1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "transaction.h" 32 #include "btrfs_inode.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "locking.h" 36 #include "inode-map.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 47 #ifdef CONFIG_64BIT 48 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 49 * structures are incorrect, as the timespec structure from userspace 50 * is 4 bytes too small. We define these alternatives here to teach 51 * the kernel about the 32-bit struct packing. 52 */ 53 struct btrfs_ioctl_timespec_32 { 54 __u64 sec; 55 __u32 nsec; 56 } __attribute__ ((__packed__)); 57 58 struct btrfs_ioctl_received_subvol_args_32 { 59 char uuid[BTRFS_UUID_SIZE]; /* in */ 60 __u64 stransid; /* in */ 61 __u64 rtransid; /* out */ 62 struct btrfs_ioctl_timespec_32 stime; /* in */ 63 struct btrfs_ioctl_timespec_32 rtime; /* out */ 64 __u64 flags; /* in */ 65 __u64 reserved[16]; /* in */ 66 } __attribute__ ((__packed__)); 67 68 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 69 struct btrfs_ioctl_received_subvol_args_32) 70 #endif 71 72 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 73 struct btrfs_ioctl_send_args_32 { 74 __s64 send_fd; /* in */ 75 __u64 clone_sources_count; /* in */ 76 compat_uptr_t clone_sources; /* in */ 77 __u64 parent_root; /* in */ 78 __u64 flags; /* in */ 79 __u64 reserved[4]; /* in */ 80 } __attribute__ ((__packed__)); 81 82 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 83 struct btrfs_ioctl_send_args_32) 84 #endif 85 86 static int btrfs_clone(struct inode *src, struct inode *inode, 87 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 88 int no_time_update); 89 90 /* Mask out flags that are inappropriate for the given type of inode. */ 91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93 { 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100 } 101 102 /* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137 { 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 158 { 159 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 161 162 if (copy_to_user(arg, &flags, sizeof(flags))) 163 return -EFAULT; 164 return 0; 165 } 166 167 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 168 static int check_fsflags(unsigned int flags) 169 { 170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 171 FS_NOATIME_FL | FS_NODUMP_FL | \ 172 FS_SYNC_FL | FS_DIRSYNC_FL | \ 173 FS_NOCOMP_FL | FS_COMPR_FL | 174 FS_NOCOW_FL)) 175 return -EOPNOTSUPP; 176 177 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 178 return -EINVAL; 179 180 return 0; 181 } 182 183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 184 { 185 struct inode *inode = file_inode(file); 186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 187 struct btrfs_inode *binode = BTRFS_I(inode); 188 struct btrfs_root *root = binode->root; 189 struct btrfs_trans_handle *trans; 190 unsigned int fsflags, old_fsflags; 191 int ret; 192 const char *comp = NULL; 193 u32 binode_flags = binode->flags; 194 195 if (!inode_owner_or_capable(inode)) 196 return -EPERM; 197 198 if (btrfs_root_readonly(root)) 199 return -EROFS; 200 201 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 202 return -EFAULT; 203 204 ret = check_fsflags(fsflags); 205 if (ret) 206 return ret; 207 208 ret = mnt_want_write_file(file); 209 if (ret) 210 return ret; 211 212 inode_lock(inode); 213 214 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 215 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 216 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 217 if (ret) 218 goto out_unlock; 219 220 if (fsflags & FS_SYNC_FL) 221 binode_flags |= BTRFS_INODE_SYNC; 222 else 223 binode_flags &= ~BTRFS_INODE_SYNC; 224 if (fsflags & FS_IMMUTABLE_FL) 225 binode_flags |= BTRFS_INODE_IMMUTABLE; 226 else 227 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 228 if (fsflags & FS_APPEND_FL) 229 binode_flags |= BTRFS_INODE_APPEND; 230 else 231 binode_flags &= ~BTRFS_INODE_APPEND; 232 if (fsflags & FS_NODUMP_FL) 233 binode_flags |= BTRFS_INODE_NODUMP; 234 else 235 binode_flags &= ~BTRFS_INODE_NODUMP; 236 if (fsflags & FS_NOATIME_FL) 237 binode_flags |= BTRFS_INODE_NOATIME; 238 else 239 binode_flags &= ~BTRFS_INODE_NOATIME; 240 if (fsflags & FS_DIRSYNC_FL) 241 binode_flags |= BTRFS_INODE_DIRSYNC; 242 else 243 binode_flags &= ~BTRFS_INODE_DIRSYNC; 244 if (fsflags & FS_NOCOW_FL) { 245 if (S_ISREG(inode->i_mode)) { 246 /* 247 * It's safe to turn csums off here, no extents exist. 248 * Otherwise we want the flag to reflect the real COW 249 * status of the file and will not set it. 250 */ 251 if (inode->i_size == 0) 252 binode_flags |= BTRFS_INODE_NODATACOW | 253 BTRFS_INODE_NODATASUM; 254 } else { 255 binode_flags |= BTRFS_INODE_NODATACOW; 256 } 257 } else { 258 /* 259 * Revert back under same assumptions as above 260 */ 261 if (S_ISREG(inode->i_mode)) { 262 if (inode->i_size == 0) 263 binode_flags &= ~(BTRFS_INODE_NODATACOW | 264 BTRFS_INODE_NODATASUM); 265 } else { 266 binode_flags &= ~BTRFS_INODE_NODATACOW; 267 } 268 } 269 270 /* 271 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 272 * flag may be changed automatically if compression code won't make 273 * things smaller. 274 */ 275 if (fsflags & FS_NOCOMP_FL) { 276 binode_flags &= ~BTRFS_INODE_COMPRESS; 277 binode_flags |= BTRFS_INODE_NOCOMPRESS; 278 } else if (fsflags & FS_COMPR_FL) { 279 280 if (IS_SWAPFILE(inode)) { 281 ret = -ETXTBSY; 282 goto out_unlock; 283 } 284 285 binode_flags |= BTRFS_INODE_COMPRESS; 286 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 287 288 comp = btrfs_compress_type2str(fs_info->compress_type); 289 if (!comp || comp[0] == 0) 290 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 291 } else { 292 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 293 } 294 295 /* 296 * 1 for inode item 297 * 2 for properties 298 */ 299 trans = btrfs_start_transaction(root, 3); 300 if (IS_ERR(trans)) { 301 ret = PTR_ERR(trans); 302 goto out_unlock; 303 } 304 305 if (comp) { 306 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 307 strlen(comp), 0); 308 if (ret) { 309 btrfs_abort_transaction(trans, ret); 310 goto out_end_trans; 311 } 312 } else { 313 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 314 0, 0); 315 if (ret && ret != -ENODATA) { 316 btrfs_abort_transaction(trans, ret); 317 goto out_end_trans; 318 } 319 } 320 321 binode->flags = binode_flags; 322 btrfs_sync_inode_flags_to_i_flags(inode); 323 inode_inc_iversion(inode); 324 inode->i_ctime = current_time(inode); 325 ret = btrfs_update_inode(trans, root, inode); 326 327 out_end_trans: 328 btrfs_end_transaction(trans); 329 out_unlock: 330 inode_unlock(inode); 331 mnt_drop_write_file(file); 332 return ret; 333 } 334 335 /* 336 * Translate btrfs internal inode flags to xflags as expected by the 337 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 338 * silently dropped. 339 */ 340 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 341 { 342 unsigned int xflags = 0; 343 344 if (flags & BTRFS_INODE_APPEND) 345 xflags |= FS_XFLAG_APPEND; 346 if (flags & BTRFS_INODE_IMMUTABLE) 347 xflags |= FS_XFLAG_IMMUTABLE; 348 if (flags & BTRFS_INODE_NOATIME) 349 xflags |= FS_XFLAG_NOATIME; 350 if (flags & BTRFS_INODE_NODUMP) 351 xflags |= FS_XFLAG_NODUMP; 352 if (flags & BTRFS_INODE_SYNC) 353 xflags |= FS_XFLAG_SYNC; 354 355 return xflags; 356 } 357 358 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 359 static int check_xflags(unsigned int flags) 360 { 361 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 362 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 363 return -EOPNOTSUPP; 364 return 0; 365 } 366 367 /* 368 * Set the xflags from the internal inode flags. The remaining items of fsxattr 369 * are zeroed. 370 */ 371 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 372 { 373 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 374 struct fsxattr fa; 375 376 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 377 if (copy_to_user(arg, &fa, sizeof(fa))) 378 return -EFAULT; 379 380 return 0; 381 } 382 383 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 384 { 385 struct inode *inode = file_inode(file); 386 struct btrfs_inode *binode = BTRFS_I(inode); 387 struct btrfs_root *root = binode->root; 388 struct btrfs_trans_handle *trans; 389 struct fsxattr fa, old_fa; 390 unsigned old_flags; 391 unsigned old_i_flags; 392 int ret = 0; 393 394 if (!inode_owner_or_capable(inode)) 395 return -EPERM; 396 397 if (btrfs_root_readonly(root)) 398 return -EROFS; 399 400 if (copy_from_user(&fa, arg, sizeof(fa))) 401 return -EFAULT; 402 403 ret = check_xflags(fa.fsx_xflags); 404 if (ret) 405 return ret; 406 407 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 408 return -EOPNOTSUPP; 409 410 ret = mnt_want_write_file(file); 411 if (ret) 412 return ret; 413 414 inode_lock(inode); 415 416 old_flags = binode->flags; 417 old_i_flags = inode->i_flags; 418 419 simple_fill_fsxattr(&old_fa, 420 btrfs_inode_flags_to_xflags(binode->flags)); 421 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 422 if (ret) 423 goto out_unlock; 424 425 if (fa.fsx_xflags & FS_XFLAG_SYNC) 426 binode->flags |= BTRFS_INODE_SYNC; 427 else 428 binode->flags &= ~BTRFS_INODE_SYNC; 429 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 430 binode->flags |= BTRFS_INODE_IMMUTABLE; 431 else 432 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 433 if (fa.fsx_xflags & FS_XFLAG_APPEND) 434 binode->flags |= BTRFS_INODE_APPEND; 435 else 436 binode->flags &= ~BTRFS_INODE_APPEND; 437 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 438 binode->flags |= BTRFS_INODE_NODUMP; 439 else 440 binode->flags &= ~BTRFS_INODE_NODUMP; 441 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 442 binode->flags |= BTRFS_INODE_NOATIME; 443 else 444 binode->flags &= ~BTRFS_INODE_NOATIME; 445 446 /* 1 item for the inode */ 447 trans = btrfs_start_transaction(root, 1); 448 if (IS_ERR(trans)) { 449 ret = PTR_ERR(trans); 450 goto out_unlock; 451 } 452 453 btrfs_sync_inode_flags_to_i_flags(inode); 454 inode_inc_iversion(inode); 455 inode->i_ctime = current_time(inode); 456 ret = btrfs_update_inode(trans, root, inode); 457 458 btrfs_end_transaction(trans); 459 460 out_unlock: 461 if (ret) { 462 binode->flags = old_flags; 463 inode->i_flags = old_i_flags; 464 } 465 466 inode_unlock(inode); 467 mnt_drop_write_file(file); 468 469 return ret; 470 } 471 472 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 473 { 474 struct inode *inode = file_inode(file); 475 476 return put_user(inode->i_generation, arg); 477 } 478 479 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 480 { 481 struct inode *inode = file_inode(file); 482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 483 struct btrfs_device *device; 484 struct request_queue *q; 485 struct fstrim_range range; 486 u64 minlen = ULLONG_MAX; 487 u64 num_devices = 0; 488 int ret; 489 490 if (!capable(CAP_SYS_ADMIN)) 491 return -EPERM; 492 493 /* 494 * If the fs is mounted with nologreplay, which requires it to be 495 * mounted in RO mode as well, we can not allow discard on free space 496 * inside block groups, because log trees refer to extents that are not 497 * pinned in a block group's free space cache (pinning the extents is 498 * precisely the first phase of replaying a log tree). 499 */ 500 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 501 return -EROFS; 502 503 rcu_read_lock(); 504 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 505 dev_list) { 506 if (!device->bdev) 507 continue; 508 q = bdev_get_queue(device->bdev); 509 if (blk_queue_discard(q)) { 510 num_devices++; 511 minlen = min_t(u64, q->limits.discard_granularity, 512 minlen); 513 } 514 } 515 rcu_read_unlock(); 516 517 if (!num_devices) 518 return -EOPNOTSUPP; 519 if (copy_from_user(&range, arg, sizeof(range))) 520 return -EFAULT; 521 522 /* 523 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 524 * block group is in the logical address space, which can be any 525 * sectorsize aligned bytenr in the range [0, U64_MAX]. 526 */ 527 if (range.len < fs_info->sb->s_blocksize) 528 return -EINVAL; 529 530 range.minlen = max(range.minlen, minlen); 531 ret = btrfs_trim_fs(fs_info, &range); 532 if (ret < 0) 533 return ret; 534 535 if (copy_to_user(arg, &range, sizeof(range))) 536 return -EFAULT; 537 538 return 0; 539 } 540 541 int btrfs_is_empty_uuid(u8 *uuid) 542 { 543 int i; 544 545 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 546 if (uuid[i]) 547 return 0; 548 } 549 return 1; 550 } 551 552 static noinline int create_subvol(struct inode *dir, 553 struct dentry *dentry, 554 const char *name, int namelen, 555 u64 *async_transid, 556 struct btrfs_qgroup_inherit *inherit) 557 { 558 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 559 struct btrfs_trans_handle *trans; 560 struct btrfs_key key; 561 struct btrfs_root_item *root_item; 562 struct btrfs_inode_item *inode_item; 563 struct extent_buffer *leaf; 564 struct btrfs_root *root = BTRFS_I(dir)->root; 565 struct btrfs_root *new_root; 566 struct btrfs_block_rsv block_rsv; 567 struct timespec64 cur_time = current_time(dir); 568 struct inode *inode; 569 int ret; 570 int err; 571 u64 objectid; 572 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 573 u64 index = 0; 574 uuid_le new_uuid; 575 576 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 577 if (!root_item) 578 return -ENOMEM; 579 580 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 581 if (ret) 582 goto fail_free; 583 584 /* 585 * Don't create subvolume whose level is not zero. Or qgroup will be 586 * screwed up since it assumes subvolume qgroup's level to be 0. 587 */ 588 if (btrfs_qgroup_level(objectid)) { 589 ret = -ENOSPC; 590 goto fail_free; 591 } 592 593 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 594 /* 595 * The same as the snapshot creation, please see the comment 596 * of create_snapshot(). 597 */ 598 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 599 if (ret) 600 goto fail_free; 601 602 trans = btrfs_start_transaction(root, 0); 603 if (IS_ERR(trans)) { 604 ret = PTR_ERR(trans); 605 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 606 goto fail_free; 607 } 608 trans->block_rsv = &block_rsv; 609 trans->bytes_reserved = block_rsv.size; 610 611 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 612 if (ret) 613 goto fail; 614 615 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 616 if (IS_ERR(leaf)) { 617 ret = PTR_ERR(leaf); 618 goto fail; 619 } 620 621 btrfs_mark_buffer_dirty(leaf); 622 623 inode_item = &root_item->inode; 624 btrfs_set_stack_inode_generation(inode_item, 1); 625 btrfs_set_stack_inode_size(inode_item, 3); 626 btrfs_set_stack_inode_nlink(inode_item, 1); 627 btrfs_set_stack_inode_nbytes(inode_item, 628 fs_info->nodesize); 629 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 630 631 btrfs_set_root_flags(root_item, 0); 632 btrfs_set_root_limit(root_item, 0); 633 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 634 635 btrfs_set_root_bytenr(root_item, leaf->start); 636 btrfs_set_root_generation(root_item, trans->transid); 637 btrfs_set_root_level(root_item, 0); 638 btrfs_set_root_refs(root_item, 1); 639 btrfs_set_root_used(root_item, leaf->len); 640 btrfs_set_root_last_snapshot(root_item, 0); 641 642 btrfs_set_root_generation_v2(root_item, 643 btrfs_root_generation(root_item)); 644 uuid_le_gen(&new_uuid); 645 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 646 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 647 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 648 root_item->ctime = root_item->otime; 649 btrfs_set_root_ctransid(root_item, trans->transid); 650 btrfs_set_root_otransid(root_item, trans->transid); 651 652 btrfs_tree_unlock(leaf); 653 free_extent_buffer(leaf); 654 leaf = NULL; 655 656 btrfs_set_root_dirid(root_item, new_dirid); 657 658 key.objectid = objectid; 659 key.offset = 0; 660 key.type = BTRFS_ROOT_ITEM_KEY; 661 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 662 root_item); 663 if (ret) 664 goto fail; 665 666 key.offset = (u64)-1; 667 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 668 if (IS_ERR(new_root)) { 669 ret = PTR_ERR(new_root); 670 btrfs_abort_transaction(trans, ret); 671 goto fail; 672 } 673 674 btrfs_record_root_in_trans(trans, new_root); 675 676 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 677 if (ret) { 678 /* We potentially lose an unused inode item here */ 679 btrfs_abort_transaction(trans, ret); 680 goto fail; 681 } 682 683 mutex_lock(&new_root->objectid_mutex); 684 new_root->highest_objectid = new_dirid; 685 mutex_unlock(&new_root->objectid_mutex); 686 687 /* 688 * insert the directory item 689 */ 690 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 691 if (ret) { 692 btrfs_abort_transaction(trans, ret); 693 goto fail; 694 } 695 696 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 697 BTRFS_FT_DIR, index); 698 if (ret) { 699 btrfs_abort_transaction(trans, ret); 700 goto fail; 701 } 702 703 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 704 ret = btrfs_update_inode(trans, root, dir); 705 BUG_ON(ret); 706 707 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 708 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 709 BUG_ON(ret); 710 711 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 712 BTRFS_UUID_KEY_SUBVOL, objectid); 713 if (ret) 714 btrfs_abort_transaction(trans, ret); 715 716 fail: 717 kfree(root_item); 718 trans->block_rsv = NULL; 719 trans->bytes_reserved = 0; 720 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 721 722 if (async_transid) { 723 *async_transid = trans->transid; 724 err = btrfs_commit_transaction_async(trans, 1); 725 if (err) 726 err = btrfs_commit_transaction(trans); 727 } else { 728 err = btrfs_commit_transaction(trans); 729 } 730 if (err && !ret) 731 ret = err; 732 733 if (!ret) { 734 inode = btrfs_lookup_dentry(dir, dentry); 735 if (IS_ERR(inode)) 736 return PTR_ERR(inode); 737 d_instantiate(dentry, inode); 738 } 739 return ret; 740 741 fail_free: 742 kfree(root_item); 743 return ret; 744 } 745 746 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 747 struct dentry *dentry, 748 u64 *async_transid, bool readonly, 749 struct btrfs_qgroup_inherit *inherit) 750 { 751 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 752 struct inode *inode; 753 struct btrfs_pending_snapshot *pending_snapshot; 754 struct btrfs_trans_handle *trans; 755 int ret; 756 bool snapshot_force_cow = false; 757 758 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 759 return -EINVAL; 760 761 if (atomic_read(&root->nr_swapfiles)) { 762 btrfs_warn(fs_info, 763 "cannot snapshot subvolume with active swapfile"); 764 return -ETXTBSY; 765 } 766 767 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 768 if (!pending_snapshot) 769 return -ENOMEM; 770 771 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 772 GFP_KERNEL); 773 pending_snapshot->path = btrfs_alloc_path(); 774 if (!pending_snapshot->root_item || !pending_snapshot->path) { 775 ret = -ENOMEM; 776 goto free_pending; 777 } 778 779 /* 780 * Force new buffered writes to reserve space even when NOCOW is 781 * possible. This is to avoid later writeback (running dealloc) to 782 * fallback to COW mode and unexpectedly fail with ENOSPC. 