1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "export.h" 32 #include "transaction.h" 33 #include "btrfs_inode.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "locking.h" 37 #include "inode-map.h" 38 #include "backref.h" 39 #include "rcu-string.h" 40 #include "send.h" 41 #include "dev-replace.h" 42 #include "props.h" 43 #include "sysfs.h" 44 #include "qgroup.h" 45 #include "tree-log.h" 46 #include "compression.h" 47 #include "space-info.h" 48 #include "delalloc-space.h" 49 #include "block-group.h" 50 51 #ifdef CONFIG_64BIT 52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 53 * structures are incorrect, as the timespec structure from userspace 54 * is 4 bytes too small. We define these alternatives here to teach 55 * the kernel about the 32-bit struct packing. 56 */ 57 struct btrfs_ioctl_timespec_32 { 58 __u64 sec; 59 __u32 nsec; 60 } __attribute__ ((__packed__)); 61 62 struct btrfs_ioctl_received_subvol_args_32 { 63 char uuid[BTRFS_UUID_SIZE]; /* in */ 64 __u64 stransid; /* in */ 65 __u64 rtransid; /* out */ 66 struct btrfs_ioctl_timespec_32 stime; /* in */ 67 struct btrfs_ioctl_timespec_32 rtime; /* out */ 68 __u64 flags; /* in */ 69 __u64 reserved[16]; /* in */ 70 } __attribute__ ((__packed__)); 71 72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 73 struct btrfs_ioctl_received_subvol_args_32) 74 #endif 75 76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 77 struct btrfs_ioctl_send_args_32 { 78 __s64 send_fd; /* in */ 79 __u64 clone_sources_count; /* in */ 80 compat_uptr_t clone_sources; /* in */ 81 __u64 parent_root; /* in */ 82 __u64 flags; /* in */ 83 __u64 reserved[4]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 87 struct btrfs_ioctl_send_args_32) 88 #endif 89 90 /* Mask out flags that are inappropriate for the given type of inode. */ 91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93 { 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100 } 101 102 /* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137 { 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 158 { 159 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 161 162 if (copy_to_user(arg, &flags, sizeof(flags))) 163 return -EFAULT; 164 return 0; 165 } 166 167 /* 168 * Check if @flags are a supported and valid set of FS_*_FL flags and that 169 * the old and new flags are not conflicting 170 */ 171 static int check_fsflags(unsigned int old_flags, unsigned int flags) 172 { 173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 174 FS_NOATIME_FL | FS_NODUMP_FL | \ 175 FS_SYNC_FL | FS_DIRSYNC_FL | \ 176 FS_NOCOMP_FL | FS_COMPR_FL | 177 FS_NOCOW_FL)) 178 return -EOPNOTSUPP; 179 180 /* COMPR and NOCOMP on new/old are valid */ 181 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 182 return -EINVAL; 183 184 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 185 return -EINVAL; 186 187 /* NOCOW and compression options are mutually exclusive */ 188 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 189 return -EINVAL; 190 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 191 return -EINVAL; 192 193 return 0; 194 } 195 196 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 197 { 198 struct inode *inode = file_inode(file); 199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 200 struct btrfs_inode *binode = BTRFS_I(inode); 201 struct btrfs_root *root = binode->root; 202 struct btrfs_trans_handle *trans; 203 unsigned int fsflags, old_fsflags; 204 int ret; 205 const char *comp = NULL; 206 u32 binode_flags; 207 208 if (!inode_owner_or_capable(inode)) 209 return -EPERM; 210 211 if (btrfs_root_readonly(root)) 212 return -EROFS; 213 214 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 215 return -EFAULT; 216 217 ret = mnt_want_write_file(file); 218 if (ret) 219 return ret; 220 221 inode_lock(inode); 222 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 223 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 224 225 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 226 if (ret) 227 goto out_unlock; 228 229 ret = check_fsflags(old_fsflags, fsflags); 230 if (ret) 231 goto out_unlock; 232 233 binode_flags = binode->flags; 234 if (fsflags & FS_SYNC_FL) 235 binode_flags |= BTRFS_INODE_SYNC; 236 else 237 binode_flags &= ~BTRFS_INODE_SYNC; 238 if (fsflags & FS_IMMUTABLE_FL) 239 binode_flags |= BTRFS_INODE_IMMUTABLE; 240 else 241 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 242 if (fsflags & FS_APPEND_FL) 243 binode_flags |= BTRFS_INODE_APPEND; 244 else 245 binode_flags &= ~BTRFS_INODE_APPEND; 246 if (fsflags & FS_NODUMP_FL) 247 binode_flags |= BTRFS_INODE_NODUMP; 248 else 249 binode_flags &= ~BTRFS_INODE_NODUMP; 250 if (fsflags & FS_NOATIME_FL) 251 binode_flags |= BTRFS_INODE_NOATIME; 252 else 253 binode_flags &= ~BTRFS_INODE_NOATIME; 254 if (fsflags & FS_DIRSYNC_FL) 255 binode_flags |= BTRFS_INODE_DIRSYNC; 256 else 257 binode_flags &= ~BTRFS_INODE_DIRSYNC; 258 if (fsflags & FS_NOCOW_FL) { 259 if (S_ISREG(inode->i_mode)) { 260 /* 261 * It's safe to turn csums off here, no extents exist. 262 * Otherwise we want the flag to reflect the real COW 263 * status of the file and will not set it. 264 */ 265 if (inode->i_size == 0) 266 binode_flags |= BTRFS_INODE_NODATACOW | 267 BTRFS_INODE_NODATASUM; 268 } else { 269 binode_flags |= BTRFS_INODE_NODATACOW; 270 } 271 } else { 272 /* 273 * Revert back under same assumptions as above 274 */ 275 if (S_ISREG(inode->i_mode)) { 276 if (inode->i_size == 0) 277 binode_flags &= ~(BTRFS_INODE_NODATACOW | 278 BTRFS_INODE_NODATASUM); 279 } else { 280 binode_flags &= ~BTRFS_INODE_NODATACOW; 281 } 282 } 283 284 /* 285 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 286 * flag may be changed automatically if compression code won't make 287 * things smaller. 288 */ 289 if (fsflags & FS_NOCOMP_FL) { 290 binode_flags &= ~BTRFS_INODE_COMPRESS; 291 binode_flags |= BTRFS_INODE_NOCOMPRESS; 292 } else if (fsflags & FS_COMPR_FL) { 293 294 if (IS_SWAPFILE(inode)) { 295 ret = -ETXTBSY; 296 goto out_unlock; 297 } 298 299 binode_flags |= BTRFS_INODE_COMPRESS; 300 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 301 302 comp = btrfs_compress_type2str(fs_info->compress_type); 303 if (!comp || comp[0] == 0) 304 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 305 } else { 306 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 307 } 308 309 /* 310 * 1 for inode item 311 * 2 for properties 312 */ 313 trans = btrfs_start_transaction(root, 3); 314 if (IS_ERR(trans)) { 315 ret = PTR_ERR(trans); 316 goto out_unlock; 317 } 318 319 if (comp) { 320 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 321 strlen(comp), 0); 322 if (ret) { 323 btrfs_abort_transaction(trans, ret); 324 goto out_end_trans; 325 } 326 } else { 327 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 328 0, 0); 329 if (ret && ret != -ENODATA) { 330 btrfs_abort_transaction(trans, ret); 331 goto out_end_trans; 332 } 333 } 334 335 binode->flags = binode_flags; 336 btrfs_sync_inode_flags_to_i_flags(inode); 337 inode_inc_iversion(inode); 338 inode->i_ctime = current_time(inode); 339 ret = btrfs_update_inode(trans, root, inode); 340 341 out_end_trans: 342 btrfs_end_transaction(trans); 343 out_unlock: 344 inode_unlock(inode); 345 mnt_drop_write_file(file); 346 return ret; 347 } 348 349 /* 350 * Translate btrfs internal inode flags to xflags as expected by the 351 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 352 * silently dropped. 353 */ 354 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 355 { 356 unsigned int xflags = 0; 357 358 if (flags & BTRFS_INODE_APPEND) 359 xflags |= FS_XFLAG_APPEND; 360 if (flags & BTRFS_INODE_IMMUTABLE) 361 xflags |= FS_XFLAG_IMMUTABLE; 362 if (flags & BTRFS_INODE_NOATIME) 363 xflags |= FS_XFLAG_NOATIME; 364 if (flags & BTRFS_INODE_NODUMP) 365 xflags |= FS_XFLAG_NODUMP; 366 if (flags & BTRFS_INODE_SYNC) 367 xflags |= FS_XFLAG_SYNC; 368 369 return xflags; 370 } 371 372 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 373 static int check_xflags(unsigned int flags) 374 { 375 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 376 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 377 return -EOPNOTSUPP; 378 return 0; 379 } 380 381 /* 382 * Set the xflags from the internal inode flags. The remaining items of fsxattr 383 * are zeroed. 384 */ 385 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 386 { 387 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 388 struct fsxattr fa; 389 390 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 391 if (copy_to_user(arg, &fa, sizeof(fa))) 392 return -EFAULT; 393 394 return 0; 395 } 396 397 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 398 { 399 struct inode *inode = file_inode(file); 400 struct btrfs_inode *binode = BTRFS_I(inode); 401 struct btrfs_root *root = binode->root; 402 struct btrfs_trans_handle *trans; 403 struct fsxattr fa, old_fa; 404 unsigned old_flags; 405 unsigned old_i_flags; 406 int ret = 0; 407 408 if (!inode_owner_or_capable(inode)) 409 return -EPERM; 410 411 if (btrfs_root_readonly(root)) 412 return -EROFS; 413 414 if (copy_from_user(&fa, arg, sizeof(fa))) 415 return -EFAULT; 416 417 ret = check_xflags(fa.fsx_xflags); 418 if (ret) 419 return ret; 420 421 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 422 return -EOPNOTSUPP; 423 424 ret = mnt_want_write_file(file); 425 if (ret) 426 return ret; 427 428 inode_lock(inode); 429 430 old_flags = binode->flags; 431 old_i_flags = inode->i_flags; 432 433 simple_fill_fsxattr(&old_fa, 434 btrfs_inode_flags_to_xflags(binode->flags)); 435 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 436 if (ret) 437 goto out_unlock; 438 439 if (fa.fsx_xflags & FS_XFLAG_SYNC) 440 binode->flags |= BTRFS_INODE_SYNC; 441 else 442 binode->flags &= ~BTRFS_INODE_SYNC; 443 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 444 binode->flags |= BTRFS_INODE_IMMUTABLE; 445 else 446 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 447 if (fa.fsx_xflags & FS_XFLAG_APPEND) 448 binode->flags |= BTRFS_INODE_APPEND; 449 else 450 binode->flags &= ~BTRFS_INODE_APPEND; 451 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 452 binode->flags |= BTRFS_INODE_NODUMP; 453 else 454 binode->flags &= ~BTRFS_INODE_NODUMP; 455 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 456 binode->flags |= BTRFS_INODE_NOATIME; 457 else 458 binode->flags &= ~BTRFS_INODE_NOATIME; 459 460 /* 1 item for the inode */ 461 trans = btrfs_start_transaction(root, 1); 462 if (IS_ERR(trans)) { 463 ret = PTR_ERR(trans); 464 goto out_unlock; 465 } 466 467 btrfs_sync_inode_flags_to_i_flags(inode); 468 inode_inc_iversion(inode); 469 inode->i_ctime = current_time(inode); 470 ret = btrfs_update_inode(trans, root, inode); 471 472 btrfs_end_transaction(trans); 473 474 out_unlock: 475 if (ret) { 476 binode->flags = old_flags; 477 inode->i_flags = old_i_flags; 478 } 479 480 inode_unlock(inode); 481 mnt_drop_write_file(file); 482 483 return ret; 484 } 485 486 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 487 { 488 struct inode *inode = file_inode(file); 489 490 return put_user(inode->i_generation, arg); 491 } 492 493 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 494 void __user *arg) 495 { 496 struct btrfs_device *device; 497 struct request_queue *q; 498 struct fstrim_range range; 499 u64 minlen = ULLONG_MAX; 500 u64 num_devices = 0; 501 int ret; 502 503 if (!capable(CAP_SYS_ADMIN)) 504 return -EPERM; 505 506 /* 507 * If the fs is mounted with nologreplay, which requires it to be 508 * mounted in RO mode as well, we can not allow discard on free space 509 * inside block groups, because log trees refer to extents that are not 510 * pinned in a block group's free space cache (pinning the extents is 511 * precisely the first phase of replaying a log tree). 512 */ 513 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 514 return -EROFS; 515 516 rcu_read_lock(); 517 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 518 dev_list) { 519 if (!device->bdev) 520 continue; 521 q = bdev_get_queue(device->bdev); 522 if (blk_queue_discard(q)) { 523 num_devices++; 524 minlen = min_t(u64, q->limits.discard_granularity, 525 minlen); 526 } 527 } 528 rcu_read_unlock(); 529 530 if (!num_devices) 531 return -EOPNOTSUPP; 532 if (copy_from_user(&range, arg, sizeof(range))) 533 return -EFAULT; 534 535 /* 536 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 537 * block group is in the logical address space, which can be any 538 * sectorsize aligned bytenr in the range [0, U64_MAX]. 539 */ 540 if (range.len < fs_info->sb->s_blocksize) 541 return -EINVAL; 542 543 range.minlen = max(range.minlen, minlen); 544 ret = btrfs_trim_fs(fs_info, &range); 545 if (ret < 0) 546 return ret; 547 548 if (copy_to_user(arg, &range, sizeof(range))) 549 return -EFAULT; 550 551 return 0; 552 } 553 554 int __pure btrfs_is_empty_uuid(u8 *uuid) 555 { 556 int i; 557 558 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 559 if (uuid[i]) 560 return 0; 561 } 562 return 1; 563 } 564 565 static noinline int create_subvol(struct inode *dir, 566 struct dentry *dentry, 567 const char *name, int namelen, 568 struct btrfs_qgroup_inherit *inherit) 569 { 570 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 571 struct btrfs_trans_handle *trans; 572 struct btrfs_key key; 573 struct btrfs_root_item *root_item; 574 struct btrfs_inode_item *inode_item; 575 struct extent_buffer *leaf; 576 struct btrfs_root *root = BTRFS_I(dir)->root; 577 struct btrfs_root *new_root; 578 struct btrfs_block_rsv block_rsv; 579 struct timespec64 cur_time = current_time(dir); 580 struct inode *inode; 581 int ret; 582 int err; 583 dev_t anon_dev = 0; 584 u64 objectid; 585 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 586 u64 index = 0; 587 588 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 589 if (!root_item) 590 return -ENOMEM; 591 592 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 593 if (ret) 594 goto fail_free; 595 596 ret = get_anon_bdev(&anon_dev); 597 if (ret < 0) 598 goto fail_free; 599 600 /* 601 * Don't create subvolume whose level is not zero. Or qgroup will be 602 * screwed up since it assumes subvolume qgroup's level to be 0. 603 */ 604 if (btrfs_qgroup_level(objectid)) { 605 ret = -ENOSPC; 606 goto fail_free; 607 } 608 609 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 610 /* 611 * The same as the snapshot creation, please see the comment 612 * of create_snapshot(). 