xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 2427f03f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "export.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "rcu-string.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "delalloc-space.h"
50 #include "block-group.h"
51 #include "subpage.h"
52 
53 #ifdef CONFIG_64BIT
54 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
55  * structures are incorrect, as the timespec structure from userspace
56  * is 4 bytes too small. We define these alternatives here to teach
57  * the kernel about the 32-bit struct packing.
58  */
59 struct btrfs_ioctl_timespec_32 {
60 	__u64 sec;
61 	__u32 nsec;
62 } __attribute__ ((__packed__));
63 
64 struct btrfs_ioctl_received_subvol_args_32 {
65 	char	uuid[BTRFS_UUID_SIZE];	/* in */
66 	__u64	stransid;		/* in */
67 	__u64	rtransid;		/* out */
68 	struct btrfs_ioctl_timespec_32 stime; /* in */
69 	struct btrfs_ioctl_timespec_32 rtime; /* out */
70 	__u64	flags;			/* in */
71 	__u64	reserved[16];		/* in */
72 } __attribute__ ((__packed__));
73 
74 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
75 				struct btrfs_ioctl_received_subvol_args_32)
76 #endif
77 
78 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
79 struct btrfs_ioctl_send_args_32 {
80 	__s64 send_fd;			/* in */
81 	__u64 clone_sources_count;	/* in */
82 	compat_uptr_t clone_sources;	/* in */
83 	__u64 parent_root;		/* in */
84 	__u64 flags;			/* in */
85 	__u32 version;			/* in */
86 	__u8  reserved[28];		/* in */
87 } __attribute__ ((__packed__));
88 
89 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
90 			       struct btrfs_ioctl_send_args_32)
91 #endif
92 
93 /* Mask out flags that are inappropriate for the given type of inode. */
94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
95 		unsigned int flags)
96 {
97 	if (S_ISDIR(inode->i_mode))
98 		return flags;
99 	else if (S_ISREG(inode->i_mode))
100 		return flags & ~FS_DIRSYNC_FL;
101 	else
102 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104 
105 /*
106  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
107  * ioctl.
108  */
109 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
110 {
111 	unsigned int iflags = 0;
112 	u32 flags = binode->flags;
113 	u32 ro_flags = binode->ro_flags;
114 
115 	if (flags & BTRFS_INODE_SYNC)
116 		iflags |= FS_SYNC_FL;
117 	if (flags & BTRFS_INODE_IMMUTABLE)
118 		iflags |= FS_IMMUTABLE_FL;
119 	if (flags & BTRFS_INODE_APPEND)
120 		iflags |= FS_APPEND_FL;
121 	if (flags & BTRFS_INODE_NODUMP)
122 		iflags |= FS_NODUMP_FL;
123 	if (flags & BTRFS_INODE_NOATIME)
124 		iflags |= FS_NOATIME_FL;
125 	if (flags & BTRFS_INODE_DIRSYNC)
126 		iflags |= FS_DIRSYNC_FL;
127 	if (flags & BTRFS_INODE_NODATACOW)
128 		iflags |= FS_NOCOW_FL;
129 	if (ro_flags & BTRFS_INODE_RO_VERITY)
130 		iflags |= FS_VERITY_FL;
131 
132 	if (flags & BTRFS_INODE_NOCOMPRESS)
133 		iflags |= FS_NOCOMP_FL;
134 	else if (flags & BTRFS_INODE_COMPRESS)
135 		iflags |= FS_COMPR_FL;
136 
137 	return iflags;
138 }
139 
140 /*
141  * Update inode->i_flags based on the btrfs internal flags.
142  */
143 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
144 {
145 	struct btrfs_inode *binode = BTRFS_I(inode);
146 	unsigned int new_fl = 0;
147 
148 	if (binode->flags & BTRFS_INODE_SYNC)
149 		new_fl |= S_SYNC;
150 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
151 		new_fl |= S_IMMUTABLE;
152 	if (binode->flags & BTRFS_INODE_APPEND)
153 		new_fl |= S_APPEND;
154 	if (binode->flags & BTRFS_INODE_NOATIME)
155 		new_fl |= S_NOATIME;
156 	if (binode->flags & BTRFS_INODE_DIRSYNC)
157 		new_fl |= S_DIRSYNC;
158 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
159 		new_fl |= S_VERITY;
160 
161 	set_mask_bits(&inode->i_flags,
162 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
163 		      S_VERITY, new_fl);
164 }
165 
166 /*
167  * Check if @flags are a supported and valid set of FS_*_FL flags and that
168  * the old and new flags are not conflicting
169  */
170 static int check_fsflags(unsigned int old_flags, unsigned int flags)
171 {
172 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
173 		      FS_NOATIME_FL | FS_NODUMP_FL | \
174 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
175 		      FS_NOCOMP_FL | FS_COMPR_FL |
176 		      FS_NOCOW_FL))
177 		return -EOPNOTSUPP;
178 
179 	/* COMPR and NOCOMP on new/old are valid */
180 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
181 		return -EINVAL;
182 
183 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
184 		return -EINVAL;
185 
186 	/* NOCOW and compression options are mutually exclusive */
187 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
188 		return -EINVAL;
189 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
190 		return -EINVAL;
191 
192 	return 0;
193 }
194 
195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
196 				    unsigned int flags)
197 {
198 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
199 		return -EPERM;
200 
201 	return 0;
202 }
203 
204 /*
205  * Set flags/xflags from the internal inode flags. The remaining items of
206  * fsxattr are zeroed.
207  */
208 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
209 {
210 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
211 
212 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
213 	return 0;
214 }
215 
216 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
217 		       struct dentry *dentry, struct fileattr *fa)
218 {
219 	struct inode *inode = d_inode(dentry);
220 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
221 	struct btrfs_inode *binode = BTRFS_I(inode);
222 	struct btrfs_root *root = binode->root;
223 	struct btrfs_trans_handle *trans;
224 	unsigned int fsflags, old_fsflags;
225 	int ret;
226 	const char *comp = NULL;
227 	u32 binode_flags;
228 
229 	if (btrfs_root_readonly(root))
230 		return -EROFS;
231 
232 	if (fileattr_has_fsx(fa))
233 		return -EOPNOTSUPP;
234 
235 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
236 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
237 	ret = check_fsflags(old_fsflags, fsflags);
238 	if (ret)
239 		return ret;
240 
241 	ret = check_fsflags_compatible(fs_info, fsflags);
242 	if (ret)
243 		return ret;
244 
245 	binode_flags = binode->flags;
246 	if (fsflags & FS_SYNC_FL)
247 		binode_flags |= BTRFS_INODE_SYNC;
248 	else
249 		binode_flags &= ~BTRFS_INODE_SYNC;
250 	if (fsflags & FS_IMMUTABLE_FL)
251 		binode_flags |= BTRFS_INODE_IMMUTABLE;
252 	else
253 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
254 	if (fsflags & FS_APPEND_FL)
255 		binode_flags |= BTRFS_INODE_APPEND;
256 	else
257 		binode_flags &= ~BTRFS_INODE_APPEND;
258 	if (fsflags & FS_NODUMP_FL)
259 		binode_flags |= BTRFS_INODE_NODUMP;
260 	else
261 		binode_flags &= ~BTRFS_INODE_NODUMP;
262 	if (fsflags & FS_NOATIME_FL)
263 		binode_flags |= BTRFS_INODE_NOATIME;
264 	else
265 		binode_flags &= ~BTRFS_INODE_NOATIME;
266 
267 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
268 	if (!fa->flags_valid) {
269 		/* 1 item for the inode */
270 		trans = btrfs_start_transaction(root, 1);
271 		if (IS_ERR(trans))
272 			return PTR_ERR(trans);
273 		goto update_flags;
274 	}
275 
276 	if (fsflags & FS_DIRSYNC_FL)
277 		binode_flags |= BTRFS_INODE_DIRSYNC;
278 	else
279 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
280 	if (fsflags & FS_NOCOW_FL) {
281 		if (S_ISREG(inode->i_mode)) {
282 			/*
283 			 * It's safe to turn csums off here, no extents exist.
284 			 * Otherwise we want the flag to reflect the real COW
285 			 * status of the file and will not set it.
286 			 */
287 			if (inode->i_size == 0)
288 				binode_flags |= BTRFS_INODE_NODATACOW |
289 						BTRFS_INODE_NODATASUM;
290 		} else {
291 			binode_flags |= BTRFS_INODE_NODATACOW;
292 		}
293 	} else {
294 		/*
295 		 * Revert back under same assumptions as above
296 		 */
297 		if (S_ISREG(inode->i_mode)) {
298 			if (inode->i_size == 0)
299 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
300 						  BTRFS_INODE_NODATASUM);
301 		} else {
302 			binode_flags &= ~BTRFS_INODE_NODATACOW;
303 		}
304 	}
305 
306 	/*
307 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
308 	 * flag may be changed automatically if compression code won't make
309 	 * things smaller.
310 	 */
311 	if (fsflags & FS_NOCOMP_FL) {
312 		binode_flags &= ~BTRFS_INODE_COMPRESS;
313 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
314 	} else if (fsflags & FS_COMPR_FL) {
315 
316 		if (IS_SWAPFILE(inode))
317 			return -ETXTBSY;
318 
319 		binode_flags |= BTRFS_INODE_COMPRESS;
320 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
321 
322 		comp = btrfs_compress_type2str(fs_info->compress_type);
323 		if (!comp || comp[0] == 0)
324 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
325 	} else {
326 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
327 	}
328 
329 	/*
330 	 * 1 for inode item
331 	 * 2 for properties
332 	 */
333 	trans = btrfs_start_transaction(root, 3);
334 	if (IS_ERR(trans))
335 		return PTR_ERR(trans);
336 
337 	if (comp) {
338 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
339 				     strlen(comp), 0);
340 		if (ret) {
341 			btrfs_abort_transaction(trans, ret);
342 			goto out_end_trans;
343 		}
344 	} else {
345 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
346 				     0, 0);
347 		if (ret && ret != -ENODATA) {
348 			btrfs_abort_transaction(trans, ret);
349 			goto out_end_trans;
350 		}
351 	}
352 
353 update_flags:
354 	binode->flags = binode_flags;
355 	btrfs_sync_inode_flags_to_i_flags(inode);
356 	inode_inc_iversion(inode);
357 	inode->i_ctime = current_time(inode);
358 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
359 
360  out_end_trans:
361 	btrfs_end_transaction(trans);
362 	return ret;
363 }
364 
365 /*
366  * Start exclusive operation @type, return true on success
367  */
368 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
369 			enum btrfs_exclusive_operation type)
370 {
371 	bool ret = false;
372 
373 	spin_lock(&fs_info->super_lock);
374 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
375 		fs_info->exclusive_operation = type;
376 		ret = true;
377 	}
378 	spin_unlock(&fs_info->super_lock);
379 
380 	return ret;
381 }
382 
383 /*
384  * Conditionally allow to enter the exclusive operation in case it's compatible
385  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
386  * btrfs_exclop_finish.
387  *
388  * Compatibility:
389  * - the same type is already running
390  * - when trying to add a device and balance has been paused
391  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
392  *   must check the condition first that would allow none -> @type
393  */
394 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
395 				 enum btrfs_exclusive_operation type)
396 {
397 	spin_lock(&fs_info->super_lock);
398 	if (fs_info->exclusive_operation == type ||
399 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
400 	     type == BTRFS_EXCLOP_DEV_ADD))
401 		return true;
402 
403 	spin_unlock(&fs_info->super_lock);
404 	return false;
405 }
406 
407 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
408 {
409 	spin_unlock(&fs_info->super_lock);
410 }
411 
412 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
413 {
414 	spin_lock(&fs_info->super_lock);
415 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
416 	spin_unlock(&fs_info->super_lock);
417 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
418 }
419 
420 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
421 			  enum btrfs_exclusive_operation op)
422 {
423 	switch (op) {
424 	case BTRFS_EXCLOP_BALANCE_PAUSED:
425 		spin_lock(&fs_info->super_lock);
426 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
427 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
428 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
429 		spin_unlock(&fs_info->super_lock);
430 		break;
431 	case BTRFS_EXCLOP_BALANCE:
432 		spin_lock(&fs_info->super_lock);
433 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
434 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
435 		spin_unlock(&fs_info->super_lock);
436 		break;
437 	default:
438 		btrfs_warn(fs_info,
439 			"invalid exclop balance operation %d requested", op);
440 	}
441 }
442 
443 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
444 {
445 	struct inode *inode = file_inode(file);
446 
447 	return put_user(inode->i_generation, arg);
448 }
449 
450 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
451 					void __user *arg)
452 {
453 	struct btrfs_device *device;
454 	struct request_queue *q;
455 	struct fstrim_range range;
456 	u64 minlen = ULLONG_MAX;
457 	u64 num_devices = 0;
458 	int ret;
459 
460 	if (!capable(CAP_SYS_ADMIN))
461 		return -EPERM;
462 
463 	/*
464 	 * btrfs_trim_block_group() depends on space cache, which is not
465 	 * available in zoned filesystem. So, disallow fitrim on a zoned
466 	 * filesystem for now.
467 	 */
468 	if (btrfs_is_zoned(fs_info))
469 		return -EOPNOTSUPP;
470 
471 	/*
472 	 * If the fs is mounted with nologreplay, which requires it to be
473 	 * mounted in RO mode as well, we can not allow discard on free space
474 	 * inside block groups, because log trees refer to extents that are not
475 	 * pinned in a block group's free space cache (pinning the extents is
476 	 * precisely the first phase of replaying a log tree).
477 	 */
478 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
479 		return -EROFS;
480 
481 	rcu_read_lock();
482 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
483 				dev_list) {
484 		if (!device->bdev)
485 			continue;
486 		q = bdev_get_queue(device->bdev);
487 		if (blk_queue_discard(q)) {
488 			num_devices++;
489 			minlen = min_t(u64, q->limits.discard_granularity,
490 				     minlen);
491 		}
492 	}
493 	rcu_read_unlock();
494 
495 	if (!num_devices)
496 		return -EOPNOTSUPP;
497 	if (copy_from_user(&range, arg, sizeof(range)))
498 		return -EFAULT;
499 
500 	/*
501 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
502 	 * block group is in the logical address space, which can be any
503 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
504 	 */
505 	if (range.len < fs_info->sb->s_blocksize)
506 		return -EINVAL;
507 
508 	range.minlen = max(range.minlen, minlen);
509 	ret = btrfs_trim_fs(fs_info, &range);
510 	if (ret < 0)
511 		return ret;
512 
513 	if (copy_to_user(arg, &range, sizeof(range)))
514 		return -EFAULT;
515 
516 	return 0;
517 }
518 
519 int __pure btrfs_is_empty_uuid(u8 *uuid)
520 {
521 	int i;
522 
523 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
524 		if (uuid[i])
525 			return 0;
526 	}
527 	return 1;
528 }
529 
530 static noinline int create_subvol(struct user_namespace *mnt_userns,
531 				  struct inode *dir, struct dentry *dentry,
532 				  const char *name, int namelen,
533 				  struct btrfs_qgroup_inherit *inherit)
534 {
535 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
536 	struct btrfs_trans_handle *trans;
537 	struct btrfs_key key;
538 	struct btrfs_root_item *root_item;
539 	struct btrfs_inode_item *inode_item;
540 	struct extent_buffer *leaf;
541 	struct btrfs_root *root = BTRFS_I(dir)->root;
542 	struct btrfs_root *new_root;
543 	struct btrfs_block_rsv block_rsv;
544 	struct timespec64 cur_time = current_time(dir);
545 	struct inode *inode;
546 	int ret;
547 	dev_t anon_dev = 0;
548 	u64 objectid;
549 	u64 index = 0;
550 
551 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
552 	if (!root_item)
553 		return -ENOMEM;
554 
555 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
556 	if (ret)
557 		goto fail_free;
558 
559 	ret = get_anon_bdev(&anon_dev);
560 	if (ret < 0)
561 		goto fail_free;
562 
563 	/*
564 	 * Don't create subvolume whose level is not zero. Or qgroup will be
565 	 * screwed up since it assumes subvolume qgroup's level to be 0.
566 	 */
567 	if (btrfs_qgroup_level(objectid)) {
568 		ret = -ENOSPC;
569 		goto fail_free;
570 	}
571 
572 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
573 	/*
574 	 * The same as the snapshot creation, please see the comment
575 	 * of create_snapshot().
576 	 */
577 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
578 	if (ret)
579 		goto fail_free;
580 
581 	trans = btrfs_start_transaction(root, 0);
582 	if (IS_ERR(trans)) {
583 		ret = PTR_ERR(trans);
584 		btrfs_subvolume_release_metadata(root, &block_rsv);
585 		goto fail_free;
586 	}
587 	trans->block_rsv = &block_rsv;
588 	trans->bytes_reserved = block_rsv.size;
589 
590 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
591 	if (ret)
592 		goto fail;
593 
594 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
595 				      BTRFS_NESTING_NORMAL);
596 	if (IS_ERR(leaf)) {
597 		ret = PTR_ERR(leaf);
598 		goto fail;
599 	}
600 
601 	btrfs_mark_buffer_dirty(leaf);
602 
603 	inode_item = &root_item->inode;
604 	btrfs_set_stack_inode_generation(inode_item, 1);
605 	btrfs_set_stack_inode_size(inode_item, 3);
606 	btrfs_set_stack_inode_nlink(inode_item, 1);
607 	btrfs_set_stack_inode_nbytes(inode_item,
608 				     fs_info->nodesize);
609 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
610 
611 	btrfs_set_root_flags(root_item, 0);
612 	btrfs_set_root_limit(root_item, 0);
613 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
614 
615 	btrfs_set_root_bytenr(root_item, leaf->start);
616 	btrfs_set_root_generation(root_item, trans->transid);
617 	btrfs_set_root_level(root_item, 0);
618 	btrfs_set_root_refs(root_item, 1);
619 	btrfs_set_root_used(root_item, leaf->len);
620 	btrfs_set_root_last_snapshot(root_item, 0);
621 
622 	btrfs_set_root_generation_v2(root_item,
623 			btrfs_root_generation(root_item));
624 	generate_random_guid(root_item->uuid);
625 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
626 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
627 	root_item->ctime = root_item->otime;
628 	btrfs_set_root_ctransid(root_item, trans->transid);
629 	btrfs_set_root_otransid(root_item, trans->transid);
630 
631 	btrfs_tree_unlock(leaf);
632 
633 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
634 
635 	key.objectid = objectid;
636 	key.offset = 0;
637 	key.type = BTRFS_ROOT_ITEM_KEY;
638 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
639 				root_item);
640 	if (ret) {
641 		/*
642 		 * Since we don't abort the transaction in this case, free the
643 		 * tree block so that we don't leak space and leave the
644 		 * filesystem in an inconsistent state (an extent item in the
645 		 * extent tree with a backreference for a root that does not
646 		 * exists).
