xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 110e6f26)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 #include "tree-log.h"
63 #include "compression.h"
64 
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67  * structures are incorrect, as the timespec structure from userspace
68  * is 4 bytes too small. We define these alternatives here to teach
69  * the kernel about the 32-bit struct packing.
70  */
71 struct btrfs_ioctl_timespec_32 {
72 	__u64 sec;
73 	__u32 nsec;
74 } __attribute__ ((__packed__));
75 
76 struct btrfs_ioctl_received_subvol_args_32 {
77 	char	uuid[BTRFS_UUID_SIZE];	/* in */
78 	__u64	stransid;		/* in */
79 	__u64	rtransid;		/* out */
80 	struct btrfs_ioctl_timespec_32 stime; /* in */
81 	struct btrfs_ioctl_timespec_32 rtime; /* out */
82 	__u64	flags;			/* in */
83 	__u64	reserved[16];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 				struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89 
90 
91 static int btrfs_clone(struct inode *src, struct inode *inode,
92 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 		       int no_time_update);
94 
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
97 {
98 	if (S_ISDIR(mode))
99 		return flags;
100 	else if (S_ISREG(mode))
101 		return flags & ~FS_DIRSYNC_FL;
102 	else
103 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
104 }
105 
106 /*
107  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108  */
109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110 {
111 	unsigned int iflags = 0;
112 
113 	if (flags & BTRFS_INODE_SYNC)
114 		iflags |= FS_SYNC_FL;
115 	if (flags & BTRFS_INODE_IMMUTABLE)
116 		iflags |= FS_IMMUTABLE_FL;
117 	if (flags & BTRFS_INODE_APPEND)
118 		iflags |= FS_APPEND_FL;
119 	if (flags & BTRFS_INODE_NODUMP)
120 		iflags |= FS_NODUMP_FL;
121 	if (flags & BTRFS_INODE_NOATIME)
122 		iflags |= FS_NOATIME_FL;
123 	if (flags & BTRFS_INODE_DIRSYNC)
124 		iflags |= FS_DIRSYNC_FL;
125 	if (flags & BTRFS_INODE_NODATACOW)
126 		iflags |= FS_NOCOW_FL;
127 
128 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
129 		iflags |= FS_COMPR_FL;
130 	else if (flags & BTRFS_INODE_NOCOMPRESS)
131 		iflags |= FS_NOCOMP_FL;
132 
133 	return iflags;
134 }
135 
136 /*
137  * Update inode->i_flags based on the btrfs internal flags.
138  */
139 void btrfs_update_iflags(struct inode *inode)
140 {
141 	struct btrfs_inode *ip = BTRFS_I(inode);
142 	unsigned int new_fl = 0;
143 
144 	if (ip->flags & BTRFS_INODE_SYNC)
145 		new_fl |= S_SYNC;
146 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 		new_fl |= S_IMMUTABLE;
148 	if (ip->flags & BTRFS_INODE_APPEND)
149 		new_fl |= S_APPEND;
150 	if (ip->flags & BTRFS_INODE_NOATIME)
151 		new_fl |= S_NOATIME;
152 	if (ip->flags & BTRFS_INODE_DIRSYNC)
153 		new_fl |= S_DIRSYNC;
154 
155 	set_mask_bits(&inode->i_flags,
156 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 		      new_fl);
158 }
159 
160 /*
161  * Inherit flags from the parent inode.
162  *
163  * Currently only the compression flags and the cow flags are inherited.
164  */
165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
166 {
167 	unsigned int flags;
168 
169 	if (!dir)
170 		return;
171 
172 	flags = BTRFS_I(dir)->flags;
173 
174 	if (flags & BTRFS_INODE_NOCOMPRESS) {
175 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
176 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
177 	} else if (flags & BTRFS_INODE_COMPRESS) {
178 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
179 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
180 	}
181 
182 	if (flags & BTRFS_INODE_NODATACOW) {
183 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
184 		if (S_ISREG(inode->i_mode))
185 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
186 	}
187 
188 	btrfs_update_iflags(inode);
189 }
190 
191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
192 {
193 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
194 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
195 
196 	if (copy_to_user(arg, &flags, sizeof(flags)))
197 		return -EFAULT;
198 	return 0;
199 }
200 
201 static int check_flags(unsigned int flags)
202 {
203 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
204 		      FS_NOATIME_FL | FS_NODUMP_FL | \
205 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
206 		      FS_NOCOMP_FL | FS_COMPR_FL |
207 		      FS_NOCOW_FL))
208 		return -EOPNOTSUPP;
209 
210 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 		return -EINVAL;
212 
213 	return 0;
214 }
215 
216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
217 {
218 	struct inode *inode = file_inode(file);
219 	struct btrfs_inode *ip = BTRFS_I(inode);
220 	struct btrfs_root *root = ip->root;
221 	struct btrfs_trans_handle *trans;
222 	unsigned int flags, oldflags;
223 	int ret;
224 	u64 ip_oldflags;
225 	unsigned int i_oldflags;
226 	umode_t mode;
227 
228 	if (!inode_owner_or_capable(inode))
229 		return -EPERM;
230 
231 	if (btrfs_root_readonly(root))
232 		return -EROFS;
233 
234 	if (copy_from_user(&flags, arg, sizeof(flags)))
235 		return -EFAULT;
236 
237 	ret = check_flags(flags);
238 	if (ret)
239 		return ret;
240 
241 	ret = mnt_want_write_file(file);
242 	if (ret)
243 		return ret;
244 
245 	inode_lock(inode);
246 
247 	ip_oldflags = ip->flags;
248 	i_oldflags = inode->i_flags;
249 	mode = inode->i_mode;
250 
251 	flags = btrfs_mask_flags(inode->i_mode, flags);
252 	oldflags = btrfs_flags_to_ioctl(ip->flags);
253 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 		if (!capable(CAP_LINUX_IMMUTABLE)) {
255 			ret = -EPERM;
256 			goto out_unlock;
257 		}
258 	}
259 
260 	if (flags & FS_SYNC_FL)
261 		ip->flags |= BTRFS_INODE_SYNC;
262 	else
263 		ip->flags &= ~BTRFS_INODE_SYNC;
264 	if (flags & FS_IMMUTABLE_FL)
265 		ip->flags |= BTRFS_INODE_IMMUTABLE;
266 	else
267 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 	if (flags & FS_APPEND_FL)
269 		ip->flags |= BTRFS_INODE_APPEND;
270 	else
271 		ip->flags &= ~BTRFS_INODE_APPEND;
272 	if (flags & FS_NODUMP_FL)
273 		ip->flags |= BTRFS_INODE_NODUMP;
274 	else
275 		ip->flags &= ~BTRFS_INODE_NODUMP;
276 	if (flags & FS_NOATIME_FL)
277 		ip->flags |= BTRFS_INODE_NOATIME;
278 	else
279 		ip->flags &= ~BTRFS_INODE_NOATIME;
280 	if (flags & FS_DIRSYNC_FL)
281 		ip->flags |= BTRFS_INODE_DIRSYNC;
282 	else
283 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 	if (flags & FS_NOCOW_FL) {
285 		if (S_ISREG(mode)) {
286 			/*
287 			 * It's safe to turn csums off here, no extents exist.
288 			 * Otherwise we want the flag to reflect the real COW
289 			 * status of the file and will not set it.
290 			 */
291 			if (inode->i_size == 0)
292 				ip->flags |= BTRFS_INODE_NODATACOW
293 					   | BTRFS_INODE_NODATASUM;
294 		} else {
295 			ip->flags |= BTRFS_INODE_NODATACOW;
296 		}
297 	} else {
298 		/*
299 		 * Revert back under same assuptions as above
300 		 */
301 		if (S_ISREG(mode)) {
302 			if (inode->i_size == 0)
303 				ip->flags &= ~(BTRFS_INODE_NODATACOW
304 				             | BTRFS_INODE_NODATASUM);
305 		} else {
306 			ip->flags &= ~BTRFS_INODE_NODATACOW;
307 		}
308 	}
309 
310 	/*
311 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 	 * flag may be changed automatically if compression code won't make
313 	 * things smaller.
314 	 */
315 	if (flags & FS_NOCOMP_FL) {
316 		ip->flags &= ~BTRFS_INODE_COMPRESS;
317 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
318 
319 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 		if (ret && ret != -ENODATA)
321 			goto out_drop;
322 	} else if (flags & FS_COMPR_FL) {
323 		const char *comp;
324 
325 		ip->flags |= BTRFS_INODE_COMPRESS;
326 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327 
328 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
329 			comp = "lzo";
330 		else
331 			comp = "zlib";
332 		ret = btrfs_set_prop(inode, "btrfs.compression",
333 				     comp, strlen(comp), 0);
334 		if (ret)
335 			goto out_drop;
336 
337 	} else {
338 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 		if (ret && ret != -ENODATA)
340 			goto out_drop;
341 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 	}
343 
344 	trans = btrfs_start_transaction(root, 1);
345 	if (IS_ERR(trans)) {
346 		ret = PTR_ERR(trans);
347 		goto out_drop;
348 	}
349 
350 	btrfs_update_iflags(inode);
351 	inode_inc_iversion(inode);
352 	inode->i_ctime = current_fs_time(inode->i_sb);
353 	ret = btrfs_update_inode(trans, root, inode);
354 
355 	btrfs_end_transaction(trans, root);
356  out_drop:
357 	if (ret) {
358 		ip->flags = ip_oldflags;
359 		inode->i_flags = i_oldflags;
360 	}
361 
362  out_unlock:
363 	inode_unlock(inode);
364 	mnt_drop_write_file(file);
365 	return ret;
366 }
367 
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369 {
370 	struct inode *inode = file_inode(file);
371 
372 	return put_user(inode->i_generation, arg);
373 }
374 
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376 {
377 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
378 	struct btrfs_device *device;
379 	struct request_queue *q;
380 	struct fstrim_range range;
381 	u64 minlen = ULLONG_MAX;
382 	u64 num_devices = 0;
383 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
384 	int ret;
385 
386 	if (!capable(CAP_SYS_ADMIN))
387 		return -EPERM;
388 
389 	rcu_read_lock();
390 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
391 				dev_list) {
392 		if (!device->bdev)
393 			continue;
394 		q = bdev_get_queue(device->bdev);
395 		if (blk_queue_discard(q)) {
396 			num_devices++;
397 			minlen = min((u64)q->limits.discard_granularity,
398 				     minlen);
399 		}
400 	}
401 	rcu_read_unlock();
402 
403 	if (!num_devices)
404 		return -EOPNOTSUPP;
405 	if (copy_from_user(&range, arg, sizeof(range)))
406 		return -EFAULT;
407 	if (range.start > total_bytes ||
408 	    range.len < fs_info->sb->s_blocksize)
409 		return -EINVAL;
410 
411 	range.len = min(range.len, total_bytes - range.start);
412 	range.minlen = max(range.minlen, minlen);
413 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
414 	if (ret < 0)
415 		return ret;
416 
417 	if (copy_to_user(arg, &range, sizeof(range)))
418 		return -EFAULT;
419 
420 	return 0;
421 }
422 
423 int btrfs_is_empty_uuid(u8 *uuid)
424 {
425 	int i;
426 
427 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
428 		if (uuid[i])
429 			return 0;
430 	}
431 	return 1;
432 }
433 
434 static noinline int create_subvol(struct inode *dir,
435 				  struct dentry *dentry,
436 				  char *name, int namelen,
437 				  u64 *async_transid,
438 				  struct btrfs_qgroup_inherit *inherit)
439 {
440 	struct btrfs_trans_handle *trans;
441 	struct btrfs_key key;
442 	struct btrfs_root_item root_item;
443 	struct btrfs_inode_item *inode_item;
444 	struct extent_buffer *leaf;
445 	struct btrfs_root *root = BTRFS_I(dir)->root;
446 	struct btrfs_root *new_root;
447 	struct btrfs_block_rsv block_rsv;
448 	struct timespec cur_time = current_fs_time(dir->i_sb);
449 	struct inode *inode;
450 	int ret;
451 	int err;
452 	u64 objectid;
453 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
454 	u64 index = 0;
455 	u64 qgroup_reserved;
456 	uuid_le new_uuid;
457 
458 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
459 	if (ret)
460 		return ret;
461 
462 	/*
463 	 * Don't create subvolume whose level is not zero. Or qgroup will be
464 	 * screwed up since it assume subvolme qgroup's level to be 0.
465 	 */
466 	if (btrfs_qgroup_level(objectid))
467 		return -ENOSPC;
468 
469 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
470 	/*
471 	 * The same as the snapshot creation, please see the comment
472 	 * of create_snapshot().
473 	 */
474 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
475 					       8, &qgroup_reserved, false);
476 	if (ret)
477 		return ret;
478 
479 	trans = btrfs_start_transaction(root, 0);
480 	if (IS_ERR(trans)) {
481 		ret = PTR_ERR(trans);
482 		btrfs_subvolume_release_metadata(root, &block_rsv,
483 						 qgroup_reserved);
484 		return ret;
485 	}
486 	trans->block_rsv = &block_rsv;
487 	trans->bytes_reserved = block_rsv.size;
488 
489 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
490 	if (ret)
491 		goto fail;
492 
493 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
494 	if (IS_ERR(leaf)) {
495 		ret = PTR_ERR(leaf);
496 		goto fail;
497 	}
498 
499 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
500 	btrfs_set_header_bytenr(leaf, leaf->start);
501 	btrfs_set_header_generation(leaf, trans->transid);
502 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
503 	btrfs_set_header_owner(leaf, objectid);
504 
505 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
506 			    BTRFS_FSID_SIZE);
507 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
508 			    btrfs_header_chunk_tree_uuid(leaf),
509 			    BTRFS_UUID_SIZE);
510 	btrfs_mark_buffer_dirty(leaf);
511 
512 	memset(&root_item, 0, sizeof(root_item));
513 
514 	inode_item = &root_item.inode;
515 	btrfs_set_stack_inode_generation(inode_item, 1);
516 	btrfs_set_stack_inode_size(inode_item, 3);
517 	btrfs_set_stack_inode_nlink(inode_item, 1);
518 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
519 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
520 
521 	btrfs_set_root_flags(&root_item, 0);
522 	btrfs_set_root_limit(&root_item, 0);
523 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
524 
525 	btrfs_set_root_bytenr(&root_item, leaf->start);
526 	btrfs_set_root_generation(&root_item, trans->transid);
527 	btrfs_set_root_level(&root_item, 0);
528 	btrfs_set_root_refs(&root_item, 1);
529 	btrfs_set_root_used(&root_item, leaf->len);
530 	btrfs_set_root_last_snapshot(&root_item, 0);
531 
532 	btrfs_set_root_generation_v2(&root_item,
533 			btrfs_root_generation(&root_item));
534 	uuid_le_gen(&new_uuid);
535 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
536 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
537 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
538 	root_item.ctime = root_item.otime;
539 	btrfs_set_root_ctransid(&root_item, trans->transid);
540 	btrfs_set_root_otransid(&root_item, trans->transid);
541 
542 	btrfs_tree_unlock(leaf);
543 	free_extent_buffer(leaf);
544 	leaf = NULL;
545 
546 	btrfs_set_root_dirid(&root_item, new_dirid);
547 
548 	key.objectid = objectid;
549 	key.offset = 0;
550 	key.type = BTRFS_ROOT_ITEM_KEY;
551 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
552 				&root_item);
553 	if (ret)
554 		goto fail;
555 
556 	key.offset = (u64)-1;
557 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
558 	if (IS_ERR(new_root)) {
559 		ret = PTR_ERR(new_root);
560 		btrfs_abort_transaction(trans, root, ret);
561 		goto fail;
562 	}
563 
564 	btrfs_record_root_in_trans(trans, new_root);
565 
566 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
567 	if (ret) {
568 		/* We potentially lose an unused inode item here */
569 		btrfs_abort_transaction(trans, root, ret);
570 		goto fail;
571 	}
572 
573 	mutex_lock(&new_root->objectid_mutex);
574 	new_root->highest_objectid = new_dirid;
575 	mutex_unlock(&new_root->objectid_mutex);
576 
577 	/*
578 	 * insert the directory item
579 	 */
580 	ret = btrfs_set_inode_index(dir, &index);
581 	if (ret) {
582 		btrfs_abort_transaction(trans, root, ret);
583 		goto fail;
584 	}
585 
586 	ret = btrfs_insert_dir_item(trans, root,
587 				    name, namelen, dir, &key,
588 				    BTRFS_FT_DIR, index);
589 	if (ret) {
590 		btrfs_abort_transaction(trans, root, ret);
591 		goto fail;
592 	}
593 
594 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
595 	ret = btrfs_update_inode(trans, root, dir);
596 	BUG_ON(ret);
597 
598 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
599 				 objectid, root->root_key.objectid,
600 				 btrfs_ino(dir), index, name, namelen);
601 	BUG_ON(ret);
602 
603 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
604 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
605 				  objectid);
606 	if (ret)
607 		btrfs_abort_transaction(trans, root, ret);
608 
609 fail:
610 	trans->block_rsv = NULL;
611 	trans->bytes_reserved = 0;
612 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
613 
614 	if (async_transid) {
615 		*async_transid = trans->transid;
616 		err = btrfs_commit_transaction_async(trans, root, 1);
617 		if (err)
618 			err = btrfs_commit_transaction(trans, root);
619 	} else {
620 		err = btrfs_commit_transaction(trans, root);
621 	}
622 	if (err && !ret)
623 		ret = err;
624 
625 	if (!ret) {
626 		inode = btrfs_lookup_dentry(dir, dentry);
627 		if (IS_ERR(inode))
628 			return PTR_ERR(inode);
629 		d_instantiate(dentry, inode);
630 	}
631 	return ret;
632 }
633 
634 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
635 {
636 	s64 writers;
637 	DEFINE_WAIT(wait);
638 
639 	do {
640 		prepare_to_wait(&root->subv_writers->wait, &wait,
641 				TASK_UNINTERRUPTIBLE);
642 
643 		writers = percpu_counter_sum(&root->subv_writers->counter);
644 		if (writers)
645 			schedule();
646 
647 		finish_wait(&root->subv_writers->wait, &wait);
648 	} while (writers);
649 }
650 
651 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
652 			   struct dentry *dentry, char *name, int namelen,
653 			   u64 *async_transid, bool readonly,
654 			   struct btrfs_qgroup_inherit *inherit)
655 {
656 	struct inode *inode;
657 	struct btrfs_pending_snapshot *pending_snapshot;
658 	struct btrfs_trans_handle *trans;
659 	int ret;
660 
661 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
662 		return -EINVAL;
663 
664 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
665 	if (!pending_snapshot)
666 		return -ENOMEM;
667 
668 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
669 			GFP_NOFS);
670 	pending_snapshot->path = btrfs_alloc_path();
671 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
672 		ret = -ENOMEM;
673 		goto free_pending;
674 	}
675 
676 	atomic_inc(&root->will_be_snapshoted);
677 	smp_mb__after_atomic();
678 	btrfs_wait_for_no_snapshoting_writes(root);
679 
680 	ret = btrfs_start_delalloc_inodes(root, 0);
681 	if (ret)
682 		goto dec_and_free;
683 
684 	btrfs_wait_ordered_extents(root, -1);
685 
686 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
687 			     BTRFS_BLOCK_RSV_TEMP);
688 	/*
689 	 * 1 - parent dir inode
690 	 * 2 - dir entries
691 	 * 1 - root item
692 	 * 2 - root ref/backref
693 	 * 1 - root of snapshot
694 	 * 1 - UUID item
695 	 */
696 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
697 					&pending_snapshot->block_rsv, 8,
698 					&pending_snapshot->qgroup_reserved,
699 					false);
700 	if (ret)
701 		goto dec_and_free;
702 
703 	pending_snapshot->dentry = dentry;
704 	pending_snapshot->root = root;
705 	pending_snapshot->readonly = readonly;
706 	pending_snapshot->dir = dir;
707 	pending_snapshot->inherit = inherit;
708 
709 	trans = btrfs_start_transaction(root, 0);
710 	if (IS_ERR(trans)) {
711 		ret = PTR_ERR(trans);
712 		goto fail;
713 	}
714 
715 	spin_lock(&root->fs_info->trans_lock);
716 	list_add(&pending_snapshot->list,
717 		 &trans->transaction->pending_snapshots);
718 	spin_unlock(&root->fs_info->trans_lock);
719 	if (async_transid) {
720 		*async_transid = trans->transid;
721 		ret = btrfs_commit_transaction_async(trans,
722 				     root->fs_info->extent_root, 1);
723 		if (ret)
724 			ret = btrfs_commit_transaction(trans, root);
725 	} else {
726 		ret = btrfs_commit_transaction(trans,
727 					       root->fs_info->extent_root);
728 	}
729 	if (ret)
730 		goto fail;
731 
732 	ret = pending_snapshot->error;
733 	if (ret)
734 		goto fail;
735 
736 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
737 	if (ret)
738 		goto fail;
739 
740 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
741 	if (IS_ERR(inode)) {
742 		ret = PTR_ERR(inode);
743 		goto fail;
744 	}
745 
746 	d_instantiate(dentry, inode);
747 	ret = 0;
748 fail:
749 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
750 					 &pending_snapshot->block_rsv,
751 					 pending_snapshot->qgroup_reserved);
752 dec_and_free:
753 	if (atomic_dec_and_test(&root->will_be_snapshoted))
754 		wake_up_atomic_t(&root->will_be_snapshoted);
755 free_pending:
756 	kfree(pending_snapshot->root_item);
757 	btrfs_free_path(pending_snapshot->path);
758 	kfree(pending_snapshot);
759 
760 	return ret;
761 }
762 
763 /*  copy of may_delete in fs/namei.c()
764  *	Check whether we can remove a link victim from directory dir, check
765  *  whether the type of victim is right.