613 */ 614 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 615 if (ret) 616 goto fail_free; 617 618 trans = btrfs_start_transaction(root, 0); 619 if (IS_ERR(trans)) { 620 ret = PTR_ERR(trans); 621 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 622 goto fail_free; 623 } 624 trans->block_rsv = &block_rsv; 625 trans->bytes_reserved = block_rsv.size; 626 627 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 628 if (ret) 629 goto fail; 630 631 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 632 if (IS_ERR(leaf)) { 633 ret = PTR_ERR(leaf); 634 goto fail; 635 } 636 637 btrfs_mark_buffer_dirty(leaf); 638 639 inode_item = &root_item->inode; 640 btrfs_set_stack_inode_generation(inode_item, 1); 641 btrfs_set_stack_inode_size(inode_item, 3); 642 btrfs_set_stack_inode_nlink(inode_item, 1); 643 btrfs_set_stack_inode_nbytes(inode_item, 644 fs_info->nodesize); 645 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 646 647 btrfs_set_root_flags(root_item, 0); 648 btrfs_set_root_limit(root_item, 0); 649 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 650 651 btrfs_set_root_bytenr(root_item, leaf->start); 652 btrfs_set_root_generation(root_item, trans->transid); 653 btrfs_set_root_level(root_item, 0); 654 btrfs_set_root_refs(root_item, 1); 655 btrfs_set_root_used(root_item, leaf->len); 656 btrfs_set_root_last_snapshot(root_item, 0); 657 658 btrfs_set_root_generation_v2(root_item, 659 btrfs_root_generation(root_item)); 660 generate_random_guid(root_item->uuid); 661 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 662 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 663 root_item->ctime = root_item->otime; 664 btrfs_set_root_ctransid(root_item, trans->transid); 665 btrfs_set_root_otransid(root_item, trans->transid); 666 667 btrfs_tree_unlock(leaf); 668 free_extent_buffer(leaf); 669 leaf = NULL; 670 671 btrfs_set_root_dirid(root_item, new_dirid); 672 673 key.objectid = objectid; 674 key.offset = 0; 675 key.type = BTRFS_ROOT_ITEM_KEY; 676 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 677 root_item); 678 if (ret) 679 goto fail; 680 681 key.offset = (u64)-1; 682 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 683 if (IS_ERR(new_root)) { 684 free_anon_bdev(anon_dev); 685 ret = PTR_ERR(new_root); 686 btrfs_abort_transaction(trans, ret); 687 goto fail; 688 } 689 /* Freeing will be done in btrfs_put_root() of new_root */ 690 anon_dev = 0; 691 692 btrfs_record_root_in_trans(trans, new_root); 693 694 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 695 btrfs_put_root(new_root); 696 if (ret) { 697 /* We potentially lose an unused inode item here */ 698 btrfs_abort_transaction(trans, ret); 699 goto fail; 700 } 701 702 mutex_lock(&new_root->objectid_mutex); 703 new_root->highest_objectid = new_dirid; 704 mutex_unlock(&new_root->objectid_mutex); 705 706 /* 707 * insert the directory item 708 */ 709 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 710 if (ret) { 711 btrfs_abort_transaction(trans, ret); 712 goto fail; 713 } 714 715 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 716 BTRFS_FT_DIR, index); 717 if (ret) { 718 btrfs_abort_transaction(trans, ret); 719 goto fail; 720 } 721 722 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 723 ret = btrfs_update_inode(trans, root, dir); 724 if (ret) { 725 btrfs_abort_transaction(trans, ret); 726 goto fail; 727 } 728 729 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 730 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 731 if (ret) { 732 btrfs_abort_transaction(trans, ret); 733 goto fail; 734 } 735 736 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 737 BTRFS_UUID_KEY_SUBVOL, objectid); 738 if (ret) 739 btrfs_abort_transaction(trans, ret); 740 741 fail: 742 kfree(root_item); 743 trans->block_rsv = NULL; 744 trans->bytes_reserved = 0; 745 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 746 747 err = btrfs_commit_transaction(trans); 748 if (err && !ret) 749 ret = err; 750 751 if (!ret) { 752 inode = btrfs_lookup_dentry(dir, dentry); 753 if (IS_ERR(inode)) 754 return PTR_ERR(inode); 755 d_instantiate(dentry, inode); 756 } 757 return ret; 758 759 fail_free: 760 if (anon_dev) 761 free_anon_bdev(anon_dev); 762 kfree(root_item); 763 return ret; 764 } 765 766 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 767 struct dentry *dentry, bool readonly, 768 struct btrfs_qgroup_inherit *inherit) 769 { 770 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 771 struct inode *inode; 772 struct btrfs_pending_snapshot *pending_snapshot; 773 struct btrfs_trans_handle *trans; 774 int ret; 775 776 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 777 return -EINVAL; 778 779 if (atomic_read(&root->nr_swapfiles)) { 780 btrfs_warn(fs_info, 781 "cannot snapshot subvolume with active swapfile"); 782 return -ETXTBSY; 783 } 784 785 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 786 if (!pending_snapshot) 787 return -ENOMEM; 788 789 ret = get_anon_bdev(&pending_snapshot->anon_dev); 790 if (ret < 0) 791 goto free_pending; 792 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 793 GFP_KERNEL); 794 pending_snapshot->path = btrfs_alloc_path(); 795 if (!pending_snapshot->root_item || !pending_snapshot->path) { 796 ret = -ENOMEM; 797 goto free_pending; 798 } 799 800 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 801 BTRFS_BLOCK_RSV_TEMP); 802 /* 803 * 1 - parent dir inode 804 * 2 - dir entries 805 * 1 - root item 806 * 2 - root ref/backref 807 * 1 - root of snapshot 808 * 1 - UUID item 809 */ 810 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 811 &pending_snapshot->block_rsv, 8, 812 false); 813 if (ret) 814 goto free_pending; 815 816 pending_snapshot->dentry = dentry; 817 pending_snapshot->root = root; 818 pending_snapshot->readonly = readonly; 819 pending_snapshot->dir = dir; 820 pending_snapshot->inherit = inherit; 821 822 trans = btrfs_start_transaction(root, 0); 823 if (IS_ERR(trans)) { 824 ret = PTR_ERR(trans); 825 goto fail; 826 } 827 828 spin_lock(&fs_info->trans_lock); 829 list_add(&pending_snapshot->list, 830 &trans->transaction->pending_snapshots); 831 spin_unlock(&fs_info->trans_lock); 832 833 ret = btrfs_commit_transaction(trans); 834 if (ret) 835 goto fail; 836 837 ret = pending_snapshot->error; 838 if (ret) 839 goto fail; 840 841 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 842 if (ret) 843 goto fail; 844 845 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 846 if (IS_ERR(inode)) { 847 ret = PTR_ERR(inode); 848 goto fail; 849 } 850 851 d_instantiate(dentry, inode); 852 ret = 0; 853 pending_snapshot->anon_dev = 0; 854 fail: 855 /* Prevent double freeing of anon_dev */ 856 if (ret && pending_snapshot->snap) 857 pending_snapshot->snap->anon_dev = 0; 858 btrfs_put_root(pending_snapshot->snap); 859 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 860 free_pending: 861 if (pending_snapshot->anon_dev) 862 free_anon_bdev(pending_snapshot->anon_dev); 863 kfree(pending_snapshot->root_item); 864 btrfs_free_path(pending_snapshot->path); 865 kfree(pending_snapshot); 866 867 return ret; 868 } 869 870 /* copy of may_delete in fs/namei.c() 871 * Check whether we can remove a link victim from directory dir, check 872 * whether the type of victim is right. 873 * 1. We can't do it if dir is read-only (done in permission()) 874 * 2. We should have write and exec permissions on dir 875 * 3. We can't remove anything from append-only dir 876 * 4. We can't do anything with immutable dir (done in permission()) 877 * 5. If the sticky bit on dir is set we should either 878 * a. be owner of dir, or 879 * b. be owner of victim, or 880 * c. have CAP_FOWNER capability 881 * 6. If the victim is append-only or immutable we can't do anything with 882 * links pointing to it. 883 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 884 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 885 * 9. We can't remove a root or mountpoint. 886 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 887 * nfs_async_unlink(). 888 */ 889 890 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 891 { 892 int error; 893 894 if (d_really_is_negative(victim)) 895 return -ENOENT; 896 897 BUG_ON(d_inode(victim->d_parent) != dir); 898 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 899 900 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 901 if (error) 902 return error; 903 if (IS_APPEND(dir)) 904 return -EPERM; 905 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 906 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 907 return -EPERM; 908 if (isdir) { 909 if (!d_is_dir(victim)) 910 return -ENOTDIR; 911 if (IS_ROOT(victim)) 912 return -EBUSY; 913 } else if (d_is_dir(victim)) 914 return -EISDIR; 915 if (IS_DEADDIR(dir)) 916 return -ENOENT; 917 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 918 return -EBUSY; 919 return 0; 920 } 921 922 /* copy of may_create in fs/namei.c() */ 923 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 924 { 925 if (d_really_is_positive(child)) 926 return -EEXIST; 927 if (IS_DEADDIR(dir)) 928 return -ENOENT; 929 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 930 } 931 932 /* 933 * Create a new subvolume below @parent. This is largely modeled after 934 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 935 * inside this filesystem so it's quite a bit simpler. 936 */ 937 static noinline int btrfs_mksubvol(const struct path *parent, 938 const char *name, int namelen, 939 struct btrfs_root *snap_src, 940 bool readonly, 941 struct btrfs_qgroup_inherit *inherit) 942 { 943 struct inode *dir = d_inode(parent->dentry); 944 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 945 struct dentry *dentry; 946 int error; 947 948 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 949 if (error == -EINTR) 950 return error; 951 952 dentry = lookup_one_len(name, parent->dentry, namelen); 953 error = PTR_ERR(dentry); 954 if (IS_ERR(dentry)) 955 goto out_unlock; 956 957 error = btrfs_may_create(dir, dentry); 958 if (error) 959 goto out_dput; 960 961 /* 962 * even if this name doesn't exist, we may get hash collisions. 963 * check for them now when we can safely fail 964 */ 965 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 966 dir->i_ino, name, 967 namelen); 968 if (error) 969 goto out_dput; 970 971 down_read(&fs_info->subvol_sem); 972 973 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 974 goto out_up_read; 975 976 if (snap_src) 977 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 978 else 979 error = create_subvol(dir, dentry, name, namelen, inherit); 980 981 if (!error) 982 fsnotify_mkdir(dir, dentry); 983 out_up_read: 984 up_read(&fs_info->subvol_sem); 985 out_dput: 986 dput(dentry); 987 out_unlock: 988 inode_unlock(dir); 989 return error; 990 } 991 992 static noinline int btrfs_mksnapshot(const struct path *parent, 993 const char *name, int namelen, 994 struct btrfs_root *root, 995 bool readonly, 996 struct btrfs_qgroup_inherit *inherit) 997 { 998 int ret; 999 bool snapshot_force_cow = false; 1000 1001 /* 1002 * Force new buffered writes to reserve space even when NOCOW is 1003 * possible. This is to avoid later writeback (running dealloc) to 1004 * fallback to COW mode and unexpectedly fail with ENOSPC. 1005 */ 1006 btrfs_drew_read_lock(&root->snapshot_lock); 1007 1008 ret = btrfs_start_delalloc_snapshot(root); 1009 if (ret) 1010 goto out; 1011 1012 /* 1013 * All previous writes have started writeback in NOCOW mode, so now 1014 * we force future writes to fallback to COW mode during snapshot 1015 * creation. 1016 */ 1017 atomic_inc(&root->snapshot_force_cow); 1018 snapshot_force_cow = true; 1019 1020 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1021 1022 ret = btrfs_mksubvol(parent, name, namelen, 1023 root, readonly, inherit); 1024 out: 1025 if (snapshot_force_cow) 1026 atomic_dec(&root->snapshot_force_cow); 1027 btrfs_drew_read_unlock(&root->snapshot_lock); 1028 return ret; 1029 } 1030 1031 /* 1032 * When we're defragging a range, we don't want to kick it off again 1033 * if it is really just waiting for delalloc to send it down. 1034 * If we find a nice big extent or delalloc range for the bytes in the 1035 * file you want to defrag, we return 0 to let you know to skip this 1036 * part of the file 1037 */ 1038 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1039 { 1040 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1041 struct extent_map *em = NULL; 1042 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1043 u64 end; 1044 1045 read_lock(&em_tree->lock); 1046 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1047 read_unlock(&em_tree->lock); 1048 1049 if (em) { 1050 end = extent_map_end(em); 1051 free_extent_map(em); 1052 if (end - offset > thresh) 1053 return 0; 1054 } 1055 /* if we already have a nice delalloc here, just stop */ 1056 thresh /= 2; 1057 end = count_range_bits(io_tree, &offset, offset + thresh, 1058 thresh, EXTENT_DELALLOC, 1); 1059 if (end >= thresh) 1060 return 0; 1061 return 1; 1062 } 1063 1064 /* 1065 * helper function to walk through a file and find extents 1066 * newer than a specific transid, and smaller than thresh. 1067 * 1068 * This is used by the defragging code to find new and small 1069 * extents 1070 */ 1071 static int find_new_extents(struct btrfs_root *root, 1072 struct inode *inode, u64 newer_than, 1073 u64 *off, u32 thresh) 1074 { 1075 struct btrfs_path *path; 1076 struct btrfs_key min_key; 1077 struct extent_buffer *leaf; 1078 struct btrfs_file_extent_item *extent; 1079 int type; 1080 int ret; 1081 u64 ino = btrfs_ino(BTRFS_I(inode)); 1082 1083 path = btrfs_alloc_path(); 1084 if (!path) 1085 return -ENOMEM; 1086 1087 min_key.objectid = ino; 1088 min_key.type = BTRFS_EXTENT_DATA_KEY; 1089 min_key.offset = *off; 1090 1091 while (1) { 1092 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1093 if (ret != 0) 1094 goto none; 1095 process_slot: 1096 if (min_key.objectid != ino) 1097 goto none; 1098 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1099 goto none; 1100 1101 leaf = path->nodes[0]; 1102 extent = btrfs_item_ptr(leaf, path->slots[0], 1103 struct btrfs_file_extent_item); 1104 1105 type = btrfs_file_extent_type(leaf, extent); 1106 if (type == BTRFS_FILE_EXTENT_REG && 1107 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1108 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1109 *off = min_key.offset; 1110 btrfs_free_path(path); 1111 return 0; 1112 } 1113 1114 path->slots[0]++; 1115 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1116 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1117 goto process_slot; 1118 } 1119 1120 if (min_key.offset == (u64)-1) 1121 goto none; 1122 1123 min_key.offset++; 1124 btrfs_release_path(path); 1125 } 1126 none: 1127 btrfs_free_path(path); 1128 return -ENOENT; 1129 } 1130 1131 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1132 { 1133 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1134 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1135 struct extent_map *em; 1136 u64 len = PAGE_SIZE; 1137 1138 /* 1139 * hopefully we have this extent in the tree already, try without 1140 * the full extent lock 1141 */ 1142 read_lock(&em_tree->lock); 1143 em = lookup_extent_mapping(em_tree, start, len); 1144 read_unlock(&em_tree->lock); 1145 1146 if (!em) { 1147 struct extent_state *cached = NULL; 1148 u64 end = start + len - 1; 1149 1150 /* get the big lock and read metadata off disk */ 1151 lock_extent_bits(io_tree, start, end, &cached); 1152 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1153 unlock_extent_cached(io_tree, start, end, &cached); 1154 1155 if (IS_ERR(em)) 1156 return NULL; 1157 } 1158 1159 return em; 1160 } 1161 1162 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1163 { 1164 struct extent_map *next; 1165 bool ret = true; 1166 1167 /* this is the last extent */ 1168 if (em->start + em->len >= i_size_read(inode)) 1169 return false; 1170 1171 next = defrag_lookup_extent(inode, em->start + em->len); 1172 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1173 ret = false; 1174 else if ((em->block_start + em->block_len == next->block_start) && 1175 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1176 ret = false; 1177 1178 free_extent_map(next); 1179 return ret; 1180 } 1181 1182 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1183 u64 *last_len, u64 *skip, u64 *defrag_end, 1184 int compress) 1185 { 1186 struct extent_map *em; 1187 int ret = 1; 1188 bool next_mergeable = true; 1189 bool prev_mergeable = true; 1190 1191 /* 1192 * make sure that once we start defragging an extent, we keep on 1193 * defragging it 1194 */ 1195 if (start < *defrag_end) 1196 return 1; 1197 1198 *skip = 0; 1199 1200 em = defrag_lookup_extent(inode, start); 1201 if (!em) 1202 return 0; 1203 1204 /* this will cover holes, and inline extents */ 1205 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1206 ret = 0; 1207 goto out; 1208 } 1209 1210 if (!*defrag_end) 1211 prev_mergeable = false; 1212 1213 next_mergeable = defrag_check_next_extent(inode, em); 1214 /* 1215 * we hit a real extent, if it is big or the next extent is not a 1216 * real extent, don't bother defragging it 1217 */ 1218 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1219 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1220 ret = 0; 1221 out: 1222 /* 1223 * last_len ends up being a counter of how many bytes we've defragged. 1224 * every time we choose not to defrag an extent, we reset *last_len 1225 * so that the next tiny extent will force a defrag. 1226 * 1227 * The end result of this is that tiny extents before a single big 1228 * extent will force at least part of that big extent to be defragged. 1229 */ 1230 if (ret) { 1231 *defrag_end = extent_map_end(em); 1232 } else { 1233 *last_len = 0; 1234 *skip = extent_map_end(em); 1235 *defrag_end = 0; 1236 } 1237 1238 free_extent_map(em); 1239 return ret; 1240 } 1241 1242 /* 1243 * it doesn't do much good to defrag one or two pages 1244 * at a time. This pulls in a nice chunk of pages 1245 * to COW and defrag. 