1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 #include "props.h" 60 #include "sysfs.h" 61 #include "qgroup.h" 62 #include "tree-log.h" 63 #include "compression.h" 64 65 #ifdef CONFIG_64BIT 66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 67 * structures are incorrect, as the timespec structure from userspace 68 * is 4 bytes too small. We define these alternatives here to teach 69 * the kernel about the 32-bit struct packing. 70 */ 71 struct btrfs_ioctl_timespec_32 { 72 __u64 sec; 73 __u32 nsec; 74 } __attribute__ ((__packed__)); 75 76 struct btrfs_ioctl_received_subvol_args_32 { 77 char uuid[BTRFS_UUID_SIZE]; /* in */ 78 __u64 stransid; /* in */ 79 __u64 rtransid; /* out */ 80 struct btrfs_ioctl_timespec_32 stime; /* in */ 81 struct btrfs_ioctl_timespec_32 rtime; /* out */ 82 __u64 flags; /* in */ 83 __u64 reserved[16]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 87 struct btrfs_ioctl_received_subvol_args_32) 88 #endif 89 90 91 static int btrfs_clone(struct inode *src, struct inode *inode, 92 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 93 int no_time_update); 94 95 /* Mask out flags that are inappropriate for the given type of inode. */ 96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 97 { 98 if (S_ISDIR(mode)) 99 return flags; 100 else if (S_ISREG(mode)) 101 return flags & ~FS_DIRSYNC_FL; 102 else 103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 104 } 105 106 /* 107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 108 */ 109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 110 { 111 unsigned int iflags = 0; 112 113 if (flags & BTRFS_INODE_SYNC) 114 iflags |= FS_SYNC_FL; 115 if (flags & BTRFS_INODE_IMMUTABLE) 116 iflags |= FS_IMMUTABLE_FL; 117 if (flags & BTRFS_INODE_APPEND) 118 iflags |= FS_APPEND_FL; 119 if (flags & BTRFS_INODE_NODUMP) 120 iflags |= FS_NODUMP_FL; 121 if (flags & BTRFS_INODE_NOATIME) 122 iflags |= FS_NOATIME_FL; 123 if (flags & BTRFS_INODE_DIRSYNC) 124 iflags |= FS_DIRSYNC_FL; 125 if (flags & BTRFS_INODE_NODATACOW) 126 iflags |= FS_NOCOW_FL; 127 128 if (flags & BTRFS_INODE_NOCOMPRESS) 129 iflags |= FS_NOCOMP_FL; 130 else if (flags & BTRFS_INODE_COMPRESS) 131 iflags |= FS_COMPR_FL; 132 133 return iflags; 134 } 135 136 /* 137 * Update inode->i_flags based on the btrfs internal flags. 138 */ 139 void btrfs_update_iflags(struct inode *inode) 140 { 141 struct btrfs_inode *ip = BTRFS_I(inode); 142 unsigned int new_fl = 0; 143 144 if (ip->flags & BTRFS_INODE_SYNC) 145 new_fl |= S_SYNC; 146 if (ip->flags & BTRFS_INODE_IMMUTABLE) 147 new_fl |= S_IMMUTABLE; 148 if (ip->flags & BTRFS_INODE_APPEND) 149 new_fl |= S_APPEND; 150 if (ip->flags & BTRFS_INODE_NOATIME) 151 new_fl |= S_NOATIME; 152 if (ip->flags & BTRFS_INODE_DIRSYNC) 153 new_fl |= S_DIRSYNC; 154 155 set_mask_bits(&inode->i_flags, 156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 157 new_fl); 158 } 159 160 /* 161 * Inherit flags from the parent inode. 162 * 163 * Currently only the compression flags and the cow flags are inherited. 164 */ 165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 166 { 167 unsigned int flags; 168 169 if (!dir) 170 return; 171 172 flags = BTRFS_I(dir)->flags; 173 174 if (flags & BTRFS_INODE_NOCOMPRESS) { 175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 176 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 177 } else if (flags & BTRFS_INODE_COMPRESS) { 178 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 179 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 180 } 181 182 if (flags & BTRFS_INODE_NODATACOW) { 183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 184 if (S_ISREG(inode->i_mode)) 185 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 186 } 187 188 btrfs_update_iflags(inode); 189 } 190 191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 192 { 193 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 194 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 195 196 if (copy_to_user(arg, &flags, sizeof(flags))) 197 return -EFAULT; 198 return 0; 199 } 200 201 static int check_flags(unsigned int flags) 202 { 203 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 204 FS_NOATIME_FL | FS_NODUMP_FL | \ 205 FS_SYNC_FL | FS_DIRSYNC_FL | \ 206 FS_NOCOMP_FL | FS_COMPR_FL | 207 FS_NOCOW_FL)) 208 return -EOPNOTSUPP; 209 210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 211 return -EINVAL; 212 213 return 0; 214 } 215 216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 217 { 218 struct inode *inode = file_inode(file); 219 struct btrfs_inode *ip = BTRFS_I(inode); 220 struct btrfs_root *root = ip->root; 221 struct btrfs_trans_handle *trans; 222 unsigned int flags, oldflags; 223 int ret; 224 u64 ip_oldflags; 225 unsigned int i_oldflags; 226 umode_t mode; 227 228 if (!inode_owner_or_capable(inode)) 229 return -EPERM; 230 231 if (btrfs_root_readonly(root)) 232 return -EROFS; 233 234 if (copy_from_user(&flags, arg, sizeof(flags))) 235 return -EFAULT; 236 237 ret = check_flags(flags); 238 if (ret) 239 return ret; 240 241 ret = mnt_want_write_file(file); 242 if (ret) 243 return ret; 244 245 inode_lock(inode); 246 247 ip_oldflags = ip->flags; 248 i_oldflags = inode->i_flags; 249 mode = inode->i_mode; 250 251 flags = btrfs_mask_flags(inode->i_mode, flags); 252 oldflags = btrfs_flags_to_ioctl(ip->flags); 253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 254 if (!capable(CAP_LINUX_IMMUTABLE)) { 255 ret = -EPERM; 256 goto out_unlock; 257 } 258 } 259 260 if (flags & FS_SYNC_FL) 261 ip->flags |= BTRFS_INODE_SYNC; 262 else 263 ip->flags &= ~BTRFS_INODE_SYNC; 264 if (flags & FS_IMMUTABLE_FL) 265 ip->flags |= BTRFS_INODE_IMMUTABLE; 266 else 267 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 268 if (flags & FS_APPEND_FL) 269 ip->flags |= BTRFS_INODE_APPEND; 270 else 271 ip->flags &= ~BTRFS_INODE_APPEND; 272 if (flags & FS_NODUMP_FL) 273 ip->flags |= BTRFS_INODE_NODUMP; 274 else 275 ip->flags &= ~BTRFS_INODE_NODUMP; 276 if (flags & FS_NOATIME_FL) 277 ip->flags |= BTRFS_INODE_NOATIME; 278 else 279 ip->flags &= ~BTRFS_INODE_NOATIME; 280 if (flags & FS_DIRSYNC_FL) 281 ip->flags |= BTRFS_INODE_DIRSYNC; 282 else 283 ip->flags &= ~BTRFS_INODE_DIRSYNC; 284 if (flags & FS_NOCOW_FL) { 285 if (S_ISREG(mode)) { 286 /* 287 * It's safe to turn csums off here, no extents exist. 288 * Otherwise we want the flag to reflect the real COW 289 * status of the file and will not set it. 290 */ 291 if (inode->i_size == 0) 292 ip->flags |= BTRFS_INODE_NODATACOW 293 | BTRFS_INODE_NODATASUM; 294 } else { 295 ip->flags |= BTRFS_INODE_NODATACOW; 296 } 297 } else { 298 /* 299 * Revert back under same assumptions as above 300 */ 301 if (S_ISREG(mode)) { 302 if (inode->i_size == 0) 303 ip->flags &= ~(BTRFS_INODE_NODATACOW 304 | BTRFS_INODE_NODATASUM); 305 } else { 306 ip->flags &= ~BTRFS_INODE_NODATACOW; 307 } 308 } 309 310 /* 311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 312 * flag may be changed automatically if compression code won't make 313 * things smaller. 314 */ 315 if (flags & FS_NOCOMP_FL) { 316 ip->flags &= ~BTRFS_INODE_COMPRESS; 317 ip->flags |= BTRFS_INODE_NOCOMPRESS; 318 319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 320 if (ret && ret != -ENODATA) 321 goto out_drop; 322 } else if (flags & FS_COMPR_FL) { 323 const char *comp; 324 325 ip->flags |= BTRFS_INODE_COMPRESS; 326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 327 328 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 329 comp = "lzo"; 330 else 331 comp = "zlib"; 332 ret = btrfs_set_prop(inode, "btrfs.compression", 333 comp, strlen(comp), 0); 334 if (ret) 335 goto out_drop; 336 337 } else { 338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 339 if (ret && ret != -ENODATA) 340 goto out_drop; 341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 342 } 343 344 trans = btrfs_start_transaction(root, 1); 345 if (IS_ERR(trans)) { 346 ret = PTR_ERR(trans); 347 goto out_drop; 348 } 349 350 btrfs_update_iflags(inode); 351 inode_inc_iversion(inode); 352 inode->i_ctime = current_fs_time(inode->i_sb); 353 ret = btrfs_update_inode(trans, root, inode); 354 355 btrfs_end_transaction(trans, root); 356 out_drop: 357 if (ret) { 358 ip->flags = ip_oldflags; 359 inode->i_flags = i_oldflags; 360 } 361 362 out_unlock: 363 inode_unlock(inode); 364 mnt_drop_write_file(file); 365 return ret; 366 } 367 368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 369 { 370 struct inode *inode = file_inode(file); 371 372 return put_user(inode->i_generation, arg); 373 } 374 375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 376 { 377 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 378 struct btrfs_device *device; 379 struct request_queue *q; 380 struct fstrim_range range; 381 u64 minlen = ULLONG_MAX; 382 u64 num_devices = 0; 383 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 384 int ret; 385 386 if (!capable(CAP_SYS_ADMIN)) 387 return -EPERM; 388 389 rcu_read_lock(); 390 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 391 dev_list) { 392 if (!device->bdev) 393 continue; 394 q = bdev_get_queue(device->bdev); 395 if (blk_queue_discard(q)) { 396 num_devices++; 397 minlen = min((u64)q->limits.discard_granularity, 398 minlen); 399 } 400 } 401 rcu_read_unlock(); 402 403 if (!num_devices) 404 return -EOPNOTSUPP; 405 if (copy_from_user(&range, arg, sizeof(range))) 406 return -EFAULT; 407 if (range.start > total_bytes || 408 range.len < fs_info->sb->s_blocksize) 409 return -EINVAL; 410 411 range.len = min(range.len, total_bytes - range.start); 412 range.minlen = max(range.minlen, minlen); 413 ret = btrfs_trim_fs(fs_info->tree_root, &range); 414 if (ret < 0) 415 return ret; 416 417 if (copy_to_user(arg, &range, sizeof(range))) 418 return -EFAULT; 419 420 return 0; 421 } 422 423 int btrfs_is_empty_uuid(u8 *uuid) 424 { 425 int i; 426 427 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 428 if (uuid[i]) 429 return 0; 430 } 431 return 1; 432 } 433 434 static noinline int create_subvol(struct inode *dir, 435 struct dentry *dentry, 436 char *name, int namelen, 437 u64 *async_transid, 438 struct btrfs_qgroup_inherit *inherit) 439 { 440 struct btrfs_trans_handle *trans; 441 struct btrfs_key key; 442 struct btrfs_root_item *root_item; 443 struct btrfs_inode_item *inode_item; 444 struct extent_buffer *leaf; 445 struct btrfs_root *root = BTRFS_I(dir)->root; 446 struct btrfs_root *new_root; 447 struct btrfs_block_rsv block_rsv; 448 struct timespec cur_time = current_fs_time(dir->i_sb); 449 struct inode *inode; 450 int ret; 451 int err; 452 u64 objectid; 453 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 454 u64 index = 0; 455 u64 qgroup_reserved; 456 uuid_le new_uuid; 457 458 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 459 if (!root_item) 460 return -ENOMEM; 461 462 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 463 if (ret) 464 goto fail_free; 465 466 /* 467 * Don't create subvolume whose level is not zero. Or qgroup will be 468 * screwed up since it assumes subvolume qgroup's level to be 0. 469 */ 470 if (btrfs_qgroup_level(objectid)) { 471 ret = -ENOSPC; 472 goto fail_free; 473 } 474 475 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 476 /* 477 * The same as the snapshot creation, please see the comment 478 * of create_snapshot(). 479 */ 480 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 481 8, &qgroup_reserved, false); 482 if (ret) 483 goto fail_free; 484 485 trans = btrfs_start_transaction(root, 0); 486 if (IS_ERR(trans)) { 487 ret = PTR_ERR(trans); 488 btrfs_subvolume_release_metadata(root, &block_rsv, 489 qgroup_reserved); 490 goto fail_free; 491 } 492 trans->block_rsv = &block_rsv; 493 trans->bytes_reserved = block_rsv.size; 494 495 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 496 if (ret) 497 goto fail; 498 499 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 500 if (IS_ERR(leaf)) { 501 ret = PTR_ERR(leaf); 502 goto fail; 503 } 504 505 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 506 btrfs_set_header_bytenr(leaf, leaf->start); 507 btrfs_set_header_generation(leaf, trans->transid); 508 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 509 btrfs_set_header_owner(leaf, objectid); 510 511 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(), 512 BTRFS_FSID_SIZE); 513 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 514 btrfs_header_chunk_tree_uuid(leaf), 515 BTRFS_UUID_SIZE); 516 btrfs_mark_buffer_dirty(leaf); 517 518 inode_item = &root_item->inode; 519 btrfs_set_stack_inode_generation(inode_item, 1); 520 btrfs_set_stack_inode_size(inode_item, 3); 521 btrfs_set_stack_inode_nlink(inode_item, 1); 522 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 523 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 524 525 btrfs_set_root_flags(root_item, 0); 526 btrfs_set_root_limit(root_item, 0); 527 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 528 529 btrfs_set_root_bytenr(root_item, leaf->start); 530 btrfs_set_root_generation(root_item, trans->transid); 531 btrfs_set_root_level(root_item, 0); 532 btrfs_set_root_refs(root_item, 1); 533 btrfs_set_root_used(root_item, leaf->len); 534 btrfs_set_root_last_snapshot(root_item, 0); 535 536 btrfs_set_root_generation_v2(root_item, 537 btrfs_root_generation(root_item)); 538 uuid_le_gen(&new_uuid); 539 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 540 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 541 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 542 root_item->ctime = root_item->otime; 543 btrfs_set_root_ctransid(root_item, trans->transid); 544 btrfs_set_root_otransid(root_item, trans->transid); 545 546 btrfs_tree_unlock(leaf); 547 free_extent_buffer(leaf); 548 leaf = NULL; 549 550 btrfs_set_root_dirid(root_item, new_dirid); 551 552 key.objectid = objectid; 553 key.offset = 0; 554 key.type = BTRFS_ROOT_ITEM_KEY; 555 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 556 root_item); 557 if (ret) 558 goto fail; 559 560 key.offset = (u64)-1; 561 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 562 if (IS_ERR(new_root)) { 563 ret = PTR_ERR(new_root); 564 btrfs_abort_transaction(trans, ret); 565 goto fail; 566 } 567 568 btrfs_record_root_in_trans(trans, new_root); 569 570 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 571 if (ret) { 572 /* We potentially lose an unused inode item here */ 573 btrfs_abort_transaction(trans, ret); 574 goto fail; 575 } 576 577 mutex_lock(&new_root->objectid_mutex); 578 new_root->highest_objectid = new_dirid; 579 mutex_unlock(&new_root->objectid_mutex); 580 581 /* 582 * insert the directory item 583 */ 584 ret = btrfs_set_inode_index(dir, &index); 585 if (ret) { 586 btrfs_abort_transaction(trans, ret); 587 goto fail; 588 } 589 590 ret = btrfs_insert_dir_item(trans, root, 591 name, namelen, dir, &key, 592 BTRFS_FT_DIR, index); 593 if (ret) { 594 btrfs_abort_transaction(trans, ret); 595 goto fail; 596 } 597 598 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 599 ret = btrfs_update_inode(trans, root, dir); 600 BUG_ON(ret); 601 602 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 603 objectid, root->root_key.objectid, 604 btrfs_ino(dir), index, name, namelen); 605 BUG_ON(ret); 606 607 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 608 root_item->uuid, BTRFS_UUID_KEY_SUBVOL, 609 objectid); 610 if (ret) 611 btrfs_abort_transaction(trans, ret); 612 613 fail: 614 kfree(root_item); 615 trans->block_rsv = NULL; 616 trans->bytes_reserved = 0; 617 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 618 619 if (async_transid) { 620 *async_transid = trans->transid; 621 err = btrfs_commit_transaction_async(trans, root, 1); 622 if (err) 623 err = btrfs_commit_transaction(trans, root); 624 } else { 625 err = btrfs_commit_transaction(trans, root); 626 } 627 if (err && !ret) 628 ret = err; 629 630 if (!ret) { 631 inode = btrfs_lookup_dentry(dir, dentry); 632 if (IS_ERR(inode)) 633 return PTR_ERR(inode); 634 d_instantiate(dentry, inode); 635 } 636 return ret; 637 638 fail_free: 639 kfree(root_item); 640 return ret; 641 } 642 643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root) 644 { 645 s64 writers; 646 DEFINE_WAIT(wait); 647 648 do { 649 prepare_to_wait(&root->subv_writers->wait, &wait, 650 TASK_UNINTERRUPTIBLE); 651 652 writers = percpu_counter_sum(&root->subv_writers->counter); 653 if (writers) 654 schedule(); 655 656 finish_wait(&root->subv_writers->wait, &wait); 657 } while (writers); 658 } 659 660 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 661 struct dentry *dentry, char *name, int namelen, 662 u64 *async_transid, bool readonly, 663 struct btrfs_qgroup_inherit *inherit) 664 { 665 struct inode *inode; 666 struct btrfs_pending_snapshot *pending_snapshot; 667 struct btrfs_trans_handle *trans; 668 int ret; 669 670 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 671 return -EINVAL; 672 673 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 674 if (!pending_snapshot) 675 return -ENOMEM; 676 677 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 678 GFP_NOFS); 679 pending_snapshot->path = btrfs_alloc_path(); 680 if (!pending_snapshot->root_item || !pending_snapshot->path) { 681 ret = -ENOMEM; 682 goto free_pending; 683 } 684 685 atomic_inc(&root->will_be_snapshoted); 686 smp_mb__after_atomic(); 687 btrfs_wait_for_no_snapshoting_writes(root); 688 689 ret = btrfs_start_delalloc_inodes(root, 0); 690 if (ret) 691 goto dec_and_free; 692 693 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1); 694 695 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 696 BTRFS_BLOCK_RSV_TEMP); 697 /* 698 * 1 - parent dir inode 699 * 2 - dir entries 700 * 1 - root item 701 * 2 - root ref/backref 702 * 1 - root of snapshot 703 * 1 - UUID item 704 */ 705 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 706 &pending_snapshot->block_rsv, 8, 707 &pending_snapshot->qgroup_reserved, 708 false); 709 if (ret) 710 goto dec_and_free; 711 712 pending_snapshot->dentry = dentry; 713 pending_snapshot->root = root; 714 pending_snapshot->readonly = readonly; 715 pending_snapshot->dir = dir; 716 pending_snapshot->inherit = inherit; 717 718 trans = btrfs_start_transaction(root, 0); 719 if (IS_ERR(trans)) { 720 ret = PTR_ERR(trans); 721 goto fail; 722 } 723 724 spin_lock(&root->fs_info->trans_lock); 725 list_add(&pending_snapshot->list, 726 &trans->transaction->pending_snapshots); 727 spin_unlock(&root->fs_info->trans_lock); 728 if (async_transid) { 729 *async_transid = trans->transid; 730 ret = btrfs_commit_transaction_async(trans, 731 root->fs_info->extent_root, 1); 732 if (ret) 733 ret = btrfs_commit_transaction(trans, root); 734 } else { 735 ret = btrfs_commit_transaction(trans, 736 root->fs_info->extent_root); 737 } 738 if (ret) 739 goto fail; 740 741 ret = pending_snapshot->error; 742 if (ret) 743 goto fail; 744 745 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 746 if (ret) 747 goto fail; 748 749 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 750 if (IS_ERR(inode)) { 751 ret = PTR_ERR(inode); 752 goto fail; 753 } 754 755 d_instantiate(dentry, inode); 756 ret = 0; 757 fail: 758 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 759 &pending_snapshot->block_rsv, 760 pending_snapshot->qgroup_reserved); 761 dec_and_free: 762 if (atomic_dec_and_test(&root->will_be_snapshoted)) 763 wake_up_atomic_t(&root->will_be_snapshoted); 764 free_pending: 765 kfree(pending_snapshot->root_item); 766 btrfs_free_path(pending_snapshot->path); 767 kfree(pending_snapshot); 768 769 return ret; 770 } 771 772 /* copy of may_delete in fs/namei.c() 773 * Check whether we can remove a link victim from directory dir, check 774 * whether the type of victim is right. 