1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 #include "props.h" 60 #include "sysfs.h" 61 #include "qgroup.h" 62 #include "tree-log.h" 63 #include "compression.h" 64 65 #ifdef CONFIG_64BIT 66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 67 * structures are incorrect, as the timespec structure from userspace 68 * is 4 bytes too small. We define these alternatives here to teach 69 * the kernel about the 32-bit struct packing. 70 */ 71 struct btrfs_ioctl_timespec_32 { 72 __u64 sec; 73 __u32 nsec; 74 } __attribute__ ((__packed__)); 75 76 struct btrfs_ioctl_received_subvol_args_32 { 77 char uuid[BTRFS_UUID_SIZE]; /* in */ 78 __u64 stransid; /* in */ 79 __u64 rtransid; /* out */ 80 struct btrfs_ioctl_timespec_32 stime; /* in */ 81 struct btrfs_ioctl_timespec_32 rtime; /* out */ 82 __u64 flags; /* in */ 83 __u64 reserved[16]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 87 struct btrfs_ioctl_received_subvol_args_32) 88 #endif 89 90 91 static int btrfs_clone(struct inode *src, struct inode *inode, 92 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 93 int no_time_update); 94 95 /* Mask out flags that are inappropriate for the given type of inode. */ 96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 97 { 98 if (S_ISDIR(mode)) 99 return flags; 100 else if (S_ISREG(mode)) 101 return flags & ~FS_DIRSYNC_FL; 102 else 103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 104 } 105 106 /* 107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 108 */ 109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 110 { 111 unsigned int iflags = 0; 112 113 if (flags & BTRFS_INODE_SYNC) 114 iflags |= FS_SYNC_FL; 115 if (flags & BTRFS_INODE_IMMUTABLE) 116 iflags |= FS_IMMUTABLE_FL; 117 if (flags & BTRFS_INODE_APPEND) 118 iflags |= FS_APPEND_FL; 119 if (flags & BTRFS_INODE_NODUMP) 120 iflags |= FS_NODUMP_FL; 121 if (flags & BTRFS_INODE_NOATIME) 122 iflags |= FS_NOATIME_FL; 123 if (flags & BTRFS_INODE_DIRSYNC) 124 iflags |= FS_DIRSYNC_FL; 125 if (flags & BTRFS_INODE_NODATACOW) 126 iflags |= FS_NOCOW_FL; 127 128 if (flags & BTRFS_INODE_NOCOMPRESS) 129 iflags |= FS_NOCOMP_FL; 130 else if (flags & BTRFS_INODE_COMPRESS) 131 iflags |= FS_COMPR_FL; 132 133 return iflags; 134 } 135 136 /* 137 * Update inode->i_flags based on the btrfs internal flags. 138 */ 139 void btrfs_update_iflags(struct inode *inode) 140 { 141 struct btrfs_inode *ip = BTRFS_I(inode); 142 unsigned int new_fl = 0; 143 144 if (ip->flags & BTRFS_INODE_SYNC) 145 new_fl |= S_SYNC; 146 if (ip->flags & BTRFS_INODE_IMMUTABLE) 147 new_fl |= S_IMMUTABLE; 148 if (ip->flags & BTRFS_INODE_APPEND) 149 new_fl |= S_APPEND; 150 if (ip->flags & BTRFS_INODE_NOATIME) 151 new_fl |= S_NOATIME; 152 if (ip->flags & BTRFS_INODE_DIRSYNC) 153 new_fl |= S_DIRSYNC; 154 155 set_mask_bits(&inode->i_flags, 156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 157 new_fl); 158 } 159 160 /* 161 * Inherit flags from the parent inode. 162 * 163 * Currently only the compression flags and the cow flags are inherited. 164 */ 165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 166 { 167 unsigned int flags; 168 169 if (!dir) 170 return; 171 172 flags = BTRFS_I(dir)->flags; 173 174 if (flags & BTRFS_INODE_NOCOMPRESS) { 175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 176 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 177 } else if (flags & BTRFS_INODE_COMPRESS) { 178 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 179 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 180 } 181 182 if (flags & BTRFS_INODE_NODATACOW) { 183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 184 if (S_ISREG(inode->i_mode)) 185 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 186 } 187 188 btrfs_update_iflags(inode); 189 } 190 191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 192 { 193 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 194 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 195 196 if (copy_to_user(arg, &flags, sizeof(flags))) 197 return -EFAULT; 198 return 0; 199 } 200 201 static int check_flags(unsigned int flags) 202 { 203 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 204 FS_NOATIME_FL | FS_NODUMP_FL | \ 205 FS_SYNC_FL | FS_DIRSYNC_FL | \ 206 FS_NOCOMP_FL | FS_COMPR_FL | 207 FS_NOCOW_FL)) 208 return -EOPNOTSUPP; 209 210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 211 return -EINVAL; 212 213 return 0; 214 } 215 216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 217 { 218 struct inode *inode = file_inode(file); 219 struct btrfs_inode *ip = BTRFS_I(inode); 220 struct btrfs_root *root = ip->root; 221 struct btrfs_trans_handle *trans; 222 unsigned int flags, oldflags; 223 int ret; 224 u64 ip_oldflags; 225 unsigned int i_oldflags; 226 umode_t mode; 227 228 if (!inode_owner_or_capable(inode)) 229 return -EPERM; 230 231 if (btrfs_root_readonly(root)) 232 return -EROFS; 233 234 if (copy_from_user(&flags, arg, sizeof(flags))) 235 return -EFAULT; 236 237 ret = check_flags(flags); 238 if (ret) 239 return ret; 240 241 ret = mnt_want_write_file(file); 242 if (ret) 243 return ret; 244 245 inode_lock(inode); 246 247 ip_oldflags = ip->flags; 248 i_oldflags = inode->i_flags; 249 mode = inode->i_mode; 250 251 flags = btrfs_mask_flags(inode->i_mode, flags); 252 oldflags = btrfs_flags_to_ioctl(ip->flags); 253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 254 if (!capable(CAP_LINUX_IMMUTABLE)) { 255 ret = -EPERM; 256 goto out_unlock; 257 } 258 } 259 260 if (flags & FS_SYNC_FL) 261 ip->flags |= BTRFS_INODE_SYNC; 262 else 263 ip->flags &= ~BTRFS_INODE_SYNC; 264 if (flags & FS_IMMUTABLE_FL) 265 ip->flags |= BTRFS_INODE_IMMUTABLE; 266 else 267 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 268 if (flags & FS_APPEND_FL) 269 ip->flags |= BTRFS_INODE_APPEND; 270 else 271 ip->flags &= ~BTRFS_INODE_APPEND; 272 if (flags & FS_NODUMP_FL) 273 ip->flags |= BTRFS_INODE_NODUMP; 274 else 275 ip->flags &= ~BTRFS_INODE_NODUMP; 276 if (flags & FS_NOATIME_FL) 277 ip->flags |= BTRFS_INODE_NOATIME; 278 else 279 ip->flags &= ~BTRFS_INODE_NOATIME; 280 if (flags & FS_DIRSYNC_FL) 281 ip->flags |= BTRFS_INODE_DIRSYNC; 282 else 283 ip->flags &= ~BTRFS_INODE_DIRSYNC; 284 if (flags & FS_NOCOW_FL) { 285 if (S_ISREG(mode)) { 286 /* 287 * It's safe to turn csums off here, no extents exist. 288 * Otherwise we want the flag to reflect the real COW 289 * status of the file and will not set it. 290 */ 291 if (inode->i_size == 0) 292 ip->flags |= BTRFS_INODE_NODATACOW 293 | BTRFS_INODE_NODATASUM; 294 } else { 295 ip->flags |= BTRFS_INODE_NODATACOW; 296 } 297 } else { 298 /* 299 * Revert back under same assumptions as above 300 */ 301 if (S_ISREG(mode)) { 302 if (inode->i_size == 0) 303 ip->flags &= ~(BTRFS_INODE_NODATACOW 304 | BTRFS_INODE_NODATASUM); 305 } else { 306 ip->flags &= ~BTRFS_INODE_NODATACOW; 307 } 308 } 309 310 /* 311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 312 * flag may be changed automatically if compression code won't make 313 * things smaller. 314 */ 315 if (flags & FS_NOCOMP_FL) { 316 ip->flags &= ~BTRFS_INODE_COMPRESS; 317 ip->flags |= BTRFS_INODE_NOCOMPRESS; 318 319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 320 if (ret && ret != -ENODATA) 321 goto out_drop; 322 } else if (flags & FS_COMPR_FL) { 323 const char *comp; 324 325 ip->flags |= BTRFS_INODE_COMPRESS; 326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 327 328 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 329 comp = "lzo"; 330 else 331 comp = "zlib"; 332 ret = btrfs_set_prop(inode, "btrfs.compression", 333 comp, strlen(comp), 0); 334 if (ret) 335 goto out_drop; 336 337 } else { 338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 339 if (ret && ret != -ENODATA) 340 goto out_drop; 341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 342 } 343 344 trans = btrfs_start_transaction(root, 1); 345 if (IS_ERR(trans)) { 346 ret = PTR_ERR(trans); 347 goto out_drop; 348 } 349 350 btrfs_update_iflags(inode); 351 inode_inc_iversion(inode); 352 inode->i_ctime = current_fs_time(inode->i_sb); 353 ret = btrfs_update_inode(trans, root, inode); 354 355 btrfs_end_transaction(trans, root); 356 out_drop: 357 if (ret) { 358 ip->flags = ip_oldflags; 359 inode->i_flags = i_oldflags; 360 } 361 362 out_unlock: 363 inode_unlock(inode); 364 mnt_drop_write_file(file); 365 return ret; 366 } 367 368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 369 { 370 struct inode *inode = file_inode(file); 371 372 return put_user(inode->i_generation, arg); 373 } 374 375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 376 { 377 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 378 struct btrfs_device *device; 379 struct request_queue *q; 380 struct fstrim_range range; 381 u64 minlen = ULLONG_MAX; 382 u64 num_devices = 0; 383 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 384 int ret; 385 386 if (!capable(CAP_SYS_ADMIN)) 387 return -EPERM; 388 389 rcu_read_lock(); 390 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 391 dev_list) { 392 if (!device->bdev) 393 continue; 394 q = bdev_get_queue(device->bdev); 395 if (blk_queue_discard(q)) { 396 num_devices++; 397 minlen = min((u64)q->limits.discard_granularity, 398 minlen); 399 } 400 } 401 rcu_read_unlock(); 402 403 if (!num_devices) 404 return -EOPNOTSUPP; 405 if (copy_from_user(&range, arg, sizeof(range))) 406 return -EFAULT; 407 if (range.start > total_bytes || 408 range.len < fs_info->sb->s_blocksize) 409 return -EINVAL; 410 411 range.len = min(range.len, total_bytes - range.start); 412 range.minlen = max(range.minlen, minlen); 413 ret = btrfs_trim_fs(fs_info->tree_root, &range); 414 if (ret < 0) 415 return ret; 416 417 if (copy_to_user(arg, &range, sizeof(range))) 418 return -EFAULT; 419 420 return 0; 421 } 422 423 int btrfs_is_empty_uuid(u8 *uuid) 424 { 425 int i; 426 427 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 428 if (uuid[i]) 429 return 0; 430 } 431 return 1; 432 } 433 434 static noinline int create_subvol(struct inode *dir, 435 struct dentry *dentry, 436 char *name, int namelen, 437 u64 *async_transid, 438 struct btrfs_qgroup_inherit *inherit) 439 { 440 struct btrfs_trans_handle *trans; 441 struct btrfs_key key; 442 struct btrfs_root_item *root_item; 443 struct btrfs_inode_item *inode_item; 444 struct extent_buffer *leaf; 445 struct btrfs_root *root = BTRFS_I(dir)->root; 446 struct btrfs_root *new_root; 447 struct btrfs_block_rsv block_rsv; 448 struct timespec cur_time = current_fs_time(dir->i_sb); 449 struct inode *inode; 450 int ret; 451 int err; 452 u64 objectid; 453 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 454 u64 index = 0; 455 u64 qgroup_reserved; 456 uuid_le new_uuid; 457 458 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 459 if (!root_item) 460 return -ENOMEM; 461 462 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 463 if (ret) 464 goto fail_free; 465 466 /* 467 * Don't create subvolume whose level is not zero. Or qgroup will be 468 * screwed up since it assumes subvolume qgroup's level to be 0. 469 */ 470 if (btrfs_qgroup_level(objectid)) { 471 ret = -ENOSPC; 472 goto fail_free; 473 } 474 475 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 476 /* 477 * The same as the snapshot creation, please see the comment 478 * of create_snapshot(). 479 */ 480 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 481 8, &qgroup_reserved, false); 482 if (ret) 483 goto fail_free; 484 485 trans = btrfs_start_transaction(root, 0); 486 if (IS_ERR(trans)) { 487 ret = PTR_ERR(trans); 488 btrfs_subvolume_release_metadata(root, &block_rsv, 489 qgroup_reserved); 490 goto fail_free; 491 } 492 trans->block_rsv = &block_rsv; 493 trans->bytes_reserved = block_rsv.size; 494 495 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 496 if (ret) 497 goto fail; 498 499 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 500 if (IS_ERR(leaf)) { 501 ret = PTR_ERR(leaf); 502 goto fail; 503 } 504 505 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 506 btrfs_set_header_bytenr(leaf, leaf->start); 507 btrfs_set_header_generation(leaf, trans->transid); 508 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 509 btrfs_set_header_owner(leaf, objectid); 510 511 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(), 512 BTRFS_FSID_SIZE); 513 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 514 btrfs_header_chunk_tree_uuid(leaf), 515 BTRFS_UUID_SIZE); 516 btrfs_mark_buffer_dirty(leaf); 517 518 inode_item = &root_item->inode; 519 btrfs_set_stack_inode_generation(inode_item, 1); 520 btrfs_set_stack_inode_size(inode_item, 3); 521 btrfs_set_stack_inode_nlink(inode_item, 1); 522 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 523 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 524 525 btrfs_set_root_flags(root_item, 0); 526 btrfs_set_root_limit(root_item, 0); 527 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 528 529 btrfs_set_root_bytenr(root_item, leaf->start); 530 btrfs_set_root_generation(root_item, trans->transid); 531 btrfs_set_root_level(root_item, 0); 532 btrfs_set_root_refs(root_item, 1); 533 btrfs_set_root_used(root_item, leaf->len); 534 btrfs_set_root_last_snapshot(root_item, 0); 535 536 btrfs_set_root_generation_v2(root_item, 537 btrfs_root_generation(root_item)); 538 uuid_le_gen(&new_uuid); 539 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 540 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 541 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 542 root_item->ctime = root_item->otime; 543 btrfs_set_root_ctransid(root_item, trans->transid); 544 btrfs_set_root_otransid(root_item, trans->transid); 545 546 btrfs_tree_unlock(leaf); 547 free_extent_buffer(leaf); 548 leaf = NULL; 549 550 btrfs_set_root_dirid(root_item, new_dirid); 551 552 key.objectid = objectid; 553 key.offset = 0; 554 key.type = BTRFS_ROOT_ITEM_KEY; 555 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 556 root_item); 557 if (ret) 558 goto fail; 559 560 key.offset = (u64)-1; 561 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 562 if (IS_ERR(new_root)) { 563 ret = PTR_ERR(new_root); 564 btrfs_abort_transaction(trans, root, ret); 565 goto fail; 566 } 567 568 btrfs_record_root_in_trans(trans, new_root); 569 570 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 571 if (ret) { 572 /* We potentially lose an unused inode item here */ 573 btrfs_abort_transaction(trans, root, ret); 574 goto fail; 575 } 576 577 mutex_lock(&new_root->objectid_mutex); 578 new_root->highest_objectid = new_dirid; 579 mutex_unlock(&new_root->objectid_mutex); 580 581 /* 582 * insert the directory item 583 */ 584 ret = btrfs_set_inode_index(dir, &index); 585 if (ret) { 586 btrfs_abort_transaction(trans, root, ret); 587 goto fail; 588 } 589 590 ret = btrfs_insert_dir_item(trans, root, 591 name, namelen, dir, &key, 592 BTRFS_FT_DIR, index); 593 if (ret) { 594 btrfs_abort_transaction(trans, root, ret); 595 goto fail; 596 } 597 598 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 599 ret = btrfs_update_inode(trans, root, dir); 600 BUG_ON(ret); 601 602 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 603 objectid, root->root_key.objectid, 604 btrfs_ino(dir), index, name, namelen); 605 BUG_ON(ret); 606 607 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 608 root_item->uuid, BTRFS_UUID_KEY_SUBVOL, 609 objectid); 610 if (ret) 611 btrfs_abort_transaction(trans, root, ret); 612 613 fail: 614 kfree(root_item); 615 trans->block_rsv = NULL; 616 trans->bytes_reserved = 0; 617 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 618 619 if (async_transid) { 620 *async_transid = trans->transid; 621 err = btrfs_commit_transaction_async(trans, root, 1); 622 if (err) 623 err = btrfs_commit_transaction(trans, root); 624 } else { 625 err = btrfs_commit_transaction(trans, root); 626 } 627 if (err && !ret) 628 ret = err; 629 630 if (!ret) { 631 inode = btrfs_lookup_dentry(dir, dentry); 632 if (IS_ERR(inode)) 633 return PTR_ERR(inode); 634 d_instantiate(dentry, inode); 635 } 636 return ret; 637 638 fail_free: 639 kfree(root_item); 640 return ret; 641 } 642 643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root) 644 { 645 s64 writers; 646 DEFINE_WAIT(wait); 647 648 do { 649 prepare_to_wait(&root->subv_writers->wait, &wait, 650 TASK_UNINTERRUPTIBLE); 651 652 writers = percpu_counter_sum(&root->subv_writers->counter); 653 if (writers) 654 schedule(); 655 656 finish_wait(&root->subv_writers->wait, &wait); 657 } while (writers); 658 } 659 660 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 661 struct dentry *dentry, char *name, int namelen, 662 u64 *async_transid, bool readonly, 663 struct btrfs_qgroup_inherit *inherit) 664 { 665 struct inode *inode; 666 struct btrfs_pending_snapshot *pending_snapshot; 667 struct btrfs_trans_handle *trans; 668 int ret; 669 670 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 671 return -EINVAL; 672 673 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 674 if (!pending_snapshot) 675 return -ENOMEM; 676 677 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 678 GFP_NOFS); 679 pending_snapshot->path = btrfs_alloc_path(); 680 if (!pending_snapshot->root_item || !pending_snapshot->path) { 681 ret = -ENOMEM; 682 goto free_pending; 683 } 684 685 atomic_inc(&root->will_be_snapshoted); 686 smp_mb__after_atomic(); 687 btrfs_wait_for_no_snapshoting_writes(root); 688 689 ret = btrfs_start_delalloc_inodes(root, 0); 690 if (ret) 691 goto dec_and_free; 692 693 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1); 694 695 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 696 BTRFS_BLOCK_RSV_TEMP); 697 /* 698 * 1 - parent dir inode 699 * 2 - dir entries 700 * 1 - root item 701 * 2 - root ref/backref 702 * 1 - root of snapshot 703 * 1 - UUID item 704 */ 705 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 706 &pending_snapshot->block_rsv, 8, 707 &pending_snapshot->qgroup_reserved, 708 false); 709 if (ret) 710 goto dec_and_free; 711 712 pending_snapshot->dentry = dentry; 713 pending_snapshot->root = root; 714 pending_snapshot->readonly = readonly; 715 pending_snapshot->dir = dir; 716 pending_snapshot->inherit = inherit; 717 718 trans = btrfs_start_transaction(root, 0); 719 if (IS_ERR(trans)) { 720 ret = PTR_ERR(trans); 721 goto fail; 722 } 723 724 spin_lock(&root->fs_info->trans_lock); 725 list_add(&pending_snapshot->list, 726 &trans->transaction->pending_snapshots); 727 spin_unlock(&root->fs_info->trans_lock); 728 if (async_transid) { 729 *async_transid = trans->transid; 730 ret = btrfs_commit_transaction_async(trans, 731 root->fs_info->extent_root, 1); 732 if (ret) 733 ret = btrfs_commit_transaction(trans, root); 734 } else { 735 ret = btrfs_commit_transaction(trans, 736 root->fs_info->extent_root); 737 } 738 if (ret) 739 goto fail; 740 741 ret = pending_snapshot->error; 742 if (ret) 743 goto fail; 744 745 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 746 if (ret) 747 goto fail; 748 749 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 750 if (IS_ERR(inode)) { 751 ret = PTR_ERR(inode); 752 goto fail; 753 } 754 755 d_instantiate(dentry, inode); 756 ret = 0; 757 fail: 758 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 759 &pending_snapshot->block_rsv, 760 pending_snapshot->qgroup_reserved); 761 dec_and_free: 762 if (atomic_dec_and_test(&root->will_be_snapshoted)) 763 wake_up_atomic_t(&root->will_be_snapshoted); 764 free_pending: 765 kfree(pending_snapshot->root_item); 766 btrfs_free_path(pending_snapshot->path); 767 kfree(pending_snapshot); 768 769 return ret; 770 } 771 772 /* copy of may_delete in fs/namei.c() 773 * Check whether we can remove a link victim from directory dir, check 774 * whether the type of victim is right. 