xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 1919b39f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "extent-tree.h"
56 #include "root-tree.h"
57 #include "defrag.h"
58 #include "dir-item.h"
59 #include "uuid-tree.h"
60 #include "ioctl.h"
61 #include "file.h"
62 #include "scrub.h"
63 #include "super.h"
64 
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67  * structures are incorrect, as the timespec structure from userspace
68  * is 4 bytes too small. We define these alternatives here to teach
69  * the kernel about the 32-bit struct packing.
70  */
71 struct btrfs_ioctl_timespec_32 {
72 	__u64 sec;
73 	__u32 nsec;
74 } __attribute__ ((__packed__));
75 
76 struct btrfs_ioctl_received_subvol_args_32 {
77 	char	uuid[BTRFS_UUID_SIZE];	/* in */
78 	__u64	stransid;		/* in */
79 	__u64	rtransid;		/* out */
80 	struct btrfs_ioctl_timespec_32 stime; /* in */
81 	struct btrfs_ioctl_timespec_32 rtime; /* out */
82 	__u64	flags;			/* in */
83 	__u64	reserved[16];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 				struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89 
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92 	__s64 send_fd;			/* in */
93 	__u64 clone_sources_count;	/* in */
94 	compat_uptr_t clone_sources;	/* in */
95 	__u64 parent_root;		/* in */
96 	__u64 flags;			/* in */
97 	__u32 version;			/* in */
98 	__u8  reserved[28];		/* in */
99 } __attribute__ ((__packed__));
100 
101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 			       struct btrfs_ioctl_send_args_32)
103 
104 struct btrfs_ioctl_encoded_io_args_32 {
105 	compat_uptr_t iov;
106 	compat_ulong_t iovcnt;
107 	__s64 offset;
108 	__u64 flags;
109 	__u64 len;
110 	__u64 unencoded_len;
111 	__u64 unencoded_offset;
112 	__u32 compression;
113 	__u32 encryption;
114 	__u8 reserved[64];
115 };
116 
117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 				       struct btrfs_ioctl_encoded_io_args_32)
119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 					struct btrfs_ioctl_encoded_io_args_32)
121 #endif
122 
123 /* Mask out flags that are inappropriate for the given type of inode. */
124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125 		unsigned int flags)
126 {
127 	if (S_ISDIR(inode->i_mode))
128 		return flags;
129 	else if (S_ISREG(inode->i_mode))
130 		return flags & ~FS_DIRSYNC_FL;
131 	else
132 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133 }
134 
135 /*
136  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137  * ioctl.
138  */
139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140 {
141 	unsigned int iflags = 0;
142 	u32 flags = binode->flags;
143 	u32 ro_flags = binode->ro_flags;
144 
145 	if (flags & BTRFS_INODE_SYNC)
146 		iflags |= FS_SYNC_FL;
147 	if (flags & BTRFS_INODE_IMMUTABLE)
148 		iflags |= FS_IMMUTABLE_FL;
149 	if (flags & BTRFS_INODE_APPEND)
150 		iflags |= FS_APPEND_FL;
151 	if (flags & BTRFS_INODE_NODUMP)
152 		iflags |= FS_NODUMP_FL;
153 	if (flags & BTRFS_INODE_NOATIME)
154 		iflags |= FS_NOATIME_FL;
155 	if (flags & BTRFS_INODE_DIRSYNC)
156 		iflags |= FS_DIRSYNC_FL;
157 	if (flags & BTRFS_INODE_NODATACOW)
158 		iflags |= FS_NOCOW_FL;
159 	if (ro_flags & BTRFS_INODE_RO_VERITY)
160 		iflags |= FS_VERITY_FL;
161 
162 	if (flags & BTRFS_INODE_NOCOMPRESS)
163 		iflags |= FS_NOCOMP_FL;
164 	else if (flags & BTRFS_INODE_COMPRESS)
165 		iflags |= FS_COMPR_FL;
166 
167 	return iflags;
168 }
169 
170 /*
171  * Update inode->i_flags based on the btrfs internal flags.
172  */
173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174 {
175 	struct btrfs_inode *binode = BTRFS_I(inode);
176 	unsigned int new_fl = 0;
177 
178 	if (binode->flags & BTRFS_INODE_SYNC)
179 		new_fl |= S_SYNC;
180 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 		new_fl |= S_IMMUTABLE;
182 	if (binode->flags & BTRFS_INODE_APPEND)
183 		new_fl |= S_APPEND;
184 	if (binode->flags & BTRFS_INODE_NOATIME)
185 		new_fl |= S_NOATIME;
186 	if (binode->flags & BTRFS_INODE_DIRSYNC)
187 		new_fl |= S_DIRSYNC;
188 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189 		new_fl |= S_VERITY;
190 
191 	set_mask_bits(&inode->i_flags,
192 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 		      S_VERITY, new_fl);
194 }
195 
196 /*
197  * Check if @flags are a supported and valid set of FS_*_FL flags and that
198  * the old and new flags are not conflicting
199  */
200 static int check_fsflags(unsigned int old_flags, unsigned int flags)
201 {
202 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 		      FS_NOATIME_FL | FS_NODUMP_FL | \
204 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
205 		      FS_NOCOMP_FL | FS_COMPR_FL |
206 		      FS_NOCOW_FL))
207 		return -EOPNOTSUPP;
208 
209 	/* COMPR and NOCOMP on new/old are valid */
210 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 		return -EINVAL;
212 
213 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214 		return -EINVAL;
215 
216 	/* NOCOW and compression options are mutually exclusive */
217 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218 		return -EINVAL;
219 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220 		return -EINVAL;
221 
222 	return 0;
223 }
224 
225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226 				    unsigned int flags)
227 {
228 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229 		return -EPERM;
230 
231 	return 0;
232 }
233 
234 /*
235  * Set flags/xflags from the internal inode flags. The remaining items of
236  * fsxattr are zeroed.
237  */
238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239 {
240 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
241 
242 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
243 	return 0;
244 }
245 
246 int btrfs_fileattr_set(struct mnt_idmap *idmap,
247 		       struct dentry *dentry, struct fileattr *fa)
248 {
249 	struct inode *inode = d_inode(dentry);
250 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251 	struct btrfs_inode *binode = BTRFS_I(inode);
252 	struct btrfs_root *root = binode->root;
253 	struct btrfs_trans_handle *trans;
254 	unsigned int fsflags, old_fsflags;
255 	int ret;
256 	const char *comp = NULL;
257 	u32 binode_flags;
258 
259 	if (btrfs_root_readonly(root))
260 		return -EROFS;
261 
262 	if (fileattr_has_fsx(fa))
263 		return -EOPNOTSUPP;
264 
265 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 	ret = check_fsflags(old_fsflags, fsflags);
268 	if (ret)
269 		return ret;
270 
271 	ret = check_fsflags_compatible(fs_info, fsflags);
272 	if (ret)
273 		return ret;
274 
275 	binode_flags = binode->flags;
276 	if (fsflags & FS_SYNC_FL)
277 		binode_flags |= BTRFS_INODE_SYNC;
278 	else
279 		binode_flags &= ~BTRFS_INODE_SYNC;
280 	if (fsflags & FS_IMMUTABLE_FL)
281 		binode_flags |= BTRFS_INODE_IMMUTABLE;
282 	else
283 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 	if (fsflags & FS_APPEND_FL)
285 		binode_flags |= BTRFS_INODE_APPEND;
286 	else
287 		binode_flags &= ~BTRFS_INODE_APPEND;
288 	if (fsflags & FS_NODUMP_FL)
289 		binode_flags |= BTRFS_INODE_NODUMP;
290 	else
291 		binode_flags &= ~BTRFS_INODE_NODUMP;
292 	if (fsflags & FS_NOATIME_FL)
293 		binode_flags |= BTRFS_INODE_NOATIME;
294 	else
295 		binode_flags &= ~BTRFS_INODE_NOATIME;
296 
297 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 	if (!fa->flags_valid) {
299 		/* 1 item for the inode */
300 		trans = btrfs_start_transaction(root, 1);
301 		if (IS_ERR(trans))
302 			return PTR_ERR(trans);
303 		goto update_flags;
304 	}
305 
306 	if (fsflags & FS_DIRSYNC_FL)
307 		binode_flags |= BTRFS_INODE_DIRSYNC;
308 	else
309 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 	if (fsflags & FS_NOCOW_FL) {
311 		if (S_ISREG(inode->i_mode)) {
312 			/*
313 			 * It's safe to turn csums off here, no extents exist.
314 			 * Otherwise we want the flag to reflect the real COW
315 			 * status of the file and will not set it.
316 			 */
317 			if (inode->i_size == 0)
318 				binode_flags |= BTRFS_INODE_NODATACOW |
319 						BTRFS_INODE_NODATASUM;
320 		} else {
321 			binode_flags |= BTRFS_INODE_NODATACOW;
322 		}
323 	} else {
324 		/*
325 		 * Revert back under same assumptions as above
326 		 */
327 		if (S_ISREG(inode->i_mode)) {
328 			if (inode->i_size == 0)
329 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 						  BTRFS_INODE_NODATASUM);
331 		} else {
332 			binode_flags &= ~BTRFS_INODE_NODATACOW;
333 		}
334 	}
335 
336 	/*
337 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 	 * flag may be changed automatically if compression code won't make
339 	 * things smaller.
340 	 */
341 	if (fsflags & FS_NOCOMP_FL) {
342 		binode_flags &= ~BTRFS_INODE_COMPRESS;
343 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 	} else if (fsflags & FS_COMPR_FL) {
345 
346 		if (IS_SWAPFILE(inode))
347 			return -ETXTBSY;
348 
349 		binode_flags |= BTRFS_INODE_COMPRESS;
350 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351 
352 		comp = btrfs_compress_type2str(fs_info->compress_type);
353 		if (!comp || comp[0] == 0)
354 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
355 	} else {
356 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357 	}
358 
359 	/*
360 	 * 1 for inode item
361 	 * 2 for properties
362 	 */
363 	trans = btrfs_start_transaction(root, 3);
364 	if (IS_ERR(trans))
365 		return PTR_ERR(trans);
366 
367 	if (comp) {
368 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
369 				     strlen(comp), 0);
370 		if (ret) {
371 			btrfs_abort_transaction(trans, ret);
372 			goto out_end_trans;
373 		}
374 	} else {
375 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
376 				     0, 0);
377 		if (ret && ret != -ENODATA) {
378 			btrfs_abort_transaction(trans, ret);
379 			goto out_end_trans;
380 		}
381 	}
382 
383 update_flags:
384 	binode->flags = binode_flags;
385 	btrfs_sync_inode_flags_to_i_flags(inode);
386 	inode_inc_iversion(inode);
387 	inode->i_ctime = current_time(inode);
388 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
389 
390  out_end_trans:
391 	btrfs_end_transaction(trans);
392 	return ret;
393 }
394 
395 /*
396  * Start exclusive operation @type, return true on success
397  */
398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 			enum btrfs_exclusive_operation type)
400 {
401 	bool ret = false;
402 
403 	spin_lock(&fs_info->super_lock);
404 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 		fs_info->exclusive_operation = type;
406 		ret = true;
407 	}
408 	spin_unlock(&fs_info->super_lock);
409 
410 	return ret;
411 }
412 
413 /*
414  * Conditionally allow to enter the exclusive operation in case it's compatible
415  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
416  * btrfs_exclop_finish.
417  *
418  * Compatibility:
419  * - the same type is already running
420  * - when trying to add a device and balance has been paused
421  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422  *   must check the condition first that would allow none -> @type
423  */
424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 				 enum btrfs_exclusive_operation type)
426 {
427 	spin_lock(&fs_info->super_lock);
428 	if (fs_info->exclusive_operation == type ||
429 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 	     type == BTRFS_EXCLOP_DEV_ADD))
431 		return true;
432 
433 	spin_unlock(&fs_info->super_lock);
434 	return false;
435 }
436 
437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438 {
439 	spin_unlock(&fs_info->super_lock);
440 }
441 
442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443 {
444 	spin_lock(&fs_info->super_lock);
445 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 	spin_unlock(&fs_info->super_lock);
447 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
448 }
449 
450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 			  enum btrfs_exclusive_operation op)
452 {
453 	switch (op) {
454 	case BTRFS_EXCLOP_BALANCE_PAUSED:
455 		spin_lock(&fs_info->super_lock);
456 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
458 		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
459 		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
460 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
461 		spin_unlock(&fs_info->super_lock);
462 		break;
463 	case BTRFS_EXCLOP_BALANCE:
464 		spin_lock(&fs_info->super_lock);
465 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
466 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
467 		spin_unlock(&fs_info->super_lock);
468 		break;
469 	default:
470 		btrfs_warn(fs_info,
471 			"invalid exclop balance operation %d requested", op);
472 	}
473 }
474 
475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
476 {
477 	return put_user(inode->i_generation, arg);
478 }
479 
480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
481 					void __user *arg)
482 {
483 	struct btrfs_device *device;
484 	struct fstrim_range range;
485 	u64 minlen = ULLONG_MAX;
486 	u64 num_devices = 0;
487 	int ret;
488 
489 	if (!capable(CAP_SYS_ADMIN))
490 		return -EPERM;
491 
492 	/*
493 	 * btrfs_trim_block_group() depends on space cache, which is not
494 	 * available in zoned filesystem. So, disallow fitrim on a zoned
495 	 * filesystem for now.
496 	 */
497 	if (btrfs_is_zoned(fs_info))
498 		return -EOPNOTSUPP;
499 
500 	/*
501 	 * If the fs is mounted with nologreplay, which requires it to be
502 	 * mounted in RO mode as well, we can not allow discard on free space
503 	 * inside block groups, because log trees refer to extents that are not
504 	 * pinned in a block group's free space cache (pinning the extents is
505 	 * precisely the first phase of replaying a log tree).
506 	 */
507 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
508 		return -EROFS;
509 
510 	rcu_read_lock();
511 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
512 				dev_list) {
513 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
514 			continue;
515 		num_devices++;
516 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
517 				    minlen);
518 	}
519 	rcu_read_unlock();
520 
521 	if (!num_devices)
522 		return -EOPNOTSUPP;
523 	if (copy_from_user(&range, arg, sizeof(range)))
524 		return -EFAULT;
525 
526 	/*
527 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
528 	 * block group is in the logical address space, which can be any
529 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
530 	 */
531 	if (range.len < fs_info->sb->s_blocksize)
532 		return -EINVAL;
533 
534 	range.minlen = max(range.minlen, minlen);
535 	ret = btrfs_trim_fs(fs_info, &range);
536 	if (ret < 0)
537 		return ret;
538 
539 	if (copy_to_user(arg, &range, sizeof(range)))
540 		return -EFAULT;
541 
542 	return 0;
543 }
544 
545 int __pure btrfs_is_empty_uuid(u8 *uuid)
546 {
547 	int i;
548 
549 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
550 		if (uuid[i])
551 			return 0;
552 	}
553 	return 1;
554 }
555 
556 /*
557  * Calculate the number of transaction items to reserve for creating a subvolume
558  * or snapshot, not including the inode, directory entries, or parent directory.
559  */
560 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
561 {
562 	/*
563 	 * 1 to add root block
564 	 * 1 to add root item
565 	 * 1 to add root ref
566 	 * 1 to add root backref
567 	 * 1 to add UUID item
568 	 * 1 to add qgroup info
569 	 * 1 to add qgroup limit
570 	 *
571 	 * Ideally the last two would only be accounted if qgroups are enabled,
572 	 * but that can change between now and the time we would insert them.
573 	 */
574 	unsigned int num_items = 7;
575 
576 	if (inherit) {
577 		/* 2 to add qgroup relations for each inherited qgroup */
578 		num_items += 2 * inherit->num_qgroups;
579 	}
580 	return num_items;
581 }
582 
583 static noinline int create_subvol(struct mnt_idmap *idmap,
584 				  struct inode *dir, struct dentry *dentry,
585 				  struct btrfs_qgroup_inherit *inherit)
586 {
587 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
588 	struct btrfs_trans_handle *trans;
589 	struct btrfs_key key;
590 	struct btrfs_root_item *root_item;
591 	struct btrfs_inode_item *inode_item;
592 	struct extent_buffer *leaf;
593 	struct btrfs_root *root = BTRFS_I(dir)->root;
594 	struct btrfs_root *new_root;
595 	struct btrfs_block_rsv block_rsv;
596 	struct timespec64 cur_time = current_time(dir);
597 	struct btrfs_new_inode_args new_inode_args = {
598 		.dir = dir,
599 		.dentry = dentry,
600 		.subvol = true,
601 	};
602 	unsigned int trans_num_items;
603 	int ret;
604 	dev_t anon_dev;
605 	u64 objectid;
606 
607 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
608 	if (!root_item)
609 		return -ENOMEM;
610 
611 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
612 	if (ret)
613 		goto out_root_item;
614 
615 	/*
616 	 * Don't create subvolume whose level is not zero. Or qgroup will be
617 	 * screwed up since it assumes subvolume qgroup's level to be 0.