783 */ 784 atomic_inc(&root->will_be_snapshotted); 785 smp_mb__after_atomic(); 786 /* wait for no snapshot writes */ 787 wait_event(root->subv_writers->wait, 788 percpu_counter_sum(&root->subv_writers->counter) == 0); 789 790 ret = btrfs_start_delalloc_snapshot(root); 791 if (ret) 792 goto dec_and_free; 793 794 /* 795 * All previous writes have started writeback in NOCOW mode, so now 796 * we force future writes to fallback to COW mode during snapshot 797 * creation. 798 */ 799 atomic_inc(&root->snapshot_force_cow); 800 snapshot_force_cow = true; 801 802 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 803 804 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 805 BTRFS_BLOCK_RSV_TEMP); 806 /* 807 * 1 - parent dir inode 808 * 2 - dir entries 809 * 1 - root item 810 * 2 - root ref/backref 811 * 1 - root of snapshot 812 * 1 - UUID item 813 */ 814 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 815 &pending_snapshot->block_rsv, 8, 816 false); 817 if (ret) 818 goto dec_and_free; 819 820 pending_snapshot->dentry = dentry; 821 pending_snapshot->root = root; 822 pending_snapshot->readonly = readonly; 823 pending_snapshot->dir = dir; 824 pending_snapshot->inherit = inherit; 825 826 trans = btrfs_start_transaction(root, 0); 827 if (IS_ERR(trans)) { 828 ret = PTR_ERR(trans); 829 goto fail; 830 } 831 832 spin_lock(&fs_info->trans_lock); 833 list_add(&pending_snapshot->list, 834 &trans->transaction->pending_snapshots); 835 spin_unlock(&fs_info->trans_lock); 836 if (async_transid) { 837 *async_transid = trans->transid; 838 ret = btrfs_commit_transaction_async(trans, 1); 839 if (ret) 840 ret = btrfs_commit_transaction(trans); 841 } else { 842 ret = btrfs_commit_transaction(trans); 843 } 844 if (ret) 845 goto fail; 846 847 ret = pending_snapshot->error; 848 if (ret) 849 goto fail; 850 851 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 852 if (ret) 853 goto fail; 854 855 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 856 if (IS_ERR(inode)) { 857 ret = PTR_ERR(inode); 858 goto fail; 859 } 860 861 d_instantiate(dentry, inode); 862 ret = 0; 863 fail: 864 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 865 dec_and_free: 866 if (snapshot_force_cow) 867 atomic_dec(&root->snapshot_force_cow); 868 if (atomic_dec_and_test(&root->will_be_snapshotted)) 869 wake_up_var(&root->will_be_snapshotted); 870 free_pending: 871 kfree(pending_snapshot->root_item); 872 btrfs_free_path(pending_snapshot->path); 873 kfree(pending_snapshot); 874 875 return ret; 876 } 877 878 /* copy of may_delete in fs/namei.c() 879 * Check whether we can remove a link victim from directory dir, check 880 * whether the type of victim is right. 881 * 1. We can't do it if dir is read-only (done in permission()) 882 * 2. We should have write and exec permissions on dir 883 * 3. We can't remove anything from append-only dir 884 * 4. We can't do anything with immutable dir (done in permission()) 885 * 5. If the sticky bit on dir is set we should either 886 * a. be owner of dir, or 887 * b. be owner of victim, or 888 * c. have CAP_FOWNER capability 889 * 6. If the victim is append-only or immutable we can't do anything with 890 * links pointing to it. 891 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 892 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 893 * 9. We can't remove a root or mountpoint. 894 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 895 * nfs_async_unlink(). 896 */ 897 898 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 899 { 900 int error; 901 902 if (d_really_is_negative(victim)) 903 return -ENOENT; 904 905 BUG_ON(d_inode(victim->d_parent) != dir); 906 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 907 908 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 909 if (error) 910 return error; 911 if (IS_APPEND(dir)) 912 return -EPERM; 913 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 914 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 915 return -EPERM; 916 if (isdir) { 917 if (!d_is_dir(victim)) 918 return -ENOTDIR; 919 if (IS_ROOT(victim)) 920 return -EBUSY; 921 } else if (d_is_dir(victim)) 922 return -EISDIR; 923 if (IS_DEADDIR(dir)) 924 return -ENOENT; 925 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 926 return -EBUSY; 927 return 0; 928 } 929 930 /* copy of may_create in fs/namei.c() */ 931 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 932 { 933 if (d_really_is_positive(child)) 934 return -EEXIST; 935 if (IS_DEADDIR(dir)) 936 return -ENOENT; 937 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 938 } 939 940 /* 941 * Create a new subvolume below @parent. This is largely modeled after 942 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 943 * inside this filesystem so it's quite a bit simpler. 944 */ 945 static noinline int btrfs_mksubvol(const struct path *parent, 946 const char *name, int namelen, 947 struct btrfs_root *snap_src, 948 u64 *async_transid, bool readonly, 949 struct btrfs_qgroup_inherit *inherit) 950 { 951 struct inode *dir = d_inode(parent->dentry); 952 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 953 struct dentry *dentry; 954 int error; 955 956 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 957 if (error == -EINTR) 958 return error; 959 960 dentry = lookup_one_len(name, parent->dentry, namelen); 961 error = PTR_ERR(dentry); 962 if (IS_ERR(dentry)) 963 goto out_unlock; 964 965 error = btrfs_may_create(dir, dentry); 966 if (error) 967 goto out_dput; 968 969 /* 970 * even if this name doesn't exist, we may get hash collisions. 971 * check for them now when we can safely fail 972 */ 973 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 974 dir->i_ino, name, 975 namelen); 976 if (error) 977 goto out_dput; 978 979 down_read(&fs_info->subvol_sem); 980 981 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 982 goto out_up_read; 983 984 if (snap_src) { 985 error = create_snapshot(snap_src, dir, dentry, 986 async_transid, readonly, inherit); 987 } else { 988 error = create_subvol(dir, dentry, name, namelen, 989 async_transid, inherit); 990 } 991 if (!error) 992 fsnotify_mkdir(dir, dentry); 993 out_up_read: 994 up_read(&fs_info->subvol_sem); 995 out_dput: 996 dput(dentry); 997 out_unlock: 998 inode_unlock(dir); 999 return error; 1000 } 1001 1002 /* 1003 * When we're defragging a range, we don't want to kick it off again 1004 * if it is really just waiting for delalloc to send it down. 1005 * If we find a nice big extent or delalloc range for the bytes in the 1006 * file you want to defrag, we return 0 to let you know to skip this 1007 * part of the file 1008 */ 1009 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1010 { 1011 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1012 struct extent_map *em = NULL; 1013 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1014 u64 end; 1015 1016 read_lock(&em_tree->lock); 1017 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1018 read_unlock(&em_tree->lock); 1019 1020 if (em) { 1021 end = extent_map_end(em); 1022 free_extent_map(em); 1023 if (end - offset > thresh) 1024 return 0; 1025 } 1026 /* if we already have a nice delalloc here, just stop */ 1027 thresh /= 2; 1028 end = count_range_bits(io_tree, &offset, offset + thresh, 1029 thresh, EXTENT_DELALLOC, 1); 1030 if (end >= thresh) 1031 return 0; 1032 return 1; 1033 } 1034 1035 /* 1036 * helper function to walk through a file and find extents 1037 * newer than a specific transid, and smaller than thresh. 1038 * 1039 * This is used by the defragging code to find new and small 1040 * extents 1041 */ 1042 static int find_new_extents(struct btrfs_root *root, 1043 struct inode *inode, u64 newer_than, 1044 u64 *off, u32 thresh) 1045 { 1046 struct btrfs_path *path; 1047 struct btrfs_key min_key; 1048 struct extent_buffer *leaf; 1049 struct btrfs_file_extent_item *extent; 1050 int type; 1051 int ret; 1052 u64 ino = btrfs_ino(BTRFS_I(inode)); 1053 1054 path = btrfs_alloc_path(); 1055 if (!path) 1056 return -ENOMEM; 1057 1058 min_key.objectid = ino; 1059 min_key.type = BTRFS_EXTENT_DATA_KEY; 1060 min_key.offset = *off; 1061 1062 while (1) { 1063 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1064 if (ret != 0) 1065 goto none; 1066 process_slot: 1067 if (min_key.objectid != ino) 1068 goto none; 1069 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1070 goto none; 1071 1072 leaf = path->nodes[0]; 1073 extent = btrfs_item_ptr(leaf, path->slots[0], 1074 struct btrfs_file_extent_item); 1075 1076 type = btrfs_file_extent_type(leaf, extent); 1077 if (type == BTRFS_FILE_EXTENT_REG && 1078 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1079 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1080 *off = min_key.offset; 1081 btrfs_free_path(path); 1082 return 0; 1083 } 1084 1085 path->slots[0]++; 1086 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1087 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1088 goto process_slot; 1089 } 1090 1091 if (min_key.offset == (u64)-1) 1092 goto none; 1093 1094 min_key.offset++; 1095 btrfs_release_path(path); 1096 } 1097 none: 1098 btrfs_free_path(path); 1099 return -ENOENT; 1100 } 1101 1102 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1103 { 1104 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1105 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1106 struct extent_map *em; 1107 u64 len = PAGE_SIZE; 1108 1109 /* 1110 * hopefully we have this extent in the tree already, try without 1111 * the full extent lock 1112 */ 1113 read_lock(&em_tree->lock); 1114 em = lookup_extent_mapping(em_tree, start, len); 1115 read_unlock(&em_tree->lock); 1116 1117 if (!em) { 1118 struct extent_state *cached = NULL; 1119 u64 end = start + len - 1; 1120 1121 /* get the big lock and read metadata off disk */ 1122 lock_extent_bits(io_tree, start, end, &cached); 1123 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 1124 unlock_extent_cached(io_tree, start, end, &cached); 1125 1126 if (IS_ERR(em)) 1127 return NULL; 1128 } 1129 1130 return em; 1131 } 1132 1133 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1134 { 1135 struct extent_map *next; 1136 bool ret = true; 1137 1138 /* this is the last extent */ 1139 if (em->start + em->len >= i_size_read(inode)) 1140 return false; 1141 1142 next = defrag_lookup_extent(inode, em->start + em->len); 1143 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1144 ret = false; 1145 else if ((em->block_start + em->block_len == next->block_start) && 1146 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1147 ret = false; 1148 1149 free_extent_map(next); 1150 return ret; 1151 } 1152 1153 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1154 u64 *last_len, u64 *skip, u64 *defrag_end, 1155 int compress) 1156 { 1157 struct extent_map *em; 1158 int ret = 1; 1159 bool next_mergeable = true; 1160 bool prev_mergeable = true; 1161 1162 /* 1163 * make sure that once we start defragging an extent, we keep on 1164 * defragging it 1165 */ 1166 if (start < *defrag_end) 1167 return 1; 1168 1169 *skip = 0; 1170 1171 em = defrag_lookup_extent(inode, start); 1172 if (!em) 1173 return 0; 1174 1175 /* this will cover holes, and inline extents */ 1176 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1177 ret = 0; 1178 goto out; 1179 } 1180 1181 if (!*defrag_end) 1182 prev_mergeable = false; 1183 1184 next_mergeable = defrag_check_next_extent(inode, em); 1185 /* 1186 * we hit a real extent, if it is big or the next extent is not a 1187 * real extent, don't bother defragging it 1188 */ 1189 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1190 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1191 ret = 0; 1192 out: 1193 /* 1194 * last_len ends up being a counter of how many bytes we've defragged. 1195 * every time we choose not to defrag an extent, we reset *last_len 1196 * so that the next tiny extent will force a defrag. 1197 * 1198 * The end result of this is that tiny extents before a single big 1199 * extent will force at least part of that big extent to be defragged. 1200 */ 1201 if (ret) { 1202 *defrag_end = extent_map_end(em); 1203 } else { 1204 *last_len = 0; 1205 *skip = extent_map_end(em); 1206 *defrag_end = 0; 1207 } 1208 1209 free_extent_map(em); 1210 return ret; 1211 } 1212 1213 /* 1214 * it doesn't do much good to defrag one or two pages 1215 * at a time. This pulls in a nice chunk of pages 1216 * to COW and defrag. 1217 * 1218 * It also makes sure the delalloc code has enough 1219 * dirty data to avoid making new small extents as part 1220 * of the defrag 1221 * 1222 * It's a good idea to start RA on this range 1223 * before calling this. 1224 */ 1225 static int cluster_pages_for_defrag(struct inode *inode, 1226 struct page **pages, 1227 unsigned long start_index, 1228 unsigned long num_pages) 1229 { 1230 unsigned long file_end; 1231 u64 isize = i_size_read(inode); 1232 u64 page_start; 1233 u64 page_end; 1234 u64 page_cnt; 1235 int ret; 1236 int i; 1237 int i_done; 1238 struct btrfs_ordered_extent *ordered; 1239 struct extent_state *cached_state = NULL; 1240 struct extent_io_tree *tree; 1241 struct extent_changeset *data_reserved = NULL; 1242 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1243 1244 file_end = (isize - 1) >> PAGE_SHIFT; 1245 if (!isize || start_index > file_end) 1246 return 0; 1247 1248 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1249 1250 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1251 start_index << PAGE_SHIFT, 1252 page_cnt << PAGE_SHIFT); 1253 if (ret) 1254 return ret; 1255 i_done = 0; 1256 tree = &BTRFS_I(inode)->io_tree; 1257 1258 /* step one, lock all the pages */ 1259 for (i = 0; i < page_cnt; i++) { 1260 struct page *page; 1261 again: 1262 page = find_or_create_page(inode->i_mapping, 1263 start_index + i, mask); 1264 if (!page) 1265 break; 1266 1267 page_start = page_offset(page); 1268 page_end = page_start + PAGE_SIZE - 1; 1269 while (1) { 1270 lock_extent_bits(tree, page_start, page_end, 1271 &cached_state); 1272 ordered = btrfs_lookup_ordered_extent(inode, 1273 page_start); 1274 unlock_extent_cached(tree, page_start, page_end, 1275 &cached_state); 1276 if (!ordered) 1277 break; 1278 1279 unlock_page(page); 1280 btrfs_start_ordered_extent(inode, ordered, 1); 1281 btrfs_put_ordered_extent(ordered); 1282 lock_page(page); 1283 /* 1284 * we unlocked the page above, so we need check if 1285 * it was released or not. 1286 */ 1287 if (page->mapping != inode->i_mapping) { 1288 unlock_page(page); 1289 put_page(page); 1290 goto again; 1291 } 1292 } 1293 1294 if (!PageUptodate(page)) { 1295 btrfs_readpage(NULL, page); 1296 lock_page(page); 1297 if (!PageUptodate(page)) { 1298 unlock_page(page); 1299 put_page(page); 1300 ret = -EIO; 1301 break; 1302 } 1303 } 1304 1305 if (page->mapping != inode->i_mapping) { 1306 unlock_page(page); 1307 put_page(page); 1308 goto again; 1309 } 1310 1311 pages[i] = page; 1312 i_done++; 1313 } 1314 if (!i_done || ret) 1315 goto out; 1316 1317 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1318 goto out; 1319 1320 /* 1321 * so now we have a nice long stream of locked 1322 * and up to date pages, lets wait on them 1323 */ 1324 for (i = 0; i < i_done; i++) 1325 wait_on_page_writeback(pages[i]); 1326 1327 page_start = page_offset(pages[0]); 1328 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1329 1330 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1331 page_start, page_end - 1, &cached_state); 1332 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1333 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1334 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1335 &cached_state); 1336 1337 if (i_done != page_cnt) { 1338 spin_lock(&BTRFS_I(inode)->lock); 1339 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1340 spin_unlock(&BTRFS_I(inode)->lock); 1341 btrfs_delalloc_release_space(inode, data_reserved, 1342 start_index << PAGE_SHIFT, 1343 (page_cnt - i_done) << PAGE_SHIFT, true); 1344 } 1345 1346 1347 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1348 &cached_state); 1349 1350 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1351 page_start, page_end - 1, &cached_state); 1352 1353 for (i = 0; i < i_done; i++) { 1354 clear_page_dirty_for_io(pages[i]); 1355 ClearPageChecked(pages[i]); 1356 set_page_extent_mapped(pages[i]); 1357 set_page_dirty(pages[i]); 1358 unlock_page(pages[i]); 1359 put_page(pages[i]); 1360 } 1361 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1362 false); 1363 extent_changeset_free(data_reserved); 1364 return i_done; 1365 out: 1366 for (i = 0; i < i_done; i++) { 1367 unlock_page(pages[i]); 1368 put_page(pages[i]); 1369 } 1370 btrfs_delalloc_release_space(inode, data_reserved, 1371 start_index << PAGE_SHIFT, 1372 page_cnt << PAGE_SHIFT, true); 1373 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1374 true); 1375 extent_changeset_free(data_reserved); 1376 return ret; 1377 1378 } 1379 1380 int btrfs_defrag_file(struct inode *inode, struct file *file, 1381 struct btrfs_ioctl_defrag_range_args *range, 1382 u64 newer_than, unsigned long max_to_defrag) 1383 { 1384 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1385 struct btrfs_root *root = BTRFS_I(inode)->root; 1386 struct file_ra_state *ra = NULL; 1387 unsigned long last_index; 1388 u64 isize = i_size_read(inode); 1389 u64 last_len = 0; 1390 u64 skip = 0; 1391 u64 defrag_end = 0; 1392 u64 newer_off = range->start; 1393 unsigned long i; 1394 unsigned long ra_index = 0; 1395 int ret; 1396 int defrag_count = 0; 1397 int compress_type = BTRFS_COMPRESS_ZLIB; 1398 u32 extent_thresh = range->extent_thresh; 1399 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1400 unsigned long cluster = max_cluster; 1401 u64 new_align = ~((u64)SZ_128K - 1); 1402 struct page **pages = NULL; 1403 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1404 1405 if (isize == 0) 1406 return 0; 1407 1408 if (range->start >= isize) 1409 return -EINVAL; 1410 1411 if (do_compress) { 1412 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1413 return -EINVAL; 1414 if (range->compress_type) 1415 compress_type = range->compress_type; 1416 } 1417 1418 if (extent_thresh == 0) 1419 extent_thresh = SZ_256K; 1420 1421 /* 1422 * If we were not given a file, allocate a readahead context. As 1423 * readahead is just an optimization, defrag will work without it so 1424 * we don't error out. 1425 */ 1426 if (!file) { 1427 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1428 if (ra) 1429 file_ra_state_init(ra, inode->i_mapping); 1430 } else { 1431 ra = &file->f_ra; 1432 } 1433 1434 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1435 if (!pages) { 1436 ret = -ENOMEM; 1437 goto out_ra; 1438 } 1439 1440 /* find the last page to defrag */ 1441 if (range->start + range->len > range->start) { 1442 last_index = min_t(u64, isize - 1, 1443 range->start + range->len - 1) >> PAGE_SHIFT; 1444 } else { 1445 last_index = (isize - 1) >> PAGE_SHIFT; 1446 } 1447 1448 if (newer_than) { 1449 ret = find_new_extents(root, inode, newer_than, 1450 &newer_off, SZ_64K); 1451 if (!ret) { 1452 range->start = newer_off; 1453 /* 1454 * we always align our defrag to help keep 1455 * the extents in the file evenly spaced 1456 */ 1457 i = (newer_off & new_align) >> PAGE_SHIFT; 1458 } else 1459 goto out_ra; 1460 } else { 1461 i = range->start >> PAGE_SHIFT; 1462 } 1463 if (!max_to_defrag) 1464 max_to_defrag = last_index - i + 1; 1465 1466 /* 1467 * make writeback starts from i, so the defrag range can be 1468 * written sequentially. 