1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "transaction.h" 32 #include "btrfs_inode.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "locking.h" 36 #include "inode-map.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 #include "space-info.h" 47 #include "delalloc-space.h" 48 #include "block-group.h" 49 50 #ifdef CONFIG_64BIT 51 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 52 * structures are incorrect, as the timespec structure from userspace 53 * is 4 bytes too small. We define these alternatives here to teach 54 * the kernel about the 32-bit struct packing. 55 */ 56 struct btrfs_ioctl_timespec_32 { 57 __u64 sec; 58 __u32 nsec; 59 } __attribute__ ((__packed__)); 60 61 struct btrfs_ioctl_received_subvol_args_32 { 62 char uuid[BTRFS_UUID_SIZE]; /* in */ 63 __u64 stransid; /* in */ 64 __u64 rtransid; /* out */ 65 struct btrfs_ioctl_timespec_32 stime; /* in */ 66 struct btrfs_ioctl_timespec_32 rtime; /* out */ 67 __u64 flags; /* in */ 68 __u64 reserved[16]; /* in */ 69 } __attribute__ ((__packed__)); 70 71 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 72 struct btrfs_ioctl_received_subvol_args_32) 73 #endif 74 75 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 76 struct btrfs_ioctl_send_args_32 { 77 __s64 send_fd; /* in */ 78 __u64 clone_sources_count; /* in */ 79 compat_uptr_t clone_sources; /* in */ 80 __u64 parent_root; /* in */ 81 __u64 flags; /* in */ 82 __u64 reserved[4]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 86 struct btrfs_ioctl_send_args_32) 87 #endif 88 89 static int btrfs_clone(struct inode *src, struct inode *inode, 90 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 91 int no_time_update); 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 95 unsigned int flags) 96 { 97 if (S_ISDIR(inode->i_mode)) 98 return flags; 99 else if (S_ISREG(inode->i_mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 107 * ioctl. 108 */ 109 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 110 { 111 unsigned int iflags = 0; 112 113 if (flags & BTRFS_INODE_SYNC) 114 iflags |= FS_SYNC_FL; 115 if (flags & BTRFS_INODE_IMMUTABLE) 116 iflags |= FS_IMMUTABLE_FL; 117 if (flags & BTRFS_INODE_APPEND) 118 iflags |= FS_APPEND_FL; 119 if (flags & BTRFS_INODE_NODUMP) 120 iflags |= FS_NODUMP_FL; 121 if (flags & BTRFS_INODE_NOATIME) 122 iflags |= FS_NOATIME_FL; 123 if (flags & BTRFS_INODE_DIRSYNC) 124 iflags |= FS_DIRSYNC_FL; 125 if (flags & BTRFS_INODE_NODATACOW) 126 iflags |= FS_NOCOW_FL; 127 128 if (flags & BTRFS_INODE_NOCOMPRESS) 129 iflags |= FS_NOCOMP_FL; 130 else if (flags & BTRFS_INODE_COMPRESS) 131 iflags |= FS_COMPR_FL; 132 133 return iflags; 134 } 135 136 /* 137 * Update inode->i_flags based on the btrfs internal flags. 138 */ 139 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 140 { 141 struct btrfs_inode *binode = BTRFS_I(inode); 142 unsigned int new_fl = 0; 143 144 if (binode->flags & BTRFS_INODE_SYNC) 145 new_fl |= S_SYNC; 146 if (binode->flags & BTRFS_INODE_IMMUTABLE) 147 new_fl |= S_IMMUTABLE; 148 if (binode->flags & BTRFS_INODE_APPEND) 149 new_fl |= S_APPEND; 150 if (binode->flags & BTRFS_INODE_NOATIME) 151 new_fl |= S_NOATIME; 152 if (binode->flags & BTRFS_INODE_DIRSYNC) 153 new_fl |= S_DIRSYNC; 154 155 set_mask_bits(&inode->i_flags, 156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 157 new_fl); 158 } 159 160 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 161 { 162 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 163 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 164 165 if (copy_to_user(arg, &flags, sizeof(flags))) 166 return -EFAULT; 167 return 0; 168 } 169 170 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 171 static int check_fsflags(unsigned int flags) 172 { 173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 174 FS_NOATIME_FL | FS_NODUMP_FL | \ 175 FS_SYNC_FL | FS_DIRSYNC_FL | \ 176 FS_NOCOMP_FL | FS_COMPR_FL | 177 FS_NOCOW_FL)) 178 return -EOPNOTSUPP; 179 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 return 0; 184 } 185 186 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 187 { 188 struct inode *inode = file_inode(file); 189 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 190 struct btrfs_inode *binode = BTRFS_I(inode); 191 struct btrfs_root *root = binode->root; 192 struct btrfs_trans_handle *trans; 193 unsigned int fsflags, old_fsflags; 194 int ret; 195 const char *comp = NULL; 196 u32 binode_flags = binode->flags; 197 198 if (!inode_owner_or_capable(inode)) 199 return -EPERM; 200 201 if (btrfs_root_readonly(root)) 202 return -EROFS; 203 204 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 205 return -EFAULT; 206 207 ret = check_fsflags(fsflags); 208 if (ret) 209 return ret; 210 211 ret = mnt_want_write_file(file); 212 if (ret) 213 return ret; 214 215 inode_lock(inode); 216 217 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 218 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 219 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 220 if (ret) 221 goto out_unlock; 222 223 if (fsflags & FS_SYNC_FL) 224 binode_flags |= BTRFS_INODE_SYNC; 225 else 226 binode_flags &= ~BTRFS_INODE_SYNC; 227 if (fsflags & FS_IMMUTABLE_FL) 228 binode_flags |= BTRFS_INODE_IMMUTABLE; 229 else 230 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 231 if (fsflags & FS_APPEND_FL) 232 binode_flags |= BTRFS_INODE_APPEND; 233 else 234 binode_flags &= ~BTRFS_INODE_APPEND; 235 if (fsflags & FS_NODUMP_FL) 236 binode_flags |= BTRFS_INODE_NODUMP; 237 else 238 binode_flags &= ~BTRFS_INODE_NODUMP; 239 if (fsflags & FS_NOATIME_FL) 240 binode_flags |= BTRFS_INODE_NOATIME; 241 else 242 binode_flags &= ~BTRFS_INODE_NOATIME; 243 if (fsflags & FS_DIRSYNC_FL) 244 binode_flags |= BTRFS_INODE_DIRSYNC; 245 else 246 binode_flags &= ~BTRFS_INODE_DIRSYNC; 247 if (fsflags & FS_NOCOW_FL) { 248 if (S_ISREG(inode->i_mode)) { 249 /* 250 * It's safe to turn csums off here, no extents exist. 251 * Otherwise we want the flag to reflect the real COW 252 * status of the file and will not set it. 253 */ 254 if (inode->i_size == 0) 255 binode_flags |= BTRFS_INODE_NODATACOW | 256 BTRFS_INODE_NODATASUM; 257 } else { 258 binode_flags |= BTRFS_INODE_NODATACOW; 259 } 260 } else { 261 /* 262 * Revert back under same assumptions as above 263 */ 264 if (S_ISREG(inode->i_mode)) { 265 if (inode->i_size == 0) 266 binode_flags &= ~(BTRFS_INODE_NODATACOW | 267 BTRFS_INODE_NODATASUM); 268 } else { 269 binode_flags &= ~BTRFS_INODE_NODATACOW; 270 } 271 } 272 273 /* 274 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 275 * flag may be changed automatically if compression code won't make 276 * things smaller. 277 */ 278 if (fsflags & FS_NOCOMP_FL) { 279 binode_flags &= ~BTRFS_INODE_COMPRESS; 280 binode_flags |= BTRFS_INODE_NOCOMPRESS; 281 } else if (fsflags & FS_COMPR_FL) { 282 283 if (IS_SWAPFILE(inode)) { 284 ret = -ETXTBSY; 285 goto out_unlock; 286 } 287 288 binode_flags |= BTRFS_INODE_COMPRESS; 289 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 290 291 comp = btrfs_compress_type2str(fs_info->compress_type); 292 if (!comp || comp[0] == 0) 293 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 294 } else { 295 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 296 } 297 298 /* 299 * 1 for inode item 300 * 2 for properties 301 */ 302 trans = btrfs_start_transaction(root, 3); 303 if (IS_ERR(trans)) { 304 ret = PTR_ERR(trans); 305 goto out_unlock; 306 } 307 308 if (comp) { 309 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 310 strlen(comp), 0); 311 if (ret) { 312 btrfs_abort_transaction(trans, ret); 313 goto out_end_trans; 314 } 315 } else { 316 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 317 0, 0); 318 if (ret && ret != -ENODATA) { 319 btrfs_abort_transaction(trans, ret); 320 goto out_end_trans; 321 } 322 } 323 324 binode->flags = binode_flags; 325 btrfs_sync_inode_flags_to_i_flags(inode); 326 inode_inc_iversion(inode); 327 inode->i_ctime = current_time(inode); 328 ret = btrfs_update_inode(trans, root, inode); 329 330 out_end_trans: 331 btrfs_end_transaction(trans); 332 out_unlock: 333 inode_unlock(inode); 334 mnt_drop_write_file(file); 335 return ret; 336 } 337 338 /* 339 * Translate btrfs internal inode flags to xflags as expected by the 340 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 341 * silently dropped. 342 */ 343 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 344 { 345 unsigned int xflags = 0; 346 347 if (flags & BTRFS_INODE_APPEND) 348 xflags |= FS_XFLAG_APPEND; 349 if (flags & BTRFS_INODE_IMMUTABLE) 350 xflags |= FS_XFLAG_IMMUTABLE; 351 if (flags & BTRFS_INODE_NOATIME) 352 xflags |= FS_XFLAG_NOATIME; 353 if (flags & BTRFS_INODE_NODUMP) 354 xflags |= FS_XFLAG_NODUMP; 355 if (flags & BTRFS_INODE_SYNC) 356 xflags |= FS_XFLAG_SYNC; 357 358 return xflags; 359 } 360 361 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 362 static int check_xflags(unsigned int flags) 363 { 364 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 365 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 366 return -EOPNOTSUPP; 367 return 0; 368 } 369 370 /* 371 * Set the xflags from the internal inode flags. The remaining items of fsxattr 372 * are zeroed. 373 */ 374 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 375 { 376 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 377 struct fsxattr fa; 378 379 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 380 if (copy_to_user(arg, &fa, sizeof(fa))) 381 return -EFAULT; 382 383 return 0; 384 } 385 386 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 387 { 388 struct inode *inode = file_inode(file); 389 struct btrfs_inode *binode = BTRFS_I(inode); 390 struct btrfs_root *root = binode->root; 391 struct btrfs_trans_handle *trans; 392 struct fsxattr fa, old_fa; 393 unsigned old_flags; 394 unsigned old_i_flags; 395 int ret = 0; 396 397 if (!inode_owner_or_capable(inode)) 398 return -EPERM; 399 400 if (btrfs_root_readonly(root)) 401 return -EROFS; 402 403 if (copy_from_user(&fa, arg, sizeof(fa))) 404 return -EFAULT; 405 406 ret = check_xflags(fa.fsx_xflags); 407 if (ret) 408 return ret; 409 410 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 411 return -EOPNOTSUPP; 412 413 ret = mnt_want_write_file(file); 414 if (ret) 415 return ret; 416 417 inode_lock(inode); 418 419 old_flags = binode->flags; 420 old_i_flags = inode->i_flags; 421 422 simple_fill_fsxattr(&old_fa, 423 btrfs_inode_flags_to_xflags(binode->flags)); 424 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 425 if (ret) 426 goto out_unlock; 427 428 if (fa.fsx_xflags & FS_XFLAG_SYNC) 429 binode->flags |= BTRFS_INODE_SYNC; 430 else 431 binode->flags &= ~BTRFS_INODE_SYNC; 432 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 433 binode->flags |= BTRFS_INODE_IMMUTABLE; 434 else 435 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 436 if (fa.fsx_xflags & FS_XFLAG_APPEND) 437 binode->flags |= BTRFS_INODE_APPEND; 438 else 439 binode->flags &= ~BTRFS_INODE_APPEND; 440 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 441 binode->flags |= BTRFS_INODE_NODUMP; 442 else 443 binode->flags &= ~BTRFS_INODE_NODUMP; 444 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 445 binode->flags |= BTRFS_INODE_NOATIME; 446 else 447 binode->flags &= ~BTRFS_INODE_NOATIME; 448 449 /* 1 item for the inode */ 450 trans = btrfs_start_transaction(root, 1); 451 if (IS_ERR(trans)) { 452 ret = PTR_ERR(trans); 453 goto out_unlock; 454 } 455 456 btrfs_sync_inode_flags_to_i_flags(inode); 457 inode_inc_iversion(inode); 458 inode->i_ctime = current_time(inode); 459 ret = btrfs_update_inode(trans, root, inode); 460 461 btrfs_end_transaction(trans); 462 463 out_unlock: 464 if (ret) { 465 binode->flags = old_flags; 466 inode->i_flags = old_i_flags; 467 } 468 469 inode_unlock(inode); 470 mnt_drop_write_file(file); 471 472 return ret; 473 } 474 475 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 476 { 477 struct inode *inode = file_inode(file); 478 479 return put_user(inode->i_generation, arg); 480 } 481 482 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 483 void __user *arg) 484 { 485 struct btrfs_device *device; 486 struct request_queue *q; 487 struct fstrim_range range; 488 u64 minlen = ULLONG_MAX; 489 u64 num_devices = 0; 490 int ret; 491 492 if (!capable(CAP_SYS_ADMIN)) 493 return -EPERM; 494 495 /* 496 * If the fs is mounted with nologreplay, which requires it to be 497 * mounted in RO mode as well, we can not allow discard on free space 498 * inside block groups, because log trees refer to extents that are not 499 * pinned in a block group's free space cache (pinning the extents is 500 * precisely the first phase of replaying a log tree). 501 */ 502 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 503 return -EROFS; 504 505 rcu_read_lock(); 506 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 507 dev_list) { 508 if (!device->bdev) 509 continue; 510 q = bdev_get_queue(device->bdev); 511 if (blk_queue_discard(q)) { 512 num_devices++; 513 minlen = min_t(u64, q->limits.discard_granularity, 514 minlen); 515 } 516 } 517 rcu_read_unlock(); 518 519 if (!num_devices) 520 return -EOPNOTSUPP; 521 if (copy_from_user(&range, arg, sizeof(range))) 522 return -EFAULT; 523 524 /* 525 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 526 * block group is in the logical address space, which can be any 527 * sectorsize aligned bytenr in the range [0, U64_MAX]. 528 */ 529 if (range.len < fs_info->sb->s_blocksize) 530 return -EINVAL; 531 532 range.minlen = max(range.minlen, minlen); 533 ret = btrfs_trim_fs(fs_info, &range); 534 if (ret < 0) 535 return ret; 536 537 if (copy_to_user(arg, &range, sizeof(range))) 538 return -EFAULT; 539 540 return 0; 541 } 542 543 int __pure btrfs_is_empty_uuid(u8 *uuid) 544 { 545 int i; 546 547 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 548 if (uuid[i]) 549 return 0; 550 } 551 return 1; 552 } 553 554 static noinline int create_subvol(struct inode *dir, 555 struct dentry *dentry, 556 const char *name, int namelen, 557 u64 *async_transid, 558 struct btrfs_qgroup_inherit *inherit) 559 { 560 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 561 struct btrfs_trans_handle *trans; 562 struct btrfs_key key; 563 struct btrfs_root_item *root_item; 564 struct btrfs_inode_item *inode_item; 565 struct extent_buffer *leaf; 566 struct btrfs_root *root = BTRFS_I(dir)->root; 567 struct btrfs_root *new_root; 568 struct btrfs_block_rsv block_rsv; 569 struct timespec64 cur_time = current_time(dir); 570 struct inode *inode; 571 int ret; 572 int err; 573 u64 objectid; 574 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 575 u64 index = 0; 576 uuid_le new_uuid; 577 578 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 579 if (!root_item) 580 return -ENOMEM; 581 582 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 583 if (ret) 584 goto fail_free; 585 586 /* 587 * Don't create subvolume whose level is not zero. Or qgroup will be 588 * screwed up since it assumes subvolume qgroup's level to be 0. 589 */ 590 if (btrfs_qgroup_level(objectid)) { 591 ret = -ENOSPC; 592 goto fail_free; 593 } 594 595 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 596 /* 597 * The same as the snapshot creation, please see the comment 598 * of create_snapshot(). 599 */ 600 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 601 if (ret) 602 goto fail_free; 603 604 trans = btrfs_start_transaction(root, 0); 605 if (IS_ERR(trans)) { 606 ret = PTR_ERR(trans); 607 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 608 goto fail_free; 609 } 610 trans->block_rsv = &block_rsv; 611 trans->bytes_reserved = block_rsv.size; 612 613 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 614 if (ret) 615 goto fail; 616 617 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 618 if (IS_ERR(leaf)) { 619 ret = PTR_ERR(leaf); 620 goto fail; 621 } 622 623 btrfs_mark_buffer_dirty(leaf); 624 625 inode_item = &root_item->inode; 626 btrfs_set_stack_inode_generation(inode_item, 1); 627 btrfs_set_stack_inode_size(inode_item, 3); 628 btrfs_set_stack_inode_nlink(inode_item, 1); 629 btrfs_set_stack_inode_nbytes(inode_item, 630 fs_info->nodesize); 631 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 632 633 btrfs_set_root_flags(root_item, 0); 634 btrfs_set_root_limit(root_item, 0); 635 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 636 637 btrfs_set_root_bytenr(root_item, leaf->start); 638 btrfs_set_root_generation(root_item, trans->transid); 639 btrfs_set_root_level(root_item, 0); 640 btrfs_set_root_refs(root_item, 1); 641 btrfs_set_root_used(root_item, leaf->len); 642 btrfs_set_root_last_snapshot(root_item, 0); 643 644 btrfs_set_root_generation_v2(root_item, 645 btrfs_root_generation(root_item)); 646 uuid_le_gen(&new_uuid); 647 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 648 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 649 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 650 root_item->ctime = root_item->otime; 651 btrfs_set_root_ctransid(root_item, trans->transid); 652 btrfs_set_root_otransid(root_item, trans->transid); 653 654 btrfs_tree_unlock(leaf); 655 free_extent_buffer(leaf); 656 leaf = NULL; 657 658 btrfs_set_root_dirid(root_item, new_dirid); 659 660 key.objectid = objectid; 661 key.offset = 0; 662 key.type = BTRFS_ROOT_ITEM_KEY; 663 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 664 root_item); 665 if (ret) 666 goto fail; 667 668 key.offset = (u64)-1; 669 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 670 if (IS_ERR(new_root)) { 671 ret = PTR_ERR(new_root); 672 btrfs_abort_transaction(trans, ret); 673 goto fail; 674 } 675 676 btrfs_record_root_in_trans(trans, new_root); 677 678 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 679 if (ret) { 680 /* We potentially lose an unused inode item here */ 681 btrfs_abort_transaction(trans, ret); 682 goto fail; 683 } 684 685 mutex_lock(&new_root->objectid_mutex); 686 new_root->highest_objectid = new_dirid; 687 mutex_unlock(&new_root->objectid_mutex); 688 689 /* 690 * insert the directory item 691 */ 692 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 693 if (ret) { 694 btrfs_abort_transaction(trans, ret); 695 goto fail; 696 } 697 698 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 699 BTRFS_FT_DIR, index); 700 if (ret) { 701 btrfs_abort_transaction(trans, ret); 702 goto fail; 703 } 704 705 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 706 ret = btrfs_update_inode(trans, root, dir); 707 BUG_ON(ret); 708 709 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 710 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 711 BUG_ON(ret); 712 713 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 714 BTRFS_UUID_KEY_SUBVOL, objectid); 715 if (ret) 716 btrfs_abort_transaction(trans, ret); 717 718 fail: 719 kfree(root_item); 720 trans->block_rsv = NULL; 721 trans->bytes_reserved = 0; 722 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 723 724 if (async_transid) { 725 *async_transid = trans->transid; 726 err = btrfs_commit_transaction_async(trans, 1); 727 if (err) 728 err = btrfs_commit_transaction(trans); 729 } else { 730 err = btrfs_commit_transaction(trans); 731 } 732 if (err && !ret) 733 ret = err; 734 735 if (!ret) { 736 inode = btrfs_lookup_dentry(dir, dentry); 737 if (IS_ERR(inode)) 738 return PTR_ERR(inode); 739 d_instantiate(dentry, inode); 740 } 741 return ret; 742 743 fail_free: 744 kfree(root_item); 745 return ret; 746 } 747 748 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 749 struct dentry *dentry, 750 u64 *async_transid, bool readonly, 751 struct btrfs_qgroup_inherit *inherit) 752 { 753 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 754 struct inode *inode; 755 struct btrfs_pending_snapshot *pending_snapshot; 756 struct btrfs_trans_handle *trans; 757 int ret; 758 bool snapshot_force_cow = false; 759 760 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 761 return -EINVAL; 762 763 if (atomic_read(&root->nr_swapfiles)) { 764 btrfs_warn(fs_info, 765 "cannot snapshot subvolume with active swapfile"); 766 return -ETXTBSY; 767 } 768 769 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 770 if (!pending_snapshot) 771 return -ENOMEM; 772 773 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 774 GFP_KERNEL); 775 pending_snapshot->path = btrfs_alloc_path(); 776 if (!pending_snapshot->root_item || !pending_snapshot->path) { 777 ret = -ENOMEM; 778 goto free_pending; 779 } 780 781 /* 782 * Force new buffered writes to reserve space even when NOCOW is 783 * possible. This is to avoid later writeback (running dealloc) to 784 * fallback to COW mode and unexpectedly fail with ENOSPC. 