766  *  1. We can't do it if dir is read-only (done in permission())
767  *  2. We should have write and exec permissions on dir
768  *  3. We can't remove anything from append-only dir
769  *  4. We can't do anything with immutable dir (done in permission())
770  *  5. If the sticky bit on dir is set we should either
771  *	a. be owner of dir, or
772  *	b. be owner of victim, or
773  *	c. have CAP_FOWNER capability
774  *  6. If the victim is append-only or immutable we can't do antyhing with
775  *     links pointing to it.
776  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
777  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
778  *  9. We can't remove a root or mountpoint.
779  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
780  *     nfs_async_unlink().
781  */
782 
783 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
784 {
785 	int error;
786 
787 	if (d_really_is_negative(victim))
788 		return -ENOENT;
789 
790 	BUG_ON(d_inode(victim->d_parent) != dir);
791 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
792 
793 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
794 	if (error)
795 		return error;
796 	if (IS_APPEND(dir))
797 		return -EPERM;
798 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
799 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
800 		return -EPERM;
801 	if (isdir) {
802 		if (!d_is_dir(victim))
803 			return -ENOTDIR;
804 		if (IS_ROOT(victim))
805 			return -EBUSY;
806 	} else if (d_is_dir(victim))
807 		return -EISDIR;
808 	if (IS_DEADDIR(dir))
809 		return -ENOENT;
810 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
811 		return -EBUSY;
812 	return 0;
813 }
814 
815 /* copy of may_create in fs/namei.c() */
816 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
817 {
818 	if (d_really_is_positive(child))
819 		return -EEXIST;
820 	if (IS_DEADDIR(dir))
821 		return -ENOENT;
822 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
823 }
824 
825 /*
826  * Create a new subvolume below @parent.  This is largely modeled after
827  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
828  * inside this filesystem so it's quite a bit simpler.
829  */
830 static noinline int btrfs_mksubvol(struct path *parent,
831 				   char *name, int namelen,
832 				   struct btrfs_root *snap_src,
833 				   u64 *async_transid, bool readonly,
834 				   struct btrfs_qgroup_inherit *inherit)
835 {
836 	struct inode *dir  = d_inode(parent->dentry);
837 	struct dentry *dentry;
838 	int error;
839 
840 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
841 	if (error == -EINTR)
842 		return error;
843 
844 	dentry = lookup_one_len(name, parent->dentry, namelen);
845 	error = PTR_ERR(dentry);
846 	if (IS_ERR(dentry))
847 		goto out_unlock;
848 
849 	error = btrfs_may_create(dir, dentry);
850 	if (error)
851 		goto out_dput;
852 
853 	/*
854 	 * even if this name doesn't exist, we may get hash collisions.
855 	 * check for them now when we can safely fail
856 	 */
857 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
858 					       dir->i_ino, name,
859 					       namelen);
860 	if (error)
861 		goto out_dput;
862 
863 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
864 
865 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
866 		goto out_up_read;
867 
868 	if (snap_src) {
869 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
870 					async_transid, readonly, inherit);
871 	} else {
872 		error = create_subvol(dir, dentry, name, namelen,
873 				      async_transid, inherit);
874 	}
875 	if (!error)
876 		fsnotify_mkdir(dir, dentry);
877 out_up_read:
878 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
879 out_dput:
880 	dput(dentry);
881 out_unlock:
882 	inode_unlock(dir);
883 	return error;
884 }
885 
886 /*
887  * When we're defragging a range, we don't want to kick it off again
888  * if it is really just waiting for delalloc to send it down.
889  * If we find a nice big extent or delalloc range for the bytes in the
890  * file you want to defrag, we return 0 to let you know to skip this
891  * part of the file
892  */
893 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
894 {
895 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
896 	struct extent_map *em = NULL;
897 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 	u64 end;
899 
900 	read_lock(&em_tree->lock);
901 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
902 	read_unlock(&em_tree->lock);
903 
904 	if (em) {
905 		end = extent_map_end(em);
906 		free_extent_map(em);
907 		if (end - offset > thresh)
908 			return 0;
909 	}
910 	/* if we already have a nice delalloc here, just stop */
911 	thresh /= 2;
912 	end = count_range_bits(io_tree, &offset, offset + thresh,
913 			       thresh, EXTENT_DELALLOC, 1);
914 	if (end >= thresh)
915 		return 0;
916 	return 1;
917 }
918 
919 /*
920  * helper function to walk through a file and find extents
921  * newer than a specific transid, and smaller than thresh.
922  *
923  * This is used by the defragging code to find new and small
924  * extents
925  */
926 static int find_new_extents(struct btrfs_root *root,
927 			    struct inode *inode, u64 newer_than,
928 			    u64 *off, u32 thresh)
929 {
930 	struct btrfs_path *path;
931 	struct btrfs_key min_key;
932 	struct extent_buffer *leaf;
933 	struct btrfs_file_extent_item *extent;
934 	int type;
935 	int ret;
936 	u64 ino = btrfs_ino(inode);
937 
938 	path = btrfs_alloc_path();
939 	if (!path)
940 		return -ENOMEM;
941 
942 	min_key.objectid = ino;
943 	min_key.type = BTRFS_EXTENT_DATA_KEY;
944 	min_key.offset = *off;
945 
946 	while (1) {
947 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
948 		if (ret != 0)
949 			goto none;
950 process_slot:
951 		if (min_key.objectid != ino)
952 			goto none;
953 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
954 			goto none;
955 
956 		leaf = path->nodes[0];
957 		extent = btrfs_item_ptr(leaf, path->slots[0],
958 					struct btrfs_file_extent_item);
959 
960 		type = btrfs_file_extent_type(leaf, extent);
961 		if (type == BTRFS_FILE_EXTENT_REG &&
962 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
963 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
964 			*off = min_key.offset;
965 			btrfs_free_path(path);
966 			return 0;
967 		}
968 
969 		path->slots[0]++;
970 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
971 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
972 			goto process_slot;
973 		}
974 
975 		if (min_key.offset == (u64)-1)
976 			goto none;
977 
978 		min_key.offset++;
979 		btrfs_release_path(path);
980 	}
981 none:
982 	btrfs_free_path(path);
983 	return -ENOENT;
984 }
985 
986 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
987 {
988 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
989 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
990 	struct extent_map *em;
991 	u64 len = PAGE_SIZE;
992 
993 	/*
994 	 * hopefully we have this extent in the tree already, try without
995 	 * the full extent lock
996 	 */
997 	read_lock(&em_tree->lock);
998 	em = lookup_extent_mapping(em_tree, start, len);
999 	read_unlock(&em_tree->lock);
1000 
1001 	if (!em) {
1002 		struct extent_state *cached = NULL;
1003 		u64 end = start + len - 1;
1004 
1005 		/* get the big lock and read metadata off disk */
1006 		lock_extent_bits(io_tree, start, end, &cached);
1007 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1008 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1009 
1010 		if (IS_ERR(em))
1011 			return NULL;
1012 	}
1013 
1014 	return em;
1015 }
1016 
1017 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1018 {
1019 	struct extent_map *next;
1020 	bool ret = true;
1021 
1022 	/* this is the last extent */
1023 	if (em->start + em->len >= i_size_read(inode))
1024 		return false;
1025 
1026 	next = defrag_lookup_extent(inode, em->start + em->len);
1027 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1028 		ret = false;
1029 	else if ((em->block_start + em->block_len == next->block_start) &&
1030 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1031 		ret = false;
1032 
1033 	free_extent_map(next);
1034 	return ret;
1035 }
1036 
1037 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1038 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1039 			       int compress)
1040 {
1041 	struct extent_map *em;
1042 	int ret = 1;
1043 	bool next_mergeable = true;
1044 	bool prev_mergeable = true;
1045 
1046 	/*
1047 	 * make sure that once we start defragging an extent, we keep on
1048 	 * defragging it
1049 	 */
1050 	if (start < *defrag_end)
1051 		return 1;
1052 
1053 	*skip = 0;
1054 
1055 	em = defrag_lookup_extent(inode, start);
1056 	if (!em)
1057 		return 0;
1058 
1059 	/* this will cover holes, and inline extents */
1060 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1061 		ret = 0;
1062 		goto out;
1063 	}
1064 
1065 	if (!*defrag_end)
1066 		prev_mergeable = false;
1067 
1068 	next_mergeable = defrag_check_next_extent(inode, em);
1069 	/*
1070 	 * we hit a real extent, if it is big or the next extent is not a
1071 	 * real extent, don't bother defragging it
1072 	 */
1073 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1074 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1075 		ret = 0;
1076 out:
1077 	/*
1078 	 * last_len ends up being a counter of how many bytes we've defragged.
1079 	 * every time we choose not to defrag an extent, we reset *last_len
1080 	 * so that the next tiny extent will force a defrag.
1081 	 *
1082 	 * The end result of this is that tiny extents before a single big
1083 	 * extent will force at least part of that big extent to be defragged.
1084 	 */
1085 	if (ret) {
1086 		*defrag_end = extent_map_end(em);
1087 	} else {
1088 		*last_len = 0;
1089 		*skip = extent_map_end(em);
1090 		*defrag_end = 0;
1091 	}
1092 
1093 	free_extent_map(em);
1094 	return ret;
1095 }
1096 
1097 /*
1098  * it doesn't do much good to defrag one or two pages
1099  * at a time.  This pulls in a nice chunk of pages
1100  * to COW and defrag.
1101  *
1102  * It also makes sure the delalloc code has enough
1103  * dirty data to avoid making new small extents as part
1104  * of the defrag
1105  *
1106  * It's a good idea to start RA on this range
1107  * before calling this.
1108  */
1109 static int cluster_pages_for_defrag(struct inode *inode,
1110 				    struct page **pages,
1111 				    unsigned long start_index,
1112 				    unsigned long num_pages)
1113 {
1114 	unsigned long file_end;
1115 	u64 isize = i_size_read(inode);
1116 	u64 page_start;
1117 	u64 page_end;
1118 	u64 page_cnt;
1119 	int ret;
1120 	int i;
1121 	int i_done;
1122 	struct btrfs_ordered_extent *ordered;
1123 	struct extent_state *cached_state = NULL;
1124 	struct extent_io_tree *tree;
1125 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1126 
1127 	file_end = (isize - 1) >> PAGE_SHIFT;
1128 	if (!isize || start_index > file_end)
1129 		return 0;
1130 
1131 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1132 
1133 	ret = btrfs_delalloc_reserve_space(inode,
1134 			start_index << PAGE_SHIFT,
1135 			page_cnt << PAGE_SHIFT);
1136 	if (ret)
1137 		return ret;
1138 	i_done = 0;
1139 	tree = &BTRFS_I(inode)->io_tree;
1140 
1141 	/* step one, lock all the pages */
1142 	for (i = 0; i < page_cnt; i++) {
1143 		struct page *page;
1144 again:
1145 		page = find_or_create_page(inode->i_mapping,
1146 					   start_index + i, mask);
1147 		if (!page)
1148 			break;
1149 
1150 		page_start = page_offset(page);
1151 		page_end = page_start + PAGE_SIZE - 1;
1152 		while (1) {
1153 			lock_extent_bits(tree, page_start, page_end,
1154 					 &cached_state);
1155 			ordered = btrfs_lookup_ordered_extent(inode,
1156 							      page_start);
1157 			unlock_extent_cached(tree, page_start, page_end,
1158 					     &cached_state, GFP_NOFS);
1159 			if (!ordered)
1160 				break;
1161 
1162 			unlock_page(page);
1163 			btrfs_start_ordered_extent(inode, ordered, 1);
1164 			btrfs_put_ordered_extent(ordered);
1165 			lock_page(page);
1166 			/*
1167 			 * we unlocked the page above, so we need check if
1168 			 * it was released or not.
1169 			 */
1170 			if (page->mapping != inode->i_mapping) {
1171 				unlock_page(page);
1172 				put_page(page);
1173 				goto again;
1174 			}
1175 		}
1176 
1177 		if (!PageUptodate(page)) {
1178 			btrfs_readpage(NULL, page);
1179 			lock_page(page);
1180 			if (!PageUptodate(page)) {
1181 				unlock_page(page);
1182 				put_page(page);
1183 				ret = -EIO;
1184 				break;
1185 			}
1186 		}
1187 
1188 		if (page->mapping != inode->i_mapping) {
1189 			unlock_page(page);
1190 			put_page(page);
1191 			goto again;
1192 		}
1193 
1194 		pages[i] = page;
1195 		i_done++;
1196 	}
1197 	if (!i_done || ret)
1198 		goto out;
1199 
1200 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1201 		goto out;
1202 
1203 	/*
1204 	 * so now we have a nice long stream of locked
1205 	 * and up to date pages, lets wait on them
1206 	 */
1207 	for (i = 0; i < i_done; i++)
1208 		wait_on_page_writeback(pages[i]);
1209 
1210 	page_start = page_offset(pages[0]);
1211 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1212 
1213 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1214 			 page_start, page_end - 1, &cached_state);
1215 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1216 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1217 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1218 			  &cached_state, GFP_NOFS);
1219 
1220 	if (i_done != page_cnt) {
1221 		spin_lock(&BTRFS_I(inode)->lock);
1222 		BTRFS_I(inode)->outstanding_extents++;
1223 		spin_unlock(&BTRFS_I(inode)->lock);
1224 		btrfs_delalloc_release_space(inode,
1225 				start_index << PAGE_SHIFT,
1226 				(page_cnt - i_done) << PAGE_SHIFT);
1227 	}
1228 
1229 
1230 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1231 			  &cached_state, GFP_NOFS);
1232 
1233 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1234 			     page_start, page_end - 1, &cached_state,
1235 			     GFP_NOFS);
1236 
1237 	for (i = 0; i < i_done; i++) {
1238 		clear_page_dirty_for_io(pages[i]);
1239 		ClearPageChecked(pages[i]);
1240 		set_page_extent_mapped(pages[i]);
1241 		set_page_dirty(pages[i]);
1242 		unlock_page(pages[i]);
1243 		put_page(pages[i]);
1244 	}
1245 	return i_done;
1246 out:
1247 	for (i = 0; i < i_done; i++) {
1248 		unlock_page(pages[i]);
1249 		put_page(pages[i]);
1250 	}
1251 	btrfs_delalloc_release_space(inode,
1252 			start_index << PAGE_SHIFT,
1253 			page_cnt << PAGE_SHIFT);
1254 	return ret;
1255 
1256 }
1257 
1258 int btrfs_defrag_file(struct inode *inode, struct file *file,
1259 		      struct btrfs_ioctl_defrag_range_args *range,
1260 		      u64 newer_than, unsigned long max_to_defrag)
1261 {
1262 	struct btrfs_root *root = BTRFS_I(inode)->root;
1263 	struct file_ra_state *ra = NULL;
1264 	unsigned long last_index;
1265 	u64 isize = i_size_read(inode);
1266 	u64 last_len = 0;
1267 	u64 skip = 0;
1268 	u64 defrag_end = 0;
1269 	u64 newer_off = range->start;
1270 	unsigned long i;
1271 	unsigned long ra_index = 0;
1272 	int ret;
1273 	int defrag_count = 0;
1274 	int compress_type = BTRFS_COMPRESS_ZLIB;
1275 	u32 extent_thresh = range->extent_thresh;
1276 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1277 	unsigned long cluster = max_cluster;
1278 	u64 new_align = ~((u64)SZ_128K - 1);
1279 	struct page **pages = NULL;
1280 
1281 	if (isize == 0)
1282 		return 0;
1283 
1284 	if (range->start >= isize)
1285 		return -EINVAL;
1286 
1287 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1288 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1289 			return -EINVAL;
1290 		if (range->compress_type)
1291 			compress_type = range->compress_type;
1292 	}
1293 
1294 	if (extent_thresh == 0)
1295 		extent_thresh = SZ_256K;
1296 
1297 	/*
1298 	 * if we were not given a file, allocate a readahead
1299 	 * context
1300 	 */
1301 	if (!file) {
1302 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1303 		if (!ra)
1304 			return -ENOMEM;
1305 		file_ra_state_init(ra, inode->i_mapping);
1306 	} else {
1307 		ra = &file->f_ra;
1308 	}
1309 
1310 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1311 			GFP_NOFS);
1312 	if (!pages) {
1313 		ret = -ENOMEM;
1314 		goto out_ra;
1315 	}
1316 
1317 	/* find the last page to defrag */
1318 	if (range->start + range->len > range->start) {
1319 		last_index = min_t(u64, isize - 1,
1320 			 range->start + range->len - 1) >> PAGE_SHIFT;
1321 	} else {
1322 		last_index = (isize - 1) >> PAGE_SHIFT;
1323 	}
1324 
1325 	if (newer_than) {
1326 		ret = find_new_extents(root, inode, newer_than,
1327 				       &newer_off, SZ_64K);
1328 		if (!ret) {
1329 			range->start = newer_off;
1330 			/*
1331 			 * we always align our defrag to help keep
1332 			 * the extents in the file evenly spaced
1333 			 */
1334 			i = (newer_off & new_align) >> PAGE_SHIFT;
1335 		} else
1336 			goto out_ra;
1337 	} else {
1338 		i = range->start >> PAGE_SHIFT;
1339 	}
1340 	if (!max_to_defrag)
1341 		max_to_defrag = last_index - i + 1;
1342 
1343 	/*
1344 	 * make writeback starts from i, so the defrag range can be
1345 	 * written sequentially.
