1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "transaction.h" 32 #include "btrfs_inode.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "locking.h" 36 #include "inode-map.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 47 #ifdef CONFIG_64BIT 48 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 49 * structures are incorrect, as the timespec structure from userspace 50 * is 4 bytes too small. We define these alternatives here to teach 51 * the kernel about the 32-bit struct packing. 52 */ 53 struct btrfs_ioctl_timespec_32 { 54 __u64 sec; 55 __u32 nsec; 56 } __attribute__ ((__packed__)); 57 58 struct btrfs_ioctl_received_subvol_args_32 { 59 char uuid[BTRFS_UUID_SIZE]; /* in */ 60 __u64 stransid; /* in */ 61 __u64 rtransid; /* out */ 62 struct btrfs_ioctl_timespec_32 stime; /* in */ 63 struct btrfs_ioctl_timespec_32 rtime; /* out */ 64 __u64 flags; /* in */ 65 __u64 reserved[16]; /* in */ 66 } __attribute__ ((__packed__)); 67 68 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 69 struct btrfs_ioctl_received_subvol_args_32) 70 #endif 71 72 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 73 struct btrfs_ioctl_send_args_32 { 74 __s64 send_fd; /* in */ 75 __u64 clone_sources_count; /* in */ 76 compat_uptr_t clone_sources; /* in */ 77 __u64 parent_root; /* in */ 78 __u64 flags; /* in */ 79 __u64 reserved[4]; /* in */ 80 } __attribute__ ((__packed__)); 81 82 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 83 struct btrfs_ioctl_send_args_32) 84 #endif 85 86 static int btrfs_clone(struct inode *src, struct inode *inode, 87 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 88 int no_time_update); 89 90 /* Mask out flags that are inappropriate for the given type of inode. */ 91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93 { 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100 } 101 102 /* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137 { 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 158 { 159 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 161 162 if (copy_to_user(arg, &flags, sizeof(flags))) 163 return -EFAULT; 164 return 0; 165 } 166 167 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 168 static int check_fsflags(unsigned int flags) 169 { 170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 171 FS_NOATIME_FL | FS_NODUMP_FL | \ 172 FS_SYNC_FL | FS_DIRSYNC_FL | \ 173 FS_NOCOMP_FL | FS_COMPR_FL | 174 FS_NOCOW_FL)) 175 return -EOPNOTSUPP; 176 177 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 178 return -EINVAL; 179 180 return 0; 181 } 182 183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 184 { 185 struct inode *inode = file_inode(file); 186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 187 struct btrfs_inode *binode = BTRFS_I(inode); 188 struct btrfs_root *root = binode->root; 189 struct btrfs_trans_handle *trans; 190 unsigned int fsflags, old_fsflags; 191 int ret; 192 u64 old_flags; 193 unsigned int old_i_flags; 194 umode_t mode; 195 196 if (!inode_owner_or_capable(inode)) 197 return -EPERM; 198 199 if (btrfs_root_readonly(root)) 200 return -EROFS; 201 202 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 203 return -EFAULT; 204 205 ret = check_fsflags(fsflags); 206 if (ret) 207 return ret; 208 209 ret = mnt_want_write_file(file); 210 if (ret) 211 return ret; 212 213 inode_lock(inode); 214 215 old_flags = binode->flags; 216 old_i_flags = inode->i_flags; 217 mode = inode->i_mode; 218 219 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 220 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 221 if ((fsflags ^ old_fsflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 222 if (!capable(CAP_LINUX_IMMUTABLE)) { 223 ret = -EPERM; 224 goto out_unlock; 225 } 226 } 227 228 if (fsflags & FS_SYNC_FL) 229 binode->flags |= BTRFS_INODE_SYNC; 230 else 231 binode->flags &= ~BTRFS_INODE_SYNC; 232 if (fsflags & FS_IMMUTABLE_FL) 233 binode->flags |= BTRFS_INODE_IMMUTABLE; 234 else 235 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 236 if (fsflags & FS_APPEND_FL) 237 binode->flags |= BTRFS_INODE_APPEND; 238 else 239 binode->flags &= ~BTRFS_INODE_APPEND; 240 if (fsflags & FS_NODUMP_FL) 241 binode->flags |= BTRFS_INODE_NODUMP; 242 else 243 binode->flags &= ~BTRFS_INODE_NODUMP; 244 if (fsflags & FS_NOATIME_FL) 245 binode->flags |= BTRFS_INODE_NOATIME; 246 else 247 binode->flags &= ~BTRFS_INODE_NOATIME; 248 if (fsflags & FS_DIRSYNC_FL) 249 binode->flags |= BTRFS_INODE_DIRSYNC; 250 else 251 binode->flags &= ~BTRFS_INODE_DIRSYNC; 252 if (fsflags & FS_NOCOW_FL) { 253 if (S_ISREG(mode)) { 254 /* 255 * It's safe to turn csums off here, no extents exist. 256 * Otherwise we want the flag to reflect the real COW 257 * status of the file and will not set it. 258 */ 259 if (inode->i_size == 0) 260 binode->flags |= BTRFS_INODE_NODATACOW 261 | BTRFS_INODE_NODATASUM; 262 } else { 263 binode->flags |= BTRFS_INODE_NODATACOW; 264 } 265 } else { 266 /* 267 * Revert back under same assumptions as above 268 */ 269 if (S_ISREG(mode)) { 270 if (inode->i_size == 0) 271 binode->flags &= ~(BTRFS_INODE_NODATACOW 272 | BTRFS_INODE_NODATASUM); 273 } else { 274 binode->flags &= ~BTRFS_INODE_NODATACOW; 275 } 276 } 277 278 /* 279 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 280 * flag may be changed automatically if compression code won't make 281 * things smaller. 282 */ 283 if (fsflags & FS_NOCOMP_FL) { 284 binode->flags &= ~BTRFS_INODE_COMPRESS; 285 binode->flags |= BTRFS_INODE_NOCOMPRESS; 286 287 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 288 if (ret && ret != -ENODATA) 289 goto out_drop; 290 } else if (fsflags & FS_COMPR_FL) { 291 const char *comp; 292 293 if (IS_SWAPFILE(inode)) { 294 ret = -ETXTBSY; 295 goto out_unlock; 296 } 297 298 binode->flags |= BTRFS_INODE_COMPRESS; 299 binode->flags &= ~BTRFS_INODE_NOCOMPRESS; 300 301 comp = btrfs_compress_type2str(fs_info->compress_type); 302 if (!comp || comp[0] == 0) 303 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 304 305 ret = btrfs_set_prop(inode, "btrfs.compression", 306 comp, strlen(comp), 0); 307 if (ret) 308 goto out_drop; 309 310 } else { 311 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 312 if (ret && ret != -ENODATA) 313 goto out_drop; 314 binode->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 315 } 316 317 trans = btrfs_start_transaction(root, 1); 318 if (IS_ERR(trans)) { 319 ret = PTR_ERR(trans); 320 goto out_drop; 321 } 322 323 btrfs_sync_inode_flags_to_i_flags(inode); 324 inode_inc_iversion(inode); 325 inode->i_ctime = current_time(inode); 326 ret = btrfs_update_inode(trans, root, inode); 327 328 btrfs_end_transaction(trans); 329 out_drop: 330 if (ret) { 331 binode->flags = old_flags; 332 inode->i_flags = old_i_flags; 333 } 334 335 out_unlock: 336 inode_unlock(inode); 337 mnt_drop_write_file(file); 338 return ret; 339 } 340 341 /* 342 * Translate btrfs internal inode flags to xflags as expected by the 343 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 344 * silently dropped. 345 */ 346 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 347 { 348 unsigned int xflags = 0; 349 350 if (flags & BTRFS_INODE_APPEND) 351 xflags |= FS_XFLAG_APPEND; 352 if (flags & BTRFS_INODE_IMMUTABLE) 353 xflags |= FS_XFLAG_IMMUTABLE; 354 if (flags & BTRFS_INODE_NOATIME) 355 xflags |= FS_XFLAG_NOATIME; 356 if (flags & BTRFS_INODE_NODUMP) 357 xflags |= FS_XFLAG_NODUMP; 358 if (flags & BTRFS_INODE_SYNC) 359 xflags |= FS_XFLAG_SYNC; 360 361 return xflags; 362 } 363 364 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 365 static int check_xflags(unsigned int flags) 366 { 367 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 368 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 369 return -EOPNOTSUPP; 370 return 0; 371 } 372 373 /* 374 * Set the xflags from the internal inode flags. The remaining items of fsxattr 375 * are zeroed. 376 */ 377 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 378 { 379 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 380 struct fsxattr fa; 381 382 memset(&fa, 0, sizeof(fa)); 383 fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags); 384 385 if (copy_to_user(arg, &fa, sizeof(fa))) 386 return -EFAULT; 387 388 return 0; 389 } 390 391 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 392 { 393 struct inode *inode = file_inode(file); 394 struct btrfs_inode *binode = BTRFS_I(inode); 395 struct btrfs_root *root = binode->root; 396 struct btrfs_trans_handle *trans; 397 struct fsxattr fa; 398 unsigned old_flags; 399 unsigned old_i_flags; 400 int ret = 0; 401 402 if (!inode_owner_or_capable(inode)) 403 return -EPERM; 404 405 if (btrfs_root_readonly(root)) 406 return -EROFS; 407 408 memset(&fa, 0, sizeof(fa)); 409 if (copy_from_user(&fa, arg, sizeof(fa))) 410 return -EFAULT; 411 412 ret = check_xflags(fa.fsx_xflags); 413 if (ret) 414 return ret; 415 416 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 417 return -EOPNOTSUPP; 418 419 ret = mnt_want_write_file(file); 420 if (ret) 421 return ret; 422 423 inode_lock(inode); 424 425 old_flags = binode->flags; 426 old_i_flags = inode->i_flags; 427 428 /* We need the capabilities to change append-only or immutable inode */ 429 if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) || 430 (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) && 431 !capable(CAP_LINUX_IMMUTABLE)) { 432 ret = -EPERM; 433 goto out_unlock; 434 } 435 436 if (fa.fsx_xflags & FS_XFLAG_SYNC) 437 binode->flags |= BTRFS_INODE_SYNC; 438 else 439 binode->flags &= ~BTRFS_INODE_SYNC; 440 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 441 binode->flags |= BTRFS_INODE_IMMUTABLE; 442 else 443 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 444 if (fa.fsx_xflags & FS_XFLAG_APPEND) 445 binode->flags |= BTRFS_INODE_APPEND; 446 else 447 binode->flags &= ~BTRFS_INODE_APPEND; 448 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 449 binode->flags |= BTRFS_INODE_NODUMP; 450 else 451 binode->flags &= ~BTRFS_INODE_NODUMP; 452 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 453 binode->flags |= BTRFS_INODE_NOATIME; 454 else 455 binode->flags &= ~BTRFS_INODE_NOATIME; 456 457 /* 1 item for the inode */ 458 trans = btrfs_start_transaction(root, 1); 459 if (IS_ERR(trans)) { 460 ret = PTR_ERR(trans); 461 goto out_unlock; 462 } 463 464 btrfs_sync_inode_flags_to_i_flags(inode); 465 inode_inc_iversion(inode); 466 inode->i_ctime = current_time(inode); 467 ret = btrfs_update_inode(trans, root, inode); 468 469 btrfs_end_transaction(trans); 470 471 out_unlock: 472 if (ret) { 473 binode->flags = old_flags; 474 inode->i_flags = old_i_flags; 475 } 476 477 inode_unlock(inode); 478 mnt_drop_write_file(file); 479 480 return ret; 481 } 482 483 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 484 { 485 struct inode *inode = file_inode(file); 486 487 return put_user(inode->i_generation, arg); 488 } 489 490 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 491 { 492 struct inode *inode = file_inode(file); 493 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 494 struct btrfs_device *device; 495 struct request_queue *q; 496 struct fstrim_range range; 497 u64 minlen = ULLONG_MAX; 498 u64 num_devices = 0; 499 int ret; 500 501 if (!capable(CAP_SYS_ADMIN)) 502 return -EPERM; 503 504 rcu_read_lock(); 505 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 506 dev_list) { 507 if (!device->bdev) 508 continue; 509 q = bdev_get_queue(device->bdev); 510 if (blk_queue_discard(q)) { 511 num_devices++; 512 minlen = min_t(u64, q->limits.discard_granularity, 513 minlen); 514 } 515 } 516 rcu_read_unlock(); 517 518 if (!num_devices) 519 return -EOPNOTSUPP; 520 if (copy_from_user(&range, arg, sizeof(range))) 521 return -EFAULT; 522 523 /* 524 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 525 * block group is in the logical address space, which can be any 526 * sectorsize aligned bytenr in the range [0, U64_MAX]. 527 */ 528 if (range.len < fs_info->sb->s_blocksize) 529 return -EINVAL; 530 531 range.minlen = max(range.minlen, minlen); 532 ret = btrfs_trim_fs(fs_info, &range); 533 if (ret < 0) 534 return ret; 535 536 if (copy_to_user(arg, &range, sizeof(range))) 537 return -EFAULT; 538 539 return 0; 540 } 541 542 int btrfs_is_empty_uuid(u8 *uuid) 543 { 544 int i; 545 546 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 547 if (uuid[i]) 548 return 0; 549 } 550 return 1; 551 } 552 553 static noinline int create_subvol(struct inode *dir, 554 struct dentry *dentry, 555 const char *name, int namelen, 556 u64 *async_transid, 557 struct btrfs_qgroup_inherit *inherit) 558 { 559 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 560 struct btrfs_trans_handle *trans; 561 struct btrfs_key key; 562 struct btrfs_root_item *root_item; 563 struct btrfs_inode_item *inode_item; 564 struct extent_buffer *leaf; 565 struct btrfs_root *root = BTRFS_I(dir)->root; 566 struct btrfs_root *new_root; 567 struct btrfs_block_rsv block_rsv; 568 struct timespec64 cur_time = current_time(dir); 569 struct inode *inode; 570 int ret; 571 int err; 572 u64 objectid; 573 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 574 u64 index = 0; 575 uuid_le new_uuid; 576 577 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 578 if (!root_item) 579 return -ENOMEM; 580 581 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 582 if (ret) 583 goto fail_free; 584 585 /* 586 * Don't create subvolume whose level is not zero. Or qgroup will be 587 * screwed up since it assumes subvolume qgroup's level to be 0. 588 */ 589 if (btrfs_qgroup_level(objectid)) { 590 ret = -ENOSPC; 591 goto fail_free; 592 } 593 594 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 595 /* 596 * The same as the snapshot creation, please see the comment 597 * of create_snapshot(). 598 */ 599 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 600 if (ret) 601 goto fail_free; 602 603 trans = btrfs_start_transaction(root, 0); 604 if (IS_ERR(trans)) { 605 ret = PTR_ERR(trans); 606 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 607 goto fail_free; 608 } 609 trans->block_rsv = &block_rsv; 610 trans->bytes_reserved = block_rsv.size; 611 612 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 613 if (ret) 614 goto fail; 615 616 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 617 if (IS_ERR(leaf)) { 618 ret = PTR_ERR(leaf); 619 goto fail; 620 } 621 622 btrfs_mark_buffer_dirty(leaf); 623 624 inode_item = &root_item->inode; 625 btrfs_set_stack_inode_generation(inode_item, 1); 626 btrfs_set_stack_inode_size(inode_item, 3); 627 btrfs_set_stack_inode_nlink(inode_item, 1); 628 btrfs_set_stack_inode_nbytes(inode_item, 629 fs_info->nodesize); 630 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 631 632 btrfs_set_root_flags(root_item, 0); 633 btrfs_set_root_limit(root_item, 0); 634 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 635 636 btrfs_set_root_bytenr(root_item, leaf->start); 637 btrfs_set_root_generation(root_item, trans->transid); 638 btrfs_set_root_level(root_item, 0); 639 btrfs_set_root_refs(root_item, 1); 640 btrfs_set_root_used(root_item, leaf->len); 641 btrfs_set_root_last_snapshot(root_item, 0); 642 643 btrfs_set_root_generation_v2(root_item, 644 btrfs_root_generation(root_item)); 645 uuid_le_gen(&new_uuid); 646 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 647 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 648 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 649 root_item->ctime = root_item->otime; 650 btrfs_set_root_ctransid(root_item, trans->transid); 651 btrfs_set_root_otransid(root_item, trans->transid); 652 653 btrfs_tree_unlock(leaf); 654 free_extent_buffer(leaf); 655 leaf = NULL; 656 657 btrfs_set_root_dirid(root_item, new_dirid); 658 659 key.objectid = objectid; 660 key.offset = 0; 661 key.type = BTRFS_ROOT_ITEM_KEY; 662 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 663 root_item); 664 if (ret) 665 goto fail; 666 667 key.offset = (u64)-1; 668 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 669 if (IS_ERR(new_root)) { 670 ret = PTR_ERR(new_root); 671 btrfs_abort_transaction(trans, ret); 672 goto fail; 673 } 674 675 btrfs_record_root_in_trans(trans, new_root); 676 677 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 678 if (ret) { 679 /* We potentially lose an unused inode item here */ 680 btrfs_abort_transaction(trans, ret); 681 goto fail; 682 } 683 684 mutex_lock(&new_root->objectid_mutex); 685 new_root->highest_objectid = new_dirid; 686 mutex_unlock(&new_root->objectid_mutex); 687 688 /* 689 * insert the directory item 690 */ 691 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 692 if (ret) { 693 btrfs_abort_transaction(trans, ret); 694 goto fail; 695 } 696 697 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 698 BTRFS_FT_DIR, index); 699 if (ret) { 700 btrfs_abort_transaction(trans, ret); 701 goto fail; 702 } 703 704 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 705 ret = btrfs_update_inode(trans, root, dir); 706 BUG_ON(ret); 707 708 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 709 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 710 BUG_ON(ret); 711 712 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 713 BTRFS_UUID_KEY_SUBVOL, objectid); 714 if (ret) 715 btrfs_abort_transaction(trans, ret); 716 717 fail: 718 kfree(root_item); 719 trans->block_rsv = NULL; 720 trans->bytes_reserved = 0; 721 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 722 723 if (async_transid) { 724 *async_transid = trans->transid; 725 err = btrfs_commit_transaction_async(trans, 1); 726 if (err) 727 err = btrfs_commit_transaction(trans); 728 } else { 729 err = btrfs_commit_transaction(trans); 730 } 731 if (err && !ret) 732 ret = err; 733 734 if (!ret) { 735 inode = btrfs_lookup_dentry(dir, dentry); 736 if (IS_ERR(inode)) 737 return PTR_ERR(inode); 738 d_instantiate(dentry, inode); 739 } 740 return ret; 741 742 fail_free: 743 kfree(root_item); 744 return ret; 745 } 746 747 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 748 struct dentry *dentry, 749 u64 *async_transid, bool readonly, 750 struct btrfs_qgroup_inherit *inherit) 751 { 752 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 753 struct inode *inode; 754 struct btrfs_pending_snapshot *pending_snapshot; 755 struct btrfs_trans_handle *trans; 756 int ret; 757 bool snapshot_force_cow = false; 758 759 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 760 return -EINVAL; 761 762 if (atomic_read(&root->nr_swapfiles)) { 763 btrfs_warn(fs_info, 764 "cannot snapshot subvolume with active swapfile"); 765 return -ETXTBSY; 766 } 767 768 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 769 if (!pending_snapshot) 770 return -ENOMEM; 771 772 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 773 GFP_KERNEL); 774 pending_snapshot->path = btrfs_alloc_path(); 775 if (!pending_snapshot->root_item || !pending_snapshot->path) { 776 ret = -ENOMEM; 777 goto free_pending; 778 } 779 780 /* 781 * Force new buffered writes to reserve space even when NOCOW is 782 * possible. This is to avoid later writeback (running dealloc) to 783 * fallback to COW mode and unexpectedly fail with ENOSPC. 784 */ 785 atomic_inc(&root->will_be_snapshotted); 786 smp_mb__after_atomic(); 787 /* wait for no snapshot writes */ 788 wait_event(root->subv_writers->wait, 789 percpu_counter_sum(&root->subv_writers->counter) == 0); 790 791 ret = btrfs_start_delalloc_snapshot(root); 792 if (ret) 793 goto dec_and_free; 794 795 /* 796 * All previous writes have started writeback in NOCOW mode, so now 797 * we force future writes to fallback to COW mode during snapshot 798 * creation. 