785 */ 786 atomic_inc(&root->will_be_snapshotted); 787 smp_mb__after_atomic(); 788 /* wait for no snapshot writes */ 789 wait_event(root->subv_writers->wait, 790 percpu_counter_sum(&root->subv_writers->counter) == 0); 791 792 ret = btrfs_start_delalloc_snapshot(root); 793 if (ret) 794 goto dec_and_free; 795 796 /* 797 * All previous writes have started writeback in NOCOW mode, so now 798 * we force future writes to fallback to COW mode during snapshot 799 * creation. 800 */ 801 atomic_inc(&root->snapshot_force_cow); 802 snapshot_force_cow = true; 803 804 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 805 806 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 807 BTRFS_BLOCK_RSV_TEMP); 808 /* 809 * 1 - parent dir inode 810 * 2 - dir entries 811 * 1 - root item 812 * 2 - root ref/backref 813 * 1 - root of snapshot 814 * 1 - UUID item 815 */ 816 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 817 &pending_snapshot->block_rsv, 8, 818 false); 819 if (ret) 820 goto dec_and_free; 821 822 pending_snapshot->dentry = dentry; 823 pending_snapshot->root = root; 824 pending_snapshot->readonly = readonly; 825 pending_snapshot->dir = dir; 826 pending_snapshot->inherit = inherit; 827 828 trans = btrfs_start_transaction(root, 0); 829 if (IS_ERR(trans)) { 830 ret = PTR_ERR(trans); 831 goto fail; 832 } 833 834 spin_lock(&fs_info->trans_lock); 835 list_add(&pending_snapshot->list, 836 &trans->transaction->pending_snapshots); 837 spin_unlock(&fs_info->trans_lock); 838 if (async_transid) { 839 *async_transid = trans->transid; 840 ret = btrfs_commit_transaction_async(trans, 1); 841 if (ret) 842 ret = btrfs_commit_transaction(trans); 843 } else { 844 ret = btrfs_commit_transaction(trans); 845 } 846 if (ret) 847 goto fail; 848 849 ret = pending_snapshot->error; 850 if (ret) 851 goto fail; 852 853 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 854 if (ret) 855 goto fail; 856 857 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 858 if (IS_ERR(inode)) { 859 ret = PTR_ERR(inode); 860 goto fail; 861 } 862 863 d_instantiate(dentry, inode); 864 ret = 0; 865 fail: 866 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 867 dec_and_free: 868 if (snapshot_force_cow) 869 atomic_dec(&root->snapshot_force_cow); 870 if (atomic_dec_and_test(&root->will_be_snapshotted)) 871 wake_up_var(&root->will_be_snapshotted); 872 free_pending: 873 kfree(pending_snapshot->root_item); 874 btrfs_free_path(pending_snapshot->path); 875 kfree(pending_snapshot); 876 877 return ret; 878 } 879 880 /* copy of may_delete in fs/namei.c() 881 * Check whether we can remove a link victim from directory dir, check 882 * whether the type of victim is right. 883 * 1. We can't do it if dir is read-only (done in permission()) 884 * 2. We should have write and exec permissions on dir 885 * 3. We can't remove anything from append-only dir 886 * 4. We can't do anything with immutable dir (done in permission()) 887 * 5. If the sticky bit on dir is set we should either 888 * a. be owner of dir, or 889 * b. be owner of victim, or 890 * c. have CAP_FOWNER capability 891 * 6. If the victim is append-only or immutable we can't do anything with 892 * links pointing to it. 893 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 894 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 895 * 9. We can't remove a root or mountpoint. 896 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 897 * nfs_async_unlink(). 898 */ 899 900 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 901 { 902 int error; 903 904 if (d_really_is_negative(victim)) 905 return -ENOENT; 906 907 BUG_ON(d_inode(victim->d_parent) != dir); 908 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 909 910 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 911 if (error) 912 return error; 913 if (IS_APPEND(dir)) 914 return -EPERM; 915 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 916 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 917 return -EPERM; 918 if (isdir) { 919 if (!d_is_dir(victim)) 920 return -ENOTDIR; 921 if (IS_ROOT(victim)) 922 return -EBUSY; 923 } else if (d_is_dir(victim)) 924 return -EISDIR; 925 if (IS_DEADDIR(dir)) 926 return -ENOENT; 927 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 928 return -EBUSY; 929 return 0; 930 } 931 932 /* copy of may_create in fs/namei.c() */ 933 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 934 { 935 if (d_really_is_positive(child)) 936 return -EEXIST; 937 if (IS_DEADDIR(dir)) 938 return -ENOENT; 939 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 940 } 941 942 /* 943 * Create a new subvolume below @parent. This is largely modeled after 944 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 945 * inside this filesystem so it's quite a bit simpler. 946 */ 947 static noinline int btrfs_mksubvol(const struct path *parent, 948 const char *name, int namelen, 949 struct btrfs_root *snap_src, 950 u64 *async_transid, bool readonly, 951 struct btrfs_qgroup_inherit *inherit) 952 { 953 struct inode *dir = d_inode(parent->dentry); 954 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 955 struct dentry *dentry; 956 int error; 957 958 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 959 if (error == -EINTR) 960 return error; 961 962 dentry = lookup_one_len(name, parent->dentry, namelen); 963 error = PTR_ERR(dentry); 964 if (IS_ERR(dentry)) 965 goto out_unlock; 966 967 error = btrfs_may_create(dir, dentry); 968 if (error) 969 goto out_dput; 970 971 /* 972 * even if this name doesn't exist, we may get hash collisions. 973 * check for them now when we can safely fail 974 */ 975 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 976 dir->i_ino, name, 977 namelen); 978 if (error) 979 goto out_dput; 980 981 down_read(&fs_info->subvol_sem); 982 983 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 984 goto out_up_read; 985 986 if (snap_src) { 987 error = create_snapshot(snap_src, dir, dentry, 988 async_transid, readonly, inherit); 989 } else { 990 error = create_subvol(dir, dentry, name, namelen, 991 async_transid, inherit); 992 } 993 if (!error) 994 fsnotify_mkdir(dir, dentry); 995 out_up_read: 996 up_read(&fs_info->subvol_sem); 997 out_dput: 998 dput(dentry); 999 out_unlock: 1000 inode_unlock(dir); 1001 return error; 1002 } 1003 1004 /* 1005 * When we're defragging a range, we don't want to kick it off again 1006 * if it is really just waiting for delalloc to send it down. 1007 * If we find a nice big extent or delalloc range for the bytes in the 1008 * file you want to defrag, we return 0 to let you know to skip this 1009 * part of the file 1010 */ 1011 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1012 { 1013 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1014 struct extent_map *em = NULL; 1015 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1016 u64 end; 1017 1018 read_lock(&em_tree->lock); 1019 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1020 read_unlock(&em_tree->lock); 1021 1022 if (em) { 1023 end = extent_map_end(em); 1024 free_extent_map(em); 1025 if (end - offset > thresh) 1026 return 0; 1027 } 1028 /* if we already have a nice delalloc here, just stop */ 1029 thresh /= 2; 1030 end = count_range_bits(io_tree, &offset, offset + thresh, 1031 thresh, EXTENT_DELALLOC, 1); 1032 if (end >= thresh) 1033 return 0; 1034 return 1; 1035 } 1036 1037 /* 1038 * helper function to walk through a file and find extents 1039 * newer than a specific transid, and smaller than thresh. 1040 * 1041 * This is used by the defragging code to find new and small 1042 * extents 1043 */ 1044 static int find_new_extents(struct btrfs_root *root, 1045 struct inode *inode, u64 newer_than, 1046 u64 *off, u32 thresh) 1047 { 1048 struct btrfs_path *path; 1049 struct btrfs_key min_key; 1050 struct extent_buffer *leaf; 1051 struct btrfs_file_extent_item *extent; 1052 int type; 1053 int ret; 1054 u64 ino = btrfs_ino(BTRFS_I(inode)); 1055 1056 path = btrfs_alloc_path(); 1057 if (!path) 1058 return -ENOMEM; 1059 1060 min_key.objectid = ino; 1061 min_key.type = BTRFS_EXTENT_DATA_KEY; 1062 min_key.offset = *off; 1063 1064 while (1) { 1065 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1066 if (ret != 0) 1067 goto none; 1068 process_slot: 1069 if (min_key.objectid != ino) 1070 goto none; 1071 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1072 goto none; 1073 1074 leaf = path->nodes[0]; 1075 extent = btrfs_item_ptr(leaf, path->slots[0], 1076 struct btrfs_file_extent_item); 1077 1078 type = btrfs_file_extent_type(leaf, extent); 1079 if (type == BTRFS_FILE_EXTENT_REG && 1080 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1081 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1082 *off = min_key.offset; 1083 btrfs_free_path(path); 1084 return 0; 1085 } 1086 1087 path->slots[0]++; 1088 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1089 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1090 goto process_slot; 1091 } 1092 1093 if (min_key.offset == (u64)-1) 1094 goto none; 1095 1096 min_key.offset++; 1097 btrfs_release_path(path); 1098 } 1099 none: 1100 btrfs_free_path(path); 1101 return -ENOENT; 1102 } 1103 1104 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1105 { 1106 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1107 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1108 struct extent_map *em; 1109 u64 len = PAGE_SIZE; 1110 1111 /* 1112 * hopefully we have this extent in the tree already, try without 1113 * the full extent lock 1114 */ 1115 read_lock(&em_tree->lock); 1116 em = lookup_extent_mapping(em_tree, start, len); 1117 read_unlock(&em_tree->lock); 1118 1119 if (!em) { 1120 struct extent_state *cached = NULL; 1121 u64 end = start + len - 1; 1122 1123 /* get the big lock and read metadata off disk */ 1124 lock_extent_bits(io_tree, start, end, &cached); 1125 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 1126 unlock_extent_cached(io_tree, start, end, &cached); 1127 1128 if (IS_ERR(em)) 1129 return NULL; 1130 } 1131 1132 return em; 1133 } 1134 1135 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1136 { 1137 struct extent_map *next; 1138 bool ret = true; 1139 1140 /* this is the last extent */ 1141 if (em->start + em->len >= i_size_read(inode)) 1142 return false; 1143 1144 next = defrag_lookup_extent(inode, em->start + em->len); 1145 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1146 ret = false; 1147 else if ((em->block_start + em->block_len == next->block_start) && 1148 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1149 ret = false; 1150 1151 free_extent_map(next); 1152 return ret; 1153 } 1154 1155 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1156 u64 *last_len, u64 *skip, u64 *defrag_end, 1157 int compress) 1158 { 1159 struct extent_map *em; 1160 int ret = 1; 1161 bool next_mergeable = true; 1162 bool prev_mergeable = true; 1163 1164 /* 1165 * make sure that once we start defragging an extent, we keep on 1166 * defragging it 1167 */ 1168 if (start < *defrag_end) 1169 return 1; 1170 1171 *skip = 0; 1172 1173 em = defrag_lookup_extent(inode, start); 1174 if (!em) 1175 return 0; 1176 1177 /* this will cover holes, and inline extents */ 1178 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1179 ret = 0; 1180 goto out; 1181 } 1182 1183 if (!*defrag_end) 1184 prev_mergeable = false; 1185 1186 next_mergeable = defrag_check_next_extent(inode, em); 1187 /* 1188 * we hit a real extent, if it is big or the next extent is not a 1189 * real extent, don't bother defragging it 1190 */ 1191 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1192 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1193 ret = 0; 1194 out: 1195 /* 1196 * last_len ends up being a counter of how many bytes we've defragged. 1197 * every time we choose not to defrag an extent, we reset *last_len 1198 * so that the next tiny extent will force a defrag. 1199 * 1200 * The end result of this is that tiny extents before a single big 1201 * extent will force at least part of that big extent to be defragged. 1202 */ 1203 if (ret) { 1204 *defrag_end = extent_map_end(em); 1205 } else { 1206 *last_len = 0; 1207 *skip = extent_map_end(em); 1208 *defrag_end = 0; 1209 } 1210 1211 free_extent_map(em); 1212 return ret; 1213 } 1214 1215 /* 1216 * it doesn't do much good to defrag one or two pages 1217 * at a time. This pulls in a nice chunk of pages 1218 * to COW and defrag. 1219 * 1220 * It also makes sure the delalloc code has enough 1221 * dirty data to avoid making new small extents as part 1222 * of the defrag 1223 * 1224 * It's a good idea to start RA on this range 1225 * before calling this. 1226 */ 1227 static int cluster_pages_for_defrag(struct inode *inode, 1228 struct page **pages, 1229 unsigned long start_index, 1230 unsigned long num_pages) 1231 { 1232 unsigned long file_end; 1233 u64 isize = i_size_read(inode); 1234 u64 page_start; 1235 u64 page_end; 1236 u64 page_cnt; 1237 int ret; 1238 int i; 1239 int i_done; 1240 struct btrfs_ordered_extent *ordered; 1241 struct extent_state *cached_state = NULL; 1242 struct extent_io_tree *tree; 1243 struct extent_changeset *data_reserved = NULL; 1244 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1245 1246 file_end = (isize - 1) >> PAGE_SHIFT; 1247 if (!isize || start_index > file_end) 1248 return 0; 1249 1250 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1251 1252 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1253 start_index << PAGE_SHIFT, 1254 page_cnt << PAGE_SHIFT); 1255 if (ret) 1256 return ret; 1257 i_done = 0; 1258 tree = &BTRFS_I(inode)->io_tree; 1259 1260 /* step one, lock all the pages */ 1261 for (i = 0; i < page_cnt; i++) { 1262 struct page *page; 1263 again: 1264 page = find_or_create_page(inode->i_mapping, 1265 start_index + i, mask); 1266 if (!page) 1267 break; 1268 1269 page_start = page_offset(page); 1270 page_end = page_start + PAGE_SIZE - 1; 1271 while (1) { 1272 lock_extent_bits(tree, page_start, page_end, 1273 &cached_state); 1274 ordered = btrfs_lookup_ordered_extent(inode, 1275 page_start); 1276 unlock_extent_cached(tree, page_start, page_end, 1277 &cached_state); 1278 if (!ordered) 1279 break; 1280 1281 unlock_page(page); 1282 btrfs_start_ordered_extent(inode, ordered, 1); 1283 btrfs_put_ordered_extent(ordered); 1284 lock_page(page); 1285 /* 1286 * we unlocked the page above, so we need check if 1287 * it was released or not. 1288 */ 1289 if (page->mapping != inode->i_mapping) { 1290 unlock_page(page); 1291 put_page(page); 1292 goto again; 1293 } 1294 } 1295 1296 if (!PageUptodate(page)) { 1297 btrfs_readpage(NULL, page); 1298 lock_page(page); 1299 if (!PageUptodate(page)) { 1300 unlock_page(page); 1301 put_page(page); 1302 ret = -EIO; 1303 break; 1304 } 1305 } 1306 1307 if (page->mapping != inode->i_mapping) { 1308 unlock_page(page); 1309 put_page(page); 1310 goto again; 1311 } 1312 1313 pages[i] = page; 1314 i_done++; 1315 } 1316 if (!i_done || ret) 1317 goto out; 1318 1319 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1320 goto out; 1321 1322 /* 1323 * so now we have a nice long stream of locked 1324 * and up to date pages, lets wait on them 1325 */ 1326 for (i = 0; i < i_done; i++) 1327 wait_on_page_writeback(pages[i]); 1328 1329 page_start = page_offset(pages[0]); 1330 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1331 1332 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1333 page_start, page_end - 1, &cached_state); 1334 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1335 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1336 EXTENT_DEFRAG, 0, 0, &cached_state); 1337 1338 if (i_done != page_cnt) { 1339 spin_lock(&BTRFS_I(inode)->lock); 1340 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1341 spin_unlock(&BTRFS_I(inode)->lock); 1342 btrfs_delalloc_release_space(inode, data_reserved, 1343 start_index << PAGE_SHIFT, 1344 (page_cnt - i_done) << PAGE_SHIFT, true); 1345 } 1346 1347 1348 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1349 &cached_state); 1350 1351 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1352 page_start, page_end - 1, &cached_state); 1353 1354 for (i = 0; i < i_done; i++) { 1355 clear_page_dirty_for_io(pages[i]); 1356 ClearPageChecked(pages[i]); 1357 set_page_extent_mapped(pages[i]); 1358 set_page_dirty(pages[i]); 1359 unlock_page(pages[i]); 1360 put_page(pages[i]); 1361 } 1362 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1363 extent_changeset_free(data_reserved); 1364 return i_done; 1365 out: 1366 for (i = 0; i < i_done; i++) { 1367 unlock_page(pages[i]); 1368 put_page(pages[i]); 1369 } 1370 btrfs_delalloc_release_space(inode, data_reserved, 1371 start_index << PAGE_SHIFT, 1372 page_cnt << PAGE_SHIFT, true); 1373 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1374 extent_changeset_free(data_reserved); 1375 return ret; 1376 1377 } 1378 1379 int btrfs_defrag_file(struct inode *inode, struct file *file, 1380 struct btrfs_ioctl_defrag_range_args *range, 1381 u64 newer_than, unsigned long max_to_defrag) 1382 { 1383 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1384 struct btrfs_root *root = BTRFS_I(inode)->root; 1385 struct file_ra_state *ra = NULL; 1386 unsigned long last_index; 1387 u64 isize = i_size_read(inode); 1388 u64 last_len = 0; 1389 u64 skip = 0; 1390 u64 defrag_end = 0; 1391 u64 newer_off = range->start; 1392 unsigned long i; 1393 unsigned long ra_index = 0; 1394 int ret; 1395 int defrag_count = 0; 1396 int compress_type = BTRFS_COMPRESS_ZLIB; 1397 u32 extent_thresh = range->extent_thresh; 1398 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1399 unsigned long cluster = max_cluster; 1400 u64 new_align = ~((u64)SZ_128K - 1); 1401 struct page **pages = NULL; 1402 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1403 1404 if (isize == 0) 1405 return 0; 1406 1407 if (range->start >= isize) 1408 return -EINVAL; 1409 1410 if (do_compress) { 1411 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1412 return -EINVAL; 1413 if (range->compress_type) 1414 compress_type = range->compress_type; 1415 } 1416 1417 if (extent_thresh == 0) 1418 extent_thresh = SZ_256K; 1419 1420 /* 1421 * If we were not given a file, allocate a readahead context. As 1422 * readahead is just an optimization, defrag will work without it so 1423 * we don't error out. 1424 */ 1425 if (!file) { 1426 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1427 if (ra) 1428 file_ra_state_init(ra, inode->i_mapping); 1429 } else { 1430 ra = &file->f_ra; 1431 } 1432 1433 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1434 if (!pages) { 1435 ret = -ENOMEM; 1436 goto out_ra; 1437 } 1438 1439 /* find the last page to defrag */ 1440 if (range->start + range->len > range->start) { 1441 last_index = min_t(u64, isize - 1, 1442 range->start + range->len - 1) >> PAGE_SHIFT; 1443 } else { 1444 last_index = (isize - 1) >> PAGE_SHIFT; 1445 } 1446 1447 if (newer_than) { 1448 ret = find_new_extents(root, inode, newer_than, 1449 &newer_off, SZ_64K); 1450 if (!ret) { 1451 range->start = newer_off; 1452 /* 1453 * we always align our defrag to help keep 1454 * the extents in the file evenly spaced 1455 */ 1456 i = (newer_off & new_align) >> PAGE_SHIFT; 1457 } else 1458 goto out_ra; 1459 } else { 1460 i = range->start >> PAGE_SHIFT; 1461 } 1462 if (!max_to_defrag) 1463 max_to_defrag = last_index - i + 1; 1464 1465 /* 1466 * make writeback starts from i, so the defrag range can be 1467 * written sequentially. 