1469 */ 1470 if (i < inode->i_mapping->writeback_index) 1471 inode->i_mapping->writeback_index = i; 1472 1473 while (i <= last_index && defrag_count < max_to_defrag && 1474 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1475 /* 1476 * make sure we stop running if someone unmounts 1477 * the FS 1478 */ 1479 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1480 break; 1481 1482 if (btrfs_defrag_cancelled(fs_info)) { 1483 btrfs_debug(fs_info, "defrag_file cancelled"); 1484 ret = -EAGAIN; 1485 break; 1486 } 1487 1488 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1489 extent_thresh, &last_len, &skip, 1490 &defrag_end, do_compress)){ 1491 unsigned long next; 1492 /* 1493 * the should_defrag function tells us how much to skip 1494 * bump our counter by the suggested amount 1495 */ 1496 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1497 i = max(i + 1, next); 1498 continue; 1499 } 1500 1501 if (!newer_than) { 1502 cluster = (PAGE_ALIGN(defrag_end) >> 1503 PAGE_SHIFT) - i; 1504 cluster = min(cluster, max_cluster); 1505 } else { 1506 cluster = max_cluster; 1507 } 1508 1509 if (i + cluster > ra_index) { 1510 ra_index = max(i, ra_index); 1511 if (ra) 1512 page_cache_sync_readahead(inode->i_mapping, ra, 1513 file, ra_index, cluster); 1514 ra_index += cluster; 1515 } 1516 1517 inode_lock(inode); 1518 if (IS_SWAPFILE(inode)) { 1519 ret = -ETXTBSY; 1520 } else { 1521 if (do_compress) 1522 BTRFS_I(inode)->defrag_compress = compress_type; 1523 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1524 } 1525 if (ret < 0) { 1526 inode_unlock(inode); 1527 goto out_ra; 1528 } 1529 1530 defrag_count += ret; 1531 balance_dirty_pages_ratelimited(inode->i_mapping); 1532 inode_unlock(inode); 1533 1534 if (newer_than) { 1535 if (newer_off == (u64)-1) 1536 break; 1537 1538 if (ret > 0) 1539 i += ret; 1540 1541 newer_off = max(newer_off + 1, 1542 (u64)i << PAGE_SHIFT); 1543 1544 ret = find_new_extents(root, inode, newer_than, 1545 &newer_off, SZ_64K); 1546 if (!ret) { 1547 range->start = newer_off; 1548 i = (newer_off & new_align) >> PAGE_SHIFT; 1549 } else { 1550 break; 1551 } 1552 } else { 1553 if (ret > 0) { 1554 i += ret; 1555 last_len += ret << PAGE_SHIFT; 1556 } else { 1557 i++; 1558 last_len = 0; 1559 } 1560 } 1561 } 1562 1563 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1564 filemap_flush(inode->i_mapping); 1565 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1566 &BTRFS_I(inode)->runtime_flags)) 1567 filemap_flush(inode->i_mapping); 1568 } 1569 1570 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1571 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1572 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1573 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1574 } 1575 1576 ret = defrag_count; 1577 1578 out_ra: 1579 if (do_compress) { 1580 inode_lock(inode); 1581 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1582 inode_unlock(inode); 1583 } 1584 if (!file) 1585 kfree(ra); 1586 kfree(pages); 1587 return ret; 1588 } 1589 1590 static noinline int btrfs_ioctl_resize(struct file *file, 1591 void __user *arg) 1592 { 1593 struct inode *inode = file_inode(file); 1594 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1595 u64 new_size; 1596 u64 old_size; 1597 u64 devid = 1; 1598 struct btrfs_root *root = BTRFS_I(inode)->root; 1599 struct btrfs_ioctl_vol_args *vol_args; 1600 struct btrfs_trans_handle *trans; 1601 struct btrfs_device *device = NULL; 1602 char *sizestr; 1603 char *retptr; 1604 char *devstr = NULL; 1605 int ret = 0; 1606 int mod = 0; 1607 1608 if (!capable(CAP_SYS_ADMIN)) 1609 return -EPERM; 1610 1611 ret = mnt_want_write_file(file); 1612 if (ret) 1613 return ret; 1614 1615 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1616 mnt_drop_write_file(file); 1617 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1618 } 1619 1620 vol_args = memdup_user(arg, sizeof(*vol_args)); 1621 if (IS_ERR(vol_args)) { 1622 ret = PTR_ERR(vol_args); 1623 goto out; 1624 } 1625 1626 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1627 1628 sizestr = vol_args->name; 1629 devstr = strchr(sizestr, ':'); 1630 if (devstr) { 1631 sizestr = devstr + 1; 1632 *devstr = '\0'; 1633 devstr = vol_args->name; 1634 ret = kstrtoull(devstr, 10, &devid); 1635 if (ret) 1636 goto out_free; 1637 if (!devid) { 1638 ret = -EINVAL; 1639 goto out_free; 1640 } 1641 btrfs_info(fs_info, "resizing devid %llu", devid); 1642 } 1643 1644 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1645 if (!device) { 1646 btrfs_info(fs_info, "resizer unable to find device %llu", 1647 devid); 1648 ret = -ENODEV; 1649 goto out_free; 1650 } 1651 1652 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1653 btrfs_info(fs_info, 1654 "resizer unable to apply on readonly device %llu", 1655 devid); 1656 ret = -EPERM; 1657 goto out_free; 1658 } 1659 1660 if (!strcmp(sizestr, "max")) 1661 new_size = device->bdev->bd_inode->i_size; 1662 else { 1663 if (sizestr[0] == '-') { 1664 mod = -1; 1665 sizestr++; 1666 } else if (sizestr[0] == '+') { 1667 mod = 1; 1668 sizestr++; 1669 } 1670 new_size = memparse(sizestr, &retptr); 1671 if (*retptr != '\0' || new_size == 0) { 1672 ret = -EINVAL; 1673 goto out_free; 1674 } 1675 } 1676 1677 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1678 ret = -EPERM; 1679 goto out_free; 1680 } 1681 1682 old_size = btrfs_device_get_total_bytes(device); 1683 1684 if (mod < 0) { 1685 if (new_size > old_size) { 1686 ret = -EINVAL; 1687 goto out_free; 1688 } 1689 new_size = old_size - new_size; 1690 } else if (mod > 0) { 1691 if (new_size > ULLONG_MAX - old_size) { 1692 ret = -ERANGE; 1693 goto out_free; 1694 } 1695 new_size = old_size + new_size; 1696 } 1697 1698 if (new_size < SZ_256M) { 1699 ret = -EINVAL; 1700 goto out_free; 1701 } 1702 if (new_size > device->bdev->bd_inode->i_size) { 1703 ret = -EFBIG; 1704 goto out_free; 1705 } 1706 1707 new_size = round_down(new_size, fs_info->sectorsize); 1708 1709 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1710 rcu_str_deref(device->name), new_size); 1711 1712 if (new_size > old_size) { 1713 trans = btrfs_start_transaction(root, 0); 1714 if (IS_ERR(trans)) { 1715 ret = PTR_ERR(trans); 1716 goto out_free; 1717 } 1718 ret = btrfs_grow_device(trans, device, new_size); 1719 btrfs_commit_transaction(trans); 1720 } else if (new_size < old_size) { 1721 ret = btrfs_shrink_device(device, new_size); 1722 } /* equal, nothing need to do */ 1723 1724 out_free: 1725 kfree(vol_args); 1726 out: 1727 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1728 mnt_drop_write_file(file); 1729 return ret; 1730 } 1731 1732 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1733 const char *name, unsigned long fd, int subvol, 1734 u64 *transid, bool readonly, 1735 struct btrfs_qgroup_inherit *inherit) 1736 { 1737 int namelen; 1738 int ret = 0; 1739 1740 if (!S_ISDIR(file_inode(file)->i_mode)) 1741 return -ENOTDIR; 1742 1743 ret = mnt_want_write_file(file); 1744 if (ret) 1745 goto out; 1746 1747 namelen = strlen(name); 1748 if (strchr(name, '/')) { 1749 ret = -EINVAL; 1750 goto out_drop_write; 1751 } 1752 1753 if (name[0] == '.' && 1754 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1755 ret = -EEXIST; 1756 goto out_drop_write; 1757 } 1758 1759 if (subvol) { 1760 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1761 NULL, transid, readonly, inherit); 1762 } else { 1763 struct fd src = fdget(fd); 1764 struct inode *src_inode; 1765 if (!src.file) { 1766 ret = -EINVAL; 1767 goto out_drop_write; 1768 } 1769 1770 src_inode = file_inode(src.file); 1771 if (src_inode->i_sb != file_inode(file)->i_sb) { 1772 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1773 "Snapshot src from another FS"); 1774 ret = -EXDEV; 1775 } else if (!inode_owner_or_capable(src_inode)) { 1776 /* 1777 * Subvolume creation is not restricted, but snapshots 1778 * are limited to own subvolumes only 1779 */ 1780 ret = -EPERM; 1781 } else { 1782 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1783 BTRFS_I(src_inode)->root, 1784 transid, readonly, inherit); 1785 } 1786 fdput(src); 1787 } 1788 out_drop_write: 1789 mnt_drop_write_file(file); 1790 out: 1791 return ret; 1792 } 1793 1794 static noinline int btrfs_ioctl_snap_create(struct file *file, 1795 void __user *arg, int subvol) 1796 { 1797 struct btrfs_ioctl_vol_args *vol_args; 1798 int ret; 1799 1800 if (!S_ISDIR(file_inode(file)->i_mode)) 1801 return -ENOTDIR; 1802 1803 vol_args = memdup_user(arg, sizeof(*vol_args)); 1804 if (IS_ERR(vol_args)) 1805 return PTR_ERR(vol_args); 1806 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1807 1808 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1809 vol_args->fd, subvol, 1810 NULL, false, NULL); 1811 1812 kfree(vol_args); 1813 return ret; 1814 } 1815 1816 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1817 void __user *arg, int subvol) 1818 { 1819 struct btrfs_ioctl_vol_args_v2 *vol_args; 1820 int ret; 1821 u64 transid = 0; 1822 u64 *ptr = NULL; 1823 bool readonly = false; 1824 struct btrfs_qgroup_inherit *inherit = NULL; 1825 1826 if (!S_ISDIR(file_inode(file)->i_mode)) 1827 return -ENOTDIR; 1828 1829 vol_args = memdup_user(arg, sizeof(*vol_args)); 1830 if (IS_ERR(vol_args)) 1831 return PTR_ERR(vol_args); 1832 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1833 1834 if (vol_args->flags & 1835 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1836 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1837 ret = -EOPNOTSUPP; 1838 goto free_args; 1839 } 1840 1841 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1842 ptr = &transid; 1843 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1844 readonly = true; 1845 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1846 if (vol_args->size > PAGE_SIZE) { 1847 ret = -EINVAL; 1848 goto free_args; 1849 } 1850 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1851 if (IS_ERR(inherit)) { 1852 ret = PTR_ERR(inherit); 1853 goto free_args; 1854 } 1855 } 1856 1857 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1858 vol_args->fd, subvol, ptr, 1859 readonly, inherit); 1860 if (ret) 1861 goto free_inherit; 1862 1863 if (ptr && copy_to_user(arg + 1864 offsetof(struct btrfs_ioctl_vol_args_v2, 1865 transid), 1866 ptr, sizeof(*ptr))) 1867 ret = -EFAULT; 1868 1869 free_inherit: 1870 kfree(inherit); 1871 free_args: 1872 kfree(vol_args); 1873 return ret; 1874 } 1875 1876 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1877 void __user *arg) 1878 { 1879 struct inode *inode = file_inode(file); 1880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1881 struct btrfs_root *root = BTRFS_I(inode)->root; 1882 int ret = 0; 1883 u64 flags = 0; 1884 1885 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1886 return -EINVAL; 1887 1888 down_read(&fs_info->subvol_sem); 1889 if (btrfs_root_readonly(root)) 1890 flags |= BTRFS_SUBVOL_RDONLY; 1891 up_read(&fs_info->subvol_sem); 1892 1893 if (copy_to_user(arg, &flags, sizeof(flags))) 1894 ret = -EFAULT; 1895 1896 return ret; 1897 } 1898 1899 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1900 void __user *arg) 1901 { 1902 struct inode *inode = file_inode(file); 1903 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1904 struct btrfs_root *root = BTRFS_I(inode)->root; 1905 struct btrfs_trans_handle *trans; 1906 u64 root_flags; 1907 u64 flags; 1908 int ret = 0; 1909 1910 if (!inode_owner_or_capable(inode)) 1911 return -EPERM; 1912 1913 ret = mnt_want_write_file(file); 1914 if (ret) 1915 goto out; 1916 1917 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1918 ret = -EINVAL; 1919 goto out_drop_write; 1920 } 1921 1922 if (copy_from_user(&flags, arg, sizeof(flags))) { 1923 ret = -EFAULT; 1924 goto out_drop_write; 1925 } 1926 1927 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1928 ret = -EINVAL; 1929 goto out_drop_write; 1930 } 1931 1932 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1933 ret = -EOPNOTSUPP; 1934 goto out_drop_write; 1935 } 1936 1937 down_write(&fs_info->subvol_sem); 1938 1939 /* nothing to do */ 1940 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1941 goto out_drop_sem; 1942 1943 root_flags = btrfs_root_flags(&root->root_item); 1944 if (flags & BTRFS_SUBVOL_RDONLY) { 1945 btrfs_set_root_flags(&root->root_item, 1946 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1947 } else { 1948 /* 1949 * Block RO -> RW transition if this subvolume is involved in 1950 * send 1951 */ 1952 spin_lock(&root->root_item_lock); 1953 if (root->send_in_progress == 0) { 1954 btrfs_set_root_flags(&root->root_item, 1955 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1956 spin_unlock(&root->root_item_lock); 1957 } else { 1958 spin_unlock(&root->root_item_lock); 1959 btrfs_warn(fs_info, 1960 "Attempt to set subvolume %llu read-write during send", 1961 root->root_key.objectid); 1962 ret = -EPERM; 1963 goto out_drop_sem; 1964 } 1965 } 1966 1967 trans = btrfs_start_transaction(root, 1); 1968 if (IS_ERR(trans)) { 1969 ret = PTR_ERR(trans); 1970 goto out_reset; 1971 } 1972 1973 ret = btrfs_update_root(trans, fs_info->tree_root, 1974 &root->root_key, &root->root_item); 1975 if (ret < 0) { 1976 btrfs_end_transaction(trans); 1977 goto out_reset; 1978 } 1979 1980 ret = btrfs_commit_transaction(trans); 1981 1982 out_reset: 1983 if (ret) 1984 btrfs_set_root_flags(&root->root_item, root_flags); 1985 out_drop_sem: 1986 up_write(&fs_info->subvol_sem); 1987 out_drop_write: 1988 mnt_drop_write_file(file); 1989 out: 1990 return ret; 1991 } 1992 1993 static noinline int key_in_sk(struct btrfs_key *key, 1994 struct btrfs_ioctl_search_key *sk) 1995 { 1996 struct btrfs_key test; 1997 int ret; 1998 1999 test.objectid = sk->min_objectid; 2000 test.type = sk->min_type; 2001 test.offset = sk->min_offset; 2002 2003 ret = btrfs_comp_cpu_keys(key, &test); 2004 if (ret < 0) 2005 return 0; 2006 2007 test.objectid = sk->max_objectid; 2008 test.type = sk->max_type; 2009 test.offset = sk->max_offset; 2010 2011 ret = btrfs_comp_cpu_keys(key, &test); 2012 if (ret > 0) 2013 return 0; 2014 return 1; 2015 } 2016 2017 static noinline int copy_to_sk(struct btrfs_path *path, 2018 struct btrfs_key *key, 2019 struct btrfs_ioctl_search_key *sk, 2020 size_t *buf_size, 2021 char __user *ubuf, 2022 unsigned long *sk_offset, 2023 int *num_found) 2024 { 2025 u64 found_transid; 2026 struct extent_buffer *leaf; 2027 struct btrfs_ioctl_search_header sh; 2028 struct btrfs_key test; 2029 unsigned long item_off; 2030 unsigned long item_len; 2031 int nritems; 2032 int i; 2033 int slot; 2034 int ret = 0; 2035 2036 leaf = path->nodes[0]; 2037 slot = path->slots[0]; 2038 nritems = btrfs_header_nritems(leaf); 2039 2040 if (btrfs_header_generation(leaf) > sk->max_transid) { 2041 i = nritems; 2042 goto advance_key; 2043 } 2044 found_transid = btrfs_header_generation(leaf); 2045 2046 for (i = slot; i < nritems; i++) { 2047 item_off = btrfs_item_ptr_offset(leaf, i); 2048 item_len = btrfs_item_size_nr(leaf, i); 2049 2050 btrfs_item_key_to_cpu(leaf, key, i); 2051 if (!key_in_sk(key, sk)) 2052 continue; 2053 2054 if (sizeof(sh) + item_len > *buf_size) { 2055 if (*num_found) { 2056 ret = 1; 2057 goto out; 2058 } 2059 2060 /* 2061 * return one empty item back for v1, which does not 2062 * handle -EOVERFLOW 2063 */ 2064 2065 *buf_size = sizeof(sh) + item_len; 2066 item_len = 0; 2067 ret = -EOVERFLOW; 2068 } 2069 2070 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2071 ret = 1; 2072 goto out; 2073 } 2074 2075 sh.objectid = key->objectid; 2076 sh.offset = key->offset; 2077 sh.type = key->type; 2078 sh.len = item_len; 2079 sh.transid = found_transid; 2080 2081 /* copy search result header */ 2082 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2083 ret = -EFAULT; 2084 goto out; 2085 } 2086 2087 *sk_offset += sizeof(sh); 2088 2089 if (item_len) { 2090 char __user *up = ubuf + *sk_offset; 2091 /* copy the item */ 2092 if (read_extent_buffer_to_user(leaf, up, 2093 item_off, item_len)) { 2094 ret = -EFAULT; 2095 goto out; 2096 } 2097 2098 *sk_offset += item_len; 2099 } 2100 (*num_found)++; 2101 2102 if (ret) /* -EOVERFLOW from above */ 2103 goto out; 2104 2105 if (*num_found >= sk->nr_items) { 2106 ret = 1; 2107 goto out; 2108 } 2109 } 2110 advance_key: 2111 ret = 0; 2112 test.objectid = sk->max_objectid; 2113 test.type = sk->max_type; 2114 test.offset = sk->max_offset; 2115 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2116 ret = 1; 2117 else if (key->offset < (u64)-1) 2118 key->offset++; 2119 else if (key->type < (u8)-1) { 2120 key->offset = 0; 2121 key->type++; 2122 } else if (key->objectid < (u64)-1) { 2123 key->offset = 0; 2124 key->type = 0; 2125 key->objectid++; 2126 } else 2127 ret = 1; 2128 out: 2129 /* 2130 * 0: all items from this leaf copied, continue with next 2131 * 1: * more items can be copied, but unused buffer is too small 2132 * * all items were found 2133 * Either way, it will stops the loop which iterates to the next 2134 * leaf 2135 * -EOVERFLOW: item was to large for buffer 2136 * -EFAULT: could not copy extent buffer back to userspace 2137 */ 2138 return ret; 2139 } 2140 2141 static noinline int search_ioctl(struct inode *inode, 2142 struct btrfs_ioctl_search_key *sk, 2143 size_t *buf_size, 2144 char __user *ubuf) 2145 { 2146 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2147 struct btrfs_root *root; 2148 struct btrfs_key key; 2149 struct btrfs_path *path; 2150 int ret; 2151 int num_found = 0; 2152 unsigned long sk_offset = 0; 2153 2154 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2155 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2156 return -EOVERFLOW; 2157 } 2158 2159 path = btrfs_alloc_path(); 2160 if (!path) 2161 return -ENOMEM; 2162 2163 if (sk->tree_id == 0) { 2164 /* search the root of the inode that was passed */ 2165 root = BTRFS_I(inode)->root; 2166 } else { 2167 key.objectid = sk->tree_id; 2168 key.type = BTRFS_ROOT_ITEM_KEY; 2169 key.offset = (u64)-1; 2170 root = btrfs_read_fs_root_no_name(info, &key); 2171 if (IS_ERR(root)) { 2172 btrfs_free_path(path); 2173 return PTR_ERR(root); 2174 } 2175 } 2176 2177 key.objectid = sk->min_objectid; 2178 key.type = sk->min_type; 2179 key.offset = sk->min_offset; 2180 2181 while (1) { 2182 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2183 if (ret != 0) { 2184 if (ret > 0) 2185 ret = 0; 2186 goto err; 2187 } 2188 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2189 &sk_offset, &num_found); 2190 btrfs_release_path(path); 2191 if (ret) 2192 break; 2193 2194 } 2195 if (ret > 0) 2196 ret = 0; 2197 err: 2198 sk->nr_items = num_found; 2199 btrfs_free_path(path); 2200 return ret; 2201 } 2202 2203 static noinline int btrfs_ioctl_tree_search(struct file *file, 2204 void __user *argp) 2205 { 2206 struct btrfs_ioctl_search_args __user *uargs; 2207 struct btrfs_ioctl_search_key sk; 2208 struct inode *inode; 2209 int ret; 2210 size_t buf_size; 2211 2212 if (!capable(CAP_SYS_ADMIN)) 2213 return -EPERM; 2214 2215 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2216 2217 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2218 return -EFAULT; 2219 2220 buf_size = sizeof(uargs->buf); 2221 2222 inode = file_inode(file); 2223 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2224 2225 /* 2226 * In the origin implementation an overflow is handled by returning a 2227 * search header with a len of zero, so reset ret. 2228 */ 2229 if (ret == -EOVERFLOW) 2230 ret = 0; 2231 2232 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2233 ret = -EFAULT; 2234 return ret; 2235 } 2236 2237 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2238 void __user *argp) 2239 { 2240 struct btrfs_ioctl_search_args_v2 __user *uarg; 2241 struct btrfs_ioctl_search_args_v2 args; 2242 struct inode *inode; 2243 int ret; 2244 size_t buf_size; 2245 const size_t buf_limit = SZ_16M; 2246 2247 if (!capable(CAP_SYS_ADMIN)) 2248 return -EPERM; 2249 2250 /* copy search header and buffer size */ 2251 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2252 if (copy_from_user(&args, uarg, sizeof(args))) 2253 return -EFAULT; 2254 2255 buf_size = args.buf_size; 2256 2257 /* limit result size to 16MB */ 2258 if (buf_size > buf_limit) 2259 buf_size = buf_limit; 2260 2261 inode = file_inode(file); 2262 ret = search_ioctl(inode, &args.key, &buf_size, 2263 (char __user *)(&uarg->buf[0])); 2264 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2265 ret = -EFAULT; 2266 else if (ret == -EOVERFLOW && 2267 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2268 ret = -EFAULT; 2269 2270 return ret; 2271 } 2272 2273 /* 2274 * Search INODE_REFs to identify path name of 'dirid' directory 2275 * in a 'tree_id' tree. and sets path name to 'name'. 