if (copy_from_user(&flags, arg, sizeof(flags))) { 1802 ret = -EFAULT; 1803 goto out_drop_write; 1804 } 1805 1806 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1807 ret = -EINVAL; 1808 goto out_drop_write; 1809 } 1810 1811 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1812 ret = -EOPNOTSUPP; 1813 goto out_drop_write; 1814 } 1815 1816 down_write(&root->fs_info->subvol_sem); 1817 1818 /* nothing to do */ 1819 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1820 goto out_drop_sem; 1821 1822 root_flags = btrfs_root_flags(&root->root_item); 1823 if (flags & BTRFS_SUBVOL_RDONLY) { 1824 btrfs_set_root_flags(&root->root_item, 1825 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1826 } else { 1827 /* 1828 * Block RO -> RW transition if this subvolume is involved in 1829 * send 1830 */ 1831 spin_lock(&root->root_item_lock); 1832 if (root->send_in_progress == 0) { 1833 btrfs_set_root_flags(&root->root_item, 1834 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1835 spin_unlock(&root->root_item_lock); 1836 } else { 1837 spin_unlock(&root->root_item_lock); 1838 btrfs_warn(root->fs_info, 1839 "Attempt to set subvolume %llu read-write during send", 1840 root->root_key.objectid); 1841 ret = -EPERM; 1842 goto out_drop_sem; 1843 } 1844 } 1845 1846 trans = btrfs_start_transaction(root, 1); 1847 if (IS_ERR(trans)) { 1848 ret = PTR_ERR(trans); 1849 goto out_reset; 1850 } 1851 1852 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1853 &root->root_key, &root->root_item); 1854 1855 btrfs_commit_transaction(trans, root); 1856 out_reset: 1857 if (ret) 1858 btrfs_set_root_flags(&root->root_item, root_flags); 1859 out_drop_sem: 1860 up_write(&root->fs_info->subvol_sem); 1861 out_drop_write: 1862 mnt_drop_write_file(file); 1863 out: 1864 return ret; 1865 } 1866 1867 /* 1868 * helper to check if the subvolume references other subvolumes 1869 */ 1870 static noinline int may_destroy_subvol(struct btrfs_root *root) 1871 { 1872 struct btrfs_path *path; 1873 struct btrfs_dir_item *di; 1874 struct btrfs_key key; 1875 u64 dir_id; 1876 int ret; 1877 1878 path = btrfs_alloc_path(); 1879 if (!path) 1880 return -ENOMEM; 1881 1882 /* Make sure this root isn't set as the default subvol */ 1883 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1884 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1885 dir_id, "default", 7, 0); 1886 if (di && !IS_ERR(di)) { 1887 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1888 if (key.objectid == root->root_key.objectid) { 1889 ret = -EPERM; 1890 btrfs_err(root->fs_info, "deleting default subvolume " 1891 "%llu is not allowed", key.objectid); 1892 goto out; 1893 } 1894 btrfs_release_path(path); 1895 } 1896 1897 key.objectid = root->root_key.objectid; 1898 key.type = BTRFS_ROOT_REF_KEY; 1899 key.offset = (u64)-1; 1900 1901 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1902 &key, path, 0, 0); 1903 if (ret < 0) 1904 goto out; 1905 BUG_ON(ret == 0); 1906 1907 ret = 0; 1908 if (path->slots[0] > 0) { 1909 path->slots[0]--; 1910 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1911 if (key.objectid == root->root_key.objectid && 1912 key.type == BTRFS_ROOT_REF_KEY) 1913 ret = -ENOTEMPTY; 1914 } 1915 out: 1916 btrfs_free_path(path); 1917 return ret; 1918 } 1919 1920 static noinline int key_in_sk(struct btrfs_key *key, 1921 struct btrfs_ioctl_search_key *sk) 1922 { 1923 struct btrfs_key test; 1924 int ret; 1925 1926 test.objectid = sk->min_objectid; 1927 test.type = sk->min_type; 1928 test.offset = sk->min_offset; 1929 1930 ret = btrfs_comp_cpu_keys(key, &test); 1931 if (ret < 0) 1932 return 0; 1933 1934 test.objectid = sk->max_objectid; 1935 test.type = sk->max_type; 1936 test.offset = sk->max_offset; 1937 1938 ret = btrfs_comp_cpu_keys(key, &test); 1939 if (ret > 0) 1940 return 0; 1941 return 1; 1942 } 1943 1944 static noinline int copy_to_sk(struct btrfs_root *root, 1945 struct btrfs_path *path, 1946 struct btrfs_key *key, 1947 struct btrfs_ioctl_search_key *sk, 1948 size_t *buf_size, 1949 char __user *ubuf, 1950 unsigned long *sk_offset, 1951 int *num_found) 1952 { 1953 u64 found_transid; 1954 struct extent_buffer *leaf; 1955 struct btrfs_ioctl_search_header sh; 1956 struct btrfs_key test; 1957 unsigned long item_off; 1958 unsigned long item_len; 1959 int nritems; 1960 int i; 1961 int slot; 1962 int ret = 0; 1963 1964 leaf = path->nodes[0]; 1965 slot = path->slots[0]; 1966 nritems = btrfs_header_nritems(leaf); 1967 1968 if (btrfs_header_generation(leaf) > sk->max_transid) { 1969 i = nritems; 1970 goto advance_key; 1971 } 1972 found_transid = btrfs_header_generation(leaf); 1973 1974 for (i = slot; i < nritems; i++) { 1975 item_off = btrfs_item_ptr_offset(leaf, i); 1976 item_len = btrfs_item_size_nr(leaf, i); 1977 1978 btrfs_item_key_to_cpu(leaf, key, i); 1979 if (!key_in_sk(key, sk)) 1980 continue; 1981 1982 if (sizeof(sh) + item_len > *buf_size) { 1983 if (*num_found) { 1984 ret = 1; 1985 goto out; 1986 } 1987 1988 /* 1989 * return one empty item back for v1, which does not 1990 * handle -EOVERFLOW 1991 */ 1992 1993 *buf_size = sizeof(sh) + item_len; 1994 item_len = 0; 1995 ret = -EOVERFLOW; 1996 } 1997 1998 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1999 ret = 1; 2000 goto out; 2001 } 2002 2003 sh.objectid = key->objectid; 2004 sh.offset = key->offset; 2005 sh.type = key->type; 2006 sh.len = item_len; 2007 sh.transid = found_transid; 2008 2009 /* copy search result header */ 2010 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2011 ret = -EFAULT; 2012 goto out; 2013 } 2014 2015 *sk_offset += sizeof(sh); 2016 2017 if (item_len) { 2018 char __user *up = ubuf + *sk_offset; 2019 /* copy the item */ 2020 if (read_extent_buffer_to_user(leaf, up, 2021 item_off, item_len)) { 2022 ret = -EFAULT; 2023 goto out; 2024 } 2025 2026 *sk_offset += item_len; 2027 } 2028 (*num_found)++; 2029 2030 if (ret) /* -EOVERFLOW from above */ 2031 goto out; 2032 2033 if (*num_found >= sk->nr_items) { 2034 ret = 1; 2035 goto out; 2036 } 2037 } 2038 advance_key: 2039 ret = 0; 2040 test.objectid = sk->max_objectid; 2041 test.type = sk->max_type; 2042 test.offset = sk->max_offset; 2043 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2044 ret = 1; 2045 else if (key->offset < (u64)-1) 2046 key->offset++; 2047 else if (key->type < (u8)-1) { 2048 key->offset = 0; 2049 key->type++; 2050 } else if (key->objectid < (u64)-1) { 2051 key->offset = 0; 2052 key->type = 0; 2053 key->objectid++; 2054 } else 2055 ret = 1; 2056 out: 2057 /* 2058 * 0: all items from this leaf copied, continue with next 2059 * 1: * more items can be copied, but unused buffer is too small 2060 * * all items were found 2061 * Either way, it will stops the loop which iterates to the next 2062 * leaf 2063 * -EOVERFLOW: item was to large for buffer 2064 * -EFAULT: could not copy extent buffer back to userspace 2065 */ 2066 return ret; 2067 } 2068 2069 static noinline int search_ioctl(struct inode *inode, 2070 struct btrfs_ioctl_search_key *sk, 2071 size_t *buf_size, 2072 char __user *ubuf) 2073 { 2074 struct btrfs_root *root; 2075 struct btrfs_key key; 2076 struct btrfs_path *path; 2077 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 2078 int ret; 2079 int num_found = 0; 2080 unsigned long sk_offset = 0; 2081 2082 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2083 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2084 return -EOVERFLOW; 2085 } 2086 2087 path = btrfs_alloc_path(); 2088 if (!path) 2089 return -ENOMEM; 2090 2091 if (sk->tree_id == 0) { 2092 /* search the root of the inode that was passed */ 2093 root = BTRFS_I(inode)->root; 2094 } else { 2095 key.objectid = sk->tree_id; 2096 key.type = BTRFS_ROOT_ITEM_KEY; 2097 key.offset = (u64)-1; 2098 root = btrfs_read_fs_root_no_name(info, &key); 2099 if (IS_ERR(root)) { 2100 btrfs_err(info, "could not find root %llu", 2101 sk->tree_id); 2102 btrfs_free_path(path); 2103 return -ENOENT; 2104 } 2105 } 2106 2107 key.objectid = sk->min_objectid; 2108 key.type = sk->min_type; 2109 key.offset = sk->min_offset; 2110 2111 while (1) { 2112 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2113 if (ret != 0) { 2114 if (ret > 0) 2115 ret = 0; 2116 goto err; 2117 } 2118 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf, 2119 &sk_offset, &num_found); 2120 btrfs_release_path(path); 2121 if (ret) 2122 break; 2123 2124 } 2125 if (ret > 0) 2126 ret = 0; 2127 err: 2128 sk->nr_items = num_found; 2129 btrfs_free_path(path); 2130 return ret; 2131 } 2132 2133 static noinline int btrfs_ioctl_tree_search(struct file *file, 2134 void __user *argp) 2135 { 2136 struct btrfs_ioctl_search_args __user *uargs; 2137 struct btrfs_ioctl_search_key sk; 2138 struct inode *inode; 2139 int ret; 2140 size_t buf_size; 2141 2142 if (!capable(CAP_SYS_ADMIN)) 2143 return -EPERM; 2144 2145 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2146 2147 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2148 return -EFAULT; 2149 2150 buf_size = sizeof(uargs->buf); 2151 2152 inode = file_inode(file); 2153 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2154 2155 /* 2156 * In the origin implementation an overflow is handled by returning a 2157 * search header with a len of zero, so reset ret. 2158 */ 2159 if (ret == -EOVERFLOW) 2160 ret = 0; 2161 2162 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2163 ret = -EFAULT; 2164 return ret; 2165 } 2166 2167 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2168 void __user *argp) 2169 { 2170 struct btrfs_ioctl_search_args_v2 __user *uarg; 2171 struct btrfs_ioctl_search_args_v2 args; 2172 struct inode *inode; 2173 int ret; 2174 size_t buf_size; 2175 const size_t buf_limit = SZ_16M; 2176 2177 if (!capable(CAP_SYS_ADMIN)) 2178 return -EPERM; 2179 2180 /* copy search header and buffer size */ 2181 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2182 if (copy_from_user(&args, uarg, sizeof(args))) 2183 return -EFAULT; 2184 2185 buf_size = args.buf_size; 2186 2187 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2188 return -EOVERFLOW; 2189 2190 /* limit result size to 16MB */ 2191 if (buf_size > buf_limit) 2192 buf_size = buf_limit; 2193 2194 inode = file_inode(file); 2195 ret = search_ioctl(inode, &args.key, &buf_size, 2196 (char *)(&uarg->buf[0])); 2197 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2198 ret = -EFAULT; 2199 else if (ret == -EOVERFLOW && 2200 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2201 ret = -EFAULT; 2202 2203 return ret; 2204 } 2205 2206 /* 2207 * Search INODE_REFs to identify path name of 'dirid' directory 2208 * in a 'tree_id' tree. and sets path name to 'name'. 2209 */ 2210 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2211 u64 tree_id, u64 dirid, char *name) 2212 { 2213 struct btrfs_root *root; 2214 struct btrfs_key key; 2215 char *ptr; 2216 int ret = -1; 2217 int slot; 2218 int len; 2219 int total_len = 0; 2220 struct btrfs_inode_ref *iref; 2221 struct extent_buffer *l; 2222 struct btrfs_path *path; 2223 2224 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2225 name[0]='\0'; 2226 return 0; 2227 } 2228 2229 path = btrfs_alloc_path(); 2230 if (!path) 2231 return -ENOMEM; 2232 2233 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2234 2235 key.objectid = tree_id; 2236 key.type = BTRFS_ROOT_ITEM_KEY; 2237 key.offset = (u64)-1; 2238 root = btrfs_read_fs_root_no_name(info, &key); 2239 if (IS_ERR(root)) { 2240 btrfs_err(info, "could not find root %llu", tree_id); 2241 ret = -ENOENT; 2242 goto out; 2243 } 2244 2245 key.objectid = dirid; 2246 key.type = BTRFS_INODE_REF_KEY; 2247 key.offset = (u64)-1; 2248 2249 while (1) { 2250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2251 if (ret < 0) 2252 goto out; 2253 else if (ret > 0) { 2254 ret = btrfs_previous_item(root, path, dirid, 2255 BTRFS_INODE_REF_KEY); 2256 if (ret < 0) 2257 goto out; 2258 else if (ret > 0) { 2259 ret = -ENOENT; 2260 goto out; 2261 } 2262 } 2263 2264 l = path->nodes[0]; 2265 slot = path->slots[0]; 2266 btrfs_item_key_to_cpu(l, &key, slot); 2267 2268 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2269 len = btrfs_inode_ref_name_len(l, iref); 2270 ptr -= len + 1; 2271 total_len += len + 1; 2272 if (ptr < name) { 2273 ret = -ENAMETOOLONG; 2274 goto out; 2275 } 2276 2277 *(ptr + len) = '/'; 2278 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2279 2280 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2281 break; 2282 2283 btrfs_release_path(path); 2284 key.objectid = key.offset; 2285 key.offset = (u64)-1; 2286 dirid = key.objectid; 2287 } 2288 memmove(name, ptr, total_len); 2289 name[total_len] = '\0'; 2290 ret = 0; 2291 out: 2292 btrfs_free_path(path); 2293 return ret; 2294 } 2295 2296 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2297 void __user *argp) 2298 { 2299 struct btrfs_ioctl_ino_lookup_args *args; 2300 struct inode *inode; 2301 int ret = 0; 2302 2303 args = memdup_user(argp, sizeof(*args)); 2304 if (IS_ERR(args)) 2305 return PTR_ERR(args); 2306 2307 inode = file_inode(file); 2308 2309 /* 2310 * Unprivileged query to obtain the containing subvolume root id. The 2311 * path is reset so it's consistent with btrfs_search_path_in_tree. 2312 */ 2313 if (args->treeid == 0) 2314 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2315 2316 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2317 args->name[0] = 0; 2318 goto out; 2319 } 2320 2321 if (!capable(CAP_SYS_ADMIN)) { 2322 ret = -EPERM; 2323 goto out; 2324 } 2325 2326 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2327 args->treeid, args->objectid, 2328 args->name); 2329 2330 out: 2331 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2332 ret = -EFAULT; 2333 2334 kfree(args); 2335 return ret; 2336 } 2337 2338 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2339 void __user *arg) 2340 { 2341 struct dentry *parent = file->f_path.dentry; 2342 struct dentry *dentry; 2343 struct inode *dir = d_inode(parent); 2344 struct inode *inode; 2345 struct btrfs_root *root = BTRFS_I(dir)->root; 2346 struct btrfs_root *dest = NULL; 2347 struct btrfs_ioctl_vol_args *vol_args; 2348 struct btrfs_trans_handle *trans; 2349 struct btrfs_block_rsv block_rsv; 2350 u64 root_flags; 2351 u64 qgroup_reserved; 2352 int namelen; 2353 int ret; 2354 int err = 0; 2355 2356 vol_args = memdup_user(arg, sizeof(*vol_args)); 2357 if (IS_ERR(vol_args)) 2358 return PTR_ERR(vol_args); 2359 2360 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2361 namelen = strlen(vol_args->name); 2362 if (strchr(vol_args->name, '/') || 2363 strncmp(vol_args->name, "..", namelen) == 0) { 2364 err = -EINVAL; 2365 goto out; 2366 } 2367 2368 err = mnt_want_write_file(file); 2369 if (err) 2370 goto out; 2371 2372 2373 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 2374 if (err == -EINTR) 2375 goto out_drop_write; 2376 dentry = lookup_one_len(vol_args->name, parent, namelen); 2377 if (IS_ERR(dentry)) { 2378 err = PTR_ERR(dentry); 2379 goto out_unlock_dir; 2380 } 2381 2382 if (d_really_is_negative(dentry)) { 2383 err = -ENOENT; 2384 goto out_dput; 2385 } 2386 2387 inode = d_inode(dentry); 2388 dest = BTRFS_I(inode)->root; 2389 if (!capable(CAP_SYS_ADMIN)) { 2390 /* 2391 * Regular user. Only allow this with a special mount 2392 * option, when the user has write+exec access to the 2393 * subvol root, and when rmdir(2) would have been 2394 * allowed. 2395 * 2396 * Note that this is _not_ check that the subvol is 2397 * empty or doesn't contain data that we wouldn't 2398 * otherwise be able to delete. 2399 * 2400 * Users who want to delete empty subvols should try 2401 * rmdir(2). 2402 */ 2403 err = -EPERM; 2404 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2405 goto out_dput; 2406 2407 /* 2408 * Do not allow deletion if the parent dir is the same 2409 * as the dir to be deleted. That means the ioctl 2410 * must be called on the dentry referencing the root 2411 * of the subvol, not a random directory contained 2412 * within it. 2413 */ 2414 err = -EINVAL; 2415 if (root == dest) 2416 goto out_dput; 2417 2418 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2419 if (err) 2420 goto out_dput; 2421 } 2422 2423 /* check if subvolume may be deleted by a user */ 2424 err = btrfs_may_delete(dir, dentry, 1); 2425 if (err) 2426 goto out_dput; 2427 2428 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2429 err = -EINVAL; 2430 goto out_dput; 2431 } 2432 2433 inode_lock(inode); 2434 2435 /* 2436 * Don't allow to delete a subvolume with send in progress. This is 2437 * inside the i_mutex so the error handling that has to drop the bit 2438 * again is not run concurrently. 2439 */ 2440 spin_lock(&dest->root_item_lock); 2441 root_flags = btrfs_root_flags(&dest->root_item); 2442 if (dest->send_in_progress == 0) { 2443 btrfs_set_root_flags(&dest->root_item, 2444 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2445 spin_unlock(&dest->root_item_lock); 2446 } else { 2447 spin_unlock(&dest->root_item_lock); 2448 btrfs_warn(root->fs_info, 2449 "Attempt to delete subvolume %llu during send", 2450 dest->root_key.objectid); 2451 err = -EPERM; 2452 goto out_unlock_inode; 2453 } 2454 2455 down_write(&root->fs_info->subvol_sem); 2456 2457 err = may_destroy_subvol(dest); 2458 if (err) 2459 goto out_up_write; 2460 2461 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2462 /* 2463 * One for dir inode, two for dir entries, two for root 2464 * ref/backref. 2465 */ 2466 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2467 5, &qgroup_reserved, true); 2468 if (err) 2469 goto out_up_write; 2470 2471 trans = btrfs_start_transaction(root, 0); 2472 if (IS_ERR(trans)) { 2473 err = PTR_ERR(trans); 2474 goto out_release; 2475 } 2476 trans->block_rsv = &block_rsv; 2477 trans->bytes_reserved = block_rsv.size; 2478 2479 ret = btrfs_unlink_subvol(trans, root, dir, 2480 dest->root_key.objectid, 2481 dentry->d_name.name, 2482 dentry->d_name.len); 2483 if (ret) { 2484 err = ret; 2485 btrfs_abort_transaction(trans, root, ret); 2486 goto out_end_trans; 2487 } 2488 2489 btrfs_record_root_in_trans(trans, dest); 2490 2491 memset(&dest->root_item.drop_progress, 0, 2492 sizeof(dest->root_item.drop_progress)); 2493 dest->root_item.drop_level = 0; 2494 btrfs_set_root_refs(&dest->root_item, 0); 2495 2496 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2497 ret = btrfs_insert_orphan_item(trans, 2498 root->fs_info->tree_root, 2499 dest->root_key.objectid); 2500 if (ret) { 2501 btrfs_abort_transaction(trans, root, ret); 2502 err = ret; 2503 goto out_end_trans; 2504 } 2505 } 2506 2507 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2508 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2509 dest->root_key.objectid); 2510 if (ret && ret != -ENOENT) { 2511 btrfs_abort_transaction(trans, root, ret); 2512 err = ret; 2513 goto out_end_trans; 2514 } 2515 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2516 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2517 dest->root_item.received_uuid, 2518 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2519 dest->root_key.objectid); 2520 if (ret && ret != -ENOENT) { 2521 btrfs_abort_transaction(trans, root, ret); 2522 err = ret; 2523 goto out_end_trans; 2524 } 2525 } 2526 2527 out_end_trans: 2528 trans->block_rsv = NULL; 2529 trans->bytes_reserved = 0; 2530 ret = btrfs_end_transaction(trans, root); 2531 if (ret && !err) 2532 err = ret; 2533 inode->i_flags |= S_DEAD; 2534 out_release: 2535 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2536 out_up_write: 2537 up_write(&root->fs_info->subvol_sem); 2538 if (err) { 2539 spin_lock(&dest->root_item_lock); 2540 root_flags = btrfs_root_flags(&dest->root_item); 2541 btrfs_set_root_flags(&dest->root_item, 2542 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2543 spin_unlock(&dest->root_item_lock); 2544 } 2545 out_unlock_inode: 2546 inode_unlock(inode); 2547 if (!err) { 2548 d_invalidate(dentry); 2549 btrfs_invalidate_inodes(dest); 2550 d_delete(dentry); 2551 ASSERT(dest->send_in_progress == 0); 2552 2553 /* the last ref */ 2554 if (dest->ino_cache_inode) { 2555 iput(dest->ino_cache_inode); 2556 dest->ino_cache_inode = NULL; 2557 } 2558 } 2559 out_dput: 2560 dput(dentry); 2561 out_unlock_dir: 2562 inode_unlock(dir); 2563 out_drop_write: 2564 mnt_drop_write_file(file); 2565 out: 2566 kfree(vol_args); 2567 return err; 2568 } 2569 2570 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2571 { 2572 struct inode *inode = file_inode(file); 2573 struct btrfs_root *root = BTRFS_I(inode)->root; 2574 struct btrfs_ioctl_defrag_range_args *range; 2575 int ret; 2576 2577 ret = mnt_want_write_file(file); 2578 if (ret) 2579 return ret; 2580 2581 if (btrfs_root_readonly(root)) { 2582 ret = -EROFS; 2583 goto out; 2584 } 2585 2586 switch (inode->i_mode & S_IFMT) { 2587 case S_IFDIR: 2588 if (!capable(CAP_SYS_ADMIN)) { 2589 ret = -EPERM; 2590 goto out; 2591 } 2592 ret = btrfs_defrag_root(root); 2593 if (ret) 2594 goto out; 2595 ret = btrfs_defrag_root(root->fs_info->extent_root); 2596 break; 2597 case S_IFREG: 2598 if (!(file->f_mode & FMODE_WRITE)) { 2599 ret = -EINVAL; 2600 goto out; 2601 } 2602 2603 range = kzalloc(sizeof(*range), GFP_KERNEL); 2604 if (!range) { 2605 ret = -ENOMEM; 2606 goto out; 2607 } 2608 2609 if (argp) { 2610 if (copy_from_user(range, argp, 2611 sizeof(*range))) { 2612 ret = -EFAULT; 2613 kfree(range); 2614 goto out; 2615 } 2616 /* compression requires us to start the IO */ 2617 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2618 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2619 range->extent_thresh = (u32)-1; 2620 } 2621 } else { 2622 /* the rest are all set to zero by kzalloc */ 2623 range->len = (u64)-1; 2624 } 2625 ret = btrfs_defrag_file(file_inode(file), file, 2626 range, 0, 0); 2627 if (ret > 0) 2628 ret = 0; 2629 kfree(range); 2630 break; 2631 default: 2632 ret = -EINVAL; 2633 } 2634 out: 2635 mnt_drop_write_file(file); 2636 return ret; 2637 } 2638 2639 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2640 { 2641 struct btrfs_ioctl_vol_args *vol_args; 2642 int ret; 2643 2644 if (!capable(CAP_SYS_ADMIN)) 2645 return -EPERM; 2646 2647 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2648 1)) { 2649 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2650 } 2651 2652 mutex_lock(&root->fs_info->volume_mutex); 2653 vol_args = memdup_user(arg, sizeof(*vol_args)); 2654 if (IS_ERR(vol_args)) { 2655 ret = PTR_ERR(vol_args); 2656 goto out; 2657 } 2658 2659 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2660 ret = btrfs_init_new_device(root, vol_args->name); 2661 2662 if (!ret) 2663 btrfs_info(root->fs_info, "disk added %s",vol_args->name); 2664 2665 kfree(vol_args); 2666 out: 2667 mutex_unlock(&root->fs_info->volume_mutex); 2668 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2669 return ret; 2670 } 2671 2672 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2673 { 2674 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2675 struct btrfs_ioctl_vol_args *vol_args; 2676 int ret; 2677 2678 if (!capable(CAP_SYS_ADMIN)) 2679 return -EPERM; 2680 2681 ret = mnt_want_write_file(file); 2682 if (ret) 2683 return ret; 2684 2685 vol_args = memdup_user(arg, sizeof(*vol_args)); 2686 if (IS_ERR(vol_args)) { 2687 ret = PTR_ERR(vol_args); 2688 goto err_drop; 2689 } 2690 2691 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2692 2693 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2694 1)) { 2695 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2696 goto out; 2697 } 2698 2699 mutex_lock(&root->fs_info->volume_mutex); 2700 ret = btrfs_rm_device(root, vol_args->name); 2701 mutex_unlock(&root->fs_info->volume_mutex); 2702 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2703 2704 if (!ret) 2705 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name); 2706 2707 out: 2708 kfree(vol_args); 2709 err_drop: 2710 mnt_drop_write_file(file); 2711 return ret; 2712 } 2713 2714 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2715 { 2716 struct btrfs_ioctl_fs_info_args *fi_args; 2717 struct btrfs_device *device; 2718 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2719 int ret = 0; 2720 2721 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2722 if (!fi_args) 2723 return -ENOMEM; 2724 2725 mutex_lock(&fs_devices->device_list_mutex); 2726 fi_args->num_devices = fs_devices->num_devices; 2727 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2728 2729 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2730 if (device->devid > fi_args->max_id) 2731 fi_args->max_id = device->devid; 2732 } 2733 mutex_unlock(&fs_devices->device_list_mutex); 2734 2735 fi_args->nodesize = root->fs_info->super_copy->nodesize; 2736 fi_args->sectorsize = root->fs_info->super_copy->sectorsize; 2737 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize; 2738 2739 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2740 ret = -EFAULT; 2741 2742 kfree(fi_args); 2743 return ret; 2744 } 2745 2746 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2747 { 2748 struct btrfs_ioctl_dev_info_args *di_args; 2749 struct btrfs_device *dev; 2750 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2751 int ret = 0; 2752 char *s_uuid = NULL; 2753 2754 di_args = memdup_user(arg, sizeof(*di_args)); 2755 if (IS_ERR(di_args)) 2756 return PTR_ERR(di_args); 2757 2758 if (!btrfs_is_empty_uuid(di_args->uuid)) 2759 s_uuid = di_args->uuid; 2760 2761 mutex_lock(&fs_devices->device_list_mutex); 2762 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2763 2764 if (!dev) { 2765 ret = -ENODEV; 2766 goto out; 2767 } 2768 2769 di_args->devid = dev->devid; 2770 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2771 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2772 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2773 if (dev->name) { 2774 struct rcu_string *name; 2775 2776 rcu_read_lock(); 2777 name = rcu_dereference(dev->name); 2778 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2779 rcu_read_unlock(); 2780 di_args->path[sizeof(di_args->path) - 1] = 0; 2781 } else { 2782 di_args->path[0] = '\0'; 2783 } 2784 2785 out: 2786 mutex_unlock(&fs_devices->device_list_mutex); 2787 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2788 ret = -EFAULT; 2789 2790 kfree(di_args); 2791 return ret; 2792 } 2793 2794 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2795 { 2796 struct page *page; 2797 2798 page = grab_cache_page(inode->i_mapping, index); 2799 if (!page) 2800 return ERR_PTR(-ENOMEM); 2801 2802 if (!PageUptodate(page)) { 2803 int ret; 2804 2805 ret = btrfs_readpage(NULL, page); 2806 if (ret) 2807 return ERR_PTR(ret); 2808 lock_page(page); 2809 if (!PageUptodate(page)) { 2810 unlock_page(page); 2811 page_cache_release(page); 2812 return ERR_PTR(-EIO); 2813 } 2814 if (page->mapping != inode->i_mapping) { 2815 unlock_page(page); 2816 page_cache_release(page); 2817 return ERR_PTR(-EAGAIN); 2818 } 2819 } 2820 2821 return page; 2822 } 2823 2824 static int gather_extent_pages(struct inode *inode, struct page **pages, 2825 int num_pages, u64 off) 2826 { 2827 int i; 2828 pgoff_t index = off >> PAGE_CACHE_SHIFT; 2829 2830 for (i = 0; i < num_pages; i++) { 2831 again: 2832 pages[i] = extent_same_get_page(inode, index + i); 2833 if (IS_ERR(pages[i])) { 2834 int err = PTR_ERR(pages[i]); 2835 2836 if (err == -EAGAIN) 2837 goto again; 2838 pages[i] = NULL; 2839 return err; 2840 } 2841 } 2842 return 0; 2843 } 2844 2845 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 2846 bool retry_range_locking) 2847 { 2848 /* 2849 * Do any pending delalloc/csum calculations on inode, one way or 2850 * another, and lock file content. 