1468 */ 1469 if (i < inode->i_mapping->writeback_index) 1470 inode->i_mapping->writeback_index = i; 1471 1472 while (i <= last_index && defrag_count < max_to_defrag && 1473 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1474 /* 1475 * make sure we stop running if someone unmounts 1476 * the FS 1477 */ 1478 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1479 break; 1480 1481 if (btrfs_defrag_cancelled(fs_info)) { 1482 btrfs_debug(fs_info, "defrag_file cancelled"); 1483 ret = -EAGAIN; 1484 break; 1485 } 1486 1487 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1488 extent_thresh, &last_len, &skip, 1489 &defrag_end, do_compress)){ 1490 unsigned long next; 1491 /* 1492 * the should_defrag function tells us how much to skip 1493 * bump our counter by the suggested amount 1494 */ 1495 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1496 i = max(i + 1, next); 1497 continue; 1498 } 1499 1500 if (!newer_than) { 1501 cluster = (PAGE_ALIGN(defrag_end) >> 1502 PAGE_SHIFT) - i; 1503 cluster = min(cluster, max_cluster); 1504 } else { 1505 cluster = max_cluster; 1506 } 1507 1508 if (i + cluster > ra_index) { 1509 ra_index = max(i, ra_index); 1510 if (ra) 1511 page_cache_sync_readahead(inode->i_mapping, ra, 1512 file, ra_index, cluster); 1513 ra_index += cluster; 1514 } 1515 1516 inode_lock(inode); 1517 if (IS_SWAPFILE(inode)) { 1518 ret = -ETXTBSY; 1519 } else { 1520 if (do_compress) 1521 BTRFS_I(inode)->defrag_compress = compress_type; 1522 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1523 } 1524 if (ret < 0) { 1525 inode_unlock(inode); 1526 goto out_ra; 1527 } 1528 1529 defrag_count += ret; 1530 balance_dirty_pages_ratelimited(inode->i_mapping); 1531 inode_unlock(inode); 1532 1533 if (newer_than) { 1534 if (newer_off == (u64)-1) 1535 break; 1536 1537 if (ret > 0) 1538 i += ret; 1539 1540 newer_off = max(newer_off + 1, 1541 (u64)i << PAGE_SHIFT); 1542 1543 ret = find_new_extents(root, inode, newer_than, 1544 &newer_off, SZ_64K); 1545 if (!ret) { 1546 range->start = newer_off; 1547 i = (newer_off & new_align) >> PAGE_SHIFT; 1548 } else { 1549 break; 1550 } 1551 } else { 1552 if (ret > 0) { 1553 i += ret; 1554 last_len += ret << PAGE_SHIFT; 1555 } else { 1556 i++; 1557 last_len = 0; 1558 } 1559 } 1560 } 1561 1562 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1563 filemap_flush(inode->i_mapping); 1564 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1565 &BTRFS_I(inode)->runtime_flags)) 1566 filemap_flush(inode->i_mapping); 1567 } 1568 1569 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1570 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1571 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1572 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1573 } 1574 1575 ret = defrag_count; 1576 1577 out_ra: 1578 if (do_compress) { 1579 inode_lock(inode); 1580 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1581 inode_unlock(inode); 1582 } 1583 if (!file) 1584 kfree(ra); 1585 kfree(pages); 1586 return ret; 1587 } 1588 1589 static noinline int btrfs_ioctl_resize(struct file *file, 1590 void __user *arg) 1591 { 1592 struct inode *inode = file_inode(file); 1593 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1594 u64 new_size; 1595 u64 old_size; 1596 u64 devid = 1; 1597 struct btrfs_root *root = BTRFS_I(inode)->root; 1598 struct btrfs_ioctl_vol_args *vol_args; 1599 struct btrfs_trans_handle *trans; 1600 struct btrfs_device *device = NULL; 1601 char *sizestr; 1602 char *retptr; 1603 char *devstr = NULL; 1604 int ret = 0; 1605 int mod = 0; 1606 1607 if (!capable(CAP_SYS_ADMIN)) 1608 return -EPERM; 1609 1610 ret = mnt_want_write_file(file); 1611 if (ret) 1612 return ret; 1613 1614 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1615 mnt_drop_write_file(file); 1616 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1617 } 1618 1619 vol_args = memdup_user(arg, sizeof(*vol_args)); 1620 if (IS_ERR(vol_args)) { 1621 ret = PTR_ERR(vol_args); 1622 goto out; 1623 } 1624 1625 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1626 1627 sizestr = vol_args->name; 1628 devstr = strchr(sizestr, ':'); 1629 if (devstr) { 1630 sizestr = devstr + 1; 1631 *devstr = '\0'; 1632 devstr = vol_args->name; 1633 ret = kstrtoull(devstr, 10, &devid); 1634 if (ret) 1635 goto out_free; 1636 if (!devid) { 1637 ret = -EINVAL; 1638 goto out_free; 1639 } 1640 btrfs_info(fs_info, "resizing devid %llu", devid); 1641 } 1642 1643 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1644 if (!device) { 1645 btrfs_info(fs_info, "resizer unable to find device %llu", 1646 devid); 1647 ret = -ENODEV; 1648 goto out_free; 1649 } 1650 1651 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1652 btrfs_info(fs_info, 1653 "resizer unable to apply on readonly device %llu", 1654 devid); 1655 ret = -EPERM; 1656 goto out_free; 1657 } 1658 1659 if (!strcmp(sizestr, "max")) 1660 new_size = device->bdev->bd_inode->i_size; 1661 else { 1662 if (sizestr[0] == '-') { 1663 mod = -1; 1664 sizestr++; 1665 } else if (sizestr[0] == '+') { 1666 mod = 1; 1667 sizestr++; 1668 } 1669 new_size = memparse(sizestr, &retptr); 1670 if (*retptr != '\0' || new_size == 0) { 1671 ret = -EINVAL; 1672 goto out_free; 1673 } 1674 } 1675 1676 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1677 ret = -EPERM; 1678 goto out_free; 1679 } 1680 1681 old_size = btrfs_device_get_total_bytes(device); 1682 1683 if (mod < 0) { 1684 if (new_size > old_size) { 1685 ret = -EINVAL; 1686 goto out_free; 1687 } 1688 new_size = old_size - new_size; 1689 } else if (mod > 0) { 1690 if (new_size > ULLONG_MAX - old_size) { 1691 ret = -ERANGE; 1692 goto out_free; 1693 } 1694 new_size = old_size + new_size; 1695 } 1696 1697 if (new_size < SZ_256M) { 1698 ret = -EINVAL; 1699 goto out_free; 1700 } 1701 if (new_size > device->bdev->bd_inode->i_size) { 1702 ret = -EFBIG; 1703 goto out_free; 1704 } 1705 1706 new_size = round_down(new_size, fs_info->sectorsize); 1707 1708 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1709 rcu_str_deref(device->name), new_size); 1710 1711 if (new_size > old_size) { 1712 trans = btrfs_start_transaction(root, 0); 1713 if (IS_ERR(trans)) { 1714 ret = PTR_ERR(trans); 1715 goto out_free; 1716 } 1717 ret = btrfs_grow_device(trans, device, new_size); 1718 btrfs_commit_transaction(trans); 1719 } else if (new_size < old_size) { 1720 ret = btrfs_shrink_device(device, new_size); 1721 } /* equal, nothing need to do */ 1722 1723 out_free: 1724 kfree(vol_args); 1725 out: 1726 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1727 mnt_drop_write_file(file); 1728 return ret; 1729 } 1730 1731 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1732 const char *name, unsigned long fd, int subvol, 1733 u64 *transid, bool readonly, 1734 struct btrfs_qgroup_inherit *inherit) 1735 { 1736 int namelen; 1737 int ret = 0; 1738 1739 if (!S_ISDIR(file_inode(file)->i_mode)) 1740 return -ENOTDIR; 1741 1742 ret = mnt_want_write_file(file); 1743 if (ret) 1744 goto out; 1745 1746 namelen = strlen(name); 1747 if (strchr(name, '/')) { 1748 ret = -EINVAL; 1749 goto out_drop_write; 1750 } 1751 1752 if (name[0] == '.' && 1753 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1754 ret = -EEXIST; 1755 goto out_drop_write; 1756 } 1757 1758 if (subvol) { 1759 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1760 NULL, transid, readonly, inherit); 1761 } else { 1762 struct fd src = fdget(fd); 1763 struct inode *src_inode; 1764 if (!src.file) { 1765 ret = -EINVAL; 1766 goto out_drop_write; 1767 } 1768 1769 src_inode = file_inode(src.file); 1770 if (src_inode->i_sb != file_inode(file)->i_sb) { 1771 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1772 "Snapshot src from another FS"); 1773 ret = -EXDEV; 1774 } else if (!inode_owner_or_capable(src_inode)) { 1775 /* 1776 * Subvolume creation is not restricted, but snapshots 1777 * are limited to own subvolumes only 1778 */ 1779 ret = -EPERM; 1780 } else { 1781 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1782 BTRFS_I(src_inode)->root, 1783 transid, readonly, inherit); 1784 } 1785 fdput(src); 1786 } 1787 out_drop_write: 1788 mnt_drop_write_file(file); 1789 out: 1790 return ret; 1791 } 1792 1793 static noinline int btrfs_ioctl_snap_create(struct file *file, 1794 void __user *arg, int subvol) 1795 { 1796 struct btrfs_ioctl_vol_args *vol_args; 1797 int ret; 1798 1799 if (!S_ISDIR(file_inode(file)->i_mode)) 1800 return -ENOTDIR; 1801 1802 vol_args = memdup_user(arg, sizeof(*vol_args)); 1803 if (IS_ERR(vol_args)) 1804 return PTR_ERR(vol_args); 1805 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1806 1807 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1808 vol_args->fd, subvol, 1809 NULL, false, NULL); 1810 1811 kfree(vol_args); 1812 return ret; 1813 } 1814 1815 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1816 void __user *arg, int subvol) 1817 { 1818 struct btrfs_ioctl_vol_args_v2 *vol_args; 1819 int ret; 1820 u64 transid = 0; 1821 u64 *ptr = NULL; 1822 bool readonly = false; 1823 struct btrfs_qgroup_inherit *inherit = NULL; 1824 1825 if (!S_ISDIR(file_inode(file)->i_mode)) 1826 return -ENOTDIR; 1827 1828 vol_args = memdup_user(arg, sizeof(*vol_args)); 1829 if (IS_ERR(vol_args)) 1830 return PTR_ERR(vol_args); 1831 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1832 1833 if (vol_args->flags & 1834 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1835 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1836 ret = -EOPNOTSUPP; 1837 goto free_args; 1838 } 1839 1840 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1841 struct inode *inode = file_inode(file); 1842 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1843 1844 btrfs_warn(fs_info, 1845 "SNAP_CREATE_V2 ioctl with CREATE_ASYNC is deprecated and will be removed in kernel 5.7"); 1846 1847 ptr = &transid; 1848 } 1849 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1850 readonly = true; 1851 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1852 if (vol_args->size > PAGE_SIZE) { 1853 ret = -EINVAL; 1854 goto free_args; 1855 } 1856 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1857 if (IS_ERR(inherit)) { 1858 ret = PTR_ERR(inherit); 1859 goto free_args; 1860 } 1861 } 1862 1863 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1864 vol_args->fd, subvol, ptr, 1865 readonly, inherit); 1866 if (ret) 1867 goto free_inherit; 1868 1869 if (ptr && copy_to_user(arg + 1870 offsetof(struct btrfs_ioctl_vol_args_v2, 1871 transid), 1872 ptr, sizeof(*ptr))) 1873 ret = -EFAULT; 1874 1875 free_inherit: 1876 kfree(inherit); 1877 free_args: 1878 kfree(vol_args); 1879 return ret; 1880 } 1881 1882 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1883 void __user *arg) 1884 { 1885 struct inode *inode = file_inode(file); 1886 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1887 struct btrfs_root *root = BTRFS_I(inode)->root; 1888 int ret = 0; 1889 u64 flags = 0; 1890 1891 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1892 return -EINVAL; 1893 1894 down_read(&fs_info->subvol_sem); 1895 if (btrfs_root_readonly(root)) 1896 flags |= BTRFS_SUBVOL_RDONLY; 1897 up_read(&fs_info->subvol_sem); 1898 1899 if (copy_to_user(arg, &flags, sizeof(flags))) 1900 ret = -EFAULT; 1901 1902 return ret; 1903 } 1904 1905 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1906 void __user *arg) 1907 { 1908 struct inode *inode = file_inode(file); 1909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1910 struct btrfs_root *root = BTRFS_I(inode)->root; 1911 struct btrfs_trans_handle *trans; 1912 u64 root_flags; 1913 u64 flags; 1914 int ret = 0; 1915 1916 if (!inode_owner_or_capable(inode)) 1917 return -EPERM; 1918 1919 ret = mnt_want_write_file(file); 1920 if (ret) 1921 goto out; 1922 1923 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1924 ret = -EINVAL; 1925 goto out_drop_write; 1926 } 1927 1928 if (copy_from_user(&flags, arg, sizeof(flags))) { 1929 ret = -EFAULT; 1930 goto out_drop_write; 1931 } 1932 1933 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1934 ret = -EINVAL; 1935 goto out_drop_write; 1936 } 1937 1938 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1939 ret = -EOPNOTSUPP; 1940 goto out_drop_write; 1941 } 1942 1943 down_write(&fs_info->subvol_sem); 1944 1945 /* nothing to do */ 1946 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1947 goto out_drop_sem; 1948 1949 root_flags = btrfs_root_flags(&root->root_item); 1950 if (flags & BTRFS_SUBVOL_RDONLY) { 1951 btrfs_set_root_flags(&root->root_item, 1952 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1953 } else { 1954 /* 1955 * Block RO -> RW transition if this subvolume is involved in 1956 * send 1957 */ 1958 spin_lock(&root->root_item_lock); 1959 if (root->send_in_progress == 0) { 1960 btrfs_set_root_flags(&root->root_item, 1961 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1962 spin_unlock(&root->root_item_lock); 1963 } else { 1964 spin_unlock(&root->root_item_lock); 1965 btrfs_warn(fs_info, 1966 "Attempt to set subvolume %llu read-write during send", 1967 root->root_key.objectid); 1968 ret = -EPERM; 1969 goto out_drop_sem; 1970 } 1971 } 1972 1973 trans = btrfs_start_transaction(root, 1); 1974 if (IS_ERR(trans)) { 1975 ret = PTR_ERR(trans); 1976 goto out_reset; 1977 } 1978 1979 ret = btrfs_update_root(trans, fs_info->tree_root, 1980 &root->root_key, &root->root_item); 1981 if (ret < 0) { 1982 btrfs_end_transaction(trans); 1983 goto out_reset; 1984 } 1985 1986 ret = btrfs_commit_transaction(trans); 1987 1988 out_reset: 1989 if (ret) 1990 btrfs_set_root_flags(&root->root_item, root_flags); 1991 out_drop_sem: 1992 up_write(&fs_info->subvol_sem); 1993 out_drop_write: 1994 mnt_drop_write_file(file); 1995 out: 1996 return ret; 1997 } 1998 1999 static noinline int key_in_sk(struct btrfs_key *key, 2000 struct btrfs_ioctl_search_key *sk) 2001 { 2002 struct btrfs_key test; 2003 int ret; 2004 2005 test.objectid = sk->min_objectid; 2006 test.type = sk->min_type; 2007 test.offset = sk->min_offset; 2008 2009 ret = btrfs_comp_cpu_keys(key, &test); 2010 if (ret < 0) 2011 return 0; 2012 2013 test.objectid = sk->max_objectid; 2014 test.type = sk->max_type; 2015 test.offset = sk->max_offset; 2016 2017 ret = btrfs_comp_cpu_keys(key, &test); 2018 if (ret > 0) 2019 return 0; 2020 return 1; 2021 } 2022 2023 static noinline int copy_to_sk(struct btrfs_path *path, 2024 struct btrfs_key *key, 2025 struct btrfs_ioctl_search_key *sk, 2026 size_t *buf_size, 2027 char __user *ubuf, 2028 unsigned long *sk_offset, 2029 int *num_found) 2030 { 2031 u64 found_transid; 2032 struct extent_buffer *leaf; 2033 struct btrfs_ioctl_search_header sh; 2034 struct btrfs_key test; 2035 unsigned long item_off; 2036 unsigned long item_len; 2037 int nritems; 2038 int i; 2039 int slot; 2040 int ret = 0; 2041 2042 leaf = path->nodes[0]; 2043 slot = path->slots[0]; 2044 nritems = btrfs_header_nritems(leaf); 2045 2046 if (btrfs_header_generation(leaf) > sk->max_transid) { 2047 i = nritems; 2048 goto advance_key; 2049 } 2050 found_transid = btrfs_header_generation(leaf); 2051 2052 for (i = slot; i < nritems; i++) { 2053 item_off = btrfs_item_ptr_offset(leaf, i); 2054 item_len = btrfs_item_size_nr(leaf, i); 2055 2056 btrfs_item_key_to_cpu(leaf, key, i); 2057 if (!key_in_sk(key, sk)) 2058 continue; 2059 2060 if (sizeof(sh) + item_len > *buf_size) { 2061 if (*num_found) { 2062 ret = 1; 2063 goto out; 2064 } 2065 2066 /* 2067 * return one empty item back for v1, which does not 2068 * handle -EOVERFLOW 2069 */ 2070 2071 *buf_size = sizeof(sh) + item_len; 2072 item_len = 0; 2073 ret = -EOVERFLOW; 2074 } 2075 2076 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2077 ret = 1; 2078 goto out; 2079 } 2080 2081 sh.objectid = key->objectid; 2082 sh.offset = key->offset; 2083 sh.type = key->type; 2084 sh.len = item_len; 2085 sh.transid = found_transid; 2086 2087 /* copy search result header */ 2088 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2089 ret = -EFAULT; 2090 goto out; 2091 } 2092 2093 *sk_offset += sizeof(sh); 2094 2095 if (item_len) { 2096 char __user *up = ubuf + *sk_offset; 2097 /* copy the item */ 2098 if (read_extent_buffer_to_user(leaf, up, 2099 item_off, item_len)) { 2100 ret = -EFAULT; 2101 goto out; 2102 } 2103 2104 *sk_offset += item_len; 2105 } 2106 (*num_found)++; 2107 2108 if (ret) /* -EOVERFLOW from above */ 2109 goto out; 2110 2111 if (*num_found >= sk->nr_items) { 2112 ret = 1; 2113 goto out; 2114 } 2115 } 2116 advance_key: 2117 ret = 0; 2118 test.objectid = sk->max_objectid; 2119 test.type = sk->max_type; 2120 test.offset = sk->max_offset; 2121 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2122 ret = 1; 2123 else if (key->offset < (u64)-1) 2124 key->offset++; 2125 else if (key->type < (u8)-1) { 2126 key->offset = 0; 2127 key->type++; 2128 } else if (key->objectid < (u64)-1) { 2129 key->offset = 0; 2130 key->type = 0; 2131 key->objectid++; 2132 } else 2133 ret = 1; 2134 out: 2135 /* 2136 * 0: all items from this leaf copied, continue with next 2137 * 1: * more items can be copied, but unused buffer is too small 2138 * * all items were found 2139 * Either way, it will stops the loop which iterates to the next 2140 * leaf 2141 * -EOVERFLOW: item was to large for buffer 2142 * -EFAULT: could not copy extent buffer back to userspace 2143 */ 2144 return ret; 2145 } 2146 2147 static noinline int search_ioctl(struct inode *inode, 2148 struct btrfs_ioctl_search_key *sk, 2149 size_t *buf_size, 2150 char __user *ubuf) 2151 { 2152 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2153 struct btrfs_root *root; 2154 struct btrfs_key key; 2155 struct btrfs_path *path; 2156 int ret; 2157 int num_found = 0; 2158 unsigned long sk_offset = 0; 2159 2160 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2161 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2162 return -EOVERFLOW; 2163 } 2164 2165 path = btrfs_alloc_path(); 2166 if (!path) 2167 return -ENOMEM; 2168 2169 if (sk->tree_id == 0) { 2170 /* search the root of the inode that was passed */ 2171 root = BTRFS_I(inode)->root; 2172 } else { 2173 key.objectid = sk->tree_id; 2174 key.type = BTRFS_ROOT_ITEM_KEY; 2175 key.offset = (u64)-1; 2176 root = btrfs_read_fs_root_no_name(info, &key); 2177 if (IS_ERR(root)) { 2178 btrfs_free_path(path); 2179 return PTR_ERR(root); 2180 } 2181 } 2182 2183 key.objectid = sk->min_objectid; 2184 key.type = sk->min_type; 2185 key.offset = sk->min_offset; 2186 2187 while (1) { 2188 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2189 if (ret != 0) { 2190 if (ret > 0) 2191 ret = 0; 2192 goto err; 2193 } 2194 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2195 &sk_offset, &num_found); 2196 btrfs_release_path(path); 2197 if (ret) 2198 break; 2199 2200 } 2201 if (ret > 0) 2202 ret = 0; 2203 err: 2204 sk->nr_items = num_found; 2205 btrfs_free_path(path); 2206 return ret; 2207 } 2208 2209 static noinline int btrfs_ioctl_tree_search(struct file *file, 2210 void __user *argp) 2211 { 2212 struct btrfs_ioctl_search_args __user *uargs; 2213 struct btrfs_ioctl_search_key sk; 2214 struct inode *inode; 2215 int ret; 2216 size_t buf_size; 2217 2218 if (!capable(CAP_SYS_ADMIN)) 2219 return -EPERM; 2220 2221 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2222 2223 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2224 return -EFAULT; 2225 2226 buf_size = sizeof(uargs->buf); 2227 2228 inode = file_inode(file); 2229 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2230 2231 /* 2232 * In the origin implementation an overflow is handled by returning a 2233 * search header with a len of zero, so reset ret. 2234 */ 2235 if (ret == -EOVERFLOW) 2236 ret = 0; 2237 2238 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2239 ret = -EFAULT; 2240 return ret; 2241 } 2242 2243 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2244 void __user *argp) 2245 { 2246 struct btrfs_ioctl_search_args_v2 __user *uarg; 2247 struct btrfs_ioctl_search_args_v2 args; 2248 struct inode *inode; 2249 int ret; 2250 size_t buf_size; 2251 const size_t buf_limit = SZ_16M; 2252 2253 if (!capable(CAP_SYS_ADMIN)) 2254 return -EPERM; 2255 2256 /* copy search header and buffer size */ 2257 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2258 if (copy_from_user(&args, uarg, sizeof(args))) 2259 return -EFAULT; 2260 2261 buf_size = args.buf_size; 2262 2263 /* limit result size to 16MB */ 2264 if (buf_size > buf_limit) 2265 buf_size = buf_limit; 2266 2267 inode = file_inode(file); 2268 ret = search_ioctl(inode, &args.key, &buf_size, 2269 (char __user *)(&uarg->buf[0])); 2270 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2271 ret = -EFAULT; 2272 else if (ret == -EOVERFLOW && 2273 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2274 ret = -EFAULT; 2275 2276 return ret; 2277 } 2278 2279 /* 2280 * Search INODE_REFs to identify path name of 'dirid' directory 2281 * in a 'tree_id' tree. and sets path name to 'name'. 