1346 	 */
1347 	if (i < inode->i_mapping->writeback_index)
1348 		inode->i_mapping->writeback_index = i;
1349 
1350 	while (i <= last_index && defrag_count < max_to_defrag &&
1351 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1352 		/*
1353 		 * make sure we stop running if someone unmounts
1354 		 * the FS
1355 		 */
1356 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1357 			break;
1358 
1359 		if (btrfs_defrag_cancelled(root->fs_info)) {
1360 			btrfs_debug(root->fs_info, "defrag_file cancelled");
1361 			ret = -EAGAIN;
1362 			break;
1363 		}
1364 
1365 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1366 					 extent_thresh, &last_len, &skip,
1367 					 &defrag_end, range->flags &
1368 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1369 			unsigned long next;
1370 			/*
1371 			 * the should_defrag function tells us how much to skip
1372 			 * bump our counter by the suggested amount
1373 			 */
1374 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1375 			i = max(i + 1, next);
1376 			continue;
1377 		}
1378 
1379 		if (!newer_than) {
1380 			cluster = (PAGE_ALIGN(defrag_end) >>
1381 				   PAGE_SHIFT) - i;
1382 			cluster = min(cluster, max_cluster);
1383 		} else {
1384 			cluster = max_cluster;
1385 		}
1386 
1387 		if (i + cluster > ra_index) {
1388 			ra_index = max(i, ra_index);
1389 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1390 				       cluster);
1391 			ra_index += cluster;
1392 		}
1393 
1394 		inode_lock(inode);
1395 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1396 			BTRFS_I(inode)->force_compress = compress_type;
1397 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1398 		if (ret < 0) {
1399 			inode_unlock(inode);
1400 			goto out_ra;
1401 		}
1402 
1403 		defrag_count += ret;
1404 		balance_dirty_pages_ratelimited(inode->i_mapping);
1405 		inode_unlock(inode);
1406 
1407 		if (newer_than) {
1408 			if (newer_off == (u64)-1)
1409 				break;
1410 
1411 			if (ret > 0)
1412 				i += ret;
1413 
1414 			newer_off = max(newer_off + 1,
1415 					(u64)i << PAGE_SHIFT);
1416 
1417 			ret = find_new_extents(root, inode, newer_than,
1418 					       &newer_off, SZ_64K);
1419 			if (!ret) {
1420 				range->start = newer_off;
1421 				i = (newer_off & new_align) >> PAGE_SHIFT;
1422 			} else {
1423 				break;
1424 			}
1425 		} else {
1426 			if (ret > 0) {
1427 				i += ret;
1428 				last_len += ret << PAGE_SHIFT;
1429 			} else {
1430 				i++;
1431 				last_len = 0;
1432 			}
1433 		}
1434 	}
1435 
1436 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1437 		filemap_flush(inode->i_mapping);
1438 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1439 			     &BTRFS_I(inode)->runtime_flags))
1440 			filemap_flush(inode->i_mapping);
1441 	}
1442 
1443 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1444 		/* the filemap_flush will queue IO into the worker threads, but
1445 		 * we have to make sure the IO is actually started and that
1446 		 * ordered extents get created before we return
1447 		 */
1448 		atomic_inc(&root->fs_info->async_submit_draining);
1449 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1450 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1451 			wait_event(root->fs_info->async_submit_wait,
1452 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1453 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1454 		}
1455 		atomic_dec(&root->fs_info->async_submit_draining);
1456 	}
1457 
1458 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1459 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1460 	}
1461 
1462 	ret = defrag_count;
1463 
1464 out_ra:
1465 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1466 		inode_lock(inode);
1467 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1468 		inode_unlock(inode);
1469 	}
1470 	if (!file)
1471 		kfree(ra);
1472 	kfree(pages);
1473 	return ret;
1474 }
1475 
1476 static noinline int btrfs_ioctl_resize(struct file *file,
1477 					void __user *arg)
1478 {
1479 	u64 new_size;
1480 	u64 old_size;
1481 	u64 devid = 1;
1482 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1483 	struct btrfs_ioctl_vol_args *vol_args;
1484 	struct btrfs_trans_handle *trans;
1485 	struct btrfs_device *device = NULL;
1486 	char *sizestr;
1487 	char *retptr;
1488 	char *devstr = NULL;
1489 	int ret = 0;
1490 	int mod = 0;
1491 
1492 	if (!capable(CAP_SYS_ADMIN))
1493 		return -EPERM;
1494 
1495 	ret = mnt_want_write_file(file);
1496 	if (ret)
1497 		return ret;
1498 
1499 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1500 			1)) {
1501 		mnt_drop_write_file(file);
1502 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1503 	}
1504 
1505 	mutex_lock(&root->fs_info->volume_mutex);
1506 	vol_args = memdup_user(arg, sizeof(*vol_args));
1507 	if (IS_ERR(vol_args)) {
1508 		ret = PTR_ERR(vol_args);
1509 		goto out;
1510 	}
1511 
1512 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1513 
1514 	sizestr = vol_args->name;
1515 	devstr = strchr(sizestr, ':');
1516 	if (devstr) {
1517 		sizestr = devstr + 1;
1518 		*devstr = '\0';
1519 		devstr = vol_args->name;
1520 		ret = kstrtoull(devstr, 10, &devid);
1521 		if (ret)
1522 			goto out_free;
1523 		if (!devid) {
1524 			ret = -EINVAL;
1525 			goto out_free;
1526 		}
1527 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1528 	}
1529 
1530 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1531 	if (!device) {
1532 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1533 		       devid);
1534 		ret = -ENODEV;
1535 		goto out_free;
1536 	}
1537 
1538 	if (!device->writeable) {
1539 		btrfs_info(root->fs_info,
1540 			   "resizer unable to apply on readonly device %llu",
1541 		       devid);
1542 		ret = -EPERM;
1543 		goto out_free;
1544 	}
1545 
1546 	if (!strcmp(sizestr, "max"))
1547 		new_size = device->bdev->bd_inode->i_size;
1548 	else {
1549 		if (sizestr[0] == '-') {
1550 			mod = -1;
1551 			sizestr++;
1552 		} else if (sizestr[0] == '+') {
1553 			mod = 1;
1554 			sizestr++;
1555 		}
1556 		new_size = memparse(sizestr, &retptr);
1557 		if (*retptr != '\0' || new_size == 0) {
1558 			ret = -EINVAL;
1559 			goto out_free;
1560 		}
1561 	}
1562 
1563 	if (device->is_tgtdev_for_dev_replace) {
1564 		ret = -EPERM;
1565 		goto out_free;
1566 	}
1567 
1568 	old_size = btrfs_device_get_total_bytes(device);
1569 
1570 	if (mod < 0) {
1571 		if (new_size > old_size) {
1572 			ret = -EINVAL;
1573 			goto out_free;
1574 		}
1575 		new_size = old_size - new_size;
1576 	} else if (mod > 0) {
1577 		if (new_size > ULLONG_MAX - old_size) {
1578 			ret = -ERANGE;
1579 			goto out_free;
1580 		}
1581 		new_size = old_size + new_size;
1582 	}
1583 
1584 	if (new_size < SZ_256M) {
1585 		ret = -EINVAL;
1586 		goto out_free;
1587 	}
1588 	if (new_size > device->bdev->bd_inode->i_size) {
1589 		ret = -EFBIG;
1590 		goto out_free;
1591 	}
1592 
1593 	new_size = div_u64(new_size, root->sectorsize);
1594 	new_size *= root->sectorsize;
1595 
1596 	btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1597 		      rcu_str_deref(device->name), new_size);
1598 
1599 	if (new_size > old_size) {
1600 		trans = btrfs_start_transaction(root, 0);
1601 		if (IS_ERR(trans)) {
1602 			ret = PTR_ERR(trans);
1603 			goto out_free;
1604 		}
1605 		ret = btrfs_grow_device(trans, device, new_size);
1606 		btrfs_commit_transaction(trans, root);
1607 	} else if (new_size < old_size) {
1608 		ret = btrfs_shrink_device(device, new_size);
1609 	} /* equal, nothing need to do */
1610 
1611 out_free:
1612 	kfree(vol_args);
1613 out:
1614 	mutex_unlock(&root->fs_info->volume_mutex);
1615 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1616 	mnt_drop_write_file(file);
1617 	return ret;
1618 }
1619 
1620 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1621 				char *name, unsigned long fd, int subvol,
1622 				u64 *transid, bool readonly,
1623 				struct btrfs_qgroup_inherit *inherit)
1624 {
1625 	int namelen;
1626 	int ret = 0;
1627 
1628 	ret = mnt_want_write_file(file);
1629 	if (ret)
1630 		goto out;
1631 
1632 	namelen = strlen(name);
1633 	if (strchr(name, '/')) {
1634 		ret = -EINVAL;
1635 		goto out_drop_write;
1636 	}
1637 
1638 	if (name[0] == '.' &&
1639 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1640 		ret = -EEXIST;
1641 		goto out_drop_write;
1642 	}
1643 
1644 	if (subvol) {
1645 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1646 				     NULL, transid, readonly, inherit);
1647 	} else {
1648 		struct fd src = fdget(fd);
1649 		struct inode *src_inode;
1650 		if (!src.file) {
1651 			ret = -EINVAL;
1652 			goto out_drop_write;
1653 		}
1654 
1655 		src_inode = file_inode(src.file);
1656 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1657 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1658 				   "Snapshot src from another FS");
1659 			ret = -EXDEV;
1660 		} else if (!inode_owner_or_capable(src_inode)) {
1661 			/*
1662 			 * Subvolume creation is not restricted, but snapshots
1663 			 * are limited to own subvolumes only
1664 			 */
1665 			ret = -EPERM;
1666 		} else {
1667 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1668 					     BTRFS_I(src_inode)->root,
1669 					     transid, readonly, inherit);
1670 		}
1671 		fdput(src);
1672 	}
1673 out_drop_write:
1674 	mnt_drop_write_file(file);
1675 out:
1676 	return ret;
1677 }
1678 
1679 static noinline int btrfs_ioctl_snap_create(struct file *file,
1680 					    void __user *arg, int subvol)
1681 {
1682 	struct btrfs_ioctl_vol_args *vol_args;
1683 	int ret;
1684 
1685 	vol_args = memdup_user(arg, sizeof(*vol_args));
1686 	if (IS_ERR(vol_args))
1687 		return PTR_ERR(vol_args);
1688 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1689 
1690 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1691 					      vol_args->fd, subvol,
1692 					      NULL, false, NULL);
1693 
1694 	kfree(vol_args);
1695 	return ret;
1696 }
1697 
1698 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1699 					       void __user *arg, int subvol)
1700 {
1701 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1702 	int ret;
1703 	u64 transid = 0;
1704 	u64 *ptr = NULL;
1705 	bool readonly = false;
1706 	struct btrfs_qgroup_inherit *inherit = NULL;
1707 
1708 	vol_args = memdup_user(arg, sizeof(*vol_args));
1709 	if (IS_ERR(vol_args))
1710 		return PTR_ERR(vol_args);
1711 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1712 
1713 	if (vol_args->flags &
1714 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1715 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1716 		ret = -EOPNOTSUPP;
1717 		goto free_args;
1718 	}
1719 
1720 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1721 		ptr = &transid;
1722 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1723 		readonly = true;
1724 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1725 		if (vol_args->size > PAGE_SIZE) {
1726 			ret = -EINVAL;
1727 			goto free_args;
1728 		}
1729 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1730 		if (IS_ERR(inherit)) {
1731 			ret = PTR_ERR(inherit);
1732 			goto free_args;
1733 		}
1734 	}
1735 
1736 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1737 					      vol_args->fd, subvol, ptr,
1738 					      readonly, inherit);
1739 	if (ret)
1740 		goto free_inherit;
1741 
1742 	if (ptr && copy_to_user(arg +
1743 				offsetof(struct btrfs_ioctl_vol_args_v2,
1744 					transid),
1745 				ptr, sizeof(*ptr)))
1746 		ret = -EFAULT;
1747 
1748 free_inherit:
1749 	kfree(inherit);
1750 free_args:
1751 	kfree(vol_args);
1752 	return ret;
1753 }
1754 
1755 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1756 						void __user *arg)
1757 {
1758 	struct inode *inode = file_inode(file);
1759 	struct btrfs_root *root = BTRFS_I(inode)->root;
1760 	int ret = 0;
1761 	u64 flags = 0;
1762 
1763 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1764 		return -EINVAL;
1765 
1766 	down_read(&root->fs_info->subvol_sem);
1767 	if (btrfs_root_readonly(root))
1768 		flags |= BTRFS_SUBVOL_RDONLY;
1769 	up_read(&root->fs_info->subvol_sem);
1770 
1771 	if (copy_to_user(arg, &flags, sizeof(flags)))
1772 		ret = -EFAULT;
1773 
1774 	return ret;
1775 }
1776 
1777 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1778 					      void __user *arg)
1779 {
1780 	struct inode *inode = file_inode(file);
1781 	struct btrfs_root *root = BTRFS_I(inode)->root;
1782 	struct btrfs_trans_handle *trans;
1783 	u64 root_flags;
1784 	u64 flags;
1785 	int ret = 0;
1786 
1787 	if (!inode_owner_or_capable(inode))
1788 		return -EPERM;
1789 
1790 	ret = mnt_want_write_file(file);
1791 	if (ret)
1792 		goto out;
1793 
1794 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1795 		ret = -EINVAL;
1796 		goto out_drop_write;
1797 	}
1798 
1799 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1800 		ret = -EFAULT;
1801 		goto out_drop_write;
1802 	}
1803 
1804 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1805 		ret = -EINVAL;
1806 		goto out_drop_write;
1807 	}
1808 
1809 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1810 		ret = -EOPNOTSUPP;
1811 		goto out_drop_write;
1812 	}
1813 
1814 	down_write(&root->fs_info->subvol_sem);
1815 
1816 	/* nothing to do */
1817 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1818 		goto out_drop_sem;
1819 
1820 	root_flags = btrfs_root_flags(&root->root_item);
1821 	if (flags & BTRFS_SUBVOL_RDONLY) {
1822 		btrfs_set_root_flags(&root->root_item,
1823 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1824 	} else {
1825 		/*
1826 		 * Block RO -> RW transition if this subvolume is involved in
1827 		 * send
1828 		 */
1829 		spin_lock(&root->root_item_lock);
1830 		if (root->send_in_progress == 0) {
1831 			btrfs_set_root_flags(&root->root_item,
1832 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1833 			spin_unlock(&root->root_item_lock);
1834 		} else {
1835 			spin_unlock(&root->root_item_lock);
1836 			btrfs_warn(root->fs_info,
1837 			"Attempt to set subvolume %llu read-write during send",
1838 					root->root_key.objectid);
1839 			ret = -EPERM;
1840 			goto out_drop_sem;
1841 		}
1842 	}
1843 
1844 	trans = btrfs_start_transaction(root, 1);
1845 	if (IS_ERR(trans)) {
1846 		ret = PTR_ERR(trans);
1847 		goto out_reset;
1848 	}
1849 
1850 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1851 				&root->root_key, &root->root_item);
1852 
1853 	btrfs_commit_transaction(trans, root);
1854 out_reset:
1855 	if (ret)
1856 		btrfs_set_root_flags(&root->root_item, root_flags);
1857 out_drop_sem:
1858 	up_write(&root->fs_info->subvol_sem);
1859 out_drop_write:
1860 	mnt_drop_write_file(file);
1861 out:
1862 	return ret;
1863 }
1864 
1865 /*
1866  * helper to check if the subvolume references other subvolumes
1867  */
1868 static noinline int may_destroy_subvol(struct btrfs_root *root)
1869 {
1870 	struct btrfs_path *path;
1871 	struct btrfs_dir_item *di;
1872 	struct btrfs_key key;
1873 	u64 dir_id;
1874 	int ret;
1875 
1876 	path = btrfs_alloc_path();
1877 	if (!path)
1878 		return -ENOMEM;
1879 
1880 	/* Make sure this root isn't set as the default subvol */
1881 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1882 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1883 				   dir_id, "default", 7, 0);
1884 	if (di && !IS_ERR(di)) {
1885 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1886 		if (key.objectid == root->root_key.objectid) {
1887 			ret = -EPERM;
1888 			btrfs_err(root->fs_info, "deleting default subvolume "
1889 				  "%llu is not allowed", key.objectid);
1890 			goto out;
1891 		}
1892 		btrfs_release_path(path);
1893 	}
1894 
1895 	key.objectid = root->root_key.objectid;
1896 	key.type = BTRFS_ROOT_REF_KEY;
1897 	key.offset = (u64)-1;
1898 
1899 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1900 				&key, path, 0, 0);
1901 	if (ret < 0)
1902 		goto out;
1903 	BUG_ON(ret == 0);
1904 
1905 	ret = 0;
1906 	if (path->slots[0] > 0) {
1907 		path->slots[0]--;
1908 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1909 		if (key.objectid == root->root_key.objectid &&
1910 		    key.type == BTRFS_ROOT_REF_KEY)
1911 			ret = -ENOTEMPTY;
1912 	}
1913 out:
1914 	btrfs_free_path(path);
1915 	return ret;
1916 }
1917 
1918 static noinline int key_in_sk(struct btrfs_key *key,
1919 			      struct btrfs_ioctl_search_key *sk)
1920 {
1921 	struct btrfs_key test;
1922 	int ret;
1923 
1924 	test.objectid = sk->min_objectid;
1925 	test.type = sk->min_type;
1926 	test.offset = sk->min_offset;
1927 
1928 	ret = btrfs_comp_cpu_keys(key, &test);
1929 	if (ret < 0)
1930 		return 0;
1931 
1932 	test.objectid = sk->max_objectid;
1933 	test.type = sk->max_type;
1934 	test.offset = sk->max_offset;
1935 
1936 	ret = btrfs_comp_cpu_keys(key, &test);
1937 	if (ret > 0)
1938 		return 0;
1939 	return 1;
1940 }
1941 
1942 static noinline int copy_to_sk(struct btrfs_root *root,
1943 			       struct btrfs_path *path,
1944 			       struct btrfs_key *key,
1945 			       struct btrfs_ioctl_search_key *sk,
1946 			       size_t *buf_size,
1947 			       char __user *ubuf,
1948 			       unsigned long *sk_offset,
1949 			       int *num_found)
1950 {
1951 	u64 found_transid;
1952 	struct extent_buffer *leaf;
1953 	struct btrfs_ioctl_search_header sh;
1954 	struct btrfs_key test;
1955 	unsigned long item_off;
1956 	unsigned long item_len;
1957 	int nritems;
1958 	int i;
1959 	int slot;
1960 	int ret = 0;
1961 
1962 	leaf = path->nodes[0];
1963 	slot = path->slots[0];
1964 	nritems = btrfs_header_nritems(leaf);
1965 
1966 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1967 		i = nritems;
1968 		goto advance_key;
1969 	}
1970 	found_transid = btrfs_header_generation(leaf);
1971 
1972 	for (i = slot; i < nritems; i++) {
1973 		item_off = btrfs_item_ptr_offset(leaf, i);
1974 		item_len = btrfs_item_size_nr(leaf, i);
1975 
1976 		btrfs_item_key_to_cpu(leaf, key, i);
1977 		if (!key_in_sk(key, sk))
1978 			continue;
1979 
1980 		if (sizeof(sh) + item_len > *buf_size) {
1981 			if (*num_found) {
1982 				ret = 1;
1983 				goto out;
1984 			}
1985 
1986 			/*
1987 			 * return one empty item back for v1, which does not
1988 			 * handle -EOVERFLOW
1989 			 */
1990 
1991 			*buf_size = sizeof(sh) + item_len;
1992 			item_len = 0;
1993 			ret = -EOVERFLOW;
1994 		}
1995 
1996 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1997 			ret = 1;
1998 			goto out;
1999 		}
2000 
2001 		sh.objectid = key->objectid;
2002 		sh.offset = key->offset;
2003 		sh.type = key->type;
2004 		sh.len = item_len;
2005 		sh.transid = found_transid;
2006 
2007 		/* copy search result header */
2008 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2009 			ret = -EFAULT;
2010 			goto out;
2011 		}
2012 
2013 		*sk_offset += sizeof(sh);
2014 
2015 		if (item_len) {
2016 			char __user *up = ubuf + *sk_offset;
2017 			/* copy the item */
2018 			if (read_extent_buffer_to_user(leaf, up,
2019 						       item_off, item_len)) {
2020 				ret = -EFAULT;
2021 				goto out;
2022 			}
2023 
2024 			*sk_offset += item_len;
2025 		}
2026 		(*num_found)++;
2027 
2028 		if (ret) /* -EOVERFLOW from above */
2029 			goto out;
2030 
2031 		if (*num_found >= sk->nr_items) {
2032 			ret = 1;
2033 			goto out;
2034 		}
2035 	}
2036 advance_key:
2037 	ret = 0;
2038 	test.objectid = sk->max_objectid;
2039 	test.type = sk->max_type;
2040 	test.offset = sk->max_offset;
2041 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2042 		ret = 1;
2043 	else if (key->offset < (u64)-1)
2044 		key->offset++;
2045 	else if (key->type < (u8)-1) {
2046 		key->offset = 0;
2047 		key->type++;
2048 	} else if (key->objectid < (u64)-1) {
2049 		key->offset = 0;
2050 		key->type = 0;
2051 		key->objectid++;
2052 	} else
2053 		ret = 1;
2054 out:
2055 	/*
2056 	 *  0: all items from this leaf copied, continue with next
2057 	 *  1: * more items can be copied, but unused buffer is too small
2058 	 *     * all items were found
2059 	 *     Either way, it will stops the loop which iterates to the next
2060 	 *     leaf
2061 	 *  -EOVERFLOW: item was to large for buffer
2062 	 *  -EFAULT: could not copy extent buffer back to userspace
2063 	 */
2064 	return ret;
2065 }
2066 
2067 static noinline int search_ioctl(struct inode *inode,
2068 				 struct btrfs_ioctl_search_key *sk,
2069 				 size_t *buf_size,
2070 				 char __user *ubuf)
2071 {
2072 	struct btrfs_root *root;
2073 	struct btrfs_key key;
2074 	struct btrfs_path *path;
2075 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2076 	int ret;
2077 	int num_found = 0;
2078 	unsigned long sk_offset = 0;
2079 
2080 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2081 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2082 		return -EOVERFLOW;
2083 	}
2084 
2085 	path = btrfs_alloc_path();
2086 	if (!path)
2087 		return -ENOMEM;
2088 
2089 	if (sk->tree_id == 0) {
2090 		/* search the root of the inode that was passed */
2091 		root = BTRFS_I(inode)->root;
2092 	} else {
2093 		key.objectid = sk->tree_id;
2094 		key.type = BTRFS_ROOT_ITEM_KEY;
2095 		key.offset = (u64)-1;
2096 		root = btrfs_read_fs_root_no_name(info, &key);
2097 		if (IS_ERR(root)) {
2098 			btrfs_free_path(path);
2099 			return -ENOENT;
2100 		}
2101 	}
2102 
2103 	key.objectid = sk->min_objectid;
2104 	key.type = sk->min_type;
2105 	key.offset = sk->min_offset;
2106 
2107 	while (1) {
2108 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2109 		if (ret != 0) {
2110 			if (ret > 0)
2111 				ret = 0;
2112 			goto err;
2113 		}
2114 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2115 				 &sk_offset, &num_found);
2116 		btrfs_release_path(path);
2117 		if (ret)
2118 			break;
2119 
2120 	}
2121 	if (ret > 0)
2122 		ret = 0;
2123 err:
2124 	sk->nr_items = num_found;
2125 	btrfs_free_path(path);
2126 	return ret;
2127 }
2128 
2129 static noinline int btrfs_ioctl_tree_search(struct file *file,
2130 					   void __user *argp)
2131 {
2132 	struct btrfs_ioctl_search_args __user *uargs;
2133 	struct btrfs_ioctl_search_key sk;
2134 	struct inode *inode;
2135 	int ret;
2136 	size_t buf_size;
2137 
2138 	if (!capable(CAP_SYS_ADMIN))
2139 		return -EPERM;
2140 
2141 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2142 
2143 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2144 		return -EFAULT;
2145 
2146 	buf_size = sizeof(uargs->buf);
2147 
2148 	inode = file_inode(file);
2149 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2150 
2151 	/*
2152 	 * In the origin implementation an overflow is handled by returning a
2153 	 * search header with a len of zero, so reset ret.