647 		 */
648 		btrfs_tree_lock(leaf);
649 		btrfs_clean_tree_block(leaf);
650 		btrfs_tree_unlock(leaf);
651 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
652 		free_extent_buffer(leaf);
653 		goto fail;
654 	}
655 
656 	free_extent_buffer(leaf);
657 	leaf = NULL;
658 
659 	key.offset = (u64)-1;
660 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
661 	if (IS_ERR(new_root)) {
662 		free_anon_bdev(anon_dev);
663 		ret = PTR_ERR(new_root);
664 		btrfs_abort_transaction(trans, ret);
665 		goto fail;
666 	}
667 	/* Freeing will be done in btrfs_put_root() of new_root */
668 	anon_dev = 0;
669 
670 	ret = btrfs_record_root_in_trans(trans, new_root);
671 	if (ret) {
672 		btrfs_put_root(new_root);
673 		btrfs_abort_transaction(trans, ret);
674 		goto fail;
675 	}
676 
677 	ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
678 	btrfs_put_root(new_root);
679 	if (ret) {
680 		/* We potentially lose an unused inode item here */
681 		btrfs_abort_transaction(trans, ret);
682 		goto fail;
683 	}
684 
685 	/*
686 	 * insert the directory item
687 	 */
688 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
689 	if (ret) {
690 		btrfs_abort_transaction(trans, ret);
691 		goto fail;
692 	}
693 
694 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
695 				    BTRFS_FT_DIR, index);
696 	if (ret) {
697 		btrfs_abort_transaction(trans, ret);
698 		goto fail;
699 	}
700 
701 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
702 	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
703 	if (ret) {
704 		btrfs_abort_transaction(trans, ret);
705 		goto fail;
706 	}
707 
708 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
709 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
710 	if (ret) {
711 		btrfs_abort_transaction(trans, ret);
712 		goto fail;
713 	}
714 
715 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
716 				  BTRFS_UUID_KEY_SUBVOL, objectid);
717 	if (ret)
718 		btrfs_abort_transaction(trans, ret);
719 
720 fail:
721 	kfree(root_item);
722 	trans->block_rsv = NULL;
723 	trans->bytes_reserved = 0;
724 	btrfs_subvolume_release_metadata(root, &block_rsv);
725 
726 	if (ret)
727 		btrfs_end_transaction(trans);
728 	else
729 		ret = btrfs_commit_transaction(trans);
730 
731 	if (!ret) {
732 		inode = btrfs_lookup_dentry(dir, dentry);
733 		if (IS_ERR(inode))
734 			return PTR_ERR(inode);
735 		d_instantiate(dentry, inode);
736 	}
737 	return ret;
738 
739 fail_free:
740 	if (anon_dev)
741 		free_anon_bdev(anon_dev);
742 	kfree(root_item);
743 	return ret;
744 }
745 
746 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
747 			   struct dentry *dentry, bool readonly,
748 			   struct btrfs_qgroup_inherit *inherit)
749 {
750 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
751 	struct inode *inode;
752 	struct btrfs_pending_snapshot *pending_snapshot;
753 	struct btrfs_trans_handle *trans;
754 	int ret;
755 
756 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
757 		return -EINVAL;
758 
759 	if (atomic_read(&root->nr_swapfiles)) {
760 		btrfs_warn(fs_info,
761 			   "cannot snapshot subvolume with active swapfile");
762 		return -ETXTBSY;
763 	}
764 
765 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
766 	if (!pending_snapshot)
767 		return -ENOMEM;
768 
769 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
770 	if (ret < 0)
771 		goto free_pending;
772 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
773 			GFP_KERNEL);
774 	pending_snapshot->path = btrfs_alloc_path();
775 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
776 		ret = -ENOMEM;
777 		goto free_pending;
778 	}
779 
780 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
781 			     BTRFS_BLOCK_RSV_TEMP);
782 	/*
783 	 * 1 - parent dir inode
784 	 * 2 - dir entries
785 	 * 1 - root item
786 	 * 2 - root ref/backref
787 	 * 1 - root of snapshot
788 	 * 1 - UUID item
789 	 */
790 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
791 					&pending_snapshot->block_rsv, 8,
792 					false);
793 	if (ret)
794 		goto free_pending;
795 
796 	pending_snapshot->dentry = dentry;
797 	pending_snapshot->root = root;
798 	pending_snapshot->readonly = readonly;
799 	pending_snapshot->dir = dir;
800 	pending_snapshot->inherit = inherit;
801 
802 	trans = btrfs_start_transaction(root, 0);
803 	if (IS_ERR(trans)) {
804 		ret = PTR_ERR(trans);
805 		goto fail;
806 	}
807 
808 	spin_lock(&fs_info->trans_lock);
809 	list_add(&pending_snapshot->list,
810 		 &trans->transaction->pending_snapshots);
811 	spin_unlock(&fs_info->trans_lock);
812 
813 	ret = btrfs_commit_transaction(trans);
814 	if (ret)
815 		goto fail;
816 
817 	ret = pending_snapshot->error;
818 	if (ret)
819 		goto fail;
820 
821 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
822 	if (ret)
823 		goto fail;
824 
825 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
826 	if (IS_ERR(inode)) {
827 		ret = PTR_ERR(inode);
828 		goto fail;
829 	}
830 
831 	d_instantiate(dentry, inode);
832 	ret = 0;
833 	pending_snapshot->anon_dev = 0;
834 fail:
835 	/* Prevent double freeing of anon_dev */
836 	if (ret && pending_snapshot->snap)
837 		pending_snapshot->snap->anon_dev = 0;
838 	btrfs_put_root(pending_snapshot->snap);
839 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
840 free_pending:
841 	if (pending_snapshot->anon_dev)
842 		free_anon_bdev(pending_snapshot->anon_dev);
843 	kfree(pending_snapshot->root_item);
844 	btrfs_free_path(pending_snapshot->path);
845 	kfree(pending_snapshot);
846 
847 	return ret;
848 }
849 
850 /*  copy of may_delete in fs/namei.c()
851  *	Check whether we can remove a link victim from directory dir, check
852  *  whether the type of victim is right.
853  *  1. We can't do it if dir is read-only (done in permission())
854  *  2. We should have write and exec permissions on dir
855  *  3. We can't remove anything from append-only dir
856  *  4. We can't do anything with immutable dir (done in permission())
857  *  5. If the sticky bit on dir is set we should either
858  *	a. be owner of dir, or
859  *	b. be owner of victim, or
860  *	c. have CAP_FOWNER capability
861  *  6. If the victim is append-only or immutable we can't do anything with
862  *     links pointing to it.
863  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
864  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
865  *  9. We can't remove a root or mountpoint.
866  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
867  *     nfs_async_unlink().
868  */
869 
870 static int btrfs_may_delete(struct user_namespace *mnt_userns,
871 			    struct inode *dir, struct dentry *victim, int isdir)
872 {
873 	int error;
874 
875 	if (d_really_is_negative(victim))
876 		return -ENOENT;
877 
878 	BUG_ON(d_inode(victim->d_parent) != dir);
879 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
880 
881 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
882 	if (error)
883 		return error;
884 	if (IS_APPEND(dir))
885 		return -EPERM;
886 	if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
887 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
888 	    IS_SWAPFILE(d_inode(victim)))
889 		return -EPERM;
890 	if (isdir) {
891 		if (!d_is_dir(victim))
892 			return -ENOTDIR;
893 		if (IS_ROOT(victim))
894 			return -EBUSY;
895 	} else if (d_is_dir(victim))
896 		return -EISDIR;
897 	if (IS_DEADDIR(dir))
898 		return -ENOENT;
899 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
900 		return -EBUSY;
901 	return 0;
902 }
903 
904 /* copy of may_create in fs/namei.c() */
905 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
906 				   struct inode *dir, struct dentry *child)
907 {
908 	if (d_really_is_positive(child))
909 		return -EEXIST;
910 	if (IS_DEADDIR(dir))
911 		return -ENOENT;
912 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
913 		return -EOVERFLOW;
914 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
915 }
916 
917 /*
918  * Create a new subvolume below @parent.  This is largely modeled after
919  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
920  * inside this filesystem so it's quite a bit simpler.
921  */
922 static noinline int btrfs_mksubvol(const struct path *parent,
923 				   struct user_namespace *mnt_userns,
924 				   const char *name, int namelen,
925 				   struct btrfs_root *snap_src,
926 				   bool readonly,
927 				   struct btrfs_qgroup_inherit *inherit)
928 {
929 	struct inode *dir = d_inode(parent->dentry);
930 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
931 	struct dentry *dentry;
932 	int error;
933 
934 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
935 	if (error == -EINTR)
936 		return error;
937 
938 	dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
939 	error = PTR_ERR(dentry);
940 	if (IS_ERR(dentry))
941 		goto out_unlock;
942 
943 	error = btrfs_may_create(mnt_userns, dir, dentry);
944 	if (error)
945 		goto out_dput;
946 
947 	/*
948 	 * even if this name doesn't exist, we may get hash collisions.
949 	 * check for them now when we can safely fail
950 	 */
951 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
952 					       dir->i_ino, name,
953 					       namelen);
954 	if (error)
955 		goto out_dput;
956 
957 	down_read(&fs_info->subvol_sem);
958 
959 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
960 		goto out_up_read;
961 
962 	if (snap_src)
963 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
964 	else
965 		error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
966 
967 	if (!error)
968 		fsnotify_mkdir(dir, dentry);
969 out_up_read:
970 	up_read(&fs_info->subvol_sem);
971 out_dput:
972 	dput(dentry);
973 out_unlock:
974 	btrfs_inode_unlock(dir, 0);
975 	return error;
976 }
977 
978 static noinline int btrfs_mksnapshot(const struct path *parent,
979 				   struct user_namespace *mnt_userns,
980 				   const char *name, int namelen,
981 				   struct btrfs_root *root,
982 				   bool readonly,
983 				   struct btrfs_qgroup_inherit *inherit)
984 {
985 	int ret;
986 	bool snapshot_force_cow = false;
987 
988 	/*
989 	 * Force new buffered writes to reserve space even when NOCOW is
990 	 * possible. This is to avoid later writeback (running dealloc) to
991 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
992 	 */
993 	btrfs_drew_read_lock(&root->snapshot_lock);
994 
995 	ret = btrfs_start_delalloc_snapshot(root, false);
996 	if (ret)
997 		goto out;
998 
999 	/*
1000 	 * All previous writes have started writeback in NOCOW mode, so now
1001 	 * we force future writes to fallback to COW mode during snapshot
1002 	 * creation.
1003 	 */
1004 	atomic_inc(&root->snapshot_force_cow);
1005 	snapshot_force_cow = true;
1006 
1007 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1008 
1009 	ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1010 			     root, readonly, inherit);
1011 out:
1012 	if (snapshot_force_cow)
1013 		atomic_dec(&root->snapshot_force_cow);
1014 	btrfs_drew_read_unlock(&root->snapshot_lock);
1015 	return ret;
1016 }
1017 
1018 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1019 					       bool locked)
1020 {
1021 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1022 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1023 	struct extent_map *em;
1024 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1025 
1026 	/*
1027 	 * hopefully we have this extent in the tree already, try without
1028 	 * the full extent lock
1029 	 */
1030 	read_lock(&em_tree->lock);
1031 	em = lookup_extent_mapping(em_tree, start, sectorsize);
1032 	read_unlock(&em_tree->lock);
1033 
1034 	if (!em) {
1035 		struct extent_state *cached = NULL;
1036 		u64 end = start + sectorsize - 1;
1037 
1038 		/* get the big lock and read metadata off disk */
1039 		if (!locked)
1040 			lock_extent_bits(io_tree, start, end, &cached);
1041 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, sectorsize);
1042 		if (!locked)
1043 			unlock_extent_cached(io_tree, start, end, &cached);
1044 
1045 		if (IS_ERR(em))
1046 			return NULL;
1047 	}
1048 
1049 	return em;
1050 }
1051 
1052 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1053 				     bool locked)
1054 {
1055 	struct extent_map *next;
1056 	bool ret = true;
1057 
1058 	/* this is the last extent */
1059 	if (em->start + em->len >= i_size_read(inode))
1060 		return false;
1061 
1062 	next = defrag_lookup_extent(inode, em->start + em->len, locked);
1063 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1064 		ret = false;
1065 	else if ((em->block_start + em->block_len == next->block_start) &&
1066 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1067 		ret = false;
1068 
1069 	free_extent_map(next);
1070 	return ret;
1071 }
1072 
1073 /*
1074  * Prepare one page to be defragged.
1075  *
1076  * This will ensure:
1077  *
1078  * - Returned page is locked and has been set up properly.
1079  * - No ordered extent exists in the page.
1080  * - The page is uptodate.
1081  *
1082  * NOTE: Caller should also wait for page writeback after the cluster is
1083  * prepared, here we don't do writeback wait for each page.
1084  */
1085 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1086 					    pgoff_t index)
1087 {
1088 	struct address_space *mapping = inode->vfs_inode.i_mapping;
1089 	gfp_t mask = btrfs_alloc_write_mask(mapping);
1090 	u64 page_start = (u64)index << PAGE_SHIFT;
1091 	u64 page_end = page_start + PAGE_SIZE - 1;
1092 	struct extent_state *cached_state = NULL;
1093 	struct page *page;
1094 	int ret;
1095 
1096 again:
1097 	page = find_or_create_page(mapping, index, mask);
1098 	if (!page)
1099 		return ERR_PTR(-ENOMEM);
1100 
1101 	/*
1102 	 * Since we can defragment files opened read-only, we can encounter
1103 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1104 	 * can't do I/O using huge pages yet, so return an error for now.
1105 	 * Filesystem transparent huge pages are typically only used for
1106 	 * executables that explicitly enable them, so this isn't very
1107 	 * restrictive.
1108 	 */
1109 	if (PageCompound(page)) {
1110 		unlock_page(page);
1111 		put_page(page);
1112 		return ERR_PTR(-ETXTBSY);
1113 	}
1114 
1115 	ret = set_page_extent_mapped(page);
1116 	if (ret < 0) {
1117 		unlock_page(page);
1118 		put_page(page);
1119 		return ERR_PTR(ret);
1120 	}
1121 
1122 	/* Wait for any existing ordered extent in the range */
1123 	while (1) {
1124 		struct btrfs_ordered_extent *ordered;
1125 
1126 		lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1127 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1128 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
1129 				     &cached_state);
1130 		if (!ordered)
1131 			break;
1132 
1133 		unlock_page(page);
1134 		btrfs_start_ordered_extent(ordered, 1);
1135 		btrfs_put_ordered_extent(ordered);
1136 		lock_page(page);
1137 		/*
1138 		 * We unlocked the page above, so we need check if it was
1139 		 * released or not.
1140 		 */
1141 		if (page->mapping != mapping || !PagePrivate(page)) {
1142 			unlock_page(page);
1143 			put_page(page);
1144 			goto again;
1145 		}
1146 	}
1147 
1148 	/*
1149 	 * Now the page range has no ordered extent any more.  Read the page to
1150 	 * make it uptodate.
1151 	 */
1152 	if (!PageUptodate(page)) {
1153 		btrfs_readpage(NULL, page);
1154 		lock_page(page);
1155 		if (page->mapping != mapping || !PagePrivate(page)) {
1156 			unlock_page(page);
1157 			put_page(page);
1158 			goto again;
1159 		}
1160 		if (!PageUptodate(page)) {
1161 			unlock_page(page);
1162 			put_page(page);
1163 			return ERR_PTR(-EIO);
1164 		}
1165 	}
1166 	return page;
1167 }
1168 
1169 struct defrag_target_range {
1170 	struct list_head list;
1171 	u64 start;
1172 	u64 len;
1173 };
1174 
1175 /*
1176  * Collect all valid target extents.
1177  *
1178  * @start:	   file offset to lookup
1179  * @len:	   length to lookup
1180  * @extent_thresh: file extent size threshold, any extent size >= this value
1181  *		   will be ignored
1182  * @newer_than:    only defrag extents newer than this value
1183  * @do_compress:   whether the defrag is doing compression
1184  *		   if true, @extent_thresh will be ignored and all regular
1185  *		   file extents meeting @newer_than will be targets.
1186  * @locked:	   if the range has already held extent lock
1187  * @target_list:   list of targets file extents
1188  */
1189 static int defrag_collect_targets(struct btrfs_inode *inode,
1190 				  u64 start, u64 len, u32 extent_thresh,
1191 				  u64 newer_than, bool do_compress,
1192 				  bool locked, struct list_head *target_list)
1193 {
1194 	u64 cur = start;
1195 	int ret = 0;
1196 
1197 	while (cur < start + len) {
1198 		struct extent_map *em;
1199 		struct defrag_target_range *new;
1200 		bool next_mergeable = true;
1201 		u64 range_len;
1202 
1203 		em = defrag_lookup_extent(&inode->vfs_inode, cur, locked);
1204 		if (!em)
1205 			break;
1206 
1207 		/* Skip hole/inline/preallocated extents */
1208 		if (em->block_start >= EXTENT_MAP_LAST_BYTE ||
1209 		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1210 			goto next;
1211 
1212 		/* Skip older extent */
1213 		if (em->generation < newer_than)
1214 			goto next;
1215 
1216 		/*
1217 		 * Our start offset might be in the middle of an existing extent
1218 		 * map, so take that into account.
1219 		 */
1220 		range_len = em->len - (cur - em->start);
1221 		/*
1222 		 * If this range of the extent map is already flagged for delalloc,
1223 		 * skip it, because:
1224 		 *
1225 		 * 1) We could deadlock later, when trying to reserve space for
1226 		 *    delalloc, because in case we can't immediately reserve space
1227 		 *    the flusher can start delalloc and wait for the respective
1228 		 *    ordered extents to complete. The deadlock would happen
1229 		 *    because we do the space reservation while holding the range
1230 		 *    locked, and starting writeback, or finishing an ordered
1231 		 *    extent, requires locking the range;
1232 		 *
1233 		 * 2) If there's delalloc there, it means there's dirty pages for
1234 		 *    which writeback has not started yet (we clean the delalloc
1235 		 *    flag when starting writeback and after creating an ordered
1236 		 *    extent). If we mark pages in an adjacent range for defrag,
1237 		 *    then we will have a larger contiguous range for delalloc,
1238 		 *    very likely resulting in a larger extent after writeback is
1239 		 *    triggered (except in a case of free space fragmentation).
1240 		 */
1241 		if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
1242 				   EXTENT_DELALLOC, 0, NULL))
1243 			goto next;
1244 
1245 		/*
1246 		 * For do_compress case, we want to compress all valid file
1247 		 * extents, thus no @extent_thresh or mergeable check.
1248 		 */
1249 		if (do_compress)
1250 			goto add;
1251 
1252 		/* Skip too large extent */
1253 		if (range_len >= extent_thresh)
1254 			goto next;
1255 
1256 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1257 							  locked);
1258 		if (!next_mergeable) {
1259 			struct defrag_target_range *last;
1260 
1261 			/* Empty target list, no way to merge with last entry */
1262 			if (list_empty(target_list))
1263 				goto next;
1264 			last = list_entry(target_list->prev,
1265 					  struct defrag_target_range, list);
1266 			/* Not mergeable with last entry */
1267 			if (last->start + last->len != cur)
1268 				goto next;
1269 
1270 			/* Mergeable, fall through to add it to @target_list. */
1271 		}
1272 
1273 add:
1274 		range_len = min(extent_map_end(em), start + len) - cur;
1275 		/*
1276 		 * This one is a good target, check if it can be merged into
1277 		 * last range of the target list.
1278 		 */
1279 		if (!list_empty(target_list)) {
1280 			struct defrag_target_range *last;
1281 
1282 			last = list_entry(target_list->prev,
1283 					  struct defrag_target_range, list);
1284 			ASSERT(last->start + last->len <= cur);
1285 			if (last->start + last->len == cur) {
1286 				/* Mergeable, enlarge the last entry */
1287 				last->len += range_len;
1288 				goto next;
1289 			}
1290 			/* Fall through to allocate a new entry */
1291 		}
1292 
1293 		/* Allocate new defrag_target_range */
1294 		new = kmalloc(sizeof(*new), GFP_NOFS);
1295 		if (!new) {
1296 			free_extent_map(em);
1297 			ret = -ENOMEM;
1298 			break;
1299 		}
1300 		new->start = cur;
1301 		new->len = range_len;
1302 		list_add_tail(&new->list, target_list);
1303 
1304 next:
1305 		cur = extent_map_end(em);
1306 		free_extent_map(em);
1307 	}
1308 	if (ret < 0) {
1309 		struct defrag_target_range *entry;
1310 		struct defrag_target_range *tmp;
1311 
1312 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1313 			list_del_init(&entry->list);
1314 			kfree(entry);
1315 		}
1316 	}
1317 	return ret;
1318 }
1319 
1320 #define CLUSTER_SIZE	(SZ_256K)
1321 
1322 /*
1323  * Defrag one contiguous target range.
