1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "export.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "print-tree.h" 37 #include "volumes.h" 38 #include "locking.h" 39 #include "backref.h" 40 #include "rcu-string.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 #include "subpage.h" 52 53 #ifdef CONFIG_64BIT 54 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 55 * structures are incorrect, as the timespec structure from userspace 56 * is 4 bytes too small. We define these alternatives here to teach 57 * the kernel about the 32-bit struct packing. 58 */ 59 struct btrfs_ioctl_timespec_32 { 60 __u64 sec; 61 __u32 nsec; 62 } __attribute__ ((__packed__)); 63 64 struct btrfs_ioctl_received_subvol_args_32 { 65 char uuid[BTRFS_UUID_SIZE]; /* in */ 66 __u64 stransid; /* in */ 67 __u64 rtransid; /* out */ 68 struct btrfs_ioctl_timespec_32 stime; /* in */ 69 struct btrfs_ioctl_timespec_32 rtime; /* out */ 70 __u64 flags; /* in */ 71 __u64 reserved[16]; /* in */ 72 } __attribute__ ((__packed__)); 73 74 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 75 struct btrfs_ioctl_received_subvol_args_32) 76 #endif 77 78 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 79 struct btrfs_ioctl_send_args_32 { 80 __s64 send_fd; /* in */ 81 __u64 clone_sources_count; /* in */ 82 compat_uptr_t clone_sources; /* in */ 83 __u64 parent_root; /* in */ 84 __u64 flags; /* in */ 85 __u32 version; /* in */ 86 __u8 reserved[28]; /* in */ 87 } __attribute__ ((__packed__)); 88 89 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 90 struct btrfs_ioctl_send_args_32) 91 #endif 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 95 unsigned int flags) 96 { 97 if (S_ISDIR(inode->i_mode)) 98 return flags; 99 else if (S_ISREG(inode->i_mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 107 * ioctl. 108 */ 109 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 110 { 111 unsigned int iflags = 0; 112 u32 flags = binode->flags; 113 u32 ro_flags = binode->ro_flags; 114 115 if (flags & BTRFS_INODE_SYNC) 116 iflags |= FS_SYNC_FL; 117 if (flags & BTRFS_INODE_IMMUTABLE) 118 iflags |= FS_IMMUTABLE_FL; 119 if (flags & BTRFS_INODE_APPEND) 120 iflags |= FS_APPEND_FL; 121 if (flags & BTRFS_INODE_NODUMP) 122 iflags |= FS_NODUMP_FL; 123 if (flags & BTRFS_INODE_NOATIME) 124 iflags |= FS_NOATIME_FL; 125 if (flags & BTRFS_INODE_DIRSYNC) 126 iflags |= FS_DIRSYNC_FL; 127 if (flags & BTRFS_INODE_NODATACOW) 128 iflags |= FS_NOCOW_FL; 129 if (ro_flags & BTRFS_INODE_RO_VERITY) 130 iflags |= FS_VERITY_FL; 131 132 if (flags & BTRFS_INODE_NOCOMPRESS) 133 iflags |= FS_NOCOMP_FL; 134 else if (flags & BTRFS_INODE_COMPRESS) 135 iflags |= FS_COMPR_FL; 136 137 return iflags; 138 } 139 140 /* 141 * Update inode->i_flags based on the btrfs internal flags. 142 */ 143 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 144 { 145 struct btrfs_inode *binode = BTRFS_I(inode); 146 unsigned int new_fl = 0; 147 148 if (binode->flags & BTRFS_INODE_SYNC) 149 new_fl |= S_SYNC; 150 if (binode->flags & BTRFS_INODE_IMMUTABLE) 151 new_fl |= S_IMMUTABLE; 152 if (binode->flags & BTRFS_INODE_APPEND) 153 new_fl |= S_APPEND; 154 if (binode->flags & BTRFS_INODE_NOATIME) 155 new_fl |= S_NOATIME; 156 if (binode->flags & BTRFS_INODE_DIRSYNC) 157 new_fl |= S_DIRSYNC; 158 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 159 new_fl |= S_VERITY; 160 161 set_mask_bits(&inode->i_flags, 162 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 163 S_VERITY, new_fl); 164 } 165 166 /* 167 * Check if @flags are a supported and valid set of FS_*_FL flags and that 168 * the old and new flags are not conflicting 169 */ 170 static int check_fsflags(unsigned int old_flags, unsigned int flags) 171 { 172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 173 FS_NOATIME_FL | FS_NODUMP_FL | \ 174 FS_SYNC_FL | FS_DIRSYNC_FL | \ 175 FS_NOCOMP_FL | FS_COMPR_FL | 176 FS_NOCOW_FL)) 177 return -EOPNOTSUPP; 178 179 /* COMPR and NOCOMP on new/old are valid */ 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 184 return -EINVAL; 185 186 /* NOCOW and compression options are mutually exclusive */ 187 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 196 unsigned int flags) 197 { 198 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 199 return -EPERM; 200 201 return 0; 202 } 203 204 /* 205 * Set flags/xflags from the internal inode flags. The remaining items of 206 * fsxattr are zeroed. 207 */ 208 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 209 { 210 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 211 212 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 213 return 0; 214 } 215 216 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 217 struct dentry *dentry, struct fileattr *fa) 218 { 219 struct inode *inode = d_inode(dentry); 220 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 221 struct btrfs_inode *binode = BTRFS_I(inode); 222 struct btrfs_root *root = binode->root; 223 struct btrfs_trans_handle *trans; 224 unsigned int fsflags, old_fsflags; 225 int ret; 226 const char *comp = NULL; 227 u32 binode_flags; 228 229 if (btrfs_root_readonly(root)) 230 return -EROFS; 231 232 if (fileattr_has_fsx(fa)) 233 return -EOPNOTSUPP; 234 235 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 236 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 237 ret = check_fsflags(old_fsflags, fsflags); 238 if (ret) 239 return ret; 240 241 ret = check_fsflags_compatible(fs_info, fsflags); 242 if (ret) 243 return ret; 244 245 binode_flags = binode->flags; 246 if (fsflags & FS_SYNC_FL) 247 binode_flags |= BTRFS_INODE_SYNC; 248 else 249 binode_flags &= ~BTRFS_INODE_SYNC; 250 if (fsflags & FS_IMMUTABLE_FL) 251 binode_flags |= BTRFS_INODE_IMMUTABLE; 252 else 253 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 254 if (fsflags & FS_APPEND_FL) 255 binode_flags |= BTRFS_INODE_APPEND; 256 else 257 binode_flags &= ~BTRFS_INODE_APPEND; 258 if (fsflags & FS_NODUMP_FL) 259 binode_flags |= BTRFS_INODE_NODUMP; 260 else 261 binode_flags &= ~BTRFS_INODE_NODUMP; 262 if (fsflags & FS_NOATIME_FL) 263 binode_flags |= BTRFS_INODE_NOATIME; 264 else 265 binode_flags &= ~BTRFS_INODE_NOATIME; 266 267 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 268 if (!fa->flags_valid) { 269 /* 1 item for the inode */ 270 trans = btrfs_start_transaction(root, 1); 271 if (IS_ERR(trans)) 272 return PTR_ERR(trans); 273 goto update_flags; 274 } 275 276 if (fsflags & FS_DIRSYNC_FL) 277 binode_flags |= BTRFS_INODE_DIRSYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_DIRSYNC; 280 if (fsflags & FS_NOCOW_FL) { 281 if (S_ISREG(inode->i_mode)) { 282 /* 283 * It's safe to turn csums off here, no extents exist. 284 * Otherwise we want the flag to reflect the real COW 285 * status of the file and will not set it. 286 */ 287 if (inode->i_size == 0) 288 binode_flags |= BTRFS_INODE_NODATACOW | 289 BTRFS_INODE_NODATASUM; 290 } else { 291 binode_flags |= BTRFS_INODE_NODATACOW; 292 } 293 } else { 294 /* 295 * Revert back under same assumptions as above 296 */ 297 if (S_ISREG(inode->i_mode)) { 298 if (inode->i_size == 0) 299 binode_flags &= ~(BTRFS_INODE_NODATACOW | 300 BTRFS_INODE_NODATASUM); 301 } else { 302 binode_flags &= ~BTRFS_INODE_NODATACOW; 303 } 304 } 305 306 /* 307 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 308 * flag may be changed automatically if compression code won't make 309 * things smaller. 310 */ 311 if (fsflags & FS_NOCOMP_FL) { 312 binode_flags &= ~BTRFS_INODE_COMPRESS; 313 binode_flags |= BTRFS_INODE_NOCOMPRESS; 314 } else if (fsflags & FS_COMPR_FL) { 315 316 if (IS_SWAPFILE(inode)) 317 return -ETXTBSY; 318 319 binode_flags |= BTRFS_INODE_COMPRESS; 320 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 321 322 comp = btrfs_compress_type2str(fs_info->compress_type); 323 if (!comp || comp[0] == 0) 324 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 325 } else { 326 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 327 } 328 329 /* 330 * 1 for inode item 331 * 2 for properties 332 */ 333 trans = btrfs_start_transaction(root, 3); 334 if (IS_ERR(trans)) 335 return PTR_ERR(trans); 336 337 if (comp) { 338 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 339 strlen(comp), 0); 340 if (ret) { 341 btrfs_abort_transaction(trans, ret); 342 goto out_end_trans; 343 } 344 } else { 345 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 346 0, 0); 347 if (ret && ret != -ENODATA) { 348 btrfs_abort_transaction(trans, ret); 349 goto out_end_trans; 350 } 351 } 352 353 update_flags: 354 binode->flags = binode_flags; 355 btrfs_sync_inode_flags_to_i_flags(inode); 356 inode_inc_iversion(inode); 357 inode->i_ctime = current_time(inode); 358 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 359 360 out_end_trans: 361 btrfs_end_transaction(trans); 362 return ret; 363 } 364 365 /* 366 * Start exclusive operation @type, return true on success 367 */ 368 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 369 enum btrfs_exclusive_operation type) 370 { 371 bool ret = false; 372 373 spin_lock(&fs_info->super_lock); 374 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 375 fs_info->exclusive_operation = type; 376 ret = true; 377 } 378 spin_unlock(&fs_info->super_lock); 379 380 return ret; 381 } 382 383 /* 384 * Conditionally allow to enter the exclusive operation in case it's compatible 385 * with the running one. This must be paired with btrfs_exclop_start_unlock and 386 * btrfs_exclop_finish. 387 * 388 * Compatibility: 389 * - the same type is already running 390 * - when trying to add a device and balance has been paused 391 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 392 * must check the condition first that would allow none -> @type 393 */ 394 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 395 enum btrfs_exclusive_operation type) 396 { 397 spin_lock(&fs_info->super_lock); 398 if (fs_info->exclusive_operation == type || 399 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 400 type == BTRFS_EXCLOP_DEV_ADD)) 401 return true; 402 403 spin_unlock(&fs_info->super_lock); 404 return false; 405 } 406 407 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 408 { 409 spin_unlock(&fs_info->super_lock); 410 } 411 412 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 413 { 414 spin_lock(&fs_info->super_lock); 415 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 416 spin_unlock(&fs_info->super_lock); 417 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 418 } 419 420 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 421 enum btrfs_exclusive_operation op) 422 { 423 switch (op) { 424 case BTRFS_EXCLOP_BALANCE_PAUSED: 425 spin_lock(&fs_info->super_lock); 426 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 427 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD); 428 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 429 spin_unlock(&fs_info->super_lock); 430 break; 431 case BTRFS_EXCLOP_BALANCE: 432 spin_lock(&fs_info->super_lock); 433 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 434 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 435 spin_unlock(&fs_info->super_lock); 436 break; 437 default: 438 btrfs_warn(fs_info, 439 "invalid exclop balance operation %d requested", op); 440 } 441 } 442 443 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 444 { 445 struct inode *inode = file_inode(file); 446 447 return put_user(inode->i_generation, arg); 448 } 449 450 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 451 void __user *arg) 452 { 453 struct btrfs_device *device; 454 struct request_queue *q; 455 struct fstrim_range range; 456 u64 minlen = ULLONG_MAX; 457 u64 num_devices = 0; 458 int ret; 459 460 if (!capable(CAP_SYS_ADMIN)) 461 return -EPERM; 462 463 /* 464 * btrfs_trim_block_group() depends on space cache, which is not 465 * available in zoned filesystem. So, disallow fitrim on a zoned 466 * filesystem for now. 467 */ 468 if (btrfs_is_zoned(fs_info)) 469 return -EOPNOTSUPP; 470 471 /* 472 * If the fs is mounted with nologreplay, which requires it to be 473 * mounted in RO mode as well, we can not allow discard on free space 474 * inside block groups, because log trees refer to extents that are not 475 * pinned in a block group's free space cache (pinning the extents is 476 * precisely the first phase of replaying a log tree). 477 */ 478 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 479 return -EROFS; 480 481 rcu_read_lock(); 482 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 483 dev_list) { 484 if (!device->bdev) 485 continue; 486 q = bdev_get_queue(device->bdev); 487 if (blk_queue_discard(q)) { 488 num_devices++; 489 minlen = min_t(u64, q->limits.discard_granularity, 490 minlen); 491 } 492 } 493 rcu_read_unlock(); 494 495 if (!num_devices) 496 return -EOPNOTSUPP; 497 if (copy_from_user(&range, arg, sizeof(range))) 498 return -EFAULT; 499 500 /* 501 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 502 * block group is in the logical address space, which can be any 503 * sectorsize aligned bytenr in the range [0, U64_MAX]. 504 */ 505 if (range.len < fs_info->sb->s_blocksize) 506 return -EINVAL; 507 508 range.minlen = max(range.minlen, minlen); 509 ret = btrfs_trim_fs(fs_info, &range); 510 if (ret < 0) 511 return ret; 512 513 if (copy_to_user(arg, &range, sizeof(range))) 514 return -EFAULT; 515 516 return 0; 517 } 518 519 int __pure btrfs_is_empty_uuid(u8 *uuid) 520 { 521 int i; 522 523 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 524 if (uuid[i]) 525 return 0; 526 } 527 return 1; 528 } 529 530 static noinline int create_subvol(struct user_namespace *mnt_userns, 531 struct inode *dir, struct dentry *dentry, 532 const char *name, int namelen, 533 struct btrfs_qgroup_inherit *inherit) 534 { 535 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 536 struct btrfs_trans_handle *trans; 537 struct btrfs_key key; 538 struct btrfs_root_item *root_item; 539 struct btrfs_inode_item *inode_item; 540 struct extent_buffer *leaf; 541 struct btrfs_root *root = BTRFS_I(dir)->root; 542 struct btrfs_root *new_root; 543 struct btrfs_block_rsv block_rsv; 544 struct timespec64 cur_time = current_time(dir); 545 struct inode *inode; 546 int ret; 547 dev_t anon_dev = 0; 548 u64 objectid; 549 u64 index = 0; 550 551 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 552 if (!root_item) 553 return -ENOMEM; 554 555 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 556 if (ret) 557 goto fail_free; 558 559 ret = get_anon_bdev(&anon_dev); 560 if (ret < 0) 561 goto fail_free; 562 563 /* 564 * Don't create subvolume whose level is not zero. Or qgroup will be 565 * screwed up since it assumes subvolume qgroup's level to be 0. 566 */ 567 if (btrfs_qgroup_level(objectid)) { 568 ret = -ENOSPC; 569 goto fail_free; 570 } 571 572 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 573 /* 574 * The same as the snapshot creation, please see the comment 575 * of create_snapshot(). 576 */ 577 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 578 if (ret) 579 goto fail_free; 580 581 trans = btrfs_start_transaction(root, 0); 582 if (IS_ERR(trans)) { 583 ret = PTR_ERR(trans); 584 btrfs_subvolume_release_metadata(root, &block_rsv); 585 goto fail_free; 586 } 587 trans->block_rsv = &block_rsv; 588 trans->bytes_reserved = block_rsv.size; 589 590 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 591 if (ret) 592 goto fail; 593 594 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 595 BTRFS_NESTING_NORMAL); 596 if (IS_ERR(leaf)) { 597 ret = PTR_ERR(leaf); 598 goto fail; 599 } 600 601 btrfs_mark_buffer_dirty(leaf); 602 603 inode_item = &root_item->inode; 604 btrfs_set_stack_inode_generation(inode_item, 1); 605 btrfs_set_stack_inode_size(inode_item, 3); 606 btrfs_set_stack_inode_nlink(inode_item, 1); 607 btrfs_set_stack_inode_nbytes(inode_item, 608 fs_info->nodesize); 609 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 610 611 btrfs_set_root_flags(root_item, 0); 612 btrfs_set_root_limit(root_item, 0); 613 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 614 615 btrfs_set_root_bytenr(root_item, leaf->start); 616 btrfs_set_root_generation(root_item, trans->transid); 617 btrfs_set_root_level(root_item, 0); 618 btrfs_set_root_refs(root_item, 1); 619 btrfs_set_root_used(root_item, leaf->len); 620 btrfs_set_root_last_snapshot(root_item, 0); 621 622 btrfs_set_root_generation_v2(root_item, 623 btrfs_root_generation(root_item)); 624 generate_random_guid(root_item->uuid); 625 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 626 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 627 root_item->ctime = root_item->otime; 628 btrfs_set_root_ctransid(root_item, trans->transid); 629 btrfs_set_root_otransid(root_item, trans->transid); 630 631 btrfs_tree_unlock(leaf); 632 633 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 634 635 key.objectid = objectid; 636 key.offset = 0; 637 key.type = BTRFS_ROOT_ITEM_KEY; 638 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 639 root_item); 640 if (ret) { 641 /* 642 * Since we don't abort the transaction in this case, free the 643 * tree block so that we don't leak space and leave the 644 * filesystem in an inconsistent state (an extent item in the 645 * extent tree with a backreference for a root that does not 646 * exists). 