xref: /openbmc/linux/fs/btrfs/free-space-tree.c (revision 6aa7de05)
1 /*
2  * Copyright (C) 2015 Facebook.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/sched/mm.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "free-space-tree.h"
25 #include "transaction.h"
26 
27 static int __add_block_group_free_space(struct btrfs_trans_handle *trans,
28 					struct btrfs_fs_info *fs_info,
29 					struct btrfs_block_group_cache *block_group,
30 					struct btrfs_path *path);
31 
32 void set_free_space_tree_thresholds(struct btrfs_block_group_cache *cache)
33 {
34 	u32 bitmap_range;
35 	size_t bitmap_size;
36 	u64 num_bitmaps, total_bitmap_size;
37 
38 	/*
39 	 * We convert to bitmaps when the disk space required for using extents
40 	 * exceeds that required for using bitmaps.
41 	 */
42 	bitmap_range = cache->fs_info->sectorsize * BTRFS_FREE_SPACE_BITMAP_BITS;
43 	num_bitmaps = div_u64(cache->key.offset + bitmap_range - 1,
44 			      bitmap_range);
45 	bitmap_size = sizeof(struct btrfs_item) + BTRFS_FREE_SPACE_BITMAP_SIZE;
46 	total_bitmap_size = num_bitmaps * bitmap_size;
47 	cache->bitmap_high_thresh = div_u64(total_bitmap_size,
48 					    sizeof(struct btrfs_item));
49 
50 	/*
51 	 * We allow for a small buffer between the high threshold and low
52 	 * threshold to avoid thrashing back and forth between the two formats.
53 	 */
54 	if (cache->bitmap_high_thresh > 100)
55 		cache->bitmap_low_thresh = cache->bitmap_high_thresh - 100;
56 	else
57 		cache->bitmap_low_thresh = 0;
58 }
59 
60 static int add_new_free_space_info(struct btrfs_trans_handle *trans,
61 				   struct btrfs_fs_info *fs_info,
62 				   struct btrfs_block_group_cache *block_group,
63 				   struct btrfs_path *path)
64 {
65 	struct btrfs_root *root = fs_info->free_space_root;
66 	struct btrfs_free_space_info *info;
67 	struct btrfs_key key;
68 	struct extent_buffer *leaf;
69 	int ret;
70 
71 	key.objectid = block_group->key.objectid;
72 	key.type = BTRFS_FREE_SPACE_INFO_KEY;
73 	key.offset = block_group->key.offset;
74 
75 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*info));
76 	if (ret)
77 		goto out;
78 
79 	leaf = path->nodes[0];
80 	info = btrfs_item_ptr(leaf, path->slots[0],
81 			      struct btrfs_free_space_info);
82 	btrfs_set_free_space_extent_count(leaf, info, 0);
83 	btrfs_set_free_space_flags(leaf, info, 0);
84 	btrfs_mark_buffer_dirty(leaf);
85 
86 	ret = 0;
87 out:
88 	btrfs_release_path(path);
89 	return ret;
90 }
91 
92 struct btrfs_free_space_info *
93 search_free_space_info(struct btrfs_trans_handle *trans,
94 		       struct btrfs_fs_info *fs_info,
95 		       struct btrfs_block_group_cache *block_group,
96 		       struct btrfs_path *path, int cow)
97 {
98 	struct btrfs_root *root = fs_info->free_space_root;
99 	struct btrfs_key key;
100 	int ret;
101 
102 	key.objectid = block_group->key.objectid;
103 	key.type = BTRFS_FREE_SPACE_INFO_KEY;
104 	key.offset = block_group->key.offset;
105 
106 	ret = btrfs_search_slot(trans, root, &key, path, 0, cow);
107 	if (ret < 0)
108 		return ERR_PTR(ret);
109 	if (ret != 0) {
110 		btrfs_warn(fs_info, "missing free space info for %llu",
111 			   block_group->key.objectid);
112 		ASSERT(0);
113 		return ERR_PTR(-ENOENT);
114 	}
115 
116 	return btrfs_item_ptr(path->nodes[0], path->slots[0],
117 			      struct btrfs_free_space_info);
118 }
119 
120 /*
121  * btrfs_search_slot() but we're looking for the greatest key less than the
122  * passed key.
123  */
124 static int btrfs_search_prev_slot(struct btrfs_trans_handle *trans,
125 				  struct btrfs_root *root,
126 				  struct btrfs_key *key, struct btrfs_path *p,
127 				  int ins_len, int cow)
128 {
129 	int ret;
130 
131 	ret = btrfs_search_slot(trans, root, key, p, ins_len, cow);
132 	if (ret < 0)
133 		return ret;
134 
135 	if (ret == 0) {
136 		ASSERT(0);
137 		return -EIO;
138 	}
139 
140 	if (p->slots[0] == 0) {
141 		ASSERT(0);
142 		return -EIO;
143 	}
144 	p->slots[0]--;
145 
146 	return 0;
147 }
148 
149 static inline u32 free_space_bitmap_size(u64 size, u32 sectorsize)
150 {
151 	return DIV_ROUND_UP((u32)div_u64(size, sectorsize), BITS_PER_BYTE);
152 }
153 
154 static u8 *alloc_bitmap(u32 bitmap_size)
155 {
156 	u8 *ret;
157 	unsigned int nofs_flag;
158 
159 	/*
160 	 * GFP_NOFS doesn't work with kvmalloc(), but we really can't recurse
161 	 * into the filesystem as the free space bitmap can be modified in the
162 	 * critical section of a transaction commit.
163 	 *
164 	 * TODO: push the memalloc_nofs_{save,restore}() to the caller where we
165 	 * know that recursion is unsafe.