775 * 1. We can't do it if dir is read-only (done in permission()) 776 * 2. We should have write and exec permissions on dir 777 * 3. We can't remove anything from append-only dir 778 * 4. We can't do anything with immutable dir (done in permission()) 779 * 5. If the sticky bit on dir is set we should either 780 * a. be owner of dir, or 781 * b. be owner of victim, or 782 * c. have CAP_FOWNER capability 783 * 6. If the victim is append-only or immutable we can't do anything with 784 * links pointing to it. 785 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 786 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 787 * 9. We can't remove a root or mountpoint. 788 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 789 * nfs_async_unlink(). 790 */ 791 792 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 793 { 794 int error; 795 796 if (d_really_is_negative(victim)) 797 return -ENOENT; 798 799 BUG_ON(d_inode(victim->d_parent) != dir); 800 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 801 802 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 803 if (error) 804 return error; 805 if (IS_APPEND(dir)) 806 return -EPERM; 807 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 808 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 809 return -EPERM; 810 if (isdir) { 811 if (!d_is_dir(victim)) 812 return -ENOTDIR; 813 if (IS_ROOT(victim)) 814 return -EBUSY; 815 } else if (d_is_dir(victim)) 816 return -EISDIR; 817 if (IS_DEADDIR(dir)) 818 return -ENOENT; 819 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 820 return -EBUSY; 821 return 0; 822 } 823 824 /* copy of may_create in fs/namei.c() */ 825 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 826 { 827 if (d_really_is_positive(child)) 828 return -EEXIST; 829 if (IS_DEADDIR(dir)) 830 return -ENOENT; 831 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 832 } 833 834 /* 835 * Create a new subvolume below @parent. This is largely modeled after 836 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 837 * inside this filesystem so it's quite a bit simpler. 838 */ 839 static noinline int btrfs_mksubvol(struct path *parent, 840 char *name, int namelen, 841 struct btrfs_root *snap_src, 842 u64 *async_transid, bool readonly, 843 struct btrfs_qgroup_inherit *inherit) 844 { 845 struct inode *dir = d_inode(parent->dentry); 846 struct dentry *dentry; 847 int error; 848 849 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 850 if (error == -EINTR) 851 return error; 852 853 dentry = lookup_one_len(name, parent->dentry, namelen); 854 error = PTR_ERR(dentry); 855 if (IS_ERR(dentry)) 856 goto out_unlock; 857 858 error = btrfs_may_create(dir, dentry); 859 if (error) 860 goto out_dput; 861 862 /* 863 * even if this name doesn't exist, we may get hash collisions. 864 * check for them now when we can safely fail 865 */ 866 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 867 dir->i_ino, name, 868 namelen); 869 if (error) 870 goto out_dput; 871 872 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 873 874 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 875 goto out_up_read; 876 877 if (snap_src) { 878 error = create_snapshot(snap_src, dir, dentry, name, namelen, 879 async_transid, readonly, inherit); 880 } else { 881 error = create_subvol(dir, dentry, name, namelen, 882 async_transid, inherit); 883 } 884 if (!error) 885 fsnotify_mkdir(dir, dentry); 886 out_up_read: 887 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 888 out_dput: 889 dput(dentry); 890 out_unlock: 891 inode_unlock(dir); 892 return error; 893 } 894 895 /* 896 * When we're defragging a range, we don't want to kick it off again 897 * if it is really just waiting for delalloc to send it down. 898 * If we find a nice big extent or delalloc range for the bytes in the 899 * file you want to defrag, we return 0 to let you know to skip this 900 * part of the file 901 */ 902 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 903 { 904 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 905 struct extent_map *em = NULL; 906 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 907 u64 end; 908 909 read_lock(&em_tree->lock); 910 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 911 read_unlock(&em_tree->lock); 912 913 if (em) { 914 end = extent_map_end(em); 915 free_extent_map(em); 916 if (end - offset > thresh) 917 return 0; 918 } 919 /* if we already have a nice delalloc here, just stop */ 920 thresh /= 2; 921 end = count_range_bits(io_tree, &offset, offset + thresh, 922 thresh, EXTENT_DELALLOC, 1); 923 if (end >= thresh) 924 return 0; 925 return 1; 926 } 927 928 /* 929 * helper function to walk through a file and find extents 930 * newer than a specific transid, and smaller than thresh. 931 * 932 * This is used by the defragging code to find new and small 933 * extents 934 */ 935 static int find_new_extents(struct btrfs_root *root, 936 struct inode *inode, u64 newer_than, 937 u64 *off, u32 thresh) 938 { 939 struct btrfs_path *path; 940 struct btrfs_key min_key; 941 struct extent_buffer *leaf; 942 struct btrfs_file_extent_item *extent; 943 int type; 944 int ret; 945 u64 ino = btrfs_ino(inode); 946 947 path = btrfs_alloc_path(); 948 if (!path) 949 return -ENOMEM; 950 951 min_key.objectid = ino; 952 min_key.type = BTRFS_EXTENT_DATA_KEY; 953 min_key.offset = *off; 954 955 while (1) { 956 ret = btrfs_search_forward(root, &min_key, path, newer_than); 957 if (ret != 0) 958 goto none; 959 process_slot: 960 if (min_key.objectid != ino) 961 goto none; 962 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 963 goto none; 964 965 leaf = path->nodes[0]; 966 extent = btrfs_item_ptr(leaf, path->slots[0], 967 struct btrfs_file_extent_item); 968 969 type = btrfs_file_extent_type(leaf, extent); 970 if (type == BTRFS_FILE_EXTENT_REG && 971 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 972 check_defrag_in_cache(inode, min_key.offset, thresh)) { 973 *off = min_key.offset; 974 btrfs_free_path(path); 975 return 0; 976 } 977 978 path->slots[0]++; 979 if (path->slots[0] < btrfs_header_nritems(leaf)) { 980 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 981 goto process_slot; 982 } 983 984 if (min_key.offset == (u64)-1) 985 goto none; 986 987 min_key.offset++; 988 btrfs_release_path(path); 989 } 990 none: 991 btrfs_free_path(path); 992 return -ENOENT; 993 } 994 995 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 996 { 997 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 998 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 999 struct extent_map *em; 1000 u64 len = PAGE_SIZE; 1001 1002 /* 1003 * hopefully we have this extent in the tree already, try without 1004 * the full extent lock 1005 */ 1006 read_lock(&em_tree->lock); 1007 em = lookup_extent_mapping(em_tree, start, len); 1008 read_unlock(&em_tree->lock); 1009 1010 if (!em) { 1011 struct extent_state *cached = NULL; 1012 u64 end = start + len - 1; 1013 1014 /* get the big lock and read metadata off disk */ 1015 lock_extent_bits(io_tree, start, end, &cached); 1016 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 1017 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 1018 1019 if (IS_ERR(em)) 1020 return NULL; 1021 } 1022 1023 return em; 1024 } 1025 1026 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1027 { 1028 struct extent_map *next; 1029 bool ret = true; 1030 1031 /* this is the last extent */ 1032 if (em->start + em->len >= i_size_read(inode)) 1033 return false; 1034 1035 next = defrag_lookup_extent(inode, em->start + em->len); 1036 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1037 ret = false; 1038 else if ((em->block_start + em->block_len == next->block_start) && 1039 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1040 ret = false; 1041 1042 free_extent_map(next); 1043 return ret; 1044 } 1045 1046 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1047 u64 *last_len, u64 *skip, u64 *defrag_end, 1048 int compress) 1049 { 1050 struct extent_map *em; 1051 int ret = 1; 1052 bool next_mergeable = true; 1053 bool prev_mergeable = true; 1054 1055 /* 1056 * make sure that once we start defragging an extent, we keep on 1057 * defragging it 1058 */ 1059 if (start < *defrag_end) 1060 return 1; 1061 1062 *skip = 0; 1063 1064 em = defrag_lookup_extent(inode, start); 1065 if (!em) 1066 return 0; 1067 1068 /* this will cover holes, and inline extents */ 1069 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1070 ret = 0; 1071 goto out; 1072 } 1073 1074 if (!*defrag_end) 1075 prev_mergeable = false; 1076 1077 next_mergeable = defrag_check_next_extent(inode, em); 1078 /* 1079 * we hit a real extent, if it is big or the next extent is not a 1080 * real extent, don't bother defragging it 1081 */ 1082 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1083 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1084 ret = 0; 1085 out: 1086 /* 1087 * last_len ends up being a counter of how many bytes we've defragged. 1088 * every time we choose not to defrag an extent, we reset *last_len 1089 * so that the next tiny extent will force a defrag. 1090 * 1091 * The end result of this is that tiny extents before a single big 1092 * extent will force at least part of that big extent to be defragged. 1093 */ 1094 if (ret) { 1095 *defrag_end = extent_map_end(em); 1096 } else { 1097 *last_len = 0; 1098 *skip = extent_map_end(em); 1099 *defrag_end = 0; 1100 } 1101 1102 free_extent_map(em); 1103 return ret; 1104 } 1105 1106 /* 1107 * it doesn't do much good to defrag one or two pages 1108 * at a time. This pulls in a nice chunk of pages 1109 * to COW and defrag. 1110 * 1111 * It also makes sure the delalloc code has enough 1112 * dirty data to avoid making new small extents as part 1113 * of the defrag 1114 * 1115 * It's a good idea to start RA on this range 1116 * before calling this. 1117 */ 1118 static int cluster_pages_for_defrag(struct inode *inode, 1119 struct page **pages, 1120 unsigned long start_index, 1121 unsigned long num_pages) 1122 { 1123 unsigned long file_end; 1124 u64 isize = i_size_read(inode); 1125 u64 page_start; 1126 u64 page_end; 1127 u64 page_cnt; 1128 int ret; 1129 int i; 1130 int i_done; 1131 struct btrfs_ordered_extent *ordered; 1132 struct extent_state *cached_state = NULL; 1133 struct extent_io_tree *tree; 1134 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1135 1136 file_end = (isize - 1) >> PAGE_SHIFT; 1137 if (!isize || start_index > file_end) 1138 return 0; 1139 1140 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1141 1142 ret = btrfs_delalloc_reserve_space(inode, 1143 start_index << PAGE_SHIFT, 1144 page_cnt << PAGE_SHIFT); 1145 if (ret) 1146 return ret; 1147 i_done = 0; 1148 tree = &BTRFS_I(inode)->io_tree; 1149 1150 /* step one, lock all the pages */ 1151 for (i = 0; i < page_cnt; i++) { 1152 struct page *page; 1153 again: 1154 page = find_or_create_page(inode->i_mapping, 1155 start_index + i, mask); 1156 if (!page) 1157 break; 1158 1159 page_start = page_offset(page); 1160 page_end = page_start + PAGE_SIZE - 1; 1161 while (1) { 1162 lock_extent_bits(tree, page_start, page_end, 1163 &cached_state); 1164 ordered = btrfs_lookup_ordered_extent(inode, 1165 page_start); 1166 unlock_extent_cached(tree, page_start, page_end, 1167 &cached_state, GFP_NOFS); 1168 if (!ordered) 1169 break; 1170 1171 unlock_page(page); 1172 btrfs_start_ordered_extent(inode, ordered, 1); 1173 btrfs_put_ordered_extent(ordered); 1174 lock_page(page); 1175 /* 1176 * we unlocked the page above, so we need check if 1177 * it was released or not. 1178 */ 1179 if (page->mapping != inode->i_mapping) { 1180 unlock_page(page); 1181 put_page(page); 1182 goto again; 1183 } 1184 } 1185 1186 if (!PageUptodate(page)) { 1187 btrfs_readpage(NULL, page); 1188 lock_page(page); 1189 if (!PageUptodate(page)) { 1190 unlock_page(page); 1191 put_page(page); 1192 ret = -EIO; 1193 break; 1194 } 1195 } 1196 1197 if (page->mapping != inode->i_mapping) { 1198 unlock_page(page); 1199 put_page(page); 1200 goto again; 1201 } 1202 1203 pages[i] = page; 1204 i_done++; 1205 } 1206 if (!i_done || ret) 1207 goto out; 1208 1209 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1210 goto out; 1211 1212 /* 1213 * so now we have a nice long stream of locked 1214 * and up to date pages, lets wait on them 1215 */ 1216 for (i = 0; i < i_done; i++) 1217 wait_on_page_writeback(pages[i]); 1218 1219 page_start = page_offset(pages[0]); 1220 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1221 1222 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1223 page_start, page_end - 1, &cached_state); 1224 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1225 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1226 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1227 &cached_state, GFP_NOFS); 1228 1229 if (i_done != page_cnt) { 1230 spin_lock(&BTRFS_I(inode)->lock); 1231 BTRFS_I(inode)->outstanding_extents++; 1232 spin_unlock(&BTRFS_I(inode)->lock); 1233 btrfs_delalloc_release_space(inode, 1234 start_index << PAGE_SHIFT, 1235 (page_cnt - i_done) << PAGE_SHIFT); 1236 } 1237 1238 1239 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1240 &cached_state); 1241 1242 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1243 page_start, page_end - 1, &cached_state, 1244 GFP_NOFS); 1245 1246 for (i = 0; i < i_done; i++) { 1247 clear_page_dirty_for_io(pages[i]); 1248 ClearPageChecked(pages[i]); 1249 set_page_extent_mapped(pages[i]); 1250 set_page_dirty(pages[i]); 1251 unlock_page(pages[i]); 1252 put_page(pages[i]); 1253 } 1254 return i_done; 1255 out: 1256 for (i = 0; i < i_done; i++) { 1257 unlock_page(pages[i]); 1258 put_page(pages[i]); 1259 } 1260 btrfs_delalloc_release_space(inode, 1261 start_index << PAGE_SHIFT, 1262 page_cnt << PAGE_SHIFT); 1263 return ret; 1264 1265 } 1266 1267 int btrfs_defrag_file(struct inode *inode, struct file *file, 1268 struct btrfs_ioctl_defrag_range_args *range, 1269 u64 newer_than, unsigned long max_to_defrag) 1270 { 1271 struct btrfs_root *root = BTRFS_I(inode)->root; 1272 struct file_ra_state *ra = NULL; 1273 unsigned long last_index; 1274 u64 isize = i_size_read(inode); 1275 u64 last_len = 0; 1276 u64 skip = 0; 1277 u64 defrag_end = 0; 1278 u64 newer_off = range->start; 1279 unsigned long i; 1280 unsigned long ra_index = 0; 1281 int ret; 1282 int defrag_count = 0; 1283 int compress_type = BTRFS_COMPRESS_ZLIB; 1284 u32 extent_thresh = range->extent_thresh; 1285 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1286 unsigned long cluster = max_cluster; 1287 u64 new_align = ~((u64)SZ_128K - 1); 1288 struct page **pages = NULL; 1289 1290 if (isize == 0) 1291 return 0; 1292 1293 if (range->start >= isize) 1294 return -EINVAL; 1295 1296 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1297 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1298 return -EINVAL; 1299 if (range->compress_type) 1300 compress_type = range->compress_type; 1301 } 1302 1303 if (extent_thresh == 0) 1304 extent_thresh = SZ_256K; 1305 1306 /* 1307 * if we were not given a file, allocate a readahead 1308 * context 1309 */ 1310 if (!file) { 1311 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1312 if (!ra) 1313 return -ENOMEM; 1314 file_ra_state_init(ra, inode->i_mapping); 1315 } else { 1316 ra = &file->f_ra; 1317 } 1318 1319 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1320 GFP_NOFS); 1321 if (!pages) { 1322 ret = -ENOMEM; 1323 goto out_ra; 1324 } 1325 1326 /* find the last page to defrag */ 1327 if (range->start + range->len > range->start) { 1328 last_index = min_t(u64, isize - 1, 1329 range->start + range->len - 1) >> PAGE_SHIFT; 1330 } else { 1331 last_index = (isize - 1) >> PAGE_SHIFT; 1332 } 1333 1334 if (newer_than) { 1335 ret = find_new_extents(root, inode, newer_than, 1336 &newer_off, SZ_64K); 1337 if (!ret) { 1338 range->start = newer_off; 1339 /* 1340 * we always align our defrag to help keep 1341 * the extents in the file evenly spaced 1342 */ 1343 i = (newer_off & new_align) >> PAGE_SHIFT; 1344 } else 1345 goto out_ra; 1346 } else { 1347 i = range->start >> PAGE_SHIFT; 1348 } 1349 if (!max_to_defrag) 1350 max_to_defrag = last_index - i + 1; 1351 1352 /* 1353 * make writeback starts from i, so the defrag range can be 1354 * written sequentially. 