647 */ 648 btrfs_tree_lock(leaf); 649 btrfs_clean_tree_block(leaf); 650 btrfs_tree_unlock(leaf); 651 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 652 free_extent_buffer(leaf); 653 goto fail; 654 } 655 656 free_extent_buffer(leaf); 657 leaf = NULL; 658 659 key.offset = (u64)-1; 660 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 661 if (IS_ERR(new_root)) { 662 free_anon_bdev(anon_dev); 663 ret = PTR_ERR(new_root); 664 btrfs_abort_transaction(trans, ret); 665 goto fail; 666 } 667 /* Freeing will be done in btrfs_put_root() of new_root */ 668 anon_dev = 0; 669 670 ret = btrfs_record_root_in_trans(trans, new_root); 671 if (ret) { 672 btrfs_put_root(new_root); 673 btrfs_abort_transaction(trans, ret); 674 goto fail; 675 } 676 677 ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns); 678 btrfs_put_root(new_root); 679 if (ret) { 680 /* We potentially lose an unused inode item here */ 681 btrfs_abort_transaction(trans, ret); 682 goto fail; 683 } 684 685 /* 686 * insert the directory item 687 */ 688 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 689 if (ret) { 690 btrfs_abort_transaction(trans, ret); 691 goto fail; 692 } 693 694 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 695 BTRFS_FT_DIR, index); 696 if (ret) { 697 btrfs_abort_transaction(trans, ret); 698 goto fail; 699 } 700 701 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 702 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 703 if (ret) { 704 btrfs_abort_transaction(trans, ret); 705 goto fail; 706 } 707 708 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 709 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 710 if (ret) { 711 btrfs_abort_transaction(trans, ret); 712 goto fail; 713 } 714 715 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 716 BTRFS_UUID_KEY_SUBVOL, objectid); 717 if (ret) 718 btrfs_abort_transaction(trans, ret); 719 720 fail: 721 kfree(root_item); 722 trans->block_rsv = NULL; 723 trans->bytes_reserved = 0; 724 btrfs_subvolume_release_metadata(root, &block_rsv); 725 726 if (ret) 727 btrfs_end_transaction(trans); 728 else 729 ret = btrfs_commit_transaction(trans); 730 731 if (!ret) { 732 inode = btrfs_lookup_dentry(dir, dentry); 733 if (IS_ERR(inode)) 734 return PTR_ERR(inode); 735 d_instantiate(dentry, inode); 736 } 737 return ret; 738 739 fail_free: 740 if (anon_dev) 741 free_anon_bdev(anon_dev); 742 kfree(root_item); 743 return ret; 744 } 745 746 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 747 struct dentry *dentry, bool readonly, 748 struct btrfs_qgroup_inherit *inherit) 749 { 750 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 751 struct inode *inode; 752 struct btrfs_pending_snapshot *pending_snapshot; 753 struct btrfs_trans_handle *trans; 754 int ret; 755 756 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 757 return -EINVAL; 758 759 if (atomic_read(&root->nr_swapfiles)) { 760 btrfs_warn(fs_info, 761 "cannot snapshot subvolume with active swapfile"); 762 return -ETXTBSY; 763 } 764 765 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 766 if (!pending_snapshot) 767 return -ENOMEM; 768 769 ret = get_anon_bdev(&pending_snapshot->anon_dev); 770 if (ret < 0) 771 goto free_pending; 772 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 773 GFP_KERNEL); 774 pending_snapshot->path = btrfs_alloc_path(); 775 if (!pending_snapshot->root_item || !pending_snapshot->path) { 776 ret = -ENOMEM; 777 goto free_pending; 778 } 779 780 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 781 BTRFS_BLOCK_RSV_TEMP); 782 /* 783 * 1 - parent dir inode 784 * 2 - dir entries 785 * 1 - root item 786 * 2 - root ref/backref 787 * 1 - root of snapshot 788 * 1 - UUID item 789 */ 790 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 791 &pending_snapshot->block_rsv, 8, 792 false); 793 if (ret) 794 goto free_pending; 795 796 pending_snapshot->dentry = dentry; 797 pending_snapshot->root = root; 798 pending_snapshot->readonly = readonly; 799 pending_snapshot->dir = dir; 800 pending_snapshot->inherit = inherit; 801 802 trans = btrfs_start_transaction(root, 0); 803 if (IS_ERR(trans)) { 804 ret = PTR_ERR(trans); 805 goto fail; 806 } 807 808 spin_lock(&fs_info->trans_lock); 809 list_add(&pending_snapshot->list, 810 &trans->transaction->pending_snapshots); 811 spin_unlock(&fs_info->trans_lock); 812 813 ret = btrfs_commit_transaction(trans); 814 if (ret) 815 goto fail; 816 817 ret = pending_snapshot->error; 818 if (ret) 819 goto fail; 820 821 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 822 if (ret) 823 goto fail; 824 825 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 826 if (IS_ERR(inode)) { 827 ret = PTR_ERR(inode); 828 goto fail; 829 } 830 831 d_instantiate(dentry, inode); 832 ret = 0; 833 pending_snapshot->anon_dev = 0; 834 fail: 835 /* Prevent double freeing of anon_dev */ 836 if (ret && pending_snapshot->snap) 837 pending_snapshot->snap->anon_dev = 0; 838 btrfs_put_root(pending_snapshot->snap); 839 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 840 free_pending: 841 if (pending_snapshot->anon_dev) 842 free_anon_bdev(pending_snapshot->anon_dev); 843 kfree(pending_snapshot->root_item); 844 btrfs_free_path(pending_snapshot->path); 845 kfree(pending_snapshot); 846 847 return ret; 848 } 849 850 /* copy of may_delete in fs/namei.c() 851 * Check whether we can remove a link victim from directory dir, check 852 * whether the type of victim is right. 853 * 1. We can't do it if dir is read-only (done in permission()) 854 * 2. We should have write and exec permissions on dir 855 * 3. We can't remove anything from append-only dir 856 * 4. We can't do anything with immutable dir (done in permission()) 857 * 5. If the sticky bit on dir is set we should either 858 * a. be owner of dir, or 859 * b. be owner of victim, or 860 * c. have CAP_FOWNER capability 861 * 6. If the victim is append-only or immutable we can't do anything with 862 * links pointing to it. 863 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 864 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 865 * 9. We can't remove a root or mountpoint. 866 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 867 * nfs_async_unlink(). 868 */ 869 870 static int btrfs_may_delete(struct user_namespace *mnt_userns, 871 struct inode *dir, struct dentry *victim, int isdir) 872 { 873 int error; 874 875 if (d_really_is_negative(victim)) 876 return -ENOENT; 877 878 BUG_ON(d_inode(victim->d_parent) != dir); 879 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 880 881 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 882 if (error) 883 return error; 884 if (IS_APPEND(dir)) 885 return -EPERM; 886 if (check_sticky(mnt_userns, dir, d_inode(victim)) || 887 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 888 IS_SWAPFILE(d_inode(victim))) 889 return -EPERM; 890 if (isdir) { 891 if (!d_is_dir(victim)) 892 return -ENOTDIR; 893 if (IS_ROOT(victim)) 894 return -EBUSY; 895 } else if (d_is_dir(victim)) 896 return -EISDIR; 897 if (IS_DEADDIR(dir)) 898 return -ENOENT; 899 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 900 return -EBUSY; 901 return 0; 902 } 903 904 /* copy of may_create in fs/namei.c() */ 905 static inline int btrfs_may_create(struct user_namespace *mnt_userns, 906 struct inode *dir, struct dentry *child) 907 { 908 if (d_really_is_positive(child)) 909 return -EEXIST; 910 if (IS_DEADDIR(dir)) 911 return -ENOENT; 912 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 913 return -EOVERFLOW; 914 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 915 } 916 917 /* 918 * Create a new subvolume below @parent. This is largely modeled after 919 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 920 * inside this filesystem so it's quite a bit simpler. 921 */ 922 static noinline int btrfs_mksubvol(const struct path *parent, 923 struct user_namespace *mnt_userns, 924 const char *name, int namelen, 925 struct btrfs_root *snap_src, 926 bool readonly, 927 struct btrfs_qgroup_inherit *inherit) 928 { 929 struct inode *dir = d_inode(parent->dentry); 930 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 931 struct dentry *dentry; 932 int error; 933 934 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 935 if (error == -EINTR) 936 return error; 937 938 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); 939 error = PTR_ERR(dentry); 940 if (IS_ERR(dentry)) 941 goto out_unlock; 942 943 error = btrfs_may_create(mnt_userns, dir, dentry); 944 if (error) 945 goto out_dput; 946 947 /* 948 * even if this name doesn't exist, we may get hash collisions. 949 * check for them now when we can safely fail 950 */ 951 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 952 dir->i_ino, name, 953 namelen); 954 if (error) 955 goto out_dput; 956 957 down_read(&fs_info->subvol_sem); 958 959 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 960 goto out_up_read; 961 962 if (snap_src) 963 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 964 else 965 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit); 966 967 if (!error) 968 fsnotify_mkdir(dir, dentry); 969 out_up_read: 970 up_read(&fs_info->subvol_sem); 971 out_dput: 972 dput(dentry); 973 out_unlock: 974 btrfs_inode_unlock(dir, 0); 975 return error; 976 } 977 978 static noinline int btrfs_mksnapshot(const struct path *parent, 979 struct user_namespace *mnt_userns, 980 const char *name, int namelen, 981 struct btrfs_root *root, 982 bool readonly, 983 struct btrfs_qgroup_inherit *inherit) 984 { 985 int ret; 986 bool snapshot_force_cow = false; 987 988 /* 989 * Force new buffered writes to reserve space even when NOCOW is 990 * possible. This is to avoid later writeback (running dealloc) to 991 * fallback to COW mode and unexpectedly fail with ENOSPC. 992 */ 993 btrfs_drew_read_lock(&root->snapshot_lock); 994 995 ret = btrfs_start_delalloc_snapshot(root, false); 996 if (ret) 997 goto out; 998 999 /* 1000 * All previous writes have started writeback in NOCOW mode, so now 1001 * we force future writes to fallback to COW mode during snapshot 1002 * creation. 1003 */ 1004 atomic_inc(&root->snapshot_force_cow); 1005 snapshot_force_cow = true; 1006 1007 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1008 1009 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, 1010 root, readonly, inherit); 1011 out: 1012 if (snapshot_force_cow) 1013 atomic_dec(&root->snapshot_force_cow); 1014 btrfs_drew_read_unlock(&root->snapshot_lock); 1015 return ret; 1016 } 1017 1018 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 1019 bool locked) 1020 { 1021 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1022 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1023 struct extent_map *em; 1024 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 1025 1026 /* 1027 * hopefully we have this extent in the tree already, try without 1028 * the full extent lock 1029 */ 1030 read_lock(&em_tree->lock); 1031 em = lookup_extent_mapping(em_tree, start, sectorsize); 1032 read_unlock(&em_tree->lock); 1033 1034 if (!em) { 1035 struct extent_state *cached = NULL; 1036 u64 end = start + sectorsize - 1; 1037 1038 /* get the big lock and read metadata off disk */ 1039 if (!locked) 1040 lock_extent_bits(io_tree, start, end, &cached); 1041 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, sectorsize); 1042 if (!locked) 1043 unlock_extent_cached(io_tree, start, end, &cached); 1044 1045 if (IS_ERR(em)) 1046 return NULL; 1047 } 1048 1049 return em; 1050 } 1051 1052 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 1053 bool locked) 1054 { 1055 struct extent_map *next; 1056 bool ret = true; 1057 1058 /* this is the last extent */ 1059 if (em->start + em->len >= i_size_read(inode)) 1060 return false; 1061 1062 next = defrag_lookup_extent(inode, em->start + em->len, locked); 1063 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1064 ret = false; 1065 else if ((em->block_start + em->block_len == next->block_start) && 1066 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1067 ret = false; 1068 1069 free_extent_map(next); 1070 return ret; 1071 } 1072 1073 /* 1074 * Prepare one page to be defragged. 1075 * 1076 * This will ensure: 1077 * 1078 * - Returned page is locked and has been set up properly. 1079 * - No ordered extent exists in the page. 1080 * - The page is uptodate. 1081 * 1082 * NOTE: Caller should also wait for page writeback after the cluster is 1083 * prepared, here we don't do writeback wait for each page. 1084 */ 1085 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, 1086 pgoff_t index) 1087 { 1088 struct address_space *mapping = inode->vfs_inode.i_mapping; 1089 gfp_t mask = btrfs_alloc_write_mask(mapping); 1090 u64 page_start = (u64)index << PAGE_SHIFT; 1091 u64 page_end = page_start + PAGE_SIZE - 1; 1092 struct extent_state *cached_state = NULL; 1093 struct page *page; 1094 int ret; 1095 1096 again: 1097 page = find_or_create_page(mapping, index, mask); 1098 if (!page) 1099 return ERR_PTR(-ENOMEM); 1100 1101 /* 1102 * Since we can defragment files opened read-only, we can encounter 1103 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We 1104 * can't do I/O using huge pages yet, so return an error for now. 1105 * Filesystem transparent huge pages are typically only used for 1106 * executables that explicitly enable them, so this isn't very 1107 * restrictive. 1108 */ 1109 if (PageCompound(page)) { 1110 unlock_page(page); 1111 put_page(page); 1112 return ERR_PTR(-ETXTBSY); 1113 } 1114 1115 ret = set_page_extent_mapped(page); 1116 if (ret < 0) { 1117 unlock_page(page); 1118 put_page(page); 1119 return ERR_PTR(ret); 1120 } 1121 1122 /* Wait for any existing ordered extent in the range */ 1123 while (1) { 1124 struct btrfs_ordered_extent *ordered; 1125 1126 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 1127 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 1128 unlock_extent_cached(&inode->io_tree, page_start, page_end, 1129 &cached_state); 1130 if (!ordered) 1131 break; 1132 1133 unlock_page(page); 1134 btrfs_start_ordered_extent(ordered, 1); 1135 btrfs_put_ordered_extent(ordered); 1136 lock_page(page); 1137 /* 1138 * We unlocked the page above, so we need check if it was 1139 * released or not. 1140 */ 1141 if (page->mapping != mapping || !PagePrivate(page)) { 1142 unlock_page(page); 1143 put_page(page); 1144 goto again; 1145 } 1146 } 1147 1148 /* 1149 * Now the page range has no ordered extent any more. Read the page to 1150 * make it uptodate. 1151 */ 1152 if (!PageUptodate(page)) { 1153 btrfs_readpage(NULL, page); 1154 lock_page(page); 1155 if (page->mapping != mapping || !PagePrivate(page)) { 1156 unlock_page(page); 1157 put_page(page); 1158 goto again; 1159 } 1160 if (!PageUptodate(page)) { 1161 unlock_page(page); 1162 put_page(page); 1163 return ERR_PTR(-EIO); 1164 } 1165 } 1166 return page; 1167 } 1168 1169 struct defrag_target_range { 1170 struct list_head list; 1171 u64 start; 1172 u64 len; 1173 }; 1174 1175 /* 1176 * Collect all valid target extents. 1177 * 1178 * @start: file offset to lookup 1179 * @len: length to lookup 1180 * @extent_thresh: file extent size threshold, any extent size >= this value 1181 * will be ignored 1182 * @newer_than: only defrag extents newer than this value 1183 * @do_compress: whether the defrag is doing compression 1184 * if true, @extent_thresh will be ignored and all regular 1185 * file extents meeting @newer_than will be targets. 1186 * @locked: if the range has already held extent lock 1187 * @target_list: list of targets file extents 1188 */ 1189 static int defrag_collect_targets(struct btrfs_inode *inode, 1190 u64 start, u64 len, u32 extent_thresh, 1191 u64 newer_than, bool do_compress, 1192 bool locked, struct list_head *target_list) 1193 { 1194 u64 cur = start; 1195 int ret = 0; 1196 1197 while (cur < start + len) { 1198 struct extent_map *em; 1199 struct defrag_target_range *new; 1200 bool next_mergeable = true; 1201 u64 range_len; 1202 1203 em = defrag_lookup_extent(&inode->vfs_inode, cur, locked); 1204 if (!em) 1205 break; 1206 1207 /* Skip hole/inline/preallocated extents */ 1208 if (em->block_start >= EXTENT_MAP_LAST_BYTE || 1209 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1210 goto next; 1211 1212 /* Skip older extent */ 1213 if (em->generation < newer_than) 1214 goto next; 1215 1216 /* 1217 * Our start offset might be in the middle of an existing extent 1218 * map, so take that into account. 1219 */ 1220 range_len = em->len - (cur - em->start); 1221 /* 1222 * If this range of the extent map is already flagged for delalloc, 1223 * skip it, because: 1224 * 1225 * 1) We could deadlock later, when trying to reserve space for 1226 * delalloc, because in case we can't immediately reserve space 1227 * the flusher can start delalloc and wait for the respective 1228 * ordered extents to complete. The deadlock would happen 1229 * because we do the space reservation while holding the range 1230 * locked, and starting writeback, or finishing an ordered 1231 * extent, requires locking the range; 1232 * 1233 * 2) If there's delalloc there, it means there's dirty pages for 1234 * which writeback has not started yet (we clean the delalloc 1235 * flag when starting writeback and after creating an ordered 1236 * extent). If we mark pages in an adjacent range for defrag, 1237 * then we will have a larger contiguous range for delalloc, 1238 * very likely resulting in a larger extent after writeback is 1239 * triggered (except in a case of free space fragmentation). 1240 */ 1241 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1, 1242 EXTENT_DELALLOC, 0, NULL)) 1243 goto next; 1244 1245 /* 1246 * For do_compress case, we want to compress all valid file 1247 * extents, thus no @extent_thresh or mergeable check. 