1246 * 1247 * It also makes sure the delalloc code has enough 1248 * dirty data to avoid making new small extents as part 1249 * of the defrag 1250 * 1251 * It's a good idea to start RA on this range 1252 * before calling this. 1253 */ 1254 static int cluster_pages_for_defrag(struct inode *inode, 1255 struct page **pages, 1256 unsigned long start_index, 1257 unsigned long num_pages) 1258 { 1259 unsigned long file_end; 1260 u64 isize = i_size_read(inode); 1261 u64 page_start; 1262 u64 page_end; 1263 u64 page_cnt; 1264 int ret; 1265 int i; 1266 int i_done; 1267 struct btrfs_ordered_extent *ordered; 1268 struct extent_state *cached_state = NULL; 1269 struct extent_io_tree *tree; 1270 struct extent_changeset *data_reserved = NULL; 1271 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1272 1273 file_end = (isize - 1) >> PAGE_SHIFT; 1274 if (!isize || start_index > file_end) 1275 return 0; 1276 1277 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1278 1279 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1280 start_index << PAGE_SHIFT, 1281 page_cnt << PAGE_SHIFT); 1282 if (ret) 1283 return ret; 1284 i_done = 0; 1285 tree = &BTRFS_I(inode)->io_tree; 1286 1287 /* step one, lock all the pages */ 1288 for (i = 0; i < page_cnt; i++) { 1289 struct page *page; 1290 again: 1291 page = find_or_create_page(inode->i_mapping, 1292 start_index + i, mask); 1293 if (!page) 1294 break; 1295 1296 page_start = page_offset(page); 1297 page_end = page_start + PAGE_SIZE - 1; 1298 while (1) { 1299 lock_extent_bits(tree, page_start, page_end, 1300 &cached_state); 1301 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1302 page_start); 1303 unlock_extent_cached(tree, page_start, page_end, 1304 &cached_state); 1305 if (!ordered) 1306 break; 1307 1308 unlock_page(page); 1309 btrfs_start_ordered_extent(inode, ordered, 1); 1310 btrfs_put_ordered_extent(ordered); 1311 lock_page(page); 1312 /* 1313 * we unlocked the page above, so we need check if 1314 * it was released or not. 1315 */ 1316 if (page->mapping != inode->i_mapping) { 1317 unlock_page(page); 1318 put_page(page); 1319 goto again; 1320 } 1321 } 1322 1323 if (!PageUptodate(page)) { 1324 btrfs_readpage(NULL, page); 1325 lock_page(page); 1326 if (!PageUptodate(page)) { 1327 unlock_page(page); 1328 put_page(page); 1329 ret = -EIO; 1330 break; 1331 } 1332 } 1333 1334 if (page->mapping != inode->i_mapping) { 1335 unlock_page(page); 1336 put_page(page); 1337 goto again; 1338 } 1339 1340 pages[i] = page; 1341 i_done++; 1342 } 1343 if (!i_done || ret) 1344 goto out; 1345 1346 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1347 goto out; 1348 1349 /* 1350 * so now we have a nice long stream of locked 1351 * and up to date pages, lets wait on them 1352 */ 1353 for (i = 0; i < i_done; i++) 1354 wait_on_page_writeback(pages[i]); 1355 1356 page_start = page_offset(pages[0]); 1357 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1358 1359 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1360 page_start, page_end - 1, &cached_state); 1361 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1362 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1363 EXTENT_DEFRAG, 0, 0, &cached_state); 1364 1365 if (i_done != page_cnt) { 1366 spin_lock(&BTRFS_I(inode)->lock); 1367 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1368 spin_unlock(&BTRFS_I(inode)->lock); 1369 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1370 start_index << PAGE_SHIFT, 1371 (page_cnt - i_done) << PAGE_SHIFT, true); 1372 } 1373 1374 1375 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1376 &cached_state); 1377 1378 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1379 page_start, page_end - 1, &cached_state); 1380 1381 for (i = 0; i < i_done; i++) { 1382 clear_page_dirty_for_io(pages[i]); 1383 ClearPageChecked(pages[i]); 1384 set_page_extent_mapped(pages[i]); 1385 set_page_dirty(pages[i]); 1386 unlock_page(pages[i]); 1387 put_page(pages[i]); 1388 } 1389 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1390 extent_changeset_free(data_reserved); 1391 return i_done; 1392 out: 1393 for (i = 0; i < i_done; i++) { 1394 unlock_page(pages[i]); 1395 put_page(pages[i]); 1396 } 1397 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1398 start_index << PAGE_SHIFT, 1399 page_cnt << PAGE_SHIFT, true); 1400 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1401 extent_changeset_free(data_reserved); 1402 return ret; 1403 1404 } 1405 1406 int btrfs_defrag_file(struct inode *inode, struct file *file, 1407 struct btrfs_ioctl_defrag_range_args *range, 1408 u64 newer_than, unsigned long max_to_defrag) 1409 { 1410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1411 struct btrfs_root *root = BTRFS_I(inode)->root; 1412 struct file_ra_state *ra = NULL; 1413 unsigned long last_index; 1414 u64 isize = i_size_read(inode); 1415 u64 last_len = 0; 1416 u64 skip = 0; 1417 u64 defrag_end = 0; 1418 u64 newer_off = range->start; 1419 unsigned long i; 1420 unsigned long ra_index = 0; 1421 int ret; 1422 int defrag_count = 0; 1423 int compress_type = BTRFS_COMPRESS_ZLIB; 1424 u32 extent_thresh = range->extent_thresh; 1425 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1426 unsigned long cluster = max_cluster; 1427 u64 new_align = ~((u64)SZ_128K - 1); 1428 struct page **pages = NULL; 1429 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1430 1431 if (isize == 0) 1432 return 0; 1433 1434 if (range->start >= isize) 1435 return -EINVAL; 1436 1437 if (do_compress) { 1438 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1439 return -EINVAL; 1440 if (range->compress_type) 1441 compress_type = range->compress_type; 1442 } 1443 1444 if (extent_thresh == 0) 1445 extent_thresh = SZ_256K; 1446 1447 /* 1448 * If we were not given a file, allocate a readahead context. As 1449 * readahead is just an optimization, defrag will work without it so 1450 * we don't error out. 1451 */ 1452 if (!file) { 1453 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1454 if (ra) 1455 file_ra_state_init(ra, inode->i_mapping); 1456 } else { 1457 ra = &file->f_ra; 1458 } 1459 1460 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1461 if (!pages) { 1462 ret = -ENOMEM; 1463 goto out_ra; 1464 } 1465 1466 /* find the last page to defrag */ 1467 if (range->start + range->len > range->start) { 1468 last_index = min_t(u64, isize - 1, 1469 range->start + range->len - 1) >> PAGE_SHIFT; 1470 } else { 1471 last_index = (isize - 1) >> PAGE_SHIFT; 1472 } 1473 1474 if (newer_than) { 1475 ret = find_new_extents(root, inode, newer_than, 1476 &newer_off, SZ_64K); 1477 if (!ret) { 1478 range->start = newer_off; 1479 /* 1480 * we always align our defrag to help keep 1481 * the extents in the file evenly spaced 1482 */ 1483 i = (newer_off & new_align) >> PAGE_SHIFT; 1484 } else 1485 goto out_ra; 1486 } else { 1487 i = range->start >> PAGE_SHIFT; 1488 } 1489 if (!max_to_defrag) 1490 max_to_defrag = last_index - i + 1; 1491 1492 /* 1493 * make writeback starts from i, so the defrag range can be 1494 * written sequentially. 1495 */ 1496 if (i < inode->i_mapping->writeback_index) 1497 inode->i_mapping->writeback_index = i; 1498 1499 while (i <= last_index && defrag_count < max_to_defrag && 1500 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1501 /* 1502 * make sure we stop running if someone unmounts 1503 * the FS 1504 */ 1505 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1506 break; 1507 1508 if (btrfs_defrag_cancelled(fs_info)) { 1509 btrfs_debug(fs_info, "defrag_file cancelled"); 1510 ret = -EAGAIN; 1511 break; 1512 } 1513 1514 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1515 extent_thresh, &last_len, &skip, 1516 &defrag_end, do_compress)){ 1517 unsigned long next; 1518 /* 1519 * the should_defrag function tells us how much to skip 1520 * bump our counter by the suggested amount 1521 */ 1522 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1523 i = max(i + 1, next); 1524 continue; 1525 } 1526 1527 if (!newer_than) { 1528 cluster = (PAGE_ALIGN(defrag_end) >> 1529 PAGE_SHIFT) - i; 1530 cluster = min(cluster, max_cluster); 1531 } else { 1532 cluster = max_cluster; 1533 } 1534 1535 if (i + cluster > ra_index) { 1536 ra_index = max(i, ra_index); 1537 if (ra) 1538 page_cache_sync_readahead(inode->i_mapping, ra, 1539 file, ra_index, cluster); 1540 ra_index += cluster; 1541 } 1542 1543 inode_lock(inode); 1544 if (IS_SWAPFILE(inode)) { 1545 ret = -ETXTBSY; 1546 } else { 1547 if (do_compress) 1548 BTRFS_I(inode)->defrag_compress = compress_type; 1549 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1550 } 1551 if (ret < 0) { 1552 inode_unlock(inode); 1553 goto out_ra; 1554 } 1555 1556 defrag_count += ret; 1557 balance_dirty_pages_ratelimited(inode->i_mapping); 1558 inode_unlock(inode); 1559 1560 if (newer_than) { 1561 if (newer_off == (u64)-1) 1562 break; 1563 1564 if (ret > 0) 1565 i += ret; 1566 1567 newer_off = max(newer_off + 1, 1568 (u64)i << PAGE_SHIFT); 1569 1570 ret = find_new_extents(root, inode, newer_than, 1571 &newer_off, SZ_64K); 1572 if (!ret) { 1573 range->start = newer_off; 1574 i = (newer_off & new_align) >> PAGE_SHIFT; 1575 } else { 1576 break; 1577 } 1578 } else { 1579 if (ret > 0) { 1580 i += ret; 1581 last_len += ret << PAGE_SHIFT; 1582 } else { 1583 i++; 1584 last_len = 0; 1585 } 1586 } 1587 } 1588 1589 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1590 filemap_flush(inode->i_mapping); 1591 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1592 &BTRFS_I(inode)->runtime_flags)) 1593 filemap_flush(inode->i_mapping); 1594 } 1595 1596 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1597 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1598 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1599 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1600 } 1601 1602 ret = defrag_count; 1603 1604 out_ra: 1605 if (do_compress) { 1606 inode_lock(inode); 1607 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1608 inode_unlock(inode); 1609 } 1610 if (!file) 1611 kfree(ra); 1612 kfree(pages); 1613 return ret; 1614 } 1615 1616 static noinline int btrfs_ioctl_resize(struct file *file, 1617 void __user *arg) 1618 { 1619 struct inode *inode = file_inode(file); 1620 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1621 u64 new_size; 1622 u64 old_size; 1623 u64 devid = 1; 1624 struct btrfs_root *root = BTRFS_I(inode)->root; 1625 struct btrfs_ioctl_vol_args *vol_args; 1626 struct btrfs_trans_handle *trans; 1627 struct btrfs_device *device = NULL; 1628 char *sizestr; 1629 char *retptr; 1630 char *devstr = NULL; 1631 int ret = 0; 1632 int mod = 0; 1633 1634 if (!capable(CAP_SYS_ADMIN)) 1635 return -EPERM; 1636 1637 ret = mnt_want_write_file(file); 1638 if (ret) 1639 return ret; 1640 1641 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1642 mnt_drop_write_file(file); 1643 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1644 } 1645 1646 vol_args = memdup_user(arg, sizeof(*vol_args)); 1647 if (IS_ERR(vol_args)) { 1648 ret = PTR_ERR(vol_args); 1649 goto out; 1650 } 1651 1652 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1653 1654 sizestr = vol_args->name; 1655 devstr = strchr(sizestr, ':'); 1656 if (devstr) { 1657 sizestr = devstr + 1; 1658 *devstr = '\0'; 1659 devstr = vol_args->name; 1660 ret = kstrtoull(devstr, 10, &devid); 1661 if (ret) 1662 goto out_free; 1663 if (!devid) { 1664 ret = -EINVAL; 1665 goto out_free; 1666 } 1667 btrfs_info(fs_info, "resizing devid %llu", devid); 1668 } 1669 1670 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1671 if (!device) { 1672 btrfs_info(fs_info, "resizer unable to find device %llu", 1673 devid); 1674 ret = -ENODEV; 1675 goto out_free; 1676 } 1677 1678 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1679 btrfs_info(fs_info, 1680 "resizer unable to apply on readonly device %llu", 1681 devid); 1682 ret = -EPERM; 1683 goto out_free; 1684 } 1685 1686 if (!strcmp(sizestr, "max")) 1687 new_size = device->bdev->bd_inode->i_size; 1688 else { 1689 if (sizestr[0] == '-') { 1690 mod = -1; 1691 sizestr++; 1692 } else if (sizestr[0] == '+') { 1693 mod = 1; 1694 sizestr++; 1695 } 1696 new_size = memparse(sizestr, &retptr); 1697 if (*retptr != '\0' || new_size == 0) { 1698 ret = -EINVAL; 1699 goto out_free; 1700 } 1701 } 1702 1703 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1704 ret = -EPERM; 1705 goto out_free; 1706 } 1707 1708 old_size = btrfs_device_get_total_bytes(device); 1709 1710 if (mod < 0) { 1711 if (new_size > old_size) { 1712 ret = -EINVAL; 1713 goto out_free; 1714 } 1715 new_size = old_size - new_size; 1716 } else if (mod > 0) { 1717 if (new_size > ULLONG_MAX - old_size) { 1718 ret = -ERANGE; 1719 goto out_free; 1720 } 1721 new_size = old_size + new_size; 1722 } 1723 1724 if (new_size < SZ_256M) { 1725 ret = -EINVAL; 1726 goto out_free; 1727 } 1728 if (new_size > device->bdev->bd_inode->i_size) { 1729 ret = -EFBIG; 1730 goto out_free; 1731 } 1732 1733 new_size = round_down(new_size, fs_info->sectorsize); 1734 1735 if (new_size > old_size) { 1736 trans = btrfs_start_transaction(root, 0); 1737 if (IS_ERR(trans)) { 1738 ret = PTR_ERR(trans); 1739 goto out_free; 1740 } 1741 ret = btrfs_grow_device(trans, device, new_size); 1742 btrfs_commit_transaction(trans); 1743 } else if (new_size < old_size) { 1744 ret = btrfs_shrink_device(device, new_size); 1745 } /* equal, nothing need to do */ 1746 1747 if (ret == 0 && new_size != old_size) 1748 btrfs_info_in_rcu(fs_info, 1749 "resize device %s (devid %llu) from %llu to %llu", 1750 rcu_str_deref(device->name), device->devid, 1751 old_size, new_size); 1752 out_free: 1753 kfree(vol_args); 1754 out: 1755 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1756 mnt_drop_write_file(file); 1757 return ret; 1758 } 1759 1760 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1761 const char *name, unsigned long fd, int subvol, 1762 bool readonly, 1763 struct btrfs_qgroup_inherit *inherit) 1764 { 1765 int namelen; 1766 int ret = 0; 1767 1768 if (!S_ISDIR(file_inode(file)->i_mode)) 1769 return -ENOTDIR; 1770 1771 ret = mnt_want_write_file(file); 1772 if (ret) 1773 goto out; 1774 1775 namelen = strlen(name); 1776 if (strchr(name, '/')) { 1777 ret = -EINVAL; 1778 goto out_drop_write; 1779 } 1780 1781 if (name[0] == '.' && 1782 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1783 ret = -EEXIST; 1784 goto out_drop_write; 1785 } 1786 1787 if (subvol) { 1788 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1789 NULL, readonly, inherit); 1790 } else { 1791 struct fd src = fdget(fd); 1792 struct inode *src_inode; 1793 if (!src.file) { 1794 ret = -EINVAL; 1795 goto out_drop_write; 1796 } 1797 1798 src_inode = file_inode(src.file); 1799 if (src_inode->i_sb != file_inode(file)->i_sb) { 1800 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1801 "Snapshot src from another FS"); 1802 ret = -EXDEV; 1803 } else if (!inode_owner_or_capable(src_inode)) { 1804 /* 1805 * Subvolume creation is not restricted, but snapshots 1806 * are limited to own subvolumes only 1807 */ 1808 ret = -EPERM; 1809 } else { 1810 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1811 BTRFS_I(src_inode)->root, 1812 readonly, inherit); 1813 } 1814 fdput(src); 1815 } 1816 out_drop_write: 1817 mnt_drop_write_file(file); 1818 out: 1819 return ret; 1820 } 1821 1822 static noinline int btrfs_ioctl_snap_create(struct file *file, 1823 void __user *arg, int subvol) 1824 { 1825 struct btrfs_ioctl_vol_args *vol_args; 1826 int ret; 1827 1828 if (!S_ISDIR(file_inode(file)->i_mode)) 1829 return -ENOTDIR; 1830 1831 vol_args = memdup_user(arg, sizeof(*vol_args)); 1832 if (IS_ERR(vol_args)) 1833 return PTR_ERR(vol_args); 1834 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1835 1836 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1837 subvol, false, NULL); 1838 1839 kfree(vol_args); 1840 return ret; 1841 } 1842 1843 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1844 void __user *arg, int subvol) 1845 { 1846 struct btrfs_ioctl_vol_args_v2 *vol_args; 1847 int ret; 1848 bool readonly = false; 1849 struct btrfs_qgroup_inherit *inherit = NULL; 1850 1851 if (!S_ISDIR(file_inode(file)->i_mode)) 1852 return -ENOTDIR; 1853 1854 vol_args = memdup_user(arg, sizeof(*vol_args)); 1855 if (IS_ERR(vol_args)) 1856 return PTR_ERR(vol_args); 1857 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1858 1859 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1860 ret = -EOPNOTSUPP; 1861 goto free_args; 1862 } 1863 1864 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1865 readonly = true; 1866 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1867 if (vol_args->size > PAGE_SIZE) { 1868 ret = -EINVAL; 1869 goto free_args; 1870 } 1871 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1872 if (IS_ERR(inherit)) { 1873 ret = PTR_ERR(inherit); 1874 goto free_args; 1875 } 1876 } 1877 1878 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1879 subvol, readonly, inherit); 1880 if (ret) 1881 goto free_inherit; 1882 free_inherit: 1883 kfree(inherit); 1884 free_args: 1885 kfree(vol_args); 1886 return ret; 1887 } 1888 1889 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1890 void __user *arg) 1891 { 1892 struct inode *inode = file_inode(file); 1893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1894 struct btrfs_root *root = BTRFS_I(inode)->root; 1895 int ret = 0; 1896 u64 flags = 0; 1897 1898 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1899 return -EINVAL; 1900 1901 down_read(&fs_info->subvol_sem); 1902 if (btrfs_root_readonly(root)) 1903 flags |= BTRFS_SUBVOL_RDONLY; 1904 up_read(&fs_info->subvol_sem); 1905 1906 if (copy_to_user(arg, &flags, sizeof(flags))) 1907 ret = -EFAULT; 1908 1909 return ret; 1910 } 1911 1912 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1913 void __user *arg) 1914 { 1915 struct inode *inode = file_inode(file); 