xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 20e2fc42)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "btrfs_inode.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "locking.h"
36 #include "inode-map.h"
37 #include "backref.h"
38 #include "rcu-string.h"
39 #include "send.h"
40 #include "dev-replace.h"
41 #include "props.h"
42 #include "sysfs.h"
43 #include "qgroup.h"
44 #include "tree-log.h"
45 #include "compression.h"
46 #include "space-info.h"
47 #include "delalloc-space.h"
48 #include "block-group.h"
49 
50 #ifdef CONFIG_64BIT
51 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
52  * structures are incorrect, as the timespec structure from userspace
53  * is 4 bytes too small. We define these alternatives here to teach
54  * the kernel about the 32-bit struct packing.
55  */
56 struct btrfs_ioctl_timespec_32 {
57 	__u64 sec;
58 	__u32 nsec;
59 } __attribute__ ((__packed__));
60 
61 struct btrfs_ioctl_received_subvol_args_32 {
62 	char	uuid[BTRFS_UUID_SIZE];	/* in */
63 	__u64	stransid;		/* in */
64 	__u64	rtransid;		/* out */
65 	struct btrfs_ioctl_timespec_32 stime; /* in */
66 	struct btrfs_ioctl_timespec_32 rtime; /* out */
67 	__u64	flags;			/* in */
68 	__u64	reserved[16];		/* in */
69 } __attribute__ ((__packed__));
70 
71 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
72 				struct btrfs_ioctl_received_subvol_args_32)
73 #endif
74 
75 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
76 struct btrfs_ioctl_send_args_32 {
77 	__s64 send_fd;			/* in */
78 	__u64 clone_sources_count;	/* in */
79 	compat_uptr_t clone_sources;	/* in */
80 	__u64 parent_root;		/* in */
81 	__u64 flags;			/* in */
82 	__u64 reserved[4];		/* in */
83 } __attribute__ ((__packed__));
84 
85 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
86 			       struct btrfs_ioctl_send_args_32)
87 #endif
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
91 		       int no_time_update);
92 
93 /* Mask out flags that are inappropriate for the given type of inode. */
94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
95 		unsigned int flags)
96 {
97 	if (S_ISDIR(inode->i_mode))
98 		return flags;
99 	else if (S_ISREG(inode->i_mode))
100 		return flags & ~FS_DIRSYNC_FL;
101 	else
102 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104 
105 /*
106  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
107  * ioctl.
108  */
109 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
110 {
111 	unsigned int iflags = 0;
112 
113 	if (flags & BTRFS_INODE_SYNC)
114 		iflags |= FS_SYNC_FL;
115 	if (flags & BTRFS_INODE_IMMUTABLE)
116 		iflags |= FS_IMMUTABLE_FL;
117 	if (flags & BTRFS_INODE_APPEND)
118 		iflags |= FS_APPEND_FL;
119 	if (flags & BTRFS_INODE_NODUMP)
120 		iflags |= FS_NODUMP_FL;
121 	if (flags & BTRFS_INODE_NOATIME)
122 		iflags |= FS_NOATIME_FL;
123 	if (flags & BTRFS_INODE_DIRSYNC)
124 		iflags |= FS_DIRSYNC_FL;
125 	if (flags & BTRFS_INODE_NODATACOW)
126 		iflags |= FS_NOCOW_FL;
127 
128 	if (flags & BTRFS_INODE_NOCOMPRESS)
129 		iflags |= FS_NOCOMP_FL;
130 	else if (flags & BTRFS_INODE_COMPRESS)
131 		iflags |= FS_COMPR_FL;
132 
133 	return iflags;
134 }
135 
136 /*
137  * Update inode->i_flags based on the btrfs internal flags.
138  */
139 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
140 {
141 	struct btrfs_inode *binode = BTRFS_I(inode);
142 	unsigned int new_fl = 0;
143 
144 	if (binode->flags & BTRFS_INODE_SYNC)
145 		new_fl |= S_SYNC;
146 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
147 		new_fl |= S_IMMUTABLE;
148 	if (binode->flags & BTRFS_INODE_APPEND)
149 		new_fl |= S_APPEND;
150 	if (binode->flags & BTRFS_INODE_NOATIME)
151 		new_fl |= S_NOATIME;
152 	if (binode->flags & BTRFS_INODE_DIRSYNC)
153 		new_fl |= S_DIRSYNC;
154 
155 	set_mask_bits(&inode->i_flags,
156 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 		      new_fl);
158 }
159 
160 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
161 {
162 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
163 	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
164 
165 	if (copy_to_user(arg, &flags, sizeof(flags)))
166 		return -EFAULT;
167 	return 0;
168 }
169 
170 /* Check if @flags are a supported and valid set of FS_*_FL flags */
171 static int check_fsflags(unsigned int flags)
172 {
173 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
174 		      FS_NOATIME_FL | FS_NODUMP_FL | \
175 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
176 		      FS_NOCOMP_FL | FS_COMPR_FL |
177 		      FS_NOCOW_FL))
178 		return -EOPNOTSUPP;
179 
180 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
181 		return -EINVAL;
182 
183 	return 0;
184 }
185 
186 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
187 {
188 	struct inode *inode = file_inode(file);
189 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
190 	struct btrfs_inode *binode = BTRFS_I(inode);
191 	struct btrfs_root *root = binode->root;
192 	struct btrfs_trans_handle *trans;
193 	unsigned int fsflags, old_fsflags;
194 	int ret;
195 	const char *comp = NULL;
196 	u32 binode_flags = binode->flags;
197 
198 	if (!inode_owner_or_capable(inode))
199 		return -EPERM;
200 
201 	if (btrfs_root_readonly(root))
202 		return -EROFS;
203 
204 	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
205 		return -EFAULT;
206 
207 	ret = check_fsflags(fsflags);
208 	if (ret)
209 		return ret;
210 
211 	ret = mnt_want_write_file(file);
212 	if (ret)
213 		return ret;
214 
215 	inode_lock(inode);
216 
217 	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
218 	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
219 	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
220 	if (ret)
221 		goto out_unlock;
222 
223 	if (fsflags & FS_SYNC_FL)
224 		binode_flags |= BTRFS_INODE_SYNC;
225 	else
226 		binode_flags &= ~BTRFS_INODE_SYNC;
227 	if (fsflags & FS_IMMUTABLE_FL)
228 		binode_flags |= BTRFS_INODE_IMMUTABLE;
229 	else
230 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
231 	if (fsflags & FS_APPEND_FL)
232 		binode_flags |= BTRFS_INODE_APPEND;
233 	else
234 		binode_flags &= ~BTRFS_INODE_APPEND;
235 	if (fsflags & FS_NODUMP_FL)
236 		binode_flags |= BTRFS_INODE_NODUMP;
237 	else
238 		binode_flags &= ~BTRFS_INODE_NODUMP;
239 	if (fsflags & FS_NOATIME_FL)
240 		binode_flags |= BTRFS_INODE_NOATIME;
241 	else
242 		binode_flags &= ~BTRFS_INODE_NOATIME;
243 	if (fsflags & FS_DIRSYNC_FL)
244 		binode_flags |= BTRFS_INODE_DIRSYNC;
245 	else
246 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
247 	if (fsflags & FS_NOCOW_FL) {
248 		if (S_ISREG(inode->i_mode)) {
249 			/*
250 			 * It's safe to turn csums off here, no extents exist.
251 			 * Otherwise we want the flag to reflect the real COW
252 			 * status of the file and will not set it.
253 			 */
254 			if (inode->i_size == 0)
255 				binode_flags |= BTRFS_INODE_NODATACOW |
256 						BTRFS_INODE_NODATASUM;
257 		} else {
258 			binode_flags |= BTRFS_INODE_NODATACOW;
259 		}
260 	} else {
261 		/*
262 		 * Revert back under same assumptions as above
263 		 */
264 		if (S_ISREG(inode->i_mode)) {
265 			if (inode->i_size == 0)
266 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
267 						  BTRFS_INODE_NODATASUM);
268 		} else {
269 			binode_flags &= ~BTRFS_INODE_NODATACOW;
270 		}
271 	}
272 
273 	/*
274 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
275 	 * flag may be changed automatically if compression code won't make
276 	 * things smaller.
277 	 */
278 	if (fsflags & FS_NOCOMP_FL) {
279 		binode_flags &= ~BTRFS_INODE_COMPRESS;
280 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
281 	} else if (fsflags & FS_COMPR_FL) {
282 
283 		if (IS_SWAPFILE(inode)) {
284 			ret = -ETXTBSY;
285 			goto out_unlock;
286 		}
287 
288 		binode_flags |= BTRFS_INODE_COMPRESS;
289 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
290 
291 		comp = btrfs_compress_type2str(fs_info->compress_type);
292 		if (!comp || comp[0] == 0)
293 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
294 	} else {
295 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
296 	}
297 
298 	/*
299 	 * 1 for inode item
300 	 * 2 for properties
301 	 */
302 	trans = btrfs_start_transaction(root, 3);
303 	if (IS_ERR(trans)) {
304 		ret = PTR_ERR(trans);
305 		goto out_unlock;
306 	}
307 
308 	if (comp) {
309 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
310 				     strlen(comp), 0);
311 		if (ret) {
312 			btrfs_abort_transaction(trans, ret);
313 			goto out_end_trans;
314 		}
315 	} else {
316 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
317 				     0, 0);
318 		if (ret && ret != -ENODATA) {
319 			btrfs_abort_transaction(trans, ret);
320 			goto out_end_trans;
321 		}
322 	}
323 
324 	binode->flags = binode_flags;
325 	btrfs_sync_inode_flags_to_i_flags(inode);
326 	inode_inc_iversion(inode);
327 	inode->i_ctime = current_time(inode);
328 	ret = btrfs_update_inode(trans, root, inode);
329 
330  out_end_trans:
331 	btrfs_end_transaction(trans);
332  out_unlock:
333 	inode_unlock(inode);
334 	mnt_drop_write_file(file);
335 	return ret;
336 }
337 
338 /*
339  * Translate btrfs internal inode flags to xflags as expected by the
340  * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
341  * silently dropped.
342  */
343 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
344 {
345 	unsigned int xflags = 0;
346 
347 	if (flags & BTRFS_INODE_APPEND)
348 		xflags |= FS_XFLAG_APPEND;
349 	if (flags & BTRFS_INODE_IMMUTABLE)
350 		xflags |= FS_XFLAG_IMMUTABLE;
351 	if (flags & BTRFS_INODE_NOATIME)
352 		xflags |= FS_XFLAG_NOATIME;
353 	if (flags & BTRFS_INODE_NODUMP)
354 		xflags |= FS_XFLAG_NODUMP;
355 	if (flags & BTRFS_INODE_SYNC)
356 		xflags |= FS_XFLAG_SYNC;
357 
358 	return xflags;
359 }
360 
361 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
362 static int check_xflags(unsigned int flags)
363 {
364 	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
365 		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
366 		return -EOPNOTSUPP;
367 	return 0;
368 }
369 
370 /*
371  * Set the xflags from the internal inode flags. The remaining items of fsxattr
372  * are zeroed.
373  */
374 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
375 {
376 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
377 	struct fsxattr fa;
378 
379 	simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
380 	if (copy_to_user(arg, &fa, sizeof(fa)))
381 		return -EFAULT;
382 
383 	return 0;
384 }
385 
386 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
387 {
388 	struct inode *inode = file_inode(file);
389 	struct btrfs_inode *binode = BTRFS_I(inode);
390 	struct btrfs_root *root = binode->root;
391 	struct btrfs_trans_handle *trans;
392 	struct fsxattr fa, old_fa;
393 	unsigned old_flags;
394 	unsigned old_i_flags;
395 	int ret = 0;
396 
397 	if (!inode_owner_or_capable(inode))
398 		return -EPERM;
399 
400 	if (btrfs_root_readonly(root))
401 		return -EROFS;
402 
403 	if (copy_from_user(&fa, arg, sizeof(fa)))
404 		return -EFAULT;
405 
406 	ret = check_xflags(fa.fsx_xflags);
407 	if (ret)
408 		return ret;
409 
410 	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
411 		return -EOPNOTSUPP;
412 
413 	ret = mnt_want_write_file(file);
414 	if (ret)
415 		return ret;
416 
417 	inode_lock(inode);
418 
419 	old_flags = binode->flags;
420 	old_i_flags = inode->i_flags;
421 
422 	simple_fill_fsxattr(&old_fa,
423 			    btrfs_inode_flags_to_xflags(binode->flags));
424 	ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
425 	if (ret)
426 		goto out_unlock;
427 
428 	if (fa.fsx_xflags & FS_XFLAG_SYNC)
429 		binode->flags |= BTRFS_INODE_SYNC;
430 	else
431 		binode->flags &= ~BTRFS_INODE_SYNC;
432 	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
433 		binode->flags |= BTRFS_INODE_IMMUTABLE;
434 	else
435 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
436 	if (fa.fsx_xflags & FS_XFLAG_APPEND)
437 		binode->flags |= BTRFS_INODE_APPEND;
438 	else
439 		binode->flags &= ~BTRFS_INODE_APPEND;
440 	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
441 		binode->flags |= BTRFS_INODE_NODUMP;
442 	else
443 		binode->flags &= ~BTRFS_INODE_NODUMP;
444 	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
445 		binode->flags |= BTRFS_INODE_NOATIME;
446 	else
447 		binode->flags &= ~BTRFS_INODE_NOATIME;
448 
449 	/* 1 item for the inode */
450 	trans = btrfs_start_transaction(root, 1);
451 	if (IS_ERR(trans)) {
452 		ret = PTR_ERR(trans);
453 		goto out_unlock;
454 	}
455 
456 	btrfs_sync_inode_flags_to_i_flags(inode);
457 	inode_inc_iversion(inode);
458 	inode->i_ctime = current_time(inode);
459 	ret = btrfs_update_inode(trans, root, inode);
460 
461 	btrfs_end_transaction(trans);
462 
463 out_unlock:
464 	if (ret) {
465 		binode->flags = old_flags;
466 		inode->i_flags = old_i_flags;
467 	}
468 
469 	inode_unlock(inode);
470 	mnt_drop_write_file(file);
471 
472 	return ret;
473 }
474 
475 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
476 {
477 	struct inode *inode = file_inode(file);
478 
479 	return put_user(inode->i_generation, arg);
480 }
481 
482 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
483 {
484 	struct inode *inode = file_inode(file);
485 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
486 	struct btrfs_device *device;
487 	struct request_queue *q;
488 	struct fstrim_range range;
489 	u64 minlen = ULLONG_MAX;
490 	u64 num_devices = 0;
491 	int ret;
492 
493 	if (!capable(CAP_SYS_ADMIN))
494 		return -EPERM;
495 
496 	/*
497 	 * If the fs is mounted with nologreplay, which requires it to be
498 	 * mounted in RO mode as well, we can not allow discard on free space
499 	 * inside block groups, because log trees refer to extents that are not
500 	 * pinned in a block group's free space cache (pinning the extents is
501 	 * precisely the first phase of replaying a log tree).
502 	 */
503 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
504 		return -EROFS;
505 
506 	rcu_read_lock();
507 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
508 				dev_list) {
509 		if (!device->bdev)
510 			continue;
511 		q = bdev_get_queue(device->bdev);
512 		if (blk_queue_discard(q)) {
513 			num_devices++;
514 			minlen = min_t(u64, q->limits.discard_granularity,
515 				     minlen);
516 		}
517 	}
518 	rcu_read_unlock();
519 
520 	if (!num_devices)
521 		return -EOPNOTSUPP;
522 	if (copy_from_user(&range, arg, sizeof(range)))
523 		return -EFAULT;
524 
525 	/*
526 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
527 	 * block group is in the logical address space, which can be any
528 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
529 	 */
530 	if (range.len < fs_info->sb->s_blocksize)
531 		return -EINVAL;
532 
533 	range.minlen = max(range.minlen, minlen);
534 	ret = btrfs_trim_fs(fs_info, &range);
535 	if (ret < 0)
536 		return ret;
537 
538 	if (copy_to_user(arg, &range, sizeof(range)))
539 		return -EFAULT;
540 
541 	return 0;
542 }
543 
544 int btrfs_is_empty_uuid(u8 *uuid)
545 {
546 	int i;
547 
548 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
549 		if (uuid[i])
550 			return 0;
551 	}
552 	return 1;
553 }
554 
555 static noinline int create_subvol(struct inode *dir,
556 				  struct dentry *dentry,
557 				  const char *name, int namelen,
558 				  u64 *async_transid,
559 				  struct btrfs_qgroup_inherit *inherit)
560 {
561 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
562 	struct btrfs_trans_handle *trans;
563 	struct btrfs_key key;
564 	struct btrfs_root_item *root_item;
565 	struct btrfs_inode_item *inode_item;
566 	struct extent_buffer *leaf;
567 	struct btrfs_root *root = BTRFS_I(dir)->root;
568 	struct btrfs_root *new_root;
569 	struct btrfs_block_rsv block_rsv;
570 	struct timespec64 cur_time = current_time(dir);
571 	struct inode *inode;
572 	int ret;
573 	int err;
574 	u64 objectid;
575 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
576 	u64 index = 0;
577 	uuid_le new_uuid;
578 
579 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
580 	if (!root_item)
581 		return -ENOMEM;
582 
583 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
584 	if (ret)
585 		goto fail_free;
586 
587 	/*
588 	 * Don't create subvolume whose level is not zero. Or qgroup will be
589 	 * screwed up since it assumes subvolume qgroup's level to be 0.
590 	 */
591 	if (btrfs_qgroup_level(objectid)) {
592 		ret = -ENOSPC;
593 		goto fail_free;
594 	}
595 
596 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
597 	/*
598 	 * The same as the snapshot creation, please see the comment
599 	 * of create_snapshot().
600 	 */
601 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
602 	if (ret)
603 		goto fail_free;
604 
605 	trans = btrfs_start_transaction(root, 0);
606 	if (IS_ERR(trans)) {
607 		ret = PTR_ERR(trans);
608 		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
609 		goto fail_free;
610 	}
611 	trans->block_rsv = &block_rsv;
612 	trans->bytes_reserved = block_rsv.size;
613 
614 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
615 	if (ret)
616 		goto fail;
617 
618 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
619 	if (IS_ERR(leaf)) {
620 		ret = PTR_ERR(leaf);
621 		goto fail;
622 	}
623 
624 	btrfs_mark_buffer_dirty(leaf);
625 
626 	inode_item = &root_item->inode;
627 	btrfs_set_stack_inode_generation(inode_item, 1);
628 	btrfs_set_stack_inode_size(inode_item, 3);
629 	btrfs_set_stack_inode_nlink(inode_item, 1);
630 	btrfs_set_stack_inode_nbytes(inode_item,
631 				     fs_info->nodesize);
632 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
633 
634 	btrfs_set_root_flags(root_item, 0);
635 	btrfs_set_root_limit(root_item, 0);
636 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
637 
638 	btrfs_set_root_bytenr(root_item, leaf->start);
639 	btrfs_set_root_generation(root_item, trans->transid);
640 	btrfs_set_root_level(root_item, 0);
641 	btrfs_set_root_refs(root_item, 1);
642 	btrfs_set_root_used(root_item, leaf->len);
643 	btrfs_set_root_last_snapshot(root_item, 0);
644 
645 	btrfs_set_root_generation_v2(root_item,
646 			btrfs_root_generation(root_item));
647 	uuid_le_gen(&new_uuid);
648 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
649 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
650 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
651 	root_item->ctime = root_item->otime;
652 	btrfs_set_root_ctransid(root_item, trans->transid);
653 	btrfs_set_root_otransid(root_item, trans->transid);
654 
655 	btrfs_tree_unlock(leaf);
656 	free_extent_buffer(leaf);
657 	leaf = NULL;
658 
659 	btrfs_set_root_dirid(root_item, new_dirid);
660 
661 	key.objectid = objectid;
662 	key.offset = 0;
663 	key.type = BTRFS_ROOT_ITEM_KEY;
664 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
665 				root_item);
666 	if (ret)
667 		goto fail;
668 
669 	key.offset = (u64)-1;
670 	new_root = btrfs_read_fs_root_no_name(fs_info, &key);
671 	if (IS_ERR(new_root)) {
672 		ret = PTR_ERR(new_root);
673 		btrfs_abort_transaction(trans, ret);
674 		goto fail;
675 	}
676 
677 	btrfs_record_root_in_trans(trans, new_root);
678 
679 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
680 	if (ret) {
681 		/* We potentially lose an unused inode item here */
682 		btrfs_abort_transaction(trans, ret);
683 		goto fail;
684 	}
685 
686 	mutex_lock(&new_root->objectid_mutex);
687 	new_root->highest_objectid = new_dirid;
688 	mutex_unlock(&new_root->objectid_mutex);
689 
690 	/*
691 	 * insert the directory item
692 	 */
693 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
694 	if (ret) {
695 		btrfs_abort_transaction(trans, ret);
696 		goto fail;
697 	}
698 
699 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
700 				    BTRFS_FT_DIR, index);
701 	if (ret) {
702 		btrfs_abort_transaction(trans, ret);
703 		goto fail;
704 	}
705 
706 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
707 	ret = btrfs_update_inode(trans, root, dir);
708 	BUG_ON(ret);
709 
710 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
711 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
712 	BUG_ON(ret);
713 
714 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
715 				  BTRFS_UUID_KEY_SUBVOL, objectid);
716 	if (ret)
717 		btrfs_abort_transaction(trans, ret);
718 
719 fail:
720 	kfree(root_item);
721 	trans->block_rsv = NULL;
722 	trans->bytes_reserved = 0;
723 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
724 
725 	if (async_transid) {
726 		*async_transid = trans->transid;
727 		err = btrfs_commit_transaction_async(trans, 1);
728 		if (err)
729 			err = btrfs_commit_transaction(trans);
730 	} else {
731 		err = btrfs_commit_transaction(trans);
732 	}
733 	if (err && !ret)
734 		ret = err;
735 
736 	if (!ret) {
737 		inode = btrfs_lookup_dentry(dir, dentry);
738 		if (IS_ERR(inode))
739 			return PTR_ERR(inode);
740 		d_instantiate(dentry, inode);
741 	}
742 	return ret;
743 
744 fail_free:
745 	kfree(root_item);
746 	return ret;
747 }
748 
749 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
750 			   struct dentry *dentry,
751 			   u64 *async_transid, bool readonly,
752 			   struct btrfs_qgroup_inherit *inherit)
753 {
754 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
755 	struct inode *inode;
756 	struct btrfs_pending_snapshot *pending_snapshot;
757 	struct btrfs_trans_handle *trans;
758 	int ret;
759 	bool snapshot_force_cow = false;
760 
761 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
762 		return -EINVAL;
763 
764 	if (atomic_read(&root->nr_swapfiles)) {
765 		btrfs_warn(fs_info,
766 			   "cannot snapshot subvolume with active swapfile");
767 		return -ETXTBSY;
768 	}
769 
770 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
771 	if (!pending_snapshot)
772 		return -ENOMEM;
773 
774 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
775 			GFP_KERNEL);
776 	pending_snapshot->path = btrfs_alloc_path();
777 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
778 		ret = -ENOMEM;
779 		goto free_pending;
780 	}
781 
782 	/*
783 	 * Force new buffered writes to reserve space even when NOCOW is
784 	 * possible. This is to avoid later writeback (running dealloc) to
785 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
786 	 */
787 	atomic_inc(&root->will_be_snapshotted);
788 	smp_mb__after_atomic();
789 	/* wait for no snapshot writes */
790 	wait_event(root->subv_writers->wait,
791 		   percpu_counter_sum(&root->subv_writers->counter) == 0);
792 
793 	ret = btrfs_start_delalloc_snapshot(root);
794 	if (ret)
795 		goto dec_and_free;
796 
797 	/*
798 	 * All previous writes have started writeback in NOCOW mode, so now
799 	 * we force future writes to fallback to COW mode during snapshot
800 	 * creation.