799 */ 800 atomic_inc(&root->snapshot_force_cow); 801 snapshot_force_cow = true; 802 803 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 804 805 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 806 BTRFS_BLOCK_RSV_TEMP); 807 /* 808 * 1 - parent dir inode 809 * 2 - dir entries 810 * 1 - root item 811 * 2 - root ref/backref 812 * 1 - root of snapshot 813 * 1 - UUID item 814 */ 815 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 816 &pending_snapshot->block_rsv, 8, 817 false); 818 if (ret) 819 goto dec_and_free; 820 821 pending_snapshot->dentry = dentry; 822 pending_snapshot->root = root; 823 pending_snapshot->readonly = readonly; 824 pending_snapshot->dir = dir; 825 pending_snapshot->inherit = inherit; 826 827 trans = btrfs_start_transaction(root, 0); 828 if (IS_ERR(trans)) { 829 ret = PTR_ERR(trans); 830 goto fail; 831 } 832 833 spin_lock(&fs_info->trans_lock); 834 list_add(&pending_snapshot->list, 835 &trans->transaction->pending_snapshots); 836 spin_unlock(&fs_info->trans_lock); 837 if (async_transid) { 838 *async_transid = trans->transid; 839 ret = btrfs_commit_transaction_async(trans, 1); 840 if (ret) 841 ret = btrfs_commit_transaction(trans); 842 } else { 843 ret = btrfs_commit_transaction(trans); 844 } 845 if (ret) 846 goto fail; 847 848 ret = pending_snapshot->error; 849 if (ret) 850 goto fail; 851 852 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 853 if (ret) 854 goto fail; 855 856 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 857 if (IS_ERR(inode)) { 858 ret = PTR_ERR(inode); 859 goto fail; 860 } 861 862 d_instantiate(dentry, inode); 863 ret = 0; 864 fail: 865 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 866 dec_and_free: 867 if (snapshot_force_cow) 868 atomic_dec(&root->snapshot_force_cow); 869 if (atomic_dec_and_test(&root->will_be_snapshotted)) 870 wake_up_var(&root->will_be_snapshotted); 871 free_pending: 872 kfree(pending_snapshot->root_item); 873 btrfs_free_path(pending_snapshot->path); 874 kfree(pending_snapshot); 875 876 return ret; 877 } 878 879 /* copy of may_delete in fs/namei.c() 880 * Check whether we can remove a link victim from directory dir, check 881 * whether the type of victim is right. 882 * 1. We can't do it if dir is read-only (done in permission()) 883 * 2. We should have write and exec permissions on dir 884 * 3. We can't remove anything from append-only dir 885 * 4. We can't do anything with immutable dir (done in permission()) 886 * 5. If the sticky bit on dir is set we should either 887 * a. be owner of dir, or 888 * b. be owner of victim, or 889 * c. have CAP_FOWNER capability 890 * 6. If the victim is append-only or immutable we can't do anything with 891 * links pointing to it. 892 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 893 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 894 * 9. We can't remove a root or mountpoint. 895 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 896 * nfs_async_unlink(). 897 */ 898 899 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 900 { 901 int error; 902 903 if (d_really_is_negative(victim)) 904 return -ENOENT; 905 906 BUG_ON(d_inode(victim->d_parent) != dir); 907 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 908 909 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 910 if (error) 911 return error; 912 if (IS_APPEND(dir)) 913 return -EPERM; 914 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 915 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 916 return -EPERM; 917 if (isdir) { 918 if (!d_is_dir(victim)) 919 return -ENOTDIR; 920 if (IS_ROOT(victim)) 921 return -EBUSY; 922 } else if (d_is_dir(victim)) 923 return -EISDIR; 924 if (IS_DEADDIR(dir)) 925 return -ENOENT; 926 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 927 return -EBUSY; 928 return 0; 929 } 930 931 /* copy of may_create in fs/namei.c() */ 932 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 933 { 934 if (d_really_is_positive(child)) 935 return -EEXIST; 936 if (IS_DEADDIR(dir)) 937 return -ENOENT; 938 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 939 } 940 941 /* 942 * Create a new subvolume below @parent. This is largely modeled after 943 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 944 * inside this filesystem so it's quite a bit simpler. 945 */ 946 static noinline int btrfs_mksubvol(const struct path *parent, 947 const char *name, int namelen, 948 struct btrfs_root *snap_src, 949 u64 *async_transid, bool readonly, 950 struct btrfs_qgroup_inherit *inherit) 951 { 952 struct inode *dir = d_inode(parent->dentry); 953 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 954 struct dentry *dentry; 955 int error; 956 957 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 958 if (error == -EINTR) 959 return error; 960 961 dentry = lookup_one_len(name, parent->dentry, namelen); 962 error = PTR_ERR(dentry); 963 if (IS_ERR(dentry)) 964 goto out_unlock; 965 966 error = btrfs_may_create(dir, dentry); 967 if (error) 968 goto out_dput; 969 970 /* 971 * even if this name doesn't exist, we may get hash collisions. 972 * check for them now when we can safely fail 973 */ 974 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 975 dir->i_ino, name, 976 namelen); 977 if (error) 978 goto out_dput; 979 980 down_read(&fs_info->subvol_sem); 981 982 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 983 goto out_up_read; 984 985 if (snap_src) { 986 error = create_snapshot(snap_src, dir, dentry, 987 async_transid, readonly, inherit); 988 } else { 989 error = create_subvol(dir, dentry, name, namelen, 990 async_transid, inherit); 991 } 992 if (!error) 993 fsnotify_mkdir(dir, dentry); 994 out_up_read: 995 up_read(&fs_info->subvol_sem); 996 out_dput: 997 dput(dentry); 998 out_unlock: 999 inode_unlock(dir); 1000 return error; 1001 } 1002 1003 /* 1004 * When we're defragging a range, we don't want to kick it off again 1005 * if it is really just waiting for delalloc to send it down. 1006 * If we find a nice big extent or delalloc range for the bytes in the 1007 * file you want to defrag, we return 0 to let you know to skip this 1008 * part of the file 1009 */ 1010 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1011 { 1012 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1013 struct extent_map *em = NULL; 1014 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1015 u64 end; 1016 1017 read_lock(&em_tree->lock); 1018 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1019 read_unlock(&em_tree->lock); 1020 1021 if (em) { 1022 end = extent_map_end(em); 1023 free_extent_map(em); 1024 if (end - offset > thresh) 1025 return 0; 1026 } 1027 /* if we already have a nice delalloc here, just stop */ 1028 thresh /= 2; 1029 end = count_range_bits(io_tree, &offset, offset + thresh, 1030 thresh, EXTENT_DELALLOC, 1); 1031 if (end >= thresh) 1032 return 0; 1033 return 1; 1034 } 1035 1036 /* 1037 * helper function to walk through a file and find extents 1038 * newer than a specific transid, and smaller than thresh. 1039 * 1040 * This is used by the defragging code to find new and small 1041 * extents 1042 */ 1043 static int find_new_extents(struct btrfs_root *root, 1044 struct inode *inode, u64 newer_than, 1045 u64 *off, u32 thresh) 1046 { 1047 struct btrfs_path *path; 1048 struct btrfs_key min_key; 1049 struct extent_buffer *leaf; 1050 struct btrfs_file_extent_item *extent; 1051 int type; 1052 int ret; 1053 u64 ino = btrfs_ino(BTRFS_I(inode)); 1054 1055 path = btrfs_alloc_path(); 1056 if (!path) 1057 return -ENOMEM; 1058 1059 min_key.objectid = ino; 1060 min_key.type = BTRFS_EXTENT_DATA_KEY; 1061 min_key.offset = *off; 1062 1063 while (1) { 1064 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1065 if (ret != 0) 1066 goto none; 1067 process_slot: 1068 if (min_key.objectid != ino) 1069 goto none; 1070 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1071 goto none; 1072 1073 leaf = path->nodes[0]; 1074 extent = btrfs_item_ptr(leaf, path->slots[0], 1075 struct btrfs_file_extent_item); 1076 1077 type = btrfs_file_extent_type(leaf, extent); 1078 if (type == BTRFS_FILE_EXTENT_REG && 1079 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1080 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1081 *off = min_key.offset; 1082 btrfs_free_path(path); 1083 return 0; 1084 } 1085 1086 path->slots[0]++; 1087 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1088 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1089 goto process_slot; 1090 } 1091 1092 if (min_key.offset == (u64)-1) 1093 goto none; 1094 1095 min_key.offset++; 1096 btrfs_release_path(path); 1097 } 1098 none: 1099 btrfs_free_path(path); 1100 return -ENOENT; 1101 } 1102 1103 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1104 { 1105 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1106 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1107 struct extent_map *em; 1108 u64 len = PAGE_SIZE; 1109 1110 /* 1111 * hopefully we have this extent in the tree already, try without 1112 * the full extent lock 1113 */ 1114 read_lock(&em_tree->lock); 1115 em = lookup_extent_mapping(em_tree, start, len); 1116 read_unlock(&em_tree->lock); 1117 1118 if (!em) { 1119 struct extent_state *cached = NULL; 1120 u64 end = start + len - 1; 1121 1122 /* get the big lock and read metadata off disk */ 1123 lock_extent_bits(io_tree, start, end, &cached); 1124 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 1125 unlock_extent_cached(io_tree, start, end, &cached); 1126 1127 if (IS_ERR(em)) 1128 return NULL; 1129 } 1130 1131 return em; 1132 } 1133 1134 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1135 { 1136 struct extent_map *next; 1137 bool ret = true; 1138 1139 /* this is the last extent */ 1140 if (em->start + em->len >= i_size_read(inode)) 1141 return false; 1142 1143 next = defrag_lookup_extent(inode, em->start + em->len); 1144 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1145 ret = false; 1146 else if ((em->block_start + em->block_len == next->block_start) && 1147 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1148 ret = false; 1149 1150 free_extent_map(next); 1151 return ret; 1152 } 1153 1154 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1155 u64 *last_len, u64 *skip, u64 *defrag_end, 1156 int compress) 1157 { 1158 struct extent_map *em; 1159 int ret = 1; 1160 bool next_mergeable = true; 1161 bool prev_mergeable = true; 1162 1163 /* 1164 * make sure that once we start defragging an extent, we keep on 1165 * defragging it 1166 */ 1167 if (start < *defrag_end) 1168 return 1; 1169 1170 *skip = 0; 1171 1172 em = defrag_lookup_extent(inode, start); 1173 if (!em) 1174 return 0; 1175 1176 /* this will cover holes, and inline extents */ 1177 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1178 ret = 0; 1179 goto out; 1180 } 1181 1182 if (!*defrag_end) 1183 prev_mergeable = false; 1184 1185 next_mergeable = defrag_check_next_extent(inode, em); 1186 /* 1187 * we hit a real extent, if it is big or the next extent is not a 1188 * real extent, don't bother defragging it 1189 */ 1190 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1191 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1192 ret = 0; 1193 out: 1194 /* 1195 * last_len ends up being a counter of how many bytes we've defragged. 1196 * every time we choose not to defrag an extent, we reset *last_len 1197 * so that the next tiny extent will force a defrag. 1198 * 1199 * The end result of this is that tiny extents before a single big 1200 * extent will force at least part of that big extent to be defragged. 1201 */ 1202 if (ret) { 1203 *defrag_end = extent_map_end(em); 1204 } else { 1205 *last_len = 0; 1206 *skip = extent_map_end(em); 1207 *defrag_end = 0; 1208 } 1209 1210 free_extent_map(em); 1211 return ret; 1212 } 1213 1214 /* 1215 * it doesn't do much good to defrag one or two pages 1216 * at a time. This pulls in a nice chunk of pages 1217 * to COW and defrag. 1218 * 1219 * It also makes sure the delalloc code has enough 1220 * dirty data to avoid making new small extents as part 1221 * of the defrag 1222 * 1223 * It's a good idea to start RA on this range 1224 * before calling this. 1225 */ 1226 static int cluster_pages_for_defrag(struct inode *inode, 1227 struct page **pages, 1228 unsigned long start_index, 1229 unsigned long num_pages) 1230 { 1231 unsigned long file_end; 1232 u64 isize = i_size_read(inode); 1233 u64 page_start; 1234 u64 page_end; 1235 u64 page_cnt; 1236 int ret; 1237 int i; 1238 int i_done; 1239 struct btrfs_ordered_extent *ordered; 1240 struct extent_state *cached_state = NULL; 1241 struct extent_io_tree *tree; 1242 struct extent_changeset *data_reserved = NULL; 1243 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1244 1245 file_end = (isize - 1) >> PAGE_SHIFT; 1246 if (!isize || start_index > file_end) 1247 return 0; 1248 1249 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1250 1251 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1252 start_index << PAGE_SHIFT, 1253 page_cnt << PAGE_SHIFT); 1254 if (ret) 1255 return ret; 1256 i_done = 0; 1257 tree = &BTRFS_I(inode)->io_tree; 1258 1259 /* step one, lock all the pages */ 1260 for (i = 0; i < page_cnt; i++) { 1261 struct page *page; 1262 again: 1263 page = find_or_create_page(inode->i_mapping, 1264 start_index + i, mask); 1265 if (!page) 1266 break; 1267 1268 page_start = page_offset(page); 1269 page_end = page_start + PAGE_SIZE - 1; 1270 while (1) { 1271 lock_extent_bits(tree, page_start, page_end, 1272 &cached_state); 1273 ordered = btrfs_lookup_ordered_extent(inode, 1274 page_start); 1275 unlock_extent_cached(tree, page_start, page_end, 1276 &cached_state); 1277 if (!ordered) 1278 break; 1279 1280 unlock_page(page); 1281 btrfs_start_ordered_extent(inode, ordered, 1); 1282 btrfs_put_ordered_extent(ordered); 1283 lock_page(page); 1284 /* 1285 * we unlocked the page above, so we need check if 1286 * it was released or not. 1287 */ 1288 if (page->mapping != inode->i_mapping) { 1289 unlock_page(page); 1290 put_page(page); 1291 goto again; 1292 } 1293 } 1294 1295 if (!PageUptodate(page)) { 1296 btrfs_readpage(NULL, page); 1297 lock_page(page); 1298 if (!PageUptodate(page)) { 1299 unlock_page(page); 1300 put_page(page); 1301 ret = -EIO; 1302 break; 1303 } 1304 } 1305 1306 if (page->mapping != inode->i_mapping) { 1307 unlock_page(page); 1308 put_page(page); 1309 goto again; 1310 } 1311 1312 pages[i] = page; 1313 i_done++; 1314 } 1315 if (!i_done || ret) 1316 goto out; 1317 1318 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1319 goto out; 1320 1321 /* 1322 * so now we have a nice long stream of locked 1323 * and up to date pages, lets wait on them 1324 */ 1325 for (i = 0; i < i_done; i++) 1326 wait_on_page_writeback(pages[i]); 1327 1328 page_start = page_offset(pages[0]); 1329 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1330 1331 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1332 page_start, page_end - 1, &cached_state); 1333 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1334 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1335 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1336 &cached_state); 1337 1338 if (i_done != page_cnt) { 1339 spin_lock(&BTRFS_I(inode)->lock); 1340 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1341 spin_unlock(&BTRFS_I(inode)->lock); 1342 btrfs_delalloc_release_space(inode, data_reserved, 1343 start_index << PAGE_SHIFT, 1344 (page_cnt - i_done) << PAGE_SHIFT, true); 1345 } 1346 1347 1348 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1349 &cached_state); 1350 1351 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1352 page_start, page_end - 1, &cached_state); 1353 1354 for (i = 0; i < i_done; i++) { 1355 clear_page_dirty_for_io(pages[i]); 1356 ClearPageChecked(pages[i]); 1357 set_page_extent_mapped(pages[i]); 1358 set_page_dirty(pages[i]); 1359 unlock_page(pages[i]); 1360 put_page(pages[i]); 1361 } 1362 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1363 false); 1364 extent_changeset_free(data_reserved); 1365 return i_done; 1366 out: 1367 for (i = 0; i < i_done; i++) { 1368 unlock_page(pages[i]); 1369 put_page(pages[i]); 1370 } 1371 btrfs_delalloc_release_space(inode, data_reserved, 1372 start_index << PAGE_SHIFT, 1373 page_cnt << PAGE_SHIFT, true); 1374 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1375 true); 1376 extent_changeset_free(data_reserved); 1377 return ret; 1378 1379 } 1380 1381 int btrfs_defrag_file(struct inode *inode, struct file *file, 1382 struct btrfs_ioctl_defrag_range_args *range, 1383 u64 newer_than, unsigned long max_to_defrag) 1384 { 1385 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1386 struct btrfs_root *root = BTRFS_I(inode)->root; 1387 struct file_ra_state *ra = NULL; 1388 unsigned long last_index; 1389 u64 isize = i_size_read(inode); 1390 u64 last_len = 0; 1391 u64 skip = 0; 1392 u64 defrag_end = 0; 1393 u64 newer_off = range->start; 1394 unsigned long i; 1395 unsigned long ra_index = 0; 1396 int ret; 1397 int defrag_count = 0; 1398 int compress_type = BTRFS_COMPRESS_ZLIB; 1399 u32 extent_thresh = range->extent_thresh; 1400 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1401 unsigned long cluster = max_cluster; 1402 u64 new_align = ~((u64)SZ_128K - 1); 1403 struct page **pages = NULL; 1404 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1405 1406 if (isize == 0) 1407 return 0; 1408 1409 if (range->start >= isize) 1410 return -EINVAL; 1411 1412 if (do_compress) { 1413 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1414 return -EINVAL; 1415 if (range->compress_type) 1416 compress_type = range->compress_type; 1417 } 1418 1419 if (extent_thresh == 0) 1420 extent_thresh = SZ_256K; 1421 1422 /* 1423 * If we were not given a file, allocate a readahead context. As 1424 * readahead is just an optimization, defrag will work without it so 1425 * we don't error out. 1426 */ 1427 if (!file) { 1428 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1429 if (ra) 1430 file_ra_state_init(ra, inode->i_mapping); 1431 } else { 1432 ra = &file->f_ra; 1433 } 1434 1435 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1436 if (!pages) { 1437 ret = -ENOMEM; 1438 goto out_ra; 1439 } 1440 1441 /* find the last page to defrag */ 1442 if (range->start + range->len > range->start) { 1443 last_index = min_t(u64, isize - 1, 1444 range->start + range->len - 1) >> PAGE_SHIFT; 1445 } else { 1446 last_index = (isize - 1) >> PAGE_SHIFT; 1447 } 1448 1449 if (newer_than) { 1450 ret = find_new_extents(root, inode, newer_than, 1451 &newer_off, SZ_64K); 1452 if (!ret) { 1453 range->start = newer_off; 1454 /* 1455 * we always align our defrag to help keep 1456 * the extents in the file evenly spaced 1457 */ 1458 i = (newer_off & new_align) >> PAGE_SHIFT; 1459 } else 1460 goto out_ra; 1461 } else { 1462 i = range->start >> PAGE_SHIFT; 1463 } 1464 if (!max_to_defrag) 1465 max_to_defrag = last_index - i + 1; 1466 1467 /* 1468 * make writeback starts from i, so the defrag range can be 1469 * written sequentially. 