1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/fsnotify.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/mount.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/swap.h> 22 #include <linux/writeback.h> 23 #include <linux/compat.h> 24 #include <linux/bit_spinlock.h> 25 #include <linux/security.h> 26 #include <linux/xattr.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/blkdev.h> 30 #include <linux/uuid.h> 31 #include <linux/btrfs.h> 32 #include <linux/uaccess.h> 33 #include <linux/iversion.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "volumes.h" 40 #include "locking.h" 41 #include "inode-map.h" 42 #include "backref.h" 43 #include "rcu-string.h" 44 #include "send.h" 45 #include "dev-replace.h" 46 #include "props.h" 47 #include "sysfs.h" 48 #include "qgroup.h" 49 #include "tree-log.h" 50 #include "compression.h" 51 52 #ifdef CONFIG_64BIT 53 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 54 * structures are incorrect, as the timespec structure from userspace 55 * is 4 bytes too small. We define these alternatives here to teach 56 * the kernel about the 32-bit struct packing. 57 */ 58 struct btrfs_ioctl_timespec_32 { 59 __u64 sec; 60 __u32 nsec; 61 } __attribute__ ((__packed__)); 62 63 struct btrfs_ioctl_received_subvol_args_32 { 64 char uuid[BTRFS_UUID_SIZE]; /* in */ 65 __u64 stransid; /* in */ 66 __u64 rtransid; /* out */ 67 struct btrfs_ioctl_timespec_32 stime; /* in */ 68 struct btrfs_ioctl_timespec_32 rtime; /* out */ 69 __u64 flags; /* in */ 70 __u64 reserved[16]; /* in */ 71 } __attribute__ ((__packed__)); 72 73 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 74 struct btrfs_ioctl_received_subvol_args_32) 75 #endif 76 77 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 78 struct btrfs_ioctl_send_args_32 { 79 __s64 send_fd; /* in */ 80 __u64 clone_sources_count; /* in */ 81 compat_uptr_t clone_sources; /* in */ 82 __u64 parent_root; /* in */ 83 __u64 flags; /* in */ 84 __u64 reserved[4]; /* in */ 85 } __attribute__ ((__packed__)); 86 87 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 88 struct btrfs_ioctl_send_args_32) 89 #endif 90 91 static int btrfs_clone(struct inode *src, struct inode *inode, 92 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 93 int no_time_update); 94 95 /* Mask out flags that are inappropriate for the given type of inode. */ 96 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 97 unsigned int flags) 98 { 99 if (S_ISDIR(inode->i_mode)) 100 return flags; 101 else if (S_ISREG(inode->i_mode)) 102 return flags & ~FS_DIRSYNC_FL; 103 else 104 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 105 } 106 107 /* 108 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 109 * ioctl. 110 */ 111 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 112 { 113 unsigned int iflags = 0; 114 115 if (flags & BTRFS_INODE_SYNC) 116 iflags |= FS_SYNC_FL; 117 if (flags & BTRFS_INODE_IMMUTABLE) 118 iflags |= FS_IMMUTABLE_FL; 119 if (flags & BTRFS_INODE_APPEND) 120 iflags |= FS_APPEND_FL; 121 if (flags & BTRFS_INODE_NODUMP) 122 iflags |= FS_NODUMP_FL; 123 if (flags & BTRFS_INODE_NOATIME) 124 iflags |= FS_NOATIME_FL; 125 if (flags & BTRFS_INODE_DIRSYNC) 126 iflags |= FS_DIRSYNC_FL; 127 if (flags & BTRFS_INODE_NODATACOW) 128 iflags |= FS_NOCOW_FL; 129 130 if (flags & BTRFS_INODE_NOCOMPRESS) 131 iflags |= FS_NOCOMP_FL; 132 else if (flags & BTRFS_INODE_COMPRESS) 133 iflags |= FS_COMPR_FL; 134 135 return iflags; 136 } 137 138 /* 139 * Update inode->i_flags based on the btrfs internal flags. 140 */ 141 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 142 { 143 struct btrfs_inode *binode = BTRFS_I(inode); 144 unsigned int new_fl = 0; 145 146 if (binode->flags & BTRFS_INODE_SYNC) 147 new_fl |= S_SYNC; 148 if (binode->flags & BTRFS_INODE_IMMUTABLE) 149 new_fl |= S_IMMUTABLE; 150 if (binode->flags & BTRFS_INODE_APPEND) 151 new_fl |= S_APPEND; 152 if (binode->flags & BTRFS_INODE_NOATIME) 153 new_fl |= S_NOATIME; 154 if (binode->flags & BTRFS_INODE_DIRSYNC) 155 new_fl |= S_DIRSYNC; 156 157 set_mask_bits(&inode->i_flags, 158 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 159 new_fl); 160 } 161 162 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 163 { 164 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 165 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 166 167 if (copy_to_user(arg, &flags, sizeof(flags))) 168 return -EFAULT; 169 return 0; 170 } 171 172 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 173 static int check_fsflags(unsigned int flags) 174 { 175 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 176 FS_NOATIME_FL | FS_NODUMP_FL | \ 177 FS_SYNC_FL | FS_DIRSYNC_FL | \ 178 FS_NOCOMP_FL | FS_COMPR_FL | 179 FS_NOCOW_FL)) 180 return -EOPNOTSUPP; 181 182 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 183 return -EINVAL; 184 185 return 0; 186 } 187 188 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 189 { 190 struct inode *inode = file_inode(file); 191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 192 struct btrfs_inode *binode = BTRFS_I(inode); 193 struct btrfs_root *root = binode->root; 194 struct btrfs_trans_handle *trans; 195 unsigned int fsflags, old_fsflags; 196 int ret; 197 u64 old_flags; 198 unsigned int old_i_flags; 199 umode_t mode; 200 201 if (!inode_owner_or_capable(inode)) 202 return -EPERM; 203 204 if (btrfs_root_readonly(root)) 205 return -EROFS; 206 207 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 208 return -EFAULT; 209 210 ret = check_fsflags(fsflags); 211 if (ret) 212 return ret; 213 214 ret = mnt_want_write_file(file); 215 if (ret) 216 return ret; 217 218 inode_lock(inode); 219 220 old_flags = binode->flags; 221 old_i_flags = inode->i_flags; 222 mode = inode->i_mode; 223 224 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 225 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 226 if ((fsflags ^ old_fsflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 227 if (!capable(CAP_LINUX_IMMUTABLE)) { 228 ret = -EPERM; 229 goto out_unlock; 230 } 231 } 232 233 if (fsflags & FS_SYNC_FL) 234 binode->flags |= BTRFS_INODE_SYNC; 235 else 236 binode->flags &= ~BTRFS_INODE_SYNC; 237 if (fsflags & FS_IMMUTABLE_FL) 238 binode->flags |= BTRFS_INODE_IMMUTABLE; 239 else 240 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 241 if (fsflags & FS_APPEND_FL) 242 binode->flags |= BTRFS_INODE_APPEND; 243 else 244 binode->flags &= ~BTRFS_INODE_APPEND; 245 if (fsflags & FS_NODUMP_FL) 246 binode->flags |= BTRFS_INODE_NODUMP; 247 else 248 binode->flags &= ~BTRFS_INODE_NODUMP; 249 if (fsflags & FS_NOATIME_FL) 250 binode->flags |= BTRFS_INODE_NOATIME; 251 else 252 binode->flags &= ~BTRFS_INODE_NOATIME; 253 if (fsflags & FS_DIRSYNC_FL) 254 binode->flags |= BTRFS_INODE_DIRSYNC; 255 else 256 binode->flags &= ~BTRFS_INODE_DIRSYNC; 257 if (fsflags & FS_NOCOW_FL) { 258 if (S_ISREG(mode)) { 259 /* 260 * It's safe to turn csums off here, no extents exist. 261 * Otherwise we want the flag to reflect the real COW 262 * status of the file and will not set it. 263 */ 264 if (inode->i_size == 0) 265 binode->flags |= BTRFS_INODE_NODATACOW 266 | BTRFS_INODE_NODATASUM; 267 } else { 268 binode->flags |= BTRFS_INODE_NODATACOW; 269 } 270 } else { 271 /* 272 * Revert back under same assumptions as above 273 */ 274 if (S_ISREG(mode)) { 275 if (inode->i_size == 0) 276 binode->flags &= ~(BTRFS_INODE_NODATACOW 277 | BTRFS_INODE_NODATASUM); 278 } else { 279 binode->flags &= ~BTRFS_INODE_NODATACOW; 280 } 281 } 282 283 /* 284 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 285 * flag may be changed automatically if compression code won't make 286 * things smaller. 287 */ 288 if (fsflags & FS_NOCOMP_FL) { 289 binode->flags &= ~BTRFS_INODE_COMPRESS; 290 binode->flags |= BTRFS_INODE_NOCOMPRESS; 291 292 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 293 if (ret && ret != -ENODATA) 294 goto out_drop; 295 } else if (fsflags & FS_COMPR_FL) { 296 const char *comp; 297 298 binode->flags |= BTRFS_INODE_COMPRESS; 299 binode->flags &= ~BTRFS_INODE_NOCOMPRESS; 300 301 comp = btrfs_compress_type2str(fs_info->compress_type); 302 if (!comp || comp[0] == 0) 303 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 304 305 ret = btrfs_set_prop(inode, "btrfs.compression", 306 comp, strlen(comp), 0); 307 if (ret) 308 goto out_drop; 309 310 } else { 311 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 312 if (ret && ret != -ENODATA) 313 goto out_drop; 314 binode->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 315 } 316 317 trans = btrfs_start_transaction(root, 1); 318 if (IS_ERR(trans)) { 319 ret = PTR_ERR(trans); 320 goto out_drop; 321 } 322 323 btrfs_sync_inode_flags_to_i_flags(inode); 324 inode_inc_iversion(inode); 325 inode->i_ctime = current_time(inode); 326 ret = btrfs_update_inode(trans, root, inode); 327 328 btrfs_end_transaction(trans); 329 out_drop: 330 if (ret) { 331 binode->flags = old_flags; 332 inode->i_flags = old_i_flags; 333 } 334 335 out_unlock: 336 inode_unlock(inode); 337 mnt_drop_write_file(file); 338 return ret; 339 } 340 341 /* 342 * Translate btrfs internal inode flags to xflags as expected by the 343 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 344 * silently dropped. 345 */ 346 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 347 { 348 unsigned int xflags = 0; 349 350 if (flags & BTRFS_INODE_APPEND) 351 xflags |= FS_XFLAG_APPEND; 352 if (flags & BTRFS_INODE_IMMUTABLE) 353 xflags |= FS_XFLAG_IMMUTABLE; 354 if (flags & BTRFS_INODE_NOATIME) 355 xflags |= FS_XFLAG_NOATIME; 356 if (flags & BTRFS_INODE_NODUMP) 357 xflags |= FS_XFLAG_NODUMP; 358 if (flags & BTRFS_INODE_SYNC) 359 xflags |= FS_XFLAG_SYNC; 360 361 return xflags; 362 } 363 364 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 365 static int check_xflags(unsigned int flags) 366 { 367 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 368 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 369 return -EOPNOTSUPP; 370 return 0; 371 } 372 373 /* 374 * Set the xflags from the internal inode flags. The remaining items of fsxattr 375 * are zeroed. 376 */ 377 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 378 { 379 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 380 struct fsxattr fa; 381 382 memset(&fa, 0, sizeof(fa)); 383 fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags); 384 385 if (copy_to_user(arg, &fa, sizeof(fa))) 386 return -EFAULT; 387 388 return 0; 389 } 390 391 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 392 { 393 struct inode *inode = file_inode(file); 394 struct btrfs_inode *binode = BTRFS_I(inode); 395 struct btrfs_root *root = binode->root; 396 struct btrfs_trans_handle *trans; 397 struct fsxattr fa; 398 unsigned old_flags; 399 unsigned old_i_flags; 400 int ret = 0; 401 402 if (!inode_owner_or_capable(inode)) 403 return -EPERM; 404 405 if (btrfs_root_readonly(root)) 406 return -EROFS; 407 408 memset(&fa, 0, sizeof(fa)); 409 if (copy_from_user(&fa, arg, sizeof(fa))) 410 return -EFAULT; 411 412 ret = check_xflags(fa.fsx_xflags); 413 if (ret) 414 return ret; 415 416 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 417 return -EOPNOTSUPP; 418 419 ret = mnt_want_write_file(file); 420 if (ret) 421 return ret; 422 423 inode_lock(inode); 424 425 old_flags = binode->flags; 426 old_i_flags = inode->i_flags; 427 428 /* We need the capabilities to change append-only or immutable inode */ 429 if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) || 430 (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) && 431 !capable(CAP_LINUX_IMMUTABLE)) { 432 ret = -EPERM; 433 goto out_unlock; 434 } 435 436 if (fa.fsx_xflags & FS_XFLAG_SYNC) 437 binode->flags |= BTRFS_INODE_SYNC; 438 else 439 binode->flags &= ~BTRFS_INODE_SYNC; 440 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 441 binode->flags |= BTRFS_INODE_IMMUTABLE; 442 else 443 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 444 if (fa.fsx_xflags & FS_XFLAG_APPEND) 445 binode->flags |= BTRFS_INODE_APPEND; 446 else 447 binode->flags &= ~BTRFS_INODE_APPEND; 448 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 449 binode->flags |= BTRFS_INODE_NODUMP; 450 else 451 binode->flags &= ~BTRFS_INODE_NODUMP; 452 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 453 binode->flags |= BTRFS_INODE_NOATIME; 454 else 455 binode->flags &= ~BTRFS_INODE_NOATIME; 456 457 /* 1 item for the inode */ 458 trans = btrfs_start_transaction(root, 1); 459 if (IS_ERR(trans)) { 460 ret = PTR_ERR(trans); 461 goto out_unlock; 462 } 463 464 btrfs_sync_inode_flags_to_i_flags(inode); 465 inode_inc_iversion(inode); 466 inode->i_ctime = current_time(inode); 467 ret = btrfs_update_inode(trans, root, inode); 468 469 btrfs_end_transaction(trans); 470 471 out_unlock: 472 if (ret) { 473 binode->flags = old_flags; 474 inode->i_flags = old_i_flags; 475 } 476 477 inode_unlock(inode); 478 mnt_drop_write_file(file); 479 480 return ret; 481 } 482 483 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 484 { 485 struct inode *inode = file_inode(file); 486 487 return put_user(inode->i_generation, arg); 488 } 489 490 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 491 { 492 struct inode *inode = file_inode(file); 493 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 494 struct btrfs_device *device; 495 struct request_queue *q; 496 struct fstrim_range range; 497 u64 minlen = ULLONG_MAX; 498 u64 num_devices = 0; 499 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 500 int ret; 501 502 if (!capable(CAP_SYS_ADMIN)) 503 return -EPERM; 504 505 rcu_read_lock(); 506 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 507 dev_list) { 508 if (!device->bdev) 509 continue; 510 q = bdev_get_queue(device->bdev); 511 if (blk_queue_discard(q)) { 512 num_devices++; 513 minlen = min_t(u64, q->limits.discard_granularity, 514 minlen); 515 } 516 } 517 rcu_read_unlock(); 518 519 if (!num_devices) 520 return -EOPNOTSUPP; 521 if (copy_from_user(&range, arg, sizeof(range))) 522 return -EFAULT; 523 if (range.start > total_bytes || 524 range.len < fs_info->sb->s_blocksize) 525 return -EINVAL; 526 527 range.len = min(range.len, total_bytes - range.start); 528 range.minlen = max(range.minlen, minlen); 529 ret = btrfs_trim_fs(fs_info, &range); 530 if (ret < 0) 531 return ret; 532 533 if (copy_to_user(arg, &range, sizeof(range))) 534 return -EFAULT; 535 536 return 0; 537 } 538 539 int btrfs_is_empty_uuid(u8 *uuid) 540 { 541 int i; 542 543 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 544 if (uuid[i]) 545 return 0; 546 } 547 return 1; 548 } 549 550 static noinline int create_subvol(struct inode *dir, 551 struct dentry *dentry, 552 const char *name, int namelen, 553 u64 *async_transid, 554 struct btrfs_qgroup_inherit *inherit) 555 { 556 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 557 struct btrfs_trans_handle *trans; 558 struct btrfs_key key; 559 struct btrfs_root_item *root_item; 560 struct btrfs_inode_item *inode_item; 561 struct extent_buffer *leaf; 562 struct btrfs_root *root = BTRFS_I(dir)->root; 563 struct btrfs_root *new_root; 564 struct btrfs_block_rsv block_rsv; 565 struct timespec64 cur_time = current_time(dir); 566 struct inode *inode; 567 int ret; 568 int err; 569 u64 objectid; 570 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 571 u64 index = 0; 572 uuid_le new_uuid; 573 574 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 575 if (!root_item) 576 return -ENOMEM; 577 578 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 579 if (ret) 580 goto fail_free; 581 582 /* 583 * Don't create subvolume whose level is not zero. Or qgroup will be 584 * screwed up since it assumes subvolume qgroup's level to be 0. 585 */ 586 if (btrfs_qgroup_level(objectid)) { 587 ret = -ENOSPC; 588 goto fail_free; 589 } 590 591 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 592 /* 593 * The same as the snapshot creation, please see the comment 594 * of create_snapshot(). 595 */ 596 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 597 if (ret) 598 goto fail_free; 599 600 trans = btrfs_start_transaction(root, 0); 601 if (IS_ERR(trans)) { 602 ret = PTR_ERR(trans); 603 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 604 goto fail_free; 605 } 606 trans->block_rsv = &block_rsv; 607 trans->bytes_reserved = block_rsv.size; 608 609 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit); 610 if (ret) 611 goto fail; 612 613 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 614 if (IS_ERR(leaf)) { 615 ret = PTR_ERR(leaf); 616 goto fail; 617 } 618 619 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 620 btrfs_set_header_bytenr(leaf, leaf->start); 621 btrfs_set_header_generation(leaf, trans->transid); 622 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 623 btrfs_set_header_owner(leaf, objectid); 624 625 write_extent_buffer_fsid(leaf, fs_info->fsid); 626 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 627 btrfs_mark_buffer_dirty(leaf); 628 629 inode_item = &root_item->inode; 630 btrfs_set_stack_inode_generation(inode_item, 1); 631 btrfs_set_stack_inode_size(inode_item, 3); 632 btrfs_set_stack_inode_nlink(inode_item, 1); 633 btrfs_set_stack_inode_nbytes(inode_item, 634 fs_info->nodesize); 635 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 636 637 btrfs_set_root_flags(root_item, 0); 638 btrfs_set_root_limit(root_item, 0); 639 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 640 641 btrfs_set_root_bytenr(root_item, leaf->start); 642 btrfs_set_root_generation(root_item, trans->transid); 643 btrfs_set_root_level(root_item, 0); 644 btrfs_set_root_refs(root_item, 1); 645 btrfs_set_root_used(root_item, leaf->len); 646 btrfs_set_root_last_snapshot(root_item, 0); 647 648 btrfs_set_root_generation_v2(root_item, 649 btrfs_root_generation(root_item)); 650 uuid_le_gen(&new_uuid); 651 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 652 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 653 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 654 root_item->ctime = root_item->otime; 655 btrfs_set_root_ctransid(root_item, trans->transid); 656 btrfs_set_root_otransid(root_item, trans->transid); 657 658 btrfs_tree_unlock(leaf); 659 free_extent_buffer(leaf); 660 leaf = NULL; 661 662 btrfs_set_root_dirid(root_item, new_dirid); 663 664 key.objectid = objectid; 665 key.offset = 0; 666 key.type = BTRFS_ROOT_ITEM_KEY; 667 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 668 root_item); 669 if (ret) 670 goto fail; 671 672 key.offset = (u64)-1; 673 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 674 if (IS_ERR(new_root)) { 675 ret = PTR_ERR(new_root); 676 btrfs_abort_transaction(trans, ret); 677 goto fail; 678 } 679 680 btrfs_record_root_in_trans(trans, new_root); 681 682 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 683 if (ret) { 684 /* We potentially lose an unused inode item here */ 685 btrfs_abort_transaction(trans, ret); 686 goto fail; 687 } 688 689 mutex_lock(&new_root->objectid_mutex); 690 new_root->highest_objectid = new_dirid; 691 mutex_unlock(&new_root->objectid_mutex); 692 693 /* 694 * insert the directory item 695 */ 696 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 697 if (ret) { 698 btrfs_abort_transaction(trans, ret); 699 goto fail; 700 } 701 702 ret = btrfs_insert_dir_item(trans, root, 703 name, namelen, BTRFS_I(dir), &key, 704 BTRFS_FT_DIR, index); 705 if (ret) { 706 btrfs_abort_transaction(trans, ret); 707 goto fail; 708 } 709 710 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 711 ret = btrfs_update_inode(trans, root, dir); 712 BUG_ON(ret); 713 714 ret = btrfs_add_root_ref(trans, fs_info, 715 objectid, root->root_key.objectid, 716 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 717 BUG_ON(ret); 718 719 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 720 BTRFS_UUID_KEY_SUBVOL, objectid); 721 if (ret) 722 btrfs_abort_transaction(trans, ret); 723 724 fail: 725 kfree(root_item); 726 trans->block_rsv = NULL; 727 trans->bytes_reserved = 0; 728 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 729 730 if (async_transid) { 731 *async_transid = trans->transid; 732 err = btrfs_commit_transaction_async(trans, 1); 733 if (err) 734 err = btrfs_commit_transaction(trans); 735 } else { 736 err = btrfs_commit_transaction(trans); 737 } 738 if (err && !ret) 739 ret = err; 740 741 if (!ret) { 742 inode = btrfs_lookup_dentry(dir, dentry); 743 if (IS_ERR(inode)) 744 return PTR_ERR(inode); 745 d_instantiate(dentry, inode); 746 } 747 return ret; 748 749 fail_free: 750 kfree(root_item); 751 return ret; 752 } 753 754 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 755 struct dentry *dentry, 756 u64 *async_transid, bool readonly, 757 struct btrfs_qgroup_inherit *inherit) 758 { 759 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 760 struct inode *inode; 761 struct btrfs_pending_snapshot *pending_snapshot; 762 struct btrfs_trans_handle *trans; 763 int ret; 764 765 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 766 return -EINVAL; 767 768 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 769 if (!pending_snapshot) 770 return -ENOMEM; 771 772 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 773 GFP_KERNEL); 774 pending_snapshot->path = btrfs_alloc_path(); 775 if (!pending_snapshot->root_item || !pending_snapshot->path) { 776 ret = -ENOMEM; 777 goto free_pending; 778 } 779 780 atomic_inc(&root->will_be_snapshotted); 781 smp_mb__after_atomic(); 782 /* wait for no snapshot writes */ 783 wait_event(root->subv_writers->wait, 784 percpu_counter_sum(&root->subv_writers->counter) == 0); 785 786 ret = btrfs_start_delalloc_inodes(root); 787 if (ret) 788 goto dec_and_free; 789 790 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 791 792 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 793 BTRFS_BLOCK_RSV_TEMP); 794 /* 795 * 1 - parent dir inode 796 * 2 - dir entries 797 * 1 - root item 798 * 2 - root ref/backref 799 * 1 - root of snapshot 800 * 1 - UUID item 801 */ 802 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 803 &pending_snapshot->block_rsv, 8, 804 false); 805 if (ret) 806 goto dec_and_free; 807 808 pending_snapshot->dentry = dentry; 809 pending_snapshot->root = root; 810 pending_snapshot->readonly = readonly; 811 pending_snapshot->dir = dir; 812 pending_snapshot->inherit = inherit; 813 814 trans = btrfs_start_transaction(root, 0); 815 if (IS_ERR(trans)) { 816 ret = PTR_ERR(trans); 817 goto fail; 818 } 819 820 spin_lock(&fs_info->trans_lock); 821 list_add(&pending_snapshot->list, 822 &trans->transaction->pending_snapshots); 823 spin_unlock(&fs_info->trans_lock); 824 if (async_transid) { 825 *async_transid = trans->transid; 826 ret = btrfs_commit_transaction_async(trans, 1); 827 if (ret) 828 ret = btrfs_commit_transaction(trans); 829 } else { 830 ret = btrfs_commit_transaction(trans); 831 } 832 if (ret) 833 goto fail; 834 835 ret = pending_snapshot->error; 836 if (ret) 837 goto fail; 838 839 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 840 if (ret) 841 goto fail; 842 843 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 844 if (IS_ERR(inode)) { 845 ret = PTR_ERR(inode); 846 goto fail; 847 } 848 849 d_instantiate(dentry, inode); 850 ret = 0; 851 fail: 852 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 853 dec_and_free: 854 if (atomic_dec_and_test(&root->will_be_snapshotted)) 855 wake_up_var(&root->will_be_snapshotted); 856 free_pending: 857 kfree(pending_snapshot->root_item); 858 btrfs_free_path(pending_snapshot->path); 859 kfree(pending_snapshot); 860 861 return ret; 862 } 863 864 /* copy of may_delete in fs/namei.c() 865 * Check whether we can remove a link victim from directory dir, check 866 * whether the type of victim is right. 