1248 */ 1249 if (do_compress) 1250 goto add; 1251 1252 /* Skip too large extent */ 1253 if (range_len >= extent_thresh) 1254 goto next; 1255 1256 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1257 locked); 1258 if (!next_mergeable) { 1259 struct defrag_target_range *last; 1260 1261 /* Empty target list, no way to merge with last entry */ 1262 if (list_empty(target_list)) 1263 goto next; 1264 last = list_entry(target_list->prev, 1265 struct defrag_target_range, list); 1266 /* Not mergeable with last entry */ 1267 if (last->start + last->len != cur) 1268 goto next; 1269 1270 /* Mergeable, fall through to add it to @target_list. */ 1271 } 1272 1273 add: 1274 range_len = min(extent_map_end(em), start + len) - cur; 1275 /* 1276 * This one is a good target, check if it can be merged into 1277 * last range of the target list. 1278 */ 1279 if (!list_empty(target_list)) { 1280 struct defrag_target_range *last; 1281 1282 last = list_entry(target_list->prev, 1283 struct defrag_target_range, list); 1284 ASSERT(last->start + last->len <= cur); 1285 if (last->start + last->len == cur) { 1286 /* Mergeable, enlarge the last entry */ 1287 last->len += range_len; 1288 goto next; 1289 } 1290 /* Fall through to allocate a new entry */ 1291 } 1292 1293 /* Allocate new defrag_target_range */ 1294 new = kmalloc(sizeof(*new), GFP_NOFS); 1295 if (!new) { 1296 free_extent_map(em); 1297 ret = -ENOMEM; 1298 break; 1299 } 1300 new->start = cur; 1301 new->len = range_len; 1302 list_add_tail(&new->list, target_list); 1303 1304 next: 1305 cur = extent_map_end(em); 1306 free_extent_map(em); 1307 } 1308 if (ret < 0) { 1309 struct defrag_target_range *entry; 1310 struct defrag_target_range *tmp; 1311 1312 list_for_each_entry_safe(entry, tmp, target_list, list) { 1313 list_del_init(&entry->list); 1314 kfree(entry); 1315 } 1316 } 1317 return ret; 1318 } 1319 1320 #define CLUSTER_SIZE (SZ_256K) 1321 1322 /* 1323 * Defrag one contiguous target range. 1324 * 1325 * @inode: target inode 1326 * @target: target range to defrag 1327 * @pages: locked pages covering the defrag range 1328 * @nr_pages: number of locked pages 1329 * 1330 * Caller should ensure: 1331 * 1332 * - Pages are prepared 1333 * Pages should be locked, no ordered extent in the pages range, 1334 * no writeback. 1335 * 1336 * - Extent bits are locked 1337 */ 1338 static int defrag_one_locked_target(struct btrfs_inode *inode, 1339 struct defrag_target_range *target, 1340 struct page **pages, int nr_pages, 1341 struct extent_state **cached_state) 1342 { 1343 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1344 struct extent_changeset *data_reserved = NULL; 1345 const u64 start = target->start; 1346 const u64 len = target->len; 1347 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; 1348 unsigned long start_index = start >> PAGE_SHIFT; 1349 unsigned long first_index = page_index(pages[0]); 1350 int ret = 0; 1351 int i; 1352 1353 ASSERT(last_index - first_index + 1 <= nr_pages); 1354 1355 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1356 if (ret < 0) 1357 return ret; 1358 clear_extent_bit(&inode->io_tree, start, start + len - 1, 1359 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1360 EXTENT_DEFRAG, 0, 0, cached_state); 1361 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state); 1362 1363 /* Update the page status */ 1364 for (i = start_index - first_index; i <= last_index - first_index; i++) { 1365 ClearPageChecked(pages[i]); 1366 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); 1367 } 1368 btrfs_delalloc_release_extents(inode, len); 1369 extent_changeset_free(data_reserved); 1370 1371 return ret; 1372 } 1373 1374 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1375 u32 extent_thresh, u64 newer_than, bool do_compress) 1376 { 1377 struct extent_state *cached_state = NULL; 1378 struct defrag_target_range *entry; 1379 struct defrag_target_range *tmp; 1380 LIST_HEAD(target_list); 1381 struct page **pages; 1382 const u32 sectorsize = inode->root->fs_info->sectorsize; 1383 u64 last_index = (start + len - 1) >> PAGE_SHIFT; 1384 u64 start_index = start >> PAGE_SHIFT; 1385 unsigned int nr_pages = last_index - start_index + 1; 1386 int ret = 0; 1387 int i; 1388 1389 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1390 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1391 1392 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 1393 if (!pages) 1394 return -ENOMEM; 1395 1396 /* Prepare all pages */ 1397 for (i = 0; i < nr_pages; i++) { 1398 pages[i] = defrag_prepare_one_page(inode, start_index + i); 1399 if (IS_ERR(pages[i])) { 1400 ret = PTR_ERR(pages[i]); 1401 pages[i] = NULL; 1402 goto free_pages; 1403 } 1404 } 1405 for (i = 0; i < nr_pages; i++) 1406 wait_on_page_writeback(pages[i]); 1407 1408 /* Lock the pages range */ 1409 lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT, 1410 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1411 &cached_state); 1412 /* 1413 * Now we have a consistent view about the extent map, re-check 1414 * which range really needs to be defragged. 1415 * 1416 * And this time we have extent locked already, pass @locked = true 1417 * so that we won't relock the extent range and cause deadlock. 1418 */ 1419 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1420 newer_than, do_compress, true, 1421 &target_list); 1422 if (ret < 0) 1423 goto unlock_extent; 1424 1425 list_for_each_entry(entry, &target_list, list) { 1426 ret = defrag_one_locked_target(inode, entry, pages, nr_pages, 1427 &cached_state); 1428 if (ret < 0) 1429 break; 1430 } 1431 1432 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1433 list_del_init(&entry->list); 1434 kfree(entry); 1435 } 1436 unlock_extent: 1437 unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT, 1438 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1439 &cached_state); 1440 free_pages: 1441 for (i = 0; i < nr_pages; i++) { 1442 if (pages[i]) { 1443 unlock_page(pages[i]); 1444 put_page(pages[i]); 1445 } 1446 } 1447 kfree(pages); 1448 return ret; 1449 } 1450 1451 static int defrag_one_cluster(struct btrfs_inode *inode, 1452 struct file_ra_state *ra, 1453 u64 start, u32 len, u32 extent_thresh, 1454 u64 newer_than, bool do_compress, 1455 unsigned long *sectors_defragged, 1456 unsigned long max_sectors) 1457 { 1458 const u32 sectorsize = inode->root->fs_info->sectorsize; 1459 struct defrag_target_range *entry; 1460 struct defrag_target_range *tmp; 1461 LIST_HEAD(target_list); 1462 int ret; 1463 1464 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1465 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1466 newer_than, do_compress, false, 1467 &target_list); 1468 if (ret < 0) 1469 goto out; 1470 1471 list_for_each_entry(entry, &target_list, list) { 1472 u32 range_len = entry->len; 1473 1474 /* Reached or beyond the limit */ 1475 if (max_sectors && *sectors_defragged >= max_sectors) { 1476 ret = 1; 1477 break; 1478 } 1479 1480 if (max_sectors) 1481 range_len = min_t(u32, range_len, 1482 (max_sectors - *sectors_defragged) * sectorsize); 1483 1484 if (ra) 1485 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1486 ra, NULL, entry->start >> PAGE_SHIFT, 1487 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1488 (entry->start >> PAGE_SHIFT) + 1); 1489 /* 1490 * Here we may not defrag any range if holes are punched before 1491 * we locked the pages. 1492 * But that's fine, it only affects the @sectors_defragged 1493 * accounting. 1494 */ 1495 ret = defrag_one_range(inode, entry->start, range_len, 1496 extent_thresh, newer_than, do_compress); 1497 if (ret < 0) 1498 break; 1499 *sectors_defragged += range_len >> 1500 inode->root->fs_info->sectorsize_bits; 1501 } 1502 out: 1503 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1504 list_del_init(&entry->list); 1505 kfree(entry); 1506 } 1507 return ret; 1508 } 1509 1510 /* 1511 * Entry point to file defragmentation. 1512 * 1513 * @inode: inode to be defragged 1514 * @ra: readahead state (can be NUL) 1515 * @range: defrag options including range and flags 1516 * @newer_than: minimum transid to defrag 1517 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1518 * will be defragged. 1519 * 1520 * Return <0 for error. 1521 * Return >=0 for the number of sectors defragged, and range->start will be updated 1522 * to indicate the file offset where next defrag should be started at. 1523 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without 1524 * defragging all the range). 1525 */ 1526 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 1527 struct btrfs_ioctl_defrag_range_args *range, 1528 u64 newer_than, unsigned long max_to_defrag) 1529 { 1530 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1531 unsigned long sectors_defragged = 0; 1532 u64 isize = i_size_read(inode); 1533 u64 cur; 1534 u64 last_byte; 1535 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1536 bool ra_allocated = false; 1537 int compress_type = BTRFS_COMPRESS_ZLIB; 1538 int ret = 0; 1539 u32 extent_thresh = range->extent_thresh; 1540 pgoff_t start_index; 1541 1542 if (isize == 0) 1543 return 0; 1544 1545 if (range->start >= isize) 1546 return -EINVAL; 1547 1548 if (do_compress) { 1549 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1550 return -EINVAL; 1551 if (range->compress_type) 1552 compress_type = range->compress_type; 1553 } 1554 1555 if (extent_thresh == 0) 1556 extent_thresh = SZ_256K; 1557 1558 if (range->start + range->len > range->start) { 1559 /* Got a specific range */ 1560 last_byte = min(isize, range->start + range->len); 1561 } else { 1562 /* Defrag until file end */ 1563 last_byte = isize; 1564 } 1565 1566 /* Align the range */ 1567 cur = round_down(range->start, fs_info->sectorsize); 1568 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1569 1570 /* 1571 * If we were not given a ra, allocate a readahead context. As 1572 * readahead is just an optimization, defrag will work without it so 1573 * we don't error out. 1574 */ 1575 if (!ra) { 1576 ra_allocated = true; 1577 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1578 if (ra) 1579 file_ra_state_init(ra, inode->i_mapping); 1580 } 1581 1582 /* 1583 * Make writeback start from the beginning of the range, so that the 1584 * defrag range can be written sequentially. 1585 */ 1586 start_index = cur >> PAGE_SHIFT; 1587 if (start_index < inode->i_mapping->writeback_index) 1588 inode->i_mapping->writeback_index = start_index; 1589 1590 while (cur < last_byte) { 1591 const unsigned long prev_sectors_defragged = sectors_defragged; 1592 u64 cluster_end; 1593 1594 /* The cluster size 256K should always be page aligned */ 1595 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1596 1597 if (btrfs_defrag_cancelled(fs_info)) { 1598 ret = -EAGAIN; 1599 break; 1600 } 1601 1602 /* We want the cluster end at page boundary when possible */ 1603 cluster_end = (((cur >> PAGE_SHIFT) + 1604 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1605 cluster_end = min(cluster_end, last_byte); 1606 1607 btrfs_inode_lock(inode, 0); 1608 if (IS_SWAPFILE(inode)) { 1609 ret = -ETXTBSY; 1610 btrfs_inode_unlock(inode, 0); 1611 break; 1612 } 1613 if (!(inode->i_sb->s_flags & SB_ACTIVE)) { 1614 btrfs_inode_unlock(inode, 0); 1615 break; 1616 } 1617 if (do_compress) 1618 BTRFS_I(inode)->defrag_compress = compress_type; 1619 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, 1620 cluster_end + 1 - cur, extent_thresh, 1621 newer_than, do_compress, 1622 §ors_defragged, max_to_defrag); 1623 1624 if (sectors_defragged > prev_sectors_defragged) 1625 balance_dirty_pages_ratelimited(inode->i_mapping); 1626 1627 btrfs_inode_unlock(inode, 0); 1628 if (ret < 0) 1629 break; 1630 cur = cluster_end + 1; 1631 if (ret > 0) { 1632 ret = 0; 1633 break; 1634 } 1635 } 1636 1637 if (ra_allocated) 1638 kfree(ra); 1639 /* 1640 * Update range.start for autodefrag, this will indicate where to start 1641 * in next run. 1642 */ 1643 range->start = cur; 1644 if (sectors_defragged) { 1645 /* 1646 * We have defragged some sectors, for compression case they 1647 * need to be written back immediately. 1648 */ 1649 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1650 filemap_flush(inode->i_mapping); 1651 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1652 &BTRFS_I(inode)->runtime_flags)) 1653 filemap_flush(inode->i_mapping); 1654 } 1655 if (range->compress_type == BTRFS_COMPRESS_LZO) 1656 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1657 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1658 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1659 ret = sectors_defragged; 1660 } 1661 if (do_compress) { 1662 btrfs_inode_lock(inode, 0); 1663 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1664 btrfs_inode_unlock(inode, 0); 1665 } 1666 return ret; 1667 } 1668 1669 /* 1670 * Try to start exclusive operation @type or cancel it if it's running. 1671 * 1672 * Return: 1673 * 0 - normal mode, newly claimed op started 1674 * >0 - normal mode, something else is running, 1675 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1676 * ECANCELED - cancel mode, successful cancel 1677 * ENOTCONN - cancel mode, operation not running anymore 1678 */ 1679 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1680 enum btrfs_exclusive_operation type, bool cancel) 1681 { 1682 if (!cancel) { 1683 /* Start normal op */ 1684 if (!btrfs_exclop_start(fs_info, type)) 1685 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1686 /* Exclusive operation is now claimed */ 1687 return 0; 1688 } 1689 1690 /* Cancel running op */ 1691 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1692 /* 1693 * This blocks any exclop finish from setting it to NONE, so we 1694 * request cancellation. Either it runs and we will wait for it, 1695 * or it has finished and no waiting will happen. 1696 */ 1697 atomic_inc(&fs_info->reloc_cancel_req); 1698 btrfs_exclop_start_unlock(fs_info); 1699 1700 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1701 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1702 TASK_INTERRUPTIBLE); 1703 1704 return -ECANCELED; 1705 } 1706 1707 /* Something else is running or none */ 1708 return -ENOTCONN; 1709 } 1710 1711 static noinline int btrfs_ioctl_resize(struct file *file, 1712 void __user *arg) 1713 { 1714 BTRFS_DEV_LOOKUP_ARGS(args); 1715 struct inode *inode = file_inode(file); 1716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1717 u64 new_size; 1718 u64 old_size; 1719 u64 devid = 1; 1720 struct btrfs_root *root = BTRFS_I(inode)->root; 1721 struct btrfs_ioctl_vol_args *vol_args; 1722 struct btrfs_trans_handle *trans; 1723 struct btrfs_device *device = NULL; 1724 char *sizestr; 1725 char *retptr; 1726 char *devstr = NULL; 1727 int ret = 0; 1728 int mod = 0; 1729 bool cancel; 1730 1731 if (!capable(CAP_SYS_ADMIN)) 1732 return -EPERM; 1733 1734 ret = mnt_want_write_file(file); 1735 if (ret) 1736 return ret; 1737 1738 /* 1739 * Read the arguments before checking exclusivity to be able to 1740 * distinguish regular resize and cancel 1741 */ 1742 vol_args = memdup_user(arg, sizeof(*vol_args)); 1743 if (IS_ERR(vol_args)) { 1744 ret = PTR_ERR(vol_args); 1745 goto out_drop; 1746 } 1747 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1748 sizestr = vol_args->name; 1749 cancel = (strcmp("cancel", sizestr) == 0); 1750 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1751 if (ret) 1752 goto out_free; 1753 /* Exclusive operation is now claimed */ 1754 1755 devstr = strchr(sizestr, ':'); 1756 if (devstr) { 1757 sizestr = devstr + 1; 1758 *devstr = '\0'; 1759 devstr = vol_args->name; 1760 ret = kstrtoull(devstr, 10, &devid); 1761 if (ret) 1762 goto out_finish; 1763 if (!devid) { 1764 ret = -EINVAL; 1765 goto out_finish; 1766 } 1767 btrfs_info(fs_info, "resizing devid %llu", devid); 1768 } 1769 1770 args.devid = devid; 1771 device = btrfs_find_device(fs_info->fs_devices, &args); 1772 if (!device) { 1773 btrfs_info(fs_info, "resizer unable to find device %llu", 1774 devid); 1775 ret = -ENODEV; 1776 goto out_finish; 1777 } 1778 1779 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1780 btrfs_info(fs_info, 1781 "resizer unable to apply on readonly device %llu", 1782 devid); 1783 ret = -EPERM; 1784 goto out_finish; 1785 } 1786 1787 if (!strcmp(sizestr, "max")) 1788 new_size = bdev_nr_bytes(device->bdev); 1789 else { 1790 if (sizestr[0] == '-') { 1791 mod = -1; 1792 sizestr++; 1793 } else if (sizestr[0] == '+') { 1794 mod = 1; 1795 sizestr++; 1796 } 1797 new_size = memparse(sizestr, &retptr); 1798 if (*retptr != '\0' || new_size == 0) { 1799 ret = -EINVAL; 1800 goto out_finish; 1801 } 1802 } 1803 1804 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1805 ret = -EPERM; 1806 goto out_finish; 1807 } 1808 1809 old_size = btrfs_device_get_total_bytes(device); 1810 1811 if (mod < 0) { 1812 if (new_size > old_size) { 1813 ret = -EINVAL; 1814 goto out_finish; 1815 } 1816 new_size = old_size - new_size; 1817 } else if (mod > 0) { 1818 if (new_size > ULLONG_MAX - old_size) { 1819 ret = -ERANGE; 1820 goto out_finish; 1821 } 1822 new_size = old_size + new_size; 1823 } 1824 1825 if (new_size < SZ_256M) { 1826 ret = -EINVAL; 1827 goto out_finish; 1828 } 1829 if (new_size > bdev_nr_bytes(device->bdev)) { 1830 ret = -EFBIG; 1831 goto out_finish; 1832 } 1833 1834 new_size = round_down(new_size, fs_info->sectorsize); 1835 1836 if (new_size > old_size) { 1837 trans = btrfs_start_transaction(root, 0); 1838 if (IS_ERR(trans)) { 1839 ret = PTR_ERR(trans); 1840 goto out_finish; 1841 } 1842 ret = btrfs_grow_device(trans, device, new_size); 1843 btrfs_commit_transaction(trans); 1844 } else if (new_size < old_size) { 1845 ret = btrfs_shrink_device(device, new_size); 1846 } /* equal, nothing need to do */ 1847 1848 if (ret == 0 && new_size != old_size) 1849 btrfs_info_in_rcu(fs_info, 1850 "resize device %s (devid %llu) from %llu to %llu", 1851 rcu_str_deref(device->name), device->devid, 1852 old_size, new_size); 1853 out_finish: 1854 btrfs_exclop_finish(fs_info); 1855 out_free: 1856 kfree(vol_args); 1857 out_drop: 1858 mnt_drop_write_file(file); 1859 return ret; 1860 } 1861 1862 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1863 struct user_namespace *mnt_userns, 1864 const char *name, unsigned long fd, int subvol, 1865 bool readonly, 1866 struct btrfs_qgroup_inherit *inherit) 1867 { 1868 int namelen; 1869 int ret = 0; 1870 1871 if (!S_ISDIR(file_inode(file)->i_mode)) 