618 	 */
619 	if (btrfs_qgroup_level(objectid)) {
620 		ret = -ENOSPC;
621 		goto out_root_item;
622 	}
623 
624 	ret = get_anon_bdev(&anon_dev);
625 	if (ret < 0)
626 		goto out_root_item;
627 
628 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
629 	if (!new_inode_args.inode) {
630 		ret = -ENOMEM;
631 		goto out_anon_dev;
632 	}
633 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
634 	if (ret)
635 		goto out_inode;
636 	trans_num_items += create_subvol_num_items(inherit);
637 
638 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
639 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
640 					       trans_num_items, false);
641 	if (ret)
642 		goto out_new_inode_args;
643 
644 	trans = btrfs_start_transaction(root, 0);
645 	if (IS_ERR(trans)) {
646 		ret = PTR_ERR(trans);
647 		btrfs_subvolume_release_metadata(root, &block_rsv);
648 		goto out_new_inode_args;
649 	}
650 	trans->block_rsv = &block_rsv;
651 	trans->bytes_reserved = block_rsv.size;
652 
653 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
654 	if (ret)
655 		goto out;
656 
657 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
658 				      BTRFS_NESTING_NORMAL);
659 	if (IS_ERR(leaf)) {
660 		ret = PTR_ERR(leaf);
661 		goto out;
662 	}
663 
664 	btrfs_mark_buffer_dirty(leaf);
665 
666 	inode_item = &root_item->inode;
667 	btrfs_set_stack_inode_generation(inode_item, 1);
668 	btrfs_set_stack_inode_size(inode_item, 3);
669 	btrfs_set_stack_inode_nlink(inode_item, 1);
670 	btrfs_set_stack_inode_nbytes(inode_item,
671 				     fs_info->nodesize);
672 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
673 
674 	btrfs_set_root_flags(root_item, 0);
675 	btrfs_set_root_limit(root_item, 0);
676 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
677 
678 	btrfs_set_root_bytenr(root_item, leaf->start);
679 	btrfs_set_root_generation(root_item, trans->transid);
680 	btrfs_set_root_level(root_item, 0);
681 	btrfs_set_root_refs(root_item, 1);
682 	btrfs_set_root_used(root_item, leaf->len);
683 	btrfs_set_root_last_snapshot(root_item, 0);
684 
685 	btrfs_set_root_generation_v2(root_item,
686 			btrfs_root_generation(root_item));
687 	generate_random_guid(root_item->uuid);
688 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
689 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
690 	root_item->ctime = root_item->otime;
691 	btrfs_set_root_ctransid(root_item, trans->transid);
692 	btrfs_set_root_otransid(root_item, trans->transid);
693 
694 	btrfs_tree_unlock(leaf);
695 
696 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
697 
698 	key.objectid = objectid;
699 	key.offset = 0;
700 	key.type = BTRFS_ROOT_ITEM_KEY;
701 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
702 				root_item);
703 	if (ret) {
704 		/*
705 		 * Since we don't abort the transaction in this case, free the
706 		 * tree block so that we don't leak space and leave the
707 		 * filesystem in an inconsistent state (an extent item in the
708 		 * extent tree with a backreference for a root that does not
709 		 * exists).
710 		 */
711 		btrfs_tree_lock(leaf);
712 		btrfs_clear_buffer_dirty(trans, leaf);
713 		btrfs_tree_unlock(leaf);
714 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
715 		free_extent_buffer(leaf);
716 		goto out;
717 	}
718 
719 	free_extent_buffer(leaf);
720 	leaf = NULL;
721 
722 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
723 	if (IS_ERR(new_root)) {
724 		ret = PTR_ERR(new_root);
725 		btrfs_abort_transaction(trans, ret);
726 		goto out;
727 	}
728 	/* anon_dev is owned by new_root now. */
729 	anon_dev = 0;
730 	BTRFS_I(new_inode_args.inode)->root = new_root;
731 	/* ... and new_root is owned by new_inode_args.inode now. */
732 
733 	ret = btrfs_record_root_in_trans(trans, new_root);
734 	if (ret) {
735 		btrfs_abort_transaction(trans, ret);
736 		goto out;
737 	}
738 
739 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
740 				  BTRFS_UUID_KEY_SUBVOL, objectid);
741 	if (ret) {
742 		btrfs_abort_transaction(trans, ret);
743 		goto out;
744 	}
745 
746 	ret = btrfs_create_new_inode(trans, &new_inode_args);
747 	if (ret) {
748 		btrfs_abort_transaction(trans, ret);
749 		goto out;
750 	}
751 
752 	d_instantiate_new(dentry, new_inode_args.inode);
753 	new_inode_args.inode = NULL;
754 
755 out:
756 	trans->block_rsv = NULL;
757 	trans->bytes_reserved = 0;
758 	btrfs_subvolume_release_metadata(root, &block_rsv);
759 
760 	if (ret)
761 		btrfs_end_transaction(trans);
762 	else
763 		ret = btrfs_commit_transaction(trans);
764 out_new_inode_args:
765 	btrfs_new_inode_args_destroy(&new_inode_args);
766 out_inode:
767 	iput(new_inode_args.inode);
768 out_anon_dev:
769 	if (anon_dev)
770 		free_anon_bdev(anon_dev);
771 out_root_item:
772 	kfree(root_item);
773 	return ret;
774 }
775 
776 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
777 			   struct dentry *dentry, bool readonly,
778 			   struct btrfs_qgroup_inherit *inherit)
779 {
780 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
781 	struct inode *inode;
782 	struct btrfs_pending_snapshot *pending_snapshot;
783 	unsigned int trans_num_items;
784 	struct btrfs_trans_handle *trans;
785 	int ret;
786 
787 	/* We do not support snapshotting right now. */
788 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
789 		btrfs_warn(fs_info,
790 			   "extent tree v2 doesn't support snapshotting yet");
791 		return -EOPNOTSUPP;
792 	}
793 
794 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
795 		return -EINVAL;
796 
797 	if (atomic_read(&root->nr_swapfiles)) {
798 		btrfs_warn(fs_info,
799 			   "cannot snapshot subvolume with active swapfile");
800 		return -ETXTBSY;
801 	}
802 
803 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
804 	if (!pending_snapshot)
805 		return -ENOMEM;
806 
807 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
808 	if (ret < 0)
809 		goto free_pending;
810 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
811 			GFP_KERNEL);
812 	pending_snapshot->path = btrfs_alloc_path();
813 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
814 		ret = -ENOMEM;
815 		goto free_pending;
816 	}
817 
818 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
819 			     BTRFS_BLOCK_RSV_TEMP);
820 	/*
821 	 * 1 to add dir item
822 	 * 1 to add dir index
823 	 * 1 to update parent inode item
824 	 */
825 	trans_num_items = create_subvol_num_items(inherit) + 3;
826 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
827 					       &pending_snapshot->block_rsv,
828 					       trans_num_items, false);
829 	if (ret)
830 		goto free_pending;
831 
832 	pending_snapshot->dentry = dentry;
833 	pending_snapshot->root = root;
834 	pending_snapshot->readonly = readonly;
835 	pending_snapshot->dir = dir;
836 	pending_snapshot->inherit = inherit;
837 
838 	trans = btrfs_start_transaction(root, 0);
839 	if (IS_ERR(trans)) {
840 		ret = PTR_ERR(trans);
841 		goto fail;
842 	}
843 
844 	trans->pending_snapshot = pending_snapshot;
845 
846 	ret = btrfs_commit_transaction(trans);
847 	if (ret)
848 		goto fail;
849 
850 	ret = pending_snapshot->error;
851 	if (ret)
852 		goto fail;
853 
854 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
855 	if (ret)
856 		goto fail;
857 
858 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
859 	if (IS_ERR(inode)) {
860 		ret = PTR_ERR(inode);
861 		goto fail;
862 	}
863 
864 	d_instantiate(dentry, inode);
865 	ret = 0;
866 	pending_snapshot->anon_dev = 0;
867 fail:
868 	/* Prevent double freeing of anon_dev */
869 	if (ret && pending_snapshot->snap)
870 		pending_snapshot->snap->anon_dev = 0;
871 	btrfs_put_root(pending_snapshot->snap);
872 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
873 free_pending:
874 	if (pending_snapshot->anon_dev)
875 		free_anon_bdev(pending_snapshot->anon_dev);
876 	kfree(pending_snapshot->root_item);
877 	btrfs_free_path(pending_snapshot->path);
878 	kfree(pending_snapshot);
879 
880 	return ret;
881 }
882 
883 /*  copy of may_delete in fs/namei.c()
884  *	Check whether we can remove a link victim from directory dir, check
885  *  whether the type of victim is right.
886  *  1. We can't do it if dir is read-only (done in permission())
887  *  2. We should have write and exec permissions on dir
888  *  3. We can't remove anything from append-only dir
889  *  4. We can't do anything with immutable dir (done in permission())
890  *  5. If the sticky bit on dir is set we should either
891  *	a. be owner of dir, or
892  *	b. be owner of victim, or
893  *	c. have CAP_FOWNER capability
894  *  6. If the victim is append-only or immutable we can't do anything with
895  *     links pointing to it.
896  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
897  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
898  *  9. We can't remove a root or mountpoint.
899  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
900  *     nfs_async_unlink().
901  */
902 
903 static int btrfs_may_delete(struct mnt_idmap *idmap,
904 			    struct inode *dir, struct dentry *victim, int isdir)
905 {
906 	int error;
907 
908 	if (d_really_is_negative(victim))
909 		return -ENOENT;
910 
911 	BUG_ON(d_inode(victim->d_parent) != dir);
912 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
913 
914 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
915 	if (error)
916 		return error;
917 	if (IS_APPEND(dir))
918 		return -EPERM;
919 	if (check_sticky(idmap, dir, d_inode(victim)) ||
920 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
921 	    IS_SWAPFILE(d_inode(victim)))
922 		return -EPERM;
923 	if (isdir) {
924 		if (!d_is_dir(victim))
925 			return -ENOTDIR;
926 		if (IS_ROOT(victim))
927 			return -EBUSY;
928 	} else if (d_is_dir(victim))
929 		return -EISDIR;
930 	if (IS_DEADDIR(dir))
931 		return -ENOENT;
932 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
933 		return -EBUSY;
934 	return 0;
935 }
936 
937 /* copy of may_create in fs/namei.c() */
938 static inline int btrfs_may_create(struct mnt_idmap *idmap,
939 				   struct inode *dir, struct dentry *child)
940 {
941 	if (d_really_is_positive(child))
942 		return -EEXIST;
943 	if (IS_DEADDIR(dir))
944 		return -ENOENT;
945 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
946 		return -EOVERFLOW;
947 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
948 }
949 
950 /*
951  * Create a new subvolume below @parent.  This is largely modeled after
952  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
953  * inside this filesystem so it's quite a bit simpler.
954  */
955 static noinline int btrfs_mksubvol(const struct path *parent,
956 				   struct mnt_idmap *idmap,
957 				   const char *name, int namelen,
958 				   struct btrfs_root *snap_src,
959 				   bool readonly,
960 				   struct btrfs_qgroup_inherit *inherit)
961 {
962 	struct inode *dir = d_inode(parent->dentry);
963 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
964 	struct dentry *dentry;
965 	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
966 	int error;
967 
968 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
969 	if (error == -EINTR)
970 		return error;
971 
972 	dentry = lookup_one(idmap, name, parent->dentry, namelen);
973 	error = PTR_ERR(dentry);
974 	if (IS_ERR(dentry))
975 		goto out_unlock;
976 
977 	error = btrfs_may_create(idmap, dir, dentry);
978 	if (error)
979 		goto out_dput;
980 
981 	/*
982 	 * even if this name doesn't exist, we may get hash collisions.
983 	 * check for them now when we can safely fail
984 	 */
985 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
986 					       dir->i_ino, &name_str);
987 	if (error)
988 		goto out_dput;
989 
990 	down_read(&fs_info->subvol_sem);
991 
992 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
993 		goto out_up_read;
994 
995 	if (snap_src)
996 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
997 	else
998 		error = create_subvol(idmap, dir, dentry, inherit);
999 
1000 	if (!error)
1001 		fsnotify_mkdir(dir, dentry);
1002 out_up_read:
1003 	up_read(&fs_info->subvol_sem);
1004 out_dput:
1005 	dput(dentry);
1006 out_unlock:
1007 	btrfs_inode_unlock(BTRFS_I(dir), 0);
1008 	return error;
1009 }
1010 
1011 static noinline int btrfs_mksnapshot(const struct path *parent,
1012 				   struct mnt_idmap *idmap,
1013 				   const char *name, int namelen,
1014 				   struct btrfs_root *root,
1015 				   bool readonly,
1016 				   struct btrfs_qgroup_inherit *inherit)
1017 {
1018 	int ret;
1019 	bool snapshot_force_cow = false;
1020 
1021 	/*
1022 	 * Force new buffered writes to reserve space even when NOCOW is
1023 	 * possible. This is to avoid later writeback (running dealloc) to
1024 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1025 	 */
1026 	btrfs_drew_read_lock(&root->snapshot_lock);
1027 
1028 	ret = btrfs_start_delalloc_snapshot(root, false);
1029 	if (ret)
1030 		goto out;
1031 
1032 	/*
1033 	 * All previous writes have started writeback in NOCOW mode, so now
1034 	 * we force future writes to fallback to COW mode during snapshot
1035 	 * creation.
1036 	 */
1037 	atomic_inc(&root->snapshot_force_cow);
1038 	snapshot_force_cow = true;
1039 
1040 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1041 
1042 	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1043 			     root, readonly, inherit);
1044 out:
1045 	if (snapshot_force_cow)
1046 		atomic_dec(&root->snapshot_force_cow);
1047 	btrfs_drew_read_unlock(&root->snapshot_lock);
1048 	return ret;
1049 }
1050 
1051 /*
1052  * Try to start exclusive operation @type or cancel it if it's running.
1053  *
1054  * Return:
1055  *   0        - normal mode, newly claimed op started
1056  *  >0        - normal mode, something else is running,
1057  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1058  * ECANCELED  - cancel mode, successful cancel
1059  * ENOTCONN   - cancel mode, operation not running anymore
1060  */
1061 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1062 			enum btrfs_exclusive_operation type, bool cancel)
1063 {
1064 	if (!cancel) {
1065 		/* Start normal op */
1066 		if (!btrfs_exclop_start(fs_info, type))
1067 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1068 		/* Exclusive operation is now claimed */
1069 		return 0;
1070 	}
1071 
1072 	/* Cancel running op */
1073 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1074 		/*
1075 		 * This blocks any exclop finish from setting it to NONE, so we
1076 		 * request cancellation. Either it runs and we will wait for it,
1077 		 * or it has finished and no waiting will happen.
