1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "export.h" 32 #include "transaction.h" 33 #include "btrfs_inode.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "locking.h" 37 #include "inode-map.h" 38 #include "backref.h" 39 #include "rcu-string.h" 40 #include "send.h" 41 #include "dev-replace.h" 42 #include "props.h" 43 #include "sysfs.h" 44 #include "qgroup.h" 45 #include "tree-log.h" 46 #include "compression.h" 47 #include "space-info.h" 48 #include "delalloc-space.h" 49 #include "block-group.h" 50 51 #ifdef CONFIG_64BIT 52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 53 * structures are incorrect, as the timespec structure from userspace 54 * is 4 bytes too small. We define these alternatives here to teach 55 * the kernel about the 32-bit struct packing. 56 */ 57 struct btrfs_ioctl_timespec_32 { 58 __u64 sec; 59 __u32 nsec; 60 } __attribute__ ((__packed__)); 61 62 struct btrfs_ioctl_received_subvol_args_32 { 63 char uuid[BTRFS_UUID_SIZE]; /* in */ 64 __u64 stransid; /* in */ 65 __u64 rtransid; /* out */ 66 struct btrfs_ioctl_timespec_32 stime; /* in */ 67 struct btrfs_ioctl_timespec_32 rtime; /* out */ 68 __u64 flags; /* in */ 69 __u64 reserved[16]; /* in */ 70 } __attribute__ ((__packed__)); 71 72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 73 struct btrfs_ioctl_received_subvol_args_32) 74 #endif 75 76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 77 struct btrfs_ioctl_send_args_32 { 78 __s64 send_fd; /* in */ 79 __u64 clone_sources_count; /* in */ 80 compat_uptr_t clone_sources; /* in */ 81 __u64 parent_root; /* in */ 82 __u64 flags; /* in */ 83 __u64 reserved[4]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 87 struct btrfs_ioctl_send_args_32) 88 #endif 89 90 /* Mask out flags that are inappropriate for the given type of inode. */ 91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93 { 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100 } 101 102 /* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137 { 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 158 { 159 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 161 162 if (copy_to_user(arg, &flags, sizeof(flags))) 163 return -EFAULT; 164 return 0; 165 } 166 167 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 168 static int check_fsflags(unsigned int flags) 169 { 170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 171 FS_NOATIME_FL | FS_NODUMP_FL | \ 172 FS_SYNC_FL | FS_DIRSYNC_FL | \ 173 FS_NOCOMP_FL | FS_COMPR_FL | 174 FS_NOCOW_FL)) 175 return -EOPNOTSUPP; 176 177 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 178 return -EINVAL; 179 180 return 0; 181 } 182 183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 184 { 185 struct inode *inode = file_inode(file); 186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 187 struct btrfs_inode *binode = BTRFS_I(inode); 188 struct btrfs_root *root = binode->root; 189 struct btrfs_trans_handle *trans; 190 unsigned int fsflags, old_fsflags; 191 int ret; 192 const char *comp = NULL; 193 u32 binode_flags = binode->flags; 194 195 if (!inode_owner_or_capable(inode)) 196 return -EPERM; 197 198 if (btrfs_root_readonly(root)) 199 return -EROFS; 200 201 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 202 return -EFAULT; 203 204 ret = check_fsflags(fsflags); 205 if (ret) 206 return ret; 207 208 ret = mnt_want_write_file(file); 209 if (ret) 210 return ret; 211 212 inode_lock(inode); 213 214 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 215 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 216 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 217 if (ret) 218 goto out_unlock; 219 220 if (fsflags & FS_SYNC_FL) 221 binode_flags |= BTRFS_INODE_SYNC; 222 else 223 binode_flags &= ~BTRFS_INODE_SYNC; 224 if (fsflags & FS_IMMUTABLE_FL) 225 binode_flags |= BTRFS_INODE_IMMUTABLE; 226 else 227 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 228 if (fsflags & FS_APPEND_FL) 229 binode_flags |= BTRFS_INODE_APPEND; 230 else 231 binode_flags &= ~BTRFS_INODE_APPEND; 232 if (fsflags & FS_NODUMP_FL) 233 binode_flags |= BTRFS_INODE_NODUMP; 234 else 235 binode_flags &= ~BTRFS_INODE_NODUMP; 236 if (fsflags & FS_NOATIME_FL) 237 binode_flags |= BTRFS_INODE_NOATIME; 238 else 239 binode_flags &= ~BTRFS_INODE_NOATIME; 240 if (fsflags & FS_DIRSYNC_FL) 241 binode_flags |= BTRFS_INODE_DIRSYNC; 242 else 243 binode_flags &= ~BTRFS_INODE_DIRSYNC; 244 if (fsflags & FS_NOCOW_FL) { 245 if (S_ISREG(inode->i_mode)) { 246 /* 247 * It's safe to turn csums off here, no extents exist. 248 * Otherwise we want the flag to reflect the real COW 249 * status of the file and will not set it. 250 */ 251 if (inode->i_size == 0) 252 binode_flags |= BTRFS_INODE_NODATACOW | 253 BTRFS_INODE_NODATASUM; 254 } else { 255 binode_flags |= BTRFS_INODE_NODATACOW; 256 } 257 } else { 258 /* 259 * Revert back under same assumptions as above 260 */ 261 if (S_ISREG(inode->i_mode)) { 262 if (inode->i_size == 0) 263 binode_flags &= ~(BTRFS_INODE_NODATACOW | 264 BTRFS_INODE_NODATASUM); 265 } else { 266 binode_flags &= ~BTRFS_INODE_NODATACOW; 267 } 268 } 269 270 /* 271 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 272 * flag may be changed automatically if compression code won't make 273 * things smaller. 274 */ 275 if (fsflags & FS_NOCOMP_FL) { 276 binode_flags &= ~BTRFS_INODE_COMPRESS; 277 binode_flags |= BTRFS_INODE_NOCOMPRESS; 278 } else if (fsflags & FS_COMPR_FL) { 279 280 if (IS_SWAPFILE(inode)) { 281 ret = -ETXTBSY; 282 goto out_unlock; 283 } 284 285 binode_flags |= BTRFS_INODE_COMPRESS; 286 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 287 288 comp = btrfs_compress_type2str(fs_info->compress_type); 289 if (!comp || comp[0] == 0) 290 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 291 } else { 292 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 293 } 294 295 /* 296 * 1 for inode item 297 * 2 for properties 298 */ 299 trans = btrfs_start_transaction(root, 3); 300 if (IS_ERR(trans)) { 301 ret = PTR_ERR(trans); 302 goto out_unlock; 303 } 304 305 if (comp) { 306 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 307 strlen(comp), 0); 308 if (ret) { 309 btrfs_abort_transaction(trans, ret); 310 goto out_end_trans; 311 } 312 } else { 313 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 314 0, 0); 315 if (ret && ret != -ENODATA) { 316 btrfs_abort_transaction(trans, ret); 317 goto out_end_trans; 318 } 319 } 320 321 binode->flags = binode_flags; 322 btrfs_sync_inode_flags_to_i_flags(inode); 323 inode_inc_iversion(inode); 324 inode->i_ctime = current_time(inode); 325 ret = btrfs_update_inode(trans, root, inode); 326 327 out_end_trans: 328 btrfs_end_transaction(trans); 329 out_unlock: 330 inode_unlock(inode); 331 mnt_drop_write_file(file); 332 return ret; 333 } 334 335 /* 336 * Translate btrfs internal inode flags to xflags as expected by the 337 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 338 * silently dropped. 339 */ 340 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 341 { 342 unsigned int xflags = 0; 343 344 if (flags & BTRFS_INODE_APPEND) 345 xflags |= FS_XFLAG_APPEND; 346 if (flags & BTRFS_INODE_IMMUTABLE) 347 xflags |= FS_XFLAG_IMMUTABLE; 348 if (flags & BTRFS_INODE_NOATIME) 349 xflags |= FS_XFLAG_NOATIME; 350 if (flags & BTRFS_INODE_NODUMP) 351 xflags |= FS_XFLAG_NODUMP; 352 if (flags & BTRFS_INODE_SYNC) 353 xflags |= FS_XFLAG_SYNC; 354 355 return xflags; 356 } 357 358 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 359 static int check_xflags(unsigned int flags) 360 { 361 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 362 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 363 return -EOPNOTSUPP; 364 return 0; 365 } 366 367 /* 368 * Set the xflags from the internal inode flags. The remaining items of fsxattr 369 * are zeroed. 370 */ 371 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 372 { 373 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 374 struct fsxattr fa; 375 376 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 377 if (copy_to_user(arg, &fa, sizeof(fa))) 378 return -EFAULT; 379 380 return 0; 381 } 382 383 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 384 { 385 struct inode *inode = file_inode(file); 386 struct btrfs_inode *binode = BTRFS_I(inode); 387 struct btrfs_root *root = binode->root; 388 struct btrfs_trans_handle *trans; 389 struct fsxattr fa, old_fa; 390 unsigned old_flags; 391 unsigned old_i_flags; 392 int ret = 0; 393 394 if (!inode_owner_or_capable(inode)) 395 return -EPERM; 396 397 if (btrfs_root_readonly(root)) 398 return -EROFS; 399 400 if (copy_from_user(&fa, arg, sizeof(fa))) 401 return -EFAULT; 402 403 ret = check_xflags(fa.fsx_xflags); 404 if (ret) 405 return ret; 406 407 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 408 return -EOPNOTSUPP; 409 410 ret = mnt_want_write_file(file); 411 if (ret) 412 return ret; 413 414 inode_lock(inode); 415 416 old_flags = binode->flags; 417 old_i_flags = inode->i_flags; 418 419 simple_fill_fsxattr(&old_fa, 420 btrfs_inode_flags_to_xflags(binode->flags)); 421 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 422 if (ret) 423 goto out_unlock; 424 425 if (fa.fsx_xflags & FS_XFLAG_SYNC) 426 binode->flags |= BTRFS_INODE_SYNC; 427 else 428 binode->flags &= ~BTRFS_INODE_SYNC; 429 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 430 binode->flags |= BTRFS_INODE_IMMUTABLE; 431 else 432 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 433 if (fa.fsx_xflags & FS_XFLAG_APPEND) 434 binode->flags |= BTRFS_INODE_APPEND; 435 else 436 binode->flags &= ~BTRFS_INODE_APPEND; 437 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 438 binode->flags |= BTRFS_INODE_NODUMP; 439 else 440 binode->flags &= ~BTRFS_INODE_NODUMP; 441 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 442 binode->flags |= BTRFS_INODE_NOATIME; 443 else 444 binode->flags &= ~BTRFS_INODE_NOATIME; 445 446 /* 1 item for the inode */ 447 trans = btrfs_start_transaction(root, 1); 448 if (IS_ERR(trans)) { 449 ret = PTR_ERR(trans); 450 goto out_unlock; 451 } 452 453 btrfs_sync_inode_flags_to_i_flags(inode); 454 inode_inc_iversion(inode); 455 inode->i_ctime = current_time(inode); 456 ret = btrfs_update_inode(trans, root, inode); 457 458 btrfs_end_transaction(trans); 459 460 out_unlock: 461 if (ret) { 462 binode->flags = old_flags; 463 inode->i_flags = old_i_flags; 464 } 465 466 inode_unlock(inode); 467 mnt_drop_write_file(file); 468 469 return ret; 470 } 471 472 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 473 { 474 struct inode *inode = file_inode(file); 475 476 return put_user(inode->i_generation, arg); 477 } 478 479 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 480 void __user *arg) 481 { 482 struct btrfs_device *device; 483 struct request_queue *q; 484 struct fstrim_range range; 485 u64 minlen = ULLONG_MAX; 486 u64 num_devices = 0; 487 int ret; 488 489 if (!capable(CAP_SYS_ADMIN)) 490 return -EPERM; 491 492 /* 493 * If the fs is mounted with nologreplay, which requires it to be 494 * mounted in RO mode as well, we can not allow discard on free space 495 * inside block groups, because log trees refer to extents that are not 496 * pinned in a block group's free space cache (pinning the extents is 497 * precisely the first phase of replaying a log tree). 498 */ 499 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 500 return -EROFS; 501 502 rcu_read_lock(); 503 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 504 dev_list) { 505 if (!device->bdev) 506 continue; 507 q = bdev_get_queue(device->bdev); 508 if (blk_queue_discard(q)) { 509 num_devices++; 510 minlen = min_t(u64, q->limits.discard_granularity, 511 minlen); 512 } 513 } 514 rcu_read_unlock(); 515 516 if (!num_devices) 517 return -EOPNOTSUPP; 518 if (copy_from_user(&range, arg, sizeof(range))) 519 return -EFAULT; 520 521 /* 522 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 523 * block group is in the logical address space, which can be any 524 * sectorsize aligned bytenr in the range [0, U64_MAX]. 525 */ 526 if (range.len < fs_info->sb->s_blocksize) 527 return -EINVAL; 528 529 range.minlen = max(range.minlen, minlen); 530 ret = btrfs_trim_fs(fs_info, &range); 531 if (ret < 0) 532 return ret; 533 534 if (copy_to_user(arg, &range, sizeof(range))) 535 return -EFAULT; 536 537 return 0; 538 } 539 540 int __pure btrfs_is_empty_uuid(u8 *uuid) 541 { 542 int i; 543 544 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 545 if (uuid[i]) 546 return 0; 547 } 548 return 1; 549 } 550 551 static noinline int create_subvol(struct inode *dir, 552 struct dentry *dentry, 553 const char *name, int namelen, 554 struct btrfs_qgroup_inherit *inherit) 555 { 556 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 557 struct btrfs_trans_handle *trans; 558 struct btrfs_key key; 559 struct btrfs_root_item *root_item; 560 struct btrfs_inode_item *inode_item; 561 struct extent_buffer *leaf; 562 struct btrfs_root *root = BTRFS_I(dir)->root; 563 struct btrfs_root *new_root; 564 struct btrfs_block_rsv block_rsv; 565 struct timespec64 cur_time = current_time(dir); 566 struct inode *inode; 567 int ret; 568 int err; 569 u64 objectid; 570 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 571 u64 index = 0; 572 573 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 574 if (!root_item) 575 return -ENOMEM; 576 577 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 578 if (ret) 579 goto fail_free; 580 581 /* 582 * Don't create subvolume whose level is not zero. Or qgroup will be 583 * screwed up since it assumes subvolume qgroup's level to be 0. 584 */ 585 if (btrfs_qgroup_level(objectid)) { 586 ret = -ENOSPC; 587 goto fail_free; 588 } 589 590 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 591 /* 592 * The same as the snapshot creation, please see the comment 593 * of create_snapshot(). 594 */ 595 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 596 if (ret) 597 goto fail_free; 598 599 trans = btrfs_start_transaction(root, 0); 600 if (IS_ERR(trans)) { 601 ret = PTR_ERR(trans); 602 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 603 goto fail_free; 604 } 605 trans->block_rsv = &block_rsv; 606 trans->bytes_reserved = block_rsv.size; 607 608 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 609 if (ret) 610 goto fail; 611 612 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 613 if (IS_ERR(leaf)) { 614 ret = PTR_ERR(leaf); 615 goto fail; 616 } 617 618 btrfs_mark_buffer_dirty(leaf); 619 620 inode_item = &root_item->inode; 621 btrfs_set_stack_inode_generation(inode_item, 1); 622 btrfs_set_stack_inode_size(inode_item, 3); 623 btrfs_set_stack_inode_nlink(inode_item, 1); 624 btrfs_set_stack_inode_nbytes(inode_item, 625 fs_info->nodesize); 626 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 627 628 btrfs_set_root_flags(root_item, 0); 629 btrfs_set_root_limit(root_item, 0); 630 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 631 632 btrfs_set_root_bytenr(root_item, leaf->start); 633 btrfs_set_root_generation(root_item, trans->transid); 634 btrfs_set_root_level(root_item, 0); 635 btrfs_set_root_refs(root_item, 1); 636 btrfs_set_root_used(root_item, leaf->len); 637 btrfs_set_root_last_snapshot(root_item, 0); 638 639 btrfs_set_root_generation_v2(root_item, 640 btrfs_root_generation(root_item)); 641 generate_random_guid(root_item->uuid); 642 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 643 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 644 root_item->ctime = root_item->otime; 645 btrfs_set_root_ctransid(root_item, trans->transid); 646 btrfs_set_root_otransid(root_item, trans->transid); 647 648 btrfs_tree_unlock(leaf); 649 free_extent_buffer(leaf); 650 leaf = NULL; 651 652 btrfs_set_root_dirid(root_item, new_dirid); 653 654 key.objectid = objectid; 655 key.offset = 0; 656 key.type = BTRFS_ROOT_ITEM_KEY; 657 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 658 root_item); 659 if (ret) 660 goto fail; 661 662 key.offset = (u64)-1; 663 new_root = btrfs_get_fs_root(fs_info, &key, true); 664 if (IS_ERR(new_root)) { 665 ret = PTR_ERR(new_root); 666 btrfs_abort_transaction(trans, ret); 667 goto fail; 668 } 669 670 btrfs_record_root_in_trans(trans, new_root); 671 672 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 673 btrfs_put_root(new_root); 674 if (ret) { 675 /* We potentially lose an unused inode item here */ 676 btrfs_abort_transaction(trans, ret); 677 goto fail; 678 } 679 680 mutex_lock(&new_root->objectid_mutex); 681 new_root->highest_objectid = new_dirid; 