867 * 1. We can't do it if dir is read-only (done in permission()) 868 * 2. We should have write and exec permissions on dir 869 * 3. We can't remove anything from append-only dir 870 * 4. We can't do anything with immutable dir (done in permission()) 871 * 5. If the sticky bit on dir is set we should either 872 * a. be owner of dir, or 873 * b. be owner of victim, or 874 * c. have CAP_FOWNER capability 875 * 6. If the victim is append-only or immutable we can't do anything with 876 * links pointing to it. 877 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 878 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 879 * 9. We can't remove a root or mountpoint. 880 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 881 * nfs_async_unlink(). 882 */ 883 884 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 885 { 886 int error; 887 888 if (d_really_is_negative(victim)) 889 return -ENOENT; 890 891 BUG_ON(d_inode(victim->d_parent) != dir); 892 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 893 894 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 895 if (error) 896 return error; 897 if (IS_APPEND(dir)) 898 return -EPERM; 899 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 900 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 901 return -EPERM; 902 if (isdir) { 903 if (!d_is_dir(victim)) 904 return -ENOTDIR; 905 if (IS_ROOT(victim)) 906 return -EBUSY; 907 } else if (d_is_dir(victim)) 908 return -EISDIR; 909 if (IS_DEADDIR(dir)) 910 return -ENOENT; 911 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 912 return -EBUSY; 913 return 0; 914 } 915 916 /* copy of may_create in fs/namei.c() */ 917 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 918 { 919 if (d_really_is_positive(child)) 920 return -EEXIST; 921 if (IS_DEADDIR(dir)) 922 return -ENOENT; 923 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 924 } 925 926 /* 927 * Create a new subvolume below @parent. This is largely modeled after 928 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 929 * inside this filesystem so it's quite a bit simpler. 930 */ 931 static noinline int btrfs_mksubvol(const struct path *parent, 932 const char *name, int namelen, 933 struct btrfs_root *snap_src, 934 u64 *async_transid, bool readonly, 935 struct btrfs_qgroup_inherit *inherit) 936 { 937 struct inode *dir = d_inode(parent->dentry); 938 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 939 struct dentry *dentry; 940 int error; 941 942 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 943 if (error == -EINTR) 944 return error; 945 946 dentry = lookup_one_len(name, parent->dentry, namelen); 947 error = PTR_ERR(dentry); 948 if (IS_ERR(dentry)) 949 goto out_unlock; 950 951 error = btrfs_may_create(dir, dentry); 952 if (error) 953 goto out_dput; 954 955 /* 956 * even if this name doesn't exist, we may get hash collisions. 957 * check for them now when we can safely fail 958 */ 959 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 960 dir->i_ino, name, 961 namelen); 962 if (error) 963 goto out_dput; 964 965 down_read(&fs_info->subvol_sem); 966 967 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 968 goto out_up_read; 969 970 if (snap_src) { 971 error = create_snapshot(snap_src, dir, dentry, 972 async_transid, readonly, inherit); 973 } else { 974 error = create_subvol(dir, dentry, name, namelen, 975 async_transid, inherit); 976 } 977 if (!error) 978 fsnotify_mkdir(dir, dentry); 979 out_up_read: 980 up_read(&fs_info->subvol_sem); 981 out_dput: 982 dput(dentry); 983 out_unlock: 984 inode_unlock(dir); 985 return error; 986 } 987 988 /* 989 * When we're defragging a range, we don't want to kick it off again 990 * if it is really just waiting for delalloc to send it down. 991 * If we find a nice big extent or delalloc range for the bytes in the 992 * file you want to defrag, we return 0 to let you know to skip this 993 * part of the file 994 */ 995 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 996 { 997 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 998 struct extent_map *em = NULL; 999 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1000 u64 end; 1001 1002 read_lock(&em_tree->lock); 1003 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1004 read_unlock(&em_tree->lock); 1005 1006 if (em) { 1007 end = extent_map_end(em); 1008 free_extent_map(em); 1009 if (end - offset > thresh) 1010 return 0; 1011 } 1012 /* if we already have a nice delalloc here, just stop */ 1013 thresh /= 2; 1014 end = count_range_bits(io_tree, &offset, offset + thresh, 1015 thresh, EXTENT_DELALLOC, 1); 1016 if (end >= thresh) 1017 return 0; 1018 return 1; 1019 } 1020 1021 /* 1022 * helper function to walk through a file and find extents 1023 * newer than a specific transid, and smaller than thresh. 1024 * 1025 * This is used by the defragging code to find new and small 1026 * extents 1027 */ 1028 static int find_new_extents(struct btrfs_root *root, 1029 struct inode *inode, u64 newer_than, 1030 u64 *off, u32 thresh) 1031 { 1032 struct btrfs_path *path; 1033 struct btrfs_key min_key; 1034 struct extent_buffer *leaf; 1035 struct btrfs_file_extent_item *extent; 1036 int type; 1037 int ret; 1038 u64 ino = btrfs_ino(BTRFS_I(inode)); 1039 1040 path = btrfs_alloc_path(); 1041 if (!path) 1042 return -ENOMEM; 1043 1044 min_key.objectid = ino; 1045 min_key.type = BTRFS_EXTENT_DATA_KEY; 1046 min_key.offset = *off; 1047 1048 while (1) { 1049 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1050 if (ret != 0) 1051 goto none; 1052 process_slot: 1053 if (min_key.objectid != ino) 1054 goto none; 1055 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1056 goto none; 1057 1058 leaf = path->nodes[0]; 1059 extent = btrfs_item_ptr(leaf, path->slots[0], 1060 struct btrfs_file_extent_item); 1061 1062 type = btrfs_file_extent_type(leaf, extent); 1063 if (type == BTRFS_FILE_EXTENT_REG && 1064 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1065 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1066 *off = min_key.offset; 1067 btrfs_free_path(path); 1068 return 0; 1069 } 1070 1071 path->slots[0]++; 1072 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1073 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1074 goto process_slot; 1075 } 1076 1077 if (min_key.offset == (u64)-1) 1078 goto none; 1079 1080 min_key.offset++; 1081 btrfs_release_path(path); 1082 } 1083 none: 1084 btrfs_free_path(path); 1085 return -ENOENT; 1086 } 1087 1088 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1089 { 1090 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1091 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1092 struct extent_map *em; 1093 u64 len = PAGE_SIZE; 1094 1095 /* 1096 * hopefully we have this extent in the tree already, try without 1097 * the full extent lock 1098 */ 1099 read_lock(&em_tree->lock); 1100 em = lookup_extent_mapping(em_tree, start, len); 1101 read_unlock(&em_tree->lock); 1102 1103 if (!em) { 1104 struct extent_state *cached = NULL; 1105 u64 end = start + len - 1; 1106 1107 /* get the big lock and read metadata off disk */ 1108 lock_extent_bits(io_tree, start, end, &cached); 1109 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 1110 unlock_extent_cached(io_tree, start, end, &cached); 1111 1112 if (IS_ERR(em)) 1113 return NULL; 1114 } 1115 1116 return em; 1117 } 1118 1119 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1120 { 1121 struct extent_map *next; 1122 bool ret = true; 1123 1124 /* this is the last extent */ 1125 if (em->start + em->len >= i_size_read(inode)) 1126 return false; 1127 1128 next = defrag_lookup_extent(inode, em->start + em->len); 1129 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1130 ret = false; 1131 else if ((em->block_start + em->block_len == next->block_start) && 1132 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1133 ret = false; 1134 1135 free_extent_map(next); 1136 return ret; 1137 } 1138 1139 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1140 u64 *last_len, u64 *skip, u64 *defrag_end, 1141 int compress) 1142 { 1143 struct extent_map *em; 1144 int ret = 1; 1145 bool next_mergeable = true; 1146 bool prev_mergeable = true; 1147 1148 /* 1149 * make sure that once we start defragging an extent, we keep on 1150 * defragging it 1151 */ 1152 if (start < *defrag_end) 1153 return 1; 1154 1155 *skip = 0; 1156 1157 em = defrag_lookup_extent(inode, start); 1158 if (!em) 1159 return 0; 1160 1161 /* this will cover holes, and inline extents */ 1162 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1163 ret = 0; 1164 goto out; 1165 } 1166 1167 if (!*defrag_end) 1168 prev_mergeable = false; 1169 1170 next_mergeable = defrag_check_next_extent(inode, em); 1171 /* 1172 * we hit a real extent, if it is big or the next extent is not a 1173 * real extent, don't bother defragging it 1174 */ 1175 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1176 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1177 ret = 0; 1178 out: 1179 /* 1180 * last_len ends up being a counter of how many bytes we've defragged. 1181 * every time we choose not to defrag an extent, we reset *last_len 1182 * so that the next tiny extent will force a defrag. 1183 * 1184 * The end result of this is that tiny extents before a single big 1185 * extent will force at least part of that big extent to be defragged. 1186 */ 1187 if (ret) { 1188 *defrag_end = extent_map_end(em); 1189 } else { 1190 *last_len = 0; 1191 *skip = extent_map_end(em); 1192 *defrag_end = 0; 1193 } 1194 1195 free_extent_map(em); 1196 return ret; 1197 } 1198 1199 /* 1200 * it doesn't do much good to defrag one or two pages 1201 * at a time. This pulls in a nice chunk of pages 1202 * to COW and defrag. 1203 * 1204 * It also makes sure the delalloc code has enough 1205 * dirty data to avoid making new small extents as part 1206 * of the defrag 1207 * 1208 * It's a good idea to start RA on this range 1209 * before calling this. 1210 */ 1211 static int cluster_pages_for_defrag(struct inode *inode, 1212 struct page **pages, 1213 unsigned long start_index, 1214 unsigned long num_pages) 1215 { 1216 unsigned long file_end; 1217 u64 isize = i_size_read(inode); 1218 u64 page_start; 1219 u64 page_end; 1220 u64 page_cnt; 1221 int ret; 1222 int i; 1223 int i_done; 1224 struct btrfs_ordered_extent *ordered; 1225 struct extent_state *cached_state = NULL; 1226 struct extent_io_tree *tree; 1227 struct extent_changeset *data_reserved = NULL; 1228 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1229 1230 file_end = (isize - 1) >> PAGE_SHIFT; 1231 if (!isize || start_index > file_end) 1232 return 0; 1233 1234 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1235 1236 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1237 start_index << PAGE_SHIFT, 1238 page_cnt << PAGE_SHIFT); 1239 if (ret) 1240 return ret; 1241 i_done = 0; 1242 tree = &BTRFS_I(inode)->io_tree; 1243 1244 /* step one, lock all the pages */ 1245 for (i = 0; i < page_cnt; i++) { 1246 struct page *page; 1247 again: 1248 page = find_or_create_page(inode->i_mapping, 1249 start_index + i, mask); 1250 if (!page) 1251 break; 1252 1253 page_start = page_offset(page); 1254 page_end = page_start + PAGE_SIZE - 1; 1255 while (1) { 1256 lock_extent_bits(tree, page_start, page_end, 1257 &cached_state); 1258 ordered = btrfs_lookup_ordered_extent(inode, 1259 page_start); 1260 unlock_extent_cached(tree, page_start, page_end, 1261 &cached_state); 1262 if (!ordered) 1263 break; 1264 1265 unlock_page(page); 1266 btrfs_start_ordered_extent(inode, ordered, 1); 1267 btrfs_put_ordered_extent(ordered); 1268 lock_page(page); 1269 /* 1270 * we unlocked the page above, so we need check if 1271 * it was released or not. 1272 */ 1273 if (page->mapping != inode->i_mapping) { 1274 unlock_page(page); 1275 put_page(page); 1276 goto again; 1277 } 1278 } 1279 1280 if (!PageUptodate(page)) { 1281 btrfs_readpage(NULL, page); 1282 lock_page(page); 1283 if (!PageUptodate(page)) { 1284 unlock_page(page); 1285 put_page(page); 1286 ret = -EIO; 1287 break; 1288 } 1289 } 1290 1291 if (page->mapping != inode->i_mapping) { 1292 unlock_page(page); 1293 put_page(page); 1294 goto again; 1295 } 1296 1297 pages[i] = page; 1298 i_done++; 1299 } 1300 if (!i_done || ret) 1301 goto out; 1302 1303 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1304 goto out; 1305 1306 /* 1307 * so now we have a nice long stream of locked 1308 * and up to date pages, lets wait on them 1309 */ 1310 for (i = 0; i < i_done; i++) 1311 wait_on_page_writeback(pages[i]); 1312 1313 page_start = page_offset(pages[0]); 1314 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1315 1316 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1317 page_start, page_end - 1, &cached_state); 1318 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1319 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1320 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1321 &cached_state); 1322 1323 if (i_done != page_cnt) { 1324 spin_lock(&BTRFS_I(inode)->lock); 1325 BTRFS_I(inode)->outstanding_extents++; 1326 spin_unlock(&BTRFS_I(inode)->lock); 1327 btrfs_delalloc_release_space(inode, data_reserved, 1328 start_index << PAGE_SHIFT, 1329 (page_cnt - i_done) << PAGE_SHIFT, true); 1330 } 1331 1332 1333 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1334 &cached_state); 1335 1336 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1337 page_start, page_end - 1, &cached_state); 1338 1339 for (i = 0; i < i_done; i++) { 1340 clear_page_dirty_for_io(pages[i]); 1341 ClearPageChecked(pages[i]); 1342 set_page_extent_mapped(pages[i]); 1343 set_page_dirty(pages[i]); 1344 unlock_page(pages[i]); 1345 put_page(pages[i]); 1346 } 1347 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1348 false); 1349 extent_changeset_free(data_reserved); 1350 return i_done; 1351 out: 1352 for (i = 0; i < i_done; i++) { 1353 unlock_page(pages[i]); 1354 put_page(pages[i]); 1355 } 1356 btrfs_delalloc_release_space(inode, data_reserved, 1357 start_index << PAGE_SHIFT, 1358 page_cnt << PAGE_SHIFT, true); 1359 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1360 true); 1361 extent_changeset_free(data_reserved); 1362 return ret; 1363 1364 } 1365 1366 int btrfs_defrag_file(struct inode *inode, struct file *file, 1367 struct btrfs_ioctl_defrag_range_args *range, 1368 u64 newer_than, unsigned long max_to_defrag) 1369 { 1370 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1371 struct btrfs_root *root = BTRFS_I(inode)->root; 1372 struct file_ra_state *ra = NULL; 1373 unsigned long last_index; 1374 u64 isize = i_size_read(inode); 1375 u64 last_len = 0; 1376 u64 skip = 0; 1377 u64 defrag_end = 0; 1378 u64 newer_off = range->start; 1379 unsigned long i; 1380 unsigned long ra_index = 0; 1381 int ret; 1382 int defrag_count = 0; 1383 int compress_type = BTRFS_COMPRESS_ZLIB; 1384 u32 extent_thresh = range->extent_thresh; 1385 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1386 unsigned long cluster = max_cluster; 1387 u64 new_align = ~((u64)SZ_128K - 1); 1388 struct page **pages = NULL; 1389 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1390 1391 if (isize == 0) 1392 return 0; 1393 1394 if (range->start >= isize) 1395 return -EINVAL; 1396 1397 if (do_compress) { 1398 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1399 return -EINVAL; 1400 if (range->compress_type) 1401 compress_type = range->compress_type; 1402 } 1403 1404 if (extent_thresh == 0) 1405 extent_thresh = SZ_256K; 1406 1407 /* 1408 * If we were not given a file, allocate a readahead context. As 1409 * readahead is just an optimization, defrag will work without it so 1410 * we don't error out. 1411 */ 1412 if (!file) { 1413 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1414 if (ra) 1415 file_ra_state_init(ra, inode->i_mapping); 1416 } else { 1417 ra = &file->f_ra; 1418 } 1419 1420 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1421 if (!pages) { 1422 ret = -ENOMEM; 1423 goto out_ra; 1424 } 1425 1426 /* find the last page to defrag */ 1427 if (range->start + range->len > range->start) { 1428 last_index = min_t(u64, isize - 1, 1429 range->start + range->len - 1) >> PAGE_SHIFT; 1430 } else { 1431 last_index = (isize - 1) >> PAGE_SHIFT; 1432 } 1433 1434 if (newer_than) { 1435 ret = find_new_extents(root, inode, newer_than, 1436 &newer_off, SZ_64K); 1437 if (!ret) { 1438 range->start = newer_off; 1439 /* 1440 * we always align our defrag to help keep 1441 * the extents in the file evenly spaced 1442 */ 1443 i = (newer_off & new_align) >> PAGE_SHIFT; 1444 } else 1445 goto out_ra; 1446 } else { 1447 i = range->start >> PAGE_SHIFT; 1448 } 1449 if (!max_to_defrag) 1450 max_to_defrag = last_index - i + 1; 1451 1452 /* 1453 * make writeback starts from i, so the defrag range can be 1454 * written sequentially. 