1078 		 */
1079 		atomic_inc(&fs_info->reloc_cancel_req);
1080 		btrfs_exclop_start_unlock(fs_info);
1081 
1082 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1083 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1084 				    TASK_INTERRUPTIBLE);
1085 
1086 		return -ECANCELED;
1087 	}
1088 
1089 	/* Something else is running or none */
1090 	return -ENOTCONN;
1091 }
1092 
1093 static noinline int btrfs_ioctl_resize(struct file *file,
1094 					void __user *arg)
1095 {
1096 	BTRFS_DEV_LOOKUP_ARGS(args);
1097 	struct inode *inode = file_inode(file);
1098 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1099 	u64 new_size;
1100 	u64 old_size;
1101 	u64 devid = 1;
1102 	struct btrfs_root *root = BTRFS_I(inode)->root;
1103 	struct btrfs_ioctl_vol_args *vol_args;
1104 	struct btrfs_trans_handle *trans;
1105 	struct btrfs_device *device = NULL;
1106 	char *sizestr;
1107 	char *retptr;
1108 	char *devstr = NULL;
1109 	int ret = 0;
1110 	int mod = 0;
1111 	bool cancel;
1112 
1113 	if (!capable(CAP_SYS_ADMIN))
1114 		return -EPERM;
1115 
1116 	ret = mnt_want_write_file(file);
1117 	if (ret)
1118 		return ret;
1119 
1120 	/*
1121 	 * Read the arguments before checking exclusivity to be able to
1122 	 * distinguish regular resize and cancel
1123 	 */
1124 	vol_args = memdup_user(arg, sizeof(*vol_args));
1125 	if (IS_ERR(vol_args)) {
1126 		ret = PTR_ERR(vol_args);
1127 		goto out_drop;
1128 	}
1129 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1130 	sizestr = vol_args->name;
1131 	cancel = (strcmp("cancel", sizestr) == 0);
1132 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1133 	if (ret)
1134 		goto out_free;
1135 	/* Exclusive operation is now claimed */
1136 
1137 	devstr = strchr(sizestr, ':');
1138 	if (devstr) {
1139 		sizestr = devstr + 1;
1140 		*devstr = '\0';
1141 		devstr = vol_args->name;
1142 		ret = kstrtoull(devstr, 10, &devid);
1143 		if (ret)
1144 			goto out_finish;
1145 		if (!devid) {
1146 			ret = -EINVAL;
1147 			goto out_finish;
1148 		}
1149 		btrfs_info(fs_info, "resizing devid %llu", devid);
1150 	}
1151 
1152 	args.devid = devid;
1153 	device = btrfs_find_device(fs_info->fs_devices, &args);
1154 	if (!device) {
1155 		btrfs_info(fs_info, "resizer unable to find device %llu",
1156 			   devid);
1157 		ret = -ENODEV;
1158 		goto out_finish;
1159 	}
1160 
1161 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1162 		btrfs_info(fs_info,
1163 			   "resizer unable to apply on readonly device %llu",
1164 		       devid);
1165 		ret = -EPERM;
1166 		goto out_finish;
1167 	}
1168 
1169 	if (!strcmp(sizestr, "max"))
1170 		new_size = bdev_nr_bytes(device->bdev);
1171 	else {
1172 		if (sizestr[0] == '-') {
1173 			mod = -1;
1174 			sizestr++;
1175 		} else if (sizestr[0] == '+') {
1176 			mod = 1;
1177 			sizestr++;
1178 		}
1179 		new_size = memparse(sizestr, &retptr);
1180 		if (*retptr != '\0' || new_size == 0) {
1181 			ret = -EINVAL;
1182 			goto out_finish;
1183 		}
1184 	}
1185 
1186 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1187 		ret = -EPERM;
1188 		goto out_finish;
1189 	}
1190 
1191 	old_size = btrfs_device_get_total_bytes(device);
1192 
1193 	if (mod < 0) {
1194 		if (new_size > old_size) {
1195 			ret = -EINVAL;
1196 			goto out_finish;
1197 		}
1198 		new_size = old_size - new_size;
1199 	} else if (mod > 0) {
1200 		if (new_size > ULLONG_MAX - old_size) {
1201 			ret = -ERANGE;
1202 			goto out_finish;
1203 		}
1204 		new_size = old_size + new_size;
1205 	}
1206 
1207 	if (new_size < SZ_256M) {
1208 		ret = -EINVAL;
1209 		goto out_finish;
1210 	}
1211 	if (new_size > bdev_nr_bytes(device->bdev)) {
1212 		ret = -EFBIG;
1213 		goto out_finish;
1214 	}
1215 
1216 	new_size = round_down(new_size, fs_info->sectorsize);
1217 
1218 	if (new_size > old_size) {
1219 		trans = btrfs_start_transaction(root, 0);
1220 		if (IS_ERR(trans)) {
1221 			ret = PTR_ERR(trans);
1222 			goto out_finish;
1223 		}
1224 		ret = btrfs_grow_device(trans, device, new_size);
1225 		btrfs_commit_transaction(trans);
1226 	} else if (new_size < old_size) {
1227 		ret = btrfs_shrink_device(device, new_size);
1228 	} /* equal, nothing need to do */
1229 
1230 	if (ret == 0 && new_size != old_size)
1231 		btrfs_info_in_rcu(fs_info,
1232 			"resize device %s (devid %llu) from %llu to %llu",
1233 			btrfs_dev_name(device), device->devid,
1234 			old_size, new_size);
1235 out_finish:
1236 	btrfs_exclop_finish(fs_info);
1237 out_free:
1238 	kfree(vol_args);
1239 out_drop:
1240 	mnt_drop_write_file(file);
1241 	return ret;
1242 }
1243 
1244 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1245 				struct mnt_idmap *idmap,
1246 				const char *name, unsigned long fd, int subvol,
1247 				bool readonly,
1248 				struct btrfs_qgroup_inherit *inherit)
1249 {
1250 	int namelen;
1251 	int ret = 0;
1252 
1253 	if (!S_ISDIR(file_inode(file)->i_mode))
1254 		return -ENOTDIR;
1255 
1256 	ret = mnt_want_write_file(file);
1257 	if (ret)
1258 		goto out;
1259 
1260 	namelen = strlen(name);
1261 	if (strchr(name, '/')) {
1262 		ret = -EINVAL;
1263 		goto out_drop_write;
1264 	}
1265 
1266 	if (name[0] == '.' &&
1267 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1268 		ret = -EEXIST;
1269 		goto out_drop_write;
1270 	}
1271 
1272 	if (subvol) {
1273 		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1274 				     namelen, NULL, readonly, inherit);
1275 	} else {
1276 		struct fd src = fdget(fd);
1277 		struct inode *src_inode;
1278 		if (!src.file) {
1279 			ret = -EINVAL;
1280 			goto out_drop_write;
1281 		}
1282 
1283 		src_inode = file_inode(src.file);
1284 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1285 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1286 				   "Snapshot src from another FS");
1287 			ret = -EXDEV;
1288 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1289 			/*
1290 			 * Subvolume creation is not restricted, but snapshots
1291 			 * are limited to own subvolumes only
1292 			 */
1293 			ret = -EPERM;
1294 		} else {
1295 			ret = btrfs_mksnapshot(&file->f_path, idmap,
1296 					       name, namelen,
1297 					       BTRFS_I(src_inode)->root,
1298 					       readonly, inherit);
1299 		}
1300 		fdput(src);
1301 	}
1302 out_drop_write:
1303 	mnt_drop_write_file(file);
1304 out:
1305 	return ret;
1306 }
1307 
1308 static noinline int btrfs_ioctl_snap_create(struct file *file,
1309 					    void __user *arg, int subvol)
1310 {
1311 	struct btrfs_ioctl_vol_args *vol_args;
1312 	int ret;
1313 
1314 	if (!S_ISDIR(file_inode(file)->i_mode))
1315 		return -ENOTDIR;
1316 
1317 	vol_args = memdup_user(arg, sizeof(*vol_args));
1318 	if (IS_ERR(vol_args))
1319 		return PTR_ERR(vol_args);
1320 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1321 
1322 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1323 					vol_args->name, vol_args->fd, subvol,
1324 					false, NULL);
1325 
1326 	kfree(vol_args);
1327 	return ret;
1328 }
1329 
1330 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1331 					       void __user *arg, int subvol)
1332 {
1333 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1334 	int ret;
1335 	bool readonly = false;
1336 	struct btrfs_qgroup_inherit *inherit = NULL;
1337 
1338 	if (!S_ISDIR(file_inode(file)->i_mode))
1339 		return -ENOTDIR;
1340 
1341 	vol_args = memdup_user(arg, sizeof(*vol_args));
1342 	if (IS_ERR(vol_args))
1343 		return PTR_ERR(vol_args);
1344 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1345 
1346 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1347 		ret = -EOPNOTSUPP;
1348 		goto free_args;
1349 	}
1350 
1351 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1352 		readonly = true;
1353 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1354 		u64 nums;
1355 
1356 		if (vol_args->size < sizeof(*inherit) ||
1357 		    vol_args->size > PAGE_SIZE) {
1358 			ret = -EINVAL;
1359 			goto free_args;
1360 		}
1361 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1362 		if (IS_ERR(inherit)) {
1363 			ret = PTR_ERR(inherit);
1364 			goto free_args;
1365 		}
1366 
1367 		if (inherit->num_qgroups > PAGE_SIZE ||
1368 		    inherit->num_ref_copies > PAGE_SIZE ||
1369 		    inherit->num_excl_copies > PAGE_SIZE) {
1370 			ret = -EINVAL;
1371 			goto free_inherit;
1372 		}
1373 
1374 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1375 		       2 * inherit->num_excl_copies;
1376 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1377 			ret = -EINVAL;
1378 			goto free_inherit;
1379 		}
1380 	}
1381 
1382 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1383 					vol_args->name, vol_args->fd, subvol,
1384 					readonly, inherit);
1385 	if (ret)
1386 		goto free_inherit;
1387 free_inherit:
1388 	kfree(inherit);
1389 free_args:
1390 	kfree(vol_args);
1391 	return ret;
1392 }
1393 
1394 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1395 						void __user *arg)
1396 {
1397 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1398 	struct btrfs_root *root = BTRFS_I(inode)->root;
1399 	int ret = 0;
1400 	u64 flags = 0;
1401 
1402 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1403 		return -EINVAL;
1404 
1405 	down_read(&fs_info->subvol_sem);
1406 	if (btrfs_root_readonly(root))
1407 		flags |= BTRFS_SUBVOL_RDONLY;
1408 	up_read(&fs_info->subvol_sem);
1409 
1410 	if (copy_to_user(arg, &flags, sizeof(flags)))
1411 		ret = -EFAULT;
1412 
1413 	return ret;
1414 }
1415 
1416 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1417 					      void __user *arg)
1418 {
1419 	struct inode *inode = file_inode(file);
1420 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1421 	struct btrfs_root *root = BTRFS_I(inode)->root;
1422 	struct btrfs_trans_handle *trans;
1423 	u64 root_flags;
1424 	u64 flags;
1425 	int ret = 0;
1426 
1427 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1428 		return -EPERM;
1429 
1430 	ret = mnt_want_write_file(file);
1431 	if (ret)
1432 		goto out;
1433 
1434 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1435 		ret = -EINVAL;
1436 		goto out_drop_write;
1437 	}
1438 
1439 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1440 		ret = -EFAULT;
1441 		goto out_drop_write;
1442 	}
1443 
1444 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1445 		ret = -EOPNOTSUPP;
1446 		goto out_drop_write;
1447 	}
1448 
1449 	down_write(&fs_info->subvol_sem);
1450 
1451 	/* nothing to do */
1452 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1453 		goto out_drop_sem;
1454 
1455 	root_flags = btrfs_root_flags(&root->root_item);
1456 	if (flags & BTRFS_SUBVOL_RDONLY) {
1457 		btrfs_set_root_flags(&root->root_item,
1458 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1459 	} else {
1460 		/*
1461 		 * Block RO -> RW transition if this subvolume is involved in
1462 		 * send
1463 		 */
1464 		spin_lock(&root->root_item_lock);
1465 		if (root->send_in_progress == 0) {
1466 			btrfs_set_root_flags(&root->root_item,
1467 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1468 			spin_unlock(&root->root_item_lock);
1469 		} else {
1470 			spin_unlock(&root->root_item_lock);
1471 			btrfs_warn(fs_info,
1472 				   "Attempt to set subvolume %llu read-write during send",
1473 				   root->root_key.objectid);
1474 			ret = -EPERM;
1475 			goto out_drop_sem;
1476 		}
1477 	}
1478 
1479 	trans = btrfs_start_transaction(root, 1);
1480 	if (IS_ERR(trans)) {
1481 		ret = PTR_ERR(trans);
1482 		goto out_reset;
1483 	}
1484 
1485 	ret = btrfs_update_root(trans, fs_info->tree_root,
1486 				&root->root_key, &root->root_item);
1487 	if (ret < 0) {
1488 		btrfs_end_transaction(trans);
1489 		goto out_reset;
1490 	}
1491 
1492 	ret = btrfs_commit_transaction(trans);
1493 
1494 out_reset:
1495 	if (ret)
1496 		btrfs_set_root_flags(&root->root_item, root_flags);
1497 out_drop_sem:
1498 	up_write(&fs_info->subvol_sem);
1499 out_drop_write:
1500 	mnt_drop_write_file(file);
1501 out:
1502 	return ret;
1503 }
1504 
1505 static noinline int key_in_sk(struct btrfs_key *key,
1506 			      struct btrfs_ioctl_search_key *sk)
1507 {
1508 	struct btrfs_key test;
1509 	int ret;
1510 
1511 	test.objectid = sk->min_objectid;
1512 	test.type = sk->min_type;
1513 	test.offset = sk->min_offset;
1514 
1515 	ret = btrfs_comp_cpu_keys(key, &test);
1516 	if (ret < 0)
1517 		return 0;
1518 
1519 	test.objectid = sk->max_objectid;
1520 	test.type = sk->max_type;
1521 	test.offset = sk->max_offset;
1522 
1523 	ret = btrfs_comp_cpu_keys(key, &test);
1524 	if (ret > 0)
1525 		return 0;
1526 	return 1;
1527 }
1528 
1529 static noinline int copy_to_sk(struct btrfs_path *path,
1530 			       struct btrfs_key *key,
1531 			       struct btrfs_ioctl_search_key *sk,
1532 			       size_t *buf_size,
1533 			       char __user *ubuf,
1534 			       unsigned long *sk_offset,
1535 			       int *num_found)
1536 {
1537 	u64 found_transid;
1538 	struct extent_buffer *leaf;
1539 	struct btrfs_ioctl_search_header sh;
1540 	struct btrfs_key test;
1541 	unsigned long item_off;
1542 	unsigned long item_len;
1543 	int nritems;
1544 	int i;
1545 	int slot;
1546 	int ret = 0;
1547 
1548 	leaf = path->nodes[0];
1549 	slot = path->slots[0];
1550 	nritems = btrfs_header_nritems(leaf);
1551 
1552 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1553 		i = nritems;
1554 		goto advance_key;
1555 	}
1556 	found_transid = btrfs_header_generation(leaf);
1557 
1558 	for (i = slot; i < nritems; i++) {
1559 		item_off = btrfs_item_ptr_offset(leaf, i);
1560 		item_len = btrfs_item_size(leaf, i);
1561 
1562 		btrfs_item_key_to_cpu(leaf, key, i);
1563 		if (!key_in_sk(key, sk))
1564 			continue;
1565 
1566 		if (sizeof(sh) + item_len > *buf_size) {
1567 			if (*num_found) {
1568 				ret = 1;
1569 				goto out;
1570 			}
1571 
1572 			/*
1573 			 * return one empty item back for v1, which does not
1574 			 * handle -EOVERFLOW
1575 			 */
1576 
1577 			*buf_size = sizeof(sh) + item_len;
1578 			item_len = 0;
1579 			ret = -EOVERFLOW;
1580 		}
1581 
1582 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1583 			ret = 1;
1584 			goto out;
1585 		}
1586 
1587 		sh.objectid = key->objectid;
1588 		sh.offset = key->offset;
1589 		sh.type = key->type;
1590 		sh.len = item_len;
1591 		sh.transid = found_transid;
1592 
1593 		/*
1594 		 * Copy search result header. If we fault then loop again so we
1595 		 * can fault in the pages and -EFAULT there if there's a
1596 		 * problem. Otherwise we'll fault and then copy the buffer in
1597 		 * properly this next time through
1598 		 */
1599 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1600 			ret = 0;
1601 			goto out;
1602 		}
1603 
1604 		*sk_offset += sizeof(sh);
1605 
1606 		if (item_len) {
1607 			char __user *up = ubuf + *sk_offset;
1608 			/*
1609 			 * Copy the item, same behavior as above, but reset the
1610 			 * * sk_offset so we copy the full thing again.
1611 			 */
1612 			if (read_extent_buffer_to_user_nofault(leaf, up,
1613 						item_off, item_len)) {
1614 				ret = 0;
1615 				*sk_offset -= sizeof(sh);
1616 				goto out;
1617 			}
1618 
1619 			*sk_offset += item_len;
1620 		}
1621 		(*num_found)++;
1622 
1623 		if (ret) /* -EOVERFLOW from above */
1624 			goto out;
1625 
1626 		if (*num_found >= sk->nr_items) {
1627 			ret = 1;
1628 			goto out;
1629 		}
1630 	}
1631 advance_key:
1632 	ret = 0;
1633 	test.objectid = sk->max_objectid;
1634 	test.type = sk->max_type;
1635 	test.offset = sk->max_offset;
1636 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1637 		ret = 1;
1638 	else if (key->offset < (u64)-1)
1639 		key->offset++;
1640 	else if (key->type < (u8)-1) {
1641 		key->offset = 0;
1642 		key->type++;
1643 	} else if (key->objectid < (u64)-1) {
1644 		key->offset = 0;
1645 		key->type = 0;
1646 		key->objectid++;
1647 	} else
1648 		ret = 1;
1649 out:
1650 	/*
1651 	 *  0: all items from this leaf copied, continue with next
1652 	 *  1: * more items can be copied, but unused buffer is too small
1653 	 *     * all items were found
1654 	 *     Either way, it will stops the loop which iterates to the next
1655 	 *     leaf
1656 	 *  -EOVERFLOW: item was to large for buffer
1657 	 *  -EFAULT: could not copy extent buffer back to userspace
1658 	 */
1659 	return ret;
1660 }
1661 
1662 static noinline int search_ioctl(struct inode *inode,
1663 				 struct btrfs_ioctl_search_key *sk,
1664 				 size_t *buf_size,
1665 				 char __user *ubuf)
1666 {
1667 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1668 	struct btrfs_root *root;
1669 	struct btrfs_key key;
1670 	struct btrfs_path *path;
1671 	int ret;
1672 	int num_found = 0;
1673 	unsigned long sk_offset = 0;
1674 
1675 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1676 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1677 		return -EOVERFLOW;
1678 	}
1679 
1680 	path = btrfs_alloc_path();
1681 	if (!path)
1682 		return -ENOMEM;
1683 
1684 	if (sk->tree_id == 0) {
1685 		/* search the root of the inode that was passed */
1686 		root = btrfs_grab_root(BTRFS_I(inode)->root);
1687 	} else {
1688 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1689 		if (IS_ERR(root)) {
1690 			btrfs_free_path(path);
1691 			return PTR_ERR(root);
1692 		}
1693 	}
1694 
1695 	key.objectid = sk->min_objectid;
1696 	key.type = sk->min_type;
1697 	key.offset = sk->min_offset;
1698 
1699 	while (1) {
1700 		ret = -EFAULT;
1701 		/*
1702 		 * Ensure that the whole user buffer is faulted in at sub-page
1703 		 * granularity, otherwise the loop may live-lock.
1704 		 */
1705 		if (fault_in_subpage_writeable(ubuf + sk_offset,
1706 					       *buf_size - sk_offset))
1707 			break;
1708 
1709 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1710 		if (ret != 0) {
1711 			if (ret > 0)
1712 				ret = 0;
1713 			goto err;
1714 		}
1715 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1716 				 &sk_offset, &num_found);
1717 		btrfs_release_path(path);
1718 		if (ret)
1719 			break;
1720 
1721 	}
1722 	if (ret > 0)
1723 		ret = 0;
1724 err:
1725 	sk->nr_items = num_found;
1726 	btrfs_put_root(root);
1727 	btrfs_free_path(path);
1728 	return ret;
1729 }
1730 
1731 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1732 					    void __user *argp)
1733 {
1734 	struct btrfs_ioctl_search_args __user *uargs = argp;
1735 	struct btrfs_ioctl_search_key sk;
1736 	int ret;
1737 	size_t buf_size;
1738 
1739 	if (!capable(CAP_SYS_ADMIN))
1740 		return -EPERM;
1741 
1742 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1743 		return -EFAULT;
1744 
1745 	buf_size = sizeof(uargs->buf);
1746 
1747 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1748 
1749 	/*
1750 	 * In the origin implementation an overflow is handled by returning a
1751 	 * search header with a len of zero, so reset ret.
1752 	 */
1753 	if (ret == -EOVERFLOW)
1754 		ret = 0;
1755 
1756 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1757 		ret = -EFAULT;
1758 	return ret;
1759 }
1760 
1761 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1762 					       void __user *argp)
1763 {
1764 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1765 	struct btrfs_ioctl_search_args_v2 args;
1766 	int ret;
1767 	size_t buf_size;
1768 	const size_t buf_limit = SZ_16M;
1769 
1770 	if (!capable(CAP_SYS_ADMIN))
1771 		return -EPERM;
1772 
1773 	/* copy search header and buffer size */
1774 	if (copy_from_user(&args, uarg, sizeof(args)))
1775 		return -EFAULT;
1776 
1777 	buf_size = args.buf_size;
1778 
1779 	/* limit result size to 16MB */
1780 	if (buf_size > buf_limit)
1781 		buf_size = buf_limit;
1782 
1783 	ret = search_ioctl(inode, &args.key, &buf_size,
1784 			   (char __user *)(&uarg->buf[0]));
1785 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1786 		ret = -EFAULT;
1787 	else if (ret == -EOVERFLOW &&
1788 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1789 		ret = -EFAULT;
1790 
1791 	return ret;
1792 }
1793 
1794 /*
1795  * Search INODE_REFs to identify path name of 'dirid' directory
1796  * in a 'tree_id' tree. and sets path name to 'name'.