1355 */ 1356 if (i < inode->i_mapping->writeback_index) 1357 inode->i_mapping->writeback_index = i; 1358 1359 while (i <= last_index && defrag_count < max_to_defrag && 1360 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1361 /* 1362 * make sure we stop running if someone unmounts 1363 * the FS 1364 */ 1365 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1366 break; 1367 1368 if (btrfs_defrag_cancelled(root->fs_info)) { 1369 btrfs_debug(root->fs_info, "defrag_file cancelled"); 1370 ret = -EAGAIN; 1371 break; 1372 } 1373 1374 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1375 extent_thresh, &last_len, &skip, 1376 &defrag_end, range->flags & 1377 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1378 unsigned long next; 1379 /* 1380 * the should_defrag function tells us how much to skip 1381 * bump our counter by the suggested amount 1382 */ 1383 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1384 i = max(i + 1, next); 1385 continue; 1386 } 1387 1388 if (!newer_than) { 1389 cluster = (PAGE_ALIGN(defrag_end) >> 1390 PAGE_SHIFT) - i; 1391 cluster = min(cluster, max_cluster); 1392 } else { 1393 cluster = max_cluster; 1394 } 1395 1396 if (i + cluster > ra_index) { 1397 ra_index = max(i, ra_index); 1398 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1399 cluster); 1400 ra_index += cluster; 1401 } 1402 1403 inode_lock(inode); 1404 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1405 BTRFS_I(inode)->force_compress = compress_type; 1406 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1407 if (ret < 0) { 1408 inode_unlock(inode); 1409 goto out_ra; 1410 } 1411 1412 defrag_count += ret; 1413 balance_dirty_pages_ratelimited(inode->i_mapping); 1414 inode_unlock(inode); 1415 1416 if (newer_than) { 1417 if (newer_off == (u64)-1) 1418 break; 1419 1420 if (ret > 0) 1421 i += ret; 1422 1423 newer_off = max(newer_off + 1, 1424 (u64)i << PAGE_SHIFT); 1425 1426 ret = find_new_extents(root, inode, newer_than, 1427 &newer_off, SZ_64K); 1428 if (!ret) { 1429 range->start = newer_off; 1430 i = (newer_off & new_align) >> PAGE_SHIFT; 1431 } else { 1432 break; 1433 } 1434 } else { 1435 if (ret > 0) { 1436 i += ret; 1437 last_len += ret << PAGE_SHIFT; 1438 } else { 1439 i++; 1440 last_len = 0; 1441 } 1442 } 1443 } 1444 1445 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1446 filemap_flush(inode->i_mapping); 1447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1448 &BTRFS_I(inode)->runtime_flags)) 1449 filemap_flush(inode->i_mapping); 1450 } 1451 1452 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1453 /* the filemap_flush will queue IO into the worker threads, but 1454 * we have to make sure the IO is actually started and that 1455 * ordered extents get created before we return 1456 */ 1457 atomic_inc(&root->fs_info->async_submit_draining); 1458 while (atomic_read(&root->fs_info->nr_async_submits) || 1459 atomic_read(&root->fs_info->async_delalloc_pages)) { 1460 wait_event(root->fs_info->async_submit_wait, 1461 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1462 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1463 } 1464 atomic_dec(&root->fs_info->async_submit_draining); 1465 } 1466 1467 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1468 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1469 } 1470 1471 ret = defrag_count; 1472 1473 out_ra: 1474 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1475 inode_lock(inode); 1476 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1477 inode_unlock(inode); 1478 } 1479 if (!file) 1480 kfree(ra); 1481 kfree(pages); 1482 return ret; 1483 } 1484 1485 static noinline int btrfs_ioctl_resize(struct file *file, 1486 void __user *arg) 1487 { 1488 u64 new_size; 1489 u64 old_size; 1490 u64 devid = 1; 1491 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1492 struct btrfs_ioctl_vol_args *vol_args; 1493 struct btrfs_trans_handle *trans; 1494 struct btrfs_device *device = NULL; 1495 char *sizestr; 1496 char *retptr; 1497 char *devstr = NULL; 1498 int ret = 0; 1499 int mod = 0; 1500 1501 if (!capable(CAP_SYS_ADMIN)) 1502 return -EPERM; 1503 1504 ret = mnt_want_write_file(file); 1505 if (ret) 1506 return ret; 1507 1508 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1509 1)) { 1510 mnt_drop_write_file(file); 1511 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1512 } 1513 1514 mutex_lock(&root->fs_info->volume_mutex); 1515 vol_args = memdup_user(arg, sizeof(*vol_args)); 1516 if (IS_ERR(vol_args)) { 1517 ret = PTR_ERR(vol_args); 1518 goto out; 1519 } 1520 1521 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1522 1523 sizestr = vol_args->name; 1524 devstr = strchr(sizestr, ':'); 1525 if (devstr) { 1526 sizestr = devstr + 1; 1527 *devstr = '\0'; 1528 devstr = vol_args->name; 1529 ret = kstrtoull(devstr, 10, &devid); 1530 if (ret) 1531 goto out_free; 1532 if (!devid) { 1533 ret = -EINVAL; 1534 goto out_free; 1535 } 1536 btrfs_info(root->fs_info, "resizing devid %llu", devid); 1537 } 1538 1539 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1540 if (!device) { 1541 btrfs_info(root->fs_info, "resizer unable to find device %llu", 1542 devid); 1543 ret = -ENODEV; 1544 goto out_free; 1545 } 1546 1547 if (!device->writeable) { 1548 btrfs_info(root->fs_info, 1549 "resizer unable to apply on readonly device %llu", 1550 devid); 1551 ret = -EPERM; 1552 goto out_free; 1553 } 1554 1555 if (!strcmp(sizestr, "max")) 1556 new_size = device->bdev->bd_inode->i_size; 1557 else { 1558 if (sizestr[0] == '-') { 1559 mod = -1; 1560 sizestr++; 1561 } else if (sizestr[0] == '+') { 1562 mod = 1; 1563 sizestr++; 1564 } 1565 new_size = memparse(sizestr, &retptr); 1566 if (*retptr != '\0' || new_size == 0) { 1567 ret = -EINVAL; 1568 goto out_free; 1569 } 1570 } 1571 1572 if (device->is_tgtdev_for_dev_replace) { 1573 ret = -EPERM; 1574 goto out_free; 1575 } 1576 1577 old_size = btrfs_device_get_total_bytes(device); 1578 1579 if (mod < 0) { 1580 if (new_size > old_size) { 1581 ret = -EINVAL; 1582 goto out_free; 1583 } 1584 new_size = old_size - new_size; 1585 } else if (mod > 0) { 1586 if (new_size > ULLONG_MAX - old_size) { 1587 ret = -ERANGE; 1588 goto out_free; 1589 } 1590 new_size = old_size + new_size; 1591 } 1592 1593 if (new_size < SZ_256M) { 1594 ret = -EINVAL; 1595 goto out_free; 1596 } 1597 if (new_size > device->bdev->bd_inode->i_size) { 1598 ret = -EFBIG; 1599 goto out_free; 1600 } 1601 1602 new_size = div_u64(new_size, root->sectorsize); 1603 new_size *= root->sectorsize; 1604 1605 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu", 1606 rcu_str_deref(device->name), new_size); 1607 1608 if (new_size > old_size) { 1609 trans = btrfs_start_transaction(root, 0); 1610 if (IS_ERR(trans)) { 1611 ret = PTR_ERR(trans); 1612 goto out_free; 1613 } 1614 ret = btrfs_grow_device(trans, device, new_size); 1615 btrfs_commit_transaction(trans, root); 1616 } else if (new_size < old_size) { 1617 ret = btrfs_shrink_device(device, new_size); 1618 } /* equal, nothing need to do */ 1619 1620 out_free: 1621 kfree(vol_args); 1622 out: 1623 mutex_unlock(&root->fs_info->volume_mutex); 1624 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1625 mnt_drop_write_file(file); 1626 return ret; 1627 } 1628 1629 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1630 char *name, unsigned long fd, int subvol, 1631 u64 *transid, bool readonly, 1632 struct btrfs_qgroup_inherit *inherit) 1633 { 1634 int namelen; 1635 int ret = 0; 1636 1637 ret = mnt_want_write_file(file); 1638 if (ret) 1639 goto out; 1640 1641 namelen = strlen(name); 1642 if (strchr(name, '/')) { 1643 ret = -EINVAL; 1644 goto out_drop_write; 1645 } 1646 1647 if (name[0] == '.' && 1648 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1649 ret = -EEXIST; 1650 goto out_drop_write; 1651 } 1652 1653 if (subvol) { 1654 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1655 NULL, transid, readonly, inherit); 1656 } else { 1657 struct fd src = fdget(fd); 1658 struct inode *src_inode; 1659 if (!src.file) { 1660 ret = -EINVAL; 1661 goto out_drop_write; 1662 } 1663 1664 src_inode = file_inode(src.file); 1665 if (src_inode->i_sb != file_inode(file)->i_sb) { 1666 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1667 "Snapshot src from another FS"); 1668 ret = -EXDEV; 1669 } else if (!inode_owner_or_capable(src_inode)) { 1670 /* 1671 * Subvolume creation is not restricted, but snapshots 1672 * are limited to own subvolumes only 1673 */ 1674 ret = -EPERM; 1675 } else { 1676 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1677 BTRFS_I(src_inode)->root, 1678 transid, readonly, inherit); 1679 } 1680 fdput(src); 1681 } 1682 out_drop_write: 1683 mnt_drop_write_file(file); 1684 out: 1685 return ret; 1686 } 1687 1688 static noinline int btrfs_ioctl_snap_create(struct file *file, 1689 void __user *arg, int subvol) 1690 { 1691 struct btrfs_ioctl_vol_args *vol_args; 1692 int ret; 1693 1694 vol_args = memdup_user(arg, sizeof(*vol_args)); 1695 if (IS_ERR(vol_args)) 1696 return PTR_ERR(vol_args); 1697 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1698 1699 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1700 vol_args->fd, subvol, 1701 NULL, false, NULL); 1702 1703 kfree(vol_args); 1704 return ret; 1705 } 1706 1707 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1708 void __user *arg, int subvol) 1709 { 1710 struct btrfs_ioctl_vol_args_v2 *vol_args; 1711 int ret; 1712 u64 transid = 0; 1713 u64 *ptr = NULL; 1714 bool readonly = false; 1715 struct btrfs_qgroup_inherit *inherit = NULL; 1716 1717 vol_args = memdup_user(arg, sizeof(*vol_args)); 1718 if (IS_ERR(vol_args)) 1719 return PTR_ERR(vol_args); 1720 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1721 1722 if (vol_args->flags & 1723 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1724 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1725 ret = -EOPNOTSUPP; 1726 goto free_args; 1727 } 1728 1729 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1730 ptr = &transid; 1731 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1732 readonly = true; 1733 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1734 if (vol_args->size > PAGE_SIZE) { 1735 ret = -EINVAL; 1736 goto free_args; 1737 } 1738 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1739 if (IS_ERR(inherit)) { 1740 ret = PTR_ERR(inherit); 1741 goto free_args; 1742 } 1743 } 1744 1745 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1746 vol_args->fd, subvol, ptr, 1747 readonly, inherit); 1748 if (ret) 1749 goto free_inherit; 1750 1751 if (ptr && copy_to_user(arg + 1752 offsetof(struct btrfs_ioctl_vol_args_v2, 1753 transid), 1754 ptr, sizeof(*ptr))) 1755 ret = -EFAULT; 1756 1757 free_inherit: 1758 kfree(inherit); 1759 free_args: 1760 kfree(vol_args); 1761 return ret; 1762 } 1763 1764 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1765 void __user *arg) 1766 { 1767 struct inode *inode = file_inode(file); 1768 struct btrfs_root *root = BTRFS_I(inode)->root; 1769 int ret = 0; 1770 u64 flags = 0; 1771 1772 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1773 return -EINVAL; 1774 1775 down_read(&root->fs_info->subvol_sem); 1776 if (btrfs_root_readonly(root)) 1777 flags |= BTRFS_SUBVOL_RDONLY; 1778 up_read(&root->fs_info->subvol_sem); 1779 1780 if (copy_to_user(arg, &flags, sizeof(flags))) 1781 ret = -EFAULT; 1782 1783 return ret; 1784 } 1785 1786 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1787 void __user *arg) 1788 { 1789 struct inode *inode = file_inode(file); 1790 struct btrfs_root *root = BTRFS_I(inode)->root; 1791 struct btrfs_trans_handle *trans; 1792 u64 root_flags; 1793 u64 flags; 1794 int ret = 0; 1795 1796 if (!inode_owner_or_capable(inode)) 1797 return -EPERM; 1798 1799 ret = mnt_want_write_file(file); 1800 if (ret) 1801 goto out; 1802 1803 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1804 ret = -EINVAL; 1805 goto out_drop_write; 1806 } 1807 1808 if (copy_from_user(&flags, arg, sizeof(flags))) { 1809 ret = -EFAULT; 1810 goto out_drop_write; 1811 } 1812 1813 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1814 ret = -EINVAL; 1815 goto out_drop_write; 1816 } 1817 1818 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1819 ret = -EOPNOTSUPP; 1820 goto out_drop_write; 1821 } 1822 1823 down_write(&root->fs_info->subvol_sem); 1824 1825 /* nothing to do */ 1826 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1827 goto out_drop_sem; 1828 1829 root_flags = btrfs_root_flags(&root->root_item); 1830 if (flags & BTRFS_SUBVOL_RDONLY) { 1831 btrfs_set_root_flags(&root->root_item, 1832 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1833 } else { 1834 /* 1835 * Block RO -> RW transition if this subvolume is involved in 1836 * send 1837 */ 1838 spin_lock(&root->root_item_lock); 1839 if (root->send_in_progress == 0) { 1840 btrfs_set_root_flags(&root->root_item, 1841 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1842 spin_unlock(&root->root_item_lock); 1843 } else { 1844 spin_unlock(&root->root_item_lock); 1845 btrfs_warn(root->fs_info, 1846 "Attempt to set subvolume %llu read-write during send", 1847 root->root_key.objectid); 1848 ret = -EPERM; 1849 goto out_drop_sem; 1850 } 1851 } 1852 1853 trans = btrfs_start_transaction(root, 1); 1854 if (IS_ERR(trans)) { 1855 ret = PTR_ERR(trans); 1856 goto out_reset; 1857 } 1858 1859 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1860 &root->root_key, &root->root_item); 1861 1862 btrfs_commit_transaction(trans, root); 1863 out_reset: 1864 if (ret) 1865 btrfs_set_root_flags(&root->root_item, root_flags); 1866 out_drop_sem: 1867 up_write(&root->fs_info->subvol_sem); 1868 out_drop_write: 1869 mnt_drop_write_file(file); 1870 out: 1871 return ret; 1872 } 1873 1874 /* 1875 * helper to check if the subvolume references other subvolumes 1876 */ 1877 static noinline int may_destroy_subvol(struct btrfs_root *root) 1878 { 1879 struct btrfs_path *path; 1880 struct btrfs_dir_item *di; 1881 struct btrfs_key key; 1882 u64 dir_id; 1883 int ret; 1884 1885 path = btrfs_alloc_path(); 1886 if (!path) 1887 return -ENOMEM; 1888 1889 /* Make sure this root isn't set as the default subvol */ 1890 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1891 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1892 dir_id, "default", 7, 0); 1893 if (di && !IS_ERR(di)) { 1894 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1895 if (key.objectid == root->root_key.objectid) { 1896 ret = -EPERM; 1897 btrfs_err(root->fs_info, "deleting default subvolume " 1898 "%llu is not allowed", key.objectid); 1899 goto out; 1900 } 1901 btrfs_release_path(path); 1902 } 1903 1904 key.objectid = root->root_key.objectid; 1905 key.type = BTRFS_ROOT_REF_KEY; 1906 key.offset = (u64)-1; 1907 1908 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1909 &key, path, 0, 0); 1910 if (ret < 0) 1911 goto out; 1912 BUG_ON(ret == 0); 1913 1914 ret = 0; 1915 if (path->slots[0] > 0) { 1916 path->slots[0]--; 1917 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1918 if (key.objectid == root->root_key.objectid && 1919 key.type == BTRFS_ROOT_REF_KEY) 1920 ret = -ENOTEMPTY; 1921 } 1922 out: 1923 btrfs_free_path(path); 1924 return ret; 1925 } 1926 1927 static noinline int key_in_sk(struct btrfs_key *key, 1928 struct btrfs_ioctl_search_key *sk) 1929 { 1930 struct btrfs_key test; 1931 int ret; 1932 1933 test.objectid = sk->min_objectid; 1934 test.type = sk->min_type; 1935 test.offset = sk->min_offset; 1936 1937 ret = btrfs_comp_cpu_keys(key, &test); 1938 if (ret < 0) 1939 return 0; 1940 1941 test.objectid = sk->max_objectid; 1942 test.type = sk->max_type; 1943 test.offset = sk->max_offset; 1944 1945 ret = btrfs_comp_cpu_keys(key, &test); 1946 if (ret > 0) 1947 return 0; 1948 return 1; 1949 } 1950 1951 static noinline int copy_to_sk(struct btrfs_path *path, 1952 struct btrfs_key *key, 1953 struct btrfs_ioctl_search_key *sk, 1954 size_t *buf_size, 1955 char __user *ubuf, 1956 unsigned long *sk_offset, 1957 int *num_found) 1958 { 1959 u64 found_transid; 1960 struct extent_buffer *leaf; 1961 struct btrfs_ioctl_search_header sh; 1962 struct btrfs_key test; 1963 unsigned long item_off; 1964 unsigned long item_len; 1965 int nritems; 1966 int i; 1967 int slot; 1968 int ret = 0; 1969 1970 leaf = path->nodes[0]; 1971 slot = path->slots[0]; 1972 nritems = btrfs_header_nritems(leaf); 1973 1974 if (btrfs_header_generation(leaf) > sk->max_transid) { 1975 i = nritems; 1976 goto advance_key; 1977 } 1978 found_transid = btrfs_header_generation(leaf); 1979 1980 for (i = slot; i < nritems; i++) { 1981 item_off = btrfs_item_ptr_offset(leaf, i); 1982 item_len = btrfs_item_size_nr(leaf, i); 1983 1984 btrfs_item_key_to_cpu(leaf, key, i); 1985 if (!key_in_sk(key, sk)) 1986 continue; 1987 1988 if (sizeof(sh) + item_len > *buf_size) { 1989 if (*num_found) { 1990 ret = 1; 1991 goto out; 1992 } 1993 1994 /* 1995 * return one empty item back for v1, which does not 1996 * handle -EOVERFLOW 1997 */ 1998 1999 *buf_size = sizeof(sh) + item_len; 2000 item_len = 0; 2001 ret = -EOVERFLOW; 2002 } 2003 2004 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2005 ret = 1; 2006 goto out; 2007 } 2008 2009 sh.objectid = key->objectid; 2010 sh.offset = key->offset; 2011 sh.type = key->type; 2012 sh.len = item_len; 2013 sh.transid = found_transid; 2014 2015 /* copy search result header */ 2016 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2017 ret = -EFAULT; 2018 goto out; 2019 } 2020 2021 *sk_offset += sizeof(sh); 2022 2023 if (item_len) { 2024 char __user *up = ubuf + *sk_offset; 2025 /* copy the item */ 2026 if (read_extent_buffer_to_user(leaf, up, 2027 item_off, item_len)) { 2028 ret = -EFAULT; 2029 goto out; 2030 } 2031 2032 *sk_offset += item_len; 2033 } 2034 (*num_found)++; 2035 2036 if (ret) /* -EOVERFLOW from above */ 2037 goto out; 2038 2039 if (*num_found >= sk->nr_items) { 2040 ret = 1; 2041 goto out; 2042 } 2043 } 2044 advance_key: 2045 ret = 0; 2046 test.objectid = sk->max_objectid; 2047 test.type = sk->max_type; 2048 test.offset = sk->max_offset; 2049 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2050 ret = 1; 2051 else if (key->offset < (u64)-1) 2052 key->offset++; 2053 else if (key->type < (u8)-1) { 2054 key->offset = 0; 2055 key->type++; 2056 } else if (key->objectid < (u64)-1) { 2057 key->offset = 0; 2058 key->type = 0; 2059 key->objectid++; 2060 } else 2061 ret = 1; 2062 out: 2063 /* 2064 * 0: all items from this leaf copied, continue with next 2065 * 1: * more items can be copied, but unused buffer is too small 2066 * * all items were found 2067 * Either way, it will stops the loop which iterates to the next 2068 * leaf 2069 * -EOVERFLOW: item was to large for buffer 2070 * -EFAULT: could not copy extent buffer back to userspace 2071 */ 2072 return ret; 2073 } 2074 2075 static noinline int search_ioctl(struct inode *inode, 2076 struct btrfs_ioctl_search_key *sk, 2077 size_t *buf_size, 2078 char __user *ubuf) 2079 { 2080 struct btrfs_root *root; 2081 struct btrfs_key key; 2082 struct btrfs_path *path; 2083 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 2084 int ret; 2085 int num_found = 0; 2086 unsigned long sk_offset = 0; 2087 2088 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2089 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2090 return -EOVERFLOW; 2091 } 2092 2093 path = btrfs_alloc_path(); 2094 if (!path) 2095 return -ENOMEM; 2096 2097 if (sk->tree_id == 0) { 2098 /* search the root of the inode that was passed */ 2099 root = BTRFS_I(inode)->root; 2100 } else { 2101 key.objectid = sk->tree_id; 2102 key.type = BTRFS_ROOT_ITEM_KEY; 2103 key.offset = (u64)-1; 2104 root = btrfs_read_fs_root_no_name(info, &key); 2105 if (IS_ERR(root)) { 2106 btrfs_free_path(path); 2107 return -ENOENT; 2108 } 2109 } 2110 2111 key.objectid = sk->min_objectid; 2112 key.type = sk->min_type; 2113 key.offset = sk->min_offset; 2114 2115 while (1) { 2116 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2117 if (ret != 0) { 2118 if (ret > 0) 2119 ret = 0; 2120 goto err; 2121 } 2122 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2123 &sk_offset, &num_found); 2124 btrfs_release_path(path); 2125 if (ret) 2126 break; 2127 2128 } 2129 if (ret > 0) 2130 ret = 0; 2131 err: 2132 sk->nr_items = num_found; 2133 btrfs_free_path(path); 2134 return ret; 2135 } 2136 2137 static noinline int btrfs_ioctl_tree_search(struct file *file, 2138 void __user *argp) 2139 { 2140 struct btrfs_ioctl_search_args __user *uargs; 2141 struct btrfs_ioctl_search_key sk; 2142 struct inode *inode; 2143 int ret; 2144 size_t buf_size; 2145 2146 if (!capable(CAP_SYS_ADMIN)) 2147 return -EPERM; 2148 2149 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2150 2151 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2152 return -EFAULT; 2153 2154 buf_size = sizeof(uargs->buf); 2155 2156 inode = file_inode(file); 2157 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2158 2159 /* 2160 * In the origin implementation an overflow is handled by returning a 2161 * search header with a len of zero, so reset ret. 2162 */ 2163 if (ret == -EOVERFLOW) 2164 ret = 0; 2165 2166 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2167 ret = -EFAULT; 2168 return ret; 2169 } 2170 2171 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2172 void __user *argp) 2173 { 2174 struct btrfs_ioctl_search_args_v2 __user *uarg; 2175 struct btrfs_ioctl_search_args_v2 args; 2176 struct inode *inode; 2177 int ret; 2178 size_t buf_size; 2179 const size_t buf_limit = SZ_16M; 2180 2181 if (!capable(CAP_SYS_ADMIN)) 2182 return -EPERM; 2183 2184 /* copy search header and buffer size */ 2185 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2186 if (copy_from_user(&args, uarg, sizeof(args))) 2187 return -EFAULT; 2188 2189 buf_size = args.buf_size; 2190 2191 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2192 return -EOVERFLOW; 2193 2194 /* limit result size to 16MB */ 2195 if (buf_size > buf_limit) 2196 buf_size = buf_limit; 2197 2198 inode = file_inode(file); 2199 ret = search_ioctl(inode, &args.key, &buf_size, 2200 (char *)(&uarg->buf[0])); 2201 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2202 ret = -EFAULT; 2203 else if (ret == -EOVERFLOW && 2204 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2205 ret = -EFAULT; 2206 2207 return ret; 2208 } 2209 2210 /* 2211 * Search INODE_REFs to identify path name of 'dirid' directory 2212 * in a 'tree_id' tree. and sets path name to 'name'. 