1916 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1917 struct btrfs_root *root = BTRFS_I(inode)->root; 1918 struct btrfs_trans_handle *trans; 1919 u64 root_flags; 1920 u64 flags; 1921 int ret = 0; 1922 1923 if (!inode_owner_or_capable(inode)) 1924 return -EPERM; 1925 1926 ret = mnt_want_write_file(file); 1927 if (ret) 1928 goto out; 1929 1930 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1931 ret = -EINVAL; 1932 goto out_drop_write; 1933 } 1934 1935 if (copy_from_user(&flags, arg, sizeof(flags))) { 1936 ret = -EFAULT; 1937 goto out_drop_write; 1938 } 1939 1940 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1941 ret = -EOPNOTSUPP; 1942 goto out_drop_write; 1943 } 1944 1945 down_write(&fs_info->subvol_sem); 1946 1947 /* nothing to do */ 1948 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1949 goto out_drop_sem; 1950 1951 root_flags = btrfs_root_flags(&root->root_item); 1952 if (flags & BTRFS_SUBVOL_RDONLY) { 1953 btrfs_set_root_flags(&root->root_item, 1954 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1955 } else { 1956 /* 1957 * Block RO -> RW transition if this subvolume is involved in 1958 * send 1959 */ 1960 spin_lock(&root->root_item_lock); 1961 if (root->send_in_progress == 0) { 1962 btrfs_set_root_flags(&root->root_item, 1963 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1964 spin_unlock(&root->root_item_lock); 1965 } else { 1966 spin_unlock(&root->root_item_lock); 1967 btrfs_warn(fs_info, 1968 "Attempt to set subvolume %llu read-write during send", 1969 root->root_key.objectid); 1970 ret = -EPERM; 1971 goto out_drop_sem; 1972 } 1973 } 1974 1975 trans = btrfs_start_transaction(root, 1); 1976 if (IS_ERR(trans)) { 1977 ret = PTR_ERR(trans); 1978 goto out_reset; 1979 } 1980 1981 ret = btrfs_update_root(trans, fs_info->tree_root, 1982 &root->root_key, &root->root_item); 1983 if (ret < 0) { 1984 btrfs_end_transaction(trans); 1985 goto out_reset; 1986 } 1987 1988 ret = btrfs_commit_transaction(trans); 1989 1990 out_reset: 1991 if (ret) 1992 btrfs_set_root_flags(&root->root_item, root_flags); 1993 out_drop_sem: 1994 up_write(&fs_info->subvol_sem); 1995 out_drop_write: 1996 mnt_drop_write_file(file); 1997 out: 1998 return ret; 1999 } 2000 2001 static noinline int key_in_sk(struct btrfs_key *key, 2002 struct btrfs_ioctl_search_key *sk) 2003 { 2004 struct btrfs_key test; 2005 int ret; 2006 2007 test.objectid = sk->min_objectid; 2008 test.type = sk->min_type; 2009 test.offset = sk->min_offset; 2010 2011 ret = btrfs_comp_cpu_keys(key, &test); 2012 if (ret < 0) 2013 return 0; 2014 2015 test.objectid = sk->max_objectid; 2016 test.type = sk->max_type; 2017 test.offset = sk->max_offset; 2018 2019 ret = btrfs_comp_cpu_keys(key, &test); 2020 if (ret > 0) 2021 return 0; 2022 return 1; 2023 } 2024 2025 static noinline int copy_to_sk(struct btrfs_path *path, 2026 struct btrfs_key *key, 2027 struct btrfs_ioctl_search_key *sk, 2028 size_t *buf_size, 2029 char __user *ubuf, 2030 unsigned long *sk_offset, 2031 int *num_found) 2032 { 2033 u64 found_transid; 2034 struct extent_buffer *leaf; 2035 struct btrfs_ioctl_search_header sh; 2036 struct btrfs_key test; 2037 unsigned long item_off; 2038 unsigned long item_len; 2039 int nritems; 2040 int i; 2041 int slot; 2042 int ret = 0; 2043 2044 leaf = path->nodes[0]; 2045 slot = path->slots[0]; 2046 nritems = btrfs_header_nritems(leaf); 2047 2048 if (btrfs_header_generation(leaf) > sk->max_transid) { 2049 i = nritems; 2050 goto advance_key; 2051 } 2052 found_transid = btrfs_header_generation(leaf); 2053 2054 for (i = slot; i < nritems; i++) { 2055 item_off = btrfs_item_ptr_offset(leaf, i); 2056 item_len = btrfs_item_size_nr(leaf, i); 2057 2058 btrfs_item_key_to_cpu(leaf, key, i); 2059 if (!key_in_sk(key, sk)) 2060 continue; 2061 2062 if (sizeof(sh) + item_len > *buf_size) { 2063 if (*num_found) { 2064 ret = 1; 2065 goto out; 2066 } 2067 2068 /* 2069 * return one empty item back for v1, which does not 2070 * handle -EOVERFLOW 2071 */ 2072 2073 *buf_size = sizeof(sh) + item_len; 2074 item_len = 0; 2075 ret = -EOVERFLOW; 2076 } 2077 2078 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2079 ret = 1; 2080 goto out; 2081 } 2082 2083 sh.objectid = key->objectid; 2084 sh.offset = key->offset; 2085 sh.type = key->type; 2086 sh.len = item_len; 2087 sh.transid = found_transid; 2088 2089 /* 2090 * Copy search result header. If we fault then loop again so we 2091 * can fault in the pages and -EFAULT there if there's a 2092 * problem. Otherwise we'll fault and then copy the buffer in 2093 * properly this next time through 2094 */ 2095 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2096 ret = 0; 2097 goto out; 2098 } 2099 2100 *sk_offset += sizeof(sh); 2101 2102 if (item_len) { 2103 char __user *up = ubuf + *sk_offset; 2104 /* 2105 * Copy the item, same behavior as above, but reset the 2106 * * sk_offset so we copy the full thing again. 2107 */ 2108 if (read_extent_buffer_to_user_nofault(leaf, up, 2109 item_off, item_len)) { 2110 ret = 0; 2111 *sk_offset -= sizeof(sh); 2112 goto out; 2113 } 2114 2115 *sk_offset += item_len; 2116 } 2117 (*num_found)++; 2118 2119 if (ret) /* -EOVERFLOW from above */ 2120 goto out; 2121 2122 if (*num_found >= sk->nr_items) { 2123 ret = 1; 2124 goto out; 2125 } 2126 } 2127 advance_key: 2128 ret = 0; 2129 test.objectid = sk->max_objectid; 2130 test.type = sk->max_type; 2131 test.offset = sk->max_offset; 2132 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2133 ret = 1; 2134 else if (key->offset < (u64)-1) 2135 key->offset++; 2136 else if (key->type < (u8)-1) { 2137 key->offset = 0; 2138 key->type++; 2139 } else if (key->objectid < (u64)-1) { 2140 key->offset = 0; 2141 key->type = 0; 2142 key->objectid++; 2143 } else 2144 ret = 1; 2145 out: 2146 /* 2147 * 0: all items from this leaf copied, continue with next 2148 * 1: * more items can be copied, but unused buffer is too small 2149 * * all items were found 2150 * Either way, it will stops the loop which iterates to the next 2151 * leaf 2152 * -EOVERFLOW: item was to large for buffer 2153 * -EFAULT: could not copy extent buffer back to userspace 2154 */ 2155 return ret; 2156 } 2157 2158 static noinline int search_ioctl(struct inode *inode, 2159 struct btrfs_ioctl_search_key *sk, 2160 size_t *buf_size, 2161 char __user *ubuf) 2162 { 2163 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2164 struct btrfs_root *root; 2165 struct btrfs_key key; 2166 struct btrfs_path *path; 2167 int ret; 2168 int num_found = 0; 2169 unsigned long sk_offset = 0; 2170 2171 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2172 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2173 return -EOVERFLOW; 2174 } 2175 2176 path = btrfs_alloc_path(); 2177 if (!path) 2178 return -ENOMEM; 2179 2180 if (sk->tree_id == 0) { 2181 /* search the root of the inode that was passed */ 2182 root = btrfs_grab_root(BTRFS_I(inode)->root); 2183 } else { 2184 root = btrfs_get_fs_root(info, sk->tree_id, true); 2185 if (IS_ERR(root)) { 2186 btrfs_free_path(path); 2187 return PTR_ERR(root); 2188 } 2189 } 2190 2191 key.objectid = sk->min_objectid; 2192 key.type = sk->min_type; 2193 key.offset = sk->min_offset; 2194 2195 while (1) { 2196 ret = fault_in_pages_writeable(ubuf, *buf_size - sk_offset); 2197 if (ret) 2198 break; 2199 2200 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2201 if (ret != 0) { 2202 if (ret > 0) 2203 ret = 0; 2204 goto err; 2205 } 2206 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2207 &sk_offset, &num_found); 2208 btrfs_release_path(path); 2209 if (ret) 2210 break; 2211 2212 } 2213 if (ret > 0) 2214 ret = 0; 2215 err: 2216 sk->nr_items = num_found; 2217 btrfs_put_root(root); 2218 btrfs_free_path(path); 2219 return ret; 2220 } 2221 2222 static noinline int btrfs_ioctl_tree_search(struct file *file, 2223 void __user *argp) 2224 { 2225 struct btrfs_ioctl_search_args __user *uargs; 2226 struct btrfs_ioctl_search_key sk; 2227 struct inode *inode; 2228 int ret; 2229 size_t buf_size; 2230 2231 if (!capable(CAP_SYS_ADMIN)) 2232 return -EPERM; 2233 2234 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2235 2236 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2237 return -EFAULT; 2238 2239 buf_size = sizeof(uargs->buf); 2240 2241 inode = file_inode(file); 2242 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2243 2244 /* 2245 * In the origin implementation an overflow is handled by returning a 2246 * search header with a len of zero, so reset ret. 2247 */ 2248 if (ret == -EOVERFLOW) 2249 ret = 0; 2250 2251 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2252 ret = -EFAULT; 2253 return ret; 2254 } 2255 2256 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2257 void __user *argp) 2258 { 2259 struct btrfs_ioctl_search_args_v2 __user *uarg; 2260 struct btrfs_ioctl_search_args_v2 args; 2261 struct inode *inode; 2262 int ret; 2263 size_t buf_size; 2264 const size_t buf_limit = SZ_16M; 2265 2266 if (!capable(CAP_SYS_ADMIN)) 2267 return -EPERM; 2268 2269 /* copy search header and buffer size */ 2270 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2271 if (copy_from_user(&args, uarg, sizeof(args))) 2272 return -EFAULT; 2273 2274 buf_size = args.buf_size; 2275 2276 /* limit result size to 16MB */ 2277 if (buf_size > buf_limit) 2278 buf_size = buf_limit; 2279 2280 inode = file_inode(file); 2281 ret = search_ioctl(inode, &args.key, &buf_size, 2282 (char __user *)(&uarg->buf[0])); 2283 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2284 ret = -EFAULT; 2285 else if (ret == -EOVERFLOW && 2286 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2287 ret = -EFAULT; 2288 2289 return ret; 2290 } 2291 2292 /* 2293 * Search INODE_REFs to identify path name of 'dirid' directory 2294 * in a 'tree_id' tree. and sets path name to 'name'. 2295 */ 2296 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2297 u64 tree_id, u64 dirid, char *name) 2298 { 2299 struct btrfs_root *root; 2300 struct btrfs_key key; 2301 char *ptr; 2302 int ret = -1; 2303 int slot; 2304 int len; 2305 int total_len = 0; 2306 struct btrfs_inode_ref *iref; 2307 struct extent_buffer *l; 2308 struct btrfs_path *path; 2309 2310 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2311 name[0]='\0'; 2312 return 0; 2313 } 2314 2315 path = btrfs_alloc_path(); 2316 if (!path) 2317 return -ENOMEM; 2318 2319 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2320 2321 root = btrfs_get_fs_root(info, tree_id, true); 2322 if (IS_ERR(root)) { 2323 ret = PTR_ERR(root); 2324 root = NULL; 2325 goto out; 2326 } 2327 2328 key.objectid = dirid; 2329 key.type = BTRFS_INODE_REF_KEY; 2330 key.offset = (u64)-1; 2331 2332 while (1) { 2333 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2334 if (ret < 0) 2335 goto out; 2336 else if (ret > 0) { 2337 ret = btrfs_previous_item(root, path, dirid, 2338 BTRFS_INODE_REF_KEY); 2339 if (ret < 0) 2340 goto out; 2341 else if (ret > 0) { 2342 ret = -ENOENT; 2343 goto out; 2344 } 2345 } 2346 2347 l = path->nodes[0]; 2348 slot = path->slots[0]; 2349 btrfs_item_key_to_cpu(l, &key, slot); 2350 2351 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2352 len = btrfs_inode_ref_name_len(l, iref); 2353 ptr -= len + 1; 2354 total_len += len + 1; 2355 if (ptr < name) { 2356 ret = -ENAMETOOLONG; 2357 goto out; 2358 } 2359 2360 *(ptr + len) = '/'; 2361 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2362 2363 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2364 break; 2365 2366 btrfs_release_path(path); 2367 key.objectid = key.offset; 2368 key.offset = (u64)-1; 2369 dirid = key.objectid; 2370 } 2371 memmove(name, ptr, total_len); 2372 name[total_len] = '\0'; 2373 ret = 0; 2374 out: 2375 btrfs_put_root(root); 2376 btrfs_free_path(path); 2377 return ret; 2378 } 2379 2380 static int btrfs_search_path_in_tree_user(struct inode *inode, 2381 struct btrfs_ioctl_ino_lookup_user_args *args) 2382 { 2383 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2384 struct super_block *sb = inode->i_sb; 2385 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2386 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2387 u64 dirid = args->dirid; 2388 unsigned long item_off; 2389 unsigned long item_len; 2390 struct btrfs_inode_ref *iref; 2391 struct btrfs_root_ref *rref; 2392 struct btrfs_root *root = NULL; 2393 struct btrfs_path *path; 2394 struct btrfs_key key, key2; 2395 struct extent_buffer *leaf; 2396 struct inode *temp_inode; 2397 char *ptr; 2398 int slot; 2399 int len; 2400 int total_len = 0; 2401 int ret; 2402 2403 path = btrfs_alloc_path(); 2404 if (!path) 2405 return -ENOMEM; 2406 2407 /* 2408 * If the bottom subvolume does not exist directly under upper_limit, 2409 * construct the path in from the bottom up. 2410 */ 2411 if (dirid != upper_limit.objectid) { 2412 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2413 2414 root = btrfs_get_fs_root(fs_info, treeid, true); 2415 if (IS_ERR(root)) { 2416 ret = PTR_ERR(root); 2417 goto out; 2418 } 2419 2420 key.objectid = dirid; 2421 key.type = BTRFS_INODE_REF_KEY; 2422 key.offset = (u64)-1; 2423 while (1) { 2424 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2425 if (ret < 0) { 2426 goto out_put; 2427 } else if (ret > 0) { 2428 ret = btrfs_previous_item(root, path, dirid, 2429 BTRFS_INODE_REF_KEY); 2430 if (ret < 0) { 2431 goto out_put; 2432 } else if (ret > 0) { 2433 ret = -ENOENT; 2434 goto out_put; 2435 } 2436 } 2437 2438 leaf = path->nodes[0]; 2439 slot = path->slots[0]; 2440 btrfs_item_key_to_cpu(leaf, &key, slot); 2441 2442 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2443 len = btrfs_inode_ref_name_len(leaf, iref); 2444 ptr -= len + 1; 2445 total_len += len + 1; 2446 if (ptr < args->path) { 2447 ret = -ENAMETOOLONG; 2448 goto out_put; 2449 } 2450 2451 *(ptr + len) = '/'; 2452 read_extent_buffer(leaf, ptr, 2453 (unsigned long)(iref + 1), len); 2454 2455 /* Check the read+exec permission of this directory */ 2456 ret = btrfs_previous_item(root, path, dirid, 2457 BTRFS_INODE_ITEM_KEY); 2458 if (ret < 0) { 2459 goto out_put; 2460 } else if (ret > 0) { 2461 ret = -ENOENT; 2462 goto out_put; 2463 } 2464 2465 leaf = path->nodes[0]; 2466 slot = path->slots[0]; 2467 btrfs_item_key_to_cpu(leaf, &key2, slot); 2468 if (key2.objectid != dirid) { 2469 ret = -ENOENT; 2470 goto out_put; 2471 } 2472 2473 temp_inode = btrfs_iget(sb, key2.objectid, root); 2474 if (IS_ERR(temp_inode)) { 2475 ret = PTR_ERR(temp_inode); 2476 goto out_put; 2477 } 2478 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2479 iput(temp_inode); 2480 if (ret) { 2481 ret = -EACCES; 2482 goto out_put; 2483 } 2484 2485 if (key.offset == upper_limit.objectid) 2486 break; 2487 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2488 ret = -EACCES; 2489 goto out_put; 2490 } 2491 2492 btrfs_release_path(path); 2493 key.objectid = key.offset; 2494 key.offset = (u64)-1; 2495 dirid = key.objectid; 2496 } 2497 2498 memmove(args->path, ptr, total_len); 2499 args->path[total_len] = '\0'; 2500 btrfs_put_root(root); 2501 root = NULL; 2502 btrfs_release_path(path); 2503 } 2504 2505 /* Get the bottom subvolume's name from ROOT_REF */ 2506 key.objectid = treeid; 2507 key.type = BTRFS_ROOT_REF_KEY; 2508 key.offset = args->treeid; 2509 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2510 if (ret < 0) { 2511 goto out; 2512 } else if (ret > 0) { 2513 ret = -ENOENT; 2514 goto out; 2515 } 2516 2517 leaf = path->nodes[0]; 2518 slot = path->slots[0]; 2519 btrfs_item_key_to_cpu(leaf, &key, slot); 2520 2521 item_off = btrfs_item_ptr_offset(leaf, slot); 2522 item_len = btrfs_item_size_nr(leaf, slot); 2523 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2524 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2525 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2526 ret = -EINVAL; 2527 goto out; 2528 } 2529 2530 /* Copy subvolume's name */ 2531 item_off += sizeof(struct btrfs_root_ref); 2532 item_len -= sizeof(struct btrfs_root_ref); 2533 read_extent_buffer(leaf, args->name, item_off, item_len); 2534 args->name[item_len] = 0; 2535 2536 out_put: 2537 btrfs_put_root(root); 2538 out: 2539 btrfs_free_path(path); 2540 return ret; 2541 } 2542 2543 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2544 void __user *argp) 2545 { 2546 struct btrfs_ioctl_ino_lookup_args *args; 2547 struct inode *inode; 2548 int ret = 0; 2549 2550 args = memdup_user(argp, sizeof(*args)); 2551 if (IS_ERR(args)) 2552 return PTR_ERR(args); 2553 2554 inode = file_inode(file); 2555 2556 /* 2557 * Unprivileged query to obtain the containing subvolume root id. The 2558 * path is reset so it's consistent with btrfs_search_path_in_tree. 2559 */ 2560 if (args->treeid == 0) 2561 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2562 2563 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2564 args->name[0] = 0; 2565 goto out; 2566 } 2567 2568 if (!capable(CAP_SYS_ADMIN)) { 2569 ret = -EPERM; 2570 goto out; 2571 } 2572 2573 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2574 args->treeid, args->objectid, 2575 args->name); 2576 2577 out: 2578 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2579 ret = -EFAULT; 2580 2581 kfree(args); 2582 return ret; 2583 } 2584 2585 /* 2586 * Version of ino_lookup ioctl (unprivileged) 2587 * 2588 * The main differences from ino_lookup ioctl are: 2589 * 2590 * 1. Read + Exec permission will be checked using inode_permission() during 2591 * path construction. -EACCES will be returned in case of failure. 