1324  *
1325  * @inode:	target inode
1326  * @target:	target range to defrag
1327  * @pages:	locked pages covering the defrag range
1328  * @nr_pages:	number of locked pages
1329  *
1330  * Caller should ensure:
1331  *
1332  * - Pages are prepared
1333  *   Pages should be locked, no ordered extent in the pages range,
1334  *   no writeback.
1335  *
1336  * - Extent bits are locked
1337  */
1338 static int defrag_one_locked_target(struct btrfs_inode *inode,
1339 				    struct defrag_target_range *target,
1340 				    struct page **pages, int nr_pages,
1341 				    struct extent_state **cached_state)
1342 {
1343 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1344 	struct extent_changeset *data_reserved = NULL;
1345 	const u64 start = target->start;
1346 	const u64 len = target->len;
1347 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1348 	unsigned long start_index = start >> PAGE_SHIFT;
1349 	unsigned long first_index = page_index(pages[0]);
1350 	int ret = 0;
1351 	int i;
1352 
1353 	ASSERT(last_index - first_index + 1 <= nr_pages);
1354 
1355 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1356 	if (ret < 0)
1357 		return ret;
1358 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1359 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1360 			 EXTENT_DEFRAG, 0, 0, cached_state);
1361 	set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1362 
1363 	/* Update the page status */
1364 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1365 		ClearPageChecked(pages[i]);
1366 		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1367 	}
1368 	btrfs_delalloc_release_extents(inode, len);
1369 	extent_changeset_free(data_reserved);
1370 
1371 	return ret;
1372 }
1373 
1374 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1375 			    u32 extent_thresh, u64 newer_than, bool do_compress)
1376 {
1377 	struct extent_state *cached_state = NULL;
1378 	struct defrag_target_range *entry;
1379 	struct defrag_target_range *tmp;
1380 	LIST_HEAD(target_list);
1381 	struct page **pages;
1382 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1383 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1384 	u64 start_index = start >> PAGE_SHIFT;
1385 	unsigned int nr_pages = last_index - start_index + 1;
1386 	int ret = 0;
1387 	int i;
1388 
1389 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1390 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1391 
1392 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1393 	if (!pages)
1394 		return -ENOMEM;
1395 
1396 	/* Prepare all pages */
1397 	for (i = 0; i < nr_pages; i++) {
1398 		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1399 		if (IS_ERR(pages[i])) {
1400 			ret = PTR_ERR(pages[i]);
1401 			pages[i] = NULL;
1402 			goto free_pages;
1403 		}
1404 	}
1405 	for (i = 0; i < nr_pages; i++)
1406 		wait_on_page_writeback(pages[i]);
1407 
1408 	/* Lock the pages range */
1409 	lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1410 			 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1411 			 &cached_state);
1412 	/*
1413 	 * Now we have a consistent view about the extent map, re-check
1414 	 * which range really needs to be defragged.
1415 	 *
1416 	 * And this time we have extent locked already, pass @locked = true
1417 	 * so that we won't relock the extent range and cause deadlock.
1418 	 */
1419 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1420 				     newer_than, do_compress, true,
1421 				     &target_list);
1422 	if (ret < 0)
1423 		goto unlock_extent;
1424 
1425 	list_for_each_entry(entry, &target_list, list) {
1426 		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1427 					       &cached_state);
1428 		if (ret < 0)
1429 			break;
1430 	}
1431 
1432 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1433 		list_del_init(&entry->list);
1434 		kfree(entry);
1435 	}
1436 unlock_extent:
1437 	unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1438 			     (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1439 			     &cached_state);
1440 free_pages:
1441 	for (i = 0; i < nr_pages; i++) {
1442 		if (pages[i]) {
1443 			unlock_page(pages[i]);
1444 			put_page(pages[i]);
1445 		}
1446 	}
1447 	kfree(pages);
1448 	return ret;
1449 }
1450 
1451 static int defrag_one_cluster(struct btrfs_inode *inode,
1452 			      struct file_ra_state *ra,
1453 			      u64 start, u32 len, u32 extent_thresh,
1454 			      u64 newer_than, bool do_compress,
1455 			      unsigned long *sectors_defragged,
1456 			      unsigned long max_sectors)
1457 {
1458 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1459 	struct defrag_target_range *entry;
1460 	struct defrag_target_range *tmp;
1461 	LIST_HEAD(target_list);
1462 	int ret;
1463 
1464 	BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1465 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1466 				     newer_than, do_compress, false,
1467 				     &target_list);
1468 	if (ret < 0)
1469 		goto out;
1470 
1471 	list_for_each_entry(entry, &target_list, list) {
1472 		u32 range_len = entry->len;
1473 
1474 		/* Reached or beyond the limit */
1475 		if (max_sectors && *sectors_defragged >= max_sectors) {
1476 			ret = 1;
1477 			break;
1478 		}
1479 
1480 		if (max_sectors)
1481 			range_len = min_t(u32, range_len,
1482 				(max_sectors - *sectors_defragged) * sectorsize);
1483 
1484 		if (ra)
1485 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1486 				ra, NULL, entry->start >> PAGE_SHIFT,
1487 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1488 				(entry->start >> PAGE_SHIFT) + 1);
1489 		/*
1490 		 * Here we may not defrag any range if holes are punched before
1491 		 * we locked the pages.
1492 		 * But that's fine, it only affects the @sectors_defragged
1493 		 * accounting.
1494 		 */
1495 		ret = defrag_one_range(inode, entry->start, range_len,
1496 				       extent_thresh, newer_than, do_compress);
1497 		if (ret < 0)
1498 			break;
1499 		*sectors_defragged += range_len >>
1500 				      inode->root->fs_info->sectorsize_bits;
1501 	}
1502 out:
1503 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1504 		list_del_init(&entry->list);
1505 		kfree(entry);
1506 	}
1507 	return ret;
1508 }
1509 
1510 /*
1511  * Entry point to file defragmentation.
1512  *
1513  * @inode:	   inode to be defragged
1514  * @ra:		   readahead state (can be NUL)
1515  * @range:	   defrag options including range and flags
1516  * @newer_than:	   minimum transid to defrag
1517  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1518  *		   will be defragged.
1519  *
1520  * Return <0 for error.
1521  * Return >=0 for the number of sectors defragged, and range->start will be updated
1522  * to indicate the file offset where next defrag should be started at.
1523  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1524  *  defragging all the range).
1525  */
1526 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1527 		      struct btrfs_ioctl_defrag_range_args *range,
1528 		      u64 newer_than, unsigned long max_to_defrag)
1529 {
1530 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1531 	unsigned long sectors_defragged = 0;
1532 	u64 isize = i_size_read(inode);
1533 	u64 cur;
1534 	u64 last_byte;
1535 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1536 	bool ra_allocated = false;
1537 	int compress_type = BTRFS_COMPRESS_ZLIB;
1538 	int ret = 0;
1539 	u32 extent_thresh = range->extent_thresh;
1540 	pgoff_t start_index;
1541 
1542 	if (isize == 0)
1543 		return 0;
1544 
1545 	if (range->start >= isize)
1546 		return -EINVAL;
1547 
1548 	if (do_compress) {
1549 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1550 			return -EINVAL;
1551 		if (range->compress_type)
1552 			compress_type = range->compress_type;
1553 	}
1554 
1555 	if (extent_thresh == 0)
1556 		extent_thresh = SZ_256K;
1557 
1558 	if (range->start + range->len > range->start) {
1559 		/* Got a specific range */
1560 		last_byte = min(isize, range->start + range->len);
1561 	} else {
1562 		/* Defrag until file end */
1563 		last_byte = isize;
1564 	}
1565 
1566 	/* Align the range */
1567 	cur = round_down(range->start, fs_info->sectorsize);
1568 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1569 
1570 	/*
1571 	 * If we were not given a ra, allocate a readahead context. As
1572 	 * readahead is just an optimization, defrag will work without it so
1573 	 * we don't error out.
1574 	 */
1575 	if (!ra) {
1576 		ra_allocated = true;
1577 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1578 		if (ra)
1579 			file_ra_state_init(ra, inode->i_mapping);
1580 	}
1581 
1582 	/*
1583 	 * Make writeback start from the beginning of the range, so that the
1584 	 * defrag range can be written sequentially.
1585 	 */
1586 	start_index = cur >> PAGE_SHIFT;
1587 	if (start_index < inode->i_mapping->writeback_index)
1588 		inode->i_mapping->writeback_index = start_index;
1589 
1590 	while (cur < last_byte) {
1591 		const unsigned long prev_sectors_defragged = sectors_defragged;
1592 		u64 cluster_end;
1593 
1594 		/* The cluster size 256K should always be page aligned */
1595 		BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1596 
1597 		if (btrfs_defrag_cancelled(fs_info)) {
1598 			ret = -EAGAIN;
1599 			break;
1600 		}
1601 
1602 		/* We want the cluster end at page boundary when possible */
1603 		cluster_end = (((cur >> PAGE_SHIFT) +
1604 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1605 		cluster_end = min(cluster_end, last_byte);
1606 
1607 		btrfs_inode_lock(inode, 0);
1608 		if (IS_SWAPFILE(inode)) {
1609 			ret = -ETXTBSY;
1610 			btrfs_inode_unlock(inode, 0);
1611 			break;
1612 		}
1613 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1614 			btrfs_inode_unlock(inode, 0);
1615 			break;
1616 		}
1617 		if (do_compress)
1618 			BTRFS_I(inode)->defrag_compress = compress_type;
1619 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1620 				cluster_end + 1 - cur, extent_thresh,
1621 				newer_than, do_compress,
1622 				&sectors_defragged, max_to_defrag);
1623 
1624 		if (sectors_defragged > prev_sectors_defragged)
1625 			balance_dirty_pages_ratelimited(inode->i_mapping);
1626 
1627 		btrfs_inode_unlock(inode, 0);
1628 		if (ret < 0)
1629 			break;
1630 		cur = cluster_end + 1;
1631 		if (ret > 0) {
1632 			ret = 0;
1633 			break;
1634 		}
1635 	}
1636 
1637 	if (ra_allocated)
1638 		kfree(ra);
1639 	/*
1640 	 * Update range.start for autodefrag, this will indicate where to start
1641 	 * in next run.
1642 	 */
1643 	range->start = cur;
1644 	if (sectors_defragged) {
1645 		/*
1646 		 * We have defragged some sectors, for compression case they
1647 		 * need to be written back immediately.
1648 		 */
1649 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1650 			filemap_flush(inode->i_mapping);
1651 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1652 				     &BTRFS_I(inode)->runtime_flags))
1653 				filemap_flush(inode->i_mapping);
1654 		}
1655 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1656 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1657 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1658 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1659 		ret = sectors_defragged;
1660 	}
1661 	if (do_compress) {
1662 		btrfs_inode_lock(inode, 0);
1663 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1664 		btrfs_inode_unlock(inode, 0);
1665 	}
1666 	return ret;
1667 }
1668 
1669 /*
1670  * Try to start exclusive operation @type or cancel it if it's running.
1671  *
1672  * Return:
1673  *   0        - normal mode, newly claimed op started
1674  *  >0        - normal mode, something else is running,
1675  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1676  * ECANCELED  - cancel mode, successful cancel
1677  * ENOTCONN   - cancel mode, operation not running anymore
1678  */
1679 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1680 			enum btrfs_exclusive_operation type, bool cancel)
1681 {
1682 	if (!cancel) {
1683 		/* Start normal op */
1684 		if (!btrfs_exclop_start(fs_info, type))
1685 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1686 		/* Exclusive operation is now claimed */
1687 		return 0;
1688 	}
1689 
1690 	/* Cancel running op */
1691 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1692 		/*
1693 		 * This blocks any exclop finish from setting it to NONE, so we
1694 		 * request cancellation. Either it runs and we will wait for it,
1695 		 * or it has finished and no waiting will happen.
1696 		 */
1697 		atomic_inc(&fs_info->reloc_cancel_req);
1698 		btrfs_exclop_start_unlock(fs_info);
1699 
1700 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1701 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1702 				    TASK_INTERRUPTIBLE);
1703 
1704 		return -ECANCELED;
1705 	}
1706 
1707 	/* Something else is running or none */
1708 	return -ENOTCONN;
1709 }
1710 
1711 static noinline int btrfs_ioctl_resize(struct file *file,
1712 					void __user *arg)
1713 {
1714 	BTRFS_DEV_LOOKUP_ARGS(args);
1715 	struct inode *inode = file_inode(file);
1716 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1717 	u64 new_size;
1718 	u64 old_size;
1719 	u64 devid = 1;
1720 	struct btrfs_root *root = BTRFS_I(inode)->root;
1721 	struct btrfs_ioctl_vol_args *vol_args;
1722 	struct btrfs_trans_handle *trans;
1723 	struct btrfs_device *device = NULL;
1724 	char *sizestr;
1725 	char *retptr;
1726 	char *devstr = NULL;
1727 	int ret = 0;
1728 	int mod = 0;
1729 	bool cancel;
1730 
1731 	if (!capable(CAP_SYS_ADMIN))
1732 		return -EPERM;
1733 
1734 	ret = mnt_want_write_file(file);
1735 	if (ret)
1736 		return ret;
1737 
1738 	/*
1739 	 * Read the arguments before checking exclusivity to be able to
1740 	 * distinguish regular resize and cancel
1741 	 */
1742 	vol_args = memdup_user(arg, sizeof(*vol_args));
1743 	if (IS_ERR(vol_args)) {
1744 		ret = PTR_ERR(vol_args);
1745 		goto out_drop;
1746 	}
1747 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1748 	sizestr = vol_args->name;
1749 	cancel = (strcmp("cancel", sizestr) == 0);
1750 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1751 	if (ret)
1752 		goto out_free;
1753 	/* Exclusive operation is now claimed */
1754 
1755 	devstr = strchr(sizestr, ':');
1756 	if (devstr) {
1757 		sizestr = devstr + 1;
1758 		*devstr = '\0';
1759 		devstr = vol_args->name;
1760 		ret = kstrtoull(devstr, 10, &devid);
1761 		if (ret)
1762 			goto out_finish;
1763 		if (!devid) {
1764 			ret = -EINVAL;
1765 			goto out_finish;
1766 		}
1767 		btrfs_info(fs_info, "resizing devid %llu", devid);
1768 	}
1769 
1770 	args.devid = devid;
1771 	device = btrfs_find_device(fs_info->fs_devices, &args);
1772 	if (!device) {
1773 		btrfs_info(fs_info, "resizer unable to find device %llu",
1774 			   devid);
1775 		ret = -ENODEV;
1776 		goto out_finish;
1777 	}
1778 
1779 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1780 		btrfs_info(fs_info,
1781 			   "resizer unable to apply on readonly device %llu",
1782 		       devid);
1783 		ret = -EPERM;
1784 		goto out_finish;
1785 	}
1786 
1787 	if (!strcmp(sizestr, "max"))
1788 		new_size = bdev_nr_bytes(device->bdev);
1789 	else {
1790 		if (sizestr[0] == '-') {
1791 			mod = -1;
1792 			sizestr++;
1793 		} else if (sizestr[0] == '+') {
1794 			mod = 1;
1795 			sizestr++;
1796 		}
1797 		new_size = memparse(sizestr, &retptr);
1798 		if (*retptr != '\0' || new_size == 0) {
1799 			ret = -EINVAL;
1800 			goto out_finish;
1801 		}
1802 	}
1803 
1804 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1805 		ret = -EPERM;
1806 		goto out_finish;
1807 	}
1808 
1809 	old_size = btrfs_device_get_total_bytes(device);
1810 
1811 	if (mod < 0) {
1812 		if (new_size > old_size) {
1813 			ret = -EINVAL;
1814 			goto out_finish;
1815 		}
1816 		new_size = old_size - new_size;
1817 	} else if (mod > 0) {
1818 		if (new_size > ULLONG_MAX - old_size) {
1819 			ret = -ERANGE;
1820 			goto out_finish;
1821 		}
1822 		new_size = old_size + new_size;
1823 	}
1824 
1825 	if (new_size < SZ_256M) {
1826 		ret = -EINVAL;
1827 		goto out_finish;
1828 	}
1829 	if (new_size > bdev_nr_bytes(device->bdev)) {
1830 		ret = -EFBIG;
1831 		goto out_finish;
1832 	}
1833 
1834 	new_size = round_down(new_size, fs_info->sectorsize);
1835 
1836 	if (new_size > old_size) {
1837 		trans = btrfs_start_transaction(root, 0);
1838 		if (IS_ERR(trans)) {
1839 			ret = PTR_ERR(trans);
1840 			goto out_finish;
1841 		}
1842 		ret = btrfs_grow_device(trans, device, new_size);
1843 		btrfs_commit_transaction(trans);
1844 	} else if (new_size < old_size) {
1845 		ret = btrfs_shrink_device(device, new_size);
1846 	} /* equal, nothing need to do */
1847 
1848 	if (ret == 0 && new_size != old_size)
1849 		btrfs_info_in_rcu(fs_info,
1850 			"resize device %s (devid %llu) from %llu to %llu",
1851 			rcu_str_deref(device->name), device->devid,
1852 			old_size, new_size);
1853 out_finish:
1854 	btrfs_exclop_finish(fs_info);
1855 out_free:
1856 	kfree(vol_args);
1857 out_drop:
1858 	mnt_drop_write_file(file);
1859 	return ret;
1860 }
1861 
1862 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1863 				struct user_namespace *mnt_userns,
1864 				const char *name, unsigned long fd, int subvol,
1865 				bool readonly,
1866 				struct btrfs_qgroup_inherit *inherit)
1867 {
1868 	int namelen;
1869 	int ret = 0;
1870 
1871 	if (!S_ISDIR(file_inode(file)->i_mode))
1872 		return -ENOTDIR;
1873 
1874 	ret = mnt_want_write_file(file);
1875 	if (ret)
1876 		goto out;
1877 
1878 	namelen = strlen(name);
1879 	if (strchr(name, '/')) {
1880 		ret = -EINVAL;
1881 		goto out_drop_write;
1882 	}
1883 
1884 	if (name[0] == '.' &&
1885 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1886 		ret = -EEXIST;
1887 		goto out_drop_write;
