1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "transaction.h" 32 #include "btrfs_inode.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "locking.h" 36 #include "inode-map.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 #include "space-info.h" 47 #include "delalloc-space.h" 48 #include "block-group.h" 49 50 #ifdef CONFIG_64BIT 51 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 52 * structures are incorrect, as the timespec structure from userspace 53 * is 4 bytes too small. We define these alternatives here to teach 54 * the kernel about the 32-bit struct packing. 55 */ 56 struct btrfs_ioctl_timespec_32 { 57 __u64 sec; 58 __u32 nsec; 59 } __attribute__ ((__packed__)); 60 61 struct btrfs_ioctl_received_subvol_args_32 { 62 char uuid[BTRFS_UUID_SIZE]; /* in */ 63 __u64 stransid; /* in */ 64 __u64 rtransid; /* out */ 65 struct btrfs_ioctl_timespec_32 stime; /* in */ 66 struct btrfs_ioctl_timespec_32 rtime; /* out */ 67 __u64 flags; /* in */ 68 __u64 reserved[16]; /* in */ 69 } __attribute__ ((__packed__)); 70 71 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 72 struct btrfs_ioctl_received_subvol_args_32) 73 #endif 74 75 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 76 struct btrfs_ioctl_send_args_32 { 77 __s64 send_fd; /* in */ 78 __u64 clone_sources_count; /* in */ 79 compat_uptr_t clone_sources; /* in */ 80 __u64 parent_root; /* in */ 81 __u64 flags; /* in */ 82 __u64 reserved[4]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 86 struct btrfs_ioctl_send_args_32) 87 #endif 88 89 static int btrfs_clone(struct inode *src, struct inode *inode, 90 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 91 int no_time_update); 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 95 unsigned int flags) 96 { 97 if (S_ISDIR(inode->i_mode)) 98 return flags; 99 else if (S_ISREG(inode->i_mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 107 * ioctl. 108 */ 109 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 110 { 111 unsigned int iflags = 0; 112 113 if (flags & BTRFS_INODE_SYNC) 114 iflags |= FS_SYNC_FL; 115 if (flags & BTRFS_INODE_IMMUTABLE) 116 iflags |= FS_IMMUTABLE_FL; 117 if (flags & BTRFS_INODE_APPEND) 118 iflags |= FS_APPEND_FL; 119 if (flags & BTRFS_INODE_NODUMP) 120 iflags |= FS_NODUMP_FL; 121 if (flags & BTRFS_INODE_NOATIME) 122 iflags |= FS_NOATIME_FL; 123 if (flags & BTRFS_INODE_DIRSYNC) 124 iflags |= FS_DIRSYNC_FL; 125 if (flags & BTRFS_INODE_NODATACOW) 126 iflags |= FS_NOCOW_FL; 127 128 if (flags & BTRFS_INODE_NOCOMPRESS) 129 iflags |= FS_NOCOMP_FL; 130 else if (flags & BTRFS_INODE_COMPRESS) 131 iflags |= FS_COMPR_FL; 132 133 return iflags; 134 } 135 136 /* 137 * Update inode->i_flags based on the btrfs internal flags. 138 */ 139 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 140 { 141 struct btrfs_inode *binode = BTRFS_I(inode); 142 unsigned int new_fl = 0; 143 144 if (binode->flags & BTRFS_INODE_SYNC) 145 new_fl |= S_SYNC; 146 if (binode->flags & BTRFS_INODE_IMMUTABLE) 147 new_fl |= S_IMMUTABLE; 148 if (binode->flags & BTRFS_INODE_APPEND) 149 new_fl |= S_APPEND; 150 if (binode->flags & BTRFS_INODE_NOATIME) 151 new_fl |= S_NOATIME; 152 if (binode->flags & BTRFS_INODE_DIRSYNC) 153 new_fl |= S_DIRSYNC; 154 155 set_mask_bits(&inode->i_flags, 156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 157 new_fl); 158 } 159 160 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 161 { 162 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 163 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 164 165 if (copy_to_user(arg, &flags, sizeof(flags))) 166 return -EFAULT; 167 return 0; 168 } 169 170 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 171 static int check_fsflags(unsigned int flags) 172 { 173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 174 FS_NOATIME_FL | FS_NODUMP_FL | \ 175 FS_SYNC_FL | FS_DIRSYNC_FL | \ 176 FS_NOCOMP_FL | FS_COMPR_FL | 177 FS_NOCOW_FL)) 178 return -EOPNOTSUPP; 179 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 return 0; 184 } 185 186 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 187 { 188 struct inode *inode = file_inode(file); 189 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 190 struct btrfs_inode *binode = BTRFS_I(inode); 191 struct btrfs_root *root = binode->root; 192 struct btrfs_trans_handle *trans; 193 unsigned int fsflags, old_fsflags; 194 int ret; 195 const char *comp = NULL; 196 u32 binode_flags = binode->flags; 197 198 if (!inode_owner_or_capable(inode)) 199 return -EPERM; 200 201 if (btrfs_root_readonly(root)) 202 return -EROFS; 203 204 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 205 return -EFAULT; 206 207 ret = check_fsflags(fsflags); 208 if (ret) 209 return ret; 210 211 ret = mnt_want_write_file(file); 212 if (ret) 213 return ret; 214 215 inode_lock(inode); 216 217 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 218 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 219 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 220 if (ret) 221 goto out_unlock; 222 223 if (fsflags & FS_SYNC_FL) 224 binode_flags |= BTRFS_INODE_SYNC; 225 else 226 binode_flags &= ~BTRFS_INODE_SYNC; 227 if (fsflags & FS_IMMUTABLE_FL) 228 binode_flags |= BTRFS_INODE_IMMUTABLE; 229 else 230 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 231 if (fsflags & FS_APPEND_FL) 232 binode_flags |= BTRFS_INODE_APPEND; 233 else 234 binode_flags &= ~BTRFS_INODE_APPEND; 235 if (fsflags & FS_NODUMP_FL) 236 binode_flags |= BTRFS_INODE_NODUMP; 237 else 238 binode_flags &= ~BTRFS_INODE_NODUMP; 239 if (fsflags & FS_NOATIME_FL) 240 binode_flags |= BTRFS_INODE_NOATIME; 241 else 242 binode_flags &= ~BTRFS_INODE_NOATIME; 243 if (fsflags & FS_DIRSYNC_FL) 244 binode_flags |= BTRFS_INODE_DIRSYNC; 245 else 246 binode_flags &= ~BTRFS_INODE_DIRSYNC; 247 if (fsflags & FS_NOCOW_FL) { 248 if (S_ISREG(inode->i_mode)) { 249 /* 250 * It's safe to turn csums off here, no extents exist. 251 * Otherwise we want the flag to reflect the real COW 252 * status of the file and will not set it. 253 */ 254 if (inode->i_size == 0) 255 binode_flags |= BTRFS_INODE_NODATACOW | 256 BTRFS_INODE_NODATASUM; 257 } else { 258 binode_flags |= BTRFS_INODE_NODATACOW; 259 } 260 } else { 261 /* 262 * Revert back under same assumptions as above 263 */ 264 if (S_ISREG(inode->i_mode)) { 265 if (inode->i_size == 0) 266 binode_flags &= ~(BTRFS_INODE_NODATACOW | 267 BTRFS_INODE_NODATASUM); 268 } else { 269 binode_flags &= ~BTRFS_INODE_NODATACOW; 270 } 271 } 272 273 /* 274 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 275 * flag may be changed automatically if compression code won't make 276 * things smaller. 277 */ 278 if (fsflags & FS_NOCOMP_FL) { 279 binode_flags &= ~BTRFS_INODE_COMPRESS; 280 binode_flags |= BTRFS_INODE_NOCOMPRESS; 281 } else if (fsflags & FS_COMPR_FL) { 282 283 if (IS_SWAPFILE(inode)) { 284 ret = -ETXTBSY; 285 goto out_unlock; 286 } 287 288 binode_flags |= BTRFS_INODE_COMPRESS; 289 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 290 291 comp = btrfs_compress_type2str(fs_info->compress_type); 292 if (!comp || comp[0] == 0) 293 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 294 } else { 295 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 296 } 297 298 /* 299 * 1 for inode item 300 * 2 for properties 301 */ 302 trans = btrfs_start_transaction(root, 3); 303 if (IS_ERR(trans)) { 304 ret = PTR_ERR(trans); 305 goto out_unlock; 306 } 307 308 if (comp) { 309 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 310 strlen(comp), 0); 311 if (ret) { 312 btrfs_abort_transaction(trans, ret); 313 goto out_end_trans; 314 } 315 } else { 316 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 317 0, 0); 318 if (ret && ret != -ENODATA) { 319 btrfs_abort_transaction(trans, ret); 320 goto out_end_trans; 321 } 322 } 323 324 binode->flags = binode_flags; 325 btrfs_sync_inode_flags_to_i_flags(inode); 326 inode_inc_iversion(inode); 327 inode->i_ctime = current_time(inode); 328 ret = btrfs_update_inode(trans, root, inode); 329 330 out_end_trans: 331 btrfs_end_transaction(trans); 332 out_unlock: 333 inode_unlock(inode); 334 mnt_drop_write_file(file); 335 return ret; 336 } 337 338 /* 339 * Translate btrfs internal inode flags to xflags as expected by the 340 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 341 * silently dropped. 342 */ 343 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 344 { 345 unsigned int xflags = 0; 346 347 if (flags & BTRFS_INODE_APPEND) 348 xflags |= FS_XFLAG_APPEND; 349 if (flags & BTRFS_INODE_IMMUTABLE) 350 xflags |= FS_XFLAG_IMMUTABLE; 351 if (flags & BTRFS_INODE_NOATIME) 352 xflags |= FS_XFLAG_NOATIME; 353 if (flags & BTRFS_INODE_NODUMP) 354 xflags |= FS_XFLAG_NODUMP; 355 if (flags & BTRFS_INODE_SYNC) 356 xflags |= FS_XFLAG_SYNC; 357 358 return xflags; 359 } 360 361 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 362 static int check_xflags(unsigned int flags) 363 { 364 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 365 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 366 return -EOPNOTSUPP; 367 return 0; 368 } 369 370 /* 371 * Set the xflags from the internal inode flags. The remaining items of fsxattr 372 * are zeroed. 373 */ 374 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 375 { 376 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 377 struct fsxattr fa; 378 379 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 380 if (copy_to_user(arg, &fa, sizeof(fa))) 381 return -EFAULT; 382 383 return 0; 384 } 385 386 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 387 { 388 struct inode *inode = file_inode(file); 389 struct btrfs_inode *binode = BTRFS_I(inode); 390 struct btrfs_root *root = binode->root; 391 struct btrfs_trans_handle *trans; 392 struct fsxattr fa, old_fa; 393 unsigned old_flags; 394 unsigned old_i_flags; 395 int ret = 0; 396 397 if (!inode_owner_or_capable(inode)) 398 return -EPERM; 399 400 if (btrfs_root_readonly(root)) 401 return -EROFS; 402 403 if (copy_from_user(&fa, arg, sizeof(fa))) 404 return -EFAULT; 405 406 ret = check_xflags(fa.fsx_xflags); 407 if (ret) 408 return ret; 409 410 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 411 return -EOPNOTSUPP; 412 413 ret = mnt_want_write_file(file); 414 if (ret) 415 return ret; 416 417 inode_lock(inode); 418 419 old_flags = binode->flags; 420 old_i_flags = inode->i_flags; 421 422 simple_fill_fsxattr(&old_fa, 423 btrfs_inode_flags_to_xflags(binode->flags)); 424 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 425 if (ret) 426 goto out_unlock; 427 428 if (fa.fsx_xflags & FS_XFLAG_SYNC) 429 binode->flags |= BTRFS_INODE_SYNC; 430 else 431 binode->flags &= ~BTRFS_INODE_SYNC; 432 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 433 binode->flags |= BTRFS_INODE_IMMUTABLE; 434 else 435 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 436 if (fa.fsx_xflags & FS_XFLAG_APPEND) 437 binode->flags |= BTRFS_INODE_APPEND; 438 else 439 binode->flags &= ~BTRFS_INODE_APPEND; 440 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 441 binode->flags |= BTRFS_INODE_NODUMP; 442 else 443 binode->flags &= ~BTRFS_INODE_NODUMP; 444 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 445 binode->flags |= BTRFS_INODE_NOATIME; 446 else 447 binode->flags &= ~BTRFS_INODE_NOATIME; 448 449 /* 1 item for the inode */ 450 trans = btrfs_start_transaction(root, 1); 451 if (IS_ERR(trans)) { 452 ret = PTR_ERR(trans); 453 goto out_unlock; 454 } 455 456 btrfs_sync_inode_flags_to_i_flags(inode); 457 inode_inc_iversion(inode); 458 inode->i_ctime = current_time(inode); 459 ret = btrfs_update_inode(trans, root, inode); 460 461 btrfs_end_transaction(trans); 462 463 out_unlock: 464 if (ret) { 465 binode->flags = old_flags; 466 inode->i_flags = old_i_flags; 467 } 468 469 inode_unlock(inode); 470 mnt_drop_write_file(file); 471 472 return ret; 473 } 474 475 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 476 { 477 struct inode *inode = file_inode(file); 478 479 return put_user(inode->i_generation, arg); 480 } 481 482 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 483 { 484 struct inode *inode = file_inode(file); 485 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 486 struct btrfs_device *device; 487 struct request_queue *q; 488 struct fstrim_range range; 489 u64 minlen = ULLONG_MAX; 490 u64 num_devices = 0; 491 int ret; 492 493 if (!capable(CAP_SYS_ADMIN)) 494 return -EPERM; 495 496 /* 497 * If the fs is mounted with nologreplay, which requires it to be 498 * mounted in RO mode as well, we can not allow discard on free space 499 * inside block groups, because log trees refer to extents that are not 500 * pinned in a block group's free space cache (pinning the extents is 501 * precisely the first phase of replaying a log tree). 502 */ 503 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 504 return -EROFS; 505 506 rcu_read_lock(); 507 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 508 dev_list) { 509 if (!device->bdev) 510 continue; 511 q = bdev_get_queue(device->bdev); 512 if (blk_queue_discard(q)) { 513 num_devices++; 514 minlen = min_t(u64, q->limits.discard_granularity, 515 minlen); 516 } 517 } 518 rcu_read_unlock(); 519 520 if (!num_devices) 521 return -EOPNOTSUPP; 522 if (copy_from_user(&range, arg, sizeof(range))) 523 return -EFAULT; 524 525 /* 526 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 527 * block group is in the logical address space, which can be any 528 * sectorsize aligned bytenr in the range [0, U64_MAX]. 529 */ 530 if (range.len < fs_info->sb->s_blocksize) 531 return -EINVAL; 532 533 range.minlen = max(range.minlen, minlen); 534 ret = btrfs_trim_fs(fs_info, &range); 535 if (ret < 0) 536 return ret; 537 538 if (copy_to_user(arg, &range, sizeof(range))) 539 return -EFAULT; 540 541 return 0; 542 } 543 544 int btrfs_is_empty_uuid(u8 *uuid) 545 { 546 int i; 547 548 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 549 if (uuid[i]) 550 return 0; 551 } 552 return 1; 553 } 554 555 static noinline int create_subvol(struct inode *dir, 556 struct dentry *dentry, 557 const char *name, int namelen, 558 u64 *async_transid, 559 struct btrfs_qgroup_inherit *inherit) 560 { 561 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 562 struct btrfs_trans_handle *trans; 563 struct btrfs_key key; 564 struct btrfs_root_item *root_item; 565 struct btrfs_inode_item *inode_item; 566 struct extent_buffer *leaf; 567 struct btrfs_root *root = BTRFS_I(dir)->root; 568 struct btrfs_root *new_root; 569 struct btrfs_block_rsv block_rsv; 570 struct timespec64 cur_time = current_time(dir); 571 struct inode *inode; 572 int ret; 573 int err; 574 u64 objectid; 575 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 576 u64 index = 0; 577 uuid_le new_uuid; 578 579 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 580 if (!root_item) 581 return -ENOMEM; 582 583 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 584 if (ret) 585 goto fail_free; 586 587 /* 588 * Don't create subvolume whose level is not zero. Or qgroup will be 589 * screwed up since it assumes subvolume qgroup's level to be 0. 590 */ 591 if (btrfs_qgroup_level(objectid)) { 592 ret = -ENOSPC; 593 goto fail_free; 594 } 595 596 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 597 /* 598 * The same as the snapshot creation, please see the comment 599 * of create_snapshot(). 600 */ 601 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 602 if (ret) 603 goto fail_free; 604 605 trans = btrfs_start_transaction(root, 0); 606 if (IS_ERR(trans)) { 607 ret = PTR_ERR(trans); 608 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 609 goto fail_free; 610 } 611 trans->block_rsv = &block_rsv; 612 trans->bytes_reserved = block_rsv.size; 613 614 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 615 if (ret) 616 goto fail; 617 618 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 619 if (IS_ERR(leaf)) { 620 ret = PTR_ERR(leaf); 621 goto fail; 622 } 623 624 btrfs_mark_buffer_dirty(leaf); 625 626 inode_item = &root_item->inode; 627 btrfs_set_stack_inode_generation(inode_item, 1); 628 btrfs_set_stack_inode_size(inode_item, 3); 629 btrfs_set_stack_inode_nlink(inode_item, 1); 630 btrfs_set_stack_inode_nbytes(inode_item, 631 fs_info->nodesize); 632 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 633 634 btrfs_set_root_flags(root_item, 0); 635 btrfs_set_root_limit(root_item, 0); 636 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 637 638 btrfs_set_root_bytenr(root_item, leaf->start); 639 btrfs_set_root_generation(root_item, trans->transid); 640 btrfs_set_root_level(root_item, 0); 641 btrfs_set_root_refs(root_item, 1); 642 btrfs_set_root_used(root_item, leaf->len); 643 btrfs_set_root_last_snapshot(root_item, 0); 644 645 btrfs_set_root_generation_v2(root_item, 646 btrfs_root_generation(root_item)); 647 uuid_le_gen(&new_uuid); 648 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 649 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 650 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 651 root_item->ctime = root_item->otime; 652 btrfs_set_root_ctransid(root_item, trans->transid); 653 btrfs_set_root_otransid(root_item, trans->transid); 654 655 btrfs_tree_unlock(leaf); 656 free_extent_buffer(leaf); 657 leaf = NULL; 658 659 btrfs_set_root_dirid(root_item, new_dirid); 660 661 key.objectid = objectid; 662 key.offset = 0; 663 key.type = BTRFS_ROOT_ITEM_KEY; 664 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 665 root_item); 666 if (ret) 667 goto fail; 668 669 key.offset = (u64)-1; 670 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 671 if (IS_ERR(new_root)) { 672 ret = PTR_ERR(new_root); 673 btrfs_abort_transaction(trans, ret); 674 goto fail; 675 } 676 677 btrfs_record_root_in_trans(trans, new_root); 678 679 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 680 if (ret) { 681 /* We potentially lose an unused inode item here */ 682 btrfs_abort_transaction(trans, ret); 683 goto fail; 684 } 685 686 mutex_lock(&new_root->objectid_mutex); 687 new_root->highest_objectid = new_dirid; 688 mutex_unlock(&new_root->objectid_mutex); 689 690 /* 691 * insert the directory item 692 */ 693 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 694 if (ret) { 695 btrfs_abort_transaction(trans, ret); 696 goto fail; 697 } 698 699 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 700 BTRFS_FT_DIR, index); 701 if (ret) { 702 btrfs_abort_transaction(trans, ret); 703 goto fail; 704 } 705 706 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 707 ret = btrfs_update_inode(trans, root, dir); 708 BUG_ON(ret); 709 710 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 711 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 712 BUG_ON(ret); 713 714 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 715 BTRFS_UUID_KEY_SUBVOL, objectid); 716 if (ret) 717 btrfs_abort_transaction(trans, ret); 718 719 fail: 720 kfree(root_item); 721 trans->block_rsv = NULL; 722 trans->bytes_reserved = 0; 723 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 724 725 if (async_transid) { 726 *async_transid = trans->transid; 727 err = btrfs_commit_transaction_async(trans, 1); 728 if (err) 729 err = btrfs_commit_transaction(trans); 730 } else { 731 err = btrfs_commit_transaction(trans); 732 } 733 if (err && !ret) 734 ret = err; 735 736 if (!ret) { 737 inode = btrfs_lookup_dentry(dir, dentry); 738 if (IS_ERR(inode)) 739 return PTR_ERR(inode); 740 d_instantiate(dentry, inode); 741 } 742 return ret; 743 744 fail_free: 745 kfree(root_item); 746 return ret; 747 } 748 749 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 750 struct dentry *dentry, 751 u64 *async_transid, bool readonly, 752 struct btrfs_qgroup_inherit *inherit) 753 { 754 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 755 struct inode *inode; 756 struct btrfs_pending_snapshot *pending_snapshot; 757 struct btrfs_trans_handle *trans; 758 int ret; 759 bool snapshot_force_cow = false; 760 761 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 762 return -EINVAL; 763 764 if (atomic_read(&root->nr_swapfiles)) { 765 btrfs_warn(fs_info, 766 "cannot snapshot subvolume with active swapfile"); 767 return -ETXTBSY; 768 } 769 770 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 771 if (!pending_snapshot) 772 return -ENOMEM; 773 774 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 775 GFP_KERNEL); 776 pending_snapshot->path = btrfs_alloc_path(); 777 if (!pending_snapshot->root_item || !pending_snapshot->path) { 778 ret = -ENOMEM; 779 goto free_pending; 780 } 781 782 /* 783 * Force new buffered writes to reserve space even when NOCOW is 784 * possible. This is to avoid later writeback (running dealloc) to 785 * fallback to COW mode and unexpectedly fail with ENOSPC. 