2154 	 */
2155 	if (ret == -EOVERFLOW)
2156 		ret = 0;
2157 
2158 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2159 		ret = -EFAULT;
2160 	return ret;
2161 }
2162 
2163 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2164 					       void __user *argp)
2165 {
2166 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2167 	struct btrfs_ioctl_search_args_v2 args;
2168 	struct inode *inode;
2169 	int ret;
2170 	size_t buf_size;
2171 	const size_t buf_limit = SZ_16M;
2172 
2173 	if (!capable(CAP_SYS_ADMIN))
2174 		return -EPERM;
2175 
2176 	/* copy search header and buffer size */
2177 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2178 	if (copy_from_user(&args, uarg, sizeof(args)))
2179 		return -EFAULT;
2180 
2181 	buf_size = args.buf_size;
2182 
2183 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2184 		return -EOVERFLOW;
2185 
2186 	/* limit result size to 16MB */
2187 	if (buf_size > buf_limit)
2188 		buf_size = buf_limit;
2189 
2190 	inode = file_inode(file);
2191 	ret = search_ioctl(inode, &args.key, &buf_size,
2192 			   (char *)(&uarg->buf[0]));
2193 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2194 		ret = -EFAULT;
2195 	else if (ret == -EOVERFLOW &&
2196 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2197 		ret = -EFAULT;
2198 
2199 	return ret;
2200 }
2201 
2202 /*
2203  * Search INODE_REFs to identify path name of 'dirid' directory
2204  * in a 'tree_id' tree. and sets path name to 'name'.
2205  */
2206 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2207 				u64 tree_id, u64 dirid, char *name)
2208 {
2209 	struct btrfs_root *root;
2210 	struct btrfs_key key;
2211 	char *ptr;
2212 	int ret = -1;
2213 	int slot;
2214 	int len;
2215 	int total_len = 0;
2216 	struct btrfs_inode_ref *iref;
2217 	struct extent_buffer *l;
2218 	struct btrfs_path *path;
2219 
2220 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2221 		name[0]='\0';
2222 		return 0;
2223 	}
2224 
2225 	path = btrfs_alloc_path();
2226 	if (!path)
2227 		return -ENOMEM;
2228 
2229 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2230 
2231 	key.objectid = tree_id;
2232 	key.type = BTRFS_ROOT_ITEM_KEY;
2233 	key.offset = (u64)-1;
2234 	root = btrfs_read_fs_root_no_name(info, &key);
2235 	if (IS_ERR(root)) {
2236 		btrfs_err(info, "could not find root %llu", tree_id);
2237 		ret = -ENOENT;
2238 		goto out;
2239 	}
2240 
2241 	key.objectid = dirid;
2242 	key.type = BTRFS_INODE_REF_KEY;
2243 	key.offset = (u64)-1;
2244 
2245 	while (1) {
2246 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2247 		if (ret < 0)
2248 			goto out;
2249 		else if (ret > 0) {
2250 			ret = btrfs_previous_item(root, path, dirid,
2251 						  BTRFS_INODE_REF_KEY);
2252 			if (ret < 0)
2253 				goto out;
2254 			else if (ret > 0) {
2255 				ret = -ENOENT;
2256 				goto out;
2257 			}
2258 		}
2259 
2260 		l = path->nodes[0];
2261 		slot = path->slots[0];
2262 		btrfs_item_key_to_cpu(l, &key, slot);
2263 
2264 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2265 		len = btrfs_inode_ref_name_len(l, iref);
2266 		ptr -= len + 1;
2267 		total_len += len + 1;
2268 		if (ptr < name) {
2269 			ret = -ENAMETOOLONG;
2270 			goto out;
2271 		}
2272 
2273 		*(ptr + len) = '/';
2274 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2275 
2276 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2277 			break;
2278 
2279 		btrfs_release_path(path);
2280 		key.objectid = key.offset;
2281 		key.offset = (u64)-1;
2282 		dirid = key.objectid;
2283 	}
2284 	memmove(name, ptr, total_len);
2285 	name[total_len] = '\0';
2286 	ret = 0;
2287 out:
2288 	btrfs_free_path(path);
2289 	return ret;
2290 }
2291 
2292 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2293 					   void __user *argp)
2294 {
2295 	 struct btrfs_ioctl_ino_lookup_args *args;
2296 	 struct inode *inode;
2297 	int ret = 0;
2298 
2299 	args = memdup_user(argp, sizeof(*args));
2300 	if (IS_ERR(args))
2301 		return PTR_ERR(args);
2302 
2303 	inode = file_inode(file);
2304 
2305 	/*
2306 	 * Unprivileged query to obtain the containing subvolume root id. The
2307 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2308 	 */
2309 	if (args->treeid == 0)
2310 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2311 
2312 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2313 		args->name[0] = 0;
2314 		goto out;
2315 	}
2316 
2317 	if (!capable(CAP_SYS_ADMIN)) {
2318 		ret = -EPERM;
2319 		goto out;
2320 	}
2321 
2322 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2323 					args->treeid, args->objectid,
2324 					args->name);
2325 
2326 out:
2327 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2328 		ret = -EFAULT;
2329 
2330 	kfree(args);
2331 	return ret;
2332 }
2333 
2334 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2335 					     void __user *arg)
2336 {
2337 	struct dentry *parent = file->f_path.dentry;
2338 	struct dentry *dentry;
2339 	struct inode *dir = d_inode(parent);
2340 	struct inode *inode;
2341 	struct btrfs_root *root = BTRFS_I(dir)->root;
2342 	struct btrfs_root *dest = NULL;
2343 	struct btrfs_ioctl_vol_args *vol_args;
2344 	struct btrfs_trans_handle *trans;
2345 	struct btrfs_block_rsv block_rsv;
2346 	u64 root_flags;
2347 	u64 qgroup_reserved;
2348 	int namelen;
2349 	int ret;
2350 	int err = 0;
2351 
2352 	vol_args = memdup_user(arg, sizeof(*vol_args));
2353 	if (IS_ERR(vol_args))
2354 		return PTR_ERR(vol_args);
2355 
2356 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2357 	namelen = strlen(vol_args->name);
2358 	if (strchr(vol_args->name, '/') ||
2359 	    strncmp(vol_args->name, "..", namelen) == 0) {
2360 		err = -EINVAL;
2361 		goto out;
2362 	}
2363 
2364 	err = mnt_want_write_file(file);
2365 	if (err)
2366 		goto out;
2367 
2368 
2369 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2370 	if (err == -EINTR)
2371 		goto out_drop_write;
2372 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2373 	if (IS_ERR(dentry)) {
2374 		err = PTR_ERR(dentry);
2375 		goto out_unlock_dir;
2376 	}
2377 
2378 	if (d_really_is_negative(dentry)) {
2379 		err = -ENOENT;
2380 		goto out_dput;
2381 	}
2382 
2383 	inode = d_inode(dentry);
2384 	dest = BTRFS_I(inode)->root;
2385 	if (!capable(CAP_SYS_ADMIN)) {
2386 		/*
2387 		 * Regular user.  Only allow this with a special mount
2388 		 * option, when the user has write+exec access to the
2389 		 * subvol root, and when rmdir(2) would have been
2390 		 * allowed.
2391 		 *
2392 		 * Note that this is _not_ check that the subvol is
2393 		 * empty or doesn't contain data that we wouldn't
2394 		 * otherwise be able to delete.
2395 		 *
2396 		 * Users who want to delete empty subvols should try
2397 		 * rmdir(2).
2398 		 */
2399 		err = -EPERM;
2400 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2401 			goto out_dput;
2402 
2403 		/*
2404 		 * Do not allow deletion if the parent dir is the same
2405 		 * as the dir to be deleted.  That means the ioctl
2406 		 * must be called on the dentry referencing the root
2407 		 * of the subvol, not a random directory contained
2408 		 * within it.
2409 		 */
2410 		err = -EINVAL;
2411 		if (root == dest)
2412 			goto out_dput;
2413 
2414 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2415 		if (err)
2416 			goto out_dput;
2417 	}
2418 
2419 	/* check if subvolume may be deleted by a user */
2420 	err = btrfs_may_delete(dir, dentry, 1);
2421 	if (err)
2422 		goto out_dput;
2423 
2424 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2425 		err = -EINVAL;
2426 		goto out_dput;
2427 	}
2428 
2429 	inode_lock(inode);
2430 
2431 	/*
2432 	 * Don't allow to delete a subvolume with send in progress. This is
2433 	 * inside the i_mutex so the error handling that has to drop the bit
2434 	 * again is not run concurrently.
2435 	 */
2436 	spin_lock(&dest->root_item_lock);
2437 	root_flags = btrfs_root_flags(&dest->root_item);
2438 	if (dest->send_in_progress == 0) {
2439 		btrfs_set_root_flags(&dest->root_item,
2440 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2441 		spin_unlock(&dest->root_item_lock);
2442 	} else {
2443 		spin_unlock(&dest->root_item_lock);
2444 		btrfs_warn(root->fs_info,
2445 			"Attempt to delete subvolume %llu during send",
2446 			dest->root_key.objectid);
2447 		err = -EPERM;
2448 		goto out_unlock_inode;
2449 	}
2450 
2451 	down_write(&root->fs_info->subvol_sem);
2452 
2453 	err = may_destroy_subvol(dest);
2454 	if (err)
2455 		goto out_up_write;
2456 
2457 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2458 	/*
2459 	 * One for dir inode, two for dir entries, two for root
2460 	 * ref/backref.
2461 	 */
2462 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2463 					       5, &qgroup_reserved, true);
2464 	if (err)
2465 		goto out_up_write;
2466 
2467 	trans = btrfs_start_transaction(root, 0);
2468 	if (IS_ERR(trans)) {
2469 		err = PTR_ERR(trans);
2470 		goto out_release;
2471 	}
2472 	trans->block_rsv = &block_rsv;
2473 	trans->bytes_reserved = block_rsv.size;
2474 
2475 	btrfs_record_snapshot_destroy(trans, dir);
2476 
2477 	ret = btrfs_unlink_subvol(trans, root, dir,
2478 				dest->root_key.objectid,
2479 				dentry->d_name.name,
2480 				dentry->d_name.len);
2481 	if (ret) {
2482 		err = ret;
2483 		btrfs_abort_transaction(trans, root, ret);
2484 		goto out_end_trans;
2485 	}
2486 
2487 	btrfs_record_root_in_trans(trans, dest);
2488 
2489 	memset(&dest->root_item.drop_progress, 0,
2490 		sizeof(dest->root_item.drop_progress));
2491 	dest->root_item.drop_level = 0;
2492 	btrfs_set_root_refs(&dest->root_item, 0);
2493 
2494 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2495 		ret = btrfs_insert_orphan_item(trans,
2496 					root->fs_info->tree_root,
2497 					dest->root_key.objectid);
2498 		if (ret) {
2499 			btrfs_abort_transaction(trans, root, ret);
2500 			err = ret;
2501 			goto out_end_trans;
2502 		}
2503 	}
2504 
2505 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2506 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2507 				  dest->root_key.objectid);
2508 	if (ret && ret != -ENOENT) {
2509 		btrfs_abort_transaction(trans, root, ret);
2510 		err = ret;
2511 		goto out_end_trans;
2512 	}
2513 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2514 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2515 					  dest->root_item.received_uuid,
2516 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2517 					  dest->root_key.objectid);
2518 		if (ret && ret != -ENOENT) {
2519 			btrfs_abort_transaction(trans, root, ret);
2520 			err = ret;
2521 			goto out_end_trans;
2522 		}
2523 	}
2524 
2525 out_end_trans:
2526 	trans->block_rsv = NULL;
2527 	trans->bytes_reserved = 0;
2528 	ret = btrfs_end_transaction(trans, root);
2529 	if (ret && !err)
2530 		err = ret;
2531 	inode->i_flags |= S_DEAD;
2532 out_release:
2533 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2534 out_up_write:
2535 	up_write(&root->fs_info->subvol_sem);
2536 	if (err) {
2537 		spin_lock(&dest->root_item_lock);
2538 		root_flags = btrfs_root_flags(&dest->root_item);
2539 		btrfs_set_root_flags(&dest->root_item,
2540 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2541 		spin_unlock(&dest->root_item_lock);
2542 	}
2543 out_unlock_inode:
2544 	inode_unlock(inode);
2545 	if (!err) {
2546 		d_invalidate(dentry);
2547 		btrfs_invalidate_inodes(dest);
2548 		d_delete(dentry);
2549 		ASSERT(dest->send_in_progress == 0);
2550 
2551 		/* the last ref */
2552 		if (dest->ino_cache_inode) {
2553 			iput(dest->ino_cache_inode);
2554 			dest->ino_cache_inode = NULL;
2555 		}
2556 	}
2557 out_dput:
2558 	dput(dentry);
2559 out_unlock_dir:
2560 	inode_unlock(dir);
2561 out_drop_write:
2562 	mnt_drop_write_file(file);
2563 out:
2564 	kfree(vol_args);
2565 	return err;
2566 }
2567 
2568 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2569 {
2570 	struct inode *inode = file_inode(file);
2571 	struct btrfs_root *root = BTRFS_I(inode)->root;
2572 	struct btrfs_ioctl_defrag_range_args *range;
2573 	int ret;
2574 
2575 	ret = mnt_want_write_file(file);
2576 	if (ret)
2577 		return ret;
2578 
2579 	if (btrfs_root_readonly(root)) {
2580 		ret = -EROFS;
2581 		goto out;
2582 	}
2583 
2584 	switch (inode->i_mode & S_IFMT) {
2585 	case S_IFDIR:
2586 		if (!capable(CAP_SYS_ADMIN)) {
2587 			ret = -EPERM;
2588 			goto out;
2589 		}
2590 		ret = btrfs_defrag_root(root);
2591 		if (ret)
2592 			goto out;
2593 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2594 		break;
2595 	case S_IFREG:
2596 		if (!(file->f_mode & FMODE_WRITE)) {
2597 			ret = -EINVAL;
2598 			goto out;
2599 		}
2600 
2601 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2602 		if (!range) {
2603 			ret = -ENOMEM;
2604 			goto out;
2605 		}
2606 
2607 		if (argp) {
2608 			if (copy_from_user(range, argp,
2609 					   sizeof(*range))) {
2610 				ret = -EFAULT;
2611 				kfree(range);
2612 				goto out;
2613 			}
2614 			/* compression requires us to start the IO */
2615 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2616 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2617 				range->extent_thresh = (u32)-1;
2618 			}
2619 		} else {
2620 			/* the rest are all set to zero by kzalloc */
2621 			range->len = (u64)-1;
2622 		}
2623 		ret = btrfs_defrag_file(file_inode(file), file,
2624 					range, 0, 0);
2625 		if (ret > 0)
2626 			ret = 0;
2627 		kfree(range);
2628 		break;
2629 	default:
2630 		ret = -EINVAL;
2631 	}
2632 out:
2633 	mnt_drop_write_file(file);
2634 	return ret;
2635 }
2636 
2637 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2638 {
2639 	struct btrfs_ioctl_vol_args *vol_args;
2640 	int ret;
2641 
2642 	if (!capable(CAP_SYS_ADMIN))
2643 		return -EPERM;
2644 
2645 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2646 			1)) {
2647 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2648 	}
2649 
2650 	mutex_lock(&root->fs_info->volume_mutex);
2651 	vol_args = memdup_user(arg, sizeof(*vol_args));
2652 	if (IS_ERR(vol_args)) {
2653 		ret = PTR_ERR(vol_args);
2654 		goto out;
2655 	}
2656 
2657 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2658 	ret = btrfs_init_new_device(root, vol_args->name);
2659 
2660 	if (!ret)
2661 		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2662 
2663 	kfree(vol_args);
2664 out:
2665 	mutex_unlock(&root->fs_info->volume_mutex);
2666 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2667 	return ret;
2668 }
2669 
2670 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2671 {
2672 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2673 	struct btrfs_ioctl_vol_args *vol_args;
2674 	int ret;
2675 
2676 	if (!capable(CAP_SYS_ADMIN))
2677 		return -EPERM;
2678 
2679 	ret = mnt_want_write_file(file);
2680 	if (ret)
2681 		return ret;
2682 
2683 	vol_args = memdup_user(arg, sizeof(*vol_args));
2684 	if (IS_ERR(vol_args)) {
2685 		ret = PTR_ERR(vol_args);
2686 		goto err_drop;
2687 	}
2688 
2689 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2690 
2691 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2692 			1)) {
2693 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2694 		goto out;
2695 	}
2696 
2697 	mutex_lock(&root->fs_info->volume_mutex);
2698 	ret = btrfs_rm_device(root, vol_args->name);
2699 	mutex_unlock(&root->fs_info->volume_mutex);
2700 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2701 
2702 	if (!ret)
2703 		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2704 
2705 out:
2706 	kfree(vol_args);
2707 err_drop:
2708 	mnt_drop_write_file(file);
2709 	return ret;
2710 }
2711 
2712 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2713 {
2714 	struct btrfs_ioctl_fs_info_args *fi_args;
2715 	struct btrfs_device *device;
2716 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2717 	int ret = 0;
2718 
2719 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2720 	if (!fi_args)
2721 		return -ENOMEM;
2722 
2723 	mutex_lock(&fs_devices->device_list_mutex);
2724 	fi_args->num_devices = fs_devices->num_devices;
2725 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2726 
2727 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2728 		if (device->devid > fi_args->max_id)
2729 			fi_args->max_id = device->devid;
2730 	}
2731 	mutex_unlock(&fs_devices->device_list_mutex);
2732 
2733 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2734 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2735 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2736 
2737 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2738 		ret = -EFAULT;
2739 
2740 	kfree(fi_args);
2741 	return ret;
2742 }
2743 
2744 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2745 {
2746 	struct btrfs_ioctl_dev_info_args *di_args;
2747 	struct btrfs_device *dev;
2748 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2749 	int ret = 0;
2750 	char *s_uuid = NULL;
2751 
2752 	di_args = memdup_user(arg, sizeof(*di_args));
2753 	if (IS_ERR(di_args))
2754 		return PTR_ERR(di_args);
2755 
2756 	if (!btrfs_is_empty_uuid(di_args->uuid))
2757 		s_uuid = di_args->uuid;
2758 
2759 	mutex_lock(&fs_devices->device_list_mutex);
2760 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2761 
2762 	if (!dev) {
2763 		ret = -ENODEV;
2764 		goto out;
2765 	}
2766 
2767 	di_args->devid = dev->devid;
2768 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2769 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2770 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2771 	if (dev->name) {
2772 		struct rcu_string *name;
2773 
2774 		rcu_read_lock();
2775 		name = rcu_dereference(dev->name);
2776 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2777 		rcu_read_unlock();
2778 		di_args->path[sizeof(di_args->path) - 1] = 0;
2779 	} else {
2780 		di_args->path[0] = '\0';
2781 	}
2782 
2783 out:
2784 	mutex_unlock(&fs_devices->device_list_mutex);
2785 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2786 		ret = -EFAULT;
2787 
2788 	kfree(di_args);
2789 	return ret;
2790 }
2791 
2792 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2793 {
2794 	struct page *page;
2795 
2796 	page = grab_cache_page(inode->i_mapping, index);
2797 	if (!page)
2798 		return ERR_PTR(-ENOMEM);
2799 
2800 	if (!PageUptodate(page)) {
2801 		int ret;
2802 
2803 		ret = btrfs_readpage(NULL, page);
2804 		if (ret)
2805 			return ERR_PTR(ret);
2806 		lock_page(page);
2807 		if (!PageUptodate(page)) {
2808 			unlock_page(page);
2809 			put_page(page);
2810 			return ERR_PTR(-EIO);
2811 		}
2812 		if (page->mapping != inode->i_mapping) {
2813 			unlock_page(page);
2814 			put_page(page);
2815 			return ERR_PTR(-EAGAIN);
2816 		}
2817 	}
2818 
2819 	return page;
2820 }
2821 
2822 static int gather_extent_pages(struct inode *inode, struct page **pages,
2823 			       int num_pages, u64 off)
2824 {
2825 	int i;
2826 	pgoff_t index = off >> PAGE_SHIFT;
2827 
2828 	for (i = 0; i < num_pages; i++) {
2829 again:
2830 		pages[i] = extent_same_get_page(inode, index + i);
2831 		if (IS_ERR(pages[i])) {
2832 			int err = PTR_ERR(pages[i]);
2833 
2834 			if (err == -EAGAIN)
2835 				goto again;
2836 			pages[i] = NULL;
2837 			return err;
2838 		}
2839 	}
2840 	return 0;
2841 }
2842 
2843 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2844 			     bool retry_range_locking)
2845 {
2846 	/*
2847 	 * Do any pending delalloc/csum calculations on inode, one way or
2848 	 * another, and lock file content.
