1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include "ctree.h" 31 #include "disk-io.h" 32 #include "export.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "locking.h" 38 #include "backref.h" 39 #include "rcu-string.h" 40 #include "send.h" 41 #include "dev-replace.h" 42 #include "props.h" 43 #include "sysfs.h" 44 #include "qgroup.h" 45 #include "tree-log.h" 46 #include "compression.h" 47 #include "space-info.h" 48 #include "delalloc-space.h" 49 #include "block-group.h" 50 51 #ifdef CONFIG_64BIT 52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 53 * structures are incorrect, as the timespec structure from userspace 54 * is 4 bytes too small. We define these alternatives here to teach 55 * the kernel about the 32-bit struct packing. 56 */ 57 struct btrfs_ioctl_timespec_32 { 58 __u64 sec; 59 __u32 nsec; 60 } __attribute__ ((__packed__)); 61 62 struct btrfs_ioctl_received_subvol_args_32 { 63 char uuid[BTRFS_UUID_SIZE]; /* in */ 64 __u64 stransid; /* in */ 65 __u64 rtransid; /* out */ 66 struct btrfs_ioctl_timespec_32 stime; /* in */ 67 struct btrfs_ioctl_timespec_32 rtime; /* out */ 68 __u64 flags; /* in */ 69 __u64 reserved[16]; /* in */ 70 } __attribute__ ((__packed__)); 71 72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 73 struct btrfs_ioctl_received_subvol_args_32) 74 #endif 75 76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 77 struct btrfs_ioctl_send_args_32 { 78 __s64 send_fd; /* in */ 79 __u64 clone_sources_count; /* in */ 80 compat_uptr_t clone_sources; /* in */ 81 __u64 parent_root; /* in */ 82 __u64 flags; /* in */ 83 __u64 reserved[4]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 87 struct btrfs_ioctl_send_args_32) 88 #endif 89 90 /* Mask out flags that are inappropriate for the given type of inode. */ 91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93 { 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100 } 101 102 /* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137 { 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 /* 158 * Check if @flags are a supported and valid set of FS_*_FL flags and that 159 * the old and new flags are not conflicting 160 */ 161 static int check_fsflags(unsigned int old_flags, unsigned int flags) 162 { 163 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 164 FS_NOATIME_FL | FS_NODUMP_FL | \ 165 FS_SYNC_FL | FS_DIRSYNC_FL | \ 166 FS_NOCOMP_FL | FS_COMPR_FL | 167 FS_NOCOW_FL)) 168 return -EOPNOTSUPP; 169 170 /* COMPR and NOCOMP on new/old are valid */ 171 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 172 return -EINVAL; 173 174 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 175 return -EINVAL; 176 177 /* NOCOW and compression options are mutually exclusive */ 178 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 179 return -EINVAL; 180 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 181 return -EINVAL; 182 183 return 0; 184 } 185 186 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 187 unsigned int flags) 188 { 189 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 190 return -EPERM; 191 192 return 0; 193 } 194 195 /* 196 * Set flags/xflags from the internal inode flags. The remaining items of 197 * fsxattr are zeroed. 198 */ 199 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 200 { 201 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 202 203 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode->flags)); 204 return 0; 205 } 206 207 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 208 struct dentry *dentry, struct fileattr *fa) 209 { 210 struct inode *inode = d_inode(dentry); 211 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 212 struct btrfs_inode *binode = BTRFS_I(inode); 213 struct btrfs_root *root = binode->root; 214 struct btrfs_trans_handle *trans; 215 unsigned int fsflags, old_fsflags; 216 int ret; 217 const char *comp = NULL; 218 u32 binode_flags; 219 220 if (btrfs_root_readonly(root)) 221 return -EROFS; 222 223 if (fileattr_has_fsx(fa)) 224 return -EOPNOTSUPP; 225 226 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 227 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 228 ret = check_fsflags(old_fsflags, fsflags); 229 if (ret) 230 return ret; 231 232 ret = check_fsflags_compatible(fs_info, fsflags); 233 if (ret) 234 return ret; 235 236 binode_flags = binode->flags; 237 if (fsflags & FS_SYNC_FL) 238 binode_flags |= BTRFS_INODE_SYNC; 239 else 240 binode_flags &= ~BTRFS_INODE_SYNC; 241 if (fsflags & FS_IMMUTABLE_FL) 242 binode_flags |= BTRFS_INODE_IMMUTABLE; 243 else 244 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 245 if (fsflags & FS_APPEND_FL) 246 binode_flags |= BTRFS_INODE_APPEND; 247 else 248 binode_flags &= ~BTRFS_INODE_APPEND; 249 if (fsflags & FS_NODUMP_FL) 250 binode_flags |= BTRFS_INODE_NODUMP; 251 else 252 binode_flags &= ~BTRFS_INODE_NODUMP; 253 if (fsflags & FS_NOATIME_FL) 254 binode_flags |= BTRFS_INODE_NOATIME; 255 else 256 binode_flags &= ~BTRFS_INODE_NOATIME; 257 258 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 259 if (!fa->flags_valid) { 260 /* 1 item for the inode */ 261 trans = btrfs_start_transaction(root, 1); 262 goto update_flags; 263 } 264 265 if (fsflags & FS_DIRSYNC_FL) 266 binode_flags |= BTRFS_INODE_DIRSYNC; 267 else 268 binode_flags &= ~BTRFS_INODE_DIRSYNC; 269 if (fsflags & FS_NOCOW_FL) { 270 if (S_ISREG(inode->i_mode)) { 271 /* 272 * It's safe to turn csums off here, no extents exist. 273 * Otherwise we want the flag to reflect the real COW 274 * status of the file and will not set it. 275 */ 276 if (inode->i_size == 0) 277 binode_flags |= BTRFS_INODE_NODATACOW | 278 BTRFS_INODE_NODATASUM; 279 } else { 280 binode_flags |= BTRFS_INODE_NODATACOW; 281 } 282 } else { 283 /* 284 * Revert back under same assumptions as above 285 */ 286 if (S_ISREG(inode->i_mode)) { 287 if (inode->i_size == 0) 288 binode_flags &= ~(BTRFS_INODE_NODATACOW | 289 BTRFS_INODE_NODATASUM); 290 } else { 291 binode_flags &= ~BTRFS_INODE_NODATACOW; 292 } 293 } 294 295 /* 296 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 297 * flag may be changed automatically if compression code won't make 298 * things smaller. 299 */ 300 if (fsflags & FS_NOCOMP_FL) { 301 binode_flags &= ~BTRFS_INODE_COMPRESS; 302 binode_flags |= BTRFS_INODE_NOCOMPRESS; 303 } else if (fsflags & FS_COMPR_FL) { 304 305 if (IS_SWAPFILE(inode)) 306 return -ETXTBSY; 307 308 binode_flags |= BTRFS_INODE_COMPRESS; 309 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 310 311 comp = btrfs_compress_type2str(fs_info->compress_type); 312 if (!comp || comp[0] == 0) 313 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 314 } else { 315 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 316 } 317 318 /* 319 * 1 for inode item 320 * 2 for properties 321 */ 322 trans = btrfs_start_transaction(root, 3); 323 if (IS_ERR(trans)) 324 return PTR_ERR(trans); 325 326 if (comp) { 327 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 328 strlen(comp), 0); 329 if (ret) { 330 btrfs_abort_transaction(trans, ret); 331 goto out_end_trans; 332 } 333 } else { 334 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 335 0, 0); 336 if (ret && ret != -ENODATA) { 337 btrfs_abort_transaction(trans, ret); 338 goto out_end_trans; 339 } 340 } 341 342 update_flags: 343 binode->flags = binode_flags; 344 btrfs_sync_inode_flags_to_i_flags(inode); 345 inode_inc_iversion(inode); 346 inode->i_ctime = current_time(inode); 347 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 348 349 out_end_trans: 350 btrfs_end_transaction(trans); 351 return ret; 352 } 353 354 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 355 enum btrfs_exclusive_operation type) 356 { 357 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type); 358 } 359 360 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 361 { 362 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 363 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 364 } 365 366 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 367 { 368 struct inode *inode = file_inode(file); 369 370 return put_user(inode->i_generation, arg); 371 } 372 373 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 374 void __user *arg) 375 { 376 struct btrfs_device *device; 377 struct request_queue *q; 378 struct fstrim_range range; 379 u64 minlen = ULLONG_MAX; 380 u64 num_devices = 0; 381 int ret; 382 383 if (!capable(CAP_SYS_ADMIN)) 384 return -EPERM; 385 386 /* 387 * btrfs_trim_block_group() depends on space cache, which is not 388 * available in zoned filesystem. So, disallow fitrim on a zoned 389 * filesystem for now. 390 */ 391 if (btrfs_is_zoned(fs_info)) 392 return -EOPNOTSUPP; 393 394 /* 395 * If the fs is mounted with nologreplay, which requires it to be 396 * mounted in RO mode as well, we can not allow discard on free space 397 * inside block groups, because log trees refer to extents that are not 398 * pinned in a block group's free space cache (pinning the extents is 399 * precisely the first phase of replaying a log tree). 400 */ 401 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 402 return -EROFS; 403 404 rcu_read_lock(); 405 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 406 dev_list) { 407 if (!device->bdev) 408 continue; 409 q = bdev_get_queue(device->bdev); 410 if (blk_queue_discard(q)) { 411 num_devices++; 412 minlen = min_t(u64, q->limits.discard_granularity, 413 minlen); 414 } 415 } 416 rcu_read_unlock(); 417 418 if (!num_devices) 419 return -EOPNOTSUPP; 420 if (copy_from_user(&range, arg, sizeof(range))) 421 return -EFAULT; 422 423 /* 424 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 425 * block group is in the logical address space, which can be any 426 * sectorsize aligned bytenr in the range [0, U64_MAX]. 427 */ 428 if (range.len < fs_info->sb->s_blocksize) 429 return -EINVAL; 430 431 range.minlen = max(range.minlen, minlen); 432 ret = btrfs_trim_fs(fs_info, &range); 433 if (ret < 0) 434 return ret; 435 436 if (copy_to_user(arg, &range, sizeof(range))) 437 return -EFAULT; 438 439 return 0; 440 } 441 442 int __pure btrfs_is_empty_uuid(u8 *uuid) 443 { 444 int i; 445 446 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 447 if (uuid[i]) 448 return 0; 449 } 450 return 1; 451 } 452 453 static noinline int create_subvol(struct inode *dir, 454 struct dentry *dentry, 455 const char *name, int namelen, 456 struct btrfs_qgroup_inherit *inherit) 457 { 458 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 459 struct btrfs_trans_handle *trans; 460 struct btrfs_key key; 461 struct btrfs_root_item *root_item; 462 struct btrfs_inode_item *inode_item; 463 struct extent_buffer *leaf; 464 struct btrfs_root *root = BTRFS_I(dir)->root; 465 struct btrfs_root *new_root; 466 struct btrfs_block_rsv block_rsv; 467 struct timespec64 cur_time = current_time(dir); 468 struct inode *inode; 469 int ret; 470 int err; 471 dev_t anon_dev = 0; 472 u64 objectid; 473 u64 index = 0; 474 475 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 476 if (!root_item) 477 return -ENOMEM; 478 479 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 480 if (ret) 481 goto fail_free; 482 483 ret = get_anon_bdev(&anon_dev); 484 if (ret < 0) 485 goto fail_free; 486 487 /* 488 * Don't create subvolume whose level is not zero. Or qgroup will be 489 * screwed up since it assumes subvolume qgroup's level to be 0. 490 */ 491 if (btrfs_qgroup_level(objectid)) { 492 ret = -ENOSPC; 493 goto fail_free; 494 } 495 496 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 497 /* 498 * The same as the snapshot creation, please see the comment 499 * of create_snapshot(). 500 */ 501 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 502 if (ret) 503 goto fail_free; 504 505 trans = btrfs_start_transaction(root, 0); 506 if (IS_ERR(trans)) { 507 ret = PTR_ERR(trans); 508 btrfs_subvolume_release_metadata(root, &block_rsv); 509 goto fail_free; 510 } 511 trans->block_rsv = &block_rsv; 512 trans->bytes_reserved = block_rsv.size; 513 514 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 515 if (ret) 516 goto fail; 517 518 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 519 BTRFS_NESTING_NORMAL); 520 if (IS_ERR(leaf)) { 521 ret = PTR_ERR(leaf); 522 goto fail; 523 } 524 525 btrfs_mark_buffer_dirty(leaf); 526 527 inode_item = &root_item->inode; 528 btrfs_set_stack_inode_generation(inode_item, 1); 529 btrfs_set_stack_inode_size(inode_item, 3); 530 btrfs_set_stack_inode_nlink(inode_item, 1); 531 btrfs_set_stack_inode_nbytes(inode_item, 532 fs_info->nodesize); 533 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 534 535 btrfs_set_root_flags(root_item, 0); 536 btrfs_set_root_limit(root_item, 0); 537 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 538 539 btrfs_set_root_bytenr(root_item, leaf->start); 540 btrfs_set_root_generation(root_item, trans->transid); 541 btrfs_set_root_level(root_item, 0); 542 btrfs_set_root_refs(root_item, 1); 543 btrfs_set_root_used(root_item, leaf->len); 544 btrfs_set_root_last_snapshot(root_item, 0); 545 546 btrfs_set_root_generation_v2(root_item, 547 btrfs_root_generation(root_item)); 548 generate_random_guid(root_item->uuid); 549 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 550 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 551 root_item->ctime = root_item->otime; 552 btrfs_set_root_ctransid(root_item, trans->transid); 553 btrfs_set_root_otransid(root_item, trans->transid); 554 555 btrfs_tree_unlock(leaf); 556 557 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 558 559 key.objectid = objectid; 560 key.offset = 0; 561 key.type = BTRFS_ROOT_ITEM_KEY; 562 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 563 root_item); 564 if (ret) { 565 /* 566 * Since we don't abort the transaction in this case, free the 567 * tree block so that we don't leak space and leave the 568 * filesystem in an inconsistent state (an extent item in the 569 * extent tree without backreferences). Also no need to have 570 * the tree block locked since it is not in any tree at this 571 * point, so no other task can find it and use it. 572 */ 573 btrfs_free_tree_block(trans, root, leaf, 0, 1); 574 free_extent_buffer(leaf); 575 goto fail; 576 } 577 578 free_extent_buffer(leaf); 579 leaf = NULL; 580 581 key.offset = (u64)-1; 582 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 583 if (IS_ERR(new_root)) { 584 free_anon_bdev(anon_dev); 585 ret = PTR_ERR(new_root); 586 btrfs_abort_transaction(trans, ret); 587 goto fail; 588 } 589 /* Freeing will be done in btrfs_put_root() of new_root */ 590 anon_dev = 0; 591 592 ret = btrfs_record_root_in_trans(trans, new_root); 593 if (ret) { 594 btrfs_put_root(new_root); 595 btrfs_abort_transaction(trans, ret); 596 goto fail; 597 } 598 599 ret = btrfs_create_subvol_root(trans, new_root, root); 600 btrfs_put_root(new_root); 601 if (ret) { 602 /* We potentially lose an unused inode item here */ 603 btrfs_abort_transaction(trans, ret); 604 goto fail; 605 } 606 607 /* 608 * insert the directory item 609 */ 610 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 611 if (ret) { 612 btrfs_abort_transaction(trans, ret); 613 goto fail; 614 } 615 616 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 617 BTRFS_FT_DIR, index); 618 if (ret) { 619 btrfs_abort_transaction(trans, ret); 620 goto fail; 621 } 622 623 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 624 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 625 if (ret) { 626 btrfs_abort_transaction(trans, ret); 627 goto fail; 628 } 629 630 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 631 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 632 if (ret) { 633 btrfs_abort_transaction(trans, ret); 634 goto fail; 635 } 636 637 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 638 BTRFS_UUID_KEY_SUBVOL, objectid); 639 if (ret) 640 btrfs_abort_transaction(trans, ret); 641 642 fail: 643 kfree(root_item); 644 trans->block_rsv = NULL; 645 trans->bytes_reserved = 0; 646 btrfs_subvolume_release_metadata(root, &block_rsv); 647 648 err = btrfs_commit_transaction(trans); 649 if (err && !ret) 650 ret = err; 651 652 if (!ret) { 653 inode = btrfs_lookup_dentry(dir, dentry); 654 if (IS_ERR(inode)) 655 return PTR_ERR(inode); 656 d_instantiate(dentry, inode); 657 } 658 return ret; 659 660 fail_free: 661 if (anon_dev) 662 free_anon_bdev(anon_dev); 663 kfree(root_item); 664 return ret; 665 } 666 667 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 668 struct dentry *dentry, bool readonly, 669 struct btrfs_qgroup_inherit *inherit) 670 { 671 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 672 struct inode *inode; 673 struct btrfs_pending_snapshot *pending_snapshot; 674 struct btrfs_trans_handle *trans; 675 int ret; 676 677 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 678 return -EINVAL; 679 680 if (atomic_read(&root->nr_swapfiles)) { 681 btrfs_warn(fs_info, 682 "cannot snapshot subvolume with active swapfile"); 683 return -ETXTBSY; 684 } 685 686 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 687 if (!pending_snapshot) 688 return -ENOMEM; 689 690 ret = get_anon_bdev(&pending_snapshot->anon_dev); 691 if (ret < 0) 692 goto free_pending; 693 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 694 GFP_KERNEL); 695 pending_snapshot->path = btrfs_alloc_path(); 696 if (!pending_snapshot->root_item || !pending_snapshot->path) { 697 ret = -ENOMEM; 698 goto free_pending; 699 } 700 701 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 702 BTRFS_BLOCK_RSV_TEMP); 703 /* 704 * 1 - parent dir inode 705 * 2 - dir entries 706 * 1 - root item 707 * 2 - root ref/backref 708 * 1 - root of snapshot 709 * 1 - UUID item 710 */ 711 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 712 &pending_snapshot->block_rsv, 8, 713 false); 714 if (ret) 715 goto free_pending; 716 717 pending_snapshot->dentry = dentry; 718 pending_snapshot->root = root; 719 pending_snapshot->readonly = readonly; 720 pending_snapshot->dir = dir; 721 pending_snapshot->inherit = inherit; 722 723 trans = btrfs_start_transaction(root, 0); 724 if (IS_ERR(trans)) { 725 ret = PTR_ERR(trans); 726 goto fail; 727 } 728 729 spin_lock(&fs_info->trans_lock); 730 list_add(&pending_snapshot->list, 731 &trans->transaction->pending_snapshots); 732 spin_unlock(&fs_info->trans_lock); 733 734 ret = btrfs_commit_transaction(trans); 735 if (ret) 736 goto fail; 737 738 ret = pending_snapshot->error; 739 if (ret) 740 goto fail; 741 742 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 743 if (ret) 744 goto fail; 745 746 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 747 if (IS_ERR(inode)) { 748 ret = PTR_ERR(inode); 749 goto fail; 750 } 751 752 d_instantiate(dentry, inode); 753 ret = 0; 754 pending_snapshot->anon_dev = 0; 755 fail: 756 /* Prevent double freeing of anon_dev */ 757 if (ret && pending_snapshot->snap) 758 pending_snapshot->snap->anon_dev = 0; 759 btrfs_put_root(pending_snapshot->snap); 760 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 761 free_pending: 762 if (pending_snapshot->anon_dev) 763 free_anon_bdev(pending_snapshot->anon_dev); 764 kfree(pending_snapshot->root_item); 765 btrfs_free_path(pending_snapshot->path); 766 kfree(pending_snapshot); 767 768 return ret; 769 } 770 771 /* copy of may_delete in fs/namei.c() 772 * Check whether we can remove a link victim from directory dir, check 773 * whether the type of victim is right. 774 * 1. We can't do it if dir is read-only (done in permission()) 775 * 2. We should have write and exec permissions on dir 776 * 3. We can't remove anything from append-only dir 777 * 4. We can't do anything with immutable dir (done in permission()) 778 * 5. If the sticky bit on dir is set we should either 779 * a. be owner of dir, or 780 * b. be owner of victim, or 781 * c. have CAP_FOWNER capability 782 * 6. If the victim is append-only or immutable we can't do anything with 783 * links pointing to it. 784 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 785 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 786 * 9. We can't remove a root or mountpoint. 787 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 788 * nfs_async_unlink(). 789 */ 790 791 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 792 { 793 int error; 794 795 if (d_really_is_negative(victim)) 796 return -ENOENT; 797 798 BUG_ON(d_inode(victim->d_parent) != dir); 799 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 800 801 error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC); 802 if (error) 803 return error; 804 if (IS_APPEND(dir)) 805 return -EPERM; 806 if (check_sticky(&init_user_ns, dir, d_inode(victim)) || 807 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 808 IS_SWAPFILE(d_inode(victim))) 809 return -EPERM; 810 if (isdir) { 811 if (!d_is_dir(victim)) 812 return -ENOTDIR; 813 if (IS_ROOT(victim)) 814 return -EBUSY; 815 } else if (d_is_dir(victim)) 816 return -EISDIR; 817 if (IS_DEADDIR(dir)) 818 return -ENOENT; 819 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 820 return -EBUSY; 821 return 0; 822 } 823 824 /* copy of may_create in fs/namei.c() */ 825 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 826 { 827 if (d_really_is_positive(child)) 828 return -EEXIST; 829 if (IS_DEADDIR(dir)) 830 return -ENOENT; 831 return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC); 832 } 833 834 /* 835 * Create a new subvolume below @parent. This is largely modeled after 836 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 837 * inside this filesystem so it's quite a bit simpler. 838 */ 839 static noinline int btrfs_mksubvol(const struct path *parent, 840 const char *name, int namelen, 841 struct btrfs_root *snap_src, 842 bool readonly, 843 struct btrfs_qgroup_inherit *inherit) 844 { 845 struct inode *dir = d_inode(parent->dentry); 846 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 847 struct dentry *dentry; 848 int error; 849 850 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 851 if (error == -EINTR) 852 return error; 853 854 dentry = lookup_one_len(name, parent->dentry, namelen); 855 error = PTR_ERR(dentry); 856 if (IS_ERR(dentry)) 857 goto out_unlock; 858 859 error = btrfs_may_create(dir, dentry); 860 if (error) 861 goto out_dput; 862 863 /* 864 * even if this name doesn't exist, we may get hash collisions. 865 * check for them now when we can safely fail 866 */ 867 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 868 dir->i_ino, name, 869 namelen); 870 if (error) 871 goto out_dput; 872 873 down_read(&fs_info->subvol_sem); 874 875 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 876 goto out_up_read; 877 878 if (snap_src) 879 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 880 else 881 error = create_subvol(dir, dentry, name, namelen, inherit); 882 883 if (!error) 884 fsnotify_mkdir(dir, dentry); 885 out_up_read: 886 up_read(&fs_info->subvol_sem); 887 out_dput: 888 dput(dentry); 889 out_unlock: 890 btrfs_inode_unlock(dir, 0); 891 return error; 892 } 893 894 static noinline int btrfs_mksnapshot(const struct path *parent, 895 const char *name, int namelen, 896 struct btrfs_root *root, 897 bool readonly, 898 struct btrfs_qgroup_inherit *inherit) 899 { 900 int ret; 901 bool snapshot_force_cow = false; 902 903 /* 904 * Force new buffered writes to reserve space even when NOCOW is 905 * possible. This is to avoid later writeback (running dealloc) to 906 * fallback to COW mode and unexpectedly fail with ENOSPC. 907 */ 908 btrfs_drew_read_lock(&root->snapshot_lock); 909 910 ret = btrfs_start_delalloc_snapshot(root); 911 if (ret) 912 goto out; 913 914 /* 915 * All previous writes have started writeback in NOCOW mode, so now 916 * we force future writes to fallback to COW mode during snapshot 917 * creation. 918 */ 919 atomic_inc(&root->snapshot_force_cow); 920 snapshot_force_cow = true; 921 922 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 923 924 ret = btrfs_mksubvol(parent, name, namelen, 925 root, readonly, inherit); 926 out: 927 if (snapshot_force_cow) 928 atomic_dec(&root->snapshot_force_cow); 929 btrfs_drew_read_unlock(&root->snapshot_lock); 930 return ret; 931 } 932 933 /* 934 * When we're defragging a range, we don't want to kick it off again 935 * if it is really just waiting for delalloc to send it down. 936 * If we find a nice big extent or delalloc range for the bytes in the 937 * file you want to defrag, we return 0 to let you know to skip this 938 * part of the file 939 */ 940 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 941 { 942 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 943 struct extent_map *em = NULL; 944 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 945 u64 end; 946 947 read_lock(&em_tree->lock); 948 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 949 read_unlock(&em_tree->lock); 950 951 if (em) { 952 end = extent_map_end(em); 953 free_extent_map(em); 954 if (end - offset > thresh) 955 return 0; 956 } 957 /* if we already have a nice delalloc here, just stop */ 958 thresh /= 2; 959 end = count_range_bits(io_tree, &offset, offset + thresh, 960 thresh, EXTENT_DELALLOC, 1); 961 if (end >= thresh) 962 return 0; 963 return 1; 964 } 965 966 /* 967 * helper function to walk through a file and find extents 968 * newer than a specific transid, and smaller than thresh. 969 * 970 * This is used by the defragging code to find new and small 971 * extents 972 */ 973 static int find_new_extents(struct btrfs_root *root, 974 struct inode *inode, u64 newer_than, 975 u64 *off, u32 thresh) 976 { 977 struct btrfs_path *path; 978 struct btrfs_key min_key; 979 struct extent_buffer *leaf; 980 struct btrfs_file_extent_item *extent; 981 int type; 982 int ret; 983 u64 ino = btrfs_ino(BTRFS_I(inode)); 984 985 path = btrfs_alloc_path(); 986 if (!path) 987 return -ENOMEM; 988 989 min_key.objectid = ino; 990 min_key.type = BTRFS_EXTENT_DATA_KEY; 991 min_key.offset = *off; 992 993 while (1) { 994 ret = btrfs_search_forward(root, &min_key, path, newer_than); 995 if (ret != 0) 996 goto none; 997 process_slot: 998 if (min_key.objectid != ino) 999 goto none; 1000 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1001 goto none; 1002 1003 leaf = path->nodes[0]; 1004 extent = btrfs_item_ptr(leaf, path->slots[0], 1005 struct btrfs_file_extent_item); 1006 1007 type = btrfs_file_extent_type(leaf, extent); 1008 if (type == BTRFS_FILE_EXTENT_REG && 1009 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1010 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1011 *off = min_key.offset; 1012 btrfs_free_path(path); 1013 return 0; 1014 } 1015 1016 path->slots[0]++; 1017 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1018 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1019 goto process_slot; 1020 } 1021 1022 if (min_key.offset == (u64)-1) 1023 goto none; 1024 1025 min_key.offset++; 1026 btrfs_release_path(path); 1027 } 1028 none: 1029 btrfs_free_path(path); 1030 return -ENOENT; 1031 } 1032 1033 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1034 { 1035 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1036 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1037 struct extent_map *em; 1038 u64 len = PAGE_SIZE; 1039 1040 /* 1041 * hopefully we have this extent in the tree already, try without 1042 * the full extent lock 1043 */ 1044 read_lock(&em_tree->lock); 1045 em = lookup_extent_mapping(em_tree, start, len); 1046 read_unlock(&em_tree->lock); 1047 1048 if (!em) { 1049 struct extent_state *cached = NULL; 1050 u64 end = start + len - 1; 1051 1052 /* get the big lock and read metadata off disk */ 1053 lock_extent_bits(io_tree, start, end, &cached); 1054 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1055 unlock_extent_cached(io_tree, start, end, &cached); 1056 1057 if (IS_ERR(em)) 1058 return NULL; 1059 } 1060 1061 return em; 1062 } 1063 1064 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1065 { 1066 struct extent_map *next; 1067 bool ret = true; 1068 1069 /* this is the last extent */ 1070 if (em->start + em->len >= i_size_read(inode)) 1071 return false; 1072 1073 next = defrag_lookup_extent(inode, em->start + em->len); 1074 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1075 ret = false; 1076 else if ((em->block_start + em->block_len == next->block_start) && 1077 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1078 ret = false; 1079 1080 free_extent_map(next); 1081 return ret; 1082 } 1083 1084 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1085 u64 *last_len, u64 *skip, u64 *defrag_end, 1086 int compress) 1087 { 1088 struct extent_map *em; 1089 int ret = 1; 1090 bool next_mergeable = true; 1091 bool prev_mergeable = true; 1092 1093 /* 1094 * make sure that once we start defragging an extent, we keep on 1095 * defragging it 1096 */ 1097 if (start < *defrag_end) 1098 return 1; 1099 1100 *skip = 0; 1101 1102 em = defrag_lookup_extent(inode, start); 1103 if (!em) 1104 return 0; 1105 1106 /* this will cover holes, and inline extents */ 1107 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1108 ret = 0; 1109 goto out; 1110 } 1111 1112 if (!*defrag_end) 1113 prev_mergeable = false; 1114 1115 next_mergeable = defrag_check_next_extent(inode, em); 1116 /* 1117 * we hit a real extent, if it is big or the next extent is not a 1118 * real extent, don't bother defragging it 1119 */ 1120 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1121 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1122 ret = 0; 1123 out: 1124 /* 1125 * last_len ends up being a counter of how many bytes we've defragged. 1126 * every time we choose not to defrag an extent, we reset *last_len 1127 * so that the next tiny extent will force a defrag. 1128 * 1129 * The end result of this is that tiny extents before a single big 1130 * extent will force at least part of that big extent to be defragged. 1131 */ 1132 if (ret) { 1133 *defrag_end = extent_map_end(em); 1134 } else { 1135 *last_len = 0; 1136 *skip = extent_map_end(em); 1137 *defrag_end = 0; 1138 } 1139 1140 free_extent_map(em); 1141 return ret; 1142 } 1143 1144 /* 1145 * it doesn't do much good to defrag one or two pages 1146 * at a time. This pulls in a nice chunk of pages 1147 * to COW and defrag. 1148 * 1149 * It also makes sure the delalloc code has enough 1150 * dirty data to avoid making new small extents as part 1151 * of the defrag 1152 * 1153 * It's a good idea to start RA on this range 1154 * before calling this. 1155 */ 1156 static int cluster_pages_for_defrag(struct inode *inode, 1157 struct page **pages, 1158 unsigned long start_index, 1159 unsigned long num_pages) 1160 { 1161 unsigned long file_end; 1162 u64 isize = i_size_read(inode); 1163 u64 page_start; 1164 u64 page_end; 1165 u64 page_cnt; 1166 u64 start = (u64)start_index << PAGE_SHIFT; 1167 u64 search_start; 1168 int ret; 1169 int i; 1170 int i_done; 1171 struct btrfs_ordered_extent *ordered; 1172 struct extent_state *cached_state = NULL; 1173 struct extent_io_tree *tree; 1174 struct extent_changeset *data_reserved = NULL; 1175 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1176 1177 file_end = (isize - 1) >> PAGE_SHIFT; 1178 if (!isize || start_index > file_end) 1179 return 0; 1180 1181 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1182 1183 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1184 start, page_cnt << PAGE_SHIFT); 1185 if (ret) 1186 return ret; 1187 i_done = 0; 1188 tree = &BTRFS_I(inode)->io_tree; 1189 1190 /* step one, lock all the pages */ 1191 for (i = 0; i < page_cnt; i++) { 1192 struct page *page; 1193 again: 1194 page = find_or_create_page(inode->i_mapping, 1195 start_index + i, mask); 1196 if (!page) 1197 break; 1198 1199 ret = set_page_extent_mapped(page); 1200 if (ret < 0) { 1201 unlock_page(page); 1202 put_page(page); 1203 break; 1204 } 1205 1206 page_start = page_offset(page); 1207 page_end = page_start + PAGE_SIZE - 1; 1208 while (1) { 1209 lock_extent_bits(tree, page_start, page_end, 1210 &cached_state); 1211 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1212 page_start); 1213 unlock_extent_cached(tree, page_start, page_end, 1214 &cached_state); 1215 if (!ordered) 1216 break; 1217 1218 unlock_page(page); 1219 btrfs_start_ordered_extent(ordered, 1); 1220 btrfs_put_ordered_extent(ordered); 1221 lock_page(page); 1222 /* 1223 * we unlocked the page above, so we need check if 1224 * it was released or not. 1225 */ 1226 if (page->mapping != inode->i_mapping) { 1227 unlock_page(page); 1228 put_page(page); 1229 goto again; 1230 } 1231 } 1232 1233 if (!PageUptodate(page)) { 1234 btrfs_readpage(NULL, page); 1235 lock_page(page); 1236 if (!PageUptodate(page)) { 1237 unlock_page(page); 1238 put_page(page); 1239 ret = -EIO; 1240 break; 1241 } 1242 } 1243 1244 if (page->mapping != inode->i_mapping) { 1245 unlock_page(page); 1246 put_page(page); 1247 goto again; 1248 } 1249 1250 pages[i] = page; 1251 i_done++; 1252 } 1253 if (!i_done || ret) 1254 goto out; 1255 1256 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1257 goto out; 1258 1259 /* 1260 * so now we have a nice long stream of locked 1261 * and up to date pages, lets wait on them 1262 */ 1263 for (i = 0; i < i_done; i++) 1264 wait_on_page_writeback(pages[i]); 1265 1266 page_start = page_offset(pages[0]); 1267 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1268 1269 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1270 page_start, page_end - 1, &cached_state); 1271 1272 /* 1273 * When defragmenting we skip ranges that have holes or inline extents, 1274 * (check should_defrag_range()), to avoid unnecessary IO and wasting 1275 * space. At btrfs_defrag_file(), we check if a range should be defragged 1276 * before locking the inode and then, if it should, we trigger a sync 1277 * page cache readahead - we lock the inode only after that to avoid 1278 * blocking for too long other tasks that possibly want to operate on 1279 * other file ranges. But before we were able to get the inode lock, 1280 * some other task may have punched a hole in the range, or we may have 1281 * now an inline extent, in which case we should not defrag. So check 1282 * for that here, where we have the inode and the range locked, and bail 1283 * out if that happened. 