2213 */ 2214 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2215 u64 tree_id, u64 dirid, char *name) 2216 { 2217 struct btrfs_root *root; 2218 struct btrfs_key key; 2219 char *ptr; 2220 int ret = -1; 2221 int slot; 2222 int len; 2223 int total_len = 0; 2224 struct btrfs_inode_ref *iref; 2225 struct extent_buffer *l; 2226 struct btrfs_path *path; 2227 2228 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2229 name[0]='\0'; 2230 return 0; 2231 } 2232 2233 path = btrfs_alloc_path(); 2234 if (!path) 2235 return -ENOMEM; 2236 2237 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2238 2239 key.objectid = tree_id; 2240 key.type = BTRFS_ROOT_ITEM_KEY; 2241 key.offset = (u64)-1; 2242 root = btrfs_read_fs_root_no_name(info, &key); 2243 if (IS_ERR(root)) { 2244 btrfs_err(info, "could not find root %llu", tree_id); 2245 ret = -ENOENT; 2246 goto out; 2247 } 2248 2249 key.objectid = dirid; 2250 key.type = BTRFS_INODE_REF_KEY; 2251 key.offset = (u64)-1; 2252 2253 while (1) { 2254 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2255 if (ret < 0) 2256 goto out; 2257 else if (ret > 0) { 2258 ret = btrfs_previous_item(root, path, dirid, 2259 BTRFS_INODE_REF_KEY); 2260 if (ret < 0) 2261 goto out; 2262 else if (ret > 0) { 2263 ret = -ENOENT; 2264 goto out; 2265 } 2266 } 2267 2268 l = path->nodes[0]; 2269 slot = path->slots[0]; 2270 btrfs_item_key_to_cpu(l, &key, slot); 2271 2272 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2273 len = btrfs_inode_ref_name_len(l, iref); 2274 ptr -= len + 1; 2275 total_len += len + 1; 2276 if (ptr < name) { 2277 ret = -ENAMETOOLONG; 2278 goto out; 2279 } 2280 2281 *(ptr + len) = '/'; 2282 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2283 2284 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2285 break; 2286 2287 btrfs_release_path(path); 2288 key.objectid = key.offset; 2289 key.offset = (u64)-1; 2290 dirid = key.objectid; 2291 } 2292 memmove(name, ptr, total_len); 2293 name[total_len] = '\0'; 2294 ret = 0; 2295 out: 2296 btrfs_free_path(path); 2297 return ret; 2298 } 2299 2300 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2301 void __user *argp) 2302 { 2303 struct btrfs_ioctl_ino_lookup_args *args; 2304 struct inode *inode; 2305 int ret = 0; 2306 2307 args = memdup_user(argp, sizeof(*args)); 2308 if (IS_ERR(args)) 2309 return PTR_ERR(args); 2310 2311 inode = file_inode(file); 2312 2313 /* 2314 * Unprivileged query to obtain the containing subvolume root id. The 2315 * path is reset so it's consistent with btrfs_search_path_in_tree. 2316 */ 2317 if (args->treeid == 0) 2318 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2319 2320 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2321 args->name[0] = 0; 2322 goto out; 2323 } 2324 2325 if (!capable(CAP_SYS_ADMIN)) { 2326 ret = -EPERM; 2327 goto out; 2328 } 2329 2330 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2331 args->treeid, args->objectid, 2332 args->name); 2333 2334 out: 2335 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2336 ret = -EFAULT; 2337 2338 kfree(args); 2339 return ret; 2340 } 2341 2342 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2343 void __user *arg) 2344 { 2345 struct dentry *parent = file->f_path.dentry; 2346 struct dentry *dentry; 2347 struct inode *dir = d_inode(parent); 2348 struct inode *inode; 2349 struct btrfs_root *root = BTRFS_I(dir)->root; 2350 struct btrfs_root *dest = NULL; 2351 struct btrfs_ioctl_vol_args *vol_args; 2352 struct btrfs_trans_handle *trans; 2353 struct btrfs_block_rsv block_rsv; 2354 u64 root_flags; 2355 u64 qgroup_reserved; 2356 int namelen; 2357 int ret; 2358 int err = 0; 2359 2360 vol_args = memdup_user(arg, sizeof(*vol_args)); 2361 if (IS_ERR(vol_args)) 2362 return PTR_ERR(vol_args); 2363 2364 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2365 namelen = strlen(vol_args->name); 2366 if (strchr(vol_args->name, '/') || 2367 strncmp(vol_args->name, "..", namelen) == 0) { 2368 err = -EINVAL; 2369 goto out; 2370 } 2371 2372 err = mnt_want_write_file(file); 2373 if (err) 2374 goto out; 2375 2376 2377 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2378 if (err == -EINTR) 2379 goto out_drop_write; 2380 dentry = lookup_one_len(vol_args->name, parent, namelen); 2381 if (IS_ERR(dentry)) { 2382 err = PTR_ERR(dentry); 2383 goto out_unlock_dir; 2384 } 2385 2386 if (d_really_is_negative(dentry)) { 2387 err = -ENOENT; 2388 goto out_dput; 2389 } 2390 2391 inode = d_inode(dentry); 2392 dest = BTRFS_I(inode)->root; 2393 if (!capable(CAP_SYS_ADMIN)) { 2394 /* 2395 * Regular user. Only allow this with a special mount 2396 * option, when the user has write+exec access to the 2397 * subvol root, and when rmdir(2) would have been 2398 * allowed. 2399 * 2400 * Note that this is _not_ check that the subvol is 2401 * empty or doesn't contain data that we wouldn't 2402 * otherwise be able to delete. 2403 * 2404 * Users who want to delete empty subvols should try 2405 * rmdir(2). 2406 */ 2407 err = -EPERM; 2408 if (!btrfs_test_opt(root->fs_info, USER_SUBVOL_RM_ALLOWED)) 2409 goto out_dput; 2410 2411 /* 2412 * Do not allow deletion if the parent dir is the same 2413 * as the dir to be deleted. That means the ioctl 2414 * must be called on the dentry referencing the root 2415 * of the subvol, not a random directory contained 2416 * within it. 2417 */ 2418 err = -EINVAL; 2419 if (root == dest) 2420 goto out_dput; 2421 2422 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2423 if (err) 2424 goto out_dput; 2425 } 2426 2427 /* check if subvolume may be deleted by a user */ 2428 err = btrfs_may_delete(dir, dentry, 1); 2429 if (err) 2430 goto out_dput; 2431 2432 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2433 err = -EINVAL; 2434 goto out_dput; 2435 } 2436 2437 inode_lock(inode); 2438 2439 /* 2440 * Don't allow to delete a subvolume with send in progress. This is 2441 * inside the i_mutex so the error handling that has to drop the bit 2442 * again is not run concurrently. 2443 */ 2444 spin_lock(&dest->root_item_lock); 2445 root_flags = btrfs_root_flags(&dest->root_item); 2446 if (dest->send_in_progress == 0) { 2447 btrfs_set_root_flags(&dest->root_item, 2448 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2449 spin_unlock(&dest->root_item_lock); 2450 } else { 2451 spin_unlock(&dest->root_item_lock); 2452 btrfs_warn(root->fs_info, 2453 "Attempt to delete subvolume %llu during send", 2454 dest->root_key.objectid); 2455 err = -EPERM; 2456 goto out_unlock_inode; 2457 } 2458 2459 down_write(&root->fs_info->subvol_sem); 2460 2461 err = may_destroy_subvol(dest); 2462 if (err) 2463 goto out_up_write; 2464 2465 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2466 /* 2467 * One for dir inode, two for dir entries, two for root 2468 * ref/backref. 2469 */ 2470 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2471 5, &qgroup_reserved, true); 2472 if (err) 2473 goto out_up_write; 2474 2475 trans = btrfs_start_transaction(root, 0); 2476 if (IS_ERR(trans)) { 2477 err = PTR_ERR(trans); 2478 goto out_release; 2479 } 2480 trans->block_rsv = &block_rsv; 2481 trans->bytes_reserved = block_rsv.size; 2482 2483 btrfs_record_snapshot_destroy(trans, dir); 2484 2485 ret = btrfs_unlink_subvol(trans, root, dir, 2486 dest->root_key.objectid, 2487 dentry->d_name.name, 2488 dentry->d_name.len); 2489 if (ret) { 2490 err = ret; 2491 btrfs_abort_transaction(trans, ret); 2492 goto out_end_trans; 2493 } 2494 2495 btrfs_record_root_in_trans(trans, dest); 2496 2497 memset(&dest->root_item.drop_progress, 0, 2498 sizeof(dest->root_item.drop_progress)); 2499 dest->root_item.drop_level = 0; 2500 btrfs_set_root_refs(&dest->root_item, 0); 2501 2502 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2503 ret = btrfs_insert_orphan_item(trans, 2504 root->fs_info->tree_root, 2505 dest->root_key.objectid); 2506 if (ret) { 2507 btrfs_abort_transaction(trans, ret); 2508 err = ret; 2509 goto out_end_trans; 2510 } 2511 } 2512 2513 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2514 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2515 dest->root_key.objectid); 2516 if (ret && ret != -ENOENT) { 2517 btrfs_abort_transaction(trans, ret); 2518 err = ret; 2519 goto out_end_trans; 2520 } 2521 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2522 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2523 dest->root_item.received_uuid, 2524 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2525 dest->root_key.objectid); 2526 if (ret && ret != -ENOENT) { 2527 btrfs_abort_transaction(trans, ret); 2528 err = ret; 2529 goto out_end_trans; 2530 } 2531 } 2532 2533 out_end_trans: 2534 trans->block_rsv = NULL; 2535 trans->bytes_reserved = 0; 2536 ret = btrfs_end_transaction(trans, root); 2537 if (ret && !err) 2538 err = ret; 2539 inode->i_flags |= S_DEAD; 2540 out_release: 2541 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2542 out_up_write: 2543 up_write(&root->fs_info->subvol_sem); 2544 if (err) { 2545 spin_lock(&dest->root_item_lock); 2546 root_flags = btrfs_root_flags(&dest->root_item); 2547 btrfs_set_root_flags(&dest->root_item, 2548 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2549 spin_unlock(&dest->root_item_lock); 2550 } 2551 out_unlock_inode: 2552 inode_unlock(inode); 2553 if (!err) { 2554 d_invalidate(dentry); 2555 btrfs_invalidate_inodes(dest); 2556 d_delete(dentry); 2557 ASSERT(dest->send_in_progress == 0); 2558 2559 /* the last ref */ 2560 if (dest->ino_cache_inode) { 2561 iput(dest->ino_cache_inode); 2562 dest->ino_cache_inode = NULL; 2563 } 2564 } 2565 out_dput: 2566 dput(dentry); 2567 out_unlock_dir: 2568 inode_unlock(dir); 2569 out_drop_write: 2570 mnt_drop_write_file(file); 2571 out: 2572 kfree(vol_args); 2573 return err; 2574 } 2575 2576 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2577 { 2578 struct inode *inode = file_inode(file); 2579 struct btrfs_root *root = BTRFS_I(inode)->root; 2580 struct btrfs_ioctl_defrag_range_args *range; 2581 int ret; 2582 2583 ret = mnt_want_write_file(file); 2584 if (ret) 2585 return ret; 2586 2587 if (btrfs_root_readonly(root)) { 2588 ret = -EROFS; 2589 goto out; 2590 } 2591 2592 switch (inode->i_mode & S_IFMT) { 2593 case S_IFDIR: 2594 if (!capable(CAP_SYS_ADMIN)) { 2595 ret = -EPERM; 2596 goto out; 2597 } 2598 ret = btrfs_defrag_root(root); 2599 if (ret) 2600 goto out; 2601 ret = btrfs_defrag_root(root->fs_info->extent_root); 2602 break; 2603 case S_IFREG: 2604 if (!(file->f_mode & FMODE_WRITE)) { 2605 ret = -EINVAL; 2606 goto out; 2607 } 2608 2609 range = kzalloc(sizeof(*range), GFP_KERNEL); 2610 if (!range) { 2611 ret = -ENOMEM; 2612 goto out; 2613 } 2614 2615 if (argp) { 2616 if (copy_from_user(range, argp, 2617 sizeof(*range))) { 2618 ret = -EFAULT; 2619 kfree(range); 2620 goto out; 2621 } 2622 /* compression requires us to start the IO */ 2623 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2624 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2625 range->extent_thresh = (u32)-1; 2626 } 2627 } else { 2628 /* the rest are all set to zero by kzalloc */ 2629 range->len = (u64)-1; 2630 } 2631 ret = btrfs_defrag_file(file_inode(file), file, 2632 range, 0, 0); 2633 if (ret > 0) 2634 ret = 0; 2635 kfree(range); 2636 break; 2637 default: 2638 ret = -EINVAL; 2639 } 2640 out: 2641 mnt_drop_write_file(file); 2642 return ret; 2643 } 2644 2645 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2646 { 2647 struct btrfs_ioctl_vol_args *vol_args; 2648 int ret; 2649 2650 if (!capable(CAP_SYS_ADMIN)) 2651 return -EPERM; 2652 2653 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2654 1)) { 2655 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2656 } 2657 2658 mutex_lock(&root->fs_info->volume_mutex); 2659 vol_args = memdup_user(arg, sizeof(*vol_args)); 2660 if (IS_ERR(vol_args)) { 2661 ret = PTR_ERR(vol_args); 2662 goto out; 2663 } 2664 2665 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2666 ret = btrfs_init_new_device(root, vol_args->name); 2667 2668 if (!ret) 2669 btrfs_info(root->fs_info, "disk added %s",vol_args->name); 2670 2671 kfree(vol_args); 2672 out: 2673 mutex_unlock(&root->fs_info->volume_mutex); 2674 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2675 return ret; 2676 } 2677 2678 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2679 { 2680 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2681 struct btrfs_ioctl_vol_args_v2 *vol_args; 2682 int ret; 2683 2684 if (!capable(CAP_SYS_ADMIN)) 2685 return -EPERM; 2686 2687 ret = mnt_want_write_file(file); 2688 if (ret) 2689 return ret; 2690 2691 vol_args = memdup_user(arg, sizeof(*vol_args)); 2692 if (IS_ERR(vol_args)) { 2693 ret = PTR_ERR(vol_args); 2694 goto err_drop; 2695 } 2696 2697 /* Check for compatibility reject unknown flags */ 2698 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) 2699 return -EOPNOTSUPP; 2700 2701 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2702 1)) { 2703 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2704 goto out; 2705 } 2706 2707 mutex_lock(&root->fs_info->volume_mutex); 2708 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2709 ret = btrfs_rm_device(root, NULL, vol_args->devid); 2710 } else { 2711 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2712 ret = btrfs_rm_device(root, vol_args->name, 0); 2713 } 2714 mutex_unlock(&root->fs_info->volume_mutex); 2715 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2716 2717 if (!ret) { 2718 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2719 btrfs_info(root->fs_info, "device deleted: id %llu", 2720 vol_args->devid); 2721 else 2722 btrfs_info(root->fs_info, "device deleted: %s", 2723 vol_args->name); 2724 } 2725 out: 2726 kfree(vol_args); 2727 err_drop: 2728 mnt_drop_write_file(file); 2729 return ret; 2730 } 2731 2732 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2733 { 2734 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2735 struct btrfs_ioctl_vol_args *vol_args; 2736 int ret; 2737 2738 if (!capable(CAP_SYS_ADMIN)) 2739 return -EPERM; 2740 2741 ret = mnt_want_write_file(file); 2742 if (ret) 2743 return ret; 2744 2745 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2746 1)) { 2747 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2748 goto out_drop_write; 2749 } 2750 2751 vol_args = memdup_user(arg, sizeof(*vol_args)); 2752 if (IS_ERR(vol_args)) { 2753 ret = PTR_ERR(vol_args); 2754 goto out; 2755 } 2756 2757 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2758 mutex_lock(&root->fs_info->volume_mutex); 2759 ret = btrfs_rm_device(root, vol_args->name, 0); 2760 mutex_unlock(&root->fs_info->volume_mutex); 2761 2762 if (!ret) 2763 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name); 2764 kfree(vol_args); 2765 out: 2766 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2767 out_drop_write: 2768 mnt_drop_write_file(file); 2769 2770 return ret; 2771 } 2772 2773 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2774 { 2775 struct btrfs_ioctl_fs_info_args *fi_args; 2776 struct btrfs_device *device; 2777 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2778 int ret = 0; 2779 2780 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2781 if (!fi_args) 2782 return -ENOMEM; 2783 2784 mutex_lock(&fs_devices->device_list_mutex); 2785 fi_args->num_devices = fs_devices->num_devices; 2786 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2787 2788 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2789 if (device->devid > fi_args->max_id) 2790 fi_args->max_id = device->devid; 2791 } 2792 mutex_unlock(&fs_devices->device_list_mutex); 2793 2794 fi_args->nodesize = root->fs_info->super_copy->nodesize; 2795 fi_args->sectorsize = root->fs_info->super_copy->sectorsize; 2796 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize; 2797 2798 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2799 ret = -EFAULT; 2800 2801 kfree(fi_args); 2802 return ret; 2803 } 2804 2805 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2806 { 2807 struct btrfs_ioctl_dev_info_args *di_args; 2808 struct btrfs_device *dev; 2809 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2810 int ret = 0; 2811 char *s_uuid = NULL; 2812 2813 di_args = memdup_user(arg, sizeof(*di_args)); 2814 if (IS_ERR(di_args)) 2815 return PTR_ERR(di_args); 2816 2817 if (!btrfs_is_empty_uuid(di_args->uuid)) 2818 s_uuid = di_args->uuid; 2819 2820 mutex_lock(&fs_devices->device_list_mutex); 2821 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2822 2823 if (!dev) { 2824 ret = -ENODEV; 2825 goto out; 2826 } 2827 2828 di_args->devid = dev->devid; 2829 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2830 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2831 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2832 if (dev->name) { 2833 struct rcu_string *name; 2834 2835 rcu_read_lock(); 2836 name = rcu_dereference(dev->name); 2837 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2838 rcu_read_unlock(); 2839 di_args->path[sizeof(di_args->path) - 1] = 0; 2840 } else { 2841 di_args->path[0] = '\0'; 2842 } 2843 2844 out: 2845 mutex_unlock(&fs_devices->device_list_mutex); 2846 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2847 ret = -EFAULT; 2848 2849 kfree(di_args); 2850 return ret; 2851 } 2852 2853 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2854 { 2855 struct page *page; 2856 2857 page = grab_cache_page(inode->i_mapping, index); 2858 if (!page) 2859 return ERR_PTR(-ENOMEM); 2860 2861 if (!PageUptodate(page)) { 2862 int ret; 2863 2864 ret = btrfs_readpage(NULL, page); 2865 if (ret) 2866 return ERR_PTR(ret); 2867 lock_page(page); 2868 if (!PageUptodate(page)) { 2869 unlock_page(page); 2870 put_page(page); 2871 return ERR_PTR(-EIO); 2872 } 2873 if (page->mapping != inode->i_mapping) { 2874 unlock_page(page); 2875 put_page(page); 2876 return ERR_PTR(-EAGAIN); 2877 } 2878 } 2879 2880 return page; 2881 } 2882 2883 static int gather_extent_pages(struct inode *inode, struct page **pages, 2884 int num_pages, u64 off) 2885 { 2886 int i; 2887 pgoff_t index = off >> PAGE_SHIFT; 2888 2889 for (i = 0; i < num_pages; i++) { 2890 again: 2891 pages[i] = extent_same_get_page(inode, index + i); 2892 if (IS_ERR(pages[i])) { 2893 int err = PTR_ERR(pages[i]); 2894 2895 if (err == -EAGAIN) 2896 goto again; 2897 pages[i] = NULL; 2898 return err; 2899 } 2900 } 2901 return 0; 2902 } 2903 2904 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 2905 bool retry_range_locking) 2906 { 2907 /* 2908 * Do any pending delalloc/csum calculations on inode, one way or 2909 * another, and lock file content. 