2851 * The locking order is: 2852 * 2853 * 1) pages 2854 * 2) range in the inode's io tree 2855 */ 2856 while (1) { 2857 struct btrfs_ordered_extent *ordered; 2858 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2859 ordered = btrfs_lookup_first_ordered_extent(inode, 2860 off + len - 1); 2861 if ((!ordered || 2862 ordered->file_offset + ordered->len <= off || 2863 ordered->file_offset >= off + len) && 2864 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2865 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2866 if (ordered) 2867 btrfs_put_ordered_extent(ordered); 2868 break; 2869 } 2870 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2871 if (ordered) 2872 btrfs_put_ordered_extent(ordered); 2873 if (!retry_range_locking) 2874 return -EAGAIN; 2875 btrfs_wait_ordered_range(inode, off, len); 2876 } 2877 return 0; 2878 } 2879 2880 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2881 { 2882 inode_unlock(inode1); 2883 inode_unlock(inode2); 2884 } 2885 2886 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2887 { 2888 if (inode1 < inode2) 2889 swap(inode1, inode2); 2890 2891 inode_lock_nested(inode1, I_MUTEX_PARENT); 2892 inode_lock_nested(inode2, I_MUTEX_CHILD); 2893 } 2894 2895 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2896 struct inode *inode2, u64 loff2, u64 len) 2897 { 2898 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2899 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2900 } 2901 2902 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2903 struct inode *inode2, u64 loff2, u64 len, 2904 bool retry_range_locking) 2905 { 2906 int ret; 2907 2908 if (inode1 < inode2) { 2909 swap(inode1, inode2); 2910 swap(loff1, loff2); 2911 } 2912 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 2913 if (ret) 2914 return ret; 2915 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 2916 if (ret) 2917 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 2918 loff1 + len - 1); 2919 return ret; 2920 } 2921 2922 struct cmp_pages { 2923 int num_pages; 2924 struct page **src_pages; 2925 struct page **dst_pages; 2926 }; 2927 2928 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 2929 { 2930 int i; 2931 struct page *pg; 2932 2933 for (i = 0; i < cmp->num_pages; i++) { 2934 pg = cmp->src_pages[i]; 2935 if (pg) { 2936 unlock_page(pg); 2937 page_cache_release(pg); 2938 } 2939 pg = cmp->dst_pages[i]; 2940 if (pg) { 2941 unlock_page(pg); 2942 page_cache_release(pg); 2943 } 2944 } 2945 kfree(cmp->src_pages); 2946 kfree(cmp->dst_pages); 2947 } 2948 2949 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 2950 struct inode *dst, u64 dst_loff, 2951 u64 len, struct cmp_pages *cmp) 2952 { 2953 int ret; 2954 int num_pages = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT; 2955 struct page **src_pgarr, **dst_pgarr; 2956 2957 /* 2958 * We must gather up all the pages before we initiate our 2959 * extent locking. We use an array for the page pointers. Size 2960 * of the array is bounded by len, which is in turn bounded by 2961 * BTRFS_MAX_DEDUPE_LEN. 2962 */ 2963 src_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS); 2964 dst_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS); 2965 if (!src_pgarr || !dst_pgarr) { 2966 kfree(src_pgarr); 2967 kfree(dst_pgarr); 2968 return -ENOMEM; 2969 } 2970 cmp->num_pages = num_pages; 2971 cmp->src_pages = src_pgarr; 2972 cmp->dst_pages = dst_pgarr; 2973 2974 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff); 2975 if (ret) 2976 goto out; 2977 2978 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff); 2979 2980 out: 2981 if (ret) 2982 btrfs_cmp_data_free(cmp); 2983 return 0; 2984 } 2985 2986 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 2987 u64 dst_loff, u64 len, struct cmp_pages *cmp) 2988 { 2989 int ret = 0; 2990 int i; 2991 struct page *src_page, *dst_page; 2992 unsigned int cmp_len = PAGE_CACHE_SIZE; 2993 void *addr, *dst_addr; 2994 2995 i = 0; 2996 while (len) { 2997 if (len < PAGE_CACHE_SIZE) 2998 cmp_len = len; 2999 3000 BUG_ON(i >= cmp->num_pages); 3001 3002 src_page = cmp->src_pages[i]; 3003 dst_page = cmp->dst_pages[i]; 3004 ASSERT(PageLocked(src_page)); 3005 ASSERT(PageLocked(dst_page)); 3006 3007 addr = kmap_atomic(src_page); 3008 dst_addr = kmap_atomic(dst_page); 3009 3010 flush_dcache_page(src_page); 3011 flush_dcache_page(dst_page); 3012 3013 if (memcmp(addr, dst_addr, cmp_len)) 3014 ret = -EBADE; 3015 3016 kunmap_atomic(addr); 3017 kunmap_atomic(dst_addr); 3018 3019 if (ret) 3020 break; 3021 3022 len -= cmp_len; 3023 i++; 3024 } 3025 3026 return ret; 3027 } 3028 3029 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3030 u64 olen) 3031 { 3032 u64 len = *plen; 3033 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3034 3035 if (off + olen > inode->i_size || off + olen < off) 3036 return -EINVAL; 3037 3038 /* if we extend to eof, continue to block boundary */ 3039 if (off + len == inode->i_size) 3040 *plen = len = ALIGN(inode->i_size, bs) - off; 3041 3042 /* Check that we are block aligned - btrfs_clone() requires this */ 3043 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3044 return -EINVAL; 3045 3046 return 0; 3047 } 3048 3049 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3050 struct inode *dst, u64 dst_loff) 3051 { 3052 int ret; 3053 u64 len = olen; 3054 struct cmp_pages cmp; 3055 int same_inode = 0; 3056 u64 same_lock_start = 0; 3057 u64 same_lock_len = 0; 3058 3059 if (src == dst) 3060 same_inode = 1; 3061 3062 if (len == 0) 3063 return 0; 3064 3065 if (same_inode) { 3066 inode_lock(src); 3067 3068 ret = extent_same_check_offsets(src, loff, &len, olen); 3069 if (ret) 3070 goto out_unlock; 3071 3072 /* 3073 * Single inode case wants the same checks, except we 3074 * don't want our length pushed out past i_size as 3075 * comparing that data range makes no sense. 3076 * 3077 * extent_same_check_offsets() will do this for an 3078 * unaligned length at i_size, so catch it here and 3079 * reject the request. 3080 * 3081 * This effectively means we require aligned extents 3082 * for the single-inode case, whereas the other cases 3083 * allow an unaligned length so long as it ends at 3084 * i_size. 3085 */ 3086 if (len != olen) { 3087 ret = -EINVAL; 3088 goto out_unlock; 3089 } 3090 3091 /* Check for overlapping ranges */ 3092 if (dst_loff + len > loff && dst_loff < loff + len) { 3093 ret = -EINVAL; 3094 goto out_unlock; 3095 } 3096 3097 same_lock_start = min_t(u64, loff, dst_loff); 3098 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3099 } else { 3100 btrfs_double_inode_lock(src, dst); 3101 3102 ret = extent_same_check_offsets(src, loff, &len, olen); 3103 if (ret) 3104 goto out_unlock; 3105 3106 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3107 if (ret) 3108 goto out_unlock; 3109 } 3110 3111 /* don't make the dst file partly checksummed */ 3112 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3113 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3114 ret = -EINVAL; 3115 goto out_unlock; 3116 } 3117 3118 again: 3119 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3120 if (ret) 3121 goto out_unlock; 3122 3123 if (same_inode) 3124 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3125 false); 3126 else 3127 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3128 false); 3129 /* 3130 * If one of the inodes has dirty pages in the respective range or 3131 * ordered extents, we need to flush dellaloc and wait for all ordered 3132 * extents in the range. We must unlock the pages and the ranges in the 3133 * io trees to avoid deadlocks when flushing delalloc (requires locking 3134 * pages) and when waiting for ordered extents to complete (they require 3135 * range locking). 3136 */ 3137 if (ret == -EAGAIN) { 3138 /* 3139 * Ranges in the io trees already unlocked. Now unlock all 3140 * pages before waiting for all IO to complete. 3141 */ 3142 btrfs_cmp_data_free(&cmp); 3143 if (same_inode) { 3144 btrfs_wait_ordered_range(src, same_lock_start, 3145 same_lock_len); 3146 } else { 3147 btrfs_wait_ordered_range(src, loff, len); 3148 btrfs_wait_ordered_range(dst, dst_loff, len); 3149 } 3150 goto again; 3151 } 3152 ASSERT(ret == 0); 3153 if (WARN_ON(ret)) { 3154 /* ranges in the io trees already unlocked */ 3155 btrfs_cmp_data_free(&cmp); 3156 return ret; 3157 } 3158 3159 /* pass original length for comparison so we stay within i_size */ 3160 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp); 3161 if (ret == 0) 3162 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3163 3164 if (same_inode) 3165 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3166 same_lock_start + same_lock_len - 1); 3167 else 3168 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3169 3170 btrfs_cmp_data_free(&cmp); 3171 out_unlock: 3172 if (same_inode) 3173 inode_unlock(src); 3174 else 3175 btrfs_double_inode_unlock(src, dst); 3176 3177 return ret; 3178 } 3179 3180 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3181 3182 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3183 struct file *dst_file, u64 dst_loff) 3184 { 3185 struct inode *src = file_inode(src_file); 3186 struct inode *dst = file_inode(dst_file); 3187 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3188 ssize_t res; 3189 3190 if (olen > BTRFS_MAX_DEDUPE_LEN) 3191 olen = BTRFS_MAX_DEDUPE_LEN; 3192 3193 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) { 3194 /* 3195 * Btrfs does not support blocksize < page_size. As a 3196 * result, btrfs_cmp_data() won't correctly handle 3197 * this situation without an update. 