1284 */ 1285 search_start = page_start; 1286 while (search_start < page_end) { 1287 struct extent_map *em; 1288 1289 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start, 1290 page_end - search_start); 1291 if (IS_ERR(em)) { 1292 ret = PTR_ERR(em); 1293 goto out_unlock_range; 1294 } 1295 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1296 free_extent_map(em); 1297 /* Ok, 0 means we did not defrag anything */ 1298 ret = 0; 1299 goto out_unlock_range; 1300 } 1301 search_start = extent_map_end(em); 1302 free_extent_map(em); 1303 } 1304 1305 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1306 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1307 EXTENT_DEFRAG, 0, 0, &cached_state); 1308 1309 if (i_done != page_cnt) { 1310 spin_lock(&BTRFS_I(inode)->lock); 1311 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1312 spin_unlock(&BTRFS_I(inode)->lock); 1313 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1314 start, (page_cnt - i_done) << PAGE_SHIFT, true); 1315 } 1316 1317 1318 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1319 &cached_state); 1320 1321 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1322 page_start, page_end - 1, &cached_state); 1323 1324 for (i = 0; i < i_done; i++) { 1325 clear_page_dirty_for_io(pages[i]); 1326 ClearPageChecked(pages[i]); 1327 set_page_dirty(pages[i]); 1328 unlock_page(pages[i]); 1329 put_page(pages[i]); 1330 } 1331 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1332 extent_changeset_free(data_reserved); 1333 return i_done; 1334 1335 out_unlock_range: 1336 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1337 page_start, page_end - 1, &cached_state); 1338 out: 1339 for (i = 0; i < i_done; i++) { 1340 unlock_page(pages[i]); 1341 put_page(pages[i]); 1342 } 1343 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1344 start, page_cnt << PAGE_SHIFT, true); 1345 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1346 extent_changeset_free(data_reserved); 1347 return ret; 1348 1349 } 1350 1351 int btrfs_defrag_file(struct inode *inode, struct file *file, 1352 struct btrfs_ioctl_defrag_range_args *range, 1353 u64 newer_than, unsigned long max_to_defrag) 1354 { 1355 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1356 struct btrfs_root *root = BTRFS_I(inode)->root; 1357 struct file_ra_state *ra = NULL; 1358 unsigned long last_index; 1359 u64 isize = i_size_read(inode); 1360 u64 last_len = 0; 1361 u64 skip = 0; 1362 u64 defrag_end = 0; 1363 u64 newer_off = range->start; 1364 unsigned long i; 1365 unsigned long ra_index = 0; 1366 int ret; 1367 int defrag_count = 0; 1368 int compress_type = BTRFS_COMPRESS_ZLIB; 1369 u32 extent_thresh = range->extent_thresh; 1370 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1371 unsigned long cluster = max_cluster; 1372 u64 new_align = ~((u64)SZ_128K - 1); 1373 struct page **pages = NULL; 1374 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1375 1376 if (isize == 0) 1377 return 0; 1378 1379 if (range->start >= isize) 1380 return -EINVAL; 1381 1382 if (do_compress) { 1383 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1384 return -EINVAL; 1385 if (range->compress_type) 1386 compress_type = range->compress_type; 1387 } 1388 1389 if (extent_thresh == 0) 1390 extent_thresh = SZ_256K; 1391 1392 /* 1393 * If we were not given a file, allocate a readahead context. As 1394 * readahead is just an optimization, defrag will work without it so 1395 * we don't error out. 1396 */ 1397 if (!file) { 1398 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1399 if (ra) 1400 file_ra_state_init(ra, inode->i_mapping); 1401 } else { 1402 ra = &file->f_ra; 1403 } 1404 1405 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1406 if (!pages) { 1407 ret = -ENOMEM; 1408 goto out_ra; 1409 } 1410 1411 /* find the last page to defrag */ 1412 if (range->start + range->len > range->start) { 1413 last_index = min_t(u64, isize - 1, 1414 range->start + range->len - 1) >> PAGE_SHIFT; 1415 } else { 1416 last_index = (isize - 1) >> PAGE_SHIFT; 1417 } 1418 1419 if (newer_than) { 1420 ret = find_new_extents(root, inode, newer_than, 1421 &newer_off, SZ_64K); 1422 if (!ret) { 1423 range->start = newer_off; 1424 /* 1425 * we always align our defrag to help keep 1426 * the extents in the file evenly spaced 1427 */ 1428 i = (newer_off & new_align) >> PAGE_SHIFT; 1429 } else 1430 goto out_ra; 1431 } else { 1432 i = range->start >> PAGE_SHIFT; 1433 } 1434 if (!max_to_defrag) 1435 max_to_defrag = last_index - i + 1; 1436 1437 /* 1438 * make writeback starts from i, so the defrag range can be 1439 * written sequentially. 1440 */ 1441 if (i < inode->i_mapping->writeback_index) 1442 inode->i_mapping->writeback_index = i; 1443 1444 while (i <= last_index && defrag_count < max_to_defrag && 1445 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1446 /* 1447 * make sure we stop running if someone unmounts 1448 * the FS 1449 */ 1450 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1451 break; 1452 1453 if (btrfs_defrag_cancelled(fs_info)) { 1454 btrfs_debug(fs_info, "defrag_file cancelled"); 1455 ret = -EAGAIN; 1456 break; 1457 } 1458 1459 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1460 extent_thresh, &last_len, &skip, 1461 &defrag_end, do_compress)){ 1462 unsigned long next; 1463 /* 1464 * the should_defrag function tells us how much to skip 1465 * bump our counter by the suggested amount 1466 */ 1467 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1468 i = max(i + 1, next); 1469 continue; 1470 } 1471 1472 if (!newer_than) { 1473 cluster = (PAGE_ALIGN(defrag_end) >> 1474 PAGE_SHIFT) - i; 1475 cluster = min(cluster, max_cluster); 1476 } else { 1477 cluster = max_cluster; 1478 } 1479 1480 if (i + cluster > ra_index) { 1481 ra_index = max(i, ra_index); 1482 if (ra) 1483 page_cache_sync_readahead(inode->i_mapping, ra, 1484 file, ra_index, cluster); 1485 ra_index += cluster; 1486 } 1487 1488 btrfs_inode_lock(inode, 0); 1489 if (IS_SWAPFILE(inode)) { 1490 ret = -ETXTBSY; 1491 } else { 1492 if (do_compress) 1493 BTRFS_I(inode)->defrag_compress = compress_type; 1494 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1495 } 1496 if (ret < 0) { 1497 btrfs_inode_unlock(inode, 0); 1498 goto out_ra; 1499 } 1500 1501 defrag_count += ret; 1502 balance_dirty_pages_ratelimited(inode->i_mapping); 1503 btrfs_inode_unlock(inode, 0); 1504 1505 if (newer_than) { 1506 if (newer_off == (u64)-1) 1507 break; 1508 1509 if (ret > 0) 1510 i += ret; 1511 1512 newer_off = max(newer_off + 1, 1513 (u64)i << PAGE_SHIFT); 1514 1515 ret = find_new_extents(root, inode, newer_than, 1516 &newer_off, SZ_64K); 1517 if (!ret) { 1518 range->start = newer_off; 1519 i = (newer_off & new_align) >> PAGE_SHIFT; 1520 } else { 1521 break; 1522 } 1523 } else { 1524 if (ret > 0) { 1525 i += ret; 1526 last_len += ret << PAGE_SHIFT; 1527 } else { 1528 i++; 1529 last_len = 0; 1530 } 1531 } 1532 } 1533 1534 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1535 filemap_flush(inode->i_mapping); 1536 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1537 &BTRFS_I(inode)->runtime_flags)) 1538 filemap_flush(inode->i_mapping); 1539 } 1540 1541 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1542 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1543 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1544 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1545 } 1546 1547 ret = defrag_count; 1548 1549 out_ra: 1550 if (do_compress) { 1551 btrfs_inode_lock(inode, 0); 1552 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1553 btrfs_inode_unlock(inode, 0); 1554 } 1555 if (!file) 1556 kfree(ra); 1557 kfree(pages); 1558 return ret; 1559 } 1560 1561 static noinline int btrfs_ioctl_resize(struct file *file, 1562 void __user *arg) 1563 { 1564 struct inode *inode = file_inode(file); 1565 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1566 u64 new_size; 1567 u64 old_size; 1568 u64 devid = 1; 1569 struct btrfs_root *root = BTRFS_I(inode)->root; 1570 struct btrfs_ioctl_vol_args *vol_args; 1571 struct btrfs_trans_handle *trans; 1572 struct btrfs_device *device = NULL; 1573 char *sizestr; 1574 char *retptr; 1575 char *devstr = NULL; 1576 int ret = 0; 1577 int mod = 0; 1578 1579 if (!capable(CAP_SYS_ADMIN)) 1580 return -EPERM; 1581 1582 ret = mnt_want_write_file(file); 1583 if (ret) 1584 return ret; 1585 1586 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) { 1587 mnt_drop_write_file(file); 1588 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1589 } 1590 1591 vol_args = memdup_user(arg, sizeof(*vol_args)); 1592 if (IS_ERR(vol_args)) { 1593 ret = PTR_ERR(vol_args); 1594 goto out; 1595 } 1596 1597 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1598 1599 sizestr = vol_args->name; 1600 devstr = strchr(sizestr, ':'); 1601 if (devstr) { 1602 sizestr = devstr + 1; 1603 *devstr = '\0'; 1604 devstr = vol_args->name; 1605 ret = kstrtoull(devstr, 10, &devid); 1606 if (ret) 1607 goto out_free; 1608 if (!devid) { 1609 ret = -EINVAL; 1610 goto out_free; 1611 } 1612 btrfs_info(fs_info, "resizing devid %llu", devid); 1613 } 1614 1615 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 1616 if (!device) { 1617 btrfs_info(fs_info, "resizer unable to find device %llu", 1618 devid); 1619 ret = -ENODEV; 1620 goto out_free; 1621 } 1622 1623 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1624 btrfs_info(fs_info, 1625 "resizer unable to apply on readonly device %llu", 1626 devid); 1627 ret = -EPERM; 1628 goto out_free; 1629 } 1630 1631 if (!strcmp(sizestr, "max")) 1632 new_size = device->bdev->bd_inode->i_size; 1633 else { 1634 if (sizestr[0] == '-') { 1635 mod = -1; 1636 sizestr++; 1637 } else if (sizestr[0] == '+') { 1638 mod = 1; 1639 sizestr++; 1640 } 1641 new_size = memparse(sizestr, &retptr); 1642 if (*retptr != '\0' || new_size == 0) { 1643 ret = -EINVAL; 1644 goto out_free; 1645 } 1646 } 1647 1648 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1649 ret = -EPERM; 1650 goto out_free; 1651 } 1652 1653 old_size = btrfs_device_get_total_bytes(device); 1654 1655 if (mod < 0) { 1656 if (new_size > old_size) { 1657 ret = -EINVAL; 1658 goto out_free; 1659 } 1660 new_size = old_size - new_size; 1661 } else if (mod > 0) { 1662 if (new_size > ULLONG_MAX - old_size) { 1663 ret = -ERANGE; 1664 goto out_free; 1665 } 1666 new_size = old_size + new_size; 1667 } 1668 1669 if (new_size < SZ_256M) { 1670 ret = -EINVAL; 1671 goto out_free; 1672 } 1673 if (new_size > device->bdev->bd_inode->i_size) { 1674 ret = -EFBIG; 1675 goto out_free; 1676 } 1677 1678 new_size = round_down(new_size, fs_info->sectorsize); 1679 1680 if (new_size > old_size) { 1681 trans = btrfs_start_transaction(root, 0); 1682 if (IS_ERR(trans)) { 1683 ret = PTR_ERR(trans); 1684 goto out_free; 1685 } 1686 ret = btrfs_grow_device(trans, device, new_size); 1687 btrfs_commit_transaction(trans); 1688 } else if (new_size < old_size) { 1689 ret = btrfs_shrink_device(device, new_size); 1690 } /* equal, nothing need to do */ 1691 1692 if (ret == 0 && new_size != old_size) 1693 btrfs_info_in_rcu(fs_info, 1694 "resize device %s (devid %llu) from %llu to %llu", 1695 rcu_str_deref(device->name), device->devid, 1696 old_size, new_size); 1697 out_free: 1698 kfree(vol_args); 1699 out: 1700 btrfs_exclop_finish(fs_info); 1701 mnt_drop_write_file(file); 1702 return ret; 1703 } 1704 1705 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1706 const char *name, unsigned long fd, int subvol, 1707 bool readonly, 1708 struct btrfs_qgroup_inherit *inherit) 1709 { 1710 int namelen; 1711 int ret = 0; 1712 1713 if (!S_ISDIR(file_inode(file)->i_mode)) 1714 return -ENOTDIR; 1715 1716 ret = mnt_want_write_file(file); 1717 if (ret) 1718 goto out; 1719 1720 namelen = strlen(name); 1721 if (strchr(name, '/')) { 1722 ret = -EINVAL; 1723 goto out_drop_write; 1724 } 1725 1726 if (name[0] == '.' && 1727 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1728 ret = -EEXIST; 1729 goto out_drop_write; 1730 } 1731 1732 if (subvol) { 1733 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1734 NULL, readonly, inherit); 1735 } else { 1736 struct fd src = fdget(fd); 1737 struct inode *src_inode; 1738 if (!src.file) { 1739 ret = -EINVAL; 1740 goto out_drop_write; 1741 } 1742 1743 src_inode = file_inode(src.file); 1744 if (src_inode->i_sb != file_inode(file)->i_sb) { 1745 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1746 "Snapshot src from another FS"); 1747 ret = -EXDEV; 1748 } else if (!inode_owner_or_capable(&init_user_ns, src_inode)) { 1749 /* 1750 * Subvolume creation is not restricted, but snapshots 1751 * are limited to own subvolumes only 1752 */ 1753 ret = -EPERM; 1754 } else { 1755 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1756 BTRFS_I(src_inode)->root, 1757 readonly, inherit); 1758 } 1759 fdput(src); 1760 } 1761 out_drop_write: 1762 mnt_drop_write_file(file); 1763 out: 1764 return ret; 1765 } 1766 1767 static noinline int btrfs_ioctl_snap_create(struct file *file, 1768 void __user *arg, int subvol) 1769 { 1770 struct btrfs_ioctl_vol_args *vol_args; 1771 int ret; 1772 1773 if (!S_ISDIR(file_inode(file)->i_mode)) 1774 return -ENOTDIR; 1775 1776 vol_args = memdup_user(arg, sizeof(*vol_args)); 1777 if (IS_ERR(vol_args)) 1778 return PTR_ERR(vol_args); 1779 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1780 1781 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1782 subvol, false, NULL); 1783 1784 kfree(vol_args); 1785 return ret; 1786 } 1787 1788 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1789 void __user *arg, int subvol) 1790 { 1791 struct btrfs_ioctl_vol_args_v2 *vol_args; 1792 int ret; 1793 bool readonly = false; 1794 struct btrfs_qgroup_inherit *inherit = NULL; 1795 1796 if (!S_ISDIR(file_inode(file)->i_mode)) 1797 return -ENOTDIR; 1798 1799 vol_args = memdup_user(arg, sizeof(*vol_args)); 1800 if (IS_ERR(vol_args)) 1801 return PTR_ERR(vol_args); 1802 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1803 1804 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1805 ret = -EOPNOTSUPP; 1806 goto free_args; 1807 } 1808 1809 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1810 readonly = true; 1811 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1812 u64 nums; 1813 1814 if (vol_args->size < sizeof(*inherit) || 1815 vol_args->size > PAGE_SIZE) { 1816 ret = -EINVAL; 1817 goto free_args; 1818 } 1819 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1820 if (IS_ERR(inherit)) { 1821 ret = PTR_ERR(inherit); 1822 goto free_args; 1823 } 1824 1825 if (inherit->num_qgroups > PAGE_SIZE || 1826 inherit->num_ref_copies > PAGE_SIZE || 1827 inherit->num_excl_copies > PAGE_SIZE) { 1828 ret = -EINVAL; 1829 goto free_inherit; 1830 } 1831 1832 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1833 2 * inherit->num_excl_copies; 1834 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1835 ret = -EINVAL; 1836 goto free_inherit; 1837 } 1838 } 1839 1840 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1841 subvol, readonly, inherit); 1842 if (ret) 1843 goto free_inherit; 1844 free_inherit: 1845 kfree(inherit); 1846 free_args: 1847 kfree(vol_args); 1848 return ret; 1849 } 1850 1851 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1852 void __user *arg) 1853 { 1854 struct inode *inode = file_inode(file); 1855 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1856 struct btrfs_root *root = BTRFS_I(inode)->root; 1857 int ret = 0; 1858 u64 flags = 0; 1859 1860 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1861 return -EINVAL; 1862 1863 down_read(&fs_info->subvol_sem); 1864 if (btrfs_root_readonly(root)) 1865 flags |= BTRFS_SUBVOL_RDONLY; 1866 up_read(&fs_info->subvol_sem); 1867 1868 if (copy_to_user(arg, &flags, sizeof(flags))) 1869 ret = -EFAULT; 1870 1871 return ret; 1872 } 1873 1874 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1875 void __user *arg) 1876 { 1877 struct inode *inode = file_inode(file); 1878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1879 struct btrfs_root *root = BTRFS_I(inode)->root; 1880 struct btrfs_trans_handle *trans; 1881 u64 root_flags; 1882 u64 flags; 1883 int ret = 0; 1884 1885 if (!inode_owner_or_capable(&init_user_ns, inode)) 1886 return -EPERM; 1887 1888 ret = mnt_want_write_file(file); 1889 if (ret) 1890 goto out; 1891 1892 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1893 ret = -EINVAL; 1894 goto out_drop_write; 1895 } 1896 1897 if (copy_from_user(&flags, arg, sizeof(flags))) { 1898 ret = -EFAULT; 1899 goto out_drop_write; 1900 } 1901 1902 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1903 ret = -EOPNOTSUPP; 1904 goto out_drop_write; 1905 } 1906 1907 down_write(&fs_info->subvol_sem); 1908 1909 /* nothing to do */ 1910 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1911 goto out_drop_sem; 1912 1913 root_flags = btrfs_root_flags(&root->root_item); 1914 if (flags & BTRFS_SUBVOL_RDONLY) { 1915 btrfs_set_root_flags(&root->root_item, 1916 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1917 } else { 1918 /* 1919 * Block RO -> RW transition if this subvolume is involved in 1920 * send 1921 */ 1922 spin_lock(&root->root_item_lock); 1923 if (root->send_in_progress == 0) { 1924 btrfs_set_root_flags(&root->root_item, 1925 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1926 spin_unlock(&root->root_item_lock); 1927 } else { 1928 spin_unlock(&root->root_item_lock); 1929 btrfs_warn(fs_info, 1930 "Attempt to set subvolume %llu read-write during send", 1931 root->root_key.objectid); 1932 ret = -EPERM; 1933 goto out_drop_sem; 1934 } 1935 } 1936 1937 trans = btrfs_start_transaction(root, 1); 1938 if (IS_ERR(trans)) { 1939 ret = PTR_ERR(trans); 1940 goto out_reset; 1941 } 1942 1943 ret = btrfs_update_root(trans, fs_info->tree_root, 1944 &root->root_key, &root->root_item); 1945 if (ret < 0) { 1946 btrfs_end_transaction(trans); 1947 goto out_reset; 1948 } 1949 1950 ret = btrfs_commit_transaction(trans); 1951 1952 out_reset: 1953 if (ret) 1954 btrfs_set_root_flags(&root->root_item, root_flags); 1955 out_drop_sem: 1956 up_write(&fs_info->subvol_sem); 1957 out_drop_write: 1958 mnt_drop_write_file(file); 1959 out: 1960 return ret; 1961 } 1962 1963 static noinline int key_in_sk(struct btrfs_key *key, 1964 struct btrfs_ioctl_search_key *sk) 1965 { 1966 struct btrfs_key test; 1967 int ret; 1968 1969 test.objectid = sk->min_objectid; 1970 test.type = sk->min_type; 1971 test.offset = sk->min_offset; 1972 1973 ret = btrfs_comp_cpu_keys(key, &test); 1974 if (ret < 0) 1975 return 0; 1976 1977 test.objectid = sk->max_objectid; 1978 test.type = sk->max_type; 1979 test.offset = sk->max_offset; 1980 1981 ret = btrfs_comp_cpu_keys(key, &test); 1982 if (ret > 0) 1983 return 0; 1984 return 1; 1985 } 1986 1987 static noinline int copy_to_sk(struct btrfs_path *path, 1988 struct btrfs_key *key, 1989 struct btrfs_ioctl_search_key *sk, 1990 size_t *buf_size, 1991 char __user *ubuf, 1992 unsigned long *sk_offset, 1993 int *num_found) 1994 { 1995 u64 found_transid; 1996 struct extent_buffer *leaf; 1997 struct btrfs_ioctl_search_header sh; 1998 struct btrfs_key test; 1999 unsigned long item_off; 2000 unsigned long item_len; 2001 int nritems; 2002 int i; 2003 int slot; 2004 int ret = 0; 2005 2006 leaf = path->nodes[0]; 2007 slot = path->slots[0]; 2008 nritems = btrfs_header_nritems(leaf); 2009 2010 if (btrfs_header_generation(leaf) > sk->max_transid) { 2011 i = nritems; 2012 goto advance_key; 2013 } 2014 found_transid = btrfs_header_generation(leaf); 2015 2016 for (i = slot; i < nritems; i++) { 2017 item_off = btrfs_item_ptr_offset(leaf, i); 2018 item_len = btrfs_item_size_nr(leaf, i); 2019 2020 btrfs_item_key_to_cpu(leaf, key, i); 2021 if (!key_in_sk(key, sk)) 2022 continue; 2023 2024 if (sizeof(sh) + item_len > *buf_size) { 2025 if (*num_found) { 2026 ret = 1; 2027 goto out; 2028 } 2029 2030 /* 2031 * return one empty item back for v1, which does not 2032 * handle -EOVERFLOW 2033 */ 2034 2035 *buf_size = sizeof(sh) + item_len; 2036 item_len = 0; 2037 ret = -EOVERFLOW; 2038 } 2039 2040 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2041 ret = 1; 2042 goto out; 2043 } 2044 2045 sh.objectid = key->objectid; 2046 sh.offset = key->offset; 2047 sh.type = key->type; 2048 sh.len = item_len; 2049 sh.transid = found_transid; 2050 2051 /* 2052 * Copy search result header. If we fault then loop again so we 2053 * can fault in the pages and -EFAULT there if there's a 2054 * problem. Otherwise we'll fault and then copy the buffer in 2055 * properly this next time through 2056 */ 2057 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2058 ret = 0; 2059 goto out; 2060 } 2061 2062 *sk_offset += sizeof(sh); 2063 2064 if (item_len) { 2065 char __user *up = ubuf + *sk_offset; 2066 /* 2067 * Copy the item, same behavior as above, but reset the 2068 * * sk_offset so we copy the full thing again. 2069 */ 2070 if (read_extent_buffer_to_user_nofault(leaf, up, 2071 item_off, item_len)) { 2072 ret = 0; 2073 *sk_offset -= sizeof(sh); 2074 goto out; 2075 } 2076 2077 *sk_offset += item_len; 2078 } 2079 (*num_found)++; 2080 2081 if (ret) /* -EOVERFLOW from above */ 2082 goto out; 2083 2084 if (*num_found >= sk->nr_items) { 2085 ret = 1; 2086 goto out; 2087 } 2088 } 2089 advance_key: 2090 ret = 0; 2091 test.objectid = sk->max_objectid; 2092 test.type = sk->max_type; 2093 test.offset = sk->max_offset; 2094 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2095 ret = 1; 2096 else if (key->offset < (u64)-1) 2097 key->offset++; 2098 else if (key->type < (u8)-1) { 2099 key->offset = 0; 2100 key->type++; 2101 } else if (key->objectid < (u64)-1) { 2102 key->offset = 0; 2103 key->type = 0; 2104 key->objectid++; 2105 } else 2106 ret = 1; 2107 out: 2108 /* 2109 * 0: all items from this leaf copied, continue with next 2110 * 1: * more items can be copied, but unused buffer is too small 2111 * * all items were found 2112 * Either way, it will stops the loop which iterates to the next 2113 * leaf 2114 * -EOVERFLOW: item was to large for buffer 2115 * -EFAULT: could not copy extent buffer back to userspace 2116 */ 2117 return ret; 2118 } 2119 2120 static noinline int search_ioctl(struct inode *inode, 2121 struct btrfs_ioctl_search_key *sk, 2122 size_t *buf_size, 2123 char __user *ubuf) 2124 { 2125 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2126 struct btrfs_root *root; 2127 struct btrfs_key key; 2128 struct btrfs_path *path; 2129 int ret; 2130 int num_found = 0; 2131 unsigned long sk_offset = 0; 2132 2133 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2134 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2135 return -EOVERFLOW; 2136 } 2137 2138 path = btrfs_alloc_path(); 2139 if (!path) 2140 return -ENOMEM; 2141 2142 if (sk->tree_id == 0) { 2143 /* search the root of the inode that was passed */ 2144 root = btrfs_grab_root(BTRFS_I(inode)->root); 2145 } else { 2146 root = btrfs_get_fs_root(info, sk->tree_id, true); 2147 if (IS_ERR(root)) { 2148 btrfs_free_path(path); 2149 return PTR_ERR(root); 2150 } 2151 } 2152 2153 key.objectid = sk->min_objectid; 2154 key.type = sk->min_type; 2155 key.offset = sk->min_offset; 2156 2157 while (1) { 2158 ret = fault_in_pages_writeable(ubuf + sk_offset, 2159 *buf_size - sk_offset); 2160 if (ret) 2161 break; 2162 2163 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2164 if (ret != 0) { 2165 if (ret > 0) 2166 ret = 0; 2167 goto err; 2168 } 2169 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2170 &sk_offset, &num_found); 2171 btrfs_release_path(path); 2172 if (ret) 2173 break; 2174 2175 } 2176 if (ret > 0) 2177 ret = 0; 2178 err: 2179 sk->nr_items = num_found; 2180 btrfs_put_root(root); 2181 btrfs_free_path(path); 2182 return ret; 2183 } 2184 2185 static noinline int btrfs_ioctl_tree_search(struct file *file, 2186 void __user *argp) 2187 { 2188 struct btrfs_ioctl_search_args __user *uargs; 2189 struct btrfs_ioctl_search_key sk; 2190 struct inode *inode; 2191 int ret; 2192 size_t buf_size; 2193 2194 if (!capable(CAP_SYS_ADMIN)) 2195 return -EPERM; 2196 2197 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2198 2199 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2200 return -EFAULT; 2201 2202 buf_size = sizeof(uargs->buf); 2203 2204 inode = file_inode(file); 2205 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2206 2207 /* 2208 * In the origin implementation an overflow is handled by returning a 2209 * search header with a len of zero, so reset ret. 2210 */ 2211 if (ret == -EOVERFLOW) 2212 ret = 0; 2213 2214 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2215 ret = -EFAULT; 2216 return ret; 2217 } 2218 2219 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2220 void __user *argp) 2221 { 2222 struct btrfs_ioctl_search_args_v2 __user *uarg; 2223 struct btrfs_ioctl_search_args_v2 args; 2224 struct inode *inode; 2225 int ret; 2226 size_t buf_size; 2227 const size_t buf_limit = SZ_16M; 2228 2229 if (!capable(CAP_SYS_ADMIN)) 2230 return -EPERM; 2231 2232 /* copy search header and buffer size */ 2233 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2234 if (copy_from_user(&args, uarg, sizeof(args))) 2235 return -EFAULT; 2236 2237 buf_size = args.buf_size; 2238 2239 /* limit result size to 16MB */ 2240 if (buf_size > buf_limit) 2241 buf_size = buf_limit; 2242 2243 inode = file_inode(file); 2244 ret = search_ioctl(inode, &args.key, &buf_size, 2245 (char __user *)(&uarg->buf[0])); 2246 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2247 ret = -EFAULT; 2248 else if (ret == -EOVERFLOW && 2249 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2250 ret = -EFAULT; 2251 2252 return ret; 2253 } 2254 2255 /* 2256 * Search INODE_REFs to identify path name of 'dirid' directory 2257 * in a 'tree_id' tree. and sets path name to 'name'. 2258 */ 2259 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2260 u64 tree_id, u64 dirid, char *name) 2261 { 2262 struct btrfs_root *root; 2263 struct btrfs_key key; 2264 char *ptr; 2265 int ret = -1; 2266 int slot; 2267 int len; 2268 int total_len = 0; 2269 struct btrfs_inode_ref *iref; 2270 struct extent_buffer *l; 2271 struct btrfs_path *path; 2272 2273 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2274 name[0]='\0'; 2275 return 0; 2276 } 2277 2278 path = btrfs_alloc_path(); 2279 if (!path) 2280 return -ENOMEM; 2281 2282 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2283 2284 root = btrfs_get_fs_root(info, tree_id, true); 2285 if (IS_ERR(root)) { 2286 ret = PTR_ERR(root); 2287 root = NULL; 2288 goto out; 2289 } 2290 2291 key.objectid = dirid; 2292 key.type = BTRFS_INODE_REF_KEY; 2293 key.offset = (u64)-1; 2294 2295 while (1) { 2296 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2297 if (ret < 0) 2298 goto out; 2299 else if (ret > 0) { 2300 ret = btrfs_previous_item(root, path, dirid, 2301 BTRFS_INODE_REF_KEY); 2302 if (ret < 0) 2303 goto out; 2304 else if (ret > 0) { 2305 ret = -ENOENT; 2306 goto out; 2307 } 2308 } 2309 2310 l = path->nodes[0]; 2311 slot = path->slots[0]; 2312 btrfs_item_key_to_cpu(l, &key, slot); 2313 2314 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2315 len = btrfs_inode_ref_name_len(l, iref); 2316 ptr -= len + 1; 2317 total_len += len + 1; 2318 if (ptr < name) { 2319 ret = -ENAMETOOLONG; 2320 goto out; 2321 } 2322 2323 *(ptr + len) = '/'; 2324 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2325 2326 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2327 break; 2328 2329 btrfs_release_path(path); 2330 key.objectid = key.offset; 2331 key.offset = (u64)-1; 2332 dirid = key.objectid; 2333 } 2334 memmove(name, ptr, total_len); 2335 name[total_len] = '\0'; 2336 ret = 0; 2337 out: 2338 btrfs_put_root(root); 2339 btrfs_free_path(path); 2340 return ret; 2341 } 2342 2343 static int btrfs_search_path_in_tree_user(struct inode *inode, 2344 struct btrfs_ioctl_ino_lookup_user_args *args) 2345 { 2346 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2347 struct super_block *sb = inode->i_sb; 2348 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2349 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2350 u64 dirid = args->dirid; 2351 unsigned long item_off; 2352 unsigned long item_len; 2353 struct btrfs_inode_ref *iref; 2354 struct btrfs_root_ref *rref; 2355 struct btrfs_root *root = NULL; 2356 struct btrfs_path *path; 2357 struct btrfs_key key, key2; 2358 struct extent_buffer *leaf; 2359 struct inode *temp_inode; 2360 char *ptr; 2361 int slot; 2362 int len; 2363 int total_len = 0; 2364 int ret; 2365 2366 path = btrfs_alloc_path(); 2367 if (!path) 2368 return -ENOMEM; 2369 2370 /* 2371 * If the bottom subvolume does not exist directly under upper_limit, 2372 * construct the path in from the bottom up. 2373 */ 2374 if (dirid != upper_limit.objectid) { 2375 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2376 2377 root = btrfs_get_fs_root(fs_info, treeid, true); 2378 if (IS_ERR(root)) { 2379 ret = PTR_ERR(root); 2380 goto out; 2381 } 2382 2383 key.objectid = dirid; 2384 key.type = BTRFS_INODE_REF_KEY; 2385 key.offset = (u64)-1; 2386 while (1) { 2387 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2388 if (ret < 0) { 2389 goto out_put; 2390 } else if (ret > 0) { 2391 ret = btrfs_previous_item(root, path, dirid, 2392 BTRFS_INODE_REF_KEY); 2393 if (ret < 0) { 2394 goto out_put; 2395 } else if (ret > 0) { 2396 ret = -ENOENT; 2397 goto out_put; 2398 } 2399 } 2400 2401 leaf = path->nodes[0]; 2402 slot = path->slots[0]; 2403 btrfs_item_key_to_cpu(leaf, &key, slot); 2404 2405 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2406 len = btrfs_inode_ref_name_len(leaf, iref); 2407 ptr -= len + 1; 2408 total_len += len + 1; 2409 if (ptr < args->path) { 2410 ret = -ENAMETOOLONG; 2411 goto out_put; 2412 } 2413 2414 *(ptr + len) = '/'; 2415 read_extent_buffer(leaf, ptr, 2416 (unsigned long)(iref + 1), len); 2417 2418 /* Check the read+exec permission of this directory */ 2419 ret = btrfs_previous_item(root, path, dirid, 2420 BTRFS_INODE_ITEM_KEY); 2421 if (ret < 0) { 2422 goto out_put; 2423 } else if (ret > 0) { 2424 ret = -ENOENT; 2425 goto out_put; 2426 } 2427 2428 leaf = path->nodes[0]; 2429 slot = path->slots[0]; 2430 btrfs_item_key_to_cpu(leaf, &key2, slot); 2431 if (key2.objectid != dirid) { 2432 ret = -ENOENT; 2433 goto out_put; 2434 } 2435 2436 temp_inode = btrfs_iget(sb, key2.objectid, root); 2437 if (IS_ERR(temp_inode)) { 2438 ret = PTR_ERR(temp_inode); 2439 goto out_put; 2440 } 2441 ret = inode_permission(&init_user_ns, temp_inode, 2442 MAY_READ | MAY_EXEC); 2443 iput(temp_inode); 2444 if (ret) { 2445 ret = -EACCES; 2446 goto out_put; 2447 } 2448 2449 if (key.offset == upper_limit.objectid) 2450 break; 2451 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2452 ret = -EACCES; 2453 goto out_put; 2454 } 2455 2456 btrfs_release_path(path); 2457 key.objectid = key.offset; 2458 key.offset = (u64)-1; 2459 dirid = key.objectid; 2460 } 2461 2462 memmove(args->path, ptr, total_len); 2463 args->path[total_len] = '\0'; 2464 btrfs_put_root(root); 2465 root = NULL; 2466 btrfs_release_path(path); 2467 } 2468 2469 /* Get the bottom subvolume's name from ROOT_REF */ 2470 key.objectid = treeid; 2471 key.type = BTRFS_ROOT_REF_KEY; 2472 key.offset = args->treeid; 2473 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2474 if (ret < 0) { 2475 goto out; 2476 } else if (ret > 0) { 2477 ret = -ENOENT; 2478 goto out; 2479 } 2480 2481 leaf = path->nodes[0]; 2482 slot = path->slots[0]; 2483 btrfs_item_key_to_cpu(leaf, &key, slot); 2484 2485 item_off = btrfs_item_ptr_offset(leaf, slot); 2486 item_len = btrfs_item_size_nr(leaf, slot); 2487 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2488 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2489 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2490 ret = -EINVAL; 2491 goto out; 2492 } 2493 2494 /* Copy subvolume's name */ 2495 item_off += sizeof(struct btrfs_root_ref); 2496 item_len -= sizeof(struct btrfs_root_ref); 2497 read_extent_buffer(leaf, args->name, item_off, item_len); 2498 args->name[item_len] = 0; 2499 2500 out_put: 2501 btrfs_put_root(root); 2502 out: 2503 btrfs_free_path(path); 2504 return ret; 2505 } 2506 2507 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2508 void __user *argp) 2509 { 2510 struct btrfs_ioctl_ino_lookup_args *args; 2511 struct inode *inode; 2512 int ret = 0; 2513 2514 args = memdup_user(argp, sizeof(*args)); 2515 if (IS_ERR(args)) 2516 return PTR_ERR(args); 2517 2518 inode = file_inode(file); 2519 2520 /* 2521 * Unprivileged query to obtain the containing subvolume root id. The 2522 * path is reset so it's consistent with btrfs_search_path_in_tree. 2523 */ 2524 if (args->treeid == 0) 2525 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2526 2527 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2528 args->name[0] = 0; 2529 goto out; 2530 } 2531 2532 if (!capable(CAP_SYS_ADMIN)) { 2533 ret = -EPERM; 2534 goto out; 2535 } 2536 2537 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2538 args->treeid, args->objectid, 2539 args->name); 2540 2541 out: 2542 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2543 ret = -EFAULT; 2544 2545 kfree(args); 2546 return ret; 2547 } 2548 2549 /* 2550 * Version of ino_lookup ioctl (unprivileged) 2551 * 2552 * The main differences from ino_lookup ioctl are: 2553 * 2554 * 1. Read + Exec permission will be checked using inode_permission() during 2555 * path construction. -EACCES will be returned in case of failure. 