1872 return -ENOTDIR; 1873 1874 ret = mnt_want_write_file(file); 1875 if (ret) 1876 goto out; 1877 1878 namelen = strlen(name); 1879 if (strchr(name, '/')) { 1880 ret = -EINVAL; 1881 goto out_drop_write; 1882 } 1883 1884 if (name[0] == '.' && 1885 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1886 ret = -EEXIST; 1887 goto out_drop_write; 1888 } 1889 1890 if (subvol) { 1891 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, 1892 namelen, NULL, readonly, inherit); 1893 } else { 1894 struct fd src = fdget(fd); 1895 struct inode *src_inode; 1896 if (!src.file) { 1897 ret = -EINVAL; 1898 goto out_drop_write; 1899 } 1900 1901 src_inode = file_inode(src.file); 1902 if (src_inode->i_sb != file_inode(file)->i_sb) { 1903 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1904 "Snapshot src from another FS"); 1905 ret = -EXDEV; 1906 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { 1907 /* 1908 * Subvolume creation is not restricted, but snapshots 1909 * are limited to own subvolumes only 1910 */ 1911 ret = -EPERM; 1912 } else { 1913 ret = btrfs_mksnapshot(&file->f_path, mnt_userns, 1914 name, namelen, 1915 BTRFS_I(src_inode)->root, 1916 readonly, inherit); 1917 } 1918 fdput(src); 1919 } 1920 out_drop_write: 1921 mnt_drop_write_file(file); 1922 out: 1923 return ret; 1924 } 1925 1926 static noinline int btrfs_ioctl_snap_create(struct file *file, 1927 void __user *arg, int subvol) 1928 { 1929 struct btrfs_ioctl_vol_args *vol_args; 1930 int ret; 1931 1932 if (!S_ISDIR(file_inode(file)->i_mode)) 1933 return -ENOTDIR; 1934 1935 vol_args = memdup_user(arg, sizeof(*vol_args)); 1936 if (IS_ERR(vol_args)) 1937 return PTR_ERR(vol_args); 1938 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1939 1940 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1941 vol_args->name, vol_args->fd, subvol, 1942 false, NULL); 1943 1944 kfree(vol_args); 1945 return ret; 1946 } 1947 1948 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1949 void __user *arg, int subvol) 1950 { 1951 struct btrfs_ioctl_vol_args_v2 *vol_args; 1952 int ret; 1953 bool readonly = false; 1954 struct btrfs_qgroup_inherit *inherit = NULL; 1955 1956 if (!S_ISDIR(file_inode(file)->i_mode)) 1957 return -ENOTDIR; 1958 1959 vol_args = memdup_user(arg, sizeof(*vol_args)); 1960 if (IS_ERR(vol_args)) 1961 return PTR_ERR(vol_args); 1962 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1963 1964 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1965 ret = -EOPNOTSUPP; 1966 goto free_args; 1967 } 1968 1969 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1970 readonly = true; 1971 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1972 u64 nums; 1973 1974 if (vol_args->size < sizeof(*inherit) || 1975 vol_args->size > PAGE_SIZE) { 1976 ret = -EINVAL; 1977 goto free_args; 1978 } 1979 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1980 if (IS_ERR(inherit)) { 1981 ret = PTR_ERR(inherit); 1982 goto free_args; 1983 } 1984 1985 if (inherit->num_qgroups > PAGE_SIZE || 1986 inherit->num_ref_copies > PAGE_SIZE || 1987 inherit->num_excl_copies > PAGE_SIZE) { 1988 ret = -EINVAL; 1989 goto free_inherit; 1990 } 1991 1992 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1993 2 * inherit->num_excl_copies; 1994 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1995 ret = -EINVAL; 1996 goto free_inherit; 1997 } 1998 } 1999 2000 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 2001 vol_args->name, vol_args->fd, subvol, 2002 readonly, inherit); 2003 if (ret) 2004 goto free_inherit; 2005 free_inherit: 2006 kfree(inherit); 2007 free_args: 2008 kfree(vol_args); 2009 return ret; 2010 } 2011 2012 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 2013 void __user *arg) 2014 { 2015 struct inode *inode = file_inode(file); 2016 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2017 struct btrfs_root *root = BTRFS_I(inode)->root; 2018 int ret = 0; 2019 u64 flags = 0; 2020 2021 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 2022 return -EINVAL; 2023 2024 down_read(&fs_info->subvol_sem); 2025 if (btrfs_root_readonly(root)) 2026 flags |= BTRFS_SUBVOL_RDONLY; 2027 up_read(&fs_info->subvol_sem); 2028 2029 if (copy_to_user(arg, &flags, sizeof(flags))) 2030 ret = -EFAULT; 2031 2032 return ret; 2033 } 2034 2035 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 2036 void __user *arg) 2037 { 2038 struct inode *inode = file_inode(file); 2039 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2040 struct btrfs_root *root = BTRFS_I(inode)->root; 2041 struct btrfs_trans_handle *trans; 2042 u64 root_flags; 2043 u64 flags; 2044 int ret = 0; 2045 2046 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) 2047 return -EPERM; 2048 2049 ret = mnt_want_write_file(file); 2050 if (ret) 2051 goto out; 2052 2053 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2054 ret = -EINVAL; 2055 goto out_drop_write; 2056 } 2057 2058 if (copy_from_user(&flags, arg, sizeof(flags))) { 2059 ret = -EFAULT; 2060 goto out_drop_write; 2061 } 2062 2063 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2064 ret = -EOPNOTSUPP; 2065 goto out_drop_write; 2066 } 2067 2068 down_write(&fs_info->subvol_sem); 2069 2070 /* nothing to do */ 2071 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2072 goto out_drop_sem; 2073 2074 root_flags = btrfs_root_flags(&root->root_item); 2075 if (flags & BTRFS_SUBVOL_RDONLY) { 2076 btrfs_set_root_flags(&root->root_item, 2077 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2078 } else { 2079 /* 2080 * Block RO -> RW transition if this subvolume is involved in 2081 * send 2082 */ 2083 spin_lock(&root->root_item_lock); 2084 if (root->send_in_progress == 0) { 2085 btrfs_set_root_flags(&root->root_item, 2086 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2087 spin_unlock(&root->root_item_lock); 2088 } else { 2089 spin_unlock(&root->root_item_lock); 2090 btrfs_warn(fs_info, 2091 "Attempt to set subvolume %llu read-write during send", 2092 root->root_key.objectid); 2093 ret = -EPERM; 2094 goto out_drop_sem; 2095 } 2096 } 2097 2098 trans = btrfs_start_transaction(root, 1); 2099 if (IS_ERR(trans)) { 2100 ret = PTR_ERR(trans); 2101 goto out_reset; 2102 } 2103 2104 ret = btrfs_update_root(trans, fs_info->tree_root, 2105 &root->root_key, &root->root_item); 2106 if (ret < 0) { 2107 btrfs_end_transaction(trans); 2108 goto out_reset; 2109 } 2110 2111 ret = btrfs_commit_transaction(trans); 2112 2113 out_reset: 2114 if (ret) 2115 btrfs_set_root_flags(&root->root_item, root_flags); 2116 out_drop_sem: 2117 up_write(&fs_info->subvol_sem); 2118 out_drop_write: 2119 mnt_drop_write_file(file); 2120 out: 2121 return ret; 2122 } 2123 2124 static noinline int key_in_sk(struct btrfs_key *key, 2125 struct btrfs_ioctl_search_key *sk) 2126 { 2127 struct btrfs_key test; 2128 int ret; 2129 2130 test.objectid = sk->min_objectid; 2131 test.type = sk->min_type; 2132 test.offset = sk->min_offset; 2133 2134 ret = btrfs_comp_cpu_keys(key, &test); 2135 if (ret < 0) 2136 return 0; 2137 2138 test.objectid = sk->max_objectid; 2139 test.type = sk->max_type; 2140 test.offset = sk->max_offset; 2141 2142 ret = btrfs_comp_cpu_keys(key, &test); 2143 if (ret > 0) 2144 return 0; 2145 return 1; 2146 } 2147 2148 static noinline int copy_to_sk(struct btrfs_path *path, 2149 struct btrfs_key *key, 2150 struct btrfs_ioctl_search_key *sk, 2151 size_t *buf_size, 2152 char __user *ubuf, 2153 unsigned long *sk_offset, 2154 int *num_found) 2155 { 2156 u64 found_transid; 2157 struct extent_buffer *leaf; 2158 struct btrfs_ioctl_search_header sh; 2159 struct btrfs_key test; 2160 unsigned long item_off; 2161 unsigned long item_len; 2162 int nritems; 2163 int i; 2164 int slot; 2165 int ret = 0; 2166 2167 leaf = path->nodes[0]; 2168 slot = path->slots[0]; 2169 nritems = btrfs_header_nritems(leaf); 2170 2171 if (btrfs_header_generation(leaf) > sk->max_transid) { 2172 i = nritems; 2173 goto advance_key; 2174 } 2175 found_transid = btrfs_header_generation(leaf); 2176 2177 for (i = slot; i < nritems; i++) { 2178 item_off = btrfs_item_ptr_offset(leaf, i); 2179 item_len = btrfs_item_size(leaf, i); 2180 2181 btrfs_item_key_to_cpu(leaf, key, i); 2182 if (!key_in_sk(key, sk)) 2183 continue; 2184 2185 if (sizeof(sh) + item_len > *buf_size) { 2186 if (*num_found) { 2187 ret = 1; 2188 goto out; 2189 } 2190 2191 /* 2192 * return one empty item back for v1, which does not 2193 * handle -EOVERFLOW 2194 */ 2195 2196 *buf_size = sizeof(sh) + item_len; 2197 item_len = 0; 2198 ret = -EOVERFLOW; 2199 } 2200 2201 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2202 ret = 1; 2203 goto out; 2204 } 2205 2206 sh.objectid = key->objectid; 2207 sh.offset = key->offset; 2208 sh.type = key->type; 2209 sh.len = item_len; 2210 sh.transid = found_transid; 2211 2212 /* 2213 * Copy search result header. If we fault then loop again so we 2214 * can fault in the pages and -EFAULT there if there's a 2215 * problem. Otherwise we'll fault and then copy the buffer in 2216 * properly this next time through 2217 */ 2218 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2219 ret = 0; 2220 goto out; 2221 } 2222 2223 *sk_offset += sizeof(sh); 2224 2225 if (item_len) { 2226 char __user *up = ubuf + *sk_offset; 2227 /* 2228 * Copy the item, same behavior as above, but reset the 2229 * * sk_offset so we copy the full thing again. 2230 */ 2231 if (read_extent_buffer_to_user_nofault(leaf, up, 2232 item_off, item_len)) { 2233 ret = 0; 2234 *sk_offset -= sizeof(sh); 2235 goto out; 2236 } 2237 2238 *sk_offset += item_len; 2239 } 2240 (*num_found)++; 2241 2242 if (ret) /* -EOVERFLOW from above */ 2243 goto out; 2244 2245 if (*num_found >= sk->nr_items) { 2246 ret = 1; 2247 goto out; 2248 } 2249 } 2250 advance_key: 2251 ret = 0; 2252 test.objectid = sk->max_objectid; 2253 test.type = sk->max_type; 2254 test.offset = sk->max_offset; 2255 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2256 ret = 1; 2257 else if (key->offset < (u64)-1) 2258 key->offset++; 2259 else if (key->type < (u8)-1) { 2260 key->offset = 0; 2261 key->type++; 2262 } else if (key->objectid < (u64)-1) { 2263 key->offset = 0; 2264 key->type = 0; 2265 key->objectid++; 2266 } else 2267 ret = 1; 2268 out: 2269 /* 2270 * 0: all items from this leaf copied, continue with next 2271 * 1: * more items can be copied, but unused buffer is too small 2272 * * all items were found 2273 * Either way, it will stops the loop which iterates to the next 2274 * leaf 2275 * -EOVERFLOW: item was to large for buffer 2276 * -EFAULT: could not copy extent buffer back to userspace 2277 */ 2278 return ret; 2279 } 2280 2281 static noinline int search_ioctl(struct inode *inode, 2282 struct btrfs_ioctl_search_key *sk, 2283 size_t *buf_size, 2284 char __user *ubuf) 2285 { 2286 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2287 struct btrfs_root *root; 2288 struct btrfs_key key; 2289 struct btrfs_path *path; 2290 int ret; 2291 int num_found = 0; 2292 unsigned long sk_offset = 0; 2293 2294 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2295 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2296 return -EOVERFLOW; 2297 } 2298 2299 path = btrfs_alloc_path(); 2300 if (!path) 2301 return -ENOMEM; 2302 2303 if (sk->tree_id == 0) { 2304 /* search the root of the inode that was passed */ 2305 root = btrfs_grab_root(BTRFS_I(inode)->root); 2306 } else { 2307 root = btrfs_get_fs_root(info, sk->tree_id, true); 2308 if (IS_ERR(root)) { 2309 btrfs_free_path(path); 2310 return PTR_ERR(root); 2311 } 2312 } 2313 2314 key.objectid = sk->min_objectid; 2315 key.type = sk->min_type; 2316 key.offset = sk->min_offset; 2317 2318 while (1) { 2319 ret = -EFAULT; 2320 if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset)) 2321 break; 2322 2323 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2324 if (ret != 0) { 2325 if (ret > 0) 2326 ret = 0; 2327 goto err; 2328 } 2329 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2330 &sk_offset, &num_found); 2331 btrfs_release_path(path); 2332 if (ret) 2333 break; 2334 2335 } 2336 if (ret > 0) 2337 ret = 0; 2338 err: 2339 sk->nr_items = num_found; 2340 btrfs_put_root(root); 2341 btrfs_free_path(path); 2342 return ret; 2343 } 2344 2345 static noinline int btrfs_ioctl_tree_search(struct file *file, 2346 void __user *argp) 2347 { 2348 struct btrfs_ioctl_search_args __user *uargs; 2349 struct btrfs_ioctl_search_key sk; 2350 struct inode *inode; 2351 int ret; 2352 size_t buf_size; 2353 2354 if (!capable(CAP_SYS_ADMIN)) 2355 return -EPERM; 2356 2357 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2358 2359 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2360 return -EFAULT; 2361 2362 buf_size = sizeof(uargs->buf); 2363 2364 inode = file_inode(file); 2365 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2366 2367 /* 2368 * In the origin implementation an overflow is handled by returning a 2369 * search header with a len of zero, so reset ret. 2370 */ 2371 if (ret == -EOVERFLOW) 2372 ret = 0; 2373 2374 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2375 ret = -EFAULT; 2376 return ret; 2377 } 2378 2379 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2380 void __user *argp) 2381 { 2382 struct btrfs_ioctl_search_args_v2 __user *uarg; 2383 struct btrfs_ioctl_search_args_v2 args; 2384 struct inode *inode; 2385 int ret; 2386 size_t buf_size; 2387 const size_t buf_limit = SZ_16M; 2388 2389 if (!capable(CAP_SYS_ADMIN)) 2390 return -EPERM; 2391 2392 /* copy search header and buffer size */ 2393 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2394 if (copy_from_user(&args, uarg, sizeof(args))) 2395 return -EFAULT; 2396 2397 buf_size = args.buf_size; 2398 2399 /* limit result size to 16MB */ 2400 if (buf_size > buf_limit) 2401 buf_size = buf_limit; 2402 2403 inode = file_inode(file); 2404 ret = search_ioctl(inode, &args.key, &buf_size, 2405 (char __user *)(&uarg->buf[0])); 2406 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2407 ret = -EFAULT; 2408 else if (ret == -EOVERFLOW && 2409 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2410 ret = -EFAULT; 2411 2412 return ret; 2413 } 2414 2415 /* 2416 * Search INODE_REFs to identify path name of 'dirid' directory 2417 * in a 'tree_id' tree. and sets path name to 'name'. 2418 */ 2419 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2420 u64 tree_id, u64 dirid, char *name) 2421 { 2422 struct btrfs_root *root; 2423 struct btrfs_key key; 2424 char *ptr; 2425 int ret = -1; 2426 int slot; 2427 int len; 2428 int total_len = 0; 2429 struct btrfs_inode_ref *iref; 2430 struct extent_buffer *l; 2431 struct btrfs_path *path; 2432 2433 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2434 name[0]='\0'; 2435 return 0; 2436 } 2437 2438 path = btrfs_alloc_path(); 2439 if (!path) 2440 return -ENOMEM; 2441 2442 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2443 2444 root = btrfs_get_fs_root(info, tree_id, true); 2445 if (IS_ERR(root)) { 2446 ret = PTR_ERR(root); 2447 root = NULL; 2448 goto out; 2449 } 2450 2451 key.objectid = dirid; 2452 key.type = BTRFS_INODE_REF_KEY; 2453 key.offset = (u64)-1; 2454 2455 while (1) { 2456 ret = btrfs_search_backwards(root, &key, path); 2457 if (ret < 0) 2458 goto out; 2459 else if (ret > 0) { 2460 ret = -ENOENT; 2461 goto out; 2462 } 2463 2464 l = path->nodes[0]; 2465 slot = path->slots[0]; 2466 2467 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2468 len = btrfs_inode_ref_name_len(l, iref); 2469 ptr -= len + 1; 2470 total_len += len + 1; 2471 if (ptr < name) { 2472 ret = -ENAMETOOLONG; 2473 goto out; 2474 } 2475 2476 *(ptr + len) = '/'; 2477 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2478 2479 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2480 break; 2481 2482 btrfs_release_path(path); 2483 key.objectid = key.offset; 2484 key.offset = (u64)-1; 2485 dirid = key.objectid; 2486 } 2487 memmove(name, ptr, total_len); 2488 name[total_len] = '\0'; 2489 ret = 0; 2490 out: 2491 btrfs_put_root(root); 2492 btrfs_free_path(path); 2493 return ret; 2494 } 2495 2496 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, 2497 struct inode *inode, 2498 struct btrfs_ioctl_ino_lookup_user_args *args) 2499 { 2500 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2501 struct super_block *sb = inode->i_sb; 2502 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2503 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2504 u64 dirid = args->dirid; 2505 unsigned long item_off; 2506 unsigned long item_len; 2507 struct btrfs_inode_ref *iref; 2508 struct btrfs_root_ref *rref; 2509 struct btrfs_root *root = NULL; 2510 struct btrfs_path *path; 2511 struct btrfs_key key, key2; 2512 struct extent_buffer *leaf; 2513 struct inode *temp_inode; 2514 char *ptr; 2515 int slot; 2516 int len; 2517 int total_len = 0; 2518 int ret; 2519 2520 path = btrfs_alloc_path(); 2521 if (!path) 2522 return -ENOMEM; 2523 2524 /* 2525 * If the bottom subvolume does not exist directly under upper_limit, 2526 * construct the path in from the bottom up. 2527 */ 2528 if (dirid != upper_limit.objectid) { 2529 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2530 2531 root = btrfs_get_fs_root(fs_info, treeid, true); 2532 if (IS_ERR(root)) { 2533 ret = PTR_ERR(root); 2534 goto out; 2535 } 2536 2537 key.objectid = dirid; 2538 key.type = BTRFS_INODE_REF_KEY; 2539 key.offset = (u64)-1; 2540 while (1) { 2541 ret = btrfs_search_backwards(root, &key, path); 2542 if (ret < 0) 2543 goto out_put; 2544 else if (ret > 0) { 2545 ret = -ENOENT; 2546 goto out_put; 2547 } 2548 2549 leaf = path->nodes[0]; 2550 slot = path->slots[0]; 2551 2552 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2553 len = btrfs_inode_ref_name_len(leaf, iref); 2554 ptr -= len + 1; 2555 total_len += len + 1; 2556 if (ptr < args->path) { 2557 ret = -ENAMETOOLONG; 2558 goto out_put; 2559 } 2560 