801 	 */
802 	atomic_inc(&root->snapshot_force_cow);
803 	snapshot_force_cow = true;
804 
805 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
806 
807 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
808 			     BTRFS_BLOCK_RSV_TEMP);
809 	/*
810 	 * 1 - parent dir inode
811 	 * 2 - dir entries
812 	 * 1 - root item
813 	 * 2 - root ref/backref
814 	 * 1 - root of snapshot
815 	 * 1 - UUID item
816 	 */
817 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
818 					&pending_snapshot->block_rsv, 8,
819 					false);
820 	if (ret)
821 		goto dec_and_free;
822 
823 	pending_snapshot->dentry = dentry;
824 	pending_snapshot->root = root;
825 	pending_snapshot->readonly = readonly;
826 	pending_snapshot->dir = dir;
827 	pending_snapshot->inherit = inherit;
828 
829 	trans = btrfs_start_transaction(root, 0);
830 	if (IS_ERR(trans)) {
831 		ret = PTR_ERR(trans);
832 		goto fail;
833 	}
834 
835 	spin_lock(&fs_info->trans_lock);
836 	list_add(&pending_snapshot->list,
837 		 &trans->transaction->pending_snapshots);
838 	spin_unlock(&fs_info->trans_lock);
839 	if (async_transid) {
840 		*async_transid = trans->transid;
841 		ret = btrfs_commit_transaction_async(trans, 1);
842 		if (ret)
843 			ret = btrfs_commit_transaction(trans);
844 	} else {
845 		ret = btrfs_commit_transaction(trans);
846 	}
847 	if (ret)
848 		goto fail;
849 
850 	ret = pending_snapshot->error;
851 	if (ret)
852 		goto fail;
853 
854 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
855 	if (ret)
856 		goto fail;
857 
858 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
859 	if (IS_ERR(inode)) {
860 		ret = PTR_ERR(inode);
861 		goto fail;
862 	}
863 
864 	d_instantiate(dentry, inode);
865 	ret = 0;
866 fail:
867 	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
868 dec_and_free:
869 	if (snapshot_force_cow)
870 		atomic_dec(&root->snapshot_force_cow);
871 	if (atomic_dec_and_test(&root->will_be_snapshotted))
872 		wake_up_var(&root->will_be_snapshotted);
873 free_pending:
874 	kfree(pending_snapshot->root_item);
875 	btrfs_free_path(pending_snapshot->path);
876 	kfree(pending_snapshot);
877 
878 	return ret;
879 }
880 
881 /*  copy of may_delete in fs/namei.c()
882  *	Check whether we can remove a link victim from directory dir, check
883  *  whether the type of victim is right.
884  *  1. We can't do it if dir is read-only (done in permission())
885  *  2. We should have write and exec permissions on dir
886  *  3. We can't remove anything from append-only dir
887  *  4. We can't do anything with immutable dir (done in permission())
888  *  5. If the sticky bit on dir is set we should either
889  *	a. be owner of dir, or
890  *	b. be owner of victim, or
891  *	c. have CAP_FOWNER capability
892  *  6. If the victim is append-only or immutable we can't do anything with
893  *     links pointing to it.
894  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
895  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
896  *  9. We can't remove a root or mountpoint.
897  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
898  *     nfs_async_unlink().
899  */
900 
901 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
902 {
903 	int error;
904 
905 	if (d_really_is_negative(victim))
906 		return -ENOENT;
907 
908 	BUG_ON(d_inode(victim->d_parent) != dir);
909 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
910 
911 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
912 	if (error)
913 		return error;
914 	if (IS_APPEND(dir))
915 		return -EPERM;
916 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
917 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
918 		return -EPERM;
919 	if (isdir) {
920 		if (!d_is_dir(victim))
921 			return -ENOTDIR;
922 		if (IS_ROOT(victim))
923 			return -EBUSY;
924 	} else if (d_is_dir(victim))
925 		return -EISDIR;
926 	if (IS_DEADDIR(dir))
927 		return -ENOENT;
928 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
929 		return -EBUSY;
930 	return 0;
931 }
932 
933 /* copy of may_create in fs/namei.c() */
934 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
935 {
936 	if (d_really_is_positive(child))
937 		return -EEXIST;
938 	if (IS_DEADDIR(dir))
939 		return -ENOENT;
940 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
941 }
942 
943 /*
944  * Create a new subvolume below @parent.  This is largely modeled after
945  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
946  * inside this filesystem so it's quite a bit simpler.
947  */
948 static noinline int btrfs_mksubvol(const struct path *parent,
949 				   const char *name, int namelen,
950 				   struct btrfs_root *snap_src,
951 				   u64 *async_transid, bool readonly,
952 				   struct btrfs_qgroup_inherit *inherit)
953 {
954 	struct inode *dir = d_inode(parent->dentry);
955 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
956 	struct dentry *dentry;
957 	int error;
958 
959 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
960 	if (error == -EINTR)
961 		return error;
962 
963 	dentry = lookup_one_len(name, parent->dentry, namelen);
964 	error = PTR_ERR(dentry);
965 	if (IS_ERR(dentry))
966 		goto out_unlock;
967 
968 	error = btrfs_may_create(dir, dentry);
969 	if (error)
970 		goto out_dput;
971 
972 	/*
973 	 * even if this name doesn't exist, we may get hash collisions.
974 	 * check for them now when we can safely fail
975 	 */
976 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
977 					       dir->i_ino, name,
978 					       namelen);
979 	if (error)
980 		goto out_dput;
981 
982 	down_read(&fs_info->subvol_sem);
983 
984 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
985 		goto out_up_read;
986 
987 	if (snap_src) {
988 		error = create_snapshot(snap_src, dir, dentry,
989 					async_transid, readonly, inherit);
990 	} else {
991 		error = create_subvol(dir, dentry, name, namelen,
992 				      async_transid, inherit);
993 	}
994 	if (!error)
995 		fsnotify_mkdir(dir, dentry);
996 out_up_read:
997 	up_read(&fs_info->subvol_sem);
998 out_dput:
999 	dput(dentry);
1000 out_unlock:
1001 	inode_unlock(dir);
1002 	return error;
1003 }
1004 
1005 /*
1006  * When we're defragging a range, we don't want to kick it off again
1007  * if it is really just waiting for delalloc to send it down.
1008  * If we find a nice big extent or delalloc range for the bytes in the
1009  * file you want to defrag, we return 0 to let you know to skip this
1010  * part of the file
1011  */
1012 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1013 {
1014 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1015 	struct extent_map *em = NULL;
1016 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1017 	u64 end;
1018 
1019 	read_lock(&em_tree->lock);
1020 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1021 	read_unlock(&em_tree->lock);
1022 
1023 	if (em) {
1024 		end = extent_map_end(em);
1025 		free_extent_map(em);
1026 		if (end - offset > thresh)
1027 			return 0;
1028 	}
1029 	/* if we already have a nice delalloc here, just stop */
1030 	thresh /= 2;
1031 	end = count_range_bits(io_tree, &offset, offset + thresh,
1032 			       thresh, EXTENT_DELALLOC, 1);
1033 	if (end >= thresh)
1034 		return 0;
1035 	return 1;
1036 }
1037 
1038 /*
1039  * helper function to walk through a file and find extents
1040  * newer than a specific transid, and smaller than thresh.
1041  *
1042  * This is used by the defragging code to find new and small
1043  * extents
1044  */
1045 static int find_new_extents(struct btrfs_root *root,
1046 			    struct inode *inode, u64 newer_than,
1047 			    u64 *off, u32 thresh)
1048 {
1049 	struct btrfs_path *path;
1050 	struct btrfs_key min_key;
1051 	struct extent_buffer *leaf;
1052 	struct btrfs_file_extent_item *extent;
1053 	int type;
1054 	int ret;
1055 	u64 ino = btrfs_ino(BTRFS_I(inode));
1056 
1057 	path = btrfs_alloc_path();
1058 	if (!path)
1059 		return -ENOMEM;
1060 
1061 	min_key.objectid = ino;
1062 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1063 	min_key.offset = *off;
1064 
1065 	while (1) {
1066 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1067 		if (ret != 0)
1068 			goto none;
1069 process_slot:
1070 		if (min_key.objectid != ino)
1071 			goto none;
1072 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1073 			goto none;
1074 
1075 		leaf = path->nodes[0];
1076 		extent = btrfs_item_ptr(leaf, path->slots[0],
1077 					struct btrfs_file_extent_item);
1078 
1079 		type = btrfs_file_extent_type(leaf, extent);
1080 		if (type == BTRFS_FILE_EXTENT_REG &&
1081 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1082 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1083 			*off = min_key.offset;
1084 			btrfs_free_path(path);
1085 			return 0;
1086 		}
1087 
1088 		path->slots[0]++;
1089 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1090 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1091 			goto process_slot;
1092 		}
1093 
1094 		if (min_key.offset == (u64)-1)
1095 			goto none;
1096 
1097 		min_key.offset++;
1098 		btrfs_release_path(path);
1099 	}
1100 none:
1101 	btrfs_free_path(path);
1102 	return -ENOENT;
1103 }
1104 
1105 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1106 {
1107 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1108 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1109 	struct extent_map *em;
1110 	u64 len = PAGE_SIZE;
1111 
1112 	/*
1113 	 * hopefully we have this extent in the tree already, try without
1114 	 * the full extent lock
1115 	 */
1116 	read_lock(&em_tree->lock);
1117 	em = lookup_extent_mapping(em_tree, start, len);
1118 	read_unlock(&em_tree->lock);
1119 
1120 	if (!em) {
1121 		struct extent_state *cached = NULL;
1122 		u64 end = start + len - 1;
1123 
1124 		/* get the big lock and read metadata off disk */
1125 		lock_extent_bits(io_tree, start, end, &cached);
1126 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1127 		unlock_extent_cached(io_tree, start, end, &cached);
1128 
1129 		if (IS_ERR(em))
1130 			return NULL;
1131 	}
1132 
1133 	return em;
1134 }
1135 
1136 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1137 {
1138 	struct extent_map *next;
1139 	bool ret = true;
1140 
1141 	/* this is the last extent */
1142 	if (em->start + em->len >= i_size_read(inode))
1143 		return false;
1144 
1145 	next = defrag_lookup_extent(inode, em->start + em->len);
1146 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1147 		ret = false;
1148 	else if ((em->block_start + em->block_len == next->block_start) &&
1149 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1150 		ret = false;
1151 
1152 	free_extent_map(next);
1153 	return ret;
1154 }
1155 
1156 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1157 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1158 			       int compress)
1159 {
1160 	struct extent_map *em;
1161 	int ret = 1;
1162 	bool next_mergeable = true;
1163 	bool prev_mergeable = true;
1164 
1165 	/*
1166 	 * make sure that once we start defragging an extent, we keep on
1167 	 * defragging it
1168 	 */
1169 	if (start < *defrag_end)
1170 		return 1;
1171 
1172 	*skip = 0;
1173 
1174 	em = defrag_lookup_extent(inode, start);
1175 	if (!em)
1176 		return 0;
1177 
1178 	/* this will cover holes, and inline extents */
1179 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1180 		ret = 0;
1181 		goto out;
1182 	}
1183 
1184 	if (!*defrag_end)
1185 		prev_mergeable = false;
1186 
1187 	next_mergeable = defrag_check_next_extent(inode, em);
1188 	/*
1189 	 * we hit a real extent, if it is big or the next extent is not a
1190 	 * real extent, don't bother defragging it
1191 	 */
1192 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1193 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1194 		ret = 0;
1195 out:
1196 	/*
1197 	 * last_len ends up being a counter of how many bytes we've defragged.
1198 	 * every time we choose not to defrag an extent, we reset *last_len
1199 	 * so that the next tiny extent will force a defrag.
1200 	 *
1201 	 * The end result of this is that tiny extents before a single big
1202 	 * extent will force at least part of that big extent to be defragged.
1203 	 */
1204 	if (ret) {
1205 		*defrag_end = extent_map_end(em);
1206 	} else {
1207 		*last_len = 0;
1208 		*skip = extent_map_end(em);
1209 		*defrag_end = 0;
1210 	}
1211 
1212 	free_extent_map(em);
1213 	return ret;
1214 }
1215 
1216 /*
1217  * it doesn't do much good to defrag one or two pages
1218  * at a time.  This pulls in a nice chunk of pages
1219  * to COW and defrag.
1220  *
1221  * It also makes sure the delalloc code has enough
1222  * dirty data to avoid making new small extents as part
1223  * of the defrag
1224  *
1225  * It's a good idea to start RA on this range
1226  * before calling this.
1227  */
1228 static int cluster_pages_for_defrag(struct inode *inode,
1229 				    struct page **pages,
1230 				    unsigned long start_index,
1231 				    unsigned long num_pages)
1232 {
1233 	unsigned long file_end;
1234 	u64 isize = i_size_read(inode);
1235 	u64 page_start;
1236 	u64 page_end;
1237 	u64 page_cnt;
1238 	int ret;
1239 	int i;
1240 	int i_done;
1241 	struct btrfs_ordered_extent *ordered;
1242 	struct extent_state *cached_state = NULL;
1243 	struct extent_io_tree *tree;
1244 	struct extent_changeset *data_reserved = NULL;
1245 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1246 
1247 	file_end = (isize - 1) >> PAGE_SHIFT;
1248 	if (!isize || start_index > file_end)
1249 		return 0;
1250 
1251 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1252 
1253 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1254 			start_index << PAGE_SHIFT,
1255 			page_cnt << PAGE_SHIFT);
1256 	if (ret)
1257 		return ret;
1258 	i_done = 0;
1259 	tree = &BTRFS_I(inode)->io_tree;
1260 
1261 	/* step one, lock all the pages */
1262 	for (i = 0; i < page_cnt; i++) {
1263 		struct page *page;
1264 again:
1265 		page = find_or_create_page(inode->i_mapping,
1266 					   start_index + i, mask);
1267 		if (!page)
1268 			break;
1269 
1270 		page_start = page_offset(page);
1271 		page_end = page_start + PAGE_SIZE - 1;
1272 		while (1) {
1273 			lock_extent_bits(tree, page_start, page_end,
1274 					 &cached_state);
1275 			ordered = btrfs_lookup_ordered_extent(inode,
1276 							      page_start);
1277 			unlock_extent_cached(tree, page_start, page_end,
1278 					     &cached_state);
1279 			if (!ordered)
1280 				break;
1281 
1282 			unlock_page(page);
1283 			btrfs_start_ordered_extent(inode, ordered, 1);
1284 			btrfs_put_ordered_extent(ordered);
1285 			lock_page(page);
1286 			/*
1287 			 * we unlocked the page above, so we need check if
1288 			 * it was released or not.
1289 			 */
1290 			if (page->mapping != inode->i_mapping) {
1291 				unlock_page(page);
1292 				put_page(page);
1293 				goto again;
1294 			}
1295 		}
1296 
1297 		if (!PageUptodate(page)) {
1298 			btrfs_readpage(NULL, page);
1299 			lock_page(page);
1300 			if (!PageUptodate(page)) {
1301 				unlock_page(page);
1302 				put_page(page);
1303 				ret = -EIO;
1304 				break;
1305 			}
1306 		}
1307 
1308 		if (page->mapping != inode->i_mapping) {
1309 			unlock_page(page);
1310 			put_page(page);
1311 			goto again;
1312 		}
1313 
1314 		pages[i] = page;
1315 		i_done++;
1316 	}
1317 	if (!i_done || ret)
1318 		goto out;
1319 
1320 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1321 		goto out;
1322 
1323 	/*
1324 	 * so now we have a nice long stream of locked
1325 	 * and up to date pages, lets wait on them
1326 	 */
1327 	for (i = 0; i < i_done; i++)
1328 		wait_on_page_writeback(pages[i]);
1329 
1330 	page_start = page_offset(pages[0]);
1331 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1332 
1333 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1334 			 page_start, page_end - 1, &cached_state);
1335 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1336 			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1337 			  EXTENT_DEFRAG, 0, 0, &cached_state);
1338 
1339 	if (i_done != page_cnt) {
1340 		spin_lock(&BTRFS_I(inode)->lock);
1341 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1342 		spin_unlock(&BTRFS_I(inode)->lock);
1343 		btrfs_delalloc_release_space(inode, data_reserved,
1344 				start_index << PAGE_SHIFT,
1345 				(page_cnt - i_done) << PAGE_SHIFT, true);
1346 	}
1347 
1348 
1349 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1350 			  &cached_state);
1351 
1352 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1353 			     page_start, page_end - 1, &cached_state);
1354 
1355 	for (i = 0; i < i_done; i++) {
1356 		clear_page_dirty_for_io(pages[i]);
1357 		ClearPageChecked(pages[i]);
1358 		set_page_extent_mapped(pages[i]);
1359 		set_page_dirty(pages[i]);
1360 		unlock_page(pages[i]);
1361 		put_page(pages[i]);
1362 	}
1363 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1364 	extent_changeset_free(data_reserved);
1365 	return i_done;
1366 out:
1367 	for (i = 0; i < i_done; i++) {
1368 		unlock_page(pages[i]);
1369 		put_page(pages[i]);
1370 	}
1371 	btrfs_delalloc_release_space(inode, data_reserved,
1372 			start_index << PAGE_SHIFT,
1373 			page_cnt << PAGE_SHIFT, true);
1374 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1375 	extent_changeset_free(data_reserved);
1376 	return ret;
1377 
1378 }
1379 
1380 int btrfs_defrag_file(struct inode *inode, struct file *file,
1381 		      struct btrfs_ioctl_defrag_range_args *range,
1382 		      u64 newer_than, unsigned long max_to_defrag)
1383 {
1384 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1385 	struct btrfs_root *root = BTRFS_I(inode)->root;
1386 	struct file_ra_state *ra = NULL;
1387 	unsigned long last_index;
1388 	u64 isize = i_size_read(inode);
1389 	u64 last_len = 0;
1390 	u64 skip = 0;
1391 	u64 defrag_end = 0;
1392 	u64 newer_off = range->start;
1393 	unsigned long i;
1394 	unsigned long ra_index = 0;
1395 	int ret;
1396 	int defrag_count = 0;
1397 	int compress_type = BTRFS_COMPRESS_ZLIB;
1398 	u32 extent_thresh = range->extent_thresh;
1399 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1400 	unsigned long cluster = max_cluster;
1401 	u64 new_align = ~((u64)SZ_128K - 1);
1402 	struct page **pages = NULL;
1403 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1404 
1405 	if (isize == 0)
1406 		return 0;
1407 
1408 	if (range->start >= isize)
1409 		return -EINVAL;
1410 
1411 	if (do_compress) {
1412 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1413 			return -EINVAL;
1414 		if (range->compress_type)
1415 			compress_type = range->compress_type;
1416 	}
1417 
1418 	if (extent_thresh == 0)
1419 		extent_thresh = SZ_256K;
1420 
1421 	/*
1422 	 * If we were not given a file, allocate a readahead context. As
1423 	 * readahead is just an optimization, defrag will work without it so
1424 	 * we don't error out.