2849 	 * The locking order is:
2850 	 *
2851 	 *   1) pages
2852 	 *   2) range in the inode's io tree
2853 	 */
2854 	while (1) {
2855 		struct btrfs_ordered_extent *ordered;
2856 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2857 		ordered = btrfs_lookup_first_ordered_extent(inode,
2858 							    off + len - 1);
2859 		if ((!ordered ||
2860 		     ordered->file_offset + ordered->len <= off ||
2861 		     ordered->file_offset >= off + len) &&
2862 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2863 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2864 			if (ordered)
2865 				btrfs_put_ordered_extent(ordered);
2866 			break;
2867 		}
2868 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2869 		if (ordered)
2870 			btrfs_put_ordered_extent(ordered);
2871 		if (!retry_range_locking)
2872 			return -EAGAIN;
2873 		btrfs_wait_ordered_range(inode, off, len);
2874 	}
2875 	return 0;
2876 }
2877 
2878 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2879 {
2880 	inode_unlock(inode1);
2881 	inode_unlock(inode2);
2882 }
2883 
2884 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2885 {
2886 	if (inode1 < inode2)
2887 		swap(inode1, inode2);
2888 
2889 	inode_lock_nested(inode1, I_MUTEX_PARENT);
2890 	inode_lock_nested(inode2, I_MUTEX_CHILD);
2891 }
2892 
2893 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2894 				      struct inode *inode2, u64 loff2, u64 len)
2895 {
2896 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2897 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2898 }
2899 
2900 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2901 				    struct inode *inode2, u64 loff2, u64 len,
2902 				    bool retry_range_locking)
2903 {
2904 	int ret;
2905 
2906 	if (inode1 < inode2) {
2907 		swap(inode1, inode2);
2908 		swap(loff1, loff2);
2909 	}
2910 	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2911 	if (ret)
2912 		return ret;
2913 	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2914 	if (ret)
2915 		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2916 			      loff1 + len - 1);
2917 	return ret;
2918 }
2919 
2920 struct cmp_pages {
2921 	int		num_pages;
2922 	struct page	**src_pages;
2923 	struct page	**dst_pages;
2924 };
2925 
2926 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2927 {
2928 	int i;
2929 	struct page *pg;
2930 
2931 	for (i = 0; i < cmp->num_pages; i++) {
2932 		pg = cmp->src_pages[i];
2933 		if (pg) {
2934 			unlock_page(pg);
2935 			put_page(pg);
2936 		}
2937 		pg = cmp->dst_pages[i];
2938 		if (pg) {
2939 			unlock_page(pg);
2940 			put_page(pg);
2941 		}
2942 	}
2943 	kfree(cmp->src_pages);
2944 	kfree(cmp->dst_pages);
2945 }
2946 
2947 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2948 				  struct inode *dst, u64 dst_loff,
2949 				  u64 len, struct cmp_pages *cmp)
2950 {
2951 	int ret;
2952 	int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2953 	struct page **src_pgarr, **dst_pgarr;
2954 
2955 	/*
2956 	 * We must gather up all the pages before we initiate our
2957 	 * extent locking. We use an array for the page pointers. Size
2958 	 * of the array is bounded by len, which is in turn bounded by
2959 	 * BTRFS_MAX_DEDUPE_LEN.
2960 	 */
2961 	src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2962 	dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2963 	if (!src_pgarr || !dst_pgarr) {
2964 		kfree(src_pgarr);
2965 		kfree(dst_pgarr);
2966 		return -ENOMEM;
2967 	}
2968 	cmp->num_pages = num_pages;
2969 	cmp->src_pages = src_pgarr;
2970 	cmp->dst_pages = dst_pgarr;
2971 
2972 	ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
2973 	if (ret)
2974 		goto out;
2975 
2976 	ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
2977 
2978 out:
2979 	if (ret)
2980 		btrfs_cmp_data_free(cmp);
2981 	return 0;
2982 }
2983 
2984 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2985 			  u64 dst_loff, u64 len, struct cmp_pages *cmp)
2986 {
2987 	int ret = 0;
2988 	int i;
2989 	struct page *src_page, *dst_page;
2990 	unsigned int cmp_len = PAGE_SIZE;
2991 	void *addr, *dst_addr;
2992 
2993 	i = 0;
2994 	while (len) {
2995 		if (len < PAGE_SIZE)
2996 			cmp_len = len;
2997 
2998 		BUG_ON(i >= cmp->num_pages);
2999 
3000 		src_page = cmp->src_pages[i];
3001 		dst_page = cmp->dst_pages[i];
3002 		ASSERT(PageLocked(src_page));
3003 		ASSERT(PageLocked(dst_page));
3004 
3005 		addr = kmap_atomic(src_page);
3006 		dst_addr = kmap_atomic(dst_page);
3007 
3008 		flush_dcache_page(src_page);
3009 		flush_dcache_page(dst_page);
3010 
3011 		if (memcmp(addr, dst_addr, cmp_len))
3012 			ret = -EBADE;
3013 
3014 		kunmap_atomic(addr);
3015 		kunmap_atomic(dst_addr);
3016 
3017 		if (ret)
3018 			break;
3019 
3020 		len -= cmp_len;
3021 		i++;
3022 	}
3023 
3024 	return ret;
3025 }
3026 
3027 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3028 				     u64 olen)
3029 {
3030 	u64 len = *plen;
3031 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3032 
3033 	if (off + olen > inode->i_size || off + olen < off)
3034 		return -EINVAL;
3035 
3036 	/* if we extend to eof, continue to block boundary */
3037 	if (off + len == inode->i_size)
3038 		*plen = len = ALIGN(inode->i_size, bs) - off;
3039 
3040 	/* Check that we are block aligned - btrfs_clone() requires this */
3041 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3042 		return -EINVAL;
3043 
3044 	return 0;
3045 }
3046 
3047 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3048 			     struct inode *dst, u64 dst_loff)
3049 {
3050 	int ret;
3051 	u64 len = olen;
3052 	struct cmp_pages cmp;
3053 	int same_inode = 0;
3054 	u64 same_lock_start = 0;
3055 	u64 same_lock_len = 0;
3056 
3057 	if (src == dst)
3058 		same_inode = 1;
3059 
3060 	if (len == 0)
3061 		return 0;
3062 
3063 	if (same_inode) {
3064 		inode_lock(src);
3065 
3066 		ret = extent_same_check_offsets(src, loff, &len, olen);
3067 		if (ret)
3068 			goto out_unlock;
3069 		ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3070 		if (ret)
3071 			goto out_unlock;
3072 
3073 		/*
3074 		 * Single inode case wants the same checks, except we
3075 		 * don't want our length pushed out past i_size as
3076 		 * comparing that data range makes no sense.
3077 		 *
3078 		 * extent_same_check_offsets() will do this for an
3079 		 * unaligned length at i_size, so catch it here and
3080 		 * reject the request.
3081 		 *
3082 		 * This effectively means we require aligned extents
3083 		 * for the single-inode case, whereas the other cases
3084 		 * allow an unaligned length so long as it ends at
3085 		 * i_size.
3086 		 */
3087 		if (len != olen) {
3088 			ret = -EINVAL;
3089 			goto out_unlock;
3090 		}
3091 
3092 		/* Check for overlapping ranges */
3093 		if (dst_loff + len > loff && dst_loff < loff + len) {
3094 			ret = -EINVAL;
3095 			goto out_unlock;
3096 		}
3097 
3098 		same_lock_start = min_t(u64, loff, dst_loff);
3099 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3100 	} else {
3101 		btrfs_double_inode_lock(src, dst);
3102 
3103 		ret = extent_same_check_offsets(src, loff, &len, olen);
3104 		if (ret)
3105 			goto out_unlock;
3106 
3107 		ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3108 		if (ret)
3109 			goto out_unlock;
3110 	}
3111 
3112 	/* don't make the dst file partly checksummed */
3113 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3114 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3115 		ret = -EINVAL;
3116 		goto out_unlock;
3117 	}
3118 
3119 again:
3120 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3121 	if (ret)
3122 		goto out_unlock;
3123 
3124 	if (same_inode)
3125 		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3126 					false);
3127 	else
3128 		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3129 					       false);
3130 	/*
3131 	 * If one of the inodes has dirty pages in the respective range or
3132 	 * ordered extents, we need to flush dellaloc and wait for all ordered
3133 	 * extents in the range. We must unlock the pages and the ranges in the
3134 	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3135 	 * pages) and when waiting for ordered extents to complete (they require
3136 	 * range locking).
3137 	 */
3138 	if (ret == -EAGAIN) {
3139 		/*
3140 		 * Ranges in the io trees already unlocked. Now unlock all
3141 		 * pages before waiting for all IO to complete.
3142 		 */
3143 		btrfs_cmp_data_free(&cmp);
3144 		if (same_inode) {
3145 			btrfs_wait_ordered_range(src, same_lock_start,
3146 						 same_lock_len);
3147 		} else {
3148 			btrfs_wait_ordered_range(src, loff, len);
3149 			btrfs_wait_ordered_range(dst, dst_loff, len);
3150 		}
3151 		goto again;
3152 	}
3153 	ASSERT(ret == 0);
3154 	if (WARN_ON(ret)) {
3155 		/* ranges in the io trees already unlocked */
3156 		btrfs_cmp_data_free(&cmp);
3157 		return ret;
3158 	}
3159 
3160 	/* pass original length for comparison so we stay within i_size */
3161 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3162 	if (ret == 0)
3163 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3164 
3165 	if (same_inode)
3166 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3167 			      same_lock_start + same_lock_len - 1);
3168 	else
3169 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3170 
3171 	btrfs_cmp_data_free(&cmp);
3172 out_unlock:
3173 	if (same_inode)
3174 		inode_unlock(src);
3175 	else
3176 		btrfs_double_inode_unlock(src, dst);
3177 
3178 	return ret;
3179 }
3180 
3181 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3182 
3183 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3184 				struct file *dst_file, u64 dst_loff)
3185 {
3186 	struct inode *src = file_inode(src_file);
3187 	struct inode *dst = file_inode(dst_file);
3188 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3189 	ssize_t res;
3190 
3191 	if (olen > BTRFS_MAX_DEDUPE_LEN)
3192 		olen = BTRFS_MAX_DEDUPE_LEN;
3193 
3194 	if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3195 		/*
3196 		 * Btrfs does not support blocksize < page_size. As a
3197 		 * result, btrfs_cmp_data() won't correctly handle
3198 		 * this situation without an update.
3199 		 */
3200 		return -EINVAL;
3201 	}
3202 
3203 	res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3204 	if (res)
3205 		return res;
3206 	return olen;
3207 }
3208 
3209 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3210 				     struct inode *inode,
3211 				     u64 endoff,
3212 				     const u64 destoff,
3213 				     const u64 olen,
3214 				     int no_time_update)
3215 {
3216 	struct btrfs_root *root = BTRFS_I(inode)->root;
3217 	int ret;
3218 
3219 	inode_inc_iversion(inode);
3220 	if (!no_time_update)
3221 		inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
3222 	/*
3223 	 * We round up to the block size at eof when determining which
3224 	 * extents to clone above, but shouldn't round up the file size.
3225 	 */
3226 	if (endoff > destoff + olen)
3227 		endoff = destoff + olen;
3228 	if (endoff > inode->i_size)
3229 		btrfs_i_size_write(inode, endoff);
3230 
3231 	ret = btrfs_update_inode(trans, root, inode);
3232 	if (ret) {
3233 		btrfs_abort_transaction(trans, root, ret);
3234 		btrfs_end_transaction(trans, root);
3235 		goto out;
3236 	}
3237 	ret = btrfs_end_transaction(trans, root);
3238 out:
3239 	return ret;
3240 }
3241 
3242 static void clone_update_extent_map(struct inode *inode,
3243 				    const struct btrfs_trans_handle *trans,
3244 				    const struct btrfs_path *path,
3245 				    const u64 hole_offset,
3246 				    const u64 hole_len)
3247 {
3248 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3249 	struct extent_map *em;
3250 	int ret;
3251 
3252 	em = alloc_extent_map();
3253 	if (!em) {
3254 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3255 			&BTRFS_I(inode)->runtime_flags);
3256 		return;
3257 	}
3258 
3259 	if (path) {
3260 		struct btrfs_file_extent_item *fi;
3261 
3262 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3263 				    struct btrfs_file_extent_item);
3264 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3265 		em->generation = -1;
3266 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3267 		    BTRFS_FILE_EXTENT_INLINE)
3268 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3269 				&BTRFS_I(inode)->runtime_flags);
3270 	} else {
3271 		em->start = hole_offset;
3272 		em->len = hole_len;
3273 		em->ram_bytes = em->len;
3274 		em->orig_start = hole_offset;
3275 		em->block_start = EXTENT_MAP_HOLE;
3276 		em->block_len = 0;
3277 		em->orig_block_len = 0;
3278 		em->compress_type = BTRFS_COMPRESS_NONE;
3279 		em->generation = trans->transid;
3280 	}
3281 
3282 	while (1) {
3283 		write_lock(&em_tree->lock);
3284 		ret = add_extent_mapping(em_tree, em, 1);
3285 		write_unlock(&em_tree->lock);
3286 		if (ret != -EEXIST) {
3287 			free_extent_map(em);
3288 			break;
3289 		}
3290 		btrfs_drop_extent_cache(inode, em->start,
3291 					em->start + em->len - 1, 0);
3292 	}
3293 
3294 	if (ret)
3295 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3296 			&BTRFS_I(inode)->runtime_flags);
3297 }
3298 
3299 /*
3300  * Make sure we do not end up inserting an inline extent into a file that has
3301  * already other (non-inline) extents. If a file has an inline extent it can
3302  * not have any other extents and the (single) inline extent must start at the
3303  * file offset 0. Failing to respect these rules will lead to file corruption,
3304  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3305  *
3306  * We can have extents that have been already written to disk or we can have
3307  * dirty ranges still in delalloc, in which case the extent maps and items are
3308  * created only when we run delalloc, and the delalloc ranges might fall outside
3309  * the range we are currently locking in the inode's io tree. So we check the
3310  * inode's i_size because of that (i_size updates are done while holding the
3311  * i_mutex, which we are holding here).
3312  * We also check to see if the inode has a size not greater than "datal" but has
3313  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3314  * protected against such concurrent fallocate calls by the i_mutex).
3315  *
3316  * If the file has no extents but a size greater than datal, do not allow the
3317  * copy because we would need turn the inline extent into a non-inline one (even
3318  * with NO_HOLES enabled). If we find our destination inode only has one inline
3319  * extent, just overwrite it with the source inline extent if its size is less
3320  * than the source extent's size, or we could copy the source inline extent's
3321  * data into the destination inode's inline extent if the later is greater then
3322  * the former.
3323  */
3324 static int clone_copy_inline_extent(struct inode *src,
3325 				    struct inode *dst,
3326 				    struct btrfs_trans_handle *trans,
3327 				    struct btrfs_path *path,
3328 				    struct btrfs_key *new_key,
3329 				    const u64 drop_start,
3330 				    const u64 datal,
3331 				    const u64 skip,
3332 				    const u64 size,
3333 				    char *inline_data)
3334 {
3335 	struct btrfs_root *root = BTRFS_I(dst)->root;
3336 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3337 				      root->sectorsize);
3338 	int ret;
3339 	struct btrfs_key key;
3340 
3341 	if (new_key->offset > 0)
3342 		return -EOPNOTSUPP;
3343 
3344 	key.objectid = btrfs_ino(dst);
3345 	key.type = BTRFS_EXTENT_DATA_KEY;
3346 	key.offset = 0;
3347 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3348 	if (ret < 0) {
3349 		return ret;
3350 	} else if (ret > 0) {
3351 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3352 			ret = btrfs_next_leaf(root, path);
3353 			if (ret < 0)
3354 				return ret;
3355 			else if (ret > 0)
3356 				goto copy_inline_extent;
3357 		}
3358 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3359 		if (key.objectid == btrfs_ino(dst) &&
3360 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3361 			ASSERT(key.offset > 0);
3362 			return -EOPNOTSUPP;
3363 		}
3364 	} else if (i_size_read(dst) <= datal) {
3365 		struct btrfs_file_extent_item *ei;
3366 		u64 ext_len;
3367 
3368 		/*
3369 		 * If the file size is <= datal, make sure there are no other
3370 		 * extents following (can happen do to an fallocate call with
3371 		 * the flag FALLOC_FL_KEEP_SIZE).
3372 		 */
3373 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3374 				    struct btrfs_file_extent_item);
3375 		/*
3376 		 * If it's an inline extent, it can not have other extents
3377 		 * following it.
3378 		 */
3379 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3380 		    BTRFS_FILE_EXTENT_INLINE)
3381 			goto copy_inline_extent;
3382 
3383 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3384 		if (ext_len > aligned_end)
3385 			return -EOPNOTSUPP;
3386 
3387 		ret = btrfs_next_item(root, path);
3388 		if (ret < 0) {
3389 			return ret;
3390 		} else if (ret == 0) {
3391 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3392 					      path->slots[0]);
3393 			if (key.objectid == btrfs_ino(dst) &&
3394 			    key.type == BTRFS_EXTENT_DATA_KEY)
3395 				return -EOPNOTSUPP;
3396 		}
3397 	}
3398 
3399 copy_inline_extent:
3400 	/*
3401 	 * We have no extent items, or we have an extent at offset 0 which may
3402 	 * or may not be inlined. All these cases are dealt the same way.
3403 	 */
3404 	if (i_size_read(dst) > datal) {
3405 		/*
3406 		 * If the destination inode has an inline extent...
3407 		 * This would require copying the data from the source inline
3408 		 * extent into the beginning of the destination's inline extent.
3409 		 * But this is really complex, both extents can be compressed
3410 		 * or just one of them, which would require decompressing and
3411 		 * re-compressing data (which could increase the new compressed
3412 		 * size, not allowing the compressed data to fit anymore in an
3413 		 * inline extent).
3414 		 * So just don't support this case for now (it should be rare,
3415 		 * we are not really saving space when cloning inline extents).
3416 		 */
3417 		return -EOPNOTSUPP;
3418 	}
3419 
3420 	btrfs_release_path(path);
3421 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3422 	if (ret)
3423 		return ret;
3424 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3425 	if (ret)
3426 		return ret;
3427 
3428 	if (skip) {
3429 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3430 
3431 		memmove(inline_data + start, inline_data + start + skip, datal);
3432 	}
3433 
3434 	write_extent_buffer(path->nodes[0], inline_data,
3435 			    btrfs_item_ptr_offset(path->nodes[0],
3436 						  path->slots[0]),
3437 			    size);
3438 	inode_add_bytes(dst, datal);
3439 
3440 	return 0;
3441 }
3442 
3443 /**
3444  * btrfs_clone() - clone a range from inode file to another
3445  *
3446  * @src: Inode to clone from
3447  * @inode: Inode to clone to
3448  * @off: Offset within source to start clone from
3449  * @olen: Original length, passed by user, of range to clone
3450  * @olen_aligned: Block-aligned value of olen
3451  * @destoff: Offset within @inode to start clone
3452  * @no_time_update: Whether to update mtime/ctime on the target inode
3453  */
3454 static int btrfs_clone(struct inode *src, struct inode *inode,
3455 		       const u64 off, const u64 olen, const u64 olen_aligned,
3456 		       const u64 destoff, int no_time_update)
3457 {
3458 	struct btrfs_root *root = BTRFS_I(inode)->root;
3459 	struct btrfs_path *path = NULL;
3460 	struct extent_buffer *leaf;
3461 	struct btrfs_trans_handle *trans;
3462 	char *buf = NULL;
3463 	struct btrfs_key key;
3464 	u32 nritems;
3465 	int slot;
3466 	int ret;
3467 	const u64 len = olen_aligned;
3468 	u64 last_dest_end = destoff;
3469 
3470 	ret = -ENOMEM;
3471 	buf = vmalloc(root->nodesize);
3472 	if (!buf)
3473 		return ret;
3474 
3475 	path = btrfs_alloc_path();
3476 	if (!path) {
3477 		vfree(buf);
3478 		return ret;
3479 	}
3480 
3481 	path->reada = READA_FORWARD;
3482 	/* clone data */
3483 	key.objectid = btrfs_ino(src);
3484 	key.type = BTRFS_EXTENT_DATA_KEY;
3485 	key.offset = off;
3486 
3487 	while (1) {
3488 		u64 next_key_min_offset = key.offset + 1;
3489 
3490 		/*
3491 		 * note the key will change type as we walk through the
3492 		 * tree.
3493 		 */
3494 		path->leave_spinning = 1;
3495 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3496 				0, 0);
3497 		if (ret < 0)
3498 			goto out;
3499 		/*
3500 		 * First search, if no extent item that starts at offset off was
3501 		 * found but the previous item is an extent item, it's possible
3502 		 * it might overlap our target range, therefore process it.
3503 		 */
3504 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3505 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3506 					      path->slots[0] - 1);
3507 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3508 				path->slots[0]--;
3509 		}
3510 
3511 		nritems = btrfs_header_nritems(path->nodes[0]);
3512 process_slot:
3513 		if (path->slots[0] >= nritems) {
3514 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3515 			if (ret < 0)
3516 				goto out;
3517 			if (ret > 0)
3518 				break;
3519 			nritems = btrfs_header_nritems(path->nodes[0]);
3520 		}
3521 		leaf = path->nodes[0];
3522 		slot = path->slots[0];
3523 
3524 		btrfs_item_key_to_cpu(leaf, &key, slot);
3525 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3526 		    key.objectid != btrfs_ino(src))
3527 			break;
3528 
3529 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3530 			struct btrfs_file_extent_item *extent;
3531 			int type;
3532 			u32 size;
3533 			struct btrfs_key new_key;
3534 			u64 disko = 0, diskl = 0;
3535 			u64 datao = 0, datal = 0;
3536 			u8 comp;
3537 			u64 drop_start;
3538 
3539 			extent = btrfs_item_ptr(leaf, slot,
3540 						struct btrfs_file_extent_item);
3541 			comp = btrfs_file_extent_compression(leaf, extent);
3542 			type = btrfs_file_extent_type(leaf, extent);
3543 			if (type == BTRFS_FILE_EXTENT_REG ||
3544 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3545 				disko = btrfs_file_extent_disk_bytenr(leaf,
3546 								      extent);
3547 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3548 								 extent);
3549 				datao = btrfs_file_extent_offset(leaf, extent);
3550 				datal = btrfs_file_extent_num_bytes(leaf,
3551 								    extent);
3552 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3553 				/* take upper bound, may be compressed */
3554 				datal = btrfs_file_extent_ram_bytes(leaf,
3555 								    extent);
3556 			}
3557 
3558 			/*
3559 			 * The first search might have left us at an extent
3560 			 * item that ends before our target range's start, can
3561 			 * happen if we have holes and NO_HOLES feature enabled.