1470 */ 1471 if (i < inode->i_mapping->writeback_index) 1472 inode->i_mapping->writeback_index = i; 1473 1474 while (i <= last_index && defrag_count < max_to_defrag && 1475 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1476 /* 1477 * make sure we stop running if someone unmounts 1478 * the FS 1479 */ 1480 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1481 break; 1482 1483 if (btrfs_defrag_cancelled(fs_info)) { 1484 btrfs_debug(fs_info, "defrag_file cancelled"); 1485 ret = -EAGAIN; 1486 break; 1487 } 1488 1489 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1490 extent_thresh, &last_len, &skip, 1491 &defrag_end, do_compress)){ 1492 unsigned long next; 1493 /* 1494 * the should_defrag function tells us how much to skip 1495 * bump our counter by the suggested amount 1496 */ 1497 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1498 i = max(i + 1, next); 1499 continue; 1500 } 1501 1502 if (!newer_than) { 1503 cluster = (PAGE_ALIGN(defrag_end) >> 1504 PAGE_SHIFT) - i; 1505 cluster = min(cluster, max_cluster); 1506 } else { 1507 cluster = max_cluster; 1508 } 1509 1510 if (i + cluster > ra_index) { 1511 ra_index = max(i, ra_index); 1512 if (ra) 1513 page_cache_sync_readahead(inode->i_mapping, ra, 1514 file, ra_index, cluster); 1515 ra_index += cluster; 1516 } 1517 1518 inode_lock(inode); 1519 if (IS_SWAPFILE(inode)) { 1520 ret = -ETXTBSY; 1521 } else { 1522 if (do_compress) 1523 BTRFS_I(inode)->defrag_compress = compress_type; 1524 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1525 } 1526 if (ret < 0) { 1527 inode_unlock(inode); 1528 goto out_ra; 1529 } 1530 1531 defrag_count += ret; 1532 balance_dirty_pages_ratelimited(inode->i_mapping); 1533 inode_unlock(inode); 1534 1535 if (newer_than) { 1536 if (newer_off == (u64)-1) 1537 break; 1538 1539 if (ret > 0) 1540 i += ret; 1541 1542 newer_off = max(newer_off + 1, 1543 (u64)i << PAGE_SHIFT); 1544 1545 ret = find_new_extents(root, inode, newer_than, 1546 &newer_off, SZ_64K); 1547 if (!ret) { 1548 range->start = newer_off; 1549 i = (newer_off & new_align) >> PAGE_SHIFT; 1550 } else { 1551 break; 1552 } 1553 } else { 1554 if (ret > 0) { 1555 i += ret; 1556 last_len += ret << PAGE_SHIFT; 1557 } else { 1558 i++; 1559 last_len = 0; 1560 } 1561 } 1562 } 1563 1564 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1565 filemap_flush(inode->i_mapping); 1566 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1567 &BTRFS_I(inode)->runtime_flags)) 1568 filemap_flush(inode->i_mapping); 1569 } 1570 1571 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1572 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1573 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1574 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1575 } 1576 1577 ret = defrag_count; 1578 1579 out_ra: 1580 if (do_compress) { 1581 inode_lock(inode); 1582 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1583 inode_unlock(inode); 1584 } 1585 if (!file) 1586 kfree(ra); 1587 kfree(pages); 1588 return ret; 1589 } 1590 1591 static noinline int btrfs_ioctl_resize(struct file *file, 1592 void __user *arg) 1593 { 1594 struct inode *inode = file_inode(file); 1595 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1596 u64 new_size; 1597 u64 old_size; 1598 u64 devid = 1; 1599 struct btrfs_root *root = BTRFS_I(inode)->root; 1600 struct btrfs_ioctl_vol_args *vol_args; 1601 struct btrfs_trans_handle *trans; 1602 struct btrfs_device *device = NULL; 1603 char *sizestr; 1604 char *retptr; 1605 char *devstr = NULL; 1606 int ret = 0; 1607 int mod = 0; 1608 1609 if (!capable(CAP_SYS_ADMIN)) 1610 return -EPERM; 1611 1612 ret = mnt_want_write_file(file); 1613 if (ret) 1614 return ret; 1615 1616 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1617 mnt_drop_write_file(file); 1618 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1619 } 1620 1621 vol_args = memdup_user(arg, sizeof(*vol_args)); 1622 if (IS_ERR(vol_args)) { 1623 ret = PTR_ERR(vol_args); 1624 goto out; 1625 } 1626 1627 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1628 1629 sizestr = vol_args->name; 1630 devstr = strchr(sizestr, ':'); 1631 if (devstr) { 1632 sizestr = devstr + 1; 1633 *devstr = '\0'; 1634 devstr = vol_args->name; 1635 ret = kstrtoull(devstr, 10, &devid); 1636 if (ret) 1637 goto out_free; 1638 if (!devid) { 1639 ret = -EINVAL; 1640 goto out_free; 1641 } 1642 btrfs_info(fs_info, "resizing devid %llu", devid); 1643 } 1644 1645 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1646 if (!device) { 1647 btrfs_info(fs_info, "resizer unable to find device %llu", 1648 devid); 1649 ret = -ENODEV; 1650 goto out_free; 1651 } 1652 1653 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1654 btrfs_info(fs_info, 1655 "resizer unable to apply on readonly device %llu", 1656 devid); 1657 ret = -EPERM; 1658 goto out_free; 1659 } 1660 1661 if (!strcmp(sizestr, "max")) 1662 new_size = device->bdev->bd_inode->i_size; 1663 else { 1664 if (sizestr[0] == '-') { 1665 mod = -1; 1666 sizestr++; 1667 } else if (sizestr[0] == '+') { 1668 mod = 1; 1669 sizestr++; 1670 } 1671 new_size = memparse(sizestr, &retptr); 1672 if (*retptr != '\0' || new_size == 0) { 1673 ret = -EINVAL; 1674 goto out_free; 1675 } 1676 } 1677 1678 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1679 ret = -EPERM; 1680 goto out_free; 1681 } 1682 1683 old_size = btrfs_device_get_total_bytes(device); 1684 1685 if (mod < 0) { 1686 if (new_size > old_size) { 1687 ret = -EINVAL; 1688 goto out_free; 1689 } 1690 new_size = old_size - new_size; 1691 } else if (mod > 0) { 1692 if (new_size > ULLONG_MAX - old_size) { 1693 ret = -ERANGE; 1694 goto out_free; 1695 } 1696 new_size = old_size + new_size; 1697 } 1698 1699 if (new_size < SZ_256M) { 1700 ret = -EINVAL; 1701 goto out_free; 1702 } 1703 if (new_size > device->bdev->bd_inode->i_size) { 1704 ret = -EFBIG; 1705 goto out_free; 1706 } 1707 1708 new_size = round_down(new_size, fs_info->sectorsize); 1709 1710 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1711 rcu_str_deref(device->name), new_size); 1712 1713 if (new_size > old_size) { 1714 trans = btrfs_start_transaction(root, 0); 1715 if (IS_ERR(trans)) { 1716 ret = PTR_ERR(trans); 1717 goto out_free; 1718 } 1719 ret = btrfs_grow_device(trans, device, new_size); 1720 btrfs_commit_transaction(trans); 1721 } else if (new_size < old_size) { 1722 ret = btrfs_shrink_device(device, new_size); 1723 } /* equal, nothing need to do */ 1724 1725 out_free: 1726 kfree(vol_args); 1727 out: 1728 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1729 mnt_drop_write_file(file); 1730 return ret; 1731 } 1732 1733 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1734 const char *name, unsigned long fd, int subvol, 1735 u64 *transid, bool readonly, 1736 struct btrfs_qgroup_inherit *inherit) 1737 { 1738 int namelen; 1739 int ret = 0; 1740 1741 if (!S_ISDIR(file_inode(file)->i_mode)) 1742 return -ENOTDIR; 1743 1744 ret = mnt_want_write_file(file); 1745 if (ret) 1746 goto out; 1747 1748 namelen = strlen(name); 1749 if (strchr(name, '/')) { 1750 ret = -EINVAL; 1751 goto out_drop_write; 1752 } 1753 1754 if (name[0] == '.' && 1755 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1756 ret = -EEXIST; 1757 goto out_drop_write; 1758 } 1759 1760 if (subvol) { 1761 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1762 NULL, transid, readonly, inherit); 1763 } else { 1764 struct fd src = fdget(fd); 1765 struct inode *src_inode; 1766 if (!src.file) { 1767 ret = -EINVAL; 1768 goto out_drop_write; 1769 } 1770 1771 src_inode = file_inode(src.file); 1772 if (src_inode->i_sb != file_inode(file)->i_sb) { 1773 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1774 "Snapshot src from another FS"); 1775 ret = -EXDEV; 1776 } else if (!inode_owner_or_capable(src_inode)) { 1777 /* 1778 * Subvolume creation is not restricted, but snapshots 1779 * are limited to own subvolumes only 1780 */ 1781 ret = -EPERM; 1782 } else { 1783 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1784 BTRFS_I(src_inode)->root, 1785 transid, readonly, inherit); 1786 } 1787 fdput(src); 1788 } 1789 out_drop_write: 1790 mnt_drop_write_file(file); 1791 out: 1792 return ret; 1793 } 1794 1795 static noinline int btrfs_ioctl_snap_create(struct file *file, 1796 void __user *arg, int subvol) 1797 { 1798 struct btrfs_ioctl_vol_args *vol_args; 1799 int ret; 1800 1801 if (!S_ISDIR(file_inode(file)->i_mode)) 1802 return -ENOTDIR; 1803 1804 vol_args = memdup_user(arg, sizeof(*vol_args)); 1805 if (IS_ERR(vol_args)) 1806 return PTR_ERR(vol_args); 1807 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1808 1809 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1810 vol_args->fd, subvol, 1811 NULL, false, NULL); 1812 1813 kfree(vol_args); 1814 return ret; 1815 } 1816 1817 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1818 void __user *arg, int subvol) 1819 { 1820 struct btrfs_ioctl_vol_args_v2 *vol_args; 1821 int ret; 1822 u64 transid = 0; 1823 u64 *ptr = NULL; 1824 bool readonly = false; 1825 struct btrfs_qgroup_inherit *inherit = NULL; 1826 1827 if (!S_ISDIR(file_inode(file)->i_mode)) 1828 return -ENOTDIR; 1829 1830 vol_args = memdup_user(arg, sizeof(*vol_args)); 1831 if (IS_ERR(vol_args)) 1832 return PTR_ERR(vol_args); 1833 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1834 1835 if (vol_args->flags & 1836 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1837 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1838 ret = -EOPNOTSUPP; 1839 goto free_args; 1840 } 1841 1842 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1843 ptr = &transid; 1844 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1845 readonly = true; 1846 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1847 if (vol_args->size > PAGE_SIZE) { 1848 ret = -EINVAL; 1849 goto free_args; 1850 } 1851 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1852 if (IS_ERR(inherit)) { 1853 ret = PTR_ERR(inherit); 1854 goto free_args; 1855 } 1856 } 1857 1858 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1859 vol_args->fd, subvol, ptr, 1860 readonly, inherit); 1861 if (ret) 1862 goto free_inherit; 1863 1864 if (ptr && copy_to_user(arg + 1865 offsetof(struct btrfs_ioctl_vol_args_v2, 1866 transid), 1867 ptr, sizeof(*ptr))) 1868 ret = -EFAULT; 1869 1870 free_inherit: 1871 kfree(inherit); 1872 free_args: 1873 kfree(vol_args); 1874 return ret; 1875 } 1876 1877 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1878 void __user *arg) 1879 { 1880 struct inode *inode = file_inode(file); 1881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1882 struct btrfs_root *root = BTRFS_I(inode)->root; 1883 int ret = 0; 1884 u64 flags = 0; 1885 1886 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1887 return -EINVAL; 1888 1889 down_read(&fs_info->subvol_sem); 1890 if (btrfs_root_readonly(root)) 1891 flags |= BTRFS_SUBVOL_RDONLY; 1892 up_read(&fs_info->subvol_sem); 1893 1894 if (copy_to_user(arg, &flags, sizeof(flags))) 1895 ret = -EFAULT; 1896 1897 return ret; 1898 } 1899 1900 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1901 void __user *arg) 1902 { 1903 struct inode *inode = file_inode(file); 1904 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1905 struct btrfs_root *root = BTRFS_I(inode)->root; 1906 struct btrfs_trans_handle *trans; 1907 u64 root_flags; 1908 u64 flags; 1909 int ret = 0; 1910 1911 if (!inode_owner_or_capable(inode)) 1912 return -EPERM; 1913 1914 ret = mnt_want_write_file(file); 1915 if (ret) 1916 goto out; 1917 1918 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1919 ret = -EINVAL; 1920 goto out_drop_write; 1921 } 1922 1923 if (copy_from_user(&flags, arg, sizeof(flags))) { 1924 ret = -EFAULT; 1925 goto out_drop_write; 1926 } 1927 1928 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1929 ret = -EINVAL; 1930 goto out_drop_write; 1931 } 1932 1933 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1934 ret = -EOPNOTSUPP; 1935 goto out_drop_write; 1936 } 1937 1938 down_write(&fs_info->subvol_sem); 1939 1940 /* nothing to do */ 1941 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1942 goto out_drop_sem; 1943 1944 root_flags = btrfs_root_flags(&root->root_item); 1945 if (flags & BTRFS_SUBVOL_RDONLY) { 1946 btrfs_set_root_flags(&root->root_item, 1947 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1948 } else { 1949 /* 1950 * Block RO -> RW transition if this subvolume is involved in 1951 * send 1952 */ 1953 spin_lock(&root->root_item_lock); 1954 if (root->send_in_progress == 0) { 1955 btrfs_set_root_flags(&root->root_item, 1956 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1957 spin_unlock(&root->root_item_lock); 1958 } else { 1959 spin_unlock(&root->root_item_lock); 1960 btrfs_warn(fs_info, 1961 "Attempt to set subvolume %llu read-write during send", 1962 root->root_key.objectid); 1963 ret = -EPERM; 1964 goto out_drop_sem; 1965 } 1966 } 1967 1968 trans = btrfs_start_transaction(root, 1); 1969 if (IS_ERR(trans)) { 1970 ret = PTR_ERR(trans); 1971 goto out_reset; 1972 } 1973 1974 ret = btrfs_update_root(trans, fs_info->tree_root, 1975 &root->root_key, &root->root_item); 1976 if (ret < 0) { 1977 btrfs_end_transaction(trans); 1978 goto out_reset; 1979 } 1980 1981 ret = btrfs_commit_transaction(trans); 1982 1983 out_reset: 1984 if (ret) 1985 btrfs_set_root_flags(&root->root_item, root_flags); 1986 out_drop_sem: 1987 up_write(&fs_info->subvol_sem); 1988 out_drop_write: 1989 mnt_drop_write_file(file); 1990 out: 1991 return ret; 1992 } 1993 1994 static noinline int key_in_sk(struct btrfs_key *key, 1995 struct btrfs_ioctl_search_key *sk) 1996 { 1997 struct btrfs_key test; 1998 int ret; 1999 2000 test.objectid = sk->min_objectid; 2001 test.type = sk->min_type; 2002 test.offset = sk->min_offset; 2003 2004 ret = btrfs_comp_cpu_keys(key, &test); 2005 if (ret < 0) 2006 return 0; 2007 2008 test.objectid = sk->max_objectid; 2009 test.type = sk->max_type; 2010 test.offset = sk->max_offset; 2011 2012 ret = btrfs_comp_cpu_keys(key, &test); 2013 if (ret > 0) 2014 return 0; 2015 return 1; 2016 } 2017 2018 static noinline int copy_to_sk(struct btrfs_path *path, 2019 struct btrfs_key *key, 2020 struct btrfs_ioctl_search_key *sk, 2021 size_t *buf_size, 2022 char __user *ubuf, 2023 unsigned long *sk_offset, 2024 int *num_found) 2025 { 2026 u64 found_transid; 2027 struct extent_buffer *leaf; 2028 struct btrfs_ioctl_search_header sh; 2029 struct btrfs_key test; 2030 unsigned long item_off; 2031 unsigned long item_len; 2032 int nritems; 2033 int i; 2034 int slot; 2035 int ret = 0; 2036 2037 leaf = path->nodes[0]; 2038 slot = path->slots[0]; 2039 nritems = btrfs_header_nritems(leaf); 2040 2041 if (btrfs_header_generation(leaf) > sk->max_transid) { 2042 i = nritems; 2043 goto advance_key; 2044 } 2045 found_transid = btrfs_header_generation(leaf); 2046 2047 for (i = slot; i < nritems; i++) { 2048 item_off = btrfs_item_ptr_offset(leaf, i); 2049 item_len = btrfs_item_size_nr(leaf, i); 2050 2051 btrfs_item_key_to_cpu(leaf, key, i); 2052 if (!key_in_sk(key, sk)) 2053 continue; 2054 2055 if (sizeof(sh) + item_len > *buf_size) { 2056 if (*num_found) { 2057 ret = 1; 2058 goto out; 2059 } 2060 2061 /* 2062 * return one empty item back for v1, which does not 2063 * handle -EOVERFLOW 2064 */ 2065 2066 *buf_size = sizeof(sh) + item_len; 2067 item_len = 0; 2068 ret = -EOVERFLOW; 2069 } 2070 2071 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2072 ret = 1; 2073 goto out; 2074 } 2075 2076 sh.objectid = key->objectid; 2077 sh.offset = key->offset; 2078 sh.type = key->type; 2079 sh.len = item_len; 2080 sh.transid = found_transid; 2081 2082 /* copy search result header */ 2083 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2084 ret = -EFAULT; 2085 goto out; 2086 } 2087 2088 *sk_offset += sizeof(sh); 2089 2090 if (item_len) { 2091 char __user *up = ubuf + *sk_offset; 2092 /* copy the item */ 2093 if (read_extent_buffer_to_user(leaf, up, 2094 item_off, item_len)) { 2095 ret = -EFAULT; 2096 goto out; 2097 } 2098 2099 *sk_offset += item_len; 2100 } 2101 (*num_found)++; 2102 2103 if (ret) /* -EOVERFLOW from above */ 2104 goto out; 2105 2106 if (*num_found >= sk->nr_items) { 2107 ret = 1; 2108 goto out; 2109 } 2110 } 2111 advance_key: 2112 ret = 0; 2113 test.objectid = sk->max_objectid; 2114 test.type = sk->max_type; 2115 test.offset = sk->max_offset; 2116 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2117 ret = 1; 2118 else if (key->offset < (u64)-1) 2119 key->offset++; 2120 else if (key->type < (u8)-1) { 2121 key->offset = 0; 2122 key->type++; 2123 } else if (key->objectid < (u64)-1) { 2124 key->offset = 0; 2125 key->type = 0; 2126 key->objectid++; 2127 } else 2128 ret = 1; 2129 out: 2130 /* 2131 * 0: all items from this leaf copied, continue with next 2132 * 1: * more items can be copied, but unused buffer is too small 2133 * * all items were found 2134 * Either way, it will stops the loop which iterates to the next 2135 * leaf 2136 * -EOVERFLOW: item was to large for buffer 2137 * -EFAULT: could not copy extent buffer back to userspace 2138 */ 2139 return ret; 2140 } 2141 2142 static noinline int search_ioctl(struct inode *inode, 2143 struct btrfs_ioctl_search_key *sk, 2144 size_t *buf_size, 2145 char __user *ubuf) 2146 { 2147 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2148 struct btrfs_root *root; 2149 struct btrfs_key key; 2150 struct btrfs_path *path; 2151 int ret; 2152 int num_found = 0; 2153 unsigned long sk_offset = 0; 2154 2155 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2156 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2157 return -EOVERFLOW; 2158 } 2159 2160 path = btrfs_alloc_path(); 2161 if (!path) 2162 return -ENOMEM; 2163 2164 if (sk->tree_id == 0) { 2165 /* search the root of the inode that was passed */ 2166 root = BTRFS_I(inode)->root; 2167 } else { 2168 key.objectid = sk->tree_id; 2169 key.type = BTRFS_ROOT_ITEM_KEY; 2170 key.offset = (u64)-1; 2171 root = btrfs_read_fs_root_no_name(info, &key); 2172 if (IS_ERR(root)) { 2173 btrfs_free_path(path); 2174 return PTR_ERR(root); 2175 } 2176 } 2177 2178 key.objectid = sk->min_objectid; 2179 key.type = sk->min_type; 2180 key.offset = sk->min_offset; 2181 2182 while (1) { 2183 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2184 if (ret != 0) { 2185 if (ret > 0) 2186 ret = 0; 2187 goto err; 2188 } 2189 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2190 &sk_offset, &num_found); 2191 btrfs_release_path(path); 2192 if (ret) 2193 break; 2194 2195 } 2196 if (ret > 0) 2197 ret = 0; 2198 err: 2199 sk->nr_items = num_found; 2200 btrfs_free_path(path); 2201 return ret; 2202 } 2203 2204 static noinline int btrfs_ioctl_tree_search(struct file *file, 2205 void __user *argp) 2206 { 2207 struct btrfs_ioctl_search_args __user *uargs; 2208 struct btrfs_ioctl_search_key sk; 2209 struct inode *inode; 2210 int ret; 2211 size_t buf_size; 2212 2213 if (!capable(CAP_SYS_ADMIN)) 2214 return -EPERM; 2215 2216 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2217 2218 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2219 return -EFAULT; 2220 2221 buf_size = sizeof(uargs->buf); 2222 2223 inode = file_inode(file); 2224 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2225 2226 /* 2227 * In the origin implementation an overflow is handled by returning a 2228 * search header with a len of zero, so reset ret. 2229 */ 2230 if (ret == -EOVERFLOW) 2231 ret = 0; 2232 2233 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2234 ret = -EFAULT; 2235 return ret; 2236 } 2237 2238 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2239 void __user *argp) 2240 { 2241 struct btrfs_ioctl_search_args_v2 __user *uarg; 2242 struct btrfs_ioctl_search_args_v2 args; 2243 struct inode *inode; 2244 int ret; 2245 size_t buf_size; 2246 const size_t buf_limit = SZ_16M; 2247 2248 if (!capable(CAP_SYS_ADMIN)) 2249 return -EPERM; 2250 2251 /* copy search header and buffer size */ 2252 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2253 if (copy_from_user(&args, uarg, sizeof(args))) 2254 return -EFAULT; 2255 2256 buf_size = args.buf_size; 2257 2258 /* limit result size to 16MB */ 2259 if (buf_size > buf_limit) 2260 buf_size = buf_limit; 2261 2262 inode = file_inode(file); 2263 ret = search_ioctl(inode, &args.key, &buf_size, 2264 (char __user *)(&uarg->buf[0])); 2265 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2266 ret = -EFAULT; 2267 else if (ret == -EOVERFLOW && 2268 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2269 ret = -EFAULT; 2270 2271 return ret; 2272 } 2273 2274 /* 2275 * Search INODE_REFs to identify path name of 'dirid' directory 2276 * in a 'tree_id' tree. and sets path name to 'name'. 