2561 *(ptr + len) = '/'; 2562 read_extent_buffer(leaf, ptr, 2563 (unsigned long)(iref + 1), len); 2564 2565 /* Check the read+exec permission of this directory */ 2566 ret = btrfs_previous_item(root, path, dirid, 2567 BTRFS_INODE_ITEM_KEY); 2568 if (ret < 0) { 2569 goto out_put; 2570 } else if (ret > 0) { 2571 ret = -ENOENT; 2572 goto out_put; 2573 } 2574 2575 leaf = path->nodes[0]; 2576 slot = path->slots[0]; 2577 btrfs_item_key_to_cpu(leaf, &key2, slot); 2578 if (key2.objectid != dirid) { 2579 ret = -ENOENT; 2580 goto out_put; 2581 } 2582 2583 temp_inode = btrfs_iget(sb, key2.objectid, root); 2584 if (IS_ERR(temp_inode)) { 2585 ret = PTR_ERR(temp_inode); 2586 goto out_put; 2587 } 2588 ret = inode_permission(mnt_userns, temp_inode, 2589 MAY_READ | MAY_EXEC); 2590 iput(temp_inode); 2591 if (ret) { 2592 ret = -EACCES; 2593 goto out_put; 2594 } 2595 2596 if (key.offset == upper_limit.objectid) 2597 break; 2598 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2599 ret = -EACCES; 2600 goto out_put; 2601 } 2602 2603 btrfs_release_path(path); 2604 key.objectid = key.offset; 2605 key.offset = (u64)-1; 2606 dirid = key.objectid; 2607 } 2608 2609 memmove(args->path, ptr, total_len); 2610 args->path[total_len] = '\0'; 2611 btrfs_put_root(root); 2612 root = NULL; 2613 btrfs_release_path(path); 2614 } 2615 2616 /* Get the bottom subvolume's name from ROOT_REF */ 2617 key.objectid = treeid; 2618 key.type = BTRFS_ROOT_REF_KEY; 2619 key.offset = args->treeid; 2620 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2621 if (ret < 0) { 2622 goto out; 2623 } else if (ret > 0) { 2624 ret = -ENOENT; 2625 goto out; 2626 } 2627 2628 leaf = path->nodes[0]; 2629 slot = path->slots[0]; 2630 btrfs_item_key_to_cpu(leaf, &key, slot); 2631 2632 item_off = btrfs_item_ptr_offset(leaf, slot); 2633 item_len = btrfs_item_size(leaf, slot); 2634 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2635 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2636 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2637 ret = -EINVAL; 2638 goto out; 2639 } 2640 2641 /* Copy subvolume's name */ 2642 item_off += sizeof(struct btrfs_root_ref); 2643 item_len -= sizeof(struct btrfs_root_ref); 2644 read_extent_buffer(leaf, args->name, item_off, item_len); 2645 args->name[item_len] = 0; 2646 2647 out_put: 2648 btrfs_put_root(root); 2649 out: 2650 btrfs_free_path(path); 2651 return ret; 2652 } 2653 2654 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2655 void __user *argp) 2656 { 2657 struct btrfs_ioctl_ino_lookup_args *args; 2658 struct inode *inode; 2659 int ret = 0; 2660 2661 args = memdup_user(argp, sizeof(*args)); 2662 if (IS_ERR(args)) 2663 return PTR_ERR(args); 2664 2665 inode = file_inode(file); 2666 2667 /* 2668 * Unprivileged query to obtain the containing subvolume root id. The 2669 * path is reset so it's consistent with btrfs_search_path_in_tree. 2670 */ 2671 if (args->treeid == 0) 2672 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2673 2674 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2675 args->name[0] = 0; 2676 goto out; 2677 } 2678 2679 if (!capable(CAP_SYS_ADMIN)) { 2680 ret = -EPERM; 2681 goto out; 2682 } 2683 2684 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2685 args->treeid, args->objectid, 2686 args->name); 2687 2688 out: 2689 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2690 ret = -EFAULT; 2691 2692 kfree(args); 2693 return ret; 2694 } 2695 2696 /* 2697 * Version of ino_lookup ioctl (unprivileged) 2698 * 2699 * The main differences from ino_lookup ioctl are: 2700 * 2701 * 1. Read + Exec permission will be checked using inode_permission() during 2702 * path construction. -EACCES will be returned in case of failure. 2703 * 2. Path construction will be stopped at the inode number which corresponds 2704 * to the fd with which this ioctl is called. If constructed path does not 2705 * exist under fd's inode, -EACCES will be returned. 2706 * 3. The name of bottom subvolume is also searched and filled. 2707 */ 2708 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2709 { 2710 struct btrfs_ioctl_ino_lookup_user_args *args; 2711 struct inode *inode; 2712 int ret; 2713 2714 args = memdup_user(argp, sizeof(*args)); 2715 if (IS_ERR(args)) 2716 return PTR_ERR(args); 2717 2718 inode = file_inode(file); 2719 2720 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2721 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2722 /* 2723 * The subvolume does not exist under fd with which this is 2724 * called 2725 */ 2726 kfree(args); 2727 return -EACCES; 2728 } 2729 2730 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); 2731 2732 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2733 ret = -EFAULT; 2734 2735 kfree(args); 2736 return ret; 2737 } 2738 2739 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2740 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2741 { 2742 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2743 struct btrfs_fs_info *fs_info; 2744 struct btrfs_root *root; 2745 struct btrfs_path *path; 2746 struct btrfs_key key; 2747 struct btrfs_root_item *root_item; 2748 struct btrfs_root_ref *rref; 2749 struct extent_buffer *leaf; 2750 unsigned long item_off; 2751 unsigned long item_len; 2752 struct inode *inode; 2753 int slot; 2754 int ret = 0; 2755 2756 path = btrfs_alloc_path(); 2757 if (!path) 2758 return -ENOMEM; 2759 2760 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2761 if (!subvol_info) { 2762 btrfs_free_path(path); 2763 return -ENOMEM; 2764 } 2765 2766 inode = file_inode(file); 2767 fs_info = BTRFS_I(inode)->root->fs_info; 2768 2769 /* Get root_item of inode's subvolume */ 2770 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2771 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2772 if (IS_ERR(root)) { 2773 ret = PTR_ERR(root); 2774 goto out_free; 2775 } 2776 root_item = &root->root_item; 2777 2778 subvol_info->treeid = key.objectid; 2779 2780 subvol_info->generation = btrfs_root_generation(root_item); 2781 subvol_info->flags = btrfs_root_flags(root_item); 2782 2783 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2784 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2785 BTRFS_UUID_SIZE); 2786 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2787 BTRFS_UUID_SIZE); 2788 2789 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2790 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2791 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2792 2793 subvol_info->otransid = btrfs_root_otransid(root_item); 2794 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2795 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2796 2797 subvol_info->stransid = btrfs_root_stransid(root_item); 2798 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2799 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2800 2801 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2802 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2803 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2804 2805 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2806 /* Search root tree for ROOT_BACKREF of this subvolume */ 2807 key.type = BTRFS_ROOT_BACKREF_KEY; 2808 key.offset = 0; 2809 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2810 if (ret < 0) { 2811 goto out; 2812 } else if (path->slots[0] >= 2813 btrfs_header_nritems(path->nodes[0])) { 2814 ret = btrfs_next_leaf(fs_info->tree_root, path); 2815 if (ret < 0) { 2816 goto out; 2817 } else if (ret > 0) { 2818 ret = -EUCLEAN; 2819 goto out; 2820 } 2821 } 2822 2823 leaf = path->nodes[0]; 2824 slot = path->slots[0]; 2825 btrfs_item_key_to_cpu(leaf, &key, slot); 2826 if (key.objectid == subvol_info->treeid && 2827 key.type == BTRFS_ROOT_BACKREF_KEY) { 2828 subvol_info->parent_id = key.offset; 2829 2830 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2831 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2832 2833 item_off = btrfs_item_ptr_offset(leaf, slot) 2834 + sizeof(struct btrfs_root_ref); 2835 item_len = btrfs_item_size(leaf, slot) 2836 - sizeof(struct btrfs_root_ref); 2837 read_extent_buffer(leaf, subvol_info->name, 2838 item_off, item_len); 2839 } else { 2840 ret = -ENOENT; 2841 goto out; 2842 } 2843 } 2844 2845 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2846 ret = -EFAULT; 2847 2848 out: 2849 btrfs_put_root(root); 2850 out_free: 2851 btrfs_free_path(path); 2852 kfree(subvol_info); 2853 return ret; 2854 } 2855 2856 /* 2857 * Return ROOT_REF information of the subvolume containing this inode 2858 * except the subvolume name. 2859 */ 2860 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2861 { 2862 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2863 struct btrfs_root_ref *rref; 2864 struct btrfs_root *root; 2865 struct btrfs_path *path; 2866 struct btrfs_key key; 2867 struct extent_buffer *leaf; 2868 struct inode *inode; 2869 u64 objectid; 2870 int slot; 2871 int ret; 2872 u8 found; 2873 2874 path = btrfs_alloc_path(); 2875 if (!path) 2876 return -ENOMEM; 2877 2878 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2879 if (IS_ERR(rootrefs)) { 2880 btrfs_free_path(path); 2881 return PTR_ERR(rootrefs); 2882 } 2883 2884 inode = file_inode(file); 2885 root = BTRFS_I(inode)->root->fs_info->tree_root; 2886 objectid = BTRFS_I(inode)->root->root_key.objectid; 2887 2888 key.objectid = objectid; 2889 key.type = BTRFS_ROOT_REF_KEY; 2890 key.offset = rootrefs->min_treeid; 2891 found = 0; 2892 2893 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2894 if (ret < 0) { 2895 goto out; 2896 } else if (path->slots[0] >= 2897 btrfs_header_nritems(path->nodes[0])) { 2898 ret = btrfs_next_leaf(root, path); 2899 if (ret < 0) { 2900 goto out; 2901 } else if (ret > 0) { 2902 ret = -EUCLEAN; 2903 goto out; 2904 } 2905 } 2906 while (1) { 2907 leaf = path->nodes[0]; 2908 slot = path->slots[0]; 2909 2910 btrfs_item_key_to_cpu(leaf, &key, slot); 2911 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2912 ret = 0; 2913 goto out; 2914 } 2915 2916 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2917 ret = -EOVERFLOW; 2918 goto out; 2919 } 2920 2921 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2922 rootrefs->rootref[found].treeid = key.offset; 2923 rootrefs->rootref[found].dirid = 2924 btrfs_root_ref_dirid(leaf, rref); 2925 found++; 2926 2927 ret = btrfs_next_item(root, path); 2928 if (ret < 0) { 2929 goto out; 2930 } else if (ret > 0) { 2931 ret = -EUCLEAN; 2932 goto out; 2933 } 2934 } 2935 2936 out: 2937 if (!ret || ret == -EOVERFLOW) { 2938 rootrefs->num_items = found; 2939 /* update min_treeid for next search */ 2940 if (found) 2941 rootrefs->min_treeid = 2942 rootrefs->rootref[found - 1].treeid + 1; 2943 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2944 ret = -EFAULT; 2945 } 2946 2947 kfree(rootrefs); 2948 btrfs_free_path(path); 2949 2950 return ret; 2951 } 2952 2953 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2954 void __user *arg, 2955 bool destroy_v2) 2956 { 2957 struct dentry *parent = file->f_path.dentry; 2958 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2959 struct dentry *dentry; 2960 struct inode *dir = d_inode(parent); 2961 struct inode *inode; 2962 struct btrfs_root *root = BTRFS_I(dir)->root; 2963 struct btrfs_root *dest = NULL; 2964 struct btrfs_ioctl_vol_args *vol_args = NULL; 2965 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2966 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 2967 char *subvol_name, *subvol_name_ptr = NULL; 2968 int subvol_namelen; 2969 int err = 0; 2970 bool destroy_parent = false; 2971 2972 if (destroy_v2) { 2973 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2974 if (IS_ERR(vol_args2)) 2975 return PTR_ERR(vol_args2); 2976 2977 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2978 err = -EOPNOTSUPP; 2979 goto out; 2980 } 2981 2982 /* 2983 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2984 * name, same as v1 currently does. 2985 */ 2986 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2987 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2988 subvol_name = vol_args2->name; 2989 2990 err = mnt_want_write_file(file); 2991 if (err) 2992 goto out; 2993 } else { 2994 struct inode *old_dir; 2995 2996 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2997 err = -EINVAL; 2998 goto out; 2999 } 3000 3001 err = mnt_want_write_file(file); 3002 if (err) 3003 goto out; 3004 3005 dentry = btrfs_get_dentry(fs_info->sb, 3006 BTRFS_FIRST_FREE_OBJECTID, 3007 vol_args2->subvolid, 0, 0); 3008 if (IS_ERR(dentry)) { 3009 err = PTR_ERR(dentry); 3010 goto out_drop_write; 3011 } 3012 3013 /* 3014 * Change the default parent since the subvolume being 3015 * deleted can be outside of the current mount point. 3016 */ 3017 parent = btrfs_get_parent(dentry); 3018 3019 /* 3020 * At this point dentry->d_name can point to '/' if the 3021 * subvolume we want to destroy is outsite of the 3022 * current mount point, so we need to release the 3023 * current dentry and execute the lookup to return a new 3024 * one with ->d_name pointing to the 3025 * <mount point>/subvol_name. 3026 */ 3027 dput(dentry); 3028 if (IS_ERR(parent)) { 3029 err = PTR_ERR(parent); 3030 goto out_drop_write; 3031 } 3032 old_dir = dir; 3033 dir = d_inode(parent); 3034 3035 /* 3036 * If v2 was used with SPEC_BY_ID, a new parent was 3037 * allocated since the subvolume can be outside of the 3038 * current mount point. Later on we need to release this 3039 * new parent dentry. 3040 */ 3041 destroy_parent = true; 3042 3043 /* 3044 * On idmapped mounts, deletion via subvolid is 3045 * restricted to subvolumes that are immediate 3046 * ancestors of the inode referenced by the file 3047 * descriptor in the ioctl. Otherwise the idmapping 3048 * could potentially be abused to delete subvolumes 3049 * anywhere in the filesystem the user wouldn't be able 3050 * to delete without an idmapped mount. 3051 */ 3052 if (old_dir != dir && mnt_userns != &init_user_ns) { 3053 err = -EOPNOTSUPP; 3054 goto free_parent; 3055 } 3056 3057 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 3058 fs_info, vol_args2->subvolid); 3059 if (IS_ERR(subvol_name_ptr)) { 3060 err = PTR_ERR(subvol_name_ptr); 3061 goto free_parent; 3062 } 3063 /* subvol_name_ptr is already nul terminated */ 3064 subvol_name = (char *)kbasename(subvol_name_ptr); 3065 } 3066 } else { 3067 vol_args = memdup_user(arg, sizeof(*vol_args)); 3068 if (IS_ERR(vol_args)) 3069 return PTR_ERR(vol_args); 3070 3071 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3072 subvol_name = vol_args->name; 3073 3074 err = mnt_want_write_file(file); 3075 if (err) 3076 goto out; 3077 } 3078 3079 subvol_namelen = strlen(subvol_name); 3080 3081 if (strchr(subvol_name, '/') || 3082 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3083 err = -EINVAL; 3084 goto free_subvol_name; 3085 } 3086 3087 if (!S_ISDIR(dir->i_mode)) { 3088 err = -ENOTDIR; 3089 goto free_subvol_name; 3090 } 3091 3092 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3093 if (err == -EINTR) 3094 goto free_subvol_name; 3095 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); 3096 if (IS_ERR(dentry)) { 3097 err = PTR_ERR(dentry); 3098 goto out_unlock_dir; 3099 } 3100 3101 if (d_really_is_negative(dentry)) { 3102 err = -ENOENT; 3103 goto out_dput; 3104 } 3105 3106 inode = d_inode(dentry); 3107 dest = BTRFS_I(inode)->root; 3108 if (!capable(CAP_SYS_ADMIN)) { 3109 /* 3110 * Regular user. Only allow this with a special mount 3111 * option, when the user has write+exec access to the 3112 * subvol root, and when rmdir(2) would have been 3113 * allowed. 3114 * 3115 * Note that this is _not_ check that the subvol is 3116 * empty or doesn't contain data that we wouldn't 3117 * otherwise be able to delete. 3118 * 3119 * Users who want to delete empty subvols should try 3120 * rmdir(2). 