1455 */ 1456 if (i < inode->i_mapping->writeback_index) 1457 inode->i_mapping->writeback_index = i; 1458 1459 while (i <= last_index && defrag_count < max_to_defrag && 1460 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1461 /* 1462 * make sure we stop running if someone unmounts 1463 * the FS 1464 */ 1465 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1466 break; 1467 1468 if (btrfs_defrag_cancelled(fs_info)) { 1469 btrfs_debug(fs_info, "defrag_file cancelled"); 1470 ret = -EAGAIN; 1471 break; 1472 } 1473 1474 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1475 extent_thresh, &last_len, &skip, 1476 &defrag_end, do_compress)){ 1477 unsigned long next; 1478 /* 1479 * the should_defrag function tells us how much to skip 1480 * bump our counter by the suggested amount 1481 */ 1482 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1483 i = max(i + 1, next); 1484 continue; 1485 } 1486 1487 if (!newer_than) { 1488 cluster = (PAGE_ALIGN(defrag_end) >> 1489 PAGE_SHIFT) - i; 1490 cluster = min(cluster, max_cluster); 1491 } else { 1492 cluster = max_cluster; 1493 } 1494 1495 if (i + cluster > ra_index) { 1496 ra_index = max(i, ra_index); 1497 if (ra) 1498 page_cache_sync_readahead(inode->i_mapping, ra, 1499 file, ra_index, cluster); 1500 ra_index += cluster; 1501 } 1502 1503 inode_lock(inode); 1504 if (do_compress) 1505 BTRFS_I(inode)->defrag_compress = compress_type; 1506 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1507 if (ret < 0) { 1508 inode_unlock(inode); 1509 goto out_ra; 1510 } 1511 1512 defrag_count += ret; 1513 balance_dirty_pages_ratelimited(inode->i_mapping); 1514 inode_unlock(inode); 1515 1516 if (newer_than) { 1517 if (newer_off == (u64)-1) 1518 break; 1519 1520 if (ret > 0) 1521 i += ret; 1522 1523 newer_off = max(newer_off + 1, 1524 (u64)i << PAGE_SHIFT); 1525 1526 ret = find_new_extents(root, inode, newer_than, 1527 &newer_off, SZ_64K); 1528 if (!ret) { 1529 range->start = newer_off; 1530 i = (newer_off & new_align) >> PAGE_SHIFT; 1531 } else { 1532 break; 1533 } 1534 } else { 1535 if (ret > 0) { 1536 i += ret; 1537 last_len += ret << PAGE_SHIFT; 1538 } else { 1539 i++; 1540 last_len = 0; 1541 } 1542 } 1543 } 1544 1545 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1546 filemap_flush(inode->i_mapping); 1547 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1548 &BTRFS_I(inode)->runtime_flags)) 1549 filemap_flush(inode->i_mapping); 1550 } 1551 1552 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1553 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1554 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1555 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1556 } 1557 1558 ret = defrag_count; 1559 1560 out_ra: 1561 if (do_compress) { 1562 inode_lock(inode); 1563 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1564 inode_unlock(inode); 1565 } 1566 if (!file) 1567 kfree(ra); 1568 kfree(pages); 1569 return ret; 1570 } 1571 1572 static noinline int btrfs_ioctl_resize(struct file *file, 1573 void __user *arg) 1574 { 1575 struct inode *inode = file_inode(file); 1576 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1577 u64 new_size; 1578 u64 old_size; 1579 u64 devid = 1; 1580 struct btrfs_root *root = BTRFS_I(inode)->root; 1581 struct btrfs_ioctl_vol_args *vol_args; 1582 struct btrfs_trans_handle *trans; 1583 struct btrfs_device *device = NULL; 1584 char *sizestr; 1585 char *retptr; 1586 char *devstr = NULL; 1587 int ret = 0; 1588 int mod = 0; 1589 1590 if (!capable(CAP_SYS_ADMIN)) 1591 return -EPERM; 1592 1593 ret = mnt_want_write_file(file); 1594 if (ret) 1595 return ret; 1596 1597 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1598 mnt_drop_write_file(file); 1599 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1600 } 1601 1602 vol_args = memdup_user(arg, sizeof(*vol_args)); 1603 if (IS_ERR(vol_args)) { 1604 ret = PTR_ERR(vol_args); 1605 goto out; 1606 } 1607 1608 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1609 1610 sizestr = vol_args->name; 1611 devstr = strchr(sizestr, ':'); 1612 if (devstr) { 1613 sizestr = devstr + 1; 1614 *devstr = '\0'; 1615 devstr = vol_args->name; 1616 ret = kstrtoull(devstr, 10, &devid); 1617 if (ret) 1618 goto out_free; 1619 if (!devid) { 1620 ret = -EINVAL; 1621 goto out_free; 1622 } 1623 btrfs_info(fs_info, "resizing devid %llu", devid); 1624 } 1625 1626 device = btrfs_find_device(fs_info, devid, NULL, NULL); 1627 if (!device) { 1628 btrfs_info(fs_info, "resizer unable to find device %llu", 1629 devid); 1630 ret = -ENODEV; 1631 goto out_free; 1632 } 1633 1634 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1635 btrfs_info(fs_info, 1636 "resizer unable to apply on readonly device %llu", 1637 devid); 1638 ret = -EPERM; 1639 goto out_free; 1640 } 1641 1642 if (!strcmp(sizestr, "max")) 1643 new_size = device->bdev->bd_inode->i_size; 1644 else { 1645 if (sizestr[0] == '-') { 1646 mod = -1; 1647 sizestr++; 1648 } else if (sizestr[0] == '+') { 1649 mod = 1; 1650 sizestr++; 1651 } 1652 new_size = memparse(sizestr, &retptr); 1653 if (*retptr != '\0' || new_size == 0) { 1654 ret = -EINVAL; 1655 goto out_free; 1656 } 1657 } 1658 1659 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1660 ret = -EPERM; 1661 goto out_free; 1662 } 1663 1664 old_size = btrfs_device_get_total_bytes(device); 1665 1666 if (mod < 0) { 1667 if (new_size > old_size) { 1668 ret = -EINVAL; 1669 goto out_free; 1670 } 1671 new_size = old_size - new_size; 1672 } else if (mod > 0) { 1673 if (new_size > ULLONG_MAX - old_size) { 1674 ret = -ERANGE; 1675 goto out_free; 1676 } 1677 new_size = old_size + new_size; 1678 } 1679 1680 if (new_size < SZ_256M) { 1681 ret = -EINVAL; 1682 goto out_free; 1683 } 1684 if (new_size > device->bdev->bd_inode->i_size) { 1685 ret = -EFBIG; 1686 goto out_free; 1687 } 1688 1689 new_size = round_down(new_size, fs_info->sectorsize); 1690 1691 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1692 rcu_str_deref(device->name), new_size); 1693 1694 if (new_size > old_size) { 1695 trans = btrfs_start_transaction(root, 0); 1696 if (IS_ERR(trans)) { 1697 ret = PTR_ERR(trans); 1698 goto out_free; 1699 } 1700 ret = btrfs_grow_device(trans, device, new_size); 1701 btrfs_commit_transaction(trans); 1702 } else if (new_size < old_size) { 1703 ret = btrfs_shrink_device(device, new_size); 1704 } /* equal, nothing need to do */ 1705 1706 out_free: 1707 kfree(vol_args); 1708 out: 1709 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1710 mnt_drop_write_file(file); 1711 return ret; 1712 } 1713 1714 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1715 const char *name, unsigned long fd, int subvol, 1716 u64 *transid, bool readonly, 1717 struct btrfs_qgroup_inherit *inherit) 1718 { 1719 int namelen; 1720 int ret = 0; 1721 1722 if (!S_ISDIR(file_inode(file)->i_mode)) 1723 return -ENOTDIR; 1724 1725 ret = mnt_want_write_file(file); 1726 if (ret) 1727 goto out; 1728 1729 namelen = strlen(name); 1730 if (strchr(name, '/')) { 1731 ret = -EINVAL; 1732 goto out_drop_write; 1733 } 1734 1735 if (name[0] == '.' && 1736 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1737 ret = -EEXIST; 1738 goto out_drop_write; 1739 } 1740 1741 if (subvol) { 1742 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1743 NULL, transid, readonly, inherit); 1744 } else { 1745 struct fd src = fdget(fd); 1746 struct inode *src_inode; 1747 if (!src.file) { 1748 ret = -EINVAL; 1749 goto out_drop_write; 1750 } 1751 1752 src_inode = file_inode(src.file); 1753 if (src_inode->i_sb != file_inode(file)->i_sb) { 1754 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1755 "Snapshot src from another FS"); 1756 ret = -EXDEV; 1757 } else if (!inode_owner_or_capable(src_inode)) { 1758 /* 1759 * Subvolume creation is not restricted, but snapshots 1760 * are limited to own subvolumes only 1761 */ 1762 ret = -EPERM; 1763 } else { 1764 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1765 BTRFS_I(src_inode)->root, 1766 transid, readonly, inherit); 1767 } 1768 fdput(src); 1769 } 1770 out_drop_write: 1771 mnt_drop_write_file(file); 1772 out: 1773 return ret; 1774 } 1775 1776 static noinline int btrfs_ioctl_snap_create(struct file *file, 1777 void __user *arg, int subvol) 1778 { 1779 struct btrfs_ioctl_vol_args *vol_args; 1780 int ret; 1781 1782 if (!S_ISDIR(file_inode(file)->i_mode)) 1783 return -ENOTDIR; 1784 1785 vol_args = memdup_user(arg, sizeof(*vol_args)); 1786 if (IS_ERR(vol_args)) 1787 return PTR_ERR(vol_args); 1788 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1789 1790 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1791 vol_args->fd, subvol, 1792 NULL, false, NULL); 1793 1794 kfree(vol_args); 1795 return ret; 1796 } 1797 1798 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1799 void __user *arg, int subvol) 1800 { 1801 struct btrfs_ioctl_vol_args_v2 *vol_args; 1802 int ret; 1803 u64 transid = 0; 1804 u64 *ptr = NULL; 1805 bool readonly = false; 1806 struct btrfs_qgroup_inherit *inherit = NULL; 1807 1808 if (!S_ISDIR(file_inode(file)->i_mode)) 1809 return -ENOTDIR; 1810 1811 vol_args = memdup_user(arg, sizeof(*vol_args)); 1812 if (IS_ERR(vol_args)) 1813 return PTR_ERR(vol_args); 1814 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1815 1816 if (vol_args->flags & 1817 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1818 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1819 ret = -EOPNOTSUPP; 1820 goto free_args; 1821 } 1822 1823 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1824 ptr = &transid; 1825 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1826 readonly = true; 1827 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1828 if (vol_args->size > PAGE_SIZE) { 1829 ret = -EINVAL; 1830 goto free_args; 1831 } 1832 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1833 if (IS_ERR(inherit)) { 1834 ret = PTR_ERR(inherit); 1835 goto free_args; 1836 } 1837 } 1838 1839 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1840 vol_args->fd, subvol, ptr, 1841 readonly, inherit); 1842 if (ret) 1843 goto free_inherit; 1844 1845 if (ptr && copy_to_user(arg + 1846 offsetof(struct btrfs_ioctl_vol_args_v2, 1847 transid), 1848 ptr, sizeof(*ptr))) 1849 ret = -EFAULT; 1850 1851 free_inherit: 1852 kfree(inherit); 1853 free_args: 1854 kfree(vol_args); 1855 return ret; 1856 } 1857 1858 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1859 void __user *arg) 1860 { 1861 struct inode *inode = file_inode(file); 1862 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1863 struct btrfs_root *root = BTRFS_I(inode)->root; 1864 int ret = 0; 1865 u64 flags = 0; 1866 1867 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1868 return -EINVAL; 1869 1870 down_read(&fs_info->subvol_sem); 1871 if (btrfs_root_readonly(root)) 1872 flags |= BTRFS_SUBVOL_RDONLY; 1873 up_read(&fs_info->subvol_sem); 1874 1875 if (copy_to_user(arg, &flags, sizeof(flags))) 1876 ret = -EFAULT; 1877 1878 return ret; 1879 } 1880 1881 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1882 void __user *arg) 1883 { 1884 struct inode *inode = file_inode(file); 1885 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1886 struct btrfs_root *root = BTRFS_I(inode)->root; 1887 struct btrfs_trans_handle *trans; 1888 u64 root_flags; 1889 u64 flags; 1890 int ret = 0; 1891 1892 if (!inode_owner_or_capable(inode)) 1893 return -EPERM; 1894 1895 ret = mnt_want_write_file(file); 1896 if (ret) 1897 goto out; 1898 1899 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1900 ret = -EINVAL; 1901 goto out_drop_write; 1902 } 1903 1904 if (copy_from_user(&flags, arg, sizeof(flags))) { 1905 ret = -EFAULT; 1906 goto out_drop_write; 1907 } 1908 1909 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1910 ret = -EINVAL; 1911 goto out_drop_write; 1912 } 1913 1914 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1915 ret = -EOPNOTSUPP; 1916 goto out_drop_write; 1917 } 1918 1919 down_write(&fs_info->subvol_sem); 1920 1921 /* nothing to do */ 1922 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1923 goto out_drop_sem; 1924 1925 root_flags = btrfs_root_flags(&root->root_item); 1926 if (flags & BTRFS_SUBVOL_RDONLY) { 1927 btrfs_set_root_flags(&root->root_item, 1928 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1929 } else { 1930 /* 1931 * Block RO -> RW transition if this subvolume is involved in 1932 * send 1933 */ 1934 spin_lock(&root->root_item_lock); 1935 if (root->send_in_progress == 0) { 1936 btrfs_set_root_flags(&root->root_item, 1937 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1938 spin_unlock(&root->root_item_lock); 1939 } else { 1940 spin_unlock(&root->root_item_lock); 1941 btrfs_warn(fs_info, 1942 "Attempt to set subvolume %llu read-write during send", 1943 root->root_key.objectid); 1944 ret = -EPERM; 1945 goto out_drop_sem; 1946 } 1947 } 1948 1949 trans = btrfs_start_transaction(root, 1); 1950 if (IS_ERR(trans)) { 1951 ret = PTR_ERR(trans); 1952 goto out_reset; 1953 } 1954 1955 ret = btrfs_update_root(trans, fs_info->tree_root, 1956 &root->root_key, &root->root_item); 1957 if (ret < 0) { 1958 btrfs_end_transaction(trans); 1959 goto out_reset; 1960 } 1961 1962 ret = btrfs_commit_transaction(trans); 1963 1964 out_reset: 1965 if (ret) 1966 btrfs_set_root_flags(&root->root_item, root_flags); 1967 out_drop_sem: 1968 up_write(&fs_info->subvol_sem); 1969 out_drop_write: 1970 mnt_drop_write_file(file); 1971 out: 1972 return ret; 1973 } 1974 1975 static noinline int key_in_sk(struct btrfs_key *key, 1976 struct btrfs_ioctl_search_key *sk) 1977 { 1978 struct btrfs_key test; 1979 int ret; 1980 1981 test.objectid = sk->min_objectid; 1982 test.type = sk->min_type; 1983 test.offset = sk->min_offset; 1984 1985 ret = btrfs_comp_cpu_keys(key, &test); 1986 if (ret < 0) 1987 return 0; 1988 1989 test.objectid = sk->max_objectid; 1990 test.type = sk->max_type; 1991 test.offset = sk->max_offset; 1992 1993 ret = btrfs_comp_cpu_keys(key, &test); 1994 if (ret > 0) 1995 return 0; 1996 return 1; 1997 } 1998 1999 static noinline int copy_to_sk(struct btrfs_path *path, 2000 struct btrfs_key *key, 2001 struct btrfs_ioctl_search_key *sk, 2002 size_t *buf_size, 2003 char __user *ubuf, 2004 unsigned long *sk_offset, 2005 int *num_found) 2006 { 2007 u64 found_transid; 2008 struct extent_buffer *leaf; 2009 struct btrfs_ioctl_search_header sh; 2010 struct btrfs_key test; 2011 unsigned long item_off; 2012 unsigned long item_len; 2013 int nritems; 2014 int i; 2015 int slot; 2016 int ret = 0; 2017 2018 leaf = path->nodes[0]; 2019 slot = path->slots[0]; 2020 nritems = btrfs_header_nritems(leaf); 2021 2022 if (btrfs_header_generation(leaf) > sk->max_transid) { 2023 i = nritems; 2024 goto advance_key; 2025 } 2026 found_transid = btrfs_header_generation(leaf); 2027 2028 for (i = slot; i < nritems; i++) { 2029 item_off = btrfs_item_ptr_offset(leaf, i); 2030 item_len = btrfs_item_size_nr(leaf, i); 2031 2032 btrfs_item_key_to_cpu(leaf, key, i); 2033 if (!key_in_sk(key, sk)) 2034 continue; 2035 2036 if (sizeof(sh) + item_len > *buf_size) { 2037 if (*num_found) { 2038 ret = 1; 2039 goto out; 2040 } 2041 2042 /* 2043 * return one empty item back for v1, which does not 2044 * handle -EOVERFLOW 2045 */ 2046 2047 *buf_size = sizeof(sh) + item_len; 2048 item_len = 0; 2049 ret = -EOVERFLOW; 2050 } 2051 2052 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2053 ret = 1; 2054 goto out; 2055 } 2056 2057 sh.objectid = key->objectid; 2058 sh.offset = key->offset; 2059 sh.type = key->type; 2060 sh.len = item_len; 2061 sh.transid = found_transid; 2062 2063 /* copy search result header */ 2064 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2065 ret = -EFAULT; 2066 goto out; 2067 } 2068 2069 *sk_offset += sizeof(sh); 2070 2071 if (item_len) { 2072 char __user *up = ubuf + *sk_offset; 2073 /* copy the item */ 2074 if (read_extent_buffer_to_user(leaf, up, 2075 item_off, item_len)) { 2076 ret = -EFAULT; 2077 goto out; 2078 } 2079 2080 *sk_offset += item_len; 2081 } 2082 (*num_found)++; 2083 2084 if (ret) /* -EOVERFLOW from above */ 2085 goto out; 2086 2087 if (*num_found >= sk->nr_items) { 2088 ret = 1; 2089 goto out; 2090 } 2091 } 2092 advance_key: 2093 ret = 0; 2094 test.objectid = sk->max_objectid; 2095 test.type = sk->max_type; 2096 test.offset = sk->max_offset; 2097 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2098 ret = 1; 2099 else if (key->offset < (u64)-1) 2100 key->offset++; 2101 else if (key->type < (u8)-1) { 2102 key->offset = 0; 2103 key->type++; 2104 } else if (key->objectid < (u64)-1) { 2105 key->offset = 0; 2106 key->type = 0; 2107 key->objectid++; 2108 } else 2109 ret = 1; 2110 out: 2111 /* 2112 * 0: all items from this leaf copied, continue with next 2113 * 1: * more items can be copied, but unused buffer is too small 2114 * * all items were found 2115 * Either way, it will stops the loop which iterates to the next 2116 * leaf 2117 * -EOVERFLOW: item was to large for buffer 2118 * -EFAULT: could not copy extent buffer back to userspace 2119 */ 2120 return ret; 2121 } 2122 2123 static noinline int search_ioctl(struct inode *inode, 2124 struct btrfs_ioctl_search_key *sk, 2125 size_t *buf_size, 2126 char __user *ubuf) 2127 { 2128 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2129 struct btrfs_root *root; 2130 struct btrfs_key key; 2131 struct btrfs_path *path; 2132 int ret; 2133 int num_found = 0; 2134 unsigned long sk_offset = 0; 2135 2136 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2137 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2138 return -EOVERFLOW; 2139 } 2140 2141 path = btrfs_alloc_path(); 2142 if (!path) 2143 return -ENOMEM; 2144 2145 if (sk->tree_id == 0) { 2146 /* search the root of the inode that was passed */ 2147 root = BTRFS_I(inode)->root; 2148 } else { 2149 key.objectid = sk->tree_id; 2150 key.type = BTRFS_ROOT_ITEM_KEY; 2151 key.offset = (u64)-1; 2152 root = btrfs_read_fs_root_no_name(info, &key); 2153 if (IS_ERR(root)) { 2154 btrfs_free_path(path); 2155 return PTR_ERR(root); 2156 } 2157 } 2158 2159 key.objectid = sk->min_objectid; 2160 key.type = sk->min_type; 2161 key.offset = sk->min_offset; 2162 2163 while (1) { 2164 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2165 if (ret != 0) { 2166 if (ret > 0) 2167 ret = 0; 2168 goto err; 2169 } 2170 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2171 &sk_offset, &num_found); 2172 btrfs_release_path(path); 2173 if (ret) 2174 break; 2175 2176 } 2177 if (ret > 0) 2178 ret = 0; 2179 err: 2180 sk->nr_items = num_found; 2181 btrfs_free_path(path); 2182 return ret; 2183 } 2184 2185 static noinline int btrfs_ioctl_tree_search(struct file *file, 2186 void __user *argp) 2187 { 2188 struct btrfs_ioctl_search_args __user *uargs; 2189 struct btrfs_ioctl_search_key sk; 2190 struct inode *inode; 2191 int ret; 2192 size_t buf_size; 2193 2194 if (!capable(CAP_SYS_ADMIN)) 2195 return -EPERM; 2196 2197 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2198 2199 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2200 return -EFAULT; 2201 2202 buf_size = sizeof(uargs->buf); 2203 2204 inode = file_inode(file); 2205 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2206 2207 /* 2208 * In the origin implementation an overflow is handled by returning a 2209 * search header with a len of zero, so reset ret. 2210 */ 2211 if (ret == -EOVERFLOW) 2212 ret = 0; 2213 2214 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2215 ret = -EFAULT; 2216 return ret; 2217 } 2218 2219 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2220 void __user *argp) 2221 { 2222 struct btrfs_ioctl_search_args_v2 __user *uarg; 2223 struct btrfs_ioctl_search_args_v2 args; 2224 struct inode *inode; 2225 int ret; 2226 size_t buf_size; 2227 const size_t buf_limit = SZ_16M; 2228 2229 if (!capable(CAP_SYS_ADMIN)) 2230 return -EPERM; 2231 2232 /* copy search header and buffer size */ 2233 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2234 if (copy_from_user(&args, uarg, sizeof(args))) 2235 return -EFAULT; 2236 2237 buf_size = args.buf_size; 2238 2239 /* limit result size to 16MB */ 2240 if (buf_size > buf_limit) 2241 buf_size = buf_limit; 2242 2243 inode = file_inode(file); 2244 ret = search_ioctl(inode, &args.key, &buf_size, 2245 (char __user *)(&uarg->buf[0])); 2246 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2247 ret = -EFAULT; 2248 else if (ret == -EOVERFLOW && 2249 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2250 ret = -EFAULT; 2251 2252 return ret; 2253 } 2254 2255 /* 2256 * Search INODE_REFs to identify path name of 'dirid' directory 2257 * in a 'tree_id' tree. and sets path name to 'name'. 