775 * 1. We can't do it if dir is read-only (done in permission()) 776 * 2. We should have write and exec permissions on dir 777 * 3. We can't remove anything from append-only dir 778 * 4. We can't do anything with immutable dir (done in permission()) 779 * 5. If the sticky bit on dir is set we should either 780 * a. be owner of dir, or 781 * b. be owner of victim, or 782 * c. have CAP_FOWNER capability 783 * 6. If the victim is append-only or immutable we can't do anything with 784 * links pointing to it. 785 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 786 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 787 * 9. We can't remove a root or mountpoint. 788 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 789 * nfs_async_unlink(). 790 */ 791 792 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 793 { 794 int error; 795 796 if (d_really_is_negative(victim)) 797 return -ENOENT; 798 799 BUG_ON(d_inode(victim->d_parent) != dir); 800 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 801 802 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 803 if (error) 804 return error; 805 if (IS_APPEND(dir)) 806 return -EPERM; 807 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 808 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 809 return -EPERM; 810 if (isdir) { 811 if (!d_is_dir(victim)) 812 return -ENOTDIR; 813 if (IS_ROOT(victim)) 814 return -EBUSY; 815 } else if (d_is_dir(victim)) 816 return -EISDIR; 817 if (IS_DEADDIR(dir)) 818 return -ENOENT; 819 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 820 return -EBUSY; 821 return 0; 822 } 823 824 /* copy of may_create in fs/namei.c() */ 825 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 826 { 827 if (d_really_is_positive(child)) 828 return -EEXIST; 829 if (IS_DEADDIR(dir)) 830 return -ENOENT; 831 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 832 } 833 834 /* 835 * Create a new subvolume below @parent. This is largely modeled after 836 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 837 * inside this filesystem so it's quite a bit simpler. 838 */ 839 static noinline int btrfs_mksubvol(struct path *parent, 840 char *name, int namelen, 841 struct btrfs_root *snap_src, 842 u64 *async_transid, bool readonly, 843 struct btrfs_qgroup_inherit *inherit) 844 { 845 struct inode *dir = d_inode(parent->dentry); 846 struct dentry *dentry; 847 int error; 848 849 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 850 if (error == -EINTR) 851 return error; 852 853 dentry = lookup_one_len(name, parent->dentry, namelen); 854 error = PTR_ERR(dentry); 855 if (IS_ERR(dentry)) 856 goto out_unlock; 857 858 error = btrfs_may_create(dir, dentry); 859 if (error) 860 goto out_dput; 861 862 /* 863 * even if this name doesn't exist, we may get hash collisions. 864 * check for them now when we can safely fail 865 */ 866 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 867 dir->i_ino, name, 868 namelen); 869 if (error) 870 goto out_dput; 871 872 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 873 874 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 875 goto out_up_read; 876 877 if (snap_src) { 878 error = create_snapshot(snap_src, dir, dentry, name, namelen, 879 async_transid, readonly, inherit); 880 } else { 881 error = create_subvol(dir, dentry, name, namelen, 882 async_transid, inherit); 883 } 884 if (!error) 885 fsnotify_mkdir(dir, dentry); 886 out_up_read: 887 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 888 out_dput: 889 dput(dentry); 890 out_unlock: 891 inode_unlock(dir); 892 return error; 893 } 894 895 /* 896 * When we're defragging a range, we don't want to kick it off again 897 * if it is really just waiting for delalloc to send it down. 898 * If we find a nice big extent or delalloc range for the bytes in the 899 * file you want to defrag, we return 0 to let you know to skip this 900 * part of the file 901 */ 902 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 903 { 904 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 905 struct extent_map *em = NULL; 906 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 907 u64 end; 908 909 read_lock(&em_tree->lock); 910 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 911 read_unlock(&em_tree->lock); 912 913 if (em) { 914 end = extent_map_end(em); 915 free_extent_map(em); 916 if (end - offset > thresh) 917 return 0; 918 } 919 /* if we already have a nice delalloc here, just stop */ 920 thresh /= 2; 921 end = count_range_bits(io_tree, &offset, offset + thresh, 922 thresh, EXTENT_DELALLOC, 1); 923 if (end >= thresh) 924 return 0; 925 return 1; 926 } 927 928 /* 929 * helper function to walk through a file and find extents 930 * newer than a specific transid, and smaller than thresh. 931 * 932 * This is used by the defragging code to find new and small 933 * extents 934 */ 935 static int find_new_extents(struct btrfs_root *root, 936 struct inode *inode, u64 newer_than, 937 u64 *off, u32 thresh) 938 { 939 struct btrfs_path *path; 940 struct btrfs_key min_key; 941 struct extent_buffer *leaf; 942 struct btrfs_file_extent_item *extent; 943 int type; 944 int ret; 945 u64 ino = btrfs_ino(inode); 946 947 path = btrfs_alloc_path(); 948 if (!path) 949 return -ENOMEM; 950 951 min_key.objectid = ino; 952 min_key.type = BTRFS_EXTENT_DATA_KEY; 953 min_key.offset = *off; 954 955 while (1) { 956 ret = btrfs_search_forward(root, &min_key, path, newer_than); 957 if (ret != 0) 958 goto none; 959 process_slot: 960 if (min_key.objectid != ino) 961 goto none; 962 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 963 goto none; 964 965 leaf = path->nodes[0]; 966 extent = btrfs_item_ptr(leaf, path->slots[0], 967 struct btrfs_file_extent_item); 968 969 type = btrfs_file_extent_type(leaf, extent); 970 if (type == BTRFS_FILE_EXTENT_REG && 971 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 972 check_defrag_in_cache(inode, min_key.offset, thresh)) { 973 *off = min_key.offset; 974 btrfs_free_path(path); 975 return 0; 976 } 977 978 path->slots[0]++; 979 if (path->slots[0] < btrfs_header_nritems(leaf)) { 980 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 981 goto process_slot; 982 } 983 984 if (min_key.offset == (u64)-1) 985 goto none; 986 987 min_key.offset++; 988 btrfs_release_path(path); 989 } 990 none: 991 btrfs_free_path(path); 992 return -ENOENT; 993 } 994 995 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 996 { 997 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 998 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 999 struct extent_map *em; 1000 u64 len = PAGE_SIZE; 1001 1002 /* 1003 * hopefully we have this extent in the tree already, try without 1004 * the full extent lock 1005 */ 1006 read_lock(&em_tree->lock); 1007 em = lookup_extent_mapping(em_tree, start, len); 1008 read_unlock(&em_tree->lock); 1009 1010 if (!em) { 1011 struct extent_state *cached = NULL; 1012 u64 end = start + len - 1; 1013 1014 /* get the big lock and read metadata off disk */ 1015 lock_extent_bits(io_tree, start, end, &cached); 1016 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 1017 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 1018 1019 if (IS_ERR(em)) 1020 return NULL; 1021 } 1022 1023 return em; 1024 } 1025 1026 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1027 { 1028 struct extent_map *next; 1029 bool ret = true; 1030 1031 /* this is the last extent */ 1032 if (em->start + em->len >= i_size_read(inode)) 1033 return false; 1034 1035 next = defrag_lookup_extent(inode, em->start + em->len); 1036 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1037 ret = false; 1038 else if ((em->block_start + em->block_len == next->block_start) && 1039 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1040 ret = false; 1041 1042 free_extent_map(next); 1043 return ret; 1044 } 1045 1046 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1047 u64 *last_len, u64 *skip, u64 *defrag_end, 1048 int compress) 1049 { 1050 struct extent_map *em; 1051 int ret = 1; 1052 bool next_mergeable = true; 1053 bool prev_mergeable = true; 1054 1055 /* 1056 * make sure that once we start defragging an extent, we keep on 1057 * defragging it 1058 */ 1059 if (start < *defrag_end) 1060 return 1; 1061 1062 *skip = 0; 1063 1064 em = defrag_lookup_extent(inode, start); 1065 if (!em) 1066 return 0; 1067 1068 /* this will cover holes, and inline extents */ 1069 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1070 ret = 0; 1071 goto out; 1072 } 1073 1074 if (!*defrag_end) 1075 prev_mergeable = false; 1076 1077 next_mergeable = defrag_check_next_extent(inode, em); 1078 /* 1079 * we hit a real extent, if it is big or the next extent is not a 1080 * real extent, don't bother defragging it 1081 */ 1082 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1083 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1084 ret = 0; 1085 out: 1086 /* 1087 * last_len ends up being a counter of how many bytes we've defragged. 1088 * every time we choose not to defrag an extent, we reset *last_len 1089 * so that the next tiny extent will force a defrag. 1090 * 1091 * The end result of this is that tiny extents before a single big 1092 * extent will force at least part of that big extent to be defragged. 1093 */ 1094 if (ret) { 1095 *defrag_end = extent_map_end(em); 1096 } else { 1097 *last_len = 0; 1098 *skip = extent_map_end(em); 1099 *defrag_end = 0; 1100 } 1101 1102 free_extent_map(em); 1103 return ret; 1104 } 1105 1106 /* 1107 * it doesn't do much good to defrag one or two pages 1108 * at a time. This pulls in a nice chunk of pages 1109 * to COW and defrag. 1110 * 1111 * It also makes sure the delalloc code has enough 1112 * dirty data to avoid making new small extents as part 1113 * of the defrag 1114 * 1115 * It's a good idea to start RA on this range 1116 * before calling this. 1117 */ 1118 static int cluster_pages_for_defrag(struct inode *inode, 1119 struct page **pages, 1120 unsigned long start_index, 1121 unsigned long num_pages) 1122 { 1123 unsigned long file_end; 1124 u64 isize = i_size_read(inode); 1125 u64 page_start; 1126 u64 page_end; 1127 u64 page_cnt; 1128 int ret; 1129 int i; 1130 int i_done; 1131 struct btrfs_ordered_extent *ordered; 1132 struct extent_state *cached_state = NULL; 1133 struct extent_io_tree *tree; 1134 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1135 1136 file_end = (isize - 1) >> PAGE_SHIFT; 1137 if (!isize || start_index > file_end) 1138 return 0; 1139 1140 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1141 1142 ret = btrfs_delalloc_reserve_space(inode, 1143 start_index << PAGE_SHIFT, 1144 page_cnt << PAGE_SHIFT); 1145 if (ret) 1146 return ret; 1147 i_done = 0; 1148 tree = &BTRFS_I(inode)->io_tree; 1149 1150 /* step one, lock all the pages */ 1151 for (i = 0; i < page_cnt; i++) { 1152 struct page *page; 1153 again: 1154 page = find_or_create_page(inode->i_mapping, 1155 start_index + i, mask); 1156 if (!page) 1157 break; 1158 1159 page_start = page_offset(page); 1160 page_end = page_start + PAGE_SIZE - 1; 1161 while (1) { 1162 lock_extent_bits(tree, page_start, page_end, 1163 &cached_state); 1164 ordered = btrfs_lookup_ordered_extent(inode, 1165 page_start); 1166 unlock_extent_cached(tree, page_start, page_end, 1167 &cached_state, GFP_NOFS); 1168 if (!ordered) 1169 break; 1170 1171 unlock_page(page); 1172 btrfs_start_ordered_extent(inode, ordered, 1); 1173 btrfs_put_ordered_extent(ordered); 1174 lock_page(page); 1175 /* 1176 * we unlocked the page above, so we need check if 1177 * it was released or not. 1178 */ 1179 if (page->mapping != inode->i_mapping) { 1180 unlock_page(page); 1181 put_page(page); 1182 goto again; 1183 } 1184 } 1185 1186 if (!PageUptodate(page)) { 1187 btrfs_readpage(NULL, page); 1188 lock_page(page); 1189 if (!PageUptodate(page)) { 1190 unlock_page(page); 1191 put_page(page); 1192 ret = -EIO; 1193 break; 1194 } 1195 } 1196 1197 if (page->mapping != inode->i_mapping) { 1198 unlock_page(page); 1199 put_page(page); 1200 goto again; 1201 } 1202 1203 pages[i] = page; 1204 i_done++; 1205 } 1206 if (!i_done || ret) 1207 goto out; 1208 1209 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1210 goto out; 1211 1212 /* 1213 * so now we have a nice long stream of locked 1214 * and up to date pages, lets wait on them 1215 */ 1216 for (i = 0; i < i_done; i++) 1217 wait_on_page_writeback(pages[i]); 1218 1219 page_start = page_offset(pages[0]); 1220 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1221 1222 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1223 page_start, page_end - 1, &cached_state); 1224 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1225 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1226 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1227 &cached_state, GFP_NOFS); 1228 1229 if (i_done != page_cnt) { 1230 spin_lock(&BTRFS_I(inode)->lock); 1231 BTRFS_I(inode)->outstanding_extents++; 1232 spin_unlock(&BTRFS_I(inode)->lock); 1233 btrfs_delalloc_release_space(inode, 1234 start_index << PAGE_SHIFT, 1235 (page_cnt - i_done) << PAGE_SHIFT); 1236 } 1237 1238 1239 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1240 &cached_state); 1241 1242 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1243 page_start, page_end - 1, &cached_state, 1244 GFP_NOFS); 1245 1246 for (i = 0; i < i_done; i++) { 1247 clear_page_dirty_for_io(pages[i]); 1248 ClearPageChecked(pages[i]); 1249 set_page_extent_mapped(pages[i]); 1250 set_page_dirty(pages[i]); 1251 unlock_page(pages[i]); 1252 put_page(pages[i]); 1253 } 1254 return i_done; 1255 out: 1256 for (i = 0; i < i_done; i++) { 1257 unlock_page(pages[i]); 1258 put_page(pages[i]); 1259 } 1260 btrfs_delalloc_release_space(inode, 1261 start_index << PAGE_SHIFT, 1262 page_cnt << PAGE_SHIFT); 1263 return ret; 1264 1265 } 1266 1267 int btrfs_defrag_file(struct inode *inode, struct file *file, 1268 struct btrfs_ioctl_defrag_range_args *range, 1269 u64 newer_than, unsigned long max_to_defrag) 1270 { 1271 struct btrfs_root *root = BTRFS_I(inode)->root; 1272 struct file_ra_state *ra = NULL; 1273 unsigned long last_index; 1274 u64 isize = i_size_read(inode); 1275 u64 last_len = 0; 1276 u64 skip = 0; 1277 u64 defrag_end = 0; 1278 u64 newer_off = range->start; 1279 unsigned long i; 1280 unsigned long ra_index = 0; 1281 int ret; 1282 int defrag_count = 0; 1283 int compress_type = BTRFS_COMPRESS_ZLIB; 1284 u32 extent_thresh = range->extent_thresh; 1285 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1286 unsigned long cluster = max_cluster; 1287 u64 new_align = ~((u64)SZ_128K - 1); 1288 struct page **pages = NULL; 1289 1290 if (isize == 0) 1291 return 0; 1292 1293 if (range->start >= isize) 1294 return -EINVAL; 1295 1296 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1297 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1298 return -EINVAL; 1299 if (range->compress_type) 1300 compress_type = range->compress_type; 1301 } 1302 1303 if (extent_thresh == 0) 1304 extent_thresh = SZ_256K; 1305 1306 /* 1307 * if we were not given a file, allocate a readahead 1308 * context 1309 */ 1310 if (!file) { 1311 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1312 if (!ra) 1313 return -ENOMEM; 1314 file_ra_state_init(ra, inode->i_mapping); 1315 } else { 1316 ra = &file->f_ra; 1317 } 1318 1319 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1320 GFP_NOFS); 1321 if (!pages) { 1322 ret = -ENOMEM; 1323 goto out_ra; 1324 } 1325 1326 /* find the last page to defrag */ 1327 if (range->start + range->len > range->start) { 1328 last_index = min_t(u64, isize - 1, 1329 range->start + range->len - 1) >> PAGE_SHIFT; 1330 } else { 1331 last_index = (isize - 1) >> PAGE_SHIFT; 1332 } 1333 1334 if (newer_than) { 1335 ret = find_new_extents(root, inode, newer_than, 1336 &newer_off, SZ_64K); 1337 if (!ret) { 1338 range->start = newer_off; 1339 /* 1340 * we always align our defrag to help keep 1341 * the extents in the file evenly spaced 1342 */ 1343 i = (newer_off & new_align) >> PAGE_SHIFT; 1344 } else 1345 goto out_ra; 1346 } else { 1347 i = range->start >> PAGE_SHIFT; 1348 } 1349 if (!max_to_defrag) 1350 max_to_defrag = last_index - i + 1; 1351 1352 /* 1353 * make writeback starts from i, so the defrag range can be 1354 * written sequentially. 