682 mutex_unlock(&new_root->objectid_mutex); 683 684 /* 685 * insert the directory item 686 */ 687 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 688 if (ret) { 689 btrfs_abort_transaction(trans, ret); 690 goto fail; 691 } 692 693 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 694 BTRFS_FT_DIR, index); 695 if (ret) { 696 btrfs_abort_transaction(trans, ret); 697 goto fail; 698 } 699 700 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 701 ret = btrfs_update_inode(trans, root, dir); 702 if (ret) { 703 btrfs_abort_transaction(trans, ret); 704 goto fail; 705 } 706 707 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 708 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 709 if (ret) { 710 btrfs_abort_transaction(trans, ret); 711 goto fail; 712 } 713 714 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 715 BTRFS_UUID_KEY_SUBVOL, objectid); 716 if (ret) 717 btrfs_abort_transaction(trans, ret); 718 719 fail: 720 kfree(root_item); 721 trans->block_rsv = NULL; 722 trans->bytes_reserved = 0; 723 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 724 725 err = btrfs_commit_transaction(trans); 726 if (err && !ret) 727 ret = err; 728 729 if (!ret) { 730 inode = btrfs_lookup_dentry(dir, dentry); 731 if (IS_ERR(inode)) 732 return PTR_ERR(inode); 733 d_instantiate(dentry, inode); 734 } 735 return ret; 736 737 fail_free: 738 kfree(root_item); 739 return ret; 740 } 741 742 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 743 struct dentry *dentry, bool readonly, 744 struct btrfs_qgroup_inherit *inherit) 745 { 746 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 747 struct inode *inode; 748 struct btrfs_pending_snapshot *pending_snapshot; 749 struct btrfs_trans_handle *trans; 750 int ret; 751 bool snapshot_force_cow = false; 752 753 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 754 return -EINVAL; 755 756 if (atomic_read(&root->nr_swapfiles)) { 757 btrfs_warn(fs_info, 758 "cannot snapshot subvolume with active swapfile"); 759 return -ETXTBSY; 760 } 761 762 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 763 if (!pending_snapshot) 764 return -ENOMEM; 765 766 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 767 GFP_KERNEL); 768 pending_snapshot->path = btrfs_alloc_path(); 769 if (!pending_snapshot->root_item || !pending_snapshot->path) { 770 ret = -ENOMEM; 771 goto free_pending; 772 } 773 774 /* 775 * Force new buffered writes to reserve space even when NOCOW is 776 * possible. This is to avoid later writeback (running dealloc) to 777 * fallback to COW mode and unexpectedly fail with ENOSPC. 778 */ 779 btrfs_drew_read_lock(&root->snapshot_lock); 780 781 ret = btrfs_start_delalloc_snapshot(root); 782 if (ret) 783 goto dec_and_free; 784 785 /* 786 * All previous writes have started writeback in NOCOW mode, so now 787 * we force future writes to fallback to COW mode during snapshot 788 * creation. 789 */ 790 atomic_inc(&root->snapshot_force_cow); 791 snapshot_force_cow = true; 792 793 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 794 795 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 796 BTRFS_BLOCK_RSV_TEMP); 797 /* 798 * 1 - parent dir inode 799 * 2 - dir entries 800 * 1 - root item 801 * 2 - root ref/backref 802 * 1 - root of snapshot 803 * 1 - UUID item 804 */ 805 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 806 &pending_snapshot->block_rsv, 8, 807 false); 808 if (ret) 809 goto dec_and_free; 810 811 pending_snapshot->dentry = dentry; 812 pending_snapshot->root = root; 813 pending_snapshot->readonly = readonly; 814 pending_snapshot->dir = dir; 815 pending_snapshot->inherit = inherit; 816 817 trans = btrfs_start_transaction(root, 0); 818 if (IS_ERR(trans)) { 819 ret = PTR_ERR(trans); 820 goto fail; 821 } 822 823 spin_lock(&fs_info->trans_lock); 824 list_add(&pending_snapshot->list, 825 &trans->transaction->pending_snapshots); 826 spin_unlock(&fs_info->trans_lock); 827 828 ret = btrfs_commit_transaction(trans); 829 if (ret) 830 goto fail; 831 832 ret = pending_snapshot->error; 833 if (ret) 834 goto fail; 835 836 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 837 if (ret) 838 goto fail; 839 840 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 841 if (IS_ERR(inode)) { 842 ret = PTR_ERR(inode); 843 goto fail; 844 } 845 846 d_instantiate(dentry, inode); 847 ret = 0; 848 fail: 849 btrfs_put_root(pending_snapshot->snap); 850 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 851 dec_and_free: 852 if (snapshot_force_cow) 853 atomic_dec(&root->snapshot_force_cow); 854 btrfs_drew_read_unlock(&root->snapshot_lock); 855 856 free_pending: 857 kfree(pending_snapshot->root_item); 858 btrfs_free_path(pending_snapshot->path); 859 kfree(pending_snapshot); 860 861 return ret; 862 } 863 864 /* copy of may_delete in fs/namei.c() 865 * Check whether we can remove a link victim from directory dir, check 866 * whether the type of victim is right. 867 * 1. We can't do it if dir is read-only (done in permission()) 868 * 2. We should have write and exec permissions on dir 869 * 3. We can't remove anything from append-only dir 870 * 4. We can't do anything with immutable dir (done in permission()) 871 * 5. If the sticky bit on dir is set we should either 872 * a. be owner of dir, or 873 * b. be owner of victim, or 874 * c. have CAP_FOWNER capability 875 * 6. If the victim is append-only or immutable we can't do anything with 876 * links pointing to it. 877 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 878 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 879 * 9. We can't remove a root or mountpoint. 880 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 881 * nfs_async_unlink(). 882 */ 883 884 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 885 { 886 int error; 887 888 if (d_really_is_negative(victim)) 889 return -ENOENT; 890 891 BUG_ON(d_inode(victim->d_parent) != dir); 892 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 893 894 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 895 if (error) 896 return error; 897 if (IS_APPEND(dir)) 898 return -EPERM; 899 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 900 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 901 return -EPERM; 902 if (isdir) { 903 if (!d_is_dir(victim)) 904 return -ENOTDIR; 905 if (IS_ROOT(victim)) 906 return -EBUSY; 907 } else if (d_is_dir(victim)) 908 return -EISDIR; 909 if (IS_DEADDIR(dir)) 910 return -ENOENT; 911 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 912 return -EBUSY; 913 return 0; 914 } 915 916 /* copy of may_create in fs/namei.c() */ 917 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 918 { 919 if (d_really_is_positive(child)) 920 return -EEXIST; 921 if (IS_DEADDIR(dir)) 922 return -ENOENT; 923 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 924 } 925 926 /* 927 * Create a new subvolume below @parent. This is largely modeled after 928 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 929 * inside this filesystem so it's quite a bit simpler. 930 */ 931 static noinline int btrfs_mksubvol(const struct path *parent, 932 const char *name, int namelen, 933 struct btrfs_root *snap_src, 934 bool readonly, 935 struct btrfs_qgroup_inherit *inherit) 936 { 937 struct inode *dir = d_inode(parent->dentry); 938 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 939 struct dentry *dentry; 940 int error; 941 942 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 943 if (error == -EINTR) 944 return error; 945 946 dentry = lookup_one_len(name, parent->dentry, namelen); 947 error = PTR_ERR(dentry); 948 if (IS_ERR(dentry)) 949 goto out_unlock; 950 951 error = btrfs_may_create(dir, dentry); 952 if (error) 953 goto out_dput; 954 955 /* 956 * even if this name doesn't exist, we may get hash collisions. 957 * check for them now when we can safely fail 958 */ 959 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 960 dir->i_ino, name, 961 namelen); 962 if (error) 963 goto out_dput; 964 965 down_read(&fs_info->subvol_sem); 966 967 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 968 goto out_up_read; 969 970 if (snap_src) 971 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 972 else 973 error = create_subvol(dir, dentry, name, namelen, inherit); 974 975 if (!error) 976 fsnotify_mkdir(dir, dentry); 977 out_up_read: 978 up_read(&fs_info->subvol_sem); 979 out_dput: 980 dput(dentry); 981 out_unlock: 982 inode_unlock(dir); 983 return error; 984 } 985 986 /* 987 * When we're defragging a range, we don't want to kick it off again 988 * if it is really just waiting for delalloc to send it down. 989 * If we find a nice big extent or delalloc range for the bytes in the 990 * file you want to defrag, we return 0 to let you know to skip this 991 * part of the file 992 */ 993 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 994 { 995 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 996 struct extent_map *em = NULL; 997 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 998 u64 end; 999 1000 read_lock(&em_tree->lock); 1001 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1002 read_unlock(&em_tree->lock); 1003 1004 if (em) { 1005 end = extent_map_end(em); 1006 free_extent_map(em); 1007 if (end - offset > thresh) 1008 return 0; 1009 } 1010 /* if we already have a nice delalloc here, just stop */ 1011 thresh /= 2; 1012 end = count_range_bits(io_tree, &offset, offset + thresh, 1013 thresh, EXTENT_DELALLOC, 1); 1014 if (end >= thresh) 1015 return 0; 1016 return 1; 1017 } 1018 1019 /* 1020 * helper function to walk through a file and find extents 1021 * newer than a specific transid, and smaller than thresh. 1022 * 1023 * This is used by the defragging code to find new and small 1024 * extents 1025 */ 1026 static int find_new_extents(struct btrfs_root *root, 1027 struct inode *inode, u64 newer_than, 1028 u64 *off, u32 thresh) 1029 { 1030 struct btrfs_path *path; 1031 struct btrfs_key min_key; 1032 struct extent_buffer *leaf; 1033 struct btrfs_file_extent_item *extent; 1034 int type; 1035 int ret; 1036 u64 ino = btrfs_ino(BTRFS_I(inode)); 1037 1038 path = btrfs_alloc_path(); 1039 if (!path) 1040 return -ENOMEM; 1041 1042 min_key.objectid = ino; 1043 min_key.type = BTRFS_EXTENT_DATA_KEY; 1044 min_key.offset = *off; 1045 1046 while (1) { 1047 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1048 if (ret != 0) 1049 goto none; 1050 process_slot: 1051 if (min_key.objectid != ino) 1052 goto none; 1053 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1054 goto none; 1055 1056 leaf = path->nodes[0]; 1057 extent = btrfs_item_ptr(leaf, path->slots[0], 1058 struct btrfs_file_extent_item); 1059 1060 type = btrfs_file_extent_type(leaf, extent); 1061 if (type == BTRFS_FILE_EXTENT_REG && 1062 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1063 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1064 *off = min_key.offset; 1065 btrfs_free_path(path); 1066 return 0; 1067 } 1068 1069 path->slots[0]++; 1070 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1071 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1072 goto process_slot; 1073 } 1074 1075 if (min_key.offset == (u64)-1) 1076 goto none; 1077 1078 min_key.offset++; 1079 btrfs_release_path(path); 1080 } 1081 none: 1082 btrfs_free_path(path); 1083 return -ENOENT; 1084 } 1085 1086 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1087 { 1088 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1089 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1090 struct extent_map *em; 1091 u64 len = PAGE_SIZE; 1092 1093 /* 1094 * hopefully we have this extent in the tree already, try without 1095 * the full extent lock 1096 */ 1097 read_lock(&em_tree->lock); 1098 em = lookup_extent_mapping(em_tree, start, len); 1099 read_unlock(&em_tree->lock); 1100 1101 if (!em) { 1102 struct extent_state *cached = NULL; 1103 u64 end = start + len - 1; 1104 1105 /* get the big lock and read metadata off disk */ 1106 lock_extent_bits(io_tree, start, end, &cached); 1107 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1108 unlock_extent_cached(io_tree, start, end, &cached); 1109 1110 if (IS_ERR(em)) 1111 return NULL; 1112 } 1113 1114 return em; 1115 } 1116 1117 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1118 { 1119 struct extent_map *next; 1120 bool ret = true; 1121 1122 /* this is the last extent */ 1123 if (em->start + em->len >= i_size_read(inode)) 1124 return false; 1125 1126 next = defrag_lookup_extent(inode, em->start + em->len); 1127 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1128 ret = false; 1129 else if ((em->block_start + em->block_len == next->block_start) && 1130 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1131 ret = false; 1132 1133 free_extent_map(next); 1134 return ret; 1135 } 1136 1137 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1138 u64 *last_len, u64 *skip, u64 *defrag_end, 1139 int compress) 1140 { 1141 struct extent_map *em; 1142 int ret = 1; 1143 bool next_mergeable = true; 1144 bool prev_mergeable = true; 1145 1146 /* 1147 * make sure that once we start defragging an extent, we keep on 1148 * defragging it 1149 */ 1150 if (start < *defrag_end) 1151 return 1; 1152 1153 *skip = 0; 1154 1155 em = defrag_lookup_extent(inode, start); 1156 if (!em) 1157 return 0; 1158 1159 /* this will cover holes, and inline extents */ 1160 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1161 ret = 0; 1162 goto out; 1163 } 1164 1165 if (!*defrag_end) 1166 prev_mergeable = false; 1167 1168 next_mergeable = defrag_check_next_extent(inode, em); 1169 /* 1170 * we hit a real extent, if it is big or the next extent is not a 1171 * real extent, don't bother defragging it 1172 */ 1173 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1174 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1175 ret = 0; 1176 out: 1177 /* 1178 * last_len ends up being a counter of how many bytes we've defragged. 1179 * every time we choose not to defrag an extent, we reset *last_len 1180 * so that the next tiny extent will force a defrag. 1181 * 1182 * The end result of this is that tiny extents before a single big 1183 * extent will force at least part of that big extent to be defragged. 1184 */ 1185 if (ret) { 1186 *defrag_end = extent_map_end(em); 1187 } else { 1188 *last_len = 0; 1189 *skip = extent_map_end(em); 1190 *defrag_end = 0; 1191 } 1192 1193 free_extent_map(em); 1194 return ret; 1195 } 1196 1197 /* 1198 * it doesn't do much good to defrag one or two pages 1199 * at a time. This pulls in a nice chunk of pages 1200 * to COW and defrag. 