2592 * 2. Path construction will be stopped at the inode number which corresponds 2593 * to the fd with which this ioctl is called. If constructed path does not 2594 * exist under fd's inode, -EACCES will be returned. 2595 * 3. The name of bottom subvolume is also searched and filled. 2596 */ 2597 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2598 { 2599 struct btrfs_ioctl_ino_lookup_user_args *args; 2600 struct inode *inode; 2601 int ret; 2602 2603 args = memdup_user(argp, sizeof(*args)); 2604 if (IS_ERR(args)) 2605 return PTR_ERR(args); 2606 2607 inode = file_inode(file); 2608 2609 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2610 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2611 /* 2612 * The subvolume does not exist under fd with which this is 2613 * called 2614 */ 2615 kfree(args); 2616 return -EACCES; 2617 } 2618 2619 ret = btrfs_search_path_in_tree_user(inode, args); 2620 2621 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2622 ret = -EFAULT; 2623 2624 kfree(args); 2625 return ret; 2626 } 2627 2628 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2629 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2630 { 2631 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2632 struct btrfs_fs_info *fs_info; 2633 struct btrfs_root *root; 2634 struct btrfs_path *path; 2635 struct btrfs_key key; 2636 struct btrfs_root_item *root_item; 2637 struct btrfs_root_ref *rref; 2638 struct extent_buffer *leaf; 2639 unsigned long item_off; 2640 unsigned long item_len; 2641 struct inode *inode; 2642 int slot; 2643 int ret = 0; 2644 2645 path = btrfs_alloc_path(); 2646 if (!path) 2647 return -ENOMEM; 2648 2649 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2650 if (!subvol_info) { 2651 btrfs_free_path(path); 2652 return -ENOMEM; 2653 } 2654 2655 inode = file_inode(file); 2656 fs_info = BTRFS_I(inode)->root->fs_info; 2657 2658 /* Get root_item of inode's subvolume */ 2659 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2660 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2661 if (IS_ERR(root)) { 2662 ret = PTR_ERR(root); 2663 goto out_free; 2664 } 2665 root_item = &root->root_item; 2666 2667 subvol_info->treeid = key.objectid; 2668 2669 subvol_info->generation = btrfs_root_generation(root_item); 2670 subvol_info->flags = btrfs_root_flags(root_item); 2671 2672 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2673 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2674 BTRFS_UUID_SIZE); 2675 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2676 BTRFS_UUID_SIZE); 2677 2678 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2679 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2680 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2681 2682 subvol_info->otransid = btrfs_root_otransid(root_item); 2683 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2684 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2685 2686 subvol_info->stransid = btrfs_root_stransid(root_item); 2687 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2688 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2689 2690 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2691 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2692 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2693 2694 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2695 /* Search root tree for ROOT_BACKREF of this subvolume */ 2696 key.type = BTRFS_ROOT_BACKREF_KEY; 2697 key.offset = 0; 2698 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2699 if (ret < 0) { 2700 goto out; 2701 } else if (path->slots[0] >= 2702 btrfs_header_nritems(path->nodes[0])) { 2703 ret = btrfs_next_leaf(fs_info->tree_root, path); 2704 if (ret < 0) { 2705 goto out; 2706 } else if (ret > 0) { 2707 ret = -EUCLEAN; 2708 goto out; 2709 } 2710 } 2711 2712 leaf = path->nodes[0]; 2713 slot = path->slots[0]; 2714 btrfs_item_key_to_cpu(leaf, &key, slot); 2715 if (key.objectid == subvol_info->treeid && 2716 key.type == BTRFS_ROOT_BACKREF_KEY) { 2717 subvol_info->parent_id = key.offset; 2718 2719 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2720 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2721 2722 item_off = btrfs_item_ptr_offset(leaf, slot) 2723 + sizeof(struct btrfs_root_ref); 2724 item_len = btrfs_item_size_nr(leaf, slot) 2725 - sizeof(struct btrfs_root_ref); 2726 read_extent_buffer(leaf, subvol_info->name, 2727 item_off, item_len); 2728 } else { 2729 ret = -ENOENT; 2730 goto out; 2731 } 2732 } 2733 2734 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2735 ret = -EFAULT; 2736 2737 out: 2738 btrfs_put_root(root); 2739 out_free: 2740 btrfs_free_path(path); 2741 kfree(subvol_info); 2742 return ret; 2743 } 2744 2745 /* 2746 * Return ROOT_REF information of the subvolume containing this inode 2747 * except the subvolume name. 2748 */ 2749 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2750 { 2751 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2752 struct btrfs_root_ref *rref; 2753 struct btrfs_root *root; 2754 struct btrfs_path *path; 2755 struct btrfs_key key; 2756 struct extent_buffer *leaf; 2757 struct inode *inode; 2758 u64 objectid; 2759 int slot; 2760 int ret; 2761 u8 found; 2762 2763 path = btrfs_alloc_path(); 2764 if (!path) 2765 return -ENOMEM; 2766 2767 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2768 if (IS_ERR(rootrefs)) { 2769 btrfs_free_path(path); 2770 return PTR_ERR(rootrefs); 2771 } 2772 2773 inode = file_inode(file); 2774 root = BTRFS_I(inode)->root->fs_info->tree_root; 2775 objectid = BTRFS_I(inode)->root->root_key.objectid; 2776 2777 key.objectid = objectid; 2778 key.type = BTRFS_ROOT_REF_KEY; 2779 key.offset = rootrefs->min_treeid; 2780 found = 0; 2781 2782 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2783 if (ret < 0) { 2784 goto out; 2785 } else if (path->slots[0] >= 2786 btrfs_header_nritems(path->nodes[0])) { 2787 ret = btrfs_next_leaf(root, path); 2788 if (ret < 0) { 2789 goto out; 2790 } else if (ret > 0) { 2791 ret = -EUCLEAN; 2792 goto out; 2793 } 2794 } 2795 while (1) { 2796 leaf = path->nodes[0]; 2797 slot = path->slots[0]; 2798 2799 btrfs_item_key_to_cpu(leaf, &key, slot); 2800 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2801 ret = 0; 2802 goto out; 2803 } 2804 2805 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2806 ret = -EOVERFLOW; 2807 goto out; 2808 } 2809 2810 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2811 rootrefs->rootref[found].treeid = key.offset; 2812 rootrefs->rootref[found].dirid = 2813 btrfs_root_ref_dirid(leaf, rref); 2814 found++; 2815 2816 ret = btrfs_next_item(root, path); 2817 if (ret < 0) { 2818 goto out; 2819 } else if (ret > 0) { 2820 ret = -EUCLEAN; 2821 goto out; 2822 } 2823 } 2824 2825 out: 2826 if (!ret || ret == -EOVERFLOW) { 2827 rootrefs->num_items = found; 2828 /* update min_treeid for next search */ 2829 if (found) 2830 rootrefs->min_treeid = 2831 rootrefs->rootref[found - 1].treeid + 1; 2832 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2833 ret = -EFAULT; 2834 } 2835 2836 kfree(rootrefs); 2837 btrfs_free_path(path); 2838 2839 return ret; 2840 } 2841 2842 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2843 void __user *arg, 2844 bool destroy_v2) 2845 { 2846 struct dentry *parent = file->f_path.dentry; 2847 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2848 struct dentry *dentry; 2849 struct inode *dir = d_inode(parent); 2850 struct inode *inode; 2851 struct btrfs_root *root = BTRFS_I(dir)->root; 2852 struct btrfs_root *dest = NULL; 2853 struct btrfs_ioctl_vol_args *vol_args = NULL; 2854 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2855 char *subvol_name, *subvol_name_ptr = NULL; 2856 int subvol_namelen; 2857 int err = 0; 2858 bool destroy_parent = false; 2859 2860 if (destroy_v2) { 2861 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2862 if (IS_ERR(vol_args2)) 2863 return PTR_ERR(vol_args2); 2864 2865 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2866 err = -EOPNOTSUPP; 2867 goto out; 2868 } 2869 2870 /* 2871 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2872 * name, same as v1 currently does. 2873 */ 2874 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2875 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2876 subvol_name = vol_args2->name; 2877 2878 err = mnt_want_write_file(file); 2879 if (err) 2880 goto out; 2881 } else { 2882 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2883 err = -EINVAL; 2884 goto out; 2885 } 2886 2887 err = mnt_want_write_file(file); 2888 if (err) 2889 goto out; 2890 2891 dentry = btrfs_get_dentry(fs_info->sb, 2892 BTRFS_FIRST_FREE_OBJECTID, 2893 vol_args2->subvolid, 0, 0); 2894 if (IS_ERR(dentry)) { 2895 err = PTR_ERR(dentry); 2896 goto out_drop_write; 2897 } 2898 2899 /* 2900 * Change the default parent since the subvolume being 2901 * deleted can be outside of the current mount point. 2902 */ 2903 parent = btrfs_get_parent(dentry); 2904 2905 /* 2906 * At this point dentry->d_name can point to '/' if the 2907 * subvolume we want to destroy is outsite of the 2908 * current mount point, so we need to release the 2909 * current dentry and execute the lookup to return a new 2910 * one with ->d_name pointing to the 2911 * <mount point>/subvol_name. 2912 */ 2913 dput(dentry); 2914 if (IS_ERR(parent)) { 2915 err = PTR_ERR(parent); 2916 goto out_drop_write; 2917 } 2918 dir = d_inode(parent); 2919 2920 /* 2921 * If v2 was used with SPEC_BY_ID, a new parent was 2922 * allocated since the subvolume can be outside of the 2923 * current mount point. Later on we need to release this 2924 * new parent dentry. 2925 */ 2926 destroy_parent = true; 2927 2928 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2929 fs_info, vol_args2->subvolid); 2930 if (IS_ERR(subvol_name_ptr)) { 2931 err = PTR_ERR(subvol_name_ptr); 2932 goto free_parent; 2933 } 2934 /* subvol_name_ptr is already NULL termined */ 2935 subvol_name = (char *)kbasename(subvol_name_ptr); 2936 } 2937 } else { 2938 vol_args = memdup_user(arg, sizeof(*vol_args)); 2939 if (IS_ERR(vol_args)) 2940 return PTR_ERR(vol_args); 2941 2942 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2943 subvol_name = vol_args->name; 2944 2945 err = mnt_want_write_file(file); 2946 if (err) 2947 goto out; 2948 } 2949 2950 subvol_namelen = strlen(subvol_name); 2951 2952 if (strchr(subvol_name, '/') || 2953 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2954 err = -EINVAL; 2955 goto free_subvol_name; 2956 } 2957 2958 if (!S_ISDIR(dir->i_mode)) { 2959 err = -ENOTDIR; 2960 goto free_subvol_name; 2961 } 2962 2963 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2964 if (err == -EINTR) 2965 goto free_subvol_name; 2966 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 2967 if (IS_ERR(dentry)) { 2968 err = PTR_ERR(dentry); 2969 goto out_unlock_dir; 2970 } 2971 2972 if (d_really_is_negative(dentry)) { 2973 err = -ENOENT; 2974 goto out_dput; 2975 } 2976 2977 inode = d_inode(dentry); 2978 dest = BTRFS_I(inode)->root; 2979 if (!capable(CAP_SYS_ADMIN)) { 2980 /* 2981 * Regular user. Only allow this with a special mount 2982 * option, when the user has write+exec access to the 2983 * subvol root, and when rmdir(2) would have been 2984 * allowed. 2985 * 2986 * Note that this is _not_ check that the subvol is 2987 * empty or doesn't contain data that we wouldn't 2988 * otherwise be able to delete. 2989 * 2990 * Users who want to delete empty subvols should try 2991 * rmdir(2). 2992 */ 2993 err = -EPERM; 2994 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2995 goto out_dput; 2996 2997 /* 2998 * Do not allow deletion if the parent dir is the same 2999 * as the dir to be deleted. That means the ioctl 3000 * must be called on the dentry referencing the root 3001 * of the subvol, not a random directory contained 3002 * within it. 3003 */ 3004 err = -EINVAL; 3005 if (root == dest) 3006 goto out_dput; 3007 3008 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 3009 if (err) 3010 goto out_dput; 3011 } 3012 3013 /* check if subvolume may be deleted by a user */ 3014 err = btrfs_may_delete(dir, dentry, 1); 3015 if (err) 3016 goto out_dput; 3017 3018 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3019 err = -EINVAL; 3020 goto out_dput; 3021 } 3022 3023 inode_lock(inode); 3024 err = btrfs_delete_subvolume(dir, dentry); 3025 inode_unlock(inode); 3026 if (!err) { 3027 fsnotify_rmdir(dir, dentry); 3028 d_delete(dentry); 3029 } 3030 3031 out_dput: 3032 dput(dentry); 3033 out_unlock_dir: 3034 inode_unlock(dir); 3035 free_subvol_name: 3036 kfree(subvol_name_ptr); 3037 free_parent: 3038 if (destroy_parent) 3039 dput(parent); 3040 out_drop_write: 3041 mnt_drop_write_file(file); 3042 out: 3043 kfree(vol_args2); 3044 kfree(vol_args); 3045 return err; 3046 } 3047 3048 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3049 { 3050 struct inode *inode = file_inode(file); 3051 struct btrfs_root *root = BTRFS_I(inode)->root; 3052 struct btrfs_ioctl_defrag_range_args *range; 3053 int ret; 3054 3055 ret = mnt_want_write_file(file); 3056 if (ret) 3057 return ret; 3058 3059 if (btrfs_root_readonly(root)) { 3060 ret = -EROFS; 3061 goto out; 3062 } 3063 3064 switch (inode->i_mode & S_IFMT) { 3065 case S_IFDIR: 3066 if (!capable(CAP_SYS_ADMIN)) { 3067 ret = -EPERM; 3068 goto out; 3069 } 3070 ret = btrfs_defrag_root(root); 3071 break; 3072 case S_IFREG: 3073 /* 3074 * Note that this does not check the file descriptor for write 3075 * access. This prevents defragmenting executables that are 3076 * running and allows defrag on files open in read-only mode. 3077 */ 3078 if (!capable(CAP_SYS_ADMIN) && 3079 inode_permission(inode, MAY_WRITE)) { 3080 ret = -EPERM; 3081 goto out; 3082 } 3083 3084 range = kzalloc(sizeof(*range), GFP_KERNEL); 3085 if (!range) { 3086 ret = -ENOMEM; 3087 goto out; 3088 } 3089 3090 if (argp) { 3091 if (copy_from_user(range, argp, 3092 sizeof(*range))) { 3093 ret = -EFAULT; 3094 kfree(range); 3095 goto out; 3096 } 3097 /* compression requires us to start the IO */ 3098 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3099 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3100 range->extent_thresh = (u32)-1; 3101 } 3102 } else { 3103 /* the rest are all set to zero by kzalloc */ 3104 range->len = (u64)-1; 3105 } 3106 ret = btrfs_defrag_file(file_inode(file), file, 3107 range, BTRFS_OLDEST_GENERATION, 0); 3108 if (ret > 0) 3109 ret = 0; 3110 kfree(range); 3111 break; 3112 default: 3113 ret = -EINVAL; 3114 } 3115 out: 3116 mnt_drop_write_file(file); 3117 return ret; 3118 } 3119 3120 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3121 { 3122 struct btrfs_ioctl_vol_args *vol_args; 3123 int ret; 3124 3125 if (!capable(CAP_SYS_ADMIN)) 3126 return -EPERM; 3127 3128 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3129 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3130 3131 vol_args = memdup_user(arg, sizeof(*vol_args)); 3132 if (IS_ERR(vol_args)) { 3133 ret = PTR_ERR(vol_args); 3134 goto out; 3135 } 3136 3137 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3138 ret = btrfs_init_new_device(fs_info, vol_args->name); 3139 3140 if (!ret) 3141 btrfs_info(fs_info, "disk added %s", vol_args->name); 3142 3143 kfree(vol_args); 3144 out: 3145 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3146 return ret; 3147 } 3148 3149 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3150 { 3151 struct inode *inode = file_inode(file); 3152 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3153 struct btrfs_ioctl_vol_args_v2 *vol_args; 3154 int ret; 3155 3156 if (!capable(CAP_SYS_ADMIN)) 3157 return -EPERM; 3158 3159 ret = mnt_want_write_file(file); 3160 if (ret) 3161 return ret; 3162 3163 vol_args = memdup_user(arg, sizeof(*vol_args)); 3164 if (IS_ERR(vol_args)) { 3165 ret = PTR_ERR(vol_args); 3166 goto err_drop; 3167 } 3168 3169 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3170 ret = -EOPNOTSUPP; 3171 goto out; 3172 } 3173 3174 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3175 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3176 goto out; 3177 } 3178 3179 