786 */ 787 atomic_inc(&root->will_be_snapshotted); 788 smp_mb__after_atomic(); 789 /* wait for no snapshot writes */ 790 wait_event(root->subv_writers->wait, 791 percpu_counter_sum(&root->subv_writers->counter) == 0); 792 793 ret = btrfs_start_delalloc_snapshot(root); 794 if (ret) 795 goto dec_and_free; 796 797 /* 798 * All previous writes have started writeback in NOCOW mode, so now 799 * we force future writes to fallback to COW mode during snapshot 800 * creation. 801 */ 802 atomic_inc(&root->snapshot_force_cow); 803 snapshot_force_cow = true; 804 805 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 806 807 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 808 BTRFS_BLOCK_RSV_TEMP); 809 /* 810 * 1 - parent dir inode 811 * 2 - dir entries 812 * 1 - root item 813 * 2 - root ref/backref 814 * 1 - root of snapshot 815 * 1 - UUID item 816 */ 817 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 818 &pending_snapshot->block_rsv, 8, 819 false); 820 if (ret) 821 goto dec_and_free; 822 823 pending_snapshot->dentry = dentry; 824 pending_snapshot->root = root; 825 pending_snapshot->readonly = readonly; 826 pending_snapshot->dir = dir; 827 pending_snapshot->inherit = inherit; 828 829 trans = btrfs_start_transaction(root, 0); 830 if (IS_ERR(trans)) { 831 ret = PTR_ERR(trans); 832 goto fail; 833 } 834 835 spin_lock(&fs_info->trans_lock); 836 list_add(&pending_snapshot->list, 837 &trans->transaction->pending_snapshots); 838 spin_unlock(&fs_info->trans_lock); 839 if (async_transid) { 840 *async_transid = trans->transid; 841 ret = btrfs_commit_transaction_async(trans, 1); 842 if (ret) 843 ret = btrfs_commit_transaction(trans); 844 } else { 845 ret = btrfs_commit_transaction(trans); 846 } 847 if (ret) 848 goto fail; 849 850 ret = pending_snapshot->error; 851 if (ret) 852 goto fail; 853 854 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 855 if (ret) 856 goto fail; 857 858 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 859 if (IS_ERR(inode)) { 860 ret = PTR_ERR(inode); 861 goto fail; 862 } 863 864 d_instantiate(dentry, inode); 865 ret = 0; 866 fail: 867 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 868 dec_and_free: 869 if (snapshot_force_cow) 870 atomic_dec(&root->snapshot_force_cow); 871 if (atomic_dec_and_test(&root->will_be_snapshotted)) 872 wake_up_var(&root->will_be_snapshotted); 873 free_pending: 874 kfree(pending_snapshot->root_item); 875 btrfs_free_path(pending_snapshot->path); 876 kfree(pending_snapshot); 877 878 return ret; 879 } 880 881 /* copy of may_delete in fs/namei.c() 882 * Check whether we can remove a link victim from directory dir, check 883 * whether the type of victim is right. 884 * 1. We can't do it if dir is read-only (done in permission()) 885 * 2. We should have write and exec permissions on dir 886 * 3. We can't remove anything from append-only dir 887 * 4. We can't do anything with immutable dir (done in permission()) 888 * 5. If the sticky bit on dir is set we should either 889 * a. be owner of dir, or 890 * b. be owner of victim, or 891 * c. have CAP_FOWNER capability 892 * 6. If the victim is append-only or immutable we can't do anything with 893 * links pointing to it. 894 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 895 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 896 * 9. We can't remove a root or mountpoint. 897 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 898 * nfs_async_unlink(). 899 */ 900 901 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 902 { 903 int error; 904 905 if (d_really_is_negative(victim)) 906 return -ENOENT; 907 908 BUG_ON(d_inode(victim->d_parent) != dir); 909 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 910 911 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 912 if (error) 913 return error; 914 if (IS_APPEND(dir)) 915 return -EPERM; 916 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 917 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 918 return -EPERM; 919 if (isdir) { 920 if (!d_is_dir(victim)) 921 return -ENOTDIR; 922 if (IS_ROOT(victim)) 923 return -EBUSY; 924 } else if (d_is_dir(victim)) 925 return -EISDIR; 926 if (IS_DEADDIR(dir)) 927 return -ENOENT; 928 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 929 return -EBUSY; 930 return 0; 931 } 932 933 /* copy of may_create in fs/namei.c() */ 934 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 935 { 936 if (d_really_is_positive(child)) 937 return -EEXIST; 938 if (IS_DEADDIR(dir)) 939 return -ENOENT; 940 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 941 } 942 943 /* 944 * Create a new subvolume below @parent. This is largely modeled after 945 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 946 * inside this filesystem so it's quite a bit simpler. 947 */ 948 static noinline int btrfs_mksubvol(const struct path *parent, 949 const char *name, int namelen, 950 struct btrfs_root *snap_src, 951 u64 *async_transid, bool readonly, 952 struct btrfs_qgroup_inherit *inherit) 953 { 954 struct inode *dir = d_inode(parent->dentry); 955 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 956 struct dentry *dentry; 957 int error; 958 959 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 960 if (error == -EINTR) 961 return error; 962 963 dentry = lookup_one_len(name, parent->dentry, namelen); 964 error = PTR_ERR(dentry); 965 if (IS_ERR(dentry)) 966 goto out_unlock; 967 968 error = btrfs_may_create(dir, dentry); 969 if (error) 970 goto out_dput; 971 972 /* 973 * even if this name doesn't exist, we may get hash collisions. 974 * check for them now when we can safely fail 975 */ 976 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 977 dir->i_ino, name, 978 namelen); 979 if (error) 980 goto out_dput; 981 982 down_read(&fs_info->subvol_sem); 983 984 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 985 goto out_up_read; 986 987 if (snap_src) { 988 error = create_snapshot(snap_src, dir, dentry, 989 async_transid, readonly, inherit); 990 } else { 991 error = create_subvol(dir, dentry, name, namelen, 992 async_transid, inherit); 993 } 994 if (!error) 995 fsnotify_mkdir(dir, dentry); 996 out_up_read: 997 up_read(&fs_info->subvol_sem); 998 out_dput: 999 dput(dentry); 1000 out_unlock: 1001 inode_unlock(dir); 1002 return error; 1003 } 1004 1005 /* 1006 * When we're defragging a range, we don't want to kick it off again 1007 * if it is really just waiting for delalloc to send it down. 1008 * If we find a nice big extent or delalloc range for the bytes in the 1009 * file you want to defrag, we return 0 to let you know to skip this 1010 * part of the file 1011 */ 1012 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1013 { 1014 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1015 struct extent_map *em = NULL; 1016 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1017 u64 end; 1018 1019 read_lock(&em_tree->lock); 1020 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1021 read_unlock(&em_tree->lock); 1022 1023 if (em) { 1024 end = extent_map_end(em); 1025 free_extent_map(em); 1026 if (end - offset > thresh) 1027 return 0; 1028 } 1029 /* if we already have a nice delalloc here, just stop */ 1030 thresh /= 2; 1031 end = count_range_bits(io_tree, &offset, offset + thresh, 1032 thresh, EXTENT_DELALLOC, 1); 1033 if (end >= thresh) 1034 return 0; 1035 return 1; 1036 } 1037 1038 /* 1039 * helper function to walk through a file and find extents 1040 * newer than a specific transid, and smaller than thresh. 1041 * 1042 * This is used by the defragging code to find new and small 1043 * extents 1044 */ 1045 static int find_new_extents(struct btrfs_root *root, 1046 struct inode *inode, u64 newer_than, 1047 u64 *off, u32 thresh) 1048 { 1049 struct btrfs_path *path; 1050 struct btrfs_key min_key; 1051 struct extent_buffer *leaf; 1052 struct btrfs_file_extent_item *extent; 1053 int type; 1054 int ret; 1055 u64 ino = btrfs_ino(BTRFS_I(inode)); 1056 1057 path = btrfs_alloc_path(); 1058 if (!path) 1059 return -ENOMEM; 1060 1061 min_key.objectid = ino; 1062 min_key.type = BTRFS_EXTENT_DATA_KEY; 1063 min_key.offset = *off; 1064 1065 while (1) { 1066 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1067 if (ret != 0) 1068 goto none; 1069 process_slot: 1070 if (min_key.objectid != ino) 1071 goto none; 1072 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1073 goto none; 1074 1075 leaf = path->nodes[0]; 1076 extent = btrfs_item_ptr(leaf, path->slots[0], 1077 struct btrfs_file_extent_item); 1078 1079 type = btrfs_file_extent_type(leaf, extent); 1080 if (type == BTRFS_FILE_EXTENT_REG && 1081 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1082 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1083 *off = min_key.offset; 1084 btrfs_free_path(path); 1085 return 0; 1086 } 1087 1088 path->slots[0]++; 1089 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1090 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1091 goto process_slot; 1092 } 1093 1094 if (min_key.offset == (u64)-1) 1095 goto none; 1096 1097 min_key.offset++; 1098 btrfs_release_path(path); 1099 } 1100 none: 1101 btrfs_free_path(path); 1102 return -ENOENT; 1103 } 1104 1105 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1106 { 1107 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1108 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1109 struct extent_map *em; 1110 u64 len = PAGE_SIZE; 1111 1112 /* 1113 * hopefully we have this extent in the tree already, try without 1114 * the full extent lock 1115 */ 1116 read_lock(&em_tree->lock); 1117 em = lookup_extent_mapping(em_tree, start, len); 1118 read_unlock(&em_tree->lock); 1119 1120 if (!em) { 1121 struct extent_state *cached = NULL; 1122 u64 end = start + len - 1; 1123 1124 /* get the big lock and read metadata off disk */ 1125 lock_extent_bits(io_tree, start, end, &cached); 1126 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 1127 unlock_extent_cached(io_tree, start, end, &cached); 1128 1129 if (IS_ERR(em)) 1130 return NULL; 1131 } 1132 1133 return em; 1134 } 1135 1136 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1137 { 1138 struct extent_map *next; 1139 bool ret = true; 1140 1141 /* this is the last extent */ 1142 if (em->start + em->len >= i_size_read(inode)) 1143 return false; 1144 1145 next = defrag_lookup_extent(inode, em->start + em->len); 1146 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1147 ret = false; 1148 else if ((em->block_start + em->block_len == next->block_start) && 1149 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1150 ret = false; 1151 1152 free_extent_map(next); 1153 return ret; 1154 } 1155 1156 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1157 u64 *last_len, u64 *skip, u64 *defrag_end, 1158 int compress) 1159 { 1160 struct extent_map *em; 1161 int ret = 1; 1162 bool next_mergeable = true; 1163 bool prev_mergeable = true; 1164 1165 /* 1166 * make sure that once we start defragging an extent, we keep on 1167 * defragging it 1168 */ 1169 if (start < *defrag_end) 1170 return 1; 1171 1172 *skip = 0; 1173 1174 em = defrag_lookup_extent(inode, start); 1175 if (!em) 1176 return 0; 1177 1178 /* this will cover holes, and inline extents */ 1179 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1180 ret = 0; 1181 goto out; 1182 } 1183 1184 if (!*defrag_end) 1185 prev_mergeable = false; 1186 1187 next_mergeable = defrag_check_next_extent(inode, em); 1188 /* 1189 * we hit a real extent, if it is big or the next extent is not a 1190 * real extent, don't bother defragging it 1191 */ 1192 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1193 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1194 ret = 0; 1195 out: 1196 /* 1197 * last_len ends up being a counter of how many bytes we've defragged. 1198 * every time we choose not to defrag an extent, we reset *last_len 1199 * so that the next tiny extent will force a defrag. 1200 * 1201 * The end result of this is that tiny extents before a single big 1202 * extent will force at least part of that big extent to be defragged. 1203 */ 1204 if (ret) { 1205 *defrag_end = extent_map_end(em); 1206 } else { 1207 *last_len = 0; 1208 *skip = extent_map_end(em); 1209 *defrag_end = 0; 1210 } 1211 1212 free_extent_map(em); 1213 return ret; 1214 } 1215 1216 /* 1217 * it doesn't do much good to defrag one or two pages 1218 * at a time. This pulls in a nice chunk of pages 1219 * to COW and defrag. 1220 * 1221 * It also makes sure the delalloc code has enough 1222 * dirty data to avoid making new small extents as part 1223 * of the defrag 1224 * 1225 * It's a good idea to start RA on this range 1226 * before calling this. 1227 */ 1228 static int cluster_pages_for_defrag(struct inode *inode, 1229 struct page **pages, 1230 unsigned long start_index, 1231 unsigned long num_pages) 1232 { 1233 unsigned long file_end; 1234 u64 isize = i_size_read(inode); 1235 u64 page_start; 1236 u64 page_end; 1237 u64 page_cnt; 1238 int ret; 1239 int i; 1240 int i_done; 1241 struct btrfs_ordered_extent *ordered; 1242 struct extent_state *cached_state = NULL; 1243 struct extent_io_tree *tree; 1244 struct extent_changeset *data_reserved = NULL; 1245 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1246 1247 file_end = (isize - 1) >> PAGE_SHIFT; 1248 if (!isize || start_index > file_end) 1249 return 0; 1250 1251 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1252 1253 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1254 start_index << PAGE_SHIFT, 1255 page_cnt << PAGE_SHIFT); 1256 if (ret) 1257 return ret; 1258 i_done = 0; 1259 tree = &BTRFS_I(inode)->io_tree; 1260 1261 /* step one, lock all the pages */ 1262 for (i = 0; i < page_cnt; i++) { 1263 struct page *page; 1264 again: 1265 page = find_or_create_page(inode->i_mapping, 1266 start_index + i, mask); 1267 if (!page) 1268 break; 1269 1270 page_start = page_offset(page); 1271 page_end = page_start + PAGE_SIZE - 1; 1272 while (1) { 1273 lock_extent_bits(tree, page_start, page_end, 1274 &cached_state); 1275 ordered = btrfs_lookup_ordered_extent(inode, 1276 page_start); 1277 unlock_extent_cached(tree, page_start, page_end, 1278 &cached_state); 1279 if (!ordered) 1280 break; 1281 1282 unlock_page(page); 1283 btrfs_start_ordered_extent(inode, ordered, 1); 1284 btrfs_put_ordered_extent(ordered); 1285 lock_page(page); 1286 /* 1287 * we unlocked the page above, so we need check if 1288 * it was released or not. 1289 */ 1290 if (page->mapping != inode->i_mapping) { 1291 unlock_page(page); 1292 put_page(page); 1293 goto again; 1294 } 1295 } 1296 1297 if (!PageUptodate(page)) { 1298 btrfs_readpage(NULL, page); 1299 lock_page(page); 1300 if (!PageUptodate(page)) { 1301 unlock_page(page); 1302 put_page(page); 1303 ret = -EIO; 1304 break; 1305 } 1306 } 1307 1308 if (page->mapping != inode->i_mapping) { 1309 unlock_page(page); 1310 put_page(page); 1311 goto again; 1312 } 1313 1314 pages[i] = page; 1315 i_done++; 1316 } 1317 if (!i_done || ret) 1318 goto out; 1319 1320 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1321 goto out; 1322 1323 /* 1324 * so now we have a nice long stream of locked 1325 * and up to date pages, lets wait on them 1326 */ 1327 for (i = 0; i < i_done; i++) 1328 wait_on_page_writeback(pages[i]); 1329 1330 page_start = page_offset(pages[0]); 1331 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1332 1333 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1334 page_start, page_end - 1, &cached_state); 1335 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1336 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1337 EXTENT_DEFRAG, 0, 0, &cached_state); 1338 1339 if (i_done != page_cnt) { 1340 spin_lock(&BTRFS_I(inode)->lock); 1341 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1342 spin_unlock(&BTRFS_I(inode)->lock); 1343 btrfs_delalloc_release_space(inode, data_reserved, 1344 start_index << PAGE_SHIFT, 1345 (page_cnt - i_done) << PAGE_SHIFT, true); 1346 } 1347 1348 1349 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1350 &cached_state); 1351 1352 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1353 page_start, page_end - 1, &cached_state); 1354 1355 for (i = 0; i < i_done; i++) { 1356 clear_page_dirty_for_io(pages[i]); 1357 ClearPageChecked(pages[i]); 1358 set_page_extent_mapped(pages[i]); 1359 set_page_dirty(pages[i]); 1360 unlock_page(pages[i]); 1361 put_page(pages[i]); 1362 } 1363 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1364 extent_changeset_free(data_reserved); 1365 return i_done; 1366 out: 1367 for (i = 0; i < i_done; i++) { 1368 unlock_page(pages[i]); 1369 put_page(pages[i]); 1370 } 1371 btrfs_delalloc_release_space(inode, data_reserved, 1372 start_index << PAGE_SHIFT, 1373 page_cnt << PAGE_SHIFT, true); 1374 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1375 extent_changeset_free(data_reserved); 1376 return ret; 1377 1378 } 1379 1380 int btrfs_defrag_file(struct inode *inode, struct file *file, 1381 struct btrfs_ioctl_defrag_range_args *range, 1382 u64 newer_than, unsigned long max_to_defrag) 1383 { 1384 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1385 struct btrfs_root *root = BTRFS_I(inode)->root; 1386 struct file_ra_state *ra = NULL; 1387 unsigned long last_index; 1388 u64 isize = i_size_read(inode); 1389 u64 last_len = 0; 1390 u64 skip = 0; 1391 u64 defrag_end = 0; 1392 u64 newer_off = range->start; 1393 unsigned long i; 1394 unsigned long ra_index = 0; 1395 int ret; 1396 int defrag_count = 0; 1397 int compress_type = BTRFS_COMPRESS_ZLIB; 1398 u32 extent_thresh = range->extent_thresh; 1399 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1400 unsigned long cluster = max_cluster; 1401 u64 new_align = ~((u64)SZ_128K - 1); 1402 struct page **pages = NULL; 1403 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1404 1405 if (isize == 0) 1406 return 0; 1407 1408 if (range->start >= isize) 1409 return -EINVAL; 1410 1411 if (do_compress) { 1412 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1413 return -EINVAL; 1414 if (range->compress_type) 1415 compress_type = range->compress_type; 1416 } 1417 1418 if (extent_thresh == 0) 1419 extent_thresh = SZ_256K; 1420 1421 /* 1422 * If we were not given a file, allocate a readahead context. As 1423 * readahead is just an optimization, defrag will work without it so 1424 * we don't error out. 1425 */ 1426 if (!file) { 1427 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1428 if (ra) 1429 file_ra_state_init(ra, inode->i_mapping); 1430 } else { 1431 ra = &file->f_ra; 1432 } 1433 1434 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1435 if (!pages) { 1436 ret = -ENOMEM; 1437 goto out_ra; 1438 } 1439 1440 /* find the last page to defrag */ 1441 if (range->start + range->len > range->start) { 1442 last_index = min_t(u64, isize - 1, 1443 range->start + range->len - 1) >> PAGE_SHIFT; 1444 } else { 1445 last_index = (isize - 1) >> PAGE_SHIFT; 1446 } 1447 1448 if (newer_than) { 1449 ret = find_new_extents(root, inode, newer_than, 1450 &newer_off, SZ_64K); 1451 if (!ret) { 1452 range->start = newer_off; 1453 /* 1454 * we always align our defrag to help keep 1455 * the extents in the file evenly spaced 1456 */ 1457 i = (newer_off & new_align) >> PAGE_SHIFT; 1458 } else 1459 goto out_ra; 1460 } else { 1461 i = range->start >> PAGE_SHIFT; 1462 } 1463 if (!max_to_defrag) 1464 max_to_defrag = last_index - i + 1; 1465 1466 /* 1467 * make writeback starts from i, so the defrag range can be 1468 * written sequentially. 