1888 	}
1889 
1890 	if (subvol) {
1891 		ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1892 				     namelen, NULL, readonly, inherit);
1893 	} else {
1894 		struct fd src = fdget(fd);
1895 		struct inode *src_inode;
1896 		if (!src.file) {
1897 			ret = -EINVAL;
1898 			goto out_drop_write;
1899 		}
1900 
1901 		src_inode = file_inode(src.file);
1902 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1903 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1904 				   "Snapshot src from another FS");
1905 			ret = -EXDEV;
1906 		} else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1907 			/*
1908 			 * Subvolume creation is not restricted, but snapshots
1909 			 * are limited to own subvolumes only
1910 			 */
1911 			ret = -EPERM;
1912 		} else {
1913 			ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1914 					       name, namelen,
1915 					       BTRFS_I(src_inode)->root,
1916 					       readonly, inherit);
1917 		}
1918 		fdput(src);
1919 	}
1920 out_drop_write:
1921 	mnt_drop_write_file(file);
1922 out:
1923 	return ret;
1924 }
1925 
1926 static noinline int btrfs_ioctl_snap_create(struct file *file,
1927 					    void __user *arg, int subvol)
1928 {
1929 	struct btrfs_ioctl_vol_args *vol_args;
1930 	int ret;
1931 
1932 	if (!S_ISDIR(file_inode(file)->i_mode))
1933 		return -ENOTDIR;
1934 
1935 	vol_args = memdup_user(arg, sizeof(*vol_args));
1936 	if (IS_ERR(vol_args))
1937 		return PTR_ERR(vol_args);
1938 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1939 
1940 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1941 					vol_args->name, vol_args->fd, subvol,
1942 					false, NULL);
1943 
1944 	kfree(vol_args);
1945 	return ret;
1946 }
1947 
1948 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1949 					       void __user *arg, int subvol)
1950 {
1951 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1952 	int ret;
1953 	bool readonly = false;
1954 	struct btrfs_qgroup_inherit *inherit = NULL;
1955 
1956 	if (!S_ISDIR(file_inode(file)->i_mode))
1957 		return -ENOTDIR;
1958 
1959 	vol_args = memdup_user(arg, sizeof(*vol_args));
1960 	if (IS_ERR(vol_args))
1961 		return PTR_ERR(vol_args);
1962 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1963 
1964 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1965 		ret = -EOPNOTSUPP;
1966 		goto free_args;
1967 	}
1968 
1969 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1970 		readonly = true;
1971 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1972 		u64 nums;
1973 
1974 		if (vol_args->size < sizeof(*inherit) ||
1975 		    vol_args->size > PAGE_SIZE) {
1976 			ret = -EINVAL;
1977 			goto free_args;
1978 		}
1979 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1980 		if (IS_ERR(inherit)) {
1981 			ret = PTR_ERR(inherit);
1982 			goto free_args;
1983 		}
1984 
1985 		if (inherit->num_qgroups > PAGE_SIZE ||
1986 		    inherit->num_ref_copies > PAGE_SIZE ||
1987 		    inherit->num_excl_copies > PAGE_SIZE) {
1988 			ret = -EINVAL;
1989 			goto free_inherit;
1990 		}
1991 
1992 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1993 		       2 * inherit->num_excl_copies;
1994 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1995 			ret = -EINVAL;
1996 			goto free_inherit;
1997 		}
1998 	}
1999 
2000 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2001 					vol_args->name, vol_args->fd, subvol,
2002 					readonly, inherit);
2003 	if (ret)
2004 		goto free_inherit;
2005 free_inherit:
2006 	kfree(inherit);
2007 free_args:
2008 	kfree(vol_args);
2009 	return ret;
2010 }
2011 
2012 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
2013 						void __user *arg)
2014 {
2015 	struct inode *inode = file_inode(file);
2016 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2017 	struct btrfs_root *root = BTRFS_I(inode)->root;
2018 	int ret = 0;
2019 	u64 flags = 0;
2020 
2021 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
2022 		return -EINVAL;
2023 
2024 	down_read(&fs_info->subvol_sem);
2025 	if (btrfs_root_readonly(root))
2026 		flags |= BTRFS_SUBVOL_RDONLY;
2027 	up_read(&fs_info->subvol_sem);
2028 
2029 	if (copy_to_user(arg, &flags, sizeof(flags)))
2030 		ret = -EFAULT;
2031 
2032 	return ret;
2033 }
2034 
2035 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2036 					      void __user *arg)
2037 {
2038 	struct inode *inode = file_inode(file);
2039 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2040 	struct btrfs_root *root = BTRFS_I(inode)->root;
2041 	struct btrfs_trans_handle *trans;
2042 	u64 root_flags;
2043 	u64 flags;
2044 	int ret = 0;
2045 
2046 	if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2047 		return -EPERM;
2048 
2049 	ret = mnt_want_write_file(file);
2050 	if (ret)
2051 		goto out;
2052 
2053 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2054 		ret = -EINVAL;
2055 		goto out_drop_write;
2056 	}
2057 
2058 	if (copy_from_user(&flags, arg, sizeof(flags))) {
2059 		ret = -EFAULT;
2060 		goto out_drop_write;
2061 	}
2062 
2063 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
2064 		ret = -EOPNOTSUPP;
2065 		goto out_drop_write;
2066 	}
2067 
2068 	down_write(&fs_info->subvol_sem);
2069 
2070 	/* nothing to do */
2071 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2072 		goto out_drop_sem;
2073 
2074 	root_flags = btrfs_root_flags(&root->root_item);
2075 	if (flags & BTRFS_SUBVOL_RDONLY) {
2076 		btrfs_set_root_flags(&root->root_item,
2077 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2078 	} else {
2079 		/*
2080 		 * Block RO -> RW transition if this subvolume is involved in
2081 		 * send
2082 		 */
2083 		spin_lock(&root->root_item_lock);
2084 		if (root->send_in_progress == 0) {
2085 			btrfs_set_root_flags(&root->root_item,
2086 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2087 			spin_unlock(&root->root_item_lock);
2088 		} else {
2089 			spin_unlock(&root->root_item_lock);
2090 			btrfs_warn(fs_info,
2091 				   "Attempt to set subvolume %llu read-write during send",
2092 				   root->root_key.objectid);
2093 			ret = -EPERM;
2094 			goto out_drop_sem;
2095 		}
2096 	}
2097 
2098 	trans = btrfs_start_transaction(root, 1);
2099 	if (IS_ERR(trans)) {
2100 		ret = PTR_ERR(trans);
2101 		goto out_reset;
2102 	}
2103 
2104 	ret = btrfs_update_root(trans, fs_info->tree_root,
2105 				&root->root_key, &root->root_item);
2106 	if (ret < 0) {
2107 		btrfs_end_transaction(trans);
2108 		goto out_reset;
2109 	}
2110 
2111 	ret = btrfs_commit_transaction(trans);
2112 
2113 out_reset:
2114 	if (ret)
2115 		btrfs_set_root_flags(&root->root_item, root_flags);
2116 out_drop_sem:
2117 	up_write(&fs_info->subvol_sem);
2118 out_drop_write:
2119 	mnt_drop_write_file(file);
2120 out:
2121 	return ret;
2122 }
2123 
2124 static noinline int key_in_sk(struct btrfs_key *key,
2125 			      struct btrfs_ioctl_search_key *sk)
2126 {
2127 	struct btrfs_key test;
2128 	int ret;
2129 
2130 	test.objectid = sk->min_objectid;
2131 	test.type = sk->min_type;
2132 	test.offset = sk->min_offset;
2133 
2134 	ret = btrfs_comp_cpu_keys(key, &test);
2135 	if (ret < 0)
2136 		return 0;
2137 
2138 	test.objectid = sk->max_objectid;
2139 	test.type = sk->max_type;
2140 	test.offset = sk->max_offset;
2141 
2142 	ret = btrfs_comp_cpu_keys(key, &test);
2143 	if (ret > 0)
2144 		return 0;
2145 	return 1;
2146 }
2147 
2148 static noinline int copy_to_sk(struct btrfs_path *path,
2149 			       struct btrfs_key *key,
2150 			       struct btrfs_ioctl_search_key *sk,
2151 			       size_t *buf_size,
2152 			       char __user *ubuf,
2153 			       unsigned long *sk_offset,
2154 			       int *num_found)
2155 {
2156 	u64 found_transid;
2157 	struct extent_buffer *leaf;
2158 	struct btrfs_ioctl_search_header sh;
2159 	struct btrfs_key test;
2160 	unsigned long item_off;
2161 	unsigned long item_len;
2162 	int nritems;
2163 	int i;
2164 	int slot;
2165 	int ret = 0;
2166 
2167 	leaf = path->nodes[0];
2168 	slot = path->slots[0];
2169 	nritems = btrfs_header_nritems(leaf);
2170 
2171 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2172 		i = nritems;
2173 		goto advance_key;
2174 	}
2175 	found_transid = btrfs_header_generation(leaf);
2176 
2177 	for (i = slot; i < nritems; i++) {
2178 		item_off = btrfs_item_ptr_offset(leaf, i);
2179 		item_len = btrfs_item_size(leaf, i);
2180 
2181 		btrfs_item_key_to_cpu(leaf, key, i);
2182 		if (!key_in_sk(key, sk))
2183 			continue;
2184 
2185 		if (sizeof(sh) + item_len > *buf_size) {
2186 			if (*num_found) {
2187 				ret = 1;
2188 				goto out;
2189 			}
2190 
2191 			/*
2192 			 * return one empty item back for v1, which does not
2193 			 * handle -EOVERFLOW
2194 			 */
2195 
2196 			*buf_size = sizeof(sh) + item_len;
2197 			item_len = 0;
2198 			ret = -EOVERFLOW;
2199 		}
2200 
2201 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2202 			ret = 1;
2203 			goto out;
2204 		}
2205 
2206 		sh.objectid = key->objectid;
2207 		sh.offset = key->offset;
2208 		sh.type = key->type;
2209 		sh.len = item_len;
2210 		sh.transid = found_transid;
2211 
2212 		/*
2213 		 * Copy search result header. If we fault then loop again so we
2214 		 * can fault in the pages and -EFAULT there if there's a
2215 		 * problem. Otherwise we'll fault and then copy the buffer in
2216 		 * properly this next time through
2217 		 */
2218 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2219 			ret = 0;
2220 			goto out;
2221 		}
2222 
2223 		*sk_offset += sizeof(sh);
2224 
2225 		if (item_len) {
2226 			char __user *up = ubuf + *sk_offset;
2227 			/*
2228 			 * Copy the item, same behavior as above, but reset the
2229 			 * * sk_offset so we copy the full thing again.
2230 			 */
2231 			if (read_extent_buffer_to_user_nofault(leaf, up,
2232 						item_off, item_len)) {
2233 				ret = 0;
2234 				*sk_offset -= sizeof(sh);
2235 				goto out;
2236 			}
2237 
2238 			*sk_offset += item_len;
2239 		}
2240 		(*num_found)++;
2241 
2242 		if (ret) /* -EOVERFLOW from above */
2243 			goto out;
2244 
2245 		if (*num_found >= sk->nr_items) {
2246 			ret = 1;
2247 			goto out;
2248 		}
2249 	}
2250 advance_key:
2251 	ret = 0;
2252 	test.objectid = sk->max_objectid;
2253 	test.type = sk->max_type;
2254 	test.offset = sk->max_offset;
2255 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2256 		ret = 1;
2257 	else if (key->offset < (u64)-1)
2258 		key->offset++;
2259 	else if (key->type < (u8)-1) {
2260 		key->offset = 0;
2261 		key->type++;
2262 	} else if (key->objectid < (u64)-1) {
2263 		key->offset = 0;
2264 		key->type = 0;
2265 		key->objectid++;
2266 	} else
2267 		ret = 1;
2268 out:
2269 	/*
2270 	 *  0: all items from this leaf copied, continue with next
2271 	 *  1: * more items can be copied, but unused buffer is too small
2272 	 *     * all items were found
2273 	 *     Either way, it will stops the loop which iterates to the next
2274 	 *     leaf
2275 	 *  -EOVERFLOW: item was to large for buffer
2276 	 *  -EFAULT: could not copy extent buffer back to userspace
2277 	 */
2278 	return ret;
2279 }
2280 
2281 static noinline int search_ioctl(struct inode *inode,
2282 				 struct btrfs_ioctl_search_key *sk,
2283 				 size_t *buf_size,
2284 				 char __user *ubuf)
2285 {
2286 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2287 	struct btrfs_root *root;
2288 	struct btrfs_key key;
2289 	struct btrfs_path *path;
2290 	int ret;
2291 	int num_found = 0;
2292 	unsigned long sk_offset = 0;
2293 
2294 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2295 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2296 		return -EOVERFLOW;
2297 	}
2298 
2299 	path = btrfs_alloc_path();
2300 	if (!path)
2301 		return -ENOMEM;
2302 
2303 	if (sk->tree_id == 0) {
2304 		/* search the root of the inode that was passed */
2305 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2306 	} else {
2307 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2308 		if (IS_ERR(root)) {
2309 			btrfs_free_path(path);
2310 			return PTR_ERR(root);
2311 		}
2312 	}
2313 
2314 	key.objectid = sk->min_objectid;
2315 	key.type = sk->min_type;
2316 	key.offset = sk->min_offset;
2317 
2318 	while (1) {
2319 		ret = -EFAULT;
2320 		if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset))
2321 			break;
2322 
2323 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2324 		if (ret != 0) {
2325 			if (ret > 0)
2326 				ret = 0;
2327 			goto err;
2328 		}
2329 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2330 				 &sk_offset, &num_found);
2331 		btrfs_release_path(path);
2332 		if (ret)
2333 			break;
2334 
2335 	}
2336 	if (ret > 0)
2337 		ret = 0;
2338 err:
2339 	sk->nr_items = num_found;
2340 	btrfs_put_root(root);
2341 	btrfs_free_path(path);
2342 	return ret;
2343 }
2344 
2345 static noinline int btrfs_ioctl_tree_search(struct file *file,
2346 					   void __user *argp)
2347 {
2348 	struct btrfs_ioctl_search_args __user *uargs;
2349 	struct btrfs_ioctl_search_key sk;
2350 	struct inode *inode;
2351 	int ret;
2352 	size_t buf_size;
2353 
2354 	if (!capable(CAP_SYS_ADMIN))
2355 		return -EPERM;
2356 
2357 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2358 
2359 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2360 		return -EFAULT;
2361 
2362 	buf_size = sizeof(uargs->buf);
2363 
2364 	inode = file_inode(file);
2365 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2366 
2367 	/*
2368 	 * In the origin implementation an overflow is handled by returning a
2369 	 * search header with a len of zero, so reset ret.
2370 	 */
2371 	if (ret == -EOVERFLOW)
2372 		ret = 0;
2373 
2374 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2375 		ret = -EFAULT;
2376 	return ret;
2377 }
2378 
2379 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2380 					       void __user *argp)
2381 {
2382 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2383 	struct btrfs_ioctl_search_args_v2 args;
2384 	struct inode *inode;
2385 	int ret;
2386 	size_t buf_size;
2387 	const size_t buf_limit = SZ_16M;
2388 
2389 	if (!capable(CAP_SYS_ADMIN))
2390 		return -EPERM;
2391 
2392 	/* copy search header and buffer size */
2393 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2394 	if (copy_from_user(&args, uarg, sizeof(args)))
2395 		return -EFAULT;
2396 
2397 	buf_size = args.buf_size;
2398 
2399 	/* limit result size to 16MB */
2400 	if (buf_size > buf_limit)
2401 		buf_size = buf_limit;
2402 
2403 	inode = file_inode(file);
2404 	ret = search_ioctl(inode, &args.key, &buf_size,
2405 			   (char __user *)(&uarg->buf[0]));
2406 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2407 		ret = -EFAULT;
2408 	else if (ret == -EOVERFLOW &&
2409 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2410 		ret = -EFAULT;
2411 
2412 	return ret;
2413 }
2414 
2415 /*
2416  * Search INODE_REFs to identify path name of 'dirid' directory
2417  * in a 'tree_id' tree. and sets path name to 'name'.
2418  */
2419 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2420 				u64 tree_id, u64 dirid, char *name)
2421 {
2422 	struct btrfs_root *root;
2423 	struct btrfs_key key;
2424 	char *ptr;
2425 	int ret = -1;
2426 	int slot;
2427 	int len;
2428 	int total_len = 0;
2429 	struct btrfs_inode_ref *iref;
2430 	struct extent_buffer *l;
2431 	struct btrfs_path *path;
2432 
2433 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2434 		name[0]='\0';
2435 		return 0;
2436 	}
2437 
2438 	path = btrfs_alloc_path();
2439 	if (!path)
2440 		return -ENOMEM;
2441 
2442 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2443 
2444 	root = btrfs_get_fs_root(info, tree_id, true);
2445 	if (IS_ERR(root)) {
2446 		ret = PTR_ERR(root);
2447 		root = NULL;
2448 		goto out;
2449 	}
2450 
2451 	key.objectid = dirid;
2452 	key.type = BTRFS_INODE_REF_KEY;
2453 	key.offset = (u64)-1;
2454 
2455 	while (1) {
2456 		ret = btrfs_search_backwards(root, &key, path);
2457 		if (ret < 0)
2458 			goto out;
2459 		else if (ret > 0) {
2460 			ret = -ENOENT;
2461 			goto out;
2462 		}
2463 
2464 		l = path->nodes[0];
2465 		slot = path->slots[0];
2466 
2467 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2468 		len = btrfs_inode_ref_name_len(l, iref);
2469 		ptr -= len + 1;
2470 		total_len += len + 1;
2471 		if (ptr < name) {
2472 			ret = -ENAMETOOLONG;
2473 			goto out;
2474 		}
2475 
2476 		*(ptr + len) = '/';
2477 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2478 
2479 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2480 			break;
2481 
2482 		btrfs_release_path(path);
2483 		key.objectid = key.offset;
2484 		key.offset = (u64)-1;
2485 		dirid = key.objectid;
2486 	}
2487 	memmove(name, ptr, total_len);
2488 	name[total_len] = '\0';
2489 	ret = 0;
2490 out:
2491 	btrfs_put_root(root);
2492 	btrfs_free_path(path);
2493 	return ret;
2494 }
2495 
2496 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2497 				struct inode *inode,
2498 				struct btrfs_ioctl_ino_lookup_user_args *args)
2499 {
2500 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2501 	struct super_block *sb = inode->i_sb;
2502 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2503 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2504 	u64 dirid = args->dirid;
2505 	unsigned long item_off;
2506 	unsigned long item_len;
2507 	struct btrfs_inode_ref *iref;
2508 	struct btrfs_root_ref *rref;
2509 	struct btrfs_root *root = NULL;
2510 	struct btrfs_path *path;
2511 	struct btrfs_key key, key2;
2512 	struct extent_buffer *leaf;
2513 	struct inode *temp_inode;
2514 	char *ptr;
2515 	int slot;
2516 	int len;
2517 	int total_len = 0;
2518 	int ret;
2519 
2520 	path = btrfs_alloc_path();
2521 	if (!path)
2522 		return -ENOMEM;
2523 
2524 	/*
2525 	 * If the bottom subvolume does not exist directly under upper_limit,
2526 	 * construct the path in from the bottom up.