2282 */ 2283 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2284 u64 tree_id, u64 dirid, char *name) 2285 { 2286 struct btrfs_root *root; 2287 struct btrfs_key key; 2288 char *ptr; 2289 int ret = -1; 2290 int slot; 2291 int len; 2292 int total_len = 0; 2293 struct btrfs_inode_ref *iref; 2294 struct extent_buffer *l; 2295 struct btrfs_path *path; 2296 2297 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2298 name[0]='\0'; 2299 return 0; 2300 } 2301 2302 path = btrfs_alloc_path(); 2303 if (!path) 2304 return -ENOMEM; 2305 2306 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2307 2308 key.objectid = tree_id; 2309 key.type = BTRFS_ROOT_ITEM_KEY; 2310 key.offset = (u64)-1; 2311 root = btrfs_read_fs_root_no_name(info, &key); 2312 if (IS_ERR(root)) { 2313 ret = PTR_ERR(root); 2314 goto out; 2315 } 2316 2317 key.objectid = dirid; 2318 key.type = BTRFS_INODE_REF_KEY; 2319 key.offset = (u64)-1; 2320 2321 while (1) { 2322 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2323 if (ret < 0) 2324 goto out; 2325 else if (ret > 0) { 2326 ret = btrfs_previous_item(root, path, dirid, 2327 BTRFS_INODE_REF_KEY); 2328 if (ret < 0) 2329 goto out; 2330 else if (ret > 0) { 2331 ret = -ENOENT; 2332 goto out; 2333 } 2334 } 2335 2336 l = path->nodes[0]; 2337 slot = path->slots[0]; 2338 btrfs_item_key_to_cpu(l, &key, slot); 2339 2340 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2341 len = btrfs_inode_ref_name_len(l, iref); 2342 ptr -= len + 1; 2343 total_len += len + 1; 2344 if (ptr < name) { 2345 ret = -ENAMETOOLONG; 2346 goto out; 2347 } 2348 2349 *(ptr + len) = '/'; 2350 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2351 2352 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2353 break; 2354 2355 btrfs_release_path(path); 2356 key.objectid = key.offset; 2357 key.offset = (u64)-1; 2358 dirid = key.objectid; 2359 } 2360 memmove(name, ptr, total_len); 2361 name[total_len] = '\0'; 2362 ret = 0; 2363 out: 2364 btrfs_free_path(path); 2365 return ret; 2366 } 2367 2368 static int btrfs_search_path_in_tree_user(struct inode *inode, 2369 struct btrfs_ioctl_ino_lookup_user_args *args) 2370 { 2371 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2372 struct super_block *sb = inode->i_sb; 2373 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2374 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2375 u64 dirid = args->dirid; 2376 unsigned long item_off; 2377 unsigned long item_len; 2378 struct btrfs_inode_ref *iref; 2379 struct btrfs_root_ref *rref; 2380 struct btrfs_root *root; 2381 struct btrfs_path *path; 2382 struct btrfs_key key, key2; 2383 struct extent_buffer *leaf; 2384 struct inode *temp_inode; 2385 char *ptr; 2386 int slot; 2387 int len; 2388 int total_len = 0; 2389 int ret; 2390 2391 path = btrfs_alloc_path(); 2392 if (!path) 2393 return -ENOMEM; 2394 2395 /* 2396 * If the bottom subvolume does not exist directly under upper_limit, 2397 * construct the path in from the bottom up. 2398 */ 2399 if (dirid != upper_limit.objectid) { 2400 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2401 2402 key.objectid = treeid; 2403 key.type = BTRFS_ROOT_ITEM_KEY; 2404 key.offset = (u64)-1; 2405 root = btrfs_read_fs_root_no_name(fs_info, &key); 2406 if (IS_ERR(root)) { 2407 ret = PTR_ERR(root); 2408 goto out; 2409 } 2410 2411 key.objectid = dirid; 2412 key.type = BTRFS_INODE_REF_KEY; 2413 key.offset = (u64)-1; 2414 while (1) { 2415 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2416 if (ret < 0) { 2417 goto out; 2418 } else if (ret > 0) { 2419 ret = btrfs_previous_item(root, path, dirid, 2420 BTRFS_INODE_REF_KEY); 2421 if (ret < 0) { 2422 goto out; 2423 } else if (ret > 0) { 2424 ret = -ENOENT; 2425 goto out; 2426 } 2427 } 2428 2429 leaf = path->nodes[0]; 2430 slot = path->slots[0]; 2431 btrfs_item_key_to_cpu(leaf, &key, slot); 2432 2433 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2434 len = btrfs_inode_ref_name_len(leaf, iref); 2435 ptr -= len + 1; 2436 total_len += len + 1; 2437 if (ptr < args->path) { 2438 ret = -ENAMETOOLONG; 2439 goto out; 2440 } 2441 2442 *(ptr + len) = '/'; 2443 read_extent_buffer(leaf, ptr, 2444 (unsigned long)(iref + 1), len); 2445 2446 /* Check the read+exec permission of this directory */ 2447 ret = btrfs_previous_item(root, path, dirid, 2448 BTRFS_INODE_ITEM_KEY); 2449 if (ret < 0) { 2450 goto out; 2451 } else if (ret > 0) { 2452 ret = -ENOENT; 2453 goto out; 2454 } 2455 2456 leaf = path->nodes[0]; 2457 slot = path->slots[0]; 2458 btrfs_item_key_to_cpu(leaf, &key2, slot); 2459 if (key2.objectid != dirid) { 2460 ret = -ENOENT; 2461 goto out; 2462 } 2463 2464 temp_inode = btrfs_iget(sb, &key2, root); 2465 if (IS_ERR(temp_inode)) { 2466 ret = PTR_ERR(temp_inode); 2467 goto out; 2468 } 2469 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2470 iput(temp_inode); 2471 if (ret) { 2472 ret = -EACCES; 2473 goto out; 2474 } 2475 2476 if (key.offset == upper_limit.objectid) 2477 break; 2478 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2479 ret = -EACCES; 2480 goto out; 2481 } 2482 2483 btrfs_release_path(path); 2484 key.objectid = key.offset; 2485 key.offset = (u64)-1; 2486 dirid = key.objectid; 2487 } 2488 2489 memmove(args->path, ptr, total_len); 2490 args->path[total_len] = '\0'; 2491 btrfs_release_path(path); 2492 } 2493 2494 /* Get the bottom subvolume's name from ROOT_REF */ 2495 root = fs_info->tree_root; 2496 key.objectid = treeid; 2497 key.type = BTRFS_ROOT_REF_KEY; 2498 key.offset = args->treeid; 2499 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2500 if (ret < 0) { 2501 goto out; 2502 } else if (ret > 0) { 2503 ret = -ENOENT; 2504 goto out; 2505 } 2506 2507 leaf = path->nodes[0]; 2508 slot = path->slots[0]; 2509 btrfs_item_key_to_cpu(leaf, &key, slot); 2510 2511 item_off = btrfs_item_ptr_offset(leaf, slot); 2512 item_len = btrfs_item_size_nr(leaf, slot); 2513 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2514 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2515 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2516 ret = -EINVAL; 2517 goto out; 2518 } 2519 2520 /* Copy subvolume's name */ 2521 item_off += sizeof(struct btrfs_root_ref); 2522 item_len -= sizeof(struct btrfs_root_ref); 2523 read_extent_buffer(leaf, args->name, item_off, item_len); 2524 args->name[item_len] = 0; 2525 2526 out: 2527 btrfs_free_path(path); 2528 return ret; 2529 } 2530 2531 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2532 void __user *argp) 2533 { 2534 struct btrfs_ioctl_ino_lookup_args *args; 2535 struct inode *inode; 2536 int ret = 0; 2537 2538 args = memdup_user(argp, sizeof(*args)); 2539 if (IS_ERR(args)) 2540 return PTR_ERR(args); 2541 2542 inode = file_inode(file); 2543 2544 /* 2545 * Unprivileged query to obtain the containing subvolume root id. The 2546 * path is reset so it's consistent with btrfs_search_path_in_tree. 2547 */ 2548 if (args->treeid == 0) 2549 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2550 2551 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2552 args->name[0] = 0; 2553 goto out; 2554 } 2555 2556 if (!capable(CAP_SYS_ADMIN)) { 2557 ret = -EPERM; 2558 goto out; 2559 } 2560 2561 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2562 args->treeid, args->objectid, 2563 args->name); 2564 2565 out: 2566 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2567 ret = -EFAULT; 2568 2569 kfree(args); 2570 return ret; 2571 } 2572 2573 /* 2574 * Version of ino_lookup ioctl (unprivileged) 2575 * 2576 * The main differences from ino_lookup ioctl are: 2577 * 2578 * 1. Read + Exec permission will be checked using inode_permission() during 2579 * path construction. -EACCES will be returned in case of failure. 2580 * 2. Path construction will be stopped at the inode number which corresponds 2581 * to the fd with which this ioctl is called. If constructed path does not 2582 * exist under fd's inode, -EACCES will be returned. 2583 * 3. The name of bottom subvolume is also searched and filled. 2584 */ 2585 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2586 { 2587 struct btrfs_ioctl_ino_lookup_user_args *args; 2588 struct inode *inode; 2589 int ret; 2590 2591 args = memdup_user(argp, sizeof(*args)); 2592 if (IS_ERR(args)) 2593 return PTR_ERR(args); 2594 2595 inode = file_inode(file); 2596 2597 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2598 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2599 /* 2600 * The subvolume does not exist under fd with which this is 2601 * called 2602 */ 2603 kfree(args); 2604 return -EACCES; 2605 } 2606 2607 ret = btrfs_search_path_in_tree_user(inode, args); 2608 2609 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2610 ret = -EFAULT; 2611 2612 kfree(args); 2613 return ret; 2614 } 2615 2616 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2617 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2618 { 2619 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2620 struct btrfs_fs_info *fs_info; 2621 struct btrfs_root *root; 2622 struct btrfs_path *path; 2623 struct btrfs_key key; 2624 struct btrfs_root_item *root_item; 2625 struct btrfs_root_ref *rref; 2626 struct extent_buffer *leaf; 2627 unsigned long item_off; 2628 unsigned long item_len; 2629 struct inode *inode; 2630 int slot; 2631 int ret = 0; 2632 2633 path = btrfs_alloc_path(); 2634 if (!path) 2635 return -ENOMEM; 2636 2637 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2638 if (!subvol_info) { 2639 btrfs_free_path(path); 2640 return -ENOMEM; 2641 } 2642 2643 inode = file_inode(file); 2644 fs_info = BTRFS_I(inode)->root->fs_info; 2645 2646 /* Get root_item of inode's subvolume */ 2647 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2648 key.type = BTRFS_ROOT_ITEM_KEY; 2649 key.offset = (u64)-1; 2650 root = btrfs_read_fs_root_no_name(fs_info, &key); 2651 if (IS_ERR(root)) { 2652 ret = PTR_ERR(root); 2653 goto out; 2654 } 2655 root_item = &root->root_item; 2656 2657 subvol_info->treeid = key.objectid; 2658 2659 subvol_info->generation = btrfs_root_generation(root_item); 2660 subvol_info->flags = btrfs_root_flags(root_item); 2661 2662 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2663 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2664 BTRFS_UUID_SIZE); 2665 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2666 BTRFS_UUID_SIZE); 2667 2668 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2669 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2670 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2671 2672 subvol_info->otransid = btrfs_root_otransid(root_item); 2673 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2674 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2675 2676 subvol_info->stransid = btrfs_root_stransid(root_item); 2677 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2678 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2679 2680 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2681 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2682 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2683 2684 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2685 /* Search root tree for ROOT_BACKREF of this subvolume */ 2686 root = fs_info->tree_root; 2687 2688 key.type = BTRFS_ROOT_BACKREF_KEY; 2689 key.offset = 0; 2690 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2691 if (ret < 0) { 2692 goto out; 2693 } else if (path->slots[0] >= 2694 btrfs_header_nritems(path->nodes[0])) { 2695 ret = btrfs_next_leaf(root, path); 2696 if (ret < 0) { 2697 goto out; 2698 } else if (ret > 0) { 2699 ret = -EUCLEAN; 2700 goto out; 2701 } 2702 } 2703 2704 leaf = path->nodes[0]; 2705 slot = path->slots[0]; 2706 btrfs_item_key_to_cpu(leaf, &key, slot); 2707 if (key.objectid == subvol_info->treeid && 2708 key.type == BTRFS_ROOT_BACKREF_KEY) { 2709 subvol_info->parent_id = key.offset; 2710 2711 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2712 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2713 2714 item_off = btrfs_item_ptr_offset(leaf, slot) 2715 + sizeof(struct btrfs_root_ref); 2716 item_len = btrfs_item_size_nr(leaf, slot) 2717 - sizeof(struct btrfs_root_ref); 2718 read_extent_buffer(leaf, subvol_info->name, 2719 item_off, item_len); 2720 } else { 2721 ret = -ENOENT; 2722 goto out; 2723 } 2724 } 2725 2726 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2727 ret = -EFAULT; 2728 2729 out: 2730 btrfs_free_path(path); 2731 kzfree(subvol_info); 2732 return ret; 2733 } 2734 2735 /* 2736 * Return ROOT_REF information of the subvolume containing this inode 2737 * except the subvolume name. 2738 */ 2739 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2740 { 2741 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2742 struct btrfs_root_ref *rref; 2743 struct btrfs_root *root; 2744 struct btrfs_path *path; 2745 struct btrfs_key key; 2746 struct extent_buffer *leaf; 2747 struct inode *inode; 2748 u64 objectid; 2749 int slot; 2750 int ret; 2751 u8 found; 2752 2753 path = btrfs_alloc_path(); 2754 if (!path) 2755 return -ENOMEM; 2756 2757 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2758 if (IS_ERR(rootrefs)) { 2759 btrfs_free_path(path); 2760 return PTR_ERR(rootrefs); 2761 } 2762 2763 inode = file_inode(file); 2764 root = BTRFS_I(inode)->root->fs_info->tree_root; 2765 objectid = BTRFS_I(inode)->root->root_key.objectid; 2766 2767 key.objectid = objectid; 2768 key.type = BTRFS_ROOT_REF_KEY; 2769 key.offset = rootrefs->min_treeid; 2770 found = 0; 2771 2772 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2773 if (ret < 0) { 2774 goto out; 2775 } else if (path->slots[0] >= 2776 btrfs_header_nritems(path->nodes[0])) { 2777 ret = btrfs_next_leaf(root, path); 2778 if (ret < 0) { 2779 goto out; 2780 } else if (ret > 0) { 2781 ret = -EUCLEAN; 2782 goto out; 2783 } 2784 } 2785 while (1) { 2786 leaf = path->nodes[0]; 2787 slot = path->slots[0]; 2788 2789 btrfs_item_key_to_cpu(leaf, &key, slot); 2790 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2791 ret = 0; 2792 goto out; 2793 } 2794 2795 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2796 ret = -EOVERFLOW; 2797 goto out; 2798 } 2799 2800 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2801 rootrefs->rootref[found].treeid = key.offset; 2802 rootrefs->rootref[found].dirid = 2803 btrfs_root_ref_dirid(leaf, rref); 2804 found++; 2805 2806 ret = btrfs_next_item(root, path); 2807 if (ret < 0) { 2808 goto out; 2809 } else if (ret > 0) { 2810 ret = -EUCLEAN; 2811 goto out; 2812 } 2813 } 2814 2815 out: 2816 if (!ret || ret == -EOVERFLOW) { 2817 rootrefs->num_items = found; 2818 /* update min_treeid for next search */ 2819 if (found) 2820 rootrefs->min_treeid = 2821 rootrefs->rootref[found - 1].treeid + 1; 2822 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2823 ret = -EFAULT; 2824 } 2825 2826 kfree(rootrefs); 2827 btrfs_free_path(path); 2828 2829 return ret; 2830 } 2831 2832 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2833 void __user *arg) 2834 { 2835 struct dentry *parent = file->f_path.dentry; 2836 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2837 struct dentry *dentry; 2838 struct inode *dir = d_inode(parent); 2839 struct inode *inode; 2840 struct btrfs_root *root = BTRFS_I(dir)->root; 2841 struct btrfs_root *dest = NULL; 2842 struct btrfs_ioctl_vol_args *vol_args; 2843 int namelen; 2844 int err = 0; 2845 2846 if (!S_ISDIR(dir->i_mode)) 2847 return -ENOTDIR; 2848 2849 vol_args = memdup_user(arg, sizeof(*vol_args)); 2850 if (IS_ERR(vol_args)) 2851 return PTR_ERR(vol_args); 2852 2853 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2854 namelen = strlen(vol_args->name); 2855 if (strchr(vol_args->name, '/') || 2856 strncmp(vol_args->name, "..", namelen) == 0) { 2857 err = -EINVAL; 2858 goto out; 2859 } 2860 2861 err = mnt_want_write_file(file); 2862 if (err) 2863 goto out; 2864 2865 2866 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2867 if (err == -EINTR) 2868 goto out_drop_write; 2869 dentry = lookup_one_len(vol_args->name, parent, namelen); 2870 if (IS_ERR(dentry)) { 2871 err = PTR_ERR(dentry); 2872 goto out_unlock_dir; 2873 } 2874 2875 if (d_really_is_negative(dentry)) { 2876 err = -ENOENT; 2877 goto out_dput; 2878 } 2879 2880 inode = d_inode(dentry); 2881 dest = BTRFS_I(inode)->root; 2882 if (!capable(CAP_SYS_ADMIN)) { 2883 /* 2884 * Regular user. Only allow this with a special mount 2885 * option, when the user has write+exec access to the 2886 * subvol root, and when rmdir(2) would have been 2887 * allowed. 