1469 */ 1470 if (i < inode->i_mapping->writeback_index) 1471 inode->i_mapping->writeback_index = i; 1472 1473 while (i <= last_index && defrag_count < max_to_defrag && 1474 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1475 /* 1476 * make sure we stop running if someone unmounts 1477 * the FS 1478 */ 1479 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1480 break; 1481 1482 if (btrfs_defrag_cancelled(fs_info)) { 1483 btrfs_debug(fs_info, "defrag_file cancelled"); 1484 ret = -EAGAIN; 1485 break; 1486 } 1487 1488 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1489 extent_thresh, &last_len, &skip, 1490 &defrag_end, do_compress)){ 1491 unsigned long next; 1492 /* 1493 * the should_defrag function tells us how much to skip 1494 * bump our counter by the suggested amount 1495 */ 1496 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1497 i = max(i + 1, next); 1498 continue; 1499 } 1500 1501 if (!newer_than) { 1502 cluster = (PAGE_ALIGN(defrag_end) >> 1503 PAGE_SHIFT) - i; 1504 cluster = min(cluster, max_cluster); 1505 } else { 1506 cluster = max_cluster; 1507 } 1508 1509 if (i + cluster > ra_index) { 1510 ra_index = max(i, ra_index); 1511 if (ra) 1512 page_cache_sync_readahead(inode->i_mapping, ra, 1513 file, ra_index, cluster); 1514 ra_index += cluster; 1515 } 1516 1517 inode_lock(inode); 1518 if (IS_SWAPFILE(inode)) { 1519 ret = -ETXTBSY; 1520 } else { 1521 if (do_compress) 1522 BTRFS_I(inode)->defrag_compress = compress_type; 1523 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1524 } 1525 if (ret < 0) { 1526 inode_unlock(inode); 1527 goto out_ra; 1528 } 1529 1530 defrag_count += ret; 1531 balance_dirty_pages_ratelimited(inode->i_mapping); 1532 inode_unlock(inode); 1533 1534 if (newer_than) { 1535 if (newer_off == (u64)-1) 1536 break; 1537 1538 if (ret > 0) 1539 i += ret; 1540 1541 newer_off = max(newer_off + 1, 1542 (u64)i << PAGE_SHIFT); 1543 1544 ret = find_new_extents(root, inode, newer_than, 1545 &newer_off, SZ_64K); 1546 if (!ret) { 1547 range->start = newer_off; 1548 i = (newer_off & new_align) >> PAGE_SHIFT; 1549 } else { 1550 break; 1551 } 1552 } else { 1553 if (ret > 0) { 1554 i += ret; 1555 last_len += ret << PAGE_SHIFT; 1556 } else { 1557 i++; 1558 last_len = 0; 1559 } 1560 } 1561 } 1562 1563 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1564 filemap_flush(inode->i_mapping); 1565 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1566 &BTRFS_I(inode)->runtime_flags)) 1567 filemap_flush(inode->i_mapping); 1568 } 1569 1570 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1571 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1572 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1573 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1574 } 1575 1576 ret = defrag_count; 1577 1578 out_ra: 1579 if (do_compress) { 1580 inode_lock(inode); 1581 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1582 inode_unlock(inode); 1583 } 1584 if (!file) 1585 kfree(ra); 1586 kfree(pages); 1587 return ret; 1588 } 1589 1590 static noinline int btrfs_ioctl_resize(struct file *file, 1591 void __user *arg) 1592 { 1593 struct inode *inode = file_inode(file); 1594 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1595 u64 new_size; 1596 u64 old_size; 1597 u64 devid = 1; 1598 struct btrfs_root *root = BTRFS_I(inode)->root; 1599 struct btrfs_ioctl_vol_args *vol_args; 1600 struct btrfs_trans_handle *trans; 1601 struct btrfs_device *device = NULL; 1602 char *sizestr; 1603 char *retptr; 1604 char *devstr = NULL; 1605 int ret = 0; 1606 int mod = 0; 1607 1608 if (!capable(CAP_SYS_ADMIN)) 1609 return -EPERM; 1610 1611 ret = mnt_want_write_file(file); 1612 if (ret) 1613 return ret; 1614 1615 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1616 mnt_drop_write_file(file); 1617 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1618 } 1619 1620 vol_args = memdup_user(arg, sizeof(*vol_args)); 1621 if (IS_ERR(vol_args)) { 1622 ret = PTR_ERR(vol_args); 1623 goto out; 1624 } 1625 1626 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1627 1628 sizestr = vol_args->name; 1629 devstr = strchr(sizestr, ':'); 1630 if (devstr) { 1631 sizestr = devstr + 1; 1632 *devstr = '\0'; 1633 devstr = vol_args->name; 1634 ret = kstrtoull(devstr, 10, &devid); 1635 if (ret) 1636 goto out_free; 1637 if (!devid) { 1638 ret = -EINVAL; 1639 goto out_free; 1640 } 1641 btrfs_info(fs_info, "resizing devid %llu", devid); 1642 } 1643 1644 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1645 if (!device) { 1646 btrfs_info(fs_info, "resizer unable to find device %llu", 1647 devid); 1648 ret = -ENODEV; 1649 goto out_free; 1650 } 1651 1652 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1653 btrfs_info(fs_info, 1654 "resizer unable to apply on readonly device %llu", 1655 devid); 1656 ret = -EPERM; 1657 goto out_free; 1658 } 1659 1660 if (!strcmp(sizestr, "max")) 1661 new_size = device->bdev->bd_inode->i_size; 1662 else { 1663 if (sizestr[0] == '-') { 1664 mod = -1; 1665 sizestr++; 1666 } else if (sizestr[0] == '+') { 1667 mod = 1; 1668 sizestr++; 1669 } 1670 new_size = memparse(sizestr, &retptr); 1671 if (*retptr != '\0' || new_size == 0) { 1672 ret = -EINVAL; 1673 goto out_free; 1674 } 1675 } 1676 1677 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1678 ret = -EPERM; 1679 goto out_free; 1680 } 1681 1682 old_size = btrfs_device_get_total_bytes(device); 1683 1684 if (mod < 0) { 1685 if (new_size > old_size) { 1686 ret = -EINVAL; 1687 goto out_free; 1688 } 1689 new_size = old_size - new_size; 1690 } else if (mod > 0) { 1691 if (new_size > ULLONG_MAX - old_size) { 1692 ret = -ERANGE; 1693 goto out_free; 1694 } 1695 new_size = old_size + new_size; 1696 } 1697 1698 if (new_size < SZ_256M) { 1699 ret = -EINVAL; 1700 goto out_free; 1701 } 1702 if (new_size > device->bdev->bd_inode->i_size) { 1703 ret = -EFBIG; 1704 goto out_free; 1705 } 1706 1707 new_size = round_down(new_size, fs_info->sectorsize); 1708 1709 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1710 rcu_str_deref(device->name), new_size); 1711 1712 if (new_size > old_size) { 1713 trans = btrfs_start_transaction(root, 0); 1714 if (IS_ERR(trans)) { 1715 ret = PTR_ERR(trans); 1716 goto out_free; 1717 } 1718 ret = btrfs_grow_device(trans, device, new_size); 1719 btrfs_commit_transaction(trans); 1720 } else if (new_size < old_size) { 1721 ret = btrfs_shrink_device(device, new_size); 1722 } /* equal, nothing need to do */ 1723 1724 out_free: 1725 kfree(vol_args); 1726 out: 1727 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1728 mnt_drop_write_file(file); 1729 return ret; 1730 } 1731 1732 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1733 const char *name, unsigned long fd, int subvol, 1734 u64 *transid, bool readonly, 1735 struct btrfs_qgroup_inherit *inherit) 1736 { 1737 int namelen; 1738 int ret = 0; 1739 1740 if (!S_ISDIR(file_inode(file)->i_mode)) 1741 return -ENOTDIR; 1742 1743 ret = mnt_want_write_file(file); 1744 if (ret) 1745 goto out; 1746 1747 namelen = strlen(name); 1748 if (strchr(name, '/')) { 1749 ret = -EINVAL; 1750 goto out_drop_write; 1751 } 1752 1753 if (name[0] == '.' && 1754 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1755 ret = -EEXIST; 1756 goto out_drop_write; 1757 } 1758 1759 if (subvol) { 1760 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1761 NULL, transid, readonly, inherit); 1762 } else { 1763 struct fd src = fdget(fd); 1764 struct inode *src_inode; 1765 if (!src.file) { 1766 ret = -EINVAL; 1767 goto out_drop_write; 1768 } 1769 1770 src_inode = file_inode(src.file); 1771 if (src_inode->i_sb != file_inode(file)->i_sb) { 1772 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1773 "Snapshot src from another FS"); 1774 ret = -EXDEV; 1775 } else if (!inode_owner_or_capable(src_inode)) { 1776 /* 1777 * Subvolume creation is not restricted, but snapshots 1778 * are limited to own subvolumes only 1779 */ 1780 ret = -EPERM; 1781 } else { 1782 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1783 BTRFS_I(src_inode)->root, 1784 transid, readonly, inherit); 1785 } 1786 fdput(src); 1787 } 1788 out_drop_write: 1789 mnt_drop_write_file(file); 1790 out: 1791 return ret; 1792 } 1793 1794 static noinline int btrfs_ioctl_snap_create(struct file *file, 1795 void __user *arg, int subvol) 1796 { 1797 struct btrfs_ioctl_vol_args *vol_args; 1798 int ret; 1799 1800 if (!S_ISDIR(file_inode(file)->i_mode)) 1801 return -ENOTDIR; 1802 1803 vol_args = memdup_user(arg, sizeof(*vol_args)); 1804 if (IS_ERR(vol_args)) 1805 return PTR_ERR(vol_args); 1806 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1807 1808 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1809 vol_args->fd, subvol, 1810 NULL, false, NULL); 1811 1812 kfree(vol_args); 1813 return ret; 1814 } 1815 1816 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1817 void __user *arg, int subvol) 1818 { 1819 struct btrfs_ioctl_vol_args_v2 *vol_args; 1820 int ret; 1821 u64 transid = 0; 1822 u64 *ptr = NULL; 1823 bool readonly = false; 1824 struct btrfs_qgroup_inherit *inherit = NULL; 1825 1826 if (!S_ISDIR(file_inode(file)->i_mode)) 1827 return -ENOTDIR; 1828 1829 vol_args = memdup_user(arg, sizeof(*vol_args)); 1830 if (IS_ERR(vol_args)) 1831 return PTR_ERR(vol_args); 1832 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1833 1834 if (vol_args->flags & 1835 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1836 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1837 ret = -EOPNOTSUPP; 1838 goto free_args; 1839 } 1840 1841 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1842 struct inode *inode = file_inode(file); 1843 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1844 1845 btrfs_warn(fs_info, 1846 "SNAP_CREATE_V2 ioctl with CREATE_ASYNC is deprecated and will be removed in kernel 5.7"); 1847 1848 ptr = &transid; 1849 } 1850 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1851 readonly = true; 1852 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1853 if (vol_args->size > PAGE_SIZE) { 1854 ret = -EINVAL; 1855 goto free_args; 1856 } 1857 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1858 if (IS_ERR(inherit)) { 1859 ret = PTR_ERR(inherit); 1860 goto free_args; 1861 } 1862 } 1863 1864 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1865 vol_args->fd, subvol, ptr, 1866 readonly, inherit); 1867 if (ret) 1868 goto free_inherit; 1869 1870 if (ptr && copy_to_user(arg + 1871 offsetof(struct btrfs_ioctl_vol_args_v2, 1872 transid), 1873 ptr, sizeof(*ptr))) 1874 ret = -EFAULT; 1875 1876 free_inherit: 1877 kfree(inherit); 1878 free_args: 1879 kfree(vol_args); 1880 return ret; 1881 } 1882 1883 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1884 void __user *arg) 1885 { 1886 struct inode *inode = file_inode(file); 1887 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1888 struct btrfs_root *root = BTRFS_I(inode)->root; 1889 int ret = 0; 1890 u64 flags = 0; 1891 1892 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1893 return -EINVAL; 1894 1895 down_read(&fs_info->subvol_sem); 1896 if (btrfs_root_readonly(root)) 1897 flags |= BTRFS_SUBVOL_RDONLY; 1898 up_read(&fs_info->subvol_sem); 1899 1900 if (copy_to_user(arg, &flags, sizeof(flags))) 1901 ret = -EFAULT; 1902 1903 return ret; 1904 } 1905 1906 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1907 void __user *arg) 1908 { 1909 struct inode *inode = file_inode(file); 1910 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1911 struct btrfs_root *root = BTRFS_I(inode)->root; 1912 struct btrfs_trans_handle *trans; 1913 u64 root_flags; 1914 u64 flags; 1915 int ret = 0; 1916 1917 if (!inode_owner_or_capable(inode)) 1918 return -EPERM; 1919 1920 ret = mnt_want_write_file(file); 1921 if (ret) 1922 goto out; 1923 1924 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1925 ret = -EINVAL; 1926 goto out_drop_write; 1927 } 1928 1929 if (copy_from_user(&flags, arg, sizeof(flags))) { 1930 ret = -EFAULT; 1931 goto out_drop_write; 1932 } 1933 1934 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1935 ret = -EINVAL; 1936 goto out_drop_write; 1937 } 1938 1939 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1940 ret = -EOPNOTSUPP; 1941 goto out_drop_write; 1942 } 1943 1944 down_write(&fs_info->subvol_sem); 1945 1946 /* nothing to do */ 1947 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1948 goto out_drop_sem; 1949 1950 root_flags = btrfs_root_flags(&root->root_item); 1951 if (flags & BTRFS_SUBVOL_RDONLY) { 1952 btrfs_set_root_flags(&root->root_item, 1953 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1954 } else { 1955 /* 1956 * Block RO -> RW transition if this subvolume is involved in 1957 * send 1958 */ 1959 spin_lock(&root->root_item_lock); 1960 if (root->send_in_progress == 0) { 1961 btrfs_set_root_flags(&root->root_item, 1962 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1963 spin_unlock(&root->root_item_lock); 1964 } else { 1965 spin_unlock(&root->root_item_lock); 1966 btrfs_warn(fs_info, 1967 "Attempt to set subvolume %llu read-write during send", 1968 root->root_key.objectid); 1969 ret = -EPERM; 1970 goto out_drop_sem; 1971 } 1972 } 1973 1974 trans = btrfs_start_transaction(root, 1); 1975 if (IS_ERR(trans)) { 1976 ret = PTR_ERR(trans); 1977 goto out_reset; 1978 } 1979 1980 ret = btrfs_update_root(trans, fs_info->tree_root, 1981 &root->root_key, &root->root_item); 1982 if (ret < 0) { 1983 btrfs_end_transaction(trans); 1984 goto out_reset; 1985 } 1986 1987 ret = btrfs_commit_transaction(trans); 1988 1989 out_reset: 1990 if (ret) 1991 btrfs_set_root_flags(&root->root_item, root_flags); 1992 out_drop_sem: 1993 up_write(&fs_info->subvol_sem); 1994 out_drop_write: 1995 mnt_drop_write_file(file); 1996 out: 1997 return ret; 1998 } 1999 2000 static noinline int key_in_sk(struct btrfs_key *key, 2001 struct btrfs_ioctl_search_key *sk) 2002 { 2003 struct btrfs_key test; 2004 int ret; 2005 2006 test.objectid = sk->min_objectid; 2007 test.type = sk->min_type; 2008 test.offset = sk->min_offset; 2009 2010 ret = btrfs_comp_cpu_keys(key, &test); 2011 if (ret < 0) 2012 return 0; 2013 2014 test.objectid = sk->max_objectid; 2015 test.type = sk->max_type; 2016 test.offset = sk->max_offset; 2017 2018 ret = btrfs_comp_cpu_keys(key, &test); 2019 if (ret > 0) 2020 return 0; 2021 return 1; 2022 } 2023 2024 static noinline int copy_to_sk(struct btrfs_path *path, 2025 struct btrfs_key *key, 2026 struct btrfs_ioctl_search_key *sk, 2027 size_t *buf_size, 2028 char __user *ubuf, 2029 unsigned long *sk_offset, 2030 int *num_found) 2031 { 2032 u64 found_transid; 2033 struct extent_buffer *leaf; 2034 struct btrfs_ioctl_search_header sh; 2035 struct btrfs_key test; 2036 unsigned long item_off; 2037 unsigned long item_len; 2038 int nritems; 2039 int i; 2040 int slot; 2041 int ret = 0; 2042 2043 leaf = path->nodes[0]; 2044 slot = path->slots[0]; 2045 nritems = btrfs_header_nritems(leaf); 2046 2047 if (btrfs_header_generation(leaf) > sk->max_transid) { 2048 i = nritems; 2049 goto advance_key; 2050 } 2051 found_transid = btrfs_header_generation(leaf); 2052 2053 for (i = slot; i < nritems; i++) { 2054 item_off = btrfs_item_ptr_offset(leaf, i); 2055 item_len = btrfs_item_size_nr(leaf, i); 2056 2057 btrfs_item_key_to_cpu(leaf, key, i); 2058 if (!key_in_sk(key, sk)) 2059 continue; 2060 2061 if (sizeof(sh) + item_len > *buf_size) { 2062 if (*num_found) { 2063 ret = 1; 2064 goto out; 2065 } 2066 2067 /* 2068 * return one empty item back for v1, which does not 2069 * handle -EOVERFLOW 2070 */ 2071 2072 *buf_size = sizeof(sh) + item_len; 2073 item_len = 0; 2074 ret = -EOVERFLOW; 2075 } 2076 2077 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2078 ret = 1; 2079 goto out; 2080 } 2081 2082 sh.objectid = key->objectid; 2083 sh.offset = key->offset; 2084 sh.type = key->type; 2085 sh.len = item_len; 2086 sh.transid = found_transid; 2087 2088 /* copy search result header */ 2089 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2090 ret = -EFAULT; 2091 goto out; 2092 } 2093 2094 *sk_offset += sizeof(sh); 2095 2096 if (item_len) { 2097 char __user *up = ubuf + *sk_offset; 2098 /* copy the item */ 2099 if (read_extent_buffer_to_user(leaf, up, 2100 item_off, item_len)) { 2101 ret = -EFAULT; 2102 goto out; 2103 } 2104 2105 *sk_offset += item_len; 2106 } 2107 (*num_found)++; 2108 2109 if (ret) /* -EOVERFLOW from above */ 2110 goto out; 2111 2112 if (*num_found >= sk->nr_items) { 2113 ret = 1; 2114 goto out; 2115 } 2116 } 2117 advance_key: 2118 ret = 0; 2119 test.objectid = sk->max_objectid; 2120 test.type = sk->max_type; 2121 test.offset = sk->max_offset; 2122 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2123 ret = 1; 2124 else if (key->offset < (u64)-1) 2125 key->offset++; 2126 else if (key->type < (u8)-1) { 2127 key->offset = 0; 2128 key->type++; 2129 } else if (key->objectid < (u64)-1) { 2130 key->offset = 0; 2131 key->type = 0; 2132 key->objectid++; 2133 } else 2134 ret = 1; 2135 out: 2136 /* 2137 * 0: all items from this leaf copied, continue with next 2138 * 1: * more items can be copied, but unused buffer is too small 2139 * * all items were found 2140 * Either way, it will stops the loop which iterates to the next 2141 * leaf 2142 * -EOVERFLOW: item was to large for buffer 2143 * -EFAULT: could not copy extent buffer back to userspace 2144 */ 2145 return ret; 2146 } 2147 2148 static noinline int search_ioctl(struct inode *inode, 2149 struct btrfs_ioctl_search_key *sk, 2150 size_t *buf_size, 2151 char __user *ubuf) 2152 { 2153 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2154 struct btrfs_root *root; 2155 struct btrfs_key key; 2156 struct btrfs_path *path; 2157 int ret; 2158 int num_found = 0; 2159 unsigned long sk_offset = 0; 2160 2161 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2162 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2163 return -EOVERFLOW; 2164 } 2165 2166 path = btrfs_alloc_path(); 2167 if (!path) 2168 return -ENOMEM; 2169 2170 if (sk->tree_id == 0) { 2171 /* search the root of the inode that was passed */ 2172 root = BTRFS_I(inode)->root; 2173 } else { 2174 key.objectid = sk->tree_id; 2175 key.type = BTRFS_ROOT_ITEM_KEY; 2176 key.offset = (u64)-1; 2177 root = btrfs_read_fs_root_no_name(info, &key); 2178 if (IS_ERR(root)) { 2179 btrfs_free_path(path); 2180 return PTR_ERR(root); 2181 } 2182 } 2183 2184 key.objectid = sk->min_objectid; 2185 key.type = sk->min_type; 2186 key.offset = sk->min_offset; 2187 2188 while (1) { 2189 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2190 if (ret != 0) { 2191 if (ret > 0) 2192 ret = 0; 2193 goto err; 2194 } 2195 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2196 &sk_offset, &num_found); 2197 btrfs_release_path(path); 2198 if (ret) 2199 break; 2200 2201 } 2202 if (ret > 0) 2203 ret = 0; 2204 err: 2205 sk->nr_items = num_found; 2206 btrfs_free_path(path); 2207 return ret; 2208 } 2209 2210 static noinline int btrfs_ioctl_tree_search(struct file *file, 2211 void __user *argp) 2212 { 2213 struct btrfs_ioctl_search_args __user *uargs; 2214 struct btrfs_ioctl_search_key sk; 2215 struct inode *inode; 2216 int ret; 2217 size_t buf_size; 2218 2219 if (!capable(CAP_SYS_ADMIN)) 2220 return -EPERM; 2221 2222 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2223 2224 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2225 return -EFAULT; 2226 2227 buf_size = sizeof(uargs->buf); 2228 2229 inode = file_inode(file); 2230 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2231 2232 /* 2233 * In the origin implementation an overflow is handled by returning a 2234 * search header with a len of zero, so reset ret. 2235 */ 2236 if (ret == -EOVERFLOW) 2237 ret = 0; 2238 2239 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2240 ret = -EFAULT; 2241 return ret; 2242 } 2243 2244 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2245 void __user *argp) 2246 { 2247 struct btrfs_ioctl_search_args_v2 __user *uarg; 2248 struct btrfs_ioctl_search_args_v2 args; 2249 struct inode *inode; 2250 int ret; 2251 size_t buf_size; 2252 const size_t buf_limit = SZ_16M; 2253 2254 if (!capable(CAP_SYS_ADMIN)) 2255 return -EPERM; 2256 2257 /* copy search header and buffer size */ 2258 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2259 if (copy_from_user(&args, uarg, sizeof(args))) 2260 return -EFAULT; 2261 2262 buf_size = args.buf_size; 2263 2264 /* limit result size to 16MB */ 2265 if (buf_size > buf_limit) 2266 buf_size = buf_limit; 2267 2268 inode = file_inode(file); 2269 ret = search_ioctl(inode, &args.key, &buf_size, 2270 (char __user *)(&uarg->buf[0])); 2271 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2272 ret = -EFAULT; 2273 else if (ret == -EOVERFLOW && 2274 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2275 ret = -EFAULT; 2276 2277 return ret; 2278 } 2279 2280 /* 2281 * Search INODE_REFs to identify path name of 'dirid' directory 2282 * in a 'tree_id' tree. and sets path name to 'name'. 