2277 */ 2278 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2279 u64 tree_id, u64 dirid, char *name) 2280 { 2281 struct btrfs_root *root; 2282 struct btrfs_key key; 2283 char *ptr; 2284 int ret = -1; 2285 int slot; 2286 int len; 2287 int total_len = 0; 2288 struct btrfs_inode_ref *iref; 2289 struct extent_buffer *l; 2290 struct btrfs_path *path; 2291 2292 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2293 name[0]='\0'; 2294 return 0; 2295 } 2296 2297 path = btrfs_alloc_path(); 2298 if (!path) 2299 return -ENOMEM; 2300 2301 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2302 2303 key.objectid = tree_id; 2304 key.type = BTRFS_ROOT_ITEM_KEY; 2305 key.offset = (u64)-1; 2306 root = btrfs_read_fs_root_no_name(info, &key); 2307 if (IS_ERR(root)) { 2308 ret = PTR_ERR(root); 2309 goto out; 2310 } 2311 2312 key.objectid = dirid; 2313 key.type = BTRFS_INODE_REF_KEY; 2314 key.offset = (u64)-1; 2315 2316 while (1) { 2317 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2318 if (ret < 0) 2319 goto out; 2320 else if (ret > 0) { 2321 ret = btrfs_previous_item(root, path, dirid, 2322 BTRFS_INODE_REF_KEY); 2323 if (ret < 0) 2324 goto out; 2325 else if (ret > 0) { 2326 ret = -ENOENT; 2327 goto out; 2328 } 2329 } 2330 2331 l = path->nodes[0]; 2332 slot = path->slots[0]; 2333 btrfs_item_key_to_cpu(l, &key, slot); 2334 2335 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2336 len = btrfs_inode_ref_name_len(l, iref); 2337 ptr -= len + 1; 2338 total_len += len + 1; 2339 if (ptr < name) { 2340 ret = -ENAMETOOLONG; 2341 goto out; 2342 } 2343 2344 *(ptr + len) = '/'; 2345 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2346 2347 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2348 break; 2349 2350 btrfs_release_path(path); 2351 key.objectid = key.offset; 2352 key.offset = (u64)-1; 2353 dirid = key.objectid; 2354 } 2355 memmove(name, ptr, total_len); 2356 name[total_len] = '\0'; 2357 ret = 0; 2358 out: 2359 btrfs_free_path(path); 2360 return ret; 2361 } 2362 2363 static int btrfs_search_path_in_tree_user(struct inode *inode, 2364 struct btrfs_ioctl_ino_lookup_user_args *args) 2365 { 2366 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2367 struct super_block *sb = inode->i_sb; 2368 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2369 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2370 u64 dirid = args->dirid; 2371 unsigned long item_off; 2372 unsigned long item_len; 2373 struct btrfs_inode_ref *iref; 2374 struct btrfs_root_ref *rref; 2375 struct btrfs_root *root; 2376 struct btrfs_path *path; 2377 struct btrfs_key key, key2; 2378 struct extent_buffer *leaf; 2379 struct inode *temp_inode; 2380 char *ptr; 2381 int slot; 2382 int len; 2383 int total_len = 0; 2384 int ret; 2385 2386 path = btrfs_alloc_path(); 2387 if (!path) 2388 return -ENOMEM; 2389 2390 /* 2391 * If the bottom subvolume does not exist directly under upper_limit, 2392 * construct the path in from the bottom up. 2393 */ 2394 if (dirid != upper_limit.objectid) { 2395 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2396 2397 key.objectid = treeid; 2398 key.type = BTRFS_ROOT_ITEM_KEY; 2399 key.offset = (u64)-1; 2400 root = btrfs_read_fs_root_no_name(fs_info, &key); 2401 if (IS_ERR(root)) { 2402 ret = PTR_ERR(root); 2403 goto out; 2404 } 2405 2406 key.objectid = dirid; 2407 key.type = BTRFS_INODE_REF_KEY; 2408 key.offset = (u64)-1; 2409 while (1) { 2410 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2411 if (ret < 0) { 2412 goto out; 2413 } else if (ret > 0) { 2414 ret = btrfs_previous_item(root, path, dirid, 2415 BTRFS_INODE_REF_KEY); 2416 if (ret < 0) { 2417 goto out; 2418 } else if (ret > 0) { 2419 ret = -ENOENT; 2420 goto out; 2421 } 2422 } 2423 2424 leaf = path->nodes[0]; 2425 slot = path->slots[0]; 2426 btrfs_item_key_to_cpu(leaf, &key, slot); 2427 2428 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2429 len = btrfs_inode_ref_name_len(leaf, iref); 2430 ptr -= len + 1; 2431 total_len += len + 1; 2432 if (ptr < args->path) { 2433 ret = -ENAMETOOLONG; 2434 goto out; 2435 } 2436 2437 *(ptr + len) = '/'; 2438 read_extent_buffer(leaf, ptr, 2439 (unsigned long)(iref + 1), len); 2440 2441 /* Check the read+exec permission of this directory */ 2442 ret = btrfs_previous_item(root, path, dirid, 2443 BTRFS_INODE_ITEM_KEY); 2444 if (ret < 0) { 2445 goto out; 2446 } else if (ret > 0) { 2447 ret = -ENOENT; 2448 goto out; 2449 } 2450 2451 leaf = path->nodes[0]; 2452 slot = path->slots[0]; 2453 btrfs_item_key_to_cpu(leaf, &key2, slot); 2454 if (key2.objectid != dirid) { 2455 ret = -ENOENT; 2456 goto out; 2457 } 2458 2459 temp_inode = btrfs_iget(sb, &key2, root, NULL); 2460 if (IS_ERR(temp_inode)) { 2461 ret = PTR_ERR(temp_inode); 2462 goto out; 2463 } 2464 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2465 iput(temp_inode); 2466 if (ret) { 2467 ret = -EACCES; 2468 goto out; 2469 } 2470 2471 if (key.offset == upper_limit.objectid) 2472 break; 2473 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2474 ret = -EACCES; 2475 goto out; 2476 } 2477 2478 btrfs_release_path(path); 2479 key.objectid = key.offset; 2480 key.offset = (u64)-1; 2481 dirid = key.objectid; 2482 } 2483 2484 memmove(args->path, ptr, total_len); 2485 args->path[total_len] = '\0'; 2486 btrfs_release_path(path); 2487 } 2488 2489 /* Get the bottom subvolume's name from ROOT_REF */ 2490 root = fs_info->tree_root; 2491 key.objectid = treeid; 2492 key.type = BTRFS_ROOT_REF_KEY; 2493 key.offset = args->treeid; 2494 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2495 if (ret < 0) { 2496 goto out; 2497 } else if (ret > 0) { 2498 ret = -ENOENT; 2499 goto out; 2500 } 2501 2502 leaf = path->nodes[0]; 2503 slot = path->slots[0]; 2504 btrfs_item_key_to_cpu(leaf, &key, slot); 2505 2506 item_off = btrfs_item_ptr_offset(leaf, slot); 2507 item_len = btrfs_item_size_nr(leaf, slot); 2508 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2509 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2510 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2511 ret = -EINVAL; 2512 goto out; 2513 } 2514 2515 /* Copy subvolume's name */ 2516 item_off += sizeof(struct btrfs_root_ref); 2517 item_len -= sizeof(struct btrfs_root_ref); 2518 read_extent_buffer(leaf, args->name, item_off, item_len); 2519 args->name[item_len] = 0; 2520 2521 out: 2522 btrfs_free_path(path); 2523 return ret; 2524 } 2525 2526 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2527 void __user *argp) 2528 { 2529 struct btrfs_ioctl_ino_lookup_args *args; 2530 struct inode *inode; 2531 int ret = 0; 2532 2533 args = memdup_user(argp, sizeof(*args)); 2534 if (IS_ERR(args)) 2535 return PTR_ERR(args); 2536 2537 inode = file_inode(file); 2538 2539 /* 2540 * Unprivileged query to obtain the containing subvolume root id. The 2541 * path is reset so it's consistent with btrfs_search_path_in_tree. 2542 */ 2543 if (args->treeid == 0) 2544 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2545 2546 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2547 args->name[0] = 0; 2548 goto out; 2549 } 2550 2551 if (!capable(CAP_SYS_ADMIN)) { 2552 ret = -EPERM; 2553 goto out; 2554 } 2555 2556 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2557 args->treeid, args->objectid, 2558 args->name); 2559 2560 out: 2561 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2562 ret = -EFAULT; 2563 2564 kfree(args); 2565 return ret; 2566 } 2567 2568 /* 2569 * Version of ino_lookup ioctl (unprivileged) 2570 * 2571 * The main differences from ino_lookup ioctl are: 2572 * 2573 * 1. Read + Exec permission will be checked using inode_permission() during 2574 * path construction. -EACCES will be returned in case of failure. 2575 * 2. Path construction will be stopped at the inode number which corresponds 2576 * to the fd with which this ioctl is called. If constructed path does not 2577 * exist under fd's inode, -EACCES will be returned. 2578 * 3. The name of bottom subvolume is also searched and filled. 2579 */ 2580 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2581 { 2582 struct btrfs_ioctl_ino_lookup_user_args *args; 2583 struct inode *inode; 2584 int ret; 2585 2586 args = memdup_user(argp, sizeof(*args)); 2587 if (IS_ERR(args)) 2588 return PTR_ERR(args); 2589 2590 inode = file_inode(file); 2591 2592 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2593 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2594 /* 2595 * The subvolume does not exist under fd with which this is 2596 * called 2597 */ 2598 kfree(args); 2599 return -EACCES; 2600 } 2601 2602 ret = btrfs_search_path_in_tree_user(inode, args); 2603 2604 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2605 ret = -EFAULT; 2606 2607 kfree(args); 2608 return ret; 2609 } 2610 2611 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2612 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2613 { 2614 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2615 struct btrfs_fs_info *fs_info; 2616 struct btrfs_root *root; 2617 struct btrfs_path *path; 2618 struct btrfs_key key; 2619 struct btrfs_root_item *root_item; 2620 struct btrfs_root_ref *rref; 2621 struct extent_buffer *leaf; 2622 unsigned long item_off; 2623 unsigned long item_len; 2624 struct inode *inode; 2625 int slot; 2626 int ret = 0; 2627 2628 path = btrfs_alloc_path(); 2629 if (!path) 2630 return -ENOMEM; 2631 2632 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2633 if (!subvol_info) { 2634 btrfs_free_path(path); 2635 return -ENOMEM; 2636 } 2637 2638 inode = file_inode(file); 2639 fs_info = BTRFS_I(inode)->root->fs_info; 2640 2641 /* Get root_item of inode's subvolume */ 2642 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2643 key.type = BTRFS_ROOT_ITEM_KEY; 2644 key.offset = (u64)-1; 2645 root = btrfs_read_fs_root_no_name(fs_info, &key); 2646 if (IS_ERR(root)) { 2647 ret = PTR_ERR(root); 2648 goto out; 2649 } 2650 root_item = &root->root_item; 2651 2652 subvol_info->treeid = key.objectid; 2653 2654 subvol_info->generation = btrfs_root_generation(root_item); 2655 subvol_info->flags = btrfs_root_flags(root_item); 2656 2657 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2658 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2659 BTRFS_UUID_SIZE); 2660 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2661 BTRFS_UUID_SIZE); 2662 2663 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2664 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2665 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2666 2667 subvol_info->otransid = btrfs_root_otransid(root_item); 2668 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2669 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2670 2671 subvol_info->stransid = btrfs_root_stransid(root_item); 2672 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2673 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2674 2675 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2676 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2677 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2678 2679 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2680 /* Search root tree for ROOT_BACKREF of this subvolume */ 2681 root = fs_info->tree_root; 2682 2683 key.type = BTRFS_ROOT_BACKREF_KEY; 2684 key.offset = 0; 2685 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2686 if (ret < 0) { 2687 goto out; 2688 } else if (path->slots[0] >= 2689 btrfs_header_nritems(path->nodes[0])) { 2690 ret = btrfs_next_leaf(root, path); 2691 if (ret < 0) { 2692 goto out; 2693 } else if (ret > 0) { 2694 ret = -EUCLEAN; 2695 goto out; 2696 } 2697 } 2698 2699 leaf = path->nodes[0]; 2700 slot = path->slots[0]; 2701 btrfs_item_key_to_cpu(leaf, &key, slot); 2702 if (key.objectid == subvol_info->treeid && 2703 key.type == BTRFS_ROOT_BACKREF_KEY) { 2704 subvol_info->parent_id = key.offset; 2705 2706 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2707 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2708 2709 item_off = btrfs_item_ptr_offset(leaf, slot) 2710 + sizeof(struct btrfs_root_ref); 2711 item_len = btrfs_item_size_nr(leaf, slot) 2712 - sizeof(struct btrfs_root_ref); 2713 read_extent_buffer(leaf, subvol_info->name, 2714 item_off, item_len); 2715 } else { 2716 ret = -ENOENT; 2717 goto out; 2718 } 2719 } 2720 2721 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2722 ret = -EFAULT; 2723 2724 out: 2725 btrfs_free_path(path); 2726 kzfree(subvol_info); 2727 return ret; 2728 } 2729 2730 /* 2731 * Return ROOT_REF information of the subvolume containing this inode 2732 * except the subvolume name. 2733 */ 2734 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2735 { 2736 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2737 struct btrfs_root_ref *rref; 2738 struct btrfs_root *root; 2739 struct btrfs_path *path; 2740 struct btrfs_key key; 2741 struct extent_buffer *leaf; 2742 struct inode *inode; 2743 u64 objectid; 2744 int slot; 2745 int ret; 2746 u8 found; 2747 2748 path = btrfs_alloc_path(); 2749 if (!path) 2750 return -ENOMEM; 2751 2752 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2753 if (IS_ERR(rootrefs)) { 2754 btrfs_free_path(path); 2755 return PTR_ERR(rootrefs); 2756 } 2757 2758 inode = file_inode(file); 2759 root = BTRFS_I(inode)->root->fs_info->tree_root; 2760 objectid = BTRFS_I(inode)->root->root_key.objectid; 2761 2762 key.objectid = objectid; 2763 key.type = BTRFS_ROOT_REF_KEY; 2764 key.offset = rootrefs->min_treeid; 2765 found = 0; 2766 2767 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2768 if (ret < 0) { 2769 goto out; 2770 } else if (path->slots[0] >= 2771 btrfs_header_nritems(path->nodes[0])) { 2772 ret = btrfs_next_leaf(root, path); 2773 if (ret < 0) { 2774 goto out; 2775 } else if (ret > 0) { 2776 ret = -EUCLEAN; 2777 goto out; 2778 } 2779 } 2780 while (1) { 2781 leaf = path->nodes[0]; 2782 slot = path->slots[0]; 2783 2784 btrfs_item_key_to_cpu(leaf, &key, slot); 2785 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2786 ret = 0; 2787 goto out; 2788 } 2789 2790 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2791 ret = -EOVERFLOW; 2792 goto out; 2793 } 2794 2795 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2796 rootrefs->rootref[found].treeid = key.offset; 2797 rootrefs->rootref[found].dirid = 2798 btrfs_root_ref_dirid(leaf, rref); 2799 found++; 2800 2801 ret = btrfs_next_item(root, path); 2802 if (ret < 0) { 2803 goto out; 2804 } else if (ret > 0) { 2805 ret = -EUCLEAN; 2806 goto out; 2807 } 2808 } 2809 2810 out: 2811 if (!ret || ret == -EOVERFLOW) { 2812 rootrefs->num_items = found; 2813 /* update min_treeid for next search */ 2814 if (found) 2815 rootrefs->min_treeid = 2816 rootrefs->rootref[found - 1].treeid + 1; 2817 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2818 ret = -EFAULT; 2819 } 2820 2821 kfree(rootrefs); 2822 btrfs_free_path(path); 2823 2824 return ret; 2825 } 2826 2827 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2828 void __user *arg) 2829 { 2830 struct dentry *parent = file->f_path.dentry; 2831 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2832 struct dentry *dentry; 2833 struct inode *dir = d_inode(parent); 2834 struct inode *inode; 2835 struct btrfs_root *root = BTRFS_I(dir)->root; 2836 struct btrfs_root *dest = NULL; 2837 struct btrfs_ioctl_vol_args *vol_args; 2838 int namelen; 2839 int err = 0; 2840 2841 if (!S_ISDIR(dir->i_mode)) 2842 return -ENOTDIR; 2843 2844 vol_args = memdup_user(arg, sizeof(*vol_args)); 2845 if (IS_ERR(vol_args)) 2846 return PTR_ERR(vol_args); 2847 2848 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2849 namelen = strlen(vol_args->name); 2850 if (strchr(vol_args->name, '/') || 2851 strncmp(vol_args->name, "..", namelen) == 0) { 2852 err = -EINVAL; 2853 goto out; 2854 } 2855 2856 err = mnt_want_write_file(file); 2857 if (err) 2858 goto out; 2859 2860 2861 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2862 if (err == -EINTR) 2863 goto out_drop_write; 2864 dentry = lookup_one_len(vol_args->name, parent, namelen); 2865 if (IS_ERR(dentry)) { 2866 err = PTR_ERR(dentry); 2867 goto out_unlock_dir; 2868 } 2869 2870 if (d_really_is_negative(dentry)) { 2871 err = -ENOENT; 2872 goto out_dput; 2873 } 2874 2875 inode = d_inode(dentry); 2876 dest = BTRFS_I(inode)->root; 2877 if (!capable(CAP_SYS_ADMIN)) { 2878 /* 2879 * Regular user. Only allow this with a special mount 2880 * option, when the user has write+exec access to the 2881 * subvol root, and when rmdir(2) would have been 2882 * allowed. 2883 * 2884 * Note that this is _not_ check that the subvol is 2885 * empty or doesn't contain data that we wouldn't 2886 * otherwise be able to delete. 2887 * 2888 * Users who want to delete empty subvols should try 2889 * rmdir(2). 