1201 * 1202 * It also makes sure the delalloc code has enough 1203 * dirty data to avoid making new small extents as part 1204 * of the defrag 1205 * 1206 * It's a good idea to start RA on this range 1207 * before calling this. 1208 */ 1209 static int cluster_pages_for_defrag(struct inode *inode, 1210 struct page **pages, 1211 unsigned long start_index, 1212 unsigned long num_pages) 1213 { 1214 unsigned long file_end; 1215 u64 isize = i_size_read(inode); 1216 u64 page_start; 1217 u64 page_end; 1218 u64 page_cnt; 1219 int ret; 1220 int i; 1221 int i_done; 1222 struct btrfs_ordered_extent *ordered; 1223 struct extent_state *cached_state = NULL; 1224 struct extent_io_tree *tree; 1225 struct extent_changeset *data_reserved = NULL; 1226 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1227 1228 file_end = (isize - 1) >> PAGE_SHIFT; 1229 if (!isize || start_index > file_end) 1230 return 0; 1231 1232 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1233 1234 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1235 start_index << PAGE_SHIFT, 1236 page_cnt << PAGE_SHIFT); 1237 if (ret) 1238 return ret; 1239 i_done = 0; 1240 tree = &BTRFS_I(inode)->io_tree; 1241 1242 /* step one, lock all the pages */ 1243 for (i = 0; i < page_cnt; i++) { 1244 struct page *page; 1245 again: 1246 page = find_or_create_page(inode->i_mapping, 1247 start_index + i, mask); 1248 if (!page) 1249 break; 1250 1251 page_start = page_offset(page); 1252 page_end = page_start + PAGE_SIZE - 1; 1253 while (1) { 1254 lock_extent_bits(tree, page_start, page_end, 1255 &cached_state); 1256 ordered = btrfs_lookup_ordered_extent(inode, 1257 page_start); 1258 unlock_extent_cached(tree, page_start, page_end, 1259 &cached_state); 1260 if (!ordered) 1261 break; 1262 1263 unlock_page(page); 1264 btrfs_start_ordered_extent(inode, ordered, 1); 1265 btrfs_put_ordered_extent(ordered); 1266 lock_page(page); 1267 /* 1268 * we unlocked the page above, so we need check if 1269 * it was released or not. 1270 */ 1271 if (page->mapping != inode->i_mapping) { 1272 unlock_page(page); 1273 put_page(page); 1274 goto again; 1275 } 1276 } 1277 1278 if (!PageUptodate(page)) { 1279 btrfs_readpage(NULL, page); 1280 lock_page(page); 1281 if (!PageUptodate(page)) { 1282 unlock_page(page); 1283 put_page(page); 1284 ret = -EIO; 1285 break; 1286 } 1287 } 1288 1289 if (page->mapping != inode->i_mapping) { 1290 unlock_page(page); 1291 put_page(page); 1292 goto again; 1293 } 1294 1295 pages[i] = page; 1296 i_done++; 1297 } 1298 if (!i_done || ret) 1299 goto out; 1300 1301 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1302 goto out; 1303 1304 /* 1305 * so now we have a nice long stream of locked 1306 * and up to date pages, lets wait on them 1307 */ 1308 for (i = 0; i < i_done; i++) 1309 wait_on_page_writeback(pages[i]); 1310 1311 page_start = page_offset(pages[0]); 1312 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1313 1314 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1315 page_start, page_end - 1, &cached_state); 1316 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1317 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1318 EXTENT_DEFRAG, 0, 0, &cached_state); 1319 1320 if (i_done != page_cnt) { 1321 spin_lock(&BTRFS_I(inode)->lock); 1322 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1323 spin_unlock(&BTRFS_I(inode)->lock); 1324 btrfs_delalloc_release_space(inode, data_reserved, 1325 start_index << PAGE_SHIFT, 1326 (page_cnt - i_done) << PAGE_SHIFT, true); 1327 } 1328 1329 1330 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1331 &cached_state); 1332 1333 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1334 page_start, page_end - 1, &cached_state); 1335 1336 for (i = 0; i < i_done; i++) { 1337 clear_page_dirty_for_io(pages[i]); 1338 ClearPageChecked(pages[i]); 1339 set_page_extent_mapped(pages[i]); 1340 set_page_dirty(pages[i]); 1341 unlock_page(pages[i]); 1342 put_page(pages[i]); 1343 } 1344 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1345 extent_changeset_free(data_reserved); 1346 return i_done; 1347 out: 1348 for (i = 0; i < i_done; i++) { 1349 unlock_page(pages[i]); 1350 put_page(pages[i]); 1351 } 1352 btrfs_delalloc_release_space(inode, data_reserved, 1353 start_index << PAGE_SHIFT, 1354 page_cnt << PAGE_SHIFT, true); 1355 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1356 extent_changeset_free(data_reserved); 1357 return ret; 1358 1359 } 1360 1361 int btrfs_defrag_file(struct inode *inode, struct file *file, 1362 struct btrfs_ioctl_defrag_range_args *range, 1363 u64 newer_than, unsigned long max_to_defrag) 1364 { 1365 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1366 struct btrfs_root *root = BTRFS_I(inode)->root; 1367 struct file_ra_state *ra = NULL; 1368 unsigned long last_index; 1369 u64 isize = i_size_read(inode); 1370 u64 last_len = 0; 1371 u64 skip = 0; 1372 u64 defrag_end = 0; 1373 u64 newer_off = range->start; 1374 unsigned long i; 1375 unsigned long ra_index = 0; 1376 int ret; 1377 int defrag_count = 0; 1378 int compress_type = BTRFS_COMPRESS_ZLIB; 1379 u32 extent_thresh = range->extent_thresh; 1380 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1381 unsigned long cluster = max_cluster; 1382 u64 new_align = ~((u64)SZ_128K - 1); 1383 struct page **pages = NULL; 1384 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1385 1386 if (isize == 0) 1387 return 0; 1388 1389 if (range->start >= isize) 1390 return -EINVAL; 1391 1392 if (do_compress) { 1393 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1394 return -EINVAL; 1395 if (range->compress_type) 1396 compress_type = range->compress_type; 1397 } 1398 1399 if (extent_thresh == 0) 1400 extent_thresh = SZ_256K; 1401 1402 /* 1403 * If we were not given a file, allocate a readahead context. As 1404 * readahead is just an optimization, defrag will work without it so 1405 * we don't error out. 1406 */ 1407 if (!file) { 1408 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1409 if (ra) 1410 file_ra_state_init(ra, inode->i_mapping); 1411 } else { 1412 ra = &file->f_ra; 1413 } 1414 1415 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1416 if (!pages) { 1417 ret = -ENOMEM; 1418 goto out_ra; 1419 } 1420 1421 /* find the last page to defrag */ 1422 if (range->start + range->len > range->start) { 1423 last_index = min_t(u64, isize - 1, 1424 range->start + range->len - 1) >> PAGE_SHIFT; 1425 } else { 1426 last_index = (isize - 1) >> PAGE_SHIFT; 1427 } 1428 1429 if (newer_than) { 1430 ret = find_new_extents(root, inode, newer_than, 1431 &newer_off, SZ_64K); 1432 if (!ret) { 1433 range->start = newer_off; 1434 /* 1435 * we always align our defrag to help keep 1436 * the extents in the file evenly spaced 1437 */ 1438 i = (newer_off & new_align) >> PAGE_SHIFT; 1439 } else 1440 goto out_ra; 1441 } else { 1442 i = range->start >> PAGE_SHIFT; 1443 } 1444 if (!max_to_defrag) 1445 max_to_defrag = last_index - i + 1; 1446 1447 /* 1448 * make writeback starts from i, so the defrag range can be 1449 * written sequentially. 1450 */ 1451 if (i < inode->i_mapping->writeback_index) 1452 inode->i_mapping->writeback_index = i; 1453 1454 while (i <= last_index && defrag_count < max_to_defrag && 1455 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1456 /* 1457 * make sure we stop running if someone unmounts 1458 * the FS 1459 */ 1460 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1461 break; 1462 1463 if (btrfs_defrag_cancelled(fs_info)) { 1464 btrfs_debug(fs_info, "defrag_file cancelled"); 1465 ret = -EAGAIN; 1466 break; 1467 } 1468 1469 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1470 extent_thresh, &last_len, &skip, 1471 &defrag_end, do_compress)){ 1472 unsigned long next; 1473 /* 1474 * the should_defrag function tells us how much to skip 1475 * bump our counter by the suggested amount 1476 */ 1477 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1478 i = max(i + 1, next); 1479 continue; 1480 } 1481 1482 if (!newer_than) { 1483 cluster = (PAGE_ALIGN(defrag_end) >> 1484 PAGE_SHIFT) - i; 1485 cluster = min(cluster, max_cluster); 1486 } else { 1487 cluster = max_cluster; 1488 } 1489 1490 if (i + cluster > ra_index) { 1491 ra_index = max(i, ra_index); 1492 if (ra) 1493 page_cache_sync_readahead(inode->i_mapping, ra, 1494 file, ra_index, cluster); 1495 ra_index += cluster; 1496 } 1497 1498 inode_lock(inode); 1499 if (IS_SWAPFILE(inode)) { 1500 ret = -ETXTBSY; 1501 } else { 1502 if (do_compress) 1503 BTRFS_I(inode)->defrag_compress = compress_type; 1504 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1505 } 1506 if (ret < 0) { 1507 inode_unlock(inode); 1508 goto out_ra; 1509 } 1510 1511 defrag_count += ret; 1512 balance_dirty_pages_ratelimited(inode->i_mapping); 1513 inode_unlock(inode); 1514 1515 if (newer_than) { 1516 if (newer_off == (u64)-1) 1517 break; 1518 1519 if (ret > 0) 1520 i += ret; 1521 1522 newer_off = max(newer_off + 1, 1523 (u64)i << PAGE_SHIFT); 1524 1525 ret = find_new_extents(root, inode, newer_than, 1526 &newer_off, SZ_64K); 1527 if (!ret) { 1528 range->start = newer_off; 1529 i = (newer_off & new_align) >> PAGE_SHIFT; 1530 } else { 1531 break; 1532 } 1533 } else { 1534 if (ret > 0) { 1535 i += ret; 1536 last_len += ret << PAGE_SHIFT; 1537 } else { 1538 i++; 1539 last_len = 0; 1540 } 1541 } 1542 } 1543 1544 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1545 filemap_flush(inode->i_mapping); 1546 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1547 &BTRFS_I(inode)->runtime_flags)) 1548 filemap_flush(inode->i_mapping); 1549 } 1550 1551 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1552 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1553 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1554 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1555 } 1556 1557 ret = defrag_count; 1558 1559 out_ra: 1560 if (do_compress) { 1561 inode_lock(inode); 1562 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1563 inode_unlock(inode); 1564 } 1565 if (!file) 1566 kfree(ra); 1567 kfree(pages); 1568 return ret; 1569 } 1570 1571 static noinline int btrfs_ioctl_resize(struct file *file, 1572 void __user *arg) 1573 { 1574 struct inode *inode = file_inode(file); 1575 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1576 u64 new_size; 1577 u64 old_size; 1578 u64 devid = 1; 1579 struct btrfs_root *root = BTRFS_I(inode)->root; 1580 struct btrfs_ioctl_vol_args *vol_args; 1581 struct btrfs_trans_handle *trans; 1582 struct btrfs_device *device = NULL; 1583 char *sizestr; 1584 char *retptr; 1585 char *devstr = NULL; 1586 int ret = 0; 1587 int mod = 0; 1588 1589 if (!capable(CAP_SYS_ADMIN)) 1590 return -EPERM; 1591 1592 ret = mnt_want_write_file(file); 1593 if (ret) 1594 return ret; 1595 1596 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1597 mnt_drop_write_file(file); 1598 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1599 } 1600 1601 vol_args = memdup_user(arg, sizeof(*vol_args)); 1602 if (IS_ERR(vol_args)) { 1603 ret = PTR_ERR(vol_args); 1604 goto out; 1605 } 1606 1607 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1608 1609 sizestr = vol_args->name; 1610 devstr = strchr(sizestr, ':'); 1611 if (devstr) { 1612 sizestr = devstr + 1; 1613 *devstr = '\0'; 1614 devstr = vol_args->name; 1615 ret = kstrtoull(devstr, 10, &devid); 1616 if (ret) 1617 goto out_free; 1618 if (!devid) { 1619 ret = -EINVAL; 1620 goto out_free; 1621 } 1622 btrfs_info(fs_info, "resizing devid %llu", devid); 1623 } 1624 1625 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1626 if (!device) { 1627 btrfs_info(fs_info, "resizer unable to find device %llu", 1628 devid); 1629 ret = -ENODEV; 1630 goto out_free; 1631 } 1632 1633 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1634 btrfs_info(fs_info, 1635 "resizer unable to apply on readonly device %llu", 1636 devid); 1637 ret = -EPERM; 1638 goto out_free; 1639 } 1640 1641 if (!strcmp(sizestr, "max")) 1642 new_size = device->bdev->bd_inode->i_size; 1643 else { 1644 if (sizestr[0] == '-') { 1645 mod = -1; 1646 sizestr++; 1647 } else if (sizestr[0] == '+') { 1648 mod = 1; 1649 sizestr++; 1650 } 1651 new_size = memparse(sizestr, &retptr); 1652 if (*retptr != '\0' || new_size == 0) { 1653 ret = -EINVAL; 1654 goto out_free; 1655 } 1656 } 1657 1658 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1659 ret = -EPERM; 1660 goto out_free; 1661 } 1662 1663 old_size = btrfs_device_get_total_bytes(device); 1664 1665 if (mod < 0) { 1666 if (new_size > old_size) { 1667 ret = -EINVAL; 1668 goto out_free; 1669 } 1670 new_size = old_size - new_size; 1671 } else if (mod > 0) { 1672 if (new_size > ULLONG_MAX - old_size) { 1673 ret = -ERANGE; 1674 goto out_free; 1675 } 1676 new_size = old_size + new_size; 1677 } 1678 1679 if (new_size < SZ_256M) { 1680 ret = -EINVAL; 1681 goto out_free; 1682 } 1683 if (new_size > device->bdev->bd_inode->i_size) { 1684 ret = -EFBIG; 1685 goto out_free; 1686 } 1687 1688 new_size = round_down(new_size, fs_info->sectorsize); 1689 1690 if (new_size > old_size) { 1691 trans = btrfs_start_transaction(root, 0); 1692 if (IS_ERR(trans)) { 1693 ret = PTR_ERR(trans); 1694 goto out_free; 1695 } 1696 ret = btrfs_grow_device(trans, device, new_size); 1697 btrfs_commit_transaction(trans); 1698 } else if (new_size < old_size) { 1699 ret = btrfs_shrink_device(device, new_size); 1700 } /* equal, nothing need to do */ 1701 1702 if (ret == 0 && new_size != old_size) 1703 btrfs_info_in_rcu(fs_info, 1704 "resize device %s (devid %llu) from %llu to %llu", 1705 rcu_str_deref(device->name), device->devid, 1706 old_size, new_size); 1707 out_free: 1708 kfree(vol_args); 1709 out: 1710 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1711 mnt_drop_write_file(file); 1712 return ret; 1713 } 1714 1715 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1716 const char *name, unsigned long fd, int subvol, 1717 bool readonly, 1718 struct btrfs_qgroup_inherit *inherit) 1719 { 1720 int namelen; 1721 int ret = 0; 1722 1723 if (!S_ISDIR(file_inode(file)->i_mode)) 1724 return -ENOTDIR; 1725 1726 ret = mnt_want_write_file(file); 1727 if (ret) 1728 goto out; 1729 1730 namelen = strlen(name); 1731 if (strchr(name, '/')) { 1732 ret = -EINVAL; 1733 goto out_drop_write; 1734 } 1735 1736 if (name[0] == '.' && 1737 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1738 ret = -EEXIST; 1739 goto out_drop_write; 1740 } 1741 1742 if (subvol) { 1743 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1744 NULL, readonly, inherit); 1745 } else { 1746 struct fd src = fdget(fd); 1747 struct inode *src_inode; 1748 if (!src.file) { 1749 ret = -EINVAL; 1750 goto out_drop_write; 1751 } 1752 1753 src_inode = file_inode(src.file); 1754 if (src_inode->i_sb != file_inode(file)->i_sb) { 1755 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1756 "Snapshot src from another FS"); 1757 ret = -EXDEV; 1758 } else if (!inode_owner_or_capable(src_inode)) { 1759 /* 1760 * Subvolume creation is not restricted, but snapshots 1761 * are limited to own subvolumes only 1762 */ 1763 ret = -EPERM; 1764 } else { 1765 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1766 BTRFS_I(src_inode)->root, 1767 readonly, inherit); 1768 } 1769 fdput(src); 1770 } 1771 out_drop_write: 1772 mnt_drop_write_file(file); 1773 out: 1774 return ret; 1775 } 1776 1777 static noinline int btrfs_ioctl_snap_create(struct file *file, 1778 void __user *arg, int subvol) 1779 { 1780 struct btrfs_ioctl_vol_args *vol_args; 1781 int ret; 1782 1783 if (!S_ISDIR(file_inode(file)->i_mode)) 1784 return -ENOTDIR; 1785 1786 vol_args = memdup_user(arg, sizeof(*vol_args)); 1787 if (IS_ERR(vol_args)) 1788 return PTR_ERR(vol_args); 1789 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1790 1791 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1792 subvol, false, NULL); 1793 1794 kfree(vol_args); 1795 return ret; 1796 } 1797 1798 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1799 void __user *arg, int subvol) 1800 { 1801 struct btrfs_ioctl_vol_args_v2 *vol_args; 1802 int ret; 1803 bool readonly = false; 1804 struct btrfs_qgroup_inherit *inherit = NULL; 1805 1806 if (!S_ISDIR(file_inode(file)->i_mode)) 1807 return -ENOTDIR; 1808 1809 vol_args = memdup_user(arg, sizeof(*vol_args)); 1810 if (IS_ERR(vol_args)) 1811 return PTR_ERR(vol_args); 1812 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1813 1814 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1815 ret = -EOPNOTSUPP; 1816 goto free_args; 1817 } 1818 1819 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1820 readonly = true; 1821 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1822 if (vol_args->size > PAGE_SIZE) { 1823 ret = -EINVAL; 1824 goto free_args; 1825 } 1826 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1827 if (IS_ERR(inherit)) { 1828 ret = PTR_ERR(inherit); 1829 goto free_args; 1830 } 1831 } 1832 1833 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1834 subvol, readonly, inherit); 1835 if (ret) 1836 goto free_inherit; 1837 free_inherit: 1838 kfree(inherit); 1839 free_args: 1840 kfree(vol_args); 1841 return ret; 1842 } 1843 1844 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1845 void __user *arg) 1846 { 1847 struct inode *inode = file_inode(file); 1848 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1849 struct btrfs_root *root = BTRFS_I(inode)->root; 1850 int ret = 0; 1851 u64 flags = 0; 1852 1853 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1854 return -EINVAL; 1855 1856 down_read(&fs_info->subvol_sem); 1857 if (btrfs_root_readonly(root)) 1858 flags |= BTRFS_SUBVOL_RDONLY; 1859 up_read(&fs_info->subvol_sem); 1860 1861 if (copy_to_user(arg, &flags, sizeof(flags))) 1862 ret = -EFAULT; 1863 1864 return ret; 1865 } 1866 1867 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1868 void __user *arg) 1869 { 1870 struct inode *inode = file_inode(file); 1871 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1872 struct btrfs_root *root = BTRFS_I(inode)->root; 1873 struct btrfs_trans_handle *trans; 1874 u64 root_flags; 1875 u64 flags; 1876 int ret = 0; 1877 1878 if (!inode_owner_or_capable(inode)) 1879 return -EPERM; 1880 1881 ret = mnt_want_write_file(file); 1882 if (ret) 1883 goto out; 1884 1885 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1886 ret = -EINVAL; 1887 goto out_drop_write; 1888 } 1889 1890 if (copy_from_user(&flags, arg, sizeof(flags))) { 1891 ret = -EFAULT; 1892 goto out_drop_write; 1893 } 1894 1895 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1896 