2527 	 */
2528 	if (dirid != upper_limit.objectid) {
2529 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2530 
2531 		root = btrfs_get_fs_root(fs_info, treeid, true);
2532 		if (IS_ERR(root)) {
2533 			ret = PTR_ERR(root);
2534 			goto out;
2535 		}
2536 
2537 		key.objectid = dirid;
2538 		key.type = BTRFS_INODE_REF_KEY;
2539 		key.offset = (u64)-1;
2540 		while (1) {
2541 			ret = btrfs_search_backwards(root, &key, path);
2542 			if (ret < 0)
2543 				goto out_put;
2544 			else if (ret > 0) {
2545 				ret = -ENOENT;
2546 				goto out_put;
2547 			}
2548 
2549 			leaf = path->nodes[0];
2550 			slot = path->slots[0];
2551 
2552 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2553 			len = btrfs_inode_ref_name_len(leaf, iref);
2554 			ptr -= len + 1;
2555 			total_len += len + 1;
2556 			if (ptr < args->path) {
2557 				ret = -ENAMETOOLONG;
2558 				goto out_put;
2559 			}
2560 
2561 			*(ptr + len) = '/';
2562 			read_extent_buffer(leaf, ptr,
2563 					(unsigned long)(iref + 1), len);
2564 
2565 			/* Check the read+exec permission of this directory */
2566 			ret = btrfs_previous_item(root, path, dirid,
2567 						  BTRFS_INODE_ITEM_KEY);
2568 			if (ret < 0) {
2569 				goto out_put;
2570 			} else if (ret > 0) {
2571 				ret = -ENOENT;
2572 				goto out_put;
2573 			}
2574 
2575 			leaf = path->nodes[0];
2576 			slot = path->slots[0];
2577 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2578 			if (key2.objectid != dirid) {
2579 				ret = -ENOENT;
2580 				goto out_put;
2581 			}
2582 
2583 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2584 			if (IS_ERR(temp_inode)) {
2585 				ret = PTR_ERR(temp_inode);
2586 				goto out_put;
2587 			}
2588 			ret = inode_permission(mnt_userns, temp_inode,
2589 					       MAY_READ | MAY_EXEC);
2590 			iput(temp_inode);
2591 			if (ret) {
2592 				ret = -EACCES;
2593 				goto out_put;
2594 			}
2595 
2596 			if (key.offset == upper_limit.objectid)
2597 				break;
2598 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2599 				ret = -EACCES;
2600 				goto out_put;
2601 			}
2602 
2603 			btrfs_release_path(path);
2604 			key.objectid = key.offset;
2605 			key.offset = (u64)-1;
2606 			dirid = key.objectid;
2607 		}
2608 
2609 		memmove(args->path, ptr, total_len);
2610 		args->path[total_len] = '\0';
2611 		btrfs_put_root(root);
2612 		root = NULL;
2613 		btrfs_release_path(path);
2614 	}
2615 
2616 	/* Get the bottom subvolume's name from ROOT_REF */
2617 	key.objectid = treeid;
2618 	key.type = BTRFS_ROOT_REF_KEY;
2619 	key.offset = args->treeid;
2620 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2621 	if (ret < 0) {
2622 		goto out;
2623 	} else if (ret > 0) {
2624 		ret = -ENOENT;
2625 		goto out;
2626 	}
2627 
2628 	leaf = path->nodes[0];
2629 	slot = path->slots[0];
2630 	btrfs_item_key_to_cpu(leaf, &key, slot);
2631 
2632 	item_off = btrfs_item_ptr_offset(leaf, slot);
2633 	item_len = btrfs_item_size(leaf, slot);
2634 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2635 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2636 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2637 		ret = -EINVAL;
2638 		goto out;
2639 	}
2640 
2641 	/* Copy subvolume's name */
2642 	item_off += sizeof(struct btrfs_root_ref);
2643 	item_len -= sizeof(struct btrfs_root_ref);
2644 	read_extent_buffer(leaf, args->name, item_off, item_len);
2645 	args->name[item_len] = 0;
2646 
2647 out_put:
2648 	btrfs_put_root(root);
2649 out:
2650 	btrfs_free_path(path);
2651 	return ret;
2652 }
2653 
2654 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2655 					   void __user *argp)
2656 {
2657 	struct btrfs_ioctl_ino_lookup_args *args;
2658 	struct inode *inode;
2659 	int ret = 0;
2660 
2661 	args = memdup_user(argp, sizeof(*args));
2662 	if (IS_ERR(args))
2663 		return PTR_ERR(args);
2664 
2665 	inode = file_inode(file);
2666 
2667 	/*
2668 	 * Unprivileged query to obtain the containing subvolume root id. The
2669 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2670 	 */
2671 	if (args->treeid == 0)
2672 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2673 
2674 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2675 		args->name[0] = 0;
2676 		goto out;
2677 	}
2678 
2679 	if (!capable(CAP_SYS_ADMIN)) {
2680 		ret = -EPERM;
2681 		goto out;
2682 	}
2683 
2684 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2685 					args->treeid, args->objectid,
2686 					args->name);
2687 
2688 out:
2689 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2690 		ret = -EFAULT;
2691 
2692 	kfree(args);
2693 	return ret;
2694 }
2695 
2696 /*
2697  * Version of ino_lookup ioctl (unprivileged)
2698  *
2699  * The main differences from ino_lookup ioctl are:
2700  *
2701  *   1. Read + Exec permission will be checked using inode_permission() during
2702  *      path construction. -EACCES will be returned in case of failure.
2703  *   2. Path construction will be stopped at the inode number which corresponds
2704  *      to the fd with which this ioctl is called. If constructed path does not
2705  *      exist under fd's inode, -EACCES will be returned.
2706  *   3. The name of bottom subvolume is also searched and filled.
2707  */
2708 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2709 {
2710 	struct btrfs_ioctl_ino_lookup_user_args *args;
2711 	struct inode *inode;
2712 	int ret;
2713 
2714 	args = memdup_user(argp, sizeof(*args));
2715 	if (IS_ERR(args))
2716 		return PTR_ERR(args);
2717 
2718 	inode = file_inode(file);
2719 
2720 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2721 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2722 		/*
2723 		 * The subvolume does not exist under fd with which this is
2724 		 * called
2725 		 */
2726 		kfree(args);
2727 		return -EACCES;
2728 	}
2729 
2730 	ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2731 
2732 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2733 		ret = -EFAULT;
2734 
2735 	kfree(args);
2736 	return ret;
2737 }
2738 
2739 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2740 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2741 {
2742 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2743 	struct btrfs_fs_info *fs_info;
2744 	struct btrfs_root *root;
2745 	struct btrfs_path *path;
2746 	struct btrfs_key key;
2747 	struct btrfs_root_item *root_item;
2748 	struct btrfs_root_ref *rref;
2749 	struct extent_buffer *leaf;
2750 	unsigned long item_off;
2751 	unsigned long item_len;
2752 	struct inode *inode;
2753 	int slot;
2754 	int ret = 0;
2755 
2756 	path = btrfs_alloc_path();
2757 	if (!path)
2758 		return -ENOMEM;
2759 
2760 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2761 	if (!subvol_info) {
2762 		btrfs_free_path(path);
2763 		return -ENOMEM;
2764 	}
2765 
2766 	inode = file_inode(file);
2767 	fs_info = BTRFS_I(inode)->root->fs_info;
2768 
2769 	/* Get root_item of inode's subvolume */
2770 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2771 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2772 	if (IS_ERR(root)) {
2773 		ret = PTR_ERR(root);
2774 		goto out_free;
2775 	}
2776 	root_item = &root->root_item;
2777 
2778 	subvol_info->treeid = key.objectid;
2779 
2780 	subvol_info->generation = btrfs_root_generation(root_item);
2781 	subvol_info->flags = btrfs_root_flags(root_item);
2782 
2783 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2784 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2785 						    BTRFS_UUID_SIZE);
2786 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2787 						    BTRFS_UUID_SIZE);
2788 
2789 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2790 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2791 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2792 
2793 	subvol_info->otransid = btrfs_root_otransid(root_item);
2794 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2795 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2796 
2797 	subvol_info->stransid = btrfs_root_stransid(root_item);
2798 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2799 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2800 
2801 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2802 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2803 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2804 
2805 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2806 		/* Search root tree for ROOT_BACKREF of this subvolume */
2807 		key.type = BTRFS_ROOT_BACKREF_KEY;
2808 		key.offset = 0;
2809 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2810 		if (ret < 0) {
2811 			goto out;
2812 		} else if (path->slots[0] >=
2813 			   btrfs_header_nritems(path->nodes[0])) {
2814 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2815 			if (ret < 0) {
2816 				goto out;
2817 			} else if (ret > 0) {
2818 				ret = -EUCLEAN;
2819 				goto out;
2820 			}
2821 		}
2822 
2823 		leaf = path->nodes[0];
2824 		slot = path->slots[0];
2825 		btrfs_item_key_to_cpu(leaf, &key, slot);
2826 		if (key.objectid == subvol_info->treeid &&
2827 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2828 			subvol_info->parent_id = key.offset;
2829 
2830 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2831 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2832 
2833 			item_off = btrfs_item_ptr_offset(leaf, slot)
2834 					+ sizeof(struct btrfs_root_ref);
2835 			item_len = btrfs_item_size(leaf, slot)
2836 					- sizeof(struct btrfs_root_ref);
2837 			read_extent_buffer(leaf, subvol_info->name,
2838 					   item_off, item_len);
2839 		} else {
2840 			ret = -ENOENT;
2841 			goto out;
2842 		}
2843 	}
2844 
2845 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2846 		ret = -EFAULT;
2847 
2848 out:
2849 	btrfs_put_root(root);
2850 out_free:
2851 	btrfs_free_path(path);
2852 	kfree(subvol_info);
2853 	return ret;
2854 }
2855 
2856 /*
2857  * Return ROOT_REF information of the subvolume containing this inode
2858  * except the subvolume name.
2859  */
2860 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2861 {
2862 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2863 	struct btrfs_root_ref *rref;
2864 	struct btrfs_root *root;
2865 	struct btrfs_path *path;
2866 	struct btrfs_key key;
2867 	struct extent_buffer *leaf;
2868 	struct inode *inode;
2869 	u64 objectid;
2870 	int slot;
2871 	int ret;
2872 	u8 found;
2873 
2874 	path = btrfs_alloc_path();
2875 	if (!path)
2876 		return -ENOMEM;
2877 
2878 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2879 	if (IS_ERR(rootrefs)) {
2880 		btrfs_free_path(path);
2881 		return PTR_ERR(rootrefs);
2882 	}
2883 
2884 	inode = file_inode(file);
2885 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2886 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2887 
2888 	key.objectid = objectid;
2889 	key.type = BTRFS_ROOT_REF_KEY;
2890 	key.offset = rootrefs->min_treeid;
2891 	found = 0;
2892 
2893 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2894 	if (ret < 0) {
2895 		goto out;
2896 	} else if (path->slots[0] >=
2897 		   btrfs_header_nritems(path->nodes[0])) {
2898 		ret = btrfs_next_leaf(root, path);
2899 		if (ret < 0) {
2900 			goto out;
2901 		} else if (ret > 0) {
2902 			ret = -EUCLEAN;
2903 			goto out;
2904 		}
2905 	}
2906 	while (1) {
2907 		leaf = path->nodes[0];
2908 		slot = path->slots[0];
2909 
2910 		btrfs_item_key_to_cpu(leaf, &key, slot);
2911 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2912 			ret = 0;
2913 			goto out;
2914 		}
2915 
2916 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2917 			ret = -EOVERFLOW;
2918 			goto out;
2919 		}
2920 
2921 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2922 		rootrefs->rootref[found].treeid = key.offset;
2923 		rootrefs->rootref[found].dirid =
2924 				  btrfs_root_ref_dirid(leaf, rref);
2925 		found++;
2926 
2927 		ret = btrfs_next_item(root, path);
2928 		if (ret < 0) {
2929 			goto out;
2930 		} else if (ret > 0) {
2931 			ret = -EUCLEAN;
2932 			goto out;
2933 		}
2934 	}
2935 
2936 out:
2937 	if (!ret || ret == -EOVERFLOW) {
2938 		rootrefs->num_items = found;
2939 		/* update min_treeid for next search */
2940 		if (found)
2941 			rootrefs->min_treeid =
2942 				rootrefs->rootref[found - 1].treeid + 1;
2943 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2944 			ret = -EFAULT;
2945 	}
2946 
2947 	kfree(rootrefs);
2948 	btrfs_free_path(path);
2949 
2950 	return ret;
2951 }
2952 
2953 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2954 					     void __user *arg,
2955 					     bool destroy_v2)
2956 {
2957 	struct dentry *parent = file->f_path.dentry;
2958 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2959 	struct dentry *dentry;
2960 	struct inode *dir = d_inode(parent);
2961 	struct inode *inode;
2962 	struct btrfs_root *root = BTRFS_I(dir)->root;
2963 	struct btrfs_root *dest = NULL;
2964 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2965 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2966 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2967 	char *subvol_name, *subvol_name_ptr = NULL;
2968 	int subvol_namelen;
2969 	int err = 0;
2970 	bool destroy_parent = false;
2971 
2972 	if (destroy_v2) {
2973 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2974 		if (IS_ERR(vol_args2))
2975 			return PTR_ERR(vol_args2);
2976 
2977 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2978 			err = -EOPNOTSUPP;
2979 			goto out;
2980 		}
2981 
2982 		/*
2983 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2984 		 * name, same as v1 currently does.
2985 		 */
2986 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2987 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2988 			subvol_name = vol_args2->name;
2989 
2990 			err = mnt_want_write_file(file);
2991 			if (err)
2992 				goto out;
2993 		} else {
2994 			struct inode *old_dir;
2995 
2996 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2997 				err = -EINVAL;
2998 				goto out;
2999 			}
3000 
3001 			err = mnt_want_write_file(file);
3002 			if (err)
3003 				goto out;
3004 
3005 			dentry = btrfs_get_dentry(fs_info->sb,
3006 					BTRFS_FIRST_FREE_OBJECTID,
3007 					vol_args2->subvolid, 0, 0);
3008 			if (IS_ERR(dentry)) {
3009 				err = PTR_ERR(dentry);
3010 				goto out_drop_write;
3011 			}
3012 
3013 			/*
3014 			 * Change the default parent since the subvolume being
3015 			 * deleted can be outside of the current mount point.
3016 			 */
3017 			parent = btrfs_get_parent(dentry);
3018 
3019 			/*
3020 			 * At this point dentry->d_name can point to '/' if the
3021 			 * subvolume we want to destroy is outsite of the
3022 			 * current mount point, so we need to release the
3023 			 * current dentry and execute the lookup to return a new
3024 			 * one with ->d_name pointing to the
3025 			 * <mount point>/subvol_name.
3026 			 */
3027 			dput(dentry);
3028 			if (IS_ERR(parent)) {
3029 				err = PTR_ERR(parent);
3030 				goto out_drop_write;
3031 			}
3032 			old_dir = dir;
3033 			dir = d_inode(parent);
3034 
3035 			/*
3036 			 * If v2 was used with SPEC_BY_ID, a new parent was
3037 			 * allocated since the subvolume can be outside of the
3038 			 * current mount point. Later on we need to release this
3039 			 * new parent dentry.
3040 			 */
3041 			destroy_parent = true;
3042 
3043 			/*
3044 			 * On idmapped mounts, deletion via subvolid is
3045 			 * restricted to subvolumes that are immediate
3046 			 * ancestors of the inode referenced by the file
3047 			 * descriptor in the ioctl. Otherwise the idmapping
3048 			 * could potentially be abused to delete subvolumes
3049 			 * anywhere in the filesystem the user wouldn't be able
3050 			 * to delete without an idmapped mount.
3051 			 */
3052 			if (old_dir != dir && mnt_userns != &init_user_ns) {
3053 				err = -EOPNOTSUPP;
3054 				goto free_parent;
3055 			}
3056 
3057 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3058 						fs_info, vol_args2->subvolid);
3059 			if (IS_ERR(subvol_name_ptr)) {
3060 				err = PTR_ERR(subvol_name_ptr);
3061 				goto free_parent;
3062 			}
3063 			/* subvol_name_ptr is already nul terminated */
3064 			subvol_name = (char *)kbasename(subvol_name_ptr);
3065 		}
3066 	} else {
3067 		vol_args = memdup_user(arg, sizeof(*vol_args));
3068 		if (IS_ERR(vol_args))
3069 			return PTR_ERR(vol_args);
3070 
3071 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3072 		subvol_name = vol_args->name;
3073 
3074 		err = mnt_want_write_file(file);
3075 		if (err)
3076 			goto out;
3077 	}
3078 
3079 	subvol_namelen = strlen(subvol_name);
3080 
3081 	if (strchr(subvol_name, '/') ||
3082 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3083 		err = -EINVAL;
3084 		goto free_subvol_name;
3085 	}
3086 
3087 	if (!S_ISDIR(dir->i_mode)) {
3088 		err = -ENOTDIR;
3089 		goto free_subvol_name;
3090 	}
3091 
3092 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3093 	if (err == -EINTR)
3094 		goto free_subvol_name;
3095 	dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3096 	if (IS_ERR(dentry)) {
3097 		err = PTR_ERR(dentry);
3098 		goto out_unlock_dir;
3099 	}
3100 
3101 	if (d_really_is_negative(dentry)) {
3102 		err = -ENOENT;
3103 		goto out_dput;
3104 	}
3105 
3106 	inode = d_inode(dentry);
3107 	dest = BTRFS_I(inode)->root;
3108 	if (!capable(CAP_SYS_ADMIN)) {
3109 		/*
3110 		 * Regular user.  Only allow this with a special mount
3111 		 * option, when the user has write+exec access to the
3112 		 * subvol root, and when rmdir(2) would have been
3113 		 * allowed.
3114 		 *
3115 		 * Note that this is _not_ check that the subvol is
3116 		 * empty or doesn't contain data that we wouldn't
3117 		 * otherwise be able to delete.
3118 		 *
3119 		 * Users who want to delete empty subvols should try
3120 		 * rmdir(2).
3121 		 */
3122 		err = -EPERM;
3123 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3124 			goto out_dput;
3125 
3126 		/*
3127 		 * Do not allow deletion if the parent dir is the same
3128 		 * as the dir to be deleted.  That means the ioctl
3129 		 * must be called on the dentry referencing the root
3130 		 * of the subvol, not a random directory contained
3131 		 * within it.
3132 		 */
3133 		err = -EINVAL;
3134 		if (root == dest)
3135 			goto out_dput;
3136 
3137 		err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3138 		if (err)
3139 			goto out_dput;
3140 	}
3141 
3142 	/* check if subvolume may be deleted by a user */
3143 	err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3144 	if (err)
3145 		goto out_dput;
3146 
3147 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3148 		err = -EINVAL;
3149 		goto out_dput;
3150 	}
3151 
3152 	btrfs_inode_lock(inode, 0);
3153 	err = btrfs_delete_subvolume(dir, dentry);
3154 	btrfs_inode_unlock(inode, 0);
3155 	if (!err)
3156 		d_delete_notify(dir, dentry);
3157 
3158 out_dput:
3159 	dput(dentry);
3160 out_unlock_dir:
3161 	btrfs_inode_unlock(dir, 0);
3162 free_subvol_name:
3163 	kfree(subvol_name_ptr);
3164 free_parent:
3165 	if (destroy_parent)
3166 		dput(parent);
3167 out_drop_write:
3168 	mnt_drop_write_file(file);
3169 out:
3170 	kfree(vol_args2);
3171 	kfree(vol_args);
3172 	return err;
3173 }
3174 
3175 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3176 {
3177 	struct inode *inode = file_inode(file);
3178 	struct btrfs_root *root = BTRFS_I(inode)->root;
3179 	struct btrfs_ioctl_defrag_range_args range = {0};
3180 	int ret;
3181 
3182 	ret = mnt_want_write_file(file);
3183 	if (ret)
3184 		return ret;
3185 
3186 	if (btrfs_root_readonly(root)) {
3187 		ret = -EROFS;
3188 		goto out;
3189 	}
3190 
3191 	switch (inode->i_mode & S_IFMT) {
3192 	case S_IFDIR:
3193 		if (!capable(CAP_SYS_ADMIN)) {
3194 			ret = -EPERM;
3195 			goto out;
3196 		}
3197 		ret = btrfs_defrag_root(root);
3198 		break;
3199 	case S_IFREG:
3200 		/*
3201 		 * Note that this does not check the file descriptor for write
3202 		 * access. This prevents defragmenting executables that are
3203 		 * running and allows defrag on files open in read-only mode.