3121 */ 3122 err = -EPERM; 3123 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3124 goto out_dput; 3125 3126 /* 3127 * Do not allow deletion if the parent dir is the same 3128 * as the dir to be deleted. That means the ioctl 3129 * must be called on the dentry referencing the root 3130 * of the subvol, not a random directory contained 3131 * within it. 3132 */ 3133 err = -EINVAL; 3134 if (root == dest) 3135 goto out_dput; 3136 3137 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); 3138 if (err) 3139 goto out_dput; 3140 } 3141 3142 /* check if subvolume may be deleted by a user */ 3143 err = btrfs_may_delete(mnt_userns, dir, dentry, 1); 3144 if (err) 3145 goto out_dput; 3146 3147 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3148 err = -EINVAL; 3149 goto out_dput; 3150 } 3151 3152 btrfs_inode_lock(inode, 0); 3153 err = btrfs_delete_subvolume(dir, dentry); 3154 btrfs_inode_unlock(inode, 0); 3155 if (!err) 3156 d_delete_notify(dir, dentry); 3157 3158 out_dput: 3159 dput(dentry); 3160 out_unlock_dir: 3161 btrfs_inode_unlock(dir, 0); 3162 free_subvol_name: 3163 kfree(subvol_name_ptr); 3164 free_parent: 3165 if (destroy_parent) 3166 dput(parent); 3167 out_drop_write: 3168 mnt_drop_write_file(file); 3169 out: 3170 kfree(vol_args2); 3171 kfree(vol_args); 3172 return err; 3173 } 3174 3175 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3176 { 3177 struct inode *inode = file_inode(file); 3178 struct btrfs_root *root = BTRFS_I(inode)->root; 3179 struct btrfs_ioctl_defrag_range_args range = {0}; 3180 int ret; 3181 3182 ret = mnt_want_write_file(file); 3183 if (ret) 3184 return ret; 3185 3186 if (btrfs_root_readonly(root)) { 3187 ret = -EROFS; 3188 goto out; 3189 } 3190 3191 switch (inode->i_mode & S_IFMT) { 3192 case S_IFDIR: 3193 if (!capable(CAP_SYS_ADMIN)) { 3194 ret = -EPERM; 3195 goto out; 3196 } 3197 ret = btrfs_defrag_root(root); 3198 break; 3199 case S_IFREG: 3200 /* 3201 * Note that this does not check the file descriptor for write 3202 * access. This prevents defragmenting executables that are 3203 * running and allows defrag on files open in read-only mode. 3204 */ 3205 if (!capable(CAP_SYS_ADMIN) && 3206 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3207 ret = -EPERM; 3208 goto out; 3209 } 3210 3211 if (argp) { 3212 if (copy_from_user(&range, argp, sizeof(range))) { 3213 ret = -EFAULT; 3214 goto out; 3215 } 3216 /* compression requires us to start the IO */ 3217 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3218 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 3219 range.extent_thresh = (u32)-1; 3220 } 3221 } else { 3222 /* the rest are all set to zero by kzalloc */ 3223 range.len = (u64)-1; 3224 } 3225 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 3226 &range, BTRFS_OLDEST_GENERATION, 0); 3227 if (ret > 0) 3228 ret = 0; 3229 break; 3230 default: 3231 ret = -EINVAL; 3232 } 3233 out: 3234 mnt_drop_write_file(file); 3235 return ret; 3236 } 3237 3238 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3239 { 3240 struct btrfs_ioctl_vol_args *vol_args; 3241 bool restore_op = false; 3242 int ret; 3243 3244 if (!capable(CAP_SYS_ADMIN)) 3245 return -EPERM; 3246 3247 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 3248 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3249 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3250 3251 /* 3252 * We can do the device add because we have a paused balanced, 3253 * change the exclusive op type and remember we should bring 3254 * back the paused balance 3255 */ 3256 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 3257 btrfs_exclop_start_unlock(fs_info); 3258 restore_op = true; 3259 } 3260 3261 vol_args = memdup_user(arg, sizeof(*vol_args)); 3262 if (IS_ERR(vol_args)) { 3263 ret = PTR_ERR(vol_args); 3264 goto out; 3265 } 3266 3267 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3268 ret = btrfs_init_new_device(fs_info, vol_args->name); 3269 3270 if (!ret) 3271 btrfs_info(fs_info, "disk added %s", vol_args->name); 3272 3273 kfree(vol_args); 3274 out: 3275 if (restore_op) 3276 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 3277 else 3278 btrfs_exclop_finish(fs_info); 3279 return ret; 3280 } 3281 3282 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3283 { 3284 BTRFS_DEV_LOOKUP_ARGS(args); 3285 struct inode *inode = file_inode(file); 3286 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3287 struct btrfs_ioctl_vol_args_v2 *vol_args; 3288 struct block_device *bdev = NULL; 3289 fmode_t mode; 3290 int ret; 3291 bool cancel = false; 3292 3293 if (!capable(CAP_SYS_ADMIN)) 3294 return -EPERM; 3295 3296 vol_args = memdup_user(arg, sizeof(*vol_args)); 3297 if (IS_ERR(vol_args)) 3298 return PTR_ERR(vol_args); 3299 3300 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3301 ret = -EOPNOTSUPP; 3302 goto out; 3303 } 3304 3305 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3306 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3307 args.devid = vol_args->devid; 3308 } else if (!strcmp("cancel", vol_args->name)) { 3309 cancel = true; 3310 } else { 3311 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3312 if (ret) 3313 goto out; 3314 } 3315 3316 ret = mnt_want_write_file(file); 3317 if (ret) 3318 goto out; 3319 3320 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3321 cancel); 3322 if (ret) 3323 goto err_drop; 3324 3325 /* Exclusive operation is now claimed */ 3326 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3327 3328 btrfs_exclop_finish(fs_info); 3329 3330 if (!ret) { 3331 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3332 btrfs_info(fs_info, "device deleted: id %llu", 3333 vol_args->devid); 3334 else 3335 btrfs_info(fs_info, "device deleted: %s", 3336 vol_args->name); 3337 } 3338 err_drop: 3339 mnt_drop_write_file(file); 3340 if (bdev) 3341 blkdev_put(bdev, mode); 3342 out: 3343 btrfs_put_dev_args_from_path(&args); 3344 kfree(vol_args); 3345 return ret; 3346 } 3347 3348 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3349 { 3350 BTRFS_DEV_LOOKUP_ARGS(args); 3351 struct inode *inode = file_inode(file); 3352 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3353 struct btrfs_ioctl_vol_args *vol_args; 3354 struct block_device *bdev = NULL; 3355 fmode_t mode; 3356 int ret; 3357 bool cancel; 3358 3359 if (!capable(CAP_SYS_ADMIN)) 3360 return -EPERM; 3361 3362 vol_args = memdup_user(arg, sizeof(*vol_args)); 3363 if (IS_ERR(vol_args)) 3364 return PTR_ERR(vol_args); 3365 3366 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3367 if (!strcmp("cancel", vol_args->name)) { 3368 cancel = true; 3369 } else { 3370 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3371 if (ret) 3372 goto out; 3373 } 3374 3375 ret = mnt_want_write_file(file); 3376 if (ret) 3377 goto out; 3378 3379 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3380 cancel); 3381 if (ret == 0) { 3382 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3383 if (!ret) 3384 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3385 btrfs_exclop_finish(fs_info); 3386 } 3387 3388 mnt_drop_write_file(file); 3389 if (bdev) 3390 blkdev_put(bdev, mode); 3391 out: 3392 btrfs_put_dev_args_from_path(&args); 3393 kfree(vol_args); 3394 return ret; 3395 } 3396 3397 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3398 void __user *arg) 3399 { 3400 struct btrfs_ioctl_fs_info_args *fi_args; 3401 struct btrfs_device *device; 3402 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3403 u64 flags_in; 3404 int ret = 0; 3405 3406 fi_args = memdup_user(arg, sizeof(*fi_args)); 3407 if (IS_ERR(fi_args)) 3408 return PTR_ERR(fi_args); 3409 3410 flags_in = fi_args->flags; 3411 memset(fi_args, 0, sizeof(*fi_args)); 3412 3413 rcu_read_lock(); 3414 fi_args->num_devices = fs_devices->num_devices; 3415 3416 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3417 if (device->devid > fi_args->max_id) 3418 fi_args->max_id = device->devid; 3419 } 3420 rcu_read_unlock(); 3421 3422 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3423 fi_args->nodesize = fs_info->nodesize; 3424 fi_args->sectorsize = fs_info->sectorsize; 3425 fi_args->clone_alignment = fs_info->sectorsize; 3426 3427 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3428 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3429 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3430 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3431 } 3432 3433 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3434 fi_args->generation = fs_info->generation; 3435 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3436 } 3437 3438 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3439 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3440 sizeof(fi_args->metadata_uuid)); 3441 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3442 } 3443 3444 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3445 ret = -EFAULT; 3446 3447 kfree(fi_args); 3448 return ret; 3449 } 3450 3451 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3452 void __user *arg) 3453 { 3454 BTRFS_DEV_LOOKUP_ARGS(args); 3455 struct btrfs_ioctl_dev_info_args *di_args; 3456 struct btrfs_device *dev; 3457 int ret = 0; 3458 3459 di_args = memdup_user(arg, sizeof(*di_args)); 3460 if (IS_ERR(di_args)) 3461 return PTR_ERR(di_args); 3462 3463 args.devid = di_args->devid; 3464 if (!btrfs_is_empty_uuid(di_args->uuid)) 3465 args.uuid = di_args->uuid; 3466 3467 rcu_read_lock(); 3468 dev = btrfs_find_device(fs_info->fs_devices, &args); 3469 if (!dev) { 3470 ret = -ENODEV; 3471 goto out; 3472 } 3473 3474 di_args->devid = dev->devid; 3475 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3476 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3477 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3478 if (dev->name) { 3479 strncpy(di_args->path, rcu_str_deref(dev->name), 3480 sizeof(di_args->path) - 1); 3481 di_args->path[sizeof(di_args->path) - 1] = 0; 3482 } else { 3483 di_args->path[0] = '\0'; 3484 } 3485 3486 out: 3487 rcu_read_unlock(); 3488 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3489 ret = -EFAULT; 3490 3491 kfree(di_args); 3492 return ret; 3493 } 3494 3495 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3496 { 3497 struct inode *inode = file_inode(file); 3498 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3499 struct btrfs_root *root = BTRFS_I(inode)->root; 3500 struct btrfs_root *new_root; 3501 struct btrfs_dir_item *di; 3502 struct btrfs_trans_handle *trans; 3503 struct btrfs_path *path = NULL; 3504 struct btrfs_disk_key disk_key; 3505 u64 objectid = 0; 3506 u64 dir_id; 3507 int ret; 3508 3509 if (!capable(CAP_SYS_ADMIN)) 3510 return -EPERM; 3511 3512 ret = mnt_want_write_file(file); 3513 if (ret) 3514 return ret; 3515 3516 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3517 ret = -EFAULT; 3518 goto out; 3519 } 3520 3521 if (!objectid) 3522 objectid = BTRFS_FS_TREE_OBJECTID; 3523 3524 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3525 if (IS_ERR(new_root)) { 3526 ret = PTR_ERR(new_root); 3527 goto out; 3528 } 3529 if (!is_fstree(new_root->root_key.objectid)) { 3530 ret = -ENOENT; 3531 goto out_free; 3532 } 3533 3534 path = btrfs_alloc_path(); 3535 if (!path) { 3536 ret = -ENOMEM; 3537 goto out_free; 3538 } 3539 3540 trans = btrfs_start_transaction(root, 1); 3541 if (IS_ERR(trans)) { 3542 ret = PTR_ERR(trans); 3543 goto out_free; 3544 } 3545 3546 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3547 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3548 dir_id, "default", 7, 1); 3549 if (IS_ERR_OR_NULL(di)) { 3550 btrfs_release_path(path); 3551 btrfs_end_transaction(trans); 3552 btrfs_err(fs_info, 3553 "Umm, you don't have the default diritem, this isn't going to work"); 3554 ret = -ENOENT; 3555 goto out_free; 3556 } 3557 3558 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3559 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3560 btrfs_mark_buffer_dirty(path->nodes[0]); 3561 btrfs_release_path(path); 3562 3563 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3564 btrfs_end_transaction(trans); 3565 out_free: 3566 btrfs_put_root(new_root); 3567 btrfs_free_path(path); 3568 out: 3569 mnt_drop_write_file(file); 3570 return ret; 3571 } 3572 3573 static void get_block_group_info(struct list_head *groups_list, 3574 struct btrfs_ioctl_space_info *space) 3575 { 3576 struct btrfs_block_group *block_group; 3577 3578 space->total_bytes = 0; 3579 space->used_bytes = 0; 3580 space->flags = 0; 3581 list_for_each_entry(block_group, groups_list, list) { 3582 space->flags = block_group->flags; 3583 space->total_bytes += block_group->length; 3584 space->used_bytes += block_group->used; 3585 } 3586 } 3587 3588 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3589 void __user *arg) 3590 { 3591 struct btrfs_ioctl_space_args space_args; 3592 struct btrfs_ioctl_space_info space; 3593 struct btrfs_ioctl_space_info *dest; 3594 struct btrfs_ioctl_space_info *dest_orig; 3595 struct btrfs_ioctl_space_info __user *user_dest; 3596 struct btrfs_space_info *info; 3597 static const u64 types[] = { 3598 BTRFS_BLOCK_GROUP_DATA, 3599 BTRFS_BLOCK_GROUP_SYSTEM, 3600 BTRFS_BLOCK_GROUP_METADATA, 3601 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3602 }; 3603 int num_types = 4; 3604 int alloc_size; 3605 int ret = 0; 3606 u64 slot_count = 0; 3607 int i, c; 3608 3609 if (copy_from_user(&space_args, 3610 (struct btrfs_ioctl_space_args __user *)arg, 3611 sizeof(space_args))) 3612 return -EFAULT; 3613 3614 for (i = 0; i < num_types; i++) { 3615 struct btrfs_space_info *tmp; 3616 3617 info = NULL; 3618 list_for_each_entry(tmp, &fs_info->space_info, list) { 3619 if (tmp->flags == types[i]) { 3620 info = tmp; 3621 break; 3622 } 3623 } 3624 3625 if (!info) 3626 continue; 3627 3628 down_read(&info->groups_sem); 3629 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3630 if (!list_empty(&info->block_groups[c])) 3631 slot_count++; 3632 } 3633 up_read(&info->groups_sem); 3634 } 3635 3636 /* 3637 * Global block reserve, exported as a space_info 3638 */ 3639 slot_count++; 3640 3641 /* space_slots == 0 means they are asking for a count */ 3642 if (space_args.space_slots == 0) { 3643 space_args.total_spaces = slot_count; 3644 goto out; 3645 } 3646 3647 slot_count = min_t(u64, space_args.space_slots, slot_count); 3648 3649 alloc_size = sizeof(*dest) * slot_count; 3650 3651 /* we generally have at most 6 or so space infos, one for each raid 3652 * level. So, a whole page should be more than enough for everyone 3653 */ 3654 if (alloc_size > PAGE_SIZE) 3655 return -ENOMEM; 3656 3657 space_args.total_spaces = 0; 3658 dest = kmalloc(alloc_size, GFP_KERNEL); 3659 if (!dest) 3660 return -ENOMEM; 3661 dest_orig = dest; 3662 3663 /* now we have a buffer to copy into */ 3664 for (i = 0; i < num_types; i++) { 3665 struct btrfs_space_info *tmp; 3666 3667 if (!slot_count) 3668 break; 3669 3670 info = NULL; 3671 list_for_each_entry(tmp, &fs_info->space_info, list) { 3672 if (tmp->flags == types[i]) { 3673 info = tmp; 3674 break; 3675 } 3676 } 3677 3678 if (!info) 3679 continue; 3680 down_read(&info->groups_sem); 3681 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3682 if (!list_empty(&info->block_groups[c])) { 3683 get_block_group_info(&info->block_groups[c], 3684 &space); 3685 memcpy(dest, &space, sizeof(space)); 3686 dest++; 3687 space_args.total_spaces++; 3688 slot_count--; 3689 } 3690 if (!slot_count) 3691 break; 3692 } 3693 up_read(&info->groups_sem); 3694 } 3695 3696 /* 3697 * Add global block reserve 3698 */ 3699 if (slot_count) { 3700 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3701 3702 spin_lock(&block_rsv->lock); 3703 space.total_bytes = block_rsv->size; 3704 space.used_bytes = block_rsv->size - block_rsv->reserved; 3705 spin_unlock(&block_rsv->lock); 3706 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3707 memcpy(dest, &space, sizeof(space)); 3708 space_args.total_spaces++; 3709 } 3710 3711 user_dest = (struct btrfs_ioctl_space_info __user *) 3712 (arg + sizeof(struct btrfs_ioctl_space_args)); 3713 3714 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3715 ret = -EFAULT; 3716 3717 kfree(dest_orig); 3718 out: 3719 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3720 ret = -EFAULT; 3721 3722 return ret; 3723 } 3724 3725 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3726 void __user *argp) 3727 { 3728 struct btrfs_trans_handle *trans; 3729 u64 transid; 3730 3731 trans = btrfs_attach_transaction_barrier(root); 3732 if (IS_ERR(trans)) { 3733 if (PTR_ERR(trans) != -ENOENT) 3734 return PTR_ERR(trans); 3735 3736 /* No running transaction, don't bother */ 3737 transid = root->fs_info->last_trans_committed; 3738 goto out; 3739 } 3740 transid = trans->transid; 3741 btrfs_commit_transaction_async(trans); 3742 out: 3743 if (argp) 3744 if (copy_to_user(argp, &transid, sizeof(transid))) 3745 return -EFAULT; 3746 return 0; 3747 } 3748 3749 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3750 void __user *argp) 3751 { 3752 u64 transid; 3753 3754 if (argp) { 3755 if (copy_from_user(&transid, argp, sizeof(transid))) 3756 return -EFAULT; 3757 } else { 3758 transid = 0; /* current trans */ 3759 } 3760 return btrfs_wait_for_commit(fs_info, transid); 3761 } 3762 3763 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3764 { 3765 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3766 struct btrfs_ioctl_scrub_args *sa; 3767 int ret; 3768 3769 if (!capable(CAP_SYS_ADMIN)) 3770 return -EPERM; 3771 3772 sa = memdup_user(arg, sizeof(*sa)); 3773 if (IS_ERR(sa)) 3774 return PTR_ERR(sa); 3775 3776 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3777 ret = mnt_want_write_file(file); 3778 if (ret) 3779 goto out; 3780 } 3781 3782 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3783 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3784 0); 3785 3786 /* 3787 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3788 * error. This is important as it allows user space to know how much 3789 * progress scrub has done. For example, if scrub is canceled we get 3790 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3791 * space. Later user space can inspect the progress from the structure 3792 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3793 * previously (btrfs-progs does this). 