ret = -EOPNOTSUPP; 1897 goto out_drop_write; 1898 } 1899 1900 down_write(&fs_info->subvol_sem); 1901 1902 /* nothing to do */ 1903 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1904 goto out_drop_sem; 1905 1906 root_flags = btrfs_root_flags(&root->root_item); 1907 if (flags & BTRFS_SUBVOL_RDONLY) { 1908 btrfs_set_root_flags(&root->root_item, 1909 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1910 } else { 1911 /* 1912 * Block RO -> RW transition if this subvolume is involved in 1913 * send 1914 */ 1915 spin_lock(&root->root_item_lock); 1916 if (root->send_in_progress == 0) { 1917 btrfs_set_root_flags(&root->root_item, 1918 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1919 spin_unlock(&root->root_item_lock); 1920 } else { 1921 spin_unlock(&root->root_item_lock); 1922 btrfs_warn(fs_info, 1923 "Attempt to set subvolume %llu read-write during send", 1924 root->root_key.objectid); 1925 ret = -EPERM; 1926 goto out_drop_sem; 1927 } 1928 } 1929 1930 trans = btrfs_start_transaction(root, 1); 1931 if (IS_ERR(trans)) { 1932 ret = PTR_ERR(trans); 1933 goto out_reset; 1934 } 1935 1936 ret = btrfs_update_root(trans, fs_info->tree_root, 1937 &root->root_key, &root->root_item); 1938 if (ret < 0) { 1939 btrfs_end_transaction(trans); 1940 goto out_reset; 1941 } 1942 1943 ret = btrfs_commit_transaction(trans); 1944 1945 out_reset: 1946 if (ret) 1947 btrfs_set_root_flags(&root->root_item, root_flags); 1948 out_drop_sem: 1949 up_write(&fs_info->subvol_sem); 1950 out_drop_write: 1951 mnt_drop_write_file(file); 1952 out: 1953 return ret; 1954 } 1955 1956 static noinline int key_in_sk(struct btrfs_key *key, 1957 struct btrfs_ioctl_search_key *sk) 1958 { 1959 struct btrfs_key test; 1960 int ret; 1961 1962 test.objectid = sk->min_objectid; 1963 test.type = sk->min_type; 1964 test.offset = sk->min_offset; 1965 1966 ret = btrfs_comp_cpu_keys(key, &test); 1967 if (ret < 0) 1968 return 0; 1969 1970 test.objectid = sk->max_objectid; 1971 test.type = sk->max_type; 1972 test.offset = sk->max_offset; 1973 1974 ret = btrfs_comp_cpu_keys(key, &test); 1975 if (ret > 0) 1976 return 0; 1977 return 1; 1978 } 1979 1980 static noinline int copy_to_sk(struct btrfs_path *path, 1981 struct btrfs_key *key, 1982 struct btrfs_ioctl_search_key *sk, 1983 size_t *buf_size, 1984 char __user *ubuf, 1985 unsigned long *sk_offset, 1986 int *num_found) 1987 { 1988 u64 found_transid; 1989 struct extent_buffer *leaf; 1990 struct btrfs_ioctl_search_header sh; 1991 struct btrfs_key test; 1992 unsigned long item_off; 1993 unsigned long item_len; 1994 int nritems; 1995 int i; 1996 int slot; 1997 int ret = 0; 1998 1999 leaf = path->nodes[0]; 2000 slot = path->slots[0]; 2001 nritems = btrfs_header_nritems(leaf); 2002 2003 if (btrfs_header_generation(leaf) > sk->max_transid) { 2004 i = nritems; 2005 goto advance_key; 2006 } 2007 found_transid = btrfs_header_generation(leaf); 2008 2009 for (i = slot; i < nritems; i++) { 2010 item_off = btrfs_item_ptr_offset(leaf, i); 2011 item_len = btrfs_item_size_nr(leaf, i); 2012 2013 btrfs_item_key_to_cpu(leaf, key, i); 2014 if (!key_in_sk(key, sk)) 2015 continue; 2016 2017 if (sizeof(sh) + item_len > *buf_size) { 2018 if (*num_found) { 2019 ret = 1; 2020 goto out; 2021 } 2022 2023 /* 2024 * return one empty item back for v1, which does not 2025 * handle -EOVERFLOW 2026 */ 2027 2028 *buf_size = sizeof(sh) + item_len; 2029 item_len = 0; 2030 ret = -EOVERFLOW; 2031 } 2032 2033 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2034 ret = 1; 2035 goto out; 2036 } 2037 2038 sh.objectid = key->objectid; 2039 sh.offset = key->offset; 2040 sh.type = key->type; 2041 sh.len = item_len; 2042 sh.transid = found_transid; 2043 2044 /* copy search result header */ 2045 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2046 ret = -EFAULT; 2047 goto out; 2048 } 2049 2050 *sk_offset += sizeof(sh); 2051 2052 if (item_len) { 2053 char __user *up = ubuf + *sk_offset; 2054 /* copy the item */ 2055 if (read_extent_buffer_to_user(leaf, up, 2056 item_off, item_len)) { 2057 ret = -EFAULT; 2058 goto out; 2059 } 2060 2061 *sk_offset += item_len; 2062 } 2063 (*num_found)++; 2064 2065 if (ret) /* -EOVERFLOW from above */ 2066 goto out; 2067 2068 if (*num_found >= sk->nr_items) { 2069 ret = 1; 2070 goto out; 2071 } 2072 } 2073 advance_key: 2074 ret = 0; 2075 test.objectid = sk->max_objectid; 2076 test.type = sk->max_type; 2077 test.offset = sk->max_offset; 2078 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2079 ret = 1; 2080 else if (key->offset < (u64)-1) 2081 key->offset++; 2082 else if (key->type < (u8)-1) { 2083 key->offset = 0; 2084 key->type++; 2085 } else if (key->objectid < (u64)-1) { 2086 key->offset = 0; 2087 key->type = 0; 2088 key->objectid++; 2089 } else 2090 ret = 1; 2091 out: 2092 /* 2093 * 0: all items from this leaf copied, continue with next 2094 * 1: * more items can be copied, but unused buffer is too small 2095 * * all items were found 2096 * Either way, it will stops the loop which iterates to the next 2097 * leaf 2098 * -EOVERFLOW: item was to large for buffer 2099 * -EFAULT: could not copy extent buffer back to userspace 2100 */ 2101 return ret; 2102 } 2103 2104 static noinline int search_ioctl(struct inode *inode, 2105 struct btrfs_ioctl_search_key *sk, 2106 size_t *buf_size, 2107 char __user *ubuf) 2108 { 2109 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2110 struct btrfs_root *root; 2111 struct btrfs_key key; 2112 struct btrfs_path *path; 2113 int ret; 2114 int num_found = 0; 2115 unsigned long sk_offset = 0; 2116 2117 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2118 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2119 return -EOVERFLOW; 2120 } 2121 2122 path = btrfs_alloc_path(); 2123 if (!path) 2124 return -ENOMEM; 2125 2126 if (sk->tree_id == 0) { 2127 /* search the root of the inode that was passed */ 2128 root = btrfs_grab_root(BTRFS_I(inode)->root); 2129 } else { 2130 key.objectid = sk->tree_id; 2131 key.type = BTRFS_ROOT_ITEM_KEY; 2132 key.offset = (u64)-1; 2133 root = btrfs_get_fs_root(info, &key, true); 2134 if (IS_ERR(root)) { 2135 btrfs_free_path(path); 2136 return PTR_ERR(root); 2137 } 2138 } 2139 2140 key.objectid = sk->min_objectid; 2141 key.type = sk->min_type; 2142 key.offset = sk->min_offset; 2143 2144 while (1) { 2145 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2146 if (ret != 0) { 2147 if (ret > 0) 2148 ret = 0; 2149 goto err; 2150 } 2151 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2152 &sk_offset, &num_found); 2153 btrfs_release_path(path); 2154 if (ret) 2155 break; 2156 2157 } 2158 if (ret > 0) 2159 ret = 0; 2160 err: 2161 sk->nr_items = num_found; 2162 btrfs_put_root(root); 2163 btrfs_free_path(path); 2164 return ret; 2165 } 2166 2167 static noinline int btrfs_ioctl_tree_search(struct file *file, 2168 void __user *argp) 2169 { 2170 struct btrfs_ioctl_search_args __user *uargs; 2171 struct btrfs_ioctl_search_key sk; 2172 struct inode *inode; 2173 int ret; 2174 size_t buf_size; 2175 2176 if (!capable(CAP_SYS_ADMIN)) 2177 return -EPERM; 2178 2179 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2180 2181 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2182 return -EFAULT; 2183 2184 buf_size = sizeof(uargs->buf); 2185 2186 inode = file_inode(file); 2187 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2188 2189 /* 2190 * In the origin implementation an overflow is handled by returning a 2191 * search header with a len of zero, so reset ret. 2192 */ 2193 if (ret == -EOVERFLOW) 2194 ret = 0; 2195 2196 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2197 ret = -EFAULT; 2198 return ret; 2199 } 2200 2201 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2202 void __user *argp) 2203 { 2204 struct btrfs_ioctl_search_args_v2 __user *uarg; 2205 struct btrfs_ioctl_search_args_v2 args; 2206 struct inode *inode; 2207 int ret; 2208 size_t buf_size; 2209 const size_t buf_limit = SZ_16M; 2210 2211 if (!capable(CAP_SYS_ADMIN)) 2212 return -EPERM; 2213 2214 /* copy search header and buffer size */ 2215 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2216 if (copy_from_user(&args, uarg, sizeof(args))) 2217 return -EFAULT; 2218 2219 buf_size = args.buf_size; 2220 2221 /* limit result size to 16MB */ 2222 if (buf_size > buf_limit) 2223 buf_size = buf_limit; 2224 2225 inode = file_inode(file); 2226 ret = search_ioctl(inode, &args.key, &buf_size, 2227 (char __user *)(&uarg->buf[0])); 2228 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2229 ret = -EFAULT; 2230 else if (ret == -EOVERFLOW && 2231 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2232 ret = -EFAULT; 2233 2234 return ret; 2235 } 2236 2237 /* 2238 * Search INODE_REFs to identify path name of 'dirid' directory 2239 * in a 'tree_id' tree. and sets path name to 'name'. 2240 */ 2241 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2242 u64 tree_id, u64 dirid, char *name) 2243 { 2244 struct btrfs_root *root; 2245 struct btrfs_key key; 2246 char *ptr; 2247 int ret = -1; 2248 int slot; 2249 int len; 2250 int total_len = 0; 2251 struct btrfs_inode_ref *iref; 2252 struct extent_buffer *l; 2253 struct btrfs_path *path; 2254 2255 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2256 name[0]='\0'; 2257 return 0; 2258 } 2259 2260 path = btrfs_alloc_path(); 2261 if (!path) 2262 return -ENOMEM; 2263 2264 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2265 2266 key.objectid = tree_id; 2267 key.type = BTRFS_ROOT_ITEM_KEY; 2268 key.offset = (u64)-1; 2269 root = btrfs_get_fs_root(info, &key, true); 2270 if (IS_ERR(root)) { 2271 ret = PTR_ERR(root); 2272 root = NULL; 2273 goto out; 2274 } 2275 2276 key.objectid = dirid; 2277 key.type = BTRFS_INODE_REF_KEY; 2278 key.offset = (u64)-1; 2279 2280 while (1) { 2281 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2282 if (ret < 0) 2283 goto out; 2284 else if (ret > 0) { 2285 ret = btrfs_previous_item(root, path, dirid, 2286 BTRFS_INODE_REF_KEY); 2287 if (ret < 0) 2288 goto out; 2289 else if (ret > 0) { 2290 ret = -ENOENT; 2291 goto out; 2292 } 2293 } 2294 2295 l = path->nodes[0]; 2296 slot = path->slots[0]; 2297 btrfs_item_key_to_cpu(l, &key, slot); 2298 2299 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2300 len = btrfs_inode_ref_name_len(l, iref); 2301 ptr -= len + 1; 2302 total_len += len + 1; 2303 if (ptr < name) { 2304 ret = -ENAMETOOLONG; 2305 goto out; 2306 } 2307 2308 *(ptr + len) = '/'; 2309 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2310 2311 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2312 break; 2313 2314 btrfs_release_path(path); 2315 key.objectid = key.offset; 2316 key.offset = (u64)-1; 2317 dirid = key.objectid; 2318 } 2319 memmove(name, ptr, total_len); 2320 name[total_len] = '\0'; 2321 ret = 0; 2322 out: 2323 btrfs_put_root(root); 2324 btrfs_free_path(path); 2325 return ret; 2326 } 2327 2328 static int btrfs_search_path_in_tree_user(struct inode *inode, 2329 struct btrfs_ioctl_ino_lookup_user_args *args) 2330 { 2331 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2332 struct super_block *sb = inode->i_sb; 2333 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2334 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2335 u64 dirid = args->dirid; 2336 unsigned long item_off; 2337 unsigned long item_len; 2338 struct btrfs_inode_ref *iref; 2339 struct btrfs_root_ref *rref; 2340 struct btrfs_root *root = NULL; 2341 struct btrfs_path *path; 2342 struct btrfs_key key, key2; 2343 struct extent_buffer *leaf; 2344 struct inode *temp_inode; 2345 char *ptr; 2346 int slot; 2347 int len; 2348 int total_len = 0; 2349 int ret; 2350 2351 path = btrfs_alloc_path(); 2352 if (!path) 2353 return -ENOMEM; 2354 2355 /* 2356 * If the bottom subvolume does not exist directly under upper_limit, 2357 * construct the path in from the bottom up. 2358 */ 2359 if (dirid != upper_limit.objectid) { 2360 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2361 2362 key.objectid = treeid; 2363 key.type = BTRFS_ROOT_ITEM_KEY; 2364 key.offset = (u64)-1; 2365 root = btrfs_get_fs_root(fs_info, &key, true); 2366 if (IS_ERR(root)) { 2367 ret = PTR_ERR(root); 2368 goto out; 2369 } 2370 2371 key.objectid = dirid; 2372 key.type = BTRFS_INODE_REF_KEY; 2373 key.offset = (u64)-1; 2374 while (1) { 2375 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2376 if (ret < 0) { 2377 goto out_put; 2378 } else if (ret > 0) { 2379 ret = btrfs_previous_item(root, path, dirid, 2380 BTRFS_INODE_REF_KEY); 2381 if (ret < 0) { 2382 goto out_put; 2383 } else if (ret > 0) { 2384 ret = -ENOENT; 2385 goto out_put; 2386 } 2387 } 2388 2389 leaf = path->nodes[0]; 2390 slot = path->slots[0]; 2391 btrfs_item_key_to_cpu(leaf, &key, slot); 2392 2393 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2394 len = btrfs_inode_ref_name_len(leaf, iref); 2395 ptr -= len + 1; 2396 total_len += len + 1; 2397 if (ptr < args->path) { 2398 ret = -ENAMETOOLONG; 2399 goto out_put; 2400 } 2401 2402 *(ptr + len) = '/'; 2403 read_extent_buffer(leaf, ptr, 2404 (unsigned long)(iref + 1), len); 2405 2406 /* Check the read+exec permission of this directory */ 2407 ret = btrfs_previous_item(root, path, dirid, 2408 BTRFS_INODE_ITEM_KEY); 2409 if (ret < 0) { 2410 goto out_put; 2411 } else if (ret > 0) { 2412 ret = -ENOENT; 2413 goto out_put; 2414 } 2415 2416 leaf = path->nodes[0]; 2417 slot = path->slots[0]; 2418 btrfs_item_key_to_cpu(leaf, &key2, slot); 2419 if (key2.objectid != dirid) { 2420 ret = -ENOENT; 2421 goto out_put; 2422 } 2423 2424 temp_inode = btrfs_iget(sb, &key2, root); 2425 if (IS_ERR(temp_inode)) { 2426 ret = PTR_ERR(temp_inode); 2427 goto out_put; 2428 } 2429 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2430 iput(temp_inode); 2431 if (ret) { 2432 ret = -EACCES; 2433 goto out_put; 2434 } 2435 2436 if (key.offset == upper_limit.objectid) 2437 break; 2438 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2439 ret = -EACCES; 2440 goto out_put; 2441 } 2442 2443 btrfs_release_path(path); 2444 key.objectid = key.offset; 2445 key.offset = (u64)-1; 2446 dirid = key.objectid; 2447 } 2448 2449 memmove(args->path, ptr, total_len); 2450 args->path[total_len] = '\0'; 2451 btrfs_put_root(root); 2452 root = NULL; 2453 btrfs_release_path(path); 2454 } 2455 2456 /* Get the bottom subvolume's name from ROOT_REF */ 2457 key.objectid = treeid; 2458 key.type = BTRFS_ROOT_REF_KEY; 2459 key.offset = args->treeid; 2460 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2461 if (ret < 0) { 2462 goto out; 2463 } else if (ret > 0) { 2464 ret = -ENOENT; 2465 goto out; 2466 } 2467 2468 leaf = path->nodes[0]; 2469 slot = path->slots[0]; 2470 btrfs_item_key_to_cpu(leaf, &key, slot); 2471 2472 item_off = btrfs_item_ptr_offset(leaf, slot); 2473 item_len = btrfs_item_size_nr(leaf, slot); 2474 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2475 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2476 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2477 ret = -EINVAL; 2478 goto out; 2479 } 2480 2481 /* Copy subvolume's name */ 2482 item_off += sizeof(struct btrfs_root_ref); 2483 item_len -= sizeof(struct btrfs_root_ref); 2484 read_extent_buffer(leaf, args->name, item_off, item_len); 2485 args->name[item_len] = 0; 2486 2487 out_put: 2488 btrfs_put_root(root); 2489 out: 2490 btrfs_free_path(path); 2491 return ret; 2492 } 2493 2494 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2495 void __user *argp) 2496 { 2497 struct btrfs_ioctl_ino_lookup_args *args; 2498 struct inode *inode; 2499 int ret = 0; 2500 2501 args = memdup_user(argp, sizeof(*args)); 2502 if (IS_ERR(args)) 2503 return PTR_ERR(args); 2504 2505 inode = file_inode(file); 2506 2507 /* 2508 * Unprivileged query to obtain the containing subvolume root id. The 2509 * path is reset so it's consistent with btrfs_search_path_in_tree. 2510 */ 2511 if (args->treeid == 0) 2512 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2513 2514 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2515 args->name[0] = 0; 2516 goto out; 2517 } 2518 2519 if (!capable(CAP_SYS_ADMIN)) { 2520 ret = -EPERM; 2521 goto out; 2522 } 2523 2524 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2525 args->treeid, args->objectid, 2526 args->name); 2527 2528 out: 2529 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2530 ret = -EFAULT; 2531 2532 kfree(args); 2533 return ret; 2534 } 2535 2536 /* 2537 * Version of ino_lookup ioctl (unprivileged) 2538 * 2539 * The main differences from ino_lookup ioctl are: 2540 * 2541 * 1. Read + Exec permission will be checked using inode_permission() during 2542 * path construction. -EACCES will be returned in case of failure. 