1797  */
1798 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1799 				u64 tree_id, u64 dirid, char *name)
1800 {
1801 	struct btrfs_root *root;
1802 	struct btrfs_key key;
1803 	char *ptr;
1804 	int ret = -1;
1805 	int slot;
1806 	int len;
1807 	int total_len = 0;
1808 	struct btrfs_inode_ref *iref;
1809 	struct extent_buffer *l;
1810 	struct btrfs_path *path;
1811 
1812 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1813 		name[0]='\0';
1814 		return 0;
1815 	}
1816 
1817 	path = btrfs_alloc_path();
1818 	if (!path)
1819 		return -ENOMEM;
1820 
1821 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1822 
1823 	root = btrfs_get_fs_root(info, tree_id, true);
1824 	if (IS_ERR(root)) {
1825 		ret = PTR_ERR(root);
1826 		root = NULL;
1827 		goto out;
1828 	}
1829 
1830 	key.objectid = dirid;
1831 	key.type = BTRFS_INODE_REF_KEY;
1832 	key.offset = (u64)-1;
1833 
1834 	while (1) {
1835 		ret = btrfs_search_backwards(root, &key, path);
1836 		if (ret < 0)
1837 			goto out;
1838 		else if (ret > 0) {
1839 			ret = -ENOENT;
1840 			goto out;
1841 		}
1842 
1843 		l = path->nodes[0];
1844 		slot = path->slots[0];
1845 
1846 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1847 		len = btrfs_inode_ref_name_len(l, iref);
1848 		ptr -= len + 1;
1849 		total_len += len + 1;
1850 		if (ptr < name) {
1851 			ret = -ENAMETOOLONG;
1852 			goto out;
1853 		}
1854 
1855 		*(ptr + len) = '/';
1856 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1857 
1858 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1859 			break;
1860 
1861 		btrfs_release_path(path);
1862 		key.objectid = key.offset;
1863 		key.offset = (u64)-1;
1864 		dirid = key.objectid;
1865 	}
1866 	memmove(name, ptr, total_len);
1867 	name[total_len] = '\0';
1868 	ret = 0;
1869 out:
1870 	btrfs_put_root(root);
1871 	btrfs_free_path(path);
1872 	return ret;
1873 }
1874 
1875 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1876 				struct inode *inode,
1877 				struct btrfs_ioctl_ino_lookup_user_args *args)
1878 {
1879 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1880 	struct super_block *sb = inode->i_sb;
1881 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1882 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1883 	u64 dirid = args->dirid;
1884 	unsigned long item_off;
1885 	unsigned long item_len;
1886 	struct btrfs_inode_ref *iref;
1887 	struct btrfs_root_ref *rref;
1888 	struct btrfs_root *root = NULL;
1889 	struct btrfs_path *path;
1890 	struct btrfs_key key, key2;
1891 	struct extent_buffer *leaf;
1892 	struct inode *temp_inode;
1893 	char *ptr;
1894 	int slot;
1895 	int len;
1896 	int total_len = 0;
1897 	int ret;
1898 
1899 	path = btrfs_alloc_path();
1900 	if (!path)
1901 		return -ENOMEM;
1902 
1903 	/*
1904 	 * If the bottom subvolume does not exist directly under upper_limit,
1905 	 * construct the path in from the bottom up.
1906 	 */
1907 	if (dirid != upper_limit.objectid) {
1908 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1909 
1910 		root = btrfs_get_fs_root(fs_info, treeid, true);
1911 		if (IS_ERR(root)) {
1912 			ret = PTR_ERR(root);
1913 			goto out;
1914 		}
1915 
1916 		key.objectid = dirid;
1917 		key.type = BTRFS_INODE_REF_KEY;
1918 		key.offset = (u64)-1;
1919 		while (1) {
1920 			ret = btrfs_search_backwards(root, &key, path);
1921 			if (ret < 0)
1922 				goto out_put;
1923 			else if (ret > 0) {
1924 				ret = -ENOENT;
1925 				goto out_put;
1926 			}
1927 
1928 			leaf = path->nodes[0];
1929 			slot = path->slots[0];
1930 
1931 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1932 			len = btrfs_inode_ref_name_len(leaf, iref);
1933 			ptr -= len + 1;
1934 			total_len += len + 1;
1935 			if (ptr < args->path) {
1936 				ret = -ENAMETOOLONG;
1937 				goto out_put;
1938 			}
1939 
1940 			*(ptr + len) = '/';
1941 			read_extent_buffer(leaf, ptr,
1942 					(unsigned long)(iref + 1), len);
1943 
1944 			/* Check the read+exec permission of this directory */
1945 			ret = btrfs_previous_item(root, path, dirid,
1946 						  BTRFS_INODE_ITEM_KEY);
1947 			if (ret < 0) {
1948 				goto out_put;
1949 			} else if (ret > 0) {
1950 				ret = -ENOENT;
1951 				goto out_put;
1952 			}
1953 
1954 			leaf = path->nodes[0];
1955 			slot = path->slots[0];
1956 			btrfs_item_key_to_cpu(leaf, &key2, slot);
1957 			if (key2.objectid != dirid) {
1958 				ret = -ENOENT;
1959 				goto out_put;
1960 			}
1961 
1962 			temp_inode = btrfs_iget(sb, key2.objectid, root);
1963 			if (IS_ERR(temp_inode)) {
1964 				ret = PTR_ERR(temp_inode);
1965 				goto out_put;
1966 			}
1967 			ret = inode_permission(idmap, temp_inode,
1968 					       MAY_READ | MAY_EXEC);
1969 			iput(temp_inode);
1970 			if (ret) {
1971 				ret = -EACCES;
1972 				goto out_put;
1973 			}
1974 
1975 			if (key.offset == upper_limit.objectid)
1976 				break;
1977 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1978 				ret = -EACCES;
1979 				goto out_put;
1980 			}
1981 
1982 			btrfs_release_path(path);
1983 			key.objectid = key.offset;
1984 			key.offset = (u64)-1;
1985 			dirid = key.objectid;
1986 		}
1987 
1988 		memmove(args->path, ptr, total_len);
1989 		args->path[total_len] = '\0';
1990 		btrfs_put_root(root);
1991 		root = NULL;
1992 		btrfs_release_path(path);
1993 	}
1994 
1995 	/* Get the bottom subvolume's name from ROOT_REF */
1996 	key.objectid = treeid;
1997 	key.type = BTRFS_ROOT_REF_KEY;
1998 	key.offset = args->treeid;
1999 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2000 	if (ret < 0) {
2001 		goto out;
2002 	} else if (ret > 0) {
2003 		ret = -ENOENT;
2004 		goto out;
2005 	}
2006 
2007 	leaf = path->nodes[0];
2008 	slot = path->slots[0];
2009 	btrfs_item_key_to_cpu(leaf, &key, slot);
2010 
2011 	item_off = btrfs_item_ptr_offset(leaf, slot);
2012 	item_len = btrfs_item_size(leaf, slot);
2013 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2014 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2015 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2016 		ret = -EINVAL;
2017 		goto out;
2018 	}
2019 
2020 	/* Copy subvolume's name */
2021 	item_off += sizeof(struct btrfs_root_ref);
2022 	item_len -= sizeof(struct btrfs_root_ref);
2023 	read_extent_buffer(leaf, args->name, item_off, item_len);
2024 	args->name[item_len] = 0;
2025 
2026 out_put:
2027 	btrfs_put_root(root);
2028 out:
2029 	btrfs_free_path(path);
2030 	return ret;
2031 }
2032 
2033 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2034 					   void __user *argp)
2035 {
2036 	struct btrfs_ioctl_ino_lookup_args *args;
2037 	int ret = 0;
2038 
2039 	args = memdup_user(argp, sizeof(*args));
2040 	if (IS_ERR(args))
2041 		return PTR_ERR(args);
2042 
2043 	/*
2044 	 * Unprivileged query to obtain the containing subvolume root id. The
2045 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2046 	 */
2047 	if (args->treeid == 0)
2048 		args->treeid = root->root_key.objectid;
2049 
2050 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2051 		args->name[0] = 0;
2052 		goto out;
2053 	}
2054 
2055 	if (!capable(CAP_SYS_ADMIN)) {
2056 		ret = -EPERM;
2057 		goto out;
2058 	}
2059 
2060 	ret = btrfs_search_path_in_tree(root->fs_info,
2061 					args->treeid, args->objectid,
2062 					args->name);
2063 
2064 out:
2065 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2066 		ret = -EFAULT;
2067 
2068 	kfree(args);
2069 	return ret;
2070 }
2071 
2072 /*
2073  * Version of ino_lookup ioctl (unprivileged)
2074  *
2075  * The main differences from ino_lookup ioctl are:
2076  *
2077  *   1. Read + Exec permission will be checked using inode_permission() during
2078  *      path construction. -EACCES will be returned in case of failure.
2079  *   2. Path construction will be stopped at the inode number which corresponds
2080  *      to the fd with which this ioctl is called. If constructed path does not
2081  *      exist under fd's inode, -EACCES will be returned.
2082  *   3. The name of bottom subvolume is also searched and filled.
2083  */
2084 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2085 {
2086 	struct btrfs_ioctl_ino_lookup_user_args *args;
2087 	struct inode *inode;
2088 	int ret;
2089 
2090 	args = memdup_user(argp, sizeof(*args));
2091 	if (IS_ERR(args))
2092 		return PTR_ERR(args);
2093 
2094 	inode = file_inode(file);
2095 
2096 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2097 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2098 		/*
2099 		 * The subvolume does not exist under fd with which this is
2100 		 * called
2101 		 */
2102 		kfree(args);
2103 		return -EACCES;
2104 	}
2105 
2106 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2107 
2108 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2109 		ret = -EFAULT;
2110 
2111 	kfree(args);
2112 	return ret;
2113 }
2114 
2115 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2116 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2117 {
2118 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2119 	struct btrfs_fs_info *fs_info;
2120 	struct btrfs_root *root;
2121 	struct btrfs_path *path;
2122 	struct btrfs_key key;
2123 	struct btrfs_root_item *root_item;
2124 	struct btrfs_root_ref *rref;
2125 	struct extent_buffer *leaf;
2126 	unsigned long item_off;
2127 	unsigned long item_len;
2128 	int slot;
2129 	int ret = 0;
2130 
2131 	path = btrfs_alloc_path();
2132 	if (!path)
2133 		return -ENOMEM;
2134 
2135 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2136 	if (!subvol_info) {
2137 		btrfs_free_path(path);
2138 		return -ENOMEM;
2139 	}
2140 
2141 	fs_info = BTRFS_I(inode)->root->fs_info;
2142 
2143 	/* Get root_item of inode's subvolume */
2144 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2145 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2146 	if (IS_ERR(root)) {
2147 		ret = PTR_ERR(root);
2148 		goto out_free;
2149 	}
2150 	root_item = &root->root_item;
2151 
2152 	subvol_info->treeid = key.objectid;
2153 
2154 	subvol_info->generation = btrfs_root_generation(root_item);
2155 	subvol_info->flags = btrfs_root_flags(root_item);
2156 
2157 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2158 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2159 						    BTRFS_UUID_SIZE);
2160 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2161 						    BTRFS_UUID_SIZE);
2162 
2163 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2164 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2165 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2166 
2167 	subvol_info->otransid = btrfs_root_otransid(root_item);
2168 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2169 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2170 
2171 	subvol_info->stransid = btrfs_root_stransid(root_item);
2172 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2173 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2174 
2175 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2176 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2177 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2178 
2179 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2180 		/* Search root tree for ROOT_BACKREF of this subvolume */
2181 		key.type = BTRFS_ROOT_BACKREF_KEY;
2182 		key.offset = 0;
2183 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2184 		if (ret < 0) {
2185 			goto out;
2186 		} else if (path->slots[0] >=
2187 			   btrfs_header_nritems(path->nodes[0])) {
2188 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2189 			if (ret < 0) {
2190 				goto out;
2191 			} else if (ret > 0) {
2192 				ret = -EUCLEAN;
2193 				goto out;
2194 			}
2195 		}
2196 
2197 		leaf = path->nodes[0];
2198 		slot = path->slots[0];
2199 		btrfs_item_key_to_cpu(leaf, &key, slot);
2200 		if (key.objectid == subvol_info->treeid &&
2201 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2202 			subvol_info->parent_id = key.offset;
2203 
2204 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2205 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2206 
2207 			item_off = btrfs_item_ptr_offset(leaf, slot)
2208 					+ sizeof(struct btrfs_root_ref);
2209 			item_len = btrfs_item_size(leaf, slot)
2210 					- sizeof(struct btrfs_root_ref);
2211 			read_extent_buffer(leaf, subvol_info->name,
2212 					   item_off, item_len);
2213 		} else {
2214 			ret = -ENOENT;
2215 			goto out;
2216 		}
2217 	}
2218 
2219 	btrfs_free_path(path);
2220 	path = NULL;
2221 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2222 		ret = -EFAULT;
2223 
2224 out:
2225 	btrfs_put_root(root);
2226 out_free:
2227 	btrfs_free_path(path);
2228 	kfree(subvol_info);
2229 	return ret;
2230 }
2231 
2232 /*
2233  * Return ROOT_REF information of the subvolume containing this inode
2234  * except the subvolume name.
2235  */
2236 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2237 					  void __user *argp)
2238 {
2239 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2240 	struct btrfs_root_ref *rref;
2241 	struct btrfs_path *path;
2242 	struct btrfs_key key;
2243 	struct extent_buffer *leaf;
2244 	u64 objectid;
2245 	int slot;
2246 	int ret;
2247 	u8 found;
2248 
2249 	path = btrfs_alloc_path();
2250 	if (!path)
2251 		return -ENOMEM;
2252 
2253 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2254 	if (IS_ERR(rootrefs)) {
2255 		btrfs_free_path(path);
2256 		return PTR_ERR(rootrefs);
2257 	}
2258 
2259 	objectid = root->root_key.objectid;
2260 	key.objectid = objectid;
2261 	key.type = BTRFS_ROOT_REF_KEY;
2262 	key.offset = rootrefs->min_treeid;
2263 	found = 0;
2264 
2265 	root = root->fs_info->tree_root;
2266 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2267 	if (ret < 0) {
2268 		goto out;
2269 	} else if (path->slots[0] >=
2270 		   btrfs_header_nritems(path->nodes[0])) {
2271 		ret = btrfs_next_leaf(root, path);
2272 		if (ret < 0) {
2273 			goto out;
2274 		} else if (ret > 0) {
2275 			ret = -EUCLEAN;
2276 			goto out;
2277 		}
2278 	}
2279 	while (1) {
2280 		leaf = path->nodes[0];
2281 		slot = path->slots[0];
2282 
2283 		btrfs_item_key_to_cpu(leaf, &key, slot);
2284 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2285 			ret = 0;
2286 			goto out;
2287 		}
2288 
2289 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2290 			ret = -EOVERFLOW;
2291 			goto out;
2292 		}
2293 
2294 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2295 		rootrefs->rootref[found].treeid = key.offset;
2296 		rootrefs->rootref[found].dirid =
2297 				  btrfs_root_ref_dirid(leaf, rref);
2298 		found++;
2299 
2300 		ret = btrfs_next_item(root, path);
2301 		if (ret < 0) {
2302 			goto out;
2303 		} else if (ret > 0) {
2304 			ret = -EUCLEAN;
2305 			goto out;
2306 		}
2307 	}
2308 
2309 out:
2310 	btrfs_free_path(path);
2311 
2312 	if (!ret || ret == -EOVERFLOW) {
2313 		rootrefs->num_items = found;
2314 		/* update min_treeid for next search */
2315 		if (found)
2316 			rootrefs->min_treeid =
2317 				rootrefs->rootref[found - 1].treeid + 1;
2318 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2319 			ret = -EFAULT;
2320 	}
2321 
2322 	kfree(rootrefs);
2323 
2324 	return ret;
2325 }
2326 
2327 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2328 					     void __user *arg,
2329 					     bool destroy_v2)
2330 {
2331 	struct dentry *parent = file->f_path.dentry;
2332 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2333 	struct dentry *dentry;
2334 	struct inode *dir = d_inode(parent);
2335 	struct inode *inode;
2336 	struct btrfs_root *root = BTRFS_I(dir)->root;
2337 	struct btrfs_root *dest = NULL;
2338 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2339 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2340 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2341 	char *subvol_name, *subvol_name_ptr = NULL;
2342 	int subvol_namelen;
2343 	int err = 0;
2344 	bool destroy_parent = false;
2345 
2346 	/* We don't support snapshots with extent tree v2 yet. */
2347 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2348 		btrfs_err(fs_info,
2349 			  "extent tree v2 doesn't support snapshot deletion yet");
2350 		return -EOPNOTSUPP;
2351 	}
2352 
2353 	if (destroy_v2) {
2354 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2355 		if (IS_ERR(vol_args2))
2356 			return PTR_ERR(vol_args2);
2357 
2358 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2359 			err = -EOPNOTSUPP;
2360 			goto out;
2361 		}
2362 
2363 		/*
2364 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2365 		 * name, same as v1 currently does.
2366 		 */
2367 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2368 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2369 			subvol_name = vol_args2->name;
2370 
2371 			err = mnt_want_write_file(file);
2372 			if (err)
2373 				goto out;
2374 		} else {
2375 			struct inode *old_dir;
2376 
2377 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2378 				err = -EINVAL;
2379 				goto out;
2380 			}
2381 
2382 			err = mnt_want_write_file(file);
2383 			if (err)
2384 				goto out;
2385 
2386 			dentry = btrfs_get_dentry(fs_info->sb,
2387 					BTRFS_FIRST_FREE_OBJECTID,
2388 					vol_args2->subvolid, 0);
2389 			if (IS_ERR(dentry)) {
2390 				err = PTR_ERR(dentry);
2391 				goto out_drop_write;
2392 			}
2393 
2394 			/*
2395 			 * Change the default parent since the subvolume being
2396 			 * deleted can be outside of the current mount point.