3562 			 */
3563 			if (key.offset + datal <= off) {
3564 				path->slots[0]++;
3565 				goto process_slot;
3566 			} else if (key.offset >= off + len) {
3567 				break;
3568 			}
3569 			next_key_min_offset = key.offset + datal;
3570 			size = btrfs_item_size_nr(leaf, slot);
3571 			read_extent_buffer(leaf, buf,
3572 					   btrfs_item_ptr_offset(leaf, slot),
3573 					   size);
3574 
3575 			btrfs_release_path(path);
3576 			path->leave_spinning = 0;
3577 
3578 			memcpy(&new_key, &key, sizeof(new_key));
3579 			new_key.objectid = btrfs_ino(inode);
3580 			if (off <= key.offset)
3581 				new_key.offset = key.offset + destoff - off;
3582 			else
3583 				new_key.offset = destoff;
3584 
3585 			/*
3586 			 * Deal with a hole that doesn't have an extent item
3587 			 * that represents it (NO_HOLES feature enabled).
3588 			 * This hole is either in the middle of the cloning
3589 			 * range or at the beginning (fully overlaps it or
3590 			 * partially overlaps it).
3591 			 */
3592 			if (new_key.offset != last_dest_end)
3593 				drop_start = last_dest_end;
3594 			else
3595 				drop_start = new_key.offset;
3596 
3597 			/*
3598 			 * 1 - adjusting old extent (we may have to split it)
3599 			 * 1 - add new extent
3600 			 * 1 - inode update
3601 			 */
3602 			trans = btrfs_start_transaction(root, 3);
3603 			if (IS_ERR(trans)) {
3604 				ret = PTR_ERR(trans);
3605 				goto out;
3606 			}
3607 
3608 			if (type == BTRFS_FILE_EXTENT_REG ||
3609 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3610 				/*
3611 				 *    a  | --- range to clone ---|  b
3612 				 * | ------------- extent ------------- |
3613 				 */
3614 
3615 				/* subtract range b */
3616 				if (key.offset + datal > off + len)
3617 					datal = off + len - key.offset;
3618 
3619 				/* subtract range a */
3620 				if (off > key.offset) {
3621 					datao += off - key.offset;
3622 					datal -= off - key.offset;
3623 				}
3624 
3625 				ret = btrfs_drop_extents(trans, root, inode,
3626 							 drop_start,
3627 							 new_key.offset + datal,
3628 							 1);
3629 				if (ret) {
3630 					if (ret != -EOPNOTSUPP)
3631 						btrfs_abort_transaction(trans,
3632 								root, ret);
3633 					btrfs_end_transaction(trans, root);
3634 					goto out;
3635 				}
3636 
3637 				ret = btrfs_insert_empty_item(trans, root, path,
3638 							      &new_key, size);
3639 				if (ret) {
3640 					btrfs_abort_transaction(trans, root,
3641 								ret);
3642 					btrfs_end_transaction(trans, root);
3643 					goto out;
3644 				}
3645 
3646 				leaf = path->nodes[0];
3647 				slot = path->slots[0];
3648 				write_extent_buffer(leaf, buf,
3649 					    btrfs_item_ptr_offset(leaf, slot),
3650 					    size);
3651 
3652 				extent = btrfs_item_ptr(leaf, slot,
3653 						struct btrfs_file_extent_item);
3654 
3655 				/* disko == 0 means it's a hole */
3656 				if (!disko)
3657 					datao = 0;
3658 
3659 				btrfs_set_file_extent_offset(leaf, extent,
3660 							     datao);
3661 				btrfs_set_file_extent_num_bytes(leaf, extent,
3662 								datal);
3663 
3664 				if (disko) {
3665 					inode_add_bytes(inode, datal);
3666 					ret = btrfs_inc_extent_ref(trans, root,
3667 							disko, diskl, 0,
3668 							root->root_key.objectid,
3669 							btrfs_ino(inode),
3670 							new_key.offset - datao);
3671 					if (ret) {
3672 						btrfs_abort_transaction(trans,
3673 									root,
3674 									ret);
3675 						btrfs_end_transaction(trans,
3676 								      root);
3677 						goto out;
3678 
3679 					}
3680 				}
3681 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3682 				u64 skip = 0;
3683 				u64 trim = 0;
3684 
3685 				if (off > key.offset) {
3686 					skip = off - key.offset;
3687 					new_key.offset += skip;
3688 				}
3689 
3690 				if (key.offset + datal > off + len)
3691 					trim = key.offset + datal - (off + len);
3692 
3693 				if (comp && (skip || trim)) {
3694 					ret = -EINVAL;
3695 					btrfs_end_transaction(trans, root);
3696 					goto out;
3697 				}
3698 				size -= skip + trim;
3699 				datal -= skip + trim;
3700 
3701 				ret = clone_copy_inline_extent(src, inode,
3702 							       trans, path,
3703 							       &new_key,
3704 							       drop_start,
3705 							       datal,
3706 							       skip, size, buf);
3707 				if (ret) {
3708 					if (ret != -EOPNOTSUPP)
3709 						btrfs_abort_transaction(trans,
3710 									root,
3711 									ret);
3712 					btrfs_end_transaction(trans, root);
3713 					goto out;
3714 				}
3715 				leaf = path->nodes[0];
3716 				slot = path->slots[0];
3717 			}
3718 
3719 			/* If we have an implicit hole (NO_HOLES feature). */
3720 			if (drop_start < new_key.offset)
3721 				clone_update_extent_map(inode, trans,
3722 						NULL, drop_start,
3723 						new_key.offset - drop_start);
3724 
3725 			clone_update_extent_map(inode, trans, path, 0, 0);
3726 
3727 			btrfs_mark_buffer_dirty(leaf);
3728 			btrfs_release_path(path);
3729 
3730 			last_dest_end = ALIGN(new_key.offset + datal,
3731 					      root->sectorsize);
3732 			ret = clone_finish_inode_update(trans, inode,
3733 							last_dest_end,
3734 							destoff, olen,
3735 							no_time_update);
3736 			if (ret)
3737 				goto out;
3738 			if (new_key.offset + datal >= destoff + len)
3739 				break;
3740 		}
3741 		btrfs_release_path(path);
3742 		key.offset = next_key_min_offset;
3743 	}
3744 	ret = 0;
3745 
3746 	if (last_dest_end < destoff + len) {
3747 		/*
3748 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3749 		 * fully or partially overlaps our cloning range at its end.
3750 		 */
3751 		btrfs_release_path(path);
3752 
3753 		/*
3754 		 * 1 - remove extent(s)
3755 		 * 1 - inode update
3756 		 */
3757 		trans = btrfs_start_transaction(root, 2);
3758 		if (IS_ERR(trans)) {
3759 			ret = PTR_ERR(trans);
3760 			goto out;
3761 		}
3762 		ret = btrfs_drop_extents(trans, root, inode,
3763 					 last_dest_end, destoff + len, 1);
3764 		if (ret) {
3765 			if (ret != -EOPNOTSUPP)
3766 				btrfs_abort_transaction(trans, root, ret);
3767 			btrfs_end_transaction(trans, root);
3768 			goto out;
3769 		}
3770 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3771 					destoff + len - last_dest_end);
3772 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3773 						destoff, olen, no_time_update);
3774 	}
3775 
3776 out:
3777 	btrfs_free_path(path);
3778 	vfree(buf);
3779 	return ret;
3780 }
3781 
3782 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3783 					u64 off, u64 olen, u64 destoff)
3784 {
3785 	struct inode *inode = file_inode(file);
3786 	struct inode *src = file_inode(file_src);
3787 	struct btrfs_root *root = BTRFS_I(inode)->root;
3788 	int ret;
3789 	u64 len = olen;
3790 	u64 bs = root->fs_info->sb->s_blocksize;
3791 	int same_inode = src == inode;
3792 
3793 	/*
3794 	 * TODO:
3795 	 * - split compressed inline extents.  annoying: we need to
3796 	 *   decompress into destination's address_space (the file offset
3797 	 *   may change, so source mapping won't do), then recompress (or
3798 	 *   otherwise reinsert) a subrange.
3799 	 *
3800 	 * - split destination inode's inline extents.  The inline extents can
3801 	 *   be either compressed or non-compressed.
3802 	 */
3803 
3804 	if (btrfs_root_readonly(root))
3805 		return -EROFS;
3806 
3807 	if (file_src->f_path.mnt != file->f_path.mnt ||
3808 	    src->i_sb != inode->i_sb)
3809 		return -EXDEV;
3810 
3811 	/* don't make the dst file partly checksummed */
3812 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3813 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3814 		return -EINVAL;
3815 
3816 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3817 		return -EISDIR;
3818 
3819 	if (!same_inode) {
3820 		btrfs_double_inode_lock(src, inode);
3821 	} else {
3822 		inode_lock(src);
3823 	}
3824 
3825 	/* determine range to clone */
3826 	ret = -EINVAL;
3827 	if (off + len > src->i_size || off + len < off)
3828 		goto out_unlock;
3829 	if (len == 0)
3830 		olen = len = src->i_size - off;
3831 	/* if we extend to eof, continue to block boundary */
3832 	if (off + len == src->i_size)
3833 		len = ALIGN(src->i_size, bs) - off;
3834 
3835 	if (len == 0) {
3836 		ret = 0;
3837 		goto out_unlock;
3838 	}
3839 
3840 	/* verify the end result is block aligned */
3841 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3842 	    !IS_ALIGNED(destoff, bs))
3843 		goto out_unlock;
3844 
3845 	/* verify if ranges are overlapped within the same file */
3846 	if (same_inode) {
3847 		if (destoff + len > off && destoff < off + len)
3848 			goto out_unlock;
3849 	}
3850 
3851 	if (destoff > inode->i_size) {
3852 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3853 		if (ret)
3854 			goto out_unlock;
3855 	}
3856 
3857 	/*
3858 	 * Lock the target range too. Right after we replace the file extent
3859 	 * items in the fs tree (which now point to the cloned data), we might
3860 	 * have a worker replace them with extent items relative to a write
3861 	 * operation that was issued before this clone operation (i.e. confront
3862 	 * with inode.c:btrfs_finish_ordered_io).
3863 	 */
3864 	if (same_inode) {
3865 		u64 lock_start = min_t(u64, off, destoff);
3866 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3867 
3868 		ret = lock_extent_range(src, lock_start, lock_len, true);
3869 	} else {
3870 		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3871 					       true);
3872 	}
3873 	ASSERT(ret == 0);
3874 	if (WARN_ON(ret)) {
3875 		/* ranges in the io trees already unlocked */
3876 		goto out_unlock;
3877 	}
3878 
3879 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3880 
3881 	if (same_inode) {
3882 		u64 lock_start = min_t(u64, off, destoff);
3883 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3884 
3885 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3886 	} else {
3887 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3888 	}
3889 	/*
3890 	 * Truncate page cache pages so that future reads will see the cloned
3891 	 * data immediately and not the previous data.
3892 	 */
3893 	truncate_inode_pages_range(&inode->i_data,
3894 				round_down(destoff, PAGE_SIZE),
3895 				round_up(destoff + len, PAGE_SIZE) - 1);
3896 out_unlock:
3897 	if (!same_inode)
3898 		btrfs_double_inode_unlock(src, inode);
3899 	else
3900 		inode_unlock(src);
3901 	return ret;
3902 }
3903 
3904 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3905 			      struct file *file_out, loff_t pos_out,
3906 			      size_t len, unsigned int flags)
3907 {
3908 	ssize_t ret;
3909 
3910 	ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3911 	if (ret == 0)
3912 		ret = len;
3913 	return ret;
3914 }
3915 
3916 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3917 		struct file *dst_file, loff_t destoff, u64 len)
3918 {
3919 	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3920 }
3921 
3922 /*
3923  * there are many ways the trans_start and trans_end ioctls can lead
3924  * to deadlocks.  They should only be used by applications that
3925  * basically own the machine, and have a very in depth understanding
3926  * of all the possible deadlocks and enospc problems.
3927  */
3928 static long btrfs_ioctl_trans_start(struct file *file)
3929 {
3930 	struct inode *inode = file_inode(file);
3931 	struct btrfs_root *root = BTRFS_I(inode)->root;
3932 	struct btrfs_trans_handle *trans;
3933 	int ret;
3934 
3935 	ret = -EPERM;
3936 	if (!capable(CAP_SYS_ADMIN))
3937 		goto out;
3938 
3939 	ret = -EINPROGRESS;
3940 	if (file->private_data)
3941 		goto out;
3942 
3943 	ret = -EROFS;
3944 	if (btrfs_root_readonly(root))
3945 		goto out;
3946 
3947 	ret = mnt_want_write_file(file);
3948 	if (ret)
3949 		goto out;
3950 
3951 	atomic_inc(&root->fs_info->open_ioctl_trans);
3952 
3953 	ret = -ENOMEM;
3954 	trans = btrfs_start_ioctl_transaction(root);
3955 	if (IS_ERR(trans))
3956 		goto out_drop;
3957 
3958 	file->private_data = trans;
3959 	return 0;
3960 
3961 out_drop:
3962 	atomic_dec(&root->fs_info->open_ioctl_trans);
3963 	mnt_drop_write_file(file);
3964 out:
3965 	return ret;
3966 }
3967 
3968 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3969 {
3970 	struct inode *inode = file_inode(file);
3971 	struct btrfs_root *root = BTRFS_I(inode)->root;
3972 	struct btrfs_root *new_root;
3973 	struct btrfs_dir_item *di;
3974 	struct btrfs_trans_handle *trans;
3975 	struct btrfs_path *path;
3976 	struct btrfs_key location;
3977 	struct btrfs_disk_key disk_key;
3978 	u64 objectid = 0;
3979 	u64 dir_id;
3980 	int ret;
3981 
3982 	if (!capable(CAP_SYS_ADMIN))
3983 		return -EPERM;
3984 
3985 	ret = mnt_want_write_file(file);
3986 	if (ret)
3987 		return ret;
3988 
3989 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3990 		ret = -EFAULT;
3991 		goto out;
3992 	}
3993 
3994 	if (!objectid)
3995 		objectid = BTRFS_FS_TREE_OBJECTID;
3996 
3997 	location.objectid = objectid;
3998 	location.type = BTRFS_ROOT_ITEM_KEY;
3999 	location.offset = (u64)-1;
4000 
4001 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4002 	if (IS_ERR(new_root)) {
4003 		ret = PTR_ERR(new_root);
4004 		goto out;
4005 	}
4006 
4007 	path = btrfs_alloc_path();
4008 	if (!path) {
4009 		ret = -ENOMEM;
4010 		goto out;
4011 	}
4012 	path->leave_spinning = 1;
4013 
4014 	trans = btrfs_start_transaction(root, 1);
4015 	if (IS_ERR(trans)) {
4016 		btrfs_free_path(path);
4017 		ret = PTR_ERR(trans);
4018 		goto out;
4019 	}
4020 
4021 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4022 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4023 				   dir_id, "default", 7, 1);
4024 	if (IS_ERR_OR_NULL(di)) {
4025 		btrfs_free_path(path);
4026 		btrfs_end_transaction(trans, root);
4027 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4028 			   "item, this isn't going to work");
4029 		ret = -ENOENT;
4030 		goto out;
4031 	}
4032 
4033 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4034 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4035 	btrfs_mark_buffer_dirty(path->nodes[0]);
4036 	btrfs_free_path(path);
4037 
4038 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4039 	btrfs_end_transaction(trans, root);
4040 out:
4041 	mnt_drop_write_file(file);
4042 	return ret;
4043 }
4044 
4045 void btrfs_get_block_group_info(struct list_head *groups_list,
4046 				struct btrfs_ioctl_space_info *space)
4047 {
4048 	struct btrfs_block_group_cache *block_group;
4049 
4050 	space->total_bytes = 0;
4051 	space->used_bytes = 0;
4052 	space->flags = 0;
4053 	list_for_each_entry(block_group, groups_list, list) {
4054 		space->flags = block_group->flags;
4055 		space->total_bytes += block_group->key.offset;
4056 		space->used_bytes +=
4057 			btrfs_block_group_used(&block_group->item);
4058 	}
4059 }
4060 
4061 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4062 {
4063 	struct btrfs_ioctl_space_args space_args;
4064 	struct btrfs_ioctl_space_info space;
4065 	struct btrfs_ioctl_space_info *dest;
4066 	struct btrfs_ioctl_space_info *dest_orig;
4067 	struct btrfs_ioctl_space_info __user *user_dest;
4068 	struct btrfs_space_info *info;
4069 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4070 		       BTRFS_BLOCK_GROUP_SYSTEM,
4071 		       BTRFS_BLOCK_GROUP_METADATA,
4072 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4073 	int num_types = 4;
4074 	int alloc_size;
4075 	int ret = 0;
4076 	u64 slot_count = 0;
4077 	int i, c;
4078 
4079 	if (copy_from_user(&space_args,
4080 			   (struct btrfs_ioctl_space_args __user *)arg,
4081 			   sizeof(space_args)))
4082 		return -EFAULT;
4083 
4084 	for (i = 0; i < num_types; i++) {
4085 		struct btrfs_space_info *tmp;
4086 
4087 		info = NULL;
4088 		rcu_read_lock();
4089 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4090 					list) {
4091 			if (tmp->flags == types[i]) {
4092 				info = tmp;
4093 				break;
4094 			}
4095 		}
4096 		rcu_read_unlock();
4097 
4098 		if (!info)
4099 			continue;
4100 
4101 		down_read(&info->groups_sem);
4102 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4103 			if (!list_empty(&info->block_groups[c]))
4104 				slot_count++;
4105 		}
4106 		up_read(&info->groups_sem);
4107 	}
4108 
4109 	/*
4110 	 * Global block reserve, exported as a space_info
4111 	 */
4112 	slot_count++;
4113 
4114 	/* space_slots == 0 means they are asking for a count */
4115 	if (space_args.space_slots == 0) {
4116 		space_args.total_spaces = slot_count;
4117 		goto out;
4118 	}
4119 
4120 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4121 
4122 	alloc_size = sizeof(*dest) * slot_count;
4123 
4124 	/* we generally have at most 6 or so space infos, one for each raid
4125 	 * level.  So, a whole page should be more than enough for everyone
4126 	 */
4127 	if (alloc_size > PAGE_SIZE)
4128 		return -ENOMEM;
4129 
4130 	space_args.total_spaces = 0;
4131 	dest = kmalloc(alloc_size, GFP_KERNEL);
4132 	if (!dest)
4133 		return -ENOMEM;
4134 	dest_orig = dest;
4135 
4136 	/* now we have a buffer to copy into */
4137 	for (i = 0; i < num_types; i++) {
4138 		struct btrfs_space_info *tmp;
4139 
4140 		if (!slot_count)
4141 			break;
4142 
4143 		info = NULL;
4144 		rcu_read_lock();
4145 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4146 					list) {
4147 			if (tmp->flags == types[i]) {
4148 				info = tmp;
4149 				break;
4150 			}
4151 		}
4152 		rcu_read_unlock();
4153 
4154 		if (!info)
4155 			continue;
4156 		down_read(&info->groups_sem);
4157 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4158 			if (!list_empty(&info->block_groups[c])) {
4159 				btrfs_get_block_group_info(
4160 					&info->block_groups[c], &space);
4161 				memcpy(dest, &space, sizeof(space));
4162 				dest++;
4163 				space_args.total_spaces++;
4164 				slot_count--;
4165 			}
4166 			if (!slot_count)
4167 				break;
4168 		}
4169 		up_read(&info->groups_sem);
4170 	}
4171 
4172 	/*
4173 	 * Add global block reserve
4174 	 */
4175 	if (slot_count) {
4176 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4177 
4178 		spin_lock(&block_rsv->lock);
4179 		space.total_bytes = block_rsv->size;
4180 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4181 		spin_unlock(&block_rsv->lock);
4182 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4183 		memcpy(dest, &space, sizeof(space));
4184 		space_args.total_spaces++;
4185 	}
4186 
4187 	user_dest = (struct btrfs_ioctl_space_info __user *)
4188 		(arg + sizeof(struct btrfs_ioctl_space_args));
4189 
4190 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4191 		ret = -EFAULT;
4192 
4193 	kfree(dest_orig);
4194 out:
4195 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4196 		ret = -EFAULT;
4197 
4198 	return ret;
4199 }
4200 
4201 /*
4202  * there are many ways the trans_start and trans_end ioctls can lead
4203  * to deadlocks.  They should only be used by applications that
4204  * basically own the machine, and have a very in depth understanding
4205  * of all the possible deadlocks and enospc problems.