1425 	 */
1426 	if (!file) {
1427 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1428 		if (ra)
1429 			file_ra_state_init(ra, inode->i_mapping);
1430 	} else {
1431 		ra = &file->f_ra;
1432 	}
1433 
1434 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1435 	if (!pages) {
1436 		ret = -ENOMEM;
1437 		goto out_ra;
1438 	}
1439 
1440 	/* find the last page to defrag */
1441 	if (range->start + range->len > range->start) {
1442 		last_index = min_t(u64, isize - 1,
1443 			 range->start + range->len - 1) >> PAGE_SHIFT;
1444 	} else {
1445 		last_index = (isize - 1) >> PAGE_SHIFT;
1446 	}
1447 
1448 	if (newer_than) {
1449 		ret = find_new_extents(root, inode, newer_than,
1450 				       &newer_off, SZ_64K);
1451 		if (!ret) {
1452 			range->start = newer_off;
1453 			/*
1454 			 * we always align our defrag to help keep
1455 			 * the extents in the file evenly spaced
1456 			 */
1457 			i = (newer_off & new_align) >> PAGE_SHIFT;
1458 		} else
1459 			goto out_ra;
1460 	} else {
1461 		i = range->start >> PAGE_SHIFT;
1462 	}
1463 	if (!max_to_defrag)
1464 		max_to_defrag = last_index - i + 1;
1465 
1466 	/*
1467 	 * make writeback starts from i, so the defrag range can be
1468 	 * written sequentially.
1469 	 */
1470 	if (i < inode->i_mapping->writeback_index)
1471 		inode->i_mapping->writeback_index = i;
1472 
1473 	while (i <= last_index && defrag_count < max_to_defrag &&
1474 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1475 		/*
1476 		 * make sure we stop running if someone unmounts
1477 		 * the FS
1478 		 */
1479 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1480 			break;
1481 
1482 		if (btrfs_defrag_cancelled(fs_info)) {
1483 			btrfs_debug(fs_info, "defrag_file cancelled");
1484 			ret = -EAGAIN;
1485 			break;
1486 		}
1487 
1488 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1489 					 extent_thresh, &last_len, &skip,
1490 					 &defrag_end, do_compress)){
1491 			unsigned long next;
1492 			/*
1493 			 * the should_defrag function tells us how much to skip
1494 			 * bump our counter by the suggested amount
1495 			 */
1496 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1497 			i = max(i + 1, next);
1498 			continue;
1499 		}
1500 
1501 		if (!newer_than) {
1502 			cluster = (PAGE_ALIGN(defrag_end) >>
1503 				   PAGE_SHIFT) - i;
1504 			cluster = min(cluster, max_cluster);
1505 		} else {
1506 			cluster = max_cluster;
1507 		}
1508 
1509 		if (i + cluster > ra_index) {
1510 			ra_index = max(i, ra_index);
1511 			if (ra)
1512 				page_cache_sync_readahead(inode->i_mapping, ra,
1513 						file, ra_index, cluster);
1514 			ra_index += cluster;
1515 		}
1516 
1517 		inode_lock(inode);
1518 		if (IS_SWAPFILE(inode)) {
1519 			ret = -ETXTBSY;
1520 		} else {
1521 			if (do_compress)
1522 				BTRFS_I(inode)->defrag_compress = compress_type;
1523 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1524 		}
1525 		if (ret < 0) {
1526 			inode_unlock(inode);
1527 			goto out_ra;
1528 		}
1529 
1530 		defrag_count += ret;
1531 		balance_dirty_pages_ratelimited(inode->i_mapping);
1532 		inode_unlock(inode);
1533 
1534 		if (newer_than) {
1535 			if (newer_off == (u64)-1)
1536 				break;
1537 
1538 			if (ret > 0)
1539 				i += ret;
1540 
1541 			newer_off = max(newer_off + 1,
1542 					(u64)i << PAGE_SHIFT);
1543 
1544 			ret = find_new_extents(root, inode, newer_than,
1545 					       &newer_off, SZ_64K);
1546 			if (!ret) {
1547 				range->start = newer_off;
1548 				i = (newer_off & new_align) >> PAGE_SHIFT;
1549 			} else {
1550 				break;
1551 			}
1552 		} else {
1553 			if (ret > 0) {
1554 				i += ret;
1555 				last_len += ret << PAGE_SHIFT;
1556 			} else {
1557 				i++;
1558 				last_len = 0;
1559 			}
1560 		}
1561 	}
1562 
1563 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1564 		filemap_flush(inode->i_mapping);
1565 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1566 			     &BTRFS_I(inode)->runtime_flags))
1567 			filemap_flush(inode->i_mapping);
1568 	}
1569 
1570 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1571 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1572 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1573 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1574 	}
1575 
1576 	ret = defrag_count;
1577 
1578 out_ra:
1579 	if (do_compress) {
1580 		inode_lock(inode);
1581 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1582 		inode_unlock(inode);
1583 	}
1584 	if (!file)
1585 		kfree(ra);
1586 	kfree(pages);
1587 	return ret;
1588 }
1589 
1590 static noinline int btrfs_ioctl_resize(struct file *file,
1591 					void __user *arg)
1592 {
1593 	struct inode *inode = file_inode(file);
1594 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1595 	u64 new_size;
1596 	u64 old_size;
1597 	u64 devid = 1;
1598 	struct btrfs_root *root = BTRFS_I(inode)->root;
1599 	struct btrfs_ioctl_vol_args *vol_args;
1600 	struct btrfs_trans_handle *trans;
1601 	struct btrfs_device *device = NULL;
1602 	char *sizestr;
1603 	char *retptr;
1604 	char *devstr = NULL;
1605 	int ret = 0;
1606 	int mod = 0;
1607 
1608 	if (!capable(CAP_SYS_ADMIN))
1609 		return -EPERM;
1610 
1611 	ret = mnt_want_write_file(file);
1612 	if (ret)
1613 		return ret;
1614 
1615 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1616 		mnt_drop_write_file(file);
1617 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1618 	}
1619 
1620 	vol_args = memdup_user(arg, sizeof(*vol_args));
1621 	if (IS_ERR(vol_args)) {
1622 		ret = PTR_ERR(vol_args);
1623 		goto out;
1624 	}
1625 
1626 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1627 
1628 	sizestr = vol_args->name;
1629 	devstr = strchr(sizestr, ':');
1630 	if (devstr) {
1631 		sizestr = devstr + 1;
1632 		*devstr = '\0';
1633 		devstr = vol_args->name;
1634 		ret = kstrtoull(devstr, 10, &devid);
1635 		if (ret)
1636 			goto out_free;
1637 		if (!devid) {
1638 			ret = -EINVAL;
1639 			goto out_free;
1640 		}
1641 		btrfs_info(fs_info, "resizing devid %llu", devid);
1642 	}
1643 
1644 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1645 	if (!device) {
1646 		btrfs_info(fs_info, "resizer unable to find device %llu",
1647 			   devid);
1648 		ret = -ENODEV;
1649 		goto out_free;
1650 	}
1651 
1652 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1653 		btrfs_info(fs_info,
1654 			   "resizer unable to apply on readonly device %llu",
1655 		       devid);
1656 		ret = -EPERM;
1657 		goto out_free;
1658 	}
1659 
1660 	if (!strcmp(sizestr, "max"))
1661 		new_size = device->bdev->bd_inode->i_size;
1662 	else {
1663 		if (sizestr[0] == '-') {
1664 			mod = -1;
1665 			sizestr++;
1666 		} else if (sizestr[0] == '+') {
1667 			mod = 1;
1668 			sizestr++;
1669 		}
1670 		new_size = memparse(sizestr, &retptr);
1671 		if (*retptr != '\0' || new_size == 0) {
1672 			ret = -EINVAL;
1673 			goto out_free;
1674 		}
1675 	}
1676 
1677 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1678 		ret = -EPERM;
1679 		goto out_free;
1680 	}
1681 
1682 	old_size = btrfs_device_get_total_bytes(device);
1683 
1684 	if (mod < 0) {
1685 		if (new_size > old_size) {
1686 			ret = -EINVAL;
1687 			goto out_free;
1688 		}
1689 		new_size = old_size - new_size;
1690 	} else if (mod > 0) {
1691 		if (new_size > ULLONG_MAX - old_size) {
1692 			ret = -ERANGE;
1693 			goto out_free;
1694 		}
1695 		new_size = old_size + new_size;
1696 	}
1697 
1698 	if (new_size < SZ_256M) {
1699 		ret = -EINVAL;
1700 		goto out_free;
1701 	}
1702 	if (new_size > device->bdev->bd_inode->i_size) {
1703 		ret = -EFBIG;
1704 		goto out_free;
1705 	}
1706 
1707 	new_size = round_down(new_size, fs_info->sectorsize);
1708 
1709 	btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1710 			  rcu_str_deref(device->name), new_size);
1711 
1712 	if (new_size > old_size) {
1713 		trans = btrfs_start_transaction(root, 0);
1714 		if (IS_ERR(trans)) {
1715 			ret = PTR_ERR(trans);
1716 			goto out_free;
1717 		}
1718 		ret = btrfs_grow_device(trans, device, new_size);
1719 		btrfs_commit_transaction(trans);
1720 	} else if (new_size < old_size) {
1721 		ret = btrfs_shrink_device(device, new_size);
1722 	} /* equal, nothing need to do */
1723 
1724 out_free:
1725 	kfree(vol_args);
1726 out:
1727 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1728 	mnt_drop_write_file(file);
1729 	return ret;
1730 }
1731 
1732 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1733 				const char *name, unsigned long fd, int subvol,
1734 				u64 *transid, bool readonly,
1735 				struct btrfs_qgroup_inherit *inherit)
1736 {
1737 	int namelen;
1738 	int ret = 0;
1739 
1740 	if (!S_ISDIR(file_inode(file)->i_mode))
1741 		return -ENOTDIR;
1742 
1743 	ret = mnt_want_write_file(file);
1744 	if (ret)
1745 		goto out;
1746 
1747 	namelen = strlen(name);
1748 	if (strchr(name, '/')) {
1749 		ret = -EINVAL;
1750 		goto out_drop_write;
1751 	}
1752 
1753 	if (name[0] == '.' &&
1754 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1755 		ret = -EEXIST;
1756 		goto out_drop_write;
1757 	}
1758 
1759 	if (subvol) {
1760 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1761 				     NULL, transid, readonly, inherit);
1762 	} else {
1763 		struct fd src = fdget(fd);
1764 		struct inode *src_inode;
1765 		if (!src.file) {
1766 			ret = -EINVAL;
1767 			goto out_drop_write;
1768 		}
1769 
1770 		src_inode = file_inode(src.file);
1771 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1772 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1773 				   "Snapshot src from another FS");
1774 			ret = -EXDEV;
1775 		} else if (!inode_owner_or_capable(src_inode)) {
1776 			/*
1777 			 * Subvolume creation is not restricted, but snapshots
1778 			 * are limited to own subvolumes only
1779 			 */
1780 			ret = -EPERM;
1781 		} else {
1782 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1783 					     BTRFS_I(src_inode)->root,
1784 					     transid, readonly, inherit);
1785 		}
1786 		fdput(src);
1787 	}
1788 out_drop_write:
1789 	mnt_drop_write_file(file);
1790 out:
1791 	return ret;
1792 }
1793 
1794 static noinline int btrfs_ioctl_snap_create(struct file *file,
1795 					    void __user *arg, int subvol)
1796 {
1797 	struct btrfs_ioctl_vol_args *vol_args;
1798 	int ret;
1799 
1800 	if (!S_ISDIR(file_inode(file)->i_mode))
1801 		return -ENOTDIR;
1802 
1803 	vol_args = memdup_user(arg, sizeof(*vol_args));
1804 	if (IS_ERR(vol_args))
1805 		return PTR_ERR(vol_args);
1806 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1807 
1808 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1809 					      vol_args->fd, subvol,
1810 					      NULL, false, NULL);
1811 
1812 	kfree(vol_args);
1813 	return ret;
1814 }
1815 
1816 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1817 					       void __user *arg, int subvol)
1818 {
1819 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1820 	int ret;
1821 	u64 transid = 0;
1822 	u64 *ptr = NULL;
1823 	bool readonly = false;
1824 	struct btrfs_qgroup_inherit *inherit = NULL;
1825 
1826 	if (!S_ISDIR(file_inode(file)->i_mode))
1827 		return -ENOTDIR;
1828 
1829 	vol_args = memdup_user(arg, sizeof(*vol_args));
1830 	if (IS_ERR(vol_args))
1831 		return PTR_ERR(vol_args);
1832 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1833 
1834 	if (vol_args->flags &
1835 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1836 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1837 		ret = -EOPNOTSUPP;
1838 		goto free_args;
1839 	}
1840 
1841 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1842 		struct inode *inode = file_inode(file);
1843 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1844 
1845 		btrfs_warn(fs_info,
1846 "SNAP_CREATE_V2 ioctl with CREATE_ASYNC is deprecated and will be removed in kernel 5.7");
1847 
1848 		ptr = &transid;
1849 	}
1850 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1851 		readonly = true;
1852 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1853 		if (vol_args->size > PAGE_SIZE) {
1854 			ret = -EINVAL;
1855 			goto free_args;
1856 		}
1857 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1858 		if (IS_ERR(inherit)) {
1859 			ret = PTR_ERR(inherit);
1860 			goto free_args;
1861 		}
1862 	}
1863 
1864 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1865 					      vol_args->fd, subvol, ptr,
1866 					      readonly, inherit);
1867 	if (ret)
1868 		goto free_inherit;
1869 
1870 	if (ptr && copy_to_user(arg +
1871 				offsetof(struct btrfs_ioctl_vol_args_v2,
1872 					transid),
1873 				ptr, sizeof(*ptr)))
1874 		ret = -EFAULT;
1875 
1876 free_inherit:
1877 	kfree(inherit);
1878 free_args:
1879 	kfree(vol_args);
1880 	return ret;
1881 }
1882 
1883 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1884 						void __user *arg)
1885 {
1886 	struct inode *inode = file_inode(file);
1887 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1888 	struct btrfs_root *root = BTRFS_I(inode)->root;
1889 	int ret = 0;
1890 	u64 flags = 0;
1891 
1892 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1893 		return -EINVAL;
1894 
1895 	down_read(&fs_info->subvol_sem);
1896 	if (btrfs_root_readonly(root))
1897 		flags |= BTRFS_SUBVOL_RDONLY;
1898 	up_read(&fs_info->subvol_sem);
1899 
1900 	if (copy_to_user(arg, &flags, sizeof(flags)))
1901 		ret = -EFAULT;
1902 
1903 	return ret;
1904 }
1905 
1906 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1907 					      void __user *arg)
1908 {
1909 	struct inode *inode = file_inode(file);
1910 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1911 	struct btrfs_root *root = BTRFS_I(inode)->root;
1912 	struct btrfs_trans_handle *trans;
1913 	u64 root_flags;
1914 	u64 flags;
1915 	int ret = 0;
1916 
1917 	if (!inode_owner_or_capable(inode))
1918 		return -EPERM;
1919 
1920 	ret = mnt_want_write_file(file);
1921 	if (ret)
1922 		goto out;
1923 
1924 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1925 		ret = -EINVAL;
1926 		goto out_drop_write;
1927 	}
1928 
1929 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1930 		ret = -EFAULT;
1931 		goto out_drop_write;
1932 	}
1933 
1934 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1935 		ret = -EINVAL;
1936 		goto out_drop_write;
1937 	}
1938 
1939 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1940 		ret = -EOPNOTSUPP;
1941 		goto out_drop_write;
1942 	}
1943 
1944 	down_write(&fs_info->subvol_sem);
1945 
1946 	/* nothing to do */
1947 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1948 		goto out_drop_sem;
1949 
1950 	root_flags = btrfs_root_flags(&root->root_item);
1951 	if (flags & BTRFS_SUBVOL_RDONLY) {
1952 		btrfs_set_root_flags(&root->root_item,
1953 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1954 	} else {
1955 		/*
1956 		 * Block RO -> RW transition if this subvolume is involved in
1957 		 * send
1958 		 */
1959 		spin_lock(&root->root_item_lock);
1960 		if (root->send_in_progress == 0) {
1961 			btrfs_set_root_flags(&root->root_item,
1962 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1963 			spin_unlock(&root->root_item_lock);
1964 		} else {
1965 			spin_unlock(&root->root_item_lock);
1966 			btrfs_warn(fs_info,
1967 				   "Attempt to set subvolume %llu read-write during send",
1968 				   root->root_key.objectid);
1969 			ret = -EPERM;
1970 			goto out_drop_sem;
1971 		}
1972 	}
1973 
1974 	trans = btrfs_start_transaction(root, 1);
1975 	if (IS_ERR(trans)) {
1976 		ret = PTR_ERR(trans);
1977 		goto out_reset;
1978 	}
1979 
1980 	ret = btrfs_update_root(trans, fs_info->tree_root,
1981 				&root->root_key, &root->root_item);
1982 	if (ret < 0) {
1983 		btrfs_end_transaction(trans);
1984 		goto out_reset;
1985 	}
1986 
1987 	ret = btrfs_commit_transaction(trans);
1988 
1989 out_reset:
1990 	if (ret)
1991 		btrfs_set_root_flags(&root->root_item, root_flags);
1992 out_drop_sem:
1993 	up_write(&fs_info->subvol_sem);
1994 out_drop_write:
1995 	mnt_drop_write_file(file);
1996 out:
1997 	return ret;
1998 }
1999 
2000 static noinline int key_in_sk(struct btrfs_key *key,
2001 			      struct btrfs_ioctl_search_key *sk)
2002 {
2003 	struct btrfs_key test;
2004 	int ret;
2005 
2006 	test.objectid = sk->min_objectid;
2007 	test.type = sk->min_type;
2008 	test.offset = sk->min_offset;
2009 
2010 	ret = btrfs_comp_cpu_keys(key, &test);
2011 	if (ret < 0)
2012 		return 0;
2013 
2014 	test.objectid = sk->max_objectid;
2015 	test.type = sk->max_type;
2016 	test.offset = sk->max_offset;
2017 
2018 	ret = btrfs_comp_cpu_keys(key, &test);
2019 	if (ret > 0)
2020 		return 0;
2021 	return 1;
2022 }
2023 
2024 static noinline int copy_to_sk(struct btrfs_path *path,
2025 			       struct btrfs_key *key,
2026 			       struct btrfs_ioctl_search_key *sk,
2027 			       size_t *buf_size,
2028 			       char __user *ubuf,
2029 			       unsigned long *sk_offset,
2030 			       int *num_found)
2031 {
2032 	u64 found_transid;
2033 	struct extent_buffer *leaf;
2034 	struct btrfs_ioctl_search_header sh;
2035 	struct btrfs_key test;
2036 	unsigned long item_off;
2037 	unsigned long item_len;
2038 	int nritems;
2039 	int i;
2040 	int slot;
2041 	int ret = 0;
2042 
2043 	leaf = path->nodes[0];
2044 	slot = path->slots[0];
2045 	nritems = btrfs_header_nritems(leaf);
2046 
2047 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2048 		i = nritems;
2049 		goto advance_key;
2050 	}
2051 	found_transid = btrfs_header_generation(leaf);
2052 
2053 	for (i = slot; i < nritems; i++) {
2054 		item_off = btrfs_item_ptr_offset(leaf, i);
2055 		item_len = btrfs_item_size_nr(leaf, i);
2056 
2057 		btrfs_item_key_to_cpu(leaf, key, i);
2058 		if (!key_in_sk(key, sk))
2059 			continue;
2060 
2061 		if (sizeof(sh) + item_len > *buf_size) {
2062 			if (*num_found) {
2063 				ret = 1;
2064 				goto out;
2065 			}
2066 
2067 			/*
2068 			 * return one empty item back for v1, which does not
2069 			 * handle -EOVERFLOW
2070 			 */
2071 
2072 			*buf_size = sizeof(sh) + item_len;
2073 			item_len = 0;
2074 			ret = -EOVERFLOW;
2075 		}
2076 
2077 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2078 			ret = 1;
2079 			goto out;
2080 		}
2081 
2082 		sh.objectid = key->objectid;
2083 		sh.offset = key->offset;
2084 		sh.type = key->type;
2085 		sh.len = item_len;
2086 		sh.transid = found_transid;
2087 
2088 		/* copy search result header */
2089 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2090 			ret = -EFAULT;
2091 			goto out;
2092 		}
2093 
2094 		*sk_offset += sizeof(sh);
2095 
2096 		if (item_len) {
2097 			char __user *up = ubuf + *sk_offset;
2098 			/* copy the item */
2099 			if (read_extent_buffer_to_user(leaf, up,
2100 						       item_off, item_len)) {
2101 				ret = -EFAULT;
2102 				goto out;
2103 			}
2104 
2105 			*sk_offset += item_len;
2106 		}
2107 		(*num_found)++;
2108 
2109 		if (ret) /* -EOVERFLOW from above */
2110 			goto out;
2111 
2112 		if (*num_found >= sk->nr_items) {
2113 			ret = 1;
2114 			goto out;
2115 		}
2116 	}
2117 advance_key:
2118 	ret = 0;
2119 	test.objectid = sk->max_objectid;
2120 	test.type = sk->max_type;
2121 	test.offset = sk->max_offset;
2122 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2123 		ret = 1;
2124 	else if (key->offset < (u64)-1)
2125 		key->offset++;
2126 	else if (key->type < (u8)-1) {
2127 		key->offset = 0;
2128 		key->type++;
2129 	} else if (key->objectid < (u64)-1) {
2130 		key->offset = 0;
2131 		key->type = 0;
2132 		key->objectid++;
2133 	} else
2134 		ret = 1;
2135 out:
2136 	/*
2137 	 *  0: all items from this leaf copied, continue with next
2138 	 *  1: * more items can be copied, but unused buffer is too small
2139 	 *     * all items were found
2140 	 *     Either way, it will stops the loop which iterates to the next
2141 	 *     leaf
2142 	 *  -EOVERFLOW: item was to large for buffer
2143 	 *  -EFAULT: could not copy extent buffer back to userspace
2144 	 */
2145 	return ret;
2146 }
2147 
2148 static noinline int search_ioctl(struct inode *inode,
2149 				 struct btrfs_ioctl_search_key *sk,
2150 				 size_t *buf_size,
2151 				 char __user *ubuf)
2152 {
2153 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2154 	struct btrfs_root *root;
2155 	struct btrfs_key key;
2156 	struct btrfs_path *path;
2157 	int ret;
2158 	int num_found = 0;
2159 	unsigned long sk_offset = 0;
2160 
2161 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2162 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2163 		return -EOVERFLOW;
2164 	}
2165 
2166 	path = btrfs_alloc_path();
2167 	if (!path)
2168 		return -ENOMEM;
2169 
2170 	if (sk->tree_id == 0) {
2171 		/* search the root of the inode that was passed */
2172 		root = BTRFS_I(inode)->root;
2173 	} else {
2174 		key.objectid = sk->tree_id;
2175 		key.type = BTRFS_ROOT_ITEM_KEY;
2176 		key.offset = (u64)-1;
2177 		root = btrfs_read_fs_root_no_name(info, &key);
2178 		if (IS_ERR(root)) {
2179 			btrfs_free_path(path);
2180 			return PTR_ERR(root);
2181 		}
2182 	}
2183 
2184 	key.objectid = sk->min_objectid;
2185 	key.type = sk->min_type;
2186 	key.offset = sk->min_offset;
2187 
2188 	while (1) {
2189 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2190 		if (ret != 0) {
2191 			if (ret > 0)
2192 				ret = 0;
2193 			goto err;
2194 		}
2195 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2196 				 &sk_offset, &num_found);
2197 		btrfs_release_path(path);
2198 		if (ret)
2199 			break;
2200 
2201 	}
2202 	if (ret > 0)
2203 		ret = 0;
2204 err:
2205 	sk->nr_items = num_found;
2206 	btrfs_free_path(path);
2207 	return ret;
2208 }
2209 
2210 static noinline int btrfs_ioctl_tree_search(struct file *file,
2211 					   void __user *argp)
2212 {
2213 	struct btrfs_ioctl_search_args __user *uargs;
2214 	struct btrfs_ioctl_search_key sk;
2215 	struct inode *inode;
2216 	int ret;
2217 	size_t buf_size;
2218 
2219 	if (!capable(CAP_SYS_ADMIN))
2220 		return -EPERM;
2221 
2222 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2223 
2224 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2225 		return -EFAULT;
2226 
2227 	buf_size = sizeof(uargs->buf);
2228 
2229 	inode = file_inode(file);
2230 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2231 
2232 	/*
2233 	 * In the origin implementation an overflow is handled by returning a
2234 	 * search header with a len of zero, so reset ret.