3204 		 */
3205 		if (!capable(CAP_SYS_ADMIN) &&
3206 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3207 			ret = -EPERM;
3208 			goto out;
3209 		}
3210 
3211 		if (argp) {
3212 			if (copy_from_user(&range, argp, sizeof(range))) {
3213 				ret = -EFAULT;
3214 				goto out;
3215 			}
3216 			/* compression requires us to start the IO */
3217 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3218 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3219 				range.extent_thresh = (u32)-1;
3220 			}
3221 		} else {
3222 			/* the rest are all set to zero by kzalloc */
3223 			range.len = (u64)-1;
3224 		}
3225 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3226 					&range, BTRFS_OLDEST_GENERATION, 0);
3227 		if (ret > 0)
3228 			ret = 0;
3229 		break;
3230 	default:
3231 		ret = -EINVAL;
3232 	}
3233 out:
3234 	mnt_drop_write_file(file);
3235 	return ret;
3236 }
3237 
3238 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3239 {
3240 	struct btrfs_ioctl_vol_args *vol_args;
3241 	bool restore_op = false;
3242 	int ret;
3243 
3244 	if (!capable(CAP_SYS_ADMIN))
3245 		return -EPERM;
3246 
3247 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3248 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3249 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3250 
3251 		/*
3252 		 * We can do the device add because we have a paused balanced,
3253 		 * change the exclusive op type and remember we should bring
3254 		 * back the paused balance
3255 		 */
3256 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3257 		btrfs_exclop_start_unlock(fs_info);
3258 		restore_op = true;
3259 	}
3260 
3261 	vol_args = memdup_user(arg, sizeof(*vol_args));
3262 	if (IS_ERR(vol_args)) {
3263 		ret = PTR_ERR(vol_args);
3264 		goto out;
3265 	}
3266 
3267 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3268 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3269 
3270 	if (!ret)
3271 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3272 
3273 	kfree(vol_args);
3274 out:
3275 	if (restore_op)
3276 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3277 	else
3278 		btrfs_exclop_finish(fs_info);
3279 	return ret;
3280 }
3281 
3282 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3283 {
3284 	BTRFS_DEV_LOOKUP_ARGS(args);
3285 	struct inode *inode = file_inode(file);
3286 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3287 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3288 	struct block_device *bdev = NULL;
3289 	fmode_t mode;
3290 	int ret;
3291 	bool cancel = false;
3292 
3293 	if (!capable(CAP_SYS_ADMIN))
3294 		return -EPERM;
3295 
3296 	vol_args = memdup_user(arg, sizeof(*vol_args));
3297 	if (IS_ERR(vol_args))
3298 		return PTR_ERR(vol_args);
3299 
3300 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3301 		ret = -EOPNOTSUPP;
3302 		goto out;
3303 	}
3304 
3305 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3306 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3307 		args.devid = vol_args->devid;
3308 	} else if (!strcmp("cancel", vol_args->name)) {
3309 		cancel = true;
3310 	} else {
3311 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3312 		if (ret)
3313 			goto out;
3314 	}
3315 
3316 	ret = mnt_want_write_file(file);
3317 	if (ret)
3318 		goto out;
3319 
3320 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3321 					   cancel);
3322 	if (ret)
3323 		goto err_drop;
3324 
3325 	/* Exclusive operation is now claimed */
3326 	ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3327 
3328 	btrfs_exclop_finish(fs_info);
3329 
3330 	if (!ret) {
3331 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3332 			btrfs_info(fs_info, "device deleted: id %llu",
3333 					vol_args->devid);
3334 		else
3335 			btrfs_info(fs_info, "device deleted: %s",
3336 					vol_args->name);
3337 	}
3338 err_drop:
3339 	mnt_drop_write_file(file);
3340 	if (bdev)
3341 		blkdev_put(bdev, mode);
3342 out:
3343 	btrfs_put_dev_args_from_path(&args);
3344 	kfree(vol_args);
3345 	return ret;
3346 }
3347 
3348 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3349 {
3350 	BTRFS_DEV_LOOKUP_ARGS(args);
3351 	struct inode *inode = file_inode(file);
3352 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3353 	struct btrfs_ioctl_vol_args *vol_args;
3354 	struct block_device *bdev = NULL;
3355 	fmode_t mode;
3356 	int ret;
3357 	bool cancel;
3358 
3359 	if (!capable(CAP_SYS_ADMIN))
3360 		return -EPERM;
3361 
3362 	vol_args = memdup_user(arg, sizeof(*vol_args));
3363 	if (IS_ERR(vol_args))
3364 		return PTR_ERR(vol_args);
3365 
3366 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3367 	if (!strcmp("cancel", vol_args->name)) {
3368 		cancel = true;
3369 	} else {
3370 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3371 		if (ret)
3372 			goto out;
3373 	}
3374 
3375 	ret = mnt_want_write_file(file);
3376 	if (ret)
3377 		goto out;
3378 
3379 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3380 					   cancel);
3381 	if (ret == 0) {
3382 		ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3383 		if (!ret)
3384 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3385 		btrfs_exclop_finish(fs_info);
3386 	}
3387 
3388 	mnt_drop_write_file(file);
3389 	if (bdev)
3390 		blkdev_put(bdev, mode);
3391 out:
3392 	btrfs_put_dev_args_from_path(&args);
3393 	kfree(vol_args);
3394 	return ret;
3395 }
3396 
3397 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3398 				void __user *arg)
3399 {
3400 	struct btrfs_ioctl_fs_info_args *fi_args;
3401 	struct btrfs_device *device;
3402 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3403 	u64 flags_in;
3404 	int ret = 0;
3405 
3406 	fi_args = memdup_user(arg, sizeof(*fi_args));
3407 	if (IS_ERR(fi_args))
3408 		return PTR_ERR(fi_args);
3409 
3410 	flags_in = fi_args->flags;
3411 	memset(fi_args, 0, sizeof(*fi_args));
3412 
3413 	rcu_read_lock();
3414 	fi_args->num_devices = fs_devices->num_devices;
3415 
3416 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3417 		if (device->devid > fi_args->max_id)
3418 			fi_args->max_id = device->devid;
3419 	}
3420 	rcu_read_unlock();
3421 
3422 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3423 	fi_args->nodesize = fs_info->nodesize;
3424 	fi_args->sectorsize = fs_info->sectorsize;
3425 	fi_args->clone_alignment = fs_info->sectorsize;
3426 
3427 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3428 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3429 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3430 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3431 	}
3432 
3433 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3434 		fi_args->generation = fs_info->generation;
3435 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3436 	}
3437 
3438 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3439 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3440 		       sizeof(fi_args->metadata_uuid));
3441 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3442 	}
3443 
3444 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3445 		ret = -EFAULT;
3446 
3447 	kfree(fi_args);
3448 	return ret;
3449 }
3450 
3451 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3452 				 void __user *arg)
3453 {
3454 	BTRFS_DEV_LOOKUP_ARGS(args);
3455 	struct btrfs_ioctl_dev_info_args *di_args;
3456 	struct btrfs_device *dev;
3457 	int ret = 0;
3458 
3459 	di_args = memdup_user(arg, sizeof(*di_args));
3460 	if (IS_ERR(di_args))
3461 		return PTR_ERR(di_args);
3462 
3463 	args.devid = di_args->devid;
3464 	if (!btrfs_is_empty_uuid(di_args->uuid))
3465 		args.uuid = di_args->uuid;
3466 
3467 	rcu_read_lock();
3468 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3469 	if (!dev) {
3470 		ret = -ENODEV;
3471 		goto out;
3472 	}
3473 
3474 	di_args->devid = dev->devid;
3475 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3476 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3477 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3478 	if (dev->name) {
3479 		strncpy(di_args->path, rcu_str_deref(dev->name),
3480 				sizeof(di_args->path) - 1);
3481 		di_args->path[sizeof(di_args->path) - 1] = 0;
3482 	} else {
3483 		di_args->path[0] = '\0';
3484 	}
3485 
3486 out:
3487 	rcu_read_unlock();
3488 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3489 		ret = -EFAULT;
3490 
3491 	kfree(di_args);
3492 	return ret;
3493 }
3494 
3495 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3496 {
3497 	struct inode *inode = file_inode(file);
3498 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3499 	struct btrfs_root *root = BTRFS_I(inode)->root;
3500 	struct btrfs_root *new_root;
3501 	struct btrfs_dir_item *di;
3502 	struct btrfs_trans_handle *trans;
3503 	struct btrfs_path *path = NULL;
3504 	struct btrfs_disk_key disk_key;
3505 	u64 objectid = 0;
3506 	u64 dir_id;
3507 	int ret;
3508 
3509 	if (!capable(CAP_SYS_ADMIN))
3510 		return -EPERM;
3511 
3512 	ret = mnt_want_write_file(file);
3513 	if (ret)
3514 		return ret;
3515 
3516 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3517 		ret = -EFAULT;
3518 		goto out;
3519 	}
3520 
3521 	if (!objectid)
3522 		objectid = BTRFS_FS_TREE_OBJECTID;
3523 
3524 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3525 	if (IS_ERR(new_root)) {
3526 		ret = PTR_ERR(new_root);
3527 		goto out;
3528 	}
3529 	if (!is_fstree(new_root->root_key.objectid)) {
3530 		ret = -ENOENT;
3531 		goto out_free;
3532 	}
3533 
3534 	path = btrfs_alloc_path();
3535 	if (!path) {
3536 		ret = -ENOMEM;
3537 		goto out_free;
3538 	}
3539 
3540 	trans = btrfs_start_transaction(root, 1);
3541 	if (IS_ERR(trans)) {
3542 		ret = PTR_ERR(trans);
3543 		goto out_free;
3544 	}
3545 
3546 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3547 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3548 				   dir_id, "default", 7, 1);
3549 	if (IS_ERR_OR_NULL(di)) {
3550 		btrfs_release_path(path);
3551 		btrfs_end_transaction(trans);
3552 		btrfs_err(fs_info,
3553 			  "Umm, you don't have the default diritem, this isn't going to work");
3554 		ret = -ENOENT;
3555 		goto out_free;
3556 	}
3557 
3558 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3559 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3560 	btrfs_mark_buffer_dirty(path->nodes[0]);
3561 	btrfs_release_path(path);
3562 
3563 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3564 	btrfs_end_transaction(trans);
3565 out_free:
3566 	btrfs_put_root(new_root);
3567 	btrfs_free_path(path);
3568 out:
3569 	mnt_drop_write_file(file);
3570 	return ret;
3571 }
3572 
3573 static void get_block_group_info(struct list_head *groups_list,
3574 				 struct btrfs_ioctl_space_info *space)
3575 {
3576 	struct btrfs_block_group *block_group;
3577 
3578 	space->total_bytes = 0;
3579 	space->used_bytes = 0;
3580 	space->flags = 0;
3581 	list_for_each_entry(block_group, groups_list, list) {
3582 		space->flags = block_group->flags;
3583 		space->total_bytes += block_group->length;
3584 		space->used_bytes += block_group->used;
3585 	}
3586 }
3587 
3588 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3589 				   void __user *arg)
3590 {
3591 	struct btrfs_ioctl_space_args space_args;
3592 	struct btrfs_ioctl_space_info space;
3593 	struct btrfs_ioctl_space_info *dest;
3594 	struct btrfs_ioctl_space_info *dest_orig;
3595 	struct btrfs_ioctl_space_info __user *user_dest;
3596 	struct btrfs_space_info *info;
3597 	static const u64 types[] = {
3598 		BTRFS_BLOCK_GROUP_DATA,
3599 		BTRFS_BLOCK_GROUP_SYSTEM,
3600 		BTRFS_BLOCK_GROUP_METADATA,
3601 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3602 	};
3603 	int num_types = 4;
3604 	int alloc_size;
3605 	int ret = 0;
3606 	u64 slot_count = 0;
3607 	int i, c;
3608 
3609 	if (copy_from_user(&space_args,
3610 			   (struct btrfs_ioctl_space_args __user *)arg,
3611 			   sizeof(space_args)))
3612 		return -EFAULT;
3613 
3614 	for (i = 0; i < num_types; i++) {
3615 		struct btrfs_space_info *tmp;
3616 
3617 		info = NULL;
3618 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3619 			if (tmp->flags == types[i]) {
3620 				info = tmp;
3621 				break;
3622 			}
3623 		}
3624 
3625 		if (!info)
3626 			continue;
3627 
3628 		down_read(&info->groups_sem);
3629 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3630 			if (!list_empty(&info->block_groups[c]))
3631 				slot_count++;
3632 		}
3633 		up_read(&info->groups_sem);
3634 	}
3635 
3636 	/*
3637 	 * Global block reserve, exported as a space_info
3638 	 */
3639 	slot_count++;
3640 
3641 	/* space_slots == 0 means they are asking for a count */
3642 	if (space_args.space_slots == 0) {
3643 		space_args.total_spaces = slot_count;
3644 		goto out;
3645 	}
3646 
3647 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3648 
3649 	alloc_size = sizeof(*dest) * slot_count;
3650 
3651 	/* we generally have at most 6 or so space infos, one for each raid
3652 	 * level.  So, a whole page should be more than enough for everyone
3653 	 */
3654 	if (alloc_size > PAGE_SIZE)
3655 		return -ENOMEM;
3656 
3657 	space_args.total_spaces = 0;
3658 	dest = kmalloc(alloc_size, GFP_KERNEL);
3659 	if (!dest)
3660 		return -ENOMEM;
3661 	dest_orig = dest;
3662 
3663 	/* now we have a buffer to copy into */
3664 	for (i = 0; i < num_types; i++) {
3665 		struct btrfs_space_info *tmp;
3666 
3667 		if (!slot_count)
3668 			break;
3669 
3670 		info = NULL;
3671 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3672 			if (tmp->flags == types[i]) {
3673 				info = tmp;
3674 				break;
3675 			}
3676 		}
3677 
3678 		if (!info)
3679 			continue;
3680 		down_read(&info->groups_sem);
3681 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3682 			if (!list_empty(&info->block_groups[c])) {
3683 				get_block_group_info(&info->block_groups[c],
3684 						     &space);
3685 				memcpy(dest, &space, sizeof(space));
3686 				dest++;
3687 				space_args.total_spaces++;
3688 				slot_count--;
3689 			}
3690 			if (!slot_count)
3691 				break;
3692 		}
3693 		up_read(&info->groups_sem);
3694 	}
3695 
3696 	/*
3697 	 * Add global block reserve
3698 	 */
3699 	if (slot_count) {
3700 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3701 
3702 		spin_lock(&block_rsv->lock);
3703 		space.total_bytes = block_rsv->size;
3704 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3705 		spin_unlock(&block_rsv->lock);
3706 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3707 		memcpy(dest, &space, sizeof(space));
3708 		space_args.total_spaces++;
3709 	}
3710 
3711 	user_dest = (struct btrfs_ioctl_space_info __user *)
3712 		(arg + sizeof(struct btrfs_ioctl_space_args));
3713 
3714 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3715 		ret = -EFAULT;
3716 
3717 	kfree(dest_orig);
3718 out:
3719 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3720 		ret = -EFAULT;
3721 
3722 	return ret;
3723 }
3724 
3725 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3726 					    void __user *argp)
3727 {
3728 	struct btrfs_trans_handle *trans;
3729 	u64 transid;
3730 
3731 	trans = btrfs_attach_transaction_barrier(root);
3732 	if (IS_ERR(trans)) {
3733 		if (PTR_ERR(trans) != -ENOENT)
3734 			return PTR_ERR(trans);
3735 
3736 		/* No running transaction, don't bother */
3737 		transid = root->fs_info->last_trans_committed;
3738 		goto out;
3739 	}
3740 	transid = trans->transid;
3741 	btrfs_commit_transaction_async(trans);
3742 out:
3743 	if (argp)
3744 		if (copy_to_user(argp, &transid, sizeof(transid)))
3745 			return -EFAULT;
3746 	return 0;
3747 }
3748 
3749 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3750 					   void __user *argp)
3751 {
3752 	u64 transid;
3753 
3754 	if (argp) {
3755 		if (copy_from_user(&transid, argp, sizeof(transid)))
3756 			return -EFAULT;
3757 	} else {
3758 		transid = 0;  /* current trans */
3759 	}
3760 	return btrfs_wait_for_commit(fs_info, transid);
3761 }
3762 
3763 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3764 {
3765 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3766 	struct btrfs_ioctl_scrub_args *sa;
3767 	int ret;
3768 
3769 	if (!capable(CAP_SYS_ADMIN))
3770 		return -EPERM;
3771 
3772 	sa = memdup_user(arg, sizeof(*sa));
3773 	if (IS_ERR(sa))
3774 		return PTR_ERR(sa);
3775 
3776 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3777 		ret = mnt_want_write_file(file);
3778 		if (ret)
3779 			goto out;
3780 	}
3781 
3782 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3783 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3784 			      0);
3785 
3786 	/*
3787 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3788 	 * error. This is important as it allows user space to know how much
3789 	 * progress scrub has done. For example, if scrub is canceled we get
3790 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3791 	 * space. Later user space can inspect the progress from the structure
3792 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3793 	 * previously (btrfs-progs does this).
3794 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3795 	 * then return -EFAULT to signal the structure was not copied or it may
3796 	 * be corrupt and unreliable due to a partial copy.