1355 */ 1356 if (i < inode->i_mapping->writeback_index) 1357 inode->i_mapping->writeback_index = i; 1358 1359 while (i <= last_index && defrag_count < max_to_defrag && 1360 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1361 /* 1362 * make sure we stop running if someone unmounts 1363 * the FS 1364 */ 1365 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1366 break; 1367 1368 if (btrfs_defrag_cancelled(root->fs_info)) { 1369 btrfs_debug(root->fs_info, "defrag_file cancelled"); 1370 ret = -EAGAIN; 1371 break; 1372 } 1373 1374 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1375 extent_thresh, &last_len, &skip, 1376 &defrag_end, range->flags & 1377 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1378 unsigned long next; 1379 /* 1380 * the should_defrag function tells us how much to skip 1381 * bump our counter by the suggested amount 1382 */ 1383 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1384 i = max(i + 1, next); 1385 continue; 1386 } 1387 1388 if (!newer_than) { 1389 cluster = (PAGE_ALIGN(defrag_end) >> 1390 PAGE_SHIFT) - i; 1391 cluster = min(cluster, max_cluster); 1392 } else { 1393 cluster = max_cluster; 1394 } 1395 1396 if (i + cluster > ra_index) { 1397 ra_index = max(i, ra_index); 1398 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1399 cluster); 1400 ra_index += cluster; 1401 } 1402 1403 inode_lock(inode); 1404 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1405 BTRFS_I(inode)->force_compress = compress_type; 1406 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1407 if (ret < 0) { 1408 inode_unlock(inode); 1409 goto out_ra; 1410 } 1411 1412 defrag_count += ret; 1413 balance_dirty_pages_ratelimited(inode->i_mapping); 1414 inode_unlock(inode); 1415 1416 if (newer_than) { 1417 if (newer_off == (u64)-1) 1418 break; 1419 1420 if (ret > 0) 1421 i += ret; 1422 1423 newer_off = max(newer_off + 1, 1424 (u64)i << PAGE_SHIFT); 1425 1426 ret = find_new_extents(root, inode, newer_than, 1427 &newer_off, SZ_64K); 1428 if (!ret) { 1429 range->start = newer_off; 1430 i = (newer_off & new_align) >> PAGE_SHIFT; 1431 } else { 1432 break; 1433 } 1434 } else { 1435 if (ret > 0) { 1436 i += ret; 1437 last_len += ret << PAGE_SHIFT; 1438 } else { 1439 i++; 1440 last_len = 0; 1441 } 1442 } 1443 } 1444 1445 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1446 filemap_flush(inode->i_mapping); 1447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1448 &BTRFS_I(inode)->runtime_flags)) 1449 filemap_flush(inode->i_mapping); 1450 } 1451 1452 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1453 /* the filemap_flush will queue IO into the worker threads, but 1454 * we have to make sure the IO is actually started and that 1455 * ordered extents get created before we return 1456 */ 1457 atomic_inc(&root->fs_info->async_submit_draining); 1458 while (atomic_read(&root->fs_info->nr_async_submits) || 1459 atomic_read(&root->fs_info->async_delalloc_pages)) { 1460 wait_event(root->fs_info->async_submit_wait, 1461 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1462 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1463 } 1464 atomic_dec(&root->fs_info->async_submit_draining); 1465 } 1466 1467 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1468 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1469 } 1470 1471 ret = defrag_count; 1472 1473 out_ra: 1474 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1475 inode_lock(inode); 1476 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1477 inode_unlock(inode); 1478 } 1479 if (!file) 1480 kfree(ra); 1481 kfree(pages); 1482 return ret; 1483 } 1484 1485 static noinline int btrfs_ioctl_resize(struct file *file, 1486 void __user *arg) 1487 { 1488 u64 new_size; 1489 u64 old_size; 1490 u64 devid = 1; 1491 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1492 struct btrfs_ioctl_vol_args *vol_args; 1493 struct btrfs_trans_handle *trans; 1494 struct btrfs_device *device = NULL; 1495 char *sizestr; 1496 char *retptr; 1497 char *devstr = NULL; 1498 int ret = 0; 1499 int mod = 0; 1500 1501 if (!capable(CAP_SYS_ADMIN)) 1502 return -EPERM; 1503 1504 ret = mnt_want_write_file(file); 1505 if (ret) 1506 return ret; 1507 1508 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1509 1)) { 1510 mnt_drop_write_file(file); 1511 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1512 } 1513 1514 mutex_lock(&root->fs_info->volume_mutex); 1515 vol_args = memdup_user(arg, sizeof(*vol_args)); 1516 if (IS_ERR(vol_args)) { 1517 ret = PTR_ERR(vol_args); 1518 goto out; 1519 } 1520 1521 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1522 1523 sizestr = vol_args->name; 1524 devstr = strchr(sizestr, ':'); 1525 if (devstr) { 1526 sizestr = devstr + 1; 1527 *devstr = '\0'; 1528 devstr = vol_args->name; 1529 ret = kstrtoull(devstr, 10, &devid); 1530 if (ret) 1531 goto out_free; 1532 if (!devid) { 1533 ret = -EINVAL; 1534 goto out_free; 1535 } 1536 btrfs_info(root->fs_info, "resizing devid %llu", devid); 1537 } 1538 1539 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1540 if (!device) { 1541 btrfs_info(root->fs_info, "resizer unable to find device %llu", 1542 devid); 1543 ret = -ENODEV; 1544 goto out_free; 1545 } 1546 1547 if (!device->writeable) { 1548 btrfs_info(root->fs_info, 1549 "resizer unable to apply on readonly device %llu", 1550 devid); 1551 ret = -EPERM; 1552 goto out_free; 1553 } 1554 1555 if (!strcmp(sizestr, "max")) 1556 new_size = device->bdev->bd_inode->i_size; 1557 else { 1558 if (sizestr[0] == '-') { 1559 mod = -1; 1560 sizestr++; 1561 } else if (sizestr[0] == '+') { 1562 mod = 1; 1563 sizestr++; 1564 } 1565 new_size = memparse(sizestr, &retptr); 1566 if (*retptr != '\0' || new_size == 0) { 1567 ret = -EINVAL; 1568 goto out_free; 1569 } 1570 } 1571 1572 if (device->is_tgtdev_for_dev_replace) { 1573 ret = -EPERM; 1574 goto out_free; 1575 } 1576 1577 old_size = btrfs_device_get_total_bytes(device); 1578 1579 if (mod < 0) { 1580 if (new_size > old_size) { 1581 ret = -EINVAL; 1582 goto out_free; 1583 } 1584 new_size = old_size - new_size; 1585 } else if (mod > 0) { 1586 if (new_size > ULLONG_MAX - old_size) { 1587 ret = -ERANGE; 1588 goto out_free; 1589 } 1590 new_size = old_size + new_size; 1591 } 1592 1593 if (new_size < SZ_256M) { 1594 ret = -EINVAL; 1595 goto out_free; 1596 } 1597 if (new_size > device->bdev->bd_inode->i_size) { 1598 ret = -EFBIG; 1599 goto out_free; 1600 } 1601 1602 new_size = div_u64(new_size, root->sectorsize); 1603 new_size *= root->sectorsize; 1604 1605 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu", 1606 rcu_str_deref(device->name), new_size); 1607 1608 if (new_size > old_size) { 1609 trans = btrfs_start_transaction(root, 0); 1610 if (IS_ERR(trans)) { 1611 ret = PTR_ERR(trans); 1612 goto out_free; 1613 } 1614 ret = btrfs_grow_device(trans, device, new_size); 1615 btrfs_commit_transaction(trans, root); 1616 } else if (new_size < old_size) { 1617 ret = btrfs_shrink_device(device, new_size); 1618 } /* equal, nothing need to do */ 1619 1620 out_free: 1621 kfree(vol_args); 1622 out: 1623 mutex_unlock(&root->fs_info->volume_mutex); 1624 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1625 mnt_drop_write_file(file); 1626 return ret; 1627 } 1628 1629 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1630 char *name, unsigned long fd, int subvol, 1631 u64 *transid, bool readonly, 1632 struct btrfs_qgroup_inherit *inherit) 1633 { 1634 int namelen; 1635 int ret = 0; 1636 1637 ret = mnt_want_write_file(file); 1638 if (ret) 1639 goto out; 1640 1641 namelen = strlen(name); 1642 if (strchr(name, '/')) { 1643 ret = -EINVAL; 1644 goto out_drop_write; 1645 } 1646 1647 if (name[0] == '.' && 1648 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1649 ret = -EEXIST; 1650 goto out_drop_write; 1651 } 1652 1653 if (subvol) { 1654 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1655 NULL, transid, readonly, inherit); 1656 } else { 1657 struct fd src = fdget(fd); 1658 struct inode *src_inode; 1659 if (!src.file) { 1660 ret = -EINVAL; 1661 goto out_drop_write; 1662 } 1663 1664 src_inode = file_inode(src.file); 1665 if (src_inode->i_sb != file_inode(file)->i_sb) { 1666 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1667 "Snapshot src from another FS"); 1668 ret = -EXDEV; 1669 } else if (!inode_owner_or_capable(src_inode)) { 1670 /* 1671 * Subvolume creation is not restricted, but snapshots 1672 * are limited to own subvolumes only 1673 */ 1674 ret = -EPERM; 1675 } else { 1676 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1677 BTRFS_I(src_inode)->root, 1678 transid, readonly, inherit); 1679 } 1680 fdput(src); 1681 } 1682 out_drop_write: 1683 mnt_drop_write_file(file); 1684 out: 1685 return ret; 1686 } 1687 1688 static noinline int btrfs_ioctl_snap_create(struct file *file, 1689 void __user *arg, int subvol) 1690 { 1691 struct btrfs_ioctl_vol_args *vol_args; 1692 int ret; 1693 1694 vol_args = memdup_user(arg, sizeof(*vol_args)); 1695 if (IS_ERR(vol_args)) 1696 return PTR_ERR(vol_args); 1697 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1698 1699 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1700 vol_args->fd, subvol, 1701 NULL, false, NULL); 1702 1703 kfree(vol_args); 1704 return ret; 1705 } 1706 1707 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1708 void __user *arg, int subvol) 1709 { 1710 struct btrfs_ioctl_vol_args_v2 *vol_args; 1711 int ret; 1712 u64 transid = 0; 1713 u64 *ptr = NULL; 1714 bool readonly = false; 1715 struct btrfs_qgroup_inherit *inherit = NULL; 1716 1717 vol_args = memdup_user(arg, sizeof(*vol_args)); 1718 if (IS_ERR(vol_args)) 1719 return PTR_ERR(vol_args); 1720 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1721 1722 if (vol_args->flags & 1723 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1724 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1725 ret = -EOPNOTSUPP; 1726 goto free_args; 1727 } 1728 1729 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1730 ptr = &transid; 1731 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1732 readonly = true; 1733 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1734 if (vol_args->size > PAGE_SIZE) { 1735 ret = -EINVAL; 1736 goto free_args; 1737 } 1738 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1739 if (IS_ERR(inherit)) { 1740 ret = PTR_ERR(inherit); 1741 goto free_args; 1742 } 1743 } 1744 1745 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1746 vol_args->fd, subvol, ptr, 1747 readonly, inherit); 1748 if (ret) 1749 goto free_inherit; 1750 1751 if (ptr && copy_to_user(arg + 1752 offsetof(struct btrfs_ioctl_vol_args_v2, 1753 transid), 1754 ptr, sizeof(*ptr))) 1755 ret = -EFAULT; 1756 1757 free_inherit: 1758 kfree(inherit); 1759 free_args: 1760 kfree(vol_args); 1761 return ret; 1762 } 1763 1764 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1765 void __user *arg) 1766 { 1767 struct inode *inode = file_inode(file); 1768 struct btrfs_root *root = BTRFS_I(inode)->root; 1769 int ret = 0; 1770 u64 flags = 0; 1771 1772 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1773 return -EINVAL; 1774 1775 down_read(&root->fs_info->subvol_sem); 1776 if (btrfs_root_readonly(root)) 1777 flags |= BTRFS_SUBVOL_RDONLY; 1778 up_read(&root->fs_info->subvol_sem); 1779 1780 if (copy_to_user(arg, &flags, sizeof(flags))) 1781 ret = -EFAULT; 1782 1783 return ret; 1784 } 1785 1786 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1787 void __user *arg) 1788 { 1789 struct inode *inode = file_inode(file); 1790 struct btrfs_root *root = BTRFS_I(inode)->root; 1791 struct btrfs_trans_handle *trans; 1792 u64 root_flags; 1793 u64 flags; 1794 int ret = 0; 1795 1796 if (!inode_owner_or_capable(inode)) 1797 return -EPERM; 1798 1799 ret = mnt_want_write_file(file); 1800 if (ret) 1801 goto out; 1802 1803 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1804 ret = -EINVAL; 1805 goto out_drop_write; 1806 } 1807 1808 if (copy_from_user(&flags, arg, sizeof(flags))) { 1809 ret = -EFAULT; 1810 goto out_drop_write; 1811 } 1812 1813 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1814 ret = -EINVAL; 1815 goto out_drop_write; 1816 } 1817 1818 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1819 ret = -EOPNOTSUPP; 1820 goto out_drop_write; 1821 } 1822 1823 down_write(&root->fs_info->subvol_sem); 1824 1825 /* nothing to do */ 1826 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1827 goto out_drop_sem; 1828 1829 root_flags = btrfs_root_flags(&root->root_item); 1830 if (flags & BTRFS_SUBVOL_RDONLY) { 1831 btrfs_set_root_flags(&root->root_item, 1832 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1833 } else { 1834 /* 1835 * Block RO -> RW transition if this subvolume is involved in 1836 * send 1837 */ 1838 spin_lock(&root->root_item_lock); 1839 if (root->send_in_progress == 0) { 1840 btrfs_set_root_flags(&root->root_item, 1841 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1842 spin_unlock(&root->root_item_lock); 1843 } else { 1844 spin_unlock(&root->root_item_lock); 1845 btrfs_warn(root->fs_info, 1846 "Attempt to set subvolume %llu read-write during send", 1847 root->root_key.objectid); 1848 ret = -EPERM; 1849 goto out_drop_sem; 1850 } 1851 } 1852 1853 trans = btrfs_start_transaction(root, 1); 1854 if (IS_ERR(trans)) { 1855 ret = PTR_ERR(trans); 1856 goto out_reset; 1857 } 1858 1859 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1860 &root->root_key, &root->root_item); 1861 1862 btrfs_commit_transaction(trans, root); 1863 out_reset: 1864 if (ret) 1865 btrfs_set_root_flags(&root->root_item, root_flags); 1866 out_drop_sem: 1867 up_write(&root->fs_info->subvol_sem); 1868 out_drop_write: 1869 mnt_drop_write_file(file); 1870 out: 1871 return ret; 1872 } 1873 1874 /* 1875 * helper to check if the subvolume references other subvolumes 1876 */ 1877 static noinline int may_destroy_subvol(struct btrfs_root *root) 1878 { 1879 struct btrfs_path *path; 1880 struct btrfs_dir_item *di; 1881 struct btrfs_key key; 1882 u64 dir_id; 1883 int ret; 1884 1885 path = btrfs_alloc_path(); 1886 if (!path) 1887 return -ENOMEM; 1888 1889 /* Make sure this root isn't set as the default subvol */ 1890 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1891 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1892 dir_id, "default", 7, 0); 1893 if (di && !IS_ERR(di)) { 1894 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1895 if (key.objectid == root->root_key.objectid) { 1896 ret = -EPERM; 1897 btrfs_err(root->fs_info, "deleting default subvolume " 1898 "%llu is not allowed", key.objectid); 1899 goto out; 1900 } 1901 btrfs_release_path(path); 1902 } 1903 1904 key.objectid = root->root_key.objectid; 1905 key.type = BTRFS_ROOT_REF_KEY; 1906 key.offset = (u64)-1; 1907 1908 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1909 &key, path, 0, 0); 1910 if (ret < 0) 1911 goto out; 1912 BUG_ON(ret == 0); 1913 1914 ret = 0; 1915 if (path->slots[0] > 0) { 1916 path->slots[0]--; 1917 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1918 if (key.objectid == root->root_key.objectid && 1919 key.type == BTRFS_ROOT_REF_KEY) 1920 ret = -ENOTEMPTY; 1921 } 1922 out: 1923 btrfs_free_path(path); 1924 return ret; 1925 } 1926 1927 static noinline int key_in_sk(struct btrfs_key *key, 1928 struct btrfs_ioctl_search_key *sk) 1929 { 1930 struct btrfs_key test; 1931 int ret; 1932 1933 test.objectid = sk->min_objectid; 1934 test.type = sk->min_type; 1935 test.offset = sk->min_offset; 1936 1937 ret = btrfs_comp_cpu_keys(key, &test); 1938 if (ret < 0) 1939 return 0; 1940 1941 test.objectid = sk->max_objectid; 1942 test.type = sk->max_type; 1943 test.offset = sk->max_offset; 1944 1945 ret = btrfs_comp_cpu_keys(key, &test); 1946 if (ret > 0) 1947 return 0; 1948 return 1; 1949 } 1950 1951 static noinline int copy_to_sk(struct btrfs_root *root, 1952 struct btrfs_path *path, 1953 struct btrfs_key *key, 1954 struct btrfs_ioctl_search_key *sk, 1955 size_t *buf_size, 1956 char __user *ubuf, 1957 unsigned long *sk_offset, 1958 int *num_found) 1959 { 1960 u64 found_transid; 1961 struct extent_buffer *leaf; 1962 struct btrfs_ioctl_search_header sh; 1963 struct btrfs_key test; 1964 unsigned long item_off; 1965 unsigned long item_len; 1966 int nritems; 1967 int i; 1968 int slot; 1969 int ret = 0; 1970 1971 leaf = path->nodes[0]; 1972 slot = path->slots[0]; 1973 nritems = btrfs_header_nritems(leaf); 1974 1975 if (btrfs_header_generation(leaf) > sk->max_transid) { 1976 i = nritems; 1977 goto advance_key; 1978 } 1979 found_transid = btrfs_header_generation(leaf); 1980 1981 for (i = slot; i < nritems; i++) { 1982 item_off = btrfs_item_ptr_offset(leaf, i); 1983 item_len = btrfs_item_size_nr(leaf, i); 1984 1985 btrfs_item_key_to_cpu(leaf, key, i); 1986 if (!key_in_sk(key, sk)) 1987 continue; 1988 1989 if (sizeof(sh) + item_len > *buf_size) { 1990 if (*num_found) { 1991 ret = 1; 1992 goto out; 1993 } 1994 1995 /* 1996 * return one empty item back for v1, which does not 1997 * handle -EOVERFLOW 1998 */ 1999 2000 *buf_size = sizeof(sh) + item_len; 2001 item_len = 0; 2002 ret = -EOVERFLOW; 2003 } 2004 2005 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2006 ret = 1; 2007 goto out; 2008 } 2009 2010 sh.objectid = key->objectid; 2011 sh.offset = key->offset; 2012 sh.type = key->type; 2013 sh.len = item_len; 2014 sh.transid = found_transid; 2015 2016 /* copy search result header */ 2017 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2018 ret = -EFAULT; 2019 goto out; 2020 } 2021 2022 *sk_offset += sizeof(sh); 2023 2024 if (item_len) { 2025 char __user *up = ubuf + *sk_offset; 2026 /* copy the item */ 2027 if (read_extent_buffer_to_user(leaf, up, 2028 item_off, item_len)) { 2029 ret = -EFAULT; 2030 goto out; 2031 } 2032 2033 *sk_offset += item_len; 2034 } 2035 (*num_found)++; 2036 2037 if (ret) /* -EOVERFLOW from above */ 2038 goto out; 2039 2040 if (*num_found >= sk->nr_items) { 2041 ret = 1; 2042 goto out; 2043 } 2044 } 2045 advance_key: 2046 ret = 0; 2047 test.objectid = sk->max_objectid; 2048 test.type = sk->max_type; 2049 test.offset = sk->max_offset; 2050 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2051 ret = 1; 2052 else if (key->offset < (u64)-1) 2053 key->offset++; 2054 else if (key->type < (u8)-1) { 2055 key->offset = 0; 2056 key->type++; 2057 } else if (key->objectid < (u64)-1) { 2058 key->offset = 0; 2059 key->type = 0; 2060 key->objectid++; 2061 } else 2062 ret = 1; 2063 out: 2064 /* 2065 * 0: all items from this leaf copied, continue with next 2066 * 1: * more items can be copied, but unused buffer is too small 2067 * * all items were found 2068 * Either way, it will stops the loop which iterates to the next 2069 * leaf 2070 * -EOVERFLOW: item was to large for buffer 2071 * -EFAULT: could not copy extent buffer back to userspace 2072 */ 2073 return ret; 2074 } 2075 2076 static noinline int search_ioctl(struct inode *inode, 2077 struct btrfs_ioctl_search_key *sk, 2078 size_t *buf_size, 2079 char __user *ubuf) 2080 { 2081 struct btrfs_root *root; 2082 struct btrfs_key key; 2083 struct btrfs_path *path; 2084 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 2085 int ret; 2086 int num_found = 0; 2087 unsigned long sk_offset = 0; 2088 2089 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2090 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2091 return -EOVERFLOW; 2092 } 2093 2094 path = btrfs_alloc_path(); 2095 if (!path) 2096 return -ENOMEM; 2097 2098 if (sk->tree_id == 0) { 2099 /* search the root of the inode that was passed */ 2100 root = BTRFS_I(inode)->root; 2101 } else { 2102 key.objectid = sk->tree_id; 2103 key.type = BTRFS_ROOT_ITEM_KEY; 2104 key.offset = (u64)-1; 2105 root = btrfs_read_fs_root_no_name(info, &key); 2106 if (IS_ERR(root)) { 2107 btrfs_free_path(path); 2108 return -ENOENT; 2109 } 2110 } 2111 2112 key.objectid = sk->min_objectid; 2113 key.type = sk->min_type; 2114 key.offset = sk->min_offset; 2115 2116 while (1) { 2117 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2118 if (ret != 0) { 2119 if (ret > 0) 2120 ret = 0; 2121 goto err; 2122 } 2123 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf, 2124 &sk_offset, &num_found); 2125 btrfs_release_path(path); 2126 if (ret) 2127 break; 2128 2129 } 2130 if (ret > 0) 2131 ret = 0; 2132 err: 2133 sk->nr_items = num_found; 2134 btrfs_free_path(path); 2135 return ret; 2136 } 2137 2138 static noinline int btrfs_ioctl_tree_search(struct file *file, 2139 void __user *argp) 2140 { 2141 struct btrfs_ioctl_search_args __user *uargs; 2142 struct btrfs_ioctl_search_key sk; 2143 struct inode *inode; 2144 int ret; 2145 size_t buf_size; 2146 2147 if (!capable(CAP_SYS_ADMIN)) 2148 return -EPERM; 2149 2150 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2151 2152 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2153 return -EFAULT; 2154 2155 buf_size = sizeof(uargs->buf); 2156 2157 inode = file_inode(file); 2158 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2159 2160 /* 2161 * In the origin implementation an overflow is handled by returning a 2162 * search header with a len of zero, so reset ret. 2163 */ 2164 if (ret == -EOVERFLOW) 2165 ret = 0; 2166 2167 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2168 ret = -EFAULT; 2169 return ret; 2170 } 2171 2172 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2173 void __user *argp) 2174 { 2175 struct btrfs_ioctl_search_args_v2 __user *uarg; 2176 struct btrfs_ioctl_search_args_v2 args; 2177 struct inode *inode; 2178 int ret; 2179 size_t buf_size; 2180 const size_t buf_limit = SZ_16M; 2181 2182 if (!capable(CAP_SYS_ADMIN)) 2183 return -EPERM; 2184 2185 /* copy search header and buffer size */ 2186 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2187 if (copy_from_user(&args, uarg, sizeof(args))) 2188 return -EFAULT; 2189 2190 buf_size = args.buf_size; 2191 2192 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2193 return -EOVERFLOW; 2194 2195 /* limit result size to 16MB */ 2196 if (buf_size > buf_limit) 2197 buf_size = buf_limit; 2198 2199 inode = file_inode(file); 2200 ret = search_ioctl(inode, &args.key, &buf_size, 2201 (char *)(&uarg->buf[0])); 2202 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2203 ret = -EFAULT; 2204 else if (ret == -EOVERFLOW && 2205 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2206 ret = -EFAULT; 2207 2208 return ret; 2209 } 2210 2211 /* 2212 * Search INODE_REFs to identify path name of 'dirid' directory 2213 * in a 'tree_id' tree. and sets path name to 'name'. 