2276 */ 2277 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2278 u64 tree_id, u64 dirid, char *name) 2279 { 2280 struct btrfs_root *root; 2281 struct btrfs_key key; 2282 char *ptr; 2283 int ret = -1; 2284 int slot; 2285 int len; 2286 int total_len = 0; 2287 struct btrfs_inode_ref *iref; 2288 struct extent_buffer *l; 2289 struct btrfs_path *path; 2290 2291 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2292 name[0]='\0'; 2293 return 0; 2294 } 2295 2296 path = btrfs_alloc_path(); 2297 if (!path) 2298 return -ENOMEM; 2299 2300 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2301 2302 key.objectid = tree_id; 2303 key.type = BTRFS_ROOT_ITEM_KEY; 2304 key.offset = (u64)-1; 2305 root = btrfs_read_fs_root_no_name(info, &key); 2306 if (IS_ERR(root)) { 2307 ret = PTR_ERR(root); 2308 goto out; 2309 } 2310 2311 key.objectid = dirid; 2312 key.type = BTRFS_INODE_REF_KEY; 2313 key.offset = (u64)-1; 2314 2315 while (1) { 2316 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2317 if (ret < 0) 2318 goto out; 2319 else if (ret > 0) { 2320 ret = btrfs_previous_item(root, path, dirid, 2321 BTRFS_INODE_REF_KEY); 2322 if (ret < 0) 2323 goto out; 2324 else if (ret > 0) { 2325 ret = -ENOENT; 2326 goto out; 2327 } 2328 } 2329 2330 l = path->nodes[0]; 2331 slot = path->slots[0]; 2332 btrfs_item_key_to_cpu(l, &key, slot); 2333 2334 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2335 len = btrfs_inode_ref_name_len(l, iref); 2336 ptr -= len + 1; 2337 total_len += len + 1; 2338 if (ptr < name) { 2339 ret = -ENAMETOOLONG; 2340 goto out; 2341 } 2342 2343 *(ptr + len) = '/'; 2344 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2345 2346 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2347 break; 2348 2349 btrfs_release_path(path); 2350 key.objectid = key.offset; 2351 key.offset = (u64)-1; 2352 dirid = key.objectid; 2353 } 2354 memmove(name, ptr, total_len); 2355 name[total_len] = '\0'; 2356 ret = 0; 2357 out: 2358 btrfs_free_path(path); 2359 return ret; 2360 } 2361 2362 static int btrfs_search_path_in_tree_user(struct inode *inode, 2363 struct btrfs_ioctl_ino_lookup_user_args *args) 2364 { 2365 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2366 struct super_block *sb = inode->i_sb; 2367 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2368 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2369 u64 dirid = args->dirid; 2370 unsigned long item_off; 2371 unsigned long item_len; 2372 struct btrfs_inode_ref *iref; 2373 struct btrfs_root_ref *rref; 2374 struct btrfs_root *root; 2375 struct btrfs_path *path; 2376 struct btrfs_key key, key2; 2377 struct extent_buffer *leaf; 2378 struct inode *temp_inode; 2379 char *ptr; 2380 int slot; 2381 int len; 2382 int total_len = 0; 2383 int ret; 2384 2385 path = btrfs_alloc_path(); 2386 if (!path) 2387 return -ENOMEM; 2388 2389 /* 2390 * If the bottom subvolume does not exist directly under upper_limit, 2391 * construct the path in from the bottom up. 2392 */ 2393 if (dirid != upper_limit.objectid) { 2394 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2395 2396 key.objectid = treeid; 2397 key.type = BTRFS_ROOT_ITEM_KEY; 2398 key.offset = (u64)-1; 2399 root = btrfs_read_fs_root_no_name(fs_info, &key); 2400 if (IS_ERR(root)) { 2401 ret = PTR_ERR(root); 2402 goto out; 2403 } 2404 2405 key.objectid = dirid; 2406 key.type = BTRFS_INODE_REF_KEY; 2407 key.offset = (u64)-1; 2408 while (1) { 2409 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2410 if (ret < 0) { 2411 goto out; 2412 } else if (ret > 0) { 2413 ret = btrfs_previous_item(root, path, dirid, 2414 BTRFS_INODE_REF_KEY); 2415 if (ret < 0) { 2416 goto out; 2417 } else if (ret > 0) { 2418 ret = -ENOENT; 2419 goto out; 2420 } 2421 } 2422 2423 leaf = path->nodes[0]; 2424 slot = path->slots[0]; 2425 btrfs_item_key_to_cpu(leaf, &key, slot); 2426 2427 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2428 len = btrfs_inode_ref_name_len(leaf, iref); 2429 ptr -= len + 1; 2430 total_len += len + 1; 2431 if (ptr < args->path) { 2432 ret = -ENAMETOOLONG; 2433 goto out; 2434 } 2435 2436 *(ptr + len) = '/'; 2437 read_extent_buffer(leaf, ptr, 2438 (unsigned long)(iref + 1), len); 2439 2440 /* Check the read+exec permission of this directory */ 2441 ret = btrfs_previous_item(root, path, dirid, 2442 BTRFS_INODE_ITEM_KEY); 2443 if (ret < 0) { 2444 goto out; 2445 } else if (ret > 0) { 2446 ret = -ENOENT; 2447 goto out; 2448 } 2449 2450 leaf = path->nodes[0]; 2451 slot = path->slots[0]; 2452 btrfs_item_key_to_cpu(leaf, &key2, slot); 2453 if (key2.objectid != dirid) { 2454 ret = -ENOENT; 2455 goto out; 2456 } 2457 2458 temp_inode = btrfs_iget(sb, &key2, root, NULL); 2459 if (IS_ERR(temp_inode)) { 2460 ret = PTR_ERR(temp_inode); 2461 goto out; 2462 } 2463 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2464 iput(temp_inode); 2465 if (ret) { 2466 ret = -EACCES; 2467 goto out; 2468 } 2469 2470 if (key.offset == upper_limit.objectid) 2471 break; 2472 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2473 ret = -EACCES; 2474 goto out; 2475 } 2476 2477 btrfs_release_path(path); 2478 key.objectid = key.offset; 2479 key.offset = (u64)-1; 2480 dirid = key.objectid; 2481 } 2482 2483 memmove(args->path, ptr, total_len); 2484 args->path[total_len] = '\0'; 2485 btrfs_release_path(path); 2486 } 2487 2488 /* Get the bottom subvolume's name from ROOT_REF */ 2489 root = fs_info->tree_root; 2490 key.objectid = treeid; 2491 key.type = BTRFS_ROOT_REF_KEY; 2492 key.offset = args->treeid; 2493 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2494 if (ret < 0) { 2495 goto out; 2496 } else if (ret > 0) { 2497 ret = -ENOENT; 2498 goto out; 2499 } 2500 2501 leaf = path->nodes[0]; 2502 slot = path->slots[0]; 2503 btrfs_item_key_to_cpu(leaf, &key, slot); 2504 2505 item_off = btrfs_item_ptr_offset(leaf, slot); 2506 item_len = btrfs_item_size_nr(leaf, slot); 2507 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2508 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2509 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2510 ret = -EINVAL; 2511 goto out; 2512 } 2513 2514 /* Copy subvolume's name */ 2515 item_off += sizeof(struct btrfs_root_ref); 2516 item_len -= sizeof(struct btrfs_root_ref); 2517 read_extent_buffer(leaf, args->name, item_off, item_len); 2518 args->name[item_len] = 0; 2519 2520 out: 2521 btrfs_free_path(path); 2522 return ret; 2523 } 2524 2525 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2526 void __user *argp) 2527 { 2528 struct btrfs_ioctl_ino_lookup_args *args; 2529 struct inode *inode; 2530 int ret = 0; 2531 2532 args = memdup_user(argp, sizeof(*args)); 2533 if (IS_ERR(args)) 2534 return PTR_ERR(args); 2535 2536 inode = file_inode(file); 2537 2538 /* 2539 * Unprivileged query to obtain the containing subvolume root id. The 2540 * path is reset so it's consistent with btrfs_search_path_in_tree. 2541 */ 2542 if (args->treeid == 0) 2543 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2544 2545 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2546 args->name[0] = 0; 2547 goto out; 2548 } 2549 2550 if (!capable(CAP_SYS_ADMIN)) { 2551 ret = -EPERM; 2552 goto out; 2553 } 2554 2555 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2556 args->treeid, args->objectid, 2557 args->name); 2558 2559 out: 2560 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2561 ret = -EFAULT; 2562 2563 kfree(args); 2564 return ret; 2565 } 2566 2567 /* 2568 * Version of ino_lookup ioctl (unprivileged) 2569 * 2570 * The main differences from ino_lookup ioctl are: 2571 * 2572 * 1. Read + Exec permission will be checked using inode_permission() during 2573 * path construction. -EACCES will be returned in case of failure. 2574 * 2. Path construction will be stopped at the inode number which corresponds 2575 * to the fd with which this ioctl is called. If constructed path does not 2576 * exist under fd's inode, -EACCES will be returned. 2577 * 3. The name of bottom subvolume is also searched and filled. 2578 */ 2579 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2580 { 2581 struct btrfs_ioctl_ino_lookup_user_args *args; 2582 struct inode *inode; 2583 int ret; 2584 2585 args = memdup_user(argp, sizeof(*args)); 2586 if (IS_ERR(args)) 2587 return PTR_ERR(args); 2588 2589 inode = file_inode(file); 2590 2591 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2592 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2593 /* 2594 * The subvolume does not exist under fd with which this is 2595 * called 2596 */ 2597 kfree(args); 2598 return -EACCES; 2599 } 2600 2601 ret = btrfs_search_path_in_tree_user(inode, args); 2602 2603 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2604 ret = -EFAULT; 2605 2606 kfree(args); 2607 return ret; 2608 } 2609 2610 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2611 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2612 { 2613 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2614 struct btrfs_fs_info *fs_info; 2615 struct btrfs_root *root; 2616 struct btrfs_path *path; 2617 struct btrfs_key key; 2618 struct btrfs_root_item *root_item; 2619 struct btrfs_root_ref *rref; 2620 struct extent_buffer *leaf; 2621 unsigned long item_off; 2622 unsigned long item_len; 2623 struct inode *inode; 2624 int slot; 2625 int ret = 0; 2626 2627 path = btrfs_alloc_path(); 2628 if (!path) 2629 return -ENOMEM; 2630 2631 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2632 if (!subvol_info) { 2633 btrfs_free_path(path); 2634 return -ENOMEM; 2635 } 2636 2637 inode = file_inode(file); 2638 fs_info = BTRFS_I(inode)->root->fs_info; 2639 2640 /* Get root_item of inode's subvolume */ 2641 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2642 key.type = BTRFS_ROOT_ITEM_KEY; 2643 key.offset = (u64)-1; 2644 root = btrfs_read_fs_root_no_name(fs_info, &key); 2645 if (IS_ERR(root)) { 2646 ret = PTR_ERR(root); 2647 goto out; 2648 } 2649 root_item = &root->root_item; 2650 2651 subvol_info->treeid = key.objectid; 2652 2653 subvol_info->generation = btrfs_root_generation(root_item); 2654 subvol_info->flags = btrfs_root_flags(root_item); 2655 2656 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2657 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2658 BTRFS_UUID_SIZE); 2659 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2660 BTRFS_UUID_SIZE); 2661 2662 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2663 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2664 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2665 2666 subvol_info->otransid = btrfs_root_otransid(root_item); 2667 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2668 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2669 2670 subvol_info->stransid = btrfs_root_stransid(root_item); 2671 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2672 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2673 2674 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2675 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2676 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2677 2678 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2679 /* Search root tree for ROOT_BACKREF of this subvolume */ 2680 root = fs_info->tree_root; 2681 2682 key.type = BTRFS_ROOT_BACKREF_KEY; 2683 key.offset = 0; 2684 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2685 if (ret < 0) { 2686 goto out; 2687 } else if (path->slots[0] >= 2688 btrfs_header_nritems(path->nodes[0])) { 2689 ret = btrfs_next_leaf(root, path); 2690 if (ret < 0) { 2691 goto out; 2692 } else if (ret > 0) { 2693 ret = -EUCLEAN; 2694 goto out; 2695 } 2696 } 2697 2698 leaf = path->nodes[0]; 2699 slot = path->slots[0]; 2700 btrfs_item_key_to_cpu(leaf, &key, slot); 2701 if (key.objectid == subvol_info->treeid && 2702 key.type == BTRFS_ROOT_BACKREF_KEY) { 2703 subvol_info->parent_id = key.offset; 2704 2705 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2706 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2707 2708 item_off = btrfs_item_ptr_offset(leaf, slot) 2709 + sizeof(struct btrfs_root_ref); 2710 item_len = btrfs_item_size_nr(leaf, slot) 2711 - sizeof(struct btrfs_root_ref); 2712 read_extent_buffer(leaf, subvol_info->name, 2713 item_off, item_len); 2714 } else { 2715 ret = -ENOENT; 2716 goto out; 2717 } 2718 } 2719 2720 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2721 ret = -EFAULT; 2722 2723 out: 2724 btrfs_free_path(path); 2725 kzfree(subvol_info); 2726 return ret; 2727 } 2728 2729 /* 2730 * Return ROOT_REF information of the subvolume containing this inode 2731 * except the subvolume name. 2732 */ 2733 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2734 { 2735 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2736 struct btrfs_root_ref *rref; 2737 struct btrfs_root *root; 2738 struct btrfs_path *path; 2739 struct btrfs_key key; 2740 struct extent_buffer *leaf; 2741 struct inode *inode; 2742 u64 objectid; 2743 int slot; 2744 int ret; 2745 u8 found; 2746 2747 path = btrfs_alloc_path(); 2748 if (!path) 2749 return -ENOMEM; 2750 2751 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2752 if (IS_ERR(rootrefs)) { 2753 btrfs_free_path(path); 2754 return PTR_ERR(rootrefs); 2755 } 2756 2757 inode = file_inode(file); 2758 root = BTRFS_I(inode)->root->fs_info->tree_root; 2759 objectid = BTRFS_I(inode)->root->root_key.objectid; 2760 2761 key.objectid = objectid; 2762 key.type = BTRFS_ROOT_REF_KEY; 2763 key.offset = rootrefs->min_treeid; 2764 found = 0; 2765 2766 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2767 if (ret < 0) { 2768 goto out; 2769 } else if (path->slots[0] >= 2770 btrfs_header_nritems(path->nodes[0])) { 2771 ret = btrfs_next_leaf(root, path); 2772 if (ret < 0) { 2773 goto out; 2774 } else if (ret > 0) { 2775 ret = -EUCLEAN; 2776 goto out; 2777 } 2778 } 2779 while (1) { 2780 leaf = path->nodes[0]; 2781 slot = path->slots[0]; 2782 2783 btrfs_item_key_to_cpu(leaf, &key, slot); 2784 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2785 ret = 0; 2786 goto out; 2787 } 2788 2789 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2790 ret = -EOVERFLOW; 2791 goto out; 2792 } 2793 2794 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2795 rootrefs->rootref[found].treeid = key.offset; 2796 rootrefs->rootref[found].dirid = 2797 btrfs_root_ref_dirid(leaf, rref); 2798 found++; 2799 2800 ret = btrfs_next_item(root, path); 2801 if (ret < 0) { 2802 goto out; 2803 } else if (ret > 0) { 2804 ret = -EUCLEAN; 2805 goto out; 2806 } 2807 } 2808 2809 out: 2810 if (!ret || ret == -EOVERFLOW) { 2811 rootrefs->num_items = found; 2812 /* update min_treeid for next search */ 2813 if (found) 2814 rootrefs->min_treeid = 2815 rootrefs->rootref[found - 1].treeid + 1; 2816 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2817 ret = -EFAULT; 2818 } 2819 2820 kfree(rootrefs); 2821 btrfs_free_path(path); 2822 2823 return ret; 2824 } 2825 2826 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2827 void __user *arg) 2828 { 2829 struct dentry *parent = file->f_path.dentry; 2830 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2831 struct dentry *dentry; 2832 struct inode *dir = d_inode(parent); 2833 struct inode *inode; 2834 struct btrfs_root *root = BTRFS_I(dir)->root; 2835 struct btrfs_root *dest = NULL; 2836 struct btrfs_ioctl_vol_args *vol_args; 2837 int namelen; 2838 int err = 0; 2839 2840 if (!S_ISDIR(dir->i_mode)) 2841 return -ENOTDIR; 2842 2843 vol_args = memdup_user(arg, sizeof(*vol_args)); 2844 if (IS_ERR(vol_args)) 2845 return PTR_ERR(vol_args); 2846 2847 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2848 namelen = strlen(vol_args->name); 2849 if (strchr(vol_args->name, '/') || 2850 strncmp(vol_args->name, "..", namelen) == 0) { 2851 err = -EINVAL; 2852 goto out; 2853 } 2854 2855 err = mnt_want_write_file(file); 2856 if (err) 2857 goto out; 2858 2859 2860 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2861 if (err == -EINTR) 2862 goto out_drop_write; 2863 dentry = lookup_one_len(vol_args->name, parent, namelen); 2864 if (IS_ERR(dentry)) { 2865 err = PTR_ERR(dentry); 2866 goto out_unlock_dir; 2867 } 2868 2869 if (d_really_is_negative(dentry)) { 2870 err = -ENOENT; 2871 goto out_dput; 2872 } 2873 2874 inode = d_inode(dentry); 2875 dest = BTRFS_I(inode)->root; 2876 if (!capable(CAP_SYS_ADMIN)) { 2877 /* 2878 * Regular user. Only allow this with a special mount 2879 * option, when the user has write+exec access to the 2880 * subvol root, and when rmdir(2) would have been 2881 * allowed. 2882 * 2883 * Note that this is _not_ check that the subvol is 2884 * empty or doesn't contain data that we wouldn't 2885 * otherwise be able to delete. 2886 * 2887 * Users who want to delete empty subvols should try 2888 * rmdir(2). 