2556 * 2. Path construction will be stopped at the inode number which corresponds 2557 * to the fd with which this ioctl is called. If constructed path does not 2558 * exist under fd's inode, -EACCES will be returned. 2559 * 3. The name of bottom subvolume is also searched and filled. 2560 */ 2561 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2562 { 2563 struct btrfs_ioctl_ino_lookup_user_args *args; 2564 struct inode *inode; 2565 int ret; 2566 2567 args = memdup_user(argp, sizeof(*args)); 2568 if (IS_ERR(args)) 2569 return PTR_ERR(args); 2570 2571 inode = file_inode(file); 2572 2573 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2574 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2575 /* 2576 * The subvolume does not exist under fd with which this is 2577 * called 2578 */ 2579 kfree(args); 2580 return -EACCES; 2581 } 2582 2583 ret = btrfs_search_path_in_tree_user(inode, args); 2584 2585 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2586 ret = -EFAULT; 2587 2588 kfree(args); 2589 return ret; 2590 } 2591 2592 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2593 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2594 { 2595 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2596 struct btrfs_fs_info *fs_info; 2597 struct btrfs_root *root; 2598 struct btrfs_path *path; 2599 struct btrfs_key key; 2600 struct btrfs_root_item *root_item; 2601 struct btrfs_root_ref *rref; 2602 struct extent_buffer *leaf; 2603 unsigned long item_off; 2604 unsigned long item_len; 2605 struct inode *inode; 2606 int slot; 2607 int ret = 0; 2608 2609 path = btrfs_alloc_path(); 2610 if (!path) 2611 return -ENOMEM; 2612 2613 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2614 if (!subvol_info) { 2615 btrfs_free_path(path); 2616 return -ENOMEM; 2617 } 2618 2619 inode = file_inode(file); 2620 fs_info = BTRFS_I(inode)->root->fs_info; 2621 2622 /* Get root_item of inode's subvolume */ 2623 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2624 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2625 if (IS_ERR(root)) { 2626 ret = PTR_ERR(root); 2627 goto out_free; 2628 } 2629 root_item = &root->root_item; 2630 2631 subvol_info->treeid = key.objectid; 2632 2633 subvol_info->generation = btrfs_root_generation(root_item); 2634 subvol_info->flags = btrfs_root_flags(root_item); 2635 2636 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2637 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2638 BTRFS_UUID_SIZE); 2639 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2640 BTRFS_UUID_SIZE); 2641 2642 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2643 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2644 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2645 2646 subvol_info->otransid = btrfs_root_otransid(root_item); 2647 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2648 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2649 2650 subvol_info->stransid = btrfs_root_stransid(root_item); 2651 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2652 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2653 2654 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2655 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2656 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2657 2658 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2659 /* Search root tree for ROOT_BACKREF of this subvolume */ 2660 key.type = BTRFS_ROOT_BACKREF_KEY; 2661 key.offset = 0; 2662 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2663 if (ret < 0) { 2664 goto out; 2665 } else if (path->slots[0] >= 2666 btrfs_header_nritems(path->nodes[0])) { 2667 ret = btrfs_next_leaf(fs_info->tree_root, path); 2668 if (ret < 0) { 2669 goto out; 2670 } else if (ret > 0) { 2671 ret = -EUCLEAN; 2672 goto out; 2673 } 2674 } 2675 2676 leaf = path->nodes[0]; 2677 slot = path->slots[0]; 2678 btrfs_item_key_to_cpu(leaf, &key, slot); 2679 if (key.objectid == subvol_info->treeid && 2680 key.type == BTRFS_ROOT_BACKREF_KEY) { 2681 subvol_info->parent_id = key.offset; 2682 2683 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2684 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2685 2686 item_off = btrfs_item_ptr_offset(leaf, slot) 2687 + sizeof(struct btrfs_root_ref); 2688 item_len = btrfs_item_size_nr(leaf, slot) 2689 - sizeof(struct btrfs_root_ref); 2690 read_extent_buffer(leaf, subvol_info->name, 2691 item_off, item_len); 2692 } else { 2693 ret = -ENOENT; 2694 goto out; 2695 } 2696 } 2697 2698 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2699 ret = -EFAULT; 2700 2701 out: 2702 btrfs_put_root(root); 2703 out_free: 2704 btrfs_free_path(path); 2705 kfree(subvol_info); 2706 return ret; 2707 } 2708 2709 /* 2710 * Return ROOT_REF information of the subvolume containing this inode 2711 * except the subvolume name. 2712 */ 2713 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2714 { 2715 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2716 struct btrfs_root_ref *rref; 2717 struct btrfs_root *root; 2718 struct btrfs_path *path; 2719 struct btrfs_key key; 2720 struct extent_buffer *leaf; 2721 struct inode *inode; 2722 u64 objectid; 2723 int slot; 2724 int ret; 2725 u8 found; 2726 2727 path = btrfs_alloc_path(); 2728 if (!path) 2729 return -ENOMEM; 2730 2731 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2732 if (IS_ERR(rootrefs)) { 2733 btrfs_free_path(path); 2734 return PTR_ERR(rootrefs); 2735 } 2736 2737 inode = file_inode(file); 2738 root = BTRFS_I(inode)->root->fs_info->tree_root; 2739 objectid = BTRFS_I(inode)->root->root_key.objectid; 2740 2741 key.objectid = objectid; 2742 key.type = BTRFS_ROOT_REF_KEY; 2743 key.offset = rootrefs->min_treeid; 2744 found = 0; 2745 2746 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2747 if (ret < 0) { 2748 goto out; 2749 } else if (path->slots[0] >= 2750 btrfs_header_nritems(path->nodes[0])) { 2751 ret = btrfs_next_leaf(root, path); 2752 if (ret < 0) { 2753 goto out; 2754 } else if (ret > 0) { 2755 ret = -EUCLEAN; 2756 goto out; 2757 } 2758 } 2759 while (1) { 2760 leaf = path->nodes[0]; 2761 slot = path->slots[0]; 2762 2763 btrfs_item_key_to_cpu(leaf, &key, slot); 2764 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2765 ret = 0; 2766 goto out; 2767 } 2768 2769 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2770 ret = -EOVERFLOW; 2771 goto out; 2772 } 2773 2774 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2775 rootrefs->rootref[found].treeid = key.offset; 2776 rootrefs->rootref[found].dirid = 2777 btrfs_root_ref_dirid(leaf, rref); 2778 found++; 2779 2780 ret = btrfs_next_item(root, path); 2781 if (ret < 0) { 2782 goto out; 2783 } else if (ret > 0) { 2784 ret = -EUCLEAN; 2785 goto out; 2786 } 2787 } 2788 2789 out: 2790 if (!ret || ret == -EOVERFLOW) { 2791 rootrefs->num_items = found; 2792 /* update min_treeid for next search */ 2793 if (found) 2794 rootrefs->min_treeid = 2795 rootrefs->rootref[found - 1].treeid + 1; 2796 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2797 ret = -EFAULT; 2798 } 2799 2800 kfree(rootrefs); 2801 btrfs_free_path(path); 2802 2803 return ret; 2804 } 2805 2806 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2807 void __user *arg, 2808 bool destroy_v2) 2809 { 2810 struct dentry *parent = file->f_path.dentry; 2811 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2812 struct dentry *dentry; 2813 struct inode *dir = d_inode(parent); 2814 struct inode *inode; 2815 struct btrfs_root *root = BTRFS_I(dir)->root; 2816 struct btrfs_root *dest = NULL; 2817 struct btrfs_ioctl_vol_args *vol_args = NULL; 2818 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2819 char *subvol_name, *subvol_name_ptr = NULL; 2820 int subvol_namelen; 2821 int err = 0; 2822 bool destroy_parent = false; 2823 2824 if (destroy_v2) { 2825 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2826 if (IS_ERR(vol_args2)) 2827 return PTR_ERR(vol_args2); 2828 2829 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2830 err = -EOPNOTSUPP; 2831 goto out; 2832 } 2833 2834 /* 2835 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2836 * name, same as v1 currently does. 2837 */ 2838 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2839 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2840 subvol_name = vol_args2->name; 2841 2842 err = mnt_want_write_file(file); 2843 if (err) 2844 goto out; 2845 } else { 2846 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2847 err = -EINVAL; 2848 goto out; 2849 } 2850 2851 err = mnt_want_write_file(file); 2852 if (err) 2853 goto out; 2854 2855 dentry = btrfs_get_dentry(fs_info->sb, 2856 BTRFS_FIRST_FREE_OBJECTID, 2857 vol_args2->subvolid, 0, 0); 2858 if (IS_ERR(dentry)) { 2859 err = PTR_ERR(dentry); 2860 goto out_drop_write; 2861 } 2862 2863 /* 2864 * Change the default parent since the subvolume being 2865 * deleted can be outside of the current mount point. 2866 */ 2867 parent = btrfs_get_parent(dentry); 2868 2869 /* 2870 * At this point dentry->d_name can point to '/' if the 2871 * subvolume we want to destroy is outsite of the 2872 * current mount point, so we need to release the 2873 * current dentry and execute the lookup to return a new 2874 * one with ->d_name pointing to the 2875 * <mount point>/subvol_name. 2876 */ 2877 dput(dentry); 2878 if (IS_ERR(parent)) { 2879 err = PTR_ERR(parent); 2880 goto out_drop_write; 2881 } 2882 dir = d_inode(parent); 2883 2884 /* 2885 * If v2 was used with SPEC_BY_ID, a new parent was 2886 * allocated since the subvolume can be outside of the 2887 * current mount point. Later on we need to release this 2888 * new parent dentry. 2889 */ 2890 destroy_parent = true; 2891 2892 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2893 fs_info, vol_args2->subvolid); 2894 if (IS_ERR(subvol_name_ptr)) { 2895 err = PTR_ERR(subvol_name_ptr); 2896 goto free_parent; 2897 } 2898 /* subvol_name_ptr is already NULL termined */ 2899 subvol_name = (char *)kbasename(subvol_name_ptr); 2900 } 2901 } else { 2902 vol_args = memdup_user(arg, sizeof(*vol_args)); 2903 if (IS_ERR(vol_args)) 2904 return PTR_ERR(vol_args); 2905 2906 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2907 subvol_name = vol_args->name; 2908 2909 err = mnt_want_write_file(file); 2910 if (err) 2911 goto out; 2912 } 2913 2914 subvol_namelen = strlen(subvol_name); 2915 2916 if (strchr(subvol_name, '/') || 2917 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2918 err = -EINVAL; 2919 goto free_subvol_name; 2920 } 2921 2922 if (!S_ISDIR(dir->i_mode)) { 2923 err = -ENOTDIR; 2924 goto free_subvol_name; 2925 } 2926 2927 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2928 if (err == -EINTR) 2929 goto free_subvol_name; 2930 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 2931 if (IS_ERR(dentry)) { 2932 err = PTR_ERR(dentry); 2933 goto out_unlock_dir; 2934 } 2935 2936 if (d_really_is_negative(dentry)) { 2937 err = -ENOENT; 2938 goto out_dput; 2939 } 2940 2941 inode = d_inode(dentry); 2942 dest = BTRFS_I(inode)->root; 2943 if (!capable(CAP_SYS_ADMIN)) { 2944 /* 2945 * Regular user. Only allow this with a special mount 2946 * option, when the user has write+exec access to the 2947 * subvol root, and when rmdir(2) would have been 2948 * allowed. 2949 * 2950 * Note that this is _not_ check that the subvol is 2951 * empty or doesn't contain data that we wouldn't 2952 * otherwise be able to delete. 2953 * 2954 * Users who want to delete empty subvols should try 2955 * rmdir(2). 2956 */ 2957 err = -EPERM; 2958 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2959 goto out_dput; 2960 2961 /* 2962 * Do not allow deletion if the parent dir is the same 2963 * as the dir to be deleted. That means the ioctl 2964 * must be called on the dentry referencing the root 2965 * of the subvol, not a random directory contained 2966 * within it. 2967 */ 2968 err = -EINVAL; 2969 if (root == dest) 2970 goto out_dput; 2971 2972 err = inode_permission(&init_user_ns, inode, 2973 MAY_WRITE | MAY_EXEC); 2974 if (err) 2975 goto out_dput; 2976 } 2977 2978 /* check if subvolume may be deleted by a user */ 2979 err = btrfs_may_delete(dir, dentry, 1); 2980 if (err) 2981 goto out_dput; 2982 2983 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2984 err = -EINVAL; 2985 goto out_dput; 2986 } 2987 2988 btrfs_inode_lock(inode, 0); 2989 err = btrfs_delete_subvolume(dir, dentry); 2990 btrfs_inode_unlock(inode, 0); 2991 if (!err) { 2992 fsnotify_rmdir(dir, dentry); 2993 d_delete(dentry); 2994 } 2995 2996 out_dput: 2997 dput(dentry); 2998 out_unlock_dir: 2999 btrfs_inode_unlock(dir, 0); 3000 free_subvol_name: 3001 kfree(subvol_name_ptr); 3002 free_parent: 3003 if (destroy_parent) 3004 dput(parent); 3005 out_drop_write: 3006 mnt_drop_write_file(file); 3007 out: 3008 kfree(vol_args2); 3009 kfree(vol_args); 3010 return err; 3011 } 3012 3013 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3014 { 3015 struct inode *inode = file_inode(file); 3016 struct btrfs_root *root = BTRFS_I(inode)->root; 3017 struct btrfs_ioctl_defrag_range_args *range; 3018 int ret; 3019 3020 ret = mnt_want_write_file(file); 3021 if (ret) 3022 return ret; 3023 3024 if (btrfs_root_readonly(root)) { 3025 ret = -EROFS; 3026 goto out; 3027 } 3028 3029 switch (inode->i_mode & S_IFMT) { 3030 case S_IFDIR: 3031 if (!capable(CAP_SYS_ADMIN)) { 3032 ret = -EPERM; 3033 goto out; 3034 } 3035 ret = btrfs_defrag_root(root); 3036 break; 3037 case S_IFREG: 3038 /* 3039 * Note that this does not check the file descriptor for write 3040 * access. This prevents defragmenting executables that are 3041 * running and allows defrag on files open in read-only mode. 3042 */ 3043 if (!capable(CAP_SYS_ADMIN) && 3044 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3045 ret = -EPERM; 3046 goto out; 3047 } 3048 3049 range = kzalloc(sizeof(*range), GFP_KERNEL); 3050 if (!range) { 3051 ret = -ENOMEM; 3052 goto out; 3053 } 3054 3055 if (argp) { 3056 if (copy_from_user(range, argp, 3057 sizeof(*range))) { 3058 ret = -EFAULT; 3059 kfree(range); 3060 goto out; 3061 } 3062 /* compression requires us to start the IO */ 3063 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3064 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3065 range->extent_thresh = (u32)-1; 3066 } 3067 } else { 3068 /* the rest are all set to zero by kzalloc */ 3069 range->len = (u64)-1; 3070 } 3071 ret = btrfs_defrag_file(file_inode(file), file, 3072 range, BTRFS_OLDEST_GENERATION, 0); 3073 if (ret > 0) 3074 ret = 0; 3075 kfree(range); 3076 break; 3077 default: 3078 ret = -EINVAL; 3079 } 3080 out: 3081 mnt_drop_write_file(file); 3082 return ret; 3083 } 3084 3085 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3086 { 3087 struct btrfs_ioctl_vol_args *vol_args; 3088 int ret; 3089 3090 if (!capable(CAP_SYS_ADMIN)) 3091 return -EPERM; 3092 3093 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3094 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3095 3096 vol_args = memdup_user(arg, sizeof(*vol_args)); 3097 if (IS_ERR(vol_args)) { 3098 ret = PTR_ERR(vol_args); 3099 goto out; 3100 } 3101 3102 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3103 ret = btrfs_init_new_device(fs_info, vol_args->name); 3104 3105 if (!ret) 3106 btrfs_info(fs_info, "disk added %s", vol_args->name); 3107 3108 kfree(vol_args); 3109 out: 3110 btrfs_exclop_finish(fs_info); 3111 return ret; 3112 } 3113 3114 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3115 { 3116 struct inode *inode = file_inode(file); 3117 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3118 struct btrfs_ioctl_vol_args_v2 *vol_args; 3119 int ret; 3120 3121 if (!capable(CAP_SYS_ADMIN)) 3122 return -EPERM; 3123 3124 ret = mnt_want_write_file(file); 3125 if (ret) 3126 return ret; 3127 3128 vol_args = memdup_user(arg, sizeof(*vol_args)); 3129 if (IS_ERR(vol_args)) { 3130 ret = PTR_ERR(vol_args); 3131 goto err_drop; 3132 } 3133 3134 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3135 ret = -EOPNOTSUPP; 3136 goto out; 3137 } 3138 3139 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3140 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3141 goto out; 3142 } 3143 3144 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3145 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3146 } else { 3147 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3148 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3149 } 3150 btrfs_exclop_finish(fs_info); 3151 3152 if (!ret) { 3153 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3154 btrfs_info(fs_info, "device deleted: id %llu", 3155 vol_args->devid); 3156 else 3157 btrfs_info(fs_info, "device deleted: %s", 3158 vol_args->name); 3159 } 3160 out: 3161 kfree(vol_args); 3162 err_drop: 3163 mnt_drop_write_file(file); 3164 return ret; 3165 } 3166 3167 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3168 { 3169 struct inode *inode = file_inode(file); 3170 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3171 struct btrfs_ioctl_vol_args *vol_args; 3172 int ret; 3173 3174 if (!capable(CAP_SYS_ADMIN)) 3175 return -EPERM; 3176 3177 ret = mnt_want_write_file(file); 3178 if (ret) 3179 return ret; 3180 3181 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3182 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3183 goto out_drop_write; 3184 } 3185 3186 vol_args = memdup_user(arg, sizeof(*vol_args)); 3187 if (IS_ERR(vol_args)) { 3188 ret = PTR_ERR(vol_args); 3189 goto out; 3190 } 3191 3192 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3193 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3194 3195 if (!ret) 3196 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3197 kfree(vol_args); 3198 out: 3199 btrfs_exclop_finish(fs_info); 3200 out_drop_write: 3201 mnt_drop_write_file(file); 3202 3203 return ret; 3204 } 3205 3206 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3207 void __user *arg) 3208 { 3209 struct btrfs_ioctl_fs_info_args *fi_args; 3210 struct btrfs_device *device; 3211 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3212 u64 flags_in; 3213 int ret = 0; 3214 3215 fi_args = memdup_user(arg, sizeof(*fi_args)); 3216 if (IS_ERR(fi_args)) 3217 return PTR_ERR(fi_args); 3218 3219 flags_in = fi_args->flags; 3220 memset(fi_args, 0, sizeof(*fi_args)); 3221 3222 rcu_read_lock(); 3223 fi_args->num_devices = fs_devices->num_devices; 3224 3225 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3226 if (device->devid > fi_args->max_id) 3227 fi_args->max_id = device->devid; 3228 } 3229 rcu_read_unlock(); 3230 3231 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3232 fi_args->nodesize = fs_info->nodesize; 3233 fi_args->sectorsize = fs_info->sectorsize; 3234 fi_args->clone_alignment = fs_info->sectorsize; 3235 3236 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3237 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3238 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3239 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3240 } 3241 3242 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3243 fi_args->generation = fs_info->generation; 3244 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3245 } 3246 3247 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3248 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3249 sizeof(fi_args->metadata_uuid)); 3250 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3251 } 3252 3253 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3254 ret = -EFAULT; 3255 3256 kfree(fi_args); 3257 return ret; 3258 } 3259 3260 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3261 void __user *arg) 3262 { 3263 struct btrfs_ioctl_dev_info_args *di_args; 3264 struct btrfs_device *dev; 3265 int ret = 0; 3266 char *s_uuid = NULL; 3267 3268 di_args = memdup_user(arg, sizeof(*di_args)); 3269 if (IS_ERR(di_args)) 3270 return PTR_ERR(di_args); 3271 3272 if (!btrfs_is_empty_uuid(di_args->uuid)) 3273 s_uuid = di_args->uuid; 3274 3275 rcu_read_lock(); 3276 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3277 NULL); 3278 3279 if (!dev) { 3280 ret = -ENODEV; 3281 goto out; 3282 } 3283 3284 di_args->devid = dev->devid; 3285 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3286 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3287 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3288 if (dev->name) { 3289 strncpy(di_args->path, rcu_str_deref(dev->name), 3290 sizeof(di_args->path) - 1); 3291 di_args->path[sizeof(di_args->path) - 1] = 0; 3292 } else { 3293 di_args->path[0] = '\0'; 3294 } 3295 3296 out: 3297 rcu_read_unlock(); 3298 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3299 ret = -EFAULT; 3300 3301 kfree(di_args); 3302 return ret; 3303 } 3304 3305 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3306 { 3307 struct inode *inode = file_inode(file); 3308 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3309 struct btrfs_root *root = BTRFS_I(inode)->root; 3310 struct btrfs_root *new_root; 3311 struct btrfs_dir_item *di; 3312 struct btrfs_trans_handle *trans; 3313 struct btrfs_path *path = NULL; 3314 struct btrfs_disk_key disk_key; 3315 u64 objectid = 0; 3316 u64 dir_id; 3317 int ret; 3318 3319 if (!capable(CAP_SYS_ADMIN)) 3320 return -EPERM; 3321 3322 ret = mnt_want_write_file(file); 3323 if (ret) 3324 return ret; 3325 3326 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3327 ret = -EFAULT; 3328 goto out; 3329 } 3330 3331 if (!objectid) 3332 objectid = BTRFS_FS_TREE_OBJECTID; 3333 3334 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3335 if (IS_ERR(new_root)) { 3336 ret = PTR_ERR(new_root); 3337 goto out; 3338 } 3339 if (!is_fstree(new_root->root_key.objectid)) { 3340 ret = -ENOENT; 3341 goto out_free; 3342 } 3343 3344 path = btrfs_alloc_path(); 3345 if (!path) { 3346 ret = -ENOMEM; 3347 goto out_free; 3348 } 3349 3350 trans = btrfs_start_transaction(root, 1); 3351 if (IS_ERR(trans)) { 3352 ret = PTR_ERR(trans); 3353 goto out_free; 3354 } 3355 3356 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3357 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3358 dir_id, "default", 7, 1); 3359 if (IS_ERR_OR_NULL(di)) { 3360 btrfs_release_path(path); 3361 btrfs_end_transaction(trans); 3362 btrfs_err(fs_info, 3363 "Umm, you don't have the default diritem, this isn't going to work"); 3364 ret = -ENOENT; 3365 goto out_free; 3366 } 3367 3368 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3369 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3370 btrfs_mark_buffer_dirty(path->nodes[0]); 3371 btrfs_release_path(path); 3372 3373 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3374 btrfs_end_transaction(trans); 3375 out_free: 3376 btrfs_put_root(new_root); 3377 btrfs_free_path(path); 3378 out: 3379 mnt_drop_write_file(file); 3380 return ret; 3381 } 3382 3383 static void get_block_group_info(struct list_head *groups_list, 3384 struct btrfs_ioctl_space_info *space) 3385 { 3386 struct btrfs_block_group *block_group; 3387 3388 space->total_bytes = 0; 3389 space->used_bytes = 0; 3390 space->flags = 0; 3391 list_for_each_entry(block_group, groups_list, list) { 3392 space->flags = block_group->flags; 3393 space->total_bytes += block_group->length; 3394 space->used_bytes += block_group->used; 3395 } 3396 } 3397 3398 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3399 void __user *arg) 3400 { 3401 struct btrfs_ioctl_space_args space_args; 3402 struct btrfs_ioctl_space_info space; 3403 struct btrfs_ioctl_space_info *dest; 3404 struct btrfs_ioctl_space_info *dest_orig; 3405 struct btrfs_ioctl_space_info __user *user_dest; 3406 struct btrfs_space_info *info; 3407 static const u64 types[] = { 3408 BTRFS_BLOCK_GROUP_DATA, 3409 BTRFS_BLOCK_GROUP_SYSTEM, 3410 BTRFS_BLOCK_GROUP_METADATA, 3411 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3412 }; 3413 int num_types = 4; 3414 int alloc_size; 3415 int ret = 0; 3416 u64 slot_count = 0; 3417 int i, c; 3418 3419 if (copy_from_user(&space_args, 3420 (struct btrfs_ioctl_space_args __user *)arg, 3421 sizeof(space_args))) 3422 return -EFAULT; 3423 3424 for (i = 0; i < num_types; i++) { 3425 struct btrfs_space_info *tmp; 3426 3427 info = NULL; 3428 list_for_each_entry(tmp, &fs_info->space_info, list) { 3429 if (tmp->flags == types[i]) { 3430 info = tmp; 3431 break; 3432 } 3433 } 3434 3435 if (!info) 3436 continue; 3437 3438 down_read(&info->groups_sem); 3439 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3440 if (!list_empty(&info->block_groups[c])) 3441 slot_count++; 3442 } 3443 up_read(&info->groups_sem); 3444 } 3445 3446 /* 3447 * Global block reserve, exported as a space_info 3448 */ 3449 slot_count++; 3450 3451 /* space_slots == 0 means they are asking for a count */ 3452 if (space_args.space_slots == 0) { 3453 space_args.total_spaces = slot_count; 3454 goto out; 3455 } 3456 3457 slot_count = min_t(u64, space_args.space_slots, slot_count); 3458 3459 alloc_size = sizeof(*dest) * slot_count; 3460 3461 /* we generally have at most 6 or so space infos, one for each raid 3462 * level. So, a whole page should be more than enough for everyone 3463 */ 3464 if (alloc_size > PAGE_SIZE) 3465 return -ENOMEM; 3466 3467 space_args.total_spaces = 0; 3468 dest = kmalloc(alloc_size, GFP_KERNEL); 3469 if (!dest) 3470 return -ENOMEM; 3471 dest_orig = dest; 3472 3473 /* now we have a buffer to copy into */ 3474 for (i = 0; i < num_types; i++) { 3475 struct btrfs_space_info *tmp; 3476 3477 if (!slot_count) 3478 break; 3479 3480 info = NULL; 3481 list_for_each_entry(tmp, &fs_info->space_info, list) { 3482 if (tmp->flags == types[i]) { 3483 info = tmp; 3484 break; 3485 } 3486 } 3487 3488 if (!info) 3489 continue; 3490 down_read(&info->groups_sem); 3491 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3492 if (!list_empty(&info->block_groups[c])) { 3493 get_block_group_info(&info->block_groups[c], 3494 &space); 3495 memcpy(dest, &space, sizeof(space)); 3496 dest++; 3497 space_args.total_spaces++; 3498 slot_count--; 3499 } 3500 if (!slot_count) 3501 break; 3502 } 3503 up_read(&info->groups_sem); 3504 } 3505 3506 /* 3507 * Add global block reserve 3508 */ 3509 if (slot_count) { 3510 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3511 3512 spin_lock(&block_rsv->lock); 3513 space.total_bytes = block_rsv->size; 3514 space.used_bytes = block_rsv->size - block_rsv->reserved; 3515 spin_unlock(&block_rsv->lock); 3516 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3517 memcpy(dest, &space, sizeof(space)); 3518 space_args.total_spaces++; 3519 } 3520 3521 user_dest = (struct btrfs_ioctl_space_info __user *) 3522 (arg + sizeof(struct btrfs_ioctl_space_args)); 3523 3524 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3525 ret = -EFAULT; 3526 3527 kfree(dest_orig); 3528 out: 3529 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3530 ret = -EFAULT; 3531 3532 return ret; 3533 } 3534 3535 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3536 void __user *argp) 3537 { 3538 struct btrfs_trans_handle *trans; 3539 u64 transid; 3540 int ret; 3541 3542 trans = btrfs_attach_transaction_barrier(root); 3543 if (IS_ERR(trans)) { 3544 if (PTR_ERR(trans) != -ENOENT) 3545 return PTR_ERR(trans); 3546 3547 /* No running transaction, don't bother */ 3548 transid = root->fs_info->last_trans_committed; 3549 goto out; 3550 } 3551 transid = trans->transid; 3552 ret = btrfs_commit_transaction_async(trans, 0); 3553 if (ret) { 3554 btrfs_end_transaction(trans); 3555 return ret; 3556 } 3557 out: 3558 if (argp) 3559 if (copy_to_user(argp, &transid, sizeof(transid))) 3560 return -EFAULT; 3561 return 0; 3562 } 3563 3564 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3565 void __user *argp) 3566 { 3567 u64 transid; 3568 3569 if (argp) { 3570 if (copy_from_user(&transid, argp, sizeof(transid))) 3571 return -EFAULT; 3572 } else { 3573 transid = 0; /* current trans */ 3574 } 3575 return btrfs_wait_for_commit(fs_info, transid); 3576 } 3577 3578 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3579 { 3580 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3581 struct btrfs_ioctl_scrub_args *sa; 3582 int ret; 3583 3584 if (!capable(CAP_SYS_ADMIN)) 3585 return -EPERM; 3586 3587 sa = memdup_user(arg, sizeof(*sa)); 3588 if (IS_ERR(sa)) 3589 return PTR_ERR(sa); 3590 3591 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3592 ret = mnt_want_write_file(file); 3593 if (ret) 3594 goto out; 3595 } 3596 3597 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3598 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3599 0); 3600 3601 /* 3602 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3603 * error. This is important as it allows user space to know how much 3604 * progress scrub has done. For example, if scrub is canceled we get 3605 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3606 * space. Later user space can inspect the progress from the structure 3607 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3608 * previously (btrfs-progs does this). 3609 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3610 * then return -EFAULT to signal the structure was not copied or it may 3611 * be corrupt and unreliable due to a partial copy. 3612 */ 3613 if (copy_to_user(arg, sa, sizeof(*sa))) 3614 ret = -EFAULT; 3615 3616 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3617 mnt_drop_write_file(file); 3618 out: 3619 kfree(sa); 3620 return ret; 3621 } 3622 3623 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3624 { 3625 if (!capable(CAP_SYS_ADMIN)) 3626 return -EPERM; 3627 3628 return btrfs_scrub_cancel(fs_info); 3629 } 3630 3631 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3632 void __user *arg) 3633 { 3634 struct btrfs_ioctl_scrub_args *sa; 3635 int ret; 3636 3637 if (!capable(CAP_SYS_ADMIN)) 3638 return -EPERM; 3639 3640 sa = memdup_user(arg, sizeof(*sa)); 3641 if (IS_ERR(sa)) 3642 return PTR_ERR(sa); 3643 3644 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3645 3646 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3647 ret = -EFAULT; 3648 3649 kfree(sa); 3650 return ret; 3651 } 3652 3653 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3654 void __user *arg) 3655 { 3656 struct btrfs_ioctl_get_dev_stats *sa; 3657 int ret; 3658 3659 sa = memdup_user(arg, sizeof(*sa)); 3660 if (IS_ERR(sa)) 3661 return PTR_ERR(sa); 3662 3663 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3664 kfree(sa); 3665 return -EPERM; 3666 } 3667 3668 ret = btrfs_get_dev_stats(fs_info, sa); 3669 3670 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3671 ret = -EFAULT; 3672 3673 kfree(sa); 3674 return ret; 3675 } 3676 3677 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3678 void __user *arg) 3679 { 3680 struct btrfs_ioctl_dev_replace_args *p; 3681 int ret; 3682 3683 if (!capable(CAP_SYS_ADMIN)) 3684 return -EPERM; 3685 3686 p = memdup_user(arg, sizeof(*p)); 3687 if (IS_ERR(p)) 3688 return PTR_ERR(p); 3689 3690 switch (p->cmd) { 3691 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3692 if (sb_rdonly(fs_info->sb)) { 3693 ret = -EROFS; 3694 goto out; 3695 } 3696 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3697 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3698 } else { 3699 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3700 btrfs_exclop_finish(fs_info); 3701 } 3702 break; 3703 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3704 btrfs_dev_replace_status(fs_info, p); 3705 ret = 0; 3706 break; 3707 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3708 p->result = btrfs_dev_replace_cancel(fs_info); 3709 ret = 0; 3710 break; 3711 default: 3712 ret = -EINVAL; 3713 break; 3714 } 3715 3716 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3717 ret = -EFAULT; 3718 out: 3719 kfree(p); 3720 return ret; 3721 } 3722 3723 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3724 { 3725 int ret = 0; 3726 int i; 3727 u64 rel_ptr; 3728 int size; 3729 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3730 struct inode_fs_paths *ipath = NULL; 3731 struct btrfs_path *path; 3732 3733 if (!capable(CAP_DAC_READ_SEARCH)) 3734 return -EPERM; 3735 3736 path = btrfs_alloc_path(); 3737 if (!path) { 3738 ret = -ENOMEM; 3739 goto out; 3740 } 3741 3742 ipa = memdup_user(arg, sizeof(*ipa)); 3743 if (IS_ERR(ipa)) { 3744 ret = PTR_ERR(ipa); 3745 ipa = NULL; 3746 goto out; 3747 } 3748 3749 size = min_t(u32, ipa->size, 4096); 3750 ipath = init_ipath(size, root, path); 3751 if (IS_ERR(ipath)) { 3752 ret = PTR_ERR(ipath); 3753 ipath = NULL; 3754 goto out; 3755 } 3756 3757 ret = paths_from_inode(ipa->inum, ipath); 3758 if (ret < 0) 3759 goto out; 3760 3761 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3762 rel_ptr = ipath->fspath->val[i] - 3763 (u64)(unsigned long)ipath->fspath->val; 3764 ipath->fspath->val[i] = rel_ptr; 3765 } 3766 3767 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3768 ipath->fspath, size); 3769 if (ret) { 3770 ret = -EFAULT; 3771 goto out; 3772 } 3773 3774 out: 3775 btrfs_free_path(path); 3776 free_ipath(ipath); 3777 kfree(ipa); 3778 3779 return ret; 3780 } 3781 3782 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3783 { 3784 struct btrfs_data_container *inodes = ctx; 3785 const size_t c = 3 * sizeof(u64); 3786 3787 if (inodes->bytes_left >= c) { 3788 inodes->bytes_left -= c; 3789 inodes->val[inodes->elem_cnt] = inum; 3790 inodes->val[inodes->elem_cnt + 1] = offset; 3791 inodes->val[inodes->elem_cnt + 2] = root; 3792 inodes->elem_cnt += 3; 3793 } else { 3794 inodes->bytes_missing += c - inodes->bytes_left; 3795 inodes->bytes_left = 0; 3796 inodes->elem_missed += 3; 3797 } 3798 3799 return 0; 3800 } 3801 3802 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3803 void __user *arg, int version) 3804 { 3805 int ret = 0; 3806 int size; 3807 struct btrfs_ioctl_logical_ino_args *loi; 3808 struct btrfs_data_container *inodes = NULL; 3809 struct btrfs_path *path = NULL; 3810 bool ignore_offset; 3811 3812 if (!capable(CAP_SYS_ADMIN)) 3813 return -EPERM; 3814 3815 loi = memdup_user(arg, sizeof(*loi)); 3816 if (IS_ERR(loi)) 3817 return PTR_ERR(loi); 3818 3819 if (version == 1) { 3820 ignore_offset = false; 3821 size = min_t(u32, loi->size, SZ_64K); 3822 } else { 3823 /* All reserved bits must be 0 for now */ 3824 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3825 ret = -EINVAL; 3826 goto out_loi; 3827 } 3828 /* Only accept flags we have defined so far */ 3829 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3830 ret = -EINVAL; 3831 goto out_loi; 3832 } 3833 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3834 size = min_t(u32, loi->size, SZ_16M); 3835 } 3836 3837 path = btrfs_alloc_path(); 3838 if (!path) { 3839 ret = -ENOMEM; 3840 goto out; 3841 } 3842 3843 inodes = init_data_container(size); 3844 if (IS_ERR(inodes)) { 3845 ret = PTR_ERR(inodes); 3846 inodes = NULL; 3847 goto out; 3848 } 3849 3850 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3851 build_ino_list, inodes, ignore_offset); 3852 if (ret == -EINVAL) 3853 ret = -ENOENT; 3854 if (ret < 0) 3855 goto out; 3856 3857 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3858 size); 3859 if (ret) 3860 ret = -EFAULT; 3861 3862 out: 3863 btrfs_free_path(path); 3864 kvfree(inodes); 3865 out_loi: 3866 kfree(loi); 3867 3868 return ret; 3869 } 3870 3871 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3872 struct btrfs_ioctl_balance_args *bargs) 3873 { 3874 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3875 3876 bargs->flags = bctl->flags; 3877 3878 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3879 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3880 if (atomic_read(&fs_info->balance_pause_req)) 3881 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3882 if (atomic_read(&fs_info->balance_cancel_req)) 3883 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3884 3885 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3886 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3887 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3888 3889 spin_lock(&fs_info->balance_lock); 3890 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3891 spin_unlock(&fs_info->balance_lock); 3892 } 3893 3894 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3895 { 3896 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3897 struct btrfs_fs_info *fs_info = root->fs_info; 3898 struct btrfs_ioctl_balance_args *bargs; 3899 struct btrfs_balance_control *bctl; 3900 bool need_unlock; /* for mut. excl. ops lock */ 3901 int ret; 3902 3903 if (!capable(CAP_SYS_ADMIN)) 3904 return -EPERM; 3905 3906 ret = mnt_want_write_file(file); 3907 if (ret) 3908 return ret; 3909 3910 again: 3911 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3912 mutex_lock(&fs_info->balance_mutex); 3913 need_unlock = true; 3914 goto locked; 3915 } 3916 3917 /* 3918 * mut. excl. ops lock is locked. Three possibilities: 3919 * (1) some other op is running 3920 * (2) balance is running 3921 * (3) balance is paused -- special case (think resume) 3922 */ 3923 mutex_lock(&fs_info->balance_mutex); 3924 if (fs_info->balance_ctl) { 3925 /* this is either (2) or (3) */ 3926 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3927 mutex_unlock(&fs_info->balance_mutex); 3928 /* 3929 * Lock released to allow other waiters to continue, 3930 * we'll reexamine the status again. 3931 */ 3932 mutex_lock(&fs_info->balance_mutex); 3933 3934 if (fs_info->balance_ctl && 3935 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3936 /* this is (3) */ 3937 need_unlock = false; 3938 goto locked; 3939 } 3940 3941 mutex_unlock(&fs_info->balance_mutex); 3942 goto again; 3943 } else { 3944 /* this is (2) */ 3945 mutex_unlock(&fs_info->balance_mutex); 3946 ret = -EINPROGRESS; 3947 goto out; 3948 } 3949 } else { 3950 /* this is (1) */ 3951 mutex_unlock(&fs_info->balance_mutex); 3952 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3953 goto out; 3954 } 3955 3956 locked: 3957 3958 if (arg) { 3959 bargs = memdup_user(arg, sizeof(*bargs)); 3960 if (IS_ERR(bargs)) { 3961 ret = PTR_ERR(bargs); 3962 goto out_unlock; 3963 } 3964 3965 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3966 if (!fs_info->balance_ctl) { 3967 ret = -ENOTCONN; 3968 goto out_bargs; 3969 } 3970 3971 bctl = fs_info->balance_ctl; 3972 spin_lock(&fs_info->balance_lock); 3973 bctl->flags |= BTRFS_BALANCE_RESUME; 3974 spin_unlock(&fs_info->balance_lock); 3975 3976 goto do_balance; 3977 } 3978 } else { 3979 bargs = NULL; 3980 } 3981 3982 if (fs_info->balance_ctl) { 3983 ret = -EINPROGRESS; 3984 goto out_bargs; 3985 } 3986 3987 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3988 if (!bctl) { 3989 ret = -ENOMEM; 3990 goto out_bargs; 3991 } 3992 3993 if (arg) { 3994 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3995 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3996 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3997 3998 bctl->flags = bargs->flags; 3999 } else { 4000 /* balance everything - no filters */ 4001 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4002 } 4003 4004 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4005 ret = -EINVAL; 4006 goto out_bctl; 4007 } 4008 4009 do_balance: 4010 /* 4011 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4012 * bctl is freed in reset_balance_state, or, if restriper was paused 4013 * all the way until unmount, in free_fs_info. The flag should be 4014 * cleared after reset_balance_state. 4015 */ 4016 need_unlock = false; 4017 4018 ret = btrfs_balance(fs_info, bctl, bargs); 4019 bctl = NULL; 4020 4021 if ((ret == 0 || ret == -ECANCELED) && arg) { 4022 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4023 ret = -EFAULT; 4024 } 4025 4026 out_bctl: 4027 kfree(bctl); 4028 out_bargs: 4029 kfree(bargs); 4030 out_unlock: 4031 mutex_unlock(&fs_info->balance_mutex); 4032 if (need_unlock) 4033 btrfs_exclop_finish(fs_info); 4034 out: 4035 mnt_drop_write_file(file); 4036 return ret; 4037 } 4038 4039 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4040 { 4041 if (!capable(CAP_SYS_ADMIN)) 4042 return -EPERM; 4043 4044 switch (cmd) { 4045 case BTRFS_BALANCE_CTL_PAUSE: 4046 return btrfs_pause_balance(fs_info); 4047 case BTRFS_BALANCE_CTL_CANCEL: 4048 return btrfs_cancel_balance(fs_info); 4049 } 4050 4051 return -EINVAL; 4052 } 4053 4054 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4055 void __user *arg) 4056 { 4057 struct btrfs_ioctl_balance_args *bargs; 4058 int ret = 0; 4059 4060 if (!capable(CAP_SYS_ADMIN)) 4061 return -EPERM; 4062 4063 mutex_lock(&fs_info->balance_mutex); 4064 if (!fs_info->balance_ctl) { 4065 ret = -ENOTCONN; 4066 goto out; 4067 } 4068 4069 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4070 if (!bargs) { 4071 ret = -ENOMEM; 4072 goto out; 4073 } 4074 4075 btrfs_update_ioctl_balance_args(fs_info, bargs); 4076 4077 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4078 ret = -EFAULT; 4079 4080 kfree(bargs); 4081 out: 4082 mutex_unlock(&fs_info->balance_mutex); 4083 return ret; 4084 } 4085 4086 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4087 { 4088 struct inode *inode = file_inode(file); 4089 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4090 struct btrfs_ioctl_quota_ctl_args *sa; 4091 int ret; 4092 4093 if (!capable(CAP_SYS_ADMIN)) 4094 return -EPERM; 4095 4096 ret = mnt_want_write_file(file); 4097 if (ret) 4098 return ret; 4099 4100 sa = memdup_user(arg, sizeof(*sa)); 4101 if (IS_ERR(sa)) { 4102 ret = PTR_ERR(sa); 4103 goto drop_write; 4104 } 4105 4106 down_write(&fs_info->subvol_sem); 4107 4108 switch (sa->cmd) { 4109 case BTRFS_QUOTA_CTL_ENABLE: 4110 ret = btrfs_quota_enable(fs_info); 4111 break; 4112 case BTRFS_QUOTA_CTL_DISABLE: 4113 ret = btrfs_quota_disable(fs_info); 4114 break; 4115 default: 4116 ret = -EINVAL; 4117 break; 4118 } 4119 4120 kfree(sa); 4121 up_write(&fs_info->subvol_sem); 4122 drop_write: 4123 mnt_drop_write_file(file); 4124 return ret; 4125 } 4126 4127 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4128 { 4129 struct inode *inode = file_inode(file); 4130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4131 struct btrfs_root *root = BTRFS_I(inode)->root; 4132 struct btrfs_ioctl_qgroup_assign_args *sa; 4133 struct btrfs_trans_handle *trans; 4134 int ret; 4135 int err; 4136 4137 if (!capable(CAP_SYS_ADMIN)) 4138 return -EPERM; 4139 4140 ret = mnt_want_write_file(file); 4141 if (ret) 4142 return ret; 4143 4144 sa = memdup_user(arg, sizeof(*sa)); 4145 if (IS_ERR(sa)) { 4146 ret = PTR_ERR(sa); 4147 goto drop_write; 4148 } 4149 4150 trans = btrfs_join_transaction(root); 4151 if (IS_ERR(trans)) { 4152 ret = PTR_ERR(trans); 4153 goto out; 4154 } 4155 4156 if (sa->assign) { 4157 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4158 } else { 4159 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4160 } 4161 4162 /* update qgroup status and info */ 4163 err = btrfs_run_qgroups(trans); 4164 if (err < 0) 4165 btrfs_handle_fs_error(fs_info, err, 4166 "failed to update qgroup status and info"); 4167 err = btrfs_end_transaction(trans); 4168 if (err && !ret) 4169 ret = err; 4170 4171 out: 4172 kfree(sa); 4173 drop_write: 4174 mnt_drop_write_file(file); 4175 return ret; 4176 } 4177 4178 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4179 { 4180 struct inode *inode = file_inode(file); 4181 struct btrfs_root *root = BTRFS_I(inode)->root; 4182 struct btrfs_ioctl_qgroup_create_args *sa; 4183 struct btrfs_trans_handle *trans; 4184 int ret; 4185 int err; 4186 4187 if (!capable(CAP_SYS_ADMIN)) 4188 return -EPERM; 4189 4190 ret = mnt_want_write_file(file); 4191 if (ret) 4192 return ret; 4193 4194 sa = memdup_user(arg, sizeof(*sa)); 4195 if (IS_ERR(sa)) { 4196 ret = PTR_ERR(sa); 4197 goto drop_write; 4198 } 4199 4200 if (!sa->qgroupid) { 4201 ret = -EINVAL; 4202 goto out; 4203 } 4204 4205 trans = btrfs_join_transaction(root); 4206 if (IS_ERR(trans)) { 4207 ret = PTR_ERR(trans); 4208 goto out; 4209 } 4210 4211 if (sa->create) { 4212 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4213 } else { 4214 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4215 } 4216 4217 err = btrfs_end_transaction(trans); 4218 if (err && !ret) 4219 ret = err; 4220 4221 out: 4222 kfree(sa); 4223 drop_write: 4224 mnt_drop_write_file(file); 4225 return ret; 4226 } 4227 4228 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4229 { 4230 struct inode *inode = file_inode(file); 4231 struct btrfs_root *root = BTRFS_I(inode)->root; 4232 struct btrfs_ioctl_qgroup_limit_args *sa; 4233 struct btrfs_trans_handle *trans; 4234 int ret; 4235 int err; 4236 u64 qgroupid; 4237 4238 if (!capable(CAP_SYS_ADMIN)) 4239 return -EPERM; 4240 4241 ret = mnt_want_write_file(file); 4242 if (ret) 4243 return ret; 4244 4245 sa = memdup_user(arg, sizeof(*sa)); 4246 if (IS_ERR(sa)) { 4247 ret = PTR_ERR(sa); 4248 goto drop_write; 4249 } 4250 4251 trans = btrfs_join_transaction(root); 4252 if (IS_ERR(trans)) { 4253 ret = PTR_ERR(trans); 4254 goto out; 4255 } 4256 4257 qgroupid = sa->qgroupid; 4258 if (!qgroupid) { 4259 /* take the current subvol as qgroup */ 4260 qgroupid = root->root_key.objectid; 4261 } 4262 4263 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4264 4265 err = btrfs_end_transaction(trans); 4266 if (err && !ret) 4267 ret = err; 4268 4269 out: 4270 kfree(sa); 4271 drop_write: 4272 mnt_drop_write_file(file); 4273 return ret; 4274 } 4275 4276 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4277 { 4278 struct inode *inode = file_inode(file); 4279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4280 struct btrfs_ioctl_quota_rescan_args *qsa; 4281 int ret; 4282 4283 if (!capable(CAP_SYS_ADMIN)) 4284 return -EPERM; 4285 4286 ret = mnt_want_write_file(file); 4287 if (ret) 4288 return ret; 4289 4290 qsa = memdup_user(arg, sizeof(*qsa)); 4291 if (IS_ERR(qsa)) { 4292 ret = PTR_ERR(qsa); 4293 goto drop_write; 4294 } 4295 4296 if (qsa->flags) { 4297 ret = -EINVAL; 4298 goto out; 4299 } 4300 4301 ret = btrfs_qgroup_rescan(fs_info); 4302 4303 out: 4304 kfree(qsa); 4305 drop_write: 4306 mnt_drop_write_file(file); 4307 return ret; 4308 } 4309 4310 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4311 void __user *arg) 4312 { 4313 struct btrfs_ioctl_quota_rescan_args *qsa; 4314 int ret = 0; 4315 4316 if (!capable(CAP_SYS_ADMIN)) 4317 return -EPERM; 4318 4319 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4320 if (!qsa) 4321 return -ENOMEM; 4322 4323 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4324 qsa->flags = 1; 4325 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4326 } 4327 4328 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4329 ret = -EFAULT; 4330 4331 kfree(qsa); 4332 return ret; 4333 } 4334 4335 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4336 void __user *arg) 4337 { 4338 if (!capable(CAP_SYS_ADMIN)) 4339 return -EPERM; 4340 4341 return btrfs_qgroup_wait_for_completion(fs_info, true); 4342 } 4343 4344 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4345 struct btrfs_ioctl_received_subvol_args *sa) 4346 { 4347 struct inode *inode = file_inode(file); 4348 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4349 struct btrfs_root *root = BTRFS_I(inode)->root; 4350 struct btrfs_root_item *root_item = &root->root_item; 4351 struct btrfs_trans_handle *trans; 4352 struct timespec64 ct = current_time(inode); 4353 int ret = 0; 4354 int received_uuid_changed; 4355 4356 if (!inode_owner_or_capable(&init_user_ns, inode)) 4357 return -EPERM; 4358 4359 ret = mnt_want_write_file(file); 4360 if (ret < 0) 4361 return ret; 4362 4363 down_write(&fs_info->subvol_sem); 4364 4365 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4366 ret = -EINVAL; 4367 goto out; 4368 } 4369 4370 if (btrfs_root_readonly(root)) { 4371 ret = -EROFS; 4372 goto out; 4373 } 4374 4375 /* 4376 * 1 - root item 4377 * 2 - uuid items (received uuid + subvol uuid) 4378 */ 4379 trans = btrfs_start_transaction(root, 3); 4380 if (IS_ERR(trans)) { 4381 ret = PTR_ERR(trans); 4382 trans = NULL; 4383 goto out; 4384 } 4385 4386 sa->rtransid = trans->transid; 4387 sa->rtime.sec = ct.tv_sec; 4388 sa->rtime.nsec = ct.tv_nsec; 4389 4390 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4391 BTRFS_UUID_SIZE); 4392 if (received_uuid_changed && 4393 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4394 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4395 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4396 root->root_key.objectid); 4397 if (ret && ret != -ENOENT) { 4398 btrfs_abort_transaction(trans, ret); 4399 btrfs_end_transaction(trans); 4400 goto out; 4401 } 4402 } 4403 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4404 btrfs_set_root_stransid(root_item, sa->stransid); 4405 btrfs_set_root_rtransid(root_item, sa->rtransid); 4406 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4407 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4408 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4409 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4410 4411 ret = btrfs_update_root(trans, fs_info->tree_root, 4412 &root->root_key, &root->root_item); 4413 if (ret < 0) { 4414 btrfs_end_transaction(trans); 4415 goto out; 4416 } 4417 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4418 