2910 * The locking order is: 2911 * 2912 * 1) pages 2913 * 2) range in the inode's io tree 2914 */ 2915 while (1) { 2916 struct btrfs_ordered_extent *ordered; 2917 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2918 ordered = btrfs_lookup_first_ordered_extent(inode, 2919 off + len - 1); 2920 if ((!ordered || 2921 ordered->file_offset + ordered->len <= off || 2922 ordered->file_offset >= off + len) && 2923 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2924 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2925 if (ordered) 2926 btrfs_put_ordered_extent(ordered); 2927 break; 2928 } 2929 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2930 if (ordered) 2931 btrfs_put_ordered_extent(ordered); 2932 if (!retry_range_locking) 2933 return -EAGAIN; 2934 btrfs_wait_ordered_range(inode, off, len); 2935 } 2936 return 0; 2937 } 2938 2939 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2940 { 2941 inode_unlock(inode1); 2942 inode_unlock(inode2); 2943 } 2944 2945 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2946 { 2947 if (inode1 < inode2) 2948 swap(inode1, inode2); 2949 2950 inode_lock_nested(inode1, I_MUTEX_PARENT); 2951 inode_lock_nested(inode2, I_MUTEX_CHILD); 2952 } 2953 2954 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2955 struct inode *inode2, u64 loff2, u64 len) 2956 { 2957 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2958 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2959 } 2960 2961 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2962 struct inode *inode2, u64 loff2, u64 len, 2963 bool retry_range_locking) 2964 { 2965 int ret; 2966 2967 if (inode1 < inode2) { 2968 swap(inode1, inode2); 2969 swap(loff1, loff2); 2970 } 2971 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 2972 if (ret) 2973 return ret; 2974 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 2975 if (ret) 2976 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 2977 loff1 + len - 1); 2978 return ret; 2979 } 2980 2981 struct cmp_pages { 2982 int num_pages; 2983 struct page **src_pages; 2984 struct page **dst_pages; 2985 }; 2986 2987 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 2988 { 2989 int i; 2990 struct page *pg; 2991 2992 for (i = 0; i < cmp->num_pages; i++) { 2993 pg = cmp->src_pages[i]; 2994 if (pg) { 2995 unlock_page(pg); 2996 put_page(pg); 2997 } 2998 pg = cmp->dst_pages[i]; 2999 if (pg) { 3000 unlock_page(pg); 3001 put_page(pg); 3002 } 3003 } 3004 kfree(cmp->src_pages); 3005 kfree(cmp->dst_pages); 3006 } 3007 3008 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 3009 struct inode *dst, u64 dst_loff, 3010 u64 len, struct cmp_pages *cmp) 3011 { 3012 int ret; 3013 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 3014 struct page **src_pgarr, **dst_pgarr; 3015 3016 /* 3017 * We must gather up all the pages before we initiate our 3018 * extent locking. We use an array for the page pointers. Size 3019 * of the array is bounded by len, which is in turn bounded by 3020 * BTRFS_MAX_DEDUPE_LEN. 3021 */ 3022 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3023 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3024 if (!src_pgarr || !dst_pgarr) { 3025 kfree(src_pgarr); 3026 kfree(dst_pgarr); 3027 return -ENOMEM; 3028 } 3029 cmp->num_pages = num_pages; 3030 cmp->src_pages = src_pgarr; 3031 cmp->dst_pages = dst_pgarr; 3032 3033 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff); 3034 if (ret) 3035 goto out; 3036 3037 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff); 3038 3039 out: 3040 if (ret) 3041 btrfs_cmp_data_free(cmp); 3042 return 0; 3043 } 3044 3045 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 3046 u64 dst_loff, u64 len, struct cmp_pages *cmp) 3047 { 3048 int ret = 0; 3049 int i; 3050 struct page *src_page, *dst_page; 3051 unsigned int cmp_len = PAGE_SIZE; 3052 void *addr, *dst_addr; 3053 3054 i = 0; 3055 while (len) { 3056 if (len < PAGE_SIZE) 3057 cmp_len = len; 3058 3059 BUG_ON(i >= cmp->num_pages); 3060 3061 src_page = cmp->src_pages[i]; 3062 dst_page = cmp->dst_pages[i]; 3063 ASSERT(PageLocked(src_page)); 3064 ASSERT(PageLocked(dst_page)); 3065 3066 addr = kmap_atomic(src_page); 3067 dst_addr = kmap_atomic(dst_page); 3068 3069 flush_dcache_page(src_page); 3070 flush_dcache_page(dst_page); 3071 3072 if (memcmp(addr, dst_addr, cmp_len)) 3073 ret = -EBADE; 3074 3075 kunmap_atomic(addr); 3076 kunmap_atomic(dst_addr); 3077 3078 if (ret) 3079 break; 3080 3081 len -= cmp_len; 3082 i++; 3083 } 3084 3085 return ret; 3086 } 3087 3088 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3089 u64 olen) 3090 { 3091 u64 len = *plen; 3092 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3093 3094 if (off + olen > inode->i_size || off + olen < off) 3095 return -EINVAL; 3096 3097 /* if we extend to eof, continue to block boundary */ 3098 if (off + len == inode->i_size) 3099 *plen = len = ALIGN(inode->i_size, bs) - off; 3100 3101 /* Check that we are block aligned - btrfs_clone() requires this */ 3102 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3103 return -EINVAL; 3104 3105 return 0; 3106 } 3107 3108 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3109 struct inode *dst, u64 dst_loff) 3110 { 3111 int ret; 3112 u64 len = olen; 3113 struct cmp_pages cmp; 3114 int same_inode = 0; 3115 u64 same_lock_start = 0; 3116 u64 same_lock_len = 0; 3117 3118 if (src == dst) 3119 same_inode = 1; 3120 3121 if (len == 0) 3122 return 0; 3123 3124 if (same_inode) { 3125 inode_lock(src); 3126 3127 ret = extent_same_check_offsets(src, loff, &len, olen); 3128 if (ret) 3129 goto out_unlock; 3130 ret = extent_same_check_offsets(src, dst_loff, &len, olen); 3131 if (ret) 3132 goto out_unlock; 3133 3134 /* 3135 * Single inode case wants the same checks, except we 3136 * don't want our length pushed out past i_size as 3137 * comparing that data range makes no sense. 3138 * 3139 * extent_same_check_offsets() will do this for an 3140 * unaligned length at i_size, so catch it here and 3141 * reject the request. 3142 * 3143 * This effectively means we require aligned extents 3144 * for the single-inode case, whereas the other cases 3145 * allow an unaligned length so long as it ends at 3146 * i_size. 3147 */ 3148 if (len != olen) { 3149 ret = -EINVAL; 3150 goto out_unlock; 3151 } 3152 3153 /* Check for overlapping ranges */ 3154 if (dst_loff + len > loff && dst_loff < loff + len) { 3155 ret = -EINVAL; 3156 goto out_unlock; 3157 } 3158 3159 same_lock_start = min_t(u64, loff, dst_loff); 3160 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3161 } else { 3162 btrfs_double_inode_lock(src, dst); 3163 3164 ret = extent_same_check_offsets(src, loff, &len, olen); 3165 if (ret) 3166 goto out_unlock; 3167 3168 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3169 if (ret) 3170 goto out_unlock; 3171 } 3172 3173 /* don't make the dst file partly checksummed */ 3174 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3175 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3176 ret = -EINVAL; 3177 goto out_unlock; 3178 } 3179 3180 again: 3181 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3182 if (ret) 3183 goto out_unlock; 3184 3185 if (same_inode) 3186 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3187 false); 3188 else 3189 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3190 false); 3191 /* 3192 * If one of the inodes has dirty pages in the respective range or 3193 * ordered extents, we need to flush dellaloc and wait for all ordered 3194 * extents in the range. We must unlock the pages and the ranges in the 3195 * io trees to avoid deadlocks when flushing delalloc (requires locking 3196 * pages) and when waiting for ordered extents to complete (they require 3197 * range locking). 3198 */ 3199 if (ret == -EAGAIN) { 3200 /* 3201 * Ranges in the io trees already unlocked. Now unlock all 3202 * pages before waiting for all IO to complete. 3203 */ 3204 btrfs_cmp_data_free(&cmp); 3205 if (same_inode) { 3206 btrfs_wait_ordered_range(src, same_lock_start, 3207 same_lock_len); 3208 } else { 3209 btrfs_wait_ordered_range(src, loff, len); 3210 btrfs_wait_ordered_range(dst, dst_loff, len); 3211 } 3212 goto again; 3213 } 3214 ASSERT(ret == 0); 3215 if (WARN_ON(ret)) { 3216 /* ranges in the io trees already unlocked */ 3217 btrfs_cmp_data_free(&cmp); 3218 return ret; 3219 } 3220 3221 /* pass original length for comparison so we stay within i_size */ 3222 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp); 3223 if (ret == 0) 3224 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3225 3226 if (same_inode) 3227 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3228 same_lock_start + same_lock_len - 1); 3229 else 3230 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3231 3232 btrfs_cmp_data_free(&cmp); 3233 out_unlock: 3234 if (same_inode) 3235 inode_unlock(src); 3236 else 3237 btrfs_double_inode_unlock(src, dst); 3238 3239 return ret; 3240 } 3241 3242 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3243 3244 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3245 struct file *dst_file, u64 dst_loff) 3246 { 3247 struct inode *src = file_inode(src_file); 3248 struct inode *dst = file_inode(dst_file); 3249 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3250 ssize_t res; 3251 3252 if (olen > BTRFS_MAX_DEDUPE_LEN) 3253 olen = BTRFS_MAX_DEDUPE_LEN; 3254 3255 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3256 /* 3257 * Btrfs does not support blocksize < page_size. As a 3258 * result, btrfs_cmp_data() won't correctly handle 3259 * this situation without an update. 3260 */ 3261 return -EINVAL; 3262 } 3263 3264 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3265 if (res) 3266 return res; 3267 return olen; 3268 } 3269 3270 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3271 struct inode *inode, 3272 u64 endoff, 3273 const u64 destoff, 3274 const u64 olen, 3275 int no_time_update) 3276 { 3277 struct btrfs_root *root = BTRFS_I(inode)->root; 3278 int ret; 3279 3280 inode_inc_iversion(inode); 3281 if (!no_time_update) 3282 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 3283 /* 3284 * We round up to the block size at eof when determining which 3285 * extents to clone above, but shouldn't round up the file size. 3286 */ 3287 if (endoff > destoff + olen) 3288 endoff = destoff + olen; 3289 if (endoff > inode->i_size) 3290 btrfs_i_size_write(inode, endoff); 3291 3292 ret = btrfs_update_inode(trans, root, inode); 3293 if (ret) { 3294 btrfs_abort_transaction(trans, ret); 3295 btrfs_end_transaction(trans, root); 3296 goto out; 3297 } 3298 ret = btrfs_end_transaction(trans, root); 3299 out: 3300 return ret; 3301 } 3302 3303 static void clone_update_extent_map(struct inode *inode, 3304 const struct btrfs_trans_handle *trans, 3305 const struct btrfs_path *path, 3306 const u64 hole_offset, 3307 const u64 hole_len) 3308 { 3309 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3310 struct extent_map *em; 3311 int ret; 3312 3313 em = alloc_extent_map(); 3314 if (!em) { 3315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3316 &BTRFS_I(inode)->runtime_flags); 3317 return; 3318 } 3319 3320 if (path) { 3321 struct btrfs_file_extent_item *fi; 3322 3323 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3324 struct btrfs_file_extent_item); 3325 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3326 em->generation = -1; 3327 if (btrfs_file_extent_type(path->nodes[0], fi) == 3328 BTRFS_FILE_EXTENT_INLINE) 3329 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3330 &BTRFS_I(inode)->runtime_flags); 3331 } else { 3332 em->start = hole_offset; 3333 em->len = hole_len; 3334 em->ram_bytes = em->len; 3335 em->orig_start = hole_offset; 3336 em->block_start = EXTENT_MAP_HOLE; 3337 em->block_len = 0; 3338 em->orig_block_len = 0; 3339 em->compress_type = BTRFS_COMPRESS_NONE; 3340 em->generation = trans->transid; 3341 } 3342 3343 while (1) { 3344 write_lock(&em_tree->lock); 3345 ret = add_extent_mapping(em_tree, em, 1); 3346 write_unlock(&em_tree->lock); 3347 if (ret != -EEXIST) { 3348 free_extent_map(em); 3349 break; 3350 } 3351 btrfs_drop_extent_cache(inode, em->start, 3352 em->start + em->len - 1, 0); 3353 } 3354 3355 if (ret) 3356 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3357 &BTRFS_I(inode)->runtime_flags); 3358 } 3359 3360 /* 3361 * Make sure we do not end up inserting an inline extent into a file that has 3362 * already other (non-inline) extents. If a file has an inline extent it can 3363 * not have any other extents and the (single) inline extent must start at the 3364 * file offset 0. Failing to respect these rules will lead to file corruption, 3365 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3366 * 3367 * We can have extents that have been already written to disk or we can have 3368 * dirty ranges still in delalloc, in which case the extent maps and items are 3369 * created only when we run delalloc, and the delalloc ranges might fall outside 3370 * the range we are currently locking in the inode's io tree. So we check the 3371 * inode's i_size because of that (i_size updates are done while holding the 3372 * i_mutex, which we are holding here). 3373 * We also check to see if the inode has a size not greater than "datal" but has 3374 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3375 * protected against such concurrent fallocate calls by the i_mutex). 3376 * 3377 * If the file has no extents but a size greater than datal, do not allow the 3378 * copy because we would need turn the inline extent into a non-inline one (even 3379 * with NO_HOLES enabled). If we find our destination inode only has one inline 3380 * extent, just overwrite it with the source inline extent if its size is less 3381 * than the source extent's size, or we could copy the source inline extent's 3382 * data into the destination inode's inline extent if the later is greater then 3383 * the former. 3384 */ 3385 static int clone_copy_inline_extent(struct inode *src, 3386 struct inode *dst, 3387 struct btrfs_trans_handle *trans, 3388 struct btrfs_path *path, 3389 struct btrfs_key *new_key, 3390 const u64 drop_start, 3391 const u64 datal, 3392 const u64 skip, 3393 const u64 size, 3394 char *inline_data) 3395 { 3396 struct btrfs_root *root = BTRFS_I(dst)->root; 3397 const u64 aligned_end = ALIGN(new_key->offset + datal, 3398 root->sectorsize); 3399 int ret; 3400 struct btrfs_key key; 3401 3402 if (new_key->offset > 0) 3403 return -EOPNOTSUPP; 3404 3405 key.objectid = btrfs_ino(dst); 3406 key.type = BTRFS_EXTENT_DATA_KEY; 3407 key.offset = 0; 3408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3409 if (ret < 0) { 3410 return ret; 3411 } else if (ret > 0) { 3412 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3413 ret = btrfs_next_leaf(root, path); 3414 if (ret < 0) 3415 return ret; 3416 else if (ret > 0) 3417 goto copy_inline_extent; 3418 } 3419 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3420 if (key.objectid == btrfs_ino(dst) && 3421 key.type == BTRFS_EXTENT_DATA_KEY) { 3422 ASSERT(key.offset > 0); 3423 return -EOPNOTSUPP; 3424 } 3425 } else if (i_size_read(dst) <= datal) { 3426 struct btrfs_file_extent_item *ei; 3427 u64 ext_len; 3428 3429 /* 3430 * If the file size is <= datal, make sure there are no other 3431 * extents following (can happen do to an fallocate call with 3432 * the flag FALLOC_FL_KEEP_SIZE). 3433 */ 3434 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3435 struct btrfs_file_extent_item); 3436 /* 3437 * If it's an inline extent, it can not have other extents 3438 * following it. 3439 */ 3440 if (btrfs_file_extent_type(path->nodes[0], ei) == 3441 BTRFS_FILE_EXTENT_INLINE) 3442 goto copy_inline_extent; 3443 3444 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3445 if (ext_len > aligned_end) 3446 return -EOPNOTSUPP; 3447 3448 ret = btrfs_next_item(root, path); 3449 if (ret < 0) { 3450 return ret; 3451 } else if (ret == 0) { 3452 btrfs_item_key_to_cpu(path->nodes[0], &key, 3453 path->slots[0]); 3454 if (key.objectid == btrfs_ino(dst) && 3455 key.type == BTRFS_EXTENT_DATA_KEY) 3456 return -EOPNOTSUPP; 3457 } 3458 } 3459 3460 copy_inline_extent: 3461 /* 3462 * We have no extent items, or we have an extent at offset 0 which may 3463 * or may not be inlined. All these cases are dealt the same way. 3464 */ 3465 if (i_size_read(dst) > datal) { 3466 /* 3467 * If the destination inode has an inline extent... 3468 * This would require copying the data from the source inline 3469 * extent into the beginning of the destination's inline extent. 3470 * But this is really complex, both extents can be compressed 3471 * or just one of them, which would require decompressing and 3472 * re-compressing data (which could increase the new compressed 3473 * size, not allowing the compressed data to fit anymore in an 3474 * inline extent). 3475 * So just don't support this case for now (it should be rare, 3476 * we are not really saving space when cloning inline extents). 