3198 */ 3199 return -EINVAL; 3200 } 3201 3202 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3203 if (res) 3204 return res; 3205 return olen; 3206 } 3207 3208 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3209 struct inode *inode, 3210 u64 endoff, 3211 const u64 destoff, 3212 const u64 olen, 3213 int no_time_update) 3214 { 3215 struct btrfs_root *root = BTRFS_I(inode)->root; 3216 int ret; 3217 3218 inode_inc_iversion(inode); 3219 if (!no_time_update) 3220 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3221 /* 3222 * We round up to the block size at eof when determining which 3223 * extents to clone above, but shouldn't round up the file size. 3224 */ 3225 if (endoff > destoff + olen) 3226 endoff = destoff + olen; 3227 if (endoff > inode->i_size) 3228 btrfs_i_size_write(inode, endoff); 3229 3230 ret = btrfs_update_inode(trans, root, inode); 3231 if (ret) { 3232 btrfs_abort_transaction(trans, root, ret); 3233 btrfs_end_transaction(trans, root); 3234 goto out; 3235 } 3236 ret = btrfs_end_transaction(trans, root); 3237 out: 3238 return ret; 3239 } 3240 3241 static void clone_update_extent_map(struct inode *inode, 3242 const struct btrfs_trans_handle *trans, 3243 const struct btrfs_path *path, 3244 const u64 hole_offset, 3245 const u64 hole_len) 3246 { 3247 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3248 struct extent_map *em; 3249 int ret; 3250 3251 em = alloc_extent_map(); 3252 if (!em) { 3253 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3254 &BTRFS_I(inode)->runtime_flags); 3255 return; 3256 } 3257 3258 if (path) { 3259 struct btrfs_file_extent_item *fi; 3260 3261 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3262 struct btrfs_file_extent_item); 3263 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3264 em->generation = -1; 3265 if (btrfs_file_extent_type(path->nodes[0], fi) == 3266 BTRFS_FILE_EXTENT_INLINE) 3267 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3268 &BTRFS_I(inode)->runtime_flags); 3269 } else { 3270 em->start = hole_offset; 3271 em->len = hole_len; 3272 em->ram_bytes = em->len; 3273 em->orig_start = hole_offset; 3274 em->block_start = EXTENT_MAP_HOLE; 3275 em->block_len = 0; 3276 em->orig_block_len = 0; 3277 em->compress_type = BTRFS_COMPRESS_NONE; 3278 em->generation = trans->transid; 3279 } 3280 3281 while (1) { 3282 write_lock(&em_tree->lock); 3283 ret = add_extent_mapping(em_tree, em, 1); 3284 write_unlock(&em_tree->lock); 3285 if (ret != -EEXIST) { 3286 free_extent_map(em); 3287 break; 3288 } 3289 btrfs_drop_extent_cache(inode, em->start, 3290 em->start + em->len - 1, 0); 3291 } 3292 3293 if (ret) 3294 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3295 &BTRFS_I(inode)->runtime_flags); 3296 } 3297 3298 /* 3299 * Make sure we do not end up inserting an inline extent into a file that has 3300 * already other (non-inline) extents. If a file has an inline extent it can 3301 * not have any other extents and the (single) inline extent must start at the 3302 * file offset 0. Failing to respect these rules will lead to file corruption, 3303 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3304 * 3305 * We can have extents that have been already written to disk or we can have 3306 * dirty ranges still in delalloc, in which case the extent maps and items are 3307 * created only when we run delalloc, and the delalloc ranges might fall outside 3308 * the range we are currently locking in the inode's io tree. So we check the 3309 * inode's i_size because of that (i_size updates are done while holding the 3310 * i_mutex, which we are holding here). 3311 * We also check to see if the inode has a size not greater than "datal" but has 3312 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3313 * protected against such concurrent fallocate calls by the i_mutex). 3314 * 3315 * If the file has no extents but a size greater than datal, do not allow the 3316 * copy because we would need turn the inline extent into a non-inline one (even 3317 * with NO_HOLES enabled). If we find our destination inode only has one inline 3318 * extent, just overwrite it with the source inline extent if its size is less 3319 * than the source extent's size, or we could copy the source inline extent's 3320 * data into the destination inode's inline extent if the later is greater then 3321 * the former. 3322 */ 3323 static int clone_copy_inline_extent(struct inode *src, 3324 struct inode *dst, 3325 struct btrfs_trans_handle *trans, 3326 struct btrfs_path *path, 3327 struct btrfs_key *new_key, 3328 const u64 drop_start, 3329 const u64 datal, 3330 const u64 skip, 3331 const u64 size, 3332 char *inline_data) 3333 { 3334 struct btrfs_root *root = BTRFS_I(dst)->root; 3335 const u64 aligned_end = ALIGN(new_key->offset + datal, 3336 root->sectorsize); 3337 int ret; 3338 struct btrfs_key key; 3339 3340 if (new_key->offset > 0) 3341 return -EOPNOTSUPP; 3342 3343 key.objectid = btrfs_ino(dst); 3344 key.type = BTRFS_EXTENT_DATA_KEY; 3345 key.offset = 0; 3346 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3347 if (ret < 0) { 3348 return ret; 3349 } else if (ret > 0) { 3350 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3351 ret = btrfs_next_leaf(root, path); 3352 if (ret < 0) 3353 return ret; 3354 else if (ret > 0) 3355 goto copy_inline_extent; 3356 } 3357 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3358 if (key.objectid == btrfs_ino(dst) && 3359 key.type == BTRFS_EXTENT_DATA_KEY) { 3360 ASSERT(key.offset > 0); 3361 return -EOPNOTSUPP; 3362 } 3363 } else if (i_size_read(dst) <= datal) { 3364 struct btrfs_file_extent_item *ei; 3365 u64 ext_len; 3366 3367 /* 3368 * If the file size is <= datal, make sure there are no other 3369 * extents following (can happen do to an fallocate call with 3370 * the flag FALLOC_FL_KEEP_SIZE). 3371 */ 3372 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3373 struct btrfs_file_extent_item); 3374 /* 3375 * If it's an inline extent, it can not have other extents 3376 * following it. 3377 */ 3378 if (btrfs_file_extent_type(path->nodes[0], ei) == 3379 BTRFS_FILE_EXTENT_INLINE) 3380 goto copy_inline_extent; 3381 3382 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3383 if (ext_len > aligned_end) 3384 return -EOPNOTSUPP; 3385 3386 ret = btrfs_next_item(root, path); 3387 if (ret < 0) { 3388 return ret; 3389 } else if (ret == 0) { 3390 btrfs_item_key_to_cpu(path->nodes[0], &key, 3391 path->slots[0]); 3392 if (key.objectid == btrfs_ino(dst) && 3393 key.type == BTRFS_EXTENT_DATA_KEY) 3394 return -EOPNOTSUPP; 3395 } 3396 } 3397 3398 copy_inline_extent: 3399 /* 3400 * We have no extent items, or we have an extent at offset 0 which may 3401 * or may not be inlined. All these cases are dealt the same way. 3402 */ 3403 if (i_size_read(dst) > datal) { 3404 /* 3405 * If the destination inode has an inline extent... 3406 * This would require copying the data from the source inline 3407 * extent into the beginning of the destination's inline extent. 3408 * But this is really complex, both extents can be compressed 3409 * or just one of them, which would require decompressing and 3410 * re-compressing data (which could increase the new compressed 3411 * size, not allowing the compressed data to fit anymore in an 3412 * inline extent). 3413 * So just don't support this case for now (it should be rare, 3414 * we are not really saving space when cloning inline extents). 3415 */ 3416 return -EOPNOTSUPP; 3417 } 3418 3419 btrfs_release_path(path); 3420 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3421 if (ret) 3422 return ret; 3423 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3424 if (ret) 3425 return ret; 3426 3427 if (skip) { 3428 const u32 start = btrfs_file_extent_calc_inline_size(0); 3429 3430 memmove(inline_data + start, inline_data + start + skip, datal); 3431 } 3432 3433 write_extent_buffer(path->nodes[0], inline_data, 3434 btrfs_item_ptr_offset(path->nodes[0], 3435 path->slots[0]), 3436 size); 3437 inode_add_bytes(dst, datal); 3438 3439 return 0; 3440 } 3441 3442 /** 3443 * btrfs_clone() - clone a range from inode file to another 3444 * 3445 * @src: Inode to clone from 3446 * @inode: Inode to clone to 3447 * @off: Offset within source to start clone from 3448 * @olen: Original length, passed by user, of range to clone 3449 * @olen_aligned: Block-aligned value of olen 3450 * @destoff: Offset within @inode to start clone 3451 * @no_time_update: Whether to update mtime/ctime on the target inode 3452 */ 3453 static int btrfs_clone(struct inode *src, struct inode *inode, 3454 const u64 off, const u64 olen, const u64 olen_aligned, 3455 const u64 destoff, int no_time_update) 3456 { 3457 struct btrfs_root *root = BTRFS_I(inode)->root; 3458 struct btrfs_path *path = NULL; 3459 struct extent_buffer *leaf; 3460 struct btrfs_trans_handle *trans; 3461 char *buf = NULL; 3462 struct btrfs_key key; 3463 u32 nritems; 3464 int slot; 3465 int ret; 3466 const u64 len = olen_aligned; 3467 u64 last_dest_end = destoff; 3468 3469 ret = -ENOMEM; 3470 buf = vmalloc(root->nodesize); 3471 if (!buf) 3472 return ret; 3473 3474 path = btrfs_alloc_path(); 3475 if (!path) { 3476 vfree(buf); 3477 return ret; 3478 } 3479 3480 path->reada = READA_FORWARD; 3481 /* clone data */ 3482 key.objectid = btrfs_ino(src); 3483 key.type = BTRFS_EXTENT_DATA_KEY; 3484 key.offset = off; 3485 3486 while (1) { 3487 u64 next_key_min_offset = key.offset + 1; 3488 3489 /* 3490 * note the key will change type as we walk through the 3491 * tree. 3492 */ 3493 path->leave_spinning = 1; 3494 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3495 0, 0); 3496 if (ret < 0) 3497 goto out; 3498 /* 3499 * First search, if no extent item that starts at offset off was 3500 * found but the previous item is an extent item, it's possible 3501 * it might overlap our target range, therefore process it. 3502 */ 3503 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3504 btrfs_item_key_to_cpu(path->nodes[0], &key, 3505 path->slots[0] - 1); 3506 if (key.type == BTRFS_EXTENT_DATA_KEY) 3507 path->slots[0]--; 3508 } 3509 3510 nritems = btrfs_header_nritems(path->nodes[0]); 3511 process_slot: 3512 if (path->slots[0] >= nritems) { 3513 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3514 if (ret < 0) 3515 goto out; 3516 if (ret > 0) 3517 break; 3518 nritems = btrfs_header_nritems(path->nodes[0]); 3519 } 3520 leaf = path->nodes[0]; 3521 slot = path->slots[0]; 3522 3523 btrfs_item_key_to_cpu(leaf, &key, slot); 3524 if (key.type > BTRFS_EXTENT_DATA_KEY || 3525 key.objectid != btrfs_ino(src)) 3526 break; 3527 3528 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3529 struct btrfs_file_extent_item *extent; 3530 int type; 3531 u32 size; 3532 struct btrfs_key new_key; 3533 u64 disko = 0, diskl = 0; 3534 u64 datao = 0, datal = 0; 3535 u8 comp; 3536 u64 drop_start; 3537 3538 extent = btrfs_item_ptr(leaf, slot, 3539 struct btrfs_file_extent_item); 3540 comp = btrfs_file_extent_compression(leaf, extent); 3541 type = btrfs_file_extent_type(leaf, extent); 3542 if (type == BTRFS_FILE_EXTENT_REG || 3543 type == BTRFS_FILE_EXTENT_PREALLOC) { 3544 disko = btrfs_file_extent_disk_bytenr(leaf, 3545 extent); 3546 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3547 extent); 3548 datao = btrfs_file_extent_offset(leaf, extent); 3549 datal = btrfs_file_extent_num_bytes(leaf, 3550 extent); 3551 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3552 /* take upper bound, may be compressed */ 3553 datal = btrfs_file_extent_ram_bytes(leaf, 3554 extent); 3555 } 3556 3557 /* 3558 * The first search might have left us at an extent 3559 * item that ends before our target range's start, can 3560 * happen if we have holes and NO_HOLES feature enabled. 3561 */ 3562 if (key.offset + datal <= off) { 3563 path->slots[0]++; 3564 goto process_slot; 3565 } else if (key.offset >= off + len) { 3566 break; 3567 } 3568 next_key_min_offset = key.offset + datal; 3569 size = btrfs_item_size_nr(leaf, slot); 3570 read_extent_buffer(leaf, buf, 3571 btrfs_item_ptr_offset(leaf, slot), 3572 size); 3573 3574 btrfs_release_path(path); 3575 path->leave_spinning = 0; 3576 3577 memcpy(&new_key, &key, sizeof(new_key)); 3578 new_key.objectid = btrfs_ino(inode); 3579 if (off <= key.offset) 3580 new_key.offset = key.offset + destoff - off; 3581 else 3582 new_key.offset = destoff; 3583 3584 /* 3585 * Deal with a hole that doesn't have an extent item 3586 * that represents it (NO_HOLES feature enabled). 3587 * This hole is either in the middle of the cloning 3588 * range or at the beginning (fully overlaps it or 3589 * partially overlaps it). 