2543 * 2. Path construction will be stopped at the inode number which corresponds 2544 * to the fd with which this ioctl is called. If constructed path does not 2545 * exist under fd's inode, -EACCES will be returned. 2546 * 3. The name of bottom subvolume is also searched and filled. 2547 */ 2548 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2549 { 2550 struct btrfs_ioctl_ino_lookup_user_args *args; 2551 struct inode *inode; 2552 int ret; 2553 2554 args = memdup_user(argp, sizeof(*args)); 2555 if (IS_ERR(args)) 2556 return PTR_ERR(args); 2557 2558 inode = file_inode(file); 2559 2560 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2561 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2562 /* 2563 * The subvolume does not exist under fd with which this is 2564 * called 2565 */ 2566 kfree(args); 2567 return -EACCES; 2568 } 2569 2570 ret = btrfs_search_path_in_tree_user(inode, args); 2571 2572 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2573 ret = -EFAULT; 2574 2575 kfree(args); 2576 return ret; 2577 } 2578 2579 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2580 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2581 { 2582 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2583 struct btrfs_fs_info *fs_info; 2584 struct btrfs_root *root; 2585 struct btrfs_path *path; 2586 struct btrfs_key key; 2587 struct btrfs_root_item *root_item; 2588 struct btrfs_root_ref *rref; 2589 struct extent_buffer *leaf; 2590 unsigned long item_off; 2591 unsigned long item_len; 2592 struct inode *inode; 2593 int slot; 2594 int ret = 0; 2595 2596 path = btrfs_alloc_path(); 2597 if (!path) 2598 return -ENOMEM; 2599 2600 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2601 if (!subvol_info) { 2602 btrfs_free_path(path); 2603 return -ENOMEM; 2604 } 2605 2606 inode = file_inode(file); 2607 fs_info = BTRFS_I(inode)->root->fs_info; 2608 2609 /* Get root_item of inode's subvolume */ 2610 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2611 key.type = BTRFS_ROOT_ITEM_KEY; 2612 key.offset = (u64)-1; 2613 root = btrfs_get_fs_root(fs_info, &key, true); 2614 if (IS_ERR(root)) { 2615 ret = PTR_ERR(root); 2616 goto out_free; 2617 } 2618 root_item = &root->root_item; 2619 2620 subvol_info->treeid = key.objectid; 2621 2622 subvol_info->generation = btrfs_root_generation(root_item); 2623 subvol_info->flags = btrfs_root_flags(root_item); 2624 2625 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2626 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2627 BTRFS_UUID_SIZE); 2628 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2629 BTRFS_UUID_SIZE); 2630 2631 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2632 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2633 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2634 2635 subvol_info->otransid = btrfs_root_otransid(root_item); 2636 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2637 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2638 2639 subvol_info->stransid = btrfs_root_stransid(root_item); 2640 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2641 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2642 2643 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2644 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2645 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2646 2647 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2648 /* Search root tree for ROOT_BACKREF of this subvolume */ 2649 key.type = BTRFS_ROOT_BACKREF_KEY; 2650 key.offset = 0; 2651 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2652 if (ret < 0) { 2653 goto out; 2654 } else if (path->slots[0] >= 2655 btrfs_header_nritems(path->nodes[0])) { 2656 ret = btrfs_next_leaf(fs_info->tree_root, path); 2657 if (ret < 0) { 2658 goto out; 2659 } else if (ret > 0) { 2660 ret = -EUCLEAN; 2661 goto out; 2662 } 2663 } 2664 2665 leaf = path->nodes[0]; 2666 slot = path->slots[0]; 2667 btrfs_item_key_to_cpu(leaf, &key, slot); 2668 if (key.objectid == subvol_info->treeid && 2669 key.type == BTRFS_ROOT_BACKREF_KEY) { 2670 subvol_info->parent_id = key.offset; 2671 2672 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2673 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2674 2675 item_off = btrfs_item_ptr_offset(leaf, slot) 2676 + sizeof(struct btrfs_root_ref); 2677 item_len = btrfs_item_size_nr(leaf, slot) 2678 - sizeof(struct btrfs_root_ref); 2679 read_extent_buffer(leaf, subvol_info->name, 2680 item_off, item_len); 2681 } else { 2682 ret = -ENOENT; 2683 goto out; 2684 } 2685 } 2686 2687 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2688 ret = -EFAULT; 2689 2690 out: 2691 btrfs_put_root(root); 2692 out_free: 2693 btrfs_free_path(path); 2694 kzfree(subvol_info); 2695 return ret; 2696 } 2697 2698 /* 2699 * Return ROOT_REF information of the subvolume containing this inode 2700 * except the subvolume name. 2701 */ 2702 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2703 { 2704 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2705 struct btrfs_root_ref *rref; 2706 struct btrfs_root *root; 2707 struct btrfs_path *path; 2708 struct btrfs_key key; 2709 struct extent_buffer *leaf; 2710 struct inode *inode; 2711 u64 objectid; 2712 int slot; 2713 int ret; 2714 u8 found; 2715 2716 path = btrfs_alloc_path(); 2717 if (!path) 2718 return -ENOMEM; 2719 2720 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2721 if (IS_ERR(rootrefs)) { 2722 btrfs_free_path(path); 2723 return PTR_ERR(rootrefs); 2724 } 2725 2726 inode = file_inode(file); 2727 root = BTRFS_I(inode)->root->fs_info->tree_root; 2728 objectid = BTRFS_I(inode)->root->root_key.objectid; 2729 2730 key.objectid = objectid; 2731 key.type = BTRFS_ROOT_REF_KEY; 2732 key.offset = rootrefs->min_treeid; 2733 found = 0; 2734 2735 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2736 if (ret < 0) { 2737 goto out; 2738 } else if (path->slots[0] >= 2739 btrfs_header_nritems(path->nodes[0])) { 2740 ret = btrfs_next_leaf(root, path); 2741 if (ret < 0) { 2742 goto out; 2743 } else if (ret > 0) { 2744 ret = -EUCLEAN; 2745 goto out; 2746 } 2747 } 2748 while (1) { 2749 leaf = path->nodes[0]; 2750 slot = path->slots[0]; 2751 2752 btrfs_item_key_to_cpu(leaf, &key, slot); 2753 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2754 ret = 0; 2755 goto out; 2756 } 2757 2758 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2759 ret = -EOVERFLOW; 2760 goto out; 2761 } 2762 2763 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2764 rootrefs->rootref[found].treeid = key.offset; 2765 rootrefs->rootref[found].dirid = 2766 btrfs_root_ref_dirid(leaf, rref); 2767 found++; 2768 2769 ret = btrfs_next_item(root, path); 2770 if (ret < 0) { 2771 goto out; 2772 } else if (ret > 0) { 2773 ret = -EUCLEAN; 2774 goto out; 2775 } 2776 } 2777 2778 out: 2779 if (!ret || ret == -EOVERFLOW) { 2780 rootrefs->num_items = found; 2781 /* update min_treeid for next search */ 2782 if (found) 2783 rootrefs->min_treeid = 2784 rootrefs->rootref[found - 1].treeid + 1; 2785 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2786 ret = -EFAULT; 2787 } 2788 2789 kfree(rootrefs); 2790 btrfs_free_path(path); 2791 2792 return ret; 2793 } 2794 2795 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2796 void __user *arg, 2797 bool destroy_v2) 2798 { 2799 struct dentry *parent = file->f_path.dentry; 2800 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2801 struct dentry *dentry; 2802 struct inode *dir = d_inode(parent); 2803 struct inode *inode; 2804 struct btrfs_root *root = BTRFS_I(dir)->root; 2805 struct btrfs_root *dest = NULL; 2806 struct btrfs_ioctl_vol_args *vol_args = NULL; 2807 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2808 char *subvol_name, *subvol_name_ptr = NULL; 2809 int subvol_namelen; 2810 int err = 0; 2811 bool destroy_parent = false; 2812 2813 if (destroy_v2) { 2814 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2815 if (IS_ERR(vol_args2)) 2816 return PTR_ERR(vol_args2); 2817 2818 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2819 err = -EOPNOTSUPP; 2820 goto out; 2821 } 2822 2823 /* 2824 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2825 * name, same as v1 currently does. 2826 */ 2827 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2828 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2829 subvol_name = vol_args2->name; 2830 2831 err = mnt_want_write_file(file); 2832 if (err) 2833 goto out; 2834 } else { 2835 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2836 err = -EINVAL; 2837 goto out; 2838 } 2839 2840 err = mnt_want_write_file(file); 2841 if (err) 2842 goto out; 2843 2844 dentry = btrfs_get_dentry(fs_info->sb, 2845 BTRFS_FIRST_FREE_OBJECTID, 2846 vol_args2->subvolid, 0, 0); 2847 if (IS_ERR(dentry)) { 2848 err = PTR_ERR(dentry); 2849 goto out_drop_write; 2850 } 2851 2852 /* 2853 * Change the default parent since the subvolume being 2854 * deleted can be outside of the current mount point. 2855 */ 2856 parent = btrfs_get_parent(dentry); 2857 2858 /* 2859 * At this point dentry->d_name can point to '/' if the 2860 * subvolume we want to destroy is outsite of the 2861 * current mount point, so we need to release the 2862 * current dentry and execute the lookup to return a new 2863 * one with ->d_name pointing to the 2864 * <mount point>/subvol_name. 2865 */ 2866 dput(dentry); 2867 if (IS_ERR(parent)) { 2868 err = PTR_ERR(parent); 2869 goto out_drop_write; 2870 } 2871 dir = d_inode(parent); 2872 2873 /* 2874 * If v2 was used with SPEC_BY_ID, a new parent was 2875 * allocated since the subvolume can be outside of the 2876 * current mount point. Later on we need to release this 2877 * new parent dentry. 2878 */ 2879 destroy_parent = true; 2880 2881 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2882 fs_info, vol_args2->subvolid); 2883 if (IS_ERR(subvol_name_ptr)) { 2884 err = PTR_ERR(subvol_name_ptr); 2885 goto free_parent; 2886 } 2887 /* subvol_name_ptr is already NULL termined */ 2888 subvol_name = (char *)kbasename(subvol_name_ptr); 2889 } 2890 } else { 2891 vol_args = memdup_user(arg, sizeof(*vol_args)); 2892 if (IS_ERR(vol_args)) 2893 return PTR_ERR(vol_args); 2894 2895 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2896 subvol_name = vol_args->name; 2897 2898 err = mnt_want_write_file(file); 2899 if (err) 2900 goto out; 2901 } 2902 2903 subvol_namelen = strlen(subvol_name); 2904 2905 if (strchr(subvol_name, '/') || 2906 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2907 err = -EINVAL; 2908 goto free_subvol_name; 2909 } 2910 2911 if (!S_ISDIR(dir->i_mode)) { 2912 err = -ENOTDIR; 2913 goto free_subvol_name; 2914 } 2915 2916 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2917 if (err == -EINTR) 2918 goto free_subvol_name; 2919 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 2920 if (IS_ERR(dentry)) { 2921 err = PTR_ERR(dentry); 2922 goto out_unlock_dir; 2923 } 2924 2925 if (d_really_is_negative(dentry)) { 2926 err = -ENOENT; 2927 goto out_dput; 2928 } 2929 2930 inode = d_inode(dentry); 2931 dest = BTRFS_I(inode)->root; 2932 if (!capable(CAP_SYS_ADMIN)) { 2933 /* 2934 * Regular user. Only allow this with a special mount 2935 * option, when the user has write+exec access to the 2936 * subvol root, and when rmdir(2) would have been 2937 * allowed. 2938 * 2939 * Note that this is _not_ check that the subvol is 2940 * empty or doesn't contain data that we wouldn't 2941 * otherwise be able to delete. 2942 * 2943 * Users who want to delete empty subvols should try 2944 * rmdir(2). 2945 */ 2946 err = -EPERM; 2947 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2948 goto out_dput; 2949 2950 /* 2951 * Do not allow deletion if the parent dir is the same 2952 * as the dir to be deleted. That means the ioctl 2953 * must be called on the dentry referencing the root 2954 * of the subvol, not a random directory contained 2955 * within it. 2956 */ 2957 err = -EINVAL; 2958 if (root == dest) 2959 goto out_dput; 2960 2961 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2962 if (err) 2963 goto out_dput; 2964 } 2965 2966 /* check if subvolume may be deleted by a user */ 2967 err = btrfs_may_delete(dir, dentry, 1); 2968 if (err) 2969 goto out_dput; 2970 2971 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2972 err = -EINVAL; 2973 goto out_dput; 2974 } 2975 2976 inode_lock(inode); 2977 err = btrfs_delete_subvolume(dir, dentry); 2978 inode_unlock(inode); 2979 if (!err) { 2980 fsnotify_rmdir(dir, dentry); 2981 d_delete(dentry); 2982 } 2983 2984 out_dput: 2985 dput(dentry); 2986 out_unlock_dir: 2987 inode_unlock(dir); 2988 free_subvol_name: 2989 kfree(subvol_name_ptr); 2990 free_parent: 2991 if (destroy_parent) 2992 dput(parent); 2993 out_drop_write: 2994 mnt_drop_write_file(file); 2995 out: 2996 kfree(vol_args2); 2997 kfree(vol_args); 2998 return err; 2999 } 3000 3001 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3002 { 3003 struct inode *inode = file_inode(file); 3004 struct btrfs_root *root = BTRFS_I(inode)->root; 3005 struct btrfs_ioctl_defrag_range_args *range; 3006 int ret; 3007 3008 ret = mnt_want_write_file(file); 3009 if (ret) 3010 return ret; 3011 3012 if (btrfs_root_readonly(root)) { 3013 ret = -EROFS; 3014 goto out; 3015 } 3016 3017 switch (inode->i_mode & S_IFMT) { 3018 case S_IFDIR: 3019 if (!capable(CAP_SYS_ADMIN)) { 3020 ret = -EPERM; 3021 goto out; 3022 } 3023 ret = btrfs_defrag_root(root); 3024 break; 3025 case S_IFREG: 3026 /* 3027 * Note that this does not check the file descriptor for write 3028 * access. This prevents defragmenting executables that are 3029 * running and allows defrag on files open in read-only mode. 3030 */ 3031 if (!capable(CAP_SYS_ADMIN) && 3032 inode_permission(inode, MAY_WRITE)) { 3033 ret = -EPERM; 3034 goto out; 3035 } 3036 3037 range = kzalloc(sizeof(*range), GFP_KERNEL); 3038 if (!range) { 3039 ret = -ENOMEM; 3040 goto out; 3041 } 3042 3043 if (argp) { 3044 if (copy_from_user(range, argp, 3045 sizeof(*range))) { 3046 ret = -EFAULT; 3047 kfree(range); 3048 goto out; 3049 } 3050 /* compression requires us to start the IO */ 3051 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3052 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3053 range->extent_thresh = (u32)-1; 3054 } 3055 } else { 3056 /* the rest are all set to zero by kzalloc */ 3057 range->len = (u64)-1; 3058 } 3059 ret = btrfs_defrag_file(file_inode(file), file, 3060 range, BTRFS_OLDEST_GENERATION, 0); 3061 if (ret > 0) 3062 ret = 0; 3063 kfree(range); 3064 break; 3065 default: 3066 ret = -EINVAL; 3067 } 3068 out: 3069 mnt_drop_write_file(file); 3070 return ret; 3071 } 3072 3073 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3074 { 3075 struct btrfs_ioctl_vol_args *vol_args; 3076 int ret; 3077 3078 if (!capable(CAP_SYS_ADMIN)) 3079 return -EPERM; 3080 3081 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3082 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3083 3084 vol_args = memdup_user(arg, sizeof(*vol_args)); 3085 if (IS_ERR(vol_args)) { 3086 ret = PTR_ERR(vol_args); 3087 goto out; 3088 } 3089 3090 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3091 ret = btrfs_init_new_device(fs_info, vol_args->name); 3092 3093 if (!ret) 3094 btrfs_info(fs_info, "disk added %s", vol_args->name); 3095 3096 kfree(vol_args); 3097 out: 3098 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3099 return ret; 3100 } 3101 3102 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3103 { 3104 struct inode *inode = file_inode(file); 3105 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3106 struct btrfs_ioctl_vol_args_v2 *vol_args; 3107 int ret; 3108 3109 if (!capable(CAP_SYS_ADMIN)) 3110 return -EPERM; 3111 3112 ret = mnt_want_write_file(file); 3113 if (ret) 3114 return ret; 3115 3116 vol_args = memdup_user(arg, sizeof(*vol_args)); 3117 if (IS_ERR(vol_args)) { 3118 ret = PTR_ERR(vol_args); 3119 goto err_drop; 3120 } 3121 3122 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3123 ret = -EOPNOTSUPP; 3124 goto out; 3125 } 3126 3127 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3128 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3129 goto out; 3130 } 3131 3132 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3133 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3134 } else { 3135 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3136 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3137 } 3138 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3139 3140 if (!ret) { 3141 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3142 btrfs_info(fs_info, "device deleted: id %llu", 3143 vol_args->devid); 3144 else 3145 btrfs_info(fs_info, "device deleted: %s", 3146 vol_args->name); 3147 } 3148 out: 3149 kfree(vol_args); 3150 err_drop: 3151 mnt_drop_write_file(file); 3152 return ret; 3153 } 3154 3155 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3156 { 3157 struct inode *inode = file_inode(file); 3158 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3159 struct btrfs_ioctl_vol_args *vol_args; 3160 int ret; 3161 3162 if (!capable(CAP_SYS_ADMIN)) 3163 return -EPERM; 3164 3165 ret = mnt_want_write_file(file); 3166 if (ret) 3167 return ret; 3168 3169 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3170 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3171 goto out_drop_write; 3172 } 3173 3174 vol_args = memdup_user(arg, sizeof(*vol_args)); 3175 if (IS_ERR(vol_args)) { 3176 ret = PTR_ERR(vol_args); 3177 goto out; 3178 } 3179 3180 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3181 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3182 3183 if (!ret) 3184 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3185 kfree(vol_args); 3186 out: 3187 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3188 out_drop_write: 3189 mnt_drop_write_file(file); 3190 3191 return ret; 3192 } 3193 3194 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3195 void __user *arg) 3196 { 3197 struct btrfs_ioctl_fs_info_args *fi_args; 3198 struct btrfs_device *device; 3199 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3200 int ret = 0; 3201 3202 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3203 if (!fi_args) 3204 return -ENOMEM; 3205 3206 rcu_read_lock(); 3207 fi_args->num_devices = fs_devices->num_devices; 3208 3209 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3210 if (device->devid > fi_args->max_id) 3211 fi_args->max_id = device->devid; 3212 } 3213 rcu_read_unlock(); 3214 3215 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3216 fi_args->nodesize = fs_info->nodesize; 3217 fi_args->sectorsize = fs_info->sectorsize; 3218 fi_args->clone_alignment = fs_info->sectorsize; 3219 3220 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3221 ret = -EFAULT; 3222 3223 kfree(fi_args); 3224 return ret; 3225 } 3226 3227 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3228 void __user *arg) 3229 { 3230 struct btrfs_ioctl_dev_info_args *di_args; 3231 struct btrfs_device *dev; 3232 int ret = 0; 3233 char *s_uuid = NULL; 3234 3235 di_args = memdup_user(arg, sizeof(*di_args)); 3236 if (IS_ERR(di_args)) 3237 return PTR_ERR(di_args); 3238 3239 if (!btrfs_is_empty_uuid(di_args->uuid)) 3240 s_uuid = di_args->uuid; 3241 3242 rcu_read_lock(); 3243 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3244 NULL, true); 3245 3246 if (!dev) { 3247 ret = -ENODEV; 3248 goto out; 3249 } 3250 3251 di_args->devid = dev->devid; 3252 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3253 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3254 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3255 if (dev->name) { 3256 strncpy(di_args->path, rcu_str_deref(dev->name), 3257 sizeof(di_args->path) - 1); 3258 di_args->path[sizeof(di_args->path) - 1] = 0; 3259 } else { 3260 di_args->path[0] = '\0'; 3261 } 3262 3263 out: 3264 rcu_read_unlock(); 3265 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3266 ret = -EFAULT; 3267 3268 kfree(di_args); 3269 return ret; 3270 } 3271 3272 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3273 { 3274 struct inode *inode = file_inode(file); 3275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3276 struct btrfs_root *root = BTRFS_I(inode)->root; 3277 struct btrfs_root *new_root; 3278 struct btrfs_dir_item *di; 3279 struct btrfs_trans_handle *trans; 3280 struct btrfs_path *path = NULL; 3281 struct btrfs_key location; 3282 struct btrfs_disk_key disk_key; 3283 u64 objectid = 0; 3284 u64 dir_id; 3285 int ret; 3286 3287 if (!capable(CAP_SYS_ADMIN)) 3288 return -EPERM; 3289 3290 ret = mnt_want_write_file(file); 3291 if (ret) 3292 return ret; 3293 3294 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3295 ret = -EFAULT; 3296 goto out; 3297 } 3298 3299 if (!objectid) 3300 objectid = BTRFS_FS_TREE_OBJECTID; 3301 3302 location.objectid = objectid; 3303 location.type = BTRFS_ROOT_ITEM_KEY; 3304 location.offset = (u64)-1; 3305 3306 new_root = btrfs_get_fs_root(fs_info, &location, true); 3307 if (IS_ERR(new_root)) { 3308 ret = PTR_ERR(new_root); 3309 goto out; 3310 } 3311 if (!is_fstree(new_root->root_key.objectid)) { 3312 ret = -ENOENT; 3313 goto out_free; 3314 } 3315 3316 path = btrfs_alloc_path(); 3317 if (!path) { 3318 ret = -ENOMEM; 3319 goto out_free; 3320 } 3321 path->leave_spinning = 1; 3322 3323 trans = btrfs_start_transaction(root, 1); 3324 if (IS_ERR(trans)) { 3325 ret = PTR_ERR(trans); 3326 goto out_free; 3327 } 3328 3329 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3330 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3331 dir_id, "default", 7, 1); 3332 if (IS_ERR_OR_NULL(di)) { 3333 btrfs_release_path(path); 3334 btrfs_end_transaction(trans); 3335 btrfs_err(fs_info, 3336 "Umm, you don't have the default diritem, this isn't going to work"); 3337 ret = -ENOENT; 3338 goto out_free; 3339 } 3340 3341 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3342 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3343 btrfs_mark_buffer_dirty(path->nodes[0]); 3344 btrfs_release_path(path); 3345 3346 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3347 btrfs_end_transaction(trans); 3348 out_free: 3349 btrfs_put_root(new_root); 3350 btrfs_free_path(path); 3351 out: 3352 mnt_drop_write_file(file); 3353 return ret; 3354 } 3355 3356 static void get_block_group_info(struct list_head *groups_list, 3357 struct btrfs_ioctl_space_info *space) 3358 { 3359 struct btrfs_block_group *block_group; 3360 3361 space->total_bytes = 0; 3362 space->used_bytes = 0; 3363 space->flags = 0; 3364 list_for_each_entry(block_group, groups_list, list) { 3365 space->flags = block_group->flags; 3366 space->total_bytes += block_group->length; 3367 space->used_bytes += block_group->used; 3368 } 3369 } 3370 3371 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3372 void __user *arg) 3373 { 3374 struct btrfs_ioctl_space_args space_args; 3375 struct btrfs_ioctl_space_info space; 3376 struct btrfs_ioctl_space_info *dest; 3377 struct btrfs_ioctl_space_info *dest_orig; 3378 struct btrfs_ioctl_space_info __user *user_dest; 3379 struct btrfs_space_info *info; 3380 static const u64 types[] = { 3381 BTRFS_BLOCK_GROUP_DATA, 3382 BTRFS_BLOCK_GROUP_SYSTEM, 3383 BTRFS_BLOCK_GROUP_METADATA, 3384 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3385 }; 3386 int num_types = 4; 3387 int alloc_size; 3388 int ret = 0; 3389 u64 slot_count = 0; 3390 int i, c; 3391 3392 if (copy_from_user(&space_args, 3393 (struct btrfs_ioctl_space_args __user *)arg, 3394 sizeof(space_args))) 3395 return -EFAULT; 3396 3397 for (i = 0; i < num_types; i++) { 3398 struct btrfs_space_info *tmp; 3399 3400 info = NULL; 3401 rcu_read_lock(); 3402 list_for_each_entry_rcu(tmp, &fs_info->space_info, 3403 list) { 3404 if (tmp->flags == types[i]) { 3405 info = tmp; 3406 break; 3407 } 3408 } 3409 rcu_read_unlock(); 3410 3411 if (!info) 3412 continue; 3413 3414 down_read(&info->groups_sem); 3415 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3416 if (!list_empty(&info->block_groups[c])) 3417 slot_count++; 3418 } 3419 up_read(&info->groups_sem); 3420 } 3421 3422 /* 3423 * Global block reserve, exported as a space_info 3424 */ 3425 slot_count++; 3426 3427 /* space_slots == 0 means they are asking for a count */ 3428 if (space_args.space_slots == 0) { 3429 space_args.total_spaces = slot_count; 3430 goto out; 3431 } 3432 3433 slot_count = min_t(u64, space_args.space_slots, slot_count); 3434 3435 alloc_size = sizeof(*dest) * slot_count; 3436 3437 /* we generally have at most 6 or so space infos, one for each raid 3438 * level. So, a whole page should be more than enough for everyone 3439 */ 3440 if (alloc_size > PAGE_SIZE) 3441 return -ENOMEM; 3442 3443 space_args.total_spaces = 0; 3444 dest = kmalloc(alloc_size, GFP_KERNEL); 3445 if (!dest) 3446 return -ENOMEM; 3447 dest_orig = dest; 3448 3449 /* now we have a buffer to copy into */ 3450 for (i = 0; i < num_types; i++) { 3451 struct btrfs_space_info *tmp; 3452 3453 if (!slot_count) 3454 break; 3455 3456 info = NULL; 3457 rcu_read_lock(); 3458 list_for_each_entry_rcu(tmp, &fs_info->space_info, 3459 list) { 3460 if (tmp->flags == types[i]) { 3461 info = tmp; 3462 break; 3463 } 3464 } 3465 rcu_read_unlock(); 3466 3467 if (!info) 3468 continue; 3469 down_read(&info->groups_sem); 3470 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3471 if (!list_empty(&info->block_groups[c])) { 3472 get_block_group_info(&info->block_groups[c], 3473 &space); 3474 memcpy(dest, &space, sizeof(space)); 3475 dest++; 3476 space_args.total_spaces++; 3477 slot_count--; 3478 } 3479 if (!slot_count) 3480 break; 3481 } 3482 up_read(&info->groups_sem); 3483 } 3484 3485 /* 3486 * Add global block reserve 3487 */ 3488 if (slot_count) { 3489 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3490 3491 spin_lock(&block_rsv->lock); 3492 space.total_bytes = block_rsv->size; 3493 space.used_bytes = block_rsv->size - block_rsv->reserved; 3494 spin_unlock(&block_rsv->lock); 3495 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3496 memcpy(dest, &space, sizeof(space)); 3497 space_args.total_spaces++; 3498 } 3499 3500 user_dest = (struct btrfs_ioctl_space_info __user *) 3501 (arg + sizeof(struct btrfs_ioctl_space_args)); 3502 3503 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3504 ret = -EFAULT; 3505 3506 kfree(dest_orig); 3507 out: 3508 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3509 ret = -EFAULT; 3510 3511 return ret; 3512 } 3513 3514 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3515 void __user *argp) 3516 { 3517 struct btrfs_trans_handle *trans; 3518 u64 transid; 3519 int ret; 3520 3521 trans = btrfs_attach_transaction_barrier(root); 3522 if (IS_ERR(trans)) { 3523 if (PTR_ERR(trans) != -ENOENT) 3524 return PTR_ERR(trans); 3525 3526 /* No running transaction, don't bother */ 3527 transid = root->fs_info->last_trans_committed; 3528 goto out; 3529 } 3530 transid = trans->transid; 3531 ret = btrfs_commit_transaction_async(trans, 0); 3532 if (ret) { 3533 btrfs_end_transaction(trans); 3534 return ret; 3535 } 3536 out: 3537 if (argp) 3538 if (copy_to_user(argp, &transid, sizeof(transid))) 3539 return -EFAULT; 3540 return 0; 3541 } 3542 3543 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3544 void __user *argp) 3545 { 3546 u64 transid; 3547 3548 if (argp) { 3549 if (copy_from_user(&transid, argp, sizeof(transid))) 3550 return -EFAULT; 3551 } else { 3552 transid = 0; /* current trans */ 3553 } 3554 return btrfs_wait_for_commit(fs_info, transid); 3555 } 3556 3557 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3558 { 3559 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3560 struct btrfs_ioctl_scrub_args *sa; 3561 int ret; 3562 3563 if (!capable(CAP_SYS_ADMIN)) 3564 return -EPERM; 3565 3566 sa = memdup_user(arg, sizeof(*sa)); 3567 if (IS_ERR(sa)) 3568 return PTR_ERR(sa); 3569 3570 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3571 ret = mnt_want_write_file(file); 3572 if (ret) 3573 goto out; 3574 } 3575 3576 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3577 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3578 0); 3579 3580 /* 3581 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3582 * error. This is important as it allows user space to know how much 3583 * progress scrub has done. For example, if scrub is canceled we get 3584 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3585 * space. Later user space can inspect the progress from the structure 3586 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3587 * previously (btrfs-progs does this). 3588 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3589 * then return -EFAULT to signal the structure was not copied or it may 3590 * be corrupt and unreliable due to a partial copy. 3591 */ 3592 if (copy_to_user(arg, sa, sizeof(*sa))) 3593 ret = -EFAULT; 3594 3595 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3596 mnt_drop_write_file(file); 3597 out: 3598 kfree(sa); 3599 return ret; 3600 } 3601 3602 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3603 { 3604 if (!capable(CAP_SYS_ADMIN)) 3605 return -EPERM; 3606 3607 return btrfs_scrub_cancel(fs_info); 3608 } 3609 3610 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3611 void __user *arg) 3612 { 3613 struct btrfs_ioctl_scrub_args *sa; 3614 int ret; 3615 3616 if (!capable(CAP_SYS_ADMIN)) 3617 return -EPERM; 3618 3619 sa = memdup_user(arg, sizeof(*sa)); 3620 if (IS_ERR(sa)) 3621 return PTR_ERR(sa); 3622 3623 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3624 3625 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3626 ret = -EFAULT; 3627 3628 kfree(sa); 3629 return ret; 3630 } 3631 3632 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3633 void __user *arg) 3634 { 3635 struct btrfs_ioctl_get_dev_stats *sa; 3636 int ret; 3637 3638 sa = memdup_user(arg, sizeof(*sa)); 3639 if (IS_ERR(sa)) 3640 return PTR_ERR(sa); 3641 3642 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3643 kfree(sa); 3644 return -EPERM; 3645 } 3646 3647 ret = btrfs_get_dev_stats(fs_info, sa); 3648 3649 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3650 ret = -EFAULT; 3651 3652 kfree(sa); 3653 return ret; 3654 } 3655 3656 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3657 void __user *arg) 3658 { 3659 struct btrfs_ioctl_dev_replace_args *p; 3660 int ret; 3661 3662 if (!capable(CAP_SYS_ADMIN)) 3663 return -EPERM; 3664 3665 p = memdup_user(arg, sizeof(*p)); 3666 if (IS_ERR(p)) 3667 return PTR_ERR(p); 3668 3669 switch (p->cmd) { 3670 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3671 if (sb_rdonly(fs_info->sb)) { 3672 ret = -EROFS; 3673 goto out; 3674 } 3675 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3676 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3677 } else { 3678 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3679 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3680 } 3681 break; 3682 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3683 btrfs_dev_replace_status(fs_info, p); 3684 ret = 0; 3685 break; 3686 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3687 p->result = btrfs_dev_replace_cancel(fs_info); 3688 ret = 0; 3689 break; 3690 default: 3691 ret = -EINVAL; 3692 break; 3693 } 3694 3695 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3696 ret = -EFAULT; 3697 out: 3698 kfree(p); 3699 return ret; 3700 } 3701 3702 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3703 { 3704 int ret = 0; 3705 int i; 3706 u64 rel_ptr; 3707 int size; 3708 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3709 struct inode_fs_paths *ipath = NULL; 3710 struct btrfs_path *path; 3711 3712 if (!capable(CAP_DAC_READ_SEARCH)) 3713 return -EPERM; 3714 3715 path = btrfs_alloc_path(); 3716 if (!path) { 3717 ret = -ENOMEM; 3718 goto out; 3719 } 3720 3721 ipa = memdup_user(arg, sizeof(*ipa)); 3722 if (IS_ERR(ipa)) { 3723 ret = PTR_ERR(ipa); 3724 ipa = NULL; 3725 goto out; 3726 } 3727 3728 size = min_t(u32, ipa->size, 4096); 3729 ipath = init_ipath(size, root, path); 3730 if (IS_ERR(ipath)) { 3731 ret = PTR_ERR(ipath); 3732 ipath = NULL; 3733 goto out; 3734 } 3735 3736 ret = paths_from_inode(ipa->inum, ipath); 3737 if (ret < 0) 3738 goto out; 3739 3740 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3741 rel_ptr = ipath->fspath->val[i] - 3742 (u64)(unsigned long)ipath->fspath->val; 3743 ipath->fspath->val[i] = rel_ptr; 3744 } 3745 3746 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3747 ipath->fspath, size); 3748 if (ret) { 3749 ret = -EFAULT; 3750 goto out; 3751 } 3752 3753 out: 3754 btrfs_free_path(path); 3755 free_ipath(ipath); 3756 kfree(ipa); 3757 3758 return ret; 3759 } 3760 3761 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3762 { 3763 struct btrfs_data_container *inodes = ctx; 3764 const size_t c = 3 * sizeof(u64); 3765 3766 if (inodes->bytes_left >= c) { 3767 inodes->bytes_left -= c; 3768 inodes->val[inodes->elem_cnt] = inum; 3769 inodes->val[inodes->elem_cnt + 