2214 */ 2215 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2216 u64 tree_id, u64 dirid, char *name) 2217 { 2218 struct btrfs_root *root; 2219 struct btrfs_key key; 2220 char *ptr; 2221 int ret = -1; 2222 int slot; 2223 int len; 2224 int total_len = 0; 2225 struct btrfs_inode_ref *iref; 2226 struct extent_buffer *l; 2227 struct btrfs_path *path; 2228 2229 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2230 name[0]='\0'; 2231 return 0; 2232 } 2233 2234 path = btrfs_alloc_path(); 2235 if (!path) 2236 return -ENOMEM; 2237 2238 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2239 2240 key.objectid = tree_id; 2241 key.type = BTRFS_ROOT_ITEM_KEY; 2242 key.offset = (u64)-1; 2243 root = btrfs_read_fs_root_no_name(info, &key); 2244 if (IS_ERR(root)) { 2245 btrfs_err(info, "could not find root %llu", tree_id); 2246 ret = -ENOENT; 2247 goto out; 2248 } 2249 2250 key.objectid = dirid; 2251 key.type = BTRFS_INODE_REF_KEY; 2252 key.offset = (u64)-1; 2253 2254 while (1) { 2255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2256 if (ret < 0) 2257 goto out; 2258 else if (ret > 0) { 2259 ret = btrfs_previous_item(root, path, dirid, 2260 BTRFS_INODE_REF_KEY); 2261 if (ret < 0) 2262 goto out; 2263 else if (ret > 0) { 2264 ret = -ENOENT; 2265 goto out; 2266 } 2267 } 2268 2269 l = path->nodes[0]; 2270 slot = path->slots[0]; 2271 btrfs_item_key_to_cpu(l, &key, slot); 2272 2273 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2274 len = btrfs_inode_ref_name_len(l, iref); 2275 ptr -= len + 1; 2276 total_len += len + 1; 2277 if (ptr < name) { 2278 ret = -ENAMETOOLONG; 2279 goto out; 2280 } 2281 2282 *(ptr + len) = '/'; 2283 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2284 2285 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2286 break; 2287 2288 btrfs_release_path(path); 2289 key.objectid = key.offset; 2290 key.offset = (u64)-1; 2291 dirid = key.objectid; 2292 } 2293 memmove(name, ptr, total_len); 2294 name[total_len] = '\0'; 2295 ret = 0; 2296 out: 2297 btrfs_free_path(path); 2298 return ret; 2299 } 2300 2301 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2302 void __user *argp) 2303 { 2304 struct btrfs_ioctl_ino_lookup_args *args; 2305 struct inode *inode; 2306 int ret = 0; 2307 2308 args = memdup_user(argp, sizeof(*args)); 2309 if (IS_ERR(args)) 2310 return PTR_ERR(args); 2311 2312 inode = file_inode(file); 2313 2314 /* 2315 * Unprivileged query to obtain the containing subvolume root id. The 2316 * path is reset so it's consistent with btrfs_search_path_in_tree. 2317 */ 2318 if (args->treeid == 0) 2319 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2320 2321 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2322 args->name[0] = 0; 2323 goto out; 2324 } 2325 2326 if (!capable(CAP_SYS_ADMIN)) { 2327 ret = -EPERM; 2328 goto out; 2329 } 2330 2331 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2332 args->treeid, args->objectid, 2333 args->name); 2334 2335 out: 2336 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2337 ret = -EFAULT; 2338 2339 kfree(args); 2340 return ret; 2341 } 2342 2343 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2344 void __user *arg) 2345 { 2346 struct dentry *parent = file->f_path.dentry; 2347 struct dentry *dentry; 2348 struct inode *dir = d_inode(parent); 2349 struct inode *inode; 2350 struct btrfs_root *root = BTRFS_I(dir)->root; 2351 struct btrfs_root *dest = NULL; 2352 struct btrfs_ioctl_vol_args *vol_args; 2353 struct btrfs_trans_handle *trans; 2354 struct btrfs_block_rsv block_rsv; 2355 u64 root_flags; 2356 u64 qgroup_reserved; 2357 int namelen; 2358 int ret; 2359 int err = 0; 2360 2361 vol_args = memdup_user(arg, sizeof(*vol_args)); 2362 if (IS_ERR(vol_args)) 2363 return PTR_ERR(vol_args); 2364 2365 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2366 namelen = strlen(vol_args->name); 2367 if (strchr(vol_args->name, '/') || 2368 strncmp(vol_args->name, "..", namelen) == 0) { 2369 err = -EINVAL; 2370 goto out; 2371 } 2372 2373 err = mnt_want_write_file(file); 2374 if (err) 2375 goto out; 2376 2377 2378 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2379 if (err == -EINTR) 2380 goto out_drop_write; 2381 dentry = lookup_one_len(vol_args->name, parent, namelen); 2382 if (IS_ERR(dentry)) { 2383 err = PTR_ERR(dentry); 2384 goto out_unlock_dir; 2385 } 2386 2387 if (d_really_is_negative(dentry)) { 2388 err = -ENOENT; 2389 goto out_dput; 2390 } 2391 2392 inode = d_inode(dentry); 2393 dest = BTRFS_I(inode)->root; 2394 if (!capable(CAP_SYS_ADMIN)) { 2395 /* 2396 * Regular user. Only allow this with a special mount 2397 * option, when the user has write+exec access to the 2398 * subvol root, and when rmdir(2) would have been 2399 * allowed. 2400 * 2401 * Note that this is _not_ check that the subvol is 2402 * empty or doesn't contain data that we wouldn't 2403 * otherwise be able to delete. 2404 * 2405 * Users who want to delete empty subvols should try 2406 * rmdir(2). 2407 */ 2408 err = -EPERM; 2409 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2410 goto out_dput; 2411 2412 /* 2413 * Do not allow deletion if the parent dir is the same 2414 * as the dir to be deleted. That means the ioctl 2415 * must be called on the dentry referencing the root 2416 * of the subvol, not a random directory contained 2417 * within it. 2418 */ 2419 err = -EINVAL; 2420 if (root == dest) 2421 goto out_dput; 2422 2423 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2424 if (err) 2425 goto out_dput; 2426 } 2427 2428 /* check if subvolume may be deleted by a user */ 2429 err = btrfs_may_delete(dir, dentry, 1); 2430 if (err) 2431 goto out_dput; 2432 2433 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2434 err = -EINVAL; 2435 goto out_dput; 2436 } 2437 2438 inode_lock(inode); 2439 2440 /* 2441 * Don't allow to delete a subvolume with send in progress. This is 2442 * inside the i_mutex so the error handling that has to drop the bit 2443 * again is not run concurrently. 2444 */ 2445 spin_lock(&dest->root_item_lock); 2446 root_flags = btrfs_root_flags(&dest->root_item); 2447 if (dest->send_in_progress == 0) { 2448 btrfs_set_root_flags(&dest->root_item, 2449 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2450 spin_unlock(&dest->root_item_lock); 2451 } else { 2452 spin_unlock(&dest->root_item_lock); 2453 btrfs_warn(root->fs_info, 2454 "Attempt to delete subvolume %llu during send", 2455 dest->root_key.objectid); 2456 err = -EPERM; 2457 goto out_unlock_inode; 2458 } 2459 2460 down_write(&root->fs_info->subvol_sem); 2461 2462 err = may_destroy_subvol(dest); 2463 if (err) 2464 goto out_up_write; 2465 2466 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2467 /* 2468 * One for dir inode, two for dir entries, two for root 2469 * ref/backref. 2470 */ 2471 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2472 5, &qgroup_reserved, true); 2473 if (err) 2474 goto out_up_write; 2475 2476 trans = btrfs_start_transaction(root, 0); 2477 if (IS_ERR(trans)) { 2478 err = PTR_ERR(trans); 2479 goto out_release; 2480 } 2481 trans->block_rsv = &block_rsv; 2482 trans->bytes_reserved = block_rsv.size; 2483 2484 btrfs_record_snapshot_destroy(trans, dir); 2485 2486 ret = btrfs_unlink_subvol(trans, root, dir, 2487 dest->root_key.objectid, 2488 dentry->d_name.name, 2489 dentry->d_name.len); 2490 if (ret) { 2491 err = ret; 2492 btrfs_abort_transaction(trans, root, ret); 2493 goto out_end_trans; 2494 } 2495 2496 btrfs_record_root_in_trans(trans, dest); 2497 2498 memset(&dest->root_item.drop_progress, 0, 2499 sizeof(dest->root_item.drop_progress)); 2500 dest->root_item.drop_level = 0; 2501 btrfs_set_root_refs(&dest->root_item, 0); 2502 2503 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2504 ret = btrfs_insert_orphan_item(trans, 2505 root->fs_info->tree_root, 2506 dest->root_key.objectid); 2507 if (ret) { 2508 btrfs_abort_transaction(trans, root, ret); 2509 err = ret; 2510 goto out_end_trans; 2511 } 2512 } 2513 2514 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2515 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2516 dest->root_key.objectid); 2517 if (ret && ret != -ENOENT) { 2518 btrfs_abort_transaction(trans, root, ret); 2519 err = ret; 2520 goto out_end_trans; 2521 } 2522 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2523 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2524 dest->root_item.received_uuid, 2525 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2526 dest->root_key.objectid); 2527 if (ret && ret != -ENOENT) { 2528 btrfs_abort_transaction(trans, root, ret); 2529 err = ret; 2530 goto out_end_trans; 2531 } 2532 } 2533 2534 out_end_trans: 2535 trans->block_rsv = NULL; 2536 trans->bytes_reserved = 0; 2537 ret = btrfs_end_transaction(trans, root); 2538 if (ret && !err) 2539 err = ret; 2540 inode->i_flags |= S_DEAD; 2541 out_release: 2542 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2543 out_up_write: 2544 up_write(&root->fs_info->subvol_sem); 2545 if (err) { 2546 spin_lock(&dest->root_item_lock); 2547 root_flags = btrfs_root_flags(&dest->root_item); 2548 btrfs_set_root_flags(&dest->root_item, 2549 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2550 spin_unlock(&dest->root_item_lock); 2551 } 2552 out_unlock_inode: 2553 inode_unlock(inode); 2554 if (!err) { 2555 d_invalidate(dentry); 2556 btrfs_invalidate_inodes(dest); 2557 d_delete(dentry); 2558 ASSERT(dest->send_in_progress == 0); 2559 2560 /* the last ref */ 2561 if (dest->ino_cache_inode) { 2562 iput(dest->ino_cache_inode); 2563 dest->ino_cache_inode = NULL; 2564 } 2565 } 2566 out_dput: 2567 dput(dentry); 2568 out_unlock_dir: 2569 inode_unlock(dir); 2570 out_drop_write: 2571 mnt_drop_write_file(file); 2572 out: 2573 kfree(vol_args); 2574 return err; 2575 } 2576 2577 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2578 { 2579 struct inode *inode = file_inode(file); 2580 struct btrfs_root *root = BTRFS_I(inode)->root; 2581 struct btrfs_ioctl_defrag_range_args *range; 2582 int ret; 2583 2584 ret = mnt_want_write_file(file); 2585 if (ret) 2586 return ret; 2587 2588 if (btrfs_root_readonly(root)) { 2589 ret = -EROFS; 2590 goto out; 2591 } 2592 2593 switch (inode->i_mode & S_IFMT) { 2594 case S_IFDIR: 2595 if (!capable(CAP_SYS_ADMIN)) { 2596 ret = -EPERM; 2597 goto out; 2598 } 2599 ret = btrfs_defrag_root(root); 2600 if (ret) 2601 goto out; 2602 ret = btrfs_defrag_root(root->fs_info->extent_root); 2603 break; 2604 case S_IFREG: 2605 if (!(file->f_mode & FMODE_WRITE)) { 2606 ret = -EINVAL; 2607 goto out; 2608 } 2609 2610 range = kzalloc(sizeof(*range), GFP_KERNEL); 2611 if (!range) { 2612 ret = -ENOMEM; 2613 goto out; 2614 } 2615 2616 if (argp) { 2617 if (copy_from_user(range, argp, 2618 sizeof(*range))) { 2619 ret = -EFAULT; 2620 kfree(range); 2621 goto out; 2622 } 2623 /* compression requires us to start the IO */ 2624 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2625 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2626 range->extent_thresh = (u32)-1; 2627 } 2628 } else { 2629 /* the rest are all set to zero by kzalloc */ 2630 range->len = (u64)-1; 2631 } 2632 ret = btrfs_defrag_file(file_inode(file), file, 2633 range, 0, 0); 2634 if (ret > 0) 2635 ret = 0; 2636 kfree(range); 2637 break; 2638 default: 2639 ret = -EINVAL; 2640 } 2641 out: 2642 mnt_drop_write_file(file); 2643 return ret; 2644 } 2645 2646 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2647 { 2648 struct btrfs_ioctl_vol_args *vol_args; 2649 int ret; 2650 2651 if (!capable(CAP_SYS_ADMIN)) 2652 return -EPERM; 2653 2654 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2655 1)) { 2656 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2657 } 2658 2659 mutex_lock(&root->fs_info->volume_mutex); 2660 vol_args = memdup_user(arg, sizeof(*vol_args)); 2661 if (IS_ERR(vol_args)) { 2662 ret = PTR_ERR(vol_args); 2663 goto out; 2664 } 2665 2666 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2667 ret = btrfs_init_new_device(root, vol_args->name); 2668 2669 if (!ret) 2670 btrfs_info(root->fs_info, "disk added %s",vol_args->name); 2671 2672 kfree(vol_args); 2673 out: 2674 mutex_unlock(&root->fs_info->volume_mutex); 2675 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2676 return ret; 2677 } 2678 2679 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2680 { 2681 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2682 struct btrfs_ioctl_vol_args_v2 *vol_args; 2683 int ret; 2684 2685 if (!capable(CAP_SYS_ADMIN)) 2686 return -EPERM; 2687 2688 ret = mnt_want_write_file(file); 2689 if (ret) 2690 return ret; 2691 2692 vol_args = memdup_user(arg, sizeof(*vol_args)); 2693 if (IS_ERR(vol_args)) { 2694 ret = PTR_ERR(vol_args); 2695 goto err_drop; 2696 } 2697 2698 /* Check for compatibility reject unknown flags */ 2699 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) 2700 return -EOPNOTSUPP; 2701 2702 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2703 1)) { 2704 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2705 goto out; 2706 } 2707 2708 mutex_lock(&root->fs_info->volume_mutex); 2709 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2710 ret = btrfs_rm_device(root, NULL, vol_args->devid); 2711 } else { 2712 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2713 ret = btrfs_rm_device(root, vol_args->name, 0); 2714 } 2715 mutex_unlock(&root->fs_info->volume_mutex); 2716 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2717 2718 if (!ret) { 2719 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2720 btrfs_info(root->fs_info, "device deleted: id %llu", 2721 vol_args->devid); 2722 else 2723 btrfs_info(root->fs_info, "device deleted: %s", 2724 vol_args->name); 2725 } 2726 out: 2727 kfree(vol_args); 2728 err_drop: 2729 mnt_drop_write_file(file); 2730 return ret; 2731 } 2732 2733 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2734 { 2735 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2736 struct btrfs_ioctl_vol_args *vol_args; 2737 int ret; 2738 2739 if (!capable(CAP_SYS_ADMIN)) 2740 return -EPERM; 2741 2742 ret = mnt_want_write_file(file); 2743 if (ret) 2744 return ret; 2745 2746 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2747 1)) { 2748 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2749 goto out_drop_write; 2750 } 2751 2752 vol_args = memdup_user(arg, sizeof(*vol_args)); 2753 if (IS_ERR(vol_args)) { 2754 ret = PTR_ERR(vol_args); 2755 goto out; 2756 } 2757 2758 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2759 mutex_lock(&root->fs_info->volume_mutex); 2760 ret = btrfs_rm_device(root, vol_args->name, 0); 2761 mutex_unlock(&root->fs_info->volume_mutex); 2762 2763 if (!ret) 2764 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name); 2765 kfree(vol_args); 2766 out: 2767 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2768 out_drop_write: 2769 mnt_drop_write_file(file); 2770 2771 return ret; 2772 } 2773 2774 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2775 { 2776 struct btrfs_ioctl_fs_info_args *fi_args; 2777 struct btrfs_device *device; 2778 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2779 int ret = 0; 2780 2781 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2782 if (!fi_args) 2783 return -ENOMEM; 2784 2785 mutex_lock(&fs_devices->device_list_mutex); 2786 fi_args->num_devices = fs_devices->num_devices; 2787 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2788 2789 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2790 if (device->devid > fi_args->max_id) 2791 fi_args->max_id = device->devid; 2792 } 2793 mutex_unlock(&fs_devices->device_list_mutex); 2794 2795 fi_args->nodesize = root->fs_info->super_copy->nodesize; 2796 fi_args->sectorsize = root->fs_info->super_copy->sectorsize; 2797 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize; 2798 2799 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2800 ret = -EFAULT; 2801 2802 kfree(fi_args); 2803 return ret; 2804 } 2805 2806 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2807 { 2808 struct btrfs_ioctl_dev_info_args *di_args; 2809 struct btrfs_device *dev; 2810 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2811 int ret = 0; 2812 char *s_uuid = NULL; 2813 2814 di_args = memdup_user(arg, sizeof(*di_args)); 2815 if (IS_ERR(di_args)) 2816 return PTR_ERR(di_args); 2817 2818 if (!btrfs_is_empty_uuid(di_args->uuid)) 2819 s_uuid = di_args->uuid; 2820 2821 mutex_lock(&fs_devices->device_list_mutex); 2822 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2823 2824 if (!dev) { 2825 ret = -ENODEV; 2826 goto out; 2827 } 2828 2829 di_args->devid = dev->devid; 2830 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2831 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2832 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2833 if (dev->name) { 2834 struct rcu_string *name; 2835 2836 rcu_read_lock(); 2837 name = rcu_dereference(dev->name); 2838 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2839 rcu_read_unlock(); 2840 di_args->path[sizeof(di_args->path) - 1] = 0; 2841 } else { 2842 di_args->path[0] = '\0'; 2843 } 2844 2845 out: 2846 mutex_unlock(&fs_devices->device_list_mutex); 2847 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2848 ret = -EFAULT; 2849 2850 kfree(di_args); 2851 return ret; 2852 } 2853 2854 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2855 { 2856 struct page *page; 2857 2858 page = grab_cache_page(inode->i_mapping, index); 2859 if (!page) 2860 return ERR_PTR(-ENOMEM); 2861 2862 if (!PageUptodate(page)) { 2863 int ret; 2864 2865 ret = btrfs_readpage(NULL, page); 2866 if (ret) 2867 return ERR_PTR(ret); 2868 lock_page(page); 2869 if (!PageUptodate(page)) { 2870 unlock_page(page); 2871 put_page(page); 2872 return ERR_PTR(-EIO); 2873 } 2874 if (page->mapping != inode->i_mapping) { 2875 unlock_page(page); 2876 put_page(page); 2877 return ERR_PTR(-EAGAIN); 2878 } 2879 } 2880 2881 return page; 2882 } 2883 2884 static int gather_extent_pages(struct inode *inode, struct page **pages, 2885 int num_pages, u64 off) 2886 { 2887 int i; 2888 pgoff_t index = off >> PAGE_SHIFT; 2889 2890 for (i = 0; i < num_pages; i++) { 2891 again: 2892 pages[i] = extent_same_get_page(inode, index + i); 2893 if (IS_ERR(pages[i])) { 2894 int err = PTR_ERR(pages[i]); 2895 2896 if (err == -EAGAIN) 2897 goto again; 2898 pages[i] = NULL; 2899 return err; 2900 } 2901 } 2902 return 0; 2903 } 2904 2905 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 2906 bool retry_range_locking) 2907 { 2908 /* 2909 * Do any pending delalloc/csum calculations on inode, one way or 2910 * another, and lock file content. 