2283 */ 2284 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2285 u64 tree_id, u64 dirid, char *name) 2286 { 2287 struct btrfs_root *root; 2288 struct btrfs_key key; 2289 char *ptr; 2290 int ret = -1; 2291 int slot; 2292 int len; 2293 int total_len = 0; 2294 struct btrfs_inode_ref *iref; 2295 struct extent_buffer *l; 2296 struct btrfs_path *path; 2297 2298 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2299 name[0]='\0'; 2300 return 0; 2301 } 2302 2303 path = btrfs_alloc_path(); 2304 if (!path) 2305 return -ENOMEM; 2306 2307 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2308 2309 key.objectid = tree_id; 2310 key.type = BTRFS_ROOT_ITEM_KEY; 2311 key.offset = (u64)-1; 2312 root = btrfs_read_fs_root_no_name(info, &key); 2313 if (IS_ERR(root)) { 2314 ret = PTR_ERR(root); 2315 goto out; 2316 } 2317 2318 key.objectid = dirid; 2319 key.type = BTRFS_INODE_REF_KEY; 2320 key.offset = (u64)-1; 2321 2322 while (1) { 2323 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2324 if (ret < 0) 2325 goto out; 2326 else if (ret > 0) { 2327 ret = btrfs_previous_item(root, path, dirid, 2328 BTRFS_INODE_REF_KEY); 2329 if (ret < 0) 2330 goto out; 2331 else if (ret > 0) { 2332 ret = -ENOENT; 2333 goto out; 2334 } 2335 } 2336 2337 l = path->nodes[0]; 2338 slot = path->slots[0]; 2339 btrfs_item_key_to_cpu(l, &key, slot); 2340 2341 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2342 len = btrfs_inode_ref_name_len(l, iref); 2343 ptr -= len + 1; 2344 total_len += len + 1; 2345 if (ptr < name) { 2346 ret = -ENAMETOOLONG; 2347 goto out; 2348 } 2349 2350 *(ptr + len) = '/'; 2351 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2352 2353 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2354 break; 2355 2356 btrfs_release_path(path); 2357 key.objectid = key.offset; 2358 key.offset = (u64)-1; 2359 dirid = key.objectid; 2360 } 2361 memmove(name, ptr, total_len); 2362 name[total_len] = '\0'; 2363 ret = 0; 2364 out: 2365 btrfs_free_path(path); 2366 return ret; 2367 } 2368 2369 static int btrfs_search_path_in_tree_user(struct inode *inode, 2370 struct btrfs_ioctl_ino_lookup_user_args *args) 2371 { 2372 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2373 struct super_block *sb = inode->i_sb; 2374 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2375 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2376 u64 dirid = args->dirid; 2377 unsigned long item_off; 2378 unsigned long item_len; 2379 struct btrfs_inode_ref *iref; 2380 struct btrfs_root_ref *rref; 2381 struct btrfs_root *root; 2382 struct btrfs_path *path; 2383 struct btrfs_key key, key2; 2384 struct extent_buffer *leaf; 2385 struct inode *temp_inode; 2386 char *ptr; 2387 int slot; 2388 int len; 2389 int total_len = 0; 2390 int ret; 2391 2392 path = btrfs_alloc_path(); 2393 if (!path) 2394 return -ENOMEM; 2395 2396 /* 2397 * If the bottom subvolume does not exist directly under upper_limit, 2398 * construct the path in from the bottom up. 2399 */ 2400 if (dirid != upper_limit.objectid) { 2401 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2402 2403 key.objectid = treeid; 2404 key.type = BTRFS_ROOT_ITEM_KEY; 2405 key.offset = (u64)-1; 2406 root = btrfs_read_fs_root_no_name(fs_info, &key); 2407 if (IS_ERR(root)) { 2408 ret = PTR_ERR(root); 2409 goto out; 2410 } 2411 2412 key.objectid = dirid; 2413 key.type = BTRFS_INODE_REF_KEY; 2414 key.offset = (u64)-1; 2415 while (1) { 2416 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2417 if (ret < 0) { 2418 goto out; 2419 } else if (ret > 0) { 2420 ret = btrfs_previous_item(root, path, dirid, 2421 BTRFS_INODE_REF_KEY); 2422 if (ret < 0) { 2423 goto out; 2424 } else if (ret > 0) { 2425 ret = -ENOENT; 2426 goto out; 2427 } 2428 } 2429 2430 leaf = path->nodes[0]; 2431 slot = path->slots[0]; 2432 btrfs_item_key_to_cpu(leaf, &key, slot); 2433 2434 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2435 len = btrfs_inode_ref_name_len(leaf, iref); 2436 ptr -= len + 1; 2437 total_len += len + 1; 2438 if (ptr < args->path) { 2439 ret = -ENAMETOOLONG; 2440 goto out; 2441 } 2442 2443 *(ptr + len) = '/'; 2444 read_extent_buffer(leaf, ptr, 2445 (unsigned long)(iref + 1), len); 2446 2447 /* Check the read+exec permission of this directory */ 2448 ret = btrfs_previous_item(root, path, dirid, 2449 BTRFS_INODE_ITEM_KEY); 2450 if (ret < 0) { 2451 goto out; 2452 } else if (ret > 0) { 2453 ret = -ENOENT; 2454 goto out; 2455 } 2456 2457 leaf = path->nodes[0]; 2458 slot = path->slots[0]; 2459 btrfs_item_key_to_cpu(leaf, &key2, slot); 2460 if (key2.objectid != dirid) { 2461 ret = -ENOENT; 2462 goto out; 2463 } 2464 2465 temp_inode = btrfs_iget(sb, &key2, root, NULL); 2466 if (IS_ERR(temp_inode)) { 2467 ret = PTR_ERR(temp_inode); 2468 goto out; 2469 } 2470 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2471 iput(temp_inode); 2472 if (ret) { 2473 ret = -EACCES; 2474 goto out; 2475 } 2476 2477 if (key.offset == upper_limit.objectid) 2478 break; 2479 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2480 ret = -EACCES; 2481 goto out; 2482 } 2483 2484 btrfs_release_path(path); 2485 key.objectid = key.offset; 2486 key.offset = (u64)-1; 2487 dirid = key.objectid; 2488 } 2489 2490 memmove(args->path, ptr, total_len); 2491 args->path[total_len] = '\0'; 2492 btrfs_release_path(path); 2493 } 2494 2495 /* Get the bottom subvolume's name from ROOT_REF */ 2496 root = fs_info->tree_root; 2497 key.objectid = treeid; 2498 key.type = BTRFS_ROOT_REF_KEY; 2499 key.offset = args->treeid; 2500 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2501 if (ret < 0) { 2502 goto out; 2503 } else if (ret > 0) { 2504 ret = -ENOENT; 2505 goto out; 2506 } 2507 2508 leaf = path->nodes[0]; 2509 slot = path->slots[0]; 2510 btrfs_item_key_to_cpu(leaf, &key, slot); 2511 2512 item_off = btrfs_item_ptr_offset(leaf, slot); 2513 item_len = btrfs_item_size_nr(leaf, slot); 2514 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2515 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2516 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2517 ret = -EINVAL; 2518 goto out; 2519 } 2520 2521 /* Copy subvolume's name */ 2522 item_off += sizeof(struct btrfs_root_ref); 2523 item_len -= sizeof(struct btrfs_root_ref); 2524 read_extent_buffer(leaf, args->name, item_off, item_len); 2525 args->name[item_len] = 0; 2526 2527 out: 2528 btrfs_free_path(path); 2529 return ret; 2530 } 2531 2532 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2533 void __user *argp) 2534 { 2535 struct btrfs_ioctl_ino_lookup_args *args; 2536 struct inode *inode; 2537 int ret = 0; 2538 2539 args = memdup_user(argp, sizeof(*args)); 2540 if (IS_ERR(args)) 2541 return PTR_ERR(args); 2542 2543 inode = file_inode(file); 2544 2545 /* 2546 * Unprivileged query to obtain the containing subvolume root id. The 2547 * path is reset so it's consistent with btrfs_search_path_in_tree. 2548 */ 2549 if (args->treeid == 0) 2550 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2551 2552 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2553 args->name[0] = 0; 2554 goto out; 2555 } 2556 2557 if (!capable(CAP_SYS_ADMIN)) { 2558 ret = -EPERM; 2559 goto out; 2560 } 2561 2562 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2563 args->treeid, args->objectid, 2564 args->name); 2565 2566 out: 2567 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2568 ret = -EFAULT; 2569 2570 kfree(args); 2571 return ret; 2572 } 2573 2574 /* 2575 * Version of ino_lookup ioctl (unprivileged) 2576 * 2577 * The main differences from ino_lookup ioctl are: 2578 * 2579 * 1. Read + Exec permission will be checked using inode_permission() during 2580 * path construction. -EACCES will be returned in case of failure. 2581 * 2. Path construction will be stopped at the inode number which corresponds 2582 * to the fd with which this ioctl is called. If constructed path does not 2583 * exist under fd's inode, -EACCES will be returned. 2584 * 3. The name of bottom subvolume is also searched and filled. 2585 */ 2586 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2587 { 2588 struct btrfs_ioctl_ino_lookup_user_args *args; 2589 struct inode *inode; 2590 int ret; 2591 2592 args = memdup_user(argp, sizeof(*args)); 2593 if (IS_ERR(args)) 2594 return PTR_ERR(args); 2595 2596 inode = file_inode(file); 2597 2598 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2599 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2600 /* 2601 * The subvolume does not exist under fd with which this is 2602 * called 2603 */ 2604 kfree(args); 2605 return -EACCES; 2606 } 2607 2608 ret = btrfs_search_path_in_tree_user(inode, args); 2609 2610 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2611 ret = -EFAULT; 2612 2613 kfree(args); 2614 return ret; 2615 } 2616 2617 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2618 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2619 { 2620 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2621 struct btrfs_fs_info *fs_info; 2622 struct btrfs_root *root; 2623 struct btrfs_path *path; 2624 struct btrfs_key key; 2625 struct btrfs_root_item *root_item; 2626 struct btrfs_root_ref *rref; 2627 struct extent_buffer *leaf; 2628 unsigned long item_off; 2629 unsigned long item_len; 2630 struct inode *inode; 2631 int slot; 2632 int ret = 0; 2633 2634 path = btrfs_alloc_path(); 2635 if (!path) 2636 return -ENOMEM; 2637 2638 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2639 if (!subvol_info) { 2640 btrfs_free_path(path); 2641 return -ENOMEM; 2642 } 2643 2644 inode = file_inode(file); 2645 fs_info = BTRFS_I(inode)->root->fs_info; 2646 2647 /* Get root_item of inode's subvolume */ 2648 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2649 key.type = BTRFS_ROOT_ITEM_KEY; 2650 key.offset = (u64)-1; 2651 root = btrfs_read_fs_root_no_name(fs_info, &key); 2652 if (IS_ERR(root)) { 2653 ret = PTR_ERR(root); 2654 goto out; 2655 } 2656 root_item = &root->root_item; 2657 2658 subvol_info->treeid = key.objectid; 2659 2660 subvol_info->generation = btrfs_root_generation(root_item); 2661 subvol_info->flags = btrfs_root_flags(root_item); 2662 2663 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2664 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2665 BTRFS_UUID_SIZE); 2666 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2667 BTRFS_UUID_SIZE); 2668 2669 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2670 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2671 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2672 2673 subvol_info->otransid = btrfs_root_otransid(root_item); 2674 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2675 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2676 2677 subvol_info->stransid = btrfs_root_stransid(root_item); 2678 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2679 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2680 2681 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2682 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2683 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2684 2685 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2686 /* Search root tree for ROOT_BACKREF of this subvolume */ 2687 root = fs_info->tree_root; 2688 2689 key.type = BTRFS_ROOT_BACKREF_KEY; 2690 key.offset = 0; 2691 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2692 if (ret < 0) { 2693 goto out; 2694 } else if (path->slots[0] >= 2695 btrfs_header_nritems(path->nodes[0])) { 2696 ret = btrfs_next_leaf(root, path); 2697 if (ret < 0) { 2698 goto out; 2699 } else if (ret > 0) { 2700 ret = -EUCLEAN; 2701 goto out; 2702 } 2703 } 2704 2705 leaf = path->nodes[0]; 2706 slot = path->slots[0]; 2707 btrfs_item_key_to_cpu(leaf, &key, slot); 2708 if (key.objectid == subvol_info->treeid && 2709 key.type == BTRFS_ROOT_BACKREF_KEY) { 2710 subvol_info->parent_id = key.offset; 2711 2712 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2713 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2714 2715 item_off = btrfs_item_ptr_offset(leaf, slot) 2716 + sizeof(struct btrfs_root_ref); 2717 item_len = btrfs_item_size_nr(leaf, slot) 2718 - sizeof(struct btrfs_root_ref); 2719 read_extent_buffer(leaf, subvol_info->name, 2720 item_off, item_len); 2721 } else { 2722 ret = -ENOENT; 2723 goto out; 2724 } 2725 } 2726 2727 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2728 ret = -EFAULT; 2729 2730 out: 2731 btrfs_free_path(path); 2732 kzfree(subvol_info); 2733 return ret; 2734 } 2735 2736 /* 2737 * Return ROOT_REF information of the subvolume containing this inode 2738 * except the subvolume name. 2739 */ 2740 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2741 { 2742 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2743 struct btrfs_root_ref *rref; 2744 struct btrfs_root *root; 2745 struct btrfs_path *path; 2746 struct btrfs_key key; 2747 struct extent_buffer *leaf; 2748 struct inode *inode; 2749 u64 objectid; 2750 int slot; 2751 int ret; 2752 u8 found; 2753 2754 path = btrfs_alloc_path(); 2755 if (!path) 2756 return -ENOMEM; 2757 2758 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2759 if (IS_ERR(rootrefs)) { 2760 btrfs_free_path(path); 2761 return PTR_ERR(rootrefs); 2762 } 2763 2764 inode = file_inode(file); 2765 root = BTRFS_I(inode)->root->fs_info->tree_root; 2766 objectid = BTRFS_I(inode)->root->root_key.objectid; 2767 2768 key.objectid = objectid; 2769 key.type = BTRFS_ROOT_REF_KEY; 2770 key.offset = rootrefs->min_treeid; 2771 found = 0; 2772 2773 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2774 if (ret < 0) { 2775 goto out; 2776 } else if (path->slots[0] >= 2777 btrfs_header_nritems(path->nodes[0])) { 2778 ret = btrfs_next_leaf(root, path); 2779 if (ret < 0) { 2780 goto out; 2781 } else if (ret > 0) { 2782 ret = -EUCLEAN; 2783 goto out; 2784 } 2785 } 2786 while (1) { 2787 leaf = path->nodes[0]; 2788 slot = path->slots[0]; 2789 2790 btrfs_item_key_to_cpu(leaf, &key, slot); 2791 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2792 ret = 0; 2793 goto out; 2794 } 2795 2796 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2797 ret = -EOVERFLOW; 2798 goto out; 2799 } 2800 2801 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2802 rootrefs->rootref[found].treeid = key.offset; 2803 rootrefs->rootref[found].dirid = 2804 btrfs_root_ref_dirid(leaf, rref); 2805 found++; 2806 2807 ret = btrfs_next_item(root, path); 2808 if (ret < 0) { 2809 goto out; 2810 } else if (ret > 0) { 2811 ret = -EUCLEAN; 2812 goto out; 2813 } 2814 } 2815 2816 out: 2817 if (!ret || ret == -EOVERFLOW) { 2818 rootrefs->num_items = found; 2819 /* update min_treeid for next search */ 2820 if (found) 2821 rootrefs->min_treeid = 2822 rootrefs->rootref[found - 1].treeid + 1; 2823 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2824 ret = -EFAULT; 2825 } 2826 2827 kfree(rootrefs); 2828 btrfs_free_path(path); 2829 2830 return ret; 2831 } 2832 2833 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2834 void __user *arg) 2835 { 2836 struct dentry *parent = file->f_path.dentry; 2837 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2838 struct dentry *dentry; 2839 struct inode *dir = d_inode(parent); 2840 struct inode *inode; 2841 struct btrfs_root *root = BTRFS_I(dir)->root; 2842 struct btrfs_root *dest = NULL; 2843 struct btrfs_ioctl_vol_args *vol_args; 2844 int namelen; 2845 int err = 0; 2846 2847 if (!S_ISDIR(dir->i_mode)) 2848 return -ENOTDIR; 2849 2850 vol_args = memdup_user(arg, sizeof(*vol_args)); 2851 if (IS_ERR(vol_args)) 2852 return PTR_ERR(vol_args); 2853 2854 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2855 namelen = strlen(vol_args->name); 2856 if (strchr(vol_args->name, '/') || 2857 strncmp(vol_args->name, "..", namelen) == 0) { 2858 err = -EINVAL; 2859 goto out; 2860 } 2861 2862 err = mnt_want_write_file(file); 2863 if (err) 2864 goto out; 2865 2866 2867 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2868 if (err == -EINTR) 2869 goto out_drop_write; 2870 dentry = lookup_one_len(vol_args->name, parent, namelen); 2871 if (IS_ERR(dentry)) { 2872 err = PTR_ERR(dentry); 2873 goto out_unlock_dir; 2874 } 2875 2876 if (d_really_is_negative(dentry)) { 2877 err = -ENOENT; 2878 goto out_dput; 2879 } 2880 2881 inode = d_inode(dentry); 2882 dest = BTRFS_I(inode)->root; 2883 if (!capable(CAP_SYS_ADMIN)) { 2884 /* 2885 * Regular user. Only allow this with a special mount 2886 * option, when the user has write+exec access to the 2887 * subvol root, and when rmdir(2) would have been 2888 * allowed. 2889 * 2890 * Note that this is _not_ check that the subvol is 2891 * empty or doesn't contain data that we wouldn't 2892 * otherwise be able to delete. 2893 * 2894 * Users who want to delete empty subvols should try 2895 * rmdir(2). 