4206  */
4207 long btrfs_ioctl_trans_end(struct file *file)
4208 {
4209 	struct inode *inode = file_inode(file);
4210 	struct btrfs_root *root = BTRFS_I(inode)->root;
4211 	struct btrfs_trans_handle *trans;
4212 
4213 	trans = file->private_data;
4214 	if (!trans)
4215 		return -EINVAL;
4216 	file->private_data = NULL;
4217 
4218 	btrfs_end_transaction(trans, root);
4219 
4220 	atomic_dec(&root->fs_info->open_ioctl_trans);
4221 
4222 	mnt_drop_write_file(file);
4223 	return 0;
4224 }
4225 
4226 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4227 					    void __user *argp)
4228 {
4229 	struct btrfs_trans_handle *trans;
4230 	u64 transid;
4231 	int ret;
4232 
4233 	trans = btrfs_attach_transaction_barrier(root);
4234 	if (IS_ERR(trans)) {
4235 		if (PTR_ERR(trans) != -ENOENT)
4236 			return PTR_ERR(trans);
4237 
4238 		/* No running transaction, don't bother */
4239 		transid = root->fs_info->last_trans_committed;
4240 		goto out;
4241 	}
4242 	transid = trans->transid;
4243 	ret = btrfs_commit_transaction_async(trans, root, 0);
4244 	if (ret) {
4245 		btrfs_end_transaction(trans, root);
4246 		return ret;
4247 	}
4248 out:
4249 	if (argp)
4250 		if (copy_to_user(argp, &transid, sizeof(transid)))
4251 			return -EFAULT;
4252 	return 0;
4253 }
4254 
4255 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4256 					   void __user *argp)
4257 {
4258 	u64 transid;
4259 
4260 	if (argp) {
4261 		if (copy_from_user(&transid, argp, sizeof(transid)))
4262 			return -EFAULT;
4263 	} else {
4264 		transid = 0;  /* current trans */
4265 	}
4266 	return btrfs_wait_for_commit(root, transid);
4267 }
4268 
4269 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4270 {
4271 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4272 	struct btrfs_ioctl_scrub_args *sa;
4273 	int ret;
4274 
4275 	if (!capable(CAP_SYS_ADMIN))
4276 		return -EPERM;
4277 
4278 	sa = memdup_user(arg, sizeof(*sa));
4279 	if (IS_ERR(sa))
4280 		return PTR_ERR(sa);
4281 
4282 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4283 		ret = mnt_want_write_file(file);
4284 		if (ret)
4285 			goto out;
4286 	}
4287 
4288 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4289 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4290 			      0);
4291 
4292 	if (copy_to_user(arg, sa, sizeof(*sa)))
4293 		ret = -EFAULT;
4294 
4295 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4296 		mnt_drop_write_file(file);
4297 out:
4298 	kfree(sa);
4299 	return ret;
4300 }
4301 
4302 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4303 {
4304 	if (!capable(CAP_SYS_ADMIN))
4305 		return -EPERM;
4306 
4307 	return btrfs_scrub_cancel(root->fs_info);
4308 }
4309 
4310 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4311 				       void __user *arg)
4312 {
4313 	struct btrfs_ioctl_scrub_args *sa;
4314 	int ret;
4315 
4316 	if (!capable(CAP_SYS_ADMIN))
4317 		return -EPERM;
4318 
4319 	sa = memdup_user(arg, sizeof(*sa));
4320 	if (IS_ERR(sa))
4321 		return PTR_ERR(sa);
4322 
4323 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4324 
4325 	if (copy_to_user(arg, sa, sizeof(*sa)))
4326 		ret = -EFAULT;
4327 
4328 	kfree(sa);
4329 	return ret;
4330 }
4331 
4332 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4333 				      void __user *arg)
4334 {
4335 	struct btrfs_ioctl_get_dev_stats *sa;
4336 	int ret;
4337 
4338 	sa = memdup_user(arg, sizeof(*sa));
4339 	if (IS_ERR(sa))
4340 		return PTR_ERR(sa);
4341 
4342 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4343 		kfree(sa);
4344 		return -EPERM;
4345 	}
4346 
4347 	ret = btrfs_get_dev_stats(root, sa);
4348 
4349 	if (copy_to_user(arg, sa, sizeof(*sa)))
4350 		ret = -EFAULT;
4351 
4352 	kfree(sa);
4353 	return ret;
4354 }
4355 
4356 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4357 {
4358 	struct btrfs_ioctl_dev_replace_args *p;
4359 	int ret;
4360 
4361 	if (!capable(CAP_SYS_ADMIN))
4362 		return -EPERM;
4363 
4364 	p = memdup_user(arg, sizeof(*p));
4365 	if (IS_ERR(p))
4366 		return PTR_ERR(p);
4367 
4368 	switch (p->cmd) {
4369 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4370 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4371 			ret = -EROFS;
4372 			goto out;
4373 		}
4374 		if (atomic_xchg(
4375 			&root->fs_info->mutually_exclusive_operation_running,
4376 			1)) {
4377 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4378 		} else {
4379 			ret = btrfs_dev_replace_start(root, p);
4380 			atomic_set(
4381 			 &root->fs_info->mutually_exclusive_operation_running,
4382 			 0);
4383 		}
4384 		break;
4385 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4386 		btrfs_dev_replace_status(root->fs_info, p);
4387 		ret = 0;
4388 		break;
4389 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4390 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4391 		break;
4392 	default:
4393 		ret = -EINVAL;
4394 		break;
4395 	}
4396 
4397 	if (copy_to_user(arg, p, sizeof(*p)))
4398 		ret = -EFAULT;
4399 out:
4400 	kfree(p);
4401 	return ret;
4402 }
4403 
4404 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4405 {
4406 	int ret = 0;
4407 	int i;
4408 	u64 rel_ptr;
4409 	int size;
4410 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4411 	struct inode_fs_paths *ipath = NULL;
4412 	struct btrfs_path *path;
4413 
4414 	if (!capable(CAP_DAC_READ_SEARCH))
4415 		return -EPERM;
4416 
4417 	path = btrfs_alloc_path();
4418 	if (!path) {
4419 		ret = -ENOMEM;
4420 		goto out;
4421 	}
4422 
4423 	ipa = memdup_user(arg, sizeof(*ipa));
4424 	if (IS_ERR(ipa)) {
4425 		ret = PTR_ERR(ipa);
4426 		ipa = NULL;
4427 		goto out;
4428 	}
4429 
4430 	size = min_t(u32, ipa->size, 4096);
4431 	ipath = init_ipath(size, root, path);
4432 	if (IS_ERR(ipath)) {
4433 		ret = PTR_ERR(ipath);
4434 		ipath = NULL;
4435 		goto out;
4436 	}
4437 
4438 	ret = paths_from_inode(ipa->inum, ipath);
4439 	if (ret < 0)
4440 		goto out;
4441 
4442 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4443 		rel_ptr = ipath->fspath->val[i] -
4444 			  (u64)(unsigned long)ipath->fspath->val;
4445 		ipath->fspath->val[i] = rel_ptr;
4446 	}
4447 
4448 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4449 			   (void *)(unsigned long)ipath->fspath, size);
4450 	if (ret) {
4451 		ret = -EFAULT;
4452 		goto out;
4453 	}
4454 
4455 out:
4456 	btrfs_free_path(path);
4457 	free_ipath(ipath);
4458 	kfree(ipa);
4459 
4460 	return ret;
4461 }
4462 
4463 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4464 {
4465 	struct btrfs_data_container *inodes = ctx;
4466 	const size_t c = 3 * sizeof(u64);
4467 
4468 	if (inodes->bytes_left >= c) {
4469 		inodes->bytes_left -= c;
4470 		inodes->val[inodes->elem_cnt] = inum;
4471 		inodes->val[inodes->elem_cnt + 1] = offset;
4472 		inodes->val[inodes->elem_cnt + 2] = root;
4473 		inodes->elem_cnt += 3;
4474 	} else {
4475 		inodes->bytes_missing += c - inodes->bytes_left;
4476 		inodes->bytes_left = 0;
4477 		inodes->elem_missed += 3;
4478 	}
4479 
4480 	return 0;
4481 }
4482 
4483 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4484 					void __user *arg)
4485 {
4486 	int ret = 0;
4487 	int size;
4488 	struct btrfs_ioctl_logical_ino_args *loi;
4489 	struct btrfs_data_container *inodes = NULL;
4490 	struct btrfs_path *path = NULL;
4491 
4492 	if (!capable(CAP_SYS_ADMIN))
4493 		return -EPERM;
4494 
4495 	loi = memdup_user(arg, sizeof(*loi));
4496 	if (IS_ERR(loi)) {
4497 		ret = PTR_ERR(loi);
4498 		loi = NULL;
4499 		goto out;
4500 	}
4501 
4502 	path = btrfs_alloc_path();
4503 	if (!path) {
4504 		ret = -ENOMEM;
4505 		goto out;
4506 	}
4507 
4508 	size = min_t(u32, loi->size, SZ_64K);
4509 	inodes = init_data_container(size);
4510 	if (IS_ERR(inodes)) {
4511 		ret = PTR_ERR(inodes);
4512 		inodes = NULL;
4513 		goto out;
4514 	}
4515 
4516 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4517 					  build_ino_list, inodes);
4518 	if (ret == -EINVAL)
4519 		ret = -ENOENT;
4520 	if (ret < 0)
4521 		goto out;
4522 
4523 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4524 			   (void *)(unsigned long)inodes, size);
4525 	if (ret)
4526 		ret = -EFAULT;
4527 
4528 out:
4529 	btrfs_free_path(path);
4530 	vfree(inodes);
4531 	kfree(loi);
4532 
4533 	return ret;
4534 }
4535 
4536 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4537 			       struct btrfs_ioctl_balance_args *bargs)
4538 {
4539 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4540 
4541 	bargs->flags = bctl->flags;
4542 
4543 	if (atomic_read(&fs_info->balance_running))
4544 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4545 	if (atomic_read(&fs_info->balance_pause_req))
4546 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4547 	if (atomic_read(&fs_info->balance_cancel_req))
4548 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4549 
4550 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4551 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4552 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4553 
4554 	if (lock) {
4555 		spin_lock(&fs_info->balance_lock);
4556 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4557 		spin_unlock(&fs_info->balance_lock);
4558 	} else {
4559 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4560 	}
4561 }
4562 
4563 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4564 {
4565 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4566 	struct btrfs_fs_info *fs_info = root->fs_info;
4567 	struct btrfs_ioctl_balance_args *bargs;
4568 	struct btrfs_balance_control *bctl;
4569 	bool need_unlock; /* for mut. excl. ops lock */
4570 	int ret;
4571 
4572 	if (!capable(CAP_SYS_ADMIN))
4573 		return -EPERM;
4574 
4575 	ret = mnt_want_write_file(file);
4576 	if (ret)
4577 		return ret;
4578 
4579 again:
4580 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4581 		mutex_lock(&fs_info->volume_mutex);
4582 		mutex_lock(&fs_info->balance_mutex);
4583 		need_unlock = true;
4584 		goto locked;
4585 	}
4586 
4587 	/*
4588 	 * mut. excl. ops lock is locked.  Three possibilites:
4589 	 *   (1) some other op is running
4590 	 *   (2) balance is running
4591 	 *   (3) balance is paused -- special case (think resume)
4592 	 */
4593 	mutex_lock(&fs_info->balance_mutex);
4594 	if (fs_info->balance_ctl) {
4595 		/* this is either (2) or (3) */
4596 		if (!atomic_read(&fs_info->balance_running)) {
4597 			mutex_unlock(&fs_info->balance_mutex);
4598 			if (!mutex_trylock(&fs_info->volume_mutex))
4599 				goto again;
4600 			mutex_lock(&fs_info->balance_mutex);
4601 
4602 			if (fs_info->balance_ctl &&
4603 			    !atomic_read(&fs_info->balance_running)) {
4604 				/* this is (3) */
4605 				need_unlock = false;
4606 				goto locked;
4607 			}
4608 
4609 			mutex_unlock(&fs_info->balance_mutex);
4610 			mutex_unlock(&fs_info->volume_mutex);
4611 			goto again;
4612 		} else {
4613 			/* this is (2) */
4614 			mutex_unlock(&fs_info->balance_mutex);
4615 			ret = -EINPROGRESS;
4616 			goto out;
4617 		}
4618 	} else {
4619 		/* this is (1) */
4620 		mutex_unlock(&fs_info->balance_mutex);
4621 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4622 		goto out;
4623 	}
4624 
4625 locked:
4626 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4627 
4628 	if (arg) {
4629 		bargs = memdup_user(arg, sizeof(*bargs));
4630 		if (IS_ERR(bargs)) {
4631 			ret = PTR_ERR(bargs);
4632 			goto out_unlock;
4633 		}
4634 
4635 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4636 			if (!fs_info->balance_ctl) {
4637 				ret = -ENOTCONN;
4638 				goto out_bargs;
4639 			}
4640 
4641 			bctl = fs_info->balance_ctl;
4642 			spin_lock(&fs_info->balance_lock);
4643 			bctl->flags |= BTRFS_BALANCE_RESUME;
4644 			spin_unlock(&fs_info->balance_lock);
4645 
4646 			goto do_balance;
4647 		}
4648 	} else {
4649 		bargs = NULL;
4650 	}
4651 
4652 	if (fs_info->balance_ctl) {
4653 		ret = -EINPROGRESS;
4654 		goto out_bargs;
4655 	}
4656 
4657 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4658 	if (!bctl) {
4659 		ret = -ENOMEM;
4660 		goto out_bargs;
4661 	}
4662 
4663 	bctl->fs_info = fs_info;
4664 	if (arg) {
4665 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4666 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4667 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4668 
4669 		bctl->flags = bargs->flags;
4670 	} else {
4671 		/* balance everything - no filters */
4672 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4673 	}
4674 
4675 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4676 		ret = -EINVAL;
4677 		goto out_bctl;
4678 	}
4679 
4680 do_balance:
4681 	/*
4682 	 * Ownership of bctl and mutually_exclusive_operation_running
4683 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4684 	 * or, if restriper was paused all the way until unmount, in
4685 	 * free_fs_info.  mutually_exclusive_operation_running is
4686 	 * cleared in __cancel_balance.
4687 	 */
4688 	need_unlock = false;
4689 
4690 	ret = btrfs_balance(bctl, bargs);
4691 	bctl = NULL;
4692 
4693 	if (arg) {
4694 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4695 			ret = -EFAULT;
4696 	}
4697 
4698 out_bctl:
4699 	kfree(bctl);
4700 out_bargs:
4701 	kfree(bargs);
4702 out_unlock:
4703 	mutex_unlock(&fs_info->balance_mutex);
4704 	mutex_unlock(&fs_info->volume_mutex);
4705 	if (need_unlock)
4706 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4707 out:
4708 	mnt_drop_write_file(file);
4709 	return ret;
4710 }
4711 
4712 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4713 {
4714 	if (!capable(CAP_SYS_ADMIN))
4715 		return -EPERM;
4716 
4717 	switch (cmd) {
4718 	case BTRFS_BALANCE_CTL_PAUSE:
4719 		return btrfs_pause_balance(root->fs_info);
4720 	case BTRFS_BALANCE_CTL_CANCEL:
4721 		return btrfs_cancel_balance(root->fs_info);
4722 	}
4723 
4724 	return -EINVAL;
4725 }
4726 
4727 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4728 					 void __user *arg)
4729 {
4730 	struct btrfs_fs_info *fs_info = root->fs_info;
4731 	struct btrfs_ioctl_balance_args *bargs;
4732 	int ret = 0;
4733 
4734 	if (!capable(CAP_SYS_ADMIN))
4735 		return -EPERM;
4736 
4737 	mutex_lock(&fs_info->balance_mutex);
4738 	if (!fs_info->balance_ctl) {
4739 		ret = -ENOTCONN;
4740 		goto out;
4741 	}
4742 
4743 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4744 	if (!bargs) {
4745 		ret = -ENOMEM;
4746 		goto out;
4747 	}
4748 
4749 	update_ioctl_balance_args(fs_info, 1, bargs);
4750 
4751 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4752 		ret = -EFAULT;
4753 
4754 	kfree(bargs);
4755 out:
4756 	mutex_unlock(&fs_info->balance_mutex);
4757 	return ret;
4758 }
4759 
4760 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4761 {
4762 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4763 	struct btrfs_ioctl_quota_ctl_args *sa;
4764 	struct btrfs_trans_handle *trans = NULL;
4765 	int ret;
4766 	int err;
4767 
4768 	if (!capable(CAP_SYS_ADMIN))
4769 		return -EPERM;
4770 
4771 	ret = mnt_want_write_file(file);
4772 	if (ret)
4773 		return ret;
4774 
4775 	sa = memdup_user(arg, sizeof(*sa));
4776 	if (IS_ERR(sa)) {
4777 		ret = PTR_ERR(sa);
4778 		goto drop_write;
4779 	}
4780 
4781 	down_write(&root->fs_info->subvol_sem);
4782 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4783 	if (IS_ERR(trans)) {
4784 		ret = PTR_ERR(trans);
4785 		goto out;
4786 	}
4787 
4788 	switch (sa->cmd) {
4789 	case BTRFS_QUOTA_CTL_ENABLE:
4790 		ret = btrfs_quota_enable(trans, root->fs_info);
4791 		break;
4792 	case BTRFS_QUOTA_CTL_DISABLE:
4793 		ret = btrfs_quota_disable(trans, root->fs_info);
4794 		break;
4795 	default:
4796 		ret = -EINVAL;
4797 		break;
4798 	}
4799 
4800 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4801 	if (err && !ret)
4802 		ret = err;
4803 out:
4804 	kfree(sa);
4805 	up_write(&root->fs_info->subvol_sem);
4806 drop_write:
4807 	mnt_drop_write_file(file);
4808 	return ret;
4809 }
4810 
4811 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4812 {
4813 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4814 	struct btrfs_ioctl_qgroup_assign_args *sa;
4815 	struct btrfs_trans_handle *trans;
4816 	int ret;
4817 	int err;
4818 
4819 	if (!capable(CAP_SYS_ADMIN))
4820 		return -EPERM;
4821 
4822 	ret = mnt_want_write_file(file);
4823 	if (ret)
4824 		return ret;
4825 
4826 	sa = memdup_user(arg, sizeof(*sa));
4827 	if (IS_ERR(sa)) {
4828 		ret = PTR_ERR(sa);
4829 		goto drop_write;
4830 	}
4831 
4832 	trans = btrfs_join_transaction(root);
4833 	if (IS_ERR(trans)) {
4834 		ret = PTR_ERR(trans);
4835 		goto out;
4836 	}
4837 
4838 	/* FIXME: check if the IDs really exist */
4839 	if (sa->assign) {
4840 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4841 						sa->src, sa->dst);
4842 	} else {
4843 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4844 						sa->src, sa->dst);
4845 	}
4846 
4847 	/* update qgroup status and info */
4848 	err = btrfs_run_qgroups(trans, root->fs_info);
4849 	if (err < 0)
4850 		btrfs_std_error(root->fs_info, ret,
4851 			    "failed to update qgroup status and info\n");
4852 	err = btrfs_end_transaction(trans, root);
4853 	if (err && !ret)
4854 		ret = err;
4855 
4856 out:
4857 	kfree(sa);
4858 drop_write:
4859 	mnt_drop_write_file(file);
4860 	return ret;
4861 }
4862 
4863 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4864 {
4865 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4866 	struct btrfs_ioctl_qgroup_create_args *sa;
4867 	struct btrfs_trans_handle *trans;
4868 	int ret;
4869 	int err;
4870 
4871 	if (!capable(CAP_SYS_ADMIN))
4872 		return -EPERM;
4873 
4874 	ret = mnt_want_write_file(file);
4875 	if (ret)
4876 		return ret;
4877 
4878 	sa = memdup_user(arg, sizeof(*sa));
4879 	if (IS_ERR(sa)) {
4880 		ret = PTR_ERR(sa);
4881 		goto drop_write;
4882 	}
4883 
4884 	if (!sa->qgroupid) {
4885 		ret = -EINVAL;
4886 		goto out;
4887 	}
4888 
4889 	trans = btrfs_join_transaction(root);
4890 	if (IS_ERR(trans)) {
4891 		ret = PTR_ERR(trans);
4892 		goto out;
4893 	}
4894 
4895 	/* FIXME: check if the IDs really exist */
4896 	if (sa->create) {
4897 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4898 	} else {
4899 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4900 	}
4901 
4902 	err = btrfs_end_transaction(trans, root);
4903 	if (err && !ret)
4904 		ret = err;
4905 
4906 out:
4907 	kfree(sa);
4908 drop_write:
4909 	mnt_drop_write_file(file);
4910 	return ret;
4911 }
4912 
4913 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4914 {
4915 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4916 	struct btrfs_ioctl_qgroup_limit_args *sa;
4917 	struct btrfs_trans_handle *trans;
4918 	int ret;
4919 	int err;
4920 	u64 qgroupid;
4921 
4922 	if (!capable(CAP_SYS_ADMIN))
4923 		return -EPERM;
4924 
4925 	ret = mnt_want_write_file(file);
4926 	if (ret)
4927 		return ret;
4928 
4929 	sa = memdup_user(arg, sizeof(*sa));
4930 	if (IS_ERR(sa)) {
4931 		ret = PTR_ERR(sa);
4932 		goto drop_write;
4933 	}
4934 
4935 	trans = btrfs_join_transaction(root);
4936 	if (IS_ERR(trans)) {
4937 		ret = PTR_ERR(trans);
4938 		goto out;
4939 	}
4940 
4941 	qgroupid = sa->qgroupid;
4942 	if (!qgroupid) {
4943 		/* take the current subvol as qgroup */
4944 		qgroupid = root->root_key.objectid;
4945 	}
4946 
4947 	/* FIXME: check if the IDs really exist */
4948 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4949 
4950 	err = btrfs_end_transaction(trans, root);
4951 	if (err && !ret)
4952 		ret = err;