2397 			 */
2398 			parent = btrfs_get_parent(dentry);
2399 
2400 			/*
2401 			 * At this point dentry->d_name can point to '/' if the
2402 			 * subvolume we want to destroy is outsite of the
2403 			 * current mount point, so we need to release the
2404 			 * current dentry and execute the lookup to return a new
2405 			 * one with ->d_name pointing to the
2406 			 * <mount point>/subvol_name.
2407 			 */
2408 			dput(dentry);
2409 			if (IS_ERR(parent)) {
2410 				err = PTR_ERR(parent);
2411 				goto out_drop_write;
2412 			}
2413 			old_dir = dir;
2414 			dir = d_inode(parent);
2415 
2416 			/*
2417 			 * If v2 was used with SPEC_BY_ID, a new parent was
2418 			 * allocated since the subvolume can be outside of the
2419 			 * current mount point. Later on we need to release this
2420 			 * new parent dentry.
2421 			 */
2422 			destroy_parent = true;
2423 
2424 			/*
2425 			 * On idmapped mounts, deletion via subvolid is
2426 			 * restricted to subvolumes that are immediate
2427 			 * ancestors of the inode referenced by the file
2428 			 * descriptor in the ioctl. Otherwise the idmapping
2429 			 * could potentially be abused to delete subvolumes
2430 			 * anywhere in the filesystem the user wouldn't be able
2431 			 * to delete without an idmapped mount.
2432 			 */
2433 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2434 				err = -EOPNOTSUPP;
2435 				goto free_parent;
2436 			}
2437 
2438 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2439 						fs_info, vol_args2->subvolid);
2440 			if (IS_ERR(subvol_name_ptr)) {
2441 				err = PTR_ERR(subvol_name_ptr);
2442 				goto free_parent;
2443 			}
2444 			/* subvol_name_ptr is already nul terminated */
2445 			subvol_name = (char *)kbasename(subvol_name_ptr);
2446 		}
2447 	} else {
2448 		vol_args = memdup_user(arg, sizeof(*vol_args));
2449 		if (IS_ERR(vol_args))
2450 			return PTR_ERR(vol_args);
2451 
2452 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2453 		subvol_name = vol_args->name;
2454 
2455 		err = mnt_want_write_file(file);
2456 		if (err)
2457 			goto out;
2458 	}
2459 
2460 	subvol_namelen = strlen(subvol_name);
2461 
2462 	if (strchr(subvol_name, '/') ||
2463 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2464 		err = -EINVAL;
2465 		goto free_subvol_name;
2466 	}
2467 
2468 	if (!S_ISDIR(dir->i_mode)) {
2469 		err = -ENOTDIR;
2470 		goto free_subvol_name;
2471 	}
2472 
2473 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2474 	if (err == -EINTR)
2475 		goto free_subvol_name;
2476 	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2477 	if (IS_ERR(dentry)) {
2478 		err = PTR_ERR(dentry);
2479 		goto out_unlock_dir;
2480 	}
2481 
2482 	if (d_really_is_negative(dentry)) {
2483 		err = -ENOENT;
2484 		goto out_dput;
2485 	}
2486 
2487 	inode = d_inode(dentry);
2488 	dest = BTRFS_I(inode)->root;
2489 	if (!capable(CAP_SYS_ADMIN)) {
2490 		/*
2491 		 * Regular user.  Only allow this with a special mount
2492 		 * option, when the user has write+exec access to the
2493 		 * subvol root, and when rmdir(2) would have been
2494 		 * allowed.
2495 		 *
2496 		 * Note that this is _not_ check that the subvol is
2497 		 * empty or doesn't contain data that we wouldn't
2498 		 * otherwise be able to delete.
2499 		 *
2500 		 * Users who want to delete empty subvols should try
2501 		 * rmdir(2).
2502 		 */
2503 		err = -EPERM;
2504 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2505 			goto out_dput;
2506 
2507 		/*
2508 		 * Do not allow deletion if the parent dir is the same
2509 		 * as the dir to be deleted.  That means the ioctl
2510 		 * must be called on the dentry referencing the root
2511 		 * of the subvol, not a random directory contained
2512 		 * within it.
2513 		 */
2514 		err = -EINVAL;
2515 		if (root == dest)
2516 			goto out_dput;
2517 
2518 		err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2519 		if (err)
2520 			goto out_dput;
2521 	}
2522 
2523 	/* check if subvolume may be deleted by a user */
2524 	err = btrfs_may_delete(idmap, dir, dentry, 1);
2525 	if (err)
2526 		goto out_dput;
2527 
2528 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2529 		err = -EINVAL;
2530 		goto out_dput;
2531 	}
2532 
2533 	btrfs_inode_lock(BTRFS_I(inode), 0);
2534 	err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2535 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2536 	if (!err)
2537 		d_delete_notify(dir, dentry);
2538 
2539 out_dput:
2540 	dput(dentry);
2541 out_unlock_dir:
2542 	btrfs_inode_unlock(BTRFS_I(dir), 0);
2543 free_subvol_name:
2544 	kfree(subvol_name_ptr);
2545 free_parent:
2546 	if (destroy_parent)
2547 		dput(parent);
2548 out_drop_write:
2549 	mnt_drop_write_file(file);
2550 out:
2551 	kfree(vol_args2);
2552 	kfree(vol_args);
2553 	return err;
2554 }
2555 
2556 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2557 {
2558 	struct inode *inode = file_inode(file);
2559 	struct btrfs_root *root = BTRFS_I(inode)->root;
2560 	struct btrfs_ioctl_defrag_range_args range = {0};
2561 	int ret;
2562 
2563 	ret = mnt_want_write_file(file);
2564 	if (ret)
2565 		return ret;
2566 
2567 	if (btrfs_root_readonly(root)) {
2568 		ret = -EROFS;
2569 		goto out;
2570 	}
2571 
2572 	switch (inode->i_mode & S_IFMT) {
2573 	case S_IFDIR:
2574 		if (!capable(CAP_SYS_ADMIN)) {
2575 			ret = -EPERM;
2576 			goto out;
2577 		}
2578 		ret = btrfs_defrag_root(root);
2579 		break;
2580 	case S_IFREG:
2581 		/*
2582 		 * Note that this does not check the file descriptor for write
2583 		 * access. This prevents defragmenting executables that are
2584 		 * running and allows defrag on files open in read-only mode.
2585 		 */
2586 		if (!capable(CAP_SYS_ADMIN) &&
2587 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2588 			ret = -EPERM;
2589 			goto out;
2590 		}
2591 
2592 		if (argp) {
2593 			if (copy_from_user(&range, argp, sizeof(range))) {
2594 				ret = -EFAULT;
2595 				goto out;
2596 			}
2597 			/* compression requires us to start the IO */
2598 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2599 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2600 				range.extent_thresh = (u32)-1;
2601 			}
2602 		} else {
2603 			/* the rest are all set to zero by kzalloc */
2604 			range.len = (u64)-1;
2605 		}
2606 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2607 					&range, BTRFS_OLDEST_GENERATION, 0);
2608 		if (ret > 0)
2609 			ret = 0;
2610 		break;
2611 	default:
2612 		ret = -EINVAL;
2613 	}
2614 out:
2615 	mnt_drop_write_file(file);
2616 	return ret;
2617 }
2618 
2619 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2620 {
2621 	struct btrfs_ioctl_vol_args *vol_args;
2622 	bool restore_op = false;
2623 	int ret;
2624 
2625 	if (!capable(CAP_SYS_ADMIN))
2626 		return -EPERM;
2627 
2628 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2629 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2630 		return -EINVAL;
2631 	}
2632 
2633 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2634 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2635 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2636 
2637 		/*
2638 		 * We can do the device add because we have a paused balanced,
2639 		 * change the exclusive op type and remember we should bring
2640 		 * back the paused balance
2641 		 */
2642 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2643 		btrfs_exclop_start_unlock(fs_info);
2644 		restore_op = true;
2645 	}
2646 
2647 	vol_args = memdup_user(arg, sizeof(*vol_args));
2648 	if (IS_ERR(vol_args)) {
2649 		ret = PTR_ERR(vol_args);
2650 		goto out;
2651 	}
2652 
2653 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2654 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2655 
2656 	if (!ret)
2657 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2658 
2659 	kfree(vol_args);
2660 out:
2661 	if (restore_op)
2662 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2663 	else
2664 		btrfs_exclop_finish(fs_info);
2665 	return ret;
2666 }
2667 
2668 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2669 {
2670 	BTRFS_DEV_LOOKUP_ARGS(args);
2671 	struct inode *inode = file_inode(file);
2672 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2673 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2674 	struct block_device *bdev = NULL;
2675 	fmode_t mode;
2676 	int ret;
2677 	bool cancel = false;
2678 
2679 	if (!capable(CAP_SYS_ADMIN))
2680 		return -EPERM;
2681 
2682 	vol_args = memdup_user(arg, sizeof(*vol_args));
2683 	if (IS_ERR(vol_args))
2684 		return PTR_ERR(vol_args);
2685 
2686 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2687 		ret = -EOPNOTSUPP;
2688 		goto out;
2689 	}
2690 
2691 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2692 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2693 		args.devid = vol_args->devid;
2694 	} else if (!strcmp("cancel", vol_args->name)) {
2695 		cancel = true;
2696 	} else {
2697 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2698 		if (ret)
2699 			goto out;
2700 	}
2701 
2702 	ret = mnt_want_write_file(file);
2703 	if (ret)
2704 		goto out;
2705 
2706 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2707 					   cancel);
2708 	if (ret)
2709 		goto err_drop;
2710 
2711 	/* Exclusive operation is now claimed */
2712 	ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
2713 
2714 	btrfs_exclop_finish(fs_info);
2715 
2716 	if (!ret) {
2717 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2718 			btrfs_info(fs_info, "device deleted: id %llu",
2719 					vol_args->devid);
2720 		else
2721 			btrfs_info(fs_info, "device deleted: %s",
2722 					vol_args->name);
2723 	}
2724 err_drop:
2725 	mnt_drop_write_file(file);
2726 	if (bdev)
2727 		blkdev_put(bdev, mode);
2728 out:
2729 	btrfs_put_dev_args_from_path(&args);
2730 	kfree(vol_args);
2731 	return ret;
2732 }
2733 
2734 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2735 {
2736 	BTRFS_DEV_LOOKUP_ARGS(args);
2737 	struct inode *inode = file_inode(file);
2738 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2739 	struct btrfs_ioctl_vol_args *vol_args;
2740 	struct block_device *bdev = NULL;
2741 	fmode_t mode;
2742 	int ret;
2743 	bool cancel = false;
2744 
2745 	if (!capable(CAP_SYS_ADMIN))
2746 		return -EPERM;
2747 
2748 	vol_args = memdup_user(arg, sizeof(*vol_args));
2749 	if (IS_ERR(vol_args))
2750 		return PTR_ERR(vol_args);
2751 
2752 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2753 	if (!strcmp("cancel", vol_args->name)) {
2754 		cancel = true;
2755 	} else {
2756 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2757 		if (ret)
2758 			goto out;
2759 	}
2760 
2761 	ret = mnt_want_write_file(file);
2762 	if (ret)
2763 		goto out;
2764 
2765 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2766 					   cancel);
2767 	if (ret == 0) {
2768 		ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
2769 		if (!ret)
2770 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2771 		btrfs_exclop_finish(fs_info);
2772 	}
2773 
2774 	mnt_drop_write_file(file);
2775 	if (bdev)
2776 		blkdev_put(bdev, mode);
2777 out:
2778 	btrfs_put_dev_args_from_path(&args);
2779 	kfree(vol_args);
2780 	return ret;
2781 }
2782 
2783 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2784 				void __user *arg)
2785 {
2786 	struct btrfs_ioctl_fs_info_args *fi_args;
2787 	struct btrfs_device *device;
2788 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2789 	u64 flags_in;
2790 	int ret = 0;
2791 
2792 	fi_args = memdup_user(arg, sizeof(*fi_args));
2793 	if (IS_ERR(fi_args))
2794 		return PTR_ERR(fi_args);
2795 
2796 	flags_in = fi_args->flags;
2797 	memset(fi_args, 0, sizeof(*fi_args));
2798 
2799 	rcu_read_lock();
2800 	fi_args->num_devices = fs_devices->num_devices;
2801 
2802 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2803 		if (device->devid > fi_args->max_id)
2804 			fi_args->max_id = device->devid;
2805 	}
2806 	rcu_read_unlock();
2807 
2808 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2809 	fi_args->nodesize = fs_info->nodesize;
2810 	fi_args->sectorsize = fs_info->sectorsize;
2811 	fi_args->clone_alignment = fs_info->sectorsize;
2812 
2813 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2814 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2815 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2816 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2817 	}
2818 
2819 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2820 		fi_args->generation = fs_info->generation;
2821 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2822 	}
2823 
2824 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2825 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2826 		       sizeof(fi_args->metadata_uuid));
2827 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2828 	}
2829 
2830 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2831 		ret = -EFAULT;
2832 
2833 	kfree(fi_args);
2834 	return ret;
2835 }
2836 
2837 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2838 				 void __user *arg)
2839 {
2840 	BTRFS_DEV_LOOKUP_ARGS(args);
2841 	struct btrfs_ioctl_dev_info_args *di_args;
2842 	struct btrfs_device *dev;
2843 	int ret = 0;
2844 
2845 	di_args = memdup_user(arg, sizeof(*di_args));
2846 	if (IS_ERR(di_args))
2847 		return PTR_ERR(di_args);
2848 
2849 	args.devid = di_args->devid;
2850 	if (!btrfs_is_empty_uuid(di_args->uuid))
2851 		args.uuid = di_args->uuid;
2852 
2853 	rcu_read_lock();
2854 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2855 	if (!dev) {
2856 		ret = -ENODEV;
2857 		goto out;
2858 	}
2859 
2860 	di_args->devid = dev->devid;
2861 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2862 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2863 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2864 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2865 	if (dev->name)
2866 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2867 	else
2868 		di_args->path[0] = '\0';
2869 
2870 out:
2871 	rcu_read_unlock();
2872 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2873 		ret = -EFAULT;
2874 
2875 	kfree(di_args);
2876 	return ret;
2877 }
2878 
2879 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2880 {
2881 	struct inode *inode = file_inode(file);
2882 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2883 	struct btrfs_root *root = BTRFS_I(inode)->root;
2884 	struct btrfs_root *new_root;
2885 	struct btrfs_dir_item *di;
2886 	struct btrfs_trans_handle *trans;
2887 	struct btrfs_path *path = NULL;
2888 	struct btrfs_disk_key disk_key;
2889 	struct fscrypt_str name = FSTR_INIT("default", 7);
2890 	u64 objectid = 0;
2891 	u64 dir_id;
2892 	int ret;
2893 
2894 	if (!capable(CAP_SYS_ADMIN))
2895 		return -EPERM;
2896 
2897 	ret = mnt_want_write_file(file);
2898 	if (ret)
2899 		return ret;
2900 
2901 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2902 		ret = -EFAULT;
2903 		goto out;
2904 	}
2905 
2906 	if (!objectid)
2907 		objectid = BTRFS_FS_TREE_OBJECTID;
2908 
2909 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2910 	if (IS_ERR(new_root)) {
2911 		ret = PTR_ERR(new_root);
2912 		goto out;
2913 	}
2914 	if (!is_fstree(new_root->root_key.objectid)) {
2915 		ret = -ENOENT;
2916 		goto out_free;
2917 	}
2918 
2919 	path = btrfs_alloc_path();
2920 	if (!path) {
2921 		ret = -ENOMEM;
2922 		goto out_free;
2923 	}
2924 
2925 	trans = btrfs_start_transaction(root, 1);
2926 	if (IS_ERR(trans)) {
2927 		ret = PTR_ERR(trans);
2928 		goto out_free;
2929 	}
2930 
2931 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2932 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2933 				   dir_id, &name, 1);
2934 	if (IS_ERR_OR_NULL(di)) {
2935 		btrfs_release_path(path);
2936 		btrfs_end_transaction(trans);
2937 		btrfs_err(fs_info,
2938 			  "Umm, you don't have the default diritem, this isn't going to work");
2939 		ret = -ENOENT;
2940 		goto out_free;
2941 	}
2942 
2943 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2944 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2945 	btrfs_mark_buffer_dirty(path->nodes[0]);
2946 	btrfs_release_path(path);
2947 
2948 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2949 	btrfs_end_transaction(trans);
2950 out_free:
2951 	btrfs_put_root(new_root);
2952 	btrfs_free_path(path);
2953 out:
2954 	mnt_drop_write_file(file);
2955 	return ret;
2956 }
2957 
2958 static void get_block_group_info(struct list_head *groups_list,
2959 				 struct btrfs_ioctl_space_info *space)
2960 {
2961 	struct btrfs_block_group *block_group;
2962 
2963 	space->total_bytes = 0;
2964 	space->used_bytes = 0;
2965 	space->flags = 0;
2966 	list_for_each_entry(block_group, groups_list, list) {
2967 		space->flags = block_group->flags;
2968 		space->total_bytes += block_group->length;
2969 		space->used_bytes += block_group->used;
2970 	}
2971 }
2972 
2973 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2974 				   void __user *arg)
2975 {
2976 	struct btrfs_ioctl_space_args space_args;
2977 	struct btrfs_ioctl_space_info space;
2978 	struct btrfs_ioctl_space_info *dest;