2896 */ 2897 err = -EPERM; 2898 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2899 goto out_dput; 2900 2901 /* 2902 * Do not allow deletion if the parent dir is the same 2903 * as the dir to be deleted. That means the ioctl 2904 * must be called on the dentry referencing the root 2905 * of the subvol, not a random directory contained 2906 * within it. 2907 */ 2908 err = -EINVAL; 2909 if (root == dest) 2910 goto out_dput; 2911 2912 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2913 if (err) 2914 goto out_dput; 2915 } 2916 2917 /* check if subvolume may be deleted by a user */ 2918 err = btrfs_may_delete(dir, dentry, 1); 2919 if (err) 2920 goto out_dput; 2921 2922 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2923 err = -EINVAL; 2924 goto out_dput; 2925 } 2926 2927 inode_lock(inode); 2928 err = btrfs_delete_subvolume(dir, dentry); 2929 inode_unlock(inode); 2930 if (!err) { 2931 fsnotify_rmdir(dir, dentry); 2932 d_delete(dentry); 2933 } 2934 2935 out_dput: 2936 dput(dentry); 2937 out_unlock_dir: 2938 inode_unlock(dir); 2939 out_drop_write: 2940 mnt_drop_write_file(file); 2941 out: 2942 kfree(vol_args); 2943 return err; 2944 } 2945 2946 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2947 { 2948 struct inode *inode = file_inode(file); 2949 struct btrfs_root *root = BTRFS_I(inode)->root; 2950 struct btrfs_ioctl_defrag_range_args *range; 2951 int ret; 2952 2953 ret = mnt_want_write_file(file); 2954 if (ret) 2955 return ret; 2956 2957 if (btrfs_root_readonly(root)) { 2958 ret = -EROFS; 2959 goto out; 2960 } 2961 2962 switch (inode->i_mode & S_IFMT) { 2963 case S_IFDIR: 2964 if (!capable(CAP_SYS_ADMIN)) { 2965 ret = -EPERM; 2966 goto out; 2967 } 2968 ret = btrfs_defrag_root(root); 2969 break; 2970 case S_IFREG: 2971 /* 2972 * Note that this does not check the file descriptor for write 2973 * access. This prevents defragmenting executables that are 2974 * running and allows defrag on files open in read-only mode. 2975 */ 2976 if (!capable(CAP_SYS_ADMIN) && 2977 inode_permission(inode, MAY_WRITE)) { 2978 ret = -EPERM; 2979 goto out; 2980 } 2981 2982 range = kzalloc(sizeof(*range), GFP_KERNEL); 2983 if (!range) { 2984 ret = -ENOMEM; 2985 goto out; 2986 } 2987 2988 if (argp) { 2989 if (copy_from_user(range, argp, 2990 sizeof(*range))) { 2991 ret = -EFAULT; 2992 kfree(range); 2993 goto out; 2994 } 2995 /* compression requires us to start the IO */ 2996 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2997 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2998 range->extent_thresh = (u32)-1; 2999 } 3000 } else { 3001 /* the rest are all set to zero by kzalloc */ 3002 range->len = (u64)-1; 3003 } 3004 ret = btrfs_defrag_file(file_inode(file), file, 3005 range, BTRFS_OLDEST_GENERATION, 0); 3006 if (ret > 0) 3007 ret = 0; 3008 kfree(range); 3009 break; 3010 default: 3011 ret = -EINVAL; 3012 } 3013 out: 3014 mnt_drop_write_file(file); 3015 return ret; 3016 } 3017 3018 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3019 { 3020 struct btrfs_ioctl_vol_args *vol_args; 3021 int ret; 3022 3023 if (!capable(CAP_SYS_ADMIN)) 3024 return -EPERM; 3025 3026 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3027 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3028 3029 vol_args = memdup_user(arg, sizeof(*vol_args)); 3030 if (IS_ERR(vol_args)) { 3031 ret = PTR_ERR(vol_args); 3032 goto out; 3033 } 3034 3035 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3036 ret = btrfs_init_new_device(fs_info, vol_args->name); 3037 3038 if (!ret) 3039 btrfs_info(fs_info, "disk added %s", vol_args->name); 3040 3041 kfree(vol_args); 3042 out: 3043 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3044 return ret; 3045 } 3046 3047 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3048 { 3049 struct inode *inode = file_inode(file); 3050 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3051 struct btrfs_ioctl_vol_args_v2 *vol_args; 3052 int ret; 3053 3054 if (!capable(CAP_SYS_ADMIN)) 3055 return -EPERM; 3056 3057 ret = mnt_want_write_file(file); 3058 if (ret) 3059 return ret; 3060 3061 vol_args = memdup_user(arg, sizeof(*vol_args)); 3062 if (IS_ERR(vol_args)) { 3063 ret = PTR_ERR(vol_args); 3064 goto err_drop; 3065 } 3066 3067 /* Check for compatibility reject unknown flags */ 3068 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) { 3069 ret = -EOPNOTSUPP; 3070 goto out; 3071 } 3072 3073 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3074 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3075 goto out; 3076 } 3077 3078 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3079 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3080 } else { 3081 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3082 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3083 } 3084 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3085 3086 if (!ret) { 3087 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3088 btrfs_info(fs_info, "device deleted: id %llu", 3089 vol_args->devid); 3090 else 3091 btrfs_info(fs_info, "device deleted: %s", 3092 vol_args->name); 3093 } 3094 out: 3095 kfree(vol_args); 3096 err_drop: 3097 mnt_drop_write_file(file); 3098 return ret; 3099 } 3100 3101 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3102 { 3103 struct inode *inode = file_inode(file); 3104 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3105 struct btrfs_ioctl_vol_args *vol_args; 3106 int ret; 3107 3108 if (!capable(CAP_SYS_ADMIN)) 3109 return -EPERM; 3110 3111 ret = mnt_want_write_file(file); 3112 if (ret) 3113 return ret; 3114 3115 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3116 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3117 goto out_drop_write; 3118 } 3119 3120 vol_args = memdup_user(arg, sizeof(*vol_args)); 3121 if (IS_ERR(vol_args)) { 3122 ret = PTR_ERR(vol_args); 3123 goto out; 3124 } 3125 3126 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3127 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3128 3129 if (!ret) 3130 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3131 kfree(vol_args); 3132 out: 3133 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3134 out_drop_write: 3135 mnt_drop_write_file(file); 3136 3137 return ret; 3138 } 3139 3140 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3141 void __user *arg) 3142 { 3143 struct btrfs_ioctl_fs_info_args *fi_args; 3144 struct btrfs_device *device; 3145 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3146 int ret = 0; 3147 3148 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3149 if (!fi_args) 3150 return -ENOMEM; 3151 3152 rcu_read_lock(); 3153 fi_args->num_devices = fs_devices->num_devices; 3154 3155 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3156 if (device->devid > fi_args->max_id) 3157 fi_args->max_id = device->devid; 3158 } 3159 rcu_read_unlock(); 3160 3161 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3162 fi_args->nodesize = fs_info->nodesize; 3163 fi_args->sectorsize = fs_info->sectorsize; 3164 fi_args->clone_alignment = fs_info->sectorsize; 3165 3166 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3167 ret = -EFAULT; 3168 3169 kfree(fi_args); 3170 return ret; 3171 } 3172 3173 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3174 void __user *arg) 3175 { 3176 struct btrfs_ioctl_dev_info_args *di_args; 3177 struct btrfs_device *dev; 3178 int ret = 0; 3179 char *s_uuid = NULL; 3180 3181 di_args = memdup_user(arg, sizeof(*di_args)); 3182 if (IS_ERR(di_args)) 3183 return PTR_ERR(di_args); 3184 3185 if (!btrfs_is_empty_uuid(di_args->uuid)) 3186 s_uuid = di_args->uuid; 3187 3188 rcu_read_lock(); 3189 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3190 NULL, true); 3191 3192 if (!dev) { 3193 ret = -ENODEV; 3194 goto out; 3195 } 3196 3197 di_args->devid = dev->devid; 3198 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3199 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3200 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3201 if (dev->name) { 3202 strncpy(di_args->path, rcu_str_deref(dev->name), 3203 sizeof(di_args->path) - 1); 3204 di_args->path[sizeof(di_args->path) - 1] = 0; 3205 } else { 3206 di_args->path[0] = '\0'; 3207 } 3208 3209 out: 3210 rcu_read_unlock(); 3211 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3212 ret = -EFAULT; 3213 3214 kfree(di_args); 3215 return ret; 3216 } 3217 3218 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 3219 struct inode *inode2, u64 loff2, u64 len) 3220 { 3221 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3222 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3223 } 3224 3225 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 3226 struct inode *inode2, u64 loff2, u64 len) 3227 { 3228 if (inode1 < inode2) { 3229 swap(inode1, inode2); 3230 swap(loff1, loff2); 3231 } else if (inode1 == inode2 && loff2 < loff1) { 3232 swap(loff1, loff2); 3233 } 3234 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3235 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3236 } 3237 3238 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 3239 struct inode *dst, u64 dst_loff) 3240 { 3241 int ret; 3242 3243 /* 3244 * Lock destination range to serialize with concurrent readpages() and 3245 * source range to serialize with relocation. 3246 */ 3247 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 3248 ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1); 3249 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3250 3251 return ret; 3252 } 3253 3254 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3255 3256 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3257 struct inode *dst, u64 dst_loff) 3258 { 3259 int ret; 3260 u64 i, tail_len, chunk_count; 3261 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 3262 3263 spin_lock(&root_dst->root_item_lock); 3264 if (root_dst->send_in_progress) { 3265 btrfs_warn_rl(root_dst->fs_info, 3266 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 3267 root_dst->root_key.objectid, 3268 root_dst->send_in_progress); 3269 spin_unlock(&root_dst->root_item_lock); 3270 return -EAGAIN; 3271 } 3272 root_dst->dedupe_in_progress++; 3273 spin_unlock(&root_dst->root_item_lock); 3274 3275 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 3276 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 3277 3278 for (i = 0; i < chunk_count; i++) { 3279 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 3280 dst, dst_loff); 3281 if (ret) 3282 goto out; 3283 3284 loff += BTRFS_MAX_DEDUPE_LEN; 3285 dst_loff += BTRFS_MAX_DEDUPE_LEN; 3286 } 3287 3288 if (tail_len > 0) 3289 ret = btrfs_extent_same_range(src, loff, tail_len, dst, 3290 dst_loff); 3291 out: 3292 spin_lock(&root_dst->root_item_lock); 3293 root_dst->dedupe_in_progress--; 3294 spin_unlock(&root_dst->root_item_lock); 3295 3296 return ret; 3297 } 3298 3299 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3300 struct inode *inode, 3301 u64 endoff, 3302 const u64 destoff, 3303 const u64 olen, 3304 int no_time_update) 3305 { 3306 struct btrfs_root *root = BTRFS_I(inode)->root; 3307 int ret; 3308 3309 inode_inc_iversion(inode); 3310 if (!no_time_update) 3311 inode->i_mtime = inode->i_ctime = current_time(inode); 3312 /* 3313 * We round up to the block size at eof when determining which 3314 * extents to clone above, but shouldn't round up the file size. 3315 */ 3316 if (endoff > destoff + olen) 3317 endoff = destoff + olen; 3318 if (endoff > inode->i_size) 3319 btrfs_i_size_write(BTRFS_I(inode), endoff); 3320 3321 ret = btrfs_update_inode(trans, root, inode); 3322 if (ret) { 3323 btrfs_abort_transaction(trans, ret); 3324 btrfs_end_transaction(trans); 3325 goto out; 3326 } 3327 ret = btrfs_end_transaction(trans); 3328 out: 3329 return ret; 3330 } 3331 3332 /* 3333 * Make sure we do not end up inserting an inline extent into a file that has 3334 * already other (non-inline) extents. If a file has an inline extent it can 3335 * not have any other extents and the (single) inline extent must start at the 3336 * file offset 0. Failing to respect these rules will lead to file corruption, 3337 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3338 * 3339 * We can have extents that have been already written to disk or we can have 3340 * dirty ranges still in delalloc, in which case the extent maps and items are 3341 * created only when we run delalloc, and the delalloc ranges might fall outside 3342 * the range we are currently locking in the inode's io tree. So we check the 3343 * inode's i_size because of that (i_size updates are done while holding the 3344 * i_mutex, which we are holding here). 3345 * We also check to see if the inode has a size not greater than "datal" but has 3346 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3347 * protected against such concurrent fallocate calls by the i_mutex). 3348 * 3349 * If the file has no extents but a size greater than datal, do not allow the 3350 * copy because we would need turn the inline extent into a non-inline one (even 3351 * with NO_HOLES enabled). If we find our destination inode only has one inline 3352 * extent, just overwrite it with the source inline extent if its size is less 3353 * than the source extent's size, or we could copy the source inline extent's 3354 * data into the destination inode's inline extent if the later is greater then 3355 * the former. 3356 */ 3357 static int clone_copy_inline_extent(struct inode *dst, 3358 struct btrfs_trans_handle *trans, 3359 struct btrfs_path *path, 3360 struct btrfs_key *new_key, 3361 const u64 drop_start, 3362 const u64 datal, 3363 const u64 skip, 3364 const u64 size, 3365 char *inline_data) 3366 { 3367 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3368 struct btrfs_root *root = BTRFS_I(dst)->root; 3369 const u64 aligned_end = ALIGN(new_key->offset + datal, 3370 fs_info->sectorsize); 3371 int ret; 3372 struct btrfs_key key; 3373 3374 if (new_key->offset > 0) 3375 return -EOPNOTSUPP; 3376 3377 key.objectid = btrfs_ino(BTRFS_I(dst)); 3378 key.type = BTRFS_EXTENT_DATA_KEY; 3379 key.offset = 0; 3380 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3381 if (ret < 0) { 3382 return ret; 3383 } else if (ret > 0) { 3384 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3385 ret = btrfs_next_leaf(root, path); 3386 if (ret < 0) 3387 return ret; 3388 else if (ret > 0) 3389 goto copy_inline_extent; 3390 } 3391 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3392 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3393 key.type == BTRFS_EXTENT_DATA_KEY) { 3394 ASSERT(key.offset > 0); 3395 return -EOPNOTSUPP; 3396 } 3397 } else if (i_size_read(dst) <= datal) { 3398 struct btrfs_file_extent_item *ei; 3399 u64 ext_len; 3400 3401 /* 3402 * If the file size is <= datal, make sure there are no other 3403 * extents following (can happen do to an fallocate call with 3404 * the flag FALLOC_FL_KEEP_SIZE). 3405 */ 3406 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3407 struct btrfs_file_extent_item); 3408 /* 3409 * If it's an inline extent, it can not have other extents 3410 * following it. 3411 */ 3412 if (btrfs_file_extent_type(path->nodes[0], ei) == 3413 BTRFS_FILE_EXTENT_INLINE) 3414 goto copy_inline_extent; 3415 3416 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3417 if (ext_len > aligned_end) 3418 return -EOPNOTSUPP; 3419 3420 ret = btrfs_next_item(root, path); 3421 if (ret < 0) { 3422 return ret; 3423 } else if (ret == 0) { 3424 btrfs_item_key_to_cpu(path->nodes[0], &key, 3425 path->slots[0]); 3426 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3427 key.type == BTRFS_EXTENT_DATA_KEY) 3428 return -EOPNOTSUPP; 3429 } 3430 } 3431 3432 copy_inline_extent: 3433 /* 3434 * We have no extent items, or we have an extent at offset 0 which may 3435 * or may not be inlined. All these cases are dealt the same way. 3436 */ 3437 if (i_size_read(dst) > datal) { 3438 /* 3439 * If the destination inode has an inline extent... 3440 * This would require copying the data from the source inline 3441 * extent into the beginning of the destination's inline extent. 3442 * But this is really complex, both extents can be compressed 3443 * or just one of them, which would require decompressing and 3444 * re-compressing data (which could increase the new compressed 3445 * size, not allowing the compressed data to fit anymore in an 3446 * inline extent). 3447 * So just don't support this case for now (it should be rare, 3448 * we are not really saving space when cloning inline extents). 3449 */ 3450 return -EOPNOTSUPP; 3451 } 3452 3453 btrfs_release_path(path); 3454 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3455 if (ret) 3456 return ret; 3457 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3458 if (ret) 3459 return ret; 3460 3461 if (skip) { 3462 const u32 start = btrfs_file_extent_calc_inline_size(0); 3463 3464 memmove(inline_data + start, inline_data + start + skip, datal); 3465 } 3466 3467 write_extent_buffer(path->nodes[0], inline_data, 3468 btrfs_item_ptr_offset(path->nodes[0], 3469 path->slots[0]), 3470 size); 3471 inode_add_bytes(dst, datal); 3472 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags); 3473 3474 return 0; 3475 } 3476 3477 /** 3478 * btrfs_clone() - clone a range from inode file to another 3479 * 3480 * @src: Inode to clone from 3481 * @inode: Inode to clone to 3482 * @off: Offset within source to start clone from 3483 * @olen: Original length, passed by user, of range to clone 3484 * @olen_aligned: Block-aligned value of olen 3485 * @destoff: Offset within @inode to start clone 3486 * @no_time_update: Whether to update mtime/ctime on the target inode 3487 */ 3488 static int btrfs_clone(struct inode *src, struct inode *inode, 3489 const u64 off, const u64 olen, const u64 olen_aligned, 3490 const u64 destoff, int no_time_update) 3491 { 3492 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3493 struct btrfs_root *root = BTRFS_I(inode)->root; 3494 struct btrfs_path *path = NULL; 3495 struct extent_buffer *leaf; 3496 struct btrfs_trans_handle *trans; 3497 char *buf = NULL; 3498 struct btrfs_key key; 3499 u32 nritems; 3500 int slot; 3501 int ret; 3502 const u64 len = olen_aligned; 3503 u64 last_dest_end = destoff; 3504 3505 ret = -ENOMEM; 3506 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3507 if (!buf) 3508 return ret; 3509 3510 path = btrfs_alloc_path(); 3511 if (!path) { 3512 kvfree(buf); 3513 return ret; 3514 } 3515 3516 path->reada = READA_FORWARD; 3517 /* clone data */ 3518 key.objectid = btrfs_ino(BTRFS_I(src)); 3519 key.type = BTRFS_EXTENT_DATA_KEY; 3520 key.offset = off; 3521 3522 while (1) { 3523 u64 next_key_min_offset = key.offset + 1; 3524 struct btrfs_file_extent_item *extent; 3525 int type; 3526 u32 size; 3527 struct btrfs_key new_key; 3528 u64 disko = 0, diskl = 0; 3529 u64 datao = 0, datal = 0; 3530 u8 comp; 3531 u64 drop_start; 3532 3533 /* 3534 * note the key will change type as we walk through the 3535 * tree. 3536 */ 3537 path->leave_spinning = 1; 3538 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3539 0, 0); 3540 if (ret < 0) 3541 goto out; 3542 /* 3543 * First search, if no extent item that starts at offset off was 3544 * found but the previous item is an extent item, it's possible 3545 * it might overlap our target range, therefore process it. 3546 */ 3547 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3548 btrfs_item_key_to_cpu(path->nodes[0], &key, 3549 path->slots[0] - 1); 3550 if (key.type == BTRFS_EXTENT_DATA_KEY) 3551 path->slots[0]--; 3552 } 3553 3554 nritems = btrfs_header_nritems(path->nodes[0]); 3555 process_slot: 3556 if (path->slots[0] >= nritems) { 3557 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3558 if (ret < 0) 3559 goto out; 3560 if (ret > 0) 3561 break; 3562 nritems = btrfs_header_nritems(path->nodes[0]); 3563 } 3564 leaf = path->nodes[0]; 3565 slot = path->slots[0]; 3566 3567 btrfs_item_key_to_cpu(leaf, &key, slot); 3568 if (key.type > BTRFS_EXTENT_DATA_KEY || 3569 key.objectid != btrfs_ino(BTRFS_I(src))) 3570 break; 3571 3572 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 3573 3574 extent = btrfs_item_ptr(leaf, slot, 3575 struct btrfs_file_extent_item); 3576 comp = btrfs_file_extent_compression(leaf, extent); 3577 type = btrfs_file_extent_type(leaf, extent); 3578 if (type == BTRFS_FILE_EXTENT_REG || 3579 type == BTRFS_FILE_EXTENT_PREALLOC) { 3580 disko = btrfs_file_extent_disk_bytenr(leaf, extent); 3581 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent); 3582 datao = btrfs_file_extent_offset(leaf, extent); 3583 datal = btrfs_file_extent_num_bytes(leaf, extent); 3584 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3585 /* Take upper bound, may be compressed */ 3586 datal = btrfs_file_extent_ram_bytes(leaf, extent); 3587 } 3588 3589 /* 3590 * The first search might have left us at an extent item that 3591 * ends before our target range's start, can happen if we have 3592 * holes and NO_HOLES feature enabled. 