2235 	 */
2236 	if (ret == -EOVERFLOW)
2237 		ret = 0;
2238 
2239 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2240 		ret = -EFAULT;
2241 	return ret;
2242 }
2243 
2244 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2245 					       void __user *argp)
2246 {
2247 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2248 	struct btrfs_ioctl_search_args_v2 args;
2249 	struct inode *inode;
2250 	int ret;
2251 	size_t buf_size;
2252 	const size_t buf_limit = SZ_16M;
2253 
2254 	if (!capable(CAP_SYS_ADMIN))
2255 		return -EPERM;
2256 
2257 	/* copy search header and buffer size */
2258 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2259 	if (copy_from_user(&args, uarg, sizeof(args)))
2260 		return -EFAULT;
2261 
2262 	buf_size = args.buf_size;
2263 
2264 	/* limit result size to 16MB */
2265 	if (buf_size > buf_limit)
2266 		buf_size = buf_limit;
2267 
2268 	inode = file_inode(file);
2269 	ret = search_ioctl(inode, &args.key, &buf_size,
2270 			   (char __user *)(&uarg->buf[0]));
2271 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2272 		ret = -EFAULT;
2273 	else if (ret == -EOVERFLOW &&
2274 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2275 		ret = -EFAULT;
2276 
2277 	return ret;
2278 }
2279 
2280 /*
2281  * Search INODE_REFs to identify path name of 'dirid' directory
2282  * in a 'tree_id' tree. and sets path name to 'name'.
2283  */
2284 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2285 				u64 tree_id, u64 dirid, char *name)
2286 {
2287 	struct btrfs_root *root;
2288 	struct btrfs_key key;
2289 	char *ptr;
2290 	int ret = -1;
2291 	int slot;
2292 	int len;
2293 	int total_len = 0;
2294 	struct btrfs_inode_ref *iref;
2295 	struct extent_buffer *l;
2296 	struct btrfs_path *path;
2297 
2298 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2299 		name[0]='\0';
2300 		return 0;
2301 	}
2302 
2303 	path = btrfs_alloc_path();
2304 	if (!path)
2305 		return -ENOMEM;
2306 
2307 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2308 
2309 	key.objectid = tree_id;
2310 	key.type = BTRFS_ROOT_ITEM_KEY;
2311 	key.offset = (u64)-1;
2312 	root = btrfs_read_fs_root_no_name(info, &key);
2313 	if (IS_ERR(root)) {
2314 		ret = PTR_ERR(root);
2315 		goto out;
2316 	}
2317 
2318 	key.objectid = dirid;
2319 	key.type = BTRFS_INODE_REF_KEY;
2320 	key.offset = (u64)-1;
2321 
2322 	while (1) {
2323 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2324 		if (ret < 0)
2325 			goto out;
2326 		else if (ret > 0) {
2327 			ret = btrfs_previous_item(root, path, dirid,
2328 						  BTRFS_INODE_REF_KEY);
2329 			if (ret < 0)
2330 				goto out;
2331 			else if (ret > 0) {
2332 				ret = -ENOENT;
2333 				goto out;
2334 			}
2335 		}
2336 
2337 		l = path->nodes[0];
2338 		slot = path->slots[0];
2339 		btrfs_item_key_to_cpu(l, &key, slot);
2340 
2341 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2342 		len = btrfs_inode_ref_name_len(l, iref);
2343 		ptr -= len + 1;
2344 		total_len += len + 1;
2345 		if (ptr < name) {
2346 			ret = -ENAMETOOLONG;
2347 			goto out;
2348 		}
2349 
2350 		*(ptr + len) = '/';
2351 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2352 
2353 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2354 			break;
2355 
2356 		btrfs_release_path(path);
2357 		key.objectid = key.offset;
2358 		key.offset = (u64)-1;
2359 		dirid = key.objectid;
2360 	}
2361 	memmove(name, ptr, total_len);
2362 	name[total_len] = '\0';
2363 	ret = 0;
2364 out:
2365 	btrfs_free_path(path);
2366 	return ret;
2367 }
2368 
2369 static int btrfs_search_path_in_tree_user(struct inode *inode,
2370 				struct btrfs_ioctl_ino_lookup_user_args *args)
2371 {
2372 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2373 	struct super_block *sb = inode->i_sb;
2374 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2375 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2376 	u64 dirid = args->dirid;
2377 	unsigned long item_off;
2378 	unsigned long item_len;
2379 	struct btrfs_inode_ref *iref;
2380 	struct btrfs_root_ref *rref;
2381 	struct btrfs_root *root;
2382 	struct btrfs_path *path;
2383 	struct btrfs_key key, key2;
2384 	struct extent_buffer *leaf;
2385 	struct inode *temp_inode;
2386 	char *ptr;
2387 	int slot;
2388 	int len;
2389 	int total_len = 0;
2390 	int ret;
2391 
2392 	path = btrfs_alloc_path();
2393 	if (!path)
2394 		return -ENOMEM;
2395 
2396 	/*
2397 	 * If the bottom subvolume does not exist directly under upper_limit,
2398 	 * construct the path in from the bottom up.
2399 	 */
2400 	if (dirid != upper_limit.objectid) {
2401 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2402 
2403 		key.objectid = treeid;
2404 		key.type = BTRFS_ROOT_ITEM_KEY;
2405 		key.offset = (u64)-1;
2406 		root = btrfs_read_fs_root_no_name(fs_info, &key);
2407 		if (IS_ERR(root)) {
2408 			ret = PTR_ERR(root);
2409 			goto out;
2410 		}
2411 
2412 		key.objectid = dirid;
2413 		key.type = BTRFS_INODE_REF_KEY;
2414 		key.offset = (u64)-1;
2415 		while (1) {
2416 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2417 			if (ret < 0) {
2418 				goto out;
2419 			} else if (ret > 0) {
2420 				ret = btrfs_previous_item(root, path, dirid,
2421 							  BTRFS_INODE_REF_KEY);
2422 				if (ret < 0) {
2423 					goto out;
2424 				} else if (ret > 0) {
2425 					ret = -ENOENT;
2426 					goto out;
2427 				}
2428 			}
2429 
2430 			leaf = path->nodes[0];
2431 			slot = path->slots[0];
2432 			btrfs_item_key_to_cpu(leaf, &key, slot);
2433 
2434 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2435 			len = btrfs_inode_ref_name_len(leaf, iref);
2436 			ptr -= len + 1;
2437 			total_len += len + 1;
2438 			if (ptr < args->path) {
2439 				ret = -ENAMETOOLONG;
2440 				goto out;
2441 			}
2442 
2443 			*(ptr + len) = '/';
2444 			read_extent_buffer(leaf, ptr,
2445 					(unsigned long)(iref + 1), len);
2446 
2447 			/* Check the read+exec permission of this directory */
2448 			ret = btrfs_previous_item(root, path, dirid,
2449 						  BTRFS_INODE_ITEM_KEY);
2450 			if (ret < 0) {
2451 				goto out;
2452 			} else if (ret > 0) {
2453 				ret = -ENOENT;
2454 				goto out;
2455 			}
2456 
2457 			leaf = path->nodes[0];
2458 			slot = path->slots[0];
2459 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2460 			if (key2.objectid != dirid) {
2461 				ret = -ENOENT;
2462 				goto out;
2463 			}
2464 
2465 			temp_inode = btrfs_iget(sb, &key2, root, NULL);
2466 			if (IS_ERR(temp_inode)) {
2467 				ret = PTR_ERR(temp_inode);
2468 				goto out;
2469 			}
2470 			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2471 			iput(temp_inode);
2472 			if (ret) {
2473 				ret = -EACCES;
2474 				goto out;
2475 			}
2476 
2477 			if (key.offset == upper_limit.objectid)
2478 				break;
2479 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2480 				ret = -EACCES;
2481 				goto out;
2482 			}
2483 
2484 			btrfs_release_path(path);
2485 			key.objectid = key.offset;
2486 			key.offset = (u64)-1;
2487 			dirid = key.objectid;
2488 		}
2489 
2490 		memmove(args->path, ptr, total_len);
2491 		args->path[total_len] = '\0';
2492 		btrfs_release_path(path);
2493 	}
2494 
2495 	/* Get the bottom subvolume's name from ROOT_REF */
2496 	root = fs_info->tree_root;
2497 	key.objectid = treeid;
2498 	key.type = BTRFS_ROOT_REF_KEY;
2499 	key.offset = args->treeid;
2500 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2501 	if (ret < 0) {
2502 		goto out;
2503 	} else if (ret > 0) {
2504 		ret = -ENOENT;
2505 		goto out;
2506 	}
2507 
2508 	leaf = path->nodes[0];
2509 	slot = path->slots[0];
2510 	btrfs_item_key_to_cpu(leaf, &key, slot);
2511 
2512 	item_off = btrfs_item_ptr_offset(leaf, slot);
2513 	item_len = btrfs_item_size_nr(leaf, slot);
2514 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2515 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2516 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2517 		ret = -EINVAL;
2518 		goto out;
2519 	}
2520 
2521 	/* Copy subvolume's name */
2522 	item_off += sizeof(struct btrfs_root_ref);
2523 	item_len -= sizeof(struct btrfs_root_ref);
2524 	read_extent_buffer(leaf, args->name, item_off, item_len);
2525 	args->name[item_len] = 0;
2526 
2527 out:
2528 	btrfs_free_path(path);
2529 	return ret;
2530 }
2531 
2532 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2533 					   void __user *argp)
2534 {
2535 	struct btrfs_ioctl_ino_lookup_args *args;
2536 	struct inode *inode;
2537 	int ret = 0;
2538 
2539 	args = memdup_user(argp, sizeof(*args));
2540 	if (IS_ERR(args))
2541 		return PTR_ERR(args);
2542 
2543 	inode = file_inode(file);
2544 
2545 	/*
2546 	 * Unprivileged query to obtain the containing subvolume root id. The
2547 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2548 	 */
2549 	if (args->treeid == 0)
2550 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2551 
2552 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2553 		args->name[0] = 0;
2554 		goto out;
2555 	}
2556 
2557 	if (!capable(CAP_SYS_ADMIN)) {
2558 		ret = -EPERM;
2559 		goto out;
2560 	}
2561 
2562 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2563 					args->treeid, args->objectid,
2564 					args->name);
2565 
2566 out:
2567 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2568 		ret = -EFAULT;
2569 
2570 	kfree(args);
2571 	return ret;
2572 }
2573 
2574 /*
2575  * Version of ino_lookup ioctl (unprivileged)
2576  *
2577  * The main differences from ino_lookup ioctl are:
2578  *
2579  *   1. Read + Exec permission will be checked using inode_permission() during
2580  *      path construction. -EACCES will be returned in case of failure.
2581  *   2. Path construction will be stopped at the inode number which corresponds
2582  *      to the fd with which this ioctl is called. If constructed path does not
2583  *      exist under fd's inode, -EACCES will be returned.
2584  *   3. The name of bottom subvolume is also searched and filled.
2585  */
2586 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2587 {
2588 	struct btrfs_ioctl_ino_lookup_user_args *args;
2589 	struct inode *inode;
2590 	int ret;
2591 
2592 	args = memdup_user(argp, sizeof(*args));
2593 	if (IS_ERR(args))
2594 		return PTR_ERR(args);
2595 
2596 	inode = file_inode(file);
2597 
2598 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2599 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2600 		/*
2601 		 * The subvolume does not exist under fd with which this is
2602 		 * called
2603 		 */
2604 		kfree(args);
2605 		return -EACCES;
2606 	}
2607 
2608 	ret = btrfs_search_path_in_tree_user(inode, args);
2609 
2610 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2611 		ret = -EFAULT;
2612 
2613 	kfree(args);
2614 	return ret;
2615 }
2616 
2617 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2618 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2619 {
2620 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2621 	struct btrfs_fs_info *fs_info;
2622 	struct btrfs_root *root;
2623 	struct btrfs_path *path;
2624 	struct btrfs_key key;
2625 	struct btrfs_root_item *root_item;
2626 	struct btrfs_root_ref *rref;
2627 	struct extent_buffer *leaf;
2628 	unsigned long item_off;
2629 	unsigned long item_len;
2630 	struct inode *inode;
2631 	int slot;
2632 	int ret = 0;
2633 
2634 	path = btrfs_alloc_path();
2635 	if (!path)
2636 		return -ENOMEM;
2637 
2638 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2639 	if (!subvol_info) {
2640 		btrfs_free_path(path);
2641 		return -ENOMEM;
2642 	}
2643 
2644 	inode = file_inode(file);
2645 	fs_info = BTRFS_I(inode)->root->fs_info;
2646 
2647 	/* Get root_item of inode's subvolume */
2648 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2649 	key.type = BTRFS_ROOT_ITEM_KEY;
2650 	key.offset = (u64)-1;
2651 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2652 	if (IS_ERR(root)) {
2653 		ret = PTR_ERR(root);
2654 		goto out;
2655 	}
2656 	root_item = &root->root_item;
2657 
2658 	subvol_info->treeid = key.objectid;
2659 
2660 	subvol_info->generation = btrfs_root_generation(root_item);
2661 	subvol_info->flags = btrfs_root_flags(root_item);
2662 
2663 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2664 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2665 						    BTRFS_UUID_SIZE);
2666 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2667 						    BTRFS_UUID_SIZE);
2668 
2669 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2670 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2671 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2672 
2673 	subvol_info->otransid = btrfs_root_otransid(root_item);
2674 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2675 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2676 
2677 	subvol_info->stransid = btrfs_root_stransid(root_item);
2678 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2679 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2680 
2681 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2682 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2683 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2684 
2685 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2686 		/* Search root tree for ROOT_BACKREF of this subvolume */
2687 		root = fs_info->tree_root;
2688 
2689 		key.type = BTRFS_ROOT_BACKREF_KEY;
2690 		key.offset = 0;
2691 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2692 		if (ret < 0) {
2693 			goto out;
2694 		} else if (path->slots[0] >=
2695 			   btrfs_header_nritems(path->nodes[0])) {
2696 			ret = btrfs_next_leaf(root, path);
2697 			if (ret < 0) {
2698 				goto out;
2699 			} else if (ret > 0) {
2700 				ret = -EUCLEAN;
2701 				goto out;
2702 			}
2703 		}
2704 
2705 		leaf = path->nodes[0];
2706 		slot = path->slots[0];
2707 		btrfs_item_key_to_cpu(leaf, &key, slot);
2708 		if (key.objectid == subvol_info->treeid &&
2709 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2710 			subvol_info->parent_id = key.offset;
2711 
2712 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2713 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2714 
2715 			item_off = btrfs_item_ptr_offset(leaf, slot)
2716 					+ sizeof(struct btrfs_root_ref);
2717 			item_len = btrfs_item_size_nr(leaf, slot)
2718 					- sizeof(struct btrfs_root_ref);
2719 			read_extent_buffer(leaf, subvol_info->name,
2720 					   item_off, item_len);
2721 		} else {
2722 			ret = -ENOENT;
2723 			goto out;
2724 		}
2725 	}
2726 
2727 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2728 		ret = -EFAULT;
2729 
2730 out:
2731 	btrfs_free_path(path);
2732 	kzfree(subvol_info);
2733 	return ret;
2734 }
2735 
2736 /*
2737  * Return ROOT_REF information of the subvolume containing this inode
2738  * except the subvolume name.
2739  */
2740 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2741 {
2742 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2743 	struct btrfs_root_ref *rref;
2744 	struct btrfs_root *root;
2745 	struct btrfs_path *path;
2746 	struct btrfs_key key;
2747 	struct extent_buffer *leaf;
2748 	struct inode *inode;
2749 	u64 objectid;
2750 	int slot;
2751 	int ret;
2752 	u8 found;
2753 
2754 	path = btrfs_alloc_path();
2755 	if (!path)
2756 		return -ENOMEM;
2757 
2758 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2759 	if (IS_ERR(rootrefs)) {
2760 		btrfs_free_path(path);
2761 		return PTR_ERR(rootrefs);
2762 	}
2763 
2764 	inode = file_inode(file);
2765 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2766 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2767 
2768 	key.objectid = objectid;
2769 	key.type = BTRFS_ROOT_REF_KEY;
2770 	key.offset = rootrefs->min_treeid;
2771 	found = 0;
2772 
2773 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2774 	if (ret < 0) {
2775 		goto out;
2776 	} else if (path->slots[0] >=
2777 		   btrfs_header_nritems(path->nodes[0])) {
2778 		ret = btrfs_next_leaf(root, path);
2779 		if (ret < 0) {
2780 			goto out;
2781 		} else if (ret > 0) {
2782 			ret = -EUCLEAN;
2783 			goto out;
2784 		}
2785 	}
2786 	while (1) {
2787 		leaf = path->nodes[0];
2788 		slot = path->slots[0];
2789 
2790 		btrfs_item_key_to_cpu(leaf, &key, slot);
2791 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2792 			ret = 0;
2793 			goto out;
2794 		}
2795 
2796 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2797 			ret = -EOVERFLOW;
2798 			goto out;
2799 		}
2800 
2801 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2802 		rootrefs->rootref[found].treeid = key.offset;
2803 		rootrefs->rootref[found].dirid =
2804 				  btrfs_root_ref_dirid(leaf, rref);
2805 		found++;
2806 
2807 		ret = btrfs_next_item(root, path);
2808 		if (ret < 0) {
2809 			goto out;
2810 		} else if (ret > 0) {
2811 			ret = -EUCLEAN;
2812 			goto out;
2813 		}
2814 	}
2815 
2816 out:
2817 	if (!ret || ret == -EOVERFLOW) {
2818 		rootrefs->num_items = found;
2819 		/* update min_treeid for next search */
2820 		if (found)
2821 			rootrefs->min_treeid =
2822 				rootrefs->rootref[found - 1].treeid + 1;
2823 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2824 			ret = -EFAULT;
2825 	}
2826 
2827 	kfree(rootrefs);
2828 	btrfs_free_path(path);
2829 
2830 	return ret;
2831 }
2832 
2833 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2834 					     void __user *arg)
2835 {
2836 	struct dentry *parent = file->f_path.dentry;
2837 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2838 	struct dentry *dentry;
2839 	struct inode *dir = d_inode(parent);
2840 	struct inode *inode;
2841 	struct btrfs_root *root = BTRFS_I(dir)->root;
2842 	struct btrfs_root *dest = NULL;
2843 	struct btrfs_ioctl_vol_args *vol_args;
2844 	int namelen;
2845 	int err = 0;
2846 
2847 	if (!S_ISDIR(dir->i_mode))
2848 		return -ENOTDIR;
2849 
2850 	vol_args = memdup_user(arg, sizeof(*vol_args));
2851 	if (IS_ERR(vol_args))
2852 		return PTR_ERR(vol_args);
2853 
2854 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2855 	namelen = strlen(vol_args->name);
2856 	if (strchr(vol_args->name, '/') ||
2857 	    strncmp(vol_args->name, "..", namelen) == 0) {
2858 		err = -EINVAL;
2859 		goto out;
2860 	}
2861 
2862 	err = mnt_want_write_file(file);
2863 	if (err)
2864 		goto out;
2865 
2866 
2867 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2868 	if (err == -EINTR)
2869 		goto out_drop_write;
2870 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2871 	if (IS_ERR(dentry)) {
2872 		err = PTR_ERR(dentry);
2873 		goto out_unlock_dir;
2874 	}
2875 
2876 	if (d_really_is_negative(dentry)) {
2877 		err = -ENOENT;
2878 		goto out_dput;
2879 	}
2880 
2881 	inode = d_inode(dentry);
2882 	dest = BTRFS_I(inode)->root;
2883 	if (!capable(CAP_SYS_ADMIN)) {
2884 		/*
2885 		 * Regular user.  Only allow this with a special mount
2886 		 * option, when the user has write+exec access to the
2887 		 * subvol root, and when rmdir(2) would have been
2888 		 * allowed.