2890 */ 2891 err = -EPERM; 2892 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2893 goto out_dput; 2894 2895 /* 2896 * Do not allow deletion if the parent dir is the same 2897 * as the dir to be deleted. That means the ioctl 2898 * must be called on the dentry referencing the root 2899 * of the subvol, not a random directory contained 2900 * within it. 2901 */ 2902 err = -EINVAL; 2903 if (root == dest) 2904 goto out_dput; 2905 2906 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2907 if (err) 2908 goto out_dput; 2909 } 2910 2911 /* check if subvolume may be deleted by a user */ 2912 err = btrfs_may_delete(dir, dentry, 1); 2913 if (err) 2914 goto out_dput; 2915 2916 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2917 err = -EINVAL; 2918 goto out_dput; 2919 } 2920 2921 inode_lock(inode); 2922 err = btrfs_delete_subvolume(dir, dentry); 2923 inode_unlock(inode); 2924 if (!err) 2925 d_delete(dentry); 2926 2927 out_dput: 2928 dput(dentry); 2929 out_unlock_dir: 2930 inode_unlock(dir); 2931 out_drop_write: 2932 mnt_drop_write_file(file); 2933 out: 2934 kfree(vol_args); 2935 return err; 2936 } 2937 2938 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2939 { 2940 struct inode *inode = file_inode(file); 2941 struct btrfs_root *root = BTRFS_I(inode)->root; 2942 struct btrfs_ioctl_defrag_range_args *range; 2943 int ret; 2944 2945 ret = mnt_want_write_file(file); 2946 if (ret) 2947 return ret; 2948 2949 if (btrfs_root_readonly(root)) { 2950 ret = -EROFS; 2951 goto out; 2952 } 2953 2954 switch (inode->i_mode & S_IFMT) { 2955 case S_IFDIR: 2956 if (!capable(CAP_SYS_ADMIN)) { 2957 ret = -EPERM; 2958 goto out; 2959 } 2960 ret = btrfs_defrag_root(root); 2961 break; 2962 case S_IFREG: 2963 /* 2964 * Note that this does not check the file descriptor for write 2965 * access. This prevents defragmenting executables that are 2966 * running and allows defrag on files open in read-only mode. 2967 */ 2968 if (!capable(CAP_SYS_ADMIN) && 2969 inode_permission(inode, MAY_WRITE)) { 2970 ret = -EPERM; 2971 goto out; 2972 } 2973 2974 range = kzalloc(sizeof(*range), GFP_KERNEL); 2975 if (!range) { 2976 ret = -ENOMEM; 2977 goto out; 2978 } 2979 2980 if (argp) { 2981 if (copy_from_user(range, argp, 2982 sizeof(*range))) { 2983 ret = -EFAULT; 2984 kfree(range); 2985 goto out; 2986 } 2987 /* compression requires us to start the IO */ 2988 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2989 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2990 range->extent_thresh = (u32)-1; 2991 } 2992 } else { 2993 /* the rest are all set to zero by kzalloc */ 2994 range->len = (u64)-1; 2995 } 2996 ret = btrfs_defrag_file(file_inode(file), file, 2997 range, BTRFS_OLDEST_GENERATION, 0); 2998 if (ret > 0) 2999 ret = 0; 3000 kfree(range); 3001 break; 3002 default: 3003 ret = -EINVAL; 3004 } 3005 out: 3006 mnt_drop_write_file(file); 3007 return ret; 3008 } 3009 3010 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3011 { 3012 struct btrfs_ioctl_vol_args *vol_args; 3013 int ret; 3014 3015 if (!capable(CAP_SYS_ADMIN)) 3016 return -EPERM; 3017 3018 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3019 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3020 3021 vol_args = memdup_user(arg, sizeof(*vol_args)); 3022 if (IS_ERR(vol_args)) { 3023 ret = PTR_ERR(vol_args); 3024 goto out; 3025 } 3026 3027 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3028 ret = btrfs_init_new_device(fs_info, vol_args->name); 3029 3030 if (!ret) 3031 btrfs_info(fs_info, "disk added %s", vol_args->name); 3032 3033 kfree(vol_args); 3034 out: 3035 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3036 return ret; 3037 } 3038 3039 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3040 { 3041 struct inode *inode = file_inode(file); 3042 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3043 struct btrfs_ioctl_vol_args_v2 *vol_args; 3044 int ret; 3045 3046 if (!capable(CAP_SYS_ADMIN)) 3047 return -EPERM; 3048 3049 ret = mnt_want_write_file(file); 3050 if (ret) 3051 return ret; 3052 3053 vol_args = memdup_user(arg, sizeof(*vol_args)); 3054 if (IS_ERR(vol_args)) { 3055 ret = PTR_ERR(vol_args); 3056 goto err_drop; 3057 } 3058 3059 /* Check for compatibility reject unknown flags */ 3060 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) { 3061 ret = -EOPNOTSUPP; 3062 goto out; 3063 } 3064 3065 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3066 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3067 goto out; 3068 } 3069 3070 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3071 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3072 } else { 3073 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3074 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3075 } 3076 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3077 3078 if (!ret) { 3079 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3080 btrfs_info(fs_info, "device deleted: id %llu", 3081 vol_args->devid); 3082 else 3083 btrfs_info(fs_info, "device deleted: %s", 3084 vol_args->name); 3085 } 3086 out: 3087 kfree(vol_args); 3088 err_drop: 3089 mnt_drop_write_file(file); 3090 return ret; 3091 } 3092 3093 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3094 { 3095 struct inode *inode = file_inode(file); 3096 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3097 struct btrfs_ioctl_vol_args *vol_args; 3098 int ret; 3099 3100 if (!capable(CAP_SYS_ADMIN)) 3101 return -EPERM; 3102 3103 ret = mnt_want_write_file(file); 3104 if (ret) 3105 return ret; 3106 3107 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3108 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3109 goto out_drop_write; 3110 } 3111 3112 vol_args = memdup_user(arg, sizeof(*vol_args)); 3113 if (IS_ERR(vol_args)) { 3114 ret = PTR_ERR(vol_args); 3115 goto out; 3116 } 3117 3118 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3119 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3120 3121 if (!ret) 3122 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3123 kfree(vol_args); 3124 out: 3125 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3126 out_drop_write: 3127 mnt_drop_write_file(file); 3128 3129 return ret; 3130 } 3131 3132 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3133 void __user *arg) 3134 { 3135 struct btrfs_ioctl_fs_info_args *fi_args; 3136 struct btrfs_device *device; 3137 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3138 int ret = 0; 3139 3140 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3141 if (!fi_args) 3142 return -ENOMEM; 3143 3144 rcu_read_lock(); 3145 fi_args->num_devices = fs_devices->num_devices; 3146 3147 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3148 if (device->devid > fi_args->max_id) 3149 fi_args->max_id = device->devid; 3150 } 3151 rcu_read_unlock(); 3152 3153 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3154 fi_args->nodesize = fs_info->nodesize; 3155 fi_args->sectorsize = fs_info->sectorsize; 3156 fi_args->clone_alignment = fs_info->sectorsize; 3157 3158 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3159 ret = -EFAULT; 3160 3161 kfree(fi_args); 3162 return ret; 3163 } 3164 3165 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3166 void __user *arg) 3167 { 3168 struct btrfs_ioctl_dev_info_args *di_args; 3169 struct btrfs_device *dev; 3170 int ret = 0; 3171 char *s_uuid = NULL; 3172 3173 di_args = memdup_user(arg, sizeof(*di_args)); 3174 if (IS_ERR(di_args)) 3175 return PTR_ERR(di_args); 3176 3177 if (!btrfs_is_empty_uuid(di_args->uuid)) 3178 s_uuid = di_args->uuid; 3179 3180 rcu_read_lock(); 3181 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3182 NULL, true); 3183 3184 if (!dev) { 3185 ret = -ENODEV; 3186 goto out; 3187 } 3188 3189 di_args->devid = dev->devid; 3190 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3191 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3192 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3193 if (dev->name) { 3194 strncpy(di_args->path, rcu_str_deref(dev->name), 3195 sizeof(di_args->path) - 1); 3196 di_args->path[sizeof(di_args->path) - 1] = 0; 3197 } else { 3198 di_args->path[0] = '\0'; 3199 } 3200 3201 out: 3202 rcu_read_unlock(); 3203 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3204 ret = -EFAULT; 3205 3206 kfree(di_args); 3207 return ret; 3208 } 3209 3210 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 3211 struct inode *inode2, u64 loff2, u64 len) 3212 { 3213 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3214 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3215 } 3216 3217 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 3218 struct inode *inode2, u64 loff2, u64 len) 3219 { 3220 if (inode1 < inode2) { 3221 swap(inode1, inode2); 3222 swap(loff1, loff2); 3223 } else if (inode1 == inode2 && loff2 < loff1) { 3224 swap(loff1, loff2); 3225 } 3226 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3227 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3228 } 3229 3230 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 3231 struct inode *dst, u64 dst_loff) 3232 { 3233 int ret; 3234 3235 /* 3236 * Lock destination range to serialize with concurrent readpages() and 3237 * source range to serialize with relocation. 3238 */ 3239 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 3240 ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1); 3241 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3242 3243 return ret; 3244 } 3245 3246 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3247 3248 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3249 struct inode *dst, u64 dst_loff) 3250 { 3251 int ret; 3252 u64 i, tail_len, chunk_count; 3253 3254 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 3255 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 3256 3257 for (i = 0; i < chunk_count; i++) { 3258 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 3259 dst, dst_loff); 3260 if (ret) 3261 return ret; 3262 3263 loff += BTRFS_MAX_DEDUPE_LEN; 3264 dst_loff += BTRFS_MAX_DEDUPE_LEN; 3265 } 3266 3267 if (tail_len > 0) 3268 ret = btrfs_extent_same_range(src, loff, tail_len, dst, 3269 dst_loff); 3270 3271 return ret; 3272 } 3273 3274 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3275 struct inode *inode, 3276 u64 endoff, 3277 const u64 destoff, 3278 const u64 olen, 3279 int no_time_update) 3280 { 3281 struct btrfs_root *root = BTRFS_I(inode)->root; 3282 int ret; 3283 3284 inode_inc_iversion(inode); 3285 if (!no_time_update) 3286 inode->i_mtime = inode->i_ctime = current_time(inode); 3287 /* 3288 * We round up to the block size at eof when determining which 3289 * extents to clone above, but shouldn't round up the file size. 3290 */ 3291 if (endoff > destoff + olen) 3292 endoff = destoff + olen; 3293 if (endoff > inode->i_size) 3294 btrfs_i_size_write(BTRFS_I(inode), endoff); 3295 3296 ret = btrfs_update_inode(trans, root, inode); 3297 if (ret) { 3298 btrfs_abort_transaction(trans, ret); 3299 btrfs_end_transaction(trans); 3300 goto out; 3301 } 3302 ret = btrfs_end_transaction(trans); 3303 out: 3304 return ret; 3305 } 3306 3307 static void clone_update_extent_map(struct btrfs_inode *inode, 3308 const struct btrfs_trans_handle *trans, 3309 const struct btrfs_path *path, 3310 const u64 hole_offset, 3311 const u64 hole_len) 3312 { 3313 struct extent_map_tree *em_tree = &inode->extent_tree; 3314 struct extent_map *em; 3315 int ret; 3316 3317 em = alloc_extent_map(); 3318 if (!em) { 3319 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3320 return; 3321 } 3322 3323 if (path) { 3324 struct btrfs_file_extent_item *fi; 3325 3326 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3327 struct btrfs_file_extent_item); 3328 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3329 em->generation = -1; 3330 if (btrfs_file_extent_type(path->nodes[0], fi) == 3331 BTRFS_FILE_EXTENT_INLINE) 3332 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3333 &inode->runtime_flags); 3334 } else { 3335 em->start = hole_offset; 3336 em->len = hole_len; 3337 em->ram_bytes = em->len; 3338 em->orig_start = hole_offset; 3339 em->block_start = EXTENT_MAP_HOLE; 3340 em->block_len = 0; 3341 em->orig_block_len = 0; 3342 em->compress_type = BTRFS_COMPRESS_NONE; 3343 em->generation = trans->transid; 3344 } 3345 3346 while (1) { 3347 write_lock(&em_tree->lock); 3348 ret = add_extent_mapping(em_tree, em, 1); 3349 write_unlock(&em_tree->lock); 3350 if (ret != -EEXIST) { 3351 free_extent_map(em); 3352 break; 3353 } 3354 btrfs_drop_extent_cache(inode, em->start, 3355 em->start + em->len - 1, 0); 3356 } 3357 3358 if (ret) 3359 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3360 } 3361 3362 /* 3363 * Make sure we do not end up inserting an inline extent into a file that has 3364 * already other (non-inline) extents. If a file has an inline extent it can 3365 * not have any other extents and the (single) inline extent must start at the 3366 * file offset 0. Failing to respect these rules will lead to file corruption, 3367 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3368 * 3369 * We can have extents that have been already written to disk or we can have 3370 * dirty ranges still in delalloc, in which case the extent maps and items are 3371 * created only when we run delalloc, and the delalloc ranges might fall outside 3372 * the range we are currently locking in the inode's io tree. So we check the 3373 * inode's i_size because of that (i_size updates are done while holding the 3374 * i_mutex, which we are holding here). 3375 * We also check to see if the inode has a size not greater than "datal" but has 3376 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3377 * protected against such concurrent fallocate calls by the i_mutex). 3378 * 3379 * If the file has no extents but a size greater than datal, do not allow the 3380 * copy because we would need turn the inline extent into a non-inline one (even 3381 * with NO_HOLES enabled). If we find our destination inode only has one inline 3382 * extent, just overwrite it with the source inline extent if its size is less 3383 * than the source extent's size, or we could copy the source inline extent's 3384 * data into the destination inode's inline extent if the later is greater then 3385 * the former. 3386 */ 3387 static int clone_copy_inline_extent(struct inode *dst, 3388 struct btrfs_trans_handle *trans, 3389 struct btrfs_path *path, 3390 struct btrfs_key *new_key, 3391 const u64 drop_start, 3392 const u64 datal, 3393 const u64 skip, 3394 const u64 size, 3395 char *inline_data) 3396 { 3397 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3398 struct btrfs_root *root = BTRFS_I(dst)->root; 3399 const u64 aligned_end = ALIGN(new_key->offset + datal, 3400 fs_info->sectorsize); 3401 int ret; 3402 struct btrfs_key key; 3403 3404 if (new_key->offset > 0) 3405 return -EOPNOTSUPP; 3406 3407 key.objectid = btrfs_ino(BTRFS_I(dst)); 3408 key.type = BTRFS_EXTENT_DATA_KEY; 3409 key.offset = 0; 3410 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3411 if (ret < 0) { 3412 return ret; 3413 } else if (ret > 0) { 3414 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3415 ret = btrfs_next_leaf(root, path); 3416 if (ret < 0) 3417 return ret; 3418 else if (ret > 0) 3419 goto copy_inline_extent; 3420 } 3421 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3422 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3423 key.type == BTRFS_EXTENT_DATA_KEY) { 3424 ASSERT(key.offset > 0); 3425 return -EOPNOTSUPP; 3426 } 3427 } else if (i_size_read(dst) <= datal) { 3428 struct btrfs_file_extent_item *ei; 3429 u64 ext_len; 3430 3431 /* 3432 * If the file size is <= datal, make sure there are no other 3433 * extents following (can happen do to an fallocate call with 3434 * the flag FALLOC_FL_KEEP_SIZE). 3435 */ 3436 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3437 struct btrfs_file_extent_item); 3438 /* 3439 * If it's an inline extent, it can not have other extents 3440 * following it. 3441 */ 3442 if (btrfs_file_extent_type(path->nodes[0], ei) == 3443 BTRFS_FILE_EXTENT_INLINE) 3444 goto copy_inline_extent; 3445 3446 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3447 if (ext_len > aligned_end) 3448 return -EOPNOTSUPP; 3449 3450 ret = btrfs_next_item(root, path); 3451 if (ret < 0) { 3452 return ret; 3453 } else if (ret == 0) { 3454 btrfs_item_key_to_cpu(path->nodes[0], &key, 3455 path->slots[0]); 3456 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3457 key.type == BTRFS_EXTENT_DATA_KEY) 3458 return -EOPNOTSUPP; 3459 } 3460 } 3461 3462 copy_inline_extent: 3463 /* 3464 * We have no extent items, or we have an extent at offset 0 which may 3465 * or may not be inlined. All these cases are dealt the same way. 3466 */ 3467 if (i_size_read(dst) > datal) { 3468 /* 3469 * If the destination inode has an inline extent... 3470 * This would require copying the data from the source inline 3471 * extent into the beginning of the destination's inline extent. 3472 * But this is really complex, both extents can be compressed 3473 * or just one of them, which would require decompressing and 3474 * re-compressing data (which could increase the new compressed 3475 * size, not allowing the compressed data to fit anymore in an 3476 * inline extent). 3477 * So just don't support this case for now (it should be rare, 3478 * we are not really saving space when cloning inline extents). 3479 */ 3480 return -EOPNOTSUPP; 3481 } 3482 3483 btrfs_release_path(path); 3484 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3485 if (ret) 3486 return ret; 3487 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3488 if (ret) 3489 return ret; 3490 3491 if (skip) { 3492 const u32 start = btrfs_file_extent_calc_inline_size(0); 3493 3494 memmove(inline_data + start, inline_data + start + skip, datal); 3495 } 3496 3497 write_extent_buffer(path->nodes[0], inline_data, 3498 btrfs_item_ptr_offset(path->nodes[0], 3499 path->slots[0]), 3500 size); 3501 inode_add_bytes(dst, datal); 3502 3503 return 0; 3504 } 3505 3506 /** 3507 * btrfs_clone() - clone a range from inode file to another 3508 * 3509 * @src: Inode to clone from 3510 * @inode: Inode to clone to 3511 * @off: Offset within source to start clone from 3512 * @olen: Original length, passed by user, of range to clone 3513 * @olen_aligned: Block-aligned value of olen 3514 * @destoff: Offset within @inode to start clone 3515 * @no_time_update: Whether to update mtime/ctime on the target inode 3516 */ 3517 static int btrfs_clone(struct inode *src, struct inode *inode, 3518 const u64 off, const u64 olen, const u64 olen_aligned, 3519 const u64 destoff, int no_time_update) 3520 { 3521 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3522 struct btrfs_root *root = BTRFS_I(inode)->root; 3523 struct btrfs_path *path = NULL; 3524 struct extent_buffer *leaf; 3525 struct btrfs_trans_handle *trans; 3526 char *buf = NULL; 3527 struct btrfs_key key; 3528 u32 nritems; 3529 int slot; 3530 int ret; 3531 const u64 len = olen_aligned; 3532 u64 last_dest_end = destoff; 3533 3534 ret = -ENOMEM; 3535 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3536 if (!buf) 3537 return ret; 3538 3539 path = btrfs_alloc_path(); 3540 if (!path) { 3541 kvfree(buf); 3542 return ret; 3543 } 3544 3545 path->reada = READA_FORWARD; 3546 /* clone data */ 3547 key.objectid = btrfs_ino(BTRFS_I(src)); 3548 key.type = BTRFS_EXTENT_DATA_KEY; 3549 key.offset = off; 3550 3551 while (1) { 3552 u64 next_key_min_offset = key.offset + 1; 3553 3554 /* 3555 * note the key will change type as we walk through the 3556 * tree. 3557 */ 3558 path->leave_spinning = 1; 3559 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3560 0, 0); 3561 if (ret < 0) 3562 goto out; 3563 /* 3564 * First search, if no extent item that starts at offset off was 3565 * found but the previous item is an extent item, it's possible 3566 * it might overlap our target range, therefore process it. 3567 */ 3568 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3569 btrfs_item_key_to_cpu(path->nodes[0], &key, 3570 path->slots[0] - 1); 3571 if (key.type == BTRFS_EXTENT_DATA_KEY) 3572 path->slots[0]--; 3573 } 3574 3575 nritems = btrfs_header_nritems(path->nodes[0]); 3576 process_slot: 3577 if (path->slots[0] >= nritems) { 3578 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3579 if (ret < 0) 3580 goto out; 3581 if (ret > 0) 3582 break; 3583 nritems = btrfs_header_nritems(path->nodes[0]); 3584 } 3585 leaf = path->nodes[0]; 3586 slot = path->slots[0]; 3587 3588 btrfs_item_key_to_cpu(leaf, &key, slot); 3589 if (key.type > BTRFS_EXTENT_DATA_KEY || 3590 key.objectid != btrfs_ino(BTRFS_I(src))) 3591 break; 3592 3593 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3594 struct btrfs_file_extent_item *extent; 3595 int type; 3596 u32 size; 3597 struct btrfs_key new_key; 3598 u64 disko = 0, diskl = 0; 3599 u64 datao = 0, datal = 0; 3600 u8 comp; 3601 u64 drop_start; 3602 3603 extent = btrfs_item_ptr(leaf, slot, 3604 struct btrfs_file_extent_item); 3605 comp = btrfs_file_extent_compression(leaf, extent); 3606 type = btrfs_file_extent_type(leaf, extent); 3607 if (type == BTRFS_FILE_EXTENT_REG || 3608 type == BTRFS_FILE_EXTENT_PREALLOC) { 3609 disko = btrfs_file_extent_disk_bytenr(leaf, 3610 extent); 3611 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3612 extent); 3613 datao = btrfs_file_extent_offset(leaf, extent); 3614 datal = btrfs_file_extent_num_bytes(leaf, 3615 extent); 3616 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3617 /* take upper bound, may be compressed */ 3618 datal = btrfs_file_extent_ram_bytes(leaf, 3619 extent); 3620 } 3621 3622 /* 3623 * The first search might have left us at an extent 3624 * item that ends before our target range's start, can 3625 * happen if we have holes and NO_HOLES feature enabled. 