3477 */ 3478 return -EOPNOTSUPP; 3479 } 3480 3481 btrfs_release_path(path); 3482 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3483 if (ret) 3484 return ret; 3485 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3486 if (ret) 3487 return ret; 3488 3489 if (skip) { 3490 const u32 start = btrfs_file_extent_calc_inline_size(0); 3491 3492 memmove(inline_data + start, inline_data + start + skip, datal); 3493 } 3494 3495 write_extent_buffer(path->nodes[0], inline_data, 3496 btrfs_item_ptr_offset(path->nodes[0], 3497 path->slots[0]), 3498 size); 3499 inode_add_bytes(dst, datal); 3500 3501 return 0; 3502 } 3503 3504 /** 3505 * btrfs_clone() - clone a range from inode file to another 3506 * 3507 * @src: Inode to clone from 3508 * @inode: Inode to clone to 3509 * @off: Offset within source to start clone from 3510 * @olen: Original length, passed by user, of range to clone 3511 * @olen_aligned: Block-aligned value of olen 3512 * @destoff: Offset within @inode to start clone 3513 * @no_time_update: Whether to update mtime/ctime on the target inode 3514 */ 3515 static int btrfs_clone(struct inode *src, struct inode *inode, 3516 const u64 off, const u64 olen, const u64 olen_aligned, 3517 const u64 destoff, int no_time_update) 3518 { 3519 struct btrfs_root *root = BTRFS_I(inode)->root; 3520 struct btrfs_path *path = NULL; 3521 struct extent_buffer *leaf; 3522 struct btrfs_trans_handle *trans; 3523 char *buf = NULL; 3524 struct btrfs_key key; 3525 u32 nritems; 3526 int slot; 3527 int ret; 3528 const u64 len = olen_aligned; 3529 u64 last_dest_end = destoff; 3530 3531 ret = -ENOMEM; 3532 buf = kmalloc(root->nodesize, GFP_KERNEL | __GFP_NOWARN); 3533 if (!buf) { 3534 buf = vmalloc(root->nodesize); 3535 if (!buf) 3536 return ret; 3537 } 3538 3539 path = btrfs_alloc_path(); 3540 if (!path) { 3541 kvfree(buf); 3542 return ret; 3543 } 3544 3545 path->reada = READA_FORWARD; 3546 /* clone data */ 3547 key.objectid = btrfs_ino(src); 3548 key.type = BTRFS_EXTENT_DATA_KEY; 3549 key.offset = off; 3550 3551 while (1) { 3552 u64 next_key_min_offset = key.offset + 1; 3553 3554 /* 3555 * note the key will change type as we walk through the 3556 * tree. 3557 */ 3558 path->leave_spinning = 1; 3559 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3560 0, 0); 3561 if (ret < 0) 3562 goto out; 3563 /* 3564 * First search, if no extent item that starts at offset off was 3565 * found but the previous item is an extent item, it's possible 3566 * it might overlap our target range, therefore process it. 3567 */ 3568 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3569 btrfs_item_key_to_cpu(path->nodes[0], &key, 3570 path->slots[0] - 1); 3571 if (key.type == BTRFS_EXTENT_DATA_KEY) 3572 path->slots[0]--; 3573 } 3574 3575 nritems = btrfs_header_nritems(path->nodes[0]); 3576 process_slot: 3577 if (path->slots[0] >= nritems) { 3578 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3579 if (ret < 0) 3580 goto out; 3581 if (ret > 0) 3582 break; 3583 nritems = btrfs_header_nritems(path->nodes[0]); 3584 } 3585 leaf = path->nodes[0]; 3586 slot = path->slots[0]; 3587 3588 btrfs_item_key_to_cpu(leaf, &key, slot); 3589 if (key.type > BTRFS_EXTENT_DATA_KEY || 3590 key.objectid != btrfs_ino(src)) 3591 break; 3592 3593 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3594 struct btrfs_file_extent_item *extent; 3595 int type; 3596 u32 size; 3597 struct btrfs_key new_key; 3598 u64 disko = 0, diskl = 0; 3599 u64 datao = 0, datal = 0; 3600 u8 comp; 3601 u64 drop_start; 3602 3603 extent = btrfs_item_ptr(leaf, slot, 3604 struct btrfs_file_extent_item); 3605 comp = btrfs_file_extent_compression(leaf, extent); 3606 type = btrfs_file_extent_type(leaf, extent); 3607 if (type == BTRFS_FILE_EXTENT_REG || 3608 type == BTRFS_FILE_EXTENT_PREALLOC) { 3609 disko = btrfs_file_extent_disk_bytenr(leaf, 3610 extent); 3611 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3612 extent); 3613 datao = btrfs_file_extent_offset(leaf, extent); 3614 datal = btrfs_file_extent_num_bytes(leaf, 3615 extent); 3616 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3617 /* take upper bound, may be compressed */ 3618 datal = btrfs_file_extent_ram_bytes(leaf, 3619 extent); 3620 } 3621 3622 /* 3623 * The first search might have left us at an extent 3624 * item that ends before our target range's start, can 3625 * happen if we have holes and NO_HOLES feature enabled. 3626 */ 3627 if (key.offset + datal <= off) { 3628 path->slots[0]++; 3629 goto process_slot; 3630 } else if (key.offset >= off + len) { 3631 break; 3632 } 3633 next_key_min_offset = key.offset + datal; 3634 size = btrfs_item_size_nr(leaf, slot); 3635 read_extent_buffer(leaf, buf, 3636 btrfs_item_ptr_offset(leaf, slot), 3637 size); 3638 3639 btrfs_release_path(path); 3640 path->leave_spinning = 0; 3641 3642 memcpy(&new_key, &key, sizeof(new_key)); 3643 new_key.objectid = btrfs_ino(inode); 3644 if (off <= key.offset) 3645 new_key.offset = key.offset + destoff - off; 3646 else 3647 new_key.offset = destoff; 3648 3649 /* 3650 * Deal with a hole that doesn't have an extent item 3651 * that represents it (NO_HOLES feature enabled). 3652 * This hole is either in the middle of the cloning 3653 * range or at the beginning (fully overlaps it or 3654 * partially overlaps it). 3655 */ 3656 if (new_key.offset != last_dest_end) 3657 drop_start = last_dest_end; 3658 else 3659 drop_start = new_key.offset; 3660 3661 /* 3662 * 1 - adjusting old extent (we may have to split it) 3663 * 1 - add new extent 3664 * 1 - inode update 3665 */ 3666 trans = btrfs_start_transaction(root, 3); 3667 if (IS_ERR(trans)) { 3668 ret = PTR_ERR(trans); 3669 goto out; 3670 } 3671 3672 if (type == BTRFS_FILE_EXTENT_REG || 3673 type == BTRFS_FILE_EXTENT_PREALLOC) { 3674 /* 3675 * a | --- range to clone ---| b 3676 * | ------------- extent ------------- | 3677 */ 3678 3679 /* subtract range b */ 3680 if (key.offset + datal > off + len) 3681 datal = off + len - key.offset; 3682 3683 /* subtract range a */ 3684 if (off > key.offset) { 3685 datao += off - key.offset; 3686 datal -= off - key.offset; 3687 } 3688 3689 ret = btrfs_drop_extents(trans, root, inode, 3690 drop_start, 3691 new_key.offset + datal, 3692 1); 3693 if (ret) { 3694 if (ret != -EOPNOTSUPP) 3695 btrfs_abort_transaction(trans, 3696 ret); 3697 btrfs_end_transaction(trans, root); 3698 goto out; 3699 } 3700 3701 ret = btrfs_insert_empty_item(trans, root, path, 3702 &new_key, size); 3703 if (ret) { 3704 btrfs_abort_transaction(trans, ret); 3705 btrfs_end_transaction(trans, root); 3706 goto out; 3707 } 3708 3709 leaf = path->nodes[0]; 3710 slot = path->slots[0]; 3711 write_extent_buffer(leaf, buf, 3712 btrfs_item_ptr_offset(leaf, slot), 3713 size); 3714 3715 extent = btrfs_item_ptr(leaf, slot, 3716 struct btrfs_file_extent_item); 3717 3718 /* disko == 0 means it's a hole */ 3719 if (!disko) 3720 datao = 0; 3721 3722 btrfs_set_file_extent_offset(leaf, extent, 3723 datao); 3724 btrfs_set_file_extent_num_bytes(leaf, extent, 3725 datal); 3726 3727 if (disko) { 3728 inode_add_bytes(inode, datal); 3729 ret = btrfs_inc_extent_ref(trans, root, 3730 disko, diskl, 0, 3731 root->root_key.objectid, 3732 btrfs_ino(inode), 3733 new_key.offset - datao); 3734 if (ret) { 3735 btrfs_abort_transaction(trans, 3736 ret); 3737 btrfs_end_transaction(trans, 3738 root); 3739 goto out; 3740 3741 } 3742 } 3743 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3744 u64 skip = 0; 3745 u64 trim = 0; 3746 3747 if (off > key.offset) { 3748 skip = off - key.offset; 3749 new_key.offset += skip; 3750 } 3751 3752 if (key.offset + datal > off + len) 3753 trim = key.offset + datal - (off + len); 3754 3755 if (comp && (skip || trim)) { 3756 ret = -EINVAL; 3757 btrfs_end_transaction(trans, root); 3758 goto out; 3759 } 3760 size -= skip + trim; 3761 datal -= skip + trim; 3762 3763 ret = clone_copy_inline_extent(src, inode, 3764 trans, path, 3765 &new_key, 3766 drop_start, 3767 datal, 3768 skip, size, buf); 3769 if (ret) { 3770 if (ret != -EOPNOTSUPP) 3771 btrfs_abort_transaction(trans, 3772 ret); 3773 btrfs_end_transaction(trans, root); 3774 goto out; 3775 } 3776 leaf = path->nodes[0]; 3777 slot = path->slots[0]; 3778 } 3779 3780 /* If we have an implicit hole (NO_HOLES feature). */ 3781 if (drop_start < new_key.offset) 3782 clone_update_extent_map(inode, trans, 3783 NULL, drop_start, 3784 new_key.offset - drop_start); 3785 3786 clone_update_extent_map(inode, trans, path, 0, 0); 3787 3788 btrfs_mark_buffer_dirty(leaf); 3789 btrfs_release_path(path); 3790 3791 last_dest_end = ALIGN(new_key.offset + datal, 3792 root->sectorsize); 3793 ret = clone_finish_inode_update(trans, inode, 3794 last_dest_end, 3795 destoff, olen, 3796 no_time_update); 3797 if (ret) 3798 goto out; 3799 if (new_key.offset + datal >= destoff + len) 3800 break; 3801 } 3802 btrfs_release_path(path); 3803 key.offset = next_key_min_offset; 3804 } 3805 ret = 0; 3806 3807 if (last_dest_end < destoff + len) { 3808 /* 3809 * We have an implicit hole (NO_HOLES feature is enabled) that 3810 * fully or partially overlaps our cloning range at its end. 3811 */ 3812 btrfs_release_path(path); 3813 3814 /* 3815 * 1 - remove extent(s) 3816 * 1 - inode update 3817 */ 3818 trans = btrfs_start_transaction(root, 2); 3819 if (IS_ERR(trans)) { 3820 ret = PTR_ERR(trans); 3821 goto out; 3822 } 3823 ret = btrfs_drop_extents(trans, root, inode, 3824 last_dest_end, destoff + len, 1); 3825 if (ret) { 3826 if (ret != -EOPNOTSUPP) 3827 btrfs_abort_transaction(trans, ret); 3828 btrfs_end_transaction(trans, root); 3829 goto out; 3830 } 3831 clone_update_extent_map(inode, trans, NULL, last_dest_end, 3832 destoff + len - last_dest_end); 3833 ret = clone_finish_inode_update(trans, inode, destoff + len, 3834 destoff, olen, no_time_update); 3835 } 3836 3837 out: 3838 btrfs_free_path(path); 3839 kvfree(buf); 3840 return ret; 3841 } 3842 3843 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3844 u64 off, u64 olen, u64 destoff) 3845 { 3846 struct inode *inode = file_inode(file); 3847 struct inode *src = file_inode(file_src); 3848 struct btrfs_root *root = BTRFS_I(inode)->root; 3849 int ret; 3850 u64 len = olen; 3851 u64 bs = root->fs_info->sb->s_blocksize; 3852 int same_inode = src == inode; 3853 3854 /* 3855 * TODO: 3856 * - split compressed inline extents. annoying: we need to 3857 * decompress into destination's address_space (the file offset 3858 * may change, so source mapping won't do), then recompress (or 3859 * otherwise reinsert) a subrange. 3860 * 3861 * - split destination inode's inline extents. The inline extents can 3862 * be either compressed or non-compressed. 3863 */ 3864 3865 if (btrfs_root_readonly(root)) 3866 return -EROFS; 3867 3868 if (file_src->f_path.mnt != file->f_path.mnt || 3869 src->i_sb != inode->i_sb) 3870 return -EXDEV; 3871 3872 /* don't make the dst file partly checksummed */ 3873 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3874 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3875 return -EINVAL; 3876 3877 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3878 return -EISDIR; 3879 3880 if (!same_inode) { 3881 btrfs_double_inode_lock(src, inode); 3882 } else { 3883 inode_lock(src); 3884 } 3885 3886 /* determine range to clone */ 3887 ret = -EINVAL; 3888 if (off + len > src->i_size || off + len < off) 3889 goto out_unlock; 3890 if (len == 0) 3891 olen = len = src->i_size - off; 3892 /* if we extend to eof, continue to block boundary */ 3893 if (off + len == src->i_size) 3894 len = ALIGN(src->i_size, bs) - off; 3895 3896 if (len == 0) { 3897 ret = 0; 3898 goto out_unlock; 3899 } 3900 3901 /* verify the end result is block aligned */ 3902 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3903 !IS_ALIGNED(destoff, bs)) 3904 goto out_unlock; 3905 3906 /* verify if ranges are overlapped within the same file */ 3907 if (same_inode) { 3908 if (destoff + len > off && destoff < off + len) 3909 goto out_unlock; 3910 } 3911 3912 if (destoff > inode->i_size) { 3913 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3914 if (ret) 3915 goto out_unlock; 3916 } 3917 3918 /* 3919 * Lock the target range too. Right after we replace the file extent 3920 * items in the fs tree (which now point to the cloned data), we might 3921 * have a worker replace them with extent items relative to a write 3922 * operation that was issued before this clone operation (i.e. confront 3923 * with inode.c:btrfs_finish_ordered_io). 3924 */ 3925 if (same_inode) { 3926 u64 lock_start = min_t(u64, off, destoff); 3927 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3928 3929 ret = lock_extent_range(src, lock_start, lock_len, true); 3930 } else { 3931 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 3932 true); 3933 } 3934 ASSERT(ret == 0); 3935 if (WARN_ON(ret)) { 3936 /* ranges in the io trees already unlocked */ 3937 goto out_unlock; 3938 } 3939 3940 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3941 3942 if (same_inode) { 3943 u64 lock_start = min_t(u64, off, destoff); 3944 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3945 3946 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3947 } else { 3948 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3949 } 3950 /* 3951 * Truncate page cache pages so that future reads will see the cloned 3952 * data immediately and not the previous data. 3953 */ 3954 truncate_inode_pages_range(&inode->i_data, 3955 round_down(destoff, PAGE_SIZE), 3956 round_up(destoff + len, PAGE_SIZE) - 1); 3957 out_unlock: 3958 if (!same_inode) 3959 btrfs_double_inode_unlock(src, inode); 3960 else 3961 inode_unlock(src); 3962 return ret; 3963 } 3964 3965 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in, 3966 struct file *file_out, loff_t pos_out, 3967 size_t len, unsigned int flags) 3968 { 3969 ssize_t ret; 3970 3971 ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out); 3972 if (ret == 0) 3973 ret = len; 3974 return ret; 3975 } 3976 3977 int btrfs_clone_file_range(struct file *src_file, loff_t off, 3978 struct file *dst_file, loff_t destoff, u64 len) 3979 { 3980 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 3981 } 3982 3983 /* 3984 * there are many ways the trans_start and trans_end ioctls can lead 3985 * to deadlocks. They should only be used by applications that 3986 * basically own the machine, and have a very in depth understanding 3987 * of all the possible deadlocks and enospc problems. 3988 */ 3989 static long btrfs_ioctl_trans_start(struct file *file) 3990 { 3991 struct inode *inode = file_inode(file); 3992 struct btrfs_root *root = BTRFS_I(inode)->root; 3993 struct btrfs_trans_handle *trans; 3994 int ret; 3995 3996 ret = -EPERM; 3997 if (!capable(CAP_SYS_ADMIN)) 3998 goto out; 3999 4000 ret = -EINPROGRESS; 4001 if (file->private_data) 4002 goto out; 4003 4004 ret = -EROFS; 4005 if (btrfs_root_readonly(root)) 4006 goto out; 4007 4008 ret = mnt_want_write_file(file); 4009 if (ret) 4010 goto out; 4011 4012 atomic_inc(&root->fs_info->open_ioctl_trans); 4013 4014 ret = -ENOMEM; 4015 trans = btrfs_start_ioctl_transaction(root); 4016 if (IS_ERR(trans)) 4017 goto out_drop; 4018 4019 file->private_data = trans; 4020 return 0; 4021 4022 out_drop: 4023 atomic_dec(&root->fs_info->open_ioctl_trans); 4024 mnt_drop_write_file(file); 4025 out: 4026 return ret; 4027 } 4028 4029 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4030 { 4031 struct inode *inode = file_inode(file); 4032 struct btrfs_root *root = BTRFS_I(inode)->root; 4033 struct btrfs_root *new_root; 4034 struct btrfs_dir_item *di; 4035 struct btrfs_trans_handle *trans; 4036 struct btrfs_path *path; 4037 struct btrfs_key location; 4038 struct btrfs_disk_key disk_key; 4039 u64 objectid = 0; 4040 u64 dir_id; 4041 int ret; 4042 4043 if (!capable(CAP_SYS_ADMIN)) 4044 return -EPERM; 4045 4046 ret = mnt_want_write_file(file); 4047 if (ret) 4048 return ret; 4049 4050 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4051 ret = -EFAULT; 4052 goto out; 4053 } 4054 4055 if (!objectid) 4056 objectid = BTRFS_FS_TREE_OBJECTID; 4057 4058 location.objectid = objectid; 4059 location.type = BTRFS_ROOT_ITEM_KEY; 4060 location.offset = (u64)-1; 4061 4062 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 4063 if (IS_ERR(new_root)) { 4064 ret = PTR_ERR(new_root); 4065 goto out; 4066 } 4067 4068 path = btrfs_alloc_path(); 4069 if (!path) { 4070 ret = -ENOMEM; 4071 goto out; 4072 } 4073 path->leave_spinning = 1; 4074 4075 trans = btrfs_start_transaction(root, 1); 4076 if (IS_ERR(trans)) { 4077 btrfs_free_path(path); 4078 ret = PTR_ERR(trans); 4079 goto out; 4080 } 4081 4082 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 4083 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 4084 dir_id, "default", 7, 1); 4085 if (IS_ERR_OR_NULL(di)) { 4086 btrfs_free_path(path); 4087 btrfs_end_transaction(trans, root); 4088 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir" 4089 "item, this isn't going to work"); 4090 ret = -ENOENT; 4091 goto out; 4092 } 4093 4094 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4095 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4096 btrfs_mark_buffer_dirty(path->nodes[0]); 4097 btrfs_free_path(path); 4098 4099 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 4100 btrfs_end_transaction(trans, root); 4101 out: 4102 mnt_drop_write_file(file); 4103 return ret; 4104 } 4105 4106 void btrfs_get_block_group_info(struct list_head *groups_list, 4107 struct btrfs_ioctl_space_info *space) 4108 { 4109 struct btrfs_block_group_cache *block_group; 4110 4111 space->total_bytes = 0; 4112 space->used_bytes = 0; 4113 space->flags = 0; 4114 list_for_each_entry(block_group, groups_list, list) { 4115 space->flags = block_group->flags; 4116 space->total_bytes += block_group->key.offset; 4117 space->used_bytes += 4118 btrfs_block_group_used(&block_group->item); 4119 } 4120 } 4121 4122 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 4123 { 4124 struct btrfs_ioctl_space_args space_args; 4125 struct btrfs_ioctl_space_info space; 4126 struct btrfs_ioctl_space_info *dest; 4127 struct btrfs_ioctl_space_info *dest_orig; 4128 struct btrfs_ioctl_space_info __user *user_dest; 4129 struct btrfs_space_info *info; 4130 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4131 BTRFS_BLOCK_GROUP_SYSTEM, 4132 BTRFS_BLOCK_GROUP_METADATA, 4133 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4134 int num_types = 4; 4135 int alloc_size; 4136 int ret = 0; 4137 u64 slot_count = 0; 4138 int i, c; 4139 4140 if (copy_from_user(&space_args, 4141 (struct btrfs_ioctl_space_args __user *)arg, 4142 sizeof(space_args))) 4143 return -EFAULT; 4144 4145 for (i = 0; i < num_types; i++) { 4146 struct btrfs_space_info *tmp; 4147 4148 info = NULL; 4149 rcu_read_lock(); 4150 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4151 list) { 4152 if (tmp->flags == types[i]) { 4153 info = tmp; 4154 break; 4155 } 4156 } 4157 rcu_read_unlock(); 4158 4159 if (!info) 4160 continue; 4161 4162 down_read(&info->groups_sem); 4163 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4164 if (!list_empty(&info->block_groups[c])) 4165 slot_count++; 4166 } 4167 up_read(&info->groups_sem); 4168 } 4169 4170 /* 4171 * Global block reserve, exported as a space_info 4172 */ 4173 slot_count++; 4174 4175 /* space_slots == 0 means they are asking for a count */ 4176 if (space_args.space_slots == 0) { 4177 space_args.total_spaces = slot_count; 4178 goto out; 4179 } 4180 4181 slot_count = min_t(u64, space_args.space_slots, slot_count); 4182 4183 alloc_size = sizeof(*dest) * slot_count; 4184 4185 /* we generally have at most 6 or so space infos, one for each raid 4186 * level. So, a whole page should be more than enough for everyone 4187 */ 4188 if (alloc_size > PAGE_SIZE) 4189 return -ENOMEM; 4190 4191 space_args.total_spaces = 0; 4192 dest = kmalloc(alloc_size, GFP_KERNEL); 4193 if (!dest) 4194 return -ENOMEM; 4195 dest_orig = dest; 4196 4197 /* now we have a buffer to copy into */ 4198 for (i = 0; i < num_types; i++) { 4199 struct btrfs_space_info *tmp; 4200 4201 if (!slot_count) 4202 break; 4203 4204 info = NULL; 4205 rcu_read_lock(); 4206 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4207 list) { 4208 if (tmp->flags == types[i]) { 4209 info = tmp; 4210 break; 4211 } 4212 } 4213 rcu_read_unlock(); 4214 4215 if (!info) 4216 continue; 4217 down_read(&info->groups_sem); 4218 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4219 if (!list_empty(&info->block_groups[c])) { 4220 btrfs_get_block_group_info( 4221 &info->block_groups[c], &space); 4222 memcpy(dest, &space, sizeof(space)); 4223 dest++; 4224 space_args.total_spaces++; 4225 slot_count--; 4226 } 4227 if (!slot_count) 4228 break; 4229 } 4230 up_read(&info->groups_sem); 4231 } 4232 4233 /* 4234 * Add global block reserve 4235 */ 4236 if (slot_count) { 4237 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv; 4238 4239 spin_lock(&block_rsv->lock); 4240 space.total_bytes = block_rsv->size; 4241 space.used_bytes = block_rsv->size - block_rsv->reserved; 4242 spin_unlock(&block_rsv->lock); 4243 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4244 memcpy(dest, &space, sizeof(space)); 4245 space_args.total_spaces++; 4246 } 4247 4248 user_dest = (struct btrfs_ioctl_space_info __user *) 4249 (arg + sizeof(struct btrfs_ioctl_space_args)); 4250 4251 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4252 ret = -EFAULT; 4253 4254 kfree(dest_orig); 4255 out: 4256 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4257 ret = -EFAULT; 4258 4259 return ret; 4260 } 4261 4262 /* 4263 * there are many ways the trans_start and trans_end ioctls can lead 4264 * to deadlocks. They should only be used by applications that 4265 * basically own the machine, and have a very in depth understanding 4266 * of all the possible deadlocks and enospc problems. 