166 	 */
167 	nofs_flag = memalloc_nofs_save();
168 	ret = kvzalloc(bitmap_size, GFP_KERNEL);
169 	memalloc_nofs_restore(nofs_flag);
170 	return ret;
171 }
172 
173 int convert_free_space_to_bitmaps(struct btrfs_trans_handle *trans,
174 				  struct btrfs_fs_info *fs_info,
175 				  struct btrfs_block_group_cache *block_group,
176 				  struct btrfs_path *path)
177 {
178 	struct btrfs_root *root = fs_info->free_space_root;
179 	struct btrfs_free_space_info *info;
180 	struct btrfs_key key, found_key;
181 	struct extent_buffer *leaf;
182 	u8 *bitmap, *bitmap_cursor;
183 	u64 start, end;
184 	u64 bitmap_range, i;
185 	u32 bitmap_size, flags, expected_extent_count;
186 	u32 extent_count = 0;
187 	int done = 0, nr;
188 	int ret;
189 
190 	bitmap_size = free_space_bitmap_size(block_group->key.offset,
191 					     fs_info->sectorsize);
192 	bitmap = alloc_bitmap(bitmap_size);
193 	if (!bitmap) {
194 		ret = -ENOMEM;
195 		goto out;
196 	}
197 
198 	start = block_group->key.objectid;
199 	end = block_group->key.objectid + block_group->key.offset;
200 
201 	key.objectid = end - 1;
202 	key.type = (u8)-1;
203 	key.offset = (u64)-1;
204 
205 	while (!done) {
206 		ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
207 		if (ret)
208 			goto out;
209 
210 		leaf = path->nodes[0];
211 		nr = 0;
212 		path->slots[0]++;
213 		while (path->slots[0] > 0) {
214 			btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1);
215 
216 			if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) {
217 				ASSERT(found_key.objectid == block_group->key.objectid);
218 				ASSERT(found_key.offset == block_group->key.offset);
219 				done = 1;
220 				break;
221 			} else if (found_key.type == BTRFS_FREE_SPACE_EXTENT_KEY) {
222 				u64 first, last;
223 
224 				ASSERT(found_key.objectid >= start);
225 				ASSERT(found_key.objectid < end);
226 				ASSERT(found_key.objectid + found_key.offset <= end);
227 
228 				first = div_u64(found_key.objectid - start,
229 						fs_info->sectorsize);
230 				last = div_u64(found_key.objectid + found_key.offset - start,
231 					       fs_info->sectorsize);
232 				le_bitmap_set(bitmap, first, last - first);
233 
234 				extent_count++;
235 				nr++;
236 				path->slots[0]--;
237 			} else {
238 				ASSERT(0);
239 			}
240 		}
241 
242 		ret = btrfs_del_items(trans, root, path, path->slots[0], nr);
243 		if (ret)
244 			goto out;
245 		btrfs_release_path(path);
246 	}
247 
248 	info = search_free_space_info(trans, fs_info, block_group, path, 1);
249 	if (IS_ERR(info)) {
250 		ret = PTR_ERR(info);
251 		goto out;
252 	}
253 	leaf = path->nodes[0];
254 	flags = btrfs_free_space_flags(leaf, info);
255 	flags |= BTRFS_FREE_SPACE_USING_BITMAPS;
256 	btrfs_set_free_space_flags(leaf, info, flags);
257 	expected_extent_count = btrfs_free_space_extent_count(leaf, info);
258 	btrfs_mark_buffer_dirty(leaf);
259 	btrfs_release_path(path);
260 
261 	if (extent_count != expected_extent_count) {
262 		btrfs_err(fs_info,
263 			  "incorrect extent count for %llu; counted %u, expected %u",
264 			  block_group->key.objectid, extent_count,
265 			  expected_extent_count);
266 		ASSERT(0);
267 		ret = -EIO;
268 		goto out;
269 	}
270 
271 	bitmap_cursor = bitmap;
272 	bitmap_range = fs_info->sectorsize * BTRFS_FREE_SPACE_BITMAP_BITS;
273 	i = start;
274 	while (i < end) {
275 		unsigned long ptr;
276 		u64 extent_size;
277 		u32 data_size;
278 
279 		extent_size = min(end - i, bitmap_range);
280 		data_size = free_space_bitmap_size(extent_size,
281 						   fs_info->sectorsize);
282 
283 		key.objectid = i;
284 		key.type = BTRFS_FREE_SPACE_BITMAP_KEY;
285 		key.offset = extent_size;
286 
287 		ret = btrfs_insert_empty_item(trans, root, path, &key,
288 					      data_size);
289 		if (ret)
290 			goto out;
291 
292 		leaf = path->nodes[0];
293 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
294 		write_extent_buffer(leaf, bitmap_cursor, ptr,
295 				    data_size);
296 		btrfs_mark_buffer_dirty(leaf);
297 		btrfs_release_path(path);
298 
299 		i += extent_size;
300 		bitmap_cursor += data_size;
301 	}
302 
303 	ret = 0;
304 out:
305 	kvfree(bitmap);
306 	if (ret)
307 		btrfs_abort_transaction(trans, ret);
308 	return ret;
309 }
310 
311 int convert_free_space_to_extents(struct btrfs_trans_handle *trans,
312 				  struct btrfs_fs_info *fs_info,
313 				  struct btrfs_block_group_cache *block_group,
314 				  struct btrfs_path *path)
315 {
316 	struct btrfs_root *root = fs_info->free_space_root;
317 	struct btrfs_free_space_info *info;
318 	struct btrfs_key key, found_key;
319 	struct extent_buffer *leaf;
320 	u8 *bitmap;
321 	u64 start, end;
322 	/* Initialize to silence GCC. */
323 	u64 extent_start = 0;
324 	u64 offset;
325 	u32 bitmap_size, flags, expected_extent_count;
326 	int prev_bit = 0, bit, bitnr;
327 	u32 extent_count = 0;
328 	int done = 0, nr;
329 	int ret;
330 
331 	bitmap_size = free_space_bitmap_size(block_group->key.offset,
332 					     fs_info->sectorsize);
333 	bitmap = alloc_bitmap(bitmap_size);
334 	if (!bitmap) {
335 		ret = -ENOMEM;
336 		goto out;
337 	}
338 
339 	start = block_group->key.objectid;
340 	end = block_group->key.objectid + block_group->key.offset;
341 
342 	key.objectid = end - 1;
343 	key.type = (u8)-1;
344 	key.offset = (u64)-1;
345 
346 	while (!done) {
347 		ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
348 		if (ret)
349 			goto out;
350 
351 		leaf = path->nodes[0];
352 		nr = 0;
353 		path->slots[0]++;
354 		while (path->slots[0] > 0) {
355 			btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1);
356 
357 			if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) {
358 				ASSERT(found_key.objectid == block_group->key.objectid);
359 				ASSERT(found_key.offset == block_group->key.offset);
360 				done = 1;
361 				break;
362 			} else if (found_key.type == BTRFS_FREE_SPACE_BITMAP_KEY) {
363 				unsigned long ptr;
364 				u8 *bitmap_cursor;
365 				u32 bitmap_pos, data_size;
366 
367 				ASSERT(found_key.objectid >= start);
368 				ASSERT(found_key.objectid < end);
369 				ASSERT(found_key.objectid + found_key.offset <= end);