2889 */ 2890 err = -EPERM; 2891 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2892 goto out_dput; 2893 2894 /* 2895 * Do not allow deletion if the parent dir is the same 2896 * as the dir to be deleted. That means the ioctl 2897 * must be called on the dentry referencing the root 2898 * of the subvol, not a random directory contained 2899 * within it. 2900 */ 2901 err = -EINVAL; 2902 if (root == dest) 2903 goto out_dput; 2904 2905 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2906 if (err) 2907 goto out_dput; 2908 } 2909 2910 /* check if subvolume may be deleted by a user */ 2911 err = btrfs_may_delete(dir, dentry, 1); 2912 if (err) 2913 goto out_dput; 2914 2915 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2916 err = -EINVAL; 2917 goto out_dput; 2918 } 2919 2920 inode_lock(inode); 2921 err = btrfs_delete_subvolume(dir, dentry); 2922 inode_unlock(inode); 2923 if (!err) { 2924 fsnotify_rmdir(dir, dentry); 2925 d_delete(dentry); 2926 } 2927 2928 out_dput: 2929 dput(dentry); 2930 out_unlock_dir: 2931 inode_unlock(dir); 2932 out_drop_write: 2933 mnt_drop_write_file(file); 2934 out: 2935 kfree(vol_args); 2936 return err; 2937 } 2938 2939 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2940 { 2941 struct inode *inode = file_inode(file); 2942 struct btrfs_root *root = BTRFS_I(inode)->root; 2943 struct btrfs_ioctl_defrag_range_args *range; 2944 int ret; 2945 2946 ret = mnt_want_write_file(file); 2947 if (ret) 2948 return ret; 2949 2950 if (btrfs_root_readonly(root)) { 2951 ret = -EROFS; 2952 goto out; 2953 } 2954 2955 switch (inode->i_mode & S_IFMT) { 2956 case S_IFDIR: 2957 if (!capable(CAP_SYS_ADMIN)) { 2958 ret = -EPERM; 2959 goto out; 2960 } 2961 ret = btrfs_defrag_root(root); 2962 break; 2963 case S_IFREG: 2964 /* 2965 * Note that this does not check the file descriptor for write 2966 * access. This prevents defragmenting executables that are 2967 * running and allows defrag on files open in read-only mode. 2968 */ 2969 if (!capable(CAP_SYS_ADMIN) && 2970 inode_permission(inode, MAY_WRITE)) { 2971 ret = -EPERM; 2972 goto out; 2973 } 2974 2975 range = kzalloc(sizeof(*range), GFP_KERNEL); 2976 if (!range) { 2977 ret = -ENOMEM; 2978 goto out; 2979 } 2980 2981 if (argp) { 2982 if (copy_from_user(range, argp, 2983 sizeof(*range))) { 2984 ret = -EFAULT; 2985 kfree(range); 2986 goto out; 2987 } 2988 /* compression requires us to start the IO */ 2989 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2990 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2991 range->extent_thresh = (u32)-1; 2992 } 2993 } else { 2994 /* the rest are all set to zero by kzalloc */ 2995 range->len = (u64)-1; 2996 } 2997 ret = btrfs_defrag_file(file_inode(file), file, 2998 range, BTRFS_OLDEST_GENERATION, 0); 2999 if (ret > 0) 3000 ret = 0; 3001 kfree(range); 3002 break; 3003 default: 3004 ret = -EINVAL; 3005 } 3006 out: 3007 mnt_drop_write_file(file); 3008 return ret; 3009 } 3010 3011 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3012 { 3013 struct btrfs_ioctl_vol_args *vol_args; 3014 int ret; 3015 3016 if (!capable(CAP_SYS_ADMIN)) 3017 return -EPERM; 3018 3019 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3020 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3021 3022 vol_args = memdup_user(arg, sizeof(*vol_args)); 3023 if (IS_ERR(vol_args)) { 3024 ret = PTR_ERR(vol_args); 3025 goto out; 3026 } 3027 3028 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3029 ret = btrfs_init_new_device(fs_info, vol_args->name); 3030 3031 if (!ret) 3032 btrfs_info(fs_info, "disk added %s", vol_args->name); 3033 3034 kfree(vol_args); 3035 out: 3036 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3037 return ret; 3038 } 3039 3040 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3041 { 3042 struct inode *inode = file_inode(file); 3043 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3044 struct btrfs_ioctl_vol_args_v2 *vol_args; 3045 int ret; 3046 3047 if (!capable(CAP_SYS_ADMIN)) 3048 return -EPERM; 3049 3050 ret = mnt_want_write_file(file); 3051 if (ret) 3052 return ret; 3053 3054 vol_args = memdup_user(arg, sizeof(*vol_args)); 3055 if (IS_ERR(vol_args)) { 3056 ret = PTR_ERR(vol_args); 3057 goto err_drop; 3058 } 3059 3060 /* Check for compatibility reject unknown flags */ 3061 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) { 3062 ret = -EOPNOTSUPP; 3063 goto out; 3064 } 3065 3066 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3067 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3068 goto out; 3069 } 3070 3071 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3072 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3073 } else { 3074 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3075 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3076 } 3077 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3078 3079 if (!ret) { 3080 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3081 btrfs_info(fs_info, "device deleted: id %llu", 3082 vol_args->devid); 3083 else 3084 btrfs_info(fs_info, "device deleted: %s", 3085 vol_args->name); 3086 } 3087 out: 3088 kfree(vol_args); 3089 err_drop: 3090 mnt_drop_write_file(file); 3091 return ret; 3092 } 3093 3094 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3095 { 3096 struct inode *inode = file_inode(file); 3097 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3098 struct btrfs_ioctl_vol_args *vol_args; 3099 int ret; 3100 3101 if (!capable(CAP_SYS_ADMIN)) 3102 return -EPERM; 3103 3104 ret = mnt_want_write_file(file); 3105 if (ret) 3106 return ret; 3107 3108 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3109 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3110 goto out_drop_write; 3111 } 3112 3113 vol_args = memdup_user(arg, sizeof(*vol_args)); 3114 if (IS_ERR(vol_args)) { 3115 ret = PTR_ERR(vol_args); 3116 goto out; 3117 } 3118 3119 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3120 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3121 3122 if (!ret) 3123 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3124 kfree(vol_args); 3125 out: 3126 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3127 out_drop_write: 3128 mnt_drop_write_file(file); 3129 3130 return ret; 3131 } 3132 3133 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3134 void __user *arg) 3135 { 3136 struct btrfs_ioctl_fs_info_args *fi_args; 3137 struct btrfs_device *device; 3138 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3139 int ret = 0; 3140 3141 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3142 if (!fi_args) 3143 return -ENOMEM; 3144 3145 rcu_read_lock(); 3146 fi_args->num_devices = fs_devices->num_devices; 3147 3148 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3149 if (device->devid > fi_args->max_id) 3150 fi_args->max_id = device->devid; 3151 } 3152 rcu_read_unlock(); 3153 3154 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3155 fi_args->nodesize = fs_info->nodesize; 3156 fi_args->sectorsize = fs_info->sectorsize; 3157 fi_args->clone_alignment = fs_info->sectorsize; 3158 3159 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3160 ret = -EFAULT; 3161 3162 kfree(fi_args); 3163 return ret; 3164 } 3165 3166 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3167 void __user *arg) 3168 { 3169 struct btrfs_ioctl_dev_info_args *di_args; 3170 struct btrfs_device *dev; 3171 int ret = 0; 3172 char *s_uuid = NULL; 3173 3174 di_args = memdup_user(arg, sizeof(*di_args)); 3175 if (IS_ERR(di_args)) 3176 return PTR_ERR(di_args); 3177 3178 if (!btrfs_is_empty_uuid(di_args->uuid)) 3179 s_uuid = di_args->uuid; 3180 3181 rcu_read_lock(); 3182 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3183 NULL, true); 3184 3185 if (!dev) { 3186 ret = -ENODEV; 3187 goto out; 3188 } 3189 3190 di_args->devid = dev->devid; 3191 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3192 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3193 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3194 if (dev->name) { 3195 strncpy(di_args->path, rcu_str_deref(dev->name), 3196 sizeof(di_args->path) - 1); 3197 di_args->path[sizeof(di_args->path) - 1] = 0; 3198 } else { 3199 di_args->path[0] = '\0'; 3200 } 3201 3202 out: 3203 rcu_read_unlock(); 3204 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3205 ret = -EFAULT; 3206 3207 kfree(di_args); 3208 return ret; 3209 } 3210 3211 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 3212 struct inode *inode2, u64 loff2, u64 len) 3213 { 3214 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3215 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3216 } 3217 3218 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 3219 struct inode *inode2, u64 loff2, u64 len) 3220 { 3221 if (inode1 < inode2) { 3222 swap(inode1, inode2); 3223 swap(loff1, loff2); 3224 } else if (inode1 == inode2 && loff2 < loff1) { 3225 swap(loff1, loff2); 3226 } 3227 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3228 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3229 } 3230 3231 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 3232 struct inode *dst, u64 dst_loff) 3233 { 3234 int ret; 3235 3236 /* 3237 * Lock destination range to serialize with concurrent readpages() and 3238 * source range to serialize with relocation. 3239 */ 3240 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 3241 ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1); 3242 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3243 3244 return ret; 3245 } 3246 3247 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3248 3249 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3250 struct inode *dst, u64 dst_loff) 3251 { 3252 int ret; 3253 u64 i, tail_len, chunk_count; 3254 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 3255 3256 spin_lock(&root_dst->root_item_lock); 3257 if (root_dst->send_in_progress) { 3258 btrfs_warn_rl(root_dst->fs_info, 3259 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 3260 root_dst->root_key.objectid, 3261 root_dst->send_in_progress); 3262 spin_unlock(&root_dst->root_item_lock); 3263 return -EAGAIN; 3264 } 3265 root_dst->dedupe_in_progress++; 3266 spin_unlock(&root_dst->root_item_lock); 3267 3268 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 3269 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 3270 3271 for (i = 0; i < chunk_count; i++) { 3272 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 3273 dst, dst_loff); 3274 if (ret) 3275 goto out; 3276 3277 loff += BTRFS_MAX_DEDUPE_LEN; 3278 dst_loff += BTRFS_MAX_DEDUPE_LEN; 3279 } 3280 3281 if (tail_len > 0) 3282 ret = btrfs_extent_same_range(src, loff, tail_len, dst, 3283 dst_loff); 3284 out: 3285 spin_lock(&root_dst->root_item_lock); 3286 root_dst->dedupe_in_progress--; 3287 spin_unlock(&root_dst->root_item_lock); 3288 3289 return ret; 3290 } 3291 3292 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3293 struct inode *inode, 3294 u64 endoff, 3295 const u64 destoff, 3296 const u64 olen, 3297 int no_time_update) 3298 { 3299 struct btrfs_root *root = BTRFS_I(inode)->root; 3300 int ret; 3301 3302 inode_inc_iversion(inode); 3303 if (!no_time_update) 3304 inode->i_mtime = inode->i_ctime = current_time(inode); 3305 /* 3306 * We round up to the block size at eof when determining which 3307 * extents to clone above, but shouldn't round up the file size. 3308 */ 3309 if (endoff > destoff + olen) 3310 endoff = destoff + olen; 3311 if (endoff > inode->i_size) 3312 btrfs_i_size_write(BTRFS_I(inode), endoff); 3313 3314 ret = btrfs_update_inode(trans, root, inode); 3315 if (ret) { 3316 btrfs_abort_transaction(trans, ret); 3317 btrfs_end_transaction(trans); 3318 goto out; 3319 } 3320 ret = btrfs_end_transaction(trans); 3321 out: 3322 return ret; 3323 } 3324 3325 static void clone_update_extent_map(struct btrfs_inode *inode, 3326 const struct btrfs_trans_handle *trans, 3327 const struct btrfs_path *path, 3328 const u64 hole_offset, 3329 const u64 hole_len) 3330 { 3331 struct extent_map_tree *em_tree = &inode->extent_tree; 3332 struct extent_map *em; 3333 int ret; 3334 3335 em = alloc_extent_map(); 3336 if (!em) { 3337 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3338 return; 3339 } 3340 3341 if (path) { 3342 struct btrfs_file_extent_item *fi; 3343 3344 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3345 struct btrfs_file_extent_item); 3346 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3347 em->generation = -1; 3348 if (btrfs_file_extent_type(path->nodes[0], fi) == 3349 BTRFS_FILE_EXTENT_INLINE) 3350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3351 &inode->runtime_flags); 3352 } else { 3353 em->start = hole_offset; 3354 em->len = hole_len; 3355 em->ram_bytes = em->len; 3356 em->orig_start = hole_offset; 3357 em->block_start = EXTENT_MAP_HOLE; 3358 em->block_len = 0; 3359 em->orig_block_len = 0; 3360 em->compress_type = BTRFS_COMPRESS_NONE; 3361 em->generation = trans->transid; 3362 } 3363 3364 while (1) { 3365 write_lock(&em_tree->lock); 3366 ret = add_extent_mapping(em_tree, em, 1); 3367 write_unlock(&em_tree->lock); 3368 if (ret != -EEXIST) { 3369 free_extent_map(em); 3370 break; 3371 } 3372 btrfs_drop_extent_cache(inode, em->start, 3373 em->start + em->len - 1, 0); 3374 } 3375 3376 if (ret) 3377 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3378 } 3379 3380 /* 3381 * Make sure we do not end up inserting an inline extent into a file that has 3382 * already other (non-inline) extents. If a file has an inline extent it can 3383 * not have any other extents and the (single) inline extent must start at the 3384 * file offset 0. Failing to respect these rules will lead to file corruption, 3385 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3386 * 3387 * We can have extents that have been already written to disk or we can have 3388 * dirty ranges still in delalloc, in which case the extent maps and items are 3389 * created only when we run delalloc, and the delalloc ranges might fall outside 3390 * the range we are currently locking in the inode's io tree. So we check the 3391 * inode's i_size because of that (i_size updates are done while holding the 3392 * i_mutex, which we are holding here). 3393 * We also check to see if the inode has a size not greater than "datal" but has 3394 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3395 * protected against such concurrent fallocate calls by the i_mutex). 3396 * 3397 * If the file has no extents but a size greater than datal, do not allow the 3398 * copy because we would need turn the inline extent into a non-inline one (even 3399 * with NO_HOLES enabled). If we find our destination inode only has one inline 3400 * extent, just overwrite it with the source inline extent if its size is less 3401 * than the source extent's size, or we could copy the source inline extent's 3402 * data into the destination inode's inline extent if the later is greater then 3403 * the former. 3404 */ 3405 static int clone_copy_inline_extent(struct inode *dst, 3406 struct btrfs_trans_handle *trans, 3407 struct btrfs_path *path, 3408 struct btrfs_key *new_key, 3409 const u64 drop_start, 3410 const u64 datal, 3411 const u64 skip, 3412 const u64 size, 3413 char *inline_data) 3414 { 3415 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3416 struct btrfs_root *root = BTRFS_I(dst)->root; 3417 const u64 aligned_end = ALIGN(new_key->offset + datal, 3418 fs_info->sectorsize); 3419 int ret; 3420 struct btrfs_key key; 3421 3422 if (new_key->offset > 0) 3423 return -EOPNOTSUPP; 3424 3425 key.objectid = btrfs_ino(BTRFS_I(dst)); 3426 key.type = BTRFS_EXTENT_DATA_KEY; 3427 key.offset = 0; 3428 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3429 if (ret < 0) { 3430 return ret; 3431 } else if (ret > 0) { 3432 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3433 ret = btrfs_next_leaf(root, path); 3434 if (ret < 0) 3435 return ret; 3436 else if (ret > 0) 3437 goto copy_inline_extent; 3438 } 3439 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3440 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3441 key.type == BTRFS_EXTENT_DATA_KEY) { 3442 ASSERT(key.offset > 0); 3443 return -EOPNOTSUPP; 3444 } 3445 } else if (i_size_read(dst) <= datal) { 3446 struct btrfs_file_extent_item *ei; 3447 u64 ext_len; 3448 3449 /* 3450 * If the file size is <= datal, make sure there are no other 3451 * extents following (can happen do to an fallocate call with 3452 * the flag FALLOC_FL_KEEP_SIZE). 3453 */ 3454 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3455 struct btrfs_file_extent_item); 3456 /* 3457 * If it's an inline extent, it can not have other extents 3458 * following it. 3459 */ 3460 if (btrfs_file_extent_type(path->nodes[0], ei) == 3461 BTRFS_FILE_EXTENT_INLINE) 3462 goto copy_inline_extent; 3463 3464 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3465 if (ext_len > aligned_end) 3466 return -EOPNOTSUPP; 3467 3468 ret = btrfs_next_item(root, path); 3469 if (ret < 0) { 3470 return ret; 3471 } else if (ret == 0) { 3472 btrfs_item_key_to_cpu(path->nodes[0], &key, 3473 path->slots[0]); 3474 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3475 key.type == BTRFS_EXTENT_DATA_KEY) 3476 return -EOPNOTSUPP; 3477 } 3478 } 3479 3480 copy_inline_extent: 3481 /* 3482 * We have no extent items, or we have an extent at offset 0 which may 3483 * or may not be inlined. All these cases are dealt the same way. 3484 */ 3485 if (i_size_read(dst) > datal) { 3486 /* 3487 * If the destination inode has an inline extent... 3488 * This would require copying the data from the source inline 3489 * extent into the beginning of the destination's inline extent. 3490 * But this is really complex, both extents can be compressed 3491 * or just one of them, which would require decompressing and 3492 * re-compressing data (which could increase the new compressed 3493 * size, not allowing the compressed data to fit anymore in an 3494 * inline extent). 3495 * So just don't support this case for now (it should be rare, 3496 * we are not really saving space when cloning inline extents). 3497 */ 3498 return -EOPNOTSUPP; 3499 } 3500 3501 btrfs_release_path(path); 3502 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3503 if (ret) 3504 return ret; 3505 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3506 if (ret) 3507 return ret; 3508 3509 if (skip) { 3510 const u32 start = btrfs_file_extent_calc_inline_size(0); 3511 3512 memmove(inline_data + start, inline_data + start + skip, datal); 3513 } 3514 3515 write_extent_buffer(path->nodes[0], inline_data, 3516 btrfs_item_ptr_offset(path->nodes[0], 3517 path->slots[0]), 3518 size); 3519 inode_add_bytes(dst, datal); 3520 3521 return 0; 3522 } 3523 3524 /** 3525 * btrfs_clone() - clone a range from inode file to another 3526 * 3527 * @src: Inode to clone from 3528 * @inode: Inode to clone to 3529 * @off: Offset within source to start clone from 3530 * @olen: Original length, passed by user, of range to clone 3531 * @olen_aligned: Block-aligned value of olen 3532 * @destoff: Offset within @inode to start clone 3533 * @no_time_update: Whether to update mtime/ctime on the target inode 3534 */ 3535 static int btrfs_clone(struct inode *src, struct inode *inode, 3536 const u64 off, const u64 olen, const u64 olen_aligned, 3537 const u64 destoff, int no_time_update) 3538 { 3539 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3540 struct btrfs_root *root = BTRFS_I(inode)->root; 3541 struct btrfs_path *path = NULL; 3542 struct extent_buffer *leaf; 3543 struct btrfs_trans_handle *trans; 3544 char *buf = NULL; 3545 struct btrfs_key key; 3546 u32 nritems; 3547 int slot; 3548 int ret; 3549 const u64 len = olen_aligned; 3550 u64 last_dest_end = destoff; 3551 3552 ret = -ENOMEM; 3553 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3554 if (!buf) 3555 return ret; 3556 3557 path = btrfs_alloc_path(); 3558 if (!path) { 3559 kvfree(buf); 3560 return ret; 3561 } 3562 3563 path->reada = READA_FORWARD; 3564 /* clone data */ 3565 key.objectid = btrfs_ino(BTRFS_I(src)); 3566 key.type = BTRFS_EXTENT_DATA_KEY; 3567 key.offset = off; 3568 3569 while (1) { 3570 u64 next_key_min_offset = key.offset + 1; 3571 3572 /* 3573 * note the key will change type as we walk through the 3574 * tree. 3575 */ 3576 path->leave_spinning = 1; 3577 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3578 0, 0); 3579 if (ret < 0) 3580 goto out; 3581 /* 3582 * First search, if no extent item that starts at offset off was 3583 * found but the previous item is an extent item, it's possible 3584 * it might overlap our target range, therefore process it. 3585 */ 3586 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3587 btrfs_item_key_to_cpu(path->nodes[0], &key, 3588 path->slots[0] - 1); 3589 if (key.type == BTRFS_EXTENT_DATA_KEY) 3590 path->slots[0]--; 3591 } 3592 3593 nritems = btrfs_header_nritems(path->nodes[0]); 3594 process_slot: 3595 if (path->slots[0] >= nritems) { 3596 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3597 if (ret < 0) 3598 goto out; 3599 if (ret > 0) 3600 break; 3601 nritems = btrfs_header_nritems(path->nodes[0]); 3602 } 3603 leaf = path->nodes[0]; 3604 slot = path->slots[0]; 3605 3606 btrfs_item_key_to_cpu(leaf, &key, slot); 3607 if (key.type > BTRFS_EXTENT_DATA_KEY || 3608 key.objectid != btrfs_ino(BTRFS_I(src))) 3609 break; 3610 3611 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3612 struct btrfs_file_extent_item *extent; 3613 int type; 3614 u32 size; 3615 struct btrfs_key new_key; 3616 u64 disko = 0, diskl = 0; 3617 u64 datao = 0, datal = 0; 3618 u8 comp; 3619 u64 drop_start; 3620 3621 extent = btrfs_item_ptr(leaf, slot, 3622 struct btrfs_file_extent_item); 3623 comp = btrfs_file_extent_compression(leaf, extent); 3624 type = btrfs_file_extent_type(leaf, extent); 3625 if (type == BTRFS_FILE_EXTENT_REG || 3626 type == BTRFS_FILE_EXTENT_PREALLOC) { 3627 disko = btrfs_file_extent_disk_bytenr(leaf, 3628 extent); 3629 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3630 extent); 3631 datao = btrfs_file_extent_offset(leaf, extent); 3632 datal = btrfs_file_extent_num_bytes(leaf, 3633 extent); 3634 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3635 /* take upper bound, may be compressed */ 3636 datal = btrfs_file_extent_ram_bytes(leaf, 3637 extent); 3638 } 3639 3640 /* 3641 * The first search might have left us at an extent 3642 * item that ends before our target range's start, can 3643 * happen if we have holes and NO_HOLES feature enabled. 