2911 * The locking order is: 2912 * 2913 * 1) pages 2914 * 2) range in the inode's io tree 2915 */ 2916 while (1) { 2917 struct btrfs_ordered_extent *ordered; 2918 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2919 ordered = btrfs_lookup_first_ordered_extent(inode, 2920 off + len - 1); 2921 if ((!ordered || 2922 ordered->file_offset + ordered->len <= off || 2923 ordered->file_offset >= off + len) && 2924 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2925 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2926 if (ordered) 2927 btrfs_put_ordered_extent(ordered); 2928 break; 2929 } 2930 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2931 if (ordered) 2932 btrfs_put_ordered_extent(ordered); 2933 if (!retry_range_locking) 2934 return -EAGAIN; 2935 btrfs_wait_ordered_range(inode, off, len); 2936 } 2937 return 0; 2938 } 2939 2940 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2941 { 2942 inode_unlock(inode1); 2943 inode_unlock(inode2); 2944 } 2945 2946 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2947 { 2948 if (inode1 < inode2) 2949 swap(inode1, inode2); 2950 2951 inode_lock_nested(inode1, I_MUTEX_PARENT); 2952 inode_lock_nested(inode2, I_MUTEX_CHILD); 2953 } 2954 2955 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2956 struct inode *inode2, u64 loff2, u64 len) 2957 { 2958 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2959 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2960 } 2961 2962 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2963 struct inode *inode2, u64 loff2, u64 len, 2964 bool retry_range_locking) 2965 { 2966 int ret; 2967 2968 if (inode1 < inode2) { 2969 swap(inode1, inode2); 2970 swap(loff1, loff2); 2971 } 2972 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 2973 if (ret) 2974 return ret; 2975 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 2976 if (ret) 2977 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 2978 loff1 + len - 1); 2979 return ret; 2980 } 2981 2982 struct cmp_pages { 2983 int num_pages; 2984 struct page **src_pages; 2985 struct page **dst_pages; 2986 }; 2987 2988 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 2989 { 2990 int i; 2991 struct page *pg; 2992 2993 for (i = 0; i < cmp->num_pages; i++) { 2994 pg = cmp->src_pages[i]; 2995 if (pg) { 2996 unlock_page(pg); 2997 put_page(pg); 2998 } 2999 pg = cmp->dst_pages[i]; 3000 if (pg) { 3001 unlock_page(pg); 3002 put_page(pg); 3003 } 3004 } 3005 kfree(cmp->src_pages); 3006 kfree(cmp->dst_pages); 3007 } 3008 3009 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 3010 struct inode *dst, u64 dst_loff, 3011 u64 len, struct cmp_pages *cmp) 3012 { 3013 int ret; 3014 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 3015 struct page **src_pgarr, **dst_pgarr; 3016 3017 /* 3018 * We must gather up all the pages before we initiate our 3019 * extent locking. We use an array for the page pointers. Size 3020 * of the array is bounded by len, which is in turn bounded by 3021 * BTRFS_MAX_DEDUPE_LEN. 3022 */ 3023 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3024 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3025 if (!src_pgarr || !dst_pgarr) { 3026 kfree(src_pgarr); 3027 kfree(dst_pgarr); 3028 return -ENOMEM; 3029 } 3030 cmp->num_pages = num_pages; 3031 cmp->src_pages = src_pgarr; 3032 cmp->dst_pages = dst_pgarr; 3033 3034 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff); 3035 if (ret) 3036 goto out; 3037 3038 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff); 3039 3040 out: 3041 if (ret) 3042 btrfs_cmp_data_free(cmp); 3043 return 0; 3044 } 3045 3046 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 3047 u64 dst_loff, u64 len, struct cmp_pages *cmp) 3048 { 3049 int ret = 0; 3050 int i; 3051 struct page *src_page, *dst_page; 3052 unsigned int cmp_len = PAGE_SIZE; 3053 void *addr, *dst_addr; 3054 3055 i = 0; 3056 while (len) { 3057 if (len < PAGE_SIZE) 3058 cmp_len = len; 3059 3060 BUG_ON(i >= cmp->num_pages); 3061 3062 src_page = cmp->src_pages[i]; 3063 dst_page = cmp->dst_pages[i]; 3064 ASSERT(PageLocked(src_page)); 3065 ASSERT(PageLocked(dst_page)); 3066 3067 addr = kmap_atomic(src_page); 3068 dst_addr = kmap_atomic(dst_page); 3069 3070 flush_dcache_page(src_page); 3071 flush_dcache_page(dst_page); 3072 3073 if (memcmp(addr, dst_addr, cmp_len)) 3074 ret = -EBADE; 3075 3076 kunmap_atomic(addr); 3077 kunmap_atomic(dst_addr); 3078 3079 if (ret) 3080 break; 3081 3082 len -= cmp_len; 3083 i++; 3084 } 3085 3086 return ret; 3087 } 3088 3089 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3090 u64 olen) 3091 { 3092 u64 len = *plen; 3093 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3094 3095 if (off + olen > inode->i_size || off + olen < off) 3096 return -EINVAL; 3097 3098 /* if we extend to eof, continue to block boundary */ 3099 if (off + len == inode->i_size) 3100 *plen = len = ALIGN(inode->i_size, bs) - off; 3101 3102 /* Check that we are block aligned - btrfs_clone() requires this */ 3103 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3104 return -EINVAL; 3105 3106 return 0; 3107 } 3108 3109 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3110 struct inode *dst, u64 dst_loff) 3111 { 3112 int ret; 3113 u64 len = olen; 3114 struct cmp_pages cmp; 3115 int same_inode = 0; 3116 u64 same_lock_start = 0; 3117 u64 same_lock_len = 0; 3118 3119 if (src == dst) 3120 same_inode = 1; 3121 3122 if (len == 0) 3123 return 0; 3124 3125 if (same_inode) { 3126 inode_lock(src); 3127 3128 ret = extent_same_check_offsets(src, loff, &len, olen); 3129 if (ret) 3130 goto out_unlock; 3131 ret = extent_same_check_offsets(src, dst_loff, &len, olen); 3132 if (ret) 3133 goto out_unlock; 3134 3135 /* 3136 * Single inode case wants the same checks, except we 3137 * don't want our length pushed out past i_size as 3138 * comparing that data range makes no sense. 3139 * 3140 * extent_same_check_offsets() will do this for an 3141 * unaligned length at i_size, so catch it here and 3142 * reject the request. 3143 * 3144 * This effectively means we require aligned extents 3145 * for the single-inode case, whereas the other cases 3146 * allow an unaligned length so long as it ends at 3147 * i_size. 3148 */ 3149 if (len != olen) { 3150 ret = -EINVAL; 3151 goto out_unlock; 3152 } 3153 3154 /* Check for overlapping ranges */ 3155 if (dst_loff + len > loff && dst_loff < loff + len) { 3156 ret = -EINVAL; 3157 goto out_unlock; 3158 } 3159 3160 same_lock_start = min_t(u64, loff, dst_loff); 3161 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3162 } else { 3163 btrfs_double_inode_lock(src, dst); 3164 3165 ret = extent_same_check_offsets(src, loff, &len, olen); 3166 if (ret) 3167 goto out_unlock; 3168 3169 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3170 if (ret) 3171 goto out_unlock; 3172 } 3173 3174 /* don't make the dst file partly checksummed */ 3175 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3176 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3177 ret = -EINVAL; 3178 goto out_unlock; 3179 } 3180 3181 again: 3182 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3183 if (ret) 3184 goto out_unlock; 3185 3186 if (same_inode) 3187 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3188 false); 3189 else 3190 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3191 false); 3192 /* 3193 * If one of the inodes has dirty pages in the respective range or 3194 * ordered extents, we need to flush dellaloc and wait for all ordered 3195 * extents in the range. We must unlock the pages and the ranges in the 3196 * io trees to avoid deadlocks when flushing delalloc (requires locking 3197 * pages) and when waiting for ordered extents to complete (they require 3198 * range locking). 3199 */ 3200 if (ret == -EAGAIN) { 3201 /* 3202 * Ranges in the io trees already unlocked. Now unlock all 3203 * pages before waiting for all IO to complete. 3204 */ 3205 btrfs_cmp_data_free(&cmp); 3206 if (same_inode) { 3207 btrfs_wait_ordered_range(src, same_lock_start, 3208 same_lock_len); 3209 } else { 3210 btrfs_wait_ordered_range(src, loff, len); 3211 btrfs_wait_ordered_range(dst, dst_loff, len); 3212 } 3213 goto again; 3214 } 3215 ASSERT(ret == 0); 3216 if (WARN_ON(ret)) { 3217 /* ranges in the io trees already unlocked */ 3218 btrfs_cmp_data_free(&cmp); 3219 return ret; 3220 } 3221 3222 /* pass original length for comparison so we stay within i_size */ 3223 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp); 3224 if (ret == 0) 3225 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3226 3227 if (same_inode) 3228 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3229 same_lock_start + same_lock_len - 1); 3230 else 3231 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3232 3233 btrfs_cmp_data_free(&cmp); 3234 out_unlock: 3235 if (same_inode) 3236 inode_unlock(src); 3237 else 3238 btrfs_double_inode_unlock(src, dst); 3239 3240 return ret; 3241 } 3242 3243 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3244 3245 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3246 struct file *dst_file, u64 dst_loff) 3247 { 3248 struct inode *src = file_inode(src_file); 3249 struct inode *dst = file_inode(dst_file); 3250 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3251 ssize_t res; 3252 3253 if (olen > BTRFS_MAX_DEDUPE_LEN) 3254 olen = BTRFS_MAX_DEDUPE_LEN; 3255 3256 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3257 /* 3258 * Btrfs does not support blocksize < page_size. As a 3259 * result, btrfs_cmp_data() won't correctly handle 3260 * this situation without an update. 3261 */ 3262 return -EINVAL; 3263 } 3264 3265 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3266 if (res) 3267 return res; 3268 return olen; 3269 } 3270 3271 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3272 struct inode *inode, 3273 u64 endoff, 3274 const u64 destoff, 3275 const u64 olen, 3276 int no_time_update) 3277 { 3278 struct btrfs_root *root = BTRFS_I(inode)->root; 3279 int ret; 3280 3281 inode_inc_iversion(inode); 3282 if (!no_time_update) 3283 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 3284 /* 3285 * We round up to the block size at eof when determining which 3286 * extents to clone above, but shouldn't round up the file size. 3287 */ 3288 if (endoff > destoff + olen) 3289 endoff = destoff + olen; 3290 if (endoff > inode->i_size) 3291 btrfs_i_size_write(inode, endoff); 3292 3293 ret = btrfs_update_inode(trans, root, inode); 3294 if (ret) { 3295 btrfs_abort_transaction(trans, root, ret); 3296 btrfs_end_transaction(trans, root); 3297 goto out; 3298 } 3299 ret = btrfs_end_transaction(trans, root); 3300 out: 3301 return ret; 3302 } 3303 3304 static void clone_update_extent_map(struct inode *inode, 3305 const struct btrfs_trans_handle *trans, 3306 const struct btrfs_path *path, 3307 const u64 hole_offset, 3308 const u64 hole_len) 3309 { 3310 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3311 struct extent_map *em; 3312 int ret; 3313 3314 em = alloc_extent_map(); 3315 if (!em) { 3316 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3317 &BTRFS_I(inode)->runtime_flags); 3318 return; 3319 } 3320 3321 if (path) { 3322 struct btrfs_file_extent_item *fi; 3323 3324 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3325 struct btrfs_file_extent_item); 3326 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3327 em->generation = -1; 3328 if (btrfs_file_extent_type(path->nodes[0], fi) == 3329 BTRFS_FILE_EXTENT_INLINE) 3330 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3331 &BTRFS_I(inode)->runtime_flags); 3332 } else { 3333 em->start = hole_offset; 3334 em->len = hole_len; 3335 em->ram_bytes = em->len; 3336 em->orig_start = hole_offset; 3337 em->block_start = EXTENT_MAP_HOLE; 3338 em->block_len = 0; 3339 em->orig_block_len = 0; 3340 em->compress_type = BTRFS_COMPRESS_NONE; 3341 em->generation = trans->transid; 3342 } 3343 3344 while (1) { 3345 write_lock(&em_tree->lock); 3346 ret = add_extent_mapping(em_tree, em, 1); 3347 write_unlock(&em_tree->lock); 3348 if (ret != -EEXIST) { 3349 free_extent_map(em); 3350 break; 3351 } 3352 btrfs_drop_extent_cache(inode, em->start, 3353 em->start + em->len - 1, 0); 3354 } 3355 3356 if (ret) 3357 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3358 &BTRFS_I(inode)->runtime_flags); 3359 } 3360 3361 /* 3362 * Make sure we do not end up inserting an inline extent into a file that has 3363 * already other (non-inline) extents. If a file has an inline extent it can 3364 * not have any other extents and the (single) inline extent must start at the 3365 * file offset 0. Failing to respect these rules will lead to file corruption, 3366 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3367 * 3368 * We can have extents that have been already written to disk or we can have 3369 * dirty ranges still in delalloc, in which case the extent maps and items are 3370 * created only when we run delalloc, and the delalloc ranges might fall outside 3371 * the range we are currently locking in the inode's io tree. So we check the 3372 * inode's i_size because of that (i_size updates are done while holding the 3373 * i_mutex, which we are holding here). 3374 * We also check to see if the inode has a size not greater than "datal" but has 3375 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3376 * protected against such concurrent fallocate calls by the i_mutex). 3377 * 3378 * If the file has no extents but a size greater than datal, do not allow the 3379 * copy because we would need turn the inline extent into a non-inline one (even 3380 * with NO_HOLES enabled). If we find our destination inode only has one inline 3381 * extent, just overwrite it with the source inline extent if its size is less 3382 * than the source extent's size, or we could copy the source inline extent's 3383 * data into the destination inode's inline extent if the later is greater then 3384 * the former. 3385 */ 3386 static int clone_copy_inline_extent(struct inode *src, 3387 struct inode *dst, 3388 struct btrfs_trans_handle *trans, 3389 struct btrfs_path *path, 3390 struct btrfs_key *new_key, 3391 const u64 drop_start, 3392 const u64 datal, 3393 const u64 skip, 3394 const u64 size, 3395 char *inline_data) 3396 { 3397 struct btrfs_root *root = BTRFS_I(dst)->root; 3398 const u64 aligned_end = ALIGN(new_key->offset + datal, 3399 root->sectorsize); 3400 int ret; 3401 struct btrfs_key key; 3402 3403 if (new_key->offset > 0) 3404 return -EOPNOTSUPP; 3405 3406 key.objectid = btrfs_ino(dst); 3407 key.type = BTRFS_EXTENT_DATA_KEY; 3408 key.offset = 0; 3409 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3410 if (ret < 0) { 3411 return ret; 3412 } else if (ret > 0) { 3413 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3414 ret = btrfs_next_leaf(root, path); 3415 if (ret < 0) 3416 return ret; 3417 else if (ret > 0) 3418 goto copy_inline_extent; 3419 } 3420 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3421 if (key.objectid == btrfs_ino(dst) && 3422 key.type == BTRFS_EXTENT_DATA_KEY) { 3423 ASSERT(key.offset > 0); 3424 return -EOPNOTSUPP; 3425 } 3426 } else if (i_size_read(dst) <= datal) { 3427 struct btrfs_file_extent_item *ei; 3428 u64 ext_len; 3429 3430 /* 3431 * If the file size is <= datal, make sure there are no other 3432 * extents following (can happen do to an fallocate call with 3433 * the flag FALLOC_FL_KEEP_SIZE). 3434 */ 3435 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3436 struct btrfs_file_extent_item); 3437 /* 3438 * If it's an inline extent, it can not have other extents 3439 * following it. 3440 */ 3441 if (btrfs_file_extent_type(path->nodes[0], ei) == 3442 BTRFS_FILE_EXTENT_INLINE) 3443 goto copy_inline_extent; 3444 3445 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3446 if (ext_len > aligned_end) 3447 return -EOPNOTSUPP; 3448 3449 ret = btrfs_next_item(root, path); 3450 if (ret < 0) { 3451 return ret; 3452 } else if (ret == 0) { 3453 btrfs_item_key_to_cpu(path->nodes[0], &key, 3454 path->slots[0]); 3455 if (key.objectid == btrfs_ino(dst) && 3456 key.type == BTRFS_EXTENT_DATA_KEY) 3457 return -EOPNOTSUPP; 3458 } 3459 } 3460 3461 copy_inline_extent: 3462 /* 3463 * We have no extent items, or we have an extent at offset 0 which may 3464 * or may not be inlined. All these cases are dealt the same way. 3465 */ 3466 if (i_size_read(dst) > datal) { 3467 /* 3468 * If the destination inode has an inline extent... 3469 * This would require copying the data from the source inline 3470 * extent into the beginning of the destination's inline extent. 3471 * But this is really complex, both extents can be compressed 3472 * or just one of them, which would require decompressing and 3473 * re-compressing data (which could increase the new compressed 3474 * size, not allowing the compressed data to fit anymore in an 3475 * inline extent). 3476 * So just don't support this case for now (it should be rare, 3477 * we are not really saving space when cloning inline extents). 