3794 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3795 * then return -EFAULT to signal the structure was not copied or it may 3796 * be corrupt and unreliable due to a partial copy. 3797 */ 3798 if (copy_to_user(arg, sa, sizeof(*sa))) 3799 ret = -EFAULT; 3800 3801 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3802 mnt_drop_write_file(file); 3803 out: 3804 kfree(sa); 3805 return ret; 3806 } 3807 3808 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3809 { 3810 if (!capable(CAP_SYS_ADMIN)) 3811 return -EPERM; 3812 3813 return btrfs_scrub_cancel(fs_info); 3814 } 3815 3816 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3817 void __user *arg) 3818 { 3819 struct btrfs_ioctl_scrub_args *sa; 3820 int ret; 3821 3822 if (!capable(CAP_SYS_ADMIN)) 3823 return -EPERM; 3824 3825 sa = memdup_user(arg, sizeof(*sa)); 3826 if (IS_ERR(sa)) 3827 return PTR_ERR(sa); 3828 3829 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3830 3831 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3832 ret = -EFAULT; 3833 3834 kfree(sa); 3835 return ret; 3836 } 3837 3838 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3839 void __user *arg) 3840 { 3841 struct btrfs_ioctl_get_dev_stats *sa; 3842 int ret; 3843 3844 sa = memdup_user(arg, sizeof(*sa)); 3845 if (IS_ERR(sa)) 3846 return PTR_ERR(sa); 3847 3848 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3849 kfree(sa); 3850 return -EPERM; 3851 } 3852 3853 ret = btrfs_get_dev_stats(fs_info, sa); 3854 3855 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3856 ret = -EFAULT; 3857 3858 kfree(sa); 3859 return ret; 3860 } 3861 3862 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3863 void __user *arg) 3864 { 3865 struct btrfs_ioctl_dev_replace_args *p; 3866 int ret; 3867 3868 if (!capable(CAP_SYS_ADMIN)) 3869 return -EPERM; 3870 3871 p = memdup_user(arg, sizeof(*p)); 3872 if (IS_ERR(p)) 3873 return PTR_ERR(p); 3874 3875 switch (p->cmd) { 3876 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3877 if (sb_rdonly(fs_info->sb)) { 3878 ret = -EROFS; 3879 goto out; 3880 } 3881 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3882 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3883 } else { 3884 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3885 btrfs_exclop_finish(fs_info); 3886 } 3887 break; 3888 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3889 btrfs_dev_replace_status(fs_info, p); 3890 ret = 0; 3891 break; 3892 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3893 p->result = btrfs_dev_replace_cancel(fs_info); 3894 ret = 0; 3895 break; 3896 default: 3897 ret = -EINVAL; 3898 break; 3899 } 3900 3901 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3902 ret = -EFAULT; 3903 out: 3904 kfree(p); 3905 return ret; 3906 } 3907 3908 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3909 { 3910 int ret = 0; 3911 int i; 3912 u64 rel_ptr; 3913 int size; 3914 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3915 struct inode_fs_paths *ipath = NULL; 3916 struct btrfs_path *path; 3917 3918 if (!capable(CAP_DAC_READ_SEARCH)) 3919 return -EPERM; 3920 3921 path = btrfs_alloc_path(); 3922 if (!path) { 3923 ret = -ENOMEM; 3924 goto out; 3925 } 3926 3927 ipa = memdup_user(arg, sizeof(*ipa)); 3928 if (IS_ERR(ipa)) { 3929 ret = PTR_ERR(ipa); 3930 ipa = NULL; 3931 goto out; 3932 } 3933 3934 size = min_t(u32, ipa->size, 4096); 3935 ipath = init_ipath(size, root, path); 3936 if (IS_ERR(ipath)) { 3937 ret = PTR_ERR(ipath); 3938 ipath = NULL; 3939 goto out; 3940 } 3941 3942 ret = paths_from_inode(ipa->inum, ipath); 3943 if (ret < 0) 3944 goto out; 3945 3946 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3947 rel_ptr = ipath->fspath->val[i] - 3948 (u64)(unsigned long)ipath->fspath->val; 3949 ipath->fspath->val[i] = rel_ptr; 3950 } 3951 3952 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3953 ipath->fspath, size); 3954 if (ret) { 3955 ret = -EFAULT; 3956 goto out; 3957 } 3958 3959 out: 3960 btrfs_free_path(path); 3961 free_ipath(ipath); 3962 kfree(ipa); 3963 3964 return ret; 3965 } 3966 3967 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3968 { 3969 struct btrfs_data_container *inodes = ctx; 3970 const size_t c = 3 * sizeof(u64); 3971 3972 if (inodes->bytes_left >= c) { 3973 inodes->bytes_left -= c; 3974 inodes->val[inodes->elem_cnt] = inum; 3975 inodes->val[inodes->elem_cnt + 1] = offset; 3976 inodes->val[inodes->elem_cnt + 2] = root; 3977 inodes->elem_cnt += 3; 3978 } else { 3979 inodes->bytes_missing += c - inodes->bytes_left; 3980 inodes->bytes_left = 0; 3981 inodes->elem_missed += 3; 3982 } 3983 3984 return 0; 3985 } 3986 3987 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3988 void __user *arg, int version) 3989 { 3990 int ret = 0; 3991 int size; 3992 struct btrfs_ioctl_logical_ino_args *loi; 3993 struct btrfs_data_container *inodes = NULL; 3994 struct btrfs_path *path = NULL; 3995 bool ignore_offset; 3996 3997 if (!capable(CAP_SYS_ADMIN)) 3998 return -EPERM; 3999 4000 loi = memdup_user(arg, sizeof(*loi)); 4001 if (IS_ERR(loi)) 4002 return PTR_ERR(loi); 4003 4004 if (version == 1) { 4005 ignore_offset = false; 4006 size = min_t(u32, loi->size, SZ_64K); 4007 } else { 4008 /* All reserved bits must be 0 for now */ 4009 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4010 ret = -EINVAL; 4011 goto out_loi; 4012 } 4013 /* Only accept flags we have defined so far */ 4014 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4015 ret = -EINVAL; 4016 goto out_loi; 4017 } 4018 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4019 size = min_t(u32, loi->size, SZ_16M); 4020 } 4021 4022 path = btrfs_alloc_path(); 4023 if (!path) { 4024 ret = -ENOMEM; 4025 goto out; 4026 } 4027 4028 inodes = init_data_container(size); 4029 if (IS_ERR(inodes)) { 4030 ret = PTR_ERR(inodes); 4031 inodes = NULL; 4032 goto out; 4033 } 4034 4035 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4036 build_ino_list, inodes, ignore_offset); 4037 if (ret == -EINVAL) 4038 ret = -ENOENT; 4039 if (ret < 0) 4040 goto out; 4041 4042 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4043 size); 4044 if (ret) 4045 ret = -EFAULT; 4046 4047 out: 4048 btrfs_free_path(path); 4049 kvfree(inodes); 4050 out_loi: 4051 kfree(loi); 4052 4053 return ret; 4054 } 4055 4056 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4057 struct btrfs_ioctl_balance_args *bargs) 4058 { 4059 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4060 4061 bargs->flags = bctl->flags; 4062 4063 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4064 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4065 if (atomic_read(&fs_info->balance_pause_req)) 4066 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4067 if (atomic_read(&fs_info->balance_cancel_req)) 4068 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4069 4070 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4071 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4072 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4073 4074 spin_lock(&fs_info->balance_lock); 4075 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4076 spin_unlock(&fs_info->balance_lock); 4077 } 4078 4079 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4080 { 4081 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4082 struct btrfs_fs_info *fs_info = root->fs_info; 4083 struct btrfs_ioctl_balance_args *bargs; 4084 struct btrfs_balance_control *bctl; 4085 bool need_unlock; /* for mut. excl. ops lock */ 4086 int ret; 4087 4088 if (!arg) 4089 btrfs_warn(fs_info, 4090 "IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18"); 4091 4092 if (!capable(CAP_SYS_ADMIN)) 4093 return -EPERM; 4094 4095 ret = mnt_want_write_file(file); 4096 if (ret) 4097 return ret; 4098 4099 again: 4100 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4101 mutex_lock(&fs_info->balance_mutex); 4102 need_unlock = true; 4103 goto locked; 4104 } 4105 4106 /* 4107 * mut. excl. ops lock is locked. Three possibilities: 4108 * (1) some other op is running 4109 * (2) balance is running 4110 * (3) balance is paused -- special case (think resume) 4111 */ 4112 mutex_lock(&fs_info->balance_mutex); 4113 if (fs_info->balance_ctl) { 4114 /* this is either (2) or (3) */ 4115 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4116 mutex_unlock(&fs_info->balance_mutex); 4117 /* 4118 * Lock released to allow other waiters to continue, 4119 * we'll reexamine the status again. 4120 */ 4121 mutex_lock(&fs_info->balance_mutex); 4122 4123 if (fs_info->balance_ctl && 4124 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4125 /* this is (3) */ 4126 need_unlock = false; 4127 goto locked; 4128 } 4129 4130 mutex_unlock(&fs_info->balance_mutex); 4131 goto again; 4132 } else { 4133 /* this is (2) */ 4134 mutex_unlock(&fs_info->balance_mutex); 4135 ret = -EINPROGRESS; 4136 goto out; 4137 } 4138 } else { 4139 /* this is (1) */ 4140 mutex_unlock(&fs_info->balance_mutex); 4141 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4142 goto out; 4143 } 4144 4145 locked: 4146 4147 if (arg) { 4148 bargs = memdup_user(arg, sizeof(*bargs)); 4149 if (IS_ERR(bargs)) { 4150 ret = PTR_ERR(bargs); 4151 goto out_unlock; 4152 } 4153 4154 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4155 if (!fs_info->balance_ctl) { 4156 ret = -ENOTCONN; 4157 goto out_bargs; 4158 } 4159 4160 bctl = fs_info->balance_ctl; 4161 spin_lock(&fs_info->balance_lock); 4162 bctl->flags |= BTRFS_BALANCE_RESUME; 4163 spin_unlock(&fs_info->balance_lock); 4164 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 4165 4166 goto do_balance; 4167 } 4168 } else { 4169 bargs = NULL; 4170 } 4171 4172 if (fs_info->balance_ctl) { 4173 ret = -EINPROGRESS; 4174 goto out_bargs; 4175 } 4176 4177 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4178 if (!bctl) { 4179 ret = -ENOMEM; 4180 goto out_bargs; 4181 } 4182 4183 if (arg) { 4184 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4185 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4186 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4187 4188 bctl->flags = bargs->flags; 4189 } else { 4190 /* balance everything - no filters */ 4191 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4192 } 4193 4194 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4195 ret = -EINVAL; 4196 goto out_bctl; 4197 } 4198 4199 do_balance: 4200 /* 4201 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4202 * bctl is freed in reset_balance_state, or, if restriper was paused 4203 * all the way until unmount, in free_fs_info. The flag should be 4204 * cleared after reset_balance_state. 4205 */ 4206 need_unlock = false; 4207 4208 ret = btrfs_balance(fs_info, bctl, bargs); 4209 bctl = NULL; 4210 4211 if ((ret == 0 || ret == -ECANCELED) && arg) { 4212 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4213 ret = -EFAULT; 4214 } 4215 4216 out_bctl: 4217 kfree(bctl); 4218 out_bargs: 4219 kfree(bargs); 4220 out_unlock: 4221 mutex_unlock(&fs_info->balance_mutex); 4222 if (need_unlock) 4223 btrfs_exclop_finish(fs_info); 4224 out: 4225 mnt_drop_write_file(file); 4226 return ret; 4227 } 4228 4229 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4230 { 4231 if (!capable(CAP_SYS_ADMIN)) 4232 return -EPERM; 4233 4234 switch (cmd) { 4235 case BTRFS_BALANCE_CTL_PAUSE: 4236 return btrfs_pause_balance(fs_info); 4237 case BTRFS_BALANCE_CTL_CANCEL: 4238 return btrfs_cancel_balance(fs_info); 4239 } 4240 4241 return -EINVAL; 4242 } 4243 4244 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4245 void __user *arg) 4246 { 4247 struct btrfs_ioctl_balance_args *bargs; 4248 int ret = 0; 4249 4250 if (!capable(CAP_SYS_ADMIN)) 4251 return -EPERM; 4252 4253 mutex_lock(&fs_info->balance_mutex); 4254 if (!fs_info->balance_ctl) { 4255 ret = -ENOTCONN; 4256 goto out; 4257 } 4258 4259 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4260 if (!bargs) { 4261 ret = -ENOMEM; 4262 goto out; 4263 } 4264 4265 btrfs_update_ioctl_balance_args(fs_info, bargs); 4266 4267 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4268 ret = -EFAULT; 4269 4270 kfree(bargs); 4271 out: 4272 mutex_unlock(&fs_info->balance_mutex); 4273 return ret; 4274 } 4275 4276 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4277 { 4278 struct inode *inode = file_inode(file); 4279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4280 struct btrfs_ioctl_quota_ctl_args *sa; 4281 int ret; 4282 4283 if (!capable(CAP_SYS_ADMIN)) 4284 return -EPERM; 4285 4286 ret = mnt_want_write_file(file); 4287 if (ret) 4288 return ret; 4289 4290 sa = memdup_user(arg, sizeof(*sa)); 4291 if (IS_ERR(sa)) { 4292 ret = PTR_ERR(sa); 4293 goto drop_write; 4294 } 4295 4296 down_write(&fs_info->subvol_sem); 4297 4298 switch (sa->cmd) { 4299 case BTRFS_QUOTA_CTL_ENABLE: 4300 ret = btrfs_quota_enable(fs_info); 4301 break; 4302 case BTRFS_QUOTA_CTL_DISABLE: 4303 ret = btrfs_quota_disable(fs_info); 4304 break; 4305 default: 4306 ret = -EINVAL; 4307 break; 4308 } 4309 4310 kfree(sa); 4311 up_write(&fs_info->subvol_sem); 4312 drop_write: 4313 mnt_drop_write_file(file); 4314 return ret; 4315 } 4316 4317 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4318 { 4319 struct inode *inode = file_inode(file); 4320 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4321 struct btrfs_root *root = BTRFS_I(inode)->root; 4322 struct btrfs_ioctl_qgroup_assign_args *sa; 4323 struct btrfs_trans_handle *trans; 4324 int ret; 4325 int err; 4326 4327 if (!capable(CAP_SYS_ADMIN)) 4328 return -EPERM; 4329 4330 ret = mnt_want_write_file(file); 4331 if (ret) 4332 return ret; 4333 4334 sa = memdup_user(arg, sizeof(*sa)); 4335 if (IS_ERR(sa)) { 4336 ret = PTR_ERR(sa); 4337 goto drop_write; 4338 } 4339 4340 trans = btrfs_join_transaction(root); 4341 if (IS_ERR(trans)) { 4342 ret = PTR_ERR(trans); 4343 goto out; 4344 } 4345 4346 if (sa->assign) { 4347 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4348 } else { 4349 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4350 } 4351 4352 /* update qgroup status and info */ 4353 err = btrfs_run_qgroups(trans); 4354 if (err < 0) 4355 btrfs_handle_fs_error(fs_info, err, 4356 "failed to update qgroup status and info"); 4357 err = btrfs_end_transaction(trans); 4358 if (err && !ret) 4359 ret = err; 4360 4361 out: 4362 kfree(sa); 4363 drop_write: 4364 mnt_drop_write_file(file); 4365 return ret; 4366 } 4367 4368 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4369 { 4370 struct inode *inode = file_inode(file); 4371 struct btrfs_root *root = BTRFS_I(inode)->root; 4372 struct btrfs_ioctl_qgroup_create_args *sa; 4373 struct btrfs_trans_handle *trans; 4374 int ret; 4375 int err; 4376 4377 if (!capable(CAP_SYS_ADMIN)) 4378 return -EPERM; 4379 4380 ret = mnt_want_write_file(file); 4381 if (ret) 4382 return ret; 4383 4384 sa = memdup_user(arg, sizeof(*sa)); 4385 if (IS_ERR(sa)) { 4386 ret = PTR_ERR(sa); 4387 goto drop_write; 4388 } 4389 4390 if (!sa->qgroupid) { 4391 ret = -EINVAL; 4392 goto out; 4393 } 4394 4395 trans = btrfs_join_transaction(root); 4396 if (IS_ERR(trans)) { 4397 ret = PTR_ERR(trans); 4398 goto out; 4399 } 4400 4401 if (sa->create) { 4402 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4403 } else { 4404 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4405 } 4406 4407 err = btrfs_end_transaction(trans); 4408 if (err && !ret) 4409 ret = err; 4410 4411 out: 4412 kfree(sa); 4413 drop_write: 4414 mnt_drop_write_file(file); 4415 return ret; 4416 } 4417 4418 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4419 { 4420 struct inode *inode = file_inode(file); 4421 struct btrfs_root *root = BTRFS_I(inode)->root; 4422 struct btrfs_ioctl_qgroup_limit_args *sa; 4423 struct btrfs_trans_handle *trans; 4424 int ret; 4425 int err; 4426 u64 qgroupid; 4427 4428 if (!capable(CAP_SYS_ADMIN)) 4429 return -EPERM; 4430 4431 ret = mnt_want_write_file(file); 4432 if (ret) 4433 return ret; 4434 4435 sa = memdup_user(arg, sizeof(*sa)); 4436 if (IS_ERR(sa)) { 4437 ret = PTR_ERR(sa); 4438 goto drop_write; 4439 } 4440 4441 trans = btrfs_join_transaction(root); 4442 if (IS_ERR(trans)) { 4443 ret = PTR_ERR(trans); 4444 goto out; 4445 } 4446 4447 qgroupid = sa->qgroupid; 4448 if (!qgroupid) { 4449 /* take the current subvol as qgroup */ 4450 qgroupid = root->root_key.objectid; 4451 } 4452 4453 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4454 4455 err = btrfs_end_transaction(trans); 4456 if (err && !ret) 4457 ret = err; 4458 4459 out: 4460 kfree(sa); 4461 drop_write: 4462 mnt_drop_write_file(file); 4463 return ret; 4464 } 4465 4466 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4467 { 4468 struct inode *inode = file_inode(file); 4469 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4470 struct btrfs_ioctl_quota_rescan_args *qsa; 4471 int ret; 4472 4473 if (!capable(CAP_SYS_ADMIN)) 4474 return -EPERM; 4475 4476 ret = mnt_want_write_file(file); 4477 if (ret) 4478 return ret; 4479 4480 qsa = memdup_user(arg, sizeof(*qsa)); 4481 if (IS_ERR(qsa)) { 4482 ret = PTR_ERR(qsa); 4483 goto drop_write; 4484 } 4485 4486 if (qsa->flags) { 4487 ret = -EINVAL; 4488 goto out; 4489 } 4490 4491 ret = btrfs_qgroup_rescan(fs_info); 4492 4493 out: 4494 kfree(qsa); 4495 drop_write: 4496 mnt_drop_write_file(file); 4497 return ret; 4498 } 4499 4500 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4501 void __user *arg) 4502 { 4503 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4504 4505 if (!capable(CAP_SYS_ADMIN)) 4506 return -EPERM; 4507 4508 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4509 qsa.flags = 1; 4510 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4511 } 4512 4513 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4514 return -EFAULT; 4515 4516 return 0; 4517 } 4518 4519 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4520 void __user *arg) 4521 { 4522 if (!capable(CAP_SYS_ADMIN)) 4523 return -EPERM; 4524 4525 return btrfs_qgroup_wait_for_completion(fs_info, true); 4526 } 4527 4528 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4529 struct user_namespace *mnt_userns, 4530 struct btrfs_ioctl_received_subvol_args *sa) 4531 { 4532 struct inode *inode = file_inode(file); 4533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4534 struct btrfs_root *root = BTRFS_I(inode)->root; 4535 struct btrfs_root_item *root_item = &root->root_item; 4536 struct btrfs_trans_handle *trans; 4537 struct timespec64 ct = current_time(inode); 4538 int ret = 0; 4539 int received_uuid_changed; 4540 4541 if (!inode_owner_or_capable(mnt_userns, inode)) 4542 return -EPERM; 4543 4544 ret = mnt_want_write_file(file); 4545 if (ret < 0) 4546 return ret; 4547 4548 down_write(&fs_info->subvol_sem); 4549 4550 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4551 ret = -EINVAL; 4552 goto out; 4553 } 4554 4555 if (btrfs_root_readonly(root)) { 4556 ret = -EROFS; 4557 goto out; 4558 } 4559 4560 /* 4561 * 1 - root item 4562 * 2 - uuid items (received uuid + subvol uuid) 4563 */ 4564 trans = btrfs_start_transaction(root, 3); 4565 if (IS_ERR(trans)) { 4566 ret = PTR_ERR(trans); 4567 trans = NULL; 4568 goto out; 4569 } 4570 4571 sa->rtransid = trans->transid; 4572 sa->rtime.sec = ct.tv_sec; 4573 sa->rtime.nsec = ct.tv_nsec; 4574 4575 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4576 BTRFS_UUID_SIZE); 4577 if (received_uuid_changed && 4578 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4579 