2979 	struct btrfs_ioctl_space_info *dest_orig;
2980 	struct btrfs_ioctl_space_info __user *user_dest;
2981 	struct btrfs_space_info *info;
2982 	static const u64 types[] = {
2983 		BTRFS_BLOCK_GROUP_DATA,
2984 		BTRFS_BLOCK_GROUP_SYSTEM,
2985 		BTRFS_BLOCK_GROUP_METADATA,
2986 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2987 	};
2988 	int num_types = 4;
2989 	int alloc_size;
2990 	int ret = 0;
2991 	u64 slot_count = 0;
2992 	int i, c;
2993 
2994 	if (copy_from_user(&space_args,
2995 			   (struct btrfs_ioctl_space_args __user *)arg,
2996 			   sizeof(space_args)))
2997 		return -EFAULT;
2998 
2999 	for (i = 0; i < num_types; i++) {
3000 		struct btrfs_space_info *tmp;
3001 
3002 		info = NULL;
3003 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3004 			if (tmp->flags == types[i]) {
3005 				info = tmp;
3006 				break;
3007 			}
3008 		}
3009 
3010 		if (!info)
3011 			continue;
3012 
3013 		down_read(&info->groups_sem);
3014 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3015 			if (!list_empty(&info->block_groups[c]))
3016 				slot_count++;
3017 		}
3018 		up_read(&info->groups_sem);
3019 	}
3020 
3021 	/*
3022 	 * Global block reserve, exported as a space_info
3023 	 */
3024 	slot_count++;
3025 
3026 	/* space_slots == 0 means they are asking for a count */
3027 	if (space_args.space_slots == 0) {
3028 		space_args.total_spaces = slot_count;
3029 		goto out;
3030 	}
3031 
3032 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3033 
3034 	alloc_size = sizeof(*dest) * slot_count;
3035 
3036 	/* we generally have at most 6 or so space infos, one for each raid
3037 	 * level.  So, a whole page should be more than enough for everyone
3038 	 */
3039 	if (alloc_size > PAGE_SIZE)
3040 		return -ENOMEM;
3041 
3042 	space_args.total_spaces = 0;
3043 	dest = kmalloc(alloc_size, GFP_KERNEL);
3044 	if (!dest)
3045 		return -ENOMEM;
3046 	dest_orig = dest;
3047 
3048 	/* now we have a buffer to copy into */
3049 	for (i = 0; i < num_types; i++) {
3050 		struct btrfs_space_info *tmp;
3051 
3052 		if (!slot_count)
3053 			break;
3054 
3055 		info = NULL;
3056 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3057 			if (tmp->flags == types[i]) {
3058 				info = tmp;
3059 				break;
3060 			}
3061 		}
3062 
3063 		if (!info)
3064 			continue;
3065 		down_read(&info->groups_sem);
3066 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3067 			if (!list_empty(&info->block_groups[c])) {
3068 				get_block_group_info(&info->block_groups[c],
3069 						     &space);
3070 				memcpy(dest, &space, sizeof(space));
3071 				dest++;
3072 				space_args.total_spaces++;
3073 				slot_count--;
3074 			}
3075 			if (!slot_count)
3076 				break;
3077 		}
3078 		up_read(&info->groups_sem);
3079 	}
3080 
3081 	/*
3082 	 * Add global block reserve
3083 	 */
3084 	if (slot_count) {
3085 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3086 
3087 		spin_lock(&block_rsv->lock);
3088 		space.total_bytes = block_rsv->size;
3089 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3090 		spin_unlock(&block_rsv->lock);
3091 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3092 		memcpy(dest, &space, sizeof(space));
3093 		space_args.total_spaces++;
3094 	}
3095 
3096 	user_dest = (struct btrfs_ioctl_space_info __user *)
3097 		(arg + sizeof(struct btrfs_ioctl_space_args));
3098 
3099 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3100 		ret = -EFAULT;
3101 
3102 	kfree(dest_orig);
3103 out:
3104 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3105 		ret = -EFAULT;
3106 
3107 	return ret;
3108 }
3109 
3110 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3111 					    void __user *argp)
3112 {
3113 	struct btrfs_trans_handle *trans;
3114 	u64 transid;
3115 
3116 	trans = btrfs_attach_transaction_barrier(root);
3117 	if (IS_ERR(trans)) {
3118 		if (PTR_ERR(trans) != -ENOENT)
3119 			return PTR_ERR(trans);
3120 
3121 		/* No running transaction, don't bother */
3122 		transid = root->fs_info->last_trans_committed;
3123 		goto out;
3124 	}
3125 	transid = trans->transid;
3126 	btrfs_commit_transaction_async(trans);
3127 out:
3128 	if (argp)
3129 		if (copy_to_user(argp, &transid, sizeof(transid)))
3130 			return -EFAULT;
3131 	return 0;
3132 }
3133 
3134 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3135 					   void __user *argp)
3136 {
3137 	u64 transid;
3138 
3139 	if (argp) {
3140 		if (copy_from_user(&transid, argp, sizeof(transid)))
3141 			return -EFAULT;
3142 	} else {
3143 		transid = 0;  /* current trans */
3144 	}
3145 	return btrfs_wait_for_commit(fs_info, transid);
3146 }
3147 
3148 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3149 {
3150 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3151 	struct btrfs_ioctl_scrub_args *sa;
3152 	int ret;
3153 
3154 	if (!capable(CAP_SYS_ADMIN))
3155 		return -EPERM;
3156 
3157 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3158 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3159 		return -EINVAL;
3160 	}
3161 
3162 	sa = memdup_user(arg, sizeof(*sa));
3163 	if (IS_ERR(sa))
3164 		return PTR_ERR(sa);
3165 
3166 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3167 		ret = -EOPNOTSUPP;
3168 		goto out;
3169 	}
3170 
3171 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3172 		ret = mnt_want_write_file(file);
3173 		if (ret)
3174 			goto out;
3175 	}
3176 
3177 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3178 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3179 			      0);
3180 
3181 	/*
3182 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3183 	 * error. This is important as it allows user space to know how much
3184 	 * progress scrub has done. For example, if scrub is canceled we get
3185 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3186 	 * space. Later user space can inspect the progress from the structure
3187 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3188 	 * previously (btrfs-progs does this).
3189 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3190 	 * then return -EFAULT to signal the structure was not copied or it may
3191 	 * be corrupt and unreliable due to a partial copy.
3192 	 */
3193 	if (copy_to_user(arg, sa, sizeof(*sa)))
3194 		ret = -EFAULT;
3195 
3196 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3197 		mnt_drop_write_file(file);
3198 out:
3199 	kfree(sa);
3200 	return ret;
3201 }
3202 
3203 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3204 {
3205 	if (!capable(CAP_SYS_ADMIN))
3206 		return -EPERM;
3207 
3208 	return btrfs_scrub_cancel(fs_info);
3209 }
3210 
3211 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3212 				       void __user *arg)
3213 {
3214 	struct btrfs_ioctl_scrub_args *sa;
3215 	int ret;
3216 
3217 	if (!capable(CAP_SYS_ADMIN))
3218 		return -EPERM;
3219 
3220 	sa = memdup_user(arg, sizeof(*sa));
3221 	if (IS_ERR(sa))
3222 		return PTR_ERR(sa);
3223 
3224 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3225 
3226 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3227 		ret = -EFAULT;
3228 
3229 	kfree(sa);
3230 	return ret;
3231 }
3232 
3233 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3234 				      void __user *arg)
3235 {
3236 	struct btrfs_ioctl_get_dev_stats *sa;
3237 	int ret;
3238 
3239 	sa = memdup_user(arg, sizeof(*sa));
3240 	if (IS_ERR(sa))
3241 		return PTR_ERR(sa);
3242 
3243 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3244 		kfree(sa);
3245 		return -EPERM;
3246 	}
3247 
3248 	ret = btrfs_get_dev_stats(fs_info, sa);
3249 
3250 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3251 		ret = -EFAULT;
3252 
3253 	kfree(sa);
3254 	return ret;
3255 }
3256 
3257 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3258 				    void __user *arg)
3259 {
3260 	struct btrfs_ioctl_dev_replace_args *p;
3261 	int ret;
3262 
3263 	if (!capable(CAP_SYS_ADMIN))
3264 		return -EPERM;
3265 
3266 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3267 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3268 		return -EINVAL;
3269 	}
3270 
3271 	p = memdup_user(arg, sizeof(*p));
3272 	if (IS_ERR(p))
3273 		return PTR_ERR(p);
3274 
3275 	switch (p->cmd) {
3276 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3277 		if (sb_rdonly(fs_info->sb)) {
3278 			ret = -EROFS;
3279 			goto out;
3280 		}
3281 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3282 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3283 		} else {
3284 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3285 			btrfs_exclop_finish(fs_info);
3286 		}
3287 		break;
3288 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3289 		btrfs_dev_replace_status(fs_info, p);
3290 		ret = 0;
3291 		break;
3292 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3293 		p->result = btrfs_dev_replace_cancel(fs_info);
3294 		ret = 0;
3295 		break;
3296 	default:
3297 		ret = -EINVAL;
3298 		break;
3299 	}
3300 
3301 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3302 		ret = -EFAULT;
3303 out:
3304 	kfree(p);
3305 	return ret;
3306 }
3307 
3308 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3309 {
3310 	int ret = 0;
3311 	int i;
3312 	u64 rel_ptr;
3313 	int size;
3314 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3315 	struct inode_fs_paths *ipath = NULL;
3316 	struct btrfs_path *path;
3317 
3318 	if (!capable(CAP_DAC_READ_SEARCH))
3319 		return -EPERM;
3320 
3321 	path = btrfs_alloc_path();
3322 	if (!path) {
3323 		ret = -ENOMEM;
3324 		goto out;
3325 	}
3326 
3327 	ipa = memdup_user(arg, sizeof(*ipa));
3328 	if (IS_ERR(ipa)) {
3329 		ret = PTR_ERR(ipa);
3330 		ipa = NULL;
3331 		goto out;
3332 	}
3333 
3334 	size = min_t(u32, ipa->size, 4096);
3335 	ipath = init_ipath(size, root, path);
3336 	if (IS_ERR(ipath)) {
3337 		ret = PTR_ERR(ipath);
3338 		ipath = NULL;
3339 		goto out;
3340 	}
3341 
3342 	ret = paths_from_inode(ipa->inum, ipath);
3343 	if (ret < 0)
3344 		goto out;
3345 
3346 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3347 		rel_ptr = ipath->fspath->val[i] -
3348 			  (u64)(unsigned long)ipath->fspath->val;
3349 		ipath->fspath->val[i] = rel_ptr;
3350 	}
3351 
3352 	btrfs_free_path(path);
3353 	path = NULL;
3354 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3355 			   ipath->fspath, size);
3356 	if (ret) {
3357 		ret = -EFAULT;
3358 		goto out;
3359 	}
3360 
3361 out:
3362 	btrfs_free_path(path);
3363 	free_ipath(ipath);
3364 	kfree(ipa);
3365 
3366 	return ret;
3367 }
3368 
3369 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3370 					void __user *arg, int version)
3371 {
3372 	int ret = 0;
3373 	int size;
3374 	struct btrfs_ioctl_logical_ino_args *loi;
3375 	struct btrfs_data_container *inodes = NULL;
3376 	struct btrfs_path *path = NULL;
3377 	bool ignore_offset;
3378 
3379 	if (!capable(CAP_SYS_ADMIN))
3380 		return -EPERM;
3381 
3382 	loi = memdup_user(arg, sizeof(*loi));
3383 	if (IS_ERR(loi))
3384 		return PTR_ERR(loi);
3385 
3386 	if (version == 1) {
3387 		ignore_offset = false;
3388 		size = min_t(u32, loi->size, SZ_64K);
3389 	} else {
3390 		/* All reserved bits must be 0 for now */
3391 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3392 			ret = -EINVAL;
3393 			goto out_loi;
3394 		}
3395 		/* Only accept flags we have defined so far */
3396 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3397 			ret = -EINVAL;
3398 			goto out_loi;
3399 		}
3400 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3401 		size = min_t(u32, loi->size, SZ_16M);
3402 	}
3403 
3404 	inodes = init_data_container(size);
3405 	if (IS_ERR(inodes)) {
3406 		ret = PTR_ERR(inodes);
3407 		goto out_loi;
3408 	}
3409 
3410 	path = btrfs_alloc_path();
3411 	if (!path) {
3412 		ret = -ENOMEM;
3413 		goto out;
3414 	}
3415 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3416 					  inodes, ignore_offset);
3417 	btrfs_free_path(path);
3418 	if (ret == -EINVAL)
3419 		ret = -ENOENT;
3420 	if (ret < 0)
3421 		goto out;
3422 
3423 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3424 			   size);
3425 	if (ret)
3426 		ret = -EFAULT;
3427 
3428 out:
3429 	kvfree(inodes);
3430 out_loi:
3431 	kfree(loi);
3432 
3433 	return ret;
3434 }
3435 
3436 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3437 			       struct btrfs_ioctl_balance_args *bargs)
3438 {
3439 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3440 
3441 	bargs->flags = bctl->flags;
3442 
3443 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3444 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3445 	if (atomic_read(&fs_info->balance_pause_req))
3446 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3447 	if (atomic_read(&fs_info->balance_cancel_req))
3448 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3449 
3450 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3451 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3452 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3453 
3454 	spin_lock(&fs_info->balance_lock);
3455 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3456 	spin_unlock(&fs_info->balance_lock);
3457 }
3458 
3459 /*
3460  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3461  * required.
3462  *
3463  * @fs_info:       the filesystem
3464  * @excl_acquired: ptr to boolean value which is set to false in case balance
3465  *                 is being resumed
3466  *
3467  * Return 0 on success in which case both fs_info::balance is acquired as well
3468  * as exclusive ops are blocked. In case of failure return an error code.
3469  */
3470 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3471 {
3472 	int ret;
3473 
3474 	/*
3475 	 * Exclusive operation is locked. Three possibilities:
3476 	 *   (1) some other op is running
3477 	 *   (2) balance is running
3478 	 *   (3) balance is paused -- special case (think resume)
3479 	 */
3480 	while (1) {
3481 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3482 			*excl_acquired = true;
3483 			mutex_lock(&fs_info->balance_mutex);
3484 			return 0;
3485 		}
3486 
3487 		mutex_lock(&fs_info->balance_mutex);
3488 		if (fs_info->balance_ctl) {
3489 			/* This is either (2) or (3) */
3490 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3491 				/* This is (2) */
3492 				ret = -EINPROGRESS;
3493 				goto out_failure;
3494 
3495 			} else {
3496 				mutex_unlock(&fs_info->balance_mutex);
3497 				/*
3498 				 * Lock released to allow other waiters to
3499 				 * continue, we'll reexamine the status again.
3500 				 */
3501 				mutex_lock(&fs_info->balance_mutex);
3502 
3503 				if (fs_info->balance_ctl &&
3504 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3505 					/* This is (3) */
3506 					*excl_acquired = false;
3507 					return 0;
3508 				}
3509 			}
3510 		} else {
3511 			/* This is (1) */
3512 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3513 			goto out_failure;
3514 		}
3515 
3516 		mutex_unlock(&fs_info->balance_mutex);
3517 	}
3518 
3519 out_failure:
3520 	mutex_unlock(&fs_info->balance_mutex);
3521 	*excl_acquired = false;
3522 	return ret;
3523 }
3524 
3525 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3526 {
3527 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3528 	struct btrfs_fs_info *fs_info = root->fs_info;
3529 	struct btrfs_ioctl_balance_args *bargs;
3530 	struct btrfs_balance_control *bctl;
3531 	bool need_unlock = true;
3532 	int ret;
3533 
3534 	if (!capable(CAP_SYS_ADMIN))
3535 		return -EPERM;
3536 
3537 	ret = mnt_want_write_file(file);
3538 	if (ret)
3539 		return ret;
3540 
3541 	bargs = memdup_user(arg, sizeof(*bargs));
3542 	if (IS_ERR(bargs)) {
3543 		ret = PTR_ERR(bargs);
3544 		bargs = NULL;
3545 		goto out;
3546 	}
3547 
3548 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3549 	if (ret)
3550 		goto out;
3551 
3552 	lockdep_assert_held(&fs_info->balance_mutex);
3553 
3554 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3555 		if (!fs_info->balance_ctl) {
3556 			ret = -ENOTCONN;
3557 			goto out_unlock;
3558 		}
3559 
3560 		bctl = fs_info->balance_ctl;
3561 		spin_lock(&fs_info->balance_lock);
3562 		bctl->flags |= BTRFS_BALANCE_RESUME;
3563 		spin_unlock(&fs_info->balance_lock);
3564 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3565 
3566 		goto do_balance;
3567 	}
3568 
3569 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3570 		ret = -EINVAL;
3571 		goto out_unlock;
3572 	}
3573 
3574 	if (fs_info->balance_ctl) {
3575 		ret = -EINPROGRESS;
3576 		goto out_unlock;
3577 	}
3578 
3579 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3580 	if (!bctl) {
3581 		ret = -ENOMEM;
3582 		goto out_unlock;
3583 	}
3584 
3585 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3586 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3587 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3588 
3589 	bctl->flags = bargs->flags;
3590 do_balance:
3591 	/*
3592 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3593 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3594 	 * all the way until unmount, in free_fs_info.  The flag should be
3595 	 * cleared after reset_balance_state.