2258 */ 2259 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2260 u64 tree_id, u64 dirid, char *name) 2261 { 2262 struct btrfs_root *root; 2263 struct btrfs_key key; 2264 char *ptr; 2265 int ret = -1; 2266 int slot; 2267 int len; 2268 int total_len = 0; 2269 struct btrfs_inode_ref *iref; 2270 struct extent_buffer *l; 2271 struct btrfs_path *path; 2272 2273 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2274 name[0]='\0'; 2275 return 0; 2276 } 2277 2278 path = btrfs_alloc_path(); 2279 if (!path) 2280 return -ENOMEM; 2281 2282 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2283 2284 key.objectid = tree_id; 2285 key.type = BTRFS_ROOT_ITEM_KEY; 2286 key.offset = (u64)-1; 2287 root = btrfs_read_fs_root_no_name(info, &key); 2288 if (IS_ERR(root)) { 2289 ret = PTR_ERR(root); 2290 goto out; 2291 } 2292 2293 key.objectid = dirid; 2294 key.type = BTRFS_INODE_REF_KEY; 2295 key.offset = (u64)-1; 2296 2297 while (1) { 2298 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2299 if (ret < 0) 2300 goto out; 2301 else if (ret > 0) { 2302 ret = btrfs_previous_item(root, path, dirid, 2303 BTRFS_INODE_REF_KEY); 2304 if (ret < 0) 2305 goto out; 2306 else if (ret > 0) { 2307 ret = -ENOENT; 2308 goto out; 2309 } 2310 } 2311 2312 l = path->nodes[0]; 2313 slot = path->slots[0]; 2314 btrfs_item_key_to_cpu(l, &key, slot); 2315 2316 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2317 len = btrfs_inode_ref_name_len(l, iref); 2318 ptr -= len + 1; 2319 total_len += len + 1; 2320 if (ptr < name) { 2321 ret = -ENAMETOOLONG; 2322 goto out; 2323 } 2324 2325 *(ptr + len) = '/'; 2326 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2327 2328 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2329 break; 2330 2331 btrfs_release_path(path); 2332 key.objectid = key.offset; 2333 key.offset = (u64)-1; 2334 dirid = key.objectid; 2335 } 2336 memmove(name, ptr, total_len); 2337 name[total_len] = '\0'; 2338 ret = 0; 2339 out: 2340 btrfs_free_path(path); 2341 return ret; 2342 } 2343 2344 static int btrfs_search_path_in_tree_user(struct inode *inode, 2345 struct btrfs_ioctl_ino_lookup_user_args *args) 2346 { 2347 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2348 struct super_block *sb = inode->i_sb; 2349 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2350 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2351 u64 dirid = args->dirid; 2352 unsigned long item_off; 2353 unsigned long item_len; 2354 struct btrfs_inode_ref *iref; 2355 struct btrfs_root_ref *rref; 2356 struct btrfs_root *root; 2357 struct btrfs_path *path; 2358 struct btrfs_key key, key2; 2359 struct extent_buffer *leaf; 2360 struct inode *temp_inode; 2361 char *ptr; 2362 int slot; 2363 int len; 2364 int total_len = 0; 2365 int ret; 2366 2367 path = btrfs_alloc_path(); 2368 if (!path) 2369 return -ENOMEM; 2370 2371 /* 2372 * If the bottom subvolume does not exist directly under upper_limit, 2373 * construct the path in from the bottom up. 2374 */ 2375 if (dirid != upper_limit.objectid) { 2376 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2377 2378 key.objectid = treeid; 2379 key.type = BTRFS_ROOT_ITEM_KEY; 2380 key.offset = (u64)-1; 2381 root = btrfs_read_fs_root_no_name(fs_info, &key); 2382 if (IS_ERR(root)) { 2383 ret = PTR_ERR(root); 2384 goto out; 2385 } 2386 2387 key.objectid = dirid; 2388 key.type = BTRFS_INODE_REF_KEY; 2389 key.offset = (u64)-1; 2390 while (1) { 2391 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2392 if (ret < 0) { 2393 goto out; 2394 } else if (ret > 0) { 2395 ret = btrfs_previous_item(root, path, dirid, 2396 BTRFS_INODE_REF_KEY); 2397 if (ret < 0) { 2398 goto out; 2399 } else if (ret > 0) { 2400 ret = -ENOENT; 2401 goto out; 2402 } 2403 } 2404 2405 leaf = path->nodes[0]; 2406 slot = path->slots[0]; 2407 btrfs_item_key_to_cpu(leaf, &key, slot); 2408 2409 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2410 len = btrfs_inode_ref_name_len(leaf, iref); 2411 ptr -= len + 1; 2412 total_len += len + 1; 2413 if (ptr < args->path) { 2414 ret = -ENAMETOOLONG; 2415 goto out; 2416 } 2417 2418 *(ptr + len) = '/'; 2419 read_extent_buffer(leaf, ptr, 2420 (unsigned long)(iref + 1), len); 2421 2422 /* Check the read+exec permission of this directory */ 2423 ret = btrfs_previous_item(root, path, dirid, 2424 BTRFS_INODE_ITEM_KEY); 2425 if (ret < 0) { 2426 goto out; 2427 } else if (ret > 0) { 2428 ret = -ENOENT; 2429 goto out; 2430 } 2431 2432 leaf = path->nodes[0]; 2433 slot = path->slots[0]; 2434 btrfs_item_key_to_cpu(leaf, &key2, slot); 2435 if (key2.objectid != dirid) { 2436 ret = -ENOENT; 2437 goto out; 2438 } 2439 2440 temp_inode = btrfs_iget(sb, &key2, root, NULL); 2441 if (IS_ERR(temp_inode)) { 2442 ret = PTR_ERR(temp_inode); 2443 goto out; 2444 } 2445 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2446 iput(temp_inode); 2447 if (ret) { 2448 ret = -EACCES; 2449 goto out; 2450 } 2451 2452 if (key.offset == upper_limit.objectid) 2453 break; 2454 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2455 ret = -EACCES; 2456 goto out; 2457 } 2458 2459 btrfs_release_path(path); 2460 key.objectid = key.offset; 2461 key.offset = (u64)-1; 2462 dirid = key.objectid; 2463 } 2464 2465 memmove(args->path, ptr, total_len); 2466 args->path[total_len] = '\0'; 2467 btrfs_release_path(path); 2468 } 2469 2470 /* Get the bottom subvolume's name from ROOT_REF */ 2471 root = fs_info->tree_root; 2472 key.objectid = treeid; 2473 key.type = BTRFS_ROOT_REF_KEY; 2474 key.offset = args->treeid; 2475 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2476 if (ret < 0) { 2477 goto out; 2478 } else if (ret > 0) { 2479 ret = -ENOENT; 2480 goto out; 2481 } 2482 2483 leaf = path->nodes[0]; 2484 slot = path->slots[0]; 2485 btrfs_item_key_to_cpu(leaf, &key, slot); 2486 2487 item_off = btrfs_item_ptr_offset(leaf, slot); 2488 item_len = btrfs_item_size_nr(leaf, slot); 2489 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2490 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2491 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2492 ret = -EINVAL; 2493 goto out; 2494 } 2495 2496 /* Copy subvolume's name */ 2497 item_off += sizeof(struct btrfs_root_ref); 2498 item_len -= sizeof(struct btrfs_root_ref); 2499 read_extent_buffer(leaf, args->name, item_off, item_len); 2500 args->name[item_len] = 0; 2501 2502 out: 2503 btrfs_free_path(path); 2504 return ret; 2505 } 2506 2507 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2508 void __user *argp) 2509 { 2510 struct btrfs_ioctl_ino_lookup_args *args; 2511 struct inode *inode; 2512 int ret = 0; 2513 2514 args = memdup_user(argp, sizeof(*args)); 2515 if (IS_ERR(args)) 2516 return PTR_ERR(args); 2517 2518 inode = file_inode(file); 2519 2520 /* 2521 * Unprivileged query to obtain the containing subvolume root id. The 2522 * path is reset so it's consistent with btrfs_search_path_in_tree. 2523 */ 2524 if (args->treeid == 0) 2525 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2526 2527 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2528 args->name[0] = 0; 2529 goto out; 2530 } 2531 2532 if (!capable(CAP_SYS_ADMIN)) { 2533 ret = -EPERM; 2534 goto out; 2535 } 2536 2537 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2538 args->treeid, args->objectid, 2539 args->name); 2540 2541 out: 2542 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2543 ret = -EFAULT; 2544 2545 kfree(args); 2546 return ret; 2547 } 2548 2549 /* 2550 * Version of ino_lookup ioctl (unprivileged) 2551 * 2552 * The main differences from ino_lookup ioctl are: 2553 * 2554 * 1. Read + Exec permission will be checked using inode_permission() during 2555 * path construction. -EACCES will be returned in case of failure. 2556 * 2. Path construction will be stopped at the inode number which corresponds 2557 * to the fd with which this ioctl is called. If constructed path does not 2558 * exist under fd's inode, -EACCES will be returned. 2559 * 3. The name of bottom subvolume is also searched and filled. 2560 */ 2561 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2562 { 2563 struct btrfs_ioctl_ino_lookup_user_args *args; 2564 struct inode *inode; 2565 int ret; 2566 2567 args = memdup_user(argp, sizeof(*args)); 2568 if (IS_ERR(args)) 2569 return PTR_ERR(args); 2570 2571 inode = file_inode(file); 2572 2573 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2574 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2575 /* 2576 * The subvolume does not exist under fd with which this is 2577 * called 2578 */ 2579 kfree(args); 2580 return -EACCES; 2581 } 2582 2583 ret = btrfs_search_path_in_tree_user(inode, args); 2584 2585 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2586 ret = -EFAULT; 2587 2588 kfree(args); 2589 return ret; 2590 } 2591 2592 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2593 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2594 { 2595 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2596 struct btrfs_fs_info *fs_info; 2597 struct btrfs_root *root; 2598 struct btrfs_path *path; 2599 struct btrfs_key key; 2600 struct btrfs_root_item *root_item; 2601 struct btrfs_root_ref *rref; 2602 struct extent_buffer *leaf; 2603 unsigned long item_off; 2604 unsigned long item_len; 2605 struct inode *inode; 2606 int slot; 2607 int ret = 0; 2608 2609 path = btrfs_alloc_path(); 2610 if (!path) 2611 return -ENOMEM; 2612 2613 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2614 if (!subvol_info) { 2615 btrfs_free_path(path); 2616 return -ENOMEM; 2617 } 2618 2619 inode = file_inode(file); 2620 fs_info = BTRFS_I(inode)->root->fs_info; 2621 2622 /* Get root_item of inode's subvolume */ 2623 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2624 key.type = BTRFS_ROOT_ITEM_KEY; 2625 key.offset = (u64)-1; 2626 root = btrfs_read_fs_root_no_name(fs_info, &key); 2627 if (IS_ERR(root)) { 2628 ret = PTR_ERR(root); 2629 goto out; 2630 } 2631 root_item = &root->root_item; 2632 2633 subvol_info->treeid = key.objectid; 2634 2635 subvol_info->generation = btrfs_root_generation(root_item); 2636 subvol_info->flags = btrfs_root_flags(root_item); 2637 2638 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2639 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2640 BTRFS_UUID_SIZE); 2641 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2642 BTRFS_UUID_SIZE); 2643 2644 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2645 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2646 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2647 2648 subvol_info->otransid = btrfs_root_otransid(root_item); 2649 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2650 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2651 2652 subvol_info->stransid = btrfs_root_stransid(root_item); 2653 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2654 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2655 2656 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2657 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2658 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2659 2660 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2661 /* Search root tree for ROOT_BACKREF of this subvolume */ 2662 root = fs_info->tree_root; 2663 2664 key.type = BTRFS_ROOT_BACKREF_KEY; 2665 key.offset = 0; 2666 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2667 if (ret < 0) { 2668 goto out; 2669 } else if (path->slots[0] >= 2670 btrfs_header_nritems(path->nodes[0])) { 2671 ret = btrfs_next_leaf(root, path); 2672 if (ret < 0) { 2673 goto out; 2674 } else if (ret > 0) { 2675 ret = -EUCLEAN; 2676 goto out; 2677 } 2678 } 2679 2680 leaf = path->nodes[0]; 2681 slot = path->slots[0]; 2682 btrfs_item_key_to_cpu(leaf, &key, slot); 2683 if (key.objectid == subvol_info->treeid && 2684 key.type == BTRFS_ROOT_BACKREF_KEY) { 2685 subvol_info->parent_id = key.offset; 2686 2687 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2688 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2689 2690 item_off = btrfs_item_ptr_offset(leaf, slot) 2691 + sizeof(struct btrfs_root_ref); 2692 item_len = btrfs_item_size_nr(leaf, slot) 2693 - sizeof(struct btrfs_root_ref); 2694 read_extent_buffer(leaf, subvol_info->name, 2695 item_off, item_len); 2696 } else { 2697 ret = -ENOENT; 2698 goto out; 2699 } 2700 } 2701 2702 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2703 ret = -EFAULT; 2704 2705 out: 2706 btrfs_free_path(path); 2707 kzfree(subvol_info); 2708 return ret; 2709 } 2710 2711 /* 2712 * Return ROOT_REF information of the subvolume containing this inode 2713 * except the subvolume name. 2714 */ 2715 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2716 { 2717 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2718 struct btrfs_root_ref *rref; 2719 struct btrfs_root *root; 2720 struct btrfs_path *path; 2721 struct btrfs_key key; 2722 struct extent_buffer *leaf; 2723 struct inode *inode; 2724 u64 objectid; 2725 int slot; 2726 int ret; 2727 u8 found; 2728 2729 path = btrfs_alloc_path(); 2730 if (!path) 2731 return -ENOMEM; 2732 2733 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2734 if (IS_ERR(rootrefs)) { 2735 btrfs_free_path(path); 2736 return PTR_ERR(rootrefs); 2737 } 2738 2739 inode = file_inode(file); 2740 root = BTRFS_I(inode)->root->fs_info->tree_root; 2741 objectid = BTRFS_I(inode)->root->root_key.objectid; 2742 2743 key.objectid = objectid; 2744 key.type = BTRFS_ROOT_REF_KEY; 2745 key.offset = rootrefs->min_treeid; 2746 found = 0; 2747 2748 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2749 if (ret < 0) { 2750 goto out; 2751 } else if (path->slots[0] >= 2752 btrfs_header_nritems(path->nodes[0])) { 2753 ret = btrfs_next_leaf(root, path); 2754 if (ret < 0) { 2755 goto out; 2756 } else if (ret > 0) { 2757 ret = -EUCLEAN; 2758 goto out; 2759 } 2760 } 2761 while (1) { 2762 leaf = path->nodes[0]; 2763 slot = path->slots[0]; 2764 2765 btrfs_item_key_to_cpu(leaf, &key, slot); 2766 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2767 ret = 0; 2768 goto out; 2769 } 2770 2771 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2772 ret = -EOVERFLOW; 2773 goto out; 2774 } 2775 2776 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2777 rootrefs->rootref[found].treeid = key.offset; 2778 rootrefs->rootref[found].dirid = 2779 btrfs_root_ref_dirid(leaf, rref); 2780 found++; 2781 2782 ret = btrfs_next_item(root, path); 2783 if (ret < 0) { 2784 goto out; 2785 } else if (ret > 0) { 2786 ret = -EUCLEAN; 2787 goto out; 2788 } 2789 } 2790 2791 out: 2792 if (!ret || ret == -EOVERFLOW) { 2793 rootrefs->num_items = found; 2794 /* update min_treeid for next search */ 2795 if (found) 2796 rootrefs->min_treeid = 2797 rootrefs->rootref[found - 1].treeid + 1; 2798 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2799 ret = -EFAULT; 2800 } 2801 2802 kfree(rootrefs); 2803 btrfs_free_path(path); 2804 2805 return ret; 2806 } 2807 2808 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2809 void __user *arg) 2810 { 2811 struct dentry *parent = file->f_path.dentry; 2812 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2813 struct dentry *dentry; 2814 struct inode *dir = d_inode(parent); 2815 struct inode *inode; 2816 struct btrfs_root *root = BTRFS_I(dir)->root; 2817 struct btrfs_root *dest = NULL; 2818 struct btrfs_ioctl_vol_args *vol_args; 2819 int namelen; 2820 int err = 0; 2821 2822 if (!S_ISDIR(dir->i_mode)) 2823 return -ENOTDIR; 2824 2825 vol_args = memdup_user(arg, sizeof(*vol_args)); 2826 if (IS_ERR(vol_args)) 2827 return PTR_ERR(vol_args); 2828 2829 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2830 namelen = strlen(vol_args->name); 2831 if (strchr(vol_args->name, '/') || 2832 strncmp(vol_args->name, "..", namelen) == 0) { 2833 err = -EINVAL; 2834 goto out; 2835 } 2836 2837 err = mnt_want_write_file(file); 2838 if (err) 2839 goto out; 2840 2841 2842 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2843 if (err == -EINTR) 2844 goto out_drop_write; 2845 dentry = lookup_one_len(vol_args->name, parent, namelen); 2846 if (IS_ERR(dentry)) { 2847 err = PTR_ERR(dentry); 2848 goto out_unlock_dir; 2849 } 2850 2851 if (d_really_is_negative(dentry)) { 2852 err = -ENOENT; 2853 goto out_dput; 2854 } 2855 2856 inode = d_inode(dentry); 2857 dest = BTRFS_I(inode)->root; 2858 if (!capable(CAP_SYS_ADMIN)) { 2859 /* 2860 * Regular user. Only allow this with a special mount 2861 * option, when the user has write+exec access to the 2862 * subvol root, and when rmdir(2) would have been 2863 * allowed. 2864 * 2865 * Note that this is _not_ check that the subvol is 2866 * empty or doesn't contain data that we wouldn't 2867 * otherwise be able to delete. 2868 * 2869 * Users who want to delete empty subvols should try 2870 * rmdir(2). 2871 */ 2872 err = -EPERM; 2873 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2874 goto out_dput; 2875 2876 /* 2877 * Do not allow deletion if the parent dir is the same 2878 * as the dir to be deleted. That means the ioctl 2879 * must be called on the dentry referencing the root 2880 * of the subvol, not a random directory contained 2881 * within it. 2882 */ 2883 err = -EINVAL; 2884 if (root == dest) 2885 goto out_dput; 2886 2887 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2888 if (err) 2889 goto out_dput; 2890 } 2891 2892 /* check if subvolume may be deleted by a user */ 2893 err = btrfs_may_delete(dir, dentry, 1); 2894 if (err) 2895 goto out_dput; 2896 2897 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2898 err = -EINVAL; 2899 goto out_dput; 2900 } 2901 2902 inode_lock(inode); 2903 err = btrfs_delete_subvolume(dir, dentry); 2904 inode_unlock(inode); 2905 if (!err) 2906 d_delete(dentry); 2907 2908 out_dput: 2909 dput(dentry); 2910 out_unlock_dir: 2911 inode_unlock(dir); 2912 out_drop_write: 2913 mnt_drop_write_file(file); 2914 out: 2915 kfree(vol_args); 2916 return err; 2917 } 2918 2919 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2920 { 2921 struct inode *inode = file_inode(file); 2922 struct btrfs_root *root = BTRFS_I(inode)->root; 2923 struct btrfs_ioctl_defrag_range_args *range; 2924 int ret; 2925 2926 ret = mnt_want_write_file(file); 2927 if (ret) 2928 return ret; 2929 2930 if (btrfs_root_readonly(root)) { 2931 ret = -EROFS; 2932 goto out; 2933 } 2934 2935 switch (inode->i_mode & S_IFMT) { 2936 case S_IFDIR: 2937 if (!capable(CAP_SYS_ADMIN)) { 2938 ret = -EPERM; 2939 goto out; 2940 } 2941 ret = btrfs_defrag_root(root); 2942 break; 2943 case S_IFREG: 2944 if (!