2889 		 *
2890 		 * Note that this is _not_ check that the subvol is
2891 		 * empty or doesn't contain data that we wouldn't
2892 		 * otherwise be able to delete.
2893 		 *
2894 		 * Users who want to delete empty subvols should try
2895 		 * rmdir(2).
2896 		 */
2897 		err = -EPERM;
2898 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2899 			goto out_dput;
2900 
2901 		/*
2902 		 * Do not allow deletion if the parent dir is the same
2903 		 * as the dir to be deleted.  That means the ioctl
2904 		 * must be called on the dentry referencing the root
2905 		 * of the subvol, not a random directory contained
2906 		 * within it.
2907 		 */
2908 		err = -EINVAL;
2909 		if (root == dest)
2910 			goto out_dput;
2911 
2912 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2913 		if (err)
2914 			goto out_dput;
2915 	}
2916 
2917 	/* check if subvolume may be deleted by a user */
2918 	err = btrfs_may_delete(dir, dentry, 1);
2919 	if (err)
2920 		goto out_dput;
2921 
2922 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2923 		err = -EINVAL;
2924 		goto out_dput;
2925 	}
2926 
2927 	inode_lock(inode);
2928 	err = btrfs_delete_subvolume(dir, dentry);
2929 	inode_unlock(inode);
2930 	if (!err) {
2931 		fsnotify_rmdir(dir, dentry);
2932 		d_delete(dentry);
2933 	}
2934 
2935 out_dput:
2936 	dput(dentry);
2937 out_unlock_dir:
2938 	inode_unlock(dir);
2939 out_drop_write:
2940 	mnt_drop_write_file(file);
2941 out:
2942 	kfree(vol_args);
2943 	return err;
2944 }
2945 
2946 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2947 {
2948 	struct inode *inode = file_inode(file);
2949 	struct btrfs_root *root = BTRFS_I(inode)->root;
2950 	struct btrfs_ioctl_defrag_range_args *range;
2951 	int ret;
2952 
2953 	ret = mnt_want_write_file(file);
2954 	if (ret)
2955 		return ret;
2956 
2957 	if (btrfs_root_readonly(root)) {
2958 		ret = -EROFS;
2959 		goto out;
2960 	}
2961 
2962 	switch (inode->i_mode & S_IFMT) {
2963 	case S_IFDIR:
2964 		if (!capable(CAP_SYS_ADMIN)) {
2965 			ret = -EPERM;
2966 			goto out;
2967 		}
2968 		ret = btrfs_defrag_root(root);
2969 		break;
2970 	case S_IFREG:
2971 		/*
2972 		 * Note that this does not check the file descriptor for write
2973 		 * access. This prevents defragmenting executables that are
2974 		 * running and allows defrag on files open in read-only mode.
2975 		 */
2976 		if (!capable(CAP_SYS_ADMIN) &&
2977 		    inode_permission(inode, MAY_WRITE)) {
2978 			ret = -EPERM;
2979 			goto out;
2980 		}
2981 
2982 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2983 		if (!range) {
2984 			ret = -ENOMEM;
2985 			goto out;
2986 		}
2987 
2988 		if (argp) {
2989 			if (copy_from_user(range, argp,
2990 					   sizeof(*range))) {
2991 				ret = -EFAULT;
2992 				kfree(range);
2993 				goto out;
2994 			}
2995 			/* compression requires us to start the IO */
2996 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2997 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2998 				range->extent_thresh = (u32)-1;
2999 			}
3000 		} else {
3001 			/* the rest are all set to zero by kzalloc */
3002 			range->len = (u64)-1;
3003 		}
3004 		ret = btrfs_defrag_file(file_inode(file), file,
3005 					range, BTRFS_OLDEST_GENERATION, 0);
3006 		if (ret > 0)
3007 			ret = 0;
3008 		kfree(range);
3009 		break;
3010 	default:
3011 		ret = -EINVAL;
3012 	}
3013 out:
3014 	mnt_drop_write_file(file);
3015 	return ret;
3016 }
3017 
3018 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3019 {
3020 	struct btrfs_ioctl_vol_args *vol_args;
3021 	int ret;
3022 
3023 	if (!capable(CAP_SYS_ADMIN))
3024 		return -EPERM;
3025 
3026 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3027 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3028 
3029 	vol_args = memdup_user(arg, sizeof(*vol_args));
3030 	if (IS_ERR(vol_args)) {
3031 		ret = PTR_ERR(vol_args);
3032 		goto out;
3033 	}
3034 
3035 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3036 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3037 
3038 	if (!ret)
3039 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3040 
3041 	kfree(vol_args);
3042 out:
3043 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3044 	return ret;
3045 }
3046 
3047 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3048 {
3049 	struct inode *inode = file_inode(file);
3050 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3051 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3052 	int ret;
3053 
3054 	if (!capable(CAP_SYS_ADMIN))
3055 		return -EPERM;
3056 
3057 	ret = mnt_want_write_file(file);
3058 	if (ret)
3059 		return ret;
3060 
3061 	vol_args = memdup_user(arg, sizeof(*vol_args));
3062 	if (IS_ERR(vol_args)) {
3063 		ret = PTR_ERR(vol_args);
3064 		goto err_drop;
3065 	}
3066 
3067 	/* Check for compatibility reject unknown flags */
3068 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
3069 		ret = -EOPNOTSUPP;
3070 		goto out;
3071 	}
3072 
3073 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3074 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3075 		goto out;
3076 	}
3077 
3078 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3079 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3080 	} else {
3081 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3082 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3083 	}
3084 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3085 
3086 	if (!ret) {
3087 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3088 			btrfs_info(fs_info, "device deleted: id %llu",
3089 					vol_args->devid);
3090 		else
3091 			btrfs_info(fs_info, "device deleted: %s",
3092 					vol_args->name);
3093 	}
3094 out:
3095 	kfree(vol_args);
3096 err_drop:
3097 	mnt_drop_write_file(file);
3098 	return ret;
3099 }
3100 
3101 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3102 {
3103 	struct inode *inode = file_inode(file);
3104 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3105 	struct btrfs_ioctl_vol_args *vol_args;
3106 	int ret;
3107 
3108 	if (!capable(CAP_SYS_ADMIN))
3109 		return -EPERM;
3110 
3111 	ret = mnt_want_write_file(file);
3112 	if (ret)
3113 		return ret;
3114 
3115 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3116 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3117 		goto out_drop_write;
3118 	}
3119 
3120 	vol_args = memdup_user(arg, sizeof(*vol_args));
3121 	if (IS_ERR(vol_args)) {
3122 		ret = PTR_ERR(vol_args);
3123 		goto out;
3124 	}
3125 
3126 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3127 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3128 
3129 	if (!ret)
3130 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3131 	kfree(vol_args);
3132 out:
3133 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3134 out_drop_write:
3135 	mnt_drop_write_file(file);
3136 
3137 	return ret;
3138 }
3139 
3140 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3141 				void __user *arg)
3142 {
3143 	struct btrfs_ioctl_fs_info_args *fi_args;
3144 	struct btrfs_device *device;
3145 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3146 	int ret = 0;
3147 
3148 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3149 	if (!fi_args)
3150 		return -ENOMEM;
3151 
3152 	rcu_read_lock();
3153 	fi_args->num_devices = fs_devices->num_devices;
3154 
3155 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3156 		if (device->devid > fi_args->max_id)
3157 			fi_args->max_id = device->devid;
3158 	}
3159 	rcu_read_unlock();
3160 
3161 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3162 	fi_args->nodesize = fs_info->nodesize;
3163 	fi_args->sectorsize = fs_info->sectorsize;
3164 	fi_args->clone_alignment = fs_info->sectorsize;
3165 
3166 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3167 		ret = -EFAULT;
3168 
3169 	kfree(fi_args);
3170 	return ret;
3171 }
3172 
3173 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3174 				 void __user *arg)
3175 {
3176 	struct btrfs_ioctl_dev_info_args *di_args;
3177 	struct btrfs_device *dev;
3178 	int ret = 0;
3179 	char *s_uuid = NULL;
3180 
3181 	di_args = memdup_user(arg, sizeof(*di_args));
3182 	if (IS_ERR(di_args))
3183 		return PTR_ERR(di_args);
3184 
3185 	if (!btrfs_is_empty_uuid(di_args->uuid))
3186 		s_uuid = di_args->uuid;
3187 
3188 	rcu_read_lock();
3189 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3190 				NULL, true);
3191 
3192 	if (!dev) {
3193 		ret = -ENODEV;
3194 		goto out;
3195 	}
3196 
3197 	di_args->devid = dev->devid;
3198 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3199 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3200 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3201 	if (dev->name) {
3202 		strncpy(di_args->path, rcu_str_deref(dev->name),
3203 				sizeof(di_args->path) - 1);
3204 		di_args->path[sizeof(di_args->path) - 1] = 0;
3205 	} else {
3206 		di_args->path[0] = '\0';
3207 	}
3208 
3209 out:
3210 	rcu_read_unlock();
3211 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3212 		ret = -EFAULT;
3213 
3214 	kfree(di_args);
3215 	return ret;
3216 }
3217 
3218 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
3219 				       struct inode *inode2, u64 loff2, u64 len)
3220 {
3221 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3222 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3223 }
3224 
3225 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
3226 				     struct inode *inode2, u64 loff2, u64 len)
3227 {
3228 	if (inode1 < inode2) {
3229 		swap(inode1, inode2);
3230 		swap(loff1, loff2);
3231 	} else if (inode1 == inode2 && loff2 < loff1) {
3232 		swap(loff1, loff2);
3233 	}
3234 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3235 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3236 }
3237 
3238 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
3239 				   struct inode *dst, u64 dst_loff)
3240 {
3241 	int ret;
3242 
3243 	/*
3244 	 * Lock destination range to serialize with concurrent readpages() and
3245 	 * source range to serialize with relocation.
3246 	 */
3247 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
3248 	ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1);
3249 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3250 
3251 	return ret;
3252 }
3253 
3254 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3255 
3256 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3257 			     struct inode *dst, u64 dst_loff)
3258 {
3259 	int ret;
3260 	u64 i, tail_len, chunk_count;
3261 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
3262 
3263 	spin_lock(&root_dst->root_item_lock);
3264 	if (root_dst->send_in_progress) {
3265 		btrfs_warn_rl(root_dst->fs_info,
3266 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
3267 			      root_dst->root_key.objectid,
3268 			      root_dst->send_in_progress);
3269 		spin_unlock(&root_dst->root_item_lock);
3270 		return -EAGAIN;
3271 	}
3272 	root_dst->dedupe_in_progress++;
3273 	spin_unlock(&root_dst->root_item_lock);
3274 
3275 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
3276 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
3277 
3278 	for (i = 0; i < chunk_count; i++) {
3279 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
3280 					      dst, dst_loff);
3281 		if (ret)
3282 			goto out;
3283 
3284 		loff += BTRFS_MAX_DEDUPE_LEN;
3285 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
3286 	}
3287 
3288 	if (tail_len > 0)
3289 		ret = btrfs_extent_same_range(src, loff, tail_len, dst,
3290 					      dst_loff);
3291 out:
3292 	spin_lock(&root_dst->root_item_lock);
3293 	root_dst->dedupe_in_progress--;
3294 	spin_unlock(&root_dst->root_item_lock);
3295 
3296 	return ret;
3297 }
3298 
3299 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3300 				     struct inode *inode,
3301 				     u64 endoff,
3302 				     const u64 destoff,
3303 				     const u64 olen,
3304 				     int no_time_update)
3305 {
3306 	struct btrfs_root *root = BTRFS_I(inode)->root;
3307 	int ret;
3308 
3309 	inode_inc_iversion(inode);
3310 	if (!no_time_update)
3311 		inode->i_mtime = inode->i_ctime = current_time(inode);
3312 	/*
3313 	 * We round up to the block size at eof when determining which
3314 	 * extents to clone above, but shouldn't round up the file size.
3315 	 */
3316 	if (endoff > destoff + olen)
3317 		endoff = destoff + olen;
3318 	if (endoff > inode->i_size)
3319 		btrfs_i_size_write(BTRFS_I(inode), endoff);
3320 
3321 	ret = btrfs_update_inode(trans, root, inode);
3322 	if (ret) {
3323 		btrfs_abort_transaction(trans, ret);
3324 		btrfs_end_transaction(trans);
3325 		goto out;
3326 	}
3327 	ret = btrfs_end_transaction(trans);
3328 out:
3329 	return ret;
3330 }
3331 
3332 /*
3333  * Make sure we do not end up inserting an inline extent into a file that has
3334  * already other (non-inline) extents. If a file has an inline extent it can
3335  * not have any other extents and the (single) inline extent must start at the
3336  * file offset 0. Failing to respect these rules will lead to file corruption,
3337  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3338  *
3339  * We can have extents that have been already written to disk or we can have
3340  * dirty ranges still in delalloc, in which case the extent maps and items are
3341  * created only when we run delalloc, and the delalloc ranges might fall outside
3342  * the range we are currently locking in the inode's io tree. So we check the
3343  * inode's i_size because of that (i_size updates are done while holding the
3344  * i_mutex, which we are holding here).
3345  * We also check to see if the inode has a size not greater than "datal" but has
3346  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3347  * protected against such concurrent fallocate calls by the i_mutex).
3348  *
3349  * If the file has no extents but a size greater than datal, do not allow the
3350  * copy because we would need turn the inline extent into a non-inline one (even
3351  * with NO_HOLES enabled). If we find our destination inode only has one inline
3352  * extent, just overwrite it with the source inline extent if its size is less
3353  * than the source extent's size, or we could copy the source inline extent's
3354  * data into the destination inode's inline extent if the later is greater then
3355  * the former.
3356  */
3357 static int clone_copy_inline_extent(struct inode *dst,
3358 				    struct btrfs_trans_handle *trans,
3359 				    struct btrfs_path *path,
3360 				    struct btrfs_key *new_key,
3361 				    const u64 drop_start,
3362 				    const u64 datal,
3363 				    const u64 skip,
3364 				    const u64 size,
3365 				    char *inline_data)
3366 {
3367 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3368 	struct btrfs_root *root = BTRFS_I(dst)->root;
3369 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3370 				      fs_info->sectorsize);
3371 	int ret;
3372 	struct btrfs_key key;
3373 
3374 	if (new_key->offset > 0)
3375 		return -EOPNOTSUPP;
3376 
3377 	key.objectid = btrfs_ino(BTRFS_I(dst));
3378 	key.type = BTRFS_EXTENT_DATA_KEY;
3379 	key.offset = 0;
3380 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3381 	if (ret < 0) {
3382 		return ret;
3383 	} else if (ret > 0) {
3384 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3385 			ret = btrfs_next_leaf(root, path);
3386 			if (ret < 0)
3387 				return ret;
3388 			else if (ret > 0)
3389 				goto copy_inline_extent;
3390 		}
3391 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3392 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3393 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3394 			ASSERT(key.offset > 0);
3395 			return -EOPNOTSUPP;
3396 		}
3397 	} else if (i_size_read(dst) <= datal) {
3398 		struct btrfs_file_extent_item *ei;
3399 		u64 ext_len;
3400 
3401 		/*
3402 		 * If the file size is <= datal, make sure there are no other
3403 		 * extents following (can happen do to an fallocate call with
3404 		 * the flag FALLOC_FL_KEEP_SIZE).
3405 		 */
3406 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3407 				    struct btrfs_file_extent_item);
3408 		/*
3409 		 * If it's an inline extent, it can not have other extents
3410 		 * following it.
3411 		 */
3412 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3413 		    BTRFS_FILE_EXTENT_INLINE)
3414 			goto copy_inline_extent;
3415 
3416 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3417 		if (ext_len > aligned_end)
3418 			return -EOPNOTSUPP;
3419 
3420 		ret = btrfs_next_item(root, path);
3421 		if (ret < 0) {
3422 			return ret;
3423 		} else if (ret == 0) {
3424 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3425 					      path->slots[0]);
3426 			if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3427 			    key.type == BTRFS_EXTENT_DATA_KEY)
3428 				return -EOPNOTSUPP;
3429 		}
3430 	}
3431 
3432 copy_inline_extent:
3433 	/*
3434 	 * We have no extent items, or we have an extent at offset 0 which may
3435 	 * or may not be inlined. All these cases are dealt the same way.
3436 	 */
3437 	if (i_size_read(dst) > datal) {
3438 		/*
3439 		 * If the destination inode has an inline extent...
3440 		 * This would require copying the data from the source inline
3441 		 * extent into the beginning of the destination's inline extent.
3442 		 * But this is really complex, both extents can be compressed
3443 		 * or just one of them, which would require decompressing and
3444 		 * re-compressing data (which could increase the new compressed
3445 		 * size, not allowing the compressed data to fit anymore in an
3446 		 * inline extent).
3447 		 * So just don't support this case for now (it should be rare,
3448 		 * we are not really saving space when cloning inline extents).
3449 		 */
3450 		return -EOPNOTSUPP;
3451 	}
3452 
3453 	btrfs_release_path(path);
3454 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3455 	if (ret)
3456 		return ret;
3457 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3458 	if (ret)
3459 		return ret;
3460 
3461 	if (skip) {
3462 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3463 
3464 		memmove(inline_data + start, inline_data + start + skip, datal);
3465 	}
3466 
3467 	write_extent_buffer(path->nodes[0], inline_data,
3468 			    btrfs_item_ptr_offset(path->nodes[0],
3469 						  path->slots[0]),
3470 			    size);
3471 	inode_add_bytes(dst, datal);
3472 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
3473 
3474 	return 0;
3475 }
3476 
3477 /**
3478  * btrfs_clone() - clone a range from inode file to another
3479  *
3480  * @src: Inode to clone from
3481  * @inode: Inode to clone to
3482  * @off: Offset within source to start clone from
3483  * @olen: Original length, passed by user, of range to clone
3484  * @olen_aligned: Block-aligned value of olen
3485  * @destoff: Offset within @inode to start clone
3486  * @no_time_update: Whether to update mtime/ctime on the target inode
3487  */
3488 static int btrfs_clone(struct inode *src, struct inode *inode,
3489 		       const u64 off, const u64 olen, const u64 olen_aligned,
3490 		       const u64 destoff, int no_time_update)
3491 {
3492 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3493 	struct btrfs_root *root = BTRFS_I(inode)->root;
3494 	struct btrfs_path *path = NULL;
3495 	struct extent_buffer *leaf;
3496 	struct btrfs_trans_handle *trans;
3497 	char *buf = NULL;
3498 	struct btrfs_key key;
3499 	u32 nritems;
3500 	int slot;
3501 	int ret;
3502 	const u64 len = olen_aligned;
3503 	u64 last_dest_end = destoff;
3504 
3505 	ret = -ENOMEM;
3506 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3507 	if (!buf)
3508 		return ret;
3509 
3510 	path = btrfs_alloc_path();
3511 	if (!path) {
3512 		kvfree(buf);
3513 		return ret;
3514 	}
3515 
3516 	path->reada = READA_FORWARD;
3517 	/* clone data */
3518 	key.objectid = btrfs_ino(BTRFS_I(src));
3519 	key.type = BTRFS_EXTENT_DATA_KEY;
3520 	key.offset = off;
3521 
3522 	while (1) {
3523 		u64 next_key_min_offset = key.offset + 1;
3524 		struct btrfs_file_extent_item *extent;
3525 		int type;
3526 		u32 size;
3527 		struct btrfs_key new_key;
3528 		u64 disko = 0, diskl = 0;
3529 		u64 datao = 0, datal = 0;
3530 		u8 comp;
3531 		u64 drop_start;
3532 
3533 		/*
3534 		 * note the key will change type as we walk through the
3535 		 * tree.
3536 		 */
3537 		path->leave_spinning = 1;
3538 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3539 				0, 0);
3540 		if (ret < 0)
3541 			goto out;
3542 		/*
3543 		 * First search, if no extent item that starts at offset off was
3544 		 * found but the previous item is an extent item, it's possible
3545 		 * it might overlap our target range, therefore process it.