2888 * 2889 * Note that this is _not_ check that the subvol is 2890 * empty or doesn't contain data that we wouldn't 2891 * otherwise be able to delete. 2892 * 2893 * Users who want to delete empty subvols should try 2894 * rmdir(2). 2895 */ 2896 err = -EPERM; 2897 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2898 goto out_dput; 2899 2900 /* 2901 * Do not allow deletion if the parent dir is the same 2902 * as the dir to be deleted. That means the ioctl 2903 * must be called on the dentry referencing the root 2904 * of the subvol, not a random directory contained 2905 * within it. 2906 */ 2907 err = -EINVAL; 2908 if (root == dest) 2909 goto out_dput; 2910 2911 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2912 if (err) 2913 goto out_dput; 2914 } 2915 2916 /* check if subvolume may be deleted by a user */ 2917 err = btrfs_may_delete(dir, dentry, 1); 2918 if (err) 2919 goto out_dput; 2920 2921 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2922 err = -EINVAL; 2923 goto out_dput; 2924 } 2925 2926 inode_lock(inode); 2927 err = btrfs_delete_subvolume(dir, dentry); 2928 inode_unlock(inode); 2929 if (!err) { 2930 fsnotify_rmdir(dir, dentry); 2931 d_delete(dentry); 2932 } 2933 2934 out_dput: 2935 dput(dentry); 2936 out_unlock_dir: 2937 inode_unlock(dir); 2938 out_drop_write: 2939 mnt_drop_write_file(file); 2940 out: 2941 kfree(vol_args); 2942 return err; 2943 } 2944 2945 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2946 { 2947 struct inode *inode = file_inode(file); 2948 struct btrfs_root *root = BTRFS_I(inode)->root; 2949 struct btrfs_ioctl_defrag_range_args *range; 2950 int ret; 2951 2952 ret = mnt_want_write_file(file); 2953 if (ret) 2954 return ret; 2955 2956 if (btrfs_root_readonly(root)) { 2957 ret = -EROFS; 2958 goto out; 2959 } 2960 2961 switch (inode->i_mode & S_IFMT) { 2962 case S_IFDIR: 2963 if (!capable(CAP_SYS_ADMIN)) { 2964 ret = -EPERM; 2965 goto out; 2966 } 2967 ret = btrfs_defrag_root(root); 2968 break; 2969 case S_IFREG: 2970 /* 2971 * Note that this does not check the file descriptor for write 2972 * access. This prevents defragmenting executables that are 2973 * running and allows defrag on files open in read-only mode. 2974 */ 2975 if (!capable(CAP_SYS_ADMIN) && 2976 inode_permission(inode, MAY_WRITE)) { 2977 ret = -EPERM; 2978 goto out; 2979 } 2980 2981 range = kzalloc(sizeof(*range), GFP_KERNEL); 2982 if (!range) { 2983 ret = -ENOMEM; 2984 goto out; 2985 } 2986 2987 if (argp) { 2988 if (copy_from_user(range, argp, 2989 sizeof(*range))) { 2990 ret = -EFAULT; 2991 kfree(range); 2992 goto out; 2993 } 2994 /* compression requires us to start the IO */ 2995 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2996 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2997 range->extent_thresh = (u32)-1; 2998 } 2999 } else { 3000 /* the rest are all set to zero by kzalloc */ 3001 range->len = (u64)-1; 3002 } 3003 ret = btrfs_defrag_file(file_inode(file), file, 3004 range, BTRFS_OLDEST_GENERATION, 0); 3005 if (ret > 0) 3006 ret = 0; 3007 kfree(range); 3008 break; 3009 default: 3010 ret = -EINVAL; 3011 } 3012 out: 3013 mnt_drop_write_file(file); 3014 return ret; 3015 } 3016 3017 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3018 { 3019 struct btrfs_ioctl_vol_args *vol_args; 3020 int ret; 3021 3022 if (!capable(CAP_SYS_ADMIN)) 3023 return -EPERM; 3024 3025 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3026 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3027 3028 vol_args = memdup_user(arg, sizeof(*vol_args)); 3029 if (IS_ERR(vol_args)) { 3030 ret = PTR_ERR(vol_args); 3031 goto out; 3032 } 3033 3034 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3035 ret = btrfs_init_new_device(fs_info, vol_args->name); 3036 3037 if (!ret) 3038 btrfs_info(fs_info, "disk added %s", vol_args->name); 3039 3040 kfree(vol_args); 3041 out: 3042 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3043 return ret; 3044 } 3045 3046 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3047 { 3048 struct inode *inode = file_inode(file); 3049 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3050 struct btrfs_ioctl_vol_args_v2 *vol_args; 3051 int ret; 3052 3053 if (!capable(CAP_SYS_ADMIN)) 3054 return -EPERM; 3055 3056 ret = mnt_want_write_file(file); 3057 if (ret) 3058 return ret; 3059 3060 vol_args = memdup_user(arg, sizeof(*vol_args)); 3061 if (IS_ERR(vol_args)) { 3062 ret = PTR_ERR(vol_args); 3063 goto err_drop; 3064 } 3065 3066 /* Check for compatibility reject unknown flags */ 3067 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) { 3068 ret = -EOPNOTSUPP; 3069 goto out; 3070 } 3071 3072 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3073 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3074 goto out; 3075 } 3076 3077 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3078 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3079 } else { 3080 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3081 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3082 } 3083 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3084 3085 if (!ret) { 3086 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3087 btrfs_info(fs_info, "device deleted: id %llu", 3088 vol_args->devid); 3089 else 3090 btrfs_info(fs_info, "device deleted: %s", 3091 vol_args->name); 3092 } 3093 out: 3094 kfree(vol_args); 3095 err_drop: 3096 mnt_drop_write_file(file); 3097 return ret; 3098 } 3099 3100 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3101 { 3102 struct inode *inode = file_inode(file); 3103 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3104 struct btrfs_ioctl_vol_args *vol_args; 3105 int ret; 3106 3107 if (!capable(CAP_SYS_ADMIN)) 3108 return -EPERM; 3109 3110 ret = mnt_want_write_file(file); 3111 if (ret) 3112 return ret; 3113 3114 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3115 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3116 goto out_drop_write; 3117 } 3118 3119 vol_args = memdup_user(arg, sizeof(*vol_args)); 3120 if (IS_ERR(vol_args)) { 3121 ret = PTR_ERR(vol_args); 3122 goto out; 3123 } 3124 3125 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3126 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3127 3128 if (!ret) 3129 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3130 kfree(vol_args); 3131 out: 3132 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3133 out_drop_write: 3134 mnt_drop_write_file(file); 3135 3136 return ret; 3137 } 3138 3139 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3140 void __user *arg) 3141 { 3142 struct btrfs_ioctl_fs_info_args *fi_args; 3143 struct btrfs_device *device; 3144 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3145 int ret = 0; 3146 3147 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3148 if (!fi_args) 3149 return -ENOMEM; 3150 3151 rcu_read_lock(); 3152 fi_args->num_devices = fs_devices->num_devices; 3153 3154 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3155 if (device->devid > fi_args->max_id) 3156 fi_args->max_id = device->devid; 3157 } 3158 rcu_read_unlock(); 3159 3160 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3161 fi_args->nodesize = fs_info->nodesize; 3162 fi_args->sectorsize = fs_info->sectorsize; 3163 fi_args->clone_alignment = fs_info->sectorsize; 3164 3165 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3166 ret = -EFAULT; 3167 3168 kfree(fi_args); 3169 return ret; 3170 } 3171 3172 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3173 void __user *arg) 3174 { 3175 struct btrfs_ioctl_dev_info_args *di_args; 3176 struct btrfs_device *dev; 3177 int ret = 0; 3178 char *s_uuid = NULL; 3179 3180 di_args = memdup_user(arg, sizeof(*di_args)); 3181 if (IS_ERR(di_args)) 3182 return PTR_ERR(di_args); 3183 3184 if (!btrfs_is_empty_uuid(di_args->uuid)) 3185 s_uuid = di_args->uuid; 3186 3187 rcu_read_lock(); 3188 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3189 NULL, true); 3190 3191 if (!dev) { 3192 ret = -ENODEV; 3193 goto out; 3194 } 3195 3196 di_args->devid = dev->devid; 3197 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3198 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3199 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3200 if (dev->name) { 3201 strncpy(di_args->path, rcu_str_deref(dev->name), 3202 sizeof(di_args->path) - 1); 3203 di_args->path[sizeof(di_args->path) - 1] = 0; 3204 } else { 3205 di_args->path[0] = '\0'; 3206 } 3207 3208 out: 3209 rcu_read_unlock(); 3210 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3211 ret = -EFAULT; 3212 3213 kfree(di_args); 3214 return ret; 3215 } 3216 3217 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 3218 struct inode *inode2, u64 loff2, u64 len) 3219 { 3220 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3221 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3222 } 3223 3224 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 3225 struct inode *inode2, u64 loff2, u64 len) 3226 { 3227 if (inode1 < inode2) { 3228 swap(inode1, inode2); 3229 swap(loff1, loff2); 3230 } else if (inode1 == inode2 && loff2 < loff1) { 3231 swap(loff1, loff2); 3232 } 3233 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3234 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3235 } 3236 3237 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 3238 struct inode *dst, u64 dst_loff) 3239 { 3240 int ret; 3241 3242 /* 3243 * Lock destination range to serialize with concurrent readpages() and 3244 * source range to serialize with relocation. 3245 */ 3246 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 3247 ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1); 3248 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3249 3250 return ret; 3251 } 3252 3253 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3254 3255 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3256 struct inode *dst, u64 dst_loff) 3257 { 3258 int ret; 3259 u64 i, tail_len, chunk_count; 3260 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 3261 3262 spin_lock(&root_dst->root_item_lock); 3263 if (root_dst->send_in_progress) { 3264 btrfs_warn_rl(root_dst->fs_info, 3265 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 3266 root_dst->root_key.objectid, 3267 root_dst->send_in_progress); 3268 spin_unlock(&root_dst->root_item_lock); 3269 return -EAGAIN; 3270 } 3271 root_dst->dedupe_in_progress++; 3272 spin_unlock(&root_dst->root_item_lock); 3273 3274 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 3275 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 3276 3277 for (i = 0; i < chunk_count; i++) { 3278 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 3279 dst, dst_loff); 3280 if (ret) 3281 goto out; 3282 3283 loff += BTRFS_MAX_DEDUPE_LEN; 3284 dst_loff += BTRFS_MAX_DEDUPE_LEN; 3285 } 3286 3287 if (tail_len > 0) 3288 ret = btrfs_extent_same_range(src, loff, tail_len, dst, 3289 dst_loff); 3290 out: 3291 spin_lock(&root_dst->root_item_lock); 3292 root_dst->dedupe_in_progress--; 3293 spin_unlock(&root_dst->root_item_lock); 3294 3295 return ret; 3296 } 3297 3298 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3299 struct inode *inode, 3300 u64 endoff, 3301 const u64 destoff, 3302 const u64 olen, 3303 int no_time_update) 3304 { 3305 struct btrfs_root *root = BTRFS_I(inode)->root; 3306 int ret; 3307 3308 inode_inc_iversion(inode); 3309 if (!no_time_update) 3310 inode->i_mtime = inode->i_ctime = current_time(inode); 3311 /* 3312 * We round up to the block size at eof when determining which 3313 * extents to clone above, but shouldn't round up the file size. 3314 */ 3315 if (endoff > destoff + olen) 3316 endoff = destoff + olen; 3317 if (endoff > inode->i_size) 3318 btrfs_i_size_write(BTRFS_I(inode), endoff); 3319 3320 ret = btrfs_update_inode(trans, root, inode); 3321 if (ret) { 3322 btrfs_abort_transaction(trans, ret); 3323 btrfs_end_transaction(trans); 3324 goto out; 3325 } 3326 ret = btrfs_end_transaction(trans); 3327 out: 3328 return ret; 3329 } 3330 3331 /* 3332 * Make sure we do not end up inserting an inline extent into a file that has 3333 * already other (non-inline) extents. If a file has an inline extent it can 3334 * not have any other extents and the (single) inline extent must start at the 3335 * file offset 0. Failing to respect these rules will lead to file corruption, 3336 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3337 * 3338 * We can have extents that have been already written to disk or we can have 3339 * dirty ranges still in delalloc, in which case the extent maps and items are 3340 * created only when we run delalloc, and the delalloc ranges might fall outside 3341 * the range we are currently locking in the inode's io tree. So we check the 3342 * inode's i_size because of that (i_size updates are done while holding the 3343 * i_mutex, which we are holding here). 3344 * We also check to see if the inode has a size not greater than "datal" but has 3345 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3346 * protected against such concurrent fallocate calls by the i_mutex). 3347 * 3348 * If the file has no extents but a size greater than datal, do not allow the 3349 * copy because we would need turn the inline extent into a non-inline one (even 3350 * with NO_HOLES enabled). If we find our destination inode only has one inline 3351 * extent, just overwrite it with the source inline extent if its size is less 3352 * than the source extent's size, or we could copy the source inline extent's 3353 * data into the destination inode's inline extent if the later is greater then 3354 * the former. 3355 */ 3356 static int clone_copy_inline_extent(struct inode *dst, 3357 struct btrfs_trans_handle *trans, 3358 struct btrfs_path *path, 3359 struct btrfs_key *new_key, 3360 const u64 drop_start, 3361 const u64 datal, 3362 const u64 skip, 3363 const u64 size, 3364 char *inline_data) 3365 { 3366 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3367 struct btrfs_root *root = BTRFS_I(dst)->root; 3368 const u64 aligned_end = ALIGN(new_key->offset + datal, 3369 fs_info->sectorsize); 3370 int ret; 3371 struct btrfs_key key; 3372 3373 if (new_key->offset > 0) 3374 return -EOPNOTSUPP; 3375 3376 key.objectid = btrfs_ino(BTRFS_I(dst)); 3377 key.type = BTRFS_EXTENT_DATA_KEY; 3378 key.offset = 0; 3379 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3380 if (ret < 0) { 3381 return ret; 3382 } else if (ret > 0) { 3383 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3384 ret = btrfs_next_leaf(root, path); 3385 if (ret < 0) 3386 return ret; 3387 else if (ret > 0) 3388 goto copy_inline_extent; 3389 } 3390 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3391 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3392 key.type == BTRFS_EXTENT_DATA_KEY) { 3393 ASSERT(key.offset > 0); 3394 return -EOPNOTSUPP; 3395 } 3396 } else if (i_size_read(dst) <= datal) { 3397 struct btrfs_file_extent_item *ei; 3398 u64 ext_len; 3399 3400 /* 3401 * If the file size is <= datal, make sure there are no other 3402 * extents following (can happen do to an fallocate call with 3403 * the flag FALLOC_FL_KEEP_SIZE). 3404 */ 3405 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3406 struct btrfs_file_extent_item); 3407 /* 3408 * If it's an inline extent, it can not have other extents 3409 * following it. 3410 */ 3411 if (btrfs_file_extent_type(path->nodes[0], ei) == 3412 BTRFS_FILE_EXTENT_INLINE) 3413 goto copy_inline_extent; 3414 3415 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3416 if (ext_len > aligned_end) 3417 return -EOPNOTSUPP; 3418 3419 ret = btrfs_next_item(root, path); 3420 if (ret < 0) { 3421 return ret; 3422 } else if (ret == 0) { 3423 btrfs_item_key_to_cpu(path->nodes[0], &key, 3424 path->slots[0]); 3425 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3426 key.type == BTRFS_EXTENT_DATA_KEY) 3427 return -EOPNOTSUPP; 3428 } 3429 } 3430 3431 copy_inline_extent: 3432 /* 3433 * We have no extent items, or we have an extent at offset 0 which may 3434 * or may not be inlined. All these cases are dealt the same way. 3435 */ 3436 if (i_size_read(dst) > datal) { 3437 /* 3438 * If the destination inode has an inline extent... 3439 * This would require copying the data from the source inline 3440 * extent into the beginning of the destination's inline extent. 3441 * But this is really complex, both extents can be compressed 3442 * or just one of them, which would require decompressing and 3443 * re-compressing data (which could increase the new compressed 3444 * size, not allowing the compressed data to fit anymore in an 3445 * inline extent). 3446 * So just don't support this case for now (it should be rare, 3447 * we are not really saving space when cloning inline extents). 3448 */ 3449 return -EOPNOTSUPP; 3450 } 3451 3452 btrfs_release_path(path); 3453 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3454 if (ret) 3455 return ret; 3456 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3457 if (ret) 3458 return ret; 3459 3460 if (skip) { 3461 const u32 start = btrfs_file_extent_calc_inline_size(0); 3462 3463 memmove(inline_data + start, inline_data + start + skip, datal); 3464 } 3465 3466 write_extent_buffer(path->nodes[0], inline_data, 3467 btrfs_item_ptr_offset(path->nodes[0], 3468 path->slots[0]), 3469 size); 3470 inode_add_bytes(dst, datal); 3471 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags); 3472 3473 return 0; 3474 } 3475 3476 /** 3477 * btrfs_clone() - clone a range from inode file to another 3478 * 3479 * @src: Inode to clone from 3480 * @inode: Inode to clone to 3481 * @off: Offset within source to start clone from 3482 * @olen: Original length, passed by user, of range to clone 3483 * @olen_aligned: Block-aligned value of olen 3484 * @destoff: Offset within @inode to start clone 3485 * @no_time_update: Whether to update mtime/ctime on the target inode 3486 */ 3487 static int btrfs_clone(struct inode *src, struct inode *inode, 3488 const u64 off, const u64 olen, const u64 olen_aligned, 3489 const u64 destoff, int no_time_update) 3490 { 3491 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3492 struct btrfs_root *root = BTRFS_I(inode)->root; 3493 struct btrfs_path *path = NULL; 3494 struct extent_buffer *leaf; 3495 struct btrfs_trans_handle *trans; 3496 char *buf = NULL; 3497 struct btrfs_key key; 3498 u32 nritems; 3499 int slot; 3500 int ret; 3501 const u64 len = olen_aligned; 3502 u64 last_dest_end = destoff; 3503 3504 ret = -ENOMEM; 3505 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3506 if (!buf) 3507 return ret; 3508 3509 path = btrfs_alloc_path(); 3510 if (!path) { 3511 kvfree(buf); 3512 return ret; 3513 } 3514 3515 path->reada = READA_FORWARD; 3516 /* clone data */ 3517 key.objectid = btrfs_ino(BTRFS_I(src)); 3518 key.type = BTRFS_EXTENT_DATA_KEY; 3519 key.offset = off; 3520 3521 while (1) { 3522 u64 next_key_min_offset = key.offset + 1; 3523 struct btrfs_file_extent_item *extent; 3524 int type; 3525 u32 size; 3526 struct btrfs_key new_key; 3527 u64 disko = 0, diskl = 0; 3528 u64 datao = 0, datal = 0; 3529 u8 comp; 3530 u64 drop_start; 3531 3532 /* 3533 * note the key will change type as we walk through the 3534 * tree. 3535 */ 3536 path->leave_spinning = 1; 3537 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3538 0, 0); 3539 if (ret < 0) 3540 goto out; 3541 /* 3542 * First search, if no extent item that starts at offset off was 3543 * found but the previous item is an extent item, it's possible 3544 * it might overlap our target range, therefore process it. 3545 */ 3546 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3547 btrfs_item_key_to_cpu(path->nodes[0], &key, 3548 path->slots[0] - 1); 3549 if (key.type == BTRFS_EXTENT_DATA_KEY) 3550 path->slots[0]--; 3551 } 3552 3553 nritems = btrfs_header_nritems(path->nodes[0]); 3554 process_slot: 3555 if (path->slots[0] >= nritems) { 3556 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3557 if (ret < 0) 3558 goto out; 3559 if (ret > 0) 3560 break; 3561 nritems = btrfs_header_nritems(path->nodes[0]); 3562 } 3563 leaf = path->nodes[0]; 3564 slot = path->slots[0]; 3565 3566 btrfs_item_key_to_cpu(leaf, &key, slot); 3567 if (key.type > BTRFS_EXTENT_DATA_KEY || 3568 key.objectid != btrfs_ino(BTRFS_I(src))) 3569 break; 3570 3571 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 3572 3573 extent = btrfs_item_ptr(leaf, slot, 3574 struct btrfs_file_extent_item); 3575 comp = btrfs_file_extent_compression(leaf, extent); 3576 type = btrfs_file_extent_type(leaf, extent); 3577 if (type == BTRFS_FILE_EXTENT_REG || 3578 type == BTRFS_FILE_EXTENT_PREALLOC) { 3579 disko = btrfs_file_extent_disk_bytenr(leaf, extent); 3580 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent); 3581 datao = btrfs_file_extent_offset(leaf, extent); 3582 datal = btrfs_file_extent_num_bytes(leaf, extent); 3583 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3584 /* Take upper bound, may be compressed */ 3585 datal = btrfs_file_extent_ram_bytes(leaf, extent); 3586 } 3587 3588 /* 3589 * The first search might have left us at an extent item that 3590 * ends before our target range's start, can happen if we have 3591 * holes and NO_HOLES feature enabled. 