3478 */ 3479 return -EOPNOTSUPP; 3480 } 3481 3482 btrfs_release_path(path); 3483 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3484 if (ret) 3485 return ret; 3486 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3487 if (ret) 3488 return ret; 3489 3490 if (skip) { 3491 const u32 start = btrfs_file_extent_calc_inline_size(0); 3492 3493 memmove(inline_data + start, inline_data + start + skip, datal); 3494 } 3495 3496 write_extent_buffer(path->nodes[0], inline_data, 3497 btrfs_item_ptr_offset(path->nodes[0], 3498 path->slots[0]), 3499 size); 3500 inode_add_bytes(dst, datal); 3501 3502 return 0; 3503 } 3504 3505 /** 3506 * btrfs_clone() - clone a range from inode file to another 3507 * 3508 * @src: Inode to clone from 3509 * @inode: Inode to clone to 3510 * @off: Offset within source to start clone from 3511 * @olen: Original length, passed by user, of range to clone 3512 * @olen_aligned: Block-aligned value of olen 3513 * @destoff: Offset within @inode to start clone 3514 * @no_time_update: Whether to update mtime/ctime on the target inode 3515 */ 3516 static int btrfs_clone(struct inode *src, struct inode *inode, 3517 const u64 off, const u64 olen, const u64 olen_aligned, 3518 const u64 destoff, int no_time_update) 3519 { 3520 struct btrfs_root *root = BTRFS_I(inode)->root; 3521 struct btrfs_path *path = NULL; 3522 struct extent_buffer *leaf; 3523 struct btrfs_trans_handle *trans; 3524 char *buf = NULL; 3525 struct btrfs_key key; 3526 u32 nritems; 3527 int slot; 3528 int ret; 3529 const u64 len = olen_aligned; 3530 u64 last_dest_end = destoff; 3531 3532 ret = -ENOMEM; 3533 buf = kmalloc(root->nodesize, GFP_KERNEL | __GFP_NOWARN); 3534 if (!buf) { 3535 buf = vmalloc(root->nodesize); 3536 if (!buf) 3537 return ret; 3538 } 3539 3540 path = btrfs_alloc_path(); 3541 if (!path) { 3542 kvfree(buf); 3543 return ret; 3544 } 3545 3546 path->reada = READA_FORWARD; 3547 /* clone data */ 3548 key.objectid = btrfs_ino(src); 3549 key.type = BTRFS_EXTENT_DATA_KEY; 3550 key.offset = off; 3551 3552 while (1) { 3553 u64 next_key_min_offset = key.offset + 1; 3554 3555 /* 3556 * note the key will change type as we walk through the 3557 * tree. 3558 */ 3559 path->leave_spinning = 1; 3560 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3561 0, 0); 3562 if (ret < 0) 3563 goto out; 3564 /* 3565 * First search, if no extent item that starts at offset off was 3566 * found but the previous item is an extent item, it's possible 3567 * it might overlap our target range, therefore process it. 3568 */ 3569 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3570 btrfs_item_key_to_cpu(path->nodes[0], &key, 3571 path->slots[0] - 1); 3572 if (key.type == BTRFS_EXTENT_DATA_KEY) 3573 path->slots[0]--; 3574 } 3575 3576 nritems = btrfs_header_nritems(path->nodes[0]); 3577 process_slot: 3578 if (path->slots[0] >= nritems) { 3579 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3580 if (ret < 0) 3581 goto out; 3582 if (ret > 0) 3583 break; 3584 nritems = btrfs_header_nritems(path->nodes[0]); 3585 } 3586 leaf = path->nodes[0]; 3587 slot = path->slots[0]; 3588 3589 btrfs_item_key_to_cpu(leaf, &key, slot); 3590 if (key.type > BTRFS_EXTENT_DATA_KEY || 3591 key.objectid != btrfs_ino(src)) 3592 break; 3593 3594 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3595 struct btrfs_file_extent_item *extent; 3596 int type; 3597 u32 size; 3598 struct btrfs_key new_key; 3599 u64 disko = 0, diskl = 0; 3600 u64 datao = 0, datal = 0; 3601 u8 comp; 3602 u64 drop_start; 3603 3604 extent = btrfs_item_ptr(leaf, slot, 3605 struct btrfs_file_extent_item); 3606 comp = btrfs_file_extent_compression(leaf, extent); 3607 type = btrfs_file_extent_type(leaf, extent); 3608 if (type == BTRFS_FILE_EXTENT_REG || 3609 type == BTRFS_FILE_EXTENT_PREALLOC) { 3610 disko = btrfs_file_extent_disk_bytenr(leaf, 3611 extent); 3612 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3613 extent); 3614 datao = btrfs_file_extent_offset(leaf, extent); 3615 datal = btrfs_file_extent_num_bytes(leaf, 3616 extent); 3617 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3618 /* take upper bound, may be compressed */ 3619 datal = btrfs_file_extent_ram_bytes(leaf, 3620 extent); 3621 } 3622 3623 /* 3624 * The first search might have left us at an extent 3625 * item that ends before our target range's start, can 3626 * happen if we have holes and NO_HOLES feature enabled. 3627 */ 3628 if (key.offset + datal <= off) { 3629 path->slots[0]++; 3630 goto process_slot; 3631 } else if (key.offset >= off + len) { 3632 break; 3633 } 3634 next_key_min_offset = key.offset + datal; 3635 size = btrfs_item_size_nr(leaf, slot); 3636 read_extent_buffer(leaf, buf, 3637 btrfs_item_ptr_offset(leaf, slot), 3638 size); 3639 3640 btrfs_release_path(path); 3641 path->leave_spinning = 0; 3642 3643 memcpy(&new_key, &key, sizeof(new_key)); 3644 new_key.objectid = btrfs_ino(inode); 3645 if (off <= key.offset) 3646 new_key.offset = key.offset + destoff - off; 3647 else 3648 new_key.offset = destoff; 3649 3650 /* 3651 * Deal with a hole that doesn't have an extent item 3652 * that represents it (NO_HOLES feature enabled). 3653 * This hole is either in the middle of the cloning 3654 * range or at the beginning (fully overlaps it or 3655 * partially overlaps it). 3656 */ 3657 if (new_key.offset != last_dest_end) 3658 drop_start = last_dest_end; 3659 else 3660 drop_start = new_key.offset; 3661 3662 /* 3663 * 1 - adjusting old extent (we may have to split it) 3664 * 1 - add new extent 3665 * 1 - inode update 3666 */ 3667 trans = btrfs_start_transaction(root, 3); 3668 if (IS_ERR(trans)) { 3669 ret = PTR_ERR(trans); 3670 goto out; 3671 } 3672 3673 if (type == BTRFS_FILE_EXTENT_REG || 3674 type == BTRFS_FILE_EXTENT_PREALLOC) { 3675 /* 3676 * a | --- range to clone ---| b 3677 * | ------------- extent ------------- | 3678 */ 3679 3680 /* subtract range b */ 3681 if (key.offset + datal > off + len) 3682 datal = off + len - key.offset; 3683 3684 /* subtract range a */ 3685 if (off > key.offset) { 3686 datao += off - key.offset; 3687 datal -= off - key.offset; 3688 } 3689 3690 ret = btrfs_drop_extents(trans, root, inode, 3691 drop_start, 3692 new_key.offset + datal, 3693 1); 3694 if (ret) { 3695 if (ret != -EOPNOTSUPP) 3696 btrfs_abort_transaction(trans, 3697 root, ret); 3698 btrfs_end_transaction(trans, root); 3699 goto out; 3700 } 3701 3702 ret = btrfs_insert_empty_item(trans, root, path, 3703 &new_key, size); 3704 if (ret) { 3705 btrfs_abort_transaction(trans, root, 3706 ret); 3707 btrfs_end_transaction(trans, root); 3708 goto out; 3709 } 3710 3711 leaf = path->nodes[0]; 3712 slot = path->slots[0]; 3713 write_extent_buffer(leaf, buf, 3714 btrfs_item_ptr_offset(leaf, slot), 3715 size); 3716 3717 extent = btrfs_item_ptr(leaf, slot, 3718 struct btrfs_file_extent_item); 3719 3720 /* disko == 0 means it's a hole */ 3721 if (!disko) 3722 datao = 0; 3723 3724 btrfs_set_file_extent_offset(leaf, extent, 3725 datao); 3726 btrfs_set_file_extent_num_bytes(leaf, extent, 3727 datal); 3728 3729 if (disko) { 3730 inode_add_bytes(inode, datal); 3731 ret = btrfs_inc_extent_ref(trans, root, 3732 disko, diskl, 0, 3733 root->root_key.objectid, 3734 btrfs_ino(inode), 3735 new_key.offset - datao); 3736 if (ret) { 3737 btrfs_abort_transaction(trans, 3738 root, 3739 ret); 3740 btrfs_end_transaction(trans, 3741 root); 3742 goto out; 3743 3744 } 3745 } 3746 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3747 u64 skip = 0; 3748 u64 trim = 0; 3749 3750 if (off > key.offset) { 3751 skip = off - key.offset; 3752 new_key.offset += skip; 3753 } 3754 3755 if (key.offset + datal > off + len) 3756 trim = key.offset + datal - (off + len); 3757 3758 if (comp && (skip || trim)) { 3759 ret = -EINVAL; 3760 btrfs_end_transaction(trans, root); 3761 goto out; 3762 } 3763 size -= skip + trim; 3764 datal -= skip + trim; 3765 3766 ret = clone_copy_inline_extent(src, inode, 3767 trans, path, 3768 &new_key, 3769 drop_start, 3770 datal, 3771 skip, size, buf); 3772 if (ret) { 3773 if (ret != -EOPNOTSUPP) 3774 btrfs_abort_transaction(trans, 3775 root, 3776 ret); 3777 btrfs_end_transaction(trans, root); 3778 goto out; 3779 } 3780 leaf = path->nodes[0]; 3781 slot = path->slots[0]; 3782 } 3783 3784 /* If we have an implicit hole (NO_HOLES feature). */ 3785 if (drop_start < new_key.offset) 3786 clone_update_extent_map(inode, trans, 3787 NULL, drop_start, 3788 new_key.offset - drop_start); 3789 3790 clone_update_extent_map(inode, trans, path, 0, 0); 3791 3792 btrfs_mark_buffer_dirty(leaf); 3793 btrfs_release_path(path); 3794 3795 last_dest_end = ALIGN(new_key.offset + datal, 3796 root->sectorsize); 3797 ret = clone_finish_inode_update(trans, inode, 3798 last_dest_end, 3799 destoff, olen, 3800 no_time_update); 3801 if (ret) 3802 goto out; 3803 if (new_key.offset + datal >= destoff + len) 3804 break; 3805 } 3806 btrfs_release_path(path); 3807 key.offset = next_key_min_offset; 3808 } 3809 ret = 0; 3810 3811 if (last_dest_end < destoff + len) { 3812 /* 3813 * We have an implicit hole (NO_HOLES feature is enabled) that 3814 * fully or partially overlaps our cloning range at its end. 3815 */ 3816 btrfs_release_path(path); 3817 3818 /* 3819 * 1 - remove extent(s) 3820 * 1 - inode update 3821 */ 3822 trans = btrfs_start_transaction(root, 2); 3823 if (IS_ERR(trans)) { 3824 ret = PTR_ERR(trans); 3825 goto out; 3826 } 3827 ret = btrfs_drop_extents(trans, root, inode, 3828 last_dest_end, destoff + len, 1); 3829 if (ret) { 3830 if (ret != -EOPNOTSUPP) 3831 btrfs_abort_transaction(trans, root, ret); 3832 btrfs_end_transaction(trans, root); 3833 goto out; 3834 } 3835 clone_update_extent_map(inode, trans, NULL, last_dest_end, 3836 destoff + len - last_dest_end); 3837 ret = clone_finish_inode_update(trans, inode, destoff + len, 3838 destoff, olen, no_time_update); 3839 } 3840 3841 out: 3842 btrfs_free_path(path); 3843 kvfree(buf); 3844 return ret; 3845 } 3846 3847 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3848 u64 off, u64 olen, u64 destoff) 3849 { 3850 struct inode *inode = file_inode(file); 3851 struct inode *src = file_inode(file_src); 3852 struct btrfs_root *root = BTRFS_I(inode)->root; 3853 int ret; 3854 u64 len = olen; 3855 u64 bs = root->fs_info->sb->s_blocksize; 3856 int same_inode = src == inode; 3857 3858 /* 3859 * TODO: 3860 * - split compressed inline extents. annoying: we need to 3861 * decompress into destination's address_space (the file offset 3862 * may change, so source mapping won't do), then recompress (or 3863 * otherwise reinsert) a subrange. 3864 * 3865 * - split destination inode's inline extents. The inline extents can 3866 * be either compressed or non-compressed. 3867 */ 3868 3869 if (btrfs_root_readonly(root)) 3870 return -EROFS; 3871 3872 if (file_src->f_path.mnt != file->f_path.mnt || 3873 src->i_sb != inode->i_sb) 3874 return -EXDEV; 3875 3876 /* don't make the dst file partly checksummed */ 3877 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3878 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3879 return -EINVAL; 3880 3881 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3882 return -EISDIR; 3883 3884 if (!same_inode) { 3885 btrfs_double_inode_lock(src, inode); 3886 } else { 3887 inode_lock(src); 3888 } 3889 3890 /* determine range to clone */ 3891 ret = -EINVAL; 3892 if (off + len > src->i_size || off + len < off) 3893 goto out_unlock; 3894 if (len == 0) 3895 olen = len = src->i_size - off; 3896 /* if we extend to eof, continue to block boundary */ 3897 if (off + len == src->i_size) 3898 len = ALIGN(src->i_size, bs) - off; 3899 3900 if (len == 0) { 3901 ret = 0; 3902 goto out_unlock; 3903 } 3904 3905 /* verify the end result is block aligned */ 3906 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3907 !IS_ALIGNED(destoff, bs)) 3908 goto out_unlock; 3909 3910 /* verify if ranges are overlapped within the same file */ 3911 if (same_inode) { 3912 if (destoff + len > off && destoff < off + len) 3913 goto out_unlock; 3914 } 3915 3916 if (destoff > inode->i_size) { 3917 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3918 if (ret) 3919 goto out_unlock; 3920 } 3921 3922 /* 3923 * Lock the target range too. Right after we replace the file extent 3924 * items in the fs tree (which now point to the cloned data), we might 3925 * have a worker replace them with extent items relative to a write 3926 * operation that was issued before this clone operation (i.e. confront 3927 * with inode.c:btrfs_finish_ordered_io). 3928 */ 3929 if (same_inode) { 3930 u64 lock_start = min_t(u64, off, destoff); 3931 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3932 3933 ret = lock_extent_range(src, lock_start, lock_len, true); 3934 } else { 3935 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 3936 true); 3937 } 3938 ASSERT(ret == 0); 3939 if (WARN_ON(ret)) { 3940 /* ranges in the io trees already unlocked */ 3941 goto out_unlock; 3942 } 3943 3944 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3945 3946 if (same_inode) { 3947 u64 lock_start = min_t(u64, off, destoff); 3948 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3949 3950 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3951 } else { 3952 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3953 } 3954 /* 3955 * Truncate page cache pages so that future reads will see the cloned 3956 * data immediately and not the previous data. 3957 */ 3958 truncate_inode_pages_range(&inode->i_data, 3959 round_down(destoff, PAGE_SIZE), 3960 round_up(destoff + len, PAGE_SIZE) - 1); 3961 out_unlock: 3962 if (!same_inode) 3963 btrfs_double_inode_unlock(src, inode); 3964 else 3965 inode_unlock(src); 3966 return ret; 3967 } 3968 3969 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in, 3970 struct file *file_out, loff_t pos_out, 3971 size_t len, unsigned int flags) 3972 { 3973 ssize_t ret; 3974 3975 ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out); 3976 if (ret == 0) 3977 ret = len; 3978 return ret; 3979 } 3980 3981 int btrfs_clone_file_range(struct file *src_file, loff_t off, 3982 struct file *dst_file, loff_t destoff, u64 len) 3983 { 3984 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 3985 } 3986 3987 /* 3988 * there are many ways the trans_start and trans_end ioctls can lead 3989 * to deadlocks. They should only be used by applications that 3990 * basically own the machine, and have a very in depth understanding 3991 * of all the possible deadlocks and enospc problems. 3992 */ 3993 static long btrfs_ioctl_trans_start(struct file *file) 3994 { 3995 struct inode *inode = file_inode(file); 3996 struct btrfs_root *root = BTRFS_I(inode)->root; 3997 struct btrfs_trans_handle *trans; 3998 int ret; 3999 4000 ret = -EPERM; 4001 if (!capable(CAP_SYS_ADMIN)) 4002 goto out; 4003 4004 ret = -EINPROGRESS; 4005 if (file->private_data) 4006 goto out; 4007 4008 ret = -EROFS; 4009 if (btrfs_root_readonly(root)) 4010 goto out; 4011 4012 ret = mnt_want_write_file(file); 4013 if (ret) 4014 goto out; 4015 4016 atomic_inc(&root->fs_info->open_ioctl_trans); 4017 4018 ret = -ENOMEM; 4019 trans = btrfs_start_ioctl_transaction(root); 4020 if (IS_ERR(trans)) 4021 goto out_drop; 4022 4023 file->private_data = trans; 4024 return 0; 4025 4026 out_drop: 4027 atomic_dec(&root->fs_info->open_ioctl_trans); 4028 mnt_drop_write_file(file); 4029 out: 4030 return ret; 4031 } 4032 4033 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4034 { 4035 struct inode *inode = file_inode(file); 4036 struct btrfs_root *root = BTRFS_I(inode)->root; 4037 struct btrfs_root *new_root; 4038 struct btrfs_dir_item *di; 4039 struct btrfs_trans_handle *trans; 4040 struct btrfs_path *path; 4041 struct btrfs_key location; 4042 struct btrfs_disk_key disk_key; 4043 u64 objectid = 0; 4044 u64 dir_id; 4045 int ret; 4046 4047 if (!capable(CAP_SYS_ADMIN)) 4048 return -EPERM; 4049 4050 ret = mnt_want_write_file(file); 4051 if (ret) 4052 return ret; 4053 4054 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4055 ret = -EFAULT; 4056 goto out; 4057 } 4058 4059 if (!objectid) 4060 objectid = BTRFS_FS_TREE_OBJECTID; 4061 4062 location.objectid = objectid; 4063 location.type = BTRFS_ROOT_ITEM_KEY; 4064 location.offset = (u64)-1; 4065 4066 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 4067 if (IS_ERR(new_root)) { 4068 ret = PTR_ERR(new_root); 4069 goto out; 4070 } 4071 4072 path = btrfs_alloc_path(); 4073 if (!path) { 4074 ret = -ENOMEM; 4075 goto out; 4076 } 4077 path->leave_spinning = 1; 4078 4079 trans = btrfs_start_transaction(root, 1); 4080 if (IS_ERR(trans)) { 4081 btrfs_free_path(path); 4082 ret = PTR_ERR(trans); 4083 goto out; 4084 } 4085 4086 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 4087 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 4088 dir_id, "default", 7, 1); 4089 if (IS_ERR_OR_NULL(di)) { 4090 btrfs_free_path(path); 4091 btrfs_end_transaction(trans, root); 4092 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir" 4093 "item, this isn't going to work"); 4094 ret = -ENOENT; 4095 goto out; 4096 } 4097 4098 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4099 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4100 btrfs_mark_buffer_dirty(path->nodes[0]); 4101 btrfs_free_path(path); 4102 4103 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 4104 btrfs_end_transaction(trans, root); 4105 out: 4106 mnt_drop_write_file(file); 4107 return ret; 4108 } 4109 4110 void btrfs_get_block_group_info(struct list_head *groups_list, 4111 struct btrfs_ioctl_space_info *space) 4112 { 4113 struct btrfs_block_group_cache *block_group; 4114 4115 space->total_bytes = 0; 4116 space->used_bytes = 0; 4117 space->flags = 0; 4118 list_for_each_entry(block_group, groups_list, list) { 4119 space->flags = block_group->flags; 4120 space->total_bytes += block_group->key.offset; 4121 space->used_bytes += 4122 btrfs_block_group_used(&block_group->item); 4123 } 4124 } 4125 4126 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 4127 { 4128 struct btrfs_ioctl_space_args space_args; 4129 struct btrfs_ioctl_space_info space; 4130 struct btrfs_ioctl_space_info *dest; 4131 struct btrfs_ioctl_space_info *dest_orig; 4132 struct btrfs_ioctl_space_info __user *user_dest; 4133 struct btrfs_space_info *info; 4134 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4135 BTRFS_BLOCK_GROUP_SYSTEM, 4136 BTRFS_BLOCK_GROUP_METADATA, 4137 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4138 int num_types = 4; 4139 int alloc_size; 4140 int ret = 0; 4141 u64 slot_count = 0; 4142 int i, c; 4143 4144 if (copy_from_user(&space_args, 4145 (struct btrfs_ioctl_space_args __user *)arg, 4146 sizeof(space_args))) 4147 return -EFAULT; 4148 4149 for (i = 0; i < num_types; i++) { 4150 struct btrfs_space_info *tmp; 4151 4152 info = NULL; 4153 rcu_read_lock(); 4154 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4155 list) { 4156 if (tmp->flags == types[i]) { 4157 info = tmp; 4158 break; 4159 } 4160 } 4161 rcu_read_unlock(); 4162 4163 if (!info) 4164 continue; 4165 4166 down_read(&info->groups_sem); 4167 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4168 if (!list_empty(&info->block_groups[c])) 4169 slot_count++; 4170 } 4171 up_read(&info->groups_sem); 4172 } 4173 4174 /* 4175 * Global block reserve, exported as a space_info 4176 */ 4177 slot_count++; 4178 4179 /* space_slots == 0 means they are asking for a count */ 4180 if (space_args.space_slots == 0) { 4181 space_args.total_spaces = slot_count; 4182 goto out; 4183 } 4184 4185 slot_count = min_t(u64, space_args.space_slots, slot_count); 4186 4187 alloc_size = sizeof(*dest) * slot_count; 4188 4189 /* we generally have at most 6 or so space infos, one for each raid 4190 * level. So, a whole page should be more than enough for everyone 4191 */ 4192 if (alloc_size > PAGE_SIZE) 4193 return -ENOMEM; 4194 4195 space_args.total_spaces = 0; 4196 dest = kmalloc(alloc_size, GFP_KERNEL); 4197 if (!dest) 4198 return -ENOMEM; 4199 dest_orig = dest; 4200 4201 /* now we have a buffer to copy into */ 4202 for (i = 0; i < num_types; i++) { 4203 struct btrfs_space_info *tmp; 4204 4205 if (!slot_count) 4206 break; 4207 4208 info = NULL; 4209 rcu_read_lock(); 4210 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4211 list) { 4212 if (tmp->flags == types[i]) { 4213 info = tmp; 4214 break; 4215 } 4216 } 4217 rcu_read_unlock(); 4218 4219 if (!info) 4220 continue; 4221 down_read(&info->groups_sem); 4222 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4223 if (!list_empty(&info->block_groups[c])) { 4224 btrfs_get_block_group_info( 4225 &info->block_groups[c], &space); 4226 memcpy(dest, &space, sizeof(space)); 4227 dest++; 4228 space_args.total_spaces++; 4229 slot_count--; 4230 } 4231 if (!slot_count) 4232 break; 4233 } 4234 up_read(&info->groups_sem); 4235 } 4236 4237 /* 4238 * Add global block reserve 4239 */ 4240 if (slot_count) { 4241 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv; 4242 4243 spin_lock(&block_rsv->lock); 4244 space.total_bytes = block_rsv->size; 4245 space.used_bytes = block_rsv->size - block_rsv->reserved; 4246 spin_unlock(&block_rsv->lock); 4247 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4248 memcpy(dest, &space, sizeof(space)); 4249 space_args.total_spaces++; 4250 } 4251 4252 user_dest = (struct btrfs_ioctl_space_info __user *) 4253 (arg + sizeof(struct btrfs_ioctl_space_args)); 4254 4255 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4256 ret = -EFAULT; 4257 4258 kfree(dest_orig); 4259 out: 4260 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4261 ret = -EFAULT; 4262 4263 return ret; 4264 } 4265 4266 /* 4267 * there are many ways the trans_start and trans_end ioctls can lead 4268 * to deadlocks. They should only be used by applications that 4269 * basically own the machine, and have a very in depth understanding 4270 * of all the possible deadlocks and enospc problems. 