3593 */ 3594 if (key.offset + datal <= off) { 3595 path->slots[0]++; 3596 goto process_slot; 3597 } else if (key.offset >= off + len) { 3598 break; 3599 } 3600 next_key_min_offset = key.offset + datal; 3601 size = btrfs_item_size_nr(leaf, slot); 3602 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot), 3603 size); 3604 3605 btrfs_release_path(path); 3606 path->leave_spinning = 0; 3607 3608 memcpy(&new_key, &key, sizeof(new_key)); 3609 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3610 if (off <= key.offset) 3611 new_key.offset = key.offset + destoff - off; 3612 else 3613 new_key.offset = destoff; 3614 3615 /* 3616 * Deal with a hole that doesn't have an extent item that 3617 * represents it (NO_HOLES feature enabled). 3618 * This hole is either in the middle of the cloning range or at 3619 * the beginning (fully overlaps it or partially overlaps it). 3620 */ 3621 if (new_key.offset != last_dest_end) 3622 drop_start = last_dest_end; 3623 else 3624 drop_start = new_key.offset; 3625 3626 if (type == BTRFS_FILE_EXTENT_REG || 3627 type == BTRFS_FILE_EXTENT_PREALLOC) { 3628 struct btrfs_clone_extent_info clone_info; 3629 3630 /* 3631 * a | --- range to clone ---| b 3632 * | ------------- extent ------------- | 3633 */ 3634 3635 /* Subtract range b */ 3636 if (key.offset + datal > off + len) 3637 datal = off + len - key.offset; 3638 3639 /* Subtract range a */ 3640 if (off > key.offset) { 3641 datao += off - key.offset; 3642 datal -= off - key.offset; 3643 } 3644 3645 clone_info.disk_offset = disko; 3646 clone_info.disk_len = diskl; 3647 clone_info.data_offset = datao; 3648 clone_info.data_len = datal; 3649 clone_info.file_offset = new_key.offset; 3650 clone_info.extent_buf = buf; 3651 clone_info.item_size = size; 3652 ret = btrfs_punch_hole_range(inode, path, 3653 drop_start, 3654 new_key.offset + datal - 1, 3655 &clone_info, &trans); 3656 if (ret) 3657 goto out; 3658 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3659 u64 skip = 0; 3660 u64 trim = 0; 3661 3662 if (off > key.offset) { 3663 skip = off - key.offset; 3664 new_key.offset += skip; 3665 } 3666 3667 if (key.offset + datal > off + len) 3668 trim = key.offset + datal - (off + len); 3669 3670 if (comp && (skip || trim)) { 3671 ret = -EINVAL; 3672 goto out; 3673 } 3674 size -= skip + trim; 3675 datal -= skip + trim; 3676 3677 /* 3678 * If our extent is inline, we know we will drop or 3679 * adjust at most 1 extent item in the destination root. 3680 * 3681 * 1 - adjusting old extent (we may have to split it) 3682 * 1 - add new extent 3683 * 1 - inode update 3684 */ 3685 trans = btrfs_start_transaction(root, 3); 3686 if (IS_ERR(trans)) { 3687 ret = PTR_ERR(trans); 3688 goto out; 3689 } 3690 3691 ret = clone_copy_inline_extent(inode, trans, path, 3692 &new_key, drop_start, 3693 datal, skip, size, buf); 3694 if (ret) { 3695 if (ret != -EOPNOTSUPP) 3696 btrfs_abort_transaction(trans, ret); 3697 btrfs_end_transaction(trans); 3698 goto out; 3699 } 3700 } 3701 3702 btrfs_release_path(path); 3703 3704 last_dest_end = ALIGN(new_key.offset + datal, 3705 fs_info->sectorsize); 3706 ret = clone_finish_inode_update(trans, inode, last_dest_end, 3707 destoff, olen, no_time_update); 3708 if (ret) 3709 goto out; 3710 if (new_key.offset + datal >= destoff + len) 3711 break; 3712 3713 btrfs_release_path(path); 3714 key.offset = next_key_min_offset; 3715 3716 if (fatal_signal_pending(current)) { 3717 ret = -EINTR; 3718 goto out; 3719 } 3720 } 3721 ret = 0; 3722 3723 if (last_dest_end < destoff + len) { 3724 struct btrfs_clone_extent_info clone_info = { 0 }; 3725 /* 3726 * We have an implicit hole (NO_HOLES feature is enabled) that 3727 * fully or partially overlaps our cloning range at its end. 3728 */ 3729 btrfs_release_path(path); 3730 path->leave_spinning = 0; 3731 3732 /* 3733 * We are dealing with a hole and our clone_info already has a 3734 * disk_offset of 0, we only need to fill the data length and 3735 * file offset. 3736 */ 3737 clone_info.data_len = destoff + len - last_dest_end; 3738 clone_info.file_offset = last_dest_end; 3739 ret = btrfs_punch_hole_range(inode, path, 3740 last_dest_end, destoff + len - 1, 3741 &clone_info, &trans); 3742 if (ret) 3743 goto out; 3744 3745 ret = clone_finish_inode_update(trans, inode, destoff + len, 3746 destoff, olen, no_time_update); 3747 } 3748 3749 out: 3750 btrfs_free_path(path); 3751 kvfree(buf); 3752 return ret; 3753 } 3754 3755 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3756 u64 off, u64 olen, u64 destoff) 3757 { 3758 struct inode *inode = file_inode(file); 3759 struct inode *src = file_inode(file_src); 3760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3761 int ret; 3762 u64 len = olen; 3763 u64 bs = fs_info->sb->s_blocksize; 3764 3765 /* 3766 * TODO: 3767 * - split compressed inline extents. annoying: we need to 3768 * decompress into destination's address_space (the file offset 3769 * may change, so source mapping won't do), then recompress (or 3770 * otherwise reinsert) a subrange. 3771 * 3772 * - split destination inode's inline extents. The inline extents can 3773 * be either compressed or non-compressed. 3774 */ 3775 3776 /* 3777 * VFS's generic_remap_file_range_prep() protects us from cloning the 3778 * eof block into the middle of a file, which would result in corruption 3779 * if the file size is not blocksize aligned. So we don't need to check 3780 * for that case here. 3781 */ 3782 if (off + len == src->i_size) 3783 len = ALIGN(src->i_size, bs) - off; 3784 3785 if (destoff > inode->i_size) { 3786 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 3787 3788 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3789 if (ret) 3790 return ret; 3791 /* 3792 * We may have truncated the last block if the inode's size is 3793 * not sector size aligned, so we need to wait for writeback to 3794 * complete before proceeding further, otherwise we can race 3795 * with cloning and attempt to increment a reference to an 3796 * extent that no longer exists (writeback completed right after 3797 * we found the previous extent covering eof and before we 3798 * attempted to increment its reference count). 3799 */ 3800 ret = btrfs_wait_ordered_range(inode, wb_start, 3801 destoff - wb_start); 3802 if (ret) 3803 return ret; 3804 } 3805 3806 /* 3807 * Lock destination range to serialize with concurrent readpages() and 3808 * source range to serialize with relocation. 3809 */ 3810 btrfs_double_extent_lock(src, off, inode, destoff, len); 3811 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3812 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3813 /* 3814 * Truncate page cache pages so that future reads will see the cloned 3815 * data immediately and not the previous data. 3816 */ 3817 truncate_inode_pages_range(&inode->i_data, 3818 round_down(destoff, PAGE_SIZE), 3819 round_up(destoff + len, PAGE_SIZE) - 1); 3820 3821 return ret; 3822 } 3823 3824 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 3825 struct file *file_out, loff_t pos_out, 3826 loff_t *len, unsigned int remap_flags) 3827 { 3828 struct inode *inode_in = file_inode(file_in); 3829 struct inode *inode_out = file_inode(file_out); 3830 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 3831 bool same_inode = inode_out == inode_in; 3832 u64 wb_len; 3833 int ret; 3834 3835 if (!(remap_flags & REMAP_FILE_DEDUP)) { 3836 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 3837 3838 if (btrfs_root_readonly(root_out)) 3839 return -EROFS; 3840 3841 if (file_in->f_path.mnt != file_out->f_path.mnt || 3842 inode_in->i_sb != inode_out->i_sb) 3843 return -EXDEV; 3844 } 3845 3846 /* don't make the dst file partly checksummed */ 3847 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 3848 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 3849 return -EINVAL; 3850 } 3851 3852 /* 3853 * Now that the inodes are locked, we need to start writeback ourselves 3854 * and can not rely on the writeback from the VFS's generic helper 3855 * generic_remap_file_range_prep() because: 3856 * 3857 * 1) For compression we must call filemap_fdatawrite_range() range 3858 * twice (btrfs_fdatawrite_range() does it for us), and the generic 3859 * helper only calls it once; 3860 * 3861 * 2) filemap_fdatawrite_range(), called by the generic helper only 3862 * waits for the writeback to complete, i.e. for IO to be done, and 3863 * not for the ordered extents to complete. We need to wait for them 3864 * to complete so that new file extent items are in the fs tree. 3865 */ 3866 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 3867 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 3868 else 3869 wb_len = ALIGN(*len, bs); 3870 3871 /* 3872 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 3873 * any in progress could create its ordered extents after we wait for 3874 * existing ordered extents below). 3875 */ 3876 inode_dio_wait(inode_in); 3877 if (!same_inode) 3878 inode_dio_wait(inode_out); 3879 3880 /* 3881 * Workaround to make sure NOCOW buffered write reach disk as NOCOW. 3882 * 3883 * Btrfs' back references do not have a block level granularity, they 3884 * work at the whole extent level. 3885 * NOCOW buffered write without data space reserved may not be able 3886 * to fall back to CoW due to lack of data space, thus could cause 3887 * data loss. 3888 * 3889 * Here we take a shortcut by flushing the whole inode, so that all 3890 * nocow write should reach disk as nocow before we increase the 3891 * reference of the extent. We could do better by only flushing NOCOW 3892 * data, but that needs extra accounting. 3893 * 3894 * Also we don't need to check ASYNC_EXTENT, as async extent will be 3895 * CoWed anyway, not affecting nocow part. 3896 */ 3897 ret = filemap_flush(inode_in->i_mapping); 3898 if (ret < 0) 3899 return ret; 3900 3901 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 3902 wb_len); 3903 if (ret < 0) 3904 return ret; 3905 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 3906 wb_len); 3907 if (ret < 0) 3908 return ret; 3909 3910 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 3911 len, remap_flags); 3912 } 3913 3914 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 3915 struct file *dst_file, loff_t destoff, loff_t len, 3916 unsigned int remap_flags) 3917 { 3918 struct inode *src_inode = file_inode(src_file); 3919 struct inode *dst_inode = file_inode(dst_file); 3920 bool same_inode = dst_inode == src_inode; 3921 int ret; 3922 3923 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 3924 return -EINVAL; 3925 3926 if (same_inode) 3927 inode_lock(src_inode); 3928 else 3929 lock_two_nondirectories(src_inode, dst_inode); 3930 3931 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 3932 &len, remap_flags); 3933 if (ret < 0 || len == 0) 3934 goto out_unlock; 3935 3936 if (remap_flags & REMAP_FILE_DEDUP) 3937 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 3938 else 3939 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 3940 3941 out_unlock: 3942 if (same_inode) 3943 inode_unlock(src_inode); 3944 else 3945 unlock_two_nondirectories(src_inode, dst_inode); 3946 3947 return ret < 0 ? ret : len; 3948 } 3949 3950 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3951 { 3952 struct inode *inode = file_inode(file); 3953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3954 struct btrfs_root *root = BTRFS_I(inode)->root; 3955 struct btrfs_root *new_root; 3956 struct btrfs_dir_item *di; 3957 struct btrfs_trans_handle *trans; 3958 struct btrfs_path *path; 3959 struct btrfs_key location; 3960 struct btrfs_disk_key disk_key; 3961 u64 objectid = 0; 3962 u64 dir_id; 3963 int ret; 3964 3965 if (!capable(CAP_SYS_ADMIN)) 3966 return -EPERM; 3967 3968 ret = mnt_want_write_file(file); 3969 if (ret) 3970 return ret; 3971 3972 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3973 ret = -EFAULT; 3974 goto out; 3975 } 3976 3977 if (!objectid) 3978 objectid = BTRFS_FS_TREE_OBJECTID; 3979 3980 location.objectid = objectid; 3981 location.type = BTRFS_ROOT_ITEM_KEY; 3982 location.offset = (u64)-1; 3983 3984 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 3985 if (IS_ERR(new_root)) { 3986 ret = PTR_ERR(new_root); 3987 goto out; 3988 } 3989 if (!is_fstree(new_root->root_key.objectid)) { 3990 ret = -ENOENT; 3991 goto out; 3992 } 3993 3994 path = btrfs_alloc_path(); 3995 if (!path) { 3996 ret = -ENOMEM; 3997 goto out; 3998 } 3999 path->leave_spinning = 1; 4000 4001 trans = btrfs_start_transaction(root, 1); 4002 if (IS_ERR(trans)) { 4003 btrfs_free_path(path); 4004 ret = PTR_ERR(trans); 4005 goto out; 4006 } 4007 4008 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4009 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4010 dir_id, "default", 7, 1); 4011 if (IS_ERR_OR_NULL(di)) { 4012 btrfs_free_path(path); 4013 btrfs_end_transaction(trans); 4014 btrfs_err(fs_info, 4015 "Umm, you don't have the default diritem, this isn't going to work"); 4016 ret = -ENOENT; 4017 goto out; 4018 } 4019 4020 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4021 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4022 btrfs_mark_buffer_dirty(path->nodes[0]); 4023 btrfs_free_path(path); 4024 4025 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4026 btrfs_end_transaction(trans); 4027 out: 4028 mnt_drop_write_file(file); 4029 return ret; 4030 } 4031 4032 static void get_block_group_info(struct list_head *groups_list, 4033 struct btrfs_ioctl_space_info *space) 4034 { 4035 struct btrfs_block_group_cache *block_group; 4036 4037 space->total_bytes = 0; 4038 space->used_bytes = 0; 4039 space->flags = 0; 4040 list_for_each_entry(block_group, groups_list, list) { 4041 space->flags = block_group->flags; 4042 space->total_bytes += block_group->key.offset; 4043 space->used_bytes += 4044 btrfs_block_group_used(&block_group->item); 4045 } 4046 } 4047 4048 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4049 void __user *arg) 4050 { 4051 struct btrfs_ioctl_space_args space_args; 4052 struct btrfs_ioctl_space_info space; 4053 struct btrfs_ioctl_space_info *dest; 4054 struct btrfs_ioctl_space_info *dest_orig; 4055 struct btrfs_ioctl_space_info __user *user_dest; 4056 struct btrfs_space_info *info; 4057 static const u64 types[] = { 4058 BTRFS_BLOCK_GROUP_DATA, 4059 BTRFS_BLOCK_GROUP_SYSTEM, 4060 BTRFS_BLOCK_GROUP_METADATA, 4061 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4062 }; 4063 int num_types = 4; 4064 int alloc_size; 4065 int ret = 0; 4066 u64 slot_count = 0; 4067 int i, c; 4068 4069 if (copy_from_user(&space_args, 4070 (struct btrfs_ioctl_space_args __user *)arg, 4071 sizeof(space_args))) 4072 return -EFAULT; 4073 4074 for (i = 0; i < num_types; i++) { 4075 struct btrfs_space_info *tmp; 4076 4077 info = NULL; 4078 rcu_read_lock(); 4079 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4080 list) { 4081 if (tmp->flags == types[i]) { 4082 info = tmp; 4083 break; 4084 } 4085 } 4086 rcu_read_unlock(); 4087 4088 if (!info) 4089 continue; 4090 4091 down_read(&info->groups_sem); 4092 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4093 if (!list_empty(&info->block_groups[c])) 4094 slot_count++; 4095 } 4096 up_read(&info->groups_sem); 4097 } 4098 4099 /* 4100 * Global block reserve, exported as a space_info 4101 */ 4102 slot_count++; 4103 4104 /* space_slots == 0 means they are asking for a count */ 4105 if (space_args.space_slots == 0) { 4106 space_args.total_spaces = slot_count; 4107 goto out; 4108 } 4109 4110 slot_count = min_t(u64, space_args.space_slots, slot_count); 4111 4112 alloc_size = sizeof(*dest) * slot_count; 4113 4114 /* we generally have at most 6 or so space infos, one for each raid 4115 * level. So, a whole page should be more than enough for everyone 4116 */ 4117 if (alloc_size > PAGE_SIZE) 4118 return -ENOMEM; 4119 4120 space_args.total_spaces = 0; 4121 dest = kmalloc(alloc_size, GFP_KERNEL); 4122 if (!dest) 4123 return -ENOMEM; 4124 dest_orig = dest; 4125 4126 /* now we have a buffer to copy into */ 4127 for (i = 0; i < num_types; i++) { 4128 struct btrfs_space_info *tmp; 4129 4130 if (!slot_count) 4131 break; 4132 4133 info = NULL; 4134 rcu_read_lock(); 4135 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4136 list) { 4137 if (tmp->flags == types[i]) { 4138 info = tmp; 4139 break; 4140 } 4141 } 4142 rcu_read_unlock(); 4143 4144 if (!info) 4145 continue; 4146 down_read(&info->groups_sem); 4147 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4148 if (!list_empty(&info->block_groups[c])) { 4149 get_block_group_info(&info->block_groups[c], 4150 &space); 4151 memcpy(dest, &space, sizeof(space)); 4152 dest++; 4153 space_args.total_spaces++; 4154 slot_count--; 4155 } 4156 if (!slot_count) 4157 break; 4158 } 4159 up_read(&info->groups_sem); 4160 } 4161 4162 /* 4163 * Add global block reserve 4164 */ 4165 if (slot_count) { 4166 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4167 4168 spin_lock(&block_rsv->lock); 4169 space.total_bytes = block_rsv->size; 4170 space.used_bytes = block_rsv->size - block_rsv->reserved; 4171 spin_unlock(&block_rsv->lock); 4172 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4173 memcpy(dest, &space, sizeof(space)); 4174 space_args.total_spaces++; 4175 } 4176 4177 user_dest = (struct btrfs_ioctl_space_info __user *) 4178 (arg + sizeof(struct btrfs_ioctl_space_args)); 4179 4180 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4181 ret = -EFAULT; 4182 4183 kfree(dest_orig); 4184 out: 4185 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4186 ret = -EFAULT; 4187 4188 return ret; 4189 } 4190 4191 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4192 void __user *argp) 4193 { 4194 struct btrfs_trans_handle *trans; 4195 u64 transid; 4196 int ret; 4197 4198 btrfs_warn(root->fs_info, 4199 "START_SYNC ioctl is deprecated and will be removed in kernel 5.7"); 4200 4201 trans = btrfs_attach_transaction_barrier(root); 4202 if (IS_ERR(trans)) { 4203 if (PTR_ERR(trans) != -ENOENT) 4204 return