3590 */ 3591 if (new_key.offset != last_dest_end) 3592 drop_start = last_dest_end; 3593 else 3594 drop_start = new_key.offset; 3595 3596 /* 3597 * 1 - adjusting old extent (we may have to split it) 3598 * 1 - add new extent 3599 * 1 - inode update 3600 */ 3601 trans = btrfs_start_transaction(root, 3); 3602 if (IS_ERR(trans)) { 3603 ret = PTR_ERR(trans); 3604 goto out; 3605 } 3606 3607 if (type == BTRFS_FILE_EXTENT_REG || 3608 type == BTRFS_FILE_EXTENT_PREALLOC) { 3609 /* 3610 * a | --- range to clone ---| b 3611 * | ------------- extent ------------- | 3612 */ 3613 3614 /* subtract range b */ 3615 if (key.offset + datal > off + len) 3616 datal = off + len - key.offset; 3617 3618 /* subtract range a */ 3619 if (off > key.offset) { 3620 datao += off - key.offset; 3621 datal -= off - key.offset; 3622 } 3623 3624 ret = btrfs_drop_extents(trans, root, inode, 3625 drop_start, 3626 new_key.offset + datal, 3627 1); 3628 if (ret) { 3629 if (ret != -EOPNOTSUPP) 3630 btrfs_abort_transaction(trans, 3631 root, ret); 3632 btrfs_end_transaction(trans, root); 3633 goto out; 3634 } 3635 3636 ret = btrfs_insert_empty_item(trans, root, path, 3637 &new_key, size); 3638 if (ret) { 3639 btrfs_abort_transaction(trans, root, 3640 ret); 3641 btrfs_end_transaction(trans, root); 3642 goto out; 3643 } 3644 3645 leaf = path->nodes[0]; 3646 slot = path->slots[0]; 3647 write_extent_buffer(leaf, buf, 3648 btrfs_item_ptr_offset(leaf, slot), 3649 size); 3650 3651 extent = btrfs_item_ptr(leaf, slot, 3652 struct btrfs_file_extent_item); 3653 3654 /* disko == 0 means it's a hole */ 3655 if (!disko) 3656 datao = 0; 3657 3658 btrfs_set_file_extent_offset(leaf, extent, 3659 datao); 3660 btrfs_set_file_extent_num_bytes(leaf, extent, 3661 datal); 3662 3663 if (disko) { 3664 inode_add_bytes(inode, datal); 3665 ret = btrfs_inc_extent_ref(trans, root, 3666 disko, diskl, 0, 3667 root->root_key.objectid, 3668 btrfs_ino(inode), 3669 new_key.offset - datao); 3670 if (ret) { 3671 btrfs_abort_transaction(trans, 3672 root, 3673 ret); 3674 btrfs_end_transaction(trans, 3675 root); 3676 goto out; 3677 3678 } 3679 } 3680 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3681 u64 skip = 0; 3682 u64 trim = 0; 3683 3684 if (off > key.offset) { 3685 skip = off - key.offset; 3686 new_key.offset += skip; 3687 } 3688 3689 if (key.offset + datal > off + len) 3690 trim = key.offset + datal - (off + len); 3691 3692 if (comp && (skip || trim)) { 3693 ret = -EINVAL; 3694 btrfs_end_transaction(trans, root); 3695 goto out; 3696 } 3697 size -= skip + trim; 3698 datal -= skip + trim; 3699 3700 ret = clone_copy_inline_extent(src, inode, 3701 trans, path, 3702 &new_key, 3703 drop_start, 3704 datal, 3705 skip, size, buf); 3706 if (ret) { 3707 if (ret != -EOPNOTSUPP) 3708 btrfs_abort_transaction(trans, 3709 root, 3710 ret); 3711 btrfs_end_transaction(trans, root); 3712 goto out; 3713 } 3714 leaf = path->nodes[0]; 3715 slot = path->slots[0]; 3716 } 3717 3718 /* If we have an implicit hole (NO_HOLES feature). */ 3719 if (drop_start < new_key.offset) 3720 clone_update_extent_map(inode, trans, 3721 NULL, drop_start, 3722 new_key.offset - drop_start); 3723 3724 clone_update_extent_map(inode, trans, path, 0, 0); 3725 3726 btrfs_mark_buffer_dirty(leaf); 3727 btrfs_release_path(path); 3728 3729 last_dest_end = ALIGN(new_key.offset + datal, 3730 root->sectorsize); 3731 ret = clone_finish_inode_update(trans, inode, 3732 last_dest_end, 3733 destoff, olen, 3734 no_time_update); 3735 if (ret) 3736 goto out; 3737 if (new_key.offset + datal >= destoff + len) 3738 break; 3739 } 3740 btrfs_release_path(path); 3741 key.offset = next_key_min_offset; 3742 } 3743 ret = 0; 3744 3745 if (last_dest_end < destoff + len) { 3746 /* 3747 * We have an implicit hole (NO_HOLES feature is enabled) that 3748 * fully or partially overlaps our cloning range at its end. 3749 */ 3750 btrfs_release_path(path); 3751 3752 /* 3753 * 1 - remove extent(s) 3754 * 1 - inode update 3755 */ 3756 trans = btrfs_start_transaction(root, 2); 3757 if (IS_ERR(trans)) { 3758 ret = PTR_ERR(trans); 3759 goto out; 3760 } 3761 ret = btrfs_drop_extents(trans, root, inode, 3762 last_dest_end, destoff + len, 1); 3763 if (ret) { 3764 if (ret != -EOPNOTSUPP) 3765 btrfs_abort_transaction(trans, root, ret); 3766 btrfs_end_transaction(trans, root); 3767 goto out; 3768 } 3769 clone_update_extent_map(inode, trans, NULL, last_dest_end, 3770 destoff + len - last_dest_end); 3771 ret = clone_finish_inode_update(trans, inode, destoff + len, 3772 destoff, olen, no_time_update); 3773 } 3774 3775 out: 3776 btrfs_free_path(path); 3777 vfree(buf); 3778 return ret; 3779 } 3780 3781 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3782 u64 off, u64 olen, u64 destoff) 3783 { 3784 struct inode *inode = file_inode(file); 3785 struct inode *src = file_inode(file_src); 3786 struct btrfs_root *root = BTRFS_I(inode)->root; 3787 int ret; 3788 u64 len = olen; 3789 u64 bs = root->fs_info->sb->s_blocksize; 3790 int same_inode = src == inode; 3791 3792 /* 3793 * TODO: 3794 * - split compressed inline extents. annoying: we need to 3795 * decompress into destination's address_space (the file offset 3796 * may change, so source mapping won't do), then recompress (or 3797 * otherwise reinsert) a subrange. 3798 * 3799 * - split destination inode's inline extents. The inline extents can 3800 * be either compressed or non-compressed. 3801 */ 3802 3803 if (btrfs_root_readonly(root)) 3804 return -EROFS; 3805 3806 if (file_src->f_path.mnt != file->f_path.mnt || 3807 src->i_sb != inode->i_sb) 3808 return -EXDEV; 3809 3810 /* don't make the dst file partly checksummed */ 3811 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3812 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3813 return -EINVAL; 3814 3815 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3816 return -EISDIR; 3817 3818 if (!same_inode) { 3819 btrfs_double_inode_lock(src, inode); 3820 } else { 3821 inode_lock(src); 3822 } 3823 3824 /* determine range to clone */ 3825 ret = -EINVAL; 3826 if (off + len > src->i_size || off + len < off) 3827 goto out_unlock; 3828 if (len == 0) 3829 olen = len = src->i_size - off; 3830 /* if we extend to eof, continue to block boundary */ 3831 if (off + len == src->i_size) 3832 len = ALIGN(src->i_size, bs) - off; 3833 3834 if (len == 0) { 3835 ret = 0; 3836 goto out_unlock; 3837 } 3838 3839 /* verify the end result is block aligned */ 3840 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3841 !IS_ALIGNED(destoff, bs)) 3842 goto out_unlock; 3843 3844 /* verify if ranges are overlapped within the same file */ 3845 if (same_inode) { 3846 if (destoff + len > off && destoff < off + len) 3847 goto out_unlock; 3848 } 3849 3850 if (destoff > inode->i_size) { 3851 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3852 if (ret) 3853 goto out_unlock; 3854 } 3855 3856 /* 3857 * Lock the target range too. Right after we replace the file extent 3858 * items in the fs tree (which now point to the cloned data), we might 3859 * have a worker replace them with extent items relative to a write 3860 * operation that was issued before this clone operation (i.e. confront 3861 * with inode.c:btrfs_finish_ordered_io). 3862 */ 3863 if (same_inode) { 3864 u64 lock_start = min_t(u64, off, destoff); 3865 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3866 3867 ret = lock_extent_range(src, lock_start, lock_len, true); 3868 } else { 3869 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 3870 true); 3871 } 3872 ASSERT(ret == 0); 3873 if (WARN_ON(ret)) { 3874 /* ranges in the io trees already unlocked */ 3875 goto out_unlock; 3876 } 3877 3878 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3879 3880 if (same_inode) { 3881 u64 lock_start = min_t(u64, off, destoff); 3882 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3883 3884 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3885 } else { 3886 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3887 } 3888 /* 3889 * Truncate page cache pages so that future reads will see the cloned 3890 * data immediately and not the previous data. 3891 */ 3892 truncate_inode_pages_range(&inode->i_data, destoff, 3893 PAGE_CACHE_ALIGN(destoff + len) - 1); 3894 out_unlock: 3895 if (!same_inode) 3896 btrfs_double_inode_unlock(src, inode); 3897 else 3898 inode_unlock(src); 3899 return ret; 3900 } 3901 3902 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in, 3903 struct file *file_out, loff_t pos_out, 3904 size_t len, unsigned int flags) 3905 { 3906 ssize_t ret; 3907 3908 ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out); 3909 if (ret == 0) 3910 ret = len; 3911 return ret; 3912 } 3913 3914 int btrfs_clone_file_range(struct file *src_file, loff_t off, 3915 struct file *dst_file, loff_t destoff, u64 len) 3916 { 3917 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 3918 } 3919 3920 /* 3921 * there are many ways the trans_start and trans_end ioctls can lead 3922 * to deadlocks. They should only be used by applications that 3923 * basically own the machine, and have a very in depth understanding 3924 * of all the possible deadlocks and enospc problems. 3925 */ 3926 static long btrfs_ioctl_trans_start(struct file *file) 3927 { 3928 struct inode *inode = file_inode(file); 3929 struct btrfs_root *root = BTRFS_I(inode)->root; 3930 struct btrfs_trans_handle *trans; 3931 int ret; 3932 3933 ret = -EPERM; 3934 if (!capable(CAP_SYS_ADMIN)) 3935 goto out; 3936 3937 ret = -EINPROGRESS; 3938 if (file->private_data) 3939 goto out; 3940 3941 ret = -EROFS; 3942 if (btrfs_root_readonly(root)) 3943 goto out; 3944 3945 ret = mnt_want_write_file(file); 3946 if (ret) 3947 goto out; 3948 3949 atomic_inc(&root->fs_info->open_ioctl_trans); 3950 3951 ret = -ENOMEM; 3952 trans = btrfs_start_ioctl_transaction(root); 3953 if (IS_ERR(trans)) 3954 goto out_drop; 3955 3956 file->private_data = trans; 3957 return 0; 3958 3959 out_drop: 3960 atomic_dec(&root->fs_info->open_ioctl_trans); 3961 mnt_drop_write_file(file); 3962 out: 3963 return ret; 3964 } 3965 3966 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3967 { 3968 struct inode *inode = file_inode(file); 3969 struct btrfs_root *root = BTRFS_I(inode)->root; 3970 struct btrfs_root *new_root; 3971 struct btrfs_dir_item *di; 3972 struct btrfs_trans_handle *trans; 3973 struct btrfs_path *path; 3974 struct btrfs_key location; 3975 struct btrfs_disk_key disk_key; 3976 u64 objectid = 0; 3977 u64 dir_id; 3978 int ret; 3979 3980 if (!capable(CAP_SYS_ADMIN)) 3981 return -EPERM; 3982 3983 ret = mnt_want_write_file(file); 3984 if (ret) 3985 return ret; 3986 3987 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3988 ret = -EFAULT; 3989 goto out; 3990 } 3991 3992 if (!objectid) 3993 objectid = BTRFS_FS_TREE_OBJECTID; 3994 3995 location.objectid = objectid; 3996 location.type = BTRFS_ROOT_ITEM_KEY; 3997 location.offset = (u64)-1; 3998 3999 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 4000 if (IS_ERR(new_root)) { 4001 ret = PTR_ERR(new_root); 4002 goto out; 4003 } 4004 4005 path = btrfs_alloc_path(); 4006 if (!path) { 4007 ret = -ENOMEM; 4008 goto out; 4009 } 4010 path->leave_spinning = 1; 4011 4012 trans = btrfs_start_transaction(root, 1); 4013 if (IS_ERR(trans)) { 4014 btrfs_free_path(path); 4015 ret = PTR_ERR(trans); 4016 goto out; 4017 } 4018 4019 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 4020 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 4021 dir_id, "default", 7, 1); 4022 if (IS_ERR_OR_NULL(di)) { 4023 btrfs_free_path(path); 4024 btrfs_end_transaction(trans, root); 4025 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir" 4026 "item, this isn't going to work"); 4027 ret = -ENOENT; 4028 goto out; 4029 } 4030 4031 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4032 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4033 btrfs_mark_buffer_dirty(path->nodes[0]); 4034 btrfs_free_path(path); 4035 4036 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 4037 btrfs_end_transaction(trans, root); 4038 out: 4039 mnt_drop_write_file(file); 4040 return ret; 4041 } 4042 4043 void btrfs_get_block_group_info(struct list_head *groups_list, 4044 struct btrfs_ioctl_space_info *space) 4045 { 4046 struct btrfs_block_group_cache *block_group; 4047 4048 space->total_bytes = 0; 4049 space->used_bytes = 0; 4050 space->flags = 0; 4051 list_for_each_entry(block_group, groups_list, list) { 4052 space->flags = block_group->flags; 4053 space->total_bytes += block_group->key.offset; 4054 space->used_bytes += 4055 btrfs_block_group_used(&block_group->item); 4056 } 4057 } 4058 4059 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 4060 { 4061 struct btrfs_ioctl_space_args space_args; 4062 struct btrfs_ioctl_space_info space; 4063 struct btrfs_ioctl_space_info *dest; 4064 struct btrfs_ioctl_space_info *dest_orig; 4065 struct btrfs_ioctl_space_info __user *user_dest; 4066 struct btrfs_space_info *info; 4067 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4068 BTRFS_BLOCK_GROUP_SYSTEM, 4069 BTRFS_BLOCK_GROUP_METADATA, 4070 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4071 int num_types = 4; 4072 int alloc_size; 4073 int ret = 0; 4074 u64 slot_count = 0; 4075 int i, c; 4076 4077 if (copy_from_user(&space_args, 4078 (struct btrfs_ioctl_space_args __user *)arg, 4079 sizeof(space_args))) 4080 return -EFAULT; 4081 4082 for (i = 0; i < num_types; i++) { 4083 struct btrfs_space_info *tmp; 4084 4085 info = NULL; 4086 rcu_read_lock(); 4087 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4088 list) { 4089 if (tmp->flags == types[i]) { 4090 info = tmp; 4091 break; 4092 } 4093 } 4094 rcu_read_unlock(); 4095 4096 if (!info) 4097 continue; 4098 4099 down_read(&info->groups_sem); 4100 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4101 if (!list_empty(&info->block_groups[c])) 4102 slot_count++; 4103 } 4104 up_read(&info->groups_sem); 4105 } 4106 4107 /* 4108 * Global block reserve, exported as a space_info 4109 */ 4110 slot_count++; 4111 4112 /* space_slots == 0 means they are asking for a count */ 4113 if (space_args.space_slots == 0) { 4114 space_args.total_spaces = slot_count; 4115 goto out; 4116 } 4117 4118 slot_count = min_t(u64, space_args.space_slots, slot_count); 4119 4120 alloc_size = sizeof(*dest) * slot_count; 4121 4122 /* we generally have at most 6 or so space infos, one for each raid 4123 * level. So, a whole page should be more than enough for everyone 4124 */ 4125 if (alloc_size > PAGE_CACHE_SIZE) 4126 return -ENOMEM; 4127 4128 space_args.total_spaces = 0; 4129 dest = kmalloc(alloc_size, GFP_KERNEL); 4130 if (!dest) 4131 return -ENOMEM; 4132 dest_orig = dest; 4133 4134 /* now we have a buffer to copy into */ 4135 for (i = 0; i < num_types; i++) { 4136 struct btrfs_space_info *tmp; 4137 4138 if (!slot_count) 4139 break; 4140 4141 info = NULL; 4142 rcu_read_lock(); 4143 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4144 list) { 4145 if (tmp->flags == types[i]) { 4146 info = tmp; 4147 break; 4148 } 4149 } 4150 rcu_read_unlock(); 4151 4152 if (!info) 4153 continue; 4154 down_read(&info->groups_sem); 4155 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4156 if (!list_empty(&info->block_groups[c])) { 4157 btrfs_get_block_group_info( 4158 &info->block_groups[c], &space); 4159 memcpy(dest, &space, sizeof(space)); 4160 dest++; 4161 space_args.total_spaces++; 4162 slot_count--; 4163 } 4164 if (!slot_count) 4165 break; 4166 } 4167 up_read(&info->groups_sem); 4168 } 4169 4170 /* 4171 * Add global block reserve 4172 */ 4173 if (slot_count) { 4174 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv; 4175 4176 spin_lock(&block_rsv->lock); 4177 space.total_bytes = block_rsv->size; 4178 space.used_bytes = block_rsv->size - block_rsv->reserved; 4179 spin_unlock(&block_rsv->lock); 4180 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4181 memcpy(dest, &space, sizeof(space)); 4182 space_args.total_spaces++; 4183 } 4184 4185 user_dest = (struct btrfs_ioctl_space_info __user *) 4186 (arg + sizeof(struct btrfs_ioctl_space_args)); 4187 4188 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4189 ret = -EFAULT; 4190 4191 kfree(dest_orig); 4192 out: 4193 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4194 ret = -EFAULT; 4195 4196 return ret; 4197 } 4198 4199 /* 4200 * there are many ways the trans_start and trans_end ioctls can lead 4201 * to deadlocks. They should only be used by applications that 4202 * basically own the machine, and have a very in depth understanding 4203 * of all the possible deadlocks and enospc problems. 