3797 	 */
3798 	if (copy_to_user(arg, sa, sizeof(*sa)))
3799 		ret = -EFAULT;
3800 
3801 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3802 		mnt_drop_write_file(file);
3803 out:
3804 	kfree(sa);
3805 	return ret;
3806 }
3807 
3808 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3809 {
3810 	if (!capable(CAP_SYS_ADMIN))
3811 		return -EPERM;
3812 
3813 	return btrfs_scrub_cancel(fs_info);
3814 }
3815 
3816 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3817 				       void __user *arg)
3818 {
3819 	struct btrfs_ioctl_scrub_args *sa;
3820 	int ret;
3821 
3822 	if (!capable(CAP_SYS_ADMIN))
3823 		return -EPERM;
3824 
3825 	sa = memdup_user(arg, sizeof(*sa));
3826 	if (IS_ERR(sa))
3827 		return PTR_ERR(sa);
3828 
3829 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3830 
3831 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3832 		ret = -EFAULT;
3833 
3834 	kfree(sa);
3835 	return ret;
3836 }
3837 
3838 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3839 				      void __user *arg)
3840 {
3841 	struct btrfs_ioctl_get_dev_stats *sa;
3842 	int ret;
3843 
3844 	sa = memdup_user(arg, sizeof(*sa));
3845 	if (IS_ERR(sa))
3846 		return PTR_ERR(sa);
3847 
3848 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3849 		kfree(sa);
3850 		return -EPERM;
3851 	}
3852 
3853 	ret = btrfs_get_dev_stats(fs_info, sa);
3854 
3855 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3856 		ret = -EFAULT;
3857 
3858 	kfree(sa);
3859 	return ret;
3860 }
3861 
3862 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3863 				    void __user *arg)
3864 {
3865 	struct btrfs_ioctl_dev_replace_args *p;
3866 	int ret;
3867 
3868 	if (!capable(CAP_SYS_ADMIN))
3869 		return -EPERM;
3870 
3871 	p = memdup_user(arg, sizeof(*p));
3872 	if (IS_ERR(p))
3873 		return PTR_ERR(p);
3874 
3875 	switch (p->cmd) {
3876 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3877 		if (sb_rdonly(fs_info->sb)) {
3878 			ret = -EROFS;
3879 			goto out;
3880 		}
3881 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3882 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3883 		} else {
3884 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3885 			btrfs_exclop_finish(fs_info);
3886 		}
3887 		break;
3888 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3889 		btrfs_dev_replace_status(fs_info, p);
3890 		ret = 0;
3891 		break;
3892 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3893 		p->result = btrfs_dev_replace_cancel(fs_info);
3894 		ret = 0;
3895 		break;
3896 	default:
3897 		ret = -EINVAL;
3898 		break;
3899 	}
3900 
3901 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3902 		ret = -EFAULT;
3903 out:
3904 	kfree(p);
3905 	return ret;
3906 }
3907 
3908 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3909 {
3910 	int ret = 0;
3911 	int i;
3912 	u64 rel_ptr;
3913 	int size;
3914 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3915 	struct inode_fs_paths *ipath = NULL;
3916 	struct btrfs_path *path;
3917 
3918 	if (!capable(CAP_DAC_READ_SEARCH))
3919 		return -EPERM;
3920 
3921 	path = btrfs_alloc_path();
3922 	if (!path) {
3923 		ret = -ENOMEM;
3924 		goto out;
3925 	}
3926 
3927 	ipa = memdup_user(arg, sizeof(*ipa));
3928 	if (IS_ERR(ipa)) {
3929 		ret = PTR_ERR(ipa);
3930 		ipa = NULL;
3931 		goto out;
3932 	}
3933 
3934 	size = min_t(u32, ipa->size, 4096);
3935 	ipath = init_ipath(size, root, path);
3936 	if (IS_ERR(ipath)) {
3937 		ret = PTR_ERR(ipath);
3938 		ipath = NULL;
3939 		goto out;
3940 	}
3941 
3942 	ret = paths_from_inode(ipa->inum, ipath);
3943 	if (ret < 0)
3944 		goto out;
3945 
3946 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3947 		rel_ptr = ipath->fspath->val[i] -
3948 			  (u64)(unsigned long)ipath->fspath->val;
3949 		ipath->fspath->val[i] = rel_ptr;
3950 	}
3951 
3952 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3953 			   ipath->fspath, size);
3954 	if (ret) {
3955 		ret = -EFAULT;
3956 		goto out;
3957 	}
3958 
3959 out:
3960 	btrfs_free_path(path);
3961 	free_ipath(ipath);
3962 	kfree(ipa);
3963 
3964 	return ret;
3965 }
3966 
3967 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3968 {
3969 	struct btrfs_data_container *inodes = ctx;
3970 	const size_t c = 3 * sizeof(u64);
3971 
3972 	if (inodes->bytes_left >= c) {
3973 		inodes->bytes_left -= c;
3974 		inodes->val[inodes->elem_cnt] = inum;
3975 		inodes->val[inodes->elem_cnt + 1] = offset;
3976 		inodes->val[inodes->elem_cnt + 2] = root;
3977 		inodes->elem_cnt += 3;
3978 	} else {
3979 		inodes->bytes_missing += c - inodes->bytes_left;
3980 		inodes->bytes_left = 0;
3981 		inodes->elem_missed += 3;
3982 	}
3983 
3984 	return 0;
3985 }
3986 
3987 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3988 					void __user *arg, int version)
3989 {
3990 	int ret = 0;
3991 	int size;
3992 	struct btrfs_ioctl_logical_ino_args *loi;
3993 	struct btrfs_data_container *inodes = NULL;
3994 	struct btrfs_path *path = NULL;
3995 	bool ignore_offset;
3996 
3997 	if (!capable(CAP_SYS_ADMIN))
3998 		return -EPERM;
3999 
4000 	loi = memdup_user(arg, sizeof(*loi));
4001 	if (IS_ERR(loi))
4002 		return PTR_ERR(loi);
4003 
4004 	if (version == 1) {
4005 		ignore_offset = false;
4006 		size = min_t(u32, loi->size, SZ_64K);
4007 	} else {
4008 		/* All reserved bits must be 0 for now */
4009 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4010 			ret = -EINVAL;
4011 			goto out_loi;
4012 		}
4013 		/* Only accept flags we have defined so far */
4014 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4015 			ret = -EINVAL;
4016 			goto out_loi;
4017 		}
4018 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4019 		size = min_t(u32, loi->size, SZ_16M);
4020 	}
4021 
4022 	path = btrfs_alloc_path();
4023 	if (!path) {
4024 		ret = -ENOMEM;
4025 		goto out;
4026 	}
4027 
4028 	inodes = init_data_container(size);
4029 	if (IS_ERR(inodes)) {
4030 		ret = PTR_ERR(inodes);
4031 		inodes = NULL;
4032 		goto out;
4033 	}
4034 
4035 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4036 					  build_ino_list, inodes, ignore_offset);
4037 	if (ret == -EINVAL)
4038 		ret = -ENOENT;
4039 	if (ret < 0)
4040 		goto out;
4041 
4042 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4043 			   size);
4044 	if (ret)
4045 		ret = -EFAULT;
4046 
4047 out:
4048 	btrfs_free_path(path);
4049 	kvfree(inodes);
4050 out_loi:
4051 	kfree(loi);
4052 
4053 	return ret;
4054 }
4055 
4056 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4057 			       struct btrfs_ioctl_balance_args *bargs)
4058 {
4059 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4060 
4061 	bargs->flags = bctl->flags;
4062 
4063 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4064 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4065 	if (atomic_read(&fs_info->balance_pause_req))
4066 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4067 	if (atomic_read(&fs_info->balance_cancel_req))
4068 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4069 
4070 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4071 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4072 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4073 
4074 	spin_lock(&fs_info->balance_lock);
4075 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4076 	spin_unlock(&fs_info->balance_lock);
4077 }
4078 
4079 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4080 {
4081 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4082 	struct btrfs_fs_info *fs_info = root->fs_info;
4083 	struct btrfs_ioctl_balance_args *bargs;
4084 	struct btrfs_balance_control *bctl;
4085 	bool need_unlock; /* for mut. excl. ops lock */
4086 	int ret;
4087 
4088 	if (!arg)
4089 		btrfs_warn(fs_info,
4090 	"IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18");
4091 
4092 	if (!capable(CAP_SYS_ADMIN))
4093 		return -EPERM;
4094 
4095 	ret = mnt_want_write_file(file);
4096 	if (ret)
4097 		return ret;
4098 
4099 again:
4100 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4101 		mutex_lock(&fs_info->balance_mutex);
4102 		need_unlock = true;
4103 		goto locked;
4104 	}
4105 
4106 	/*
4107 	 * mut. excl. ops lock is locked.  Three possibilities:
4108 	 *   (1) some other op is running
4109 	 *   (2) balance is running
4110 	 *   (3) balance is paused -- special case (think resume)
4111 	 */
4112 	mutex_lock(&fs_info->balance_mutex);
4113 	if (fs_info->balance_ctl) {
4114 		/* this is either (2) or (3) */
4115 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4116 			mutex_unlock(&fs_info->balance_mutex);
4117 			/*
4118 			 * Lock released to allow other waiters to continue,
4119 			 * we'll reexamine the status again.
4120 			 */
4121 			mutex_lock(&fs_info->balance_mutex);
4122 
4123 			if (fs_info->balance_ctl &&
4124 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4125 				/* this is (3) */
4126 				need_unlock = false;
4127 				goto locked;
4128 			}
4129 
4130 			mutex_unlock(&fs_info->balance_mutex);
4131 			goto again;
4132 		} else {
4133 			/* this is (2) */
4134 			mutex_unlock(&fs_info->balance_mutex);
4135 			ret = -EINPROGRESS;
4136 			goto out;
4137 		}
4138 	} else {
4139 		/* this is (1) */
4140 		mutex_unlock(&fs_info->balance_mutex);
4141 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4142 		goto out;
4143 	}
4144 
4145 locked:
4146 
4147 	if (arg) {
4148 		bargs = memdup_user(arg, sizeof(*bargs));
4149 		if (IS_ERR(bargs)) {
4150 			ret = PTR_ERR(bargs);
4151 			goto out_unlock;
4152 		}
4153 
4154 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4155 			if (!fs_info->balance_ctl) {
4156 				ret = -ENOTCONN;
4157 				goto out_bargs;
4158 			}
4159 
4160 			bctl = fs_info->balance_ctl;
4161 			spin_lock(&fs_info->balance_lock);
4162 			bctl->flags |= BTRFS_BALANCE_RESUME;
4163 			spin_unlock(&fs_info->balance_lock);
4164 			btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4165 
4166 			goto do_balance;
4167 		}
4168 	} else {
4169 		bargs = NULL;
4170 	}
4171 
4172 	if (fs_info->balance_ctl) {
4173 		ret = -EINPROGRESS;
4174 		goto out_bargs;
4175 	}
4176 
4177 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4178 	if (!bctl) {
4179 		ret = -ENOMEM;
4180 		goto out_bargs;
4181 	}
4182 
4183 	if (arg) {
4184 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4185 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4186 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4187 
4188 		bctl->flags = bargs->flags;
4189 	} else {
4190 		/* balance everything - no filters */
4191 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4192 	}
4193 
4194 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4195 		ret = -EINVAL;
4196 		goto out_bctl;
4197 	}
4198 
4199 do_balance:
4200 	/*
4201 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4202 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4203 	 * all the way until unmount, in free_fs_info.  The flag should be
4204 	 * cleared after reset_balance_state.
4205 	 */
4206 	need_unlock = false;
4207 
4208 	ret = btrfs_balance(fs_info, bctl, bargs);
4209 	bctl = NULL;
4210 
4211 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4212 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4213 			ret = -EFAULT;
4214 	}
4215 
4216 out_bctl:
4217 	kfree(bctl);
4218 out_bargs:
4219 	kfree(bargs);
4220 out_unlock:
4221 	mutex_unlock(&fs_info->balance_mutex);
4222 	if (need_unlock)
4223 		btrfs_exclop_finish(fs_info);
4224 out:
4225 	mnt_drop_write_file(file);
4226 	return ret;
4227 }
4228 
4229 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4230 {
4231 	if (!capable(CAP_SYS_ADMIN))
4232 		return -EPERM;
4233 
4234 	switch (cmd) {
4235 	case BTRFS_BALANCE_CTL_PAUSE:
4236 		return btrfs_pause_balance(fs_info);
4237 	case BTRFS_BALANCE_CTL_CANCEL:
4238 		return btrfs_cancel_balance(fs_info);
4239 	}
4240 
4241 	return -EINVAL;
4242 }
4243 
4244 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4245 					 void __user *arg)
4246 {
4247 	struct btrfs_ioctl_balance_args *bargs;
4248 	int ret = 0;
4249 
4250 	if (!capable(CAP_SYS_ADMIN))
4251 		return -EPERM;
4252 
4253 	mutex_lock(&fs_info->balance_mutex);
4254 	if (!fs_info->balance_ctl) {
4255 		ret = -ENOTCONN;
4256 		goto out;
4257 	}
4258 
4259 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4260 	if (!bargs) {
4261 		ret = -ENOMEM;
4262 		goto out;
4263 	}
4264 
4265 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4266 
4267 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4268 		ret = -EFAULT;
4269 
4270 	kfree(bargs);
4271 out:
4272 	mutex_unlock(&fs_info->balance_mutex);
4273 	return ret;
4274 }
4275 
4276 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4277 {
4278 	struct inode *inode = file_inode(file);
4279 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4280 	struct btrfs_ioctl_quota_ctl_args *sa;
4281 	int ret;
4282 
4283 	if (!capable(CAP_SYS_ADMIN))
4284 		return -EPERM;
4285 
4286 	ret = mnt_want_write_file(file);
4287 	if (ret)
4288 		return ret;
4289 
4290 	sa = memdup_user(arg, sizeof(*sa));
4291 	if (IS_ERR(sa)) {
4292 		ret = PTR_ERR(sa);
4293 		goto drop_write;
4294 	}
4295 
4296 	down_write(&fs_info->subvol_sem);
4297 
4298 	switch (sa->cmd) {
4299 	case BTRFS_QUOTA_CTL_ENABLE:
4300 		ret = btrfs_quota_enable(fs_info);
4301 		break;
4302 	case BTRFS_QUOTA_CTL_DISABLE:
4303 		ret = btrfs_quota_disable(fs_info);
4304 		break;
4305 	default:
4306 		ret = -EINVAL;
4307 		break;
4308 	}
4309 
4310 	kfree(sa);
4311 	up_write(&fs_info->subvol_sem);
4312 drop_write:
4313 	mnt_drop_write_file(file);
4314 	return ret;
4315 }
4316 
4317 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4318 {
4319 	struct inode *inode = file_inode(file);
4320 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4321 	struct btrfs_root *root = BTRFS_I(inode)->root;
4322 	struct btrfs_ioctl_qgroup_assign_args *sa;
4323 	struct btrfs_trans_handle *trans;
4324 	int ret;
4325 	int err;
4326 
4327 	if (!capable(CAP_SYS_ADMIN))
4328 		return -EPERM;
4329 
4330 	ret = mnt_want_write_file(file);
4331 	if (ret)
4332 		return ret;
4333 
4334 	sa = memdup_user(arg, sizeof(*sa));
4335 	if (IS_ERR(sa)) {
4336 		ret = PTR_ERR(sa);
4337 		goto drop_write;
4338 	}
4339 
4340 	trans = btrfs_join_transaction(root);
4341 	if (IS_ERR(trans)) {
4342 		ret = PTR_ERR(trans);
4343 		goto out;
4344 	}
4345 
4346 	if (sa->assign) {
4347 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4348 	} else {
4349 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4350 	}
4351 
4352 	/* update qgroup status and info */
4353 	err = btrfs_run_qgroups(trans);
4354 	if (err < 0)
4355 		btrfs_handle_fs_error(fs_info, err,
4356 				      "failed to update qgroup status and info");
4357 	err = btrfs_end_transaction(trans);
4358 	if (err && !ret)
4359 		ret = err;
4360 
4361 out:
4362 	kfree(sa);
4363 drop_write:
4364 	mnt_drop_write_file(file);
4365 	return ret;
4366 }
4367 
4368 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4369 {
4370 	struct inode *inode = file_inode(file);
4371 	struct btrfs_root *root = BTRFS_I(inode)->root;
4372 	struct btrfs_ioctl_qgroup_create_args *sa;
4373 	struct btrfs_trans_handle *trans;
4374 	int ret;
4375 	int err;
4376 
4377 	if (!capable(CAP_SYS_ADMIN))
4378 		return -EPERM;
4379 
4380 	ret = mnt_want_write_file(file);
4381 	if (ret)
4382 		return ret;
4383 
4384 	sa = memdup_user(arg, sizeof(*sa));
4385 	if (IS_ERR(sa)) {
4386 		ret = PTR_ERR(sa);
4387 		goto drop_write;
4388 	}
4389 
4390 	if (!sa->qgroupid) {
4391 		ret = -EINVAL;
4392 		goto out;
4393 	}
4394 
4395 	trans = btrfs_join_transaction(root);
4396 	if (IS_ERR(trans)) {
4397 		ret = PTR_ERR(trans);
4398 		goto out;
4399 	}
4400 
4401 	if (sa->create) {
4402 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4403 	} else {
4404 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4405 	}
4406 
4407 	err = btrfs_end_transaction(trans);
4408 	if (err && !ret)
4409 		ret = err;
4410 
4411 out:
4412 	kfree(sa);
4413 drop_write:
4414 	mnt_drop_write_file(file);
4415 	return ret;
4416 }
4417 
4418 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4419 {
4420 	struct inode *inode = file_inode(file);
4421 	struct btrfs_root *root = BTRFS_I(inode)->root;
4422 	struct btrfs_ioctl_qgroup_limit_args *sa;
4423 	struct btrfs_trans_handle *trans;
4424 	int ret;
4425 	int err;
4426 	u64 qgroupid;
4427 
4428 	if (!capable(CAP_SYS_ADMIN))
4429 		return -EPERM;
4430 
4431 	ret = mnt_want_write_file(file);
4432 	if (ret)
4433 		return ret;
4434 
4435 	sa = memdup_user(arg, sizeof(*sa));
4436 	if (IS_ERR(sa)) {
4437 		ret = PTR_ERR(sa);
4438 		goto drop_write;
4439 	}
4440 
4441 	trans = btrfs_join_transaction(root);
4442 	if (IS_ERR(trans)) {
4443 		ret = PTR_ERR(trans);
4444 		goto out;
4445 	}
4446 
4447 	qgroupid = sa->qgroupid;
4448 	if (!qgroupid) {
4449 		/* take the current subvol as qgroup */
4450 		qgroupid = root->root_key.objectid;
4451 	}
4452 
4453 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4454 
4455 	err = btrfs_end_transaction(trans);
4456 	if (err && !ret)
4457 		ret = err;
4458 
4459 out:
4460 	kfree(sa);
4461 drop_write:
4462 	mnt_drop_write_file(file);
4463 	return ret;
4464 }
4465 
4466 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4467 {
4468 	struct inode *inode = file_inode(file);
4469 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4470 	struct btrfs_ioctl_quota_rescan_args *qsa;
4471 	int ret;
4472 
4473 	if (!capable(CAP_SYS_ADMIN))
4474 		return -EPERM;
4475 
4476 	ret = mnt_want_write_file(file);
4477 	if (ret)
4478 		return ret;
4479 
4480 	qsa = memdup_user(arg, sizeof(*qsa));
4481 	if (IS_ERR(qsa)) {
4482 		ret = PTR_ERR(qsa);
4483 		goto drop_write;
4484 	}
4485 
4486 	if (qsa->flags) {
4487 		ret = -EINVAL;
4488 		goto out;
4489 	}
4490 
4491 	ret = btrfs_qgroup_rescan(fs_info);
4492 
4493 out:
4494 	kfree(qsa);
4495 drop_write:
4496 	mnt_drop_write_file(file);
4497 	return ret;
4498 }
4499 
4500 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4501 						void __user *arg)
4502 {
4503 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4504 
4505 	if (!capable(CAP_SYS_ADMIN))
4506 		return -EPERM;
4507 
4508 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4509 		qsa.flags = 1;
4510 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4511 	}
4512 
4513 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4514 		return -EFAULT;
4515 
4516 	return 0;
4517 }
4518 
4519 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4520 						void __user *arg)
4521 {
4522 	if (!capable(CAP_SYS_ADMIN))
4523 		return -EPERM;
4524 
4525 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4526 }
4527 
4528 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4529 					    struct user_namespace *mnt_userns,
4530 					    struct btrfs_ioctl_received_subvol_args *sa)
4531 {
4532 	struct inode *inode = file_inode(file);
4533 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4534 	struct btrfs_root *root = BTRFS_I(inode)->root;
4535 	struct btrfs_root_item *root_item = &root->root_item;
4536 	struct btrfs_trans_handle *trans;
4537 	struct timespec64 ct = current_time(inode);
4538 	int ret = 0;
4539 	int received_uuid_changed;
4540 
4541 	if (!inode_owner_or_capable(mnt_userns, inode))
4542 		return -EPERM;
4543 
4544 	ret = mnt_want_write_file(file);
4545 	if (ret < 0)
4546 		return ret;
4547 
4548 	down_write(&fs_info->subvol_sem);
4549 