3626 */ 3627 if (key.offset + datal <= off) { 3628 path->slots[0]++; 3629 goto process_slot; 3630 } else if (key.offset >= off + len) { 3631 break; 3632 } 3633 next_key_min_offset = key.offset + datal; 3634 size = btrfs_item_size_nr(leaf, slot); 3635 read_extent_buffer(leaf, buf, 3636 btrfs_item_ptr_offset(leaf, slot), 3637 size); 3638 3639 btrfs_release_path(path); 3640 path->leave_spinning = 0; 3641 3642 memcpy(&new_key, &key, sizeof(new_key)); 3643 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3644 if (off <= key.offset) 3645 new_key.offset = key.offset + destoff - off; 3646 else 3647 new_key.offset = destoff; 3648 3649 /* 3650 * Deal with a hole that doesn't have an extent item 3651 * that represents it (NO_HOLES feature enabled). 3652 * This hole is either in the middle of the cloning 3653 * range or at the beginning (fully overlaps it or 3654 * partially overlaps it). 3655 */ 3656 if (new_key.offset != last_dest_end) 3657 drop_start = last_dest_end; 3658 else 3659 drop_start = new_key.offset; 3660 3661 /* 3662 * 1 - adjusting old extent (we may have to split it) 3663 * 1 - add new extent 3664 * 1 - inode update 3665 */ 3666 trans = btrfs_start_transaction(root, 3); 3667 if (IS_ERR(trans)) { 3668 ret = PTR_ERR(trans); 3669 goto out; 3670 } 3671 3672 if (type == BTRFS_FILE_EXTENT_REG || 3673 type == BTRFS_FILE_EXTENT_PREALLOC) { 3674 /* 3675 * a | --- range to clone ---| b 3676 * | ------------- extent ------------- | 3677 */ 3678 3679 /* subtract range b */ 3680 if (key.offset + datal > off + len) 3681 datal = off + len - key.offset; 3682 3683 /* subtract range a */ 3684 if (off > key.offset) { 3685 datao += off - key.offset; 3686 datal -= off - key.offset; 3687 } 3688 3689 ret = btrfs_drop_extents(trans, root, inode, 3690 drop_start, 3691 new_key.offset + datal, 3692 1); 3693 if (ret) { 3694 if (ret != -EOPNOTSUPP) 3695 btrfs_abort_transaction(trans, 3696 ret); 3697 btrfs_end_transaction(trans); 3698 goto out; 3699 } 3700 3701 ret = btrfs_insert_empty_item(trans, root, path, 3702 &new_key, size); 3703 if (ret) { 3704 btrfs_abort_transaction(trans, ret); 3705 btrfs_end_transaction(trans); 3706 goto out; 3707 } 3708 3709 leaf = path->nodes[0]; 3710 slot = path->slots[0]; 3711 write_extent_buffer(leaf, buf, 3712 btrfs_item_ptr_offset(leaf, slot), 3713 size); 3714 3715 extent = btrfs_item_ptr(leaf, slot, 3716 struct btrfs_file_extent_item); 3717 3718 /* disko == 0 means it's a hole */ 3719 if (!disko) 3720 datao = 0; 3721 3722 btrfs_set_file_extent_offset(leaf, extent, 3723 datao); 3724 btrfs_set_file_extent_num_bytes(leaf, extent, 3725 datal); 3726 3727 if (disko) { 3728 inode_add_bytes(inode, datal); 3729 ret = btrfs_inc_extent_ref(trans, 3730 root, 3731 disko, diskl, 0, 3732 root->root_key.objectid, 3733 btrfs_ino(BTRFS_I(inode)), 3734 new_key.offset - datao); 3735 if (ret) { 3736 btrfs_abort_transaction(trans, 3737 ret); 3738 btrfs_end_transaction(trans); 3739 goto out; 3740 3741 } 3742 } 3743 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3744 u64 skip = 0; 3745 u64 trim = 0; 3746 3747 if (off > key.offset) { 3748 skip = off - key.offset; 3749 new_key.offset += skip; 3750 } 3751 3752 if (key.offset + datal > off + len) 3753 trim = key.offset + datal - (off + len); 3754 3755 if (comp && (skip || trim)) { 3756 ret = -EINVAL; 3757 btrfs_end_transaction(trans); 3758 goto out; 3759 } 3760 size -= skip + trim; 3761 datal -= skip + trim; 3762 3763 ret = clone_copy_inline_extent(inode, 3764 trans, path, 3765 &new_key, 3766 drop_start, 3767 datal, 3768 skip, size, buf); 3769 if (ret) { 3770 if (ret != -EOPNOTSUPP) 3771 btrfs_abort_transaction(trans, 3772 ret); 3773 btrfs_end_transaction(trans); 3774 goto out; 3775 } 3776 leaf = path->nodes[0]; 3777 slot = path->slots[0]; 3778 } 3779 3780 /* If we have an implicit hole (NO_HOLES feature). */ 3781 if (drop_start < new_key.offset) 3782 clone_update_extent_map(BTRFS_I(inode), trans, 3783 NULL, drop_start, 3784 new_key.offset - drop_start); 3785 3786 clone_update_extent_map(BTRFS_I(inode), trans, 3787 path, 0, 0); 3788 3789 btrfs_mark_buffer_dirty(leaf); 3790 btrfs_release_path(path); 3791 3792 last_dest_end = ALIGN(new_key.offset + datal, 3793 fs_info->sectorsize); 3794 ret = clone_finish_inode_update(trans, inode, 3795 last_dest_end, 3796 destoff, olen, 3797 no_time_update); 3798 if (ret) 3799 goto out; 3800 if (new_key.offset + datal >= destoff + len) 3801 break; 3802 } 3803 btrfs_release_path(path); 3804 key.offset = next_key_min_offset; 3805 3806 if (fatal_signal_pending(current)) { 3807 ret = -EINTR; 3808 goto out; 3809 } 3810 } 3811 ret = 0; 3812 3813 if (last_dest_end < destoff + len) { 3814 /* 3815 * We have an implicit hole (NO_HOLES feature is enabled) that 3816 * fully or partially overlaps our cloning range at its end. 3817 */ 3818 btrfs_release_path(path); 3819 3820 /* 3821 * 1 - remove extent(s) 3822 * 1 - inode update 3823 */ 3824 trans = btrfs_start_transaction(root, 2); 3825 if (IS_ERR(trans)) { 3826 ret = PTR_ERR(trans); 3827 goto out; 3828 } 3829 ret = btrfs_drop_extents(trans, root, inode, 3830 last_dest_end, destoff + len, 1); 3831 if (ret) { 3832 if (ret != -EOPNOTSUPP) 3833 btrfs_abort_transaction(trans, ret); 3834 btrfs_end_transaction(trans); 3835 goto out; 3836 } 3837 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 3838 last_dest_end, 3839 destoff + len - last_dest_end); 3840 ret = clone_finish_inode_update(trans, inode, destoff + len, 3841 destoff, olen, no_time_update); 3842 } 3843 3844 out: 3845 btrfs_free_path(path); 3846 kvfree(buf); 3847 return ret; 3848 } 3849 3850 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3851 u64 off, u64 olen, u64 destoff) 3852 { 3853 struct inode *inode = file_inode(file); 3854 struct inode *src = file_inode(file_src); 3855 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3856 int ret; 3857 u64 len = olen; 3858 u64 bs = fs_info->sb->s_blocksize; 3859 3860 /* 3861 * TODO: 3862 * - split compressed inline extents. annoying: we need to 3863 * decompress into destination's address_space (the file offset 3864 * may change, so source mapping won't do), then recompress (or 3865 * otherwise reinsert) a subrange. 3866 * 3867 * - split destination inode's inline extents. The inline extents can 3868 * be either compressed or non-compressed. 3869 */ 3870 3871 /* 3872 * VFS's generic_remap_file_range_prep() protects us from cloning the 3873 * eof block into the middle of a file, which would result in corruption 3874 * if the file size is not blocksize aligned. So we don't need to check 3875 * for that case here. 3876 */ 3877 if (off + len == src->i_size) 3878 len = ALIGN(src->i_size, bs) - off; 3879 3880 if (destoff > inode->i_size) { 3881 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 3882 3883 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3884 if (ret) 3885 return ret; 3886 /* 3887 * We may have truncated the last block if the inode's size is 3888 * not sector size aligned, so we need to wait for writeback to 3889 * complete before proceeding further, otherwise we can race 3890 * with cloning and attempt to increment a reference to an 3891 * extent that no longer exists (writeback completed right after 3892 * we found the previous extent covering eof and before we 3893 * attempted to increment its reference count). 3894 */ 3895 ret = btrfs_wait_ordered_range(inode, wb_start, 3896 destoff - wb_start); 3897 if (ret) 3898 return ret; 3899 } 3900 3901 /* 3902 * Lock destination range to serialize with concurrent readpages() and 3903 * source range to serialize with relocation. 3904 */ 3905 btrfs_double_extent_lock(src, off, inode, destoff, len); 3906 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3907 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3908 /* 3909 * Truncate page cache pages so that future reads will see the cloned 3910 * data immediately and not the previous data. 3911 */ 3912 truncate_inode_pages_range(&inode->i_data, 3913 round_down(destoff, PAGE_SIZE), 3914 round_up(destoff + len, PAGE_SIZE) - 1); 3915 3916 return ret; 3917 } 3918 3919 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 3920 struct file *file_out, loff_t pos_out, 3921 loff_t *len, unsigned int remap_flags) 3922 { 3923 struct inode *inode_in = file_inode(file_in); 3924 struct inode *inode_out = file_inode(file_out); 3925 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 3926 bool same_inode = inode_out == inode_in; 3927 u64 wb_len; 3928 int ret; 3929 3930 if (!(remap_flags & REMAP_FILE_DEDUP)) { 3931 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 3932 3933 if (btrfs_root_readonly(root_out)) 3934 return -EROFS; 3935 3936 if (file_in->f_path.mnt != file_out->f_path.mnt || 3937 inode_in->i_sb != inode_out->i_sb) 3938 return -EXDEV; 3939 } 3940 3941 if (same_inode) 3942 inode_lock(inode_in); 3943 else 3944 lock_two_nondirectories(inode_in, inode_out); 3945 3946 /* don't make the dst file partly checksummed */ 3947 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 3948 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 3949 ret = -EINVAL; 3950 goto out_unlock; 3951 } 3952 3953 /* 3954 * Now that the inodes are locked, we need to start writeback ourselves 3955 * and can not rely on the writeback from the VFS's generic helper 3956 * generic_remap_file_range_prep() because: 3957 * 3958 * 1) For compression we must call filemap_fdatawrite_range() range 3959 * twice (btrfs_fdatawrite_range() does it for us), and the generic 3960 * helper only calls it once; 3961 * 3962 * 2) filemap_fdatawrite_range(), called by the generic helper only 3963 * waits for the writeback to complete, i.e. for IO to be done, and 3964 * not for the ordered extents to complete. We need to wait for them 3965 * to complete so that new file extent items are in the fs tree. 3966 */ 3967 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 3968 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 3969 else 3970 wb_len = ALIGN(*len, bs); 3971 3972 /* 3973 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 3974 * any in progress could create its ordered extents after we wait for 3975 * existing ordered extents below). 3976 */ 3977 inode_dio_wait(inode_in); 3978 if (!same_inode) 3979 inode_dio_wait(inode_out); 3980 3981 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 3982 wb_len); 3983 if (ret < 0) 3984 goto out_unlock; 3985 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 3986 wb_len); 3987 if (ret < 0) 3988 goto out_unlock; 3989 3990 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 3991 len, remap_flags); 3992 if (ret < 0 || *len == 0) 3993 goto out_unlock; 3994 3995 return 0; 3996 3997 out_unlock: 3998 if (same_inode) 3999 inode_unlock(inode_in); 4000 else 4001 unlock_two_nondirectories(inode_in, inode_out); 4002 4003 return ret; 4004 } 4005 4006 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 4007 struct file *dst_file, loff_t destoff, loff_t len, 4008 unsigned int remap_flags) 4009 { 4010 struct inode *src_inode = file_inode(src_file); 4011 struct inode *dst_inode = file_inode(dst_file); 4012 bool same_inode = dst_inode == src_inode; 4013 int ret; 4014 4015 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 4016 return -EINVAL; 4017 4018 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 4019 &len, remap_flags); 4020 if (ret < 0 || len == 0) 4021 return ret; 4022 4023 if (remap_flags & REMAP_FILE_DEDUP) 4024 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 4025 else 4026 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 4027 4028 if (same_inode) 4029 inode_unlock(src_inode); 4030 else 4031 unlock_two_nondirectories(src_inode, dst_inode); 4032 4033 return ret < 0 ? ret : len; 4034 } 4035 4036 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4037 { 4038 struct inode *inode = file_inode(file); 4039 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4040 struct btrfs_root *root = BTRFS_I(inode)->root; 4041 struct btrfs_root *new_root; 4042 struct btrfs_dir_item *di; 4043 struct btrfs_trans_handle *trans; 4044 struct btrfs_path *path; 4045 struct btrfs_key location; 4046 struct btrfs_disk_key disk_key; 4047 u64 objectid = 0; 4048 u64 dir_id; 4049 int ret; 4050 4051 if (!capable(CAP_SYS_ADMIN)) 4052 return -EPERM; 4053 4054 ret = mnt_want_write_file(file); 4055 if (ret) 4056 return ret; 4057 4058 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4059 ret = -EFAULT; 4060 goto out; 4061 } 4062 4063 if (!objectid) 4064 objectid = BTRFS_FS_TREE_OBJECTID; 4065 4066 location.objectid = objectid; 4067 location.type = BTRFS_ROOT_ITEM_KEY; 4068 location.offset = (u64)-1; 4069 4070 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4071 if (IS_ERR(new_root)) { 4072 ret = PTR_ERR(new_root); 4073 goto out; 4074 } 4075 if (!is_fstree(new_root->root_key.objectid)) { 4076 ret = -ENOENT; 4077 goto out; 4078 } 4079 4080 path = btrfs_alloc_path(); 4081 if (!path) { 4082 ret = -ENOMEM; 4083 goto out; 4084 } 4085 path->leave_spinning = 1; 4086 4087 trans = btrfs_start_transaction(root, 1); 4088 if (IS_ERR(trans)) { 4089 btrfs_free_path(path); 4090 ret = PTR_ERR(trans); 4091 goto out; 4092 } 4093 4094 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4095 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4096 dir_id, "default", 7, 1); 4097 if (IS_ERR_OR_NULL(di)) { 4098 btrfs_free_path(path); 4099 btrfs_end_transaction(trans); 4100 btrfs_err(fs_info, 4101 "Umm, you don't have the default diritem, this isn't going to work"); 4102 ret = -ENOENT; 4103 goto out; 4104 } 4105 4106 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4107 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4108 btrfs_mark_buffer_dirty(path->nodes[0]); 4109 btrfs_free_path(path); 4110 4111 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4112 btrfs_end_transaction(trans); 4113 out: 4114 mnt_drop_write_file(file); 4115 return ret; 4116 } 4117 4118 static void get_block_group_info(struct list_head *groups_list, 4119 struct btrfs_ioctl_space_info *space) 4120 { 4121 struct btrfs_block_group_cache *block_group; 4122 4123 space->total_bytes = 0; 4124 space->used_bytes = 0; 4125 space->flags = 0; 4126 list_for_each_entry(block_group, groups_list, list) { 4127 space->flags = block_group->flags; 4128 space->total_bytes += block_group->key.offset; 4129 space->used_bytes += 4130 btrfs_block_group_used(&block_group->item); 4131 } 4132 } 4133 4134 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4135 void __user *arg) 4136 { 4137 struct btrfs_ioctl_space_args space_args; 4138 struct btrfs_ioctl_space_info space; 4139 struct btrfs_ioctl_space_info *dest; 4140 struct btrfs_ioctl_space_info *dest_orig; 4141 struct btrfs_ioctl_space_info __user *user_dest; 4142 struct btrfs_space_info *info; 4143 static const u64 types[] = { 4144 BTRFS_BLOCK_GROUP_DATA, 4145 BTRFS_BLOCK_GROUP_SYSTEM, 4146 BTRFS_BLOCK_GROUP_METADATA, 4147 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4148 }; 4149 int num_types = 4; 4150 int alloc_size; 4151 int ret = 0; 4152 u64 slot_count = 0; 4153 int i, c; 4154 4155 if (copy_from_user(&space_args, 4156 (struct btrfs_ioctl_space_args __user *)arg, 4157 sizeof(space_args))) 4158 return -EFAULT; 4159 4160 for (i = 0; i < num_types; i++) { 4161 struct btrfs_space_info *tmp; 4162 4163 info = NULL; 4164 rcu_read_lock(); 4165 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4166 list) { 4167 if (tmp->flags == types[i]) { 4168 info = tmp; 4169 break; 4170 } 4171 } 4172 rcu_read_unlock(); 4173 4174 if (!info) 4175 continue; 4176 4177 down_read(&info->groups_sem); 4178 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4179 if (!list_empty(&info->block_groups[c])) 4180 slot_count++; 4181 } 4182 up_read(&info->groups_sem); 4183 } 4184 4185 /* 4186 * Global block reserve, exported as a space_info 4187 */ 4188 slot_count++; 4189 4190 /* space_slots == 0 means they are asking for a count */ 4191 if (space_args.space_slots == 0) { 4192 space_args.total_spaces = slot_count; 4193 goto out; 4194 } 4195 4196 slot_count = min_t(u64, space_args.space_slots, slot_count); 4197 4198 alloc_size = sizeof(*dest) * slot_count; 4199 4200 /* we generally have at most 6 or so space infos, one for each raid 4201 * level. So, a whole page should be more than enough for everyone 4202 */ 4203 if (alloc_size > PAGE_SIZE) 4204 return -ENOMEM; 4205 4206 space_args.total_spaces = 0; 4207 dest = kmalloc(alloc_size, GFP_KERNEL); 4208 if (!dest) 4209 return -ENOMEM; 4210 dest_orig = dest; 4211 4212 /* now we have a buffer to copy into */ 4213 for (i = 0; i < num_types; i++) { 4214 struct btrfs_space_info *tmp; 4215 4216 if (!slot_count) 4217 break; 4218 4219 info = NULL; 4220 rcu_read_lock(); 4221 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4222 list) { 4223 if (tmp->flags == types[i]) { 4224 info = tmp; 4225 break; 4226 } 4227 } 4228 rcu_read_unlock(); 4229 4230 if (!info) 4231 continue; 4232 down_read(&info->groups_sem); 4233 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4234 if (!list_empty(&info->block_groups[c])) { 4235 get_block_group_info(&info->block_groups[c], 4236 &space); 4237 memcpy(dest, &space, sizeof(space)); 4238 dest++; 4239 space_args.total_spaces++; 4240 slot_count--; 4241 } 4242 if (!slot_count) 4243 break; 4244 } 4245 up_read(&info->groups_sem); 4246 } 4247 4248 /* 4249 * Add global block reserve 4250 */ 4251 if (slot_count) { 4252 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4253 4254 spin_lock(&block_rsv->lock); 4255 space.total_bytes = block_rsv->size; 4256 space.used_bytes = block_rsv->size - block_rsv->reserved; 4257 spin_unlock(&block_rsv->lock); 4258 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4259 memcpy(dest, &space, sizeof(space)); 4260 space_args.total_spaces++; 4261 } 4262 4263 user_dest = (struct btrfs_ioctl_space_info __user *) 4264 (arg + sizeof(struct btrfs_ioctl_space_args)); 4265 4266 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4267 ret = -EFAULT; 4268 4269 kfree(dest_orig); 4270 out: 4271 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4272 ret = -EFAULT; 4273 4274 return ret; 4275 } 4276 4277 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4278 void __user *argp) 4279 { 4280 struct btrfs_trans_handle *trans; 4281 u64 transid; 4282 int ret; 4283 4284 trans = btrfs_attach_transaction_barrier(root); 4285 if (IS_ERR(trans)) { 4286 if (PTR_ERR(trans) != -ENOENT) 4287 return PTR_ERR(trans); 4288 4289 /* No running