3592 */ 3593 if (key.offset + datal <= off) { 3594 path->slots[0]++; 3595 goto process_slot; 3596 } else if (key.offset >= off + len) { 3597 break; 3598 } 3599 next_key_min_offset = key.offset + datal; 3600 size = btrfs_item_size_nr(leaf, slot); 3601 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot), 3602 size); 3603 3604 btrfs_release_path(path); 3605 path->leave_spinning = 0; 3606 3607 memcpy(&new_key, &key, sizeof(new_key)); 3608 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3609 if (off <= key.offset) 3610 new_key.offset = key.offset + destoff - off; 3611 else 3612 new_key.offset = destoff; 3613 3614 /* 3615 * Deal with a hole that doesn't have an extent item that 3616 * represents it (NO_HOLES feature enabled). 3617 * This hole is either in the middle of the cloning range or at 3618 * the beginning (fully overlaps it or partially overlaps it). 3619 */ 3620 if (new_key.offset != last_dest_end) 3621 drop_start = last_dest_end; 3622 else 3623 drop_start = new_key.offset; 3624 3625 if (type == BTRFS_FILE_EXTENT_REG || 3626 type == BTRFS_FILE_EXTENT_PREALLOC) { 3627 struct btrfs_clone_extent_info clone_info; 3628 3629 /* 3630 * a | --- range to clone ---| b 3631 * | ------------- extent ------------- | 3632 */ 3633 3634 /* Subtract range b */ 3635 if (key.offset + datal > off + len) 3636 datal = off + len - key.offset; 3637 3638 /* Subtract range a */ 3639 if (off > key.offset) { 3640 datao += off - key.offset; 3641 datal -= off - key.offset; 3642 } 3643 3644 clone_info.disk_offset = disko; 3645 clone_info.disk_len = diskl; 3646 clone_info.data_offset = datao; 3647 clone_info.data_len = datal; 3648 clone_info.file_offset = new_key.offset; 3649 clone_info.extent_buf = buf; 3650 clone_info.item_size = size; 3651 ret = btrfs_punch_hole_range(inode, path, 3652 drop_start, 3653 new_key.offset + datal - 1, 3654 &clone_info, &trans); 3655 if (ret) 3656 goto out; 3657 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3658 u64 skip = 0; 3659 u64 trim = 0; 3660 3661 if (off > key.offset) { 3662 skip = off - key.offset; 3663 new_key.offset += skip; 3664 } 3665 3666 if (key.offset + datal > off + len) 3667 trim = key.offset + datal - (off + len); 3668 3669 if (comp && (skip || trim)) { 3670 ret = -EINVAL; 3671 goto out; 3672 } 3673 size -= skip + trim; 3674 datal -= skip + trim; 3675 3676 /* 3677 * If our extent is inline, we know we will drop or 3678 * adjust at most 1 extent item in the destination root. 3679 * 3680 * 1 - adjusting old extent (we may have to split it) 3681 * 1 - add new extent 3682 * 1 - inode update 3683 */ 3684 trans = btrfs_start_transaction(root, 3); 3685 if (IS_ERR(trans)) { 3686 ret = PTR_ERR(trans); 3687 goto out; 3688 } 3689 3690 ret = clone_copy_inline_extent(inode, trans, path, 3691 &new_key, drop_start, 3692 datal, skip, size, buf); 3693 if (ret) { 3694 if (ret != -EOPNOTSUPP) 3695 btrfs_abort_transaction(trans, ret); 3696 btrfs_end_transaction(trans); 3697 goto out; 3698 } 3699 } 3700 3701 btrfs_release_path(path); 3702 3703 last_dest_end = ALIGN(new_key.offset + datal, 3704 fs_info->sectorsize); 3705 ret = clone_finish_inode_update(trans, inode, last_dest_end, 3706 destoff, olen, no_time_update); 3707 if (ret) 3708 goto out; 3709 if (new_key.offset + datal >= destoff + len) 3710 break; 3711 3712 btrfs_release_path(path); 3713 key.offset = next_key_min_offset; 3714 3715 if (fatal_signal_pending(current)) { 3716 ret = -EINTR; 3717 goto out; 3718 } 3719 } 3720 ret = 0; 3721 3722 if (last_dest_end < destoff + len) { 3723 struct btrfs_clone_extent_info clone_info = { 0 }; 3724 /* 3725 * We have an implicit hole (NO_HOLES feature is enabled) that 3726 * fully or partially overlaps our cloning range at its end. 3727 */ 3728 btrfs_release_path(path); 3729 path->leave_spinning = 0; 3730 3731 /* 3732 * We are dealing with a hole and our clone_info already has a 3733 * disk_offset of 0, we only need to fill the data length and 3734 * file offset. 3735 */ 3736 clone_info.data_len = destoff + len - last_dest_end; 3737 clone_info.file_offset = last_dest_end; 3738 ret = btrfs_punch_hole_range(inode, path, 3739 last_dest_end, destoff + len - 1, 3740 &clone_info, &trans); 3741 if (ret) 3742 goto out; 3743 3744 ret = clone_finish_inode_update(trans, inode, destoff + len, 3745 destoff, olen, no_time_update); 3746 } 3747 3748 out: 3749 btrfs_free_path(path); 3750 kvfree(buf); 3751 return ret; 3752 } 3753 3754 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3755 u64 off, u64 olen, u64 destoff) 3756 { 3757 struct inode *inode = file_inode(file); 3758 struct inode *src = file_inode(file_src); 3759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3760 int ret; 3761 u64 len = olen; 3762 u64 bs = fs_info->sb->s_blocksize; 3763 3764 /* 3765 * TODO: 3766 * - split compressed inline extents. annoying: we need to 3767 * decompress into destination's address_space (the file offset 3768 * may change, so source mapping won't do), then recompress (or 3769 * otherwise reinsert) a subrange. 3770 * 3771 * - split destination inode's inline extents. The inline extents can 3772 * be either compressed or non-compressed. 3773 */ 3774 3775 /* 3776 * VFS's generic_remap_file_range_prep() protects us from cloning the 3777 * eof block into the middle of a file, which would result in corruption 3778 * if the file size is not blocksize aligned. So we don't need to check 3779 * for that case here. 3780 */ 3781 if (off + len == src->i_size) 3782 len = ALIGN(src->i_size, bs) - off; 3783 3784 if (destoff > inode->i_size) { 3785 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 3786 3787 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3788 if (ret) 3789 return ret; 3790 /* 3791 * We may have truncated the last block if the inode's size is 3792 * not sector size aligned, so we need to wait for writeback to 3793 * complete before proceeding further, otherwise we can race 3794 * with cloning and attempt to increment a reference to an 3795 * extent that no longer exists (writeback completed right after 3796 * we found the previous extent covering eof and before we 3797 * attempted to increment its reference count). 3798 */ 3799 ret = btrfs_wait_ordered_range(inode, wb_start, 3800 destoff - wb_start); 3801 if (ret) 3802 return ret; 3803 } 3804 3805 /* 3806 * Lock destination range to serialize with concurrent readpages() and 3807 * source range to serialize with relocation. 3808 */ 3809 btrfs_double_extent_lock(src, off, inode, destoff, len); 3810 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3811 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3812 /* 3813 * Truncate page cache pages so that future reads will see the cloned 3814 * data immediately and not the previous data. 3815 */ 3816 truncate_inode_pages_range(&inode->i_data, 3817 round_down(destoff, PAGE_SIZE), 3818 round_up(destoff + len, PAGE_SIZE) - 1); 3819 3820 return ret; 3821 } 3822 3823 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 3824 struct file *file_out, loff_t pos_out, 3825 loff_t *len, unsigned int remap_flags) 3826 { 3827 struct inode *inode_in = file_inode(file_in); 3828 struct inode *inode_out = file_inode(file_out); 3829 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 3830 bool same_inode = inode_out == inode_in; 3831 u64 wb_len; 3832 int ret; 3833 3834 if (!(remap_flags & REMAP_FILE_DEDUP)) { 3835 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 3836 3837 if (btrfs_root_readonly(root_out)) 3838 return -EROFS; 3839 3840 if (file_in->f_path.mnt != file_out->f_path.mnt || 3841 inode_in->i_sb != inode_out->i_sb) 3842 return -EXDEV; 3843 } 3844 3845 /* don't make the dst file partly checksummed */ 3846 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 3847 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 3848 return -EINVAL; 3849 } 3850 3851 /* 3852 * Now that the inodes are locked, we need to start writeback ourselves 3853 * and can not rely on the writeback from the VFS's generic helper 3854 * generic_remap_file_range_prep() because: 3855 * 3856 * 1) For compression we must call filemap_fdatawrite_range() range 3857 * twice (btrfs_fdatawrite_range() does it for us), and the generic 3858 * helper only calls it once; 3859 * 3860 * 2) filemap_fdatawrite_range(), called by the generic helper only 3861 * waits for the writeback to complete, i.e. for IO to be done, and 3862 * not for the ordered extents to complete. We need to wait for them 3863 * to complete so that new file extent items are in the fs tree. 3864 */ 3865 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 3866 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 3867 else 3868 wb_len = ALIGN(*len, bs); 3869 3870 /* 3871 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 3872 * any in progress could create its ordered extents after we wait for 3873 * existing ordered extents below). 3874 */ 3875 inode_dio_wait(inode_in); 3876 if (!same_inode) 3877 inode_dio_wait(inode_out); 3878 3879 /* 3880 * Workaround to make sure NOCOW buffered write reach disk as NOCOW. 3881 * 3882 * Btrfs' back references do not have a block level granularity, they 3883 * work at the whole extent level. 3884 * NOCOW buffered write without data space reserved may not be able 3885 * to fall back to CoW due to lack of data space, thus could cause 3886 * data loss. 3887 * 3888 * Here we take a shortcut by flushing the whole inode, so that all 3889 * nocow write should reach disk as nocow before we increase the 3890 * reference of the extent. We could do better by only flushing NOCOW 3891 * data, but that needs extra accounting. 3892 * 3893 * Also we don't need to check ASYNC_EXTENT, as async extent will be 3894 * CoWed anyway, not affecting nocow part. 3895 */ 3896 ret = filemap_flush(inode_in->i_mapping); 3897 if (ret < 0) 3898 return ret; 3899 3900 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 3901 wb_len); 3902 if (ret < 0) 3903 return ret; 3904 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 3905 wb_len); 3906 if (ret < 0) 3907 return ret; 3908 3909 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 3910 len, remap_flags); 3911 } 3912 3913 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 3914 struct file *dst_file, loff_t destoff, loff_t len, 3915 unsigned int remap_flags) 3916 { 3917 struct inode *src_inode = file_inode(src_file); 3918 struct inode *dst_inode = file_inode(dst_file); 3919 bool same_inode = dst_inode == src_inode; 3920 int ret; 3921 3922 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 3923 return -EINVAL; 3924 3925 if (same_inode) 3926 inode_lock(src_inode); 3927 else 3928 lock_two_nondirectories(src_inode, dst_inode); 3929 3930 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 3931 &len, remap_flags); 3932 if (ret < 0 || len == 0) 3933 goto out_unlock; 3934 3935 if (remap_flags & REMAP_FILE_DEDUP) 3936 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 3937 else 3938 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 3939 3940 out_unlock: 3941 if (same_inode) 3942 inode_unlock(src_inode); 3943 else 3944 unlock_two_nondirectories(src_inode, dst_inode); 3945 3946 return ret < 0 ? ret : len; 3947 } 3948 3949 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3950 { 3951 struct inode *inode = file_inode(file); 3952 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3953 struct btrfs_root *root = BTRFS_I(inode)->root; 3954 struct btrfs_root *new_root; 3955 struct btrfs_dir_item *di; 3956 struct btrfs_trans_handle *trans; 3957 struct btrfs_path *path; 3958 struct btrfs_key location; 3959 struct btrfs_disk_key disk_key; 3960 u64 objectid = 0; 3961 u64 dir_id; 3962 int ret; 3963 3964 if (!capable(CAP_SYS_ADMIN)) 3965 return -EPERM; 3966 3967 ret = mnt_want_write_file(file); 3968 if (ret) 3969 return ret; 3970 3971 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3972 ret = -EFAULT; 3973 goto out; 3974 } 3975 3976 if (!objectid) 3977 objectid = BTRFS_FS_TREE_OBJECTID; 3978 3979 location.objectid = objectid; 3980 location.type = BTRFS_ROOT_ITEM_KEY; 3981 location.offset = (u64)-1; 3982 3983 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 3984 if (IS_ERR(new_root)) { 3985 ret = PTR_ERR(new_root); 3986 goto out; 3987 } 3988 if (!is_fstree(new_root->root_key.objectid)) { 3989 ret = -ENOENT; 3990 goto out; 3991 } 3992 3993 path = btrfs_alloc_path(); 3994 if (!path) { 3995 ret = -ENOMEM; 3996 goto out; 3997 } 3998 path->leave_spinning = 1; 3999 4000 trans = btrfs_start_transaction(root, 1); 4001 if (IS_ERR(trans)) { 4002 btrfs_free_path(path); 4003 ret = PTR_ERR(trans); 4004 goto out; 4005 } 4006 4007 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4008 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4009 dir_id, "default", 7, 1); 4010 if (IS_ERR_OR_NULL(di)) { 4011 btrfs_free_path(path); 4012 btrfs_end_transaction(trans); 4013 btrfs_err(fs_info, 4014 "Umm, you don't have the default diritem, this isn't going to work"); 4015 ret = -ENOENT; 4016 goto out; 4017 } 4018 4019 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4020 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4021 btrfs_mark_buffer_dirty(path->nodes[0]); 4022 btrfs_free_path(path); 4023 4024 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4025 btrfs_end_transaction(trans); 4026 out: 4027 mnt_drop_write_file(file); 4028 return ret; 4029 } 4030 4031 static void get_block_group_info(struct list_head *groups_list, 4032 struct btrfs_ioctl_space_info *space) 4033 { 4034 struct btrfs_block_group *block_group; 4035 4036 space->total_bytes = 0; 4037 space->used_bytes = 0; 4038 space->flags = 0; 4039 list_for_each_entry(block_group, groups_list, list) { 4040 space->flags = block_group->flags; 4041 space->total_bytes += block_group->length; 4042 space->used_bytes += block_group->used; 4043 } 4044 } 4045 4046 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4047 void __user *arg) 4048 { 4049 struct btrfs_ioctl_space_args space_args; 4050 struct btrfs_ioctl_space_info space; 4051 struct btrfs_ioctl_space_info *dest; 4052 struct btrfs_ioctl_space_info *dest_orig; 4053 struct btrfs_ioctl_space_info __user *user_dest; 4054 struct btrfs_space_info *info; 4055 static const u64 types[] = { 4056 BTRFS_BLOCK_GROUP_DATA, 4057 BTRFS_BLOCK_GROUP_SYSTEM, 4058 BTRFS_BLOCK_GROUP_METADATA, 4059 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4060 }; 4061 int num_types = 4; 4062 int alloc_size; 4063 int ret = 0; 4064 u64 slot_count = 0; 4065 int i, c; 4066 4067 if (copy_from_user(&space_args, 4068 (struct btrfs_ioctl_space_args __user *)arg, 4069 sizeof(space_args))) 4070 return -EFAULT; 4071 4072 for (i = 0; i < num_types; i++) { 4073 struct btrfs_space_info *tmp; 4074 4075 info = NULL; 4076 rcu_read_lock(); 4077 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4078 list) { 4079 if (tmp->flags == types[i]) { 4080 info = tmp; 4081 break; 4082 } 4083 } 4084 rcu_read_unlock(); 4085 4086 if (!info) 4087 continue; 4088 4089 down_read(&info->groups_sem); 4090 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4091 if (!list_empty(&info->block_groups[c])) 4092 slot_count++; 4093 } 4094 up_read(&info->groups_sem); 4095 } 4096 4097 /* 4098 * Global block reserve, exported as a space_info 4099 */ 4100 slot_count++; 4101 4102 /* space_slots == 0 means they are asking for a count */ 4103 if (space_args.space_slots == 0) { 4104 space_args.total_spaces = slot_count; 4105 goto out; 4106 } 4107 4108 slot_count = min_t(u64, space_args.space_slots, slot_count); 4109 4110 alloc_size = sizeof(*dest) * slot_count; 4111 4112 /* we generally have at most 6 or so space infos, one for each raid 4113 * level. So, a whole page should be more than enough for everyone 4114 */ 4115 if (alloc_size > PAGE_SIZE) 4116 return -ENOMEM; 4117 4118 space_args.total_spaces = 0; 4119 dest = kmalloc(alloc_size, GFP_KERNEL); 4120 if (!dest) 4121 return -ENOMEM; 4122 dest_orig = dest; 4123 4124 /* now we have a buffer to copy into */ 4125 for (i = 0; i < num_types; i++) { 4126 struct btrfs_space_info *tmp; 4127 4128 if (!slot_count) 4129 break; 4130 4131 info = NULL; 4132 rcu_read_lock(); 4133 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4134 list) { 4135 if (tmp->flags == types[i]) { 4136 info = tmp; 4137 break; 4138 } 4139 } 4140 rcu_read_unlock(); 4141 4142 if (!info) 4143 continue; 4144 down_read(&info->groups_sem); 4145 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4146 if (!list_empty(&info->block_groups[c])) { 4147 get_block_group_info(&info->block_groups[c], 4148 &space); 4149 memcpy(dest, &space, sizeof(space)); 4150 dest++; 4151 space_args.total_spaces++; 4152 slot_count--; 4153 } 4154 if (!slot_count) 4155 break; 4156 } 4157 up_read(&info->groups_sem); 4158 } 4159 4160 /* 4161 * Add global block reserve 4162 */ 4163 if (slot_count) { 4164 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4165 4166 spin_lock(&block_rsv->lock); 4167 space.total_bytes = block_rsv->size; 4168 space.used_bytes = block_rsv->size - block_rsv->reserved; 4169 spin_unlock(&block_rsv->lock); 4170 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4171 memcpy(dest, &space, sizeof(space)); 4172 space_args.total_spaces++; 4173 } 4174 4175 user_dest = (struct btrfs_ioctl_space_info __user *) 4176 (arg + sizeof(struct btrfs_ioctl_space_args)); 4177 4178 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4179 ret = -EFAULT; 4180 4181 kfree(dest_orig); 4182 out: 4183 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4184 ret = -EFAULT; 4185 4186 return ret; 4187 } 4188 4189 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4190 