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3180 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3181 } else { 3182 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3183 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3184 } 3185 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3186 3187 if (!ret) { 3188 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3189 btrfs_info(fs_info, "device deleted: id %llu", 3190 vol_args->devid); 3191 else 3192 btrfs_info(fs_info, "device deleted: %s", 3193 vol_args->name); 3194 } 3195 out: 3196 kfree(vol_args); 3197 err_drop: 3198 mnt_drop_write_file(file); 3199 return ret; 3200 } 3201 3202 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3203 { 3204 struct inode *inode = file_inode(file); 3205 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3206 struct btrfs_ioctl_vol_args *vol_args; 3207 int ret; 3208 3209 if (!capable(CAP_SYS_ADMIN)) 3210 return -EPERM; 3211 3212 ret = mnt_want_write_file(file); 3213 if (ret) 3214 return ret; 3215 3216 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3217 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3218 goto out_drop_write; 3219 } 3220 3221 vol_args = memdup_user(arg, sizeof(*vol_args)); 3222 if (IS_ERR(vol_args)) { 3223 ret = PTR_ERR(vol_args); 3224 goto out; 3225 } 3226 3227 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3228 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3229 3230 if (!ret) 3231 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3232 kfree(vol_args); 3233 out: 3234 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3235 out_drop_write: 3236 mnt_drop_write_file(file); 3237 3238 return ret; 3239 } 3240 3241 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3242 void __user *arg) 3243 { 3244 struct btrfs_ioctl_fs_info_args *fi_args; 3245 struct btrfs_device *device; 3246 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3247 u64 flags_in; 3248 int ret = 0; 3249 3250 fi_args = memdup_user(arg, sizeof(*fi_args)); 3251 if (IS_ERR(fi_args)) 3252 return PTR_ERR(fi_args); 3253 3254 flags_in = fi_args->flags; 3255 memset(fi_args, 0, sizeof(*fi_args)); 3256 3257 rcu_read_lock(); 3258 fi_args->num_devices = fs_devices->num_devices; 3259 3260 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3261 if (device->devid > fi_args->max_id) 3262 fi_args->max_id = device->devid; 3263 } 3264 rcu_read_unlock(); 3265 3266 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3267 fi_args->nodesize = fs_info->nodesize; 3268 fi_args->sectorsize = fs_info->sectorsize; 3269 fi_args->clone_alignment = fs_info->sectorsize; 3270 3271 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3272 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3273 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3274 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3275 } 3276 3277 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3278 fi_args->generation = fs_info->generation; 3279 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3280 } 3281 3282 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3283 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3284 sizeof(fi_args->metadata_uuid)); 3285 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3286 } 3287 3288 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3289 ret = -EFAULT; 3290 3291 kfree(fi_args); 3292 return ret; 3293 } 3294 3295 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3296 void __user *arg) 3297 { 3298 struct btrfs_ioctl_dev_info_args *di_args; 3299 struct btrfs_device *dev; 3300 int ret = 0; 3301 char *s_uuid = NULL; 3302 3303 di_args = memdup_user(arg, sizeof(*di_args)); 3304 if (IS_ERR(di_args)) 3305 return PTR_ERR(di_args); 3306 3307 if (!btrfs_is_empty_uuid(di_args->uuid)) 3308 s_uuid = di_args->uuid; 3309 3310 rcu_read_lock(); 3311 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3312 NULL, true); 3313 3314 if (!dev) { 3315 ret = -ENODEV; 3316 goto out; 3317 } 3318 3319 di_args->devid = dev->devid; 3320 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3321 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3322 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3323 if (dev->name) { 3324 strncpy(di_args->path, rcu_str_deref(dev->name), 3325 sizeof(di_args->path) - 1); 3326 di_args->path[sizeof(di_args->path) - 1] = 0; 3327 } else { 3328 di_args->path[0] = '\0'; 3329 } 3330 3331 out: 3332 rcu_read_unlock(); 3333 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3334 ret = -EFAULT; 3335 3336 kfree(di_args); 3337 return ret; 3338 } 3339 3340 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3341 { 3342 struct inode *inode = file_inode(file); 3343 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3344 struct btrfs_root *root = BTRFS_I(inode)->root; 3345 struct btrfs_root *new_root; 3346 struct btrfs_dir_item *di; 3347 struct btrfs_trans_handle *trans; 3348 struct btrfs_path *path = NULL; 3349 struct btrfs_disk_key disk_key; 3350 u64 objectid = 0; 3351 u64 dir_id; 3352 int ret; 3353 3354 if (!capable(CAP_SYS_ADMIN)) 3355 return -EPERM; 3356 3357 ret = mnt_want_write_file(file); 3358 if (ret) 3359 return ret; 3360 3361 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3362 ret = -EFAULT; 3363 goto out; 3364 } 3365 3366 if (!objectid) 3367 objectid = BTRFS_FS_TREE_OBJECTID; 3368 3369 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3370 if (IS_ERR(new_root)) { 3371 ret = PTR_ERR(new_root); 3372 goto out; 3373 } 3374 if (!is_fstree(new_root->root_key.objectid)) { 3375 ret = -ENOENT; 3376 goto out_free; 3377 } 3378 3379 path = btrfs_alloc_path(); 3380 if (!path) { 3381 ret = -ENOMEM; 3382 goto out_free; 3383 } 3384 path->leave_spinning = 1; 3385 3386 trans = btrfs_start_transaction(root, 1); 3387 if (IS_ERR(trans)) { 3388 ret = PTR_ERR(trans); 3389 goto out_free; 3390 } 3391 3392 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3393 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3394 dir_id, "default", 7, 1); 3395 if (IS_ERR_OR_NULL(di)) { 3396 btrfs_release_path(path); 3397 btrfs_end_transaction(trans); 3398 btrfs_err(fs_info, 3399 "Umm, you don't have the default diritem, this isn't going to work"); 3400 ret = -ENOENT; 3401 goto out_free; 3402 } 3403 3404 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3405 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3406 btrfs_mark_buffer_dirty(path->nodes[0]); 3407 btrfs_release_path(path); 3408 3409 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3410 btrfs_end_transaction(trans); 3411 out_free: 3412 btrfs_put_root(new_root); 3413 btrfs_free_path(path); 3414 out: 3415 mnt_drop_write_file(file); 3416 return ret; 3417 } 3418 3419 static void get_block_group_info(struct list_head *groups_list, 3420 struct btrfs_ioctl_space_info *space) 3421 { 3422 struct btrfs_block_group *block_group; 3423 3424 space->total_bytes = 0; 3425 space->used_bytes = 0; 3426 space->flags = 0; 3427 list_for_each_entry(block_group, groups_list, list) { 3428 space->flags = block_group->flags; 3429 space->total_bytes += block_group->length; 3430 space->used_bytes += block_group->used; 3431 } 3432 } 3433 3434 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3435 void __user *arg) 3436 { 3437 struct btrfs_ioctl_space_args space_args; 3438 struct btrfs_ioctl_space_info space; 3439 struct btrfs_ioctl_space_info *dest; 3440 struct btrfs_ioctl_space_info *dest_orig; 3441 struct btrfs_ioctl_space_info __user *user_dest; 3442 struct btrfs_space_info *info; 3443 static const u64 types[] = { 3444 BTRFS_BLOCK_GROUP_DATA, 3445 BTRFS_BLOCK_GROUP_SYSTEM, 3446 BTRFS_BLOCK_GROUP_METADATA, 3447 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3448 }; 3449 int num_types = 4; 3450 int alloc_size; 3451 int ret = 0; 3452 u64 slot_count = 0; 3453 int i, c; 3454 3455 if (copy_from_user(&space_args, 3456 (struct btrfs_ioctl_space_args __user *)arg, 3457 sizeof(space_args))) 3458 return -EFAULT; 3459 3460 for (i = 0; i < num_types; i++) { 3461 struct btrfs_space_info *tmp; 3462 3463 info = NULL; 3464 rcu_read_lock(); 3465 list_for_each_entry_rcu(tmp, &fs_info->space_info, 3466 list) { 3467 if (tmp->flags == types[i]) { 3468 info = tmp; 3469 break; 3470 } 3471 } 3472 rcu_read_unlock(); 3473 3474 if (!info) 3475 continue; 3476 3477 down_read(&info->groups_sem); 3478 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3479 if (!list_empty(&info->block_groups[c])) 3480 slot_count++; 3481 } 3482 up_read(&info->groups_sem); 3483 } 3484 3485 /* 3486 * Global block reserve, exported as a space_info 3487 */ 3488 slot_count++; 3489 3490 /* space_slots == 0 means they are asking for a count */ 3491 if (space_args.space_slots == 0) { 3492 space_args.total_spaces = slot_count; 3493 goto out; 3494 } 3495 3496 slot_count = min_t(u64, space_args.space_slots, slot_count); 3497 3498 alloc_size = sizeof(*dest) * slot_count; 3499 3500 /* we generally have at most 6 or so space infos, one for each raid 3501 * level. So, a whole page should be more than enough for everyone 3502 */ 3503 if (alloc_size > PAGE_SIZE) 3504 return -ENOMEM; 3505 3506 space_args.total_spaces = 0; 3507 dest = kmalloc(alloc_size, GFP_KERNEL); 3508 if (!dest) 3509 return -ENOMEM; 3510 dest_orig = dest; 3511 3512 /* now we have a buffer to copy into */ 3513 for (i = 0; i < num_types; i++) { 3514 struct btrfs_space_info *tmp; 3515 3516 if (!slot_count) 3517 break; 3518 3519 info = NULL; 3520 rcu_read_lock(); 3521 list_for_each_entry_rcu(tmp, &fs_info->space_info, 3522 list) { 3523 if (tmp->flags == types[i]) { 3524 info = tmp; 3525 break; 3526 } 3527 } 3528 rcu_read_unlock(); 3529 3530 if (!info) 3531 continue; 3532 down_read(&info->groups_sem); 3533 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3534 if (!list_empty(&info->block_groups[c])) { 3535 get_block_group_info(&info->block_groups[c], 3536 &space); 3537 memcpy(dest, &space, sizeof(space)); 3538 dest++; 3539 space_args.total_spaces++; 3540 slot_count--; 3541 } 3542 if (!slot_count) 3543 break; 3544 } 3545 up_read(&info->groups_sem); 3546 } 3547 3548 /* 3549 * Add global block reserve 3550 */ 3551 if (slot_count) { 3552 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3553 3554 spin_lock(&block_rsv->lock); 3555 space.total_bytes = block_rsv->size; 3556 space.used_bytes = block_rsv->size - block_rsv->reserved; 3557 spin_unlock(&block_rsv->lock); 3558 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3559 memcpy(dest, &space, sizeof(space)); 3560 space_args.total_spaces++; 3561 } 3562 3563 user_dest = (struct btrfs_ioctl_space_info __user *) 3564 (arg + sizeof(struct btrfs_ioctl_space_args)); 3565 3566 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3567 ret = -EFAULT; 3568 3569 kfree(dest_orig); 3570 out: 3571 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3572 ret = -EFAULT; 3573 3574 return ret; 3575 } 3576 3577 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3578 void __user *argp) 3579 { 3580 struct btrfs_trans_handle *trans; 3581 u64 transid; 3582 int ret; 3583 3584 trans = btrfs_attach_transaction_barrier(root); 3585 if (IS_ERR(trans)) { 3586 if (PTR_ERR(trans) != -ENOENT) 3587 return PTR_ERR(trans); 3588 3589 /* No running transaction, don't bother */ 3590 transid = root->fs_info->last_trans_committed; 3591 goto out; 3592 } 3593 transid = trans->transid; 3594 ret = btrfs_commit_transaction_async(trans, 0); 3595 if (ret) { 3596 btrfs_end_transaction(trans); 3597 return ret; 3598 } 3599 out: 3600 if (argp) 3601 if (copy_to_user(argp, &transid, sizeof(transid))) 3602 return -EFAULT; 3603 return 0; 3604 } 3605 3606 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3607 void __user *argp) 3608 { 3609 u64 transid; 3610 3611 if (argp) { 3612 if (copy_from_user(&transid, argp, sizeof(transid))) 3613 return -EFAULT; 3614 } else { 3615 transid = 0; /* current trans */ 3616 } 3617 return btrfs_wait_for_commit(fs_info, transid); 3618 } 3619 3620 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3621 { 3622 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3623 struct btrfs_ioctl_scrub_args *sa; 3624 int ret; 3625 3626 if (!capable(CAP_SYS_ADMIN)) 3627 return -EPERM; 3628 3629 sa = memdup_user(arg, sizeof(*sa)); 3630 if (IS_ERR(sa)) 3631 return PTR_ERR(sa); 3632 3633 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3634 ret = mnt_want_write_file(file); 3635 if (ret) 3636 goto out; 3637 } 3638 3639 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3640 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3641 0); 3642 3643 /* 3644 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3645 * error. This is important as it allows user space to know how much 3646 * progress scrub has done. For example, if scrub is canceled we get 3647 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3648 * space. Later user space can inspect the progress from the structure 3649 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3650 * previously (btrfs-progs does this). 3651 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3652 * then return -EFAULT to signal the structure was not copied or it may 3653 * be corrupt and unreliable due to a partial copy. 3654 */ 3655 if (copy_to_user(arg, sa, sizeof(*sa))) 3656 ret = -EFAULT; 3657 3658 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3659 mnt_drop_write_file(file); 3660 out: 3661 kfree(sa); 3662 return ret; 3663 } 3664 3665 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3666 { 3667 if (!capable(CAP_SYS_ADMIN)) 3668 return -EPERM; 3669 3670 return btrfs_scrub_cancel(fs_info); 3671 } 3672 3673 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3674 void __user *arg) 3675 { 3676 struct btrfs_ioctl_scrub_args *sa; 3677 int ret; 3678 3679 if (!capable(CAP_SYS_ADMIN)) 3680 return -EPERM; 3681 3682 sa = memdup_user(arg, sizeof(*sa)); 3683 if (IS_ERR(sa)) 3684 return PTR_ERR(sa); 3685 3686 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3687 3688 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3689 ret = -EFAULT; 3690 3691 kfree(sa); 3692 return ret; 3693 } 3694 3695 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3696 void __user *arg) 3697 { 3698 struct btrfs_ioctl_get_dev_stats *sa; 3699 int ret; 3700 3701 sa = memdup_user(arg, sizeof(*sa)); 3702 if (IS_ERR(sa)) 3703 return PTR_ERR(sa); 3704 3705 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3706 kfree(sa); 3707 return -EPERM; 3708 } 3709 3710 ret = btrfs_get_dev_stats(fs_info, sa); 3711 3712 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3713 ret = -EFAULT; 3714 3715 kfree(sa); 3716 return ret; 3717 } 3718 3719 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3720 void __user *arg) 3721 { 3722 struct btrfs_ioctl_dev_replace_args *p; 3723 int ret; 3724 3725 if (!capable(CAP_SYS_ADMIN)) 3726 return -EPERM; 3727 3728 p = memdup_user(arg, sizeof(*p)); 3729 if (IS_ERR(p)) 3730 return PTR_ERR(p); 3731 3732 switch (p->cmd) { 3733 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3734 if (sb_rdonly(fs_info->sb)) { 3735 ret = -EROFS; 3736 goto out; 3737 } 3738 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3739 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3740 } else { 3741 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3742 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3743 } 3744 break; 3745 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3746 btrfs_dev_replace_status(fs_info, p); 3747 ret = 0; 3748 break; 3749 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3750 p->result = btrfs_dev_replace_cancel(fs_info); 3751 ret = 0; 3752 break; 3753 default: 3754 ret = -EINVAL; 3755 break; 3756 } 3757 3758 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3759 ret = -EFAULT; 3760 out: 3761 kfree(p); 3762 return ret; 3763 } 3764 3765 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3766 { 3767 int ret = 0; 3768 int i; 3769 u64 rel_ptr; 3770 int size; 3771 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3772 struct inode_fs_paths *ipath = NULL; 3773 struct btrfs_path *path; 3774 3775 if (!capable(CAP_DAC_READ_SEARCH)) 3776 return -EPERM; 3777 3778 path = btrfs_alloc_path(); 3779 if (!path) { 3780 ret = -ENOMEM; 3781 goto out; 3782 } 3783 3784 ipa = memdup_user(arg, sizeof(*ipa)); 3785 if (IS_ERR(ipa)) { 3786 ret = PTR_ERR(ipa); 3787 ipa = NULL; 3788 goto out; 3789 } 3790 3791 size = min_t(u32, ipa->size, 4096); 3792 ipath = init_ipath(size, root, path); 3793 if (IS_ERR(ipath)) { 3794 ret = PTR_ERR(ipath); 3795 ipath = NULL; 3796 goto out; 3797 } 3798 3799 ret = paths_from_inode(ipa->inum, ipath); 3800 if (ret < 0) 3801 goto out; 3802 3803 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3804 rel_ptr = ipath->fspath->val[i] - 3805 (u64)(unsigned long)ipath->fspath->val; 3806 ipath->fspath->val[i] = rel_ptr; 3807 } 3808 3809 