370 
371 				bitmap_pos = div_u64(found_key.objectid - start,
372 						     fs_info->sectorsize *
373 						     BITS_PER_BYTE);
374 				bitmap_cursor = bitmap + bitmap_pos;
375 				data_size = free_space_bitmap_size(found_key.offset,
376 								   fs_info->sectorsize);
377 
378 				ptr = btrfs_item_ptr_offset(leaf, path->slots[0] - 1);
379 				read_extent_buffer(leaf, bitmap_cursor, ptr,
380 						   data_size);
381 
382 				nr++;
383 				path->slots[0]--;
384 			} else {
385 				ASSERT(0);
386 			}
387 		}
388 
389 		ret = btrfs_del_items(trans, root, path, path->slots[0], nr);
390 		if (ret)
391 			goto out;
392 		btrfs_release_path(path);
393 	}
394 
395 	info = search_free_space_info(trans, fs_info, block_group, path, 1);
396 	if (IS_ERR(info)) {
397 		ret = PTR_ERR(info);
398 		goto out;
399 	}
400 	leaf = path->nodes[0];
401 	flags = btrfs_free_space_flags(leaf, info);
402 	flags &= ~BTRFS_FREE_SPACE_USING_BITMAPS;
403 	btrfs_set_free_space_flags(leaf, info, flags);
404 	expected_extent_count = btrfs_free_space_extent_count(leaf, info);
405 	btrfs_mark_buffer_dirty(leaf);
406 	btrfs_release_path(path);
407 
408 	offset = start;
409 	bitnr = 0;
410 	while (offset < end) {
411 		bit = !!le_test_bit(bitnr, bitmap);
412 		if (prev_bit == 0 && bit == 1) {
413 			extent_start = offset;
414 		} else if (prev_bit == 1 && bit == 0) {
415 			key.objectid = extent_start;
416 			key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
417 			key.offset = offset - extent_start;
418 
419 			ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
420 			if (ret)
421 				goto out;
422 			btrfs_release_path(path);
423 
424 			extent_count++;
425 		}
426 		prev_bit = bit;
427 		offset += fs_info->sectorsize;
428 		bitnr++;
429 	}
430 	if (prev_bit == 1) {
431 		key.objectid = extent_start;
432 		key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
433 		key.offset = end - extent_start;
434 
435 		ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
436 		if (ret)
437 			goto out;
438 		btrfs_release_path(path);
439 
440 		extent_count++;
441 	}
442 
443 	if (extent_count != expected_extent_count) {
444 		btrfs_err(fs_info,
445 			  "incorrect extent count for %llu; counted %u, expected %u",
446 			  block_group->key.objectid, extent_count,
447 			  expected_extent_count);
448 		ASSERT(0);
449 		ret = -EIO;
450 		goto out;
451 	}
452 
453 	ret = 0;
454 out:
455 	kvfree(bitmap);
456 	if (ret)
457 		btrfs_abort_transaction(trans, ret);
458 	return ret;
459 }
460 
461 static int update_free_space_extent_count(struct btrfs_trans_handle *trans,
462 					  struct btrfs_fs_info *fs_info,
463 					  struct btrfs_block_group_cache *block_group,
464 					  struct btrfs_path *path,
465 					  int new_extents)
466 {
467 	struct btrfs_free_space_info *info;
468 	u32 flags;
469 	u32 extent_count;
470 	int ret = 0;
471 
472 	if (new_extents == 0)
473 		return 0;
474 
475 	info = search_free_space_info(trans, fs_info, block_group, path, 1);
476 	if (IS_ERR(info)) {
477 		ret = PTR_ERR(info);
478 		goto out;
479 	}
480 	flags = btrfs_free_space_flags(path->nodes[0], info);
481 	extent_count = btrfs_free_space_extent_count(path->nodes[0], info);
482 
483 	extent_count += new_extents;
484 	btrfs_set_free_space_extent_count(path->nodes[0], info, extent_count);
485 	btrfs_mark_buffer_dirty(path->nodes[0]);
486 	btrfs_release_path(path);
487 
488 	if (!(flags & BTRFS_FREE_SPACE_USING_BITMAPS) &&
489 	    extent_count > block_group->bitmap_high_thresh) {
490 		ret = convert_free_space_to_bitmaps(trans, fs_info, block_group,
491 						    path);
492 	} else if ((flags & BTRFS_FREE_SPACE_USING_BITMAPS) &&
493 		   extent_count < block_group->bitmap_low_thresh) {
494 		ret = convert_free_space_to_extents(trans, fs_info, block_group,
495 						    path);
496 	}
497 
498 out:
499 	return ret;
500 }
501 
502 int free_space_test_bit(struct btrfs_block_group_cache *block_group,
503 			struct btrfs_path *path, u64 offset)
504 {
505 	struct extent_buffer *leaf;
506 	struct btrfs_key key;
507 	u64 found_start, found_end;
508 	unsigned long ptr, i;
509 
510 	leaf = path->nodes[0];
511 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
512 	ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY);
513 
514 	found_start = key.objectid;
515 	found_end = key.objectid + key.offset;
516 	ASSERT(offset >= found_start && offset < found_end);
517 
518 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
519 	i = div_u64(offset - found_start,
520 		    block_group->fs_info->sectorsize);
521 	return !!extent_buffer_test_bit(leaf, ptr, i);
522 }
523 
524 static void free_space_set_bits(struct btrfs_block_group_cache *block_group,
525 				struct btrfs_path *path, u64 *start, u64 *size,
526 				int bit)
527 {
528 	struct btrfs_fs_info *fs_info = block_group->fs_info;
529 	struct extent_buffer *leaf;
530 	struct btrfs_key key;
531 	u64 end = *start + *size;
532 	u64 found_start, found_end;
533 	unsigned long ptr, first, last;
534 
535 	leaf = path->nodes[0];
536 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
537 	ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY);
538 
539 	found_start = key.objectid;
540 	found_end = key.objectid + key.offset;
541 	ASSERT(*start >= found_start && *start < found_end);
542 	ASSERT(end > found_start);
543 
544 	if (end > found_end)
545 		end = found_end;
546 
547 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
548 	first = div_u64(*start - found_start, fs_info->sectorsize);
549 	last = div_u64(end - found_start, fs_info->sectorsize);
550 	if (bit)
551 		extent_buffer_bitmap_set(leaf, ptr, first, last - first);
552 	else
553 		extent_buffer_bitmap_clear(leaf, ptr, first, last - first);
554 	btrfs_mark_buffer_dirty(leaf);
555 
556 	*size -= end - *start;
557 	*start = end;
558 }
559 
560 /*
561  * We can't use btrfs_next_item() in modify_free_space_bitmap() because
562  * btrfs_next_leaf() doesn't get the path for writing. We can forgo the fancy
563  * tree walking in btrfs_next_leaf() anyways because we know exactly what we're
564  * looking for.