4271 */ 4272 long btrfs_ioctl_trans_end(struct file *file) 4273 { 4274 struct inode *inode = file_inode(file); 4275 struct btrfs_root *root = BTRFS_I(inode)->root; 4276 struct btrfs_trans_handle *trans; 4277 4278 trans = file->private_data; 4279 if (!trans) 4280 return -EINVAL; 4281 file->private_data = NULL; 4282 4283 btrfs_end_transaction(trans, root); 4284 4285 atomic_dec(&root->fs_info->open_ioctl_trans); 4286 4287 mnt_drop_write_file(file); 4288 return 0; 4289 } 4290 4291 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4292 void __user *argp) 4293 { 4294 struct btrfs_trans_handle *trans; 4295 u64 transid; 4296 int ret; 4297 4298 trans = btrfs_attach_transaction_barrier(root); 4299 if (IS_ERR(trans)) { 4300 if (PTR_ERR(trans) != -ENOENT) 4301 return PTR_ERR(trans); 4302 4303 /* No running transaction, don't bother */ 4304 transid = root->fs_info->last_trans_committed; 4305 goto out; 4306 } 4307 transid = trans->transid; 4308 ret = btrfs_commit_transaction_async(trans, root, 0); 4309 if (ret) { 4310 btrfs_end_transaction(trans, root); 4311 return ret; 4312 } 4313 out: 4314 if (argp) 4315 if (copy_to_user(argp, &transid, sizeof(transid))) 4316 return -EFAULT; 4317 return 0; 4318 } 4319 4320 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 4321 void __user *argp) 4322 { 4323 u64 transid; 4324 4325 if (argp) { 4326 if (copy_from_user(&transid, argp, sizeof(transid))) 4327 return -EFAULT; 4328 } else { 4329 transid = 0; /* current trans */ 4330 } 4331 return btrfs_wait_for_commit(root, transid); 4332 } 4333 4334 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4335 { 4336 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4337 struct btrfs_ioctl_scrub_args *sa; 4338 int ret; 4339 4340 if (!capable(CAP_SYS_ADMIN)) 4341 return -EPERM; 4342 4343 sa = memdup_user(arg, sizeof(*sa)); 4344 if (IS_ERR(sa)) 4345 return PTR_ERR(sa); 4346 4347 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4348 ret = mnt_want_write_file(file); 4349 if (ret) 4350 goto out; 4351 } 4352 4353 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 4354 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4355 0); 4356 4357 if (copy_to_user(arg, sa, sizeof(*sa))) 4358 ret = -EFAULT; 4359 4360 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4361 mnt_drop_write_file(file); 4362 out: 4363 kfree(sa); 4364 return ret; 4365 } 4366 4367 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 4368 { 4369 if (!capable(CAP_SYS_ADMIN)) 4370 return -EPERM; 4371 4372 return btrfs_scrub_cancel(root->fs_info); 4373 } 4374 4375 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 4376 void __user *arg) 4377 { 4378 struct btrfs_ioctl_scrub_args *sa; 4379 int ret; 4380 4381 if (!capable(CAP_SYS_ADMIN)) 4382 return -EPERM; 4383 4384 sa = memdup_user(arg, sizeof(*sa)); 4385 if (IS_ERR(sa)) 4386 return PTR_ERR(sa); 4387 4388 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 4389 4390 if (copy_to_user(arg, sa, sizeof(*sa))) 4391 ret = -EFAULT; 4392 4393 kfree(sa); 4394 return ret; 4395 } 4396 4397 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 4398 void __user *arg) 4399 { 4400 struct btrfs_ioctl_get_dev_stats *sa; 4401 int ret; 4402 4403 sa = memdup_user(arg, sizeof(*sa)); 4404 if (IS_ERR(sa)) 4405 return PTR_ERR(sa); 4406 4407 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4408 kfree(sa); 4409 return -EPERM; 4410 } 4411 4412 ret = btrfs_get_dev_stats(root, sa); 4413 4414 if (copy_to_user(arg, sa, sizeof(*sa))) 4415 ret = -EFAULT; 4416 4417 kfree(sa); 4418 return ret; 4419 } 4420 4421 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 4422 { 4423 struct btrfs_ioctl_dev_replace_args *p; 4424 int ret; 4425 4426 if (!capable(CAP_SYS_ADMIN)) 4427 return -EPERM; 4428 4429 p = memdup_user(arg, sizeof(*p)); 4430 if (IS_ERR(p)) 4431 return PTR_ERR(p); 4432 4433 switch (p->cmd) { 4434 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4435 if (root->fs_info->sb->s_flags & MS_RDONLY) { 4436 ret = -EROFS; 4437 goto out; 4438 } 4439 if (atomic_xchg( 4440 &root->fs_info->mutually_exclusive_operation_running, 4441 1)) { 4442 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4443 } else { 4444 ret = btrfs_dev_replace_by_ioctl(root, p); 4445 atomic_set( 4446 &root->fs_info->mutually_exclusive_operation_running, 4447 0); 4448 } 4449 break; 4450 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4451 btrfs_dev_replace_status(root->fs_info, p); 4452 ret = 0; 4453 break; 4454 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4455 ret = btrfs_dev_replace_cancel(root->fs_info, p); 4456 break; 4457 default: 4458 ret = -EINVAL; 4459 break; 4460 } 4461 4462 if (copy_to_user(arg, p, sizeof(*p))) 4463 ret = -EFAULT; 4464 out: 4465 kfree(p); 4466 return ret; 4467 } 4468 4469 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4470 { 4471 int ret = 0; 4472 int i; 4473 u64 rel_ptr; 4474 int size; 4475 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4476 struct inode_fs_paths *ipath = NULL; 4477 struct btrfs_path *path; 4478 4479 if (!capable(CAP_DAC_READ_SEARCH)) 4480 return -EPERM; 4481 4482 path = btrfs_alloc_path(); 4483 if (!path) { 4484 ret = -ENOMEM; 4485 goto out; 4486 } 4487 4488 ipa = memdup_user(arg, sizeof(*ipa)); 4489 if (IS_ERR(ipa)) { 4490 ret = PTR_ERR(ipa); 4491 ipa = NULL; 4492 goto out; 4493 } 4494 4495 size = min_t(u32, ipa->size, 4096); 4496 ipath = init_ipath(size, root, path); 4497 if (IS_ERR(ipath)) { 4498 ret = PTR_ERR(ipath); 4499 ipath = NULL; 4500 goto out; 4501 } 4502 4503 ret = paths_from_inode(ipa->inum, ipath); 4504 if (ret < 0) 4505 goto out; 4506 4507 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4508 rel_ptr = ipath->fspath->val[i] - 4509 (u64)(unsigned long)ipath->fspath->val; 4510 ipath->fspath->val[i] = rel_ptr; 4511 } 4512 4513 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4514 (void *)(unsigned long)ipath->fspath, size); 4515 if (ret) { 4516 ret = -EFAULT; 4517 goto out; 4518 } 4519 4520 out: 4521 btrfs_free_path(path); 4522 free_ipath(ipath); 4523 kfree(ipa); 4524 4525 return ret; 4526 } 4527 4528 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4529 { 4530 struct btrfs_data_container *inodes = ctx; 4531 const size_t c = 3 * sizeof(u64); 4532 4533 if (inodes->bytes_left >= c) { 4534 inodes->bytes_left -= c; 4535 inodes->val[inodes->elem_cnt] = inum; 4536 inodes->val[inodes->elem_cnt + 1] = offset; 4537 inodes->val[inodes->elem_cnt + 2] = root; 4538 inodes->elem_cnt += 3; 4539 } else { 4540 inodes->bytes_missing += c - inodes->bytes_left; 4541 inodes->bytes_left = 0; 4542 inodes->elem_missed += 3; 4543 } 4544 4545 return 0; 4546 } 4547 4548 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 4549 void __user *arg) 4550 { 4551 int ret = 0; 4552 int size; 4553 struct btrfs_ioctl_logical_ino_args *loi; 4554 struct btrfs_data_container *inodes = NULL; 4555 struct btrfs_path *path = NULL; 4556 4557 if (!capable(CAP_SYS_ADMIN)) 4558 return -EPERM; 4559 4560 loi = memdup_user(arg, sizeof(*loi)); 4561 if (IS_ERR(loi)) { 4562 ret = PTR_ERR(loi); 4563 loi = NULL; 4564 goto out; 4565 } 4566 4567 path = btrfs_alloc_path(); 4568 if (!path) { 4569 ret = -ENOMEM; 4570 goto out; 4571 } 4572 4573 size = min_t(u32, loi->size, SZ_64K); 4574 inodes = init_data_container(size); 4575 if (IS_ERR(inodes)) { 4576 ret = PTR_ERR(inodes); 4577 inodes = NULL; 4578 goto out; 4579 } 4580 4581 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 4582 build_ino_list, inodes); 4583 if (ret == -EINVAL) 4584 ret = -ENOENT; 4585 if (ret < 0) 4586 goto out; 4587 4588 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4589 (void *)(unsigned long)inodes, size); 4590 if (ret) 4591 ret = -EFAULT; 4592 4593 out: 4594 btrfs_free_path(path); 4595 vfree(inodes); 4596 kfree(loi); 4597 4598 return ret; 4599 } 4600 4601 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4602 struct btrfs_ioctl_balance_args *bargs) 4603 { 4604 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4605 4606 bargs->flags = bctl->flags; 4607 4608 if (atomic_read(&fs_info->balance_running)) 4609 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4610 if (atomic_read(&fs_info->balance_pause_req)) 4611 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4612 if (atomic_read(&fs_info->balance_cancel_req)) 4613 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4614 4615 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4616 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4617 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4618 4619 if (lock) { 4620 spin_lock(&fs_info->balance_lock); 4621 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4622 spin_unlock(&fs_info->balance_lock); 4623 } else { 4624 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4625 } 4626 } 4627 4628 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4629 { 4630 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4631 struct btrfs_fs_info *fs_info = root->fs_info; 4632 struct btrfs_ioctl_balance_args *bargs; 4633 struct btrfs_balance_control *bctl; 4634 bool need_unlock; /* for mut. excl. ops lock */ 4635 int ret; 4636 4637 if (!capable(CAP_SYS_ADMIN)) 4638 return -EPERM; 4639 4640 ret = mnt_want_write_file(file); 4641 if (ret) 4642 return ret; 4643 4644 again: 4645 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4646 mutex_lock(&fs_info->volume_mutex); 4647 mutex_lock(&fs_info->balance_mutex); 4648 need_unlock = true; 4649 goto locked; 4650 } 4651 4652 /* 4653 * mut. excl. ops lock is locked. Three possibilities: 4654 * (1) some other op is running 4655 * (2) balance is running 4656 * (3) balance is paused -- special case (think resume) 4657 */ 4658 mutex_lock(&fs_info->balance_mutex); 4659 if (fs_info->balance_ctl) { 4660 /* this is either (2) or (3) */ 4661 if (!atomic_read(&fs_info->balance_running)) { 4662 mutex_unlock(&fs_info->balance_mutex); 4663 if (!mutex_trylock(&fs_info->volume_mutex)) 4664 goto again; 4665 mutex_lock(&fs_info->balance_mutex); 4666 4667 if (fs_info->balance_ctl && 4668 !atomic_read(&fs_info->balance_running)) { 4669 /* this is (3) */ 4670 need_unlock = false; 4671 goto locked; 4672 } 4673 4674 mutex_unlock(&fs_info->balance_mutex); 4675 mutex_unlock(&fs_info->volume_mutex); 4676 goto again; 4677 } else { 4678 /* this is (2) */ 4679 mutex_unlock(&fs_info->balance_mutex); 4680 ret = -EINPROGRESS; 4681 goto out; 4682 } 4683 } else { 4684 /* this is (1) */ 4685 mutex_unlock(&fs_info->balance_mutex); 4686 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4687 goto out; 4688 } 4689 4690 locked: 4691 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4692 4693 if (arg) { 4694 bargs = memdup_user(arg, sizeof(*bargs)); 4695 if (IS_ERR(bargs)) { 4696 ret = PTR_ERR(bargs); 4697 goto out_unlock; 4698 } 4699 4700 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4701 if (!fs_info->balance_ctl) { 4702 ret = -ENOTCONN; 4703 goto out_bargs; 4704 } 4705 4706 bctl = fs_info->balance_ctl; 4707 spin_lock(&fs_info->balance_lock); 4708 bctl->flags |= BTRFS_BALANCE_RESUME; 4709 spin_unlock(&fs_info->balance_lock); 4710 4711 goto do_balance; 4712 } 4713 } else { 4714 bargs = NULL; 4715 } 4716 4717 if (fs_info->balance_ctl) { 4718 ret = -EINPROGRESS; 4719 goto out_bargs; 4720 } 4721 4722 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4723 if (!bctl) { 4724 ret = -ENOMEM; 4725 goto out_bargs; 4726 } 4727 4728 bctl->fs_info = fs_info; 4729 if (arg) { 4730 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4731 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4732 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4733 4734 bctl->flags = bargs->flags; 4735 } else { 4736 /* balance everything - no filters */ 4737 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4738 } 4739 4740 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4741 ret = -EINVAL; 4742 goto out_bctl; 4743 } 4744 4745 do_balance: 4746 /* 4747 * Ownership of bctl and mutually_exclusive_operation_running 4748 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4749 * or, if restriper was paused all the way until unmount, in 4750 * free_fs_info. mutually_exclusive_operation_running is 4751 * cleared in __cancel_balance. 4752 */ 4753 need_unlock = false; 4754 4755 ret = btrfs_balance(bctl, bargs); 4756 bctl = NULL; 4757 4758 if (arg) { 4759 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4760 ret = -EFAULT; 4761 } 4762 4763 out_bctl: 4764 kfree(bctl); 4765 out_bargs: 4766 kfree(bargs); 4767 out_unlock: 4768 mutex_unlock(&fs_info->balance_mutex); 4769 mutex_unlock(&fs_info->volume_mutex); 4770 if (need_unlock) 4771 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4772 out: 4773 mnt_drop_write_file(file); 4774 return ret; 4775 } 4776 4777 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4778 { 4779 if (!capable(CAP_SYS_ADMIN)) 4780 return -EPERM; 4781 4782 switch (cmd) { 4783 case BTRFS_BALANCE_CTL_PAUSE: 4784 return btrfs_pause_balance(root->fs_info); 4785 case BTRFS_BALANCE_CTL_CANCEL: 4786 return btrfs_cancel_balance(root->fs_info); 4787 } 4788 4789 return -EINVAL; 4790 } 4791 4792 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4793 void __user *arg) 4794 { 4795 struct btrfs_fs_info *fs_info = root->fs_info; 4796 struct btrfs_ioctl_balance_args *bargs; 4797 int ret = 0; 4798 4799 if (!capable(CAP_SYS_ADMIN)) 4800 return -EPERM; 4801 4802 mutex_lock(&fs_info->balance_mutex); 4803 if (!fs_info->balance_ctl) { 4804 ret = -ENOTCONN; 4805 goto out; 4806 } 4807 4808 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4809 if (!bargs) { 4810 ret = -ENOMEM; 4811 goto out; 4812 } 4813 4814 update_ioctl_balance_args(fs_info, 1, bargs); 4815 4816 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4817 ret = -EFAULT; 4818 4819 kfree(bargs); 4820 out: 4821 mutex_unlock(&fs_info->balance_mutex); 4822 return ret; 4823 } 4824 4825 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4826 { 4827 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4828 struct btrfs_ioctl_quota_ctl_args *sa; 4829 struct btrfs_trans_handle *trans = NULL; 4830 int ret; 4831 int err; 4832 4833 if (!capable(CAP_SYS_ADMIN)) 4834 return -EPERM; 4835 4836 ret = mnt_want_write_file(file); 4837 if (ret) 4838 return ret; 4839 4840 sa = memdup_user(arg, sizeof(*sa)); 4841 if (IS_ERR(sa)) { 4842 ret = PTR_ERR(sa); 4843 goto drop_write; 4844 } 4845 4846 down_write(&root->fs_info->subvol_sem); 4847 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4848 if (IS_ERR(trans)) { 4849 ret = PTR_ERR(trans); 4850 goto out; 4851 } 4852 4853 switch (sa->cmd) { 4854 case BTRFS_QUOTA_CTL_ENABLE: 4855 ret = btrfs_quota_enable(trans, root->fs_info); 4856 break; 4857 case BTRFS_QUOTA_CTL_DISABLE: 4858 ret = btrfs_quota_disable(trans, root->fs_info); 4859 break; 4860 default: 4861 ret = -EINVAL; 4862 break; 4863 } 4864 4865 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4866 if (err && !ret) 4867 ret = err; 4868 out: 4869 kfree(sa); 4870 up_write(&root->fs_info->subvol_sem); 4871 drop_write: 4872 mnt_drop_write_file(file); 4873 return ret; 4874 } 4875 4876 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4877 { 4878 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4879 struct btrfs_ioctl_qgroup_assign_args *sa; 4880 struct btrfs_trans_handle *trans; 4881 int ret; 4882 int err; 4883 4884 if (!capable(CAP_SYS_ADMIN)) 4885 return -EPERM; 4886 4887 ret = mnt_want_write_file(file); 4888 if (ret) 4889 return ret; 4890 4891 sa = memdup_user(arg, sizeof(*sa)); 4892 if (IS_ERR(sa)) { 4893 ret = PTR_ERR(sa); 4894 goto drop_write; 4895 } 4896 4897 trans = btrfs_join_transaction(root); 4898 if (IS_ERR(trans)) { 4899 ret = PTR_ERR(trans); 4900 goto out; 4901 } 4902 4903 /* FIXME: check if the IDs really exist */ 4904 if (sa->assign) { 4905 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4906 sa->src, sa->dst); 4907 } else { 4908 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4909 sa->src, sa->dst); 4910 } 4911 4912 /* update qgroup status and info */ 4913 err = btrfs_run_qgroups(trans, root->fs_info); 4914 if (err < 0) 4915 btrfs_handle_fs_error(root->fs_info, err, 4916 "failed to update qgroup status and info"); 4917 err = btrfs_end_transaction(trans, root); 4918 if (err && !ret) 4919 ret = err; 4920 4921 out: 4922 kfree(sa); 4923 drop_write: 4924 mnt_drop_write_file(file); 4925 return ret; 4926 } 4927 4928 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4929 { 4930 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4931 struct btrfs_ioctl_qgroup_create_args *sa; 4932 struct btrfs_trans_handle *trans; 4933 int ret; 4934 int err; 4935 4936 if (!capable(CAP_SYS_ADMIN)) 4937 return -EPERM; 4938 4939 ret = mnt_want_write_file(file); 4940 if (ret) 4941 return ret; 4942 4943 sa = memdup_user(arg, sizeof(*sa)); 4944 if (IS_ERR(sa)) { 4945 ret = PTR_ERR(sa); 4946 goto drop_write; 4947 } 4948 4949 if (!sa->qgroupid) { 4950 ret = -EINVAL; 4951 goto out; 4952 } 4953 4954 trans = btrfs_join_transaction(root); 4955 if (IS_ERR(trans)) { 4956 ret = PTR_ERR(trans); 4957 goto out; 4958 } 4959 4960 /* FIXME: check if the IDs really exist */ 4961 if (sa->create) { 4962 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid); 4963 } else { 4964 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4965 } 4966 4967 err = btrfs_end_transaction(trans, root); 4968 if (err && !ret) 4969 ret = err; 4970 4971 out: 4972 kfree(sa); 4973 drop_write: 4974 mnt_drop_write_file(file); 4975 return ret; 4976 } 4977 4978 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4979 { 4980 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4981 struct btrfs_ioctl_qgroup_limit_args *sa; 4982 struct btrfs_trans_handle *trans; 4983 int ret; 4984 int err; 4985 u64 qgroupid; 4986 4987 if (!capable(CAP_SYS_ADMIN)) 4988 return -EPERM; 4989 4990 ret = mnt_want_write_file(file); 4991 if (ret) 4992 return ret; 4993 4994 sa = memdup_user(arg, sizeof(*sa)); 4995 if (IS_ERR(sa)) { 4996 ret = PTR_ERR(sa); 4997 goto drop_write; 4998 } 4999 5000 trans = btrfs_join_transaction(root); 5001 if (IS_ERR(trans)) { 5002 ret = PTR_ERR(trans); 5003 goto out; 5004 } 5005 5006 qgroupid = sa->qgroupid; 5007 if (!qgroupid) { 5008 /* take the current subvol as qgroup */ 5009 qgroupid = root->root_key.objectid; 5010 } 5011 5012 /* FIXME: check if the IDs really exist */ 5013 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 5014 5015 err = btrfs_end_transaction(trans, root); 5016 if (err && !ret) 5017 ret = err; 5018 5019 out: 5020 kfree(sa); 5021 drop_write: 5022 mnt_drop_write_file(file); 