PTR_ERR(trans); 4205 4206 /* No running transaction, don't bother */ 4207 transid = root->fs_info->last_trans_committed; 4208 goto out; 4209 } 4210 transid = trans->transid; 4211 ret = btrfs_commit_transaction_async(trans, 0); 4212 if (ret) { 4213 btrfs_end_transaction(trans); 4214 return ret; 4215 } 4216 out: 4217 if (argp) 4218 if (copy_to_user(argp, &transid, sizeof(transid))) 4219 return -EFAULT; 4220 return 0; 4221 } 4222 4223 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4224 void __user *argp) 4225 { 4226 u64 transid; 4227 4228 btrfs_warn(fs_info, 4229 "WAIT_SYNC ioctl is deprecated and will be removed in kernel 5.7"); 4230 4231 if (argp) { 4232 if (copy_from_user(&transid, argp, sizeof(transid))) 4233 return -EFAULT; 4234 } else { 4235 transid = 0; /* current trans */ 4236 } 4237 return btrfs_wait_for_commit(fs_info, transid); 4238 } 4239 4240 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4241 { 4242 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4243 struct btrfs_ioctl_scrub_args *sa; 4244 int ret; 4245 4246 if (!capable(CAP_SYS_ADMIN)) 4247 return -EPERM; 4248 4249 sa = memdup_user(arg, sizeof(*sa)); 4250 if (IS_ERR(sa)) 4251 return PTR_ERR(sa); 4252 4253 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4254 ret = mnt_want_write_file(file); 4255 if (ret) 4256 goto out; 4257 } 4258 4259 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4260 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4261 0); 4262 4263 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4264 ret = -EFAULT; 4265 4266 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4267 mnt_drop_write_file(file); 4268 out: 4269 kfree(sa); 4270 return ret; 4271 } 4272 4273 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4274 { 4275 if (!capable(CAP_SYS_ADMIN)) 4276 return -EPERM; 4277 4278 return btrfs_scrub_cancel(fs_info); 4279 } 4280 4281 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4282 void __user *arg) 4283 { 4284 struct btrfs_ioctl_scrub_args *sa; 4285 int ret; 4286 4287 if (!capable(CAP_SYS_ADMIN)) 4288 return -EPERM; 4289 4290 sa = memdup_user(arg, sizeof(*sa)); 4291 if (IS_ERR(sa)) 4292 return PTR_ERR(sa); 4293 4294 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4295 4296 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4297 ret = -EFAULT; 4298 4299 kfree(sa); 4300 return ret; 4301 } 4302 4303 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4304 void __user *arg) 4305 { 4306 struct btrfs_ioctl_get_dev_stats *sa; 4307 int ret; 4308 4309 sa = memdup_user(arg, sizeof(*sa)); 4310 if (IS_ERR(sa)) 4311 return PTR_ERR(sa); 4312 4313 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4314 kfree(sa); 4315 return -EPERM; 4316 } 4317 4318 ret = btrfs_get_dev_stats(fs_info, sa); 4319 4320 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4321 ret = -EFAULT; 4322 4323 kfree(sa); 4324 return ret; 4325 } 4326 4327 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4328 void __user *arg) 4329 { 4330 struct btrfs_ioctl_dev_replace_args *p; 4331 int ret; 4332 4333 if (!capable(CAP_SYS_ADMIN)) 4334 return -EPERM; 4335 4336 p = memdup_user(arg, sizeof(*p)); 4337 if (IS_ERR(p)) 4338 return PTR_ERR(p); 4339 4340 switch (p->cmd) { 4341 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4342 if (sb_rdonly(fs_info->sb)) { 4343 ret = -EROFS; 4344 goto out; 4345 } 4346 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4347 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4348 } else { 4349 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4350 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4351 } 4352 break; 4353 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4354 btrfs_dev_replace_status(fs_info, p); 4355 ret = 0; 4356 break; 4357 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4358 p->result = btrfs_dev_replace_cancel(fs_info); 4359 ret = 0; 4360 break; 4361 default: 4362 ret = -EINVAL; 4363 break; 4364 } 4365 4366 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4367 ret = -EFAULT; 4368 out: 4369 kfree(p); 4370 return ret; 4371 } 4372 4373 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4374 { 4375 int ret = 0; 4376 int i; 4377 u64 rel_ptr; 4378 int size; 4379 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4380 struct inode_fs_paths *ipath = NULL; 4381 struct btrfs_path *path; 4382 4383 if (!capable(CAP_DAC_READ_SEARCH)) 4384 return -EPERM; 4385 4386 path = btrfs_alloc_path(); 4387 if (!path) { 4388 ret = -ENOMEM; 4389 goto out; 4390 } 4391 4392 ipa = memdup_user(arg, sizeof(*ipa)); 4393 if (IS_ERR(ipa)) { 4394 ret = PTR_ERR(ipa); 4395 ipa = NULL; 4396 goto out; 4397 } 4398 4399 size = min_t(u32, ipa->size, 4096); 4400 ipath = init_ipath(size, root, path); 4401 if (IS_ERR(ipath)) { 4402 ret = PTR_ERR(ipath); 4403 ipath = NULL; 4404 goto out; 4405 } 4406 4407 ret = paths_from_inode(ipa->inum, ipath); 4408 if (ret < 0) 4409 goto out; 4410 4411 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4412 rel_ptr = ipath->fspath->val[i] - 4413 (u64)(unsigned long)ipath->fspath->val; 4414 ipath->fspath->val[i] = rel_ptr; 4415 } 4416 4417 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4418 ipath->fspath, size); 4419 if (ret) { 4420 ret = -EFAULT; 4421 goto out; 4422 } 4423 4424 out: 4425 btrfs_free_path(path); 4426 free_ipath(ipath); 4427 kfree(ipa); 4428 4429 return ret; 4430 } 4431 4432 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4433 { 4434 struct btrfs_data_container *inodes = ctx; 4435 const size_t c = 3 * sizeof(u64); 4436 4437 if (inodes->bytes_left >= c) { 4438 inodes->bytes_left -= c; 4439 inodes->val[inodes->elem_cnt] = inum; 4440 inodes->val[inodes->elem_cnt + 1] = offset; 4441 inodes->val[inodes->elem_cnt + 2] = root; 4442 inodes->elem_cnt += 3; 4443 } else { 4444 inodes->bytes_missing += c - inodes->bytes_left; 4445 inodes->bytes_left = 0; 4446 inodes->elem_missed += 3; 4447 } 4448 4449 return 0; 4450 } 4451 4452 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4453 void __user *arg, int version) 4454 { 4455 int ret = 0; 4456 int size; 4457 struct btrfs_ioctl_logical_ino_args *loi; 4458 struct btrfs_data_container *inodes = NULL; 4459 struct btrfs_path *path = NULL; 4460 bool ignore_offset; 4461 4462 if (!capable(CAP_SYS_ADMIN)) 4463 return -EPERM; 4464 4465 loi = memdup_user(arg, sizeof(*loi)); 4466 if (IS_ERR(loi)) 4467 return PTR_ERR(loi); 4468 4469 if (version == 1) { 4470 ignore_offset = false; 4471 size = min_t(u32, loi->size, SZ_64K); 4472 } else { 4473 /* All reserved bits must be 0 for now */ 4474 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4475 ret = -EINVAL; 4476 goto out_loi; 4477 } 4478 /* Only accept flags we have defined so far */ 4479 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4480 ret = -EINVAL; 4481 goto out_loi; 4482 } 4483 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4484 size = min_t(u32, loi->size, SZ_16M); 4485 } 4486 4487 path = btrfs_alloc_path(); 4488 if (!path) { 4489 ret = -ENOMEM; 4490 goto out; 4491 } 4492 4493 inodes = init_data_container(size); 4494 if (IS_ERR(inodes)) { 4495 ret = PTR_ERR(inodes); 4496 inodes = NULL; 4497 goto out; 4498 } 4499 4500 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4501 build_ino_list, inodes, ignore_offset); 4502 if (ret == -EINVAL) 4503 ret = -ENOENT; 4504 if (ret < 0) 4505 goto out; 4506 4507 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4508 size); 4509 if (ret) 4510 ret = -EFAULT; 4511 4512 out: 4513 btrfs_free_path(path); 4514 kvfree(inodes); 4515 out_loi: 4516 kfree(loi); 4517 4518 return ret; 4519 } 4520 4521 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4522 struct btrfs_ioctl_balance_args *bargs) 4523 { 4524 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4525 4526 bargs->flags = bctl->flags; 4527 4528 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4529 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4530 if (atomic_read(&fs_info->balance_pause_req)) 4531 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4532 if (atomic_read(&fs_info->balance_cancel_req)) 4533 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4534 4535 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4536 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4537 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4538 4539 spin_lock(&fs_info->balance_lock); 4540 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4541 spin_unlock(&fs_info->balance_lock); 4542 } 4543 4544 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4545 { 4546 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4547 struct btrfs_fs_info *fs_info = root->fs_info; 4548 struct btrfs_ioctl_balance_args *bargs; 4549 struct btrfs_balance_control *bctl; 4550 bool need_unlock; /* for mut. excl. ops lock */ 4551 int ret; 4552 4553 if (!capable(CAP_SYS_ADMIN)) 4554 return -EPERM; 4555 4556 ret = mnt_want_write_file(file); 4557 if (ret) 4558 return ret; 4559 4560 again: 4561 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4562 mutex_lock(&fs_info->balance_mutex); 4563 need_unlock = true; 4564 goto locked; 4565 } 4566 4567 /* 4568 * mut. excl. ops lock is locked. Three possibilities: 4569 * (1) some other op is running 4570 * (2) balance is running 4571 * (3) balance is paused -- special case (think resume) 4572 */ 4573 mutex_lock(&fs_info->balance_mutex); 4574 if (fs_info->balance_ctl) { 4575 /* this is either (2) or (3) */ 4576 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4577 mutex_unlock(&fs_info->balance_mutex); 4578 /* 4579 * Lock released to allow other waiters to continue, 4580 * we'll reexamine the status again. 4581 */ 4582 mutex_lock(&fs_info->balance_mutex); 4583 4584 if (fs_info->balance_ctl && 4585 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4586 /* this is (3) */ 4587 need_unlock = false; 4588 goto locked; 4589 } 4590 4591 mutex_unlock(&fs_info->balance_mutex); 4592 goto again; 4593 } else { 4594 /* this is (2) */ 4595 mutex_unlock(&fs_info->balance_mutex); 4596 ret = -EINPROGRESS; 4597 goto out; 4598 } 4599 } else { 4600 /* this is (1) */ 4601 mutex_unlock(&fs_info->balance_mutex); 4602 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4603 goto out; 4604 } 4605 4606 locked: 4607 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4608 4609 if (arg) { 4610 bargs = memdup_user(arg, sizeof(*bargs)); 4611 if (IS_ERR(bargs)) { 4612 ret = PTR_ERR(bargs); 4613 goto out_unlock; 4614 } 4615 4616 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4617 if (!fs_info->balance_ctl) { 4618 ret = -ENOTCONN; 4619 goto out_bargs; 4620 } 4621 4622 bctl = fs_info->balance_ctl; 4623 spin_lock(&fs_info->balance_lock); 4624 bctl->flags |= BTRFS_BALANCE_RESUME; 4625 spin_unlock(&fs_info->balance_lock); 4626 4627 goto do_balance; 4628 } 4629 } else { 4630 bargs = NULL; 4631 } 4632 4633 if (fs_info->balance_ctl) { 4634 ret = -EINPROGRESS; 4635 goto out_bargs; 4636 } 4637 4638 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4639 if (!bctl) { 4640 ret = -ENOMEM; 4641 goto out_bargs; 4642 } 4643 4644 if (arg) { 4645 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4646 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4647 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4648 4649 bctl->flags = bargs->flags; 4650 } else { 4651 /* balance everything - no filters */ 4652 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4653 } 4654 4655 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4656 ret = -EINVAL; 4657 goto out_bctl; 4658 } 4659 4660 do_balance: 4661 /* 4662 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 4663 * btrfs_balance. bctl is freed in reset_balance_state, or, if 4664 * restriper was paused all the way until unmount, in free_fs_info. 4665 * The flag should be cleared after reset_balance_state. 4666 */ 4667 need_unlock = false; 4668 4669 ret = btrfs_balance(fs_info, bctl, bargs); 4670 bctl = NULL; 4671 4672 if ((ret == 0 || ret == -ECANCELED) && arg) { 4673 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4674 ret = -EFAULT; 4675 } 4676 4677 out_bctl: 4678 kfree(bctl); 4679 out_bargs: 4680 kfree(bargs); 4681 out_unlock: 4682 mutex_unlock(&fs_info->balance_mutex); 4683 if (need_unlock) 4684 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4685 out: 4686 mnt_drop_write_file(file); 4687 return ret; 4688 } 4689 4690 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4691 { 4692 if (!capable(CAP_SYS_ADMIN)) 4693 return -EPERM; 4694 4695 switch (cmd) { 4696 case BTRFS_BALANCE_CTL_PAUSE: 4697 return btrfs_pause_balance(fs_info); 4698 case BTRFS_BALANCE_CTL_CANCEL: 4699 return btrfs_cancel_balance(fs_info); 4700 } 4701 4702 return -EINVAL; 4703 } 4704 4705 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4706 void __user *arg) 4707 { 4708 struct btrfs_ioctl_balance_args *bargs; 4709 int ret = 0; 4710 4711 if (!capable(CAP_SYS_ADMIN)) 4712 return -EPERM; 4713 4714 mutex_lock(&fs_info->balance_mutex); 4715 if (!fs_info->balance_ctl) { 4716 ret = -ENOTCONN; 4717 goto out; 4718 } 4719 4720 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4721 if (!bargs) { 4722 ret = -ENOMEM; 4723 goto out; 4724 } 4725 4726 btrfs_update_ioctl_balance_args(fs_info, bargs); 4727 4728 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4729 ret = -EFAULT; 4730 4731 kfree(bargs); 4732 out: 4733 mutex_unlock(&fs_info->balance_mutex); 4734 return ret; 4735 } 4736 4737 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4738 { 4739 struct inode *inode = file_inode(file); 4740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4741 struct btrfs_ioctl_quota_ctl_args *sa; 4742 int ret; 4743 4744 if (!capable(CAP_SYS_ADMIN)) 4745 return -EPERM; 4746 4747 ret = mnt_want_write_file(file); 4748 if (ret) 4749 return ret; 4750 4751 sa = memdup_user(arg, sizeof(*sa)); 4752 if (IS_ERR(sa)) { 4753 ret = PTR_ERR(sa); 4754 goto drop_write; 4755 } 4756 4757 down_write(&fs_info->subvol_sem); 4758 4759 switch (sa->cmd) { 4760 case BTRFS_QUOTA_CTL_ENABLE: 4761 ret = btrfs_quota_enable(fs_info); 4762 break; 4763 case BTRFS_QUOTA_CTL_DISABLE: 4764 ret = btrfs_quota_disable(fs_info); 4765 break; 4766 default: 4767 ret = -EINVAL; 4768 break; 4769 } 4770 4771 kfree(sa); 4772 up_write(&fs_info->subvol_sem); 4773 drop_write: 4774 mnt_drop_write_file(file); 4775 return ret; 4776 } 4777 4778 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4779 { 4780 struct inode *inode = file_inode(file); 4781 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4782 struct btrfs_root *root = BTRFS_I(inode)->root; 4783 struct btrfs_ioctl_qgroup_assign_args *sa; 4784 struct btrfs_trans_handle *trans; 4785 int ret; 4786 int err; 4787 4788 if (!capable(CAP_SYS_ADMIN)) 4789 return -EPERM; 4790 4791 ret = mnt_want_write_file(file); 4792 if (ret) 4793 return ret; 4794 4795 sa = memdup_user(arg, sizeof(*sa)); 4796 if (IS_ERR(sa)) { 4797 ret = PTR_ERR(sa); 4798 goto drop_write; 4799 } 4800 4801 trans = btrfs_join_transaction(root); 4802 if (IS_ERR(trans)) { 4803 ret = PTR_ERR(trans); 4804 goto out; 4805 } 4806 4807 if (sa->assign) { 4808 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4809 } else { 4810 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4811 } 4812 4813 /* update qgroup status and info */ 4814 err = btrfs_run_qgroups(trans); 4815 if (err < 0) 4816 btrfs_handle_fs_error(fs_info, err, 4817 "failed to update qgroup status and info"); 4818 err = btrfs_end_transaction(trans); 4819 if (err && !ret) 4820 ret = err; 4821 4822 out: 4823 kfree(sa); 4824 drop_write: 4825 mnt_drop_write_file(file); 4826 return ret; 4827 } 4828 4829 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4830 { 4831 struct inode *inode = file_inode(file); 4832 struct btrfs_root *root = BTRFS_I(inode)->root; 4833 struct btrfs_ioctl_qgroup_create_args *sa; 4834 struct btrfs_trans_handle *trans; 4835 int ret; 4836 int err; 4837 4838 if (!capable(CAP_SYS_ADMIN)) 4839 return -EPERM; 4840 4841 ret = mnt_want_write_file(file); 4842 if (ret) 4843 return ret; 4844 4845 sa = memdup_user(arg, sizeof(*sa)); 4846 if (IS_ERR(sa)) { 4847 ret = PTR_ERR(sa); 4848 goto drop_write; 4849 } 4850 4851 if (!sa->qgroupid) { 4852 ret = -EINVAL; 4853 goto out; 4854 } 4855 4856 trans = btrfs_join_transaction(root); 4857 if (IS_ERR(trans)) { 4858 ret = PTR_ERR(trans); 4859 goto out; 4860 } 4861 4862 if (sa->create) { 4863 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4864 } else { 4865 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4866 } 4867 4868 err = btrfs_end_transaction(trans); 4869 if (err && !ret) 4870 ret = err; 4871 4872 out: 4873 kfree(sa); 4874 drop_write: 4875 mnt_drop_write_file(file); 4876 return ret; 4877 } 4878 4879 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4880 { 4881 struct inode *inode = file_inode(file); 4882 struct btrfs_root *root = BTRFS_I(inode)->root; 4883 struct btrfs_ioctl_qgroup_limit_args *sa; 4884 struct btrfs_trans_handle *trans; 4885 int ret; 4886 int err; 4887 u64 qgroupid; 4888 4889 if (!capable(CAP_SYS_ADMIN)) 4890 return -EPERM; 4891 4892 ret = mnt_want_write_file(file); 4893 if (ret) 4894 return ret; 4895 4896 sa = memdup_user(arg, sizeof(*sa)); 4897 if (IS_ERR(sa)) { 4898 ret = PTR_ERR(sa); 4899 goto drop_write; 4900 } 4901 4902 trans = btrfs_join_transaction(root); 4903 if (IS_ERR(trans)) { 4904 ret = PTR_ERR(trans); 4905 goto out; 4906 } 4907 4908 qgroupid = sa->qgroupid; 4909 if (!qgroupid) { 4910 /* take the current subvol as qgroup */ 4911 qgroupid = root->root_key.objectid; 4912 } 4913 4914 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4915 4916 err = btrfs_end_transaction(trans); 4917 if (err && !ret) 4918 ret = err; 4919 4920 out: 4921 kfree(sa); 4922 drop_write: 4923 mnt_drop_write_file(file); 4924 return ret; 4925 } 4926 4927 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4928 { 4929 struct inode *inode = file_inode(file); 4930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4931 struct btrfs_ioctl_quota_rescan_args *qsa; 4932 int ret; 4933 4934 if (!capable(CAP_SYS_ADMIN)) 4935 return -EPERM; 4936 4937 ret = mnt_want_write_file(file); 4938 if (ret) 4939 return ret; 4940 4941 qsa = memdup_user(arg, sizeof(*qsa)); 4942 if (IS_ERR(qsa)) { 4943 ret = PTR_ERR(qsa); 4944 goto drop_write; 4945 } 4946 4947 if (qsa->flags) { 4948 ret = -EINVAL; 4949 goto out; 4950 } 4951 4952 ret = btrfs_qgroup_rescan(fs_info); 4953 4954 out: 4955 kfree(qsa); 4956 drop_write: 4957 mnt_drop_write_file(file); 4958 return ret; 4959 } 4960 4961 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 4962 { 4963 struct inode *inode = file_inode(file); 4964 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4965 struct btrfs_ioctl_quota_rescan_args *qsa; 4966 int ret = 0; 4967 4968 if (!capable(CAP_SYS_ADMIN)) 4969 return -EPERM; 4970 4971 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4972 if (!qsa) 4973 return -ENOMEM; 4974 4975 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4976 qsa->flags = 1; 4977 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4978 } 4979 4980 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4981 ret = -EFAULT; 4982 4983 kfree(qsa); 4984 return ret; 4985 } 4986 4987 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 4988 { 4989 struct inode *inode = file_inode(file); 4990 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4991 4992 if (!capable(CAP_SYS_ADMIN)) 4993 return -EPERM; 4994 4995 return btrfs_qgroup_wait_for_completion(fs_info, true); 4996 } 4997 4998 