3546 		 */
3547 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3548 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3549 					      path->slots[0] - 1);
3550 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3551 				path->slots[0]--;
3552 		}
3553 
3554 		nritems = btrfs_header_nritems(path->nodes[0]);
3555 process_slot:
3556 		if (path->slots[0] >= nritems) {
3557 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3558 			if (ret < 0)
3559 				goto out;
3560 			if (ret > 0)
3561 				break;
3562 			nritems = btrfs_header_nritems(path->nodes[0]);
3563 		}
3564 		leaf = path->nodes[0];
3565 		slot = path->slots[0];
3566 
3567 		btrfs_item_key_to_cpu(leaf, &key, slot);
3568 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3569 		    key.objectid != btrfs_ino(BTRFS_I(src)))
3570 			break;
3571 
3572 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
3573 
3574 		extent = btrfs_item_ptr(leaf, slot,
3575 					struct btrfs_file_extent_item);
3576 		comp = btrfs_file_extent_compression(leaf, extent);
3577 		type = btrfs_file_extent_type(leaf, extent);
3578 		if (type == BTRFS_FILE_EXTENT_REG ||
3579 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
3580 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
3581 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
3582 			datao = btrfs_file_extent_offset(leaf, extent);
3583 			datal = btrfs_file_extent_num_bytes(leaf, extent);
3584 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3585 			/* Take upper bound, may be compressed */
3586 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
3587 		}
3588 
3589 		/*
3590 		 * The first search might have left us at an extent item that
3591 		 * ends before our target range's start, can happen if we have
3592 		 * holes and NO_HOLES feature enabled.
3593 		 */
3594 		if (key.offset + datal <= off) {
3595 			path->slots[0]++;
3596 			goto process_slot;
3597 		} else if (key.offset >= off + len) {
3598 			break;
3599 		}
3600 		next_key_min_offset = key.offset + datal;
3601 		size = btrfs_item_size_nr(leaf, slot);
3602 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
3603 				   size);
3604 
3605 		btrfs_release_path(path);
3606 		path->leave_spinning = 0;
3607 
3608 		memcpy(&new_key, &key, sizeof(new_key));
3609 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
3610 		if (off <= key.offset)
3611 			new_key.offset = key.offset + destoff - off;
3612 		else
3613 			new_key.offset = destoff;
3614 
3615 		/*
3616 		 * Deal with a hole that doesn't have an extent item that
3617 		 * represents it (NO_HOLES feature enabled).
3618 		 * This hole is either in the middle of the cloning range or at
3619 		 * the beginning (fully overlaps it or partially overlaps it).
3620 		 */
3621 		if (new_key.offset != last_dest_end)
3622 			drop_start = last_dest_end;
3623 		else
3624 			drop_start = new_key.offset;
3625 
3626 		if (type == BTRFS_FILE_EXTENT_REG ||
3627 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
3628 			struct btrfs_clone_extent_info clone_info;
3629 
3630 			/*
3631 			 *    a  | --- range to clone ---|  b
3632 			 * | ------------- extent ------------- |
3633 			 */
3634 
3635 			/* Subtract range b */
3636 			if (key.offset + datal > off + len)
3637 				datal = off + len - key.offset;
3638 
3639 			/* Subtract range a */
3640 			if (off > key.offset) {
3641 				datao += off - key.offset;
3642 				datal -= off - key.offset;
3643 			}
3644 
3645 			clone_info.disk_offset = disko;
3646 			clone_info.disk_len = diskl;
3647 			clone_info.data_offset = datao;
3648 			clone_info.data_len = datal;
3649 			clone_info.file_offset = new_key.offset;
3650 			clone_info.extent_buf = buf;
3651 			clone_info.item_size = size;
3652 			ret = btrfs_punch_hole_range(inode, path,
3653 						     drop_start,
3654 						     new_key.offset + datal - 1,
3655 						     &clone_info, &trans);
3656 			if (ret)
3657 				goto out;
3658 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3659 			u64 skip = 0;
3660 			u64 trim = 0;
3661 
3662 			if (off > key.offset) {
3663 				skip = off - key.offset;
3664 				new_key.offset += skip;
3665 			}
3666 
3667 			if (key.offset + datal > off + len)
3668 				trim = key.offset + datal - (off + len);
3669 
3670 			if (comp && (skip || trim)) {
3671 				ret = -EINVAL;
3672 				goto out;
3673 			}
3674 			size -= skip + trim;
3675 			datal -= skip + trim;
3676 
3677 			/*
3678 			 * If our extent is inline, we know we will drop or
3679 			 * adjust at most 1 extent item in the destination root.
3680 			 *
3681 			 * 1 - adjusting old extent (we may have to split it)
3682 			 * 1 - add new extent
3683 			 * 1 - inode update
3684 			 */
3685 			trans = btrfs_start_transaction(root, 3);
3686 			if (IS_ERR(trans)) {
3687 				ret = PTR_ERR(trans);
3688 				goto out;
3689 			}
3690 
3691 			ret = clone_copy_inline_extent(inode, trans, path,
3692 						       &new_key, drop_start,
3693 						       datal, skip, size, buf);
3694 			if (ret) {
3695 				if (ret != -EOPNOTSUPP)
3696 					btrfs_abort_transaction(trans, ret);
3697 				btrfs_end_transaction(trans);
3698 				goto out;
3699 			}
3700 		}
3701 
3702 		btrfs_release_path(path);
3703 
3704 		last_dest_end = ALIGN(new_key.offset + datal,
3705 				      fs_info->sectorsize);
3706 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
3707 						destoff, olen, no_time_update);
3708 		if (ret)
3709 			goto out;
3710 		if (new_key.offset + datal >= destoff + len)
3711 			break;
3712 
3713 		btrfs_release_path(path);
3714 		key.offset = next_key_min_offset;
3715 
3716 		if (fatal_signal_pending(current)) {
3717 			ret = -EINTR;
3718 			goto out;
3719 		}
3720 	}
3721 	ret = 0;
3722 
3723 	if (last_dest_end < destoff + len) {
3724 		struct btrfs_clone_extent_info clone_info = { 0 };
3725 		/*
3726 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3727 		 * fully or partially overlaps our cloning range at its end.
3728 		 */
3729 		btrfs_release_path(path);
3730 		path->leave_spinning = 0;
3731 
3732 		/*
3733 		 * We are dealing with a hole and our clone_info already has a
3734 		 * disk_offset of 0, we only need to fill the data length and
3735 		 * file offset.
3736 		 */
3737 		clone_info.data_len = destoff + len - last_dest_end;
3738 		clone_info.file_offset = last_dest_end;
3739 		ret = btrfs_punch_hole_range(inode, path,
3740 					     last_dest_end, destoff + len - 1,
3741 					     &clone_info, &trans);
3742 		if (ret)
3743 			goto out;
3744 
3745 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3746 						destoff, olen, no_time_update);
3747 	}
3748 
3749 out:
3750 	btrfs_free_path(path);
3751 	kvfree(buf);
3752 	return ret;
3753 }
3754 
3755 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3756 					u64 off, u64 olen, u64 destoff)
3757 {
3758 	struct inode *inode = file_inode(file);
3759 	struct inode *src = file_inode(file_src);
3760 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3761 	int ret;
3762 	u64 len = olen;
3763 	u64 bs = fs_info->sb->s_blocksize;
3764 
3765 	/*
3766 	 * TODO:
3767 	 * - split compressed inline extents.  annoying: we need to
3768 	 *   decompress into destination's address_space (the file offset
3769 	 *   may change, so source mapping won't do), then recompress (or
3770 	 *   otherwise reinsert) a subrange.
3771 	 *
3772 	 * - split destination inode's inline extents.  The inline extents can
3773 	 *   be either compressed or non-compressed.
3774 	 */
3775 
3776 	/*
3777 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
3778 	 * eof block into the middle of a file, which would result in corruption
3779 	 * if the file size is not blocksize aligned. So we don't need to check
3780 	 * for that case here.
3781 	 */
3782 	if (off + len == src->i_size)
3783 		len = ALIGN(src->i_size, bs) - off;
3784 
3785 	if (destoff > inode->i_size) {
3786 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
3787 
3788 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3789 		if (ret)
3790 			return ret;
3791 		/*
3792 		 * We may have truncated the last block if the inode's size is
3793 		 * not sector size aligned, so we need to wait for writeback to
3794 		 * complete before proceeding further, otherwise we can race
3795 		 * with cloning and attempt to increment a reference to an
3796 		 * extent that no longer exists (writeback completed right after
3797 		 * we found the previous extent covering eof and before we
3798 		 * attempted to increment its reference count).
3799 		 */
3800 		ret = btrfs_wait_ordered_range(inode, wb_start,
3801 					       destoff - wb_start);
3802 		if (ret)
3803 			return ret;
3804 	}
3805 
3806 	/*
3807 	 * Lock destination range to serialize with concurrent readpages() and
3808 	 * source range to serialize with relocation.
3809 	 */
3810 	btrfs_double_extent_lock(src, off, inode, destoff, len);
3811 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3812 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
3813 	/*
3814 	 * Truncate page cache pages so that future reads will see the cloned
3815 	 * data immediately and not the previous data.
3816 	 */
3817 	truncate_inode_pages_range(&inode->i_data,
3818 				round_down(destoff, PAGE_SIZE),
3819 				round_up(destoff + len, PAGE_SIZE) - 1);
3820 
3821 	return ret;
3822 }
3823 
3824 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
3825 				       struct file *file_out, loff_t pos_out,
3826 				       loff_t *len, unsigned int remap_flags)
3827 {
3828 	struct inode *inode_in = file_inode(file_in);
3829 	struct inode *inode_out = file_inode(file_out);
3830 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
3831 	bool same_inode = inode_out == inode_in;
3832 	u64 wb_len;
3833 	int ret;
3834 
3835 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
3836 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
3837 
3838 		if (btrfs_root_readonly(root_out))
3839 			return -EROFS;
3840 
3841 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
3842 		    inode_in->i_sb != inode_out->i_sb)
3843 			return -EXDEV;
3844 	}
3845 
3846 	/* don't make the dst file partly checksummed */
3847 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
3848 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
3849 		return -EINVAL;
3850 	}
3851 
3852 	/*
3853 	 * Now that the inodes are locked, we need to start writeback ourselves
3854 	 * and can not rely on the writeback from the VFS's generic helper
3855 	 * generic_remap_file_range_prep() because:
3856 	 *
3857 	 * 1) For compression we must call filemap_fdatawrite_range() range
3858 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
3859 	 *    helper only calls it once;
3860 	 *
3861 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
3862 	 *    waits for the writeback to complete, i.e. for IO to be done, and
3863 	 *    not for the ordered extents to complete. We need to wait for them
3864 	 *    to complete so that new file extent items are in the fs tree.
3865 	 */
3866 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
3867 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
3868 	else
3869 		wb_len = ALIGN(*len, bs);
3870 
3871 	/*
3872 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
3873 	 * any in progress could create its ordered extents after we wait for
3874 	 * existing ordered extents below).
3875 	 */
3876 	inode_dio_wait(inode_in);
3877 	if (!same_inode)
3878 		inode_dio_wait(inode_out);
3879 
3880 	/*
3881 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
3882 	 *
3883 	 * Btrfs' back references do not have a block level granularity, they
3884 	 * work at the whole extent level.
3885 	 * NOCOW buffered write without data space reserved may not be able
3886 	 * to fall back to CoW due to lack of data space, thus could cause
3887 	 * data loss.
3888 	 *
3889 	 * Here we take a shortcut by flushing the whole inode, so that all
3890 	 * nocow write should reach disk as nocow before we increase the
3891 	 * reference of the extent. We could do better by only flushing NOCOW
3892 	 * data, but that needs extra accounting.
3893 	 *
3894 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
3895 	 * CoWed anyway, not affecting nocow part.
3896 	 */
3897 	ret = filemap_flush(inode_in->i_mapping);
3898 	if (ret < 0)
3899 		return ret;
3900 
3901 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
3902 				       wb_len);
3903 	if (ret < 0)
3904 		return ret;
3905 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
3906 				       wb_len);
3907 	if (ret < 0)
3908 		return ret;
3909 
3910 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
3911 					    len, remap_flags);
3912 }
3913 
3914 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
3915 		struct file *dst_file, loff_t destoff, loff_t len,
3916 		unsigned int remap_flags)
3917 {
3918 	struct inode *src_inode = file_inode(src_file);
3919 	struct inode *dst_inode = file_inode(dst_file);
3920 	bool same_inode = dst_inode == src_inode;
3921 	int ret;
3922 
3923 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
3924 		return -EINVAL;
3925 
3926 	if (same_inode)
3927 		inode_lock(src_inode);
3928 	else
3929 		lock_two_nondirectories(src_inode, dst_inode);
3930 
3931 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
3932 					  &len, remap_flags);
3933 	if (ret < 0 || len == 0)
3934 		goto out_unlock;
3935 
3936 	if (remap_flags & REMAP_FILE_DEDUP)
3937 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
3938 	else
3939 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
3940 
3941 out_unlock:
3942 	if (same_inode)
3943 		inode_unlock(src_inode);
3944 	else
3945 		unlock_two_nondirectories(src_inode, dst_inode);
3946 
3947 	return ret < 0 ? ret : len;
3948 }
3949 
3950 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3951 {
3952 	struct inode *inode = file_inode(file);
3953 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3954 	struct btrfs_root *root = BTRFS_I(inode)->root;
3955 	struct btrfs_root *new_root;
3956 	struct btrfs_dir_item *di;
3957 	struct btrfs_trans_handle *trans;
3958 	struct btrfs_path *path;
3959 	struct btrfs_key location;
3960 	struct btrfs_disk_key disk_key;
3961 	u64 objectid = 0;
3962 	u64 dir_id;
3963 	int ret;
3964 
3965 	if (!capable(CAP_SYS_ADMIN))
3966 		return -EPERM;
3967 
3968 	ret = mnt_want_write_file(file);
3969 	if (ret)
3970 		return ret;
3971 
3972 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3973 		ret = -EFAULT;
3974 		goto out;
3975 	}
3976 
3977 	if (!objectid)
3978 		objectid = BTRFS_FS_TREE_OBJECTID;
3979 
3980 	location.objectid = objectid;
3981 	location.type = BTRFS_ROOT_ITEM_KEY;
3982 	location.offset = (u64)-1;
3983 
3984 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
3985 	if (IS_ERR(new_root)) {
3986 		ret = PTR_ERR(new_root);
3987 		goto out;
3988 	}
3989 	if (!is_fstree(new_root->root_key.objectid)) {
3990 		ret = -ENOENT;
3991 		goto out;
3992 	}
3993 
3994 	path = btrfs_alloc_path();
3995 	if (!path) {
3996 		ret = -ENOMEM;
3997 		goto out;
3998 	}
3999 	path->leave_spinning = 1;
4000 
4001 	trans = btrfs_start_transaction(root, 1);
4002 	if (IS_ERR(trans)) {
4003 		btrfs_free_path(path);
4004 		ret = PTR_ERR(trans);
4005 		goto out;
4006 	}
4007 
4008 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4009 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4010 				   dir_id, "default", 7, 1);
4011 	if (IS_ERR_OR_NULL(di)) {
4012 		btrfs_free_path(path);
4013 		btrfs_end_transaction(trans);
4014 		btrfs_err(fs_info,
4015 			  "Umm, you don't have the default diritem, this isn't going to work");
4016 		ret = -ENOENT;
4017 		goto out;
4018 	}
4019 
4020 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4021 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4022 	btrfs_mark_buffer_dirty(path->nodes[0]);
4023 	btrfs_free_path(path);
4024 
4025 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4026 	btrfs_end_transaction(trans);
4027 out:
4028 	mnt_drop_write_file(file);
4029 	return ret;
4030 }
4031 
4032 static void get_block_group_info(struct list_head *groups_list,
4033 				 struct btrfs_ioctl_space_info *space)
4034 {
4035 	struct btrfs_block_group_cache *block_group;
4036 
4037 	space->total_bytes = 0;
4038 	space->used_bytes = 0;
4039 	space->flags = 0;
4040 	list_for_each_entry(block_group, groups_list, list) {
4041 		space->flags = block_group->flags;
4042 		space->total_bytes += block_group->key.offset;
4043 		space->used_bytes +=
4044 			btrfs_block_group_used(&block_group->item);
4045 	}
4046 }
4047 
4048 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4049 				   void __user *arg)
4050 {
4051 	struct btrfs_ioctl_space_args space_args;
4052 	struct btrfs_ioctl_space_info space;
4053 	struct btrfs_ioctl_space_info *dest;
4054 	struct btrfs_ioctl_space_info *dest_orig;
4055 	struct btrfs_ioctl_space_info __user *user_dest;
4056 	struct btrfs_space_info *info;
4057 	static const u64 types[] = {
4058 		BTRFS_BLOCK_GROUP_DATA,
4059 		BTRFS_BLOCK_GROUP_SYSTEM,
4060 		BTRFS_BLOCK_GROUP_METADATA,
4061 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4062 	};
4063 	int num_types = 4;
4064 	int alloc_size;
4065 	int ret = 0;
4066 	u64 slot_count = 0;
4067 	int i, c;
4068 
4069 	if (copy_from_user(&space_args,
4070 			   (struct btrfs_ioctl_space_args __user *)arg,
4071 			   sizeof(space_args)))
4072 		return -EFAULT;
4073 
4074 	for (i = 0; i < num_types; i++) {
4075 		struct btrfs_space_info *tmp;
4076 
4077 		info = NULL;
4078 		rcu_read_lock();
4079 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4080 					list) {
4081 			if (tmp->flags == types[i]) {
4082 				info = tmp;
4083 				break;
4084 			}
4085 		}
4086 		rcu_read_unlock();
4087 
4088 		if (!info)
4089 			continue;
4090 
4091 		down_read(&info->groups_sem);
4092 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4093 			if (!list_empty(&info->block_groups[c]))
4094 				slot_count++;
4095 		}
4096 		up_read(&info->groups_sem);
4097 	}
4098 
4099 	/*
4100 	 * Global block reserve, exported as a space_info
4101 	 */
4102 	slot_count++;
4103 
4104 	/* space_slots == 0 means they are asking for a count */
4105 	if (space_args.space_slots == 0) {
4106 		space_args.total_spaces = slot_count;
4107 		goto out;
4108 	}
4109 
4110 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4111 
4112 	alloc_size = sizeof(*dest) * slot_count;
4113 
4114 	/* we generally have at most 6 or so space infos, one for each raid
4115 	 * level.  So, a whole page should be more than enough for everyone
4116 	 */
4117 	if (alloc_size > PAGE_SIZE)
4118 		return -ENOMEM;
4119 
4120 	space_args.total_spaces = 0;
4121 	dest = kmalloc(alloc_size, GFP_KERNEL);
4122 	if (!dest)
4123 		return -ENOMEM;
4124 	dest_orig = dest;
4125 
4126 	/* now we have a buffer to copy into */
4127 	for (i = 0; i < num_types; i++) {
4128 		struct btrfs_space_info *tmp;
4129 
4130 		if (!slot_count)
4131 			break;
4132 
4133 		info = NULL;
4134 		rcu_read_lock();
4135 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4136 					list) {
4137 			if (tmp->flags == types[i]) {
4138 				info = tmp;
4139 				break;
4140 			}
4141 		}
4142 		rcu_read_unlock();
4143 
4144 		if (!info)
4145 			continue;
4146 		down_read(&info->groups_sem);
4147 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4148 			if (!list_empty(&info->block_groups[c])) {
4149 				get_block_group_info(&info->block_groups[c],
4150 						     &space);
4151 				memcpy(dest, &space, sizeof(space));
4152 				dest++;
4153 				space_args.total_spaces++;
4154 				slot_count--;
4155 			}
4156 			if (!slot_count)
4157 				break;
4158 		}
4159 		up_read(&info->groups_sem);
4160 	}
4161 
4162 	/*
4163 	 * Add global block reserve
4164 	 */
4165 	if (slot_count) {
4166 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4167 
4168 		spin_lock(&block_rsv->lock);
4169 		space.total_bytes = block_rsv->size;
4170 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4171 		spin_unlock(&block_rsv->lock);
4172 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4173 		memcpy(dest, &space, sizeof(space));
4174 		space_args.total_spaces++;
4175 	}
4176 
4177 	user_dest = (struct btrfs_ioctl_space_info __user *)
4178 		(arg + sizeof(struct btrfs_ioctl_space_args));
4179 
4180 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4181 		ret = -EFAULT;
4182 
4183 	kfree(dest_orig);
4184 out:
4185 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4186 		ret = -EFAULT;
4187 
4188 	return ret;
4189 }
4190 
4191 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4192 					    void __user *argp)
4193 {