5023 return ret; 5024 } 5025 5026 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5027 { 5028 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5029 struct btrfs_ioctl_quota_rescan_args *qsa; 5030 int ret; 5031 5032 if (!capable(CAP_SYS_ADMIN)) 5033 return -EPERM; 5034 5035 ret = mnt_want_write_file(file); 5036 if (ret) 5037 return ret; 5038 5039 qsa = memdup_user(arg, sizeof(*qsa)); 5040 if (IS_ERR(qsa)) { 5041 ret = PTR_ERR(qsa); 5042 goto drop_write; 5043 } 5044 5045 if (qsa->flags) { 5046 ret = -EINVAL; 5047 goto out; 5048 } 5049 5050 ret = btrfs_qgroup_rescan(root->fs_info); 5051 5052 out: 5053 kfree(qsa); 5054 drop_write: 5055 mnt_drop_write_file(file); 5056 return ret; 5057 } 5058 5059 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5060 { 5061 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5062 struct btrfs_ioctl_quota_rescan_args *qsa; 5063 int ret = 0; 5064 5065 if (!capable(CAP_SYS_ADMIN)) 5066 return -EPERM; 5067 5068 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5069 if (!qsa) 5070 return -ENOMEM; 5071 5072 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5073 qsa->flags = 1; 5074 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 5075 } 5076 5077 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5078 ret = -EFAULT; 5079 5080 kfree(qsa); 5081 return ret; 5082 } 5083 5084 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5085 { 5086 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5087 5088 if (!capable(CAP_SYS_ADMIN)) 5089 return -EPERM; 5090 5091 return btrfs_qgroup_wait_for_completion(root->fs_info); 5092 } 5093 5094 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5095 struct btrfs_ioctl_received_subvol_args *sa) 5096 { 5097 struct inode *inode = file_inode(file); 5098 struct btrfs_root *root = BTRFS_I(inode)->root; 5099 struct btrfs_root_item *root_item = &root->root_item; 5100 struct btrfs_trans_handle *trans; 5101 struct timespec ct = current_fs_time(inode->i_sb); 5102 int ret = 0; 5103 int received_uuid_changed; 5104 5105 if (!inode_owner_or_capable(inode)) 5106 return -EPERM; 5107 5108 ret = mnt_want_write_file(file); 5109 if (ret < 0) 5110 return ret; 5111 5112 down_write(&root->fs_info->subvol_sem); 5113 5114 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 5115 ret = -EINVAL; 5116 goto out; 5117 } 5118 5119 if (btrfs_root_readonly(root)) { 5120 ret = -EROFS; 5121 goto out; 5122 } 5123 5124 /* 5125 * 1 - root item 5126 * 2 - uuid items (received uuid + subvol uuid) 5127 */ 5128 trans = btrfs_start_transaction(root, 3); 5129 if (IS_ERR(trans)) { 5130 ret = PTR_ERR(trans); 5131 trans = NULL; 5132 goto out; 5133 } 5134 5135 sa->rtransid = trans->transid; 5136 sa->rtime.sec = ct.tv_sec; 5137 sa->rtime.nsec = ct.tv_nsec; 5138 5139 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5140 BTRFS_UUID_SIZE); 5141 if (received_uuid_changed && 5142 !btrfs_is_empty_uuid(root_item->received_uuid)) 5143 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 5144 root_item->received_uuid, 5145 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5146 root->root_key.objectid); 5147 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5148 btrfs_set_root_stransid(root_item, sa->stransid); 5149 btrfs_set_root_rtransid(root_item, sa->rtransid); 5150 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5151 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5152 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5153 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5154 5155 ret = btrfs_update_root(trans, root->fs_info->tree_root, 5156 &root->root_key, &root->root_item); 5157 if (ret < 0) { 5158 btrfs_end_transaction(trans, root); 5159 goto out; 5160 } 5161 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5162 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 5163 sa->uuid, 5164 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5165 root->root_key.objectid); 5166 if (ret < 0 && ret != -EEXIST) { 5167 btrfs_abort_transaction(trans, root, ret); 5168 goto out; 5169 } 5170 } 5171 ret = btrfs_commit_transaction(trans, root); 5172 if (ret < 0) { 5173 btrfs_abort_transaction(trans, root, ret); 5174 goto out; 5175 } 5176 5177 out: 5178 up_write(&root->fs_info->subvol_sem); 5179 mnt_drop_write_file(file); 5180 return ret; 5181 } 5182 5183 #ifdef CONFIG_64BIT 5184 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5185 void __user *arg) 5186 { 5187 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5188 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5189 int ret = 0; 5190 5191 args32 = memdup_user(arg, sizeof(*args32)); 5192 if (IS_ERR(args32)) { 5193 ret = PTR_ERR(args32); 5194 args32 = NULL; 5195 goto out; 5196 } 5197 5198 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5199 if (!args64) { 5200 ret = -ENOMEM; 5201 goto out; 5202 } 5203 5204 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5205 args64->stransid = args32->stransid; 5206 args64->rtransid = args32->rtransid; 5207 args64->stime.sec = args32->stime.sec; 5208 args64->stime.nsec = args32->stime.nsec; 5209 args64->rtime.sec = args32->rtime.sec; 5210 args64->rtime.nsec = args32->rtime.nsec; 5211 args64->flags = args32->flags; 5212 5213 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5214 if (ret) 5215 goto out; 5216 5217 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5218 args32->stransid = args64->stransid; 5219 args32->rtransid = args64->rtransid; 5220 args32->stime.sec = args64->stime.sec; 5221 args32->stime.nsec = args64->stime.nsec; 5222 args32->rtime.sec = args64->rtime.sec; 5223 args32->rtime.nsec = args64->rtime.nsec; 5224 args32->flags = args64->flags; 5225 5226 ret = copy_to_user(arg, args32, sizeof(*args32)); 5227 if (ret) 5228 ret = -EFAULT; 5229 5230 out: 5231 kfree(args32); 5232 kfree(args64); 5233 return ret; 5234 } 5235 #endif 5236 5237 static long btrfs_ioctl_set_received_subvol(struct file *file, 5238 void __user *arg) 5239 { 5240 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5241 int ret = 0; 5242 5243 sa = memdup_user(arg, sizeof(*sa)); 5244 if (IS_ERR(sa)) { 5245 ret = PTR_ERR(sa); 5246 sa = NULL; 5247 goto out; 5248 } 5249 5250 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5251 5252 if (ret) 5253 goto out; 5254 5255 ret = copy_to_user(arg, sa, sizeof(*sa)); 5256 if (ret) 5257 ret = -EFAULT; 5258 5259 out: 5260 kfree(sa); 5261 return ret; 5262 } 5263 5264 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5265 { 5266 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5267 size_t len; 5268 int ret; 5269 char label[BTRFS_LABEL_SIZE]; 5270 5271 spin_lock(&root->fs_info->super_lock); 5272 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5273 spin_unlock(&root->fs_info->super_lock); 5274 5275 len = strnlen(label, BTRFS_LABEL_SIZE); 5276 5277 if (len == BTRFS_LABEL_SIZE) { 5278 btrfs_warn(root->fs_info, 5279 "label is too long, return the first %zu bytes", --len); 5280 } 5281 5282 ret = copy_to_user(arg, label, len); 5283 5284 return ret ? -EFAULT : 0; 5285 } 5286 5287 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5288 { 5289 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5290 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5291 struct btrfs_trans_handle *trans; 5292 char label[BTRFS_LABEL_SIZE]; 5293 int ret; 5294 5295 if (!capable(CAP_SYS_ADMIN)) 5296 return -EPERM; 5297 5298 if (copy_from_user(label, arg, sizeof(label))) 5299 return -EFAULT; 5300 5301 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5302 btrfs_err(root->fs_info, "unable to set label with more than %d bytes", 5303 BTRFS_LABEL_SIZE - 1); 5304 return -EINVAL; 5305 } 5306 5307 ret = mnt_want_write_file(file); 5308 if (ret) 5309 return ret; 5310 5311 trans = btrfs_start_transaction(root, 0); 5312 if (IS_ERR(trans)) { 5313 ret = PTR_ERR(trans); 5314 goto out_unlock; 5315 } 5316 5317 spin_lock(&root->fs_info->super_lock); 5318 strcpy(super_block->label, label); 5319 spin_unlock(&root->fs_info->super_lock); 5320 ret = btrfs_commit_transaction(trans, root); 5321 5322 out_unlock: 5323 mnt_drop_write_file(file); 5324 return ret; 5325 } 5326 5327 #define INIT_FEATURE_FLAGS(suffix) \ 5328 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5329 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5330 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5331 5332 int btrfs_ioctl_get_supported_features(void __user *arg) 5333 { 5334 static const struct btrfs_ioctl_feature_flags features[3] = { 5335 INIT_FEATURE_FLAGS(SUPP), 5336 INIT_FEATURE_FLAGS(SAFE_SET), 5337 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5338 }; 5339 5340 if (copy_to_user(arg, &features, sizeof(features))) 5341 return -EFAULT; 5342 5343 return 0; 5344 } 5345 5346 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5347 { 5348 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5349 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5350 struct btrfs_ioctl_feature_flags features; 5351 5352 features.compat_flags = btrfs_super_compat_flags(super_block); 5353 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5354 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5355 5356 if (copy_to_user(arg, &features, sizeof(features))) 5357 return -EFAULT; 5358 5359 return 0; 5360 } 5361 5362 static int check_feature_bits(struct btrfs_root *root, 5363 enum btrfs_feature_set set, 5364 u64 change_mask, u64 flags, u64 supported_flags, 5365 u64 safe_set, u64 safe_clear) 5366 { 5367 const char *type = btrfs_feature_set_names[set]; 5368 char *names; 5369 u64 disallowed, unsupported; 5370 u64 set_mask = flags & change_mask; 5371 u64 clear_mask = ~flags & change_mask; 5372 5373 unsupported = set_mask & ~supported_flags; 5374 if (unsupported) { 5375 names = btrfs_printable_features(set, unsupported); 5376 if (names) { 5377 btrfs_warn(root->fs_info, 5378 "this kernel does not support the %s feature bit%s", 5379 names, strchr(names, ',') ? "s" : ""); 5380 kfree(names); 5381 } else 5382 btrfs_warn(root->fs_info, 5383 "this kernel does not support %s bits 0x%llx", 5384 type, unsupported); 5385 return -EOPNOTSUPP; 5386 } 5387 5388 disallowed = set_mask & ~safe_set; 5389 if (disallowed) { 5390 names = btrfs_printable_features(set, disallowed); 5391 if (names) { 5392 btrfs_warn(root->fs_info, 5393 "can't set the %s feature bit%s while mounted", 5394 names, strchr(names, ',') ? "s" : ""); 5395 kfree(names); 5396 } else 5397 btrfs_warn(root->fs_info, 5398 "can't set %s bits 0x%llx while mounted", 5399 type, disallowed); 5400 return -EPERM; 5401 } 5402 5403 disallowed = clear_mask & ~safe_clear; 5404 if (disallowed) { 5405 names = btrfs_printable_features(set, disallowed); 5406 if (names) { 5407 btrfs_warn(root->fs_info, 5408 "can't clear the %s feature bit%s while mounted", 5409 names, strchr(names, ',') ? "s" : ""); 5410 kfree(names); 5411 } else 5412 btrfs_warn(root->fs_info, 5413 "can't clear %s bits 0x%llx while mounted", 5414 type, disallowed); 5415 return -EPERM; 5416 } 5417 5418 return 0; 5419 } 5420 5421 #define check_feature(root, change_mask, flags, mask_base) \ 5422 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \ 5423 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5424 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5425 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5426 5427 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5428 { 5429 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5430 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5431 struct btrfs_ioctl_feature_flags flags[2]; 5432 struct btrfs_trans_handle *trans; 5433 u64 newflags; 5434 int ret; 5435 5436 if (!capable(CAP_SYS_ADMIN)) 5437 return -EPERM; 5438 5439 if (copy_from_user(flags, arg, sizeof(flags))) 5440 return -EFAULT; 5441 5442 /* Nothing to do */ 5443 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5444 !flags[0].incompat_flags) 5445 return 0; 5446 5447 ret = check_feature(root, flags[0].compat_flags, 5448 flags[1].compat_flags, COMPAT); 5449 if (ret) 5450 return ret; 5451 5452 ret = check_feature(root, flags[0].compat_ro_flags, 5453 flags[1].compat_ro_flags, COMPAT_RO); 5454 if (ret) 5455 return ret; 5456 5457 ret = check_feature(root, flags[0].incompat_flags, 5458 flags[1].incompat_flags, INCOMPAT); 5459 if (ret) 5460 return ret; 5461 5462 ret = mnt_want_write_file(file); 5463 if (ret) 5464 return ret; 5465 5466 trans = btrfs_start_transaction(root, 0); 5467 if (IS_ERR(trans)) { 5468 ret = PTR_ERR(trans); 5469 goto out_drop_write; 5470 } 5471 5472 spin_lock(&root->fs_info->super_lock); 5473 newflags = btrfs_super_compat_flags(super_block); 5474 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5475 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5476 btrfs_set_super_compat_flags(super_block, newflags); 5477 5478 newflags = btrfs_super_compat_ro_flags(super_block); 5479 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5480 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5481 btrfs_set_super_compat_ro_flags(super_block, newflags); 5482 5483 newflags = btrfs_super_incompat_flags(super_block); 5484 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5485 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5486 btrfs_set_super_incompat_flags(super_block, newflags); 5487 spin_unlock(&root->fs_info->super_lock); 5488 5489 ret = btrfs_commit_transaction(trans, root); 5490 out_drop_write: 5491 mnt_drop_write_file(file); 5492 5493 return ret; 5494 } 5495 5496 long btrfs_ioctl(struct file *file, unsigned int 5497 cmd, unsigned long arg) 5498 { 5499 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5500 void __user *argp = (void __user *)arg; 5501 5502 switch (cmd) { 5503 case FS_IOC_GETFLAGS: 5504 return btrfs_ioctl_getflags(file, argp); 5505 case FS_IOC_SETFLAGS: 5506 return btrfs_ioctl_setflags(file, argp); 5507 case FS_IOC_GETVERSION: 5508 return btrfs_ioctl_getversion(file, argp); 5509 case FITRIM: 5510 return btrfs_ioctl_fitrim(file, argp); 5511 case BTRFS_IOC_SNAP_CREATE: 5512 return btrfs_ioctl_snap_create(file, argp, 0); 5513 case BTRFS_IOC_SNAP_CREATE_V2: 5514 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5515 case BTRFS_IOC_SUBVOL_CREATE: 5516 return btrfs_ioctl_snap_create(file, argp, 1); 5517 case BTRFS_IOC_SUBVOL_CREATE_V2: 5518 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5519 case BTRFS_IOC_SNAP_DESTROY: 5520 return btrfs_ioctl_snap_destroy(file, argp); 5521 case BTRFS_IOC_SUBVOL_GETFLAGS: 5522 return btrfs_ioctl_subvol_getflags(file, argp); 5523 case BTRFS_IOC_SUBVOL_SETFLAGS: 5524 return btrfs_ioctl_subvol_setflags(file, argp); 5525 case BTRFS_IOC_DEFAULT_SUBVOL: 5526 return btrfs_ioctl_default_subvol(file, argp); 5527 case BTRFS_IOC_DEFRAG: 5528 return btrfs_ioctl_defrag(file, NULL); 5529 case BTRFS_IOC_DEFRAG_RANGE: 5530 return btrfs_ioctl_defrag(file, argp); 5531 case BTRFS_IOC_RESIZE: 5532 return btrfs_ioctl_resize(file, argp); 5533 case BTRFS_IOC_ADD_DEV: 5534 return btrfs_ioctl_add_dev(root, argp); 5535 case BTRFS_IOC_RM_DEV: 5536 return btrfs_ioctl_rm_dev(file, argp); 5537 case BTRFS_IOC_RM_DEV_V2: 5538 return btrfs_ioctl_rm_dev_v2(file, argp); 5539 case BTRFS_IOC_FS_INFO: 5540 return btrfs_ioctl_fs_info(root, argp); 5541 case BTRFS_IOC_DEV_INFO: 5542 return btrfs_ioctl_dev_info(root, argp); 5543 case BTRFS_IOC_BALANCE: 5544 return btrfs_ioctl_balance(file, NULL); 5545 case BTRFS_IOC_TRANS_START: 5546 return btrfs_ioctl_trans_start(file); 5547 case BTRFS_IOC_TRANS_END: 5548 return btrfs_ioctl_trans_end(file); 5549 case BTRFS_IOC_TREE_SEARCH: 5550 return btrfs_ioctl_tree_search(file, argp); 5551 case BTRFS_IOC_TREE_SEARCH_V2: 5552 return btrfs_ioctl_tree_search_v2(file, argp); 5553 case BTRFS_IOC_INO_LOOKUP: 5554 return btrfs_ioctl_ino_lookup(file, argp); 5555 case BTRFS_IOC_INO_PATHS: 5556 return btrfs_ioctl_ino_to_path(root, argp); 5557 case BTRFS_IOC_LOGICAL_INO: 5558 return btrfs_ioctl_logical_to_ino(root, argp); 5559 case BTRFS_IOC_SPACE_INFO: 5560 return btrfs_ioctl_space_info(root, argp); 5561 case BTRFS_IOC_SYNC: { 5562 int ret; 5563 5564 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1); 5565 if (ret) 5566 return ret; 5567 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1); 5568 /* 5569 * The transaction thread may want to do more work, 5570 * namely it pokes the cleaner kthread that will start 5571 * processing uncleaned subvols. 5572 */ 5573 wake_up_process(root->fs_info->transaction_kthread); 5574 return ret; 5575 } 5576 case BTRFS_IOC_START_SYNC: 5577 return btrfs_ioctl_start_sync(root, argp); 5578 case BTRFS_IOC_WAIT_SYNC: 5579 return btrfs_ioctl_wait_sync(root, argp); 5580 case BTRFS_IOC_SCRUB: 5581 return btrfs_ioctl_scrub(file, argp); 5582 case BTRFS_IOC_SCRUB_CANCEL: 5583 return btrfs_ioctl_scrub_cancel(root, argp); 5584 case BTRFS_IOC_SCRUB_PROGRESS: 5585 return btrfs_ioctl_scrub_progress(root, argp); 5586 case BTRFS_IOC_BALANCE_V2: 5587 return btrfs_ioctl_balance(file, argp); 5588 case BTRFS_IOC_BALANCE_CTL: 5589 return btrfs_ioctl_balance_ctl(root, arg); 5590 case BTRFS_IOC_BALANCE_PROGRESS: 5591 return btrfs_ioctl_balance_progress(root, argp); 5592 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5593 return btrfs_ioctl_set_received_subvol(file, argp); 5594 #ifdef CONFIG_64BIT 5595 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5596 return btrfs_ioctl_set_received_subvol_32(file, argp); 5597 #endif 5598 case BTRFS_IOC_SEND: 5599 return btrfs_ioctl_send(file, argp); 5600 case BTRFS_IOC_GET_DEV_STATS: 5601 return btrfs_ioctl_get_dev_stats(root, argp); 5602 case BTRFS_IOC_QUOTA_CTL: 5603 return btrfs_ioctl_quota_ctl(file, argp); 5604 case BTRFS_IOC_QGROUP_ASSIGN: 5605 return btrfs_ioctl_qgroup_assign(file, argp); 5606 case BTRFS_IOC_QGROUP_CREATE: 5607 return btrfs_ioctl_qgroup_create(file, argp); 5608 case BTRFS_IOC_QGROUP_LIMIT: 5609 return btrfs_ioctl_qgroup_limit(file, argp); 5610 case BTRFS_IOC_QUOTA_RESCAN: 5611 return btrfs_ioctl_quota_rescan(file, argp); 5612 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5613 return btrfs_ioctl_quota_rescan_status(file, argp); 5614 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5615 return btrfs_ioctl_quota_rescan_wait(file, argp); 5616 case BTRFS_IOC_DEV_REPLACE: 5617 return btrfs_ioctl_dev_replace(root, argp); 5618 case BTRFS_IOC_GET_FSLABEL: 5619 return btrfs_ioctl_get_fslabel(file, argp); 5620 case BTRFS_IOC_SET_FSLABEL: 5621 return btrfs_ioctl_set_fslabel(file, argp); 5622 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5623 return btrfs_ioctl_get_supported_features(argp); 5624 case BTRFS_IOC_GET_FEATURES: 5625 return btrfs_ioctl_get_features(file, argp); 5626 case BTRFS_IOC_SET_FEATURES: 5627 return btrfs_ioctl_set_features(file, argp); 5628 } 5629 5630 return -ENOTTY; 5631 } 5632 5633 #ifdef CONFIG_COMPAT 5634 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5635 { 5636 switch (cmd) { 5637 case FS_IOC32_GETFLAGS: 5638 cmd = FS_IOC_GETFLAGS; 5639 break; 5640 case FS_IOC32_SETFLAGS: 5641 cmd = FS_IOC_SETFLAGS; 5642 break; 5643 case FS_IOC32_GETVERSION: 5644 cmd = FS_IOC_GETVERSION; 5645 break; 5646 default: 5647 return -ENOIOCTLCMD; 5648 } 5649 5650 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5651 } 5652 #endif 5653