1] = offset; 3770 inodes->val[inodes->elem_cnt + 2] = root; 3771 inodes->elem_cnt += 3; 3772 } else { 3773 inodes->bytes_missing += c - inodes->bytes_left; 3774 inodes->bytes_left = 0; 3775 inodes->elem_missed += 3; 3776 } 3777 3778 return 0; 3779 } 3780 3781 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3782 void __user *arg, int version) 3783 { 3784 int ret = 0; 3785 int size; 3786 struct btrfs_ioctl_logical_ino_args *loi; 3787 struct btrfs_data_container *inodes = NULL; 3788 struct btrfs_path *path = NULL; 3789 bool ignore_offset; 3790 3791 if (!capable(CAP_SYS_ADMIN)) 3792 return -EPERM; 3793 3794 loi = memdup_user(arg, sizeof(*loi)); 3795 if (IS_ERR(loi)) 3796 return PTR_ERR(loi); 3797 3798 if (version == 1) { 3799 ignore_offset = false; 3800 size = min_t(u32, loi->size, SZ_64K); 3801 } else { 3802 /* All reserved bits must be 0 for now */ 3803 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3804 ret = -EINVAL; 3805 goto out_loi; 3806 } 3807 /* Only accept flags we have defined so far */ 3808 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3809 ret = -EINVAL; 3810 goto out_loi; 3811 } 3812 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3813 size = min_t(u32, loi->size, SZ_16M); 3814 } 3815 3816 path = btrfs_alloc_path(); 3817 if (!path) { 3818 ret = -ENOMEM; 3819 goto out; 3820 } 3821 3822 inodes = init_data_container(size); 3823 if (IS_ERR(inodes)) { 3824 ret = PTR_ERR(inodes); 3825 inodes = NULL; 3826 goto out; 3827 } 3828 3829 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3830 build_ino_list, inodes, ignore_offset); 3831 if (ret == -EINVAL) 3832 ret = -ENOENT; 3833 if (ret < 0) 3834 goto out; 3835 3836 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3837 size); 3838 if (ret) 3839 ret = -EFAULT; 3840 3841 out: 3842 btrfs_free_path(path); 3843 kvfree(inodes); 3844 out_loi: 3845 kfree(loi); 3846 3847 return ret; 3848 } 3849 3850 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3851 struct btrfs_ioctl_balance_args *bargs) 3852 { 3853 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3854 3855 bargs->flags = bctl->flags; 3856 3857 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3858 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3859 if (atomic_read(&fs_info->balance_pause_req)) 3860 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3861 if (atomic_read(&fs_info->balance_cancel_req)) 3862 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3863 3864 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3865 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3866 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3867 3868 spin_lock(&fs_info->balance_lock); 3869 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3870 spin_unlock(&fs_info->balance_lock); 3871 } 3872 3873 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3874 { 3875 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3876 struct btrfs_fs_info *fs_info = root->fs_info; 3877 struct btrfs_ioctl_balance_args *bargs; 3878 struct btrfs_balance_control *bctl; 3879 bool need_unlock; /* for mut. excl. ops lock */ 3880 int ret; 3881 3882 if (!capable(CAP_SYS_ADMIN)) 3883 return -EPERM; 3884 3885 ret = mnt_want_write_file(file); 3886 if (ret) 3887 return ret; 3888 3889 again: 3890 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3891 mutex_lock(&fs_info->balance_mutex); 3892 need_unlock = true; 3893 goto locked; 3894 } 3895 3896 /* 3897 * mut. excl. ops lock is locked. Three possibilities: 3898 * (1) some other op is running 3899 * (2) balance is running 3900 * (3) balance is paused -- special case (think resume) 3901 */ 3902 mutex_lock(&fs_info->balance_mutex); 3903 if (fs_info->balance_ctl) { 3904 /* this is either (2) or (3) */ 3905 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3906 mutex_unlock(&fs_info->balance_mutex); 3907 /* 3908 * Lock released to allow other waiters to continue, 3909 * we'll reexamine the status again. 3910 */ 3911 mutex_lock(&fs_info->balance_mutex); 3912 3913 if (fs_info->balance_ctl && 3914 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3915 /* this is (3) */ 3916 need_unlock = false; 3917 goto locked; 3918 } 3919 3920 mutex_unlock(&fs_info->balance_mutex); 3921 goto again; 3922 } else { 3923 /* this is (2) */ 3924 mutex_unlock(&fs_info->balance_mutex); 3925 ret = -EINPROGRESS; 3926 goto out; 3927 } 3928 } else { 3929 /* this is (1) */ 3930 mutex_unlock(&fs_info->balance_mutex); 3931 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3932 goto out; 3933 } 3934 3935 locked: 3936 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 3937 3938 if (arg) { 3939 bargs = memdup_user(arg, sizeof(*bargs)); 3940 if (IS_ERR(bargs)) { 3941 ret = PTR_ERR(bargs); 3942 goto out_unlock; 3943 } 3944 3945 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3946 if (!fs_info->balance_ctl) { 3947 ret = -ENOTCONN; 3948 goto out_bargs; 3949 } 3950 3951 bctl = fs_info->balance_ctl; 3952 spin_lock(&fs_info->balance_lock); 3953 bctl->flags |= BTRFS_BALANCE_RESUME; 3954 spin_unlock(&fs_info->balance_lock); 3955 3956 goto do_balance; 3957 } 3958 } else { 3959 bargs = NULL; 3960 } 3961 3962 if (fs_info->balance_ctl) { 3963 ret = -EINPROGRESS; 3964 goto out_bargs; 3965 } 3966 3967 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3968 if (!bctl) { 3969 ret = -ENOMEM; 3970 goto out_bargs; 3971 } 3972 3973 if (arg) { 3974 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3975 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3976 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3977 3978 bctl->flags = bargs->flags; 3979 } else { 3980 /* balance everything - no filters */ 3981 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 3982 } 3983 3984 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3985 ret = -EINVAL; 3986 goto out_bctl; 3987 } 3988 3989 do_balance: 3990 /* 3991 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 3992 * btrfs_balance. bctl is freed in reset_balance_state, or, if 3993 * restriper was paused all the way until unmount, in free_fs_info. 3994 * The flag should be cleared after reset_balance_state. 3995 */ 3996 need_unlock = false; 3997 3998 ret = btrfs_balance(fs_info, bctl, bargs); 3999 bctl = NULL; 4000 4001 if ((ret == 0 || ret == -ECANCELED) && arg) { 4002 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4003 ret = -EFAULT; 4004 } 4005 4006 out_bctl: 4007 kfree(bctl); 4008 out_bargs: 4009 kfree(bargs); 4010 out_unlock: 4011 mutex_unlock(&fs_info->balance_mutex); 4012 if (need_unlock) 4013 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4014 out: 4015 mnt_drop_write_file(file); 4016 return ret; 4017 } 4018 4019 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4020 { 4021 if (!capable(CAP_SYS_ADMIN)) 4022 return -EPERM; 4023 4024 switch (cmd) { 4025 case BTRFS_BALANCE_CTL_PAUSE: 4026 return btrfs_pause_balance(fs_info); 4027 case BTRFS_BALANCE_CTL_CANCEL: 4028 return btrfs_cancel_balance(fs_info); 4029 } 4030 4031 return -EINVAL; 4032 } 4033 4034 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4035 void __user *arg) 4036 { 4037 struct btrfs_ioctl_balance_args *bargs; 4038 int ret = 0; 4039 4040 if (!capable(CAP_SYS_ADMIN)) 4041 return -EPERM; 4042 4043 mutex_lock(&fs_info->balance_mutex); 4044 if (!fs_info->balance_ctl) { 4045 ret = -ENOTCONN; 4046 goto out; 4047 } 4048 4049 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4050 if (!bargs) { 4051 ret = -ENOMEM; 4052 goto out; 4053 } 4054 4055 btrfs_update_ioctl_balance_args(fs_info, bargs); 4056 4057 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4058 ret = -EFAULT; 4059 4060 kfree(bargs); 4061 out: 4062 mutex_unlock(&fs_info->balance_mutex); 4063 return ret; 4064 } 4065 4066 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4067 { 4068 struct inode *inode = file_inode(file); 4069 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4070 struct btrfs_ioctl_quota_ctl_args *sa; 4071 int ret; 4072 4073 if (!capable(CAP_SYS_ADMIN)) 4074 return -EPERM; 4075 4076 ret = mnt_want_write_file(file); 4077 if (ret) 4078 return ret; 4079 4080 sa = memdup_user(arg, sizeof(*sa)); 4081 if (IS_ERR(sa)) { 4082 ret = PTR_ERR(sa); 4083 goto drop_write; 4084 } 4085 4086 down_write(&fs_info->subvol_sem); 4087 4088 switch (sa->cmd) { 4089 case BTRFS_QUOTA_CTL_ENABLE: 4090 ret = btrfs_quota_enable(fs_info); 4091 break; 4092 case BTRFS_QUOTA_CTL_DISABLE: 4093 ret = btrfs_quota_disable(fs_info); 4094 break; 4095 default: 4096 ret = -EINVAL; 4097 break; 4098 } 4099 4100 kfree(sa); 4101 up_write(&fs_info->subvol_sem); 4102 drop_write: 4103 mnt_drop_write_file(file); 4104 return ret; 4105 } 4106 4107 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4108 { 4109 struct inode *inode = file_inode(file); 4110 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4111 struct btrfs_root *root = BTRFS_I(inode)->root; 4112 struct btrfs_ioctl_qgroup_assign_args *sa; 4113 struct btrfs_trans_handle *trans; 4114 int ret; 4115 int err; 4116 4117 if (!capable(CAP_SYS_ADMIN)) 4118 return -EPERM; 4119 4120 ret = mnt_want_write_file(file); 4121 if (ret) 4122 return ret; 4123 4124 sa = memdup_user(arg, sizeof(*sa)); 4125 if (IS_ERR(sa)) { 4126 ret = PTR_ERR(sa); 4127 goto drop_write; 4128 } 4129 4130 trans = btrfs_join_transaction(root); 4131 if (IS_ERR(trans)) { 4132 ret = PTR_ERR(trans); 4133 goto out; 4134 } 4135 4136 if (sa->assign) { 4137 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4138 } else { 4139 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4140 } 4141 4142 /* update qgroup status and info */ 4143 err = btrfs_run_qgroups(trans); 4144 if (err < 0) 4145 btrfs_handle_fs_error(fs_info, err, 4146 "failed to update qgroup status and info"); 4147 err = btrfs_end_transaction(trans); 4148 if (err && !ret) 4149 ret = err; 4150 4151 out: 4152 kfree(sa); 4153 drop_write: 4154 mnt_drop_write_file(file); 4155 return ret; 4156 } 4157 4158 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4159 { 4160 struct inode *inode = file_inode(file); 4161 struct btrfs_root *root = BTRFS_I(inode)->root; 4162 struct btrfs_ioctl_qgroup_create_args *sa; 4163 struct btrfs_trans_handle *trans; 4164 int ret; 4165 int err; 4166 4167 if (!capable(CAP_SYS_ADMIN)) 4168 return -EPERM; 4169 4170 ret = mnt_want_write_file(file); 4171 if (ret) 4172 return ret; 4173 4174 sa = memdup_user(arg, sizeof(*sa)); 4175 if (IS_ERR(sa)) { 4176 ret = PTR_ERR(sa); 4177 goto drop_write; 4178 } 4179 4180 if (!sa->qgroupid) { 4181 ret = -EINVAL; 4182 goto out; 4183 } 4184 4185 trans = btrfs_join_transaction(root); 4186 if (IS_ERR(trans)) { 4187 ret = PTR_ERR(trans); 4188 goto out; 4189 } 4190 4191 if (sa->create) { 4192 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4193 } else { 4194 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4195 } 4196 4197 err = btrfs_end_transaction(trans); 4198 if (err && !ret) 4199 ret = err; 4200 4201 out: 4202 kfree(sa); 4203 drop_write: 4204 mnt_drop_write_file(file); 4205 return ret; 4206 } 4207 4208 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4209 { 4210 struct inode *inode = file_inode(file); 4211 struct btrfs_root *root = BTRFS_I(inode)->root; 4212 struct btrfs_ioctl_qgroup_limit_args *sa; 4213 struct btrfs_trans_handle *trans; 4214 int ret; 4215 int err; 4216 u64 qgroupid; 4217 4218 if (!capable(CAP_SYS_ADMIN)) 4219 return -EPERM; 4220 4221 ret = mnt_want_write_file(file); 4222 if (ret) 4223 return ret; 4224 4225 sa = memdup_user(arg, sizeof(*sa)); 4226 if (IS_ERR(sa)) { 4227 ret = PTR_ERR(sa); 4228 goto drop_write; 4229 } 4230 4231 trans = btrfs_join_transaction(root); 4232 if (IS_ERR(trans)) { 4233 ret = PTR_ERR(trans); 4234 goto out; 4235 } 4236 4237 qgroupid = sa->qgroupid; 4238 if (!qgroupid) { 4239 /* take the current subvol as qgroup */ 4240 qgroupid = root->root_key.objectid; 4241 } 4242 4243 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4244 4245 err = btrfs_end_transaction(trans); 4246 if (err && !ret) 4247 ret = err; 4248 4249 out: 4250 kfree(sa); 4251 drop_write: 4252 mnt_drop_write_file(file); 4253 return ret; 4254 } 4255 4256 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4257 { 4258 struct inode *inode = file_inode(file); 4259 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4260 struct btrfs_ioctl_quota_rescan_args *qsa; 4261 int ret; 4262 4263 if (!capable(CAP_SYS_ADMIN)) 4264 return -EPERM; 4265 4266 ret = mnt_want_write_file(file); 4267 if (ret) 4268 return ret; 4269 4270 qsa = memdup_user(arg, sizeof(*qsa)); 4271 if (IS_ERR(qsa)) { 4272 ret = PTR_ERR(qsa); 4273 goto drop_write; 4274 } 4275 4276 if (qsa->flags) { 4277 ret = -EINVAL; 4278 goto out; 4279 } 4280 4281 ret = btrfs_qgroup_rescan(fs_info); 4282 4283 out: 4284 kfree(qsa); 4285 drop_write: 4286 mnt_drop_write_file(file); 4287 return ret; 4288 } 4289 4290 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4291 void __user *arg) 4292 { 4293 struct btrfs_ioctl_quota_rescan_args *qsa; 4294 int ret = 0; 4295 4296 if (!capable(CAP_SYS_ADMIN)) 4297 return -EPERM; 4298 4299 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4300 if (!qsa) 4301 return -ENOMEM; 4302 4303 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4304 qsa->flags = 1; 4305 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4306 } 4307 4308 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4309 ret = -EFAULT; 4310 4311 kfree(qsa); 4312 return ret; 4313 } 4314 4315 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4316 void __user *arg) 4317 { 4318 if (!capable(CAP_SYS_ADMIN)) 4319 return -EPERM; 4320 4321 return btrfs_qgroup_wait_for_completion(fs_info, true); 4322 } 4323 4324 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4325 struct btrfs_ioctl_received_subvol_args *sa) 4326 { 4327 struct inode *inode = file_inode(file); 4328 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4329 struct btrfs_root *root = BTRFS_I(inode)->root; 4330 struct btrfs_root_item *root_item = &root->root_item; 4331 struct btrfs_trans_handle *trans; 4332 struct timespec64 ct = current_time(inode); 4333 int ret = 0; 4334 int received_uuid_changed; 4335 4336 if (!inode_owner_or_capable(inode)) 4337 return -EPERM; 4338 4339 ret = mnt_want_write_file(file); 4340 if (ret < 0) 4341 return ret; 4342 4343 down_write(&fs_info->subvol_sem); 4344 4345 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4346 ret = -EINVAL; 4347 goto out; 4348 } 4349 4350 if (btrfs_root_readonly(root)) { 4351 ret = -EROFS; 4352 goto out; 4353 } 4354 4355 /* 4356 * 1 - root item 4357 * 2 - uuid items (received uuid + subvol uuid) 4358 */ 4359 trans = btrfs_start_transaction(root, 3); 4360 if (IS_ERR(trans)) { 4361 ret = PTR_ERR(trans); 4362 trans = NULL; 4363 goto out; 4364 } 4365 4366 sa->rtransid = trans->transid; 4367 sa->rtime.sec = ct.tv_sec; 4368 sa->rtime.nsec = ct.tv_nsec; 4369 4370 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4371 BTRFS_UUID_SIZE); 4372 if (received_uuid_changed && 4373 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4374 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4375 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4376 root->root_key.objectid); 4377 if (ret && ret != -ENOENT) { 4378 btrfs_abort_transaction(trans, ret); 4379 btrfs_end_transaction(trans); 4380 goto out; 4381 } 4382 } 4383 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4384 btrfs_set_root_stransid(root_item, sa->stransid); 4385 btrfs_set_root_rtransid(root_item, sa->rtransid); 4386 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4387 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4388 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4389 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4390 4391 ret = btrfs_update_root(trans, fs_info->tree_root, 4392 &root->root_key, &root->root_item); 4393 if (ret < 0) { 4394 btrfs_end_transaction(trans); 4395 goto out; 4396 } 4397 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4398 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4399 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4400 root->root_key.objectid); 4401 if (ret < 0 && ret != -EEXIST) { 4402 btrfs_abort_transaction(trans, ret); 4403 btrfs_end_transaction(trans); 4404 goto out; 4405 } 4406 } 4407 ret = btrfs_commit_transaction(trans); 4408 out: 4409 up_write(&fs_info->subvol_sem); 4410 mnt_drop_write_file(file); 4411 return ret; 4412 } 4413 4414 #ifdef CONFIG_64BIT 4415 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4416 void __user *arg) 4417 { 4418 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4419 