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4580 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4581 root->root_key.objectid); 4582 if (ret && ret != -ENOENT) { 4583 btrfs_abort_transaction(trans, ret); 4584 btrfs_end_transaction(trans); 4585 goto out; 4586 } 4587 } 4588 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4589 btrfs_set_root_stransid(root_item, sa->stransid); 4590 btrfs_set_root_rtransid(root_item, sa->rtransid); 4591 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4592 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4593 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4594 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4595 4596 ret = btrfs_update_root(trans, fs_info->tree_root, 4597 &root->root_key, &root->root_item); 4598 if (ret < 0) { 4599 btrfs_end_transaction(trans); 4600 goto out; 4601 } 4602 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4603 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4604 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4605 root->root_key.objectid); 4606 if (ret < 0 && ret != -EEXIST) { 4607 btrfs_abort_transaction(trans, ret); 4608 btrfs_end_transaction(trans); 4609 goto out; 4610 } 4611 } 4612 ret = btrfs_commit_transaction(trans); 4613 out: 4614 up_write(&fs_info->subvol_sem); 4615 mnt_drop_write_file(file); 4616 return ret; 4617 } 4618 4619 #ifdef CONFIG_64BIT 4620 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4621 void __user *arg) 4622 { 4623 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4624 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4625 int ret = 0; 4626 4627 args32 = memdup_user(arg, sizeof(*args32)); 4628 if (IS_ERR(args32)) 4629 return PTR_ERR(args32); 4630 4631 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4632 if (!args64) { 4633 ret = -ENOMEM; 4634 goto out; 4635 } 4636 4637 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4638 args64->stransid = args32->stransid; 4639 args64->rtransid = args32->rtransid; 4640 args64->stime.sec = args32->stime.sec; 4641 args64->stime.nsec = args32->stime.nsec; 4642 args64->rtime.sec = args32->rtime.sec; 4643 args64->rtime.nsec = args32->rtime.nsec; 4644 args64->flags = args32->flags; 4645 4646 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); 4647 if (ret) 4648 goto out; 4649 4650 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4651 args32->stransid = args64->stransid; 4652 args32->rtransid = args64->rtransid; 4653 args32->stime.sec = args64->stime.sec; 4654 args32->stime.nsec = args64->stime.nsec; 4655 args32->rtime.sec = args64->rtime.sec; 4656 args32->rtime.nsec = args64->rtime.nsec; 4657 args32->flags = args64->flags; 4658 4659 ret = copy_to_user(arg, args32, sizeof(*args32)); 4660 if (ret) 4661 ret = -EFAULT; 4662 4663 out: 4664 kfree(args32); 4665 kfree(args64); 4666 return ret; 4667 } 4668 #endif 4669 4670 static long btrfs_ioctl_set_received_subvol(struct file *file, 4671 void __user *arg) 4672 { 4673 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4674 int ret = 0; 4675 4676 sa = memdup_user(arg, sizeof(*sa)); 4677 if (IS_ERR(sa)) 4678 return PTR_ERR(sa); 4679 4680 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); 4681 4682 if (ret) 4683 goto out; 4684 4685 ret = copy_to_user(arg, sa, sizeof(*sa)); 4686 if (ret) 4687 ret = -EFAULT; 4688 4689 out: 4690 kfree(sa); 4691 return ret; 4692 } 4693 4694 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4695 void __user *arg) 4696 { 4697 size_t len; 4698 int ret; 4699 char label[BTRFS_LABEL_SIZE]; 4700 4701 spin_lock(&fs_info->super_lock); 4702 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4703 spin_unlock(&fs_info->super_lock); 4704 4705 len = strnlen(label, BTRFS_LABEL_SIZE); 4706 4707 if (len == BTRFS_LABEL_SIZE) { 4708 btrfs_warn(fs_info, 4709 "label is too long, return the first %zu bytes", 4710 --len); 4711 } 4712 4713 ret = copy_to_user(arg, label, len); 4714 4715 return ret ? -EFAULT : 0; 4716 } 4717 4718 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4719 { 4720 struct inode *inode = file_inode(file); 4721 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4722 struct btrfs_root *root = BTRFS_I(inode)->root; 4723 struct btrfs_super_block *super_block = fs_info->super_copy; 4724 struct btrfs_trans_handle *trans; 4725 char label[BTRFS_LABEL_SIZE]; 4726 int ret; 4727 4728 if (!capable(CAP_SYS_ADMIN)) 4729 return -EPERM; 4730 4731 if (copy_from_user(label, arg, sizeof(label))) 4732 return -EFAULT; 4733 4734 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4735 btrfs_err(fs_info, 4736 "unable to set label with more than %d bytes", 4737 BTRFS_LABEL_SIZE - 1); 4738 return -EINVAL; 4739 } 4740 4741 ret = mnt_want_write_file(file); 4742 if (ret) 4743 return ret; 4744 4745 trans = btrfs_start_transaction(root, 0); 4746 if (IS_ERR(trans)) { 4747 ret = PTR_ERR(trans); 4748 goto out_unlock; 4749 } 4750 4751 spin_lock(&fs_info->super_lock); 4752 strcpy(super_block->label, label); 4753 spin_unlock(&fs_info->super_lock); 4754 ret = btrfs_commit_transaction(trans); 4755 4756 out_unlock: 4757 mnt_drop_write_file(file); 4758 return ret; 4759 } 4760 4761 #define INIT_FEATURE_FLAGS(suffix) \ 4762 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4763 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4764 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4765 4766 int btrfs_ioctl_get_supported_features(void __user *arg) 4767 { 4768 static const struct btrfs_ioctl_feature_flags features[3] = { 4769 INIT_FEATURE_FLAGS(SUPP), 4770 INIT_FEATURE_FLAGS(SAFE_SET), 4771 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4772 }; 4773 4774 if (copy_to_user(arg, &features, sizeof(features))) 4775 return -EFAULT; 4776 4777 return 0; 4778 } 4779 4780 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4781 void __user *arg) 4782 { 4783 struct btrfs_super_block *super_block = fs_info->super_copy; 4784 struct btrfs_ioctl_feature_flags features; 4785 4786 features.compat_flags = btrfs_super_compat_flags(super_block); 4787 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4788 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4789 4790 if (copy_to_user(arg, &features, sizeof(features))) 4791 return -EFAULT; 4792 4793 return 0; 4794 } 4795 4796 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4797 enum btrfs_feature_set set, 4798 u64 change_mask, u64 flags, u64 supported_flags, 4799 u64 safe_set, u64 safe_clear) 4800 { 4801 const char *type = btrfs_feature_set_name(set); 4802 char *names; 4803 u64 disallowed, unsupported; 4804 u64 set_mask = flags & change_mask; 4805 u64 clear_mask = ~flags & change_mask; 4806 4807 unsupported = set_mask & ~supported_flags; 4808 if (unsupported) { 4809 names = btrfs_printable_features(set, unsupported); 4810 if (names) { 4811 btrfs_warn(fs_info, 4812 "this kernel does not support the %s feature bit%s", 4813 names, strchr(names, ',') ? "s" : ""); 4814 kfree(names); 4815 } else 4816 btrfs_warn(fs_info, 4817 "this kernel does not support %s bits 0x%llx", 4818 type, unsupported); 4819 return -EOPNOTSUPP; 4820 } 4821 4822 disallowed = set_mask & ~safe_set; 4823 if (disallowed) { 4824 names = btrfs_printable_features(set, disallowed); 4825 if (names) { 4826 btrfs_warn(fs_info, 4827 "can't set the %s feature bit%s while mounted", 4828 names, strchr(names, ',') ? "s" : ""); 4829 kfree(names); 4830 } else 4831 btrfs_warn(fs_info, 4832 "can't set %s bits 0x%llx while mounted", 4833 type, disallowed); 4834 return -EPERM; 4835 } 4836 4837 disallowed = clear_mask & ~safe_clear; 4838 if (disallowed) { 4839 names = btrfs_printable_features(set, disallowed); 4840 if (names) { 4841 btrfs_warn(fs_info, 4842 "can't clear the %s feature bit%s while mounted", 4843 names, strchr(names, ',') ? "s" : ""); 4844 kfree(names); 4845 } else 4846 btrfs_warn(fs_info, 4847 "can't clear %s bits 0x%llx while mounted", 4848 type, disallowed); 4849 return -EPERM; 4850 } 4851 4852 return 0; 4853 } 4854 4855 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4856 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4857 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4858 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4859 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4860 4861 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4862 { 4863 struct inode *inode = file_inode(file); 4864 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4865 struct btrfs_root *root = BTRFS_I(inode)->root; 4866 struct btrfs_super_block *super_block = fs_info->super_copy; 4867 struct btrfs_ioctl_feature_flags flags[2]; 4868 struct btrfs_trans_handle *trans; 4869 u64 newflags; 4870 int ret; 4871 4872 if (!capable(CAP_SYS_ADMIN)) 4873 return -EPERM; 4874 4875 if (copy_from_user(flags, arg, sizeof(flags))) 4876 return -EFAULT; 4877 4878 /* Nothing to do */ 4879 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4880 !flags[0].incompat_flags) 4881 return 0; 4882 4883 ret = check_feature(fs_info, flags[0].compat_flags, 4884 flags[1].compat_flags, COMPAT); 4885 if (ret) 4886 return ret; 4887 4888 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4889 flags[1].compat_ro_flags, COMPAT_RO); 4890 if (ret) 4891 return ret; 4892 4893 ret = check_feature(fs_info, flags[0].incompat_flags, 4894 flags[1].incompat_flags, INCOMPAT); 4895 if (ret) 4896 return ret; 4897 4898 ret = mnt_want_write_file(file); 4899 if (ret) 4900 return ret; 4901 4902 trans = btrfs_start_transaction(root, 0); 4903 if (IS_ERR(trans)) { 4904 ret = PTR_ERR(trans); 4905 goto out_drop_write; 4906 } 4907 4908 spin_lock(&fs_info->super_lock); 4909 newflags = btrfs_super_compat_flags(super_block); 4910 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4911 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4912 btrfs_set_super_compat_flags(super_block, newflags); 4913 4914 newflags = btrfs_super_compat_ro_flags(super_block); 4915 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4916 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4917 btrfs_set_super_compat_ro_flags(super_block, newflags); 4918 4919 newflags = btrfs_super_incompat_flags(super_block); 4920 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4921 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4922 btrfs_set_super_incompat_flags(super_block, newflags); 4923 spin_unlock(&fs_info->super_lock); 4924 4925 ret = btrfs_commit_transaction(trans); 4926 out_drop_write: 4927 mnt_drop_write_file(file); 4928 4929 return ret; 4930 } 4931 4932 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4933 { 4934 struct btrfs_ioctl_send_args *arg; 4935 int ret; 4936 4937 if (compat) { 4938 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4939 struct btrfs_ioctl_send_args_32 args32; 4940 4941 ret = copy_from_user(&args32, argp, sizeof(args32)); 4942 if (ret) 4943 return -EFAULT; 4944 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4945 if (!arg) 4946 return -ENOMEM; 4947 arg->send_fd = args32.send_fd; 4948 arg->clone_sources_count = args32.clone_sources_count; 4949 arg->clone_sources = compat_ptr(args32.clone_sources); 4950 arg->parent_root = args32.parent_root; 4951 arg->flags = args32.flags; 4952 memcpy(arg->reserved, args32.reserved, 4953 sizeof(args32.reserved)); 4954 #else 4955 return -ENOTTY; 4956 #endif 4957 } else { 4958 arg = memdup_user(argp, sizeof(*arg)); 4959 if (IS_ERR(arg)) 4960 return PTR_ERR(arg); 4961 } 4962 ret = btrfs_ioctl_send(file, arg); 4963 kfree(arg); 4964 return ret; 4965 } 4966 4967 long btrfs_ioctl(struct file *file, unsigned int 4968 cmd, unsigned long arg) 4969 { 4970 struct inode *inode = file_inode(file); 4971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4972 struct btrfs_root *root = BTRFS_I(inode)->root; 4973 void __user *argp = (void __user *)arg; 4974 4975 switch (cmd) { 4976 case FS_IOC_GETVERSION: 4977 return btrfs_ioctl_getversion(file, argp); 4978 case FS_IOC_GETFSLABEL: 4979 return btrfs_ioctl_get_fslabel(fs_info, argp); 4980 case FS_IOC_SETFSLABEL: 4981 return btrfs_ioctl_set_fslabel(file, argp); 4982 case FITRIM: 4983 return btrfs_ioctl_fitrim(fs_info, argp); 4984 case BTRFS_IOC_SNAP_CREATE: 4985 return btrfs_ioctl_snap_create(file, argp, 0); 4986 case BTRFS_IOC_SNAP_CREATE_V2: 4987 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4988 case BTRFS_IOC_SUBVOL_CREATE: 4989 return btrfs_ioctl_snap_create(file, argp, 1); 4990 case BTRFS_IOC_SUBVOL_CREATE_V2: 4991 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4992 case BTRFS_IOC_SNAP_DESTROY: 4993 return btrfs_ioctl_snap_destroy(file, argp, false); 4994 case BTRFS_IOC_SNAP_DESTROY_V2: 4995 return btrfs_ioctl_snap_destroy(file, argp, true); 4996 case BTRFS_IOC_SUBVOL_GETFLAGS: 4997 return btrfs_ioctl_subvol_getflags(file, argp); 4998 case BTRFS_IOC_SUBVOL_SETFLAGS: 4999 return btrfs_ioctl_subvol_setflags(file, argp); 5000 case BTRFS_IOC_DEFAULT_SUBVOL: 5001 return btrfs_ioctl_default_subvol(file, argp); 5002 case BTRFS_IOC_DEFRAG: 5003 return btrfs_ioctl_defrag(file, NULL); 5004 case BTRFS_IOC_DEFRAG_RANGE: 5005 return btrfs_ioctl_defrag(file, argp); 5006 case BTRFS_IOC_RESIZE: 5007 return btrfs_ioctl_resize(file, argp); 5008 case BTRFS_IOC_ADD_DEV: 5009 return btrfs_ioctl_add_dev(fs_info, argp); 5010 case BTRFS_IOC_RM_DEV: 5011 return btrfs_ioctl_rm_dev(file, argp); 5012 case BTRFS_IOC_RM_DEV_V2: 5013 return btrfs_ioctl_rm_dev_v2(file, argp); 5014 case BTRFS_IOC_FS_INFO: 5015 return btrfs_ioctl_fs_info(fs_info, argp); 5016 case BTRFS_IOC_DEV_INFO: 5017 return btrfs_ioctl_dev_info(fs_info, argp); 5018 case BTRFS_IOC_BALANCE: 5019 return btrfs_ioctl_balance(file, NULL); 5020 case BTRFS_IOC_TREE_SEARCH: 5021 return btrfs_ioctl_tree_search(file, argp); 5022 case BTRFS_IOC_TREE_SEARCH_V2: 5023 return btrfs_ioctl_tree_search_v2(file, argp); 5024 case BTRFS_IOC_INO_LOOKUP: 5025 return btrfs_ioctl_ino_lookup(file, argp); 5026 case BTRFS_IOC_INO_PATHS: 5027 return btrfs_ioctl_ino_to_path(root, argp); 5028 case BTRFS_IOC_LOGICAL_INO: 5029 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5030 case BTRFS_IOC_LOGICAL_INO_V2: 5031 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5032 case BTRFS_IOC_SPACE_INFO: 5033 return btrfs_ioctl_space_info(fs_info, argp); 5034 case BTRFS_IOC_SYNC: { 5035 int ret; 5036 5037 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 5038 if (ret) 5039 return ret; 5040 ret = btrfs_sync_fs(inode->i_sb, 1); 5041 /* 5042 * The transaction thread may want to do more work, 5043 * namely it pokes the cleaner kthread that will start 5044 * processing uncleaned subvols. 5045 */ 5046 wake_up_process(fs_info->transaction_kthread); 5047 return ret; 5048 } 5049 case BTRFS_IOC_START_SYNC: 5050 return btrfs_ioctl_start_sync(root, argp); 5051 case BTRFS_IOC_WAIT_SYNC: 5052 return btrfs_ioctl_wait_sync(fs_info, argp); 5053 case BTRFS_IOC_SCRUB: 5054 return btrfs_ioctl_scrub(file, argp); 5055 case BTRFS_IOC_SCRUB_CANCEL: 5056 return btrfs_ioctl_scrub_cancel(fs_info); 5057 case BTRFS_IOC_SCRUB_PROGRESS: 5058 return btrfs_ioctl_scrub_progress(fs_info, argp); 5059 case BTRFS_IOC_BALANCE_V2: 5060 return btrfs_ioctl_balance(file, argp); 5061 case BTRFS_IOC_BALANCE_CTL: 5062 return btrfs_ioctl_balance_ctl(fs_info, arg); 5063 case BTRFS_IOC_BALANCE_PROGRESS: 5064 return btrfs_ioctl_balance_progress(fs_info, argp); 5065 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5066 return btrfs_ioctl_set_received_subvol(file, argp); 5067 #ifdef CONFIG_64BIT 5068 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5069 return btrfs_ioctl_set_received_subvol_32(file, argp); 5070 #endif 5071 case BTRFS_IOC_SEND: 5072 return _btrfs_ioctl_send(file, argp, false); 5073 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5074 case BTRFS_IOC_SEND_32: 5075 return _btrfs_ioctl_send(file, argp, true); 5076 #endif 5077 case BTRFS_IOC_GET_DEV_STATS: 5078 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5079 case BTRFS_IOC_QUOTA_CTL: 5080 return btrfs_ioctl_quota_ctl(file, argp); 5081 case BTRFS_IOC_QGROUP_ASSIGN: 5082 return btrfs_ioctl_qgroup_assign(file, argp); 5083 case BTRFS_IOC_QGROUP_CREATE: 5084 return btrfs_ioctl_qgroup_create(file, argp); 5085 case BTRFS_IOC_QGROUP_LIMIT: 5086 return btrfs_ioctl_qgroup_limit(file, argp); 5087 case BTRFS_IOC_QUOTA_RESCAN: 5088 return btrfs_ioctl_quota_rescan(file, argp); 5089 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5090 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5091 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5092 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5093 case BTRFS_IOC_DEV_REPLACE: 5094 return btrfs_ioctl_dev_replace(fs_info, argp); 5095 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5096 return btrfs_ioctl_get_supported_features(argp); 5097 case BTRFS_IOC_GET_FEATURES: 5098 return btrfs_ioctl_get_features(fs_info, argp); 5099 case BTRFS_IOC_SET_FEATURES: 5100 return btrfs_ioctl_set_features(file, argp); 5101 case BTRFS_IOC_GET_SUBVOL_INFO: 5102 return btrfs_ioctl_get_subvol_info(file, argp); 5103 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5104 return btrfs_ioctl_get_subvol_rootref(file, argp); 5105 case BTRFS_IOC_INO_LOOKUP_USER: 5106 return btrfs_ioctl_ino_lookup_user(file, argp); 5107 case FS_IOC_ENABLE_VERITY: 5108 return fsverity_ioctl_enable(file, (const void __user *)argp); 5109 case FS_IOC_MEASURE_VERITY: 5110 return fsverity_ioctl_measure(file, argp); 5111 } 5112 5113 return -ENOTTY; 5114 } 5115 5116 #ifdef CONFIG_COMPAT 5117 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5118 { 5119 /* 5120 * These all access 32-bit values anyway so no further 5121 * handling is necessary. 5122 */ 5123 switch (cmd) { 5124 case FS_IOC32_GETVERSION: 5125 cmd = FS_IOC_GETVERSION; 5126 break; 5127 } 5128 5129 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5130 } 5131 #endif 5132