4267 */ 4268 long btrfs_ioctl_trans_end(struct file *file) 4269 { 4270 struct inode *inode = file_inode(file); 4271 struct btrfs_root *root = BTRFS_I(inode)->root; 4272 struct btrfs_trans_handle *trans; 4273 4274 trans = file->private_data; 4275 if (!trans) 4276 return -EINVAL; 4277 file->private_data = NULL; 4278 4279 btrfs_end_transaction(trans, root); 4280 4281 atomic_dec(&root->fs_info->open_ioctl_trans); 4282 4283 mnt_drop_write_file(file); 4284 return 0; 4285 } 4286 4287 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4288 void __user *argp) 4289 { 4290 struct btrfs_trans_handle *trans; 4291 u64 transid; 4292 int ret; 4293 4294 trans = btrfs_attach_transaction_barrier(root); 4295 if (IS_ERR(trans)) { 4296 if (PTR_ERR(trans) != -ENOENT) 4297 return PTR_ERR(trans); 4298 4299 /* No running transaction, don't bother */ 4300 transid = root->fs_info->last_trans_committed; 4301 goto out; 4302 } 4303 transid = trans->transid; 4304 ret = btrfs_commit_transaction_async(trans, root, 0); 4305 if (ret) { 4306 btrfs_end_transaction(trans, root); 4307 return ret; 4308 } 4309 out: 4310 if (argp) 4311 if (copy_to_user(argp, &transid, sizeof(transid))) 4312 return -EFAULT; 4313 return 0; 4314 } 4315 4316 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 4317 void __user *argp) 4318 { 4319 u64 transid; 4320 4321 if (argp) { 4322 if (copy_from_user(&transid, argp, sizeof(transid))) 4323 return -EFAULT; 4324 } else { 4325 transid = 0; /* current trans */ 4326 } 4327 return btrfs_wait_for_commit(root, transid); 4328 } 4329 4330 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4331 { 4332 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4333 struct btrfs_ioctl_scrub_args *sa; 4334 int ret; 4335 4336 if (!capable(CAP_SYS_ADMIN)) 4337 return -EPERM; 4338 4339 sa = memdup_user(arg, sizeof(*sa)); 4340 if (IS_ERR(sa)) 4341 return PTR_ERR(sa); 4342 4343 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4344 ret = mnt_want_write_file(file); 4345 if (ret) 4346 goto out; 4347 } 4348 4349 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 4350 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4351 0); 4352 4353 if (copy_to_user(arg, sa, sizeof(*sa))) 4354 ret = -EFAULT; 4355 4356 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4357 mnt_drop_write_file(file); 4358 out: 4359 kfree(sa); 4360 return ret; 4361 } 4362 4363 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 4364 { 4365 if (!capable(CAP_SYS_ADMIN)) 4366 return -EPERM; 4367 4368 return btrfs_scrub_cancel(root->fs_info); 4369 } 4370 4371 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 4372 void __user *arg) 4373 { 4374 struct btrfs_ioctl_scrub_args *sa; 4375 int ret; 4376 4377 if (!capable(CAP_SYS_ADMIN)) 4378 return -EPERM; 4379 4380 sa = memdup_user(arg, sizeof(*sa)); 4381 if (IS_ERR(sa)) 4382 return PTR_ERR(sa); 4383 4384 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 4385 4386 if (copy_to_user(arg, sa, sizeof(*sa))) 4387 ret = -EFAULT; 4388 4389 kfree(sa); 4390 return ret; 4391 } 4392 4393 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 4394 void __user *arg) 4395 { 4396 struct btrfs_ioctl_get_dev_stats *sa; 4397 int ret; 4398 4399 sa = memdup_user(arg, sizeof(*sa)); 4400 if (IS_ERR(sa)) 4401 return PTR_ERR(sa); 4402 4403 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4404 kfree(sa); 4405 return -EPERM; 4406 } 4407 4408 ret = btrfs_get_dev_stats(root, sa); 4409 4410 if (copy_to_user(arg, sa, sizeof(*sa))) 4411 ret = -EFAULT; 4412 4413 kfree(sa); 4414 return ret; 4415 } 4416 4417 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 4418 { 4419 struct btrfs_ioctl_dev_replace_args *p; 4420 int ret; 4421 4422 if (!capable(CAP_SYS_ADMIN)) 4423 return -EPERM; 4424 4425 p = memdup_user(arg, sizeof(*p)); 4426 if (IS_ERR(p)) 4427 return PTR_ERR(p); 4428 4429 switch (p->cmd) { 4430 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4431 if (root->fs_info->sb->s_flags & MS_RDONLY) { 4432 ret = -EROFS; 4433 goto out; 4434 } 4435 if (atomic_xchg( 4436 &root->fs_info->mutually_exclusive_operation_running, 4437 1)) { 4438 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4439 } else { 4440 ret = btrfs_dev_replace_by_ioctl(root, p); 4441 atomic_set( 4442 &root->fs_info->mutually_exclusive_operation_running, 4443 0); 4444 } 4445 break; 4446 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4447 btrfs_dev_replace_status(root->fs_info, p); 4448 ret = 0; 4449 break; 4450 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4451 ret = btrfs_dev_replace_cancel(root->fs_info, p); 4452 break; 4453 default: 4454 ret = -EINVAL; 4455 break; 4456 } 4457 4458 if (copy_to_user(arg, p, sizeof(*p))) 4459 ret = -EFAULT; 4460 out: 4461 kfree(p); 4462 return ret; 4463 } 4464 4465 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4466 { 4467 int ret = 0; 4468 int i; 4469 u64 rel_ptr; 4470 int size; 4471 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4472 struct inode_fs_paths *ipath = NULL; 4473 struct btrfs_path *path; 4474 4475 if (!capable(CAP_DAC_READ_SEARCH)) 4476 return -EPERM; 4477 4478 path = btrfs_alloc_path(); 4479 if (!path) { 4480 ret = -ENOMEM; 4481 goto out; 4482 } 4483 4484 ipa = memdup_user(arg, sizeof(*ipa)); 4485 if (IS_ERR(ipa)) { 4486 ret = PTR_ERR(ipa); 4487 ipa = NULL; 4488 goto out; 4489 } 4490 4491 size = min_t(u32, ipa->size, 4096); 4492 ipath = init_ipath(size, root, path); 4493 if (IS_ERR(ipath)) { 4494 ret = PTR_ERR(ipath); 4495 ipath = NULL; 4496 goto out; 4497 } 4498 4499 ret = paths_from_inode(ipa->inum, ipath); 4500 if (ret < 0) 4501 goto out; 4502 4503 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4504 rel_ptr = ipath->fspath->val[i] - 4505 (u64)(unsigned long)ipath->fspath->val; 4506 ipath->fspath->val[i] = rel_ptr; 4507 } 4508 4509 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4510 (void *)(unsigned long)ipath->fspath, size); 4511 if (ret) { 4512 ret = -EFAULT; 4513 goto out; 4514 } 4515 4516 out: 4517 btrfs_free_path(path); 4518 free_ipath(ipath); 4519 kfree(ipa); 4520 4521 return ret; 4522 } 4523 4524 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4525 { 4526 struct btrfs_data_container *inodes = ctx; 4527 const size_t c = 3 * sizeof(u64); 4528 4529 if (inodes->bytes_left >= c) { 4530 inodes->bytes_left -= c; 4531 inodes->val[inodes->elem_cnt] = inum; 4532 inodes->val[inodes->elem_cnt + 1] = offset; 4533 inodes->val[inodes->elem_cnt + 2] = root; 4534 inodes->elem_cnt += 3; 4535 } else { 4536 inodes->bytes_missing += c - inodes->bytes_left; 4537 inodes->bytes_left = 0; 4538 inodes->elem_missed += 3; 4539 } 4540 4541 return 0; 4542 } 4543 4544 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 4545 void __user *arg) 4546 { 4547 int ret = 0; 4548 int size; 4549 struct btrfs_ioctl_logical_ino_args *loi; 4550 struct btrfs_data_container *inodes = NULL; 4551 struct btrfs_path *path = NULL; 4552 4553 if (!capable(CAP_SYS_ADMIN)) 4554 return -EPERM; 4555 4556 loi = memdup_user(arg, sizeof(*loi)); 4557 if (IS_ERR(loi)) { 4558 ret = PTR_ERR(loi); 4559 loi = NULL; 4560 goto out; 4561 } 4562 4563 path = btrfs_alloc_path(); 4564 if (!path) { 4565 ret = -ENOMEM; 4566 goto out; 4567 } 4568 4569 size = min_t(u32, loi->size, SZ_64K); 4570 inodes = init_data_container(size); 4571 if (IS_ERR(inodes)) { 4572 ret = PTR_ERR(inodes); 4573 inodes = NULL; 4574 goto out; 4575 } 4576 4577 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 4578 build_ino_list, inodes); 4579 if (ret == -EINVAL) 4580 ret = -ENOENT; 4581 if (ret < 0) 4582 goto out; 4583 4584 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4585 (void *)(unsigned long)inodes, size); 4586 if (ret) 4587 ret = -EFAULT; 4588 4589 out: 4590 btrfs_free_path(path); 4591 vfree(inodes); 4592 kfree(loi); 4593 4594 return ret; 4595 } 4596 4597 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4598 struct btrfs_ioctl_balance_args *bargs) 4599 { 4600 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4601 4602 bargs->flags = bctl->flags; 4603 4604 if (atomic_read(&fs_info->balance_running)) 4605 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4606 if (atomic_read(&fs_info->balance_pause_req)) 4607 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4608 if (atomic_read(&fs_info->balance_cancel_req)) 4609 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4610 4611 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4612 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4613 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4614 4615 if (lock) { 4616 spin_lock(&fs_info->balance_lock); 4617 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4618 spin_unlock(&fs_info->balance_lock); 4619 } else { 4620 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4621 } 4622 } 4623 4624 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4625 { 4626 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4627 struct btrfs_fs_info *fs_info = root->fs_info; 4628 struct btrfs_ioctl_balance_args *bargs; 4629 struct btrfs_balance_control *bctl; 4630 bool need_unlock; /* for mut. excl. ops lock */ 4631 int ret; 4632 4633 if (!capable(CAP_SYS_ADMIN)) 4634 return -EPERM; 4635 4636 ret = mnt_want_write_file(file); 4637 if (ret) 4638 return ret; 4639 4640 again: 4641 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4642 mutex_lock(&fs_info->volume_mutex); 4643 mutex_lock(&fs_info->balance_mutex); 4644 need_unlock = true; 4645 goto locked; 4646 } 4647 4648 /* 4649 * mut. excl. ops lock is locked. Three possibilities: 4650 * (1) some other op is running 4651 * (2) balance is running 4652 * (3) balance is paused -- special case (think resume) 4653 */ 4654 mutex_lock(&fs_info->balance_mutex); 4655 if (fs_info->balance_ctl) { 4656 /* this is either (2) or (3) */ 4657 if (!atomic_read(&fs_info->balance_running)) { 4658 mutex_unlock(&fs_info->balance_mutex); 4659 if (!mutex_trylock(&fs_info->volume_mutex)) 4660 goto again; 4661 mutex_lock(&fs_info->balance_mutex); 4662 4663 if (fs_info->balance_ctl && 4664 !atomic_read(&fs_info->balance_running)) { 4665 /* this is (3) */ 4666 need_unlock = false; 4667 goto locked; 4668 } 4669 4670 mutex_unlock(&fs_info->balance_mutex); 4671 mutex_unlock(&fs_info->volume_mutex); 4672 goto again; 4673 } else { 4674 /* this is (2) */ 4675 mutex_unlock(&fs_info->balance_mutex); 4676 ret = -EINPROGRESS; 4677 goto out; 4678 } 4679 } else { 4680 /* this is (1) */ 4681 mutex_unlock(&fs_info->balance_mutex); 4682 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4683 goto out; 4684 } 4685 4686 locked: 4687 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4688 4689 if (arg) { 4690 bargs = memdup_user(arg, sizeof(*bargs)); 4691 if (IS_ERR(bargs)) { 4692 ret = PTR_ERR(bargs); 4693 goto out_unlock; 4694 } 4695 4696 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4697 if (!fs_info->balance_ctl) { 4698 ret = -ENOTCONN; 4699 goto out_bargs; 4700 } 4701 4702 bctl = fs_info->balance_ctl; 4703 spin_lock(&fs_info->balance_lock); 4704 bctl->flags |= BTRFS_BALANCE_RESUME; 4705 spin_unlock(&fs_info->balance_lock); 4706 4707 goto do_balance; 4708 } 4709 } else { 4710 bargs = NULL; 4711 } 4712 4713 if (fs_info->balance_ctl) { 4714 ret = -EINPROGRESS; 4715 goto out_bargs; 4716 } 4717 4718 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4719 if (!bctl) { 4720 ret = -ENOMEM; 4721 goto out_bargs; 4722 } 4723 4724 bctl->fs_info = fs_info; 4725 if (arg) { 4726 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4727 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4728 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4729 4730 bctl->flags = bargs->flags; 4731 } else { 4732 /* balance everything - no filters */ 4733 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4734 } 4735 4736 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4737 ret = -EINVAL; 4738 goto out_bctl; 4739 } 4740 4741 do_balance: 4742 /* 4743 * Ownership of bctl and mutually_exclusive_operation_running 4744 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4745 * or, if restriper was paused all the way until unmount, in 4746 * free_fs_info. mutually_exclusive_operation_running is 4747 * cleared in __cancel_balance. 4748 */ 4749 need_unlock = false; 4750 4751 ret = btrfs_balance(bctl, bargs); 4752 bctl = NULL; 4753 4754 if (arg) { 4755 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4756 ret = -EFAULT; 4757 } 4758 4759 out_bctl: 4760 kfree(bctl); 4761 out_bargs: 4762 kfree(bargs); 4763 out_unlock: 4764 mutex_unlock(&fs_info->balance_mutex); 4765 mutex_unlock(&fs_info->volume_mutex); 4766 if (need_unlock) 4767 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4768 out: 4769 mnt_drop_write_file(file); 4770 return ret; 4771 } 4772 4773 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4774 { 4775 if (!capable(CAP_SYS_ADMIN)) 4776 return -EPERM; 4777 4778 switch (cmd) { 4779 case BTRFS_BALANCE_CTL_PAUSE: 4780 return btrfs_pause_balance(root->fs_info); 4781 case BTRFS_BALANCE_CTL_CANCEL: 4782 return btrfs_cancel_balance(root->fs_info); 4783 } 4784 4785 return -EINVAL; 4786 } 4787 4788 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4789 void __user *arg) 4790 { 4791 struct btrfs_fs_info *fs_info = root->fs_info; 4792 struct btrfs_ioctl_balance_args *bargs; 4793 int ret = 0; 4794 4795 if (!capable(CAP_SYS_ADMIN)) 4796 return -EPERM; 4797 4798 mutex_lock(&fs_info->balance_mutex); 4799 if (!fs_info->balance_ctl) { 4800 ret = -ENOTCONN; 4801 goto out; 4802 } 4803 4804 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4805 if (!bargs) { 4806 ret = -ENOMEM; 4807 goto out; 4808 } 4809 4810 update_ioctl_balance_args(fs_info, 1, bargs); 4811 4812 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4813 ret = -EFAULT; 4814 4815 kfree(bargs); 4816 out: 4817 mutex_unlock(&fs_info->balance_mutex); 4818 return ret; 4819 } 4820 4821 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4822 { 4823 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4824 struct btrfs_ioctl_quota_ctl_args *sa; 4825 struct btrfs_trans_handle *trans = NULL; 4826 int ret; 4827 int err; 4828 4829 if (!capable(CAP_SYS_ADMIN)) 4830 return -EPERM; 4831 4832 ret = mnt_want_write_file(file); 4833 if (ret) 4834 return ret; 4835 4836 sa = memdup_user(arg, sizeof(*sa)); 4837 if (IS_ERR(sa)) { 4838 ret = PTR_ERR(sa); 4839 goto drop_write; 4840 } 4841 4842 down_write(&root->fs_info->subvol_sem); 4843 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4844 if (IS_ERR(trans)) { 4845 ret = PTR_ERR(trans); 4846 goto out; 4847 } 4848 4849 switch (sa->cmd) { 4850 case BTRFS_QUOTA_CTL_ENABLE: 4851 ret = btrfs_quota_enable(trans, root->fs_info); 4852 break; 4853 case BTRFS_QUOTA_CTL_DISABLE: 4854 ret = btrfs_quota_disable(trans, root->fs_info); 4855 break; 4856 default: 4857 ret = -EINVAL; 4858 break; 4859 } 4860 4861 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4862 if (err && !ret) 4863 ret = err; 4864 out: 4865 kfree(sa); 4866 up_write(&root->fs_info->subvol_sem); 4867 drop_write: 4868 mnt_drop_write_file(file); 4869 return ret; 4870 } 4871 4872 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4873 { 4874 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4875 struct btrfs_ioctl_qgroup_assign_args *sa; 4876 struct btrfs_trans_handle *trans; 4877 int ret; 4878 int err; 4879 4880 if (!capable(CAP_SYS_ADMIN)) 4881 return -EPERM; 4882 4883 ret = mnt_want_write_file(file); 4884 if (ret) 4885 return ret; 4886 4887 sa = memdup_user(arg, sizeof(*sa)); 4888 if (IS_ERR(sa)) { 4889 ret = PTR_ERR(sa); 4890 goto drop_write; 4891 } 4892 4893 trans = btrfs_join_transaction(root); 4894 if (IS_ERR(trans)) { 4895 ret = PTR_ERR(trans); 4896 goto out; 4897 } 4898 4899 /* FIXME: check if the IDs really exist */ 4900 if (sa->assign) { 4901 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4902 sa->src, sa->dst); 4903 } else { 4904 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4905 sa->src, sa->dst); 4906 } 4907 4908 /* update qgroup status and info */ 4909 err = btrfs_run_qgroups(trans, root->fs_info); 4910 if (err < 0) 4911 btrfs_handle_fs_error(root->fs_info, err, 4912 "failed to update qgroup status and info"); 4913 err = btrfs_end_transaction(trans, root); 4914 if (err && !ret) 4915 ret = err; 4916 4917 out: 4918 kfree(sa); 4919 drop_write: 4920 mnt_drop_write_file(file); 4921 return ret; 4922 } 4923 4924 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4925 { 4926 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4927 struct btrfs_ioctl_qgroup_create_args *sa; 4928 struct btrfs_trans_handle *trans; 4929 int ret; 4930 int err; 4931 4932 if (!capable(CAP_SYS_ADMIN)) 4933 return -EPERM; 4934 4935 ret = mnt_want_write_file(file); 4936 if (ret) 4937 return ret; 4938 4939 sa = memdup_user(arg, sizeof(*sa)); 4940 if (IS_ERR(sa)) { 4941 ret = PTR_ERR(sa); 4942 goto drop_write; 4943 } 4944 4945 if (!sa->qgroupid) { 4946 ret = -EINVAL; 4947 goto out; 4948 } 4949 4950 trans = btrfs_join_transaction(root); 4951 if (IS_ERR(trans)) { 4952 ret = PTR_ERR(trans); 4953 goto out; 4954 } 4955 4956 /* FIXME: check if the IDs really exist */ 4957 if (sa->create) { 4958 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid); 4959 } else { 4960 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4961 } 4962 4963 err = btrfs_end_transaction(trans, root); 4964 if (err && !ret) 4965 ret = err; 4966 4967 out: 4968 kfree(sa); 4969 drop_write: 4970 mnt_drop_write_file(file); 4971 return ret; 4972 } 4973 4974 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4975 { 4976 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4977 struct btrfs_ioctl_qgroup_limit_args *sa; 4978 struct btrfs_trans_handle *trans; 4979 int ret; 4980 int err; 4981 u64 qgroupid; 4982 4983 if (!capable(CAP_SYS_ADMIN)) 4984 return -EPERM; 4985 4986 ret = mnt_want_write_file(file); 4987 if (ret) 4988 return ret; 4989 4990 sa = memdup_user(arg, sizeof(*sa)); 4991 if (IS_ERR(sa)) { 4992 ret = PTR_ERR(sa); 4993 goto drop_write; 4994 } 4995 4996 trans = btrfs_join_transaction(root); 4997 if (IS_ERR(trans)) { 4998 ret = PTR_ERR(trans); 4999 goto out; 5000 } 5001 5002 qgroupid = sa->qgroupid; 5003 if (!qgroupid) { 5004 /* take the current subvol as qgroup */ 5005 qgroupid = root->root_key.objectid; 5006 } 5007 5008 /* FIXME: check if the IDs really exist */ 5009 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 5010 5011 err = btrfs_end_transaction(trans, root); 5012 if (err && !ret) 5013 ret = err; 5014 5015 out: 5016 kfree(sa); 5017 drop_write: 5018 mnt_drop_write_file(file); 