(file->f_mode & FMODE_WRITE)) { 2945 ret = -EINVAL; 2946 goto out; 2947 } 2948 2949 range = kzalloc(sizeof(*range), GFP_KERNEL); 2950 if (!range) { 2951 ret = -ENOMEM; 2952 goto out; 2953 } 2954 2955 if (argp) { 2956 if (copy_from_user(range, argp, 2957 sizeof(*range))) { 2958 ret = -EFAULT; 2959 kfree(range); 2960 goto out; 2961 } 2962 /* compression requires us to start the IO */ 2963 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2964 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2965 range->extent_thresh = (u32)-1; 2966 } 2967 } else { 2968 /* the rest are all set to zero by kzalloc */ 2969 range->len = (u64)-1; 2970 } 2971 ret = btrfs_defrag_file(file_inode(file), file, 2972 range, BTRFS_OLDEST_GENERATION, 0); 2973 if (ret > 0) 2974 ret = 0; 2975 kfree(range); 2976 break; 2977 default: 2978 ret = -EINVAL; 2979 } 2980 out: 2981 mnt_drop_write_file(file); 2982 return ret; 2983 } 2984 2985 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2986 { 2987 struct btrfs_ioctl_vol_args *vol_args; 2988 int ret; 2989 2990 if (!capable(CAP_SYS_ADMIN)) 2991 return -EPERM; 2992 2993 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 2994 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2995 2996 vol_args = memdup_user(arg, sizeof(*vol_args)); 2997 if (IS_ERR(vol_args)) { 2998 ret = PTR_ERR(vol_args); 2999 goto out; 3000 } 3001 3002 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3003 ret = btrfs_init_new_device(fs_info, vol_args->name); 3004 3005 if (!ret) 3006 btrfs_info(fs_info, "disk added %s", vol_args->name); 3007 3008 kfree(vol_args); 3009 out: 3010 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3011 return ret; 3012 } 3013 3014 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3015 { 3016 struct inode *inode = file_inode(file); 3017 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3018 struct btrfs_ioctl_vol_args_v2 *vol_args; 3019 int ret; 3020 3021 if (!capable(CAP_SYS_ADMIN)) 3022 return -EPERM; 3023 3024 ret = mnt_want_write_file(file); 3025 if (ret) 3026 return ret; 3027 3028 vol_args = memdup_user(arg, sizeof(*vol_args)); 3029 if (IS_ERR(vol_args)) { 3030 ret = PTR_ERR(vol_args); 3031 goto err_drop; 3032 } 3033 3034 /* Check for compatibility reject unknown flags */ 3035 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) { 3036 ret = -EOPNOTSUPP; 3037 goto out; 3038 } 3039 3040 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3041 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3042 goto out; 3043 } 3044 3045 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3046 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3047 } else { 3048 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3049 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3050 } 3051 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3052 3053 if (!ret) { 3054 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3055 btrfs_info(fs_info, "device deleted: id %llu", 3056 vol_args->devid); 3057 else 3058 btrfs_info(fs_info, "device deleted: %s", 3059 vol_args->name); 3060 } 3061 out: 3062 kfree(vol_args); 3063 err_drop: 3064 mnt_drop_write_file(file); 3065 return ret; 3066 } 3067 3068 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3069 { 3070 struct inode *inode = file_inode(file); 3071 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3072 struct btrfs_ioctl_vol_args *vol_args; 3073 int ret; 3074 3075 if (!capable(CAP_SYS_ADMIN)) 3076 return -EPERM; 3077 3078 ret = mnt_want_write_file(file); 3079 if (ret) 3080 return ret; 3081 3082 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3083 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3084 goto out_drop_write; 3085 } 3086 3087 vol_args = memdup_user(arg, sizeof(*vol_args)); 3088 if (IS_ERR(vol_args)) { 3089 ret = PTR_ERR(vol_args); 3090 goto out; 3091 } 3092 3093 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3094 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3095 3096 if (!ret) 3097 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3098 kfree(vol_args); 3099 out: 3100 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3101 out_drop_write: 3102 mnt_drop_write_file(file); 3103 3104 return ret; 3105 } 3106 3107 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3108 void __user *arg) 3109 { 3110 struct btrfs_ioctl_fs_info_args *fi_args; 3111 struct btrfs_device *device; 3112 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3113 int ret = 0; 3114 3115 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3116 if (!fi_args) 3117 return -ENOMEM; 3118 3119 rcu_read_lock(); 3120 fi_args->num_devices = fs_devices->num_devices; 3121 3122 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3123 if (device->devid > fi_args->max_id) 3124 fi_args->max_id = device->devid; 3125 } 3126 rcu_read_unlock(); 3127 3128 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid)); 3129 fi_args->nodesize = fs_info->nodesize; 3130 fi_args->sectorsize = fs_info->sectorsize; 3131 fi_args->clone_alignment = fs_info->sectorsize; 3132 3133 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3134 ret = -EFAULT; 3135 3136 kfree(fi_args); 3137 return ret; 3138 } 3139 3140 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3141 void __user *arg) 3142 { 3143 struct btrfs_ioctl_dev_info_args *di_args; 3144 struct btrfs_device *dev; 3145 int ret = 0; 3146 char *s_uuid = NULL; 3147 3148 di_args = memdup_user(arg, sizeof(*di_args)); 3149 if (IS_ERR(di_args)) 3150 return PTR_ERR(di_args); 3151 3152 if (!btrfs_is_empty_uuid(di_args->uuid)) 3153 s_uuid = di_args->uuid; 3154 3155 rcu_read_lock(); 3156 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL); 3157 3158 if (!dev) { 3159 ret = -ENODEV; 3160 goto out; 3161 } 3162 3163 di_args->devid = dev->devid; 3164 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3165 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3166 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3167 if (dev->name) { 3168 struct rcu_string *name; 3169 3170 name = rcu_dereference(dev->name); 3171 strncpy(di_args->path, name->str, sizeof(di_args->path) - 1); 3172 di_args->path[sizeof(di_args->path) - 1] = 0; 3173 } else { 3174 di_args->path[0] = '\0'; 3175 } 3176 3177 out: 3178 rcu_read_unlock(); 3179 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3180 ret = -EFAULT; 3181 3182 kfree(di_args); 3183 return ret; 3184 } 3185 3186 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 3187 { 3188 struct page *page; 3189 3190 page = grab_cache_page(inode->i_mapping, index); 3191 if (!page) 3192 return ERR_PTR(-ENOMEM); 3193 3194 if (!PageUptodate(page)) { 3195 int ret; 3196 3197 ret = btrfs_readpage(NULL, page); 3198 if (ret) 3199 return ERR_PTR(ret); 3200 lock_page(page); 3201 if (!PageUptodate(page)) { 3202 unlock_page(page); 3203 put_page(page); 3204 return ERR_PTR(-EIO); 3205 } 3206 if (page->mapping != inode->i_mapping) { 3207 unlock_page(page); 3208 put_page(page); 3209 return ERR_PTR(-EAGAIN); 3210 } 3211 } 3212 3213 return page; 3214 } 3215 3216 static int gather_extent_pages(struct inode *inode, struct page **pages, 3217 int num_pages, u64 off) 3218 { 3219 int i; 3220 pgoff_t index = off >> PAGE_SHIFT; 3221 3222 for (i = 0; i < num_pages; i++) { 3223 again: 3224 pages[i] = extent_same_get_page(inode, index + i); 3225 if (IS_ERR(pages[i])) { 3226 int err = PTR_ERR(pages[i]); 3227 3228 if (err == -EAGAIN) 3229 goto again; 3230 pages[i] = NULL; 3231 return err; 3232 } 3233 } 3234 return 0; 3235 } 3236 3237 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 3238 bool retry_range_locking) 3239 { 3240 /* 3241 * Do any pending delalloc/csum calculations on inode, one way or 3242 * another, and lock file content. 3243 * The locking order is: 3244 * 3245 * 1) pages 3246 * 2) range in the inode's io tree 3247 */ 3248 while (1) { 3249 struct btrfs_ordered_extent *ordered; 3250 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 3251 ordered = btrfs_lookup_first_ordered_extent(inode, 3252 off + len - 1); 3253 if ((!ordered || 3254 ordered->file_offset + ordered->len <= off || 3255 ordered->file_offset >= off + len) && 3256 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 3257 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 3258 if (ordered) 3259 btrfs_put_ordered_extent(ordered); 3260 break; 3261 } 3262 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 3263 if (ordered) 3264 btrfs_put_ordered_extent(ordered); 3265 if (!retry_range_locking) 3266 return -EAGAIN; 3267 btrfs_wait_ordered_range(inode, off, len); 3268 } 3269 return 0; 3270 } 3271 3272 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 3273 { 3274 inode_unlock(inode1); 3275 inode_unlock(inode2); 3276 } 3277 3278 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 3279 { 3280 if (inode1 < inode2) 3281 swap(inode1, inode2); 3282 3283 inode_lock_nested(inode1, I_MUTEX_PARENT); 3284 inode_lock_nested(inode2, I_MUTEX_CHILD); 3285 } 3286 3287 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 3288 struct inode *inode2, u64 loff2, u64 len) 3289 { 3290 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3291 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3292 } 3293 3294 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 3295 struct inode *inode2, u64 loff2, u64 len, 3296 bool retry_range_locking) 3297 { 3298 int ret; 3299 3300 if (inode1 < inode2) { 3301 swap(inode1, inode2); 3302 swap(loff1, loff2); 3303 } 3304 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 3305 if (ret) 3306 return ret; 3307 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 3308 if (ret) 3309 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 3310 loff1 + len - 1); 3311 return ret; 3312 } 3313 3314 struct cmp_pages { 3315 int num_pages; 3316 struct page **src_pages; 3317 struct page **dst_pages; 3318 }; 3319 3320 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 3321 { 3322 int i; 3323 struct page *pg; 3324 3325 for (i = 0; i < cmp->num_pages; i++) { 3326 pg = cmp->src_pages[i]; 3327 if (pg) { 3328 unlock_page(pg); 3329 put_page(pg); 3330 } 3331 pg = cmp->dst_pages[i]; 3332 if (pg) { 3333 unlock_page(pg); 3334 put_page(pg); 3335 } 3336 } 3337 } 3338 3339 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 3340 struct inode *dst, u64 dst_loff, 3341 u64 len, struct cmp_pages *cmp) 3342 { 3343 int ret; 3344 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 3345 3346 cmp->num_pages = num_pages; 3347 3348 ret = gather_extent_pages(src, cmp->src_pages, num_pages, loff); 3349 if (ret) 3350 goto out; 3351 3352 ret = gather_extent_pages(dst, cmp->dst_pages, num_pages, dst_loff); 3353 3354 out: 3355 if (ret) 3356 btrfs_cmp_data_free(cmp); 3357 return ret; 3358 } 3359 3360 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp) 3361 { 3362 int ret = 0; 3363 int i; 3364 struct page *src_page, *dst_page; 3365 unsigned int cmp_len = PAGE_SIZE; 3366 void *addr, *dst_addr; 3367 3368 i = 0; 3369 while (len) { 3370 if (len < PAGE_SIZE) 3371 cmp_len = len; 3372 3373 BUG_ON(i >= cmp->num_pages); 3374 3375 src_page = cmp->src_pages[i]; 3376 dst_page = cmp->dst_pages[i]; 3377 ASSERT(PageLocked(src_page)); 3378 ASSERT(PageLocked(dst_page)); 3379 3380 addr = kmap_atomic(src_page); 3381 dst_addr = kmap_atomic(dst_page); 3382 3383 flush_dcache_page(src_page); 3384 flush_dcache_page(dst_page); 3385 3386 if (memcmp(addr, dst_addr, cmp_len)) 3387 ret = -EBADE; 3388 3389 kunmap_atomic(addr); 3390 kunmap_atomic(dst_addr); 3391 3392 if (ret) 3393 break; 3394 3395 len -= cmp_len; 3396 i++; 3397 } 3398 3399 return ret; 3400 } 3401 3402 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3403 u64 olen) 3404 { 3405 u64 len = *plen; 3406 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3407 3408 if (off + olen > inode->i_size || off + olen < off) 3409 return -EINVAL; 3410 3411 /* if we extend to eof, continue to block boundary */ 3412 if (off + len == inode->i_size) 3413 *plen = len = ALIGN(inode->i_size, bs) - off; 3414 3415 /* Check that we are block aligned - btrfs_clone() requires this */ 3416 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3417 return -EINVAL; 3418 3419 return 0; 3420 } 3421 3422 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 olen, 3423 struct inode *dst, u64 dst_loff, 3424 struct cmp_pages *cmp) 3425 { 3426 int ret; 3427 u64 len = olen; 3428 bool same_inode = (src == dst); 3429 u64 same_lock_start = 0; 3430 u64 same_lock_len = 0; 3431 3432 ret = extent_same_check_offsets(src, loff, &len, olen); 3433 if (ret) 3434 return ret; 3435 3436 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3437 if (ret) 3438 return ret; 3439 3440 if (same_inode) { 3441 /* 3442 * Single inode case wants the same checks, except we 3443 * don't want our length pushed out past i_size as 3444 * comparing that data range makes no sense. 3445 * 3446 * extent_same_check_offsets() will do this for an 3447 * unaligned length at i_size, so catch it here and 3448 * reject the request. 3449 * 3450 * This effectively means we require aligned extents 3451 * for the single-inode case, whereas the other cases 3452 * allow an unaligned length so long as it ends at 3453 * i_size. 3454 */ 3455 if (len != olen) 3456 return -EINVAL; 3457 3458 /* Check for overlapping ranges */ 3459 if (dst_loff + len > loff && dst_loff < loff + len) 3460 return -EINVAL; 3461 3462 same_lock_start = min_t(u64, loff, dst_loff); 3463 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3464 } 3465 3466 again: 3467 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, cmp); 3468 if (ret) 3469 return ret; 3470 3471 if (same_inode) 3472 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3473 false); 3474 else 3475 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3476 false); 3477 /* 3478 * If one of the inodes has dirty pages in the respective range or 3479 * ordered extents, we need to flush dellaloc and wait for all ordered 3480 * extents in the range. We must unlock the pages and the ranges in the 3481 * io trees to avoid deadlocks when flushing delalloc (requires locking 3482 * pages) and when waiting for ordered extents to complete (they require 3483 * range locking). 3484 */ 3485 if (ret == -EAGAIN) { 3486 /* 3487 * Ranges in the io trees already unlocked. Now unlock all 3488 * pages before waiting for all IO to complete. 3489 */ 3490 btrfs_cmp_data_free(cmp); 3491 if (same_inode) { 3492 btrfs_wait_ordered_range(src, same_lock_start, 3493 same_lock_len); 3494 } else { 3495 btrfs_wait_ordered_range(src, loff, len); 3496 btrfs_wait_ordered_range(dst, dst_loff, len); 3497 } 3498 goto again; 3499 } 3500 ASSERT(ret == 0); 3501 if (WARN_ON(ret)) { 3502 /* ranges in the io trees already unlocked */ 3503 btrfs_cmp_data_free(cmp); 3504 return ret; 3505 } 3506 3507 /* pass original length for comparison so we stay within i_size */ 3508 ret = btrfs_cmp_data(olen, cmp); 3509 if (ret == 0) 3510 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3511 3512 if (same_inode) 3513 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3514 same_lock_start + same_lock_len - 1); 3515 else 3516 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3517 3518 btrfs_cmp_data_free(cmp); 3519 3520 return ret; 3521 } 3522 3523 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3524 3525 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3526 struct inode *dst, u64 dst_loff) 3527 { 3528 int ret; 3529 struct cmp_pages cmp; 3530 int num_pages = PAGE_ALIGN(BTRFS_MAX_DEDUPE_LEN) >> PAGE_SHIFT; 3531 bool same_inode = (src == dst); 3532 u64 i, tail_len, chunk_count; 3533 3534 if (olen == 0) 3535 return 0; 3536 3537 if (same_inode) 3538 inode_lock(src); 3539 else 3540 btrfs_double_inode_lock(src, dst); 3541 3542 /* don't make the dst file partly checksummed */ 3543 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3544 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3545 ret = -EINVAL; 3546 goto out_unlock; 3547 } 3548 3549 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 3550 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 3551 if (chunk_count == 0) 3552 num_pages = PAGE_ALIGN(tail_len) >> PAGE_SHIFT; 3553 3554 /* 3555 * If deduping ranges in the same inode, locking rules make it 3556 * mandatory to always lock pages in ascending order to avoid deadlocks 3557 * with concurrent tasks (such as starting writeback/delalloc). 3558 */ 3559 if (same_inode && dst_loff < loff) 3560 swap(loff, dst_loff); 3561 3562 /* 3563 * We must gather up all the pages before we initiate our extent 3564 * locking. We use an array for the page pointers. Size of the array is 3565 * bounded by len, which is in turn bounded by BTRFS_MAX_DEDUPE_LEN. 3566 */ 3567 cmp.src_pages = kvmalloc_array(num_pages, sizeof(struct page *), 3568 GFP_KERNEL | __GFP_ZERO); 3569 cmp.dst_pages = kvmalloc_array(num_pages, sizeof(struct page *), 3570 GFP_KERNEL | __GFP_ZERO); 3571 if (!cmp.src_pages || !cmp.dst_pages) { 3572 ret = -ENOMEM; 3573 goto out_free; 3574 } 3575 3576 for (i = 0; i < chunk_count; i++) { 3577 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 3578 dst, dst_loff, &cmp); 3579 if (ret) 3580 goto out_free; 3581 3582 loff += BTRFS_MAX_DEDUPE_LEN; 3583 dst_loff += BTRFS_MAX_DEDUPE_LEN; 3584 } 3585 3586 if (tail_len > 0) 3587 ret = btrfs_extent_same_range(src, loff, tail_len, dst, 3588 dst_loff, &cmp); 3589 3590 out_free: 3591 kvfree(cmp.src_pages); 3592 kvfree(cmp.dst_pages); 3593 3594 out_unlock: 3595 if (same_inode) 3596 inode_unlock(src); 3597 else 3598 btrfs_double_inode_unlock(src, dst); 3599 3600 return ret; 3601 } 3602 3603 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3604 struct file *dst_file, u64 dst_loff) 3605 { 3606 struct inode *src = file_inode(src_file); 3607 struct inode *dst = file_inode(dst_file); 3608 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3609 ssize_t res; 3610 3611 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3612 /* 3613 * Btrfs does not support blocksize < page_size. As a 3614 * result, btrfs_cmp_data() won't correctly handle 3615 * this situation without an update. 3616 */ 3617 return -EINVAL; 3618 } 3619 3620 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3621 if (res) 3622 return res; 3623 return olen; 3624 } 3625 3626 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3627 struct inode *inode, 3628 u64 endoff, 3629 const u64 destoff, 3630 const u64 olen, 3631 int no_time_update) 3632 { 3633 struct btrfs_root *root = BTRFS_I(inode)->root; 3634 int ret; 3635 3636 inode_inc_iversion(inode); 3637 if (!no_time_update) 3638 inode->i_mtime = inode->i_ctime = current_time(inode); 3639 /* 3640 * We round up to the block size at eof when determining which 3641 * extents to clone above, but shouldn't round up the file size. 3642 */ 3643 if (endoff > destoff + olen) 3644 endoff = destoff + olen; 3645 if (endoff > inode->i_size) 3646 btrfs_i_size_write(BTRFS_I(inode), endoff); 3647 3648 ret = btrfs_update_inode(trans, root, inode); 3649 if (ret) { 3650 btrfs_abort_transaction(trans, ret); 3651 btrfs_end_transaction(trans); 3652 goto out; 3653 } 3654 ret = btrfs_end_transaction(trans); 3655 out: 3656 return ret; 3657 } 3658 3659 static void clone_update_extent_map(struct btrfs_inode *inode, 3660 const struct btrfs_trans_handle *trans, 3661 const struct btrfs_path *path, 3662 const u64 hole_offset, 3663 const u64 hole_len) 3664 { 3665 struct extent_map_tree *em_tree = &inode->extent_tree; 3666 struct extent_map *em; 3667 int ret; 3668 3669 em = alloc_extent_map(); 3670 if (!em) { 3671 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3672 return; 3673 } 3674 3675 if (path) { 3676 struct btrfs_file_extent_item *fi; 3677 3678 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3679 struct btrfs_file_extent_item); 3680 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3681 em->generation = -1; 3682 if (btrfs_file_extent_type(path->nodes[0], fi) == 3683 BTRFS_FILE_EXTENT_INLINE) 3684 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3685 &inode->runtime_flags); 3686 } else { 3687 em->start = hole_offset; 3688 em->len = hole_len; 3689 em->ram_bytes = em->len; 3690 em->orig_start = hole_offset; 3691 em->block_start = EXTENT_MAP_HOLE; 3692 em->block_len = 0; 3693 em->orig_block_len = 0; 3694 em->compress_type = BTRFS_COMPRESS_NONE; 3695 em->generation = trans->transid; 3696 } 3697 3698 while (1) { 3699 write_lock(&em_tree->lock); 3700 ret = add_extent_mapping(em_tree, em, 1); 3701 write_unlock(&em_tree->lock); 3702 if (ret != -EEXIST) { 3703 free_extent_map(em); 3704 break; 3705 } 3706 btrfs_drop_extent_cache(inode, em->start, 3707 em->start + em->len - 1, 0); 3708 } 3709 3710 if (ret) 3711 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3712 } 3713 3714 /* 3715 * Make sure we do not end up inserting an inline extent into a file that has 3716 * already other (non-inline) extents. If a file has an inline extent it can 3717 * not have any other extents and the (single) inline extent must start at the 3718 * file offset 0. Failing to respect these rules will lead to file corruption, 3719 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3720 * 3721 * We can have extents that have been already written to disk or we can have 3722 * dirty ranges still in delalloc, in which case the extent maps and items are 3723 * created only when we run delalloc, and the delalloc ranges might fall outside 3724 * the range we are currently locking in the inode's io tree. So we check the 3725 * inode's i_size because of that (i_size updates are done while holding the 3726 * i_mutex, which we are holding here). 3727 * We also check to see if the inode has a size not greater than "datal" but has 3728 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3729 * protected against such concurrent fallocate calls by the i_mutex). 3730 * 3731 * If the file has no extents but a size greater than datal, do not allow the 3732 * copy because we would need turn the inline extent into a non-inline one (even 3733 * with NO_HOLES enabled). If we find our destination inode only has one inline 3734 * extent, just overwrite it with the source inline extent if its size is less 3735 * than the source extent's size, or we could copy the source inline extent's 3736 * data into the destination inode's inline extent if the later is greater then 3737 * the former. 3738 */ 3739 static int clone_copy_inline_extent(struct inode *dst, 3740 struct btrfs_trans_handle *trans, 3741 struct btrfs_path *path, 3742 struct btrfs_key *new_key, 3743 const u64 drop_start, 3744 const u64 datal, 3745 const u64 skip, 3746 const u64 size, 3747 char *inline_data) 3748 { 3749 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3750 struct btrfs_root *root = BTRFS_I(dst)->root; 3751 const u64 aligned_end = ALIGN(new_key->offset + datal, 3752 fs_info->sectorsize); 3753 int ret; 3754 struct btrfs_key key; 3755 3756 if (new_key->offset > 0) 3757 return -EOPNOTSUPP; 3758 3759 key.objectid = btrfs_ino(BTRFS_I(dst)); 3760 key.type = BTRFS_EXTENT_DATA_KEY; 3761 key.offset = 0; 3762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3763 if (ret < 0) { 3764 return ret; 3765 } else if (ret > 0) { 3766 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3767 ret = btrfs_next_leaf(root, path); 3768 if (ret < 0) 3769 return ret; 3770 else if (ret > 0) 3771 goto copy_inline_extent; 3772 } 3773 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3774 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3775 key.type == BTRFS_EXTENT_DATA_KEY) { 3776 ASSERT(key.offset > 0); 3777 return -EOPNOTSUPP; 3778 } 3779 } else if (i_size_read(dst) <= datal) { 3780 struct btrfs_file_extent_item *ei; 3781 u64 ext_len; 3782 3783 /* 3784 * If the file size is <= datal, make sure there are no other 3785 * extents following (can happen do to an fallocate call with 3786 * the flag FALLOC_FL_KEEP_SIZE). 