565  */
566 static int free_space_next_bitmap(struct btrfs_trans_handle *trans,
567 				  struct btrfs_root *root, struct btrfs_path *p)
568 {
569 	struct btrfs_key key;
570 
571 	if (p->slots[0] + 1 < btrfs_header_nritems(p->nodes[0])) {
572 		p->slots[0]++;
573 		return 0;
574 	}
575 
576 	btrfs_item_key_to_cpu(p->nodes[0], &key, p->slots[0]);
577 	btrfs_release_path(p);
578 
579 	key.objectid += key.offset;
580 	key.type = (u8)-1;
581 	key.offset = (u64)-1;
582 
583 	return btrfs_search_prev_slot(trans, root, &key, p, 0, 1);
584 }
585 
586 /*
587  * If remove is 1, then we are removing free space, thus clearing bits in the
588  * bitmap. If remove is 0, then we are adding free space, thus setting bits in
589  * the bitmap.
590  */
591 static int modify_free_space_bitmap(struct btrfs_trans_handle *trans,
592 				    struct btrfs_fs_info *fs_info,
593 				    struct btrfs_block_group_cache *block_group,
594 				    struct btrfs_path *path,
595 				    u64 start, u64 size, int remove)
596 {
597 	struct btrfs_root *root = fs_info->free_space_root;
598 	struct btrfs_key key;
599 	u64 end = start + size;
600 	u64 cur_start, cur_size;
601 	int prev_bit, next_bit;
602 	int new_extents;
603 	int ret;
604 
605 	/*
606 	 * Read the bit for the block immediately before the extent of space if
607 	 * that block is within the block group.
608 	 */
609 	if (start > block_group->key.objectid) {
610 		u64 prev_block = start - block_group->fs_info->sectorsize;
611 
612 		key.objectid = prev_block;
613 		key.type = (u8)-1;
614 		key.offset = (u64)-1;
615 
616 		ret = btrfs_search_prev_slot(trans, root, &key, path, 0, 1);
617 		if (ret)
618 			goto out;
619 
620 		prev_bit = free_space_test_bit(block_group, path, prev_block);
621 
622 		/* The previous block may have been in the previous bitmap. */
623 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
624 		if (start >= key.objectid + key.offset) {
625 			ret = free_space_next_bitmap(trans, root, path);
626 			if (ret)
627 				goto out;
628 		}
629 	} else {
630 		key.objectid = start;
631 		key.type = (u8)-1;
632 		key.offset = (u64)-1;
633 
634 		ret = btrfs_search_prev_slot(trans, root, &key, path, 0, 1);
635 		if (ret)
636 			goto out;
637 
638 		prev_bit = -1;
639 	}
640 
641 	/*
642 	 * Iterate over all of the bitmaps overlapped by the extent of space,
643 	 * clearing/setting bits as required.
644 	 */
645 	cur_start = start;
646 	cur_size = size;
647 	while (1) {
648 		free_space_set_bits(block_group, path, &cur_start, &cur_size,
649 				    !remove);
650 		if (cur_size == 0)
651 			break;
652 		ret = free_space_next_bitmap(trans, root, path);
653 		if (ret)
654 			goto out;
655 	}
656 
657 	/*
658 	 * Read the bit for the block immediately after the extent of space if
659 	 * that block is within the block group.
660 	 */
661 	if (end < block_group->key.objectid + block_group->key.offset) {
662 		/* The next block may be in the next bitmap. */
663 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
664 		if (end >= key.objectid + key.offset) {
665 			ret = free_space_next_bitmap(trans, root, path);
666 			if (ret)
667 				goto out;
668 		}
669 
670 		next_bit = free_space_test_bit(block_group, path, end);
671 	} else {
672 		next_bit = -1;
673 	}
674 
675 	if (remove) {
676 		new_extents = -1;
677 		if (prev_bit == 1) {
678 			/* Leftover on the left. */
679 			new_extents++;
680 		}
681 		if (next_bit == 1) {
682 			/* Leftover on the right. */
683 			new_extents++;
684 		}
685 	} else {
686 		new_extents = 1;
687 		if (prev_bit == 1) {
688 			/* Merging with neighbor on the left. */
689 			new_extents--;
690 		}
691 		if (next_bit == 1) {
692 			/* Merging with neighbor on the right. */
693 			new_extents--;
694 		}
695 	}
696 
697 	btrfs_release_path(path);
698 	ret = update_free_space_extent_count(trans, fs_info, block_group, path,
699 					     new_extents);
700 
701 out:
702 	return ret;
703 }
704 
705 static int remove_free_space_extent(struct btrfs_trans_handle *trans,
706 				    struct btrfs_fs_info *fs_info,
707 				    struct btrfs_block_group_cache *block_group,
708 				    struct btrfs_path *path,
709 				    u64 start, u64 size)
710 {
711 	struct btrfs_root *root = fs_info->free_space_root;
712 	struct btrfs_key key;
713 	u64 found_start, found_end;
714 	u64 end = start + size;
715 	int new_extents = -1;
716 	int ret;
717 
718 	key.objectid = start;
719 	key.type = (u8)-1;
720 	key.offset = (u64)-1;
721 
722 	ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
723 	if (ret)
724 		goto out;
725 
726 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
727 
728 	ASSERT(key.type == BTRFS_FREE_SPACE_EXTENT_KEY);
729 
730 	found_start = key.objectid;
731 	found_end = key.objectid + key.offset;
732 	ASSERT(start >= found_start && end <= found_end);
733 
734 	/*
735 	 * Okay, now that we've found the free space extent which contains the
736 	 * free space that we are removing, there are four cases:
737 	 *
738 	 * 1. We're using the whole extent: delete the key we found and
739 	 * decrement the free space extent count.
740 	 * 2. We are using part of the extent starting at the beginning: delete
741 	 * the key we found and insert a new key representing the leftover at
742 	 * the end. There is no net change in the number of extents.
743 	 * 3. We are using part of the extent ending at the end: delete the key
744 	 * we found and insert a new key representing the leftover at the
745 	 * beginning. There is no net change in the number of extents.
746 	 * 4. We are using part of the extent in the middle: delete the key we
747 	 * found and insert two new keys representing the leftovers on each
748 	 * side. Where we used to have one extent, we now have two, so increment
749 	 * the extent count. We may need to convert the block group to bitmaps
750 	 * as a result.