4194 	struct btrfs_trans_handle *trans;
4195 	u64 transid;
4196 	int ret;
4197 
4198 	btrfs_warn(root->fs_info,
4199 	"START_SYNC ioctl is deprecated and will be removed in kernel 5.7");
4200 
4201 	trans = btrfs_attach_transaction_barrier(root);
4202 	if (IS_ERR(trans)) {
4203 		if (PTR_ERR(trans) != -ENOENT)
4204 			return PTR_ERR(trans);
4205 
4206 		/* No running transaction, don't bother */
4207 		transid = root->fs_info->last_trans_committed;
4208 		goto out;
4209 	}
4210 	transid = trans->transid;
4211 	ret = btrfs_commit_transaction_async(trans, 0);
4212 	if (ret) {
4213 		btrfs_end_transaction(trans);
4214 		return ret;
4215 	}
4216 out:
4217 	if (argp)
4218 		if (copy_to_user(argp, &transid, sizeof(transid)))
4219 			return -EFAULT;
4220 	return 0;
4221 }
4222 
4223 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4224 					   void __user *argp)
4225 {
4226 	u64 transid;
4227 
4228 	btrfs_warn(fs_info,
4229 		"WAIT_SYNC ioctl is deprecated and will be removed in kernel 5.7");
4230 
4231 	if (argp) {
4232 		if (copy_from_user(&transid, argp, sizeof(transid)))
4233 			return -EFAULT;
4234 	} else {
4235 		transid = 0;  /* current trans */
4236 	}
4237 	return btrfs_wait_for_commit(fs_info, transid);
4238 }
4239 
4240 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4241 {
4242 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4243 	struct btrfs_ioctl_scrub_args *sa;
4244 	int ret;
4245 
4246 	if (!capable(CAP_SYS_ADMIN))
4247 		return -EPERM;
4248 
4249 	sa = memdup_user(arg, sizeof(*sa));
4250 	if (IS_ERR(sa))
4251 		return PTR_ERR(sa);
4252 
4253 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4254 		ret = mnt_want_write_file(file);
4255 		if (ret)
4256 			goto out;
4257 	}
4258 
4259 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4260 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4261 			      0);
4262 
4263 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4264 		ret = -EFAULT;
4265 
4266 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4267 		mnt_drop_write_file(file);
4268 out:
4269 	kfree(sa);
4270 	return ret;
4271 }
4272 
4273 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4274 {
4275 	if (!capable(CAP_SYS_ADMIN))
4276 		return -EPERM;
4277 
4278 	return btrfs_scrub_cancel(fs_info);
4279 }
4280 
4281 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4282 				       void __user *arg)
4283 {
4284 	struct btrfs_ioctl_scrub_args *sa;
4285 	int ret;
4286 
4287 	if (!capable(CAP_SYS_ADMIN))
4288 		return -EPERM;
4289 
4290 	sa = memdup_user(arg, sizeof(*sa));
4291 	if (IS_ERR(sa))
4292 		return PTR_ERR(sa);
4293 
4294 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4295 
4296 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4297 		ret = -EFAULT;
4298 
4299 	kfree(sa);
4300 	return ret;
4301 }
4302 
4303 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4304 				      void __user *arg)
4305 {
4306 	struct btrfs_ioctl_get_dev_stats *sa;
4307 	int ret;
4308 
4309 	sa = memdup_user(arg, sizeof(*sa));
4310 	if (IS_ERR(sa))
4311 		return PTR_ERR(sa);
4312 
4313 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4314 		kfree(sa);
4315 		return -EPERM;
4316 	}
4317 
4318 	ret = btrfs_get_dev_stats(fs_info, sa);
4319 
4320 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4321 		ret = -EFAULT;
4322 
4323 	kfree(sa);
4324 	return ret;
4325 }
4326 
4327 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4328 				    void __user *arg)
4329 {
4330 	struct btrfs_ioctl_dev_replace_args *p;
4331 	int ret;
4332 
4333 	if (!capable(CAP_SYS_ADMIN))
4334 		return -EPERM;
4335 
4336 	p = memdup_user(arg, sizeof(*p));
4337 	if (IS_ERR(p))
4338 		return PTR_ERR(p);
4339 
4340 	switch (p->cmd) {
4341 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4342 		if (sb_rdonly(fs_info->sb)) {
4343 			ret = -EROFS;
4344 			goto out;
4345 		}
4346 		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4347 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4348 		} else {
4349 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4350 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4351 		}
4352 		break;
4353 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4354 		btrfs_dev_replace_status(fs_info, p);
4355 		ret = 0;
4356 		break;
4357 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4358 		p->result = btrfs_dev_replace_cancel(fs_info);
4359 		ret = 0;
4360 		break;
4361 	default:
4362 		ret = -EINVAL;
4363 		break;
4364 	}
4365 
4366 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4367 		ret = -EFAULT;
4368 out:
4369 	kfree(p);
4370 	return ret;
4371 }
4372 
4373 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4374 {
4375 	int ret = 0;
4376 	int i;
4377 	u64 rel_ptr;
4378 	int size;
4379 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4380 	struct inode_fs_paths *ipath = NULL;
4381 	struct btrfs_path *path;
4382 
4383 	if (!capable(CAP_DAC_READ_SEARCH))
4384 		return -EPERM;
4385 
4386 	path = btrfs_alloc_path();
4387 	if (!path) {
4388 		ret = -ENOMEM;
4389 		goto out;
4390 	}
4391 
4392 	ipa = memdup_user(arg, sizeof(*ipa));
4393 	if (IS_ERR(ipa)) {
4394 		ret = PTR_ERR(ipa);
4395 		ipa = NULL;
4396 		goto out;
4397 	}
4398 
4399 	size = min_t(u32, ipa->size, 4096);
4400 	ipath = init_ipath(size, root, path);
4401 	if (IS_ERR(ipath)) {
4402 		ret = PTR_ERR(ipath);
4403 		ipath = NULL;
4404 		goto out;
4405 	}
4406 
4407 	ret = paths_from_inode(ipa->inum, ipath);
4408 	if (ret < 0)
4409 		goto out;
4410 
4411 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4412 		rel_ptr = ipath->fspath->val[i] -
4413 			  (u64)(unsigned long)ipath->fspath->val;
4414 		ipath->fspath->val[i] = rel_ptr;
4415 	}
4416 
4417 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4418 			   ipath->fspath, size);
4419 	if (ret) {
4420 		ret = -EFAULT;
4421 		goto out;
4422 	}
4423 
4424 out:
4425 	btrfs_free_path(path);
4426 	free_ipath(ipath);
4427 	kfree(ipa);
4428 
4429 	return ret;
4430 }
4431 
4432 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4433 {
4434 	struct btrfs_data_container *inodes = ctx;
4435 	const size_t c = 3 * sizeof(u64);
4436 
4437 	if (inodes->bytes_left >= c) {
4438 		inodes->bytes_left -= c;
4439 		inodes->val[inodes->elem_cnt] = inum;
4440 		inodes->val[inodes->elem_cnt + 1] = offset;
4441 		inodes->val[inodes->elem_cnt + 2] = root;
4442 		inodes->elem_cnt += 3;
4443 	} else {
4444 		inodes->bytes_missing += c - inodes->bytes_left;
4445 		inodes->bytes_left = 0;
4446 		inodes->elem_missed += 3;
4447 	}
4448 
4449 	return 0;
4450 }
4451 
4452 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4453 					void __user *arg, int version)
4454 {
4455 	int ret = 0;
4456 	int size;
4457 	struct btrfs_ioctl_logical_ino_args *loi;
4458 	struct btrfs_data_container *inodes = NULL;
4459 	struct btrfs_path *path = NULL;
4460 	bool ignore_offset;
4461 
4462 	if (!capable(CAP_SYS_ADMIN))
4463 		return -EPERM;
4464 
4465 	loi = memdup_user(arg, sizeof(*loi));
4466 	if (IS_ERR(loi))
4467 		return PTR_ERR(loi);
4468 
4469 	if (version == 1) {
4470 		ignore_offset = false;
4471 		size = min_t(u32, loi->size, SZ_64K);
4472 	} else {
4473 		/* All reserved bits must be 0 for now */
4474 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4475 			ret = -EINVAL;
4476 			goto out_loi;
4477 		}
4478 		/* Only accept flags we have defined so far */
4479 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4480 			ret = -EINVAL;
4481 			goto out_loi;
4482 		}
4483 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4484 		size = min_t(u32, loi->size, SZ_16M);
4485 	}
4486 
4487 	path = btrfs_alloc_path();
4488 	if (!path) {
4489 		ret = -ENOMEM;
4490 		goto out;
4491 	}
4492 
4493 	inodes = init_data_container(size);
4494 	if (IS_ERR(inodes)) {
4495 		ret = PTR_ERR(inodes);
4496 		inodes = NULL;
4497 		goto out;
4498 	}
4499 
4500 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4501 					  build_ino_list, inodes, ignore_offset);
4502 	if (ret == -EINVAL)
4503 		ret = -ENOENT;
4504 	if (ret < 0)
4505 		goto out;
4506 
4507 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4508 			   size);
4509 	if (ret)
4510 		ret = -EFAULT;
4511 
4512 out:
4513 	btrfs_free_path(path);
4514 	kvfree(inodes);
4515 out_loi:
4516 	kfree(loi);
4517 
4518 	return ret;
4519 }
4520 
4521 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4522 			       struct btrfs_ioctl_balance_args *bargs)
4523 {
4524 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4525 
4526 	bargs->flags = bctl->flags;
4527 
4528 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4529 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4530 	if (atomic_read(&fs_info->balance_pause_req))
4531 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4532 	if (atomic_read(&fs_info->balance_cancel_req))
4533 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4534 
4535 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4536 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4537 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4538 
4539 	spin_lock(&fs_info->balance_lock);
4540 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4541 	spin_unlock(&fs_info->balance_lock);
4542 }
4543 
4544 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4545 {
4546 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4547 	struct btrfs_fs_info *fs_info = root->fs_info;
4548 	struct btrfs_ioctl_balance_args *bargs;
4549 	struct btrfs_balance_control *bctl;
4550 	bool need_unlock; /* for mut. excl. ops lock */
4551 	int ret;
4552 
4553 	if (!capable(CAP_SYS_ADMIN))
4554 		return -EPERM;
4555 
4556 	ret = mnt_want_write_file(file);
4557 	if (ret)
4558 		return ret;
4559 
4560 again:
4561 	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4562 		mutex_lock(&fs_info->balance_mutex);
4563 		need_unlock = true;
4564 		goto locked;
4565 	}
4566 
4567 	/*
4568 	 * mut. excl. ops lock is locked.  Three possibilities:
4569 	 *   (1) some other op is running
4570 	 *   (2) balance is running
4571 	 *   (3) balance is paused -- special case (think resume)
4572 	 */
4573 	mutex_lock(&fs_info->balance_mutex);
4574 	if (fs_info->balance_ctl) {
4575 		/* this is either (2) or (3) */
4576 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4577 			mutex_unlock(&fs_info->balance_mutex);
4578 			/*
4579 			 * Lock released to allow other waiters to continue,
4580 			 * we'll reexamine the status again.
4581 			 */
4582 			mutex_lock(&fs_info->balance_mutex);
4583 
4584 			if (fs_info->balance_ctl &&
4585 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4586 				/* this is (3) */
4587 				need_unlock = false;
4588 				goto locked;
4589 			}
4590 
4591 			mutex_unlock(&fs_info->balance_mutex);
4592 			goto again;
4593 		} else {
4594 			/* this is (2) */
4595 			mutex_unlock(&fs_info->balance_mutex);
4596 			ret = -EINPROGRESS;
4597 			goto out;
4598 		}
4599 	} else {
4600 		/* this is (1) */
4601 		mutex_unlock(&fs_info->balance_mutex);
4602 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4603 		goto out;
4604 	}
4605 
4606 locked:
4607 	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4608 
4609 	if (arg) {
4610 		bargs = memdup_user(arg, sizeof(*bargs));
4611 		if (IS_ERR(bargs)) {
4612 			ret = PTR_ERR(bargs);
4613 			goto out_unlock;
4614 		}
4615 
4616 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4617 			if (!fs_info->balance_ctl) {
4618 				ret = -ENOTCONN;
4619 				goto out_bargs;
4620 			}
4621 
4622 			bctl = fs_info->balance_ctl;
4623 			spin_lock(&fs_info->balance_lock);
4624 			bctl->flags |= BTRFS_BALANCE_RESUME;
4625 			spin_unlock(&fs_info->balance_lock);
4626 
4627 			goto do_balance;
4628 		}
4629 	} else {
4630 		bargs = NULL;
4631 	}
4632 
4633 	if (fs_info->balance_ctl) {
4634 		ret = -EINPROGRESS;
4635 		goto out_bargs;
4636 	}
4637 
4638 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4639 	if (!bctl) {
4640 		ret = -ENOMEM;
4641 		goto out_bargs;
4642 	}
4643 
4644 	if (arg) {
4645 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4646 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4647 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4648 
4649 		bctl->flags = bargs->flags;
4650 	} else {
4651 		/* balance everything - no filters */
4652 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4653 	}
4654 
4655 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4656 		ret = -EINVAL;
4657 		goto out_bctl;
4658 	}
4659 
4660 do_balance:
4661 	/*
4662 	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
4663 	 * btrfs_balance.  bctl is freed in reset_balance_state, or, if
4664 	 * restriper was paused all the way until unmount, in free_fs_info.
4665 	 * The flag should be cleared after reset_balance_state.
4666 	 */
4667 	need_unlock = false;
4668 
4669 	ret = btrfs_balance(fs_info, bctl, bargs);
4670 	bctl = NULL;
4671 
4672 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4673 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4674 			ret = -EFAULT;
4675 	}
4676 
4677 out_bctl:
4678 	kfree(bctl);
4679 out_bargs:
4680 	kfree(bargs);
4681 out_unlock:
4682 	mutex_unlock(&fs_info->balance_mutex);
4683 	if (need_unlock)
4684 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4685 out:
4686 	mnt_drop_write_file(file);
4687 	return ret;
4688 }
4689 
4690 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4691 {
4692 	if (!capable(CAP_SYS_ADMIN))
4693 		return -EPERM;
4694 
4695 	switch (cmd) {
4696 	case BTRFS_BALANCE_CTL_PAUSE:
4697 		return btrfs_pause_balance(fs_info);
4698 	case BTRFS_BALANCE_CTL_CANCEL:
4699 		return btrfs_cancel_balance(fs_info);
4700 	}
4701 
4702 	return -EINVAL;
4703 }
4704 
4705 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4706 					 void __user *arg)
4707 {
4708 	struct btrfs_ioctl_balance_args *bargs;
4709 	int ret = 0;
4710 
4711 	if (!capable(CAP_SYS_ADMIN))
4712 		return -EPERM;
4713 
4714 	mutex_lock(&fs_info->balance_mutex);
4715 	if (!fs_info->balance_ctl) {
4716 		ret = -ENOTCONN;
4717 		goto out;
4718 	}
4719 
4720 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4721 	if (!bargs) {
4722 		ret = -ENOMEM;
4723 		goto out;
4724 	}
4725 
4726 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4727 
4728 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4729 		ret = -EFAULT;
4730 
4731 	kfree(bargs);
4732 out:
4733 	mutex_unlock(&fs_info->balance_mutex);
4734 	return ret;
4735 }
4736 
4737 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4738 {
4739 	struct inode *inode = file_inode(file);
4740 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4741 	struct btrfs_ioctl_quota_ctl_args *sa;
4742 	int ret;
4743 
4744 	if (!capable(CAP_SYS_ADMIN))
4745 		return -EPERM;
4746 
4747 	ret = mnt_want_write_file(file);
4748 	if (ret)
4749 		return ret;
4750 
4751 	sa = memdup_user(arg, sizeof(*sa));
4752 	if (IS_ERR(sa)) {
4753 		ret = PTR_ERR(sa);
4754 		goto drop_write;
4755 	}
4756 
4757 	down_write(&fs_info->subvol_sem);
4758 
4759 	switch (sa->cmd) {
4760 	case BTRFS_QUOTA_CTL_ENABLE:
4761 		ret = btrfs_quota_enable(fs_info);
4762 		break;
4763 	case BTRFS_QUOTA_CTL_DISABLE:
4764 		ret = btrfs_quota_disable(fs_info);
4765 		break;
4766 	default:
4767 		ret = -EINVAL;
4768 		break;
4769 	}
4770 
4771 	kfree(sa);
4772 	up_write(&fs_info->subvol_sem);
4773 drop_write:
4774 	mnt_drop_write_file(file);
4775 	return ret;
4776 }
4777 
4778 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4779 {
4780 	struct inode *inode = file_inode(file);
4781 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4782 	struct btrfs_root *root = BTRFS_I(inode)->root;
4783 	struct btrfs_ioctl_qgroup_assign_args *sa;
4784 	struct btrfs_trans_handle *trans;
4785 	int ret;
4786 	int err;
4787 
4788 	if (!capable(CAP_SYS_ADMIN))
4789 		return -EPERM;
4790 
4791 	ret = mnt_want_write_file(file);
4792 	if (ret)
4793 		return ret;
4794 
4795 	sa = memdup_user(arg, sizeof(*sa));
4796 	if (IS_ERR(sa)) {
4797 		ret = PTR_ERR(sa);
4798 		goto drop_write;
4799 	}
4800 
4801 	trans = btrfs_join_transaction(root);
4802 	if (IS_ERR(trans)) {
4803 		ret = PTR_ERR(trans);
4804 		goto out;
4805 	}
4806 
4807 	if (sa->assign) {
4808 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4809 	} else {
4810 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4811 	}
4812 
4813 	/* update qgroup status and info */
4814 	err = btrfs_run_qgroups(trans);
4815 	if (err < 0)
4816 		btrfs_handle_fs_error(fs_info, err,
4817 				      "failed to update qgroup status and info");
4818 	err = btrfs_end_transaction(trans);
4819 	if (err && !ret)
4820 		ret = err;
4821 
4822 out:
4823 	kfree(sa);
4824 drop_write:
4825 	mnt_drop_write_file(file);
4826 	return ret;
4827 }
4828 
4829 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4830 {
4831 	struct inode *inode = file_inode(file);
4832 	struct btrfs_root *root = BTRFS_I(inode)->root;
4833 	struct btrfs_ioctl_qgroup_create_args *sa;
4834 	struct btrfs_trans_handle *trans;
4835 	int ret;
4836 	int err;
4837 
4838 	if (!capable(CAP_SYS_ADMIN))
4839 		return -EPERM;
4840 
4841 	ret = mnt_want_write_file(file);
4842 	if (ret)
4843 		return ret;
4844 
4845 	sa = memdup_user(arg, sizeof(*sa));
4846 	if (IS_ERR(sa)) {
4847 		ret = PTR_ERR(sa);
4848 		goto drop_write;
4849 	}
4850 
4851 	if (!sa->qgroupid) {
4852 		ret = -EINVAL;
4853 		goto out;
4854 	}
4855 
4856 	trans = btrfs_join_transaction(root);
4857 	if (IS_ERR(trans)) {
4858 		ret = PTR_ERR(trans);
4859 		goto out;
4860 	}
4861 
4862 	if (sa->create) {
4863 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4864 	} else {
4865 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4866 	}
4867 
4868 	err = btrfs_end_transaction(trans);
4869 	if (err && !ret)
4870 		ret = err;
4871 
4872 out:
4873 	kfree(sa);
4874 drop_write:
4875 	mnt_drop_write_file(file);
4876 	return ret;
4877 }
4878 
4879 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4880 {
4881 	struct inode *inode = file_inode(file);
4882 	struct btrfs_root *root = BTRFS_I(inode)->root;
4883 	struct btrfs_ioctl_qgroup_limit_args *sa;
4884 	struct btrfs_trans_handle *trans;
4885 	int ret;
4886 	int err;
4887 	u64 qgroupid;
4888 
4889 	if (!capable(CAP_SYS_ADMIN))
4890 		return -EPERM;
4891 
4892 	ret = mnt_want_write_file(file);
4893 	if (ret)
4894 		return ret;
4895 
4896 	sa = memdup_user(arg, sizeof(*sa));
4897 	if (IS_ERR(sa)) {
4898 		ret = PTR_ERR(sa);
4899 		goto drop_write;
4900 	}
4901 
4902 	trans = btrfs_join_transaction(root);
4903 	if (IS_ERR(trans)) {
4904 		ret = PTR_ERR(trans);
4905 		goto out;
4906 	}
4907 
4908 	qgroupid = sa->qgroupid;
4909 	if (!qgroupid) {
4910 		/* take the current subvol as qgroup */
4911 		qgroupid = root->root_key.objectid;
4912 	}
4913 
4914 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4915 
4916 	err = btrfs_end_transaction(trans);
4917 	if (err && !ret)
4918 		ret = err;
4919 
4920 out:
4921 	kfree(sa);
4922 drop_write:
4923 	mnt_drop_write_file(file);
4924 	return ret;
4925 }
4926 
4927 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4928 {
4929 	struct inode *inode = file_inode(file);
4930 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4931 	struct btrfs_ioctl_quota_rescan_args *qsa;
4932 	int ret;
4933 
4934 	if (!capable(CAP_SYS_ADMIN))
4935 		return -EPERM;
4936 
4937 	ret = mnt_want_write_file(file);
4938 	if (ret)
4939 		return ret;
4940 
4941 	qsa = memdup_user(arg, sizeof(*qsa));
4942 	if (IS_ERR(qsa)) {
4943 		ret = PTR_ERR(qsa);
4944 		goto drop_write;
4945 	}
4946 
4947 	if (qsa->flags) {
4948 		ret = -EINVAL;
4949 		goto out;
4950 	}
4951 
4952 	ret = btrfs_qgroup_rescan(fs_info);
4953 
4954 out:
4955 	kfree(qsa);
4956 drop_write:
4957 	mnt_drop_write_file(file);
4958 	return ret;
4959 }
4960 
4961 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4962 {
4963 	struct inode *inode = file_inode(file);
4964 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4965 	struct btrfs_ioctl_quota_rescan_args *qsa;
4966 	int ret = 0;
4967 
4968 	if (!capable(CAP_SYS_ADMIN))
4969 		return -EPERM;
4970 
4971 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4972 	if (!qsa)
4973 		return -ENOMEM;
4974 
4975 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4976 		qsa->flags = 1;
4977 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4978 	}
4979 
4980 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4981 		ret = -EFAULT;
4982 
4983 	kfree(qsa);
4984 	return ret;
4985 }
4986 
4987 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4988 {
4989 	struct inode *inode = file_inode(file);