3787 */ 3788 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3789 struct btrfs_file_extent_item); 3790 /* 3791 * If it's an inline extent, it can not have other extents 3792 * following it. 3793 */ 3794 if (btrfs_file_extent_type(path->nodes[0], ei) == 3795 BTRFS_FILE_EXTENT_INLINE) 3796 goto copy_inline_extent; 3797 3798 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3799 if (ext_len > aligned_end) 3800 return -EOPNOTSUPP; 3801 3802 ret = btrfs_next_item(root, path); 3803 if (ret < 0) { 3804 return ret; 3805 } else if (ret == 0) { 3806 btrfs_item_key_to_cpu(path->nodes[0], &key, 3807 path->slots[0]); 3808 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3809 key.type == BTRFS_EXTENT_DATA_KEY) 3810 return -EOPNOTSUPP; 3811 } 3812 } 3813 3814 copy_inline_extent: 3815 /* 3816 * We have no extent items, or we have an extent at offset 0 which may 3817 * or may not be inlined. All these cases are dealt the same way. 3818 */ 3819 if (i_size_read(dst) > datal) { 3820 /* 3821 * If the destination inode has an inline extent... 3822 * This would require copying the data from the source inline 3823 * extent into the beginning of the destination's inline extent. 3824 * But this is really complex, both extents can be compressed 3825 * or just one of them, which would require decompressing and 3826 * re-compressing data (which could increase the new compressed 3827 * size, not allowing the compressed data to fit anymore in an 3828 * inline extent). 3829 * So just don't support this case for now (it should be rare, 3830 * we are not really saving space when cloning inline extents). 3831 */ 3832 return -EOPNOTSUPP; 3833 } 3834 3835 btrfs_release_path(path); 3836 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3837 if (ret) 3838 return ret; 3839 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3840 if (ret) 3841 return ret; 3842 3843 if (skip) { 3844 const u32 start = btrfs_file_extent_calc_inline_size(0); 3845 3846 memmove(inline_data + start, inline_data + start + skip, datal); 3847 } 3848 3849 write_extent_buffer(path->nodes[0], inline_data, 3850 btrfs_item_ptr_offset(path->nodes[0], 3851 path->slots[0]), 3852 size); 3853 inode_add_bytes(dst, datal); 3854 3855 return 0; 3856 } 3857 3858 /** 3859 * btrfs_clone() - clone a range from inode file to another 3860 * 3861 * @src: Inode to clone from 3862 * @inode: Inode to clone to 3863 * @off: Offset within source to start clone from 3864 * @olen: Original length, passed by user, of range to clone 3865 * @olen_aligned: Block-aligned value of olen 3866 * @destoff: Offset within @inode to start clone 3867 * @no_time_update: Whether to update mtime/ctime on the target inode 3868 */ 3869 static int btrfs_clone(struct inode *src, struct inode *inode, 3870 const u64 off, const u64 olen, const u64 olen_aligned, 3871 const u64 destoff, int no_time_update) 3872 { 3873 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3874 struct btrfs_root *root = BTRFS_I(inode)->root; 3875 struct btrfs_path *path = NULL; 3876 struct extent_buffer *leaf; 3877 struct btrfs_trans_handle *trans; 3878 char *buf = NULL; 3879 struct btrfs_key key; 3880 u32 nritems; 3881 int slot; 3882 int ret; 3883 const u64 len = olen_aligned; 3884 u64 last_dest_end = destoff; 3885 3886 ret = -ENOMEM; 3887 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3888 if (!buf) 3889 return ret; 3890 3891 path = btrfs_alloc_path(); 3892 if (!path) { 3893 kvfree(buf); 3894 return ret; 3895 } 3896 3897 path->reada = READA_FORWARD; 3898 /* clone data */ 3899 key.objectid = btrfs_ino(BTRFS_I(src)); 3900 key.type = BTRFS_EXTENT_DATA_KEY; 3901 key.offset = off; 3902 3903 while (1) { 3904 u64 next_key_min_offset = key.offset + 1; 3905 3906 /* 3907 * note the key will change type as we walk through the 3908 * tree. 3909 */ 3910 path->leave_spinning = 1; 3911 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3912 0, 0); 3913 if (ret < 0) 3914 goto out; 3915 /* 3916 * First search, if no extent item that starts at offset off was 3917 * found but the previous item is an extent item, it's possible 3918 * it might overlap our target range, therefore process it. 3919 */ 3920 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3921 btrfs_item_key_to_cpu(path->nodes[0], &key, 3922 path->slots[0] - 1); 3923 if (key.type == BTRFS_EXTENT_DATA_KEY) 3924 path->slots[0]--; 3925 } 3926 3927 nritems = btrfs_header_nritems(path->nodes[0]); 3928 process_slot: 3929 if (path->slots[0] >= nritems) { 3930 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3931 if (ret < 0) 3932 goto out; 3933 if (ret > 0) 3934 break; 3935 nritems = btrfs_header_nritems(path->nodes[0]); 3936 } 3937 leaf = path->nodes[0]; 3938 slot = path->slots[0]; 3939 3940 btrfs_item_key_to_cpu(leaf, &key, slot); 3941 if (key.type > BTRFS_EXTENT_DATA_KEY || 3942 key.objectid != btrfs_ino(BTRFS_I(src))) 3943 break; 3944 3945 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3946 struct btrfs_file_extent_item *extent; 3947 int type; 3948 u32 size; 3949 struct btrfs_key new_key; 3950 u64 disko = 0, diskl = 0; 3951 u64 datao = 0, datal = 0; 3952 u8 comp; 3953 u64 drop_start; 3954 3955 extent = btrfs_item_ptr(leaf, slot, 3956 struct btrfs_file_extent_item); 3957 comp = btrfs_file_extent_compression(leaf, extent); 3958 type = btrfs_file_extent_type(leaf, extent); 3959 if (type == BTRFS_FILE_EXTENT_REG || 3960 type == BTRFS_FILE_EXTENT_PREALLOC) { 3961 disko = btrfs_file_extent_disk_bytenr(leaf, 3962 extent); 3963 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3964 extent); 3965 datao = btrfs_file_extent_offset(leaf, extent); 3966 datal = btrfs_file_extent_num_bytes(leaf, 3967 extent); 3968 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3969 /* take upper bound, may be compressed */ 3970 datal = btrfs_file_extent_ram_bytes(leaf, 3971 extent); 3972 } 3973 3974 /* 3975 * The first search might have left us at an extent 3976 * item that ends before our target range's start, can 3977 * happen if we have holes and NO_HOLES feature enabled. 3978 */ 3979 if (key.offset + datal <= off) { 3980 path->slots[0]++; 3981 goto process_slot; 3982 } else if (key.offset >= off + len) { 3983 break; 3984 } 3985 next_key_min_offset = key.offset + datal; 3986 size = btrfs_item_size_nr(leaf, slot); 3987 read_extent_buffer(leaf, buf, 3988 btrfs_item_ptr_offset(leaf, slot), 3989 size); 3990 3991 btrfs_release_path(path); 3992 path->leave_spinning = 0; 3993 3994 memcpy(&new_key, &key, sizeof(new_key)); 3995 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3996 if (off <= key.offset) 3997 new_key.offset = key.offset + destoff - off; 3998 else 3999 new_key.offset = destoff; 4000 4001 /* 4002 * Deal with a hole that doesn't have an extent item 4003 * that represents it (NO_HOLES feature enabled). 4004 * This hole is either in the middle of the cloning 4005 * range or at the beginning (fully overlaps it or 4006 * partially overlaps it). 4007 */ 4008 if (new_key.offset != last_dest_end) 4009 drop_start = last_dest_end; 4010 else 4011 drop_start = new_key.offset; 4012 4013 /* 4014 * 1 - adjusting old extent (we may have to split it) 4015 * 1 - add new extent 4016 * 1 - inode update 4017 */ 4018 trans = btrfs_start_transaction(root, 3); 4019 if (IS_ERR(trans)) { 4020 ret = PTR_ERR(trans); 4021 goto out; 4022 } 4023 4024 if (type == BTRFS_FILE_EXTENT_REG || 4025 type == BTRFS_FILE_EXTENT_PREALLOC) { 4026 /* 4027 * a | --- range to clone ---| b 4028 * | ------------- extent ------------- | 4029 */ 4030 4031 /* subtract range b */ 4032 if (key.offset + datal > off + len) 4033 datal = off + len - key.offset; 4034 4035 /* subtract range a */ 4036 if (off > key.offset) { 4037 datao += off - key.offset; 4038 datal -= off - key.offset; 4039 } 4040 4041 ret = btrfs_drop_extents(trans, root, inode, 4042 drop_start, 4043 new_key.offset + datal, 4044 1); 4045 if (ret) { 4046 if (ret != -EOPNOTSUPP) 4047 btrfs_abort_transaction(trans, 4048 ret); 4049 btrfs_end_transaction(trans); 4050 goto out; 4051 } 4052 4053 ret = btrfs_insert_empty_item(trans, root, path, 4054 &new_key, size); 4055 if (ret) { 4056 btrfs_abort_transaction(trans, ret); 4057 btrfs_end_transaction(trans); 4058 goto out; 4059 } 4060 4061 leaf = path->nodes[0]; 4062 slot = path->slots[0]; 4063 write_extent_buffer(leaf, buf, 4064 btrfs_item_ptr_offset(leaf, slot), 4065 size); 4066 4067 extent = btrfs_item_ptr(leaf, slot, 4068 struct btrfs_file_extent_item); 4069 4070 /* disko == 0 means it's a hole */ 4071 if (!disko) 4072 datao = 0; 4073 4074 btrfs_set_file_extent_offset(leaf, extent, 4075 datao); 4076 btrfs_set_file_extent_num_bytes(leaf, extent, 4077 datal); 4078 4079 if (disko) { 4080 inode_add_bytes(inode, datal); 4081 ret = btrfs_inc_extent_ref(trans, 4082 root, 4083 disko, diskl, 0, 4084 root->root_key.objectid, 4085 btrfs_ino(BTRFS_I(inode)), 4086 new_key.offset - datao); 4087 if (ret) { 4088 btrfs_abort_transaction(trans, 4089 ret); 4090 btrfs_end_transaction(trans); 4091 goto out; 4092 4093 } 4094 } 4095 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 4096 u64 skip = 0; 4097 u64 trim = 0; 4098 4099 if (off > key.offset) { 4100 skip = off - key.offset; 4101 new_key.offset += skip; 4102 } 4103 4104 if (key.offset + datal > off + len) 4105 trim = key.offset + datal - (off + len); 4106 4107 if (comp && (skip || trim)) { 4108 ret = -EINVAL; 4109 btrfs_end_transaction(trans); 4110 goto out; 4111 } 4112 size -= skip + trim; 4113 datal -= skip + trim; 4114 4115 ret = clone_copy_inline_extent(inode, 4116 trans, path, 4117 &new_key, 4118 drop_start, 4119 datal, 4120 skip, size, buf); 4121 if (ret) { 4122 if (ret != -EOPNOTSUPP) 4123 btrfs_abort_transaction(trans, 4124 ret); 4125 btrfs_end_transaction(trans); 4126 goto out; 4127 } 4128 leaf = path->nodes[0]; 4129 slot = path->slots[0]; 4130 } 4131 4132 /* If we have an implicit hole (NO_HOLES feature). */ 4133 if (drop_start < new_key.offset) 4134 clone_update_extent_map(BTRFS_I(inode), trans, 4135 NULL, drop_start, 4136 new_key.offset - drop_start); 4137 4138 clone_update_extent_map(BTRFS_I(inode), trans, 4139 path, 0, 0); 4140 4141 btrfs_mark_buffer_dirty(leaf); 4142 btrfs_release_path(path); 4143 4144 last_dest_end = ALIGN(new_key.offset + datal, 4145 fs_info->sectorsize); 4146 ret = clone_finish_inode_update(trans, inode, 4147 last_dest_end, 4148 destoff, olen, 4149 no_time_update); 4150 if (ret) 4151 goto out; 4152 if (new_key.offset + datal >= destoff + len) 4153 break; 4154 } 4155 btrfs_release_path(path); 4156 key.offset = next_key_min_offset; 4157 4158 if (fatal_signal_pending(current)) { 4159 ret = -EINTR; 4160 goto out; 4161 } 4162 } 4163 ret = 0; 4164 4165 if (last_dest_end < destoff + len) { 4166 /* 4167 * We have an implicit hole (NO_HOLES feature is enabled) that 4168 * fully or partially overlaps our cloning range at its end. 4169 */ 4170 btrfs_release_path(path); 4171 4172 /* 4173 * 1 - remove extent(s) 4174 * 1 - inode update 4175 */ 4176 trans = btrfs_start_transaction(root, 2); 4177 if (IS_ERR(trans)) { 4178 ret = PTR_ERR(trans); 4179 goto out; 4180 } 4181 ret = btrfs_drop_extents(trans, root, inode, 4182 last_dest_end, destoff + len, 1); 4183 if (ret) { 4184 if (ret != -EOPNOTSUPP) 4185 btrfs_abort_transaction(trans, ret); 4186 btrfs_end_transaction(trans); 4187 goto out; 4188 } 4189 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 4190 last_dest_end, 4191 destoff + len - last_dest_end); 4192 ret = clone_finish_inode_update(trans, inode, destoff + len, 4193 destoff, olen, no_time_update); 4194 } 4195 4196 out: 4197 btrfs_free_path(path); 4198 kvfree(buf); 4199 return ret; 4200 } 4201 4202 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 4203 u64 off, u64 olen, u64 destoff) 4204 { 4205 struct inode *inode = file_inode(file); 4206 struct inode *src = file_inode(file_src); 4207 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4208 struct btrfs_root *root = BTRFS_I(inode)->root; 4209 int ret; 4210 u64 len = olen; 4211 u64 bs = fs_info->sb->s_blocksize; 4212 int same_inode = src == inode; 4213 4214 /* 4215 * TODO: 4216 * - split compressed inline extents. annoying: we need to 4217 * decompress into destination's address_space (the file offset 4218 * may change, so source mapping won't do), then recompress (or 4219 * otherwise reinsert) a subrange. 4220 * 4221 * - split destination inode's inline extents. The inline extents can 4222 * be either compressed or non-compressed. 4223 */ 4224 4225 if (btrfs_root_readonly(root)) 4226 return -EROFS; 4227 4228 if (file_src->f_path.mnt != file->f_path.mnt || 4229 src->i_sb != inode->i_sb) 4230 return -EXDEV; 4231 4232 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 4233 return -EISDIR; 4234 4235 if (!same_inode) { 4236 btrfs_double_inode_lock(src, inode); 4237 } else { 4238 inode_lock(src); 4239 } 4240 4241 /* don't make the dst file partly checksummed */ 4242 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 4243 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 4244 ret = -EINVAL; 4245 goto out_unlock; 4246 } 4247 4248 /* determine range to clone */ 4249 ret = -EINVAL; 4250 if (off + len > src->i_size || off + len < off) 4251 goto out_unlock; 4252 if (len == 0) 4253 olen = len = src->i_size - off; 4254 /* if we extend to eof, continue to block boundary */ 4255 if (off + len == src->i_size) 4256 len = ALIGN(src->i_size, bs) - off; 4257 4258 if (len == 0) { 4259 ret = 0; 4260 goto out_unlock; 4261 } 4262 4263 /* verify the end result is block aligned */ 4264 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 4265 !IS_ALIGNED(destoff, bs)) 4266 goto out_unlock; 4267 4268 /* verify if ranges are overlapped within the same file */ 4269 if (same_inode) { 4270 if (destoff + len > off && destoff < off + len) 4271 goto out_unlock; 4272 } 4273 4274 if (destoff > inode->i_size) { 4275 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 4276 if (ret) 4277 goto out_unlock; 4278 } 4279 4280 /* 4281 * Lock the target range too. Right after we replace the file extent 4282 * items in the fs tree (which now point to the cloned data), we might 4283 * have a worker replace them with extent items relative to a write 4284 * operation that was issued before this clone operation (i.e. confront 4285 * with inode.c:btrfs_finish_ordered_io). 4286 */ 4287 if (same_inode) { 4288 u64 lock_start = min_t(u64, off, destoff); 4289 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 4290 4291 ret = lock_extent_range(src, lock_start, lock_len, true); 4292 } else { 4293 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 4294 true); 4295 } 4296 ASSERT(ret == 0); 4297 if (WARN_ON(ret)) { 4298 /* ranges in the io trees already unlocked */ 4299 goto out_unlock; 4300 } 4301 4302 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 4303 4304 if (same_inode) { 4305 u64 lock_start = min_t(u64, off, destoff); 4306 u64 lock_end = max_t(u64, off, destoff) + len - 1; 4307 4308 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 4309 } else { 4310 btrfs_double_extent_unlock(src, off, inode, destoff, len); 4311 } 4312 /* 4313 * Truncate page cache pages so that future reads will see the cloned 4314 * data immediately and not the previous data. 4315 */ 4316 truncate_inode_pages_range(&inode->i_data, 4317 round_down(destoff, PAGE_SIZE), 4318 round_up(destoff + len, PAGE_SIZE) - 1); 4319 out_unlock: 4320 if (!same_inode) 4321 btrfs_double_inode_unlock(src, inode); 4322 else 4323 inode_unlock(src); 4324 return ret; 4325 } 4326 4327 int btrfs_clone_file_range(struct file *src_file, loff_t off, 4328 struct file *dst_file, loff_t destoff, u64 len) 4329 { 4330 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 4331 } 4332 4333 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4334 { 4335 struct inode *inode = file_inode(file); 4336 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4337 struct btrfs_root *root = BTRFS_I(inode)->root; 4338 struct btrfs_root *new_root; 4339 struct btrfs_dir_item *di; 4340 struct btrfs_trans_handle *trans; 4341 struct btrfs_path *path; 4342 struct btrfs_key location; 4343 struct btrfs_disk_key disk_key; 4344 u64 objectid = 0; 4345 u64 dir_id; 4346 int ret; 4347 4348 if (!capable(CAP_SYS_ADMIN)) 4349 return -EPERM; 4350 4351 ret = mnt_want_write_file(file); 4352 if (ret) 4353 return ret; 4354 4355 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4356 ret = -EFAULT; 4357 goto out; 4358 } 4359 4360 if (!objectid) 4361 objectid = BTRFS_FS_TREE_OBJECTID; 4362 4363 location.objectid = objectid; 4364 location.type = BTRFS_ROOT_ITEM_KEY; 4365 location.offset = (u64)-1; 4366 4367 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4368 if (IS_ERR(new_root)) { 4369 ret = PTR_ERR(new_root); 4370 goto out; 4371 } 4372 if (!is_fstree(new_root->objectid)) { 4373 ret = -ENOENT; 4374 goto out; 4375 } 4376 4377 path = btrfs_alloc_path(); 4378 if (!path) { 4379 ret = -ENOMEM; 4380 goto out; 4381 } 4382 path->leave_spinning = 1; 4383 4384 trans = btrfs_start_transaction(root, 1); 4385 if (IS_ERR(trans)) { 4386 btrfs_free_path(path); 4387 ret = PTR_ERR(trans); 4388 goto out; 4389 } 4390 4391 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4392 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4393 dir_id, "default", 7, 1); 4394 if (IS_ERR_OR_NULL(di)) { 4395 btrfs_free_path(path); 4396 btrfs_end_transaction(trans); 4397 btrfs_err(fs_info, 4398 "Umm, you don't have the default diritem, this isn't going to work"); 4399 ret = -ENOENT; 4400 goto out; 4401 } 4402 4403 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4404 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4405 btrfs_mark_buffer_dirty(path->nodes[0]); 4406 btrfs_free_path(path); 4407 4408 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4409 btrfs_end_transaction(trans); 4410 out: 4411 mnt_drop_write_file(file); 4412 return ret; 4413 } 4414 4415 static void get_block_group_info(struct list_head *groups_list, 4416 struct btrfs_ioctl_space_info *space) 4417 { 4418 struct btrfs_block_group_cache *block_group; 4419 4420 space->total_bytes = 0; 4421 space->used_bytes = 0; 4422 space->flags = 0; 4423 list_for_each_entry(block_group, groups_list, list) { 4424 space->flags = block_group->flags; 4425 space->total_bytes += block_group->key.offset; 4426 space->used_bytes += 4427 btrfs_block_group_used(&block_group->item); 4428 } 4429 } 4430 4431 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4432 void __user *arg) 4433 { 4434 struct btrfs_ioctl_space_args space_args; 4435 struct btrfs_ioctl_space_info space; 4436 struct btrfs_ioctl_space_info *dest; 4437 struct btrfs_ioctl_space_info *dest_orig; 4438 struct btrfs_ioctl_space_info __user *user_dest; 4439 struct btrfs_space_info *info; 4440 static const u64 types[] = { 4441 BTRFS_BLOCK_GROUP_DATA, 4442 BTRFS_BLOCK_GROUP_SYSTEM, 4443 BTRFS_BLOCK_GROUP_METADATA, 4444 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4445 }; 4446 int num_types = 4; 4447 int alloc_size; 4448 int ret = 0; 4449 u64 slot_count = 0; 4450 int i, c; 4451 4452 if (copy_from_user(&space_args, 4453 (struct btrfs_ioctl_space_args __user *)arg, 4454 sizeof(space_args))) 4455 return -EFAULT; 4456 4457 for (i = 0; i < num_types; i++) { 4458 struct btrfs_space_info *tmp; 4459 4460 info = NULL; 4461 rcu_read_lock(); 4462 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4463 list) { 4464 if (tmp->flags == types[i]) { 4465 info = tmp; 4466 break; 4467 } 4468 } 4469 rcu_read_unlock(); 4470 4471 if (!info) 4472 continue; 4473 4474 down_read(&info->groups_sem); 4475 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4476 if (!list_empty(&info->block_groups[c])) 4477 slot_count++; 4478 } 4479 up_read(&info->groups_sem); 4480 } 4481 4482 /* 4483 * Global block reserve, exported as a space_info 4484 */ 4485 slot_count++; 4486 4487 /* space_slots == 0 means they are asking for a count */ 4488 if (space_args.space_slots == 0) { 4489 space_args.total_spaces = slot_count; 4490 goto out; 4491 } 4492 4493 slot_count = min_t(u64, space_args.space_slots, slot_count); 4494 4495 alloc_size = sizeof(*dest) * slot_count; 4496 4497 /* we generally have at most 6 or so space infos, one for each raid 4498 * level. So, a whole page should be more than enough for everyone 4499 */ 4500 if (alloc_size > PAGE_SIZE) 4501 return -ENOMEM; 4502 4503 space_args.total_spaces = 