3644 */ 3645 if (key.offset + datal <= off) { 3646 path->slots[0]++; 3647 goto process_slot; 3648 } else if (key.offset >= off + len) { 3649 break; 3650 } 3651 next_key_min_offset = key.offset + datal; 3652 size = btrfs_item_size_nr(leaf, slot); 3653 read_extent_buffer(leaf, buf, 3654 btrfs_item_ptr_offset(leaf, slot), 3655 size); 3656 3657 btrfs_release_path(path); 3658 path->leave_spinning = 0; 3659 3660 memcpy(&new_key, &key, sizeof(new_key)); 3661 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3662 if (off <= key.offset) 3663 new_key.offset = key.offset + destoff - off; 3664 else 3665 new_key.offset = destoff; 3666 3667 /* 3668 * Deal with a hole that doesn't have an extent item 3669 * that represents it (NO_HOLES feature enabled). 3670 * This hole is either in the middle of the cloning 3671 * range or at the beginning (fully overlaps it or 3672 * partially overlaps it). 3673 */ 3674 if (new_key.offset != last_dest_end) 3675 drop_start = last_dest_end; 3676 else 3677 drop_start = new_key.offset; 3678 3679 /* 3680 * 1 - adjusting old extent (we may have to split it) 3681 * 1 - add new extent 3682 * 1 - inode update 3683 */ 3684 trans = btrfs_start_transaction(root, 3); 3685 if (IS_ERR(trans)) { 3686 ret = PTR_ERR(trans); 3687 goto out; 3688 } 3689 3690 if (type == BTRFS_FILE_EXTENT_REG || 3691 type == BTRFS_FILE_EXTENT_PREALLOC) { 3692 /* 3693 * a | --- range to clone ---| b 3694 * | ------------- extent ------------- | 3695 */ 3696 3697 /* subtract range b */ 3698 if (key.offset + datal > off + len) 3699 datal = off + len - key.offset; 3700 3701 /* subtract range a */ 3702 if (off > key.offset) { 3703 datao += off - key.offset; 3704 datal -= off - key.offset; 3705 } 3706 3707 ret = btrfs_drop_extents(trans, root, inode, 3708 drop_start, 3709 new_key.offset + datal, 3710 1); 3711 if (ret) { 3712 if (ret != -EOPNOTSUPP) 3713 btrfs_abort_transaction(trans, 3714 ret); 3715 btrfs_end_transaction(trans); 3716 goto out; 3717 } 3718 3719 ret = btrfs_insert_empty_item(trans, root, path, 3720 &new_key, size); 3721 if (ret) { 3722 btrfs_abort_transaction(trans, ret); 3723 btrfs_end_transaction(trans); 3724 goto out; 3725 } 3726 3727 leaf = path->nodes[0]; 3728 slot = path->slots[0]; 3729 write_extent_buffer(leaf, buf, 3730 btrfs_item_ptr_offset(leaf, slot), 3731 size); 3732 3733 extent = btrfs_item_ptr(leaf, slot, 3734 struct btrfs_file_extent_item); 3735 3736 /* disko == 0 means it's a hole */ 3737 if (!disko) 3738 datao = 0; 3739 3740 btrfs_set_file_extent_offset(leaf, extent, 3741 datao); 3742 btrfs_set_file_extent_num_bytes(leaf, extent, 3743 datal); 3744 3745 if (disko) { 3746 struct btrfs_ref ref = { 0 }; 3747 inode_add_bytes(inode, datal); 3748 btrfs_init_generic_ref(&ref, 3749 BTRFS_ADD_DELAYED_REF, disko, 3750 diskl, 0); 3751 btrfs_init_data_ref(&ref, 3752 root->root_key.objectid, 3753 btrfs_ino(BTRFS_I(inode)), 3754 new_key.offset - datao); 3755 ret = btrfs_inc_extent_ref(trans, &ref); 3756 if (ret) { 3757 btrfs_abort_transaction(trans, 3758 ret); 3759 btrfs_end_transaction(trans); 3760 goto out; 3761 3762 } 3763 } 3764 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3765 u64 skip = 0; 3766 u64 trim = 0; 3767 3768 if (off > key.offset) { 3769 skip = off - key.offset; 3770 new_key.offset += skip; 3771 } 3772 3773 if (key.offset + datal > off + len) 3774 trim = key.offset + datal - (off + len); 3775 3776 if (comp && (skip || trim)) { 3777 ret = -EINVAL; 3778 btrfs_end_transaction(trans); 3779 goto out; 3780 } 3781 size -= skip + trim; 3782 datal -= skip + trim; 3783 3784 ret = clone_copy_inline_extent(inode, 3785 trans, path, 3786 &new_key, 3787 drop_start, 3788 datal, 3789 skip, size, buf); 3790 if (ret) { 3791 if (ret != -EOPNOTSUPP) 3792 btrfs_abort_transaction(trans, 3793 ret); 3794 btrfs_end_transaction(trans); 3795 goto out; 3796 } 3797 leaf = path->nodes[0]; 3798 slot = path->slots[0]; 3799 } 3800 3801 /* If we have an implicit hole (NO_HOLES feature). */ 3802 if (drop_start < new_key.offset) 3803 clone_update_extent_map(BTRFS_I(inode), trans, 3804 NULL, drop_start, 3805 new_key.offset - drop_start); 3806 3807 clone_update_extent_map(BTRFS_I(inode), trans, 3808 path, 0, 0); 3809 3810 btrfs_mark_buffer_dirty(leaf); 3811 btrfs_release_path(path); 3812 3813 last_dest_end = ALIGN(new_key.offset + datal, 3814 fs_info->sectorsize); 3815 ret = clone_finish_inode_update(trans, inode, 3816 last_dest_end, 3817 destoff, olen, 3818 no_time_update); 3819 if (ret) 3820 goto out; 3821 if (new_key.offset + datal >= destoff + len) 3822 break; 3823 } 3824 btrfs_release_path(path); 3825 key.offset = next_key_min_offset; 3826 3827 if (fatal_signal_pending(current)) { 3828 ret = -EINTR; 3829 goto out; 3830 } 3831 } 3832 ret = 0; 3833 3834 if (last_dest_end < destoff + len) { 3835 /* 3836 * We have an implicit hole (NO_HOLES feature is enabled) that 3837 * fully or partially overlaps our cloning range at its end. 3838 */ 3839 btrfs_release_path(path); 3840 3841 /* 3842 * 1 - remove extent(s) 3843 * 1 - inode update 3844 */ 3845 trans = btrfs_start_transaction(root, 2); 3846 if (IS_ERR(trans)) { 3847 ret = PTR_ERR(trans); 3848 goto out; 3849 } 3850 ret = btrfs_drop_extents(trans, root, inode, 3851 last_dest_end, destoff + len, 1); 3852 if (ret) { 3853 if (ret != -EOPNOTSUPP) 3854 btrfs_abort_transaction(trans, ret); 3855 btrfs_end_transaction(trans); 3856 goto out; 3857 } 3858 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 3859 last_dest_end, 3860 destoff + len - last_dest_end); 3861 ret = clone_finish_inode_update(trans, inode, destoff + len, 3862 destoff, olen, no_time_update); 3863 } 3864 3865 out: 3866 btrfs_free_path(path); 3867 kvfree(buf); 3868 return ret; 3869 } 3870 3871 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3872 u64 off, u64 olen, u64 destoff) 3873 { 3874 struct inode *inode = file_inode(file); 3875 struct inode *src = file_inode(file_src); 3876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3877 int ret; 3878 u64 len = olen; 3879 u64 bs = fs_info->sb->s_blocksize; 3880 3881 /* 3882 * TODO: 3883 * - split compressed inline extents. annoying: we need to 3884 * decompress into destination's address_space (the file offset 3885 * may change, so source mapping won't do), then recompress (or 3886 * otherwise reinsert) a subrange. 3887 * 3888 * - split destination inode's inline extents. The inline extents can 3889 * be either compressed or non-compressed. 3890 */ 3891 3892 /* 3893 * VFS's generic_remap_file_range_prep() protects us from cloning the 3894 * eof block into the middle of a file, which would result in corruption 3895 * if the file size is not blocksize aligned. So we don't need to check 3896 * for that case here. 3897 */ 3898 if (off + len == src->i_size) 3899 len = ALIGN(src->i_size, bs) - off; 3900 3901 if (destoff > inode->i_size) { 3902 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 3903 3904 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3905 if (ret) 3906 return ret; 3907 /* 3908 * We may have truncated the last block if the inode's size is 3909 * not sector size aligned, so we need to wait for writeback to 3910 * complete before proceeding further, otherwise we can race 3911 * with cloning and attempt to increment a reference to an 3912 * extent that no longer exists (writeback completed right after 3913 * we found the previous extent covering eof and before we 3914 * attempted to increment its reference count). 3915 */ 3916 ret = btrfs_wait_ordered_range(inode, wb_start, 3917 destoff - wb_start); 3918 if (ret) 3919 return ret; 3920 } 3921 3922 /* 3923 * Lock destination range to serialize with concurrent readpages() and 3924 * source range to serialize with relocation. 3925 */ 3926 btrfs_double_extent_lock(src, off, inode, destoff, len); 3927 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3928 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3929 /* 3930 * Truncate page cache pages so that future reads will see the cloned 3931 * data immediately and not the previous data. 3932 */ 3933 truncate_inode_pages_range(&inode->i_data, 3934 round_down(destoff, PAGE_SIZE), 3935 round_up(destoff + len, PAGE_SIZE) - 1); 3936 3937 return ret; 3938 } 3939 3940 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 3941 struct file *file_out, loff_t pos_out, 3942 loff_t *len, unsigned int remap_flags) 3943 { 3944 struct inode *inode_in = file_inode(file_in); 3945 struct inode *inode_out = file_inode(file_out); 3946 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 3947 bool same_inode = inode_out == inode_in; 3948 u64 wb_len; 3949 int ret; 3950 3951 if (!(remap_flags & REMAP_FILE_DEDUP)) { 3952 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 3953 3954 if (btrfs_root_readonly(root_out)) 3955 return -EROFS; 3956 3957 if (file_in->f_path.mnt != file_out->f_path.mnt || 3958 inode_in->i_sb != inode_out->i_sb) 3959 return -EXDEV; 3960 } 3961 3962 /* don't make the dst file partly checksummed */ 3963 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 3964 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 3965 return -EINVAL; 3966 } 3967 3968 /* 3969 * Now that the inodes are locked, we need to start writeback ourselves 3970 * and can not rely on the writeback from the VFS's generic helper 3971 * generic_remap_file_range_prep() because: 3972 * 3973 * 1) For compression we must call filemap_fdatawrite_range() range 3974 * twice (btrfs_fdatawrite_range() does it for us), and the generic 3975 * helper only calls it once; 3976 * 3977 * 2) filemap_fdatawrite_range(), called by the generic helper only 3978 * waits for the writeback to complete, i.e. for IO to be done, and 3979 * not for the ordered extents to complete. We need to wait for them 3980 * to complete so that new file extent items are in the fs tree. 3981 */ 3982 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 3983 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 3984 else 3985 wb_len = ALIGN(*len, bs); 3986 3987 /* 3988 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 3989 * any in progress could create its ordered extents after we wait for 3990 * existing ordered extents below). 3991 */ 3992 inode_dio_wait(inode_in); 3993 if (!same_inode) 3994 inode_dio_wait(inode_out); 3995 3996 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 3997 wb_len); 3998 if (ret < 0) 3999 return ret; 4000 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 4001 wb_len); 4002 if (ret < 0) 4003 return ret; 4004 4005 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 4006 len, remap_flags); 4007 } 4008 4009 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 4010 struct file *dst_file, loff_t destoff, loff_t len, 4011 unsigned int remap_flags) 4012 { 4013 struct inode *src_inode = file_inode(src_file); 4014 struct inode *dst_inode = file_inode(dst_file); 4015 bool same_inode = dst_inode == src_inode; 4016 int ret; 4017 4018 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 4019 return -EINVAL; 4020 4021 if (same_inode) 4022 inode_lock(src_inode); 4023 else 4024 lock_two_nondirectories(src_inode, dst_inode); 4025 4026 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 4027 &len, remap_flags); 4028 if (ret < 0 || len == 0) 4029 goto out_unlock; 4030 4031 if (remap_flags & REMAP_FILE_DEDUP) 4032 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 4033 else 4034 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 4035 4036 out_unlock: 4037 if (same_inode) 4038 inode_unlock(src_inode); 4039 else 4040 unlock_two_nondirectories(src_inode, dst_inode); 4041 4042 return ret < 0 ? ret : len; 4043 } 4044 4045 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4046 { 4047 struct inode *inode = file_inode(file); 4048 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4049 struct btrfs_root *root = BTRFS_I(inode)->root; 4050 struct btrfs_root *new_root; 4051 struct btrfs_dir_item *di; 4052 struct btrfs_trans_handle *trans; 4053 struct btrfs_path *path; 4054 struct btrfs_key location; 4055 struct btrfs_disk_key disk_key; 4056 u64 objectid = 0; 4057 u64 dir_id; 4058 int ret; 4059 4060 if (!capable(CAP_SYS_ADMIN)) 4061 return -EPERM; 4062 4063 ret = mnt_want_write_file(file); 4064 if (ret) 4065 return ret; 4066 4067 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4068 ret = -EFAULT; 4069 goto out; 4070 } 4071 4072 if (!objectid) 4073 objectid = BTRFS_FS_TREE_OBJECTID; 4074 4075 location.objectid = objectid; 4076 location.type = BTRFS_ROOT_ITEM_KEY; 4077 location.offset = (u64)-1; 4078 4079 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4080 if (IS_ERR(new_root)) { 4081 ret = PTR_ERR(new_root); 4082 goto out; 4083 } 4084 if (!is_fstree(new_root->root_key.objectid)) { 4085 ret = -ENOENT; 4086 goto out; 4087 } 4088 4089 path = btrfs_alloc_path(); 4090 if (!path) { 4091 ret = -ENOMEM; 4092 goto out; 4093 } 4094 path->leave_spinning = 1; 4095 4096 trans = btrfs_start_transaction(root, 1); 4097 if (IS_ERR(trans)) { 4098 btrfs_free_path(path); 4099 ret = PTR_ERR(trans); 4100 goto out; 4101 } 4102 4103 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4104 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4105 dir_id, "default", 7, 1); 4106 if (IS_ERR_OR_NULL(di)) { 4107 btrfs_free_path(path); 4108 btrfs_end_transaction(trans); 4109 btrfs_err(fs_info, 4110 "Umm, you don't have the default diritem, this isn't going to work"); 4111 ret = -ENOENT; 4112 goto out; 4113 } 4114 4115 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4116 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4117 btrfs_mark_buffer_dirty(path->nodes[0]); 4118 btrfs_free_path(path); 4119 4120 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4121 btrfs_end_transaction(trans); 4122 out: 4123 mnt_drop_write_file(file); 4124 return ret; 4125 } 4126 4127 static void get_block_group_info(struct list_head *groups_list, 4128 struct btrfs_ioctl_space_info *space) 4129 { 4130 struct btrfs_block_group_cache *block_group; 4131 4132 space->total_bytes = 0; 4133 space->used_bytes = 0; 4134 space->flags = 0; 4135 list_for_each_entry(block_group, groups_list, list) { 4136 space->flags = block_group->flags; 4137 space->total_bytes += block_group->key.offset; 4138 space->used_bytes += 4139 btrfs_block_group_used(&block_group->item); 4140 } 4141 } 4142 4143 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4144 void __user *arg) 4145 { 4146 struct btrfs_ioctl_space_args space_args; 4147 struct btrfs_ioctl_space_info space; 4148 struct btrfs_ioctl_space_info *dest; 4149 struct btrfs_ioctl_space_info *dest_orig; 4150 struct btrfs_ioctl_space_info __user *user_dest; 4151 struct btrfs_space_info *info; 4152 static const u64 types[] = { 4153 BTRFS_BLOCK_GROUP_DATA, 4154 BTRFS_BLOCK_GROUP_SYSTEM, 4155 BTRFS_BLOCK_GROUP_METADATA, 4156 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4157 }; 4158 int num_types = 4; 4159 int alloc_size; 4160 int ret = 0; 4161 u64 slot_count = 0; 4162 int i, c; 4163 4164 if (copy_from_user(&space_args, 4165 (struct btrfs_ioctl_space_args __user *)arg, 4166 sizeof(space_args))) 4167 return -EFAULT; 4168 4169 for (i = 0; i < num_types; i++) { 4170 struct btrfs_space_info *tmp; 4171 4172 info = NULL; 4173 rcu_read_lock(); 4174 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4175 list) { 4176 if (tmp->flags == types[i]) { 4177 info = tmp; 4178 break; 4179 } 4180 } 4181 rcu_read_unlock(); 4182 4183 if (!info) 4184 continue; 4185 4186 down_read(&info->groups_sem); 4187 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4188 if (!list_empty(&info->block_groups[c])) 4189 slot_count++; 4190 } 4191 up_read(&info->groups_sem); 4192 } 4193 4194 /* 4195 * Global block reserve, exported as a space_info 4196 */ 4197 slot_count++; 4198 4199 /* space_slots == 0 means they are asking for a count */ 4200 if (space_args.space_slots == 0) { 4201 space_args.total_spaces = slot_count; 4202 goto out; 4203 } 4204 4205 slot_count = min_t(u64, space_args.space_slots, slot_count); 4206 4207 alloc_size = sizeof(*dest) * slot_count; 4208 4209 /* we generally have at most 6 or so space infos, one for each raid 4210 * level. So, a whole page should be more than enough for everyone 4211 */ 4212 if (alloc_size > PAGE_SIZE) 4213 return -ENOMEM; 4214 4215 space_args.total_spaces = 0; 4216 dest = kmalloc(alloc_size, GFP_KERNEL); 4217 if (!dest) 4218 return -ENOMEM; 4219 dest_orig = dest; 4220 4221 /* now we have a buffer to copy into */ 4222 for (i = 0; i < num_types; i++) { 4223 struct btrfs_space_info *tmp; 4224 4225 if (!slot_count) 4226 break; 4227 4228 info = NULL; 4229 rcu_read_lock(); 4230 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4231 list) { 4232 if (tmp->flags == types[i]) { 4233 info = tmp; 4234 break; 4235 } 4236 } 4237 rcu_read_unlock(); 4238 4239 if (!info) 4240 continue; 4241 down_read(&info->groups_sem); 4242 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4243 if (!list_empty(&info->block_groups[c])) { 4244 get_block_group_info(&info->block_groups[c], 4245 &space); 4246 memcpy(dest, &space, sizeof(space)); 4247 dest++; 4248 space_args.total_spaces++; 4249 slot_count--; 4250 } 4251 if (!slot_count) 4252 break; 4253 } 4254 up_read(&info->groups_sem); 4255 } 4256 4257 /* 4258 * Add global block reserve 4259 */ 4260 if (slot_count) { 4261 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4262 4263 spin_lock(&block_rsv->lock); 4264 space.total_bytes = block_rsv->size; 4265 space.used_bytes = block_rsv->size - block_rsv->reserved; 4266 spin_unlock(&block_rsv->lock); 4267 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4268 memcpy(dest, &space, sizeof(space)); 4269 space_args.total_spaces++; 4270 } 4271 4272 user_dest = (struct btrfs_ioctl_space_info __user *) 4273 (arg + sizeof(struct btrfs_ioctl_space_args)); 4274 4275 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4276 ret = -EFAULT; 4277 4278 kfree(dest_orig); 4279 out: 4280 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4281 ret = -EFAULT; 4282 4283 return ret; 4284 } 4285 4286 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4287 void __user *argp) 4288 { 4289 struct btrfs_trans_handle *trans; 4290 u64 transid; 4291 int ret; 4292 4293 