4550 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4551 		ret = -EINVAL;
4552 		goto out;
4553 	}
4554 
4555 	if (btrfs_root_readonly(root)) {
4556 		ret = -EROFS;
4557 		goto out;
4558 	}
4559 
4560 	/*
4561 	 * 1 - root item
4562 	 * 2 - uuid items (received uuid + subvol uuid)
4563 	 */
4564 	trans = btrfs_start_transaction(root, 3);
4565 	if (IS_ERR(trans)) {
4566 		ret = PTR_ERR(trans);
4567 		trans = NULL;
4568 		goto out;
4569 	}
4570 
4571 	sa->rtransid = trans->transid;
4572 	sa->rtime.sec = ct.tv_sec;
4573 	sa->rtime.nsec = ct.tv_nsec;
4574 
4575 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4576 				       BTRFS_UUID_SIZE);
4577 	if (received_uuid_changed &&
4578 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4579 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4580 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4581 					  root->root_key.objectid);
4582 		if (ret && ret != -ENOENT) {
4583 		        btrfs_abort_transaction(trans, ret);
4584 		        btrfs_end_transaction(trans);
4585 		        goto out;
4586 		}
4587 	}
4588 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4589 	btrfs_set_root_stransid(root_item, sa->stransid);
4590 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4591 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4592 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4593 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4594 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4595 
4596 	ret = btrfs_update_root(trans, fs_info->tree_root,
4597 				&root->root_key, &root->root_item);
4598 	if (ret < 0) {
4599 		btrfs_end_transaction(trans);
4600 		goto out;
4601 	}
4602 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4603 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4604 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4605 					  root->root_key.objectid);
4606 		if (ret < 0 && ret != -EEXIST) {
4607 			btrfs_abort_transaction(trans, ret);
4608 			btrfs_end_transaction(trans);
4609 			goto out;
4610 		}
4611 	}
4612 	ret = btrfs_commit_transaction(trans);
4613 out:
4614 	up_write(&fs_info->subvol_sem);
4615 	mnt_drop_write_file(file);
4616 	return ret;
4617 }
4618 
4619 #ifdef CONFIG_64BIT
4620 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4621 						void __user *arg)
4622 {
4623 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4624 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4625 	int ret = 0;
4626 
4627 	args32 = memdup_user(arg, sizeof(*args32));
4628 	if (IS_ERR(args32))
4629 		return PTR_ERR(args32);
4630 
4631 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4632 	if (!args64) {
4633 		ret = -ENOMEM;
4634 		goto out;
4635 	}
4636 
4637 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4638 	args64->stransid = args32->stransid;
4639 	args64->rtransid = args32->rtransid;
4640 	args64->stime.sec = args32->stime.sec;
4641 	args64->stime.nsec = args32->stime.nsec;
4642 	args64->rtime.sec = args32->rtime.sec;
4643 	args64->rtime.nsec = args32->rtime.nsec;
4644 	args64->flags = args32->flags;
4645 
4646 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4647 	if (ret)
4648 		goto out;
4649 
4650 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4651 	args32->stransid = args64->stransid;
4652 	args32->rtransid = args64->rtransid;
4653 	args32->stime.sec = args64->stime.sec;
4654 	args32->stime.nsec = args64->stime.nsec;
4655 	args32->rtime.sec = args64->rtime.sec;
4656 	args32->rtime.nsec = args64->rtime.nsec;
4657 	args32->flags = args64->flags;
4658 
4659 	ret = copy_to_user(arg, args32, sizeof(*args32));
4660 	if (ret)
4661 		ret = -EFAULT;
4662 
4663 out:
4664 	kfree(args32);
4665 	kfree(args64);
4666 	return ret;
4667 }
4668 #endif
4669 
4670 static long btrfs_ioctl_set_received_subvol(struct file *file,
4671 					    void __user *arg)
4672 {
4673 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4674 	int ret = 0;
4675 
4676 	sa = memdup_user(arg, sizeof(*sa));
4677 	if (IS_ERR(sa))
4678 		return PTR_ERR(sa);
4679 
4680 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4681 
4682 	if (ret)
4683 		goto out;
4684 
4685 	ret = copy_to_user(arg, sa, sizeof(*sa));
4686 	if (ret)
4687 		ret = -EFAULT;
4688 
4689 out:
4690 	kfree(sa);
4691 	return ret;
4692 }
4693 
4694 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4695 					void __user *arg)
4696 {
4697 	size_t len;
4698 	int ret;
4699 	char label[BTRFS_LABEL_SIZE];
4700 
4701 	spin_lock(&fs_info->super_lock);
4702 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4703 	spin_unlock(&fs_info->super_lock);
4704 
4705 	len = strnlen(label, BTRFS_LABEL_SIZE);
4706 
4707 	if (len == BTRFS_LABEL_SIZE) {
4708 		btrfs_warn(fs_info,
4709 			   "label is too long, return the first %zu bytes",
4710 			   --len);
4711 	}
4712 
4713 	ret = copy_to_user(arg, label, len);
4714 
4715 	return ret ? -EFAULT : 0;
4716 }
4717 
4718 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4719 {
4720 	struct inode *inode = file_inode(file);
4721 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4722 	struct btrfs_root *root = BTRFS_I(inode)->root;
4723 	struct btrfs_super_block *super_block = fs_info->super_copy;
4724 	struct btrfs_trans_handle *trans;
4725 	char label[BTRFS_LABEL_SIZE];
4726 	int ret;
4727 
4728 	if (!capable(CAP_SYS_ADMIN))
4729 		return -EPERM;
4730 
4731 	if (copy_from_user(label, arg, sizeof(label)))
4732 		return -EFAULT;
4733 
4734 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4735 		btrfs_err(fs_info,
4736 			  "unable to set label with more than %d bytes",
4737 			  BTRFS_LABEL_SIZE - 1);
4738 		return -EINVAL;
4739 	}
4740 
4741 	ret = mnt_want_write_file(file);
4742 	if (ret)
4743 		return ret;
4744 
4745 	trans = btrfs_start_transaction(root, 0);
4746 	if (IS_ERR(trans)) {
4747 		ret = PTR_ERR(trans);
4748 		goto out_unlock;
4749 	}
4750 
4751 	spin_lock(&fs_info->super_lock);
4752 	strcpy(super_block->label, label);
4753 	spin_unlock(&fs_info->super_lock);
4754 	ret = btrfs_commit_transaction(trans);
4755 
4756 out_unlock:
4757 	mnt_drop_write_file(file);
4758 	return ret;
4759 }
4760 
4761 #define INIT_FEATURE_FLAGS(suffix) \
4762 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4763 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4764 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4765 
4766 int btrfs_ioctl_get_supported_features(void __user *arg)
4767 {
4768 	static const struct btrfs_ioctl_feature_flags features[3] = {
4769 		INIT_FEATURE_FLAGS(SUPP),
4770 		INIT_FEATURE_FLAGS(SAFE_SET),
4771 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4772 	};
4773 
4774 	if (copy_to_user(arg, &features, sizeof(features)))
4775 		return -EFAULT;
4776 
4777 	return 0;
4778 }
4779 
4780 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4781 					void __user *arg)
4782 {
4783 	struct btrfs_super_block *super_block = fs_info->super_copy;
4784 	struct btrfs_ioctl_feature_flags features;
4785 
4786 	features.compat_flags = btrfs_super_compat_flags(super_block);
4787 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4788 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4789 
4790 	if (copy_to_user(arg, &features, sizeof(features)))
4791 		return -EFAULT;
4792 
4793 	return 0;
4794 }
4795 
4796 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4797 			      enum btrfs_feature_set set,
4798 			      u64 change_mask, u64 flags, u64 supported_flags,
4799 			      u64 safe_set, u64 safe_clear)
4800 {
4801 	const char *type = btrfs_feature_set_name(set);
4802 	char *names;
4803 	u64 disallowed, unsupported;
4804 	u64 set_mask = flags & change_mask;
4805 	u64 clear_mask = ~flags & change_mask;
4806 
4807 	unsupported = set_mask & ~supported_flags;
4808 	if (unsupported) {
4809 		names = btrfs_printable_features(set, unsupported);
4810 		if (names) {
4811 			btrfs_warn(fs_info,
4812 				   "this kernel does not support the %s feature bit%s",
4813 				   names, strchr(names, ',') ? "s" : "");
4814 			kfree(names);
4815 		} else
4816 			btrfs_warn(fs_info,
4817 				   "this kernel does not support %s bits 0x%llx",
4818 				   type, unsupported);
4819 		return -EOPNOTSUPP;
4820 	}
4821 
4822 	disallowed = set_mask & ~safe_set;
4823 	if (disallowed) {
4824 		names = btrfs_printable_features(set, disallowed);
4825 		if (names) {
4826 			btrfs_warn(fs_info,
4827 				   "can't set the %s feature bit%s while mounted",
4828 				   names, strchr(names, ',') ? "s" : "");
4829 			kfree(names);
4830 		} else
4831 			btrfs_warn(fs_info,
4832 				   "can't set %s bits 0x%llx while mounted",
4833 				   type, disallowed);
4834 		return -EPERM;
4835 	}
4836 
4837 	disallowed = clear_mask & ~safe_clear;
4838 	if (disallowed) {
4839 		names = btrfs_printable_features(set, disallowed);
4840 		if (names) {
4841 			btrfs_warn(fs_info,
4842 				   "can't clear the %s feature bit%s while mounted",
4843 				   names, strchr(names, ',') ? "s" : "");
4844 			kfree(names);
4845 		} else
4846 			btrfs_warn(fs_info,
4847 				   "can't clear %s bits 0x%llx while mounted",
4848 				   type, disallowed);
4849 		return -EPERM;
4850 	}
4851 
4852 	return 0;
4853 }
4854 
4855 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4856 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4857 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4858 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4859 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4860 
4861 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4862 {
4863 	struct inode *inode = file_inode(file);
4864 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4865 	struct btrfs_root *root = BTRFS_I(inode)->root;
4866 	struct btrfs_super_block *super_block = fs_info->super_copy;
4867 	struct btrfs_ioctl_feature_flags flags[2];
4868 	struct btrfs_trans_handle *trans;
4869 	u64 newflags;
4870 	int ret;
4871 
4872 	if (!capable(CAP_SYS_ADMIN))
4873 		return -EPERM;
4874 
4875 	if (copy_from_user(flags, arg, sizeof(flags)))
4876 		return -EFAULT;
4877 
4878 	/* Nothing to do */
4879 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4880 	    !flags[0].incompat_flags)
4881 		return 0;
4882 
4883 	ret = check_feature(fs_info, flags[0].compat_flags,
4884 			    flags[1].compat_flags, COMPAT);
4885 	if (ret)
4886 		return ret;
4887 
4888 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4889 			    flags[1].compat_ro_flags, COMPAT_RO);
4890 	if (ret)
4891 		return ret;
4892 
4893 	ret = check_feature(fs_info, flags[0].incompat_flags,
4894 			    flags[1].incompat_flags, INCOMPAT);
4895 	if (ret)
4896 		return ret;
4897 
4898 	ret = mnt_want_write_file(file);
4899 	if (ret)
4900 		return ret;
4901 
4902 	trans = btrfs_start_transaction(root, 0);
4903 	if (IS_ERR(trans)) {
4904 		ret = PTR_ERR(trans);
4905 		goto out_drop_write;
4906 	}
4907 
4908 	spin_lock(&fs_info->super_lock);
4909 	newflags = btrfs_super_compat_flags(super_block);
4910 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4911 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4912 	btrfs_set_super_compat_flags(super_block, newflags);
4913 
4914 	newflags = btrfs_super_compat_ro_flags(super_block);
4915 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4916 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4917 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4918 
4919 	newflags = btrfs_super_incompat_flags(super_block);
4920 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4921 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4922 	btrfs_set_super_incompat_flags(super_block, newflags);
4923 	spin_unlock(&fs_info->super_lock);
4924 
4925 	ret = btrfs_commit_transaction(trans);
4926 out_drop_write:
4927 	mnt_drop_write_file(file);
4928 
4929 	return ret;
4930 }
4931 
4932 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4933 {
4934 	struct btrfs_ioctl_send_args *arg;
4935 	int ret;
4936 
4937 	if (compat) {
4938 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4939 		struct btrfs_ioctl_send_args_32 args32;
4940 
4941 		ret = copy_from_user(&args32, argp, sizeof(args32));
4942 		if (ret)
4943 			return -EFAULT;
4944 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4945 		if (!arg)
4946 			return -ENOMEM;
4947 		arg->send_fd = args32.send_fd;
4948 		arg->clone_sources_count = args32.clone_sources_count;
4949 		arg->clone_sources = compat_ptr(args32.clone_sources);
4950 		arg->parent_root = args32.parent_root;
4951 		arg->flags = args32.flags;
4952 		memcpy(arg->reserved, args32.reserved,
4953 		       sizeof(args32.reserved));
4954 #else
4955 		return -ENOTTY;
4956 #endif
4957 	} else {
4958 		arg = memdup_user(argp, sizeof(*arg));
4959 		if (IS_ERR(arg))
4960 			return PTR_ERR(arg);
4961 	}
4962 	ret = btrfs_ioctl_send(file, arg);
4963 	kfree(arg);
4964 	return ret;
4965 }
4966 
4967 long btrfs_ioctl(struct file *file, unsigned int
4968 		cmd, unsigned long arg)
4969 {
4970 	struct inode *inode = file_inode(file);
4971 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4972 	struct btrfs_root *root = BTRFS_I(inode)->root;
4973 	void __user *argp = (void __user *)arg;
4974 
4975 	switch (cmd) {
4976 	case FS_IOC_GETVERSION:
4977 		return btrfs_ioctl_getversion(file, argp);
4978 	case FS_IOC_GETFSLABEL:
4979 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4980 	case FS_IOC_SETFSLABEL:
4981 		return btrfs_ioctl_set_fslabel(file, argp);
4982 	case FITRIM:
4983 		return btrfs_ioctl_fitrim(fs_info, argp);
4984 	case BTRFS_IOC_SNAP_CREATE:
4985 		return btrfs_ioctl_snap_create(file, argp, 0);
4986 	case BTRFS_IOC_SNAP_CREATE_V2:
4987 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4988 	case BTRFS_IOC_SUBVOL_CREATE:
4989 		return btrfs_ioctl_snap_create(file, argp, 1);
4990 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4991 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4992 	case BTRFS_IOC_SNAP_DESTROY:
4993 		return btrfs_ioctl_snap_destroy(file, argp, false);
4994 	case BTRFS_IOC_SNAP_DESTROY_V2:
4995 		return btrfs_ioctl_snap_destroy(file, argp, true);
4996 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4997 		return btrfs_ioctl_subvol_getflags(file, argp);
4998 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4999 		return btrfs_ioctl_subvol_setflags(file, argp);
5000 	case BTRFS_IOC_DEFAULT_SUBVOL:
5001 		return btrfs_ioctl_default_subvol(file, argp);
5002 	case BTRFS_IOC_DEFRAG:
5003 		return btrfs_ioctl_defrag(file, NULL);
5004 	case BTRFS_IOC_DEFRAG_RANGE:
5005 		return btrfs_ioctl_defrag(file, argp);
5006 	case BTRFS_IOC_RESIZE:
5007 		return btrfs_ioctl_resize(file, argp);
5008 	case BTRFS_IOC_ADD_DEV:
5009 		return btrfs_ioctl_add_dev(fs_info, argp);
5010 	case BTRFS_IOC_RM_DEV:
5011 		return btrfs_ioctl_rm_dev(file, argp);
5012 	case BTRFS_IOC_RM_DEV_V2:
5013 		return btrfs_ioctl_rm_dev_v2(file, argp);
5014 	case BTRFS_IOC_FS_INFO:
5015 		return btrfs_ioctl_fs_info(fs_info, argp);
5016 	case BTRFS_IOC_DEV_INFO:
5017 		return btrfs_ioctl_dev_info(fs_info, argp);
5018 	case BTRFS_IOC_BALANCE:
5019 		return btrfs_ioctl_balance(file, NULL);
5020 	case BTRFS_IOC_TREE_SEARCH:
5021 		return btrfs_ioctl_tree_search(file, argp);
5022 	case BTRFS_IOC_TREE_SEARCH_V2:
5023 		return btrfs_ioctl_tree_search_v2(file, argp);
5024 	case BTRFS_IOC_INO_LOOKUP:
5025 		return btrfs_ioctl_ino_lookup(file, argp);
5026 	case BTRFS_IOC_INO_PATHS:
5027 		return btrfs_ioctl_ino_to_path(root, argp);
5028 	case BTRFS_IOC_LOGICAL_INO:
5029 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5030 	case BTRFS_IOC_LOGICAL_INO_V2:
5031 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5032 	case BTRFS_IOC_SPACE_INFO:
5033 		return btrfs_ioctl_space_info(fs_info, argp);
5034 	case BTRFS_IOC_SYNC: {
5035 		int ret;
5036 
5037 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5038 		if (ret)
5039 			return ret;
5040 		ret = btrfs_sync_fs(inode->i_sb, 1);
5041 		/*
5042 		 * The transaction thread may want to do more work,
5043 		 * namely it pokes the cleaner kthread that will start
5044 		 * processing uncleaned subvols.
5045 		 */
5046 		wake_up_process(fs_info->transaction_kthread);
5047 		return ret;
5048 	}
5049 	case BTRFS_IOC_START_SYNC:
5050 		return btrfs_ioctl_start_sync(root, argp);
5051 	case BTRFS_IOC_WAIT_SYNC:
5052 		return btrfs_ioctl_wait_sync(fs_info, argp);
5053 	case BTRFS_IOC_SCRUB:
5054 		return btrfs_ioctl_scrub(file, argp);
5055 	case BTRFS_IOC_SCRUB_CANCEL:
5056 		return btrfs_ioctl_scrub_cancel(fs_info);
5057 	case BTRFS_IOC_SCRUB_PROGRESS:
5058 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5059 	case BTRFS_IOC_BALANCE_V2:
5060 		return btrfs_ioctl_balance(file, argp);
5061 	case BTRFS_IOC_BALANCE_CTL:
5062 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5063 	case BTRFS_IOC_BALANCE_PROGRESS:
5064 		return btrfs_ioctl_balance_progress(fs_info, argp);
5065 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5066 		return btrfs_ioctl_set_received_subvol(file, argp);
5067 #ifdef CONFIG_64BIT
5068 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5069 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5070 #endif
5071 	case BTRFS_IOC_SEND:
5072 		return _btrfs_ioctl_send(file, argp, false);
5073 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5074 	case BTRFS_IOC_SEND_32:
5075 		return _btrfs_ioctl_send(file, argp, true);
5076 #endif
5077 	case BTRFS_IOC_GET_DEV_STATS:
5078 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5079 	case BTRFS_IOC_QUOTA_CTL:
5080 		return btrfs_ioctl_quota_ctl(file, argp);
5081 	case BTRFS_IOC_QGROUP_ASSIGN:
5082 		return btrfs_ioctl_qgroup_assign(file, argp);
5083 	case BTRFS_IOC_QGROUP_CREATE:
5084 		return btrfs_ioctl_qgroup_create(file, argp);
5085 	case BTRFS_IOC_QGROUP_LIMIT:
5086 		return btrfs_ioctl_qgroup_limit(file, argp);
5087 	case BTRFS_IOC_QUOTA_RESCAN:
5088 		return btrfs_ioctl_quota_rescan(file, argp);
5089 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5090 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5091 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5092 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5093 	case BTRFS_IOC_DEV_REPLACE:
5094 		return btrfs_ioctl_dev_replace(fs_info, argp);
5095 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5096 		return btrfs_ioctl_get_supported_features(argp);
5097 	case BTRFS_IOC_GET_FEATURES:
5098 		return btrfs_ioctl_get_features(fs_info, argp);
5099 	case BTRFS_IOC_SET_FEATURES:
5100 		return btrfs_ioctl_set_features(file, argp);
5101 	case BTRFS_IOC_GET_SUBVOL_INFO:
5102 		return btrfs_ioctl_get_subvol_info(file, argp);
5103 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5104 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5105 	case BTRFS_IOC_INO_LOOKUP_USER:
5106 		return btrfs_ioctl_ino_lookup_user(file, argp);
5107 	case FS_IOC_ENABLE_VERITY:
5108 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5109 	case FS_IOC_MEASURE_VERITY:
5110 		return fsverity_ioctl_measure(file, argp);
5111 	}
5112 
5113 	return -ENOTTY;
5114 }
5115 
5116 #ifdef CONFIG_COMPAT
5117 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5118 {
5119 	/*
5120 	 * These all access 32-bit values anyway so no further
5121 	 * handling is necessary.
5122 	 */
5123 	switch (cmd) {
5124 	case FS_IOC32_GETVERSION:
5125 		cmd = FS_IOC_GETVERSION;
5126 		break;
5127 	}
5128 
5129 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5130 }
5131 #endif
5132