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3810 ipath->fspath, size); 3811 if (ret) { 3812 ret = -EFAULT; 3813 goto out; 3814 } 3815 3816 out: 3817 btrfs_free_path(path); 3818 free_ipath(ipath); 3819 kfree(ipa); 3820 3821 return ret; 3822 } 3823 3824 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3825 { 3826 struct btrfs_data_container *inodes = ctx; 3827 const size_t c = 3 * sizeof(u64); 3828 3829 if (inodes->bytes_left >= c) { 3830 inodes->bytes_left -= c; 3831 inodes->val[inodes->elem_cnt] = inum; 3832 inodes->val[inodes->elem_cnt + 1] = offset; 3833 inodes->val[inodes->elem_cnt + 2] = root; 3834 inodes->elem_cnt += 3; 3835 } else { 3836 inodes->bytes_missing += c - inodes->bytes_left; 3837 inodes->bytes_left = 0; 3838 inodes->elem_missed += 3; 3839 } 3840 3841 return 0; 3842 } 3843 3844 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3845 void __user *arg, int version) 3846 { 3847 int ret = 0; 3848 int size; 3849 struct btrfs_ioctl_logical_ino_args *loi; 3850 struct btrfs_data_container *inodes = NULL; 3851 struct btrfs_path *path = NULL; 3852 bool ignore_offset; 3853 3854 if (!capable(CAP_SYS_ADMIN)) 3855 return -EPERM; 3856 3857 loi = memdup_user(arg, sizeof(*loi)); 3858 if (IS_ERR(loi)) 3859 return PTR_ERR(loi); 3860 3861 if (version == 1) { 3862 ignore_offset = false; 3863 size = min_t(u32, loi->size, SZ_64K); 3864 } else { 3865 /* All reserved bits must be 0 for now */ 3866 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3867 ret = -EINVAL; 3868 goto out_loi; 3869 } 3870 /* Only accept flags we have defined so far */ 3871 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3872 ret = -EINVAL; 3873 goto out_loi; 3874 } 3875 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3876 size = min_t(u32, loi->size, SZ_16M); 3877 } 3878 3879 path = btrfs_alloc_path(); 3880 if (!path) { 3881 ret = -ENOMEM; 3882 goto out; 3883 } 3884 3885 inodes = init_data_container(size); 3886 if (IS_ERR(inodes)) { 3887 ret = PTR_ERR(inodes); 3888 inodes = NULL; 3889 goto out; 3890 } 3891 3892 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3893 build_ino_list, inodes, ignore_offset); 3894 if (ret == -EINVAL) 3895 ret = -ENOENT; 3896 if (ret < 0) 3897 goto out; 3898 3899 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3900 size); 3901 if (ret) 3902 ret = -EFAULT; 3903 3904 out: 3905 btrfs_free_path(path); 3906 kvfree(inodes); 3907 out_loi: 3908 kfree(loi); 3909 3910 return ret; 3911 } 3912 3913 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3914 struct btrfs_ioctl_balance_args *bargs) 3915 { 3916 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3917 3918 bargs->flags = bctl->flags; 3919 3920 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3921 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3922 if (atomic_read(&fs_info->balance_pause_req)) 3923 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3924 if (atomic_read(&fs_info->balance_cancel_req)) 3925 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3926 3927 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3928 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3929 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3930 3931 spin_lock(&fs_info->balance_lock); 3932 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3933 spin_unlock(&fs_info->balance_lock); 3934 } 3935 3936 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3937 { 3938 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3939 struct btrfs_fs_info *fs_info = root->fs_info; 3940 struct btrfs_ioctl_balance_args *bargs; 3941 struct btrfs_balance_control *bctl; 3942 bool need_unlock; /* for mut. excl. ops lock */ 3943 int ret; 3944 3945 if (!capable(CAP_SYS_ADMIN)) 3946 return -EPERM; 3947 3948 ret = mnt_want_write_file(file); 3949 if (ret) 3950 return ret; 3951 3952 again: 3953 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3954 mutex_lock(&fs_info->balance_mutex); 3955 need_unlock = true; 3956 goto locked; 3957 } 3958 3959 /* 3960 * mut. excl. ops lock is locked. Three possibilities: 3961 * (1) some other op is running 3962 * (2) balance is running 3963 * (3) balance is paused -- special case (think resume) 3964 */ 3965 mutex_lock(&fs_info->balance_mutex); 3966 if (fs_info->balance_ctl) { 3967 /* this is either (2) or (3) */ 3968 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3969 mutex_unlock(&fs_info->balance_mutex); 3970 /* 3971 * Lock released to allow other waiters to continue, 3972 * we'll reexamine the status again. 3973 */ 3974 mutex_lock(&fs_info->balance_mutex); 3975 3976 if (fs_info->balance_ctl && 3977 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3978 /* this is (3) */ 3979 need_unlock = false; 3980 goto locked; 3981 } 3982 3983 mutex_unlock(&fs_info->balance_mutex); 3984 goto again; 3985 } else { 3986 /* this is (2) */ 3987 mutex_unlock(&fs_info->balance_mutex); 3988 ret = -EINPROGRESS; 3989 goto out; 3990 } 3991 } else { 3992 /* this is (1) */ 3993 mutex_unlock(&fs_info->balance_mutex); 3994 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3995 goto out; 3996 } 3997 3998 locked: 3999 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4000 4001 if (arg) { 4002 bargs = memdup_user(arg, sizeof(*bargs)); 4003 if (IS_ERR(bargs)) { 4004 ret = PTR_ERR(bargs); 4005 goto out_unlock; 4006 } 4007 4008 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4009 if (!fs_info->balance_ctl) { 4010 ret = -ENOTCONN; 4011 goto out_bargs; 4012 } 4013 4014 bctl = fs_info->balance_ctl; 4015 spin_lock(&fs_info->balance_lock); 4016 bctl->flags |= BTRFS_BALANCE_RESUME; 4017 spin_unlock(&fs_info->balance_lock); 4018 4019 goto do_balance; 4020 } 4021 } else { 4022 bargs = NULL; 4023 } 4024 4025 if (fs_info->balance_ctl) { 4026 ret = -EINPROGRESS; 4027 goto out_bargs; 4028 } 4029 4030 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4031 if (!bctl) { 4032 ret = -ENOMEM; 4033 goto out_bargs; 4034 } 4035 4036 if (arg) { 4037 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4038 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4039 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4040 4041 bctl->flags = bargs->flags; 4042 } else { 4043 /* balance everything - no filters */ 4044 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4045 } 4046 4047 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4048 ret = -EINVAL; 4049 goto out_bctl; 4050 } 4051 4052 do_balance: 4053 /* 4054 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 4055 * btrfs_balance. bctl is freed in reset_balance_state, or, if 4056 * restriper was paused all the way until unmount, in free_fs_info. 4057 * The flag should be cleared after reset_balance_state. 4058 */ 4059 need_unlock = false; 4060 4061 ret = btrfs_balance(fs_info, bctl, bargs); 4062 bctl = NULL; 4063 4064 if ((ret == 0 || ret == -ECANCELED) && arg) { 4065 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4066 ret = -EFAULT; 4067 } 4068 4069 out_bctl: 4070 kfree(bctl); 4071 out_bargs: 4072 kfree(bargs); 4073 out_unlock: 4074 mutex_unlock(&fs_info->balance_mutex); 4075 if (need_unlock) 4076 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4077 out: 4078 mnt_drop_write_file(file); 4079 return ret; 4080 } 4081 4082 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4083 { 4084 if (!capable(CAP_SYS_ADMIN)) 4085 return -EPERM; 4086 4087 switch (cmd) { 4088 case BTRFS_BALANCE_CTL_PAUSE: 4089 return btrfs_pause_balance(fs_info); 4090 case BTRFS_BALANCE_CTL_CANCEL: 4091 return btrfs_cancel_balance(fs_info); 4092 } 4093 4094 return -EINVAL; 4095 } 4096 4097 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4098 void __user *arg) 4099 { 4100 struct btrfs_ioctl_balance_args *bargs; 4101 int ret = 0; 4102 4103 if (!capable(CAP_SYS_ADMIN)) 4104 return -EPERM; 4105 4106 mutex_lock(&fs_info->balance_mutex); 4107 if (!fs_info->balance_ctl) { 4108 ret = -ENOTCONN; 4109 goto out; 4110 } 4111 4112 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4113 if (!bargs) { 4114 ret = -ENOMEM; 4115 goto out; 4116 } 4117 4118 btrfs_update_ioctl_balance_args(fs_info, bargs); 4119 4120 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4121 ret = -EFAULT; 4122 4123 kfree(bargs); 4124 out: 4125 mutex_unlock(&fs_info->balance_mutex); 4126 return ret; 4127 } 4128 4129 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4130 { 4131 struct inode *inode = file_inode(file); 4132 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4133 struct btrfs_ioctl_quota_ctl_args *sa; 4134 int ret; 4135 4136 if (!capable(CAP_SYS_ADMIN)) 4137 return -EPERM; 4138 4139 ret = mnt_want_write_file(file); 4140 if (ret) 4141 return ret; 4142 4143 sa = memdup_user(arg, sizeof(*sa)); 4144 if (IS_ERR(sa)) { 4145 ret = PTR_ERR(sa); 4146 goto drop_write; 4147 } 4148 4149 down_write(&fs_info->subvol_sem); 4150 4151 switch (sa->cmd) { 4152 case BTRFS_QUOTA_CTL_ENABLE: 4153 ret = btrfs_quota_enable(fs_info); 4154 break; 4155 case BTRFS_QUOTA_CTL_DISABLE: 4156 ret = btrfs_quota_disable(fs_info); 4157 break; 4158 default: 4159 ret = -EINVAL; 4160 break; 4161 } 4162 4163 kfree(sa); 4164 up_write(&fs_info->subvol_sem); 4165 drop_write: 4166 mnt_drop_write_file(file); 4167 return ret; 4168 } 4169 4170 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4171 { 4172 struct inode *inode = file_inode(file); 4173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4174 struct btrfs_root *root = BTRFS_I(inode)->root; 4175 struct btrfs_ioctl_qgroup_assign_args *sa; 4176 struct btrfs_trans_handle *trans; 4177 int ret; 4178 int err; 4179 4180 if (!capable(CAP_SYS_ADMIN)) 4181 return -EPERM; 4182 4183 ret = mnt_want_write_file(file); 4184 if (ret) 4185 return ret; 4186 4187 sa = memdup_user(arg, sizeof(*sa)); 4188 if (IS_ERR(sa)) { 4189 ret = PTR_ERR(sa); 4190 goto drop_write; 4191 } 4192 4193 trans = btrfs_join_transaction(root); 4194 if (IS_ERR(trans)) { 4195 ret = PTR_ERR(trans); 4196 goto out; 4197 } 4198 4199 if (sa->assign) { 4200 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4201 } else { 4202 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4203 } 4204 4205 /* update qgroup status and info */ 4206 err = btrfs_run_qgroups(trans); 4207 if (err < 0) 4208 btrfs_handle_fs_error(fs_info, err, 4209 "failed to update qgroup status and info"); 4210 err = btrfs_end_transaction(trans); 4211 if (err && !ret) 4212 ret = err; 4213 4214 out: 4215 kfree(sa); 4216 drop_write: 4217 mnt_drop_write_file(file); 4218 return ret; 4219 } 4220 4221 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4222 { 4223 struct inode *inode = file_inode(file); 4224 struct btrfs_root *root = BTRFS_I(inode)->root; 4225 struct btrfs_ioctl_qgroup_create_args *sa; 4226 struct btrfs_trans_handle *trans; 4227 int ret; 4228 int err; 4229 4230 if (!capable(CAP_SYS_ADMIN)) 4231 return -EPERM; 4232 4233 ret = mnt_want_write_file(file); 4234 if (ret) 4235 return ret; 4236 4237 sa = memdup_user(arg, sizeof(*sa)); 4238 if (IS_ERR(sa)) { 4239 ret = PTR_ERR(sa); 4240 goto drop_write; 4241 } 4242 4243 if (!sa->qgroupid) { 4244 ret = -EINVAL; 4245 goto out; 4246 } 4247 4248 trans = btrfs_join_transaction(root); 4249 if (IS_ERR(trans)) { 4250 ret = PTR_ERR(trans); 4251 goto out; 4252 } 4253 4254 if (sa->create) { 4255 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4256 } else { 4257 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4258 } 4259 4260 err = btrfs_end_transaction(trans); 4261 if (err && !ret) 4262 ret = err; 4263 4264 out: 4265 kfree(sa); 4266 drop_write: 4267 mnt_drop_write_file(file); 4268 return ret; 4269 } 4270 4271 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4272 { 4273 struct inode *inode = file_inode(file); 4274 struct btrfs_root *root = BTRFS_I(inode)->root; 4275 struct btrfs_ioctl_qgroup_limit_args *sa; 4276 struct btrfs_trans_handle *trans; 4277 int ret; 4278 int err; 4279 u64 qgroupid; 4280 4281 if (!capable(CAP_SYS_ADMIN)) 4282 return -EPERM; 4283 4284 ret = mnt_want_write_file(file); 4285 if (ret) 4286 return ret; 4287 4288 sa = memdup_user(arg, sizeof(*sa)); 4289 if (IS_ERR(sa)) { 4290 ret = PTR_ERR(sa); 4291 goto drop_write; 4292 } 4293 4294 trans = btrfs_join_transaction(root); 4295 if (IS_ERR(trans)) { 4296 ret = PTR_ERR(trans); 4297 goto out; 4298 } 4299 4300 qgroupid = sa->qgroupid; 4301 if (!qgroupid) { 4302 /* take the current subvol as qgroup */ 4303 qgroupid = root->root_key.objectid; 4304 } 4305 4306 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4307 4308 err = btrfs_end_transaction(trans); 4309 if (err && !ret) 4310 ret = err; 4311 4312 out: 4313 kfree(sa); 4314 drop_write: 4315 mnt_drop_write_file(file); 4316 return ret; 4317 } 4318 4319 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4320 { 4321 struct inode *inode = file_inode(file); 4322 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4323 struct btrfs_ioctl_quota_rescan_args *qsa; 4324 int ret; 4325 4326 if (!capable(CAP_SYS_ADMIN)) 4327 return -EPERM; 4328 4329 ret = mnt_want_write_file(file); 4330 if (ret) 4331 return ret; 4332 4333 qsa = memdup_user(arg, sizeof(*qsa)); 4334 if (IS_ERR(qsa)) { 4335 ret = PTR_ERR(qsa); 4336 goto drop_write; 4337 } 4338 4339 if (qsa->flags) { 4340 ret = -EINVAL; 4341 goto out; 4342 } 4343 4344 ret = btrfs_qgroup_rescan(fs_info); 4345 4346 out: 4347 kfree(qsa); 4348 drop_write: 4349 mnt_drop_write_file(file); 4350 return ret; 4351 } 4352 4353 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4354 void __user *arg) 4355 { 4356 struct btrfs_ioctl_quota_rescan_args *qsa; 4357 int ret = 0; 4358 4359 if (!capable(CAP_SYS_ADMIN)) 4360 return -EPERM; 4361 4362 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4363 if (!qsa) 4364 return -ENOMEM; 4365 4366 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4367 qsa->flags = 1; 4368 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4369 } 4370 4371 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4372 ret = -EFAULT; 4373 4374 kfree(qsa); 4375 return ret; 4376 } 4377 4378 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4379 void __user *arg) 4380 { 4381 if (!capable(CAP_SYS_ADMIN)) 4382 return -EPERM; 4383 4384 return btrfs_qgroup_wait_for_completion(fs_info, true); 4385 } 4386 4387 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4388 struct btrfs_ioctl_received_subvol_args *sa) 4389 { 4390 struct inode *inode = file_inode(file); 4391 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4392 struct btrfs_root *root = BTRFS_I(inode)->root; 4393 struct btrfs_root_item *root_item = &root->root_item; 4394 struct btrfs_trans_handle *trans; 4395 struct timespec64 ct = current_time(inode); 4396 int ret = 0; 4397 int received_uuid_changed; 4398 4399 if (!inode_owner_or_capable(inode)) 4400 return -EPERM; 4401 4402 ret = mnt_want_write_file(file); 4403 if (ret < 0) 4404 return ret; 4405 4406 down_write(&fs_info->subvol_sem); 4407 4408 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4409 ret = -EINVAL; 4410 goto out; 4411 } 4412 4413 if (btrfs_root_readonly(root)) { 4414 ret = -EROFS; 4415 goto out; 4416 } 4417 4418 /* 4419 * 1 - root item 4420 * 2 - uuid items (received uuid + subvol uuid) 4421 */ 4422 trans = btrfs_start_transaction(root, 3); 4423 if (IS_ERR(trans)) { 4424 ret = PTR_ERR(trans); 4425 trans = NULL; 4426 goto out; 4427 } 4428 4429 sa->rtransid = trans->transid; 4430 sa->rtime.sec = ct.tv_sec; 4431 sa->rtime.nsec = ct.tv_nsec; 4432 4433 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4434 BTRFS_UUID_SIZE); 4435 if (received_uuid_changed && 4436 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4437 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4438 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4439 root->root_key.objectid); 4440 if (ret && ret != -ENOENT) { 4441 btrfs_abort_transaction(trans, ret); 4442 btrfs_end_transaction(trans); 4443 goto out; 4444 } 4445 } 4446 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4447 btrfs_set_root_stransid(root_item, sa->stransid); 4448 btrfs_set_root_rtransid(root_item, sa->rtransid); 4449 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4450 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4451 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4452 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4453 4454 ret = btrfs_update_root(trans, fs_info->tree_root, 4455 &root->root_key, &root->root_item); 4456 if (ret < 0) { 4457 btrfs_end_transaction(trans); 4458 goto out; 4459 } 4460 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4461 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4462 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4463 root->root_key.objectid); 4464 if (ret < 0 && ret != -EEXIST) { 4465 btrfs_abort_transaction(trans, ret); 4466 btrfs_end_transaction(trans); 4467 goto out; 4468 } 4469 } 4470 ret = btrfs_commit_transaction(trans); 