751 	 */
752 
753 	/* Delete the existing key (cases 1-4). */
754 	ret = btrfs_del_item(trans, root, path);
755 	if (ret)
756 		goto out;
757 
758 	/* Add a key for leftovers at the beginning (cases 3 and 4). */
759 	if (start > found_start) {
760 		key.objectid = found_start;
761 		key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
762 		key.offset = start - found_start;
763 
764 		btrfs_release_path(path);
765 		ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
766 		if (ret)
767 			goto out;
768 		new_extents++;
769 	}
770 
771 	/* Add a key for leftovers at the end (cases 2 and 4). */
772 	if (end < found_end) {
773 		key.objectid = end;
774 		key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
775 		key.offset = found_end - end;
776 
777 		btrfs_release_path(path);
778 		ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
779 		if (ret)
780 			goto out;
781 		new_extents++;
782 	}
783 
784 	btrfs_release_path(path);
785 	ret = update_free_space_extent_count(trans, fs_info, block_group, path,
786 					     new_extents);
787 
788 out:
789 	return ret;
790 }
791 
792 int __remove_from_free_space_tree(struct btrfs_trans_handle *trans,
793 				  struct btrfs_fs_info *fs_info,
794 				  struct btrfs_block_group_cache *block_group,
795 				  struct btrfs_path *path, u64 start, u64 size)
796 {
797 	struct btrfs_free_space_info *info;
798 	u32 flags;
799 	int ret;
800 
801 	if (block_group->needs_free_space) {
802 		ret = __add_block_group_free_space(trans, fs_info, block_group,
803 						   path);
804 		if (ret)
805 			return ret;
806 	}
807 
808 	info = search_free_space_info(NULL, fs_info, block_group, path, 0);
809 	if (IS_ERR(info))
810 		return PTR_ERR(info);
811 	flags = btrfs_free_space_flags(path->nodes[0], info);
812 	btrfs_release_path(path);
813 
814 	if (flags & BTRFS_FREE_SPACE_USING_BITMAPS) {
815 		return modify_free_space_bitmap(trans, fs_info, block_group,
816 						path, start, size, 1);
817 	} else {
818 		return remove_free_space_extent(trans, fs_info, block_group,
819 						path, start, size);
820 	}
821 }
822 
823 int remove_from_free_space_tree(struct btrfs_trans_handle *trans,
824 				struct btrfs_fs_info *fs_info,
825 				u64 start, u64 size)
826 {
827 	struct btrfs_block_group_cache *block_group;
828 	struct btrfs_path *path;
829 	int ret;
830 
831 	if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
832 		return 0;
833 
834 	path = btrfs_alloc_path();
835 	if (!path) {
836 		ret = -ENOMEM;
837 		goto out;
838 	}
839 
840 	block_group = btrfs_lookup_block_group(fs_info, start);
841 	if (!block_group) {
842 		ASSERT(0);
843 		ret = -ENOENT;
844 		goto out;
845 	}
846 
847 	mutex_lock(&block_group->free_space_lock);
848 	ret = __remove_from_free_space_tree(trans, fs_info, block_group, path,
849 					    start, size);
850 	mutex_unlock(&block_group->free_space_lock);
851 
852 	btrfs_put_block_group(block_group);
853 out:
854 	btrfs_free_path(path);
855 	if (ret)
856 		btrfs_abort_transaction(trans, ret);
857 	return ret;
858 }
859 
860 static int add_free_space_extent(struct btrfs_trans_handle *trans,
861 				 struct btrfs_fs_info *fs_info,
862 				 struct btrfs_block_group_cache *block_group,
863 				 struct btrfs_path *path,
864 				 u64 start, u64 size)
865 {
866 	struct btrfs_root *root = fs_info->free_space_root;
867 	struct btrfs_key key, new_key;
868 	u64 found_start, found_end;
869 	u64 end = start + size;
870 	int new_extents = 1;
871 	int ret;
872 
873 	/*
874 	 * We are adding a new extent of free space, but we need to merge
875 	 * extents. There are four cases here:
876 	 *
877 	 * 1. The new extent does not have any immediate neighbors to merge
878 	 * with: add the new key and increment the free space extent count. We
879 	 * may need to convert the block group to bitmaps as a result.
880 	 * 2. The new extent has an immediate neighbor before it: remove the
881 	 * previous key and insert a new key combining both of them. There is no
882 	 * net change in the number of extents.
883 	 * 3. The new extent has an immediate neighbor after it: remove the next
884 	 * key and insert a new key combining both of them. There is no net
885 	 * change in the number of extents.
886 	 * 4. The new extent has immediate neighbors on both sides: remove both
887 	 * of the keys and insert a new key combining all of them. Where we used
888 	 * to have two extents, we now have one, so decrement the extent count.
889 	 */
890 
891 	new_key.objectid = start;
892 	new_key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
893 	new_key.offset = size;
894 
895 	/* Search for a neighbor on the left. */
896 	if (start == block_group->key.objectid)
897 		goto right;
898 	key.objectid = start - 1;
899 	key.type = (u8)-1;
900 	key.offset = (u64)-1;
901 
902 	ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
903 	if (ret)
904 		goto out;
905 
906 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
907 
908 	if (key.type != BTRFS_FREE_SPACE_EXTENT_KEY) {
909 		ASSERT(key.type == BTRFS_FREE_SPACE_INFO_KEY);
910 		btrfs_release_path(path);
911 		goto right;
912 	}
913 
914 	found_start = key.objectid;
915 	found_end = key.objectid + key.offset;
916 	ASSERT(found_start >= block_group->key.objectid &&
917 	       found_end > block_group->key.objectid);
918 	ASSERT(found_start < start && found_end <= start);
919 
920 	/*
921 	 * Delete the neighbor on the left and absorb it into the new key (cases
922 	 * 2 and 4).
923 	 */
924 	if (found_end == start) {
925 		ret = btrfs_del_item(trans, root, path);
926 		if (ret)
927 			goto out;
928 		new_key.objectid = found_start;
929 		new_key.offset += key.offset;
930 		new_extents--;
931 	}
932 	btrfs_release_path(path);
933 
934 right:
935 	/* Search for a neighbor on the right. */
936 	if (end == block_group->key.objectid + block_group->key.offset)
937 		goto insert;
938 	key.objectid = end;
939 	key.type = (u8)-1;
940 	key.offset = (u64)-1;
941 
942 	ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
943 	if (ret)
944 		goto out;
945 
946 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
947 
948 	if (key.type != BTRFS_FREE_SPACE_EXTENT_KEY) {
949 		ASSERT(key.type == BTRFS_FREE_SPACE_INFO_KEY);
950 		btrfs_release_path(path);
951 		goto insert;
952 	}
953 
954 	found_start = key.objectid;
955 	found_end = key.objectid + key.offset;
956 	ASSERT(found_start >= block_group->key.objectid &&
957 	       found_end > block_group->key.objectid);
958 	ASSERT((found_start < start && found_end <= start) ||
959 	       (found_start >= end && found_end > end));
960 
961 	/*
962 	 * Delete the neighbor on the right and absorb it into the new key
963 	 * (cases 3 and 4).