transaction, don't bother */ 4290 transid = root->fs_info->last_trans_committed; 4291 goto out; 4292 } 4293 transid = trans->transid; 4294 ret = btrfs_commit_transaction_async(trans, 0); 4295 if (ret) { 4296 btrfs_end_transaction(trans); 4297 return ret; 4298 } 4299 out: 4300 if (argp) 4301 if (copy_to_user(argp, &transid, sizeof(transid))) 4302 return -EFAULT; 4303 return 0; 4304 } 4305 4306 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4307 void __user *argp) 4308 { 4309 u64 transid; 4310 4311 if (argp) { 4312 if (copy_from_user(&transid, argp, sizeof(transid))) 4313 return -EFAULT; 4314 } else { 4315 transid = 0; /* current trans */ 4316 } 4317 return btrfs_wait_for_commit(fs_info, transid); 4318 } 4319 4320 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4321 { 4322 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4323 struct btrfs_ioctl_scrub_args *sa; 4324 int ret; 4325 4326 if (!capable(CAP_SYS_ADMIN)) 4327 return -EPERM; 4328 4329 sa = memdup_user(arg, sizeof(*sa)); 4330 if (IS_ERR(sa)) 4331 return PTR_ERR(sa); 4332 4333 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4334 ret = mnt_want_write_file(file); 4335 if (ret) 4336 goto out; 4337 } 4338 4339 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4340 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4341 0); 4342 4343 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4344 ret = -EFAULT; 4345 4346 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4347 mnt_drop_write_file(file); 4348 out: 4349 kfree(sa); 4350 return ret; 4351 } 4352 4353 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4354 { 4355 if (!capable(CAP_SYS_ADMIN)) 4356 return -EPERM; 4357 4358 return btrfs_scrub_cancel(fs_info); 4359 } 4360 4361 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4362 void __user *arg) 4363 { 4364 struct btrfs_ioctl_scrub_args *sa; 4365 int ret; 4366 4367 if (!capable(CAP_SYS_ADMIN)) 4368 return -EPERM; 4369 4370 sa = memdup_user(arg, sizeof(*sa)); 4371 if (IS_ERR(sa)) 4372 return PTR_ERR(sa); 4373 4374 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4375 4376 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4377 ret = -EFAULT; 4378 4379 kfree(sa); 4380 return ret; 4381 } 4382 4383 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4384 void __user *arg) 4385 { 4386 struct btrfs_ioctl_get_dev_stats *sa; 4387 int ret; 4388 4389 sa = memdup_user(arg, sizeof(*sa)); 4390 if (IS_ERR(sa)) 4391 return PTR_ERR(sa); 4392 4393 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4394 kfree(sa); 4395 return -EPERM; 4396 } 4397 4398 ret = btrfs_get_dev_stats(fs_info, sa); 4399 4400 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4401 ret = -EFAULT; 4402 4403 kfree(sa); 4404 return ret; 4405 } 4406 4407 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4408 void __user *arg) 4409 { 4410 struct btrfs_ioctl_dev_replace_args *p; 4411 int ret; 4412 4413 if (!capable(CAP_SYS_ADMIN)) 4414 return -EPERM; 4415 4416 p = memdup_user(arg, sizeof(*p)); 4417 if (IS_ERR(p)) 4418 return PTR_ERR(p); 4419 4420 switch (p->cmd) { 4421 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4422 if (sb_rdonly(fs_info->sb)) { 4423 ret = -EROFS; 4424 goto out; 4425 } 4426 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4427 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4428 } else { 4429 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4430 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4431 } 4432 break; 4433 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4434 btrfs_dev_replace_status(fs_info, p); 4435 ret = 0; 4436 break; 4437 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4438 p->result = btrfs_dev_replace_cancel(fs_info); 4439 ret = 0; 4440 break; 4441 default: 4442 ret = -EINVAL; 4443 break; 4444 } 4445 4446 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4447 ret = -EFAULT; 4448 out: 4449 kfree(p); 4450 return ret; 4451 } 4452 4453 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4454 { 4455 int ret = 0; 4456 int i; 4457 u64 rel_ptr; 4458 int size; 4459 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4460 struct inode_fs_paths *ipath = NULL; 4461 struct btrfs_path *path; 4462 4463 if (!capable(CAP_DAC_READ_SEARCH)) 4464 return -EPERM; 4465 4466 path = btrfs_alloc_path(); 4467 if (!path) { 4468 ret = -ENOMEM; 4469 goto out; 4470 } 4471 4472 ipa = memdup_user(arg, sizeof(*ipa)); 4473 if (IS_ERR(ipa)) { 4474 ret = PTR_ERR(ipa); 4475 ipa = NULL; 4476 goto out; 4477 } 4478 4479 size = min_t(u32, ipa->size, 4096); 4480 ipath = init_ipath(size, root, path); 4481 if (IS_ERR(ipath)) { 4482 ret = PTR_ERR(ipath); 4483 ipath = NULL; 4484 goto out; 4485 } 4486 4487 ret = paths_from_inode(ipa->inum, ipath); 4488 if (ret < 0) 4489 goto out; 4490 4491 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4492 rel_ptr = ipath->fspath->val[i] - 4493 (u64)(unsigned long)ipath->fspath->val; 4494 ipath->fspath->val[i] = rel_ptr; 4495 } 4496 4497 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4498 ipath->fspath, size); 4499 if (ret) { 4500 ret = -EFAULT; 4501 goto out; 4502 } 4503 4504 out: 4505 btrfs_free_path(path); 4506 free_ipath(ipath); 4507 kfree(ipa); 4508 4509 return ret; 4510 } 4511 4512 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4513 { 4514 struct btrfs_data_container *inodes = ctx; 4515 const size_t c = 3 * sizeof(u64); 4516 4517 if (inodes->bytes_left >= c) { 4518 inodes->bytes_left -= c; 4519 inodes->val[inodes->elem_cnt] = inum; 4520 inodes->val[inodes->elem_cnt + 1] = offset; 4521 inodes->val[inodes->elem_cnt + 2] = root; 4522 inodes->elem_cnt += 3; 4523 } else { 4524 inodes->bytes_missing += c - inodes->bytes_left; 4525 inodes->bytes_left = 0; 4526 inodes->elem_missed += 3; 4527 } 4528 4529 return 0; 4530 } 4531 4532 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4533 void __user *arg, int version) 4534 { 4535 int ret = 0; 4536 int size; 4537 struct btrfs_ioctl_logical_ino_args *loi; 4538 struct btrfs_data_container *inodes = NULL; 4539 struct btrfs_path *path = NULL; 4540 bool ignore_offset; 4541 4542 if (!capable(CAP_SYS_ADMIN)) 4543 return -EPERM; 4544 4545 loi = memdup_user(arg, sizeof(*loi)); 4546 if (IS_ERR(loi)) 4547 return PTR_ERR(loi); 4548 4549 if (version == 1) { 4550 ignore_offset = false; 4551 size = min_t(u32, loi->size, SZ_64K); 4552 } else { 4553 /* All reserved bits must be 0 for now */ 4554 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4555 ret = -EINVAL; 4556 goto out_loi; 4557 } 4558 /* Only accept flags we have defined so far */ 4559 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4560 ret = -EINVAL; 4561 goto out_loi; 4562 } 4563 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4564 size = min_t(u32, loi->size, SZ_16M); 4565 } 4566 4567 path = btrfs_alloc_path(); 4568 if (!path) { 4569 ret = -ENOMEM; 4570 goto out; 4571 } 4572 4573 inodes = init_data_container(size); 4574 if (IS_ERR(inodes)) { 4575 ret = PTR_ERR(inodes); 4576 inodes = NULL; 4577 goto out; 4578 } 4579 4580 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4581 build_ino_list, inodes, ignore_offset); 4582 if (ret == -EINVAL) 4583 ret = -ENOENT; 4584 if (ret < 0) 4585 goto out; 4586 4587 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4588 size); 4589 if (ret) 4590 ret = -EFAULT; 4591 4592 out: 4593 btrfs_free_path(path); 4594 kvfree(inodes); 4595 out_loi: 4596 kfree(loi); 4597 4598 return ret; 4599 } 4600 4601 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4602 struct btrfs_ioctl_balance_args *bargs) 4603 { 4604 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4605 4606 bargs->flags = bctl->flags; 4607 4608 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4609 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4610 if (atomic_read(&fs_info->balance_pause_req)) 4611 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4612 if (atomic_read(&fs_info->balance_cancel_req)) 4613 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4614 4615 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4616 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4617 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4618 4619 spin_lock(&fs_info->balance_lock); 4620 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4621 spin_unlock(&fs_info->balance_lock); 4622 } 4623 4624 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4625 { 4626 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4627 struct btrfs_fs_info *fs_info = root->fs_info; 4628 struct btrfs_ioctl_balance_args *bargs; 4629 struct btrfs_balance_control *bctl; 4630 bool need_unlock; /* for mut. excl. ops lock */ 4631 int ret; 4632 4633 if (!capable(CAP_SYS_ADMIN)) 4634 return -EPERM; 4635 4636 ret = mnt_want_write_file(file); 4637 if (ret) 4638 return ret; 4639 4640 again: 4641 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4642 mutex_lock(&fs_info->balance_mutex); 4643 need_unlock = true; 4644 goto locked; 4645 } 4646 4647 /* 4648 * mut. excl. ops lock is locked. Three possibilities: 4649 * (1) some other op is running 4650 * (2) balance is running 4651 * (3) balance is paused -- special case (think resume) 4652 */ 4653 mutex_lock(&fs_info->balance_mutex); 4654 if (fs_info->balance_ctl) { 4655 /* this is either (2) or (3) */ 4656 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4657 mutex_unlock(&fs_info->balance_mutex); 4658 /* 4659 * Lock released to allow other waiters to continue, 4660 * we'll reexamine the status again. 4661 */ 4662 mutex_lock(&fs_info->balance_mutex); 4663 4664 if (fs_info->balance_ctl && 4665 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4666 /* this is (3) */ 4667 need_unlock = false; 4668 goto locked; 4669 } 4670 4671 mutex_unlock(&fs_info->balance_mutex); 4672 goto again; 4673 } else { 4674 /* this is (2) */ 4675 mutex_unlock(&fs_info->balance_mutex); 4676 ret = -EINPROGRESS; 4677 goto out; 4678 } 4679 } else { 4680 /* this is (1) */ 4681 mutex_unlock(&fs_info->balance_mutex); 4682 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4683 goto out; 4684 } 4685 4686 locked: 4687 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4688 4689 if (arg) { 4690 bargs = memdup_user(arg, sizeof(*bargs)); 4691 if (IS_ERR(bargs)) { 4692 ret = PTR_ERR(bargs); 4693 goto out_unlock; 4694 } 4695 4696 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4697 if (!fs_info->balance_ctl) { 4698 ret = -ENOTCONN; 4699 goto out_bargs; 4700 } 4701 4702 bctl = fs_info->balance_ctl; 4703 spin_lock(&fs_info->balance_lock); 4704 bctl->flags |= BTRFS_BALANCE_RESUME; 4705 spin_unlock(&fs_info->balance_lock); 4706 4707 goto do_balance; 4708 } 4709 } else { 4710 bargs = NULL; 4711 } 4712 4713 if (fs_info->balance_ctl) { 4714 ret = -EINPROGRESS; 4715 goto out_bargs; 4716 } 4717 4718 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4719 if (!bctl) { 4720 ret = -ENOMEM; 4721 goto out_bargs; 4722 } 4723 4724 if (arg) { 4725 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4726 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4727 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4728 4729 bctl->flags = bargs->flags; 4730 } else { 4731 /* balance everything - no filters */ 4732 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4733 } 4734 4735 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4736 ret = -EINVAL; 4737 goto out_bctl; 4738 } 4739 4740 do_balance: 4741 /* 4742 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 4743 * btrfs_balance. bctl is freed in reset_balance_state, or, if 4744 * restriper was paused all the way until unmount, in free_fs_info. 4745 * The flag should be cleared after reset_balance_state. 4746 */ 4747 need_unlock = false; 4748 4749 ret = btrfs_balance(fs_info, bctl, bargs); 4750 bctl = NULL; 4751 4752 if ((ret == 0 || ret == -ECANCELED) && arg) { 4753 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4754 ret = -EFAULT; 4755 } 4756 4757 out_bctl: 4758 kfree(bctl); 4759 out_bargs: 4760 kfree(bargs); 4761 out_unlock: 4762 mutex_unlock(&fs_info->balance_mutex); 4763 if (need_unlock) 4764 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4765 out: 4766 mnt_drop_write_file(file); 4767 return ret; 4768 } 4769 4770 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4771 { 4772 if (!capable(CAP_SYS_ADMIN)) 4773 return -EPERM; 4774 4775 switch (cmd) { 4776 case BTRFS_BALANCE_CTL_PAUSE: 4777 return btrfs_pause_balance(fs_info); 4778 case BTRFS_BALANCE_CTL_CANCEL: 4779 return btrfs_cancel_balance(fs_info); 4780 } 4781 4782 return -EINVAL; 4783 } 4784 4785 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4786 void __user *arg) 4787 { 4788 struct btrfs_ioctl_balance_args *bargs; 4789 int ret = 0; 4790 4791 if (!capable(CAP_SYS_ADMIN)) 4792 return -EPERM; 4793 4794 mutex_lock(&fs_info->balance_mutex); 4795 if (!fs_info->balance_ctl) { 4796 ret = -ENOTCONN; 4797 goto out; 4798 } 4799 4800 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4801 if (!bargs) { 4802 ret = -ENOMEM; 4803 goto out; 4804 } 4805 4806 btrfs_update_ioctl_balance_args(fs_info, bargs); 4807 4808 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4809 ret = -EFAULT; 4810 4811 kfree(bargs); 4812 out: 4813 mutex_unlock(&fs_info->balance_mutex); 4814 return ret; 4815 } 4816 4817 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4818 { 4819 struct inode *inode = file_inode(file); 4820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4821 struct btrfs_ioctl_quota_ctl_args *sa; 4822 int ret; 4823 4824 if (!capable(CAP_SYS_ADMIN)) 4825 return -EPERM; 4826 4827 ret = mnt_want_write_file(file); 4828 if (ret) 4829 return ret; 4830 4831 sa = memdup_user(arg, sizeof(*sa)); 4832 if (IS_ERR(sa)) { 4833 ret = PTR_ERR(sa); 4834 goto drop_write; 4835 } 4836 4837 down_write(&fs_info->subvol_sem); 4838 4839 switch (sa->cmd) { 4840 case BTRFS_QUOTA_CTL_ENABLE: 4841 ret = btrfs_quota_enable(fs_info); 4842 break; 4843 case BTRFS_QUOTA_CTL_DISABLE: 4844 ret = btrfs_quota_disable(fs_info); 4845 break; 4846 default: 4847 ret = -EINVAL; 4848 break; 4849 } 4850 4851 kfree(sa); 4852 up_write(&fs_info->subvol_sem); 4853 drop_write: 4854 mnt_drop_write_file(file); 4855 return ret; 4856 } 4857 4858 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4859 { 4860 struct inode *inode = file_inode(file); 4861 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4862 struct btrfs_root *root = BTRFS_I(inode)->root; 4863 struct btrfs_ioctl_qgroup_assign_args *sa; 4864 struct btrfs_trans_handle *trans; 4865 int ret; 4866 int err; 4867 4868 if (!capable(CAP_SYS_ADMIN)) 4869 return -EPERM; 4870 4871 ret = mnt_want_write_file(file); 4872 if (ret) 4873 return ret; 4874 4875 sa = memdup_user(arg, sizeof(*sa)); 4876 if (IS_ERR(sa)) { 4877 ret = PTR_ERR(sa); 4878 goto drop_write; 4879 } 4880 4881 trans = btrfs_join_transaction(root); 4882 if (IS_ERR(trans)) { 4883 ret = PTR_ERR(trans); 4884 goto out; 4885 } 4886 4887 if (sa->assign) { 4888 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4889 } else { 4890 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4891 } 4892 4893 /* update qgroup status and info */ 4894 err = btrfs_run_qgroups(trans); 4895 if (err < 0) 4896 btrfs_handle_fs_error(fs_info, err, 4897 "failed to update qgroup status and info"); 4898 err = btrfs_end_transaction(trans); 4899 if (err && !ret) 4900 ret = err; 4901 4902 out: 4903 kfree(sa); 4904 drop_write: 4905 mnt_drop_write_file(file); 4906 return ret; 4907 } 4908 4909 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4910 { 4911 struct inode *inode = file_inode(file); 4912 struct btrfs_root *root = BTRFS_I(inode)->root; 4913 struct btrfs_ioctl_qgroup_create_args *sa; 4914 struct btrfs_trans_handle *trans; 4915 int ret; 4916 int err; 4917 4918 if (!capable(CAP_SYS_ADMIN)) 4919 return -EPERM; 4920 4921 ret = mnt_want_write_file(file); 4922 if (ret) 4923 return ret; 4924 4925 sa = memdup_user(arg, sizeof(*sa)); 4926 if (IS_ERR(sa)) { 4927 ret = PTR_ERR(sa); 4928 goto drop_write; 4929 } 4930 4931 if (!sa->qgroupid) { 4932 ret = -EINVAL; 4933 goto out; 4934 } 4935 4936 trans = btrfs_join_transaction(root); 4937 if (IS_ERR(trans)) { 4938 ret = PTR_ERR(trans); 4939 goto out; 4940 } 4941 4942 if (sa->create) { 4943 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4944 } else { 4945 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4946 } 4947 4948 err = btrfs_end_transaction(trans); 4949 if (err && !ret) 4950 ret = err; 4951 4952 out: 4953 kfree(sa); 4954 drop_write: 4955 mnt_drop_write_file(file); 4956 return ret; 4957 } 4958 4959 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4960 { 4961 struct inode *inode = file_inode(file); 4962 struct btrfs_root *root = BTRFS_I(inode)->root; 4963 struct btrfs_ioctl_qgroup_limit_args *sa; 4964 struct btrfs_trans_handle *trans; 4965 int ret; 4966 int err; 4967 u64 qgroupid; 4968 4969 if (!capable(CAP_SYS_ADMIN)) 4970 return -EPERM; 4971 4972 ret = mnt_want_write_file(file); 4973 if (ret) 4974 return ret; 4975 4976 sa = memdup_user(arg, sizeof(*sa)); 4977 if (IS_ERR(sa)) { 4978 ret = PTR_ERR(sa); 4979 goto drop_write; 4980 } 4981 4982 trans = btrfs_join_transaction(root); 4983 if (IS_ERR(trans)) { 4984 ret = PTR_ERR(trans); 4985 goto out; 4986 } 4987 4988 qgroupid = sa->qgroupid; 4989 if (!qgroupid) { 4990 /* take the current subvol as qgroup */ 4991 qgroupid = root->root_key.objectid; 4992 } 4993 4994 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4995 4996 err = btrfs_end_transaction(trans); 4997 if (err && !ret) 4998 ret = err; 4999 5000 out: 5001 kfree(sa); 5002 drop_write: 5003 mnt_drop_write_file(file); 5004 return ret; 5005 } 5006 5007 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5008 { 5009 struct inode *inode = file_inode(file); 5010 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5011 struct btrfs_ioctl_quota_rescan_args *qsa; 5012 int ret; 5013 5014 if (!capable(CAP_SYS_ADMIN)) 5015 return -EPERM; 5016 5017 ret = mnt_want_write_file(file); 5018 if (ret) 5019 return ret; 5020 5021 qsa = memdup_user(arg, sizeof(*qsa)); 5022 if (IS_ERR(qsa)) { 5023 ret = PTR_ERR(qsa); 5024 goto drop_write; 5025 } 5026 5027 if (qsa->flags) { 5028 ret = -EINVAL; 5029 goto out; 5030 } 5031 5032 ret = btrfs_qgroup_rescan(fs_info); 5033 5034 out: 5035 kfree(qsa); 5036 drop_write: 5037 mnt_drop_write_file(file); 5038 return ret; 5039 } 5040 5041 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5042 { 5043 struct inode *inode = file_inode(file); 5044 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5045 struct btrfs_ioctl_quota_rescan_args *qsa; 5046 int ret = 0; 5047 5048 if (!capable(CAP_SYS_ADMIN)) 5049 return -EPERM; 5050 5051 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5052 if (!qsa) 5053 return -ENOMEM; 5054 5055 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5056 qsa->flags = 1; 5057 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5058 } 5059 5060 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5061 ret = -EFAULT; 5062 5063 kfree(qsa); 5064 return ret; 5065 } 5066 5067 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5068 { 5069 struct inode *inode = file_inode(file); 5070 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5071 5072 if (!capable(CAP_SYS_ADMIN)) 5073 return -EPERM; 5074 5075 return btrfs_qgroup_wait_for_completion(fs_info, true); 5076 } 5077 5078 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5079 struct