4471 out: 4472 up_write(&fs_info->subvol_sem); 4473 mnt_drop_write_file(file); 4474 return ret; 4475 } 4476 4477 #ifdef CONFIG_64BIT 4478 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4479 void __user *arg) 4480 { 4481 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4482 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4483 int ret = 0; 4484 4485 args32 = memdup_user(arg, sizeof(*args32)); 4486 if (IS_ERR(args32)) 4487 return PTR_ERR(args32); 4488 4489 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4490 if (!args64) { 4491 ret = -ENOMEM; 4492 goto out; 4493 } 4494 4495 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4496 args64->stransid = args32->stransid; 4497 args64->rtransid = args32->rtransid; 4498 args64->stime.sec = args32->stime.sec; 4499 args64->stime.nsec = args32->stime.nsec; 4500 args64->rtime.sec = args32->rtime.sec; 4501 args64->rtime.nsec = args32->rtime.nsec; 4502 args64->flags = args32->flags; 4503 4504 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4505 if (ret) 4506 goto out; 4507 4508 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4509 args32->stransid = args64->stransid; 4510 args32->rtransid = args64->rtransid; 4511 args32->stime.sec = args64->stime.sec; 4512 args32->stime.nsec = args64->stime.nsec; 4513 args32->rtime.sec = args64->rtime.sec; 4514 args32->rtime.nsec = args64->rtime.nsec; 4515 args32->flags = args64->flags; 4516 4517 ret = copy_to_user(arg, args32, sizeof(*args32)); 4518 if (ret) 4519 ret = -EFAULT; 4520 4521 out: 4522 kfree(args32); 4523 kfree(args64); 4524 return ret; 4525 } 4526 #endif 4527 4528 static long btrfs_ioctl_set_received_subvol(struct file *file, 4529 void __user *arg) 4530 { 4531 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4532 int ret = 0; 4533 4534 sa = memdup_user(arg, sizeof(*sa)); 4535 if (IS_ERR(sa)) 4536 return PTR_ERR(sa); 4537 4538 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4539 4540 if (ret) 4541 goto out; 4542 4543 ret = copy_to_user(arg, sa, sizeof(*sa)); 4544 if (ret) 4545 ret = -EFAULT; 4546 4547 out: 4548 kfree(sa); 4549 return ret; 4550 } 4551 4552 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4553 void __user *arg) 4554 { 4555 size_t len; 4556 int ret; 4557 char label[BTRFS_LABEL_SIZE]; 4558 4559 spin_lock(&fs_info->super_lock); 4560 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4561 spin_unlock(&fs_info->super_lock); 4562 4563 len = strnlen(label, BTRFS_LABEL_SIZE); 4564 4565 if (len == BTRFS_LABEL_SIZE) { 4566 btrfs_warn(fs_info, 4567 "label is too long, return the first %zu bytes", 4568 --len); 4569 } 4570 4571 ret = copy_to_user(arg, label, len); 4572 4573 return ret ? -EFAULT : 0; 4574 } 4575 4576 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4577 { 4578 struct inode *inode = file_inode(file); 4579 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4580 struct btrfs_root *root = BTRFS_I(inode)->root; 4581 struct btrfs_super_block *super_block = fs_info->super_copy; 4582 struct btrfs_trans_handle *trans; 4583 char label[BTRFS_LABEL_SIZE]; 4584 int ret; 4585 4586 if (!capable(CAP_SYS_ADMIN)) 4587 return -EPERM; 4588 4589 if (copy_from_user(label, arg, sizeof(label))) 4590 return -EFAULT; 4591 4592 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4593 btrfs_err(fs_info, 4594 "unable to set label with more than %d bytes", 4595 BTRFS_LABEL_SIZE - 1); 4596 return -EINVAL; 4597 } 4598 4599 ret = mnt_want_write_file(file); 4600 if (ret) 4601 return ret; 4602 4603 trans = btrfs_start_transaction(root, 0); 4604 if (IS_ERR(trans)) { 4605 ret = PTR_ERR(trans); 4606 goto out_unlock; 4607 } 4608 4609 spin_lock(&fs_info->super_lock); 4610 strcpy(super_block->label, label); 4611 spin_unlock(&fs_info->super_lock); 4612 ret = btrfs_commit_transaction(trans); 4613 4614 out_unlock: 4615 mnt_drop_write_file(file); 4616 return ret; 4617 } 4618 4619 #define INIT_FEATURE_FLAGS(suffix) \ 4620 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4621 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4622 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4623 4624 int btrfs_ioctl_get_supported_features(void __user *arg) 4625 { 4626 static const struct btrfs_ioctl_feature_flags features[3] = { 4627 INIT_FEATURE_FLAGS(SUPP), 4628 INIT_FEATURE_FLAGS(SAFE_SET), 4629 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4630 }; 4631 4632 if (copy_to_user(arg, &features, sizeof(features))) 4633 return -EFAULT; 4634 4635 return 0; 4636 } 4637 4638 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4639 void __user *arg) 4640 { 4641 struct btrfs_super_block *super_block = fs_info->super_copy; 4642 struct btrfs_ioctl_feature_flags features; 4643 4644 features.compat_flags = btrfs_super_compat_flags(super_block); 4645 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4646 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4647 4648 if (copy_to_user(arg, &features, sizeof(features))) 4649 return -EFAULT; 4650 4651 return 0; 4652 } 4653 4654 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4655 enum btrfs_feature_set set, 4656 u64 change_mask, u64 flags, u64 supported_flags, 4657 u64 safe_set, u64 safe_clear) 4658 { 4659 const char *type = btrfs_feature_set_name(set); 4660 char *names; 4661 u64 disallowed, unsupported; 4662 u64 set_mask = flags & change_mask; 4663 u64 clear_mask = ~flags & change_mask; 4664 4665 unsupported = set_mask & ~supported_flags; 4666 if (unsupported) { 4667 names = btrfs_printable_features(set, unsupported); 4668 if (names) { 4669 btrfs_warn(fs_info, 4670 "this kernel does not support the %s feature bit%s", 4671 names, strchr(names, ',') ? "s" : ""); 4672 kfree(names); 4673 } else 4674 btrfs_warn(fs_info, 4675 "this kernel does not support %s bits 0x%llx", 4676 type, unsupported); 4677 return -EOPNOTSUPP; 4678 } 4679 4680 disallowed = set_mask & ~safe_set; 4681 if (disallowed) { 4682 names = btrfs_printable_features(set, disallowed); 4683 if (names) { 4684 btrfs_warn(fs_info, 4685 "can't set the %s feature bit%s while mounted", 4686 names, strchr(names, ',') ? "s" : ""); 4687 kfree(names); 4688 } else 4689 btrfs_warn(fs_info, 4690 "can't set %s bits 0x%llx while mounted", 4691 type, disallowed); 4692 return -EPERM; 4693 } 4694 4695 disallowed = clear_mask & ~safe_clear; 4696 if (disallowed) { 4697 names = btrfs_printable_features(set, disallowed); 4698 if (names) { 4699 btrfs_warn(fs_info, 4700 "can't clear the %s feature bit%s while mounted", 4701 names, strchr(names, ',') ? "s" : ""); 4702 kfree(names); 4703 } else 4704 btrfs_warn(fs_info, 4705 "can't clear %s bits 0x%llx while mounted", 4706 type, disallowed); 4707 return -EPERM; 4708 } 4709 4710 return 0; 4711 } 4712 4713 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4714 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4715 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4716 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4717 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4718 4719 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4720 { 4721 struct inode *inode = file_inode(file); 4722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4723 struct btrfs_root *root = BTRFS_I(inode)->root; 4724 struct btrfs_super_block *super_block = fs_info->super_copy; 4725 struct btrfs_ioctl_feature_flags flags[2]; 4726 struct btrfs_trans_handle *trans; 4727 u64 newflags; 4728 int ret; 4729 4730 if (!capable(CAP_SYS_ADMIN)) 4731 return -EPERM; 4732 4733 if (copy_from_user(flags, arg, sizeof(flags))) 4734 return -EFAULT; 4735 4736 /* Nothing to do */ 4737 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4738 !flags[0].incompat_flags) 4739 return 0; 4740 4741 ret = check_feature(fs_info, flags[0].compat_flags, 4742 flags[1].compat_flags, COMPAT); 4743 if (ret) 4744 return ret; 4745 4746 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4747 flags[1].compat_ro_flags, COMPAT_RO); 4748 if (ret) 4749 return ret; 4750 4751 ret = check_feature(fs_info, flags[0].incompat_flags, 4752 flags[1].incompat_flags, INCOMPAT); 4753 if (ret) 4754 return ret; 4755 4756 ret = mnt_want_write_file(file); 4757 if (ret) 4758 return ret; 4759 4760 trans = btrfs_start_transaction(root, 0); 4761 if (IS_ERR(trans)) { 4762 ret = PTR_ERR(trans); 4763 goto out_drop_write; 4764 } 4765 4766 spin_lock(&fs_info->super_lock); 4767 newflags = btrfs_super_compat_flags(super_block); 4768 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4769 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4770 btrfs_set_super_compat_flags(super_block, newflags); 4771 4772 newflags = btrfs_super_compat_ro_flags(super_block); 4773 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4774 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4775 btrfs_set_super_compat_ro_flags(super_block, newflags); 4776 4777 newflags = btrfs_super_incompat_flags(super_block); 4778 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4779 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4780 btrfs_set_super_incompat_flags(super_block, newflags); 4781 spin_unlock(&fs_info->super_lock); 4782 4783 ret = btrfs_commit_transaction(trans); 4784 out_drop_write: 4785 mnt_drop_write_file(file); 4786 4787 return ret; 4788 } 4789 4790 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4791 { 4792 struct btrfs_ioctl_send_args *arg; 4793 int ret; 4794 4795 if (compat) { 4796 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4797 struct btrfs_ioctl_send_args_32 args32; 4798 4799 ret = copy_from_user(&args32, argp, sizeof(args32)); 4800 if (ret) 4801 return -EFAULT; 4802 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4803 if (!arg) 4804 return -ENOMEM; 4805 arg->send_fd = args32.send_fd; 4806 arg->clone_sources_count = args32.clone_sources_count; 4807 arg->clone_sources = compat_ptr(args32.clone_sources); 4808 arg->parent_root = args32.parent_root; 4809 arg->flags = args32.flags; 4810 memcpy(arg->reserved, args32.reserved, 4811 sizeof(args32.reserved)); 4812 #else 4813 return -ENOTTY; 4814 #endif 4815 } else { 4816 arg = memdup_user(argp, sizeof(*arg)); 4817 if (IS_ERR(arg)) 4818 return PTR_ERR(arg); 4819 } 4820 ret = btrfs_ioctl_send(file, arg); 4821 kfree(arg); 4822 return ret; 4823 } 4824 4825 long btrfs_ioctl(struct file *file, unsigned int 4826 cmd, unsigned long arg) 4827 { 4828 struct inode *inode = file_inode(file); 4829 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4830 struct btrfs_root *root = BTRFS_I(inode)->root; 4831 void __user *argp = (void __user *)arg; 4832 4833 switch (cmd) { 4834 case FS_IOC_GETFLAGS: 4835 return btrfs_ioctl_getflags(file, argp); 4836 case FS_IOC_SETFLAGS: 4837 return btrfs_ioctl_setflags(file, argp); 4838 case FS_IOC_GETVERSION: 4839 return btrfs_ioctl_getversion(file, argp); 4840 case FS_IOC_GETFSLABEL: 4841 return btrfs_ioctl_get_fslabel(fs_info, argp); 4842 case FS_IOC_SETFSLABEL: 4843 return btrfs_ioctl_set_fslabel(file, argp); 4844 case FITRIM: 4845 return btrfs_ioctl_fitrim(fs_info, argp); 4846 case BTRFS_IOC_SNAP_CREATE: 4847 return btrfs_ioctl_snap_create(file, argp, 0); 4848 case BTRFS_IOC_SNAP_CREATE_V2: 4849 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4850 case BTRFS_IOC_SUBVOL_CREATE: 4851 return btrfs_ioctl_snap_create(file, argp, 1); 4852 case BTRFS_IOC_SUBVOL_CREATE_V2: 4853 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4854 case BTRFS_IOC_SNAP_DESTROY: 4855 return btrfs_ioctl_snap_destroy(file, argp, false); 4856 case BTRFS_IOC_SNAP_DESTROY_V2: 4857 return btrfs_ioctl_snap_destroy(file, argp, true); 4858 case BTRFS_IOC_SUBVOL_GETFLAGS: 4859 return btrfs_ioctl_subvol_getflags(file, argp); 4860 case BTRFS_IOC_SUBVOL_SETFLAGS: 4861 return btrfs_ioctl_subvol_setflags(file, argp); 4862 case BTRFS_IOC_DEFAULT_SUBVOL: 4863 return btrfs_ioctl_default_subvol(file, argp); 4864 case BTRFS_IOC_DEFRAG: 4865 return btrfs_ioctl_defrag(file, NULL); 4866 case BTRFS_IOC_DEFRAG_RANGE: 4867 return btrfs_ioctl_defrag(file, argp); 4868 case BTRFS_IOC_RESIZE: 4869 return btrfs_ioctl_resize(file, argp); 4870 case BTRFS_IOC_ADD_DEV: 4871 return btrfs_ioctl_add_dev(fs_info, argp); 4872 case BTRFS_IOC_RM_DEV: 4873 return btrfs_ioctl_rm_dev(file, argp); 4874 case BTRFS_IOC_RM_DEV_V2: 4875 return btrfs_ioctl_rm_dev_v2(file, argp); 4876 case BTRFS_IOC_FS_INFO: 4877 return btrfs_ioctl_fs_info(fs_info, argp); 4878 case BTRFS_IOC_DEV_INFO: 4879 return btrfs_ioctl_dev_info(fs_info, argp); 4880 case BTRFS_IOC_BALANCE: 4881 return btrfs_ioctl_balance(file, NULL); 4882 case BTRFS_IOC_TREE_SEARCH: 4883 return btrfs_ioctl_tree_search(file, argp); 4884 case BTRFS_IOC_TREE_SEARCH_V2: 4885 return btrfs_ioctl_tree_search_v2(file, argp); 4886 case BTRFS_IOC_INO_LOOKUP: 4887 return btrfs_ioctl_ino_lookup(file, argp); 4888 case BTRFS_IOC_INO_PATHS: 4889 return btrfs_ioctl_ino_to_path(root, argp); 4890 case BTRFS_IOC_LOGICAL_INO: 4891 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4892 case BTRFS_IOC_LOGICAL_INO_V2: 4893 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4894 case BTRFS_IOC_SPACE_INFO: 4895 return btrfs_ioctl_space_info(fs_info, argp); 4896 case BTRFS_IOC_SYNC: { 4897 int ret; 4898 4899 ret = btrfs_start_delalloc_roots(fs_info, -1); 4900 if (ret) 4901 return ret; 4902 ret = btrfs_sync_fs(inode->i_sb, 1); 4903 /* 4904 * The transaction thread may want to do more work, 4905 * namely it pokes the cleaner kthread that will start 4906 * processing uncleaned subvols. 4907 */ 4908 wake_up_process(fs_info->transaction_kthread); 4909 return ret; 4910 } 4911 case BTRFS_IOC_START_SYNC: 4912 return btrfs_ioctl_start_sync(root, argp); 4913 case BTRFS_IOC_WAIT_SYNC: 4914 return btrfs_ioctl_wait_sync(fs_info, argp); 4915 case BTRFS_IOC_SCRUB: 4916 return btrfs_ioctl_scrub(file, argp); 4917 case BTRFS_IOC_SCRUB_CANCEL: 4918 return btrfs_ioctl_scrub_cancel(fs_info); 4919 case BTRFS_IOC_SCRUB_PROGRESS: 4920 return btrfs_ioctl_scrub_progress(fs_info, argp); 4921 case BTRFS_IOC_BALANCE_V2: 4922 return btrfs_ioctl_balance(file, argp); 4923 case BTRFS_IOC_BALANCE_CTL: 4924 return btrfs_ioctl_balance_ctl(fs_info, arg); 4925 case BTRFS_IOC_BALANCE_PROGRESS: 4926 return btrfs_ioctl_balance_progress(fs_info, argp); 4927 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4928 return btrfs_ioctl_set_received_subvol(file, argp); 4929 #ifdef CONFIG_64BIT 4930 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4931 return btrfs_ioctl_set_received_subvol_32(file, argp); 4932 #endif 4933 case BTRFS_IOC_SEND: 4934 return _btrfs_ioctl_send(file, argp, false); 4935 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4936 case BTRFS_IOC_SEND_32: 4937 return _btrfs_ioctl_send(file, argp, true); 4938 #endif 4939 case BTRFS_IOC_GET_DEV_STATS: 4940 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4941 case BTRFS_IOC_QUOTA_CTL: 4942 return btrfs_ioctl_quota_ctl(file, argp); 4943 case BTRFS_IOC_QGROUP_ASSIGN: 4944 return btrfs_ioctl_qgroup_assign(file, argp); 4945 case BTRFS_IOC_QGROUP_CREATE: 4946 return btrfs_ioctl_qgroup_create(file, argp); 4947 case BTRFS_IOC_QGROUP_LIMIT: 4948 return btrfs_ioctl_qgroup_limit(file, argp); 4949 case BTRFS_IOC_QUOTA_RESCAN: 4950 return btrfs_ioctl_quota_rescan(file, argp); 4951 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4952 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4953 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4954 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4955 case BTRFS_IOC_DEV_REPLACE: 4956 return btrfs_ioctl_dev_replace(fs_info, argp); 4957 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4958 return btrfs_ioctl_get_supported_features(argp); 4959 case BTRFS_IOC_GET_FEATURES: 4960 return btrfs_ioctl_get_features(fs_info, argp); 4961 case BTRFS_IOC_SET_FEATURES: 4962 return btrfs_ioctl_set_features(file, argp); 4963 case FS_IOC_FSGETXATTR: 4964 return btrfs_ioctl_fsgetxattr(file, argp); 4965 case FS_IOC_FSSETXATTR: 4966 return btrfs_ioctl_fssetxattr(file, argp); 4967 case BTRFS_IOC_GET_SUBVOL_INFO: 4968 return btrfs_ioctl_get_subvol_info(file, argp); 4969 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4970 return btrfs_ioctl_get_subvol_rootref(file, argp); 4971 case BTRFS_IOC_INO_LOOKUP_USER: 4972 return btrfs_ioctl_ino_lookup_user(file, argp); 4973 } 4974 4975 return -ENOTTY; 4976 } 4977 4978 #ifdef CONFIG_COMPAT 4979 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4980 { 4981 /* 4982 * These all access 32-bit values anyway so no further 4983 * handling is necessary. 4984 */ 4985 switch (cmd) { 4986 case FS_IOC32_GETFLAGS: 4987 cmd = FS_IOC_GETFLAGS; 4988 break; 4989 case FS_IOC32_SETFLAGS: 4990 cmd = FS_IOC_SETFLAGS; 4991 break; 4992 case FS_IOC32_GETVERSION: 4993 cmd = FS_IOC_GETVERSION; 4994 break; 4995 } 4996 4997 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4998 } 4999 #endif 5000