3596 	 */
3597 	need_unlock = false;
3598 
3599 	ret = btrfs_balance(fs_info, bctl, bargs);
3600 	bctl = NULL;
3601 
3602 	if (ret == 0 || ret == -ECANCELED) {
3603 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3604 			ret = -EFAULT;
3605 	}
3606 
3607 	kfree(bctl);
3608 out_unlock:
3609 	mutex_unlock(&fs_info->balance_mutex);
3610 	if (need_unlock)
3611 		btrfs_exclop_finish(fs_info);
3612 out:
3613 	mnt_drop_write_file(file);
3614 	kfree(bargs);
3615 	return ret;
3616 }
3617 
3618 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3619 {
3620 	if (!capable(CAP_SYS_ADMIN))
3621 		return -EPERM;
3622 
3623 	switch (cmd) {
3624 	case BTRFS_BALANCE_CTL_PAUSE:
3625 		return btrfs_pause_balance(fs_info);
3626 	case BTRFS_BALANCE_CTL_CANCEL:
3627 		return btrfs_cancel_balance(fs_info);
3628 	}
3629 
3630 	return -EINVAL;
3631 }
3632 
3633 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3634 					 void __user *arg)
3635 {
3636 	struct btrfs_ioctl_balance_args *bargs;
3637 	int ret = 0;
3638 
3639 	if (!capable(CAP_SYS_ADMIN))
3640 		return -EPERM;
3641 
3642 	mutex_lock(&fs_info->balance_mutex);
3643 	if (!fs_info->balance_ctl) {
3644 		ret = -ENOTCONN;
3645 		goto out;
3646 	}
3647 
3648 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3649 	if (!bargs) {
3650 		ret = -ENOMEM;
3651 		goto out;
3652 	}
3653 
3654 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3655 
3656 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3657 		ret = -EFAULT;
3658 
3659 	kfree(bargs);
3660 out:
3661 	mutex_unlock(&fs_info->balance_mutex);
3662 	return ret;
3663 }
3664 
3665 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3666 {
3667 	struct inode *inode = file_inode(file);
3668 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3669 	struct btrfs_ioctl_quota_ctl_args *sa;
3670 	int ret;
3671 
3672 	if (!capable(CAP_SYS_ADMIN))
3673 		return -EPERM;
3674 
3675 	ret = mnt_want_write_file(file);
3676 	if (ret)
3677 		return ret;
3678 
3679 	sa = memdup_user(arg, sizeof(*sa));
3680 	if (IS_ERR(sa)) {
3681 		ret = PTR_ERR(sa);
3682 		goto drop_write;
3683 	}
3684 
3685 	down_write(&fs_info->subvol_sem);
3686 
3687 	switch (sa->cmd) {
3688 	case BTRFS_QUOTA_CTL_ENABLE:
3689 		ret = btrfs_quota_enable(fs_info);
3690 		break;
3691 	case BTRFS_QUOTA_CTL_DISABLE:
3692 		ret = btrfs_quota_disable(fs_info);
3693 		break;
3694 	default:
3695 		ret = -EINVAL;
3696 		break;
3697 	}
3698 
3699 	kfree(sa);
3700 	up_write(&fs_info->subvol_sem);
3701 drop_write:
3702 	mnt_drop_write_file(file);
3703 	return ret;
3704 }
3705 
3706 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3707 {
3708 	struct inode *inode = file_inode(file);
3709 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3710 	struct btrfs_root *root = BTRFS_I(inode)->root;
3711 	struct btrfs_ioctl_qgroup_assign_args *sa;
3712 	struct btrfs_trans_handle *trans;
3713 	int ret;
3714 	int err;
3715 
3716 	if (!capable(CAP_SYS_ADMIN))
3717 		return -EPERM;
3718 
3719 	ret = mnt_want_write_file(file);
3720 	if (ret)
3721 		return ret;
3722 
3723 	sa = memdup_user(arg, sizeof(*sa));
3724 	if (IS_ERR(sa)) {
3725 		ret = PTR_ERR(sa);
3726 		goto drop_write;
3727 	}
3728 
3729 	trans = btrfs_join_transaction(root);
3730 	if (IS_ERR(trans)) {
3731 		ret = PTR_ERR(trans);
3732 		goto out;
3733 	}
3734 
3735 	if (sa->assign) {
3736 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3737 	} else {
3738 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3739 	}
3740 
3741 	/* update qgroup status and info */
3742 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3743 	err = btrfs_run_qgroups(trans);
3744 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3745 	if (err < 0)
3746 		btrfs_handle_fs_error(fs_info, err,
3747 				      "failed to update qgroup status and info");
3748 	err = btrfs_end_transaction(trans);
3749 	if (err && !ret)
3750 		ret = err;
3751 
3752 out:
3753 	kfree(sa);
3754 drop_write:
3755 	mnt_drop_write_file(file);
3756 	return ret;
3757 }
3758 
3759 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3760 {
3761 	struct inode *inode = file_inode(file);
3762 	struct btrfs_root *root = BTRFS_I(inode)->root;
3763 	struct btrfs_ioctl_qgroup_create_args *sa;
3764 	struct btrfs_trans_handle *trans;
3765 	int ret;
3766 	int err;
3767 
3768 	if (!capable(CAP_SYS_ADMIN))
3769 		return -EPERM;
3770 
3771 	ret = mnt_want_write_file(file);
3772 	if (ret)
3773 		return ret;
3774 
3775 	sa = memdup_user(arg, sizeof(*sa));
3776 	if (IS_ERR(sa)) {
3777 		ret = PTR_ERR(sa);
3778 		goto drop_write;
3779 	}
3780 
3781 	if (!sa->qgroupid) {
3782 		ret = -EINVAL;
3783 		goto out;
3784 	}
3785 
3786 	trans = btrfs_join_transaction(root);
3787 	if (IS_ERR(trans)) {
3788 		ret = PTR_ERR(trans);
3789 		goto out;
3790 	}
3791 
3792 	if (sa->create) {
3793 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3794 	} else {
3795 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3796 	}
3797 
3798 	err = btrfs_end_transaction(trans);
3799 	if (err && !ret)
3800 		ret = err;
3801 
3802 out:
3803 	kfree(sa);
3804 drop_write:
3805 	mnt_drop_write_file(file);
3806 	return ret;
3807 }
3808 
3809 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3810 {
3811 	struct inode *inode = file_inode(file);
3812 	struct btrfs_root *root = BTRFS_I(inode)->root;
3813 	struct btrfs_ioctl_qgroup_limit_args *sa;
3814 	struct btrfs_trans_handle *trans;
3815 	int ret;
3816 	int err;
3817 	u64 qgroupid;
3818 
3819 	if (!capable(CAP_SYS_ADMIN))
3820 		return -EPERM;
3821 
3822 	ret = mnt_want_write_file(file);
3823 	if (ret)
3824 		return ret;
3825 
3826 	sa = memdup_user(arg, sizeof(*sa));
3827 	if (IS_ERR(sa)) {
3828 		ret = PTR_ERR(sa);
3829 		goto drop_write;
3830 	}
3831 
3832 	trans = btrfs_join_transaction(root);
3833 	if (IS_ERR(trans)) {
3834 		ret = PTR_ERR(trans);
3835 		goto out;
3836 	}
3837 
3838 	qgroupid = sa->qgroupid;
3839 	if (!qgroupid) {
3840 		/* take the current subvol as qgroup */
3841 		qgroupid = root->root_key.objectid;
3842 	}
3843 
3844 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3845 
3846 	err = btrfs_end_transaction(trans);
3847 	if (err && !ret)
3848 		ret = err;
3849 
3850 out:
3851 	kfree(sa);
3852 drop_write:
3853 	mnt_drop_write_file(file);
3854 	return ret;
3855 }
3856 
3857 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3858 {
3859 	struct inode *inode = file_inode(file);
3860 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3861 	struct btrfs_ioctl_quota_rescan_args *qsa;
3862 	int ret;
3863 
3864 	if (!capable(CAP_SYS_ADMIN))
3865 		return -EPERM;
3866 
3867 	ret = mnt_want_write_file(file);
3868 	if (ret)
3869 		return ret;
3870 
3871 	qsa = memdup_user(arg, sizeof(*qsa));
3872 	if (IS_ERR(qsa)) {
3873 		ret = PTR_ERR(qsa);
3874 		goto drop_write;
3875 	}
3876 
3877 	if (qsa->flags) {
3878 		ret = -EINVAL;
3879 		goto out;
3880 	}
3881 
3882 	ret = btrfs_qgroup_rescan(fs_info);
3883 
3884 out:
3885 	kfree(qsa);
3886 drop_write:
3887 	mnt_drop_write_file(file);
3888 	return ret;
3889 }
3890 
3891 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3892 						void __user *arg)
3893 {
3894 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
3895 
3896 	if (!capable(CAP_SYS_ADMIN))
3897 		return -EPERM;
3898 
3899 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3900 		qsa.flags = 1;
3901 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3902 	}
3903 
3904 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3905 		return -EFAULT;
3906 
3907 	return 0;
3908 }
3909 
3910 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3911 						void __user *arg)
3912 {
3913 	if (!capable(CAP_SYS_ADMIN))
3914 		return -EPERM;
3915 
3916 	return btrfs_qgroup_wait_for_completion(fs_info, true);
3917 }
3918 
3919 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3920 					    struct mnt_idmap *idmap,
3921 					    struct btrfs_ioctl_received_subvol_args *sa)
3922 {
3923 	struct inode *inode = file_inode(file);
3924 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3925 	struct btrfs_root *root = BTRFS_I(inode)->root;
3926 	struct btrfs_root_item *root_item = &root->root_item;
3927 	struct btrfs_trans_handle *trans;
3928 	struct timespec64 ct = current_time(inode);
3929 	int ret = 0;
3930 	int received_uuid_changed;
3931 
3932 	if (!inode_owner_or_capable(idmap, inode))
3933 		return -EPERM;
3934 
3935 	ret = mnt_want_write_file(file);
3936 	if (ret < 0)
3937 		return ret;
3938 
3939 	down_write(&fs_info->subvol_sem);
3940 
3941 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3942 		ret = -EINVAL;
3943 		goto out;
3944 	}
3945 
3946 	if (btrfs_root_readonly(root)) {
3947 		ret = -EROFS;
3948 		goto out;
3949 	}
3950 
3951 	/*
3952 	 * 1 - root item
3953 	 * 2 - uuid items (received uuid + subvol uuid)
3954 	 */
3955 	trans = btrfs_start_transaction(root, 3);
3956 	if (IS_ERR(trans)) {
3957 		ret = PTR_ERR(trans);
3958 		trans = NULL;
3959 		goto out;
3960 	}
3961 
3962 	sa->rtransid = trans->transid;
3963 	sa->rtime.sec = ct.tv_sec;
3964 	sa->rtime.nsec = ct.tv_nsec;
3965 
3966 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3967 				       BTRFS_UUID_SIZE);
3968 	if (received_uuid_changed &&
3969 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
3970 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
3971 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3972 					  root->root_key.objectid);
3973 		if (ret && ret != -ENOENT) {
3974 		        btrfs_abort_transaction(trans, ret);
3975 		        btrfs_end_transaction(trans);
3976 		        goto out;
3977 		}
3978 	}
3979 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3980 	btrfs_set_root_stransid(root_item, sa->stransid);
3981 	btrfs_set_root_rtransid(root_item, sa->rtransid);
3982 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
3983 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
3984 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
3985 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
3986 
3987 	ret = btrfs_update_root(trans, fs_info->tree_root,
3988 				&root->root_key, &root->root_item);
3989 	if (ret < 0) {
3990 		btrfs_end_transaction(trans);
3991 		goto out;
3992 	}
3993 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
3994 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
3995 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3996 					  root->root_key.objectid);
3997 		if (ret < 0 && ret != -EEXIST) {
3998 			btrfs_abort_transaction(trans, ret);
3999 			btrfs_end_transaction(trans);
4000 			goto out;
4001 		}
4002 	}
4003 	ret = btrfs_commit_transaction(trans);
4004 out:
4005 	up_write(&fs_info->subvol_sem);
4006 	mnt_drop_write_file(file);
4007 	return ret;
4008 }
4009 
4010 #ifdef CONFIG_64BIT
4011 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4012 						void __user *arg)
4013 {
4014 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4015 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4016 	int ret = 0;
4017 
4018 	args32 = memdup_user(arg, sizeof(*args32));
4019 	if (IS_ERR(args32))
4020 		return PTR_ERR(args32);
4021 
4022 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4023 	if (!args64) {
4024 		ret = -ENOMEM;
4025 		goto out;
4026 	}
4027 
4028 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4029 	args64->stransid = args32->stransid;
4030 	args64->rtransid = args32->rtransid;
4031 	args64->stime.sec = args32->stime.sec;
4032 	args64->stime.nsec = args32->stime.nsec;
4033 	args64->rtime.sec = args32->rtime.sec;
4034 	args64->rtime.nsec = args32->rtime.nsec;
4035 	args64->flags = args32->flags;
4036 
4037 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4038 	if (ret)
4039 		goto out;
4040 
4041 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4042 	args32->stransid = args64->stransid;
4043 	args32->rtransid = args64->rtransid;
4044 	args32->stime.sec = args64->stime.sec;
4045 	args32->stime.nsec = args64->stime.nsec;
4046 	args32->rtime.sec = args64->rtime.sec;
4047 	args32->rtime.nsec = args64->rtime.nsec;
4048 	args32->flags = args64->flags;
4049 
4050 	ret = copy_to_user(arg, args32, sizeof(*args32));
4051 	if (ret)
4052 		ret = -EFAULT;
4053 
4054 out:
4055 	kfree(args32);
4056 	kfree(args64);
4057 	return ret;
4058 }
4059 #endif
4060 
4061 static long btrfs_ioctl_set_received_subvol(struct file *file,
4062 					    void __user *arg)
4063 {
4064 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4065 	int ret = 0;
4066 
4067 	sa = memdup_user(arg, sizeof(*sa));
4068 	if (IS_ERR(sa))
4069 		return PTR_ERR(sa);
4070 
4071 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4072 
4073 	if (ret)
4074 		goto out;
4075 
4076 	ret = copy_to_user(arg, sa, sizeof(*sa));
4077 	if (ret)
4078 		ret = -EFAULT;
4079 
4080 out:
4081 	kfree(sa);
4082 	return ret;
4083 }
4084 
4085 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4086 					void __user *arg)
4087 {
4088 	size_t len;
4089 	int ret;
4090 	char label[BTRFS_LABEL_SIZE];
4091 
4092 	spin_lock(&fs_info->super_lock);
4093 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4094 	spin_unlock(&fs_info->super_lock);
4095 
4096 	len = strnlen(label, BTRFS_LABEL_SIZE);
4097 
4098 	if (len == BTRFS_LABEL_SIZE) {
4099 		btrfs_warn(fs_info,
4100 			   "label is too long, return the first %zu bytes",
4101 			   --len);
4102 	}
4103 
4104 	ret = copy_to_user(arg, label, len);
4105 
4106 	return ret ? -EFAULT : 0;
4107 }
4108 
4109 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4110 {
4111 	struct inode *inode = file_inode(file);
4112 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4113 	struct btrfs_root *root = BTRFS_I(inode)->root;
4114 	struct btrfs_super_block *super_block = fs_info->super_copy;
4115 	struct btrfs_trans_handle *trans;
4116 	char label[BTRFS_LABEL_SIZE];
4117 	int ret;
4118 
4119 	if (!capable(CAP_SYS_ADMIN))
4120 		return -EPERM;
4121 
4122 	if (copy_from_user(label, arg, sizeof(label)))
4123 		return -EFAULT;
4124 
4125 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4126 		btrfs_err(fs_info,
4127 			  "unable to set label with more than %d bytes",
4128 			  BTRFS_LABEL_SIZE - 1);
4129 		return -EINVAL;
4130 	}
4131 
4132 	ret = mnt_want_write_file(file);
4133 	if (ret)
4134 		return ret;
4135 
4136 	trans = btrfs_start_transaction(root, 0);
4137 	if (IS_ERR(trans)) {
4138 		ret = PTR_ERR(trans);
4139 		goto out_unlock;
4140 	}
4141 
4142 	spin_lock(&fs_info->super_lock);
4143 	strcpy(super_block->label, label);
4144 	spin_unlock(&fs_info->super_lock);
4145 	ret = btrfs_commit_transaction(trans);
4146 
4147 out_unlock:
4148 	mnt_drop_write_file(file);
4149 	return ret;
4150 }
4151 
4152 #define INIT_FEATURE_FLAGS(suffix) \
4153 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4154 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4155 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4156 
4157 int btrfs_ioctl_get_supported_features(void __user *arg)
4158 {
4159 	static const struct btrfs_ioctl_feature_flags features[3] = {
4160 		INIT_FEATURE_FLAGS(SUPP),
4161 		INIT_FEATURE_FLAGS(SAFE_SET),
4162 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4163 	};
4164 
4165 	if (copy_to_user(arg, &features, sizeof(features)))
4166 		return -EFAULT;
4167 
4168 	return 0;
4169 }
4170 
4171 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4172 					void __user *arg)
4173 {
4174 	struct btrfs_super_block *super_block = fs_info->super_copy;
4175 	struct btrfs_ioctl_feature_flags features;
4176 
4177 	features.compat_flags = btrfs_super_compat_flags(super_block);
4178 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4179 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4180 
4181 	if (copy_to_user(arg, &features, sizeof(features)))
4182 		return -EFAULT;
4183 
4184 	return 0;
4185 }
4186 
4187 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4188 			      enum btrfs_feature_set set,
4189 			      u64 change_mask, u64 flags, u64 supported_flags,
4190 			      u64 safe_set, u64 safe_clear)
4191 {
4192 	const char *type = btrfs_feature_set_name(set);
4193 	char *names;
4194 	u64 disallowed, unsupported;
4195 	u64 set_mask = flags & change_mask;
4196 	u64 clear_mask = ~flags & change_mask;
4197 
4198 	unsupported = set_mask & ~supported_flags;
4199 	if (unsupported) {
4200 		names = btrfs_printable_features(set, unsupported);
4201 		if (names) {
4202 			btrfs_warn(fs_info,
4203 				   "this kernel does not support the %s feature bit%s",
4204 				   names, strchr(names, ',') ? "s" : "");
4205 			kfree(names);
4206 		} else
4207 			btrfs_warn(fs_info,
4208 				   "this kernel does not support %s bits 0x%llx",