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4420 int ret = 0; 4421 4422 args32 = memdup_user(arg, sizeof(*args32)); 4423 if (IS_ERR(args32)) 4424 return PTR_ERR(args32); 4425 4426 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4427 if (!args64) { 4428 ret = -ENOMEM; 4429 goto out; 4430 } 4431 4432 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4433 args64->stransid = args32->stransid; 4434 args64->rtransid = args32->rtransid; 4435 args64->stime.sec = args32->stime.sec; 4436 args64->stime.nsec = args32->stime.nsec; 4437 args64->rtime.sec = args32->rtime.sec; 4438 args64->rtime.nsec = args32->rtime.nsec; 4439 args64->flags = args32->flags; 4440 4441 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4442 if (ret) 4443 goto out; 4444 4445 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4446 args32->stransid = args64->stransid; 4447 args32->rtransid = args64->rtransid; 4448 args32->stime.sec = args64->stime.sec; 4449 args32->stime.nsec = args64->stime.nsec; 4450 args32->rtime.sec = args64->rtime.sec; 4451 args32->rtime.nsec = args64->rtime.nsec; 4452 args32->flags = args64->flags; 4453 4454 ret = copy_to_user(arg, args32, sizeof(*args32)); 4455 if (ret) 4456 ret = -EFAULT; 4457 4458 out: 4459 kfree(args32); 4460 kfree(args64); 4461 return ret; 4462 } 4463 #endif 4464 4465 static long btrfs_ioctl_set_received_subvol(struct file *file, 4466 void __user *arg) 4467 { 4468 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4469 int ret = 0; 4470 4471 sa = memdup_user(arg, sizeof(*sa)); 4472 if (IS_ERR(sa)) 4473 return PTR_ERR(sa); 4474 4475 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4476 4477 if (ret) 4478 goto out; 4479 4480 ret = copy_to_user(arg, sa, sizeof(*sa)); 4481 if (ret) 4482 ret = -EFAULT; 4483 4484 out: 4485 kfree(sa); 4486 return ret; 4487 } 4488 4489 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4490 void __user *arg) 4491 { 4492 size_t len; 4493 int ret; 4494 char label[BTRFS_LABEL_SIZE]; 4495 4496 spin_lock(&fs_info->super_lock); 4497 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4498 spin_unlock(&fs_info->super_lock); 4499 4500 len = strnlen(label, BTRFS_LABEL_SIZE); 4501 4502 if (len == BTRFS_LABEL_SIZE) { 4503 btrfs_warn(fs_info, 4504 "label is too long, return the first %zu bytes", 4505 --len); 4506 } 4507 4508 ret = copy_to_user(arg, label, len); 4509 4510 return ret ? -EFAULT : 0; 4511 } 4512 4513 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4514 { 4515 struct inode *inode = file_inode(file); 4516 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4517 struct btrfs_root *root = BTRFS_I(inode)->root; 4518 struct btrfs_super_block *super_block = fs_info->super_copy; 4519 struct btrfs_trans_handle *trans; 4520 char label[BTRFS_LABEL_SIZE]; 4521 int ret; 4522 4523 if (!capable(CAP_SYS_ADMIN)) 4524 return -EPERM; 4525 4526 if (copy_from_user(label, arg, sizeof(label))) 4527 return -EFAULT; 4528 4529 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4530 btrfs_err(fs_info, 4531 "unable to set label with more than %d bytes", 4532 BTRFS_LABEL_SIZE - 1); 4533 return -EINVAL; 4534 } 4535 4536 ret = mnt_want_write_file(file); 4537 if (ret) 4538 return ret; 4539 4540 trans = btrfs_start_transaction(root, 0); 4541 if (IS_ERR(trans)) { 4542 ret = PTR_ERR(trans); 4543 goto out_unlock; 4544 } 4545 4546 spin_lock(&fs_info->super_lock); 4547 strcpy(super_block->label, label); 4548 spin_unlock(&fs_info->super_lock); 4549 ret = btrfs_commit_transaction(trans); 4550 4551 out_unlock: 4552 mnt_drop_write_file(file); 4553 return ret; 4554 } 4555 4556 #define INIT_FEATURE_FLAGS(suffix) \ 4557 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4558 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4559 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4560 4561 int btrfs_ioctl_get_supported_features(void __user *arg) 4562 { 4563 static const struct btrfs_ioctl_feature_flags features[3] = { 4564 INIT_FEATURE_FLAGS(SUPP), 4565 INIT_FEATURE_FLAGS(SAFE_SET), 4566 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4567 }; 4568 4569 if (copy_to_user(arg, &features, sizeof(features))) 4570 return -EFAULT; 4571 4572 return 0; 4573 } 4574 4575 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4576 void __user *arg) 4577 { 4578 struct btrfs_super_block *super_block = fs_info->super_copy; 4579 struct btrfs_ioctl_feature_flags features; 4580 4581 features.compat_flags = btrfs_super_compat_flags(super_block); 4582 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4583 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4584 4585 if (copy_to_user(arg, &features, sizeof(features))) 4586 return -EFAULT; 4587 4588 return 0; 4589 } 4590 4591 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4592 enum btrfs_feature_set set, 4593 u64 change_mask, u64 flags, u64 supported_flags, 4594 u64 safe_set, u64 safe_clear) 4595 { 4596 const char *type = btrfs_feature_set_name(set); 4597 char *names; 4598 u64 disallowed, unsupported; 4599 u64 set_mask = flags & change_mask; 4600 u64 clear_mask = ~flags & change_mask; 4601 4602 unsupported = set_mask & ~supported_flags; 4603 if (unsupported) { 4604 names = btrfs_printable_features(set, unsupported); 4605 if (names) { 4606 btrfs_warn(fs_info, 4607 "this kernel does not support the %s feature bit%s", 4608 names, strchr(names, ',') ? "s" : ""); 4609 kfree(names); 4610 } else 4611 btrfs_warn(fs_info, 4612 "this kernel does not support %s bits 0x%llx", 4613 type, unsupported); 4614 return -EOPNOTSUPP; 4615 } 4616 4617 disallowed = set_mask & ~safe_set; 4618 if (disallowed) { 4619 names = btrfs_printable_features(set, disallowed); 4620 if (names) { 4621 btrfs_warn(fs_info, 4622 "can't set the %s feature bit%s while mounted", 4623 names, strchr(names, ',') ? "s" : ""); 4624 kfree(names); 4625 } else 4626 btrfs_warn(fs_info, 4627 "can't set %s bits 0x%llx while mounted", 4628 type, disallowed); 4629 return -EPERM; 4630 } 4631 4632 disallowed = clear_mask & ~safe_clear; 4633 if (disallowed) { 4634 names = btrfs_printable_features(set, disallowed); 4635 if (names) { 4636 btrfs_warn(fs_info, 4637 "can't clear the %s feature bit%s while mounted", 4638 names, strchr(names, ',') ? "s" : ""); 4639 kfree(names); 4640 } else 4641 btrfs_warn(fs_info, 4642 "can't clear %s bits 0x%llx while mounted", 4643 type, disallowed); 4644 return -EPERM; 4645 } 4646 4647 return 0; 4648 } 4649 4650 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4651 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4652 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4653 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4654 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4655 4656 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4657 { 4658 struct inode *inode = file_inode(file); 4659 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4660 struct btrfs_root *root = BTRFS_I(inode)->root; 4661 struct btrfs_super_block *super_block = fs_info->super_copy; 4662 struct btrfs_ioctl_feature_flags flags[2]; 4663 struct btrfs_trans_handle *trans; 4664 u64 newflags; 4665 int ret; 4666 4667 if (!capable(CAP_SYS_ADMIN)) 4668 return -EPERM; 4669 4670 if (copy_from_user(flags, arg, sizeof(flags))) 4671 return -EFAULT; 4672 4673 /* Nothing to do */ 4674 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4675 !flags[0].incompat_flags) 4676 return 0; 4677 4678 ret = check_feature(fs_info, flags[0].compat_flags, 4679 flags[1].compat_flags, COMPAT); 4680 if (ret) 4681 return ret; 4682 4683 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4684 flags[1].compat_ro_flags, COMPAT_RO); 4685 if (ret) 4686 return ret; 4687 4688 ret = check_feature(fs_info, flags[0].incompat_flags, 4689 flags[1].incompat_flags, INCOMPAT); 4690 if (ret) 4691 return ret; 4692 4693 ret = mnt_want_write_file(file); 4694 if (ret) 4695 return ret; 4696 4697 trans = btrfs_start_transaction(root, 0); 4698 if (IS_ERR(trans)) { 4699 ret = PTR_ERR(trans); 4700 goto out_drop_write; 4701 } 4702 4703 spin_lock(&fs_info->super_lock); 4704 newflags = btrfs_super_compat_flags(super_block); 4705 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4706 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4707 btrfs_set_super_compat_flags(super_block, newflags); 4708 4709 newflags = btrfs_super_compat_ro_flags(super_block); 4710 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4711 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4712 btrfs_set_super_compat_ro_flags(super_block, newflags); 4713 4714 newflags = btrfs_super_incompat_flags(super_block); 4715 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4716 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4717 btrfs_set_super_incompat_flags(super_block, newflags); 4718 spin_unlock(&fs_info->super_lock); 4719 4720 ret = btrfs_commit_transaction(trans); 4721 out_drop_write: 4722 mnt_drop_write_file(file); 4723 4724 return ret; 4725 } 4726 4727 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4728 { 4729 struct btrfs_ioctl_send_args *arg; 4730 int ret; 4731 4732 if (compat) { 4733 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4734 struct btrfs_ioctl_send_args_32 args32; 4735 4736 ret = copy_from_user(&args32, argp, sizeof(args32)); 4737 if (ret) 4738 return -EFAULT; 4739 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4740 if (!arg) 4741 return -ENOMEM; 4742 arg->send_fd = args32.send_fd; 4743 arg->clone_sources_count = args32.clone_sources_count; 4744 arg->clone_sources = compat_ptr(args32.clone_sources); 4745 arg->parent_root = args32.parent_root; 4746 arg->flags = args32.flags; 4747 memcpy(arg->reserved, args32.reserved, 4748 sizeof(args32.reserved)); 4749 #else 4750 return -ENOTTY; 4751 #endif 4752 } else { 4753 arg = memdup_user(argp, sizeof(*arg)); 4754 if (IS_ERR(arg)) 4755 return PTR_ERR(arg); 4756 } 4757 ret = btrfs_ioctl_send(file, arg); 4758 kfree(arg); 4759 return ret; 4760 } 4761 4762 long btrfs_ioctl(struct file *file, unsigned int 4763 cmd, unsigned long arg) 4764 { 4765 struct inode *inode = file_inode(file); 4766 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4767 struct btrfs_root *root = BTRFS_I(inode)->root; 4768 void __user *argp = (void __user *)arg; 4769 4770 switch (cmd) { 4771 case FS_IOC_GETFLAGS: 4772 return btrfs_ioctl_getflags(file, argp); 4773 case FS_IOC_SETFLAGS: 4774 return btrfs_ioctl_setflags(file, argp); 4775 case FS_IOC_GETVERSION: 4776 return btrfs_ioctl_getversion(file, argp); 4777 case FS_IOC_GETFSLABEL: 4778 return btrfs_ioctl_get_fslabel(fs_info, argp); 4779 case FS_IOC_SETFSLABEL: 4780 return btrfs_ioctl_set_fslabel(file, argp); 4781 case FITRIM: 4782 return btrfs_ioctl_fitrim(fs_info, argp); 4783 case BTRFS_IOC_SNAP_CREATE: 4784 return btrfs_ioctl_snap_create(file, argp, 0); 4785 case BTRFS_IOC_SNAP_CREATE_V2: 4786 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4787 case BTRFS_IOC_SUBVOL_CREATE: 4788 return btrfs_ioctl_snap_create(file, argp, 1); 4789 case BTRFS_IOC_SUBVOL_CREATE_V2: 4790 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4791 case BTRFS_IOC_SNAP_DESTROY: 4792 return btrfs_ioctl_snap_destroy(file, argp, false); 4793 case BTRFS_IOC_SNAP_DESTROY_V2: 4794 return btrfs_ioctl_snap_destroy(file, argp, true); 4795 case BTRFS_IOC_SUBVOL_GETFLAGS: 4796 return btrfs_ioctl_subvol_getflags(file, argp); 4797 case BTRFS_IOC_SUBVOL_SETFLAGS: 4798 return btrfs_ioctl_subvol_setflags(file, argp); 4799 case BTRFS_IOC_DEFAULT_SUBVOL: 4800 return btrfs_ioctl_default_subvol(file, argp); 4801 case BTRFS_IOC_DEFRAG: 4802 return btrfs_ioctl_defrag(file, NULL); 4803 case BTRFS_IOC_DEFRAG_RANGE: 4804 return btrfs_ioctl_defrag(file, argp); 4805 case BTRFS_IOC_RESIZE: 4806 return btrfs_ioctl_resize(file, argp); 4807 case BTRFS_IOC_ADD_DEV: 4808 return btrfs_ioctl_add_dev(fs_info, argp); 4809 case BTRFS_IOC_RM_DEV: 4810 return btrfs_ioctl_rm_dev(file, argp); 4811 case BTRFS_IOC_RM_DEV_V2: 4812 return btrfs_ioctl_rm_dev_v2(file, argp); 4813 case BTRFS_IOC_FS_INFO: 4814 return btrfs_ioctl_fs_info(fs_info, argp); 4815 case BTRFS_IOC_DEV_INFO: 4816 return btrfs_ioctl_dev_info(fs_info, argp); 4817 case BTRFS_IOC_BALANCE: 4818 return btrfs_ioctl_balance(file, NULL); 4819 case BTRFS_IOC_TREE_SEARCH: 4820 return btrfs_ioctl_tree_search(file, argp); 4821 case BTRFS_IOC_TREE_SEARCH_V2: 4822 return btrfs_ioctl_tree_search_v2(file, argp); 4823 case BTRFS_IOC_INO_LOOKUP: 4824 return btrfs_ioctl_ino_lookup(file, argp); 4825 case BTRFS_IOC_INO_PATHS: 4826 return btrfs_ioctl_ino_to_path(root, argp); 4827 case BTRFS_IOC_LOGICAL_INO: 4828 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4829 case BTRFS_IOC_LOGICAL_INO_V2: 4830 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4831 case BTRFS_IOC_SPACE_INFO: 4832 return btrfs_ioctl_space_info(fs_info, argp); 4833 case BTRFS_IOC_SYNC: { 4834 int ret; 4835 4836 ret = btrfs_start_delalloc_roots(fs_info, -1); 4837 if (ret) 4838 return ret; 4839 ret = btrfs_sync_fs(inode->i_sb, 1); 4840 /* 4841 * The transaction thread may want to do more work, 4842 * namely it pokes the cleaner kthread that will start 4843 * processing uncleaned subvols. 4844 */ 4845 wake_up_process(fs_info->transaction_kthread); 4846 return ret; 4847 } 4848 case BTRFS_IOC_START_SYNC: 4849 return btrfs_ioctl_start_sync(root, argp); 4850 case BTRFS_IOC_WAIT_SYNC: 4851 return btrfs_ioctl_wait_sync(fs_info, argp); 4852 case BTRFS_IOC_SCRUB: 4853 return btrfs_ioctl_scrub(file, argp); 4854 case BTRFS_IOC_SCRUB_CANCEL: 4855 return btrfs_ioctl_scrub_cancel(fs_info); 4856 case BTRFS_IOC_SCRUB_PROGRESS: 4857 return btrfs_ioctl_scrub_progress(fs_info, argp); 4858 case BTRFS_IOC_BALANCE_V2: 4859 return btrfs_ioctl_balance(file, argp); 4860 case BTRFS_IOC_BALANCE_CTL: 4861 return btrfs_ioctl_balance_ctl(fs_info, arg); 4862 case BTRFS_IOC_BALANCE_PROGRESS: 4863 return btrfs_ioctl_balance_progress(fs_info, argp); 4864 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4865 return btrfs_ioctl_set_received_subvol(file, argp); 4866 #ifdef CONFIG_64BIT 4867 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4868 return btrfs_ioctl_set_received_subvol_32(file, argp); 4869 #endif 4870 case BTRFS_IOC_SEND: 4871 return _btrfs_ioctl_send(file, argp, false); 4872 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4873 case BTRFS_IOC_SEND_32: 4874 return _btrfs_ioctl_send(file, argp, true); 4875 #endif 4876 case BTRFS_IOC_GET_DEV_STATS: 4877 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4878 case BTRFS_IOC_QUOTA_CTL: 4879 return btrfs_ioctl_quota_ctl(file, argp); 4880 case BTRFS_IOC_QGROUP_ASSIGN: 4881 return btrfs_ioctl_qgroup_assign(file, argp); 4882 case BTRFS_IOC_QGROUP_CREATE: 4883 return btrfs_ioctl_qgroup_create(file, argp); 4884 case BTRFS_IOC_QGROUP_LIMIT: 4885 return btrfs_ioctl_qgroup_limit(file, argp); 4886 case BTRFS_IOC_QUOTA_RESCAN: 4887 return btrfs_ioctl_quota_rescan(file, argp); 4888 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4889 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4890 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4891 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4892 case BTRFS_IOC_DEV_REPLACE: 4893 return btrfs_ioctl_dev_replace(fs_info, argp); 4894 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4895 return btrfs_ioctl_get_supported_features(argp); 4896 case BTRFS_IOC_GET_FEATURES: 4897 return btrfs_ioctl_get_features(fs_info, argp); 4898 case BTRFS_IOC_SET_FEATURES: 4899 return btrfs_ioctl_set_features(file, argp); 4900 case FS_IOC_FSGETXATTR: 4901 return btrfs_ioctl_fsgetxattr(file, argp); 4902 case FS_IOC_FSSETXATTR: 4903 return btrfs_ioctl_fssetxattr(file, argp); 4904 case BTRFS_IOC_GET_SUBVOL_INFO: 4905 return btrfs_ioctl_get_subvol_info(file, argp); 4906 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4907 return btrfs_ioctl_get_subvol_rootref(file, argp); 4908 case BTRFS_IOC_INO_LOOKUP_USER: 4909 return btrfs_ioctl_ino_lookup_user(file, argp); 4910 } 4911 4912 return -ENOTTY; 4913 } 4914 4915 #ifdef CONFIG_COMPAT 4916 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4917 { 4918 /* 4919 * These all access 32-bit values anyway so no further 4920 * handling is necessary. 4921 */ 4922 switch (cmd) { 4923 case FS_IOC32_GETFLAGS: 4924 cmd = FS_IOC_GETFLAGS; 4925 break; 4926 case FS_IOC32_SETFLAGS: 4927 cmd = FS_IOC_SETFLAGS; 4928 break; 4929 case FS_IOC32_GETVERSION: 4930 cmd = FS_IOC_GETVERSION; 4931 break; 4932 } 4933 4934 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4935 } 4936 #endif 4937