5019 return ret; 5020 } 5021 5022 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5023 { 5024 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5025 struct btrfs_ioctl_quota_rescan_args *qsa; 5026 int ret; 5027 5028 if (!capable(CAP_SYS_ADMIN)) 5029 return -EPERM; 5030 5031 ret = mnt_want_write_file(file); 5032 if (ret) 5033 return ret; 5034 5035 qsa = memdup_user(arg, sizeof(*qsa)); 5036 if (IS_ERR(qsa)) { 5037 ret = PTR_ERR(qsa); 5038 goto drop_write; 5039 } 5040 5041 if (qsa->flags) { 5042 ret = -EINVAL; 5043 goto out; 5044 } 5045 5046 ret = btrfs_qgroup_rescan(root->fs_info); 5047 5048 out: 5049 kfree(qsa); 5050 drop_write: 5051 mnt_drop_write_file(file); 5052 return ret; 5053 } 5054 5055 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5056 { 5057 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5058 struct btrfs_ioctl_quota_rescan_args *qsa; 5059 int ret = 0; 5060 5061 if (!capable(CAP_SYS_ADMIN)) 5062 return -EPERM; 5063 5064 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5065 if (!qsa) 5066 return -ENOMEM; 5067 5068 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5069 qsa->flags = 1; 5070 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 5071 } 5072 5073 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5074 ret = -EFAULT; 5075 5076 kfree(qsa); 5077 return ret; 5078 } 5079 5080 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5081 { 5082 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5083 5084 if (!capable(CAP_SYS_ADMIN)) 5085 return -EPERM; 5086 5087 return btrfs_qgroup_wait_for_completion(root->fs_info); 5088 } 5089 5090 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5091 struct btrfs_ioctl_received_subvol_args *sa) 5092 { 5093 struct inode *inode = file_inode(file); 5094 struct btrfs_root *root = BTRFS_I(inode)->root; 5095 struct btrfs_root_item *root_item = &root->root_item; 5096 struct btrfs_trans_handle *trans; 5097 struct timespec ct = current_fs_time(inode->i_sb); 5098 int ret = 0; 5099 int received_uuid_changed; 5100 5101 if (!inode_owner_or_capable(inode)) 5102 return -EPERM; 5103 5104 ret = mnt_want_write_file(file); 5105 if (ret < 0) 5106 return ret; 5107 5108 down_write(&root->fs_info->subvol_sem); 5109 5110 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 5111 ret = -EINVAL; 5112 goto out; 5113 } 5114 5115 if (btrfs_root_readonly(root)) { 5116 ret = -EROFS; 5117 goto out; 5118 } 5119 5120 /* 5121 * 1 - root item 5122 * 2 - uuid items (received uuid + subvol uuid) 5123 */ 5124 trans = btrfs_start_transaction(root, 3); 5125 if (IS_ERR(trans)) { 5126 ret = PTR_ERR(trans); 5127 trans = NULL; 5128 goto out; 5129 } 5130 5131 sa->rtransid = trans->transid; 5132 sa->rtime.sec = ct.tv_sec; 5133 sa->rtime.nsec = ct.tv_nsec; 5134 5135 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5136 BTRFS_UUID_SIZE); 5137 if (received_uuid_changed && 5138 !btrfs_is_empty_uuid(root_item->received_uuid)) 5139 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 5140 root_item->received_uuid, 5141 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5142 root->root_key.objectid); 5143 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5144 btrfs_set_root_stransid(root_item, sa->stransid); 5145 btrfs_set_root_rtransid(root_item, sa->rtransid); 5146 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5147 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5148 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5149 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5150 5151 ret = btrfs_update_root(trans, root->fs_info->tree_root, 5152 &root->root_key, &root->root_item); 5153 if (ret < 0) { 5154 btrfs_end_transaction(trans, root); 5155 goto out; 5156 } 5157 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5158 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 5159 sa->uuid, 5160 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5161 root->root_key.objectid); 5162 if (ret < 0 && ret != -EEXIST) { 5163 btrfs_abort_transaction(trans, ret); 5164 goto out; 5165 } 5166 } 5167 ret = btrfs_commit_transaction(trans, root); 5168 if (ret < 0) { 5169 btrfs_abort_transaction(trans, ret); 5170 goto out; 5171 } 5172 5173 out: 5174 up_write(&root->fs_info->subvol_sem); 5175 mnt_drop_write_file(file); 5176 return ret; 5177 } 5178 5179 #ifdef CONFIG_64BIT 5180 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5181 void __user *arg) 5182 { 5183 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5184 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5185 int ret = 0; 5186 5187 args32 = memdup_user(arg, sizeof(*args32)); 5188 if (IS_ERR(args32)) { 5189 ret = PTR_ERR(args32); 5190 args32 = NULL; 5191 goto out; 5192 } 5193 5194 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5195 if (!args64) { 5196 ret = -ENOMEM; 5197 goto out; 5198 } 5199 5200 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5201 args64->stransid = args32->stransid; 5202 args64->rtransid = args32->rtransid; 5203 args64->stime.sec = args32->stime.sec; 5204 args64->stime.nsec = args32->stime.nsec; 5205 args64->rtime.sec = args32->rtime.sec; 5206 args64->rtime.nsec = args32->rtime.nsec; 5207 args64->flags = args32->flags; 5208 5209 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5210 if (ret) 5211 goto out; 5212 5213 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5214 args32->stransid = args64->stransid; 5215 args32->rtransid = args64->rtransid; 5216 args32->stime.sec = args64->stime.sec; 5217 args32->stime.nsec = args64->stime.nsec; 5218 args32->rtime.sec = args64->rtime.sec; 5219 args32->rtime.nsec = args64->rtime.nsec; 5220 args32->flags = args64->flags; 5221 5222 ret = copy_to_user(arg, args32, sizeof(*args32)); 5223 if (ret) 5224 ret = -EFAULT; 5225 5226 out: 5227 kfree(args32); 5228 kfree(args64); 5229 return ret; 5230 } 5231 #endif 5232 5233 static long btrfs_ioctl_set_received_subvol(struct file *file, 5234 void __user *arg) 5235 { 5236 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5237 int ret = 0; 5238 5239 sa = memdup_user(arg, sizeof(*sa)); 5240 if (IS_ERR(sa)) { 5241 ret = PTR_ERR(sa); 5242 sa = NULL; 5243 goto out; 5244 } 5245 5246 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5247 5248 if (ret) 5249 goto out; 5250 5251 ret = copy_to_user(arg, sa, sizeof(*sa)); 5252 if (ret) 5253 ret = -EFAULT; 5254 5255 out: 5256 kfree(sa); 5257 return ret; 5258 } 5259 5260 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5261 { 5262 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5263 size_t len; 5264 int ret; 5265 char label[BTRFS_LABEL_SIZE]; 5266 5267 spin_lock(&root->fs_info->super_lock); 5268 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5269 spin_unlock(&root->fs_info->super_lock); 5270 5271 len = strnlen(label, BTRFS_LABEL_SIZE); 5272 5273 if (len == BTRFS_LABEL_SIZE) { 5274 btrfs_warn(root->fs_info, 5275 "label is too long, return the first %zu bytes", --len); 5276 } 5277 5278 ret = copy_to_user(arg, label, len); 5279 5280 return ret ? -EFAULT : 0; 5281 } 5282 5283 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5284 { 5285 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5286 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5287 struct btrfs_trans_handle *trans; 5288 char label[BTRFS_LABEL_SIZE]; 5289 int ret; 5290 5291 if (!capable(CAP_SYS_ADMIN)) 5292 return -EPERM; 5293 5294 if (copy_from_user(label, arg, sizeof(label))) 5295 return -EFAULT; 5296 5297 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5298 btrfs_err(root->fs_info, "unable to set label with more than %d bytes", 5299 BTRFS_LABEL_SIZE - 1); 5300 return -EINVAL; 5301 } 5302 5303 ret = mnt_want_write_file(file); 5304 if (ret) 5305 return ret; 5306 5307 trans = btrfs_start_transaction(root, 0); 5308 if (IS_ERR(trans)) { 5309 ret = PTR_ERR(trans); 5310 goto out_unlock; 5311 } 5312 5313 spin_lock(&root->fs_info->super_lock); 5314 strcpy(super_block->label, label); 5315 spin_unlock(&root->fs_info->super_lock); 5316 ret = btrfs_commit_transaction(trans, root); 5317 5318 out_unlock: 5319 mnt_drop_write_file(file); 5320 return ret; 5321 } 5322 5323 #define INIT_FEATURE_FLAGS(suffix) \ 5324 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5325 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5326 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5327 5328 int btrfs_ioctl_get_supported_features(void __user *arg) 5329 { 5330 static const struct btrfs_ioctl_feature_flags features[3] = { 5331 INIT_FEATURE_FLAGS(SUPP), 5332 INIT_FEATURE_FLAGS(SAFE_SET), 5333 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5334 }; 5335 5336 if (copy_to_user(arg, &features, sizeof(features))) 5337 return -EFAULT; 5338 5339 return 0; 5340 } 5341 5342 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5343 { 5344 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5345 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5346 struct btrfs_ioctl_feature_flags features; 5347 5348 features.compat_flags = btrfs_super_compat_flags(super_block); 5349 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5350 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5351 5352 if (copy_to_user(arg, &features, sizeof(features))) 5353 return -EFAULT; 5354 5355 return 0; 5356 } 5357 5358 static int check_feature_bits(struct btrfs_root *root, 5359 enum btrfs_feature_set set, 5360 u64 change_mask, u64 flags, u64 supported_flags, 5361 u64 safe_set, u64 safe_clear) 5362 { 5363 const char *type = btrfs_feature_set_names[set]; 5364 char *names; 5365 u64 disallowed, unsupported; 5366 u64 set_mask = flags & change_mask; 5367 u64 clear_mask = ~flags & change_mask; 5368 5369 unsupported = set_mask & ~supported_flags; 5370 if (unsupported) { 5371 names = btrfs_printable_features(set, unsupported); 5372 if (names) { 5373 btrfs_warn(root->fs_info, 5374 "this kernel does not support the %s feature bit%s", 5375 names, strchr(names, ',') ? "s" : ""); 5376 kfree(names); 5377 } else 5378 btrfs_warn(root->fs_info, 5379 "this kernel does not support %s bits 0x%llx", 5380 type, unsupported); 5381 return -EOPNOTSUPP; 5382 } 5383 5384 disallowed = set_mask & ~safe_set; 5385 if (disallowed) { 5386 names = btrfs_printable_features(set, disallowed); 5387 if (names) { 5388 btrfs_warn(root->fs_info, 5389 "can't set the %s feature bit%s while mounted", 5390 names, strchr(names, ',') ? "s" : ""); 5391 kfree(names); 5392 } else 5393 btrfs_warn(root->fs_info, 5394 "can't set %s bits 0x%llx while mounted", 5395 type, disallowed); 5396 return -EPERM; 5397 } 5398 5399 disallowed = clear_mask & ~safe_clear; 5400 if (disallowed) { 5401 names = btrfs_printable_features(set, disallowed); 5402 if (names) { 5403 btrfs_warn(root->fs_info, 5404 "can't clear the %s feature bit%s while mounted", 5405 names, strchr(names, ',') ? "s" : ""); 5406 kfree(names); 5407 } else 5408 btrfs_warn(root->fs_info, 5409 "can't clear %s bits 0x%llx while mounted", 5410 type, disallowed); 5411 return -EPERM; 5412 } 5413 5414 return 0; 5415 } 5416 5417 #define check_feature(root, change_mask, flags, mask_base) \ 5418 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \ 5419 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5420 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5421 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5422 5423 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5424 { 5425 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5426 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5427 struct btrfs_ioctl_feature_flags flags[2]; 5428 struct btrfs_trans_handle *trans; 5429 u64 newflags; 5430 int ret; 5431 5432 if (!capable(CAP_SYS_ADMIN)) 5433 return -EPERM; 5434 5435 if (copy_from_user(flags, arg, sizeof(flags))) 5436 return -EFAULT; 5437 5438 /* Nothing to do */ 5439 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5440 !flags[0].incompat_flags) 5441 return 0; 5442 5443 ret = check_feature(root, flags[0].compat_flags, 5444 flags[1].compat_flags, COMPAT); 5445 if (ret) 5446 return ret; 5447 5448 ret = check_feature(root, flags[0].compat_ro_flags, 5449 flags[1].compat_ro_flags, COMPAT_RO); 5450 if (ret) 5451 return ret; 5452 5453 ret = check_feature(root, flags[0].incompat_flags, 5454 flags[1].incompat_flags, INCOMPAT); 5455 if (ret) 5456 return ret; 5457 5458 ret = mnt_want_write_file(file); 5459 if (ret) 5460 return ret; 5461 5462 trans = btrfs_start_transaction(root, 0); 5463 if (IS_ERR(trans)) { 5464 ret = PTR_ERR(trans); 5465 goto out_drop_write; 5466 } 5467 5468 spin_lock(&root->fs_info->super_lock); 5469 newflags = btrfs_super_compat_flags(super_block); 5470 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5471 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5472 btrfs_set_super_compat_flags(super_block, newflags); 5473 5474 newflags = btrfs_super_compat_ro_flags(super_block); 5475 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5476 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5477 btrfs_set_super_compat_ro_flags(super_block, newflags); 5478 5479 newflags = btrfs_super_incompat_flags(super_block); 5480 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5481 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5482 btrfs_set_super_incompat_flags(super_block, newflags); 5483 spin_unlock(&root->fs_info->super_lock); 5484 5485 ret = btrfs_commit_transaction(trans, root); 5486 out_drop_write: 5487 mnt_drop_write_file(file); 5488 5489 return ret; 5490 } 5491 5492 long btrfs_ioctl(struct file *file, unsigned int 5493 cmd, unsigned long arg) 5494 { 5495 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5496 void __user *argp = (void __user *)arg; 5497 5498 switch (cmd) { 5499 case FS_IOC_GETFLAGS: 5500 return btrfs_ioctl_getflags(file, argp); 5501 case FS_IOC_SETFLAGS: 5502 return btrfs_ioctl_setflags(file, argp); 5503 case FS_IOC_GETVERSION: 5504 return btrfs_ioctl_getversion(file, argp); 5505 case FITRIM: 5506 return btrfs_ioctl_fitrim(file, argp); 5507 case BTRFS_IOC_SNAP_CREATE: 5508 return btrfs_ioctl_snap_create(file, argp, 0); 5509 case BTRFS_IOC_SNAP_CREATE_V2: 5510 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5511 case BTRFS_IOC_SUBVOL_CREATE: 5512 return btrfs_ioctl_snap_create(file, argp, 1); 5513 case BTRFS_IOC_SUBVOL_CREATE_V2: 5514 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5515 case BTRFS_IOC_SNAP_DESTROY: 5516 return btrfs_ioctl_snap_destroy(file, argp); 5517 case BTRFS_IOC_SUBVOL_GETFLAGS: 5518 return btrfs_ioctl_subvol_getflags(file, argp); 5519 case BTRFS_IOC_SUBVOL_SETFLAGS: 5520 return btrfs_ioctl_subvol_setflags(file, argp); 5521 case BTRFS_IOC_DEFAULT_SUBVOL: 5522 return btrfs_ioctl_default_subvol(file, argp); 5523 case BTRFS_IOC_DEFRAG: 5524 return btrfs_ioctl_defrag(file, NULL); 5525 case BTRFS_IOC_DEFRAG_RANGE: 5526 return btrfs_ioctl_defrag(file, argp); 5527 case BTRFS_IOC_RESIZE: 5528 return btrfs_ioctl_resize(file, argp); 5529 case BTRFS_IOC_ADD_DEV: 5530 return btrfs_ioctl_add_dev(root, argp); 5531 case BTRFS_IOC_RM_DEV: 5532 return btrfs_ioctl_rm_dev(file, argp); 5533 case BTRFS_IOC_RM_DEV_V2: 5534 return btrfs_ioctl_rm_dev_v2(file, argp); 5535 case BTRFS_IOC_FS_INFO: 5536 return btrfs_ioctl_fs_info(root, argp); 5537 case BTRFS_IOC_DEV_INFO: 5538 return btrfs_ioctl_dev_info(root, argp); 5539 case BTRFS_IOC_BALANCE: 5540 return btrfs_ioctl_balance(file, NULL); 5541 case BTRFS_IOC_TRANS_START: 5542 return btrfs_ioctl_trans_start(file); 5543 case BTRFS_IOC_TRANS_END: 5544 return btrfs_ioctl_trans_end(file); 5545 case BTRFS_IOC_TREE_SEARCH: 5546 return btrfs_ioctl_tree_search(file, argp); 5547 case BTRFS_IOC_TREE_SEARCH_V2: 5548 return btrfs_ioctl_tree_search_v2(file, argp); 5549 case BTRFS_IOC_INO_LOOKUP: 5550 return btrfs_ioctl_ino_lookup(file, argp); 5551 case BTRFS_IOC_INO_PATHS: 5552 return btrfs_ioctl_ino_to_path(root, argp); 5553 case BTRFS_IOC_LOGICAL_INO: 5554 return btrfs_ioctl_logical_to_ino(root, argp); 5555 case BTRFS_IOC_SPACE_INFO: 5556 return btrfs_ioctl_space_info(root, argp); 5557 case BTRFS_IOC_SYNC: { 5558 int ret; 5559 5560 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1); 5561 if (ret) 5562 return ret; 5563 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1); 5564 /* 5565 * The transaction thread may want to do more work, 5566 * namely it pokes the cleaner kthread that will start 5567 * processing uncleaned subvols. 5568 */ 5569 wake_up_process(root->fs_info->transaction_kthread); 5570 return ret; 5571 } 5572 case BTRFS_IOC_START_SYNC: 5573 return btrfs_ioctl_start_sync(root, argp); 5574 case BTRFS_IOC_WAIT_SYNC: 5575 return btrfs_ioctl_wait_sync(root, argp); 5576 case BTRFS_IOC_SCRUB: 5577 return btrfs_ioctl_scrub(file, argp); 5578 case BTRFS_IOC_SCRUB_CANCEL: 5579 return btrfs_ioctl_scrub_cancel(root, argp); 5580 case BTRFS_IOC_SCRUB_PROGRESS: 5581 return btrfs_ioctl_scrub_progress(root, argp); 5582 case BTRFS_IOC_BALANCE_V2: 5583 return btrfs_ioctl_balance(file, argp); 5584 case BTRFS_IOC_BALANCE_CTL: 5585 return btrfs_ioctl_balance_ctl(root, arg); 5586 case BTRFS_IOC_BALANCE_PROGRESS: 5587 return btrfs_ioctl_balance_progress(root, argp); 5588 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5589 return btrfs_ioctl_set_received_subvol(file, argp); 5590 #ifdef CONFIG_64BIT 5591 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5592 return btrfs_ioctl_set_received_subvol_32(file, argp); 5593 #endif 5594 case BTRFS_IOC_SEND: 5595 return btrfs_ioctl_send(file, argp); 5596 case BTRFS_IOC_GET_DEV_STATS: 5597 return btrfs_ioctl_get_dev_stats(root, argp); 5598 case BTRFS_IOC_QUOTA_CTL: 5599 return btrfs_ioctl_quota_ctl(file, argp); 5600 case BTRFS_IOC_QGROUP_ASSIGN: 5601 return btrfs_ioctl_qgroup_assign(file, argp); 5602 case BTRFS_IOC_QGROUP_CREATE: 5603 return btrfs_ioctl_qgroup_create(file, argp); 5604 case BTRFS_IOC_QGROUP_LIMIT: 5605 return btrfs_ioctl_qgroup_limit(file, argp); 5606 case BTRFS_IOC_QUOTA_RESCAN: 5607 return btrfs_ioctl_quota_rescan(file, argp); 5608 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5609 return btrfs_ioctl_quota_rescan_status(file, argp); 5610 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5611 return btrfs_ioctl_quota_rescan_wait(file, argp); 5612 case BTRFS_IOC_DEV_REPLACE: 5613 return btrfs_ioctl_dev_replace(root, argp); 5614 case BTRFS_IOC_GET_FSLABEL: 5615 return btrfs_ioctl_get_fslabel(file, argp); 5616 case BTRFS_IOC_SET_FSLABEL: 5617 return btrfs_ioctl_set_fslabel(file, argp); 5618 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5619 return btrfs_ioctl_get_supported_features(argp); 5620 case BTRFS_IOC_GET_FEATURES: 5621 return btrfs_ioctl_get_features(file, argp); 5622 case BTRFS_IOC_SET_FEATURES: 5623 return btrfs_ioctl_set_features(file, argp); 5624 } 5625 5626 return -ENOTTY; 5627 } 5628 5629 #ifdef CONFIG_COMPAT 5630 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5631 { 5632 switch (cmd) { 5633 case FS_IOC32_GETFLAGS: 5634 cmd = FS_IOC_GETFLAGS; 5635 break; 5636 case FS_IOC32_SETFLAGS: 5637 cmd = FS_IOC_SETFLAGS; 5638 break; 5639 case FS_IOC32_GETVERSION: 5640 cmd = FS_IOC_GETVERSION; 5641 break; 5642 default: 5643 return -ENOIOCTLCMD; 5644 } 5645 5646 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5647 } 5648 #endif 5649