trans = btrfs_attach_transaction_barrier(root); 4294 if (IS_ERR(trans)) { 4295 if (PTR_ERR(trans) != -ENOENT) 4296 return PTR_ERR(trans); 4297 4298 /* No running transaction, don't bother */ 4299 transid = root->fs_info->last_trans_committed; 4300 goto out; 4301 } 4302 transid = trans->transid; 4303 ret = btrfs_commit_transaction_async(trans, 0); 4304 if (ret) { 4305 btrfs_end_transaction(trans); 4306 return ret; 4307 } 4308 out: 4309 if (argp) 4310 if (copy_to_user(argp, &transid, sizeof(transid))) 4311 return -EFAULT; 4312 return 0; 4313 } 4314 4315 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4316 void __user *argp) 4317 { 4318 u64 transid; 4319 4320 if (argp) { 4321 if (copy_from_user(&transid, argp, sizeof(transid))) 4322 return -EFAULT; 4323 } else { 4324 transid = 0; /* current trans */ 4325 } 4326 return btrfs_wait_for_commit(fs_info, transid); 4327 } 4328 4329 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4330 { 4331 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4332 struct btrfs_ioctl_scrub_args *sa; 4333 int ret; 4334 4335 if (!capable(CAP_SYS_ADMIN)) 4336 return -EPERM; 4337 4338 sa = memdup_user(arg, sizeof(*sa)); 4339 if (IS_ERR(sa)) 4340 return PTR_ERR(sa); 4341 4342 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4343 ret = mnt_want_write_file(file); 4344 if (ret) 4345 goto out; 4346 } 4347 4348 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4349 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4350 0); 4351 4352 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4353 ret = -EFAULT; 4354 4355 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4356 mnt_drop_write_file(file); 4357 out: 4358 kfree(sa); 4359 return ret; 4360 } 4361 4362 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4363 { 4364 if (!capable(CAP_SYS_ADMIN)) 4365 return -EPERM; 4366 4367 return btrfs_scrub_cancel(fs_info); 4368 } 4369 4370 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4371 void __user *arg) 4372 { 4373 struct btrfs_ioctl_scrub_args *sa; 4374 int ret; 4375 4376 if (!capable(CAP_SYS_ADMIN)) 4377 return -EPERM; 4378 4379 sa = memdup_user(arg, sizeof(*sa)); 4380 if (IS_ERR(sa)) 4381 return PTR_ERR(sa); 4382 4383 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4384 4385 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4386 ret = -EFAULT; 4387 4388 kfree(sa); 4389 return ret; 4390 } 4391 4392 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4393 void __user *arg) 4394 { 4395 struct btrfs_ioctl_get_dev_stats *sa; 4396 int ret; 4397 4398 sa = memdup_user(arg, sizeof(*sa)); 4399 if (IS_ERR(sa)) 4400 return PTR_ERR(sa); 4401 4402 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4403 kfree(sa); 4404 return -EPERM; 4405 } 4406 4407 ret = btrfs_get_dev_stats(fs_info, sa); 4408 4409 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4410 ret = -EFAULT; 4411 4412 kfree(sa); 4413 return ret; 4414 } 4415 4416 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4417 void __user *arg) 4418 { 4419 struct btrfs_ioctl_dev_replace_args *p; 4420 int ret; 4421 4422 if (!capable(CAP_SYS_ADMIN)) 4423 return -EPERM; 4424 4425 p = memdup_user(arg, sizeof(*p)); 4426 if (IS_ERR(p)) 4427 return PTR_ERR(p); 4428 4429 switch (p->cmd) { 4430 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4431 if (sb_rdonly(fs_info->sb)) { 4432 ret = -EROFS; 4433 goto out; 4434 } 4435 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4436 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4437 } else { 4438 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4439 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4440 } 4441 break; 4442 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4443 btrfs_dev_replace_status(fs_info, p); 4444 ret = 0; 4445 break; 4446 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4447 p->result = btrfs_dev_replace_cancel(fs_info); 4448 ret = 0; 4449 break; 4450 default: 4451 ret = -EINVAL; 4452 break; 4453 } 4454 4455 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4456 ret = -EFAULT; 4457 out: 4458 kfree(p); 4459 return ret; 4460 } 4461 4462 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4463 { 4464 int ret = 0; 4465 int i; 4466 u64 rel_ptr; 4467 int size; 4468 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4469 struct inode_fs_paths *ipath = NULL; 4470 struct btrfs_path *path; 4471 4472 if (!capable(CAP_DAC_READ_SEARCH)) 4473 return -EPERM; 4474 4475 path = btrfs_alloc_path(); 4476 if (!path) { 4477 ret = -ENOMEM; 4478 goto out; 4479 } 4480 4481 ipa = memdup_user(arg, sizeof(*ipa)); 4482 if (IS_ERR(ipa)) { 4483 ret = PTR_ERR(ipa); 4484 ipa = NULL; 4485 goto out; 4486 } 4487 4488 size = min_t(u32, ipa->size, 4096); 4489 ipath = init_ipath(size, root, path); 4490 if (IS_ERR(ipath)) { 4491 ret = PTR_ERR(ipath); 4492 ipath = NULL; 4493 goto out; 4494 } 4495 4496 ret = paths_from_inode(ipa->inum, ipath); 4497 if (ret < 0) 4498 goto out; 4499 4500 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4501 rel_ptr = ipath->fspath->val[i] - 4502 (u64)(unsigned long)ipath->fspath->val; 4503 ipath->fspath->val[i] = rel_ptr; 4504 } 4505 4506 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4507 ipath->fspath, size); 4508 if (ret) { 4509 ret = -EFAULT; 4510 goto out; 4511 } 4512 4513 out: 4514 btrfs_free_path(path); 4515 free_ipath(ipath); 4516 kfree(ipa); 4517 4518 return ret; 4519 } 4520 4521 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4522 { 4523 struct btrfs_data_container *inodes = ctx; 4524 const size_t c = 3 * sizeof(u64); 4525 4526 if (inodes->bytes_left >= c) { 4527 inodes->bytes_left -= c; 4528 inodes->val[inodes->elem_cnt] = inum; 4529 inodes->val[inodes->elem_cnt + 1] = offset; 4530 inodes->val[inodes->elem_cnt + 2] = root; 4531 inodes->elem_cnt += 3; 4532 } else { 4533 inodes->bytes_missing += c - inodes->bytes_left; 4534 inodes->bytes_left = 0; 4535 inodes->elem_missed += 3; 4536 } 4537 4538 return 0; 4539 } 4540 4541 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4542 void __user *arg, int version) 4543 { 4544 int ret = 0; 4545 int size; 4546 struct btrfs_ioctl_logical_ino_args *loi; 4547 struct btrfs_data_container *inodes = NULL; 4548 struct btrfs_path *path = NULL; 4549 bool ignore_offset; 4550 4551 if (!capable(CAP_SYS_ADMIN)) 4552 return -EPERM; 4553 4554 loi = memdup_user(arg, sizeof(*loi)); 4555 if (IS_ERR(loi)) 4556 return PTR_ERR(loi); 4557 4558 if (version == 1) { 4559 ignore_offset = false; 4560 size = min_t(u32, loi->size, SZ_64K); 4561 } else { 4562 /* All reserved bits must be 0 for now */ 4563 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4564 ret = -EINVAL; 4565 goto out_loi; 4566 } 4567 /* Only accept flags we have defined so far */ 4568 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4569 ret = -EINVAL; 4570 goto out_loi; 4571 } 4572 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4573 size = min_t(u32, loi->size, SZ_16M); 4574 } 4575 4576 path = btrfs_alloc_path(); 4577 if (!path) { 4578 ret = -ENOMEM; 4579 goto out; 4580 } 4581 4582 inodes = init_data_container(size); 4583 if (IS_ERR(inodes)) { 4584 ret = PTR_ERR(inodes); 4585 inodes = NULL; 4586 goto out; 4587 } 4588 4589 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4590 build_ino_list, inodes, ignore_offset); 4591 if (ret == -EINVAL) 4592 ret = -ENOENT; 4593 if (ret < 0) 4594 goto out; 4595 4596 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4597 size); 4598 if (ret) 4599 ret = -EFAULT; 4600 4601 out: 4602 btrfs_free_path(path); 4603 kvfree(inodes); 4604 out_loi: 4605 kfree(loi); 4606 4607 return ret; 4608 } 4609 4610 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4611 struct btrfs_ioctl_balance_args *bargs) 4612 { 4613 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4614 4615 bargs->flags = bctl->flags; 4616 4617 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4618 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4619 if (atomic_read(&fs_info->balance_pause_req)) 4620 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4621 if (atomic_read(&fs_info->balance_cancel_req)) 4622 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4623 4624 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4625 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4626 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4627 4628 spin_lock(&fs_info->balance_lock); 4629 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4630 spin_unlock(&fs_info->balance_lock); 4631 } 4632 4633 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4634 { 4635 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4636 struct btrfs_fs_info *fs_info = root->fs_info; 4637 struct btrfs_ioctl_balance_args *bargs; 4638 struct btrfs_balance_control *bctl; 4639 bool need_unlock; /* for mut. excl. ops lock */ 4640 int ret; 4641 4642 if (!capable(CAP_SYS_ADMIN)) 4643 return -EPERM; 4644 4645 ret = mnt_want_write_file(file); 4646 if (ret) 4647 return ret; 4648 4649 again: 4650 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4651 mutex_lock(&fs_info->balance_mutex); 4652 need_unlock = true; 4653 goto locked; 4654 } 4655 4656 /* 4657 * mut. excl. ops lock is locked. Three possibilities: 4658 * (1) some other op is running 4659 * (2) balance is running 4660 * (3) balance is paused -- special case (think resume) 4661 */ 4662 mutex_lock(&fs_info->balance_mutex); 4663 if (fs_info->balance_ctl) { 4664 /* this is either (2) or (3) */ 4665 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4666 mutex_unlock(&fs_info->balance_mutex); 4667 /* 4668 * Lock released to allow other waiters to continue, 4669 * we'll reexamine the status again. 4670 */ 4671 mutex_lock(&fs_info->balance_mutex); 4672 4673 if (fs_info->balance_ctl && 4674 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4675 /* this is (3) */ 4676 need_unlock = false; 4677 goto locked; 4678 } 4679 4680 mutex_unlock(&fs_info->balance_mutex); 4681 goto again; 4682 } else { 4683 /* this is (2) */ 4684 mutex_unlock(&fs_info->balance_mutex); 4685 ret = -EINPROGRESS; 4686 goto out; 4687 } 4688 } else { 4689 /* this is (1) */ 4690 mutex_unlock(&fs_info->balance_mutex); 4691 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4692 goto out; 4693 } 4694 4695 locked: 4696 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4697 4698 if (arg) { 4699 bargs = memdup_user(arg, sizeof(*bargs)); 4700 if (IS_ERR(bargs)) { 4701 ret = PTR_ERR(bargs); 4702 goto out_unlock; 4703 } 4704 4705 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4706 if (!fs_info->balance_ctl) { 4707 ret = -ENOTCONN; 4708 goto out_bargs; 4709 } 4710 4711 bctl = fs_info->balance_ctl; 4712 spin_lock(&fs_info->balance_lock); 4713 bctl->flags |= BTRFS_BALANCE_RESUME; 4714 spin_unlock(&fs_info->balance_lock); 4715 4716 goto do_balance; 4717 } 4718 } else { 4719 bargs = NULL; 4720 } 4721 4722 if (fs_info->balance_ctl) { 4723 ret = -EINPROGRESS; 4724 goto out_bargs; 4725 } 4726 4727 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4728 if (!bctl) { 4729 ret = -ENOMEM; 4730 goto out_bargs; 4731 } 4732 4733 if (arg) { 4734 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4735 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4736 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4737 4738 bctl->flags = bargs->flags; 4739 } else { 4740 /* balance everything - no filters */ 4741 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4742 } 4743 4744 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4745 ret = -EINVAL; 4746 goto out_bctl; 4747 } 4748 4749 do_balance: 4750 /* 4751 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 4752 * btrfs_balance. bctl is freed in reset_balance_state, or, if 4753 * restriper was paused all the way until unmount, in free_fs_info. 4754 * The flag should be cleared after reset_balance_state. 4755 */ 4756 need_unlock = false; 4757 4758 ret = btrfs_balance(fs_info, bctl, bargs); 4759 bctl = NULL; 4760 4761 if ((ret == 0 || ret == -ECANCELED) && arg) { 4762 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4763 ret = -EFAULT; 4764 } 4765 4766 out_bctl: 4767 kfree(bctl); 4768 out_bargs: 4769 kfree(bargs); 4770 out_unlock: 4771 mutex_unlock(&fs_info->balance_mutex); 4772 if (need_unlock) 4773 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4774 out: 4775 mnt_drop_write_file(file); 4776 return ret; 4777 } 4778 4779 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4780 { 4781 if (!capable(CAP_SYS_ADMIN)) 4782 return -EPERM; 4783 4784 switch (cmd) { 4785 case BTRFS_BALANCE_CTL_PAUSE: 4786 return btrfs_pause_balance(fs_info); 4787 case BTRFS_BALANCE_CTL_CANCEL: 4788 return btrfs_cancel_balance(fs_info); 4789 } 4790 4791 return -EINVAL; 4792 } 4793 4794 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4795 void __user *arg) 4796 { 4797 struct btrfs_ioctl_balance_args *bargs; 4798 int ret = 0; 4799 4800 if (!capable(CAP_SYS_ADMIN)) 4801 return -EPERM; 4802 4803 mutex_lock(&fs_info->balance_mutex); 4804 if (!fs_info->balance_ctl) { 4805 ret = -ENOTCONN; 4806 goto out; 4807 } 4808 4809 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4810 if (!bargs) { 4811 ret = -ENOMEM; 4812 goto out; 4813 } 4814 4815 btrfs_update_ioctl_balance_args(fs_info, bargs); 4816 4817 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4818 ret = -EFAULT; 4819 4820 kfree(bargs); 4821 out: 4822 mutex_unlock(&fs_info->balance_mutex); 4823 return ret; 4824 } 4825 4826 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4827 { 4828 struct inode *inode = file_inode(file); 4829 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4830 struct btrfs_ioctl_quota_ctl_args *sa; 4831 int ret; 4832 4833 if (!capable(CAP_SYS_ADMIN)) 4834 return -EPERM; 4835 4836 ret = mnt_want_write_file(file); 4837 if (ret) 4838 return ret; 4839 4840 sa = memdup_user(arg, sizeof(*sa)); 4841 if (IS_ERR(sa)) { 4842 ret = PTR_ERR(sa); 4843 goto drop_write; 4844 } 4845 4846 down_write(&fs_info->subvol_sem); 4847 4848 switch (sa->cmd) { 4849 case BTRFS_QUOTA_CTL_ENABLE: 4850 ret = btrfs_quota_enable(fs_info); 4851 break; 4852 case BTRFS_QUOTA_CTL_DISABLE: 4853 ret = btrfs_quota_disable(fs_info); 4854 break; 4855 default: 4856 ret = -EINVAL; 4857 break; 4858 } 4859 4860 kfree(sa); 4861 up_write(&fs_info->subvol_sem); 4862 drop_write: 4863 mnt_drop_write_file(file); 4864 return ret; 4865 } 4866 4867 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4868 { 4869 struct inode *inode = file_inode(file); 4870 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4871 struct btrfs_root *root = BTRFS_I(inode)->root; 4872 struct btrfs_ioctl_qgroup_assign_args *sa; 4873 struct btrfs_trans_handle *trans; 4874 int ret; 4875 int err; 4876 4877 if (!capable(CAP_SYS_ADMIN)) 4878 return -EPERM; 4879 4880 ret = mnt_want_write_file(file); 4881 if (ret) 4882 return ret; 4883 4884 sa = memdup_user(arg, sizeof(*sa)); 4885 if (IS_ERR(sa)) { 4886 ret = PTR_ERR(sa); 4887 goto drop_write; 4888 } 4889 4890 trans = btrfs_join_transaction(root); 4891 if (IS_ERR(trans)) { 4892 ret = PTR_ERR(trans); 4893 goto out; 4894 } 4895 4896 if (sa->assign) { 4897 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4898 } else { 4899 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4900 } 4901 4902 /* update qgroup status and info */ 4903 err = btrfs_run_qgroups(trans); 4904 if (err < 0) 4905 btrfs_handle_fs_error(fs_info, err, 4906 "failed to update qgroup status and info"); 4907 err = btrfs_end_transaction(trans); 4908 if (err && !ret) 4909 ret = err; 4910 4911 out: 4912 kfree(sa); 4913 drop_write: 4914 mnt_drop_write_file(file); 4915 return ret; 4916 } 4917 4918 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4919 { 4920 struct inode *inode = file_inode(file); 4921 struct btrfs_root *root = BTRFS_I(inode)->root; 4922 struct btrfs_ioctl_qgroup_create_args *sa; 4923 struct btrfs_trans_handle *trans; 4924 int ret; 4925 int err; 4926 4927 if (!capable(CAP_SYS_ADMIN)) 4928 return -EPERM; 4929 4930 ret = mnt_want_write_file(file); 4931 if (ret) 4932 return ret; 4933 4934 sa = memdup_user(arg, sizeof(*sa)); 4935 if (IS_ERR(sa)) { 4936 ret = PTR_ERR(sa); 4937 goto drop_write; 4938 } 4939 4940 if (!sa->qgroupid) { 4941 ret = -EINVAL; 4942 goto out; 4943 } 4944 4945 trans = btrfs_join_transaction(root); 4946 if (IS_ERR(trans)) { 4947 ret = PTR_ERR(trans); 4948 goto out; 4949 } 4950 4951 if (sa->create) { 4952 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4953 } else { 4954 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4955 } 4956 4957 err = btrfs_end_transaction(trans); 4958 if (err && !ret) 4959 ret = err; 4960 4961 out: 4962 kfree(sa); 4963 drop_write: 4964 mnt_drop_write_file(file); 4965 return ret; 4966 } 4967 4968 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4969 { 4970 struct inode *inode = file_inode(file); 4971 struct btrfs_root *root = BTRFS_I(inode)->root; 4972 struct btrfs_ioctl_qgroup_limit_args *sa; 4973 struct btrfs_trans_handle *trans; 4974 int ret; 4975 int err; 4976 u64 qgroupid; 4977 4978 if (!capable(CAP_SYS_ADMIN)) 4979 return -EPERM; 4980 4981 ret = mnt_want_write_file(file); 4982 if (ret) 4983 return ret; 4984 4985 sa = memdup_user(arg, sizeof(*sa)); 4986 if (IS_ERR(sa)) { 4987 ret = PTR_ERR(sa); 4988 goto drop_write; 4989 } 4990 4991 trans = btrfs_join_transaction(root); 4992 if (IS_ERR(trans)) { 4993 ret = PTR_ERR(trans); 4994 goto out; 4995 } 4996 4997 qgroupid = sa->qgroupid; 4998 if (!qgroupid) { 4999 /* take the current subvol as qgroup */ 5000 qgroupid = root->root_key.objectid; 5001 } 5002 5003 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 5004 5005 err = btrfs_end_transaction(trans); 5006 if (err && !ret) 5007 ret = err; 5008 5009 out: 5010 kfree(sa); 5011 drop_write: 5012 mnt_drop_write_file(file); 5013 return ret; 5014 } 5015 5016 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5017 { 5018 struct inode *inode = file_inode(file); 5019 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5020 struct btrfs_ioctl_quota_rescan_args *qsa; 5021 int ret; 5022 5023 if (!capable(CAP_SYS_ADMIN)) 5024 return -EPERM; 5025 5026 ret = mnt_want_write_file(file); 5027 if (ret) 5028 return ret; 5029 5030 qsa = memdup_user(arg, sizeof(*qsa)); 5031 if (IS_ERR(qsa)) { 5032 ret = PTR_ERR(qsa); 5033 goto drop_write; 5034 } 5035 5036 if (qsa->flags) { 5037 ret = -EINVAL; 5038 goto out; 5039 } 5040 5041 ret = btrfs_qgroup_rescan(fs_info); 5042 5043 out: 5044 kfree(qsa); 5045 drop_write: 5046 mnt_drop_write_file(file); 5047 return ret; 5048 } 5049 5050 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5051 { 5052 struct inode *inode = file_inode(file); 5053 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5054 struct btrfs_ioctl_quota_rescan_args *qsa; 5055 int ret = 0; 5056 5057 if (!capable(CAP_SYS_ADMIN)) 5058 return -EPERM; 5059 5060 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5061 if (!qsa) 5062 return -ENOMEM; 5063 5064 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5065 qsa->flags = 1; 5066 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5067 } 5068 5069 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5070 ret = -EFAULT; 5071 5072 kfree(qsa); 5073 return ret; 5074 } 5075 5076 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5077 { 5078 struct inode *inode = file_inode(file); 5079 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5080 5081 if (!capable(CAP_SYS_ADMIN)) 5082 return -EPERM; 5083 5084 return btrfs_qgroup_wait_for_completion(fs_info, true); 5085 } 5086 