4209 				   type, unsupported);
4210 		return -EOPNOTSUPP;
4211 	}
4212 
4213 	disallowed = set_mask & ~safe_set;
4214 	if (disallowed) {
4215 		names = btrfs_printable_features(set, disallowed);
4216 		if (names) {
4217 			btrfs_warn(fs_info,
4218 				   "can't set the %s feature bit%s while mounted",
4219 				   names, strchr(names, ',') ? "s" : "");
4220 			kfree(names);
4221 		} else
4222 			btrfs_warn(fs_info,
4223 				   "can't set %s bits 0x%llx while mounted",
4224 				   type, disallowed);
4225 		return -EPERM;
4226 	}
4227 
4228 	disallowed = clear_mask & ~safe_clear;
4229 	if (disallowed) {
4230 		names = btrfs_printable_features(set, disallowed);
4231 		if (names) {
4232 			btrfs_warn(fs_info,
4233 				   "can't clear the %s feature bit%s while mounted",
4234 				   names, strchr(names, ',') ? "s" : "");
4235 			kfree(names);
4236 		} else
4237 			btrfs_warn(fs_info,
4238 				   "can't clear %s bits 0x%llx while mounted",
4239 				   type, disallowed);
4240 		return -EPERM;
4241 	}
4242 
4243 	return 0;
4244 }
4245 
4246 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4247 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4248 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4249 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4250 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4251 
4252 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4253 {
4254 	struct inode *inode = file_inode(file);
4255 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4256 	struct btrfs_root *root = BTRFS_I(inode)->root;
4257 	struct btrfs_super_block *super_block = fs_info->super_copy;
4258 	struct btrfs_ioctl_feature_flags flags[2];
4259 	struct btrfs_trans_handle *trans;
4260 	u64 newflags;
4261 	int ret;
4262 
4263 	if (!capable(CAP_SYS_ADMIN))
4264 		return -EPERM;
4265 
4266 	if (copy_from_user(flags, arg, sizeof(flags)))
4267 		return -EFAULT;
4268 
4269 	/* Nothing to do */
4270 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4271 	    !flags[0].incompat_flags)
4272 		return 0;
4273 
4274 	ret = check_feature(fs_info, flags[0].compat_flags,
4275 			    flags[1].compat_flags, COMPAT);
4276 	if (ret)
4277 		return ret;
4278 
4279 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4280 			    flags[1].compat_ro_flags, COMPAT_RO);
4281 	if (ret)
4282 		return ret;
4283 
4284 	ret = check_feature(fs_info, flags[0].incompat_flags,
4285 			    flags[1].incompat_flags, INCOMPAT);
4286 	if (ret)
4287 		return ret;
4288 
4289 	ret = mnt_want_write_file(file);
4290 	if (ret)
4291 		return ret;
4292 
4293 	trans = btrfs_start_transaction(root, 0);
4294 	if (IS_ERR(trans)) {
4295 		ret = PTR_ERR(trans);
4296 		goto out_drop_write;
4297 	}
4298 
4299 	spin_lock(&fs_info->super_lock);
4300 	newflags = btrfs_super_compat_flags(super_block);
4301 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4302 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4303 	btrfs_set_super_compat_flags(super_block, newflags);
4304 
4305 	newflags = btrfs_super_compat_ro_flags(super_block);
4306 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4307 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4308 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4309 
4310 	newflags = btrfs_super_incompat_flags(super_block);
4311 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4312 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4313 	btrfs_set_super_incompat_flags(super_block, newflags);
4314 	spin_unlock(&fs_info->super_lock);
4315 
4316 	ret = btrfs_commit_transaction(trans);
4317 out_drop_write:
4318 	mnt_drop_write_file(file);
4319 
4320 	return ret;
4321 }
4322 
4323 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4324 {
4325 	struct btrfs_ioctl_send_args *arg;
4326 	int ret;
4327 
4328 	if (compat) {
4329 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4330 		struct btrfs_ioctl_send_args_32 args32;
4331 
4332 		ret = copy_from_user(&args32, argp, sizeof(args32));
4333 		if (ret)
4334 			return -EFAULT;
4335 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4336 		if (!arg)
4337 			return -ENOMEM;
4338 		arg->send_fd = args32.send_fd;
4339 		arg->clone_sources_count = args32.clone_sources_count;
4340 		arg->clone_sources = compat_ptr(args32.clone_sources);
4341 		arg->parent_root = args32.parent_root;
4342 		arg->flags = args32.flags;
4343 		memcpy(arg->reserved, args32.reserved,
4344 		       sizeof(args32.reserved));
4345 #else
4346 		return -ENOTTY;
4347 #endif
4348 	} else {
4349 		arg = memdup_user(argp, sizeof(*arg));
4350 		if (IS_ERR(arg))
4351 			return PTR_ERR(arg);
4352 	}
4353 	ret = btrfs_ioctl_send(inode, arg);
4354 	kfree(arg);
4355 	return ret;
4356 }
4357 
4358 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4359 				    bool compat)
4360 {
4361 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4362 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4363 					     flags);
4364 	size_t copy_end;
4365 	struct iovec iovstack[UIO_FASTIOV];
4366 	struct iovec *iov = iovstack;
4367 	struct iov_iter iter;
4368 	loff_t pos;
4369 	struct kiocb kiocb;
4370 	ssize_t ret;
4371 
4372 	if (!capable(CAP_SYS_ADMIN)) {
4373 		ret = -EPERM;
4374 		goto out_acct;
4375 	}
4376 
4377 	if (compat) {
4378 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4379 		struct btrfs_ioctl_encoded_io_args_32 args32;
4380 
4381 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4382 				       flags);
4383 		if (copy_from_user(&args32, argp, copy_end)) {
4384 			ret = -EFAULT;
4385 			goto out_acct;
4386 		}
4387 		args.iov = compat_ptr(args32.iov);
4388 		args.iovcnt = args32.iovcnt;
4389 		args.offset = args32.offset;
4390 		args.flags = args32.flags;
4391 #else
4392 		return -ENOTTY;
4393 #endif
4394 	} else {
4395 		copy_end = copy_end_kernel;
4396 		if (copy_from_user(&args, argp, copy_end)) {
4397 			ret = -EFAULT;
4398 			goto out_acct;
4399 		}
4400 	}
4401 	if (args.flags != 0) {
4402 		ret = -EINVAL;
4403 		goto out_acct;
4404 	}
4405 
4406 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4407 			   &iov, &iter);
4408 	if (ret < 0)
4409 		goto out_acct;
4410 
4411 	if (iov_iter_count(&iter) == 0) {
4412 		ret = 0;
4413 		goto out_iov;
4414 	}
4415 	pos = args.offset;
4416 	ret = rw_verify_area(READ, file, &pos, args.len);
4417 	if (ret < 0)
4418 		goto out_iov;
4419 
4420 	init_sync_kiocb(&kiocb, file);
4421 	kiocb.ki_pos = pos;
4422 
4423 	ret = btrfs_encoded_read(&kiocb, &iter, &args);
4424 	if (ret >= 0) {
4425 		fsnotify_access(file);
4426 		if (copy_to_user(argp + copy_end,
4427 				 (char *)&args + copy_end_kernel,
4428 				 sizeof(args) - copy_end_kernel))
4429 			ret = -EFAULT;
4430 	}
4431 
4432 out_iov:
4433 	kfree(iov);
4434 out_acct:
4435 	if (ret > 0)
4436 		add_rchar(current, ret);
4437 	inc_syscr(current);
4438 	return ret;
4439 }
4440 
4441 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4442 {
4443 	struct btrfs_ioctl_encoded_io_args args;
4444 	struct iovec iovstack[UIO_FASTIOV];
4445 	struct iovec *iov = iovstack;
4446 	struct iov_iter iter;
4447 	loff_t pos;
4448 	struct kiocb kiocb;
4449 	ssize_t ret;
4450 
4451 	if (!capable(CAP_SYS_ADMIN)) {
4452 		ret = -EPERM;
4453 		goto out_acct;
4454 	}
4455 
4456 	if (!(file->f_mode & FMODE_WRITE)) {
4457 		ret = -EBADF;
4458 		goto out_acct;
4459 	}
4460 
4461 	if (compat) {
4462 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4463 		struct btrfs_ioctl_encoded_io_args_32 args32;
4464 
4465 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4466 			ret = -EFAULT;
4467 			goto out_acct;
4468 		}
4469 		args.iov = compat_ptr(args32.iov);
4470 		args.iovcnt = args32.iovcnt;
4471 		args.offset = args32.offset;
4472 		args.flags = args32.flags;
4473 		args.len = args32.len;
4474 		args.unencoded_len = args32.unencoded_len;
4475 		args.unencoded_offset = args32.unencoded_offset;
4476 		args.compression = args32.compression;
4477 		args.encryption = args32.encryption;
4478 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4479 #else
4480 		return -ENOTTY;
4481 #endif
4482 	} else {
4483 		if (copy_from_user(&args, argp, sizeof(args))) {
4484 			ret = -EFAULT;
4485 			goto out_acct;
4486 		}
4487 	}
4488 
4489 	ret = -EINVAL;
4490 	if (args.flags != 0)
4491 		goto out_acct;
4492 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4493 		goto out_acct;
4494 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4495 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4496 		goto out_acct;
4497 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4498 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4499 		goto out_acct;
4500 	if (args.unencoded_offset > args.unencoded_len)
4501 		goto out_acct;
4502 	if (args.len > args.unencoded_len - args.unencoded_offset)
4503 		goto out_acct;
4504 
4505 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4506 			   &iov, &iter);
4507 	if (ret < 0)
4508 		goto out_acct;
4509 
4510 	file_start_write(file);
4511 
4512 	if (iov_iter_count(&iter) == 0) {
4513 		ret = 0;
4514 		goto out_end_write;
4515 	}
4516 	pos = args.offset;
4517 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4518 	if (ret < 0)
4519 		goto out_end_write;
4520 
4521 	init_sync_kiocb(&kiocb, file);
4522 	ret = kiocb_set_rw_flags(&kiocb, 0);
4523 	if (ret)
4524 		goto out_end_write;
4525 	kiocb.ki_pos = pos;
4526 
4527 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4528 	if (ret > 0)
4529 		fsnotify_modify(file);
4530 
4531 out_end_write:
4532 	file_end_write(file);
4533 	kfree(iov);
4534 out_acct:
4535 	if (ret > 0)
4536 		add_wchar(current, ret);
4537 	inc_syscw(current);
4538 	return ret;
4539 }
4540 
4541 long btrfs_ioctl(struct file *file, unsigned int
4542 		cmd, unsigned long arg)
4543 {
4544 	struct inode *inode = file_inode(file);
4545 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4546 	struct btrfs_root *root = BTRFS_I(inode)->root;
4547 	void __user *argp = (void __user *)arg;
4548 
4549 	switch (cmd) {
4550 	case FS_IOC_GETVERSION:
4551 		return btrfs_ioctl_getversion(inode, argp);
4552 	case FS_IOC_GETFSLABEL:
4553 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4554 	case FS_IOC_SETFSLABEL:
4555 		return btrfs_ioctl_set_fslabel(file, argp);
4556 	case FITRIM:
4557 		return btrfs_ioctl_fitrim(fs_info, argp);
4558 	case BTRFS_IOC_SNAP_CREATE:
4559 		return btrfs_ioctl_snap_create(file, argp, 0);
4560 	case BTRFS_IOC_SNAP_CREATE_V2:
4561 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4562 	case BTRFS_IOC_SUBVOL_CREATE:
4563 		return btrfs_ioctl_snap_create(file, argp, 1);
4564 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4565 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4566 	case BTRFS_IOC_SNAP_DESTROY:
4567 		return btrfs_ioctl_snap_destroy(file, argp, false);
4568 	case BTRFS_IOC_SNAP_DESTROY_V2:
4569 		return btrfs_ioctl_snap_destroy(file, argp, true);
4570 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4571 		return btrfs_ioctl_subvol_getflags(inode, argp);
4572 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4573 		return btrfs_ioctl_subvol_setflags(file, argp);
4574 	case BTRFS_IOC_DEFAULT_SUBVOL:
4575 		return btrfs_ioctl_default_subvol(file, argp);
4576 	case BTRFS_IOC_DEFRAG:
4577 		return btrfs_ioctl_defrag(file, NULL);
4578 	case BTRFS_IOC_DEFRAG_RANGE:
4579 		return btrfs_ioctl_defrag(file, argp);
4580 	case BTRFS_IOC_RESIZE:
4581 		return btrfs_ioctl_resize(file, argp);
4582 	case BTRFS_IOC_ADD_DEV:
4583 		return btrfs_ioctl_add_dev(fs_info, argp);
4584 	case BTRFS_IOC_RM_DEV:
4585 		return btrfs_ioctl_rm_dev(file, argp);
4586 	case BTRFS_IOC_RM_DEV_V2:
4587 		return btrfs_ioctl_rm_dev_v2(file, argp);
4588 	case BTRFS_IOC_FS_INFO:
4589 		return btrfs_ioctl_fs_info(fs_info, argp);
4590 	case BTRFS_IOC_DEV_INFO:
4591 		return btrfs_ioctl_dev_info(fs_info, argp);
4592 	case BTRFS_IOC_TREE_SEARCH:
4593 		return btrfs_ioctl_tree_search(inode, argp);
4594 	case BTRFS_IOC_TREE_SEARCH_V2:
4595 		return btrfs_ioctl_tree_search_v2(inode, argp);
4596 	case BTRFS_IOC_INO_LOOKUP:
4597 		return btrfs_ioctl_ino_lookup(root, argp);
4598 	case BTRFS_IOC_INO_PATHS:
4599 		return btrfs_ioctl_ino_to_path(root, argp);
4600 	case BTRFS_IOC_LOGICAL_INO:
4601 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4602 	case BTRFS_IOC_LOGICAL_INO_V2:
4603 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4604 	case BTRFS_IOC_SPACE_INFO:
4605 		return btrfs_ioctl_space_info(fs_info, argp);
4606 	case BTRFS_IOC_SYNC: {
4607 		int ret;
4608 
4609 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4610 		if (ret)
4611 			return ret;
4612 		ret = btrfs_sync_fs(inode->i_sb, 1);
4613 		/*
4614 		 * The transaction thread may want to do more work,
4615 		 * namely it pokes the cleaner kthread that will start
4616 		 * processing uncleaned subvols.
4617 		 */
4618 		wake_up_process(fs_info->transaction_kthread);
4619 		return ret;
4620 	}
4621 	case BTRFS_IOC_START_SYNC:
4622 		return btrfs_ioctl_start_sync(root, argp);
4623 	case BTRFS_IOC_WAIT_SYNC:
4624 		return btrfs_ioctl_wait_sync(fs_info, argp);
4625 	case BTRFS_IOC_SCRUB:
4626 		return btrfs_ioctl_scrub(file, argp);
4627 	case BTRFS_IOC_SCRUB_CANCEL:
4628 		return btrfs_ioctl_scrub_cancel(fs_info);
4629 	case BTRFS_IOC_SCRUB_PROGRESS:
4630 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4631 	case BTRFS_IOC_BALANCE_V2:
4632 		return btrfs_ioctl_balance(file, argp);
4633 	case BTRFS_IOC_BALANCE_CTL:
4634 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4635 	case BTRFS_IOC_BALANCE_PROGRESS:
4636 		return btrfs_ioctl_balance_progress(fs_info, argp);
4637 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4638 		return btrfs_ioctl_set_received_subvol(file, argp);
4639 #ifdef CONFIG_64BIT
4640 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4641 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4642 #endif
4643 	case BTRFS_IOC_SEND:
4644 		return _btrfs_ioctl_send(inode, argp, false);
4645 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4646 	case BTRFS_IOC_SEND_32:
4647 		return _btrfs_ioctl_send(inode, argp, true);
4648 #endif
4649 	case BTRFS_IOC_GET_DEV_STATS:
4650 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4651 	case BTRFS_IOC_QUOTA_CTL:
4652 		return btrfs_ioctl_quota_ctl(file, argp);
4653 	case BTRFS_IOC_QGROUP_ASSIGN:
4654 		return btrfs_ioctl_qgroup_assign(file, argp);
4655 	case BTRFS_IOC_QGROUP_CREATE:
4656 		return btrfs_ioctl_qgroup_create(file, argp);
4657 	case BTRFS_IOC_QGROUP_LIMIT:
4658 		return btrfs_ioctl_qgroup_limit(file, argp);
4659 	case BTRFS_IOC_QUOTA_RESCAN:
4660 		return btrfs_ioctl_quota_rescan(file, argp);
4661 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4662 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4663 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4664 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4665 	case BTRFS_IOC_DEV_REPLACE:
4666 		return btrfs_ioctl_dev_replace(fs_info, argp);
4667 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4668 		return btrfs_ioctl_get_supported_features(argp);
4669 	case BTRFS_IOC_GET_FEATURES:
4670 		return btrfs_ioctl_get_features(fs_info, argp);
4671 	case BTRFS_IOC_SET_FEATURES:
4672 		return btrfs_ioctl_set_features(file, argp);
4673 	case BTRFS_IOC_GET_SUBVOL_INFO:
4674 		return btrfs_ioctl_get_subvol_info(inode, argp);
4675 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4676 		return btrfs_ioctl_get_subvol_rootref(root, argp);
4677 	case BTRFS_IOC_INO_LOOKUP_USER:
4678 		return btrfs_ioctl_ino_lookup_user(file, argp);
4679 	case FS_IOC_ENABLE_VERITY:
4680 		return fsverity_ioctl_enable(file, (const void __user *)argp);
4681 	case FS_IOC_MEASURE_VERITY:
4682 		return fsverity_ioctl_measure(file, argp);
4683 	case BTRFS_IOC_ENCODED_READ:
4684 		return btrfs_ioctl_encoded_read(file, argp, false);
4685 	case BTRFS_IOC_ENCODED_WRITE:
4686 		return btrfs_ioctl_encoded_write(file, argp, false);
4687 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4688 	case BTRFS_IOC_ENCODED_READ_32:
4689 		return btrfs_ioctl_encoded_read(file, argp, true);
4690 	case BTRFS_IOC_ENCODED_WRITE_32:
4691 		return btrfs_ioctl_encoded_write(file, argp, true);
4692 #endif
4693 	}
4694 
4695 	return -ENOTTY;
4696 }
4697 
4698 #ifdef CONFIG_COMPAT
4699 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4700 {
4701 	/*
4702 	 * These all access 32-bit values anyway so no further
4703 	 * handling is necessary.
4704 	 */
4705 	switch (cmd) {
4706 	case FS_IOC32_GETVERSION:
4707 		cmd = FS_IOC_GETVERSION;
4708 		break;
4709 	}
4710 
4711 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4712 }
4713 #endif
4714