0; 4504 dest = kmalloc(alloc_size, GFP_KERNEL); 4505 if (!dest) 4506 return -ENOMEM; 4507 dest_orig = dest; 4508 4509 /* now we have a buffer to copy into */ 4510 for (i = 0; i < num_types; i++) { 4511 struct btrfs_space_info *tmp; 4512 4513 if (!slot_count) 4514 break; 4515 4516 info = NULL; 4517 rcu_read_lock(); 4518 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4519 list) { 4520 if (tmp->flags == types[i]) { 4521 info = tmp; 4522 break; 4523 } 4524 } 4525 rcu_read_unlock(); 4526 4527 if (!info) 4528 continue; 4529 down_read(&info->groups_sem); 4530 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4531 if (!list_empty(&info->block_groups[c])) { 4532 get_block_group_info(&info->block_groups[c], 4533 &space); 4534 memcpy(dest, &space, sizeof(space)); 4535 dest++; 4536 space_args.total_spaces++; 4537 slot_count--; 4538 } 4539 if (!slot_count) 4540 break; 4541 } 4542 up_read(&info->groups_sem); 4543 } 4544 4545 /* 4546 * Add global block reserve 4547 */ 4548 if (slot_count) { 4549 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4550 4551 spin_lock(&block_rsv->lock); 4552 space.total_bytes = block_rsv->size; 4553 space.used_bytes = block_rsv->size - block_rsv->reserved; 4554 spin_unlock(&block_rsv->lock); 4555 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4556 memcpy(dest, &space, sizeof(space)); 4557 space_args.total_spaces++; 4558 } 4559 4560 user_dest = (struct btrfs_ioctl_space_info __user *) 4561 (arg + sizeof(struct btrfs_ioctl_space_args)); 4562 4563 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4564 ret = -EFAULT; 4565 4566 kfree(dest_orig); 4567 out: 4568 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4569 ret = -EFAULT; 4570 4571 return ret; 4572 } 4573 4574 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4575 void __user *argp) 4576 { 4577 struct btrfs_trans_handle *trans; 4578 u64 transid; 4579 int ret; 4580 4581 trans = btrfs_attach_transaction_barrier(root); 4582 if (IS_ERR(trans)) { 4583 if (PTR_ERR(trans) != -ENOENT) 4584 return PTR_ERR(trans); 4585 4586 /* No running transaction, don't bother */ 4587 transid = root->fs_info->last_trans_committed; 4588 goto out; 4589 } 4590 transid = trans->transid; 4591 ret = btrfs_commit_transaction_async(trans, 0); 4592 if (ret) { 4593 btrfs_end_transaction(trans); 4594 return ret; 4595 } 4596 out: 4597 if (argp) 4598 if (copy_to_user(argp, &transid, sizeof(transid))) 4599 return -EFAULT; 4600 return 0; 4601 } 4602 4603 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4604 void __user *argp) 4605 { 4606 u64 transid; 4607 4608 if (argp) { 4609 if (copy_from_user(&transid, argp, sizeof(transid))) 4610 return -EFAULT; 4611 } else { 4612 transid = 0; /* current trans */ 4613 } 4614 return btrfs_wait_for_commit(fs_info, transid); 4615 } 4616 4617 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4618 { 4619 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4620 struct btrfs_ioctl_scrub_args *sa; 4621 int ret; 4622 4623 if (!capable(CAP_SYS_ADMIN)) 4624 return -EPERM; 4625 4626 sa = memdup_user(arg, sizeof(*sa)); 4627 if (IS_ERR(sa)) 4628 return PTR_ERR(sa); 4629 4630 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4631 ret = mnt_want_write_file(file); 4632 if (ret) 4633 goto out; 4634 } 4635 4636 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4637 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4638 0); 4639 4640 if (copy_to_user(arg, sa, sizeof(*sa))) 4641 ret = -EFAULT; 4642 4643 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4644 mnt_drop_write_file(file); 4645 out: 4646 kfree(sa); 4647 return ret; 4648 } 4649 4650 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4651 { 4652 if (!capable(CAP_SYS_ADMIN)) 4653 return -EPERM; 4654 4655 return btrfs_scrub_cancel(fs_info); 4656 } 4657 4658 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4659 void __user *arg) 4660 { 4661 struct btrfs_ioctl_scrub_args *sa; 4662 int ret; 4663 4664 if (!capable(CAP_SYS_ADMIN)) 4665 return -EPERM; 4666 4667 sa = memdup_user(arg, sizeof(*sa)); 4668 if (IS_ERR(sa)) 4669 return PTR_ERR(sa); 4670 4671 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4672 4673 if (copy_to_user(arg, sa, sizeof(*sa))) 4674 ret = -EFAULT; 4675 4676 kfree(sa); 4677 return ret; 4678 } 4679 4680 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4681 void __user *arg) 4682 { 4683 struct btrfs_ioctl_get_dev_stats *sa; 4684 int ret; 4685 4686 sa = memdup_user(arg, sizeof(*sa)); 4687 if (IS_ERR(sa)) 4688 return PTR_ERR(sa); 4689 4690 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4691 kfree(sa); 4692 return -EPERM; 4693 } 4694 4695 ret = btrfs_get_dev_stats(fs_info, sa); 4696 4697 if (copy_to_user(arg, sa, sizeof(*sa))) 4698 ret = -EFAULT; 4699 4700 kfree(sa); 4701 return ret; 4702 } 4703 4704 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4705 void __user *arg) 4706 { 4707 struct btrfs_ioctl_dev_replace_args *p; 4708 int ret; 4709 4710 if (!capable(CAP_SYS_ADMIN)) 4711 return -EPERM; 4712 4713 p = memdup_user(arg, sizeof(*p)); 4714 if (IS_ERR(p)) 4715 return PTR_ERR(p); 4716 4717 switch (p->cmd) { 4718 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4719 if (sb_rdonly(fs_info->sb)) { 4720 ret = -EROFS; 4721 goto out; 4722 } 4723 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4724 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4725 } else { 4726 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4727 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4728 } 4729 break; 4730 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4731 btrfs_dev_replace_status(fs_info, p); 4732 ret = 0; 4733 break; 4734 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4735 p->result = btrfs_dev_replace_cancel(fs_info); 4736 ret = 0; 4737 break; 4738 default: 4739 ret = -EINVAL; 4740 break; 4741 } 4742 4743 if (copy_to_user(arg, p, sizeof(*p))) 4744 ret = -EFAULT; 4745 out: 4746 kfree(p); 4747 return ret; 4748 } 4749 4750 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4751 { 4752 int ret = 0; 4753 int i; 4754 u64 rel_ptr; 4755 int size; 4756 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4757 struct inode_fs_paths *ipath = NULL; 4758 struct btrfs_path *path; 4759 4760 if (!capable(CAP_DAC_READ_SEARCH)) 4761 return -EPERM; 4762 4763 path = btrfs_alloc_path(); 4764 if (!path) { 4765 ret = -ENOMEM; 4766 goto out; 4767 } 4768 4769 ipa = memdup_user(arg, sizeof(*ipa)); 4770 if (IS_ERR(ipa)) { 4771 ret = PTR_ERR(ipa); 4772 ipa = NULL; 4773 goto out; 4774 } 4775 4776 size = min_t(u32, ipa->size, 4096); 4777 ipath = init_ipath(size, root, path); 4778 if (IS_ERR(ipath)) { 4779 ret = PTR_ERR(ipath); 4780 ipath = NULL; 4781 goto out; 4782 } 4783 4784 ret = paths_from_inode(ipa->inum, ipath); 4785 if (ret < 0) 4786 goto out; 4787 4788 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4789 rel_ptr = ipath->fspath->val[i] - 4790 (u64)(unsigned long)ipath->fspath->val; 4791 ipath->fspath->val[i] = rel_ptr; 4792 } 4793 4794 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4795 ipath->fspath, size); 4796 if (ret) { 4797 ret = -EFAULT; 4798 goto out; 4799 } 4800 4801 out: 4802 btrfs_free_path(path); 4803 free_ipath(ipath); 4804 kfree(ipa); 4805 4806 return ret; 4807 } 4808 4809 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4810 { 4811 struct btrfs_data_container *inodes = ctx; 4812 const size_t c = 3 * sizeof(u64); 4813 4814 if (inodes->bytes_left >= c) { 4815 inodes->bytes_left -= c; 4816 inodes->val[inodes->elem_cnt] = inum; 4817 inodes->val[inodes->elem_cnt + 1] = offset; 4818 inodes->val[inodes->elem_cnt + 2] = root; 4819 inodes->elem_cnt += 3; 4820 } else { 4821 inodes->bytes_missing += c - inodes->bytes_left; 4822 inodes->bytes_left = 0; 4823 inodes->elem_missed += 3; 4824 } 4825 4826 return 0; 4827 } 4828 4829 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4830 void __user *arg, int version) 4831 { 4832 int ret = 0; 4833 int size; 4834 struct btrfs_ioctl_logical_ino_args *loi; 4835 struct btrfs_data_container *inodes = NULL; 4836 struct btrfs_path *path = NULL; 4837 bool ignore_offset; 4838 4839 if (!capable(CAP_SYS_ADMIN)) 4840 return -EPERM; 4841 4842 loi = memdup_user(arg, sizeof(*loi)); 4843 if (IS_ERR(loi)) 4844 return PTR_ERR(loi); 4845 4846 if (version == 1) { 4847 ignore_offset = false; 4848 size = min_t(u32, loi->size, SZ_64K); 4849 } else { 4850 /* All reserved bits must be 0 for now */ 4851 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4852 ret = -EINVAL; 4853 goto out_loi; 4854 } 4855 /* Only accept flags we have defined so far */ 4856 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4857 ret = -EINVAL; 4858 goto out_loi; 4859 } 4860 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4861 size = min_t(u32, loi->size, SZ_16M); 4862 } 4863 4864 path = btrfs_alloc_path(); 4865 if (!path) { 4866 ret = -ENOMEM; 4867 goto out; 4868 } 4869 4870 inodes = init_data_container(size); 4871 if (IS_ERR(inodes)) { 4872 ret = PTR_ERR(inodes); 4873 inodes = NULL; 4874 goto out; 4875 } 4876 4877 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4878 build_ino_list, inodes, ignore_offset); 4879 if (ret == -EINVAL) 4880 ret = -ENOENT; 4881 if (ret < 0) 4882 goto out; 4883 4884 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4885 size); 4886 if (ret) 4887 ret = -EFAULT; 4888 4889 out: 4890 btrfs_free_path(path); 4891 kvfree(inodes); 4892 out_loi: 4893 kfree(loi); 4894 4895 return ret; 4896 } 4897 4898 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4899 struct btrfs_ioctl_balance_args *bargs) 4900 { 4901 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4902 4903 bargs->flags = bctl->flags; 4904 4905 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4906 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4907 if (atomic_read(&fs_info->balance_pause_req)) 4908 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4909 if (atomic_read(&fs_info->balance_cancel_req)) 4910 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4911 4912 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4913 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4914 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4915 4916 spin_lock(&fs_info->balance_lock); 4917 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4918 spin_unlock(&fs_info->balance_lock); 4919 } 4920 4921 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4922 { 4923 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4924 struct btrfs_fs_info *fs_info = root->fs_info; 4925 struct btrfs_ioctl_balance_args *bargs; 4926 struct btrfs_balance_control *bctl; 4927 bool need_unlock; /* for mut. excl. ops lock */ 4928 int ret; 4929 4930 if (!capable(CAP_SYS_ADMIN)) 4931 return -EPERM; 4932 4933 ret = mnt_want_write_file(file); 4934 if (ret) 4935 return ret; 4936 4937 again: 4938 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4939 mutex_lock(&fs_info->balance_mutex); 4940 need_unlock = true; 4941 goto locked; 4942 } 4943 4944 /* 4945 * mut. excl. ops lock is locked. Three possibilities: 4946 * (1) some other op is running 4947 * (2) balance is running 4948 * (3) balance is paused -- special case (think resume) 4949 */ 4950 mutex_lock(&fs_info->balance_mutex); 4951 if (fs_info->balance_ctl) { 4952 /* this is either (2) or (3) */ 4953 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4954 mutex_unlock(&fs_info->balance_mutex); 4955 /* 4956 * Lock released to allow other waiters to continue, 4957 * we'll reexamine the status again. 4958 */ 4959 mutex_lock(&fs_info->balance_mutex); 4960 4961 if (fs_info->balance_ctl && 4962 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4963 /* this is (3) */ 4964 need_unlock = false; 4965 goto locked; 4966 } 4967 4968 mutex_unlock(&fs_info->balance_mutex); 4969 goto again; 4970 } else { 4971 /* this is (2) */ 4972 mutex_unlock(&fs_info->balance_mutex); 4973 ret = -EINPROGRESS; 4974 goto out; 4975 } 4976 } else { 4977 /* this is (1) */ 4978 mutex_unlock(&fs_info->balance_mutex); 4979 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4980 goto out; 4981 } 4982 4983 locked: 4984 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4985 4986 if (arg) { 4987 bargs = memdup_user(arg, sizeof(*bargs)); 4988 if (IS_ERR(bargs)) { 4989 ret = PTR_ERR(bargs); 4990 goto out_unlock; 4991 } 4992 4993 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4994 if (!fs_info->balance_ctl) { 4995 ret = -ENOTCONN; 4996 goto out_bargs; 4997 } 4998 4999 bctl = fs_info->balance_ctl; 5000 spin_lock(&fs_info->balance_lock); 5001 bctl->flags |= BTRFS_BALANCE_RESUME; 5002 spin_unlock(&fs_info->balance_lock); 5003 5004 goto do_balance; 5005 } 5006 } else { 5007 bargs = NULL; 5008 } 5009 5010 if (fs_info->balance_ctl) { 5011 ret = -EINPROGRESS; 5012 goto out_bargs; 5013 } 5014 5015 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 5016 if (!bctl) { 5017 ret = -ENOMEM; 5018 goto out_bargs; 5019 } 5020 5021 if (arg) { 5022 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 5023 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 5024 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 5025 5026 bctl->flags = bargs->flags; 5027 } else { 5028 /* balance everything - no filters */ 5029 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 5030 } 5031 5032 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 5033 ret = -EINVAL; 5034 goto out_bctl; 5035 } 5036 5037 do_balance: 5038 /* 5039 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 5040 * btrfs_balance. bctl is freed in reset_balance_state, or, if 5041 * restriper was paused all the way until unmount, in free_fs_info. 5042 * The flag should be cleared after reset_balance_state. 5043 */ 5044 need_unlock = false; 5045 5046 ret = btrfs_balance(fs_info, bctl, bargs); 5047 bctl = NULL; 5048 5049 if (arg) { 5050 if (copy_to_user(arg, bargs, sizeof(*bargs))) 5051 ret = -EFAULT; 5052 } 5053 5054 out_bctl: 5055 kfree(bctl); 5056 out_bargs: 5057 kfree(bargs); 5058 out_unlock: 5059 mutex_unlock(&fs_info->balance_mutex); 5060 if (need_unlock) 5061 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 5062 out: 5063 mnt_drop_write_file(file); 5064 return ret; 5065 } 5066 5067 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 5068 { 5069 if (!capable(CAP_SYS_ADMIN)) 5070 return -EPERM; 5071 5072 switch (cmd) { 5073 case BTRFS_BALANCE_CTL_PAUSE: 5074 return btrfs_pause_balance(fs_info); 5075 case BTRFS_BALANCE_CTL_CANCEL: 5076 return btrfs_cancel_balance(fs_info); 5077 } 5078 5079 return -EINVAL; 5080 } 5081 5082 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 5083 void __user *arg) 5084 { 5085 struct btrfs_ioctl_balance_args *bargs; 5086 int ret = 0; 5087 5088 if (!capable(CAP_SYS_ADMIN)) 5089 return -EPERM; 5090 5091 mutex_lock(&fs_info->balance_mutex); 5092 if (!fs_info->balance_ctl) { 5093 ret = -ENOTCONN; 5094 goto out; 5095 } 5096 5097 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 5098 if (!bargs) { 5099 ret = -ENOMEM; 5100 goto out; 5101 } 5102 5103 btrfs_update_ioctl_balance_args(fs_info, bargs); 5104 5105 if (copy_to_user(arg, bargs, sizeof(*bargs))) 5106 ret = -EFAULT; 5107 5108 kfree(bargs); 5109 out: 5110 mutex_unlock(&fs_info->balance_mutex); 5111 return ret; 5112 } 5113 5114 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 5115 { 5116 struct inode *inode = file_inode(file); 5117 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5118 struct btrfs_ioctl_quota_ctl_args *sa; 5119 struct btrfs_trans_handle *trans = NULL; 5120 int ret; 5121 int err; 5122 5123 if (!capable(CAP_SYS_ADMIN)) 5124 return -EPERM; 5125 5126 ret = mnt_want_write_file(file); 5127 if (ret) 5128 return ret; 5129 5130 sa = memdup_user(arg, sizeof(*sa)); 5131 if (IS_ERR(sa)) { 5132 ret = PTR_ERR(sa); 5133 goto drop_write; 5134 } 5135 5136 down_write(&fs_info->subvol_sem); 5137 trans = btrfs_start_transaction(fs_info->tree_root, 2); 5138 if (IS_ERR(trans)) { 5139 ret = PTR_ERR(trans); 5140 goto out; 5141 } 5142 5143 switch (sa->cmd) { 5144 case BTRFS_QUOTA_CTL_ENABLE: 5145 ret = btrfs_quota_enable(trans, fs_info); 5146 break; 5147 case BTRFS_QUOTA_CTL_DISABLE: 5148 ret = btrfs_quota_disable(trans, fs_info); 5149 break; 5150 default: 5151 ret = -EINVAL; 5152 break; 5153 } 5154 5155 err = btrfs_commit_transaction(trans); 5156 if (err && !ret) 5157 ret = err; 5158 out: 5159 kfree(sa); 5160 up_write(&fs_info->subvol_sem); 5161 drop_write: 5162 mnt_drop_write_file(file); 5163 return ret; 5164 } 5165 5166 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 5167 { 5168 struct inode *inode = file_inode(file); 5169 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5170 struct btrfs_root *root = BTRFS_I(inode)->root; 5171 struct btrfs_ioctl_qgroup_assign_args *sa; 5172 struct btrfs_trans_handle *trans; 5173 int ret; 5174 int err; 5175 5176 if (!capable(CAP_SYS_ADMIN)) 5177 return -EPERM; 5178 5179 ret = mnt_want_write_file(file); 5180 if (ret) 5181 return ret; 5182 5183 sa = memdup_user(arg, sizeof(*sa)); 5184 if (IS_ERR(sa)) { 5185 ret = PTR_ERR(sa); 5186 goto drop_write; 5187 } 5188 5189 trans = btrfs_join_transaction(root); 5190 if (IS_ERR(trans)) { 5191 ret = PTR_ERR(trans); 5192 goto out; 5193 } 5194 5195 if (sa->assign) { 5196 ret = btrfs_add_qgroup_relation(trans, fs_info, 5197 sa->src, sa->dst); 5198 } else { 5199 ret = btrfs_del_qgroup_relation(trans, fs_info, 5200 sa->src, sa->dst); 5201 } 5202 5203 /* update qgroup status and info */ 5204 err = btrfs_run_qgroups(trans, fs_info); 5205 if (err < 0) 5206 btrfs_handle_fs_error(fs_info, err, 5207 "failed to update qgroup status and info"); 5208 err = btrfs_end_transaction(trans); 5209 if (err && !ret) 5210 ret = err; 5211 5212 out: 5213 kfree(sa); 5214 drop_write: 5215 mnt_drop_write_file(file); 5216 return ret; 5217 } 5218 5219 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 5220 { 5221 struct inode *inode = file_inode(file); 5222 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5223 struct btrfs_root *root = BTRFS_I(inode)->root; 5224 struct btrfs_ioctl_qgroup_create_args *sa; 5225 struct btrfs_trans_handle *trans; 5226 int ret; 5227 int err; 5228 5229 if (!capable(CAP_SYS_ADMIN)) 5230 return -EPERM; 5231 5232 ret = mnt_want_write_file(file); 5233 if (ret) 5234 return ret; 5235 5236 sa = memdup_user(arg, sizeof(*sa)); 5237 if (IS_ERR(sa)) { 5238 ret = PTR_ERR(sa); 5239 goto drop_write; 5240 } 5241 5242 if (!sa->qgroupid) { 5243 ret = -EINVAL; 5244 goto out; 5245 } 5246 5247 trans = btrfs_join_transaction(root); 5248 if (IS_ERR(trans)) { 5249 ret = PTR_ERR(trans); 5250 goto out; 5251 } 5252 5253 if (sa->create) { 5254 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid); 5255 } else { 5256 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid); 5257 } 5258 5259 err = btrfs_end_transaction(trans); 5260 if (err && !ret) 5261 ret = err; 5262 5263 out: 5264 kfree(sa); 5265 drop_write: 5266 mnt_drop_write_file(file); 5267 return ret; 5268 } 5269 5270 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 5271 { 5272 struct inode *inode = file_inode(file); 5273 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5274 struct btrfs_root *root = BTRFS_I(inode)->root; 5275 struct btrfs_ioctl_qgroup_limit_args *sa; 5276 struct btrfs_trans_handle *trans; 5277 int ret; 5278 int err; 5279 u64 qgroupid; 5280 5281 if (!capable(CAP_SYS_ADMIN)) 5282 return -EPERM; 5283 5284 ret = mnt_want_write_file(file); 5285 if (ret) 5286 return ret; 5287 5288 sa = memdup_user(arg, sizeof(*sa)); 5289 if (IS_ERR(sa)) { 5290 ret = PTR_ERR(sa); 5291 goto drop_write; 5292 } 5293 5294 trans = btrfs_join_transaction(root); 5295 if (IS_ERR(trans)) { 5296 ret = PTR_ERR(trans); 5297 goto out; 5298 } 5299 5300 qgroupid = sa->qgroupid; 5301 if (!qgroupid) { 5302 /* take the current subvol as qgroup */ 5303 qgroupid = root->root_key.objectid; 5304 } 5305 5306 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim); 5307 5308 err = btrfs_end_transaction(trans); 5309 if (err && !ret) 5310 ret = err; 5311 5312 out: 5313 kfree(sa); 5314 drop_write: 5315 mnt_drop_write_file(file); 5316 return ret; 5317 } 5318 5319 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5320 { 5321 struct inode *inode = file_inode(file); 5322 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5323 struct btrfs_ioctl_quota_rescan_args *qsa; 5324 int ret; 5325 5326 if (!capable(CAP_SYS_ADMIN)) 5327 return -EPERM; 5328 5329 ret = mnt_want_write_file(file); 5330 if (ret) 5331 return ret; 5332 5333 qsa = memdup_user(arg, sizeof(*qsa)); 5334 if (IS_ERR(qsa)) { 5335 ret = PTR_ERR(qsa); 5336 goto drop_write; 5337 } 5338 5339 if (qsa->flags) { 5340 ret = -EINVAL; 5341 goto out; 