btrfs_ioctl_received_subvol_args *sa) 5080 { 5081 struct inode *inode = file_inode(file); 5082 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5083 struct btrfs_root *root = BTRFS_I(inode)->root; 5084 struct btrfs_root_item *root_item = &root->root_item; 5085 struct btrfs_trans_handle *trans; 5086 struct timespec64 ct = current_time(inode); 5087 int ret = 0; 5088 int received_uuid_changed; 5089 5090 if (!inode_owner_or_capable(inode)) 5091 return -EPERM; 5092 5093 ret = mnt_want_write_file(file); 5094 if (ret < 0) 5095 return ret; 5096 5097 down_write(&fs_info->subvol_sem); 5098 5099 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5100 ret = -EINVAL; 5101 goto out; 5102 } 5103 5104 if (btrfs_root_readonly(root)) { 5105 ret = -EROFS; 5106 goto out; 5107 } 5108 5109 /* 5110 * 1 - root item 5111 * 2 - uuid items (received uuid + subvol uuid) 5112 */ 5113 trans = btrfs_start_transaction(root, 3); 5114 if (IS_ERR(trans)) { 5115 ret = PTR_ERR(trans); 5116 trans = NULL; 5117 goto out; 5118 } 5119 5120 sa->rtransid = trans->transid; 5121 sa->rtime.sec = ct.tv_sec; 5122 sa->rtime.nsec = ct.tv_nsec; 5123 5124 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5125 BTRFS_UUID_SIZE); 5126 if (received_uuid_changed && 5127 !btrfs_is_empty_uuid(root_item->received_uuid)) { 5128 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 5129 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5130 root->root_key.objectid); 5131 if (ret && ret != -ENOENT) { 5132 btrfs_abort_transaction(trans, ret); 5133 btrfs_end_transaction(trans); 5134 goto out; 5135 } 5136 } 5137 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5138 btrfs_set_root_stransid(root_item, sa->stransid); 5139 btrfs_set_root_rtransid(root_item, sa->rtransid); 5140 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5141 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5142 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5143 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5144 5145 ret = btrfs_update_root(trans, fs_info->tree_root, 5146 &root->root_key, &root->root_item); 5147 if (ret < 0) { 5148 btrfs_end_transaction(trans); 5149 goto out; 5150 } 5151 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5152 ret = btrfs_uuid_tree_add(trans, sa->uuid, 5153 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5154 root->root_key.objectid); 5155 if (ret < 0 && ret != -EEXIST) { 5156 btrfs_abort_transaction(trans, ret); 5157 btrfs_end_transaction(trans); 5158 goto out; 5159 } 5160 } 5161 ret = btrfs_commit_transaction(trans); 5162 out: 5163 up_write(&fs_info->subvol_sem); 5164 mnt_drop_write_file(file); 5165 return ret; 5166 } 5167 5168 #ifdef CONFIG_64BIT 5169 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5170 void __user *arg) 5171 { 5172 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5173 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5174 int ret = 0; 5175 5176 args32 = memdup_user(arg, sizeof(*args32)); 5177 if (IS_ERR(args32)) 5178 return PTR_ERR(args32); 5179 5180 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5181 if (!args64) { 5182 ret = -ENOMEM; 5183 goto out; 5184 } 5185 5186 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5187 args64->stransid = args32->stransid; 5188 args64->rtransid = args32->rtransid; 5189 args64->stime.sec = args32->stime.sec; 5190 args64->stime.nsec = args32->stime.nsec; 5191 args64->rtime.sec = args32->rtime.sec; 5192 args64->rtime.nsec = args32->rtime.nsec; 5193 args64->flags = args32->flags; 5194 5195 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5196 if (ret) 5197 goto out; 5198 5199 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5200 args32->stransid = args64->stransid; 5201 args32->rtransid = args64->rtransid; 5202 args32->stime.sec = args64->stime.sec; 5203 args32->stime.nsec = args64->stime.nsec; 5204 args32->rtime.sec = args64->rtime.sec; 5205 args32->rtime.nsec = args64->rtime.nsec; 5206 args32->flags = args64->flags; 5207 5208 ret = copy_to_user(arg, args32, sizeof(*args32)); 5209 if (ret) 5210 ret = -EFAULT; 5211 5212 out: 5213 kfree(args32); 5214 kfree(args64); 5215 return ret; 5216 } 5217 #endif 5218 5219 static long btrfs_ioctl_set_received_subvol(struct file *file, 5220 void __user *arg) 5221 { 5222 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5223 int ret = 0; 5224 5225 sa = memdup_user(arg, sizeof(*sa)); 5226 if (IS_ERR(sa)) 5227 return PTR_ERR(sa); 5228 5229 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5230 5231 if (ret) 5232 goto out; 5233 5234 ret = copy_to_user(arg, sa, sizeof(*sa)); 5235 if (ret) 5236 ret = -EFAULT; 5237 5238 out: 5239 kfree(sa); 5240 return ret; 5241 } 5242 5243 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5244 { 5245 struct inode *inode = file_inode(file); 5246 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5247 size_t len; 5248 int ret; 5249 char label[BTRFS_LABEL_SIZE]; 5250 5251 spin_lock(&fs_info->super_lock); 5252 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5253 spin_unlock(&fs_info->super_lock); 5254 5255 len = strnlen(label, BTRFS_LABEL_SIZE); 5256 5257 if (len == BTRFS_LABEL_SIZE) { 5258 btrfs_warn(fs_info, 5259 "label is too long, return the first %zu bytes", 5260 --len); 5261 } 5262 5263 ret = copy_to_user(arg, label, len); 5264 5265 return ret ? -EFAULT : 0; 5266 } 5267 5268 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5269 { 5270 struct inode *inode = file_inode(file); 5271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5272 struct btrfs_root *root = BTRFS_I(inode)->root; 5273 struct btrfs_super_block *super_block = fs_info->super_copy; 5274 struct btrfs_trans_handle *trans; 5275 char label[BTRFS_LABEL_SIZE]; 5276 int ret; 5277 5278 if (!capable(CAP_SYS_ADMIN)) 5279 return -EPERM; 5280 5281 if (copy_from_user(label, arg, sizeof(label))) 5282 return -EFAULT; 5283 5284 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5285 btrfs_err(fs_info, 5286 "unable to set label with more than %d bytes", 5287 BTRFS_LABEL_SIZE - 1); 5288 return -EINVAL; 5289 } 5290 5291 ret = mnt_want_write_file(file); 5292 if (ret) 5293 return ret; 5294 5295 trans = btrfs_start_transaction(root, 0); 5296 if (IS_ERR(trans)) { 5297 ret = PTR_ERR(trans); 5298 goto out_unlock; 5299 } 5300 5301 spin_lock(&fs_info->super_lock); 5302 strcpy(super_block->label, label); 5303 spin_unlock(&fs_info->super_lock); 5304 ret = btrfs_commit_transaction(trans); 5305 5306 out_unlock: 5307 mnt_drop_write_file(file); 5308 return ret; 5309 } 5310 5311 #define INIT_FEATURE_FLAGS(suffix) \ 5312 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5313 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5314 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5315 5316 int btrfs_ioctl_get_supported_features(void __user *arg) 5317 { 5318 static const struct btrfs_ioctl_feature_flags features[3] = { 5319 INIT_FEATURE_FLAGS(SUPP), 5320 INIT_FEATURE_FLAGS(SAFE_SET), 5321 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5322 }; 5323 5324 if (copy_to_user(arg, &features, sizeof(features))) 5325 return -EFAULT; 5326 5327 return 0; 5328 } 5329 5330 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5331 { 5332 struct inode *inode = file_inode(file); 5333 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5334 struct btrfs_super_block *super_block = fs_info->super_copy; 5335 struct btrfs_ioctl_feature_flags features; 5336 5337 features.compat_flags = btrfs_super_compat_flags(super_block); 5338 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5339 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5340 5341 if (copy_to_user(arg, &features, sizeof(features))) 5342 return -EFAULT; 5343 5344 return 0; 5345 } 5346 5347 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5348 enum btrfs_feature_set set, 5349 u64 change_mask, u64 flags, u64 supported_flags, 5350 u64 safe_set, u64 safe_clear) 5351 { 5352 const char *type = btrfs_feature_set_names[set]; 5353 char *names; 5354 u64 disallowed, unsupported; 5355 u64 set_mask = flags & change_mask; 5356 u64 clear_mask = ~flags & change_mask; 5357 5358 unsupported = set_mask & ~supported_flags; 5359 if (unsupported) { 5360 names = btrfs_printable_features(set, unsupported); 5361 if (names) { 5362 btrfs_warn(fs_info, 5363 "this kernel does not support the %s feature bit%s", 5364 names, strchr(names, ',') ? "s" : ""); 5365 kfree(names); 5366 } else 5367 btrfs_warn(fs_info, 5368 "this kernel does not support %s bits 0x%llx", 5369 type, unsupported); 5370 return -EOPNOTSUPP; 5371 } 5372 5373 disallowed = set_mask & ~safe_set; 5374 if (disallowed) { 5375 names = btrfs_printable_features(set, disallowed); 5376 if (names) { 5377 btrfs_warn(fs_info, 5378 "can't set the %s feature bit%s while mounted", 5379 names, strchr(names, ',') ? "s" : ""); 5380 kfree(names); 5381 } else 5382 btrfs_warn(fs_info, 5383 "can't set %s bits 0x%llx while mounted", 5384 type, disallowed); 5385 return -EPERM; 5386 } 5387 5388 disallowed = clear_mask & ~safe_clear; 5389 if (disallowed) { 5390 names = btrfs_printable_features(set, disallowed); 5391 if (names) { 5392 btrfs_warn(fs_info, 5393 "can't clear the %s feature bit%s while mounted", 5394 names, strchr(names, ',') ? "s" : ""); 5395 kfree(names); 5396 } else 5397 btrfs_warn(fs_info, 5398 "can't clear %s bits 0x%llx while mounted", 5399 type, disallowed); 5400 return -EPERM; 5401 } 5402 5403 return 0; 5404 } 5405 5406 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5407 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5408 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5409 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5410 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5411 5412 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5413 { 5414 struct inode *inode = file_inode(file); 5415 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5416 struct btrfs_root *root = BTRFS_I(inode)->root; 5417 struct btrfs_super_block *super_block = fs_info->super_copy; 5418 struct btrfs_ioctl_feature_flags flags[2]; 5419 struct btrfs_trans_handle *trans; 5420 u64 newflags; 5421 int ret; 5422 5423 if (!capable(CAP_SYS_ADMIN)) 5424 return -EPERM; 5425 5426 if (copy_from_user(flags, arg, sizeof(flags))) 5427 return -EFAULT; 5428 5429 /* Nothing to do */ 5430 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5431 !flags[0].incompat_flags) 5432 return 0; 5433 5434 ret = check_feature(fs_info, flags[0].compat_flags, 5435 flags[1].compat_flags, COMPAT); 5436 if (ret) 5437 return ret; 5438 5439 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5440 flags[1].compat_ro_flags, COMPAT_RO); 5441 if (ret) 5442 return ret; 5443 5444 ret = check_feature(fs_info, flags[0].incompat_flags, 5445 flags[1].incompat_flags, INCOMPAT); 5446 if (ret) 5447 return ret; 5448 5449 ret = mnt_want_write_file(file); 5450 if (ret) 5451 return ret; 5452 5453 trans = btrfs_start_transaction(root, 0); 5454 if (IS_ERR(trans)) { 5455 ret = PTR_ERR(trans); 5456 goto out_drop_write; 5457 } 5458 5459 spin_lock(&fs_info->super_lock); 5460 newflags = btrfs_super_compat_flags(super_block); 5461 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5462 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5463 btrfs_set_super_compat_flags(super_block, newflags); 5464 5465 newflags = btrfs_super_compat_ro_flags(super_block); 5466 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5467 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5468 btrfs_set_super_compat_ro_flags(super_block, newflags); 5469 5470 newflags = btrfs_super_incompat_flags(super_block); 5471 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5472 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5473 btrfs_set_super_incompat_flags(super_block, newflags); 5474 spin_unlock(&fs_info->super_lock); 5475 5476 ret = btrfs_commit_transaction(trans); 5477 out_drop_write: 5478 mnt_drop_write_file(file); 5479 5480 return ret; 5481 } 5482 5483 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5484 { 5485 struct btrfs_ioctl_send_args *arg; 5486 int ret; 5487 5488 if (compat) { 5489 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5490 struct btrfs_ioctl_send_args_32 args32; 5491 5492 ret = copy_from_user(&args32, argp, sizeof(args32)); 5493 if (ret) 5494 return -EFAULT; 5495 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5496 if (!arg) 5497 return -ENOMEM; 5498 arg->send_fd = args32.send_fd; 5499 arg->clone_sources_count = args32.clone_sources_count; 5500 arg->clone_sources = compat_ptr(args32.clone_sources); 5501 arg->parent_root = args32.parent_root; 5502 arg->flags = args32.flags; 5503 memcpy(arg->reserved, args32.reserved, 5504 sizeof(args32.reserved)); 5505 #else 5506 return -ENOTTY; 5507 #endif 5508 } else { 5509 arg = memdup_user(argp, sizeof(*arg)); 5510 if (IS_ERR(arg)) 5511 return PTR_ERR(arg); 5512 } 5513 ret = btrfs_ioctl_send(file, arg); 5514 kfree(arg); 5515 return ret; 5516 } 5517 5518 long btrfs_ioctl(struct file *file, unsigned int 5519 cmd, unsigned long arg) 5520 { 5521 struct inode *inode = file_inode(file); 5522 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5523 struct btrfs_root *root = BTRFS_I(inode)->root; 5524 void __user *argp = (void __user *)arg; 5525 5526 switch (cmd) { 5527 case FS_IOC_GETFLAGS: 5528 return btrfs_ioctl_getflags(file, argp); 5529 case FS_IOC_SETFLAGS: 5530 return btrfs_ioctl_setflags(file, argp); 5531 case FS_IOC_GETVERSION: 5532 return btrfs_ioctl_getversion(file, argp); 5533 case FITRIM: 5534 return btrfs_ioctl_fitrim(file, argp); 5535 case BTRFS_IOC_SNAP_CREATE: 5536 return btrfs_ioctl_snap_create(file, argp, 0); 5537 case BTRFS_IOC_SNAP_CREATE_V2: 5538 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5539 case BTRFS_IOC_SUBVOL_CREATE: 5540 return btrfs_ioctl_snap_create(file, argp, 1); 5541 case BTRFS_IOC_SUBVOL_CREATE_V2: 5542 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5543 case BTRFS_IOC_SNAP_DESTROY: 5544 return btrfs_ioctl_snap_destroy(file, argp); 5545 case BTRFS_IOC_SUBVOL_GETFLAGS: 5546 return btrfs_ioctl_subvol_getflags(file, argp); 5547 case BTRFS_IOC_SUBVOL_SETFLAGS: 5548 return btrfs_ioctl_subvol_setflags(file, argp); 5549 case BTRFS_IOC_DEFAULT_SUBVOL: 5550 return btrfs_ioctl_default_subvol(file, argp); 5551 case BTRFS_IOC_DEFRAG: 5552 return btrfs_ioctl_defrag(file, NULL); 5553 case BTRFS_IOC_DEFRAG_RANGE: 5554 return btrfs_ioctl_defrag(file, argp); 5555 case BTRFS_IOC_RESIZE: 5556 return btrfs_ioctl_resize(file, argp); 5557 case BTRFS_IOC_ADD_DEV: 5558 return btrfs_ioctl_add_dev(fs_info, argp); 5559 case BTRFS_IOC_RM_DEV: 5560 return btrfs_ioctl_rm_dev(file, argp); 5561 case BTRFS_IOC_RM_DEV_V2: 5562 return btrfs_ioctl_rm_dev_v2(file, argp); 5563 case BTRFS_IOC_FS_INFO: 5564 return btrfs_ioctl_fs_info(fs_info, argp); 5565 case BTRFS_IOC_DEV_INFO: 5566 return btrfs_ioctl_dev_info(fs_info, argp); 5567 case BTRFS_IOC_BALANCE: 5568 return btrfs_ioctl_balance(file, NULL); 5569 case BTRFS_IOC_TREE_SEARCH: 5570 return btrfs_ioctl_tree_search(file, argp); 5571 case BTRFS_IOC_TREE_SEARCH_V2: 5572 return btrfs_ioctl_tree_search_v2(file, argp); 5573 case BTRFS_IOC_INO_LOOKUP: 5574 return btrfs_ioctl_ino_lookup(file, argp); 5575 case BTRFS_IOC_INO_PATHS: 5576 return btrfs_ioctl_ino_to_path(root, argp); 5577 case BTRFS_IOC_LOGICAL_INO: 5578 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5579 case BTRFS_IOC_LOGICAL_INO_V2: 5580 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5581 case BTRFS_IOC_SPACE_INFO: 5582 return btrfs_ioctl_space_info(fs_info, argp); 5583 case BTRFS_IOC_SYNC: { 5584 int ret; 5585 5586 ret = btrfs_start_delalloc_roots(fs_info, -1); 5587 if (ret) 5588 return ret; 5589 ret = btrfs_sync_fs(inode->i_sb, 1); 5590 /* 5591 * The transaction thread may want to do more work, 5592 * namely it pokes the cleaner kthread that will start 5593 * processing uncleaned subvols. 5594 */ 5595 wake_up_process(fs_info->transaction_kthread); 5596 return ret; 5597 } 5598 case BTRFS_IOC_START_SYNC: 5599 return btrfs_ioctl_start_sync(root, argp); 5600 case BTRFS_IOC_WAIT_SYNC: 5601 return btrfs_ioctl_wait_sync(fs_info, argp); 5602 case BTRFS_IOC_SCRUB: 5603 return btrfs_ioctl_scrub(file, argp); 5604 case BTRFS_IOC_SCRUB_CANCEL: 5605 return btrfs_ioctl_scrub_cancel(fs_info); 5606 case BTRFS_IOC_SCRUB_PROGRESS: 5607 return btrfs_ioctl_scrub_progress(fs_info, argp); 5608 case BTRFS_IOC_BALANCE_V2: 5609 return btrfs_ioctl_balance(file, argp); 5610 case BTRFS_IOC_BALANCE_CTL: 5611 return btrfs_ioctl_balance_ctl(fs_info, arg); 5612 case BTRFS_IOC_BALANCE_PROGRESS: 5613 return btrfs_ioctl_balance_progress(fs_info, argp); 5614 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5615 return btrfs_ioctl_set_received_subvol(file, argp); 5616 #ifdef CONFIG_64BIT 5617 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5618 return btrfs_ioctl_set_received_subvol_32(file, argp); 5619 #endif 5620 case BTRFS_IOC_SEND: 5621 return _btrfs_ioctl_send(file, argp, false); 5622 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5623 case BTRFS_IOC_SEND_32: 5624 return _btrfs_ioctl_send(file, argp, true); 5625 #endif 5626 case BTRFS_IOC_GET_DEV_STATS: 5627 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5628 case BTRFS_IOC_QUOTA_CTL: 5629 return btrfs_ioctl_quota_ctl(file, argp); 5630 case BTRFS_IOC_QGROUP_ASSIGN: 5631 return btrfs_ioctl_qgroup_assign(file, argp); 5632 case BTRFS_IOC_QGROUP_CREATE: 5633 return btrfs_ioctl_qgroup_create(file, argp); 5634 case BTRFS_IOC_QGROUP_LIMIT: 5635 return btrfs_ioctl_qgroup_limit(file, argp); 5636 case BTRFS_IOC_QUOTA_RESCAN: 5637 return btrfs_ioctl_quota_rescan(file, argp); 5638 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5639 return btrfs_ioctl_quota_rescan_status(file, argp); 5640 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5641 return btrfs_ioctl_quota_rescan_wait(file, argp); 5642 case BTRFS_IOC_DEV_REPLACE: 5643 return btrfs_ioctl_dev_replace(fs_info, argp); 5644 case BTRFS_IOC_GET_FSLABEL: 5645 return btrfs_ioctl_get_fslabel(file, argp); 5646 case BTRFS_IOC_SET_FSLABEL: 5647 return btrfs_ioctl_set_fslabel(file, argp); 5648 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5649 return btrfs_ioctl_get_supported_features(argp); 5650 case BTRFS_IOC_GET_FEATURES: 5651 return btrfs_ioctl_get_features(file, argp); 5652 case BTRFS_IOC_SET_FEATURES: 5653 return btrfs_ioctl_set_features(file, argp); 5654 case FS_IOC_FSGETXATTR: 5655 return btrfs_ioctl_fsgetxattr(file, argp); 5656 case FS_IOC_FSSETXATTR: 5657 return btrfs_ioctl_fssetxattr(file, argp); 5658 case BTRFS_IOC_GET_SUBVOL_INFO: 5659 return btrfs_ioctl_get_subvol_info(file, argp); 5660 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5661 return btrfs_ioctl_get_subvol_rootref(file, argp); 5662 case BTRFS_IOC_INO_LOOKUP_USER: 5663 return btrfs_ioctl_ino_lookup_user(file, argp); 5664 } 5665 5666 return -ENOTTY; 5667 } 5668 5669 #ifdef CONFIG_COMPAT 5670 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5671 { 5672 /* 5673 * These all access 32-bit values anyway so no further 5674 * handling is necessary. 5675 */ 5676 switch (cmd) { 5677 case FS_IOC32_GETFLAGS: 5678 cmd = FS_IOC_GETFLAGS; 5679 break; 5680 case FS_IOC32_SETFLAGS: 5681 cmd = FS_IOC_SETFLAGS; 5682 break; 5683 case FS_IOC32_GETVERSION: 5684 cmd = FS_IOC_GETVERSION; 5685 break; 5686 } 5687 5688 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5689 } 5690 #endif 5691