void __user *argp) 4191 { 4192 struct btrfs_trans_handle *trans; 4193 u64 transid; 4194 int ret; 4195 4196 trans = btrfs_attach_transaction_barrier(root); 4197 if (IS_ERR(trans)) { 4198 if (PTR_ERR(trans) != -ENOENT) 4199 return PTR_ERR(trans); 4200 4201 /* No running transaction, don't bother */ 4202 transid = root->fs_info->last_trans_committed; 4203 goto out; 4204 } 4205 transid = trans->transid; 4206 ret = btrfs_commit_transaction_async(trans, 0); 4207 if (ret) { 4208 btrfs_end_transaction(trans); 4209 return ret; 4210 } 4211 out: 4212 if (argp) 4213 if (copy_to_user(argp, &transid, sizeof(transid))) 4214 return -EFAULT; 4215 return 0; 4216 } 4217 4218 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4219 void __user *argp) 4220 { 4221 u64 transid; 4222 4223 if (argp) { 4224 if (copy_from_user(&transid, argp, sizeof(transid))) 4225 return -EFAULT; 4226 } else { 4227 transid = 0; /* current trans */ 4228 } 4229 return btrfs_wait_for_commit(fs_info, transid); 4230 } 4231 4232 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4233 { 4234 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4235 struct btrfs_ioctl_scrub_args *sa; 4236 int ret; 4237 4238 if (!capable(CAP_SYS_ADMIN)) 4239 return -EPERM; 4240 4241 sa = memdup_user(arg, sizeof(*sa)); 4242 if (IS_ERR(sa)) 4243 return PTR_ERR(sa); 4244 4245 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4246 ret = mnt_want_write_file(file); 4247 if (ret) 4248 goto out; 4249 } 4250 4251 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4252 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4253 0); 4254 4255 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4256 ret = -EFAULT; 4257 4258 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4259 mnt_drop_write_file(file); 4260 out: 4261 kfree(sa); 4262 return ret; 4263 } 4264 4265 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4266 { 4267 if (!capable(CAP_SYS_ADMIN)) 4268 return -EPERM; 4269 4270 return btrfs_scrub_cancel(fs_info); 4271 } 4272 4273 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4274 void __user *arg) 4275 { 4276 struct btrfs_ioctl_scrub_args *sa; 4277 int ret; 4278 4279 if (!capable(CAP_SYS_ADMIN)) 4280 return -EPERM; 4281 4282 sa = memdup_user(arg, sizeof(*sa)); 4283 if (IS_ERR(sa)) 4284 return PTR_ERR(sa); 4285 4286 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4287 4288 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4289 ret = -EFAULT; 4290 4291 kfree(sa); 4292 return ret; 4293 } 4294 4295 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4296 void __user *arg) 4297 { 4298 struct btrfs_ioctl_get_dev_stats *sa; 4299 int ret; 4300 4301 sa = memdup_user(arg, sizeof(*sa)); 4302 if (IS_ERR(sa)) 4303 return PTR_ERR(sa); 4304 4305 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4306 kfree(sa); 4307 return -EPERM; 4308 } 4309 4310 ret = btrfs_get_dev_stats(fs_info, sa); 4311 4312 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4313 ret = -EFAULT; 4314 4315 kfree(sa); 4316 return ret; 4317 } 4318 4319 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4320 void __user *arg) 4321 { 4322 struct btrfs_ioctl_dev_replace_args *p; 4323 int ret; 4324 4325 if (!capable(CAP_SYS_ADMIN)) 4326 return -EPERM; 4327 4328 p = memdup_user(arg, sizeof(*p)); 4329 if (IS_ERR(p)) 4330 return PTR_ERR(p); 4331 4332 switch (p->cmd) { 4333 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4334 if (sb_rdonly(fs_info->sb)) { 4335 ret = -EROFS; 4336 goto out; 4337 } 4338 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4339 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4340 } else { 4341 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4342 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4343 } 4344 break; 4345 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4346 btrfs_dev_replace_status(fs_info, p); 4347 ret = 0; 4348 break; 4349 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4350 p->result = btrfs_dev_replace_cancel(fs_info); 4351 ret = 0; 4352 break; 4353 default: 4354 ret = -EINVAL; 4355 break; 4356 } 4357 4358 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4359 ret = -EFAULT; 4360 out: 4361 kfree(p); 4362 return ret; 4363 } 4364 4365 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4366 { 4367 int ret = 0; 4368 int i; 4369 u64 rel_ptr; 4370 int size; 4371 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4372 struct inode_fs_paths *ipath = NULL; 4373 struct btrfs_path *path; 4374 4375 if (!capable(CAP_DAC_READ_SEARCH)) 4376 return -EPERM; 4377 4378 path = btrfs_alloc_path(); 4379 if (!path) { 4380 ret = -ENOMEM; 4381 goto out; 4382 } 4383 4384 ipa = memdup_user(arg, sizeof(*ipa)); 4385 if (IS_ERR(ipa)) { 4386 ret = PTR_ERR(ipa); 4387 ipa = NULL; 4388 goto out; 4389 } 4390 4391 size = min_t(u32, ipa->size, 4096); 4392 ipath = init_ipath(size, root, path); 4393 if (IS_ERR(ipath)) { 4394 ret = PTR_ERR(ipath); 4395 ipath = NULL; 4396 goto out; 4397 } 4398 4399 ret = paths_from_inode(ipa->inum, ipath); 4400 if (ret < 0) 4401 goto out; 4402 4403 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4404 rel_ptr = ipath->fspath->val[i] - 4405 (u64)(unsigned long)ipath->fspath->val; 4406 ipath->fspath->val[i] = rel_ptr; 4407 } 4408 4409 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4410 ipath->fspath, size); 4411 if (ret) { 4412 ret = -EFAULT; 4413 goto out; 4414 } 4415 4416 out: 4417 btrfs_free_path(path); 4418 free_ipath(ipath); 4419 kfree(ipa); 4420 4421 return ret; 4422 } 4423 4424 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4425 { 4426 struct btrfs_data_container *inodes = ctx; 4427 const size_t c = 3 * sizeof(u64); 4428 4429 if (inodes->bytes_left >= c) { 4430 inodes->bytes_left -= c; 4431 inodes->val[inodes->elem_cnt] = inum; 4432 inodes->val[inodes->elem_cnt + 1] = offset; 4433 inodes->val[inodes->elem_cnt + 2] = root; 4434 inodes->elem_cnt += 3; 4435 } else { 4436 inodes->bytes_missing += c - inodes->bytes_left; 4437 inodes->bytes_left = 0; 4438 inodes->elem_missed += 3; 4439 } 4440 4441 return 0; 4442 } 4443 4444 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4445 void __user *arg, int version) 4446 { 4447 int ret = 0; 4448 int size; 4449 struct btrfs_ioctl_logical_ino_args *loi; 4450 struct btrfs_data_container *inodes = NULL; 4451 struct btrfs_path *path = NULL; 4452 bool ignore_offset; 4453 4454 if (!capable(CAP_SYS_ADMIN)) 4455 return -EPERM; 4456 4457 loi = memdup_user(arg, sizeof(*loi)); 4458 if (IS_ERR(loi)) 4459 return PTR_ERR(loi); 4460 4461 if (version == 1) { 4462 ignore_offset = false; 4463 size = min_t(u32, loi->size, SZ_64K); 4464 } else { 4465 /* All reserved bits must be 0 for now */ 4466 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4467 ret = -EINVAL; 4468 goto out_loi; 4469 } 4470 /* Only accept flags we have defined so far */ 4471 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4472 ret = -EINVAL; 4473 goto out_loi; 4474 } 4475 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4476 size = min_t(u32, loi->size, SZ_16M); 4477 } 4478 4479 path = btrfs_alloc_path(); 4480 if (!path) { 4481 ret = -ENOMEM; 4482 goto out; 4483 } 4484 4485 inodes = init_data_container(size); 4486 if (IS_ERR(inodes)) { 4487 ret = PTR_ERR(inodes); 4488 inodes = NULL; 4489 goto out; 4490 } 4491 4492 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4493 build_ino_list, inodes, ignore_offset); 4494 if (ret == -EINVAL) 4495 ret = -ENOENT; 4496 if (ret < 0) 4497 goto out; 4498 4499 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4500 size); 4501 if (ret) 4502 ret = -EFAULT; 4503 4504 out: 4505 btrfs_free_path(path); 4506 kvfree(inodes); 4507 out_loi: 4508 kfree(loi); 4509 4510 return ret; 4511 } 4512 4513 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4514 struct btrfs_ioctl_balance_args *bargs) 4515 { 4516 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4517 4518 bargs->flags = bctl->flags; 4519 4520 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4521 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4522 if (atomic_read(&fs_info->balance_pause_req)) 4523 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4524 if (atomic_read(&fs_info->balance_cancel_req)) 4525 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4526 4527 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4528 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4529 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4530 4531 spin_lock(&fs_info->balance_lock); 4532 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4533 spin_unlock(&fs_info->balance_lock); 4534 } 4535 4536 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4537 { 4538 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4539 struct btrfs_fs_info *fs_info = root->fs_info; 4540 struct btrfs_ioctl_balance_args *bargs; 4541 struct btrfs_balance_control *bctl; 4542 bool need_unlock; /* for mut. excl. ops lock */ 4543 int ret; 4544 4545 if (!capable(CAP_SYS_ADMIN)) 4546 return -EPERM; 4547 4548 ret = mnt_want_write_file(file); 4549 if (ret) 4550 return ret; 4551 4552 again: 4553 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4554 mutex_lock(&fs_info->balance_mutex); 4555 need_unlock = true; 4556 goto locked; 4557 } 4558 4559 /* 4560 * mut. excl. ops lock is locked. Three possibilities: 4561 * (1) some other op is running 4562 * (2) balance is running 4563 * (3) balance is paused -- special case (think resume) 4564 */ 4565 mutex_lock(&fs_info->balance_mutex); 4566 if (fs_info->balance_ctl) { 4567 /* this is either (2) or (3) */ 4568 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4569 mutex_unlock(&fs_info->balance_mutex); 4570 /* 4571 * Lock released to allow other waiters to continue, 4572 * we'll reexamine the status again. 4573 */ 4574 mutex_lock(&fs_info->balance_mutex); 4575 4576 if (fs_info->balance_ctl && 4577 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4578 /* this is (3) */ 4579 need_unlock = false; 4580 goto locked; 4581 } 4582 4583 mutex_unlock(&fs_info->balance_mutex); 4584 goto again; 4585 } else { 4586 /* this is (2) */ 4587 mutex_unlock(&fs_info->balance_mutex); 4588 ret = -EINPROGRESS; 4589 goto out; 4590 } 4591 } else { 4592 /* this is (1) */ 4593 mutex_unlock(&fs_info->balance_mutex); 4594 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4595 goto out; 4596 } 4597 4598 locked: 4599 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4600 4601 if (arg) { 4602 bargs = memdup_user(arg, sizeof(*bargs)); 4603 if (IS_ERR(bargs)) { 4604 ret = PTR_ERR(bargs); 4605 goto out_unlock; 4606 } 4607 4608 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4609 if (!fs_info->balance_ctl) { 4610 ret = -ENOTCONN; 4611 goto out_bargs; 4612 } 4613 4614 bctl = fs_info->balance_ctl; 4615 spin_lock(&fs_info->balance_lock); 4616 bctl->flags |= BTRFS_BALANCE_RESUME; 4617 spin_unlock(&fs_info->balance_lock); 4618 4619 goto do_balance; 4620 } 4621 } else { 4622 bargs = NULL; 4623 } 4624 4625 if (fs_info->balance_ctl) { 4626 ret = -EINPROGRESS; 4627 goto out_bargs; 4628 } 4629 4630 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4631 if (!bctl) { 4632 ret = -ENOMEM; 4633 goto out_bargs; 4634 } 4635 4636 if (arg) { 4637 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4638 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4639 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4640 4641 bctl->flags = bargs->flags; 4642 } else { 4643 /* balance everything - no filters */ 4644 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4645 } 4646 4647 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4648 ret = -EINVAL; 4649 goto out_bctl; 4650 } 4651 4652 do_balance: 4653 /* 4654 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 4655 * btrfs_balance. bctl is freed in reset_balance_state, or, if 4656 * restriper was paused all the way until unmount, in free_fs_info. 4657 * The flag should be cleared after reset_balance_state. 4658 */ 4659 need_unlock = false; 4660 4661 ret = btrfs_balance(fs_info, bctl, bargs); 4662 bctl = NULL; 4663 4664 if ((ret == 0 || ret == -ECANCELED) && arg) { 4665 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4666 ret = -EFAULT; 4667 } 4668 4669 out_bctl: 4670 kfree(bctl); 4671 out_bargs: 4672 kfree(bargs); 4673 out_unlock: 4674 mutex_unlock(&fs_info->balance_mutex); 4675 if (need_unlock) 4676 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4677 out: 4678 mnt_drop_write_file(file); 4679 return ret; 4680 } 4681 4682 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4683 { 4684 if (!capable(CAP_SYS_ADMIN)) 4685 return -EPERM; 4686 4687 switch (cmd) { 4688 case BTRFS_BALANCE_CTL_PAUSE: 4689 return btrfs_pause_balance(fs_info); 4690 case BTRFS_BALANCE_CTL_CANCEL: 4691 return btrfs_cancel_balance(fs_info); 4692 } 4693 4694 return -EINVAL; 4695 } 4696 4697 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4698 void __user *arg) 4699 { 4700 struct btrfs_ioctl_balance_args *bargs; 4701 int ret = 0; 4702 4703 if (!capable(CAP_SYS_ADMIN)) 4704 return -EPERM; 4705 4706 mutex_lock(&fs_info->balance_mutex); 4707 if (!fs_info->balance_ctl) { 4708 ret = -ENOTCONN; 4709 goto out; 4710 } 4711 4712 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4713 if (!bargs) { 4714 ret = -ENOMEM; 4715 goto out; 4716 } 4717 4718 btrfs_update_ioctl_balance_args(fs_info, bargs); 4719 4720 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4721 ret = -EFAULT; 4722 4723 kfree(bargs); 4724 out: 4725 mutex_unlock(&fs_info->balance_mutex); 4726 return ret; 4727 } 4728 4729 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4730 { 4731 struct inode *inode = file_inode(file); 4732 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4733 struct btrfs_ioctl_quota_ctl_args *sa; 4734 int ret; 4735 4736 if (!capable(CAP_SYS_ADMIN)) 4737 return -EPERM; 4738 4739 ret = mnt_want_write_file(file); 4740 if (ret) 4741 return ret; 4742 4743 sa = memdup_user(arg, sizeof(*sa)); 4744 if (IS_ERR(sa)) { 4745 ret = PTR_ERR(sa); 4746 goto drop_write; 4747 } 4748 4749 down_write(&fs_info->subvol_sem); 4750 4751 switch (sa->cmd) { 4752 case BTRFS_QUOTA_CTL_ENABLE: 4753 ret = btrfs_quota_enable(fs_info); 4754 break; 4755 case BTRFS_QUOTA_CTL_DISABLE: 4756 ret = btrfs_quota_disable(fs_info); 4757 break; 4758 default: 4759 ret = -EINVAL; 4760 break; 4761 } 4762 4763 kfree(sa); 4764 up_write(&fs_info->subvol_sem); 4765 drop_write: 4766 mnt_drop_write_file(file); 4767 return ret; 4768 } 4769 4770 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4771 { 4772 struct inode *inode = file_inode(file); 4773 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4774 struct btrfs_root *root = BTRFS_I(inode)->root; 4775 struct btrfs_ioctl_qgroup_assign_args *sa; 4776 struct btrfs_trans_handle *trans; 4777 int ret; 4778 int err; 4779 4780 if (!capable(CAP_SYS_ADMIN)) 4781 return -EPERM; 4782 4783 ret = mnt_want_write_file(file); 4784 if (ret) 4785 return ret; 4786 4787 sa = memdup_user(arg, sizeof(*sa)); 4788 if (IS_ERR(sa)) { 4789 ret = PTR_ERR(sa); 4790 goto drop_write; 4791 } 4792 4793 trans = btrfs_join_transaction(root); 4794 if (IS_ERR(trans)) { 4795 ret = PTR_ERR(trans); 4796 goto out; 4797 } 4798 4799 if (sa->assign) { 4800 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4801 } else { 4802 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4803 } 4804 4805 /* update qgroup status and info */ 4806 err = btrfs_run_qgroups(trans); 4807 if (err < 0) 4808 btrfs_handle_fs_error(fs_info, err, 4809 "failed to update qgroup status and info"); 4810 err = btrfs_end_transaction(trans); 4811 if (err && !ret) 4812 ret = err; 4813 4814 out: 4815 kfree(sa); 4816 drop_write: 4817 mnt_drop_write_file(file); 4818 return ret; 4819 } 4820 4821 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4822 { 4823 struct inode *inode = file_inode(file); 4824 struct btrfs_root *root = BTRFS_I(inode)->root; 4825 struct btrfs_ioctl_qgroup_create_args *sa; 4826 struct btrfs_trans_handle *trans; 4827 int ret; 4828 int err; 4829 4830 if (!capable(CAP_SYS_ADMIN)) 4831 return -EPERM; 4832 4833 ret = mnt_want_write_file(file); 4834 if (ret) 4835 return ret; 4836 4837 sa = memdup_user(arg, sizeof(*sa)); 4838 if (IS_ERR(sa)) { 4839 ret = PTR_ERR(sa); 4840 goto drop_write; 4841 } 4842 4843 if (!sa->qgroupid) { 4844 ret = -EINVAL; 4845 goto out; 4846 } 4847 4848 trans = btrfs_join_transaction(root); 4849 if (IS_ERR(trans)) { 4850 ret = PTR_ERR(trans); 4851 goto out; 4852 } 4853 4854 if (sa->create) { 4855 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4856 } else { 4857 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4858 } 4859 4860 err = btrfs_end_transaction(trans); 4861 if (err && !ret) 4862 ret = err; 4863 4864 out: 4865 kfree(sa); 4866 drop_write: 4867 mnt_drop_write_file(file); 4868 return ret; 4869 } 4870 4871 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4872 { 4873 struct inode *inode = file_inode(file); 4874 struct btrfs_root *root = BTRFS_I(inode)->root; 4875 struct btrfs_ioctl_qgroup_limit_args *sa; 4876 struct btrfs_trans_handle *trans; 4877 int ret; 4878 int err; 4879 u64 qgroupid; 4880 4881 if (!capable(CAP_SYS_ADMIN)) 4882 return -EPERM; 4883 4884 ret = mnt_want_write_file(file); 4885 if (ret) 4886 return ret; 4887 4888 sa = memdup_user(arg, sizeof(*sa)); 4889 if (IS_ERR(sa)) { 4890 ret = PTR_ERR(sa); 4891 goto drop_write; 4892 } 4893 4894 trans = btrfs_join_transaction(root); 4895 if (IS_ERR(trans)) { 4896 ret = PTR_ERR(trans); 4897 goto out; 4898 } 4899 4900 qgroupid = sa->qgroupid; 4901 if (!qgroupid) { 4902 /* take the current subvol as qgroup */ 4903 qgroupid = root->root_key.objectid; 4904 } 4905 4906 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4907 4908 err = btrfs_end_transaction(trans); 4909 if (err && !ret) 4910 ret = err; 4911 4912 out: 4913 kfree(sa); 4914 drop_write: 4915 mnt_drop_write_file(file); 4916 return ret; 4917 } 4918 4919 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4920 { 4921 struct inode *inode = file_inode(file); 4922 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4923 struct btrfs_ioctl_quota_rescan_args *qsa; 4924 int ret; 4925 4926 if (!capable(CAP_SYS_ADMIN)) 4927 return -EPERM; 4928 4929 ret = mnt_want_write_file(file); 4930 if (ret) 4931 return ret; 4932 4933 qsa = memdup_user(arg, sizeof(*qsa)); 4934 if (IS_ERR(qsa)) { 4935 ret = PTR_ERR(qsa); 4936 goto drop_write; 4937 } 4938 4939 if (qsa->flags) { 4940 ret = -EINVAL; 4941 goto out; 4942 } 4943 4944 ret = btrfs_qgroup_rescan(fs_info); 4945 4946 out: 4947 kfree(qsa); 4948 drop_write: 4949 mnt_drop_write_file(file); 4950 return ret; 4951 } 4952 4953 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4954 void __user *arg) 4955 { 4956 struct btrfs_ioctl_quota_rescan_args *qsa; 4957 int ret = 0; 4958 4959 if (!capable(CAP_SYS_ADMIN)) 4960 return -EPERM; 4961 4962 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4963 if (!qsa) 4964 return -ENOMEM; 4965 4966 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4967 qsa->flags = 1; 4968 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4969 } 4970 4971 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4972 ret = -EFAULT; 4973 4974 kfree(qsa); 4975 return ret; 4976 } 4977 4978 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4979 void __user *arg) 4980 { 4981 if (!capable(CAP_SYS_ADMIN)) 4982 return -EPERM; 4983 4984 return