964 	 */
965 	if (found_start == end) {
966 		ret = btrfs_del_item(trans, root, path);
967 		if (ret)
968 			goto out;
969 		new_key.offset += key.offset;
970 		new_extents--;
971 	}
972 	btrfs_release_path(path);
973 
974 insert:
975 	/* Insert the new key (cases 1-4). */
976 	ret = btrfs_insert_empty_item(trans, root, path, &new_key, 0);
977 	if (ret)
978 		goto out;
979 
980 	btrfs_release_path(path);
981 	ret = update_free_space_extent_count(trans, fs_info, block_group, path,
982 					     new_extents);
983 
984 out:
985 	return ret;
986 }
987 
988 int __add_to_free_space_tree(struct btrfs_trans_handle *trans,
989 			     struct btrfs_fs_info *fs_info,
990 			     struct btrfs_block_group_cache *block_group,
991 			     struct btrfs_path *path, u64 start, u64 size)
992 {
993 	struct btrfs_free_space_info *info;
994 	u32 flags;
995 	int ret;
996 
997 	if (block_group->needs_free_space) {
998 		ret = __add_block_group_free_space(trans, fs_info, block_group,
999 						   path);
1000 		if (ret)
1001 			return ret;
1002 	}
1003 
1004 	info = search_free_space_info(NULL, fs_info, block_group, path, 0);
1005 	if (IS_ERR(info))
1006 		return PTR_ERR(info);
1007 	flags = btrfs_free_space_flags(path->nodes[0], info);
1008 	btrfs_release_path(path);
1009 
1010 	if (flags & BTRFS_FREE_SPACE_USING_BITMAPS) {
1011 		return modify_free_space_bitmap(trans, fs_info, block_group,
1012 						path, start, size, 0);
1013 	} else {
1014 		return add_free_space_extent(trans, fs_info, block_group, path,
1015 					     start, size);
1016 	}
1017 }
1018 
1019 int add_to_free_space_tree(struct btrfs_trans_handle *trans,
1020 			   struct btrfs_fs_info *fs_info,
1021 			   u64 start, u64 size)
1022 {
1023 	struct btrfs_block_group_cache *block_group;
1024 	struct btrfs_path *path;
1025 	int ret;
1026 
1027 	if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
1028 		return 0;
1029 
1030 	path = btrfs_alloc_path();
1031 	if (!path) {
1032 		ret = -ENOMEM;
1033 		goto out;
1034 	}
1035 
1036 	block_group = btrfs_lookup_block_group(fs_info, start);
1037 	if (!block_group) {
1038 		ASSERT(0);
1039 		ret = -ENOENT;
1040 		goto out;
1041 	}
1042 
1043 	mutex_lock(&block_group->free_space_lock);
1044 	ret = __add_to_free_space_tree(trans, fs_info, block_group, path, start,
1045 				       size);
1046 	mutex_unlock(&block_group->free_space_lock);
1047 
1048 	btrfs_put_block_group(block_group);
1049 out:
1050 	btrfs_free_path(path);
1051 	if (ret)
1052 		btrfs_abort_transaction(trans, ret);
1053 	return ret;
1054 }
1055 
1056 /*
1057  * Populate the free space tree by walking the extent tree. Operations on the
1058  * extent tree that happen as a result of writes to the free space tree will go
1059  * through the normal add/remove hooks.
1060  */
1061 static int populate_free_space_tree(struct btrfs_trans_handle *trans,
1062 				    struct btrfs_fs_info *fs_info,
1063 				    struct btrfs_block_group_cache *block_group)
1064 {
1065 	struct btrfs_root *extent_root = fs_info->extent_root;
1066 	struct btrfs_path *path, *path2;
1067 	struct btrfs_key key;
1068 	u64 start, end;
1069 	int ret;
1070 
1071 	path = btrfs_alloc_path();
1072 	if (!path)
1073 		return -ENOMEM;
1074 	path->reada = 1;
1075 
1076 	path2 = btrfs_alloc_path();
1077 	if (!path2) {
1078 		btrfs_free_path(path);
1079 		return -ENOMEM;
1080 	}
1081 
1082 	ret = add_new_free_space_info(trans, fs_info, block_group, path2);
1083 	if (ret)
1084 		goto out;
1085 
1086 	mutex_lock(&block_group->free_space_lock);
1087 
1088 	/*
1089 	 * Iterate through all of the extent and metadata items in this block
1090 	 * group, adding the free space between them and the free space at the
1091 	 * end. Note that EXTENT_ITEM and METADATA_ITEM are less than
1092 	 * BLOCK_GROUP_ITEM, so an extent may precede the block group that it's
1093 	 * contained in.
1094 	 */
1095 	key.objectid = block_group->key.objectid;
1096 	key.type = BTRFS_EXTENT_ITEM_KEY;
1097 	key.offset = 0;
1098 
1099 	ret = btrfs_search_slot_for_read(extent_root, &key, path, 1, 0);
1100 	if (ret < 0)
1101 		goto out_locked;
1102 	ASSERT(ret == 0);
1103 
1104 	start = block_group->key.objectid;
1105 	end = block_group->key.objectid + block_group->key.offset;
1106 	while (1) {
1107 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1108 
1109 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
1110 		    key.type == BTRFS_METADATA_ITEM_KEY) {
1111 			if (key.objectid >= end)
1112 				break;
1113 
1114 			if (start < key.objectid) {
1115 				ret = __add_to_free_space_tree(trans, fs_info,
1116 							       block_group,
1117 							       path2, start,
1118 							       key.objectid -
1119 							       start);
1120 				if (ret)
1121 					goto out_locked;
1122 			}
1123 			start = key.objectid;
1124 			if (key.type == BTRFS_METADATA_ITEM_KEY)
1125 				start += fs_info->nodesize;
1126 			else
1127 				start += key.offset;
1128 		} else if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1129 			if (key.objectid != block_group->key.objectid)
1130 				break;
1131 		}
1132 
1133 		ret = btrfs_next_item(extent_root, path);
1134 		if (ret < 0)
1135 			goto out_locked;
1136 		if (ret)
1137 			break;
1138 	}
1139 	if (start < end) {
1140 		ret = __add_to_free_space_tree(trans, fs_info, block_group,
1141 					       path2, start, end - start);
1142 		if (ret)
1143 			goto out_locked;
1144 	}
1145 
1146 	ret = 0;
1147 out_locked:
1148 	mutex_unlock(&block_group->free_space_lock);
1149 out:
1150 	btrfs_free_path(path2);
1151 	btrfs_free_path(path);
1152 	return ret;
1153 }
1154 
1155 int btrfs_create_free_space_tree(struct btrfs_fs_info *fs_info)
1156 {
1157 	struct btrfs_trans_handle *trans;
1158 	struct btrfs_root *tree_root = fs_info->tree_root;
1159 	struct btrfs_root *free_space_root;