5342 } 5343 5344 ret = btrfs_qgroup_rescan(fs_info); 5345 5346 out: 5347 kfree(qsa); 5348 drop_write: 5349 mnt_drop_write_file(file); 5350 return ret; 5351 } 5352 5353 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5354 { 5355 struct inode *inode = file_inode(file); 5356 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5357 struct btrfs_ioctl_quota_rescan_args *qsa; 5358 int ret = 0; 5359 5360 if (!capable(CAP_SYS_ADMIN)) 5361 return -EPERM; 5362 5363 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5364 if (!qsa) 5365 return -ENOMEM; 5366 5367 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5368 qsa->flags = 1; 5369 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5370 } 5371 5372 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5373 ret = -EFAULT; 5374 5375 kfree(qsa); 5376 return ret; 5377 } 5378 5379 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5380 { 5381 struct inode *inode = file_inode(file); 5382 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5383 5384 if (!capable(CAP_SYS_ADMIN)) 5385 return -EPERM; 5386 5387 return btrfs_qgroup_wait_for_completion(fs_info, true); 5388 } 5389 5390 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5391 struct btrfs_ioctl_received_subvol_args *sa) 5392 { 5393 struct inode *inode = file_inode(file); 5394 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5395 struct btrfs_root *root = BTRFS_I(inode)->root; 5396 struct btrfs_root_item *root_item = &root->root_item; 5397 struct btrfs_trans_handle *trans; 5398 struct timespec64 ct = current_time(inode); 5399 int ret = 0; 5400 int received_uuid_changed; 5401 5402 if (!inode_owner_or_capable(inode)) 5403 return -EPERM; 5404 5405 ret = mnt_want_write_file(file); 5406 if (ret < 0) 5407 return ret; 5408 5409 down_write(&fs_info->subvol_sem); 5410 5411 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5412 ret = -EINVAL; 5413 goto out; 5414 } 5415 5416 if (btrfs_root_readonly(root)) { 5417 ret = -EROFS; 5418 goto out; 5419 } 5420 5421 /* 5422 * 1 - root item 5423 * 2 - uuid items (received uuid + subvol uuid) 5424 */ 5425 trans = btrfs_start_transaction(root, 3); 5426 if (IS_ERR(trans)) { 5427 ret = PTR_ERR(trans); 5428 trans = NULL; 5429 goto out; 5430 } 5431 5432 sa->rtransid = trans->transid; 5433 sa->rtime.sec = ct.tv_sec; 5434 sa->rtime.nsec = ct.tv_nsec; 5435 5436 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5437 BTRFS_UUID_SIZE); 5438 if (received_uuid_changed && 5439 !btrfs_is_empty_uuid(root_item->received_uuid)) { 5440 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 5441 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5442 root->root_key.objectid); 5443 if (ret && ret != -ENOENT) { 5444 btrfs_abort_transaction(trans, ret); 5445 btrfs_end_transaction(trans); 5446 goto out; 5447 } 5448 } 5449 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5450 btrfs_set_root_stransid(root_item, sa->stransid); 5451 btrfs_set_root_rtransid(root_item, sa->rtransid); 5452 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5453 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5454 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5455 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5456 5457 ret = btrfs_update_root(trans, fs_info->tree_root, 5458 &root->root_key, &root->root_item); 5459 if (ret < 0) { 5460 btrfs_end_transaction(trans); 5461 goto out; 5462 } 5463 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5464 ret = btrfs_uuid_tree_add(trans, sa->uuid, 5465 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5466 root->root_key.objectid); 5467 if (ret < 0 && ret != -EEXIST) { 5468 btrfs_abort_transaction(trans, ret); 5469 btrfs_end_transaction(trans); 5470 goto out; 5471 } 5472 } 5473 ret = btrfs_commit_transaction(trans); 5474 out: 5475 up_write(&fs_info->subvol_sem); 5476 mnt_drop_write_file(file); 5477 return ret; 5478 } 5479 5480 #ifdef CONFIG_64BIT 5481 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5482 void __user *arg) 5483 { 5484 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5485 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5486 int ret = 0; 5487 5488 args32 = memdup_user(arg, sizeof(*args32)); 5489 if (IS_ERR(args32)) 5490 return PTR_ERR(args32); 5491 5492 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5493 if (!args64) { 5494 ret = -ENOMEM; 5495 goto out; 5496 } 5497 5498 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5499 args64->stransid = args32->stransid; 5500 args64->rtransid = args32->rtransid; 5501 args64->stime.sec = args32->stime.sec; 5502 args64->stime.nsec = args32->stime.nsec; 5503 args64->rtime.sec = args32->rtime.sec; 5504 args64->rtime.nsec = args32->rtime.nsec; 5505 args64->flags = args32->flags; 5506 5507 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5508 if (ret) 5509 goto out; 5510 5511 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5512 args32->stransid = args64->stransid; 5513 args32->rtransid = args64->rtransid; 5514 args32->stime.sec = args64->stime.sec; 5515 args32->stime.nsec = args64->stime.nsec; 5516 args32->rtime.sec = args64->rtime.sec; 5517 args32->rtime.nsec = args64->rtime.nsec; 5518 args32->flags = args64->flags; 5519 5520 ret = copy_to_user(arg, args32, sizeof(*args32)); 5521 if (ret) 5522 ret = -EFAULT; 5523 5524 out: 5525 kfree(args32); 5526 kfree(args64); 5527 return ret; 5528 } 5529 #endif 5530 5531 static long btrfs_ioctl_set_received_subvol(struct file *file, 5532 void __user *arg) 5533 { 5534 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5535 int ret = 0; 5536 5537 sa = memdup_user(arg, sizeof(*sa)); 5538 if (IS_ERR(sa)) 5539 return PTR_ERR(sa); 5540 5541 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5542 5543 if (ret) 5544 goto out; 5545 5546 ret = copy_to_user(arg, sa, sizeof(*sa)); 5547 if (ret) 5548 ret = -EFAULT; 5549 5550 out: 5551 kfree(sa); 5552 return ret; 5553 } 5554 5555 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5556 { 5557 struct inode *inode = file_inode(file); 5558 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5559 size_t len; 5560 int ret; 5561 char label[BTRFS_LABEL_SIZE]; 5562 5563 spin_lock(&fs_info->super_lock); 5564 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5565 spin_unlock(&fs_info->super_lock); 5566 5567 len = strnlen(label, BTRFS_LABEL_SIZE); 5568 5569 if (len == BTRFS_LABEL_SIZE) { 5570 btrfs_warn(fs_info, 5571 "label is too long, return the first %zu bytes", 5572 --len); 5573 } 5574 5575 ret = copy_to_user(arg, label, len); 5576 5577 return ret ? -EFAULT : 0; 5578 } 5579 5580 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5581 { 5582 struct inode *inode = file_inode(file); 5583 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5584 struct btrfs_root *root = BTRFS_I(inode)->root; 5585 struct btrfs_super_block *super_block = fs_info->super_copy; 5586 struct btrfs_trans_handle *trans; 5587 char label[BTRFS_LABEL_SIZE]; 5588 int ret; 5589 5590 if (!capable(CAP_SYS_ADMIN)) 5591 return -EPERM; 5592 5593 if (copy_from_user(label, arg, sizeof(label))) 5594 return -EFAULT; 5595 5596 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5597 btrfs_err(fs_info, 5598 "unable to set label with more than %d bytes", 5599 BTRFS_LABEL_SIZE - 1); 5600 return -EINVAL; 5601 } 5602 5603 ret = mnt_want_write_file(file); 5604 if (ret) 5605 return ret; 5606 5607 trans = btrfs_start_transaction(root, 0); 5608 if (IS_ERR(trans)) { 5609 ret = PTR_ERR(trans); 5610 goto out_unlock; 5611 } 5612 5613 spin_lock(&fs_info->super_lock); 5614 strcpy(super_block->label, label); 5615 spin_unlock(&fs_info->super_lock); 5616 ret = btrfs_commit_transaction(trans); 5617 5618 out_unlock: 5619 mnt_drop_write_file(file); 5620 return ret; 5621 } 5622 5623 #define INIT_FEATURE_FLAGS(suffix) \ 5624 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5625 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5626 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5627 5628 int btrfs_ioctl_get_supported_features(void __user *arg) 5629 { 5630 static const struct btrfs_ioctl_feature_flags features[3] = { 5631 INIT_FEATURE_FLAGS(SUPP), 5632 INIT_FEATURE_FLAGS(SAFE_SET), 5633 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5634 }; 5635 5636 if (copy_to_user(arg, &features, sizeof(features))) 5637 return -EFAULT; 5638 5639 return 0; 5640 } 5641 5642 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5643 { 5644 struct inode *inode = file_inode(file); 5645 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5646 struct btrfs_super_block *super_block = fs_info->super_copy; 5647 struct btrfs_ioctl_feature_flags features; 5648 5649 features.compat_flags = btrfs_super_compat_flags(super_block); 5650 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5651 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5652 5653 if (copy_to_user(arg, &features, sizeof(features))) 5654 return -EFAULT; 5655 5656 return 0; 5657 } 5658 5659 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5660 enum btrfs_feature_set set, 5661 u64 change_mask, u64 flags, u64 supported_flags, 5662 u64 safe_set, u64 safe_clear) 5663 { 5664 const char *type = btrfs_feature_set_names[set]; 5665 char *names; 5666 u64 disallowed, unsupported; 5667 u64 set_mask = flags & change_mask; 5668 u64 clear_mask = ~flags & change_mask; 5669 5670 unsupported = set_mask & ~supported_flags; 5671 if (unsupported) { 5672 names = btrfs_printable_features(set, unsupported); 5673 if (names) { 5674 btrfs_warn(fs_info, 5675 "this kernel does not support the %s feature bit%s", 5676 names, strchr(names, ',') ? "s" : ""); 5677 kfree(names); 5678 } else 5679 btrfs_warn(fs_info, 5680 "this kernel does not support %s bits 0x%llx", 5681 type, unsupported); 5682 return -EOPNOTSUPP; 5683 } 5684 5685 disallowed = set_mask & ~safe_set; 5686 if (disallowed) { 5687 names = btrfs_printable_features(set, disallowed); 5688 if (names) { 5689 btrfs_warn(fs_info, 5690 "can't set the %s feature bit%s while mounted", 5691 names, strchr(names, ',') ? "s" : ""); 5692 kfree(names); 5693 } else 5694 btrfs_warn(fs_info, 5695 "can't set %s bits 0x%llx while mounted", 5696 type, disallowed); 5697 return -EPERM; 5698 } 5699 5700 disallowed = clear_mask & ~safe_clear; 5701 if (disallowed) { 5702 names = btrfs_printable_features(set, disallowed); 5703 if (names) { 5704 btrfs_warn(fs_info, 5705 "can't clear the %s feature bit%s while mounted", 5706 names, strchr(names, ',') ? "s" : ""); 5707 kfree(names); 5708 } else 5709 btrfs_warn(fs_info, 5710 "can't clear %s bits 0x%llx while mounted", 5711 type, disallowed); 5712 return -EPERM; 5713 } 5714 5715 return 0; 5716 } 5717 5718 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5719 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5720 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5721 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5722 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5723 5724 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5725 { 5726 struct inode *inode = file_inode(file); 5727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5728 struct btrfs_root *root = BTRFS_I(inode)->root; 5729 struct btrfs_super_block *super_block = fs_info->super_copy; 5730 struct btrfs_ioctl_feature_flags flags[2]; 5731 struct btrfs_trans_handle *trans; 5732 u64 newflags; 5733 int ret; 5734 5735 if (!capable(CAP_SYS_ADMIN)) 5736 return -EPERM; 5737 5738 if (copy_from_user(flags, arg, sizeof(flags))) 5739 return -EFAULT; 5740 5741 /* Nothing to do */ 5742 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5743 !flags[0].incompat_flags) 5744 return 0; 5745 5746 ret = check_feature(fs_info, flags[0].compat_flags, 5747 flags[1].compat_flags, COMPAT); 5748 if (ret) 5749 return ret; 5750 5751 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5752 flags[1].compat_ro_flags, COMPAT_RO); 5753 if (ret) 5754 return ret; 5755 5756 ret = check_feature(fs_info, flags[0].incompat_flags, 5757 flags[1].incompat_flags, INCOMPAT); 5758 if (ret) 5759 return ret; 5760 5761 ret = mnt_want_write_file(file); 5762 if (ret) 5763 return ret; 5764 5765 trans = btrfs_start_transaction(root, 0); 5766 if (IS_ERR(trans)) { 5767 ret = PTR_ERR(trans); 5768 goto out_drop_write; 5769 } 5770 5771 spin_lock(&fs_info->super_lock); 5772 newflags = btrfs_super_compat_flags(super_block); 5773 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5774 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5775 btrfs_set_super_compat_flags(super_block, newflags); 5776 5777 newflags = btrfs_super_compat_ro_flags(super_block); 5778 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5779 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5780 btrfs_set_super_compat_ro_flags(super_block, newflags); 5781 5782 newflags = btrfs_super_incompat_flags(super_block); 5783 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5784 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5785 btrfs_set_super_incompat_flags(super_block, newflags); 5786 spin_unlock(&fs_info->super_lock); 5787 5788 ret = btrfs_commit_transaction(trans); 5789 out_drop_write: 5790 mnt_drop_write_file(file); 5791 5792 return ret; 5793 } 5794 5795 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5796 { 5797 struct btrfs_ioctl_send_args *arg; 5798 int ret; 5799 5800 if (compat) { 5801 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5802 struct btrfs_ioctl_send_args_32 args32; 5803 5804 ret = copy_from_user(&args32, argp, sizeof(args32)); 5805 if (ret) 5806 return -EFAULT; 5807 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5808 if (!arg) 5809 return -ENOMEM; 5810 arg->send_fd = args32.send_fd; 5811 arg->clone_sources_count = args32.clone_sources_count; 5812 arg->clone_sources = compat_ptr(args32.clone_sources); 5813 arg->parent_root = args32.parent_root; 5814 arg->flags = args32.flags; 5815 memcpy(arg->reserved, args32.reserved, 5816 sizeof(args32.reserved)); 5817 #else 5818 return -ENOTTY; 5819 #endif 5820 } else { 5821 arg = memdup_user(argp, sizeof(*arg)); 5822 if (IS_ERR(arg)) 5823 return PTR_ERR(arg); 5824 } 5825 ret = btrfs_ioctl_send(file, arg); 5826 kfree(arg); 5827 return ret; 5828 } 5829 5830 long btrfs_ioctl(struct file *file, unsigned int 5831 cmd, unsigned long arg) 5832 { 5833 struct inode *inode = file_inode(file); 5834 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5835 struct btrfs_root *root = BTRFS_I(inode)->root; 5836 void __user *argp = (void __user *)arg; 5837 5838 switch (cmd) { 5839 case FS_IOC_GETFLAGS: 5840 return btrfs_ioctl_getflags(file, argp); 5841 case FS_IOC_SETFLAGS: 5842 return btrfs_ioctl_setflags(file, argp); 5843 case FS_IOC_GETVERSION: 5844 return btrfs_ioctl_getversion(file, argp); 5845 case FITRIM: 5846 return btrfs_ioctl_fitrim(file, argp); 5847 case BTRFS_IOC_SNAP_CREATE: 5848 return btrfs_ioctl_snap_create(file, argp, 0); 5849 case BTRFS_IOC_SNAP_CREATE_V2: 5850 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5851 case BTRFS_IOC_SUBVOL_CREATE: 5852 return btrfs_ioctl_snap_create(file, argp, 1); 5853 case BTRFS_IOC_SUBVOL_CREATE_V2: 5854 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5855 case BTRFS_IOC_SNAP_DESTROY: 5856 return btrfs_ioctl_snap_destroy(file, argp); 5857 case BTRFS_IOC_SUBVOL_GETFLAGS: 5858 return btrfs_ioctl_subvol_getflags(file, argp); 5859 case BTRFS_IOC_SUBVOL_SETFLAGS: 5860 return btrfs_ioctl_subvol_setflags(file, argp); 5861 case BTRFS_IOC_DEFAULT_SUBVOL: 5862 return btrfs_ioctl_default_subvol(file, argp); 5863 case BTRFS_IOC_DEFRAG: 5864 return btrfs_ioctl_defrag(file, NULL); 5865 case BTRFS_IOC_DEFRAG_RANGE: 5866 return btrfs_ioctl_defrag(file, argp); 5867 case BTRFS_IOC_RESIZE: 5868 return btrfs_ioctl_resize(file, argp); 5869 case BTRFS_IOC_ADD_DEV: 5870 return btrfs_ioctl_add_dev(fs_info, argp); 5871 case BTRFS_IOC_RM_DEV: 5872 return btrfs_ioctl_rm_dev(file, argp); 5873 case BTRFS_IOC_RM_DEV_V2: 5874 return btrfs_ioctl_rm_dev_v2(file, argp); 5875 case BTRFS_IOC_FS_INFO: 5876 return btrfs_ioctl_fs_info(fs_info, argp); 5877 case BTRFS_IOC_DEV_INFO: 5878 return btrfs_ioctl_dev_info(fs_info, argp); 5879 case BTRFS_IOC_BALANCE: 5880 return btrfs_ioctl_balance(file, NULL); 5881 case BTRFS_IOC_TREE_SEARCH: 5882 return btrfs_ioctl_tree_search(file, argp); 5883 case BTRFS_IOC_TREE_SEARCH_V2: 5884 return btrfs_ioctl_tree_search_v2(file, argp); 5885 case BTRFS_IOC_INO_LOOKUP: 5886 return btrfs_ioctl_ino_lookup(file, argp); 5887 case BTRFS_IOC_INO_PATHS: 5888 return btrfs_ioctl_ino_to_path(root, argp); 5889 case BTRFS_IOC_LOGICAL_INO: 5890 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5891 case BTRFS_IOC_LOGICAL_INO_V2: 5892 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5893 case BTRFS_IOC_SPACE_INFO: 5894 return btrfs_ioctl_space_info(fs_info, argp); 5895 case BTRFS_IOC_SYNC: { 5896 int ret; 5897 5898 ret = btrfs_start_delalloc_roots(fs_info, -1); 5899 if (ret) 5900 return ret; 5901 ret = btrfs_sync_fs(inode->i_sb, 1); 5902 /* 5903 * The transaction thread may want to do more work, 5904 * namely it pokes the cleaner kthread that will start 5905 * processing uncleaned subvols. 5906 */ 5907 wake_up_process(fs_info->transaction_kthread); 5908 return ret; 5909 } 5910 case BTRFS_IOC_START_SYNC: 5911 return btrfs_ioctl_start_sync(root, argp); 5912 case BTRFS_IOC_WAIT_SYNC: 5913 return btrfs_ioctl_wait_sync(fs_info, argp); 5914 case BTRFS_IOC_SCRUB: 5915 return btrfs_ioctl_scrub(file, argp); 5916 case BTRFS_IOC_SCRUB_CANCEL: 5917 return btrfs_ioctl_scrub_cancel(fs_info); 5918 case BTRFS_IOC_SCRUB_PROGRESS: 5919 return btrfs_ioctl_scrub_progress(fs_info, argp); 5920 case BTRFS_IOC_BALANCE_V2: 5921 return btrfs_ioctl_balance(file, argp); 5922 case BTRFS_IOC_BALANCE_CTL: 5923 return btrfs_ioctl_balance_ctl(fs_info, arg); 5924 case BTRFS_IOC_BALANCE_PROGRESS: 5925 return btrfs_ioctl_balance_progress(fs_info, argp); 5926 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5927 return btrfs_ioctl_set_received_subvol(file, argp); 5928 #ifdef CONFIG_64BIT 5929 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5930 return btrfs_ioctl_set_received_subvol_32(file, argp); 5931 #endif 5932 case BTRFS_IOC_SEND: 5933 return _btrfs_ioctl_send(file, argp, false); 5934 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5935 case BTRFS_IOC_SEND_32: 5936 return _btrfs_ioctl_send(file, argp, true); 5937 #endif 5938 case BTRFS_IOC_GET_DEV_STATS: 5939 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5940 case BTRFS_IOC_QUOTA_CTL: 5941 return btrfs_ioctl_quota_ctl(file, argp); 5942 case BTRFS_IOC_QGROUP_ASSIGN: 5943 return btrfs_ioctl_qgroup_assign(file, argp); 5944 case BTRFS_IOC_QGROUP_CREATE: 5945 return btrfs_ioctl_qgroup_create(file, argp); 5946 case BTRFS_IOC_QGROUP_LIMIT: 5947 return btrfs_ioctl_qgroup_limit(file, argp); 5948 case BTRFS_IOC_QUOTA_RESCAN: 5949 return btrfs_ioctl_quota_rescan(file, argp); 5950 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5951 return btrfs_ioctl_quota_rescan_status(file, argp); 5952 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5953 return btrfs_ioctl_quota_rescan_wait(file, argp); 5954 case BTRFS_IOC_DEV_REPLACE: 5955 return btrfs_ioctl_dev_replace(fs_info, argp); 5956 case BTRFS_IOC_GET_FSLABEL: 5957 return btrfs_ioctl_get_fslabel(file, argp); 5958 case BTRFS_IOC_SET_FSLABEL: 5959 return btrfs_ioctl_set_fslabel(file, argp); 5960 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5961 return btrfs_ioctl_get_supported_features(argp); 5962 case BTRFS_IOC_GET_FEATURES: 5963 return btrfs_ioctl_get_features(file, argp); 5964 case BTRFS_IOC_SET_FEATURES: 5965 return btrfs_ioctl_set_features(file, argp); 5966 case FS_IOC_FSGETXATTR: 5967 return btrfs_ioctl_fsgetxattr(file, argp); 5968 case FS_IOC_FSSETXATTR: 5969 return btrfs_ioctl_fssetxattr(file, argp); 5970 case BTRFS_IOC_GET_SUBVOL_INFO: 5971 return btrfs_ioctl_get_subvol_info(file, argp); 5972 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5973 return btrfs_ioctl_get_subvol_rootref(file, argp); 5974 case BTRFS_IOC_INO_LOOKUP_USER: 5975 return btrfs_ioctl_ino_lookup_user(file, argp); 5976 } 5977 5978 return -ENOTTY; 5979 } 5980 5981 #ifdef CONFIG_COMPAT 5982 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5983 { 5984 /* 5985 * These all access 32-bit values anyway so no further 5986 * handling is necessary. 5987 */ 5988 switch (cmd) { 5989 case FS_IOC32_GETFLAGS: 5990 cmd = FS_IOC_GETFLAGS; 5991 break; 5992 case FS_IOC32_SETFLAGS: 5993 cmd = FS_IOC_SETFLAGS; 5994 break; 5995 case FS_IOC32_GETVERSION: 5996 cmd = FS_IOC_GETVERSION; 5997 break; 5998 } 5999 6000 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 6001 } 6002 #endif 6003