4204 */ 4205 long btrfs_ioctl_trans_end(struct file *file) 4206 { 4207 struct inode *inode = file_inode(file); 4208 struct btrfs_root *root = BTRFS_I(inode)->root; 4209 struct btrfs_trans_handle *trans; 4210 4211 trans = file->private_data; 4212 if (!trans) 4213 return -EINVAL; 4214 file->private_data = NULL; 4215 4216 btrfs_end_transaction(trans, root); 4217 4218 atomic_dec(&root->fs_info->open_ioctl_trans); 4219 4220 mnt_drop_write_file(file); 4221 return 0; 4222 } 4223 4224 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4225 void __user *argp) 4226 { 4227 struct btrfs_trans_handle *trans; 4228 u64 transid; 4229 int ret; 4230 4231 trans = btrfs_attach_transaction_barrier(root); 4232 if (IS_ERR(trans)) { 4233 if (PTR_ERR(trans) != -ENOENT) 4234 return PTR_ERR(trans); 4235 4236 /* No running transaction, don't bother */ 4237 transid = root->fs_info->last_trans_committed; 4238 goto out; 4239 } 4240 transid = trans->transid; 4241 ret = btrfs_commit_transaction_async(trans, root, 0); 4242 if (ret) { 4243 btrfs_end_transaction(trans, root); 4244 return ret; 4245 } 4246 out: 4247 if (argp) 4248 if (copy_to_user(argp, &transid, sizeof(transid))) 4249 return -EFAULT; 4250 return 0; 4251 } 4252 4253 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 4254 void __user *argp) 4255 { 4256 u64 transid; 4257 4258 if (argp) { 4259 if (copy_from_user(&transid, argp, sizeof(transid))) 4260 return -EFAULT; 4261 } else { 4262 transid = 0; /* current trans */ 4263 } 4264 return btrfs_wait_for_commit(root, transid); 4265 } 4266 4267 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4268 { 4269 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4270 struct btrfs_ioctl_scrub_args *sa; 4271 int ret; 4272 4273 if (!capable(CAP_SYS_ADMIN)) 4274 return -EPERM; 4275 4276 sa = memdup_user(arg, sizeof(*sa)); 4277 if (IS_ERR(sa)) 4278 return PTR_ERR(sa); 4279 4280 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4281 ret = mnt_want_write_file(file); 4282 if (ret) 4283 goto out; 4284 } 4285 4286 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 4287 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4288 0); 4289 4290 if (copy_to_user(arg, sa, sizeof(*sa))) 4291 ret = -EFAULT; 4292 4293 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4294 mnt_drop_write_file(file); 4295 out: 4296 kfree(sa); 4297 return ret; 4298 } 4299 4300 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 4301 { 4302 if (!capable(CAP_SYS_ADMIN)) 4303 return -EPERM; 4304 4305 return btrfs_scrub_cancel(root->fs_info); 4306 } 4307 4308 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 4309 void __user *arg) 4310 { 4311 struct btrfs_ioctl_scrub_args *sa; 4312 int ret; 4313 4314 if (!capable(CAP_SYS_ADMIN)) 4315 return -EPERM; 4316 4317 sa = memdup_user(arg, sizeof(*sa)); 4318 if (IS_ERR(sa)) 4319 return PTR_ERR(sa); 4320 4321 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 4322 4323 if (copy_to_user(arg, sa, sizeof(*sa))) 4324 ret = -EFAULT; 4325 4326 kfree(sa); 4327 return ret; 4328 } 4329 4330 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 4331 void __user *arg) 4332 { 4333 struct btrfs_ioctl_get_dev_stats *sa; 4334 int ret; 4335 4336 sa = memdup_user(arg, sizeof(*sa)); 4337 if (IS_ERR(sa)) 4338 return PTR_ERR(sa); 4339 4340 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4341 kfree(sa); 4342 return -EPERM; 4343 } 4344 4345 ret = btrfs_get_dev_stats(root, sa); 4346 4347 if (copy_to_user(arg, sa, sizeof(*sa))) 4348 ret = -EFAULT; 4349 4350 kfree(sa); 4351 return ret; 4352 } 4353 4354 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 4355 { 4356 struct btrfs_ioctl_dev_replace_args *p; 4357 int ret; 4358 4359 if (!capable(CAP_SYS_ADMIN)) 4360 return -EPERM; 4361 4362 p = memdup_user(arg, sizeof(*p)); 4363 if (IS_ERR(p)) 4364 return PTR_ERR(p); 4365 4366 switch (p->cmd) { 4367 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4368 if (root->fs_info->sb->s_flags & MS_RDONLY) { 4369 ret = -EROFS; 4370 goto out; 4371 } 4372 if (atomic_xchg( 4373 &root->fs_info->mutually_exclusive_operation_running, 4374 1)) { 4375 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4376 } else { 4377 ret = btrfs_dev_replace_start(root, p); 4378 atomic_set( 4379 &root->fs_info->mutually_exclusive_operation_running, 4380 0); 4381 } 4382 break; 4383 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4384 btrfs_dev_replace_status(root->fs_info, p); 4385 ret = 0; 4386 break; 4387 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4388 ret = btrfs_dev_replace_cancel(root->fs_info, p); 4389 break; 4390 default: 4391 ret = -EINVAL; 4392 break; 4393 } 4394 4395 if (copy_to_user(arg, p, sizeof(*p))) 4396 ret = -EFAULT; 4397 out: 4398 kfree(p); 4399 return ret; 4400 } 4401 4402 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4403 { 4404 int ret = 0; 4405 int i; 4406 u64 rel_ptr; 4407 int size; 4408 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4409 struct inode_fs_paths *ipath = NULL; 4410 struct btrfs_path *path; 4411 4412 if (!capable(CAP_DAC_READ_SEARCH)) 4413 return -EPERM; 4414 4415 path = btrfs_alloc_path(); 4416 if (!path) { 4417 ret = -ENOMEM; 4418 goto out; 4419 } 4420 4421 ipa = memdup_user(arg, sizeof(*ipa)); 4422 if (IS_ERR(ipa)) { 4423 ret = PTR_ERR(ipa); 4424 ipa = NULL; 4425 goto out; 4426 } 4427 4428 size = min_t(u32, ipa->size, 4096); 4429 ipath = init_ipath(size, root, path); 4430 if (IS_ERR(ipath)) { 4431 ret = PTR_ERR(ipath); 4432 ipath = NULL; 4433 goto out; 4434 } 4435 4436 ret = paths_from_inode(ipa->inum, ipath); 4437 if (ret < 0) 4438 goto out; 4439 4440 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4441 rel_ptr = ipath->fspath->val[i] - 4442 (u64)(unsigned long)ipath->fspath->val; 4443 ipath->fspath->val[i] = rel_ptr; 4444 } 4445 4446 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4447 (void *)(unsigned long)ipath->fspath, size); 4448 if (ret) { 4449 ret = -EFAULT; 4450 goto out; 4451 } 4452 4453 out: 4454 btrfs_free_path(path); 4455 free_ipath(ipath); 4456 kfree(ipa); 4457 4458 return ret; 4459 } 4460 4461 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4462 { 4463 struct btrfs_data_container *inodes = ctx; 4464 const size_t c = 3 * sizeof(u64); 4465 4466 if (inodes->bytes_left >= c) { 4467 inodes->bytes_left -= c; 4468 inodes->val[inodes->elem_cnt] = inum; 4469 inodes->val[inodes->elem_cnt + 1] = offset; 4470 inodes->val[inodes->elem_cnt + 2] = root; 4471 inodes->elem_cnt += 3; 4472 } else { 4473 inodes->bytes_missing += c - inodes->bytes_left; 4474 inodes->bytes_left = 0; 4475 inodes->elem_missed += 3; 4476 } 4477 4478 return 0; 4479 } 4480 4481 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 4482 void __user *arg) 4483 { 4484 int ret = 0; 4485 int size; 4486 struct btrfs_ioctl_logical_ino_args *loi; 4487 struct btrfs_data_container *inodes = NULL; 4488 struct btrfs_path *path = NULL; 4489 4490 if (!capable(CAP_SYS_ADMIN)) 4491 return -EPERM; 4492 4493 loi = memdup_user(arg, sizeof(*loi)); 4494 if (IS_ERR(loi)) { 4495 ret = PTR_ERR(loi); 4496 loi = NULL; 4497 goto out; 4498 } 4499 4500 path = btrfs_alloc_path(); 4501 if (!path) { 4502 ret = -ENOMEM; 4503 goto out; 4504 } 4505 4506 size = min_t(u32, loi->size, SZ_64K); 4507 inodes = init_data_container(size); 4508 if (IS_ERR(inodes)) { 4509 ret = PTR_ERR(inodes); 4510 inodes = NULL; 4511 goto out; 4512 } 4513 4514 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 4515 build_ino_list, inodes); 4516 if (ret == -EINVAL) 4517 ret = -ENOENT; 4518 if (ret < 0) 4519 goto out; 4520 4521 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4522 (void *)(unsigned long)inodes, size); 4523 if (ret) 4524 ret = -EFAULT; 4525 4526 out: 4527 btrfs_free_path(path); 4528 vfree(inodes); 4529 kfree(loi); 4530 4531 return ret; 4532 } 4533 4534 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4535 struct btrfs_ioctl_balance_args *bargs) 4536 { 4537 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4538 4539 bargs->flags = bctl->flags; 4540 4541 if (atomic_read(&fs_info->balance_running)) 4542 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4543 if (atomic_read(&fs_info->balance_pause_req)) 4544 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4545 if (atomic_read(&fs_info->balance_cancel_req)) 4546 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4547 4548 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4549 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4550 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4551 4552 if (lock) { 4553 spin_lock(&fs_info->balance_lock); 4554 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4555 spin_unlock(&fs_info->balance_lock); 4556 } else { 4557 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4558 } 4559 } 4560 4561 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4562 { 4563 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4564 struct btrfs_fs_info *fs_info = root->fs_info; 4565 struct btrfs_ioctl_balance_args *bargs; 4566 struct btrfs_balance_control *bctl; 4567 bool need_unlock; /* for mut. excl. ops lock */ 4568 int ret; 4569 4570 if (!capable(CAP_SYS_ADMIN)) 4571 return -EPERM; 4572 4573 ret = mnt_want_write_file(file); 4574 if (ret) 4575 return ret; 4576 4577 again: 4578 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4579 mutex_lock(&fs_info->volume_mutex); 4580 mutex_lock(&fs_info->balance_mutex); 4581 need_unlock = true; 4582 goto locked; 4583 } 4584 4585 /* 4586 * mut. excl. ops lock is locked. Three possibilites: 4587 * (1) some other op is running 4588 * (2) balance is running 4589 * (3) balance is paused -- special case (think resume) 4590 */ 4591 mutex_lock(&fs_info->balance_mutex); 4592 if (fs_info->balance_ctl) { 4593 /* this is either (2) or (3) */ 4594 if (!atomic_read(&fs_info->balance_running)) { 4595 mutex_unlock(&fs_info->balance_mutex); 4596 if (!mutex_trylock(&fs_info->volume_mutex)) 4597 goto again; 4598 mutex_lock(&fs_info->balance_mutex); 4599 4600 if (fs_info->balance_ctl && 4601 !atomic_read(&fs_info->balance_running)) { 4602 /* this is (3) */ 4603 need_unlock = false; 4604 goto locked; 4605 } 4606 4607 mutex_unlock(&fs_info->balance_mutex); 4608 mutex_unlock(&fs_info->volume_mutex); 4609 goto again; 4610 } else { 4611 /* this is (2) */ 4612 mutex_unlock(&fs_info->balance_mutex); 4613 ret = -EINPROGRESS; 4614 goto out; 4615 } 4616 } else { 4617 /* this is (1) */ 4618 mutex_unlock(&fs_info->balance_mutex); 4619 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4620 goto out; 4621 } 4622 4623 locked: 4624 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4625 4626 if (arg) { 4627 bargs = memdup_user(arg, sizeof(*bargs)); 4628 if (IS_ERR(bargs)) { 4629 ret = PTR_ERR(bargs); 4630 goto out_unlock; 4631 } 4632 4633 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4634 if (!fs_info->balance_ctl) { 4635 ret = -ENOTCONN; 4636 goto out_bargs; 4637 } 4638 4639 bctl = fs_info->balance_ctl; 4640 spin_lock(&fs_info->balance_lock); 4641 bctl->flags |= BTRFS_BALANCE_RESUME; 4642 spin_unlock(&fs_info->balance_lock); 4643 4644 goto do_balance; 4645 } 4646 } else { 4647 bargs = NULL; 4648 } 4649 4650 if (fs_info->balance_ctl) { 4651 ret = -EINPROGRESS; 4652 goto out_bargs; 4653 } 4654 4655 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4656 if (!bctl) { 4657 ret = -ENOMEM; 4658 goto out_bargs; 4659 } 4660 4661 bctl->fs_info = fs_info; 4662 if (arg) { 4663 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4664 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4665 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4666 4667 bctl->flags = bargs->flags; 4668 } else { 4669 /* balance everything - no filters */ 4670 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4671 } 4672 4673 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4674 ret = -EINVAL; 4675 goto out_bctl; 4676 } 4677 4678 do_balance: 4679 /* 4680 * Ownership of bctl and mutually_exclusive_operation_running 4681 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4682 * or, if restriper was paused all the way until unmount, in 4683 * free_fs_info. mutually_exclusive_operation_running is 4684 * cleared in __cancel_balance. 