1160 	struct btrfs_block_group_cache *block_group;
1161 	struct rb_node *node;
1162 	int ret;
1163 
1164 	trans = btrfs_start_transaction(tree_root, 0);
1165 	if (IS_ERR(trans))
1166 		return PTR_ERR(trans);
1167 
1168 	set_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags);
1169 	free_space_root = btrfs_create_tree(trans, fs_info,
1170 					    BTRFS_FREE_SPACE_TREE_OBJECTID);
1171 	if (IS_ERR(free_space_root)) {
1172 		ret = PTR_ERR(free_space_root);
1173 		goto abort;
1174 	}
1175 	fs_info->free_space_root = free_space_root;
1176 
1177 	node = rb_first(&fs_info->block_group_cache_tree);
1178 	while (node) {
1179 		block_group = rb_entry(node, struct btrfs_block_group_cache,
1180 				       cache_node);
1181 		ret = populate_free_space_tree(trans, fs_info, block_group);
1182 		if (ret)
1183 			goto abort;
1184 		node = rb_next(node);
1185 	}
1186 
1187 	btrfs_set_fs_compat_ro(fs_info, FREE_SPACE_TREE);
1188 	btrfs_set_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID);
1189 	clear_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags);
1190 
1191 	return btrfs_commit_transaction(trans);
1192 
1193 abort:
1194 	clear_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags);
1195 	btrfs_abort_transaction(trans, ret);
1196 	btrfs_end_transaction(trans);
1197 	return ret;
1198 }
1199 
1200 static int clear_free_space_tree(struct btrfs_trans_handle *trans,
1201 				 struct btrfs_root *root)
1202 {
1203 	struct btrfs_path *path;
1204 	struct btrfs_key key;
1205 	int nr;
1206 	int ret;
1207 
1208 	path = btrfs_alloc_path();
1209 	if (!path)
1210 		return -ENOMEM;
1211 
1212 	path->leave_spinning = 1;
1213 
1214 	key.objectid = 0;
1215 	key.type = 0;
1216 	key.offset = 0;
1217 
1218 	while (1) {
1219 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1220 		if (ret < 0)
1221 			goto out;
1222 
1223 		nr = btrfs_header_nritems(path->nodes[0]);
1224 		if (!nr)
1225 			break;
1226 
1227 		path->slots[0] = 0;
1228 		ret = btrfs_del_items(trans, root, path, 0, nr);
1229 		if (ret)
1230 			goto out;
1231 
1232 		btrfs_release_path(path);
1233 	}
1234 
1235 	ret = 0;
1236 out:
1237 	btrfs_free_path(path);
1238 	return ret;
1239 }
1240 
1241 int btrfs_clear_free_space_tree(struct btrfs_fs_info *fs_info)
1242 {
1243 	struct btrfs_trans_handle *trans;
1244 	struct btrfs_root *tree_root = fs_info->tree_root;
1245 	struct btrfs_root *free_space_root = fs_info->free_space_root;
1246 	int ret;
1247 
1248 	trans = btrfs_start_transaction(tree_root, 0);
1249 	if (IS_ERR(trans))
1250 		return PTR_ERR(trans);
1251 
1252 	btrfs_clear_fs_compat_ro(fs_info, FREE_SPACE_TREE);
1253 	btrfs_clear_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID);
1254 	fs_info->free_space_root = NULL;
1255 
1256 	ret = clear_free_space_tree(trans, free_space_root);
1257 	if (ret)
1258 		goto abort;
1259 
1260 	ret = btrfs_del_root(trans, fs_info, &free_space_root->root_key);
1261 	if (ret)
1262 		goto abort;
1263 
1264 	list_del(&free_space_root->dirty_list);
1265 
1266 	btrfs_tree_lock(free_space_root->node);
1267 	clean_tree_block(fs_info, free_space_root->node);
1268 	btrfs_tree_unlock(free_space_root->node);
1269 	btrfs_free_tree_block(trans, free_space_root, free_space_root->node,
1270 			      0, 1);
1271 
1272 	free_extent_buffer(free_space_root->node);
1273 	free_extent_buffer(free_space_root->commit_root);
1274 	kfree(free_space_root);
1275 
1276 	return btrfs_commit_transaction(trans);
1277 
1278 abort:
1279 	btrfs_abort_transaction(trans, ret);
1280 	btrfs_end_transaction(trans);
1281 	return ret;
1282 }
1283 
1284 static int __add_block_group_free_space(struct btrfs_trans_handle *trans,
1285 					struct btrfs_fs_info *fs_info,
1286 					struct btrfs_block_group_cache *block_group,
1287 					struct btrfs_path *path)
1288 {
1289 	u64 start, end;
1290 	int ret;
1291 
1292 	start = block_group->key.objectid;
1293 	end = block_group->key.objectid + block_group->key.offset;
1294 
1295 	block_group->needs_free_space = 0;
1296 
1297 	ret = add_new_free_space_info(trans, fs_info, block_group, path);
1298 	if (ret)
1299 		return ret;
1300 
1301 	return __add_to_free_space_tree(trans, fs_info, block_group, path,
1302 					block_group->key.objectid,
1303 					block_group->key.offset);
1304 }
1305 
1306 int add_block_group_free_space(struct btrfs_trans_handle *trans,
1307 			       struct btrfs_fs_info *fs_info,
1308 			       struct btrfs_block_group_cache *block_group)
1309 {
1310 	struct btrfs_path *path = NULL;
1311 	int ret = 0;
1312 
1313 	if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
1314 		return 0;
1315 
1316 	mutex_lock(&block_group->free_space_lock);
1317 	if (!block_group->needs_free_space)
1318 		goto out;
1319 
1320 	path = btrfs_alloc_path();
1321 	if (!path) {
1322 		ret = -ENOMEM;
1323 		goto out;
1324 	}
1325 
1326 	ret = __add_block_group_free_space(trans, fs_info, block_group, path);
1327 
1328 out:
1329 	btrfs_free_path(path);
1330 	mutex_unlock(&block_group->free_space_lock);
1331 	if (ret)
1332 		btrfs_abort_transaction(trans, ret);
1333 	return ret;
1334 }
1335 
1336 int remove_block_group_free_space(struct btrfs_trans_handle *trans,
1337 				  struct btrfs_fs_info *fs_info,
1338 				  struct btrfs_block_group_cache *block_group)
1339 {
1340 	struct btrfs_root *root = fs_info->free_space_root;
1341 	struct btrfs_path *path;
1342 	struct btrfs_key key, found_key;
1343 	struct extent_buffer *leaf;
1344 	u64 start, end;
1345 	int done = 0, nr;
1346 	int ret;
1347 
1348 	if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
1349 		return 0;
1350 
1351 	if (block_group->needs_free_space) {
1352 		/* We never added this block group to the free space tree. */
1353 		return 0;
1354 	}
1355 
1356 	path = btrfs_alloc_path();
1357 	if (!path) {