5087 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5088 struct btrfs_ioctl_received_subvol_args *sa) 5089 { 5090 struct inode *inode = file_inode(file); 5091 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5092 struct btrfs_root *root = BTRFS_I(inode)->root; 5093 struct btrfs_root_item *root_item = &root->root_item; 5094 struct btrfs_trans_handle *trans; 5095 struct timespec64 ct = current_time(inode); 5096 int ret = 0; 5097 int received_uuid_changed; 5098 5099 if (!inode_owner_or_capable(inode)) 5100 return -EPERM; 5101 5102 ret = mnt_want_write_file(file); 5103 if (ret < 0) 5104 return ret; 5105 5106 down_write(&fs_info->subvol_sem); 5107 5108 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5109 ret = -EINVAL; 5110 goto out; 5111 } 5112 5113 if (btrfs_root_readonly(root)) { 5114 ret = -EROFS; 5115 goto out; 5116 } 5117 5118 /* 5119 * 1 - root item 5120 * 2 - uuid items (received uuid + subvol uuid) 5121 */ 5122 trans = btrfs_start_transaction(root, 3); 5123 if (IS_ERR(trans)) { 5124 ret = PTR_ERR(trans); 5125 trans = NULL; 5126 goto out; 5127 } 5128 5129 sa->rtransid = trans->transid; 5130 sa->rtime.sec = ct.tv_sec; 5131 sa->rtime.nsec = ct.tv_nsec; 5132 5133 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5134 BTRFS_UUID_SIZE); 5135 if (received_uuid_changed && 5136 !btrfs_is_empty_uuid(root_item->received_uuid)) { 5137 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 5138 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5139 root->root_key.objectid); 5140 if (ret && ret != -ENOENT) { 5141 btrfs_abort_transaction(trans, ret); 5142 btrfs_end_transaction(trans); 5143 goto out; 5144 } 5145 } 5146 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5147 btrfs_set_root_stransid(root_item, sa->stransid); 5148 btrfs_set_root_rtransid(root_item, sa->rtransid); 5149 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5150 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5151 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5152 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5153 5154 ret = btrfs_update_root(trans, fs_info->tree_root, 5155 &root->root_key, &root->root_item); 5156 if (ret < 0) { 5157 btrfs_end_transaction(trans); 5158 goto out; 5159 } 5160 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5161 ret = btrfs_uuid_tree_add(trans, sa->uuid, 5162 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5163 root->root_key.objectid); 5164 if (ret < 0 && ret != -EEXIST) { 5165 btrfs_abort_transaction(trans, ret); 5166 btrfs_end_transaction(trans); 5167 goto out; 5168 } 5169 } 5170 ret = btrfs_commit_transaction(trans); 5171 out: 5172 up_write(&fs_info->subvol_sem); 5173 mnt_drop_write_file(file); 5174 return ret; 5175 } 5176 5177 #ifdef CONFIG_64BIT 5178 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5179 void __user *arg) 5180 { 5181 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5182 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5183 int ret = 0; 5184 5185 args32 = memdup_user(arg, sizeof(*args32)); 5186 if (IS_ERR(args32)) 5187 return PTR_ERR(args32); 5188 5189 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5190 if (!args64) { 5191 ret = -ENOMEM; 5192 goto out; 5193 } 5194 5195 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5196 args64->stransid = args32->stransid; 5197 args64->rtransid = args32->rtransid; 5198 args64->stime.sec = args32->stime.sec; 5199 args64->stime.nsec = args32->stime.nsec; 5200 args64->rtime.sec = args32->rtime.sec; 5201 args64->rtime.nsec = args32->rtime.nsec; 5202 args64->flags = args32->flags; 5203 5204 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5205 if (ret) 5206 goto out; 5207 5208 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5209 args32->stransid = args64->stransid; 5210 args32->rtransid = args64->rtransid; 5211 args32->stime.sec = args64->stime.sec; 5212 args32->stime.nsec = args64->stime.nsec; 5213 args32->rtime.sec = args64->rtime.sec; 5214 args32->rtime.nsec = args64->rtime.nsec; 5215 args32->flags = args64->flags; 5216 5217 ret = copy_to_user(arg, args32, sizeof(*args32)); 5218 if (ret) 5219 ret = -EFAULT; 5220 5221 out: 5222 kfree(args32); 5223 kfree(args64); 5224 return ret; 5225 } 5226 #endif 5227 5228 static long btrfs_ioctl_set_received_subvol(struct file *file, 5229 void __user *arg) 5230 { 5231 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5232 int ret = 0; 5233 5234 sa = memdup_user(arg, sizeof(*sa)); 5235 if (IS_ERR(sa)) 5236 return PTR_ERR(sa); 5237 5238 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5239 5240 if (ret) 5241 goto out; 5242 5243 ret = copy_to_user(arg, sa, sizeof(*sa)); 5244 if (ret) 5245 ret = -EFAULT; 5246 5247 out: 5248 kfree(sa); 5249 return ret; 5250 } 5251 5252 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5253 { 5254 struct inode *inode = file_inode(file); 5255 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5256 size_t len; 5257 int ret; 5258 char label[BTRFS_LABEL_SIZE]; 5259 5260 spin_lock(&fs_info->super_lock); 5261 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5262 spin_unlock(&fs_info->super_lock); 5263 5264 len = strnlen(label, BTRFS_LABEL_SIZE); 5265 5266 if (len == BTRFS_LABEL_SIZE) { 5267 btrfs_warn(fs_info, 5268 "label is too long, return the first %zu bytes", 5269 --len); 5270 } 5271 5272 ret = copy_to_user(arg, label, len); 5273 5274 return ret ? -EFAULT : 0; 5275 } 5276 5277 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5278 { 5279 struct inode *inode = file_inode(file); 5280 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5281 struct btrfs_root *root = BTRFS_I(inode)->root; 5282 struct btrfs_super_block *super_block = fs_info->super_copy; 5283 struct btrfs_trans_handle *trans; 5284 char label[BTRFS_LABEL_SIZE]; 5285 int ret; 5286 5287 if (!capable(CAP_SYS_ADMIN)) 5288 return -EPERM; 5289 5290 if (copy_from_user(label, arg, sizeof(label))) 5291 return -EFAULT; 5292 5293 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5294 btrfs_err(fs_info, 5295 "unable to set label with more than %d bytes", 5296 BTRFS_LABEL_SIZE - 1); 5297 return -EINVAL; 5298 } 5299 5300 ret = mnt_want_write_file(file); 5301 if (ret) 5302 return ret; 5303 5304 trans = btrfs_start_transaction(root, 0); 5305 if (IS_ERR(trans)) { 5306 ret = PTR_ERR(trans); 5307 goto out_unlock; 5308 } 5309 5310 spin_lock(&fs_info->super_lock); 5311 strcpy(super_block->label, label); 5312 spin_unlock(&fs_info->super_lock); 5313 ret = btrfs_commit_transaction(trans); 5314 5315 out_unlock: 5316 mnt_drop_write_file(file); 5317 return ret; 5318 } 5319 5320 #define INIT_FEATURE_FLAGS(suffix) \ 5321 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5322 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5323 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5324 5325 int btrfs_ioctl_get_supported_features(void __user *arg) 5326 { 5327 static const struct btrfs_ioctl_feature_flags features[3] = { 5328 INIT_FEATURE_FLAGS(SUPP), 5329 INIT_FEATURE_FLAGS(SAFE_SET), 5330 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5331 }; 5332 5333 if (copy_to_user(arg, &features, sizeof(features))) 5334 return -EFAULT; 5335 5336 return 0; 5337 } 5338 5339 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5340 { 5341 struct inode *inode = file_inode(file); 5342 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5343 struct btrfs_super_block *super_block = fs_info->super_copy; 5344 struct btrfs_ioctl_feature_flags features; 5345 5346 features.compat_flags = btrfs_super_compat_flags(super_block); 5347 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5348 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5349 5350 if (copy_to_user(arg, &features, sizeof(features))) 5351 return -EFAULT; 5352 5353 return 0; 5354 } 5355 5356 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5357 enum btrfs_feature_set set, 5358 u64 change_mask, u64 flags, u64 supported_flags, 5359 u64 safe_set, u64 safe_clear) 5360 { 5361 const char *type = btrfs_feature_set_names[set]; 5362 char *names; 5363 u64 disallowed, unsupported; 5364 u64 set_mask = flags & change_mask; 5365 u64 clear_mask = ~flags & change_mask; 5366 5367 unsupported = set_mask & ~supported_flags; 5368 if (unsupported) { 5369 names = btrfs_printable_features(set, unsupported); 5370 if (names) { 5371 btrfs_warn(fs_info, 5372 "this kernel does not support the %s feature bit%s", 5373 names, strchr(names, ',') ? "s" : ""); 5374 kfree(names); 5375 } else 5376 btrfs_warn(fs_info, 5377 "this kernel does not support %s bits 0x%llx", 5378 type, unsupported); 5379 return -EOPNOTSUPP; 5380 } 5381 5382 disallowed = set_mask & ~safe_set; 5383 if (disallowed) { 5384 names = btrfs_printable_features(set, disallowed); 5385 if (names) { 5386 btrfs_warn(fs_info, 5387 "can't set the %s feature bit%s while mounted", 5388 names, strchr(names, ',') ? "s" : ""); 5389 kfree(names); 5390 } else 5391 btrfs_warn(fs_info, 5392 "can't set %s bits 0x%llx while mounted", 5393 type, disallowed); 5394 return -EPERM; 5395 } 5396 5397 disallowed = clear_mask & ~safe_clear; 5398 if (disallowed) { 5399 names = btrfs_printable_features(set, disallowed); 5400 if (names) { 5401 btrfs_warn(fs_info, 5402 "can't clear the %s feature bit%s while mounted", 5403 names, strchr(names, ',') ? "s" : ""); 5404 kfree(names); 5405 } else 5406 btrfs_warn(fs_info, 5407 "can't clear %s bits 0x%llx while mounted", 5408 type, disallowed); 5409 return -EPERM; 5410 } 5411 5412 return 0; 5413 } 5414 5415 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5416 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5417 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5418 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5419 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5420 5421 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5422 { 5423 struct inode *inode = file_inode(file); 5424 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5425 struct btrfs_root *root = BTRFS_I(inode)->root; 5426 struct btrfs_super_block *super_block = fs_info->super_copy; 5427 struct btrfs_ioctl_feature_flags flags[2]; 5428 struct btrfs_trans_handle *trans; 5429 u64 newflags; 5430 int ret; 5431 5432 if (!capable(CAP_SYS_ADMIN)) 5433 return -EPERM; 5434 5435 if (copy_from_user(flags, arg, sizeof(flags))) 5436 return -EFAULT; 5437 5438 /* Nothing to do */ 5439 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5440 !flags[0].incompat_flags) 5441 return 0; 5442 5443 ret = check_feature(fs_info, flags[0].compat_flags, 5444 flags[1].compat_flags, COMPAT); 5445 if (ret) 5446 return ret; 5447 5448 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5449 flags[1].compat_ro_flags, COMPAT_RO); 5450 if (ret) 5451 return ret; 5452 5453 ret = check_feature(fs_info, flags[0].incompat_flags, 5454 flags[1].incompat_flags, INCOMPAT); 5455 if (ret) 5456 return ret; 5457 5458 ret = mnt_want_write_file(file); 5459 if (ret) 5460 return ret; 5461 5462 trans = btrfs_start_transaction(root, 0); 5463 if (IS_ERR(trans)) { 5464 ret = PTR_ERR(trans); 5465 goto out_drop_write; 5466 } 5467 5468 spin_lock(&fs_info->super_lock); 5469 newflags = btrfs_super_compat_flags(super_block); 5470 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5471 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5472 btrfs_set_super_compat_flags(super_block, newflags); 5473 5474 newflags = btrfs_super_compat_ro_flags(super_block); 5475 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5476 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5477 btrfs_set_super_compat_ro_flags(super_block, newflags); 5478 5479 newflags = btrfs_super_incompat_flags(super_block); 5480 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5481 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5482 btrfs_set_super_incompat_flags(super_block, newflags); 5483 spin_unlock(&fs_info->super_lock); 5484 5485 ret = btrfs_commit_transaction(trans); 5486 out_drop_write: 5487 mnt_drop_write_file(file); 5488 5489 return ret; 5490 } 5491 5492 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5493 { 5494 struct btrfs_ioctl_send_args *arg; 5495 int ret; 5496 5497 if (compat) { 5498 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5499 struct btrfs_ioctl_send_args_32 args32; 5500 5501 ret = copy_from_user(&args32, argp, sizeof(args32)); 5502 if (ret) 5503 return -EFAULT; 5504 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5505 if (!arg) 5506 return -ENOMEM; 5507 arg->send_fd = args32.send_fd; 5508 arg->clone_sources_count = args32.clone_sources_count; 5509 arg->clone_sources = compat_ptr(args32.clone_sources); 5510 arg->parent_root = args32.parent_root; 5511 arg->flags = args32.flags; 5512 memcpy(arg->reserved, args32.reserved, 5513 sizeof(args32.reserved)); 5514 #else 5515 return -ENOTTY; 5516 #endif 5517 } else { 5518 arg = memdup_user(argp, sizeof(*arg)); 5519 if (IS_ERR(arg)) 5520 return PTR_ERR(arg); 5521 } 5522 ret = btrfs_ioctl_send(file, arg); 5523 kfree(arg); 5524 return ret; 5525 } 5526 5527 long btrfs_ioctl(struct file *file, unsigned int 5528 cmd, unsigned long arg) 5529 { 5530 struct inode *inode = file_inode(file); 5531 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5532 struct btrfs_root *root = BTRFS_I(inode)->root; 5533 void __user *argp = (void __user *)arg; 5534 5535 switch (cmd) { 5536 case FS_IOC_GETFLAGS: 5537 return btrfs_ioctl_getflags(file, argp); 5538 case FS_IOC_SETFLAGS: 5539 return btrfs_ioctl_setflags(file, argp); 5540 case FS_IOC_GETVERSION: 5541 return btrfs_ioctl_getversion(file, argp); 5542 case FITRIM: 5543 return btrfs_ioctl_fitrim(file, argp); 5544 case BTRFS_IOC_SNAP_CREATE: 5545 return btrfs_ioctl_snap_create(file, argp, 0); 5546 case BTRFS_IOC_SNAP_CREATE_V2: 5547 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5548 case BTRFS_IOC_SUBVOL_CREATE: 5549 return btrfs_ioctl_snap_create(file, argp, 1); 5550 case BTRFS_IOC_SUBVOL_CREATE_V2: 5551 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5552 case BTRFS_IOC_SNAP_DESTROY: 5553 return btrfs_ioctl_snap_destroy(file, argp); 5554 case BTRFS_IOC_SUBVOL_GETFLAGS: 5555 return btrfs_ioctl_subvol_getflags(file, argp); 5556 case BTRFS_IOC_SUBVOL_SETFLAGS: 5557 return btrfs_ioctl_subvol_setflags(file, argp); 5558 case BTRFS_IOC_DEFAULT_SUBVOL: 5559 return btrfs_ioctl_default_subvol(file, argp); 5560 case BTRFS_IOC_DEFRAG: 5561 return btrfs_ioctl_defrag(file, NULL); 5562 case BTRFS_IOC_DEFRAG_RANGE: 5563 return btrfs_ioctl_defrag(file, argp); 5564 case BTRFS_IOC_RESIZE: 5565 return btrfs_ioctl_resize(file, argp); 5566 case BTRFS_IOC_ADD_DEV: 5567 return btrfs_ioctl_add_dev(fs_info, argp); 5568 case BTRFS_IOC_RM_DEV: 5569 return btrfs_ioctl_rm_dev(file, argp); 5570 case BTRFS_IOC_RM_DEV_V2: 5571 return btrfs_ioctl_rm_dev_v2(file, argp); 5572 case BTRFS_IOC_FS_INFO: 5573 return btrfs_ioctl_fs_info(fs_info, argp); 5574 case BTRFS_IOC_DEV_INFO: 5575 return btrfs_ioctl_dev_info(fs_info, argp); 5576 case BTRFS_IOC_BALANCE: 5577 return btrfs_ioctl_balance(file, NULL); 5578 case BTRFS_IOC_TREE_SEARCH: 5579 return btrfs_ioctl_tree_search(file, argp); 5580 case BTRFS_IOC_TREE_SEARCH_V2: 5581 return btrfs_ioctl_tree_search_v2(file, argp); 5582 case BTRFS_IOC_INO_LOOKUP: 5583 return btrfs_ioctl_ino_lookup(file, argp); 5584 case BTRFS_IOC_INO_PATHS: 5585 return btrfs_ioctl_ino_to_path(root, argp); 5586 case BTRFS_IOC_LOGICAL_INO: 5587 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5588 case BTRFS_IOC_LOGICAL_INO_V2: 5589 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5590 case BTRFS_IOC_SPACE_INFO: 5591 return btrfs_ioctl_space_info(fs_info, argp); 5592 case BTRFS_IOC_SYNC: { 5593 int ret; 5594 5595 ret = btrfs_start_delalloc_roots(fs_info, -1); 5596 if (ret) 5597 return ret; 5598 ret = btrfs_sync_fs(inode->i_sb, 1); 5599 /* 5600 * The transaction thread may want to do more work, 5601 * namely it pokes the cleaner kthread that will start 5602 * processing uncleaned subvols. 5603 */ 5604 wake_up_process(fs_info->transaction_kthread); 5605 return ret; 5606 } 5607 case BTRFS_IOC_START_SYNC: 5608 return btrfs_ioctl_start_sync(root, argp); 5609 case BTRFS_IOC_WAIT_SYNC: 5610 return btrfs_ioctl_wait_sync(fs_info, argp); 5611 case BTRFS_IOC_SCRUB: 5612 return btrfs_ioctl_scrub(file, argp); 5613 case BTRFS_IOC_SCRUB_CANCEL: 5614 return btrfs_ioctl_scrub_cancel(fs_info); 5615 case BTRFS_IOC_SCRUB_PROGRESS: 5616 return btrfs_ioctl_scrub_progress(fs_info, argp); 5617 case BTRFS_IOC_BALANCE_V2: 5618 return btrfs_ioctl_balance(file, argp); 5619 case BTRFS_IOC_BALANCE_CTL: 5620 return btrfs_ioctl_balance_ctl(fs_info, arg); 5621 case BTRFS_IOC_BALANCE_PROGRESS: 5622 return btrfs_ioctl_balance_progress(fs_info, argp); 5623 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5624 return btrfs_ioctl_set_received_subvol(file, argp); 5625 #ifdef CONFIG_64BIT 5626 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5627 return btrfs_ioctl_set_received_subvol_32(file, argp); 5628 #endif 5629 case BTRFS_IOC_SEND: 5630 return _btrfs_ioctl_send(file, argp, false); 5631 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5632 case BTRFS_IOC_SEND_32: 5633 return _btrfs_ioctl_send(file, argp, true); 5634 #endif 5635 case BTRFS_IOC_GET_DEV_STATS: 5636 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5637 case BTRFS_IOC_QUOTA_CTL: 5638 return btrfs_ioctl_quota_ctl(file, argp); 5639 case BTRFS_IOC_QGROUP_ASSIGN: 5640 return btrfs_ioctl_qgroup_assign(file, argp); 5641 case BTRFS_IOC_QGROUP_CREATE: 5642 return btrfs_ioctl_qgroup_create(file, argp); 5643 case BTRFS_IOC_QGROUP_LIMIT: 5644 return btrfs_ioctl_qgroup_limit(file, argp); 5645 case BTRFS_IOC_QUOTA_RESCAN: 5646 return btrfs_ioctl_quota_rescan(file, argp); 5647 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5648 return btrfs_ioctl_quota_rescan_status(file, argp); 5649 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5650 return btrfs_ioctl_quota_rescan_wait(file, argp); 5651 case BTRFS_IOC_DEV_REPLACE: 5652 return btrfs_ioctl_dev_replace(fs_info, argp); 5653 case BTRFS_IOC_GET_FSLABEL: 5654 return btrfs_ioctl_get_fslabel(file, argp); 5655 case BTRFS_IOC_SET_FSLABEL: 5656 return btrfs_ioctl_set_fslabel(file, argp); 5657 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5658 return btrfs_ioctl_get_supported_features(argp); 5659 case BTRFS_IOC_GET_FEATURES: 5660 return btrfs_ioctl_get_features(file, argp); 5661 case BTRFS_IOC_SET_FEATURES: 5662 return btrfs_ioctl_set_features(file, argp); 5663 case FS_IOC_FSGETXATTR: 5664 return btrfs_ioctl_fsgetxattr(file, argp); 5665 case FS_IOC_FSSETXATTR: 5666 return btrfs_ioctl_fssetxattr(file, argp); 5667 case BTRFS_IOC_GET_SUBVOL_INFO: 5668 return btrfs_ioctl_get_subvol_info(file, argp); 5669 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5670 return btrfs_ioctl_get_subvol_rootref(file, argp); 5671 case BTRFS_IOC_INO_LOOKUP_USER: 5672 return btrfs_ioctl_ino_lookup_user(file, argp); 5673 } 5674 5675 return -ENOTTY; 5676 } 5677 5678 #ifdef CONFIG_COMPAT 5679 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5680 { 5681 /* 5682 * These all access 32-bit values anyway so no further 5683 * handling is necessary. 5684 */ 5685 switch (cmd) { 5686 case FS_IOC32_GETFLAGS: 5687 cmd = FS_IOC_GETFLAGS; 5688 break; 5689 case FS_IOC32_SETFLAGS: 5690 cmd = FS_IOC_SETFLAGS; 5691 break; 5692 case FS_IOC32_GETVERSION: 5693 cmd = FS_IOC_GETVERSION; 5694 break; 5695 } 5696 5697 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5698 } 5699 #endif 5700