4685 */ 4686 need_unlock = false; 4687 4688 ret = btrfs_balance(bctl, bargs); 4689 bctl = NULL; 4690 4691 if (arg) { 4692 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4693 ret = -EFAULT; 4694 } 4695 4696 out_bctl: 4697 kfree(bctl); 4698 out_bargs: 4699 kfree(bargs); 4700 out_unlock: 4701 mutex_unlock(&fs_info->balance_mutex); 4702 mutex_unlock(&fs_info->volume_mutex); 4703 if (need_unlock) 4704 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4705 out: 4706 mnt_drop_write_file(file); 4707 return ret; 4708 } 4709 4710 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4711 { 4712 if (!capable(CAP_SYS_ADMIN)) 4713 return -EPERM; 4714 4715 switch (cmd) { 4716 case BTRFS_BALANCE_CTL_PAUSE: 4717 return btrfs_pause_balance(root->fs_info); 4718 case BTRFS_BALANCE_CTL_CANCEL: 4719 return btrfs_cancel_balance(root->fs_info); 4720 } 4721 4722 return -EINVAL; 4723 } 4724 4725 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4726 void __user *arg) 4727 { 4728 struct btrfs_fs_info *fs_info = root->fs_info; 4729 struct btrfs_ioctl_balance_args *bargs; 4730 int ret = 0; 4731 4732 if (!capable(CAP_SYS_ADMIN)) 4733 return -EPERM; 4734 4735 mutex_lock(&fs_info->balance_mutex); 4736 if (!fs_info->balance_ctl) { 4737 ret = -ENOTCONN; 4738 goto out; 4739 } 4740 4741 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4742 if (!bargs) { 4743 ret = -ENOMEM; 4744 goto out; 4745 } 4746 4747 update_ioctl_balance_args(fs_info, 1, bargs); 4748 4749 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4750 ret = -EFAULT; 4751 4752 kfree(bargs); 4753 out: 4754 mutex_unlock(&fs_info->balance_mutex); 4755 return ret; 4756 } 4757 4758 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4759 { 4760 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4761 struct btrfs_ioctl_quota_ctl_args *sa; 4762 struct btrfs_trans_handle *trans = NULL; 4763 int ret; 4764 int err; 4765 4766 if (!capable(CAP_SYS_ADMIN)) 4767 return -EPERM; 4768 4769 ret = mnt_want_write_file(file); 4770 if (ret) 4771 return ret; 4772 4773 sa = memdup_user(arg, sizeof(*sa)); 4774 if (IS_ERR(sa)) { 4775 ret = PTR_ERR(sa); 4776 goto drop_write; 4777 } 4778 4779 down_write(&root->fs_info->subvol_sem); 4780 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4781 if (IS_ERR(trans)) { 4782 ret = PTR_ERR(trans); 4783 goto out; 4784 } 4785 4786 switch (sa->cmd) { 4787 case BTRFS_QUOTA_CTL_ENABLE: 4788 ret = btrfs_quota_enable(trans, root->fs_info); 4789 break; 4790 case BTRFS_QUOTA_CTL_DISABLE: 4791 ret = btrfs_quota_disable(trans, root->fs_info); 4792 break; 4793 default: 4794 ret = -EINVAL; 4795 break; 4796 } 4797 4798 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4799 if (err && !ret) 4800 ret = err; 4801 out: 4802 kfree(sa); 4803 up_write(&root->fs_info->subvol_sem); 4804 drop_write: 4805 mnt_drop_write_file(file); 4806 return ret; 4807 } 4808 4809 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4810 { 4811 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4812 struct btrfs_ioctl_qgroup_assign_args *sa; 4813 struct btrfs_trans_handle *trans; 4814 int ret; 4815 int err; 4816 4817 if (!capable(CAP_SYS_ADMIN)) 4818 return -EPERM; 4819 4820 ret = mnt_want_write_file(file); 4821 if (ret) 4822 return ret; 4823 4824 sa = memdup_user(arg, sizeof(*sa)); 4825 if (IS_ERR(sa)) { 4826 ret = PTR_ERR(sa); 4827 goto drop_write; 4828 } 4829 4830 trans = btrfs_join_transaction(root); 4831 if (IS_ERR(trans)) { 4832 ret = PTR_ERR(trans); 4833 goto out; 4834 } 4835 4836 /* FIXME: check if the IDs really exist */ 4837 if (sa->assign) { 4838 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4839 sa->src, sa->dst); 4840 } else { 4841 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4842 sa->src, sa->dst); 4843 } 4844 4845 /* update qgroup status and info */ 4846 err = btrfs_run_qgroups(trans, root->fs_info); 4847 if (err < 0) 4848 btrfs_std_error(root->fs_info, ret, 4849 "failed to update qgroup status and info\n"); 4850 err = btrfs_end_transaction(trans, root); 4851 if (err && !ret) 4852 ret = err; 4853 4854 out: 4855 kfree(sa); 4856 drop_write: 4857 mnt_drop_write_file(file); 4858 return ret; 4859 } 4860 4861 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4862 { 4863 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4864 struct btrfs_ioctl_qgroup_create_args *sa; 4865 struct btrfs_trans_handle *trans; 4866 int ret; 4867 int err; 4868 4869 if (!capable(CAP_SYS_ADMIN)) 4870 return -EPERM; 4871 4872 ret = mnt_want_write_file(file); 4873 if (ret) 4874 return ret; 4875 4876 sa = memdup_user(arg, sizeof(*sa)); 4877 if (IS_ERR(sa)) { 4878 ret = PTR_ERR(sa); 4879 goto drop_write; 4880 } 4881 4882 if (!sa->qgroupid) { 4883 ret = -EINVAL; 4884 goto out; 4885 } 4886 4887 trans = btrfs_join_transaction(root); 4888 if (IS_ERR(trans)) { 4889 ret = PTR_ERR(trans); 4890 goto out; 4891 } 4892 4893 /* FIXME: check if the IDs really exist */ 4894 if (sa->create) { 4895 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid); 4896 } else { 4897 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4898 } 4899 4900 err = btrfs_end_transaction(trans, root); 4901 if (err && !ret) 4902 ret = err; 4903 4904 out: 4905 kfree(sa); 4906 drop_write: 4907 mnt_drop_write_file(file); 4908 return ret; 4909 } 4910 4911 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4912 { 4913 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4914 struct btrfs_ioctl_qgroup_limit_args *sa; 4915 struct btrfs_trans_handle *trans; 4916 int ret; 4917 int err; 4918 u64 qgroupid; 4919 4920 if (!capable(CAP_SYS_ADMIN)) 4921 return -EPERM; 4922 4923 ret = mnt_want_write_file(file); 4924 if (ret) 4925 return ret; 4926 4927 sa = memdup_user(arg, sizeof(*sa)); 4928 if (IS_ERR(sa)) { 4929 ret = PTR_ERR(sa); 4930 goto drop_write; 4931 } 4932 4933 trans = btrfs_join_transaction(root); 4934 if (IS_ERR(trans)) { 4935 ret = PTR_ERR(trans); 4936 goto out; 4937 } 4938 4939 qgroupid = sa->qgroupid; 4940 if (!qgroupid) { 4941 /* take the current subvol as qgroup */ 4942 qgroupid = root->root_key.objectid; 4943 } 4944 4945 /* FIXME: check if the IDs really exist */ 4946 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 4947 4948 err = btrfs_end_transaction(trans, root); 4949 if (err && !ret) 4950 ret = err; 4951 4952 out: 4953 kfree(sa); 4954 drop_write: 4955 mnt_drop_write_file(file); 4956 return ret; 4957 } 4958 4959 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4960 { 4961 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4962 struct btrfs_ioctl_quota_rescan_args *qsa; 4963 int ret; 4964 4965 if (!capable(CAP_SYS_ADMIN)) 4966 return -EPERM; 4967 4968 ret = mnt_want_write_file(file); 4969 if (ret) 4970 return ret; 4971 4972 qsa = memdup_user(arg, sizeof(*qsa)); 4973 if (IS_ERR(qsa)) { 4974 ret = PTR_ERR(qsa); 4975 goto drop_write; 4976 } 4977 4978 if (qsa->flags) { 4979 ret = -EINVAL; 4980 goto out; 4981 } 4982 4983 ret = btrfs_qgroup_rescan(root->fs_info); 4984 4985 out: 4986 kfree(qsa); 4987 drop_write: 4988 mnt_drop_write_file(file); 4989 return ret; 4990 } 4991 4992 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 4993 { 4994 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4995 struct btrfs_ioctl_quota_rescan_args *qsa; 4996 int ret = 0; 4997 4998 if (!capable(CAP_SYS_ADMIN)) 4999 return -EPERM; 5000 5001 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5002 if (!qsa) 5003 return -ENOMEM; 5004 5005 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5006 qsa->flags = 1; 5007 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 5008 } 5009 5010 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5011 ret = -EFAULT; 5012 5013 kfree(qsa); 5014 return ret; 5015 } 5016 5017 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5018 { 5019 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5020 5021 if (!capable(CAP_SYS_ADMIN)) 5022 return -EPERM; 5023 5024 return btrfs_qgroup_wait_for_completion(root->fs_info); 5025 } 5026 5027 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5028 struct btrfs_ioctl_received_subvol_args *sa) 5029 { 5030 struct inode *inode = file_inode(file); 5031 struct btrfs_root *root = BTRFS_I(inode)->root; 5032 struct btrfs_root_item *root_item = &root->root_item; 5033 struct btrfs_trans_handle *trans; 5034 struct timespec ct = CURRENT_TIME; 5035 int ret = 0; 5036 int received_uuid_changed; 5037 5038 if (!inode_owner_or_capable(inode)) 5039 return -EPERM; 5040 5041 ret = mnt_want_write_file(file); 5042 if (ret < 0) 5043 return ret; 5044 5045 down_write(&root->fs_info->subvol_sem); 5046 5047 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 5048 ret = -EINVAL; 5049 goto out; 5050 } 5051 5052 if (btrfs_root_readonly(root)) { 5053 ret = -EROFS; 5054 goto out; 5055 } 5056 5057 /* 5058 * 1 - root item 5059 * 2 - uuid items (received uuid + subvol uuid) 5060 */ 5061 trans = btrfs_start_transaction(root, 3); 5062 if (IS_ERR(trans)) { 5063 ret = PTR_ERR(trans); 5064 trans = NULL; 5065 goto out; 5066 } 5067 5068 sa->rtransid = trans->transid; 5069 sa->rtime.sec = ct.tv_sec; 5070 sa->rtime.nsec = ct.tv_nsec; 5071 5072 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5073 BTRFS_UUID_SIZE); 5074 if (received_uuid_changed && 5075 !btrfs_is_empty_uuid(root_item->received_uuid)) 5076 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 5077 root_item->received_uuid, 5078 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5079 root->root_key.objectid); 5080 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5081 btrfs_set_root_stransid(root_item, sa->stransid); 5082 btrfs_set_root_rtransid(root_item, sa->rtransid); 5083 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5084 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5085 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5086 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5087 5088 ret = btrfs_update_root(trans, root->fs_info->tree_root, 5089 &root->root_key, &root->root_item); 5090 if (ret < 0) { 5091 btrfs_end_transaction(trans, root); 5092 goto out; 5093 } 5094 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5095 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 5096 sa->uuid, 5097 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5098 root->root_key.objectid); 5099 if (ret < 0 && ret != -EEXIST) { 5100 btrfs_abort_transaction(trans, root, ret); 5101 goto out; 5102 } 5103 } 5104 ret = btrfs_commit_transaction(trans, root); 5105 if (ret < 0) { 5106 btrfs_abort_transaction(trans, root, ret); 5107 goto out; 5108 } 5109 5110 out: 5111 up_write(&root->fs_info->subvol_sem); 5112 mnt_drop_write_file(file); 5113 return ret; 5114 } 5115 5116 #ifdef CONFIG_64BIT 5117 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5118 void __user *arg) 5119 { 5120 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5121 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5122 int ret = 0; 5123 5124 args32 = memdup_user(arg, sizeof(*args32)); 5125 if (IS_ERR(args32)) { 5126 ret = PTR_ERR(args32); 5127 args32 = NULL; 5128 goto out; 5129 } 5130 5131 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5132 if (!args64) { 5133 ret = -ENOMEM; 5134 goto out; 5135 } 5136 5137 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5138 args64->stransid = args32->stransid; 5139 args64->rtransid = args32->rtransid; 5140 args64->stime.sec = args32->stime.sec; 5141 args64->stime.nsec = args32->stime.nsec; 5142 args64->rtime.sec = args32->rtime.sec; 5143 args64->rtime.nsec = args32->rtime.nsec; 5144 args64->flags = args32->flags; 5145 5146 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5147 if (ret) 5148 goto out; 5149 5150 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5151 args32->stransid = args64->stransid; 5152 args32->rtransid = args64->rtransid; 5153 args32->stime.sec = args64->stime.sec; 5154 args32->stime.nsec = args64->stime.nsec; 5155 args32->rtime.sec = args64->rtime.sec; 5156 args32->rtime.nsec = args64->rtime.nsec; 5157 args32->flags = args64->flags; 5158 5159 ret = copy_to_user(arg, args32, sizeof(*args32)); 5160 if (ret) 5161 ret = -EFAULT; 5162 5163 out: 5164 kfree(args32); 5165 kfree(args64); 5166 return ret; 5167 } 5168 #endif 5169 5170 static long btrfs_ioctl_set_received_subvol(struct file *file, 5171 void __user *arg) 5172 { 5173 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5174 int ret = 0; 5175 5176 sa = memdup_user(arg, sizeof(*sa)); 5177 if (IS_ERR(sa)) { 5178 ret = PTR_ERR(sa); 5179 sa = NULL; 5180 goto out; 5181 } 5182 5183 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5184 5185 if (ret) 5186 goto out; 5187 5188 ret = copy_to_user(arg, sa, sizeof(*sa)); 5189 if (ret) 5190 ret = -EFAULT; 5191 5192 out: 5193 kfree(sa); 5194 return ret; 5195 } 5196 5197 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5198 { 5199 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5200 size_t len; 5201 int ret; 5202 char label[BTRFS_LABEL_SIZE]; 5203 5204 spin_lock(&root->fs_info->super_lock); 5205 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5206 spin_unlock(&root->fs_info->super_lock); 5207 5208 len = strnlen(label, BTRFS_LABEL_SIZE); 5209 5210 if (len == BTRFS_LABEL_SIZE) { 5211 btrfs_warn(root->fs_info, 5212 "label is too long, return the first %zu bytes", --len); 5213 } 5214 5215 ret = copy_to_user(arg, label, len); 5216 5217 return ret ? -EFAULT : 0; 5218 } 5219 5220 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5221 { 5222 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5223 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5224 struct btrfs_trans_handle *trans; 5225 char label[BTRFS_LABEL_SIZE]; 5226 int ret; 5227 5228 if (!capable(CAP_SYS_ADMIN)) 5229 return -EPERM; 5230 5231 if (copy_from_user(label, arg, sizeof(label))) 5232 return -EFAULT; 5233 5234 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5235 btrfs_err(root->fs_info, "unable to set label with more than %d bytes", 5236 BTRFS_LABEL_SIZE - 1); 5237 return -EINVAL; 5238 } 5239 5240 ret = mnt_want_write_file(file); 5241 if (ret) 5242 return ret; 5243 5244 trans = btrfs_start_transaction(root, 0); 5245 if (IS_ERR(trans)) { 5246 ret = PTR_ERR(trans); 5247 goto out_unlock; 5248 } 5249 5250 spin_lock(&root->fs_info->super_lock); 5251 strcpy(super_block->label, label); 5252 spin_unlock(&root->fs_info->super_lock); 5253 ret = btrfs_commit_transaction(trans, root); 5254 5255 out_unlock: 5256 mnt_drop_write_file(file); 5257 return ret; 5258 } 5259 5260 #define INIT_FEATURE_FLAGS(suffix) \ 5261 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5262 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5263 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5264 5265 static int btrfs_ioctl_get_supported_features(struct file *file, 5266 void __user *arg) 5267 { 5268 static const struct btrfs_ioctl_feature_flags features[3] = { 5269 INIT_FEATURE_FLAGS(SUPP), 5270 INIT_FEATURE_FLAGS(SAFE_SET), 5271 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5272 }; 5273 5274 if (copy_to_user(arg, &features, sizeof(features))) 5275 return -EFAULT; 5276 5277 return 0; 5278 } 5279 5280 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5281 { 5282 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5283 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5284 struct btrfs_ioctl_feature_flags features; 5285 5286 features.compat_flags = btrfs_super_compat_flags(super_block); 5287 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5288 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5289 5290 if (copy_to_user(arg, &features, sizeof(features))) 5291 return -EFAULT; 5292 5293 return 0; 5294 } 5295 5296 static int check_feature_bits(struct btrfs_root *root, 5297 enum btrfs_feature_set set, 5298 u64 change_mask, u64 flags, u64 supported_flags, 5299 u64 safe_set, u64 safe_clear) 5300 { 5301 const char *type = btrfs_feature_set_names[set]; 5302 char *names; 5303 u64 disallowed, unsupported; 5304 u64 set_mask = flags & change_mask; 5305 u64 clear_mask = ~flags & change_mask; 5306 5307 unsupported = set_mask & ~supported_flags; 5308 if (unsupported) { 5309 names = btrfs_printable_features(set, unsupported); 5310 if (names) { 5311 btrfs_warn(root->fs_info, 5312 "this kernel does not support the %s feature bit%s", 5313 names, strchr(names, ',') ? "s" : ""); 5314 kfree(names); 5315 } else 5316 btrfs_warn(root->fs_info, 5317 "this kernel does not support %s bits 0x%llx", 5318 type, unsupported); 5319 return -EOPNOTSUPP; 5320 } 5321 5322 disallowed = set_mask & ~safe_set; 5323 if (disallowed) { 5324 names = btrfs_printable_features(set, disallowed); 5325 if (names) { 5326 btrfs_warn(root->fs_info, 5327 "can't set the %s feature bit%s while mounted", 5328 names, strchr(names, ',') ? "s" : ""); 5329 kfree(names); 5330 } else 5331 btrfs_warn(root->fs_info, 5332 "can't set %s bits 0x%llx while mounted", 5333 type, disallowed); 5334 return -EPERM; 5335 } 5336 5337 disallowed = clear_mask & ~safe_clear; 5338 if (disallowed) { 5339 names = btrfs_printable_features(set, disallowed); 5340 if (names) { 5341 btrfs_warn(root->fs_info, 5342 "can't clear the %s feature bit%s while mounted", 5343 names, strchr(names, ',') ? "s" : ""); 5344 kfree(names); 5345 } else 5346 btrfs_warn(root->fs_info, 5347 "can't clear %s bits 0x%llx while mounted", 5348 type, disallowed); 5349 return -EPERM; 5350 } 5351 5352 return 0; 5353 } 5354 5355 #define check_feature(root, change_mask, flags, mask_base) \ 5356 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \ 5357 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5358 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5359 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5360 5361 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5362 { 5363 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5364 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5365 struct btrfs_ioctl_feature_flags flags[2]; 5366 struct btrfs_trans_handle *trans; 5367 u64 newflags; 5368 int ret; 5369 5370 if (!capable(CAP_SYS_ADMIN)) 5371 return -EPERM; 5372 5373 if (copy_from_user(flags, arg, sizeof(flags))) 5374 return -EFAULT; 5375 5376 /* Nothing to do */ 5377 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5378 !flags[0].incompat_flags) 5379 return 0; 5380 5381 ret = check_feature(root, flags[0].compat_flags, 5382 flags[1].compat_flags, COMPAT); 5383 if (ret) 5384 return ret; 5385 5386 ret = check_feature(root, flags[0].compat_ro_flags, 5387 flags[1].compat_ro_flags, COMPAT_RO); 5388 if (ret) 5389 return ret; 5390 5391 ret = check_feature(root, flags[0].incompat_flags, 5392 flags[1].incompat_flags, INCOMPAT); 5393 if (ret) 5394 return ret; 5395 5396 trans = btrfs_start_transaction(root, 0); 5397 if (IS_ERR(trans)) 5398 return PTR_ERR(trans); 5399 5400 spin_lock(&root->fs_info->super_lock); 5401 newflags = btrfs_super_compat_flags(super_block); 5402 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5403 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5404 btrfs_set_super_compat_flags(super_block, newflags); 5405 5406 newflags = btrfs_super_compat_ro_flags(super_block); 5407 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5408 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5409 btrfs_set_super_compat_ro_flags(super_block, newflags); 5410 5411 newflags = btrfs_super_incompat_flags(super_block); 5412 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5413 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5414 btrfs_set_super_incompat_flags(super_block, newflags); 5415 spin_unlock(&root->fs_info->super_lock); 5416 5417 return btrfs_commit_transaction(trans, root); 5418 } 5419 5420 long btrfs_ioctl(struct file *file, unsigned int 5421 cmd, unsigned long arg) 5422 { 5423 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5424 void __user *argp = (void __user *)arg; 5425 5426 switch (cmd) { 5427 case FS_IOC_GETFLAGS: 5428 return btrfs_ioctl_getflags(file, argp); 5429 case FS_IOC_SETFLAGS: 5430 return btrfs_ioctl_setflags(file, argp); 5431 case FS_IOC_GETVERSION: 5432 return btrfs_ioctl_getversion(file, argp); 5433 case FITRIM: 5434 return btrfs_ioctl_fitrim(file, argp); 5435 case BTRFS_IOC_SNAP_CREATE: 5436 return btrfs_ioctl_snap_create(file, argp, 0); 5437 case BTRFS_IOC_SNAP_CREATE_V2: 5438 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5439 case BTRFS_IOC_SUBVOL_CREATE: 5440 return btrfs_ioctl_snap_create(file, argp, 1); 5441 case BTRFS_IOC_SUBVOL_CREATE_V2: 5442 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5443 case BTRFS_IOC_SNAP_DESTROY: 5444 return btrfs_ioctl_snap_destroy(file, argp); 5445 case BTRFS_IOC_SUBVOL_GETFLAGS: 5446 return btrfs_ioctl_subvol_getflags(file, argp); 5447 case BTRFS_IOC_SUBVOL_SETFLAGS: 5448 return btrfs_ioctl_subvol_setflags(file, argp); 5449 case BTRFS_IOC_DEFAULT_SUBVOL: 5450 return btrfs_ioctl_default_subvol(file, argp); 5451 case BTRFS_IOC_DEFRAG: 5452 return btrfs_ioctl_defrag(file, NULL); 5453 case BTRFS_IOC_DEFRAG_RANGE: 5454 return btrfs_ioctl_defrag(file, argp); 5455 case BTRFS_IOC_RESIZE: 5456 return btrfs_ioctl_resize(file, argp); 5457 case BTRFS_IOC_ADD_DEV: 5458 return btrfs_ioctl_add_dev(root, argp); 5459 case BTRFS_IOC_RM_DEV: 5460 return btrfs_ioctl_rm_dev(file, argp); 5461 case BTRFS_IOC_FS_INFO: 5462 return btrfs_ioctl_fs_info(root, argp); 5463 case BTRFS_IOC_DEV_INFO: 5464 return btrfs_ioctl_dev_info(root, argp); 5465 case BTRFS_IOC_BALANCE: 5466 return btrfs_ioctl_balance(file, NULL); 5467 case BTRFS_IOC_TRANS_START: 5468 return btrfs_ioctl_trans_start(file); 5469 case BTRFS_IOC_TRANS_END: 5470 return btrfs_ioctl_trans_end(file); 5471 case BTRFS_IOC_TREE_SEARCH: 5472 return btrfs_ioctl_tree_search(file, argp); 5473 case BTRFS_IOC_TREE_SEARCH_V2: 5474 return btrfs_ioctl_tree_search_v2(file, argp); 5475 case BTRFS_IOC_INO_LOOKUP: 5476 return btrfs_ioctl_ino_lookup(file, argp); 5477 case BTRFS_IOC_INO_PATHS: 5478 return btrfs_ioctl_ino_to_path(root, argp); 5479 case BTRFS_IOC_LOGICAL_INO: 5480 return btrfs_ioctl_logical_to_ino(root, argp); 5481 case BTRFS_IOC_SPACE_INFO: 5482 return btrfs_ioctl_space_info(root, argp); 5483 case BTRFS_IOC_SYNC: { 5484 int ret; 5485 5486 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1); 5487 if (ret) 5488 return ret; 5489 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1); 5490 /* 5491 * The transaction thread may want to do more work, 5492 * namely it pokes the cleaner ktread that will start 5493 * processing uncleaned subvols. 5494 */ 5495 wake_up_process(root->fs_info->transaction_kthread); 5496 return ret; 5497 } 5498 case BTRFS_IOC_START_SYNC: 5499 return btrfs_ioctl_start_sync(root, argp); 5500 case BTRFS_IOC_WAIT_SYNC: 5501 return btrfs_ioctl_wait_sync(root, argp); 5502 case BTRFS_IOC_SCRUB: 5503 return btrfs_ioctl_scrub(file, argp); 5504 case BTRFS_IOC_SCRUB_CANCEL: 5505 return btrfs_ioctl_scrub_cancel(root, argp); 5506 case BTRFS_IOC_SCRUB_PROGRESS: 5507 return btrfs_ioctl_scrub_progress(root, argp); 5508 case BTRFS_IOC_BALANCE_V2: 5509 return btrfs_ioctl_balance(file, argp); 5510 case BTRFS_IOC_BALANCE_CTL: 5511 return btrfs_ioctl_balance_ctl(root, arg); 5512 case BTRFS_IOC_BALANCE_PROGRESS: 5513 return btrfs_ioctl_balance_progress(root, argp); 5514 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5515 return btrfs_ioctl_set_received_subvol(file, argp); 5516 #ifdef CONFIG_64BIT 5517 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5518 return btrfs_ioctl_set_received_subvol_32(file, argp); 5519 #endif 5520 case BTRFS_IOC_SEND: 5521 return btrfs_ioctl_send(file, argp); 5522 case BTRFS_IOC_GET_DEV_STATS: 5523 return btrfs_ioctl_get_dev_stats(root, argp); 5524 case BTRFS_IOC_QUOTA_CTL: 5525 return btrfs_ioctl_quota_ctl(file, argp); 5526 case BTRFS_IOC_QGROUP_ASSIGN: 5527 return btrfs_ioctl_qgroup_assign(file, argp); 5528 case BTRFS_IOC_QGROUP_CREATE: 5529 return btrfs_ioctl_qgroup_create(file, argp); 5530 case BTRFS_IOC_QGROUP_LIMIT: 5531 return btrfs_ioctl_qgroup_limit(file, argp); 5532 case BTRFS_IOC_QUOTA_RESCAN: 5533 return btrfs_ioctl_quota_rescan(file, argp); 5534 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5535 return btrfs_ioctl_quota_rescan_status(file, argp); 5536 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5537 return btrfs_ioctl_quota_rescan_wait(file, argp); 5538 case BTRFS_IOC_DEV_REPLACE: 5539 return btrfs_ioctl_dev_replace(root, argp); 5540 case BTRFS_IOC_GET_FSLABEL: 5541 return btrfs_ioctl_get_fslabel(file, argp); 5542 case BTRFS_IOC_SET_FSLABEL: 5543 return btrfs_ioctl_set_fslabel(file, argp); 5544 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5545 return btrfs_ioctl_get_supported_features(file, argp); 5546 case BTRFS_IOC_GET_FEATURES: 5547 return btrfs_ioctl_get_features(file, argp); 5548 case BTRFS_IOC_SET_FEATURES: 5549 return btrfs_ioctl_set_features(file, argp); 5550 } 5551 5552 return -ENOTTY; 5553 } 5554