4990 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4991 
4992 	if (!capable(CAP_SYS_ADMIN))
4993 		return -EPERM;
4994 
4995 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4996 }
4997 
4998 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4999 					    struct btrfs_ioctl_received_subvol_args *sa)
5000 {
5001 	struct inode *inode = file_inode(file);
5002 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5003 	struct btrfs_root *root = BTRFS_I(inode)->root;
5004 	struct btrfs_root_item *root_item = &root->root_item;
5005 	struct btrfs_trans_handle *trans;
5006 	struct timespec64 ct = current_time(inode);
5007 	int ret = 0;
5008 	int received_uuid_changed;
5009 
5010 	if (!inode_owner_or_capable(inode))
5011 		return -EPERM;
5012 
5013 	ret = mnt_want_write_file(file);
5014 	if (ret < 0)
5015 		return ret;
5016 
5017 	down_write(&fs_info->subvol_sem);
5018 
5019 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5020 		ret = -EINVAL;
5021 		goto out;
5022 	}
5023 
5024 	if (btrfs_root_readonly(root)) {
5025 		ret = -EROFS;
5026 		goto out;
5027 	}
5028 
5029 	/*
5030 	 * 1 - root item
5031 	 * 2 - uuid items (received uuid + subvol uuid)
5032 	 */
5033 	trans = btrfs_start_transaction(root, 3);
5034 	if (IS_ERR(trans)) {
5035 		ret = PTR_ERR(trans);
5036 		trans = NULL;
5037 		goto out;
5038 	}
5039 
5040 	sa->rtransid = trans->transid;
5041 	sa->rtime.sec = ct.tv_sec;
5042 	sa->rtime.nsec = ct.tv_nsec;
5043 
5044 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5045 				       BTRFS_UUID_SIZE);
5046 	if (received_uuid_changed &&
5047 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
5048 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
5049 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5050 					  root->root_key.objectid);
5051 		if (ret && ret != -ENOENT) {
5052 		        btrfs_abort_transaction(trans, ret);
5053 		        btrfs_end_transaction(trans);
5054 		        goto out;
5055 		}
5056 	}
5057 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5058 	btrfs_set_root_stransid(root_item, sa->stransid);
5059 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5060 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5061 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5062 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5063 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5064 
5065 	ret = btrfs_update_root(trans, fs_info->tree_root,
5066 				&root->root_key, &root->root_item);
5067 	if (ret < 0) {
5068 		btrfs_end_transaction(trans);
5069 		goto out;
5070 	}
5071 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5072 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
5073 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5074 					  root->root_key.objectid);
5075 		if (ret < 0 && ret != -EEXIST) {
5076 			btrfs_abort_transaction(trans, ret);
5077 			btrfs_end_transaction(trans);
5078 			goto out;
5079 		}
5080 	}
5081 	ret = btrfs_commit_transaction(trans);
5082 out:
5083 	up_write(&fs_info->subvol_sem);
5084 	mnt_drop_write_file(file);
5085 	return ret;
5086 }
5087 
5088 #ifdef CONFIG_64BIT
5089 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5090 						void __user *arg)
5091 {
5092 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5093 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5094 	int ret = 0;
5095 
5096 	args32 = memdup_user(arg, sizeof(*args32));
5097 	if (IS_ERR(args32))
5098 		return PTR_ERR(args32);
5099 
5100 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5101 	if (!args64) {
5102 		ret = -ENOMEM;
5103 		goto out;
5104 	}
5105 
5106 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5107 	args64->stransid = args32->stransid;
5108 	args64->rtransid = args32->rtransid;
5109 	args64->stime.sec = args32->stime.sec;
5110 	args64->stime.nsec = args32->stime.nsec;
5111 	args64->rtime.sec = args32->rtime.sec;
5112 	args64->rtime.nsec = args32->rtime.nsec;
5113 	args64->flags = args32->flags;
5114 
5115 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5116 	if (ret)
5117 		goto out;
5118 
5119 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5120 	args32->stransid = args64->stransid;
5121 	args32->rtransid = args64->rtransid;
5122 	args32->stime.sec = args64->stime.sec;
5123 	args32->stime.nsec = args64->stime.nsec;
5124 	args32->rtime.sec = args64->rtime.sec;
5125 	args32->rtime.nsec = args64->rtime.nsec;
5126 	args32->flags = args64->flags;
5127 
5128 	ret = copy_to_user(arg, args32, sizeof(*args32));
5129 	if (ret)
5130 		ret = -EFAULT;
5131 
5132 out:
5133 	kfree(args32);
5134 	kfree(args64);
5135 	return ret;
5136 }
5137 #endif
5138 
5139 static long btrfs_ioctl_set_received_subvol(struct file *file,
5140 					    void __user *arg)
5141 {
5142 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5143 	int ret = 0;
5144 
5145 	sa = memdup_user(arg, sizeof(*sa));
5146 	if (IS_ERR(sa))
5147 		return PTR_ERR(sa);
5148 
5149 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5150 
5151 	if (ret)
5152 		goto out;
5153 
5154 	ret = copy_to_user(arg, sa, sizeof(*sa));
5155 	if (ret)
5156 		ret = -EFAULT;
5157 
5158 out:
5159 	kfree(sa);
5160 	return ret;
5161 }
5162 
5163 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5164 {
5165 	struct inode *inode = file_inode(file);
5166 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5167 	size_t len;
5168 	int ret;
5169 	char label[BTRFS_LABEL_SIZE];
5170 
5171 	spin_lock(&fs_info->super_lock);
5172 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5173 	spin_unlock(&fs_info->super_lock);
5174 
5175 	len = strnlen(label, BTRFS_LABEL_SIZE);
5176 
5177 	if (len == BTRFS_LABEL_SIZE) {
5178 		btrfs_warn(fs_info,
5179 			   "label is too long, return the first %zu bytes",
5180 			   --len);
5181 	}
5182 
5183 	ret = copy_to_user(arg, label, len);
5184 
5185 	return ret ? -EFAULT : 0;
5186 }
5187 
5188 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5189 {
5190 	struct inode *inode = file_inode(file);
5191 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5192 	struct btrfs_root *root = BTRFS_I(inode)->root;
5193 	struct btrfs_super_block *super_block = fs_info->super_copy;
5194 	struct btrfs_trans_handle *trans;
5195 	char label[BTRFS_LABEL_SIZE];
5196 	int ret;
5197 
5198 	if (!capable(CAP_SYS_ADMIN))
5199 		return -EPERM;
5200 
5201 	if (copy_from_user(label, arg, sizeof(label)))
5202 		return -EFAULT;
5203 
5204 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5205 		btrfs_err(fs_info,
5206 			  "unable to set label with more than %d bytes",
5207 			  BTRFS_LABEL_SIZE - 1);
5208 		return -EINVAL;
5209 	}
5210 
5211 	ret = mnt_want_write_file(file);
5212 	if (ret)
5213 		return ret;
5214 
5215 	trans = btrfs_start_transaction(root, 0);
5216 	if (IS_ERR(trans)) {
5217 		ret = PTR_ERR(trans);
5218 		goto out_unlock;
5219 	}
5220 
5221 	spin_lock(&fs_info->super_lock);
5222 	strcpy(super_block->label, label);
5223 	spin_unlock(&fs_info->super_lock);
5224 	ret = btrfs_commit_transaction(trans);
5225 
5226 out_unlock:
5227 	mnt_drop_write_file(file);
5228 	return ret;
5229 }
5230 
5231 #define INIT_FEATURE_FLAGS(suffix) \
5232 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5233 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5234 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5235 
5236 int btrfs_ioctl_get_supported_features(void __user *arg)
5237 {
5238 	static const struct btrfs_ioctl_feature_flags features[3] = {
5239 		INIT_FEATURE_FLAGS(SUPP),
5240 		INIT_FEATURE_FLAGS(SAFE_SET),
5241 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5242 	};
5243 
5244 	if (copy_to_user(arg, &features, sizeof(features)))
5245 		return -EFAULT;
5246 
5247 	return 0;
5248 }
5249 
5250 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5251 {
5252 	struct inode *inode = file_inode(file);
5253 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5254 	struct btrfs_super_block *super_block = fs_info->super_copy;
5255 	struct btrfs_ioctl_feature_flags features;
5256 
5257 	features.compat_flags = btrfs_super_compat_flags(super_block);
5258 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5259 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5260 
5261 	if (copy_to_user(arg, &features, sizeof(features)))
5262 		return -EFAULT;
5263 
5264 	return 0;
5265 }
5266 
5267 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5268 			      enum btrfs_feature_set set,
5269 			      u64 change_mask, u64 flags, u64 supported_flags,
5270 			      u64 safe_set, u64 safe_clear)
5271 {
5272 	const char *type = btrfs_feature_set_name(set);
5273 	char *names;
5274 	u64 disallowed, unsupported;
5275 	u64 set_mask = flags & change_mask;
5276 	u64 clear_mask = ~flags & change_mask;
5277 
5278 	unsupported = set_mask & ~supported_flags;
5279 	if (unsupported) {
5280 		names = btrfs_printable_features(set, unsupported);
5281 		if (names) {
5282 			btrfs_warn(fs_info,
5283 				   "this kernel does not support the %s feature bit%s",
5284 				   names, strchr(names, ',') ? "s" : "");
5285 			kfree(names);
5286 		} else
5287 			btrfs_warn(fs_info,
5288 				   "this kernel does not support %s bits 0x%llx",
5289 				   type, unsupported);
5290 		return -EOPNOTSUPP;
5291 	}
5292 
5293 	disallowed = set_mask & ~safe_set;
5294 	if (disallowed) {
5295 		names = btrfs_printable_features(set, disallowed);
5296 		if (names) {
5297 			btrfs_warn(fs_info,
5298 				   "can't set the %s feature bit%s while mounted",
5299 				   names, strchr(names, ',') ? "s" : "");
5300 			kfree(names);
5301 		} else
5302 			btrfs_warn(fs_info,
5303 				   "can't set %s bits 0x%llx while mounted",
5304 				   type, disallowed);
5305 		return -EPERM;
5306 	}
5307 
5308 	disallowed = clear_mask & ~safe_clear;
5309 	if (disallowed) {
5310 		names = btrfs_printable_features(set, disallowed);
5311 		if (names) {
5312 			btrfs_warn(fs_info,
5313 				   "can't clear the %s feature bit%s while mounted",
5314 				   names, strchr(names, ',') ? "s" : "");
5315 			kfree(names);
5316 		} else
5317 			btrfs_warn(fs_info,
5318 				   "can't clear %s bits 0x%llx while mounted",
5319 				   type, disallowed);
5320 		return -EPERM;
5321 	}
5322 
5323 	return 0;
5324 }
5325 
5326 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5327 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5328 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5329 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5330 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5331 
5332 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5333 {
5334 	struct inode *inode = file_inode(file);
5335 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5336 	struct btrfs_root *root = BTRFS_I(inode)->root;
5337 	struct btrfs_super_block *super_block = fs_info->super_copy;
5338 	struct btrfs_ioctl_feature_flags flags[2];
5339 	struct btrfs_trans_handle *trans;
5340 	u64 newflags;
5341 	int ret;
5342 
5343 	if (!capable(CAP_SYS_ADMIN))
5344 		return -EPERM;
5345 
5346 	if (copy_from_user(flags, arg, sizeof(flags)))
5347 		return -EFAULT;
5348 
5349 	/* Nothing to do */
5350 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5351 	    !flags[0].incompat_flags)
5352 		return 0;
5353 
5354 	ret = check_feature(fs_info, flags[0].compat_flags,
5355 			    flags[1].compat_flags, COMPAT);
5356 	if (ret)
5357 		return ret;
5358 
5359 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5360 			    flags[1].compat_ro_flags, COMPAT_RO);
5361 	if (ret)
5362 		return ret;
5363 
5364 	ret = check_feature(fs_info, flags[0].incompat_flags,
5365 			    flags[1].incompat_flags, INCOMPAT);
5366 	if (ret)
5367 		return ret;
5368 
5369 	ret = mnt_want_write_file(file);
5370 	if (ret)
5371 		return ret;
5372 
5373 	trans = btrfs_start_transaction(root, 0);
5374 	if (IS_ERR(trans)) {
5375 		ret = PTR_ERR(trans);
5376 		goto out_drop_write;
5377 	}
5378 
5379 	spin_lock(&fs_info->super_lock);
5380 	newflags = btrfs_super_compat_flags(super_block);
5381 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5382 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5383 	btrfs_set_super_compat_flags(super_block, newflags);
5384 
5385 	newflags = btrfs_super_compat_ro_flags(super_block);
5386 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5387 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5388 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5389 
5390 	newflags = btrfs_super_incompat_flags(super_block);
5391 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5392 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5393 	btrfs_set_super_incompat_flags(super_block, newflags);
5394 	spin_unlock(&fs_info->super_lock);
5395 
5396 	ret = btrfs_commit_transaction(trans);
5397 out_drop_write:
5398 	mnt_drop_write_file(file);
5399 
5400 	return ret;
5401 }
5402 
5403 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5404 {
5405 	struct btrfs_ioctl_send_args *arg;
5406 	int ret;
5407 
5408 	if (compat) {
5409 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5410 		struct btrfs_ioctl_send_args_32 args32;
5411 
5412 		ret = copy_from_user(&args32, argp, sizeof(args32));
5413 		if (ret)
5414 			return -EFAULT;
5415 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5416 		if (!arg)
5417 			return -ENOMEM;
5418 		arg->send_fd = args32.send_fd;
5419 		arg->clone_sources_count = args32.clone_sources_count;
5420 		arg->clone_sources = compat_ptr(args32.clone_sources);
5421 		arg->parent_root = args32.parent_root;
5422 		arg->flags = args32.flags;
5423 		memcpy(arg->reserved, args32.reserved,
5424 		       sizeof(args32.reserved));
5425 #else
5426 		return -ENOTTY;
5427 #endif
5428 	} else {
5429 		arg = memdup_user(argp, sizeof(*arg));
5430 		if (IS_ERR(arg))
5431 			return PTR_ERR(arg);
5432 	}
5433 	ret = btrfs_ioctl_send(file, arg);
5434 	kfree(arg);
5435 	return ret;
5436 }
5437 
5438 long btrfs_ioctl(struct file *file, unsigned int
5439 		cmd, unsigned long arg)
5440 {
5441 	struct inode *inode = file_inode(file);
5442 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5443 	struct btrfs_root *root = BTRFS_I(inode)->root;
5444 	void __user *argp = (void __user *)arg;
5445 
5446 	switch (cmd) {
5447 	case FS_IOC_GETFLAGS:
5448 		return btrfs_ioctl_getflags(file, argp);
5449 	case FS_IOC_SETFLAGS:
5450 		return btrfs_ioctl_setflags(file, argp);
5451 	case FS_IOC_GETVERSION:
5452 		return btrfs_ioctl_getversion(file, argp);
5453 	case FS_IOC_GETFSLABEL:
5454 		return btrfs_ioctl_get_fslabel(file, argp);
5455 	case FS_IOC_SETFSLABEL:
5456 		return btrfs_ioctl_set_fslabel(file, argp);
5457 	case FITRIM:
5458 		return btrfs_ioctl_fitrim(file, argp);
5459 	case BTRFS_IOC_SNAP_CREATE:
5460 		return btrfs_ioctl_snap_create(file, argp, 0);
5461 	case BTRFS_IOC_SNAP_CREATE_V2:
5462 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5463 	case BTRFS_IOC_SUBVOL_CREATE:
5464 		return btrfs_ioctl_snap_create(file, argp, 1);
5465 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5466 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5467 	case BTRFS_IOC_SNAP_DESTROY:
5468 		return btrfs_ioctl_snap_destroy(file, argp);
5469 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5470 		return btrfs_ioctl_subvol_getflags(file, argp);
5471 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5472 		return btrfs_ioctl_subvol_setflags(file, argp);
5473 	case BTRFS_IOC_DEFAULT_SUBVOL:
5474 		return btrfs_ioctl_default_subvol(file, argp);
5475 	case BTRFS_IOC_DEFRAG:
5476 		return btrfs_ioctl_defrag(file, NULL);
5477 	case BTRFS_IOC_DEFRAG_RANGE:
5478 		return btrfs_ioctl_defrag(file, argp);
5479 	case BTRFS_IOC_RESIZE:
5480 		return btrfs_ioctl_resize(file, argp);
5481 	case BTRFS_IOC_ADD_DEV:
5482 		return btrfs_ioctl_add_dev(fs_info, argp);
5483 	case BTRFS_IOC_RM_DEV:
5484 		return btrfs_ioctl_rm_dev(file, argp);
5485 	case BTRFS_IOC_RM_DEV_V2:
5486 		return btrfs_ioctl_rm_dev_v2(file, argp);
5487 	case BTRFS_IOC_FS_INFO:
5488 		return btrfs_ioctl_fs_info(fs_info, argp);
5489 	case BTRFS_IOC_DEV_INFO:
5490 		return btrfs_ioctl_dev_info(fs_info, argp);
5491 	case BTRFS_IOC_BALANCE:
5492 		return btrfs_ioctl_balance(file, NULL);
5493 	case BTRFS_IOC_TREE_SEARCH:
5494 		return btrfs_ioctl_tree_search(file, argp);
5495 	case BTRFS_IOC_TREE_SEARCH_V2:
5496 		return btrfs_ioctl_tree_search_v2(file, argp);
5497 	case BTRFS_IOC_INO_LOOKUP:
5498 		return btrfs_ioctl_ino_lookup(file, argp);
5499 	case BTRFS_IOC_INO_PATHS:
5500 		return btrfs_ioctl_ino_to_path(root, argp);
5501 	case BTRFS_IOC_LOGICAL_INO:
5502 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5503 	case BTRFS_IOC_LOGICAL_INO_V2:
5504 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5505 	case BTRFS_IOC_SPACE_INFO:
5506 		return btrfs_ioctl_space_info(fs_info, argp);
5507 	case BTRFS_IOC_SYNC: {
5508 		int ret;
5509 
5510 		ret = btrfs_start_delalloc_roots(fs_info, -1);
5511 		if (ret)
5512 			return ret;
5513 		ret = btrfs_sync_fs(inode->i_sb, 1);
5514 		/*
5515 		 * The transaction thread may want to do more work,
5516 		 * namely it pokes the cleaner kthread that will start
5517 		 * processing uncleaned subvols.
5518 		 */
5519 		wake_up_process(fs_info->transaction_kthread);
5520 		return ret;
5521 	}
5522 	case BTRFS_IOC_START_SYNC:
5523 		return btrfs_ioctl_start_sync(root, argp);
5524 	case BTRFS_IOC_WAIT_SYNC:
5525 		return btrfs_ioctl_wait_sync(fs_info, argp);
5526 	case BTRFS_IOC_SCRUB:
5527 		return btrfs_ioctl_scrub(file, argp);
5528 	case BTRFS_IOC_SCRUB_CANCEL:
5529 		return btrfs_ioctl_scrub_cancel(fs_info);
5530 	case BTRFS_IOC_SCRUB_PROGRESS:
5531 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5532 	case BTRFS_IOC_BALANCE_V2:
5533 		return btrfs_ioctl_balance(file, argp);
5534 	case BTRFS_IOC_BALANCE_CTL:
5535 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5536 	case BTRFS_IOC_BALANCE_PROGRESS:
5537 		return btrfs_ioctl_balance_progress(fs_info, argp);
5538 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5539 		return btrfs_ioctl_set_received_subvol(file, argp);
5540 #ifdef CONFIG_64BIT
5541 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5542 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5543 #endif
5544 	case BTRFS_IOC_SEND:
5545 		return _btrfs_ioctl_send(file, argp, false);
5546 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5547 	case BTRFS_IOC_SEND_32:
5548 		return _btrfs_ioctl_send(file, argp, true);
5549 #endif
5550 	case BTRFS_IOC_GET_DEV_STATS:
5551 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5552 	case BTRFS_IOC_QUOTA_CTL:
5553 		return btrfs_ioctl_quota_ctl(file, argp);
5554 	case BTRFS_IOC_QGROUP_ASSIGN:
5555 		return btrfs_ioctl_qgroup_assign(file, argp);
5556 	case BTRFS_IOC_QGROUP_CREATE:
5557 		return btrfs_ioctl_qgroup_create(file, argp);
5558 	case BTRFS_IOC_QGROUP_LIMIT:
5559 		return btrfs_ioctl_qgroup_limit(file, argp);
5560 	case BTRFS_IOC_QUOTA_RESCAN:
5561 		return btrfs_ioctl_quota_rescan(file, argp);
5562 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5563 		return btrfs_ioctl_quota_rescan_status(file, argp);
5564 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5565 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5566 	case BTRFS_IOC_DEV_REPLACE:
5567 		return btrfs_ioctl_dev_replace(fs_info, argp);
5568 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5569 		return btrfs_ioctl_get_supported_features(argp);
5570 	case BTRFS_IOC_GET_FEATURES:
5571 		return btrfs_ioctl_get_features(file, argp);
5572 	case BTRFS_IOC_SET_FEATURES:
5573 		return btrfs_ioctl_set_features(file, argp);
5574 	case FS_IOC_FSGETXATTR:
5575 		return btrfs_ioctl_fsgetxattr(file, argp);
5576 	case FS_IOC_FSSETXATTR:
5577 		return btrfs_ioctl_fssetxattr(file, argp);
5578 	case BTRFS_IOC_GET_SUBVOL_INFO:
5579 		return btrfs_ioctl_get_subvol_info(file, argp);
5580 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5581 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5582 	case BTRFS_IOC_INO_LOOKUP_USER:
5583 		return btrfs_ioctl_ino_lookup_user(file, argp);
5584 	}
5585 
5586 	return -ENOTTY;
5587 }
5588 
5589 #ifdef CONFIG_COMPAT
5590 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5591 {
5592 	/*
5593 	 * These all access 32-bit values anyway so no further
5594 	 * handling is necessary.
5595 	 */
5596 	switch (cmd) {
5597 	case FS_IOC32_GETFLAGS:
5598 		cmd = FS_IOC_GETFLAGS;
5599 		break;
5600 	case FS_IOC32_SETFLAGS:
5601 		cmd = FS_IOC_SETFLAGS;
5602 		break;
5603 	case FS_IOC32_GETVERSION:
5604 		cmd = FS_IOC_GETVERSION;
5605 		break;
5606 	}
5607 
5608 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5609 }
5610 #endif
5611