btrfs_qgroup_wait_for_completion(fs_info, true); 4985 } 4986 4987 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4988 struct btrfs_ioctl_received_subvol_args *sa) 4989 { 4990 struct inode *inode = file_inode(file); 4991 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4992 struct btrfs_root *root = BTRFS_I(inode)->root; 4993 struct btrfs_root_item *root_item = &root->root_item; 4994 struct btrfs_trans_handle *trans; 4995 struct timespec64 ct = current_time(inode); 4996 int ret = 0; 4997 int received_uuid_changed; 4998 4999 if (!inode_owner_or_capable(inode)) 5000 return -EPERM; 5001 5002 ret = mnt_want_write_file(file); 5003 if (ret < 0) 5004 return ret; 5005 5006 down_write(&fs_info->subvol_sem); 5007 5008 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5009 ret = -EINVAL; 5010 goto out; 5011 } 5012 5013 if (btrfs_root_readonly(root)) { 5014 ret = -EROFS; 5015 goto out; 5016 } 5017 5018 /* 5019 * 1 - root item 5020 * 2 - uuid items (received uuid + subvol uuid) 5021 */ 5022 trans = btrfs_start_transaction(root, 3); 5023 if (IS_ERR(trans)) { 5024 ret = PTR_ERR(trans); 5025 trans = NULL; 5026 goto out; 5027 } 5028 5029 sa->rtransid = trans->transid; 5030 sa->rtime.sec = ct.tv_sec; 5031 sa->rtime.nsec = ct.tv_nsec; 5032 5033 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5034 BTRFS_UUID_SIZE); 5035 if (received_uuid_changed && 5036 !btrfs_is_empty_uuid(root_item->received_uuid)) { 5037 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 5038 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5039 root->root_key.objectid); 5040 if (ret && ret != -ENOENT) { 5041 btrfs_abort_transaction(trans, ret); 5042 btrfs_end_transaction(trans); 5043 goto out; 5044 } 5045 } 5046 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5047 btrfs_set_root_stransid(root_item, sa->stransid); 5048 btrfs_set_root_rtransid(root_item, sa->rtransid); 5049 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5050 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5051 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5052 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5053 5054 ret = btrfs_update_root(trans, fs_info->tree_root, 5055 &root->root_key, &root->root_item); 5056 if (ret < 0) { 5057 btrfs_end_transaction(trans); 5058 goto out; 5059 } 5060 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5061 ret = btrfs_uuid_tree_add(trans, sa->uuid, 5062 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5063 root->root_key.objectid); 5064 if (ret < 0 && ret != -EEXIST) { 5065 btrfs_abort_transaction(trans, ret); 5066 btrfs_end_transaction(trans); 5067 goto out; 5068 } 5069 } 5070 ret = btrfs_commit_transaction(trans); 5071 out: 5072 up_write(&fs_info->subvol_sem); 5073 mnt_drop_write_file(file); 5074 return ret; 5075 } 5076 5077 #ifdef CONFIG_64BIT 5078 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5079 void __user *arg) 5080 { 5081 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5082 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5083 int ret = 0; 5084 5085 args32 = memdup_user(arg, sizeof(*args32)); 5086 if (IS_ERR(args32)) 5087 return PTR_ERR(args32); 5088 5089 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5090 if (!args64) { 5091 ret = -ENOMEM; 5092 goto out; 5093 } 5094 5095 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5096 args64->stransid = args32->stransid; 5097 args64->rtransid = args32->rtransid; 5098 args64->stime.sec = args32->stime.sec; 5099 args64->stime.nsec = args32->stime.nsec; 5100 args64->rtime.sec = args32->rtime.sec; 5101 args64->rtime.nsec = args32->rtime.nsec; 5102 args64->flags = args32->flags; 5103 5104 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5105 if (ret) 5106 goto out; 5107 5108 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5109 args32->stransid = args64->stransid; 5110 args32->rtransid = args64->rtransid; 5111 args32->stime.sec = args64->stime.sec; 5112 args32->stime.nsec = args64->stime.nsec; 5113 args32->rtime.sec = args64->rtime.sec; 5114 args32->rtime.nsec = args64->rtime.nsec; 5115 args32->flags = args64->flags; 5116 5117 ret = copy_to_user(arg, args32, sizeof(*args32)); 5118 if (ret) 5119 ret = -EFAULT; 5120 5121 out: 5122 kfree(args32); 5123 kfree(args64); 5124 return ret; 5125 } 5126 #endif 5127 5128 static long btrfs_ioctl_set_received_subvol(struct file *file, 5129 void __user *arg) 5130 { 5131 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5132 int ret = 0; 5133 5134 sa = memdup_user(arg, sizeof(*sa)); 5135 if (IS_ERR(sa)) 5136 return PTR_ERR(sa); 5137 5138 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5139 5140 if (ret) 5141 goto out; 5142 5143 ret = copy_to_user(arg, sa, sizeof(*sa)); 5144 if (ret) 5145 ret = -EFAULT; 5146 5147 out: 5148 kfree(sa); 5149 return ret; 5150 } 5151 5152 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 5153 void __user *arg) 5154 { 5155 size_t len; 5156 int ret; 5157 char label[BTRFS_LABEL_SIZE]; 5158 5159 spin_lock(&fs_info->super_lock); 5160 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5161 spin_unlock(&fs_info->super_lock); 5162 5163 len = strnlen(label, BTRFS_LABEL_SIZE); 5164 5165 if (len == BTRFS_LABEL_SIZE) { 5166 btrfs_warn(fs_info, 5167 "label is too long, return the first %zu bytes", 5168 --len); 5169 } 5170 5171 ret = copy_to_user(arg, label, len); 5172 5173 return ret ? -EFAULT : 0; 5174 } 5175 5176 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5177 { 5178 struct inode *inode = file_inode(file); 5179 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5180 struct btrfs_root *root = BTRFS_I(inode)->root; 5181 struct btrfs_super_block *super_block = fs_info->super_copy; 5182 struct btrfs_trans_handle *trans; 5183 char label[BTRFS_LABEL_SIZE]; 5184 int ret; 5185 5186 if (!capable(CAP_SYS_ADMIN)) 5187 return -EPERM; 5188 5189 if (copy_from_user(label, arg, sizeof(label))) 5190 return -EFAULT; 5191 5192 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5193 btrfs_err(fs_info, 5194 "unable to set label with more than %d bytes", 5195 BTRFS_LABEL_SIZE - 1); 5196 return -EINVAL; 5197 } 5198 5199 ret = mnt_want_write_file(file); 5200 if (ret) 5201 return ret; 5202 5203 trans = btrfs_start_transaction(root, 0); 5204 if (IS_ERR(trans)) { 5205 ret = PTR_ERR(trans); 5206 goto out_unlock; 5207 } 5208 5209 spin_lock(&fs_info->super_lock); 5210 strcpy(super_block->label, label); 5211 spin_unlock(&fs_info->super_lock); 5212 ret = btrfs_commit_transaction(trans); 5213 5214 out_unlock: 5215 mnt_drop_write_file(file); 5216 return ret; 5217 } 5218 5219 #define INIT_FEATURE_FLAGS(suffix) \ 5220 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5221 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5222 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5223 5224 int btrfs_ioctl_get_supported_features(void __user *arg) 5225 { 5226 static const struct btrfs_ioctl_feature_flags features[3] = { 5227 INIT_FEATURE_FLAGS(SUPP), 5228 INIT_FEATURE_FLAGS(SAFE_SET), 5229 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5230 }; 5231 5232 if (copy_to_user(arg, &features, sizeof(features))) 5233 return -EFAULT; 5234 5235 return 0; 5236 } 5237 5238 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 5239 void __user *arg) 5240 { 5241 struct btrfs_super_block *super_block = fs_info->super_copy; 5242 struct btrfs_ioctl_feature_flags features; 5243 5244 features.compat_flags = btrfs_super_compat_flags(super_block); 5245 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5246 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5247 5248 if (copy_to_user(arg, &features, sizeof(features))) 5249 return -EFAULT; 5250 5251 return 0; 5252 } 5253 5254 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5255 enum btrfs_feature_set set, 5256 u64 change_mask, u64 flags, u64 supported_flags, 5257 u64 safe_set, u64 safe_clear) 5258 { 5259 const char *type = btrfs_feature_set_name(set); 5260 char *names; 5261 u64 disallowed, unsupported; 5262 u64 set_mask = flags & change_mask; 5263 u64 clear_mask = ~flags & change_mask; 5264 5265 unsupported = set_mask & ~supported_flags; 5266 if (unsupported) { 5267 names = btrfs_printable_features(set, unsupported); 5268 if (names) { 5269 btrfs_warn(fs_info, 5270 "this kernel does not support the %s feature bit%s", 5271 names, strchr(names, ',') ? "s" : ""); 5272 kfree(names); 5273 } else 5274 btrfs_warn(fs_info, 5275 "this kernel does not support %s bits 0x%llx", 5276 type, unsupported); 5277 return -EOPNOTSUPP; 5278 } 5279 5280 disallowed = set_mask & ~safe_set; 5281 if (disallowed) { 5282 names = btrfs_printable_features(set, disallowed); 5283 if (names) { 5284 btrfs_warn(fs_info, 5285 "can't set the %s feature bit%s while mounted", 5286 names, strchr(names, ',') ? "s" : ""); 5287 kfree(names); 5288 } else 5289 btrfs_warn(fs_info, 5290 "can't set %s bits 0x%llx while mounted", 5291 type, disallowed); 5292 return -EPERM; 5293 } 5294 5295 disallowed = clear_mask & ~safe_clear; 5296 if (disallowed) { 5297 names = btrfs_printable_features(set, disallowed); 5298 if (names) { 5299 btrfs_warn(fs_info, 5300 "can't clear the %s feature bit%s while mounted", 5301 names, strchr(names, ',') ? "s" : ""); 5302 kfree(names); 5303 } else 5304 btrfs_warn(fs_info, 5305 "can't clear %s bits 0x%llx while mounted", 5306 type, disallowed); 5307 return -EPERM; 5308 } 5309 5310 return 0; 5311 } 5312 5313 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5314 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5315 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5316 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5317 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5318 5319 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5320 { 5321 struct inode *inode = file_inode(file); 5322 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5323 struct btrfs_root *root = BTRFS_I(inode)->root; 5324 struct btrfs_super_block *super_block = fs_info->super_copy; 5325 struct btrfs_ioctl_feature_flags flags[2]; 5326 struct btrfs_trans_handle *trans; 5327 u64 newflags; 5328 int ret; 5329 5330 if (!capable(CAP_SYS_ADMIN)) 5331 return -EPERM; 5332 5333 if (copy_from_user(flags, arg, sizeof(flags))) 5334 return -EFAULT; 5335 5336 /* Nothing to do */ 5337 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5338 !flags[0].incompat_flags) 5339 return 0; 5340 5341 ret = check_feature(fs_info, flags[0].compat_flags, 5342 flags[1].compat_flags, COMPAT); 5343 if (ret) 5344 return ret; 5345 5346 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5347 flags[1].compat_ro_flags, COMPAT_RO); 5348 if (ret) 5349 return ret; 5350 5351 ret = check_feature(fs_info, flags[0].incompat_flags, 5352 flags[1].incompat_flags, INCOMPAT); 5353 if (ret) 5354 return ret; 5355 5356 ret = mnt_want_write_file(file); 5357 if (ret) 5358 return ret; 5359 5360 trans = btrfs_start_transaction(root, 0); 5361 if (IS_ERR(trans)) { 5362 ret = PTR_ERR(trans); 5363 goto out_drop_write; 5364 } 5365 5366 spin_lock(&fs_info->super_lock); 5367 newflags = btrfs_super_compat_flags(super_block); 5368 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5369 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5370 btrfs_set_super_compat_flags(super_block, newflags); 5371 5372 newflags = btrfs_super_compat_ro_flags(super_block); 5373 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5374 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5375 btrfs_set_super_compat_ro_flags(super_block, newflags); 5376 5377 newflags = btrfs_super_incompat_flags(super_block); 5378 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5379 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5380 btrfs_set_super_incompat_flags(super_block, newflags); 5381 spin_unlock(&fs_info->super_lock); 5382 5383 ret = btrfs_commit_transaction(trans); 5384 out_drop_write: 5385 mnt_drop_write_file(file); 5386 5387 return ret; 5388 } 5389 5390 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5391 { 5392 struct btrfs_ioctl_send_args *arg; 5393 int ret; 5394 5395 if (compat) { 5396 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5397 struct btrfs_ioctl_send_args_32 args32; 5398 5399 ret = copy_from_user(&args32, argp, sizeof(args32)); 5400 if (ret) 5401 return -EFAULT; 5402 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5403 if (!arg) 5404 return -ENOMEM; 5405 arg->send_fd = args32.send_fd; 5406 arg->clone_sources_count = args32.clone_sources_count; 5407 arg->clone_sources = compat_ptr(args32.clone_sources); 5408 arg->parent_root = args32.parent_root; 5409 arg->flags = args32.flags; 5410 memcpy(arg->reserved, args32.reserved, 5411 sizeof(args32.reserved)); 5412 #else 5413 return -ENOTTY; 5414 #endif 5415 } else { 5416 arg = memdup_user(argp, sizeof(*arg)); 5417 if (IS_ERR(arg)) 5418 return PTR_ERR(arg); 5419 } 5420 ret = btrfs_ioctl_send(file, arg); 5421 kfree(arg); 5422 return ret; 5423 } 5424 5425 long btrfs_ioctl(struct file *file, unsigned int 5426 cmd, unsigned long arg) 5427 { 5428 struct inode *inode = file_inode(file); 5429 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5430 struct btrfs_root *root = BTRFS_I(inode)->root; 5431 void __user *argp = (void __user *)arg; 5432 5433 switch (cmd) { 5434 case FS_IOC_GETFLAGS: 5435 return btrfs_ioctl_getflags(file, argp); 5436 case FS_IOC_SETFLAGS: 5437 return btrfs_ioctl_setflags(file, argp); 5438 case FS_IOC_GETVERSION: 5439 return btrfs_ioctl_getversion(file, argp); 5440 case FS_IOC_GETFSLABEL: 5441 return btrfs_ioctl_get_fslabel(fs_info, argp); 5442 case FS_IOC_SETFSLABEL: 5443 return btrfs_ioctl_set_fslabel(file, argp); 5444 case FITRIM: 5445 return btrfs_ioctl_fitrim(fs_info, argp); 5446 case BTRFS_IOC_SNAP_CREATE: 5447 return btrfs_ioctl_snap_create(file, argp, 0); 5448 case BTRFS_IOC_SNAP_CREATE_V2: 5449 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5450 case BTRFS_IOC_SUBVOL_CREATE: 5451 return btrfs_ioctl_snap_create(file, argp, 1); 5452 case BTRFS_IOC_SUBVOL_CREATE_V2: 5453 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5454 case BTRFS_IOC_SNAP_DESTROY: 5455 return btrfs_ioctl_snap_destroy(file, argp); 5456 case BTRFS_IOC_SUBVOL_GETFLAGS: 5457 return btrfs_ioctl_subvol_getflags(file, argp); 5458 case BTRFS_IOC_SUBVOL_SETFLAGS: 5459 return btrfs_ioctl_subvol_setflags(file, argp); 5460 case BTRFS_IOC_DEFAULT_SUBVOL: 5461 return btrfs_ioctl_default_subvol(file, argp); 5462 case BTRFS_IOC_DEFRAG: 5463 return btrfs_ioctl_defrag(file, NULL); 5464 case BTRFS_IOC_DEFRAG_RANGE: 5465 return btrfs_ioctl_defrag(file, argp); 5466 case BTRFS_IOC_RESIZE: 5467 return btrfs_ioctl_resize(file, argp); 5468 case BTRFS_IOC_ADD_DEV: 5469 return btrfs_ioctl_add_dev(fs_info, argp); 5470 case BTRFS_IOC_RM_DEV: 5471 return btrfs_ioctl_rm_dev(file, argp); 5472 case BTRFS_IOC_RM_DEV_V2: 5473 return btrfs_ioctl_rm_dev_v2(file, argp); 5474 case BTRFS_IOC_FS_INFO: 5475 return btrfs_ioctl_fs_info(fs_info, argp); 5476 case BTRFS_IOC_DEV_INFO: 5477 return btrfs_ioctl_dev_info(fs_info, argp); 5478 case BTRFS_IOC_BALANCE: 5479 return btrfs_ioctl_balance(file, NULL); 5480 case BTRFS_IOC_TREE_SEARCH: 5481 return btrfs_ioctl_tree_search(file, argp); 5482 case BTRFS_IOC_TREE_SEARCH_V2: 5483 return btrfs_ioctl_tree_search_v2(file, argp); 5484 case BTRFS_IOC_INO_LOOKUP: 5485 return btrfs_ioctl_ino_lookup(file, argp); 5486 case BTRFS_IOC_INO_PATHS: 5487 return btrfs_ioctl_ino_to_path(root, argp); 5488 case BTRFS_IOC_LOGICAL_INO: 5489 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5490 case BTRFS_IOC_LOGICAL_INO_V2: 5491 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5492 case BTRFS_IOC_SPACE_INFO: 5493 return btrfs_ioctl_space_info(fs_info, argp); 5494 case BTRFS_IOC_SYNC: { 5495 int ret; 5496 5497 ret = btrfs_start_delalloc_roots(fs_info, -1); 5498 if (ret) 5499 return ret; 5500 ret = btrfs_sync_fs(inode->i_sb, 1); 5501 /* 5502 * The transaction thread may want to do more work, 5503 * namely it pokes the cleaner kthread that will start 5504 * processing uncleaned subvols. 5505 */ 5506 wake_up_process(fs_info->transaction_kthread); 5507 return ret; 5508 } 5509 case BTRFS_IOC_START_SYNC: 5510 return btrfs_ioctl_start_sync(root, argp); 5511 case BTRFS_IOC_WAIT_SYNC: 5512 return btrfs_ioctl_wait_sync(fs_info, argp); 5513 case BTRFS_IOC_SCRUB: 5514 return btrfs_ioctl_scrub(file, argp); 5515 case BTRFS_IOC_SCRUB_CANCEL: 5516 return btrfs_ioctl_scrub_cancel(fs_info); 5517 case BTRFS_IOC_SCRUB_PROGRESS: 5518 return btrfs_ioctl_scrub_progress(fs_info, argp); 5519 case BTRFS_IOC_BALANCE_V2: 5520 return btrfs_ioctl_balance(file, argp); 5521 case BTRFS_IOC_BALANCE_CTL: 5522 return btrfs_ioctl_balance_ctl(fs_info, arg); 5523 case BTRFS_IOC_BALANCE_PROGRESS: 5524 return btrfs_ioctl_balance_progress(fs_info, argp); 5525 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5526 return btrfs_ioctl_set_received_subvol(file, argp); 5527 #ifdef CONFIG_64BIT 5528 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5529 return btrfs_ioctl_set_received_subvol_32(file, argp); 5530 #endif 5531 case BTRFS_IOC_SEND: 5532 return _btrfs_ioctl_send(file, argp, false); 5533 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5534 case BTRFS_IOC_SEND_32: 5535 return _btrfs_ioctl_send(file, argp, true); 5536 #endif 5537 case BTRFS_IOC_GET_DEV_STATS: 5538 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5539 case BTRFS_IOC_QUOTA_CTL: 5540 return btrfs_ioctl_quota_ctl(file, argp); 5541 case BTRFS_IOC_QGROUP_ASSIGN: 5542 return btrfs_ioctl_qgroup_assign(file, argp); 5543 case BTRFS_IOC_QGROUP_CREATE: 5544 return btrfs_ioctl_qgroup_create(file, argp); 5545 case BTRFS_IOC_QGROUP_LIMIT: 5546 return btrfs_ioctl_qgroup_limit(file, argp); 5547 case BTRFS_IOC_QUOTA_RESCAN: 5548 return btrfs_ioctl_quota_rescan(file, argp); 5549 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5550 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5551 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5552 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5553 case BTRFS_IOC_DEV_REPLACE: 5554 return btrfs_ioctl_dev_replace(fs_info, argp); 5555 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5556 return btrfs_ioctl_get_supported_features(argp); 5557 case BTRFS_IOC_GET_FEATURES: 5558 return btrfs_ioctl_get_features(fs_info, argp); 5559 case BTRFS_IOC_SET_FEATURES: 5560 return btrfs_ioctl_set_features(file, argp); 5561 case FS_IOC_FSGETXATTR: 5562 return btrfs_ioctl_fsgetxattr(file, argp); 5563 case FS_IOC_FSSETXATTR: 5564 return btrfs_ioctl_fssetxattr(file, argp); 5565 case BTRFS_IOC_GET_SUBVOL_INFO: 5566 return btrfs_ioctl_get_subvol_info(file, argp); 5567 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5568 return btrfs_ioctl_get_subvol_rootref(file, argp); 5569 case BTRFS_IOC_INO_LOOKUP_USER: 5570 return btrfs_ioctl_ino_lookup_user(file, argp); 5571 } 5572 5573 return -ENOTTY; 5574 } 5575 5576 #ifdef CONFIG_COMPAT 5577 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5578 { 5579 /* 5580 * These all access 32-bit values anyway so no further 5581 * handling is necessary. 5582 */ 5583 switch (cmd) { 5584 case FS_IOC32_GETFLAGS: 5585 cmd = FS_IOC_GETFLAGS; 5586 break; 5587 case FS_IOC32_SETFLAGS: 5588 cmd = FS_IOC_SETFLAGS; 5589 break; 5590 case FS_IOC32_GETVERSION: 5591 cmd = FS_IOC_GETVERSION; 5592 break; 5593 } 5594 5595 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5596 } 5597 #endif 5598