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4999 struct btrfs_ioctl_received_subvol_args *sa) 5000 { 5001 struct inode *inode = file_inode(file); 5002 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5003 struct btrfs_root *root = BTRFS_I(inode)->root; 5004 struct btrfs_root_item *root_item = &root->root_item; 5005 struct btrfs_trans_handle *trans; 5006 struct timespec64 ct = current_time(inode); 5007 int ret = 0; 5008 int received_uuid_changed; 5009 5010 if (!inode_owner_or_capable(inode)) 5011 return -EPERM; 5012 5013 ret = mnt_want_write_file(file); 5014 if (ret < 0) 5015 return ret; 5016 5017 down_write(&fs_info->subvol_sem); 5018 5019 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5020 ret = -EINVAL; 5021 goto out; 5022 } 5023 5024 if (btrfs_root_readonly(root)) { 5025 ret = -EROFS; 5026 goto out; 5027 } 5028 5029 /* 5030 * 1 - root item 5031 * 2 - uuid items (received uuid + subvol uuid) 5032 */ 5033 trans = btrfs_start_transaction(root, 3); 5034 if (IS_ERR(trans)) { 5035 ret = PTR_ERR(trans); 5036 trans = NULL; 5037 goto out; 5038 } 5039 5040 sa->rtransid = trans->transid; 5041 sa->rtime.sec = ct.tv_sec; 5042 sa->rtime.nsec = ct.tv_nsec; 5043 5044 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5045 BTRFS_UUID_SIZE); 5046 if (received_uuid_changed && 5047 !btrfs_is_empty_uuid(root_item->received_uuid)) { 5048 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 5049 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5050 root->root_key.objectid); 5051 if (ret && ret != -ENOENT) { 5052 btrfs_abort_transaction(trans, ret); 5053 btrfs_end_transaction(trans); 5054 goto out; 5055 } 5056 } 5057 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5058 btrfs_set_root_stransid(root_item, sa->stransid); 5059 btrfs_set_root_rtransid(root_item, sa->rtransid); 5060 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5061 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5062 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5063 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5064 5065 ret = btrfs_update_root(trans, fs_info->tree_root, 5066 &root->root_key, &root->root_item); 5067 if (ret < 0) { 5068 btrfs_end_transaction(trans); 5069 goto out; 5070 } 5071 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5072 ret = btrfs_uuid_tree_add(trans, sa->uuid, 5073 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5074 root->root_key.objectid); 5075 if (ret < 0 && ret != -EEXIST) { 5076 btrfs_abort_transaction(trans, ret); 5077 btrfs_end_transaction(trans); 5078 goto out; 5079 } 5080 } 5081 ret = btrfs_commit_transaction(trans); 5082 out: 5083 up_write(&fs_info->subvol_sem); 5084 mnt_drop_write_file(file); 5085 return ret; 5086 } 5087 5088 #ifdef CONFIG_64BIT 5089 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5090 void __user *arg) 5091 { 5092 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5093 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5094 int ret = 0; 5095 5096 args32 = memdup_user(arg, sizeof(*args32)); 5097 if (IS_ERR(args32)) 5098 return PTR_ERR(args32); 5099 5100 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5101 if (!args64) { 5102 ret = -ENOMEM; 5103 goto out; 5104 } 5105 5106 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5107 args64->stransid = args32->stransid; 5108 args64->rtransid = args32->rtransid; 5109 args64->stime.sec = args32->stime.sec; 5110 args64->stime.nsec = args32->stime.nsec; 5111 args64->rtime.sec = args32->rtime.sec; 5112 args64->rtime.nsec = args32->rtime.nsec; 5113 args64->flags = args32->flags; 5114 5115 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5116 if (ret) 5117 goto out; 5118 5119 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5120 args32->stransid = args64->stransid; 5121 args32->rtransid = args64->rtransid; 5122 args32->stime.sec = args64->stime.sec; 5123 args32->stime.nsec = args64->stime.nsec; 5124 args32->rtime.sec = args64->rtime.sec; 5125 args32->rtime.nsec = args64->rtime.nsec; 5126 args32->flags = args64->flags; 5127 5128 ret = copy_to_user(arg, args32, sizeof(*args32)); 5129 if (ret) 5130 ret = -EFAULT; 5131 5132 out: 5133 kfree(args32); 5134 kfree(args64); 5135 return ret; 5136 } 5137 #endif 5138 5139 static long btrfs_ioctl_set_received_subvol(struct file *file, 5140 void __user *arg) 5141 { 5142 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5143 int ret = 0; 5144 5145 sa = memdup_user(arg, sizeof(*sa)); 5146 if (IS_ERR(sa)) 5147 return PTR_ERR(sa); 5148 5149 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5150 5151 if (ret) 5152 goto out; 5153 5154 ret = copy_to_user(arg, sa, sizeof(*sa)); 5155 if (ret) 5156 ret = -EFAULT; 5157 5158 out: 5159 kfree(sa); 5160 return ret; 5161 } 5162 5163 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5164 { 5165 struct inode *inode = file_inode(file); 5166 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5167 size_t len; 5168 int ret; 5169 char label[BTRFS_LABEL_SIZE]; 5170 5171 spin_lock(&fs_info->super_lock); 5172 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5173 spin_unlock(&fs_info->super_lock); 5174 5175 len = strnlen(label, BTRFS_LABEL_SIZE); 5176 5177 if (len == BTRFS_LABEL_SIZE) { 5178 btrfs_warn(fs_info, 5179 "label is too long, return the first %zu bytes", 5180 --len); 5181 } 5182 5183 ret = copy_to_user(arg, label, len); 5184 5185 return ret ? -EFAULT : 0; 5186 } 5187 5188 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5189 { 5190 struct inode *inode = file_inode(file); 5191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5192 struct btrfs_root *root = BTRFS_I(inode)->root; 5193 struct btrfs_super_block *super_block = fs_info->super_copy; 5194 struct btrfs_trans_handle *trans; 5195 char label[BTRFS_LABEL_SIZE]; 5196 int ret; 5197 5198 if (!capable(CAP_SYS_ADMIN)) 5199 return -EPERM; 5200 5201 if (copy_from_user(label, arg, sizeof(label))) 5202 return -EFAULT; 5203 5204 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5205 btrfs_err(fs_info, 5206 "unable to set label with more than %d bytes", 5207 BTRFS_LABEL_SIZE - 1); 5208 return -EINVAL; 5209 } 5210 5211 ret = mnt_want_write_file(file); 5212 if (ret) 5213 return ret; 5214 5215 trans = btrfs_start_transaction(root, 0); 5216 if (IS_ERR(trans)) { 5217 ret = PTR_ERR(trans); 5218 goto out_unlock; 5219 } 5220 5221 spin_lock(&fs_info->super_lock); 5222 strcpy(super_block->label, label); 5223 spin_unlock(&fs_info->super_lock); 5224 ret = btrfs_commit_transaction(trans); 5225 5226 out_unlock: 5227 mnt_drop_write_file(file); 5228 return ret; 5229 } 5230 5231 #define INIT_FEATURE_FLAGS(suffix) \ 5232 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5233 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5234 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5235 5236 int btrfs_ioctl_get_supported_features(void __user *arg) 5237 { 5238 static const struct btrfs_ioctl_feature_flags features[3] = { 5239 INIT_FEATURE_FLAGS(SUPP), 5240 INIT_FEATURE_FLAGS(SAFE_SET), 5241 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5242 }; 5243 5244 if (copy_to_user(arg, &features, sizeof(features))) 5245 return -EFAULT; 5246 5247 return 0; 5248 } 5249 5250 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5251 { 5252 struct inode *inode = file_inode(file); 5253 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5254 struct btrfs_super_block *super_block = fs_info->super_copy; 5255 struct btrfs_ioctl_feature_flags features; 5256 5257 features.compat_flags = btrfs_super_compat_flags(super_block); 5258 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5259 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5260 5261 if (copy_to_user(arg, &features, sizeof(features))) 5262 return -EFAULT; 5263 5264 return 0; 5265 } 5266 5267 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5268 enum btrfs_feature_set set, 5269 u64 change_mask, u64 flags, u64 supported_flags, 5270 u64 safe_set, u64 safe_clear) 5271 { 5272 const char *type = btrfs_feature_set_name(set); 5273 char *names; 5274 u64 disallowed, unsupported; 5275 u64 set_mask = flags & change_mask; 5276 u64 clear_mask = ~flags & change_mask; 5277 5278 unsupported = set_mask & ~supported_flags; 5279 if (unsupported) { 5280 names = btrfs_printable_features(set, unsupported); 5281 if (names) { 5282 btrfs_warn(fs_info, 5283 "this kernel does not support the %s feature bit%s", 5284 names, strchr(names, ',') ? "s" : ""); 5285 kfree(names); 5286 } else 5287 btrfs_warn(fs_info, 5288 "this kernel does not support %s bits 0x%llx", 5289 type, unsupported); 5290 return -EOPNOTSUPP; 5291 } 5292 5293 disallowed = set_mask & ~safe_set; 5294 if (disallowed) { 5295 names = btrfs_printable_features(set, disallowed); 5296 if (names) { 5297 btrfs_warn(fs_info, 5298 "can't set the %s feature bit%s while mounted", 5299 names, strchr(names, ',') ? "s" : ""); 5300 kfree(names); 5301 } else 5302 btrfs_warn(fs_info, 5303 "can't set %s bits 0x%llx while mounted", 5304 type, disallowed); 5305 return -EPERM; 5306 } 5307 5308 disallowed = clear_mask & ~safe_clear; 5309 if (disallowed) { 5310 names = btrfs_printable_features(set, disallowed); 5311 if (names) { 5312 btrfs_warn(fs_info, 5313 "can't clear the %s feature bit%s while mounted", 5314 names, strchr(names, ',') ? "s" : ""); 5315 kfree(names); 5316 } else 5317 btrfs_warn(fs_info, 5318 "can't clear %s bits 0x%llx while mounted", 5319 type, disallowed); 5320 return -EPERM; 5321 } 5322 5323 return 0; 5324 } 5325 5326 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5327 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5328 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5329 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5330 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5331 5332 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5333 { 5334 struct inode *inode = file_inode(file); 5335 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5336 struct btrfs_root *root = BTRFS_I(inode)->root; 5337 struct btrfs_super_block *super_block = fs_info->super_copy; 5338 struct btrfs_ioctl_feature_flags flags[2]; 5339 struct btrfs_trans_handle *trans; 5340 u64 newflags; 5341 int ret; 5342 5343 if (!capable(CAP_SYS_ADMIN)) 5344 return -EPERM; 5345 5346 if (copy_from_user(flags, arg, sizeof(flags))) 5347 return -EFAULT; 5348 5349 /* Nothing to do */ 5350 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5351 !flags[0].incompat_flags) 5352 return 0; 5353 5354 ret = check_feature(fs_info, flags[0].compat_flags, 5355 flags[1].compat_flags, COMPAT); 5356 if (ret) 5357 return ret; 5358 5359 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5360 flags[1].compat_ro_flags, COMPAT_RO); 5361 if (ret) 5362 return ret; 5363 5364 ret = check_feature(fs_info, flags[0].incompat_flags, 5365 flags[1].incompat_flags, INCOMPAT); 5366 if (ret) 5367 return ret; 5368 5369 ret = mnt_want_write_file(file); 5370 if (ret) 5371 return ret; 5372 5373 trans = btrfs_start_transaction(root, 0); 5374 if (IS_ERR(trans)) { 5375 ret = PTR_ERR(trans); 5376 goto out_drop_write; 5377 } 5378 5379 spin_lock(&fs_info->super_lock); 5380 newflags = btrfs_super_compat_flags(super_block); 5381 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5382 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5383 btrfs_set_super_compat_flags(super_block, newflags); 5384 5385 newflags = btrfs_super_compat_ro_flags(super_block); 5386 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5387 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5388 btrfs_set_super_compat_ro_flags(super_block, newflags); 5389 5390 newflags = btrfs_super_incompat_flags(super_block); 5391 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5392 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5393 btrfs_set_super_incompat_flags(super_block, newflags); 5394 spin_unlock(&fs_info->super_lock); 5395 5396 ret = btrfs_commit_transaction(trans); 5397 out_drop_write: 5398 mnt_drop_write_file(file); 5399 5400 return ret; 5401 } 5402 5403 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5404 { 5405 struct btrfs_ioctl_send_args *arg; 5406 int ret; 5407 5408 if (compat) { 5409 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5410 struct btrfs_ioctl_send_args_32 args32; 5411 5412 ret = copy_from_user(&args32, argp, sizeof(args32)); 5413 if (ret) 5414 return -EFAULT; 5415 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5416 if (!arg) 5417 return -ENOMEM; 5418 arg->send_fd = args32.send_fd; 5419 arg->clone_sources_count = args32.clone_sources_count; 5420 arg->clone_sources = compat_ptr(args32.clone_sources); 5421 arg->parent_root = args32.parent_root; 5422 arg->flags = args32.flags; 5423 memcpy(arg->reserved, args32.reserved, 5424 sizeof(args32.reserved)); 5425 #else 5426 return -ENOTTY; 5427 #endif 5428 } else { 5429 arg = memdup_user(argp, sizeof(*arg)); 5430 if (IS_ERR(arg)) 5431 return PTR_ERR(arg); 5432 } 5433 ret = btrfs_ioctl_send(file, arg); 5434 kfree(arg); 5435 return ret; 5436 } 5437 5438 long btrfs_ioctl(struct file *file, unsigned int 5439 cmd, unsigned long arg) 5440 { 5441 struct inode *inode = file_inode(file); 5442 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5443 struct btrfs_root *root = BTRFS_I(inode)->root; 5444 void __user *argp = (void __user *)arg; 5445 5446 switch (cmd) { 5447 case FS_IOC_GETFLAGS: 5448 return btrfs_ioctl_getflags(file, argp); 5449 case FS_IOC_SETFLAGS: 5450 return btrfs_ioctl_setflags(file, argp); 5451 case FS_IOC_GETVERSION: 5452 return btrfs_ioctl_getversion(file, argp); 5453 case FS_IOC_GETFSLABEL: 5454 return btrfs_ioctl_get_fslabel(file, argp); 5455 case FS_IOC_SETFSLABEL: 5456 return btrfs_ioctl_set_fslabel(file, argp); 5457 case FITRIM: 5458 return btrfs_ioctl_fitrim(file, argp); 5459 case BTRFS_IOC_SNAP_CREATE: 5460 return btrfs_ioctl_snap_create(file, argp, 0); 5461 case BTRFS_IOC_SNAP_CREATE_V2: 5462 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5463 case BTRFS_IOC_SUBVOL_CREATE: 5464 return btrfs_ioctl_snap_create(file, argp, 1); 5465 case BTRFS_IOC_SUBVOL_CREATE_V2: 5466 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5467 case BTRFS_IOC_SNAP_DESTROY: 5468 return btrfs_ioctl_snap_destroy(file, argp); 5469 case BTRFS_IOC_SUBVOL_GETFLAGS: 5470 return btrfs_ioctl_subvol_getflags(file, argp); 5471 case BTRFS_IOC_SUBVOL_SETFLAGS: 5472 return btrfs_ioctl_subvol_setflags(file, argp); 5473 case BTRFS_IOC_DEFAULT_SUBVOL: 5474 return btrfs_ioctl_default_subvol(file, argp); 5475 case BTRFS_IOC_DEFRAG: 5476 return btrfs_ioctl_defrag(file, NULL); 5477 case BTRFS_IOC_DEFRAG_RANGE: 5478 return btrfs_ioctl_defrag(file, argp); 5479 case BTRFS_IOC_RESIZE: 5480 return btrfs_ioctl_resize(file, argp); 5481 case BTRFS_IOC_ADD_DEV: 5482 return btrfs_ioctl_add_dev(fs_info, argp); 5483 case BTRFS_IOC_RM_DEV: 5484 return btrfs_ioctl_rm_dev(file, argp); 5485 case BTRFS_IOC_RM_DEV_V2: 5486 return btrfs_ioctl_rm_dev_v2(file, argp); 5487 case BTRFS_IOC_FS_INFO: 5488 return btrfs_ioctl_fs_info(fs_info, argp); 5489 case BTRFS_IOC_DEV_INFO: 5490 return btrfs_ioctl_dev_info(fs_info, argp); 5491 case BTRFS_IOC_BALANCE: 5492 return btrfs_ioctl_balance(file, NULL); 5493 case BTRFS_IOC_TREE_SEARCH: 5494 return btrfs_ioctl_tree_search(file, argp); 5495 case BTRFS_IOC_TREE_SEARCH_V2: 5496 return btrfs_ioctl_tree_search_v2(file, argp); 5497 case BTRFS_IOC_INO_LOOKUP: 5498 return btrfs_ioctl_ino_lookup(file, argp); 5499 case BTRFS_IOC_INO_PATHS: 5500 return btrfs_ioctl_ino_to_path(root, argp); 5501 case BTRFS_IOC_LOGICAL_INO: 5502 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5503 case BTRFS_IOC_LOGICAL_INO_V2: 5504 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5505 case BTRFS_IOC_SPACE_INFO: 5506 return btrfs_ioctl_space_info(fs_info, argp); 5507 case BTRFS_IOC_SYNC: { 5508 int ret; 5509 5510 ret = btrfs_start_delalloc_roots(fs_info, -1); 5511 if (ret) 5512 return ret; 5513 ret = btrfs_sync_fs(inode->i_sb, 1); 5514 /* 5515 * The transaction thread may want to do more work, 5516 * namely it pokes the cleaner kthread that will start 5517 * processing uncleaned subvols. 5518 */ 5519 wake_up_process(fs_info->transaction_kthread); 5520 return ret; 5521 } 5522 case BTRFS_IOC_START_SYNC: 5523 return btrfs_ioctl_start_sync(root, argp); 5524 case BTRFS_IOC_WAIT_SYNC: 5525 return btrfs_ioctl_wait_sync(fs_info, argp); 5526 case BTRFS_IOC_SCRUB: 5527 return btrfs_ioctl_scrub(file, argp); 5528 case BTRFS_IOC_SCRUB_CANCEL: 5529 return btrfs_ioctl_scrub_cancel(fs_info); 5530 case BTRFS_IOC_SCRUB_PROGRESS: 5531 return btrfs_ioctl_scrub_progress(fs_info, argp); 5532 case BTRFS_IOC_BALANCE_V2: 5533 return btrfs_ioctl_balance(file, argp); 5534 case BTRFS_IOC_BALANCE_CTL: 5535 return btrfs_ioctl_balance_ctl(fs_info, arg); 5536 case BTRFS_IOC_BALANCE_PROGRESS: 5537 return btrfs_ioctl_balance_progress(fs_info, argp); 5538 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5539 return btrfs_ioctl_set_received_subvol(file, argp); 5540 #ifdef CONFIG_64BIT 5541 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5542 return btrfs_ioctl_set_received_subvol_32(file, argp); 5543 #endif 5544 case BTRFS_IOC_SEND: 5545 return _btrfs_ioctl_send(file, argp, false); 5546 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5547 case BTRFS_IOC_SEND_32: 5548 return _btrfs_ioctl_send(file, argp, true); 5549 #endif 5550 case BTRFS_IOC_GET_DEV_STATS: 5551 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5552 case BTRFS_IOC_QUOTA_CTL: 5553 return btrfs_ioctl_quota_ctl(file, argp); 5554 case BTRFS_IOC_QGROUP_ASSIGN: 5555 return btrfs_ioctl_qgroup_assign(file, argp); 5556 case BTRFS_IOC_QGROUP_CREATE: 5557 return btrfs_ioctl_qgroup_create(file, argp); 5558 case BTRFS_IOC_QGROUP_LIMIT: 5559 return btrfs_ioctl_qgroup_limit(file, argp); 5560 case BTRFS_IOC_QUOTA_RESCAN: 5561 return btrfs_ioctl_quota_rescan(file, argp); 5562 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5563 return btrfs_ioctl_quota_rescan_status(file, argp); 5564 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5565 return btrfs_ioctl_quota_rescan_wait(file, argp); 5566 case BTRFS_IOC_DEV_REPLACE: 5567 return btrfs_ioctl_dev_replace(fs_info, argp); 5568 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5569 return btrfs_ioctl_get_supported_features(argp); 5570 case BTRFS_IOC_GET_FEATURES: 5571 return btrfs_ioctl_get_features(file, argp); 5572 case BTRFS_IOC_SET_FEATURES: 5573 return btrfs_ioctl_set_features(file, argp); 5574 case FS_IOC_FSGETXATTR: 5575 return btrfs_ioctl_fsgetxattr(file, argp); 5576 case FS_IOC_FSSETXATTR: 5577 return btrfs_ioctl_fssetxattr(file, argp); 5578 case BTRFS_IOC_GET_SUBVOL_INFO: 5579 return btrfs_ioctl_get_subvol_info(file, argp); 5580 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5581 return btrfs_ioctl_get_subvol_rootref(file, argp); 5582 case BTRFS_IOC_INO_LOOKUP_USER: 5583 return btrfs_ioctl_ino_lookup_user(file, argp); 5584 } 5585 5586 return -ENOTTY; 5587 } 5588 5589 #ifdef CONFIG_COMPAT 5590 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5591 { 5592 /* 5593 * These all access 32-bit values anyway so no further 5594 * handling is necessary. 5595 */ 5596 switch (cmd) { 5597 case FS_IOC32_GETFLAGS: 5598 cmd = FS_IOC_GETFLAGS; 5599 break; 5600 case FS_IOC32_SETFLAGS: 5601 cmd = FS_IOC_SETFLAGS; 5602 break; 5603 case FS_IOC32_GETVERSION: 5604 cmd = FS_IOC_GETVERSION; 5605 break; 5606 } 5607 5608 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5609 } 5610 #endif 5611