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4419 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4420 root->root_key.objectid); 4421 if (ret < 0 && ret != -EEXIST) { 4422 btrfs_abort_transaction(trans, ret); 4423 btrfs_end_transaction(trans); 4424 goto out; 4425 } 4426 } 4427 ret = btrfs_commit_transaction(trans); 4428 out: 4429 up_write(&fs_info->subvol_sem); 4430 mnt_drop_write_file(file); 4431 return ret; 4432 } 4433 4434 #ifdef CONFIG_64BIT 4435 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4436 void __user *arg) 4437 { 4438 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4439 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4440 int ret = 0; 4441 4442 args32 = memdup_user(arg, sizeof(*args32)); 4443 if (IS_ERR(args32)) 4444 return PTR_ERR(args32); 4445 4446 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4447 if (!args64) { 4448 ret = -ENOMEM; 4449 goto out; 4450 } 4451 4452 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4453 args64->stransid = args32->stransid; 4454 args64->rtransid = args32->rtransid; 4455 args64->stime.sec = args32->stime.sec; 4456 args64->stime.nsec = args32->stime.nsec; 4457 args64->rtime.sec = args32->rtime.sec; 4458 args64->rtime.nsec = args32->rtime.nsec; 4459 args64->flags = args32->flags; 4460 4461 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4462 if (ret) 4463 goto out; 4464 4465 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4466 args32->stransid = args64->stransid; 4467 args32->rtransid = args64->rtransid; 4468 args32->stime.sec = args64->stime.sec; 4469 args32->stime.nsec = args64->stime.nsec; 4470 args32->rtime.sec = args64->rtime.sec; 4471 args32->rtime.nsec = args64->rtime.nsec; 4472 args32->flags = args64->flags; 4473 4474 ret = copy_to_user(arg, args32, sizeof(*args32)); 4475 if (ret) 4476 ret = -EFAULT; 4477 4478 out: 4479 kfree(args32); 4480 kfree(args64); 4481 return ret; 4482 } 4483 #endif 4484 4485 static long btrfs_ioctl_set_received_subvol(struct file *file, 4486 void __user *arg) 4487 { 4488 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4489 int ret = 0; 4490 4491 sa = memdup_user(arg, sizeof(*sa)); 4492 if (IS_ERR(sa)) 4493 return PTR_ERR(sa); 4494 4495 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4496 4497 if (ret) 4498 goto out; 4499 4500 ret = copy_to_user(arg, sa, sizeof(*sa)); 4501 if (ret) 4502 ret = -EFAULT; 4503 4504 out: 4505 kfree(sa); 4506 return ret; 4507 } 4508 4509 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4510 void __user *arg) 4511 { 4512 size_t len; 4513 int ret; 4514 char label[BTRFS_LABEL_SIZE]; 4515 4516 spin_lock(&fs_info->super_lock); 4517 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4518 spin_unlock(&fs_info->super_lock); 4519 4520 len = strnlen(label, BTRFS_LABEL_SIZE); 4521 4522 if (len == BTRFS_LABEL_SIZE) { 4523 btrfs_warn(fs_info, 4524 "label is too long, return the first %zu bytes", 4525 --len); 4526 } 4527 4528 ret = copy_to_user(arg, label, len); 4529 4530 return ret ? -EFAULT : 0; 4531 } 4532 4533 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4534 { 4535 struct inode *inode = file_inode(file); 4536 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4537 struct btrfs_root *root = BTRFS_I(inode)->root; 4538 struct btrfs_super_block *super_block = fs_info->super_copy; 4539 struct btrfs_trans_handle *trans; 4540 char label[BTRFS_LABEL_SIZE]; 4541 int ret; 4542 4543 if (!capable(CAP_SYS_ADMIN)) 4544 return -EPERM; 4545 4546 if (copy_from_user(label, arg, sizeof(label))) 4547 return -EFAULT; 4548 4549 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4550 btrfs_err(fs_info, 4551 "unable to set label with more than %d bytes", 4552 BTRFS_LABEL_SIZE - 1); 4553 return -EINVAL; 4554 } 4555 4556 ret = mnt_want_write_file(file); 4557 if (ret) 4558 return ret; 4559 4560 trans = btrfs_start_transaction(root, 0); 4561 if (IS_ERR(trans)) { 4562 ret = PTR_ERR(trans); 4563 goto out_unlock; 4564 } 4565 4566 spin_lock(&fs_info->super_lock); 4567 strcpy(super_block->label, label); 4568 spin_unlock(&fs_info->super_lock); 4569 ret = btrfs_commit_transaction(trans); 4570 4571 out_unlock: 4572 mnt_drop_write_file(file); 4573 return ret; 4574 } 4575 4576 #define INIT_FEATURE_FLAGS(suffix) \ 4577 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4578 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4579 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4580 4581 int btrfs_ioctl_get_supported_features(void __user *arg) 4582 { 4583 static const struct btrfs_ioctl_feature_flags features[3] = { 4584 INIT_FEATURE_FLAGS(SUPP), 4585 INIT_FEATURE_FLAGS(SAFE_SET), 4586 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4587 }; 4588 4589 if (copy_to_user(arg, &features, sizeof(features))) 4590 return -EFAULT; 4591 4592 return 0; 4593 } 4594 4595 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4596 void __user *arg) 4597 { 4598 struct btrfs_super_block *super_block = fs_info->super_copy; 4599 struct btrfs_ioctl_feature_flags features; 4600 4601 features.compat_flags = btrfs_super_compat_flags(super_block); 4602 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4603 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4604 4605 if (copy_to_user(arg, &features, sizeof(features))) 4606 return -EFAULT; 4607 4608 return 0; 4609 } 4610 4611 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4612 enum btrfs_feature_set set, 4613 u64 change_mask, u64 flags, u64 supported_flags, 4614 u64 safe_set, u64 safe_clear) 4615 { 4616 const char *type = btrfs_feature_set_name(set); 4617 char *names; 4618 u64 disallowed, unsupported; 4619 u64 set_mask = flags & change_mask; 4620 u64 clear_mask = ~flags & change_mask; 4621 4622 unsupported = set_mask & ~supported_flags; 4623 if (unsupported) { 4624 names = btrfs_printable_features(set, unsupported); 4625 if (names) { 4626 btrfs_warn(fs_info, 4627 "this kernel does not support the %s feature bit%s", 4628 names, strchr(names, ',') ? "s" : ""); 4629 kfree(names); 4630 } else 4631 btrfs_warn(fs_info, 4632 "this kernel does not support %s bits 0x%llx", 4633 type, unsupported); 4634 return -EOPNOTSUPP; 4635 } 4636 4637 disallowed = set_mask & ~safe_set; 4638 if (disallowed) { 4639 names = btrfs_printable_features(set, disallowed); 4640 if (names) { 4641 btrfs_warn(fs_info, 4642 "can't set the %s feature bit%s while mounted", 4643 names, strchr(names, ',') ? "s" : ""); 4644 kfree(names); 4645 } else 4646 btrfs_warn(fs_info, 4647 "can't set %s bits 0x%llx while mounted", 4648 type, disallowed); 4649 return -EPERM; 4650 } 4651 4652 disallowed = clear_mask & ~safe_clear; 4653 if (disallowed) { 4654 names = btrfs_printable_features(set, disallowed); 4655 if (names) { 4656 btrfs_warn(fs_info, 4657 "can't clear the %s feature bit%s while mounted", 4658 names, strchr(names, ',') ? "s" : ""); 4659 kfree(names); 4660 } else 4661 btrfs_warn(fs_info, 4662 "can't clear %s bits 0x%llx while mounted", 4663 type, disallowed); 4664 return -EPERM; 4665 } 4666 4667 return 0; 4668 } 4669 4670 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4671 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4672 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4673 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4674 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4675 4676 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4677 { 4678 struct inode *inode = file_inode(file); 4679 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4680 struct btrfs_root *root = BTRFS_I(inode)->root; 4681 struct btrfs_super_block *super_block = fs_info->super_copy; 4682 struct btrfs_ioctl_feature_flags flags[2]; 4683 struct btrfs_trans_handle *trans; 4684 u64 newflags; 4685 int ret; 4686 4687 if (!capable(CAP_SYS_ADMIN)) 4688 return -EPERM; 4689 4690 if (copy_from_user(flags, arg, sizeof(flags))) 4691 return -EFAULT; 4692 4693 /* Nothing to do */ 4694 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4695 !flags[0].incompat_flags) 4696 return 0; 4697 4698 ret = check_feature(fs_info, flags[0].compat_flags, 4699 flags[1].compat_flags, COMPAT); 4700 if (ret) 4701 return ret; 4702 4703 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4704 flags[1].compat_ro_flags, COMPAT_RO); 4705 if (ret) 4706 return ret; 4707 4708 ret = check_feature(fs_info, flags[0].incompat_flags, 4709 flags[1].incompat_flags, INCOMPAT); 4710 if (ret) 4711 return ret; 4712 4713 ret = mnt_want_write_file(file); 4714 if (ret) 4715 return ret; 4716 4717 trans = btrfs_start_transaction(root, 0); 4718 if (IS_ERR(trans)) { 4719 ret = PTR_ERR(trans); 4720 goto out_drop_write; 4721 } 4722 4723 spin_lock(&fs_info->super_lock); 4724 newflags = btrfs_super_compat_flags(super_block); 4725 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4726 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4727 btrfs_set_super_compat_flags(super_block, newflags); 4728 4729 newflags = btrfs_super_compat_ro_flags(super_block); 4730 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4731 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4732 btrfs_set_super_compat_ro_flags(super_block, newflags); 4733 4734 newflags = btrfs_super_incompat_flags(super_block); 4735 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4736 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4737 btrfs_set_super_incompat_flags(super_block, newflags); 4738 spin_unlock(&fs_info->super_lock); 4739 4740 ret = btrfs_commit_transaction(trans); 4741 out_drop_write: 4742 mnt_drop_write_file(file); 4743 4744 return ret; 4745 } 4746 4747 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4748 { 4749 struct btrfs_ioctl_send_args *arg; 4750 int ret; 4751 4752 if (compat) { 4753 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4754 struct btrfs_ioctl_send_args_32 args32; 4755 4756 ret = copy_from_user(&args32, argp, sizeof(args32)); 4757 if (ret) 4758 return -EFAULT; 4759 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4760 if (!arg) 4761 return -ENOMEM; 4762 arg->send_fd = args32.send_fd; 4763 arg->clone_sources_count = args32.clone_sources_count; 4764 arg->clone_sources = compat_ptr(args32.clone_sources); 4765 arg->parent_root = args32.parent_root; 4766 arg->flags = args32.flags; 4767 memcpy(arg->reserved, args32.reserved, 4768 sizeof(args32.reserved)); 4769 #else 4770 return -ENOTTY; 4771 #endif 4772 } else { 4773 arg = memdup_user(argp, sizeof(*arg)); 4774 if (IS_ERR(arg)) 4775 return PTR_ERR(arg); 4776 } 4777 ret = btrfs_ioctl_send(file, arg); 4778 kfree(arg); 4779 return ret; 4780 } 4781 4782 long btrfs_ioctl(struct file *file, unsigned int 4783 cmd, unsigned long arg) 4784 { 4785 struct inode *inode = file_inode(file); 4786 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4787 struct btrfs_root *root = BTRFS_I(inode)->root; 4788 void __user *argp = (void __user *)arg; 4789 4790 switch (cmd) { 4791 case FS_IOC_GETVERSION: 4792 return btrfs_ioctl_getversion(file, argp); 4793 case FS_IOC_GETFSLABEL: 4794 return btrfs_ioctl_get_fslabel(fs_info, argp); 4795 case FS_IOC_SETFSLABEL: 4796 return btrfs_ioctl_set_fslabel(file, argp); 4797 case FITRIM: 4798 return btrfs_ioctl_fitrim(fs_info, argp); 4799 case BTRFS_IOC_SNAP_CREATE: 4800 return btrfs_ioctl_snap_create(file, argp, 0); 4801 case BTRFS_IOC_SNAP_CREATE_V2: 4802 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4803 case BTRFS_IOC_SUBVOL_CREATE: 4804 return btrfs_ioctl_snap_create(file, argp, 1); 4805 case BTRFS_IOC_SUBVOL_CREATE_V2: 4806 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4807 case BTRFS_IOC_SNAP_DESTROY: 4808 return btrfs_ioctl_snap_destroy(file, argp, false); 4809 case BTRFS_IOC_SNAP_DESTROY_V2: 4810 return btrfs_ioctl_snap_destroy(file, argp, true); 4811 case BTRFS_IOC_SUBVOL_GETFLAGS: 4812 return btrfs_ioctl_subvol_getflags(file, argp); 4813 case BTRFS_IOC_SUBVOL_SETFLAGS: 4814 return btrfs_ioctl_subvol_setflags(file, argp); 4815 case BTRFS_IOC_DEFAULT_SUBVOL: 4816 return btrfs_ioctl_default_subvol(file, argp); 4817 case BTRFS_IOC_DEFRAG: 4818 return btrfs_ioctl_defrag(file, NULL); 4819 case BTRFS_IOC_DEFRAG_RANGE: 4820 return btrfs_ioctl_defrag(file, argp); 4821 case BTRFS_IOC_RESIZE: 4822 return btrfs_ioctl_resize(file, argp); 4823 case BTRFS_IOC_ADD_DEV: 4824 return btrfs_ioctl_add_dev(fs_info, argp); 4825 case BTRFS_IOC_RM_DEV: 4826 return btrfs_ioctl_rm_dev(file, argp); 4827 case BTRFS_IOC_RM_DEV_V2: 4828 return btrfs_ioctl_rm_dev_v2(file, argp); 4829 case BTRFS_IOC_FS_INFO: 4830 return btrfs_ioctl_fs_info(fs_info, argp); 4831 case BTRFS_IOC_DEV_INFO: 4832 return btrfs_ioctl_dev_info(fs_info, argp); 4833 case BTRFS_IOC_BALANCE: 4834 return btrfs_ioctl_balance(file, NULL); 4835 case BTRFS_IOC_TREE_SEARCH: 4836 return btrfs_ioctl_tree_search(file, argp); 4837 case BTRFS_IOC_TREE_SEARCH_V2: 4838 return btrfs_ioctl_tree_search_v2(file, argp); 4839 case BTRFS_IOC_INO_LOOKUP: 4840 return btrfs_ioctl_ino_lookup(file, argp); 4841 case BTRFS_IOC_INO_PATHS: 4842 return btrfs_ioctl_ino_to_path(root, argp); 4843 case BTRFS_IOC_LOGICAL_INO: 4844 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4845 case BTRFS_IOC_LOGICAL_INO_V2: 4846 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4847 case BTRFS_IOC_SPACE_INFO: 4848 return btrfs_ioctl_space_info(fs_info, argp); 4849 case BTRFS_IOC_SYNC: { 4850 int ret; 4851 4852 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4853 if (ret) 4854 return ret; 4855 ret = btrfs_sync_fs(inode->i_sb, 1); 4856 /* 4857 * The transaction thread may want to do more work, 4858 * namely it pokes the cleaner kthread that will start 4859 * processing uncleaned subvols. 4860 */ 4861 wake_up_process(fs_info->transaction_kthread); 4862 return ret; 4863 } 4864 case BTRFS_IOC_START_SYNC: 4865 return btrfs_ioctl_start_sync(root, argp); 4866 case BTRFS_IOC_WAIT_SYNC: 4867 return btrfs_ioctl_wait_sync(fs_info, argp); 4868 case BTRFS_IOC_SCRUB: 4869 return btrfs_ioctl_scrub(file, argp); 4870 case BTRFS_IOC_SCRUB_CANCEL: 4871 return btrfs_ioctl_scrub_cancel(fs_info); 4872 case BTRFS_IOC_SCRUB_PROGRESS: 4873 return btrfs_ioctl_scrub_progress(fs_info, argp); 4874 case BTRFS_IOC_BALANCE_V2: 4875 return btrfs_ioctl_balance(file, argp); 4876 case BTRFS_IOC_BALANCE_CTL: 4877 return btrfs_ioctl_balance_ctl(fs_info, arg); 4878 case BTRFS_IOC_BALANCE_PROGRESS: 4879 return btrfs_ioctl_balance_progress(fs_info, argp); 4880 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4881 return btrfs_ioctl_set_received_subvol(file, argp); 4882 #ifdef CONFIG_64BIT 4883 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4884 return btrfs_ioctl_set_received_subvol_32(file, argp); 4885 #endif 4886 case BTRFS_IOC_SEND: 4887 return _btrfs_ioctl_send(file, argp, false); 4888 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4889 case BTRFS_IOC_SEND_32: 4890 return _btrfs_ioctl_send(file, argp, true); 4891 #endif 4892 case BTRFS_IOC_GET_DEV_STATS: 4893 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4894 case BTRFS_IOC_QUOTA_CTL: 4895 return btrfs_ioctl_quota_ctl(file, argp); 4896 case BTRFS_IOC_QGROUP_ASSIGN: 4897 return btrfs_ioctl_qgroup_assign(file, argp); 4898 case BTRFS_IOC_QGROUP_CREATE: 4899 return btrfs_ioctl_qgroup_create(file, argp); 4900 case BTRFS_IOC_QGROUP_LIMIT: 4901 return btrfs_ioctl_qgroup_limit(file, argp); 4902 case BTRFS_IOC_QUOTA_RESCAN: 4903 return btrfs_ioctl_quota_rescan(file, argp); 4904 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4905 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4906 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4907 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4908 case BTRFS_IOC_DEV_REPLACE: 4909 return btrfs_ioctl_dev_replace(fs_info, argp); 4910 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4911 return btrfs_ioctl_get_supported_features(argp); 4912 case BTRFS_IOC_GET_FEATURES: 4913 return btrfs_ioctl_get_features(fs_info, argp); 4914 case BTRFS_IOC_SET_FEATURES: 4915 return btrfs_ioctl_set_features(file, argp); 4916 case BTRFS_IOC_GET_SUBVOL_INFO: 4917 return btrfs_ioctl_get_subvol_info(file, argp); 4918 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4919 return btrfs_ioctl_get_subvol_rootref(file, argp); 4920 case BTRFS_IOC_INO_LOOKUP_USER: 4921 return btrfs_ioctl_ino_lookup_user(file, argp); 4922 } 4923 4924 return -ENOTTY; 4925 } 4926 4927 #ifdef CONFIG_COMPAT 4928 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4929 { 4930 /* 4931 * These all access 32-bit values anyway so no further 4932 * handling is necessary. 4933 */ 4934 switch (cmd) { 4935 case FS_IOC32_GETVERSION: 4936 cmd = FS_IOC_GETVERSION; 4937 break; 4938 } 4939 4940 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4941 } 4942 #endif 4943