4953 
4954 out:
4955 	kfree(sa);
4956 drop_write:
4957 	mnt_drop_write_file(file);
4958 	return ret;
4959 }
4960 
4961 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4962 {
4963 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4964 	struct btrfs_ioctl_quota_rescan_args *qsa;
4965 	int ret;
4966 
4967 	if (!capable(CAP_SYS_ADMIN))
4968 		return -EPERM;
4969 
4970 	ret = mnt_want_write_file(file);
4971 	if (ret)
4972 		return ret;
4973 
4974 	qsa = memdup_user(arg, sizeof(*qsa));
4975 	if (IS_ERR(qsa)) {
4976 		ret = PTR_ERR(qsa);
4977 		goto drop_write;
4978 	}
4979 
4980 	if (qsa->flags) {
4981 		ret = -EINVAL;
4982 		goto out;
4983 	}
4984 
4985 	ret = btrfs_qgroup_rescan(root->fs_info);
4986 
4987 out:
4988 	kfree(qsa);
4989 drop_write:
4990 	mnt_drop_write_file(file);
4991 	return ret;
4992 }
4993 
4994 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4995 {
4996 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4997 	struct btrfs_ioctl_quota_rescan_args *qsa;
4998 	int ret = 0;
4999 
5000 	if (!capable(CAP_SYS_ADMIN))
5001 		return -EPERM;
5002 
5003 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5004 	if (!qsa)
5005 		return -ENOMEM;
5006 
5007 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5008 		qsa->flags = 1;
5009 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5010 	}
5011 
5012 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5013 		ret = -EFAULT;
5014 
5015 	kfree(qsa);
5016 	return ret;
5017 }
5018 
5019 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5020 {
5021 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5022 
5023 	if (!capable(CAP_SYS_ADMIN))
5024 		return -EPERM;
5025 
5026 	return btrfs_qgroup_wait_for_completion(root->fs_info);
5027 }
5028 
5029 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5030 					    struct btrfs_ioctl_received_subvol_args *sa)
5031 {
5032 	struct inode *inode = file_inode(file);
5033 	struct btrfs_root *root = BTRFS_I(inode)->root;
5034 	struct btrfs_root_item *root_item = &root->root_item;
5035 	struct btrfs_trans_handle *trans;
5036 	struct timespec ct = current_fs_time(inode->i_sb);
5037 	int ret = 0;
5038 	int received_uuid_changed;
5039 
5040 	if (!inode_owner_or_capable(inode))
5041 		return -EPERM;
5042 
5043 	ret = mnt_want_write_file(file);
5044 	if (ret < 0)
5045 		return ret;
5046 
5047 	down_write(&root->fs_info->subvol_sem);
5048 
5049 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5050 		ret = -EINVAL;
5051 		goto out;
5052 	}
5053 
5054 	if (btrfs_root_readonly(root)) {
5055 		ret = -EROFS;
5056 		goto out;
5057 	}
5058 
5059 	/*
5060 	 * 1 - root item
5061 	 * 2 - uuid items (received uuid + subvol uuid)
5062 	 */
5063 	trans = btrfs_start_transaction(root, 3);
5064 	if (IS_ERR(trans)) {
5065 		ret = PTR_ERR(trans);
5066 		trans = NULL;
5067 		goto out;
5068 	}
5069 
5070 	sa->rtransid = trans->transid;
5071 	sa->rtime.sec = ct.tv_sec;
5072 	sa->rtime.nsec = ct.tv_nsec;
5073 
5074 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5075 				       BTRFS_UUID_SIZE);
5076 	if (received_uuid_changed &&
5077 	    !btrfs_is_empty_uuid(root_item->received_uuid))
5078 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5079 				    root_item->received_uuid,
5080 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5081 				    root->root_key.objectid);
5082 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5083 	btrfs_set_root_stransid(root_item, sa->stransid);
5084 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5085 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5086 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5087 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5088 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5089 
5090 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
5091 				&root->root_key, &root->root_item);
5092 	if (ret < 0) {
5093 		btrfs_end_transaction(trans, root);
5094 		goto out;
5095 	}
5096 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5097 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5098 					  sa->uuid,
5099 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5100 					  root->root_key.objectid);
5101 		if (ret < 0 && ret != -EEXIST) {
5102 			btrfs_abort_transaction(trans, root, ret);
5103 			goto out;
5104 		}
5105 	}
5106 	ret = btrfs_commit_transaction(trans, root);
5107 	if (ret < 0) {
5108 		btrfs_abort_transaction(trans, root, ret);
5109 		goto out;
5110 	}
5111 
5112 out:
5113 	up_write(&root->fs_info->subvol_sem);
5114 	mnt_drop_write_file(file);
5115 	return ret;
5116 }
5117 
5118 #ifdef CONFIG_64BIT
5119 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5120 						void __user *arg)
5121 {
5122 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5123 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5124 	int ret = 0;
5125 
5126 	args32 = memdup_user(arg, sizeof(*args32));
5127 	if (IS_ERR(args32)) {
5128 		ret = PTR_ERR(args32);
5129 		args32 = NULL;
5130 		goto out;
5131 	}
5132 
5133 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5134 	if (!args64) {
5135 		ret = -ENOMEM;
5136 		goto out;
5137 	}
5138 
5139 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5140 	args64->stransid = args32->stransid;
5141 	args64->rtransid = args32->rtransid;
5142 	args64->stime.sec = args32->stime.sec;
5143 	args64->stime.nsec = args32->stime.nsec;
5144 	args64->rtime.sec = args32->rtime.sec;
5145 	args64->rtime.nsec = args32->rtime.nsec;
5146 	args64->flags = args32->flags;
5147 
5148 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5149 	if (ret)
5150 		goto out;
5151 
5152 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5153 	args32->stransid = args64->stransid;
5154 	args32->rtransid = args64->rtransid;
5155 	args32->stime.sec = args64->stime.sec;
5156 	args32->stime.nsec = args64->stime.nsec;
5157 	args32->rtime.sec = args64->rtime.sec;
5158 	args32->rtime.nsec = args64->rtime.nsec;
5159 	args32->flags = args64->flags;
5160 
5161 	ret = copy_to_user(arg, args32, sizeof(*args32));
5162 	if (ret)
5163 		ret = -EFAULT;
5164 
5165 out:
5166 	kfree(args32);
5167 	kfree(args64);
5168 	return ret;
5169 }
5170 #endif
5171 
5172 static long btrfs_ioctl_set_received_subvol(struct file *file,
5173 					    void __user *arg)
5174 {
5175 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5176 	int ret = 0;
5177 
5178 	sa = memdup_user(arg, sizeof(*sa));
5179 	if (IS_ERR(sa)) {
5180 		ret = PTR_ERR(sa);
5181 		sa = NULL;
5182 		goto out;
5183 	}
5184 
5185 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5186 
5187 	if (ret)
5188 		goto out;
5189 
5190 	ret = copy_to_user(arg, sa, sizeof(*sa));
5191 	if (ret)
5192 		ret = -EFAULT;
5193 
5194 out:
5195 	kfree(sa);
5196 	return ret;
5197 }
5198 
5199 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5200 {
5201 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5202 	size_t len;
5203 	int ret;
5204 	char label[BTRFS_LABEL_SIZE];
5205 
5206 	spin_lock(&root->fs_info->super_lock);
5207 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5208 	spin_unlock(&root->fs_info->super_lock);
5209 
5210 	len = strnlen(label, BTRFS_LABEL_SIZE);
5211 
5212 	if (len == BTRFS_LABEL_SIZE) {
5213 		btrfs_warn(root->fs_info,
5214 			"label is too long, return the first %zu bytes", --len);
5215 	}
5216 
5217 	ret = copy_to_user(arg, label, len);
5218 
5219 	return ret ? -EFAULT : 0;
5220 }
5221 
5222 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5223 {
5224 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5225 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5226 	struct btrfs_trans_handle *trans;
5227 	char label[BTRFS_LABEL_SIZE];
5228 	int ret;
5229 
5230 	if (!capable(CAP_SYS_ADMIN))
5231 		return -EPERM;
5232 
5233 	if (copy_from_user(label, arg, sizeof(label)))
5234 		return -EFAULT;
5235 
5236 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5237 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5238 		       BTRFS_LABEL_SIZE - 1);
5239 		return -EINVAL;
5240 	}
5241 
5242 	ret = mnt_want_write_file(file);
5243 	if (ret)
5244 		return ret;
5245 
5246 	trans = btrfs_start_transaction(root, 0);
5247 	if (IS_ERR(trans)) {
5248 		ret = PTR_ERR(trans);
5249 		goto out_unlock;
5250 	}
5251 
5252 	spin_lock(&root->fs_info->super_lock);
5253 	strcpy(super_block->label, label);
5254 	spin_unlock(&root->fs_info->super_lock);
5255 	ret = btrfs_commit_transaction(trans, root);
5256 
5257 out_unlock:
5258 	mnt_drop_write_file(file);
5259 	return ret;
5260 }
5261 
5262 #define INIT_FEATURE_FLAGS(suffix) \
5263 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5264 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5265 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5266 
5267 int btrfs_ioctl_get_supported_features(void __user *arg)
5268 {
5269 	static const struct btrfs_ioctl_feature_flags features[3] = {
5270 		INIT_FEATURE_FLAGS(SUPP),
5271 		INIT_FEATURE_FLAGS(SAFE_SET),
5272 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5273 	};
5274 
5275 	if (copy_to_user(arg, &features, sizeof(features)))
5276 		return -EFAULT;
5277 
5278 	return 0;
5279 }
5280 
5281 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5282 {
5283 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5284 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5285 	struct btrfs_ioctl_feature_flags features;
5286 
5287 	features.compat_flags = btrfs_super_compat_flags(super_block);
5288 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5289 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5290 
5291 	if (copy_to_user(arg, &features, sizeof(features)))
5292 		return -EFAULT;
5293 
5294 	return 0;
5295 }
5296 
5297 static int check_feature_bits(struct btrfs_root *root,
5298 			      enum btrfs_feature_set set,
5299 			      u64 change_mask, u64 flags, u64 supported_flags,
5300 			      u64 safe_set, u64 safe_clear)
5301 {
5302 	const char *type = btrfs_feature_set_names[set];
5303 	char *names;
5304 	u64 disallowed, unsupported;
5305 	u64 set_mask = flags & change_mask;
5306 	u64 clear_mask = ~flags & change_mask;
5307 
5308 	unsupported = set_mask & ~supported_flags;
5309 	if (unsupported) {
5310 		names = btrfs_printable_features(set, unsupported);
5311 		if (names) {
5312 			btrfs_warn(root->fs_info,
5313 			   "this kernel does not support the %s feature bit%s",
5314 			   names, strchr(names, ',') ? "s" : "");
5315 			kfree(names);
5316 		} else
5317 			btrfs_warn(root->fs_info,
5318 			   "this kernel does not support %s bits 0x%llx",
5319 			   type, unsupported);
5320 		return -EOPNOTSUPP;
5321 	}
5322 
5323 	disallowed = set_mask & ~safe_set;
5324 	if (disallowed) {
5325 		names = btrfs_printable_features(set, disallowed);
5326 		if (names) {
5327 			btrfs_warn(root->fs_info,
5328 			   "can't set the %s feature bit%s while mounted",
5329 			   names, strchr(names, ',') ? "s" : "");
5330 			kfree(names);
5331 		} else
5332 			btrfs_warn(root->fs_info,
5333 			   "can't set %s bits 0x%llx while mounted",
5334 			   type, disallowed);
5335 		return -EPERM;
5336 	}
5337 
5338 	disallowed = clear_mask & ~safe_clear;
5339 	if (disallowed) {
5340 		names = btrfs_printable_features(set, disallowed);
5341 		if (names) {
5342 			btrfs_warn(root->fs_info,
5343 			   "can't clear the %s feature bit%s while mounted",
5344 			   names, strchr(names, ',') ? "s" : "");
5345 			kfree(names);
5346 		} else
5347 			btrfs_warn(root->fs_info,
5348 			   "can't clear %s bits 0x%llx while mounted",
5349 			   type, disallowed);
5350 		return -EPERM;
5351 	}
5352 
5353 	return 0;
5354 }
5355 
5356 #define check_feature(root, change_mask, flags, mask_base)	\
5357 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5358 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5359 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5360 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5361 
5362 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5363 {
5364 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5365 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5366 	struct btrfs_ioctl_feature_flags flags[2];
5367 	struct btrfs_trans_handle *trans;
5368 	u64 newflags;
5369 	int ret;
5370 
5371 	if (!capable(CAP_SYS_ADMIN))
5372 		return -EPERM;
5373 
5374 	if (copy_from_user(flags, arg, sizeof(flags)))
5375 		return -EFAULT;
5376 
5377 	/* Nothing to do */
5378 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5379 	    !flags[0].incompat_flags)
5380 		return 0;
5381 
5382 	ret = check_feature(root, flags[0].compat_flags,
5383 			    flags[1].compat_flags, COMPAT);
5384 	if (ret)
5385 		return ret;
5386 
5387 	ret = check_feature(root, flags[0].compat_ro_flags,
5388 			    flags[1].compat_ro_flags, COMPAT_RO);
5389 	if (ret)
5390 		return ret;
5391 
5392 	ret = check_feature(root, flags[0].incompat_flags,
5393 			    flags[1].incompat_flags, INCOMPAT);
5394 	if (ret)
5395 		return ret;
5396 
5397 	trans = btrfs_start_transaction(root, 0);
5398 	if (IS_ERR(trans))
5399 		return PTR_ERR(trans);
5400 
5401 	spin_lock(&root->fs_info->super_lock);
5402 	newflags = btrfs_super_compat_flags(super_block);
5403 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5404 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5405 	btrfs_set_super_compat_flags(super_block, newflags);
5406 
5407 	newflags = btrfs_super_compat_ro_flags(super_block);
5408 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5409 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5410 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5411 
5412 	newflags = btrfs_super_incompat_flags(super_block);
5413 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5414 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5415 	btrfs_set_super_incompat_flags(super_block, newflags);
5416 	spin_unlock(&root->fs_info->super_lock);
5417 
5418 	return btrfs_commit_transaction(trans, root);
5419 }
5420 
5421 long btrfs_ioctl(struct file *file, unsigned int
5422 		cmd, unsigned long arg)
5423 {
5424 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5425 	void __user *argp = (void __user *)arg;
5426 
5427 	switch (cmd) {
5428 	case FS_IOC_GETFLAGS:
5429 		return btrfs_ioctl_getflags(file, argp);
5430 	case FS_IOC_SETFLAGS:
5431 		return btrfs_ioctl_setflags(file, argp);
5432 	case FS_IOC_GETVERSION:
5433 		return btrfs_ioctl_getversion(file, argp);
5434 	case FITRIM:
5435 		return btrfs_ioctl_fitrim(file, argp);
5436 	case BTRFS_IOC_SNAP_CREATE:
5437 		return btrfs_ioctl_snap_create(file, argp, 0);
5438 	case BTRFS_IOC_SNAP_CREATE_V2:
5439 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5440 	case BTRFS_IOC_SUBVOL_CREATE:
5441 		return btrfs_ioctl_snap_create(file, argp, 1);
5442 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5443 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5444 	case BTRFS_IOC_SNAP_DESTROY:
5445 		return btrfs_ioctl_snap_destroy(file, argp);
5446 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5447 		return btrfs_ioctl_subvol_getflags(file, argp);
5448 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5449 		return btrfs_ioctl_subvol_setflags(file, argp);
5450 	case BTRFS_IOC_DEFAULT_SUBVOL:
5451 		return btrfs_ioctl_default_subvol(file, argp);
5452 	case BTRFS_IOC_DEFRAG:
5453 		return btrfs_ioctl_defrag(file, NULL);
5454 	case BTRFS_IOC_DEFRAG_RANGE:
5455 		return btrfs_ioctl_defrag(file, argp);
5456 	case BTRFS_IOC_RESIZE:
5457 		return btrfs_ioctl_resize(file, argp);
5458 	case BTRFS_IOC_ADD_DEV:
5459 		return btrfs_ioctl_add_dev(root, argp);
5460 	case BTRFS_IOC_RM_DEV:
5461 		return btrfs_ioctl_rm_dev(file, argp);
5462 	case BTRFS_IOC_FS_INFO:
5463 		return btrfs_ioctl_fs_info(root, argp);
5464 	case BTRFS_IOC_DEV_INFO:
5465 		return btrfs_ioctl_dev_info(root, argp);
5466 	case BTRFS_IOC_BALANCE:
5467 		return btrfs_ioctl_balance(file, NULL);
5468 	case BTRFS_IOC_TRANS_START:
5469 		return btrfs_ioctl_trans_start(file);
5470 	case BTRFS_IOC_TRANS_END:
5471 		return btrfs_ioctl_trans_end(file);
5472 	case BTRFS_IOC_TREE_SEARCH:
5473 		return btrfs_ioctl_tree_search(file, argp);
5474 	case BTRFS_IOC_TREE_SEARCH_V2:
5475 		return btrfs_ioctl_tree_search_v2(file, argp);
5476 	case BTRFS_IOC_INO_LOOKUP:
5477 		return btrfs_ioctl_ino_lookup(file, argp);
5478 	case BTRFS_IOC_INO_PATHS:
5479 		return btrfs_ioctl_ino_to_path(root, argp);
5480 	case BTRFS_IOC_LOGICAL_INO:
5481 		return btrfs_ioctl_logical_to_ino(root, argp);
5482 	case BTRFS_IOC_SPACE_INFO:
5483 		return btrfs_ioctl_space_info(root, argp);
5484 	case BTRFS_IOC_SYNC: {
5485 		int ret;
5486 
5487 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5488 		if (ret)
5489 			return ret;
5490 		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5491 		/*
5492 		 * The transaction thread may want to do more work,
5493 		 * namely it pokes the cleaner ktread that will start
5494 		 * processing uncleaned subvols.
5495 		 */
5496 		wake_up_process(root->fs_info->transaction_kthread);
5497 		return ret;
5498 	}
5499 	case BTRFS_IOC_START_SYNC:
5500 		return btrfs_ioctl_start_sync(root, argp);
5501 	case BTRFS_IOC_WAIT_SYNC:
5502 		return btrfs_ioctl_wait_sync(root, argp);
5503 	case BTRFS_IOC_SCRUB:
5504 		return btrfs_ioctl_scrub(file, argp);
5505 	case BTRFS_IOC_SCRUB_CANCEL:
5506 		return btrfs_ioctl_scrub_cancel(root, argp);
5507 	case BTRFS_IOC_SCRUB_PROGRESS:
5508 		return btrfs_ioctl_scrub_progress(root, argp);
5509 	case BTRFS_IOC_BALANCE_V2:
5510 		return btrfs_ioctl_balance(file, argp);
5511 	case BTRFS_IOC_BALANCE_CTL:
5512 		return btrfs_ioctl_balance_ctl(root, arg);
5513 	case BTRFS_IOC_BALANCE_PROGRESS:
5514 		return btrfs_ioctl_balance_progress(root, argp);
5515 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5516 		return btrfs_ioctl_set_received_subvol(file, argp);
5517 #ifdef CONFIG_64BIT
5518 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5519 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5520 #endif
5521 	case BTRFS_IOC_SEND:
5522 		return btrfs_ioctl_send(file, argp);
5523 	case BTRFS_IOC_GET_DEV_STATS:
5524 		return btrfs_ioctl_get_dev_stats(root, argp);
5525 	case BTRFS_IOC_QUOTA_CTL:
5526 		return btrfs_ioctl_quota_ctl(file, argp);
5527 	case BTRFS_IOC_QGROUP_ASSIGN:
5528 		return btrfs_ioctl_qgroup_assign(file, argp);
5529 	case BTRFS_IOC_QGROUP_CREATE:
5530 		return btrfs_ioctl_qgroup_create(file, argp);
5531 	case BTRFS_IOC_QGROUP_LIMIT:
5532 		return btrfs_ioctl_qgroup_limit(file, argp);
5533 	case BTRFS_IOC_QUOTA_RESCAN:
5534 		return btrfs_ioctl_quota_rescan(file, argp);
5535 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5536 		return btrfs_ioctl_quota_rescan_status(file, argp);
5537 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5538 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5539 	case BTRFS_IOC_DEV_REPLACE:
5540 		return btrfs_ioctl_dev_replace(root, argp);
5541 	case BTRFS_IOC_GET_FSLABEL:
5542 		return btrfs_ioctl_get_fslabel(file, argp);
5543 	case BTRFS_IOC_SET_FSLABEL:
5544 		return btrfs_ioctl_set_fslabel(file, argp);
5545 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5546 		return btrfs_ioctl_get_supported_features(argp);
5547 	case BTRFS_IOC_GET_FEATURES:
5548 		return btrfs_ioctl_get_features(file, argp);
5549 	case BTRFS_IOC_SET_FEATURES:
5550 		return btrfs_ioctl_set_features(file, argp);
5551 	}
5552 
5553 	return -ENOTTY;
5554 }
5555