1358 		ret = -ENOMEM;
1359 		goto out;
1360 	}
1361 
1362 	start = block_group->key.objectid;
1363 	end = block_group->key.objectid + block_group->key.offset;
1364 
1365 	key.objectid = end - 1;
1366 	key.type = (u8)-1;
1367 	key.offset = (u64)-1;
1368 
1369 	while (!done) {
1370 		ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
1371 		if (ret)
1372 			goto out;
1373 
1374 		leaf = path->nodes[0];
1375 		nr = 0;
1376 		path->slots[0]++;
1377 		while (path->slots[0] > 0) {
1378 			btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1);
1379 
1380 			if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) {
1381 				ASSERT(found_key.objectid == block_group->key.objectid);
1382 				ASSERT(found_key.offset == block_group->key.offset);
1383 				done = 1;
1384 				nr++;
1385 				path->slots[0]--;
1386 				break;
1387 			} else if (found_key.type == BTRFS_FREE_SPACE_EXTENT_KEY ||
1388 				   found_key.type == BTRFS_FREE_SPACE_BITMAP_KEY) {
1389 				ASSERT(found_key.objectid >= start);
1390 				ASSERT(found_key.objectid < end);
1391 				ASSERT(found_key.objectid + found_key.offset <= end);
1392 				nr++;
1393 				path->slots[0]--;
1394 			} else {
1395 				ASSERT(0);
1396 			}
1397 		}
1398 
1399 		ret = btrfs_del_items(trans, root, path, path->slots[0], nr);
1400 		if (ret)
1401 			goto out;
1402 		btrfs_release_path(path);
1403 	}
1404 
1405 	ret = 0;
1406 out:
1407 	btrfs_free_path(path);
1408 	if (ret)
1409 		btrfs_abort_transaction(trans, ret);
1410 	return ret;
1411 }
1412 
1413 static int load_free_space_bitmaps(struct btrfs_caching_control *caching_ctl,
1414 				   struct btrfs_path *path,
1415 				   u32 expected_extent_count)
1416 {
1417 	struct btrfs_block_group_cache *block_group;
1418 	struct btrfs_fs_info *fs_info;
1419 	struct btrfs_root *root;
1420 	struct btrfs_key key;
1421 	int prev_bit = 0, bit;
1422 	/* Initialize to silence GCC. */
1423 	u64 extent_start = 0;
1424 	u64 end, offset;
1425 	u64 total_found = 0;
1426 	u32 extent_count = 0;
1427 	int ret;
1428 
1429 	block_group = caching_ctl->block_group;
1430 	fs_info = block_group->fs_info;
1431 	root = fs_info->free_space_root;
1432 
1433 	end = block_group->key.objectid + block_group->key.offset;
1434 
1435 	while (1) {
1436 		ret = btrfs_next_item(root, path);
1437 		if (ret < 0)
1438 			goto out;
1439 		if (ret)
1440 			break;
1441 
1442 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1443 
1444 		if (key.type == BTRFS_FREE_SPACE_INFO_KEY)
1445 			break;
1446 
1447 		ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY);
1448 		ASSERT(key.objectid < end && key.objectid + key.offset <= end);
1449 
1450 		caching_ctl->progress = key.objectid;
1451 
1452 		offset = key.objectid;
1453 		while (offset < key.objectid + key.offset) {
1454 			bit = free_space_test_bit(block_group, path, offset);
1455 			if (prev_bit == 0 && bit == 1) {
1456 				extent_start = offset;
1457 			} else if (prev_bit == 1 && bit == 0) {
1458 				total_found += add_new_free_space(block_group,
1459 								  fs_info,
1460 								  extent_start,
1461 								  offset);
1462 				if (total_found > CACHING_CTL_WAKE_UP) {
1463 					total_found = 0;
1464 					wake_up(&caching_ctl->wait);
1465 				}
1466 				extent_count++;
1467 			}
1468 			prev_bit = bit;
1469 			offset += fs_info->sectorsize;
1470 		}
1471 	}
1472 	if (prev_bit == 1) {
1473 		total_found += add_new_free_space(block_group, fs_info,
1474 						  extent_start, end);
1475 		extent_count++;
1476 	}
1477 
1478 	if (extent_count != expected_extent_count) {
1479 		btrfs_err(fs_info,
1480 			  "incorrect extent count for %llu; counted %u, expected %u",
1481 			  block_group->key.objectid, extent_count,
1482 			  expected_extent_count);
1483 		ASSERT(0);
1484 		ret = -EIO;
1485 		goto out;
1486 	}
1487 
1488 	caching_ctl->progress = (u64)-1;
1489 
1490 	ret = 0;
1491 out:
1492 	return ret;
1493 }
1494 
1495 static int load_free_space_extents(struct btrfs_caching_control *caching_ctl,
1496 				   struct btrfs_path *path,
1497 				   u32 expected_extent_count)
1498 {
1499 	struct btrfs_block_group_cache *block_group;
1500 	struct btrfs_fs_info *fs_info;
1501 	struct btrfs_root *root;
1502 	struct btrfs_key key;
1503 	u64 end;
1504 	u64 total_found = 0;
1505 	u32 extent_count = 0;
1506 	int ret;
1507 
1508 	block_group = caching_ctl->block_group;
1509 	fs_info = block_group->fs_info;
1510 	root = fs_info->free_space_root;
1511 
1512 	end = block_group->key.objectid + block_group->key.offset;
1513 
1514 	while (1) {
1515 		ret = btrfs_next_item(root, path);
1516 		if (ret < 0)
1517 			goto out;
1518 		if (ret)
1519 			break;
1520 
1521 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1522 
1523 		if (key.type == BTRFS_FREE_SPACE_INFO_KEY)
1524 			break;
1525 
1526 		ASSERT(key.type == BTRFS_FREE_SPACE_EXTENT_KEY);
1527 		ASSERT(key.objectid < end && key.objectid + key.offset <= end);
1528 
1529 		caching_ctl->progress = key.objectid;
1530 
1531 		total_found += add_new_free_space(block_group, fs_info,
1532 						  key.objectid,
1533 						  key.objectid + key.offset);
1534 		if (total_found > CACHING_CTL_WAKE_UP) {
1535 			total_found = 0;
1536 			wake_up(&caching_ctl->wait);
1537 		}
1538 		extent_count++;
1539 	}
1540 
1541 	if (extent_count != expected_extent_count) {
1542 		btrfs_err(fs_info,
1543 			  "incorrect extent count for %llu; counted %u, expected %u",
1544 			  block_group->key.objectid, extent_count,
1545 			  expected_extent_count);
1546 		ASSERT(0);
1547 		ret = -EIO;
1548 		goto out;
1549 	}
1550 
1551 	caching_ctl->progress = (u64)-1;
1552 
1553 	ret = 0;
1554 out:
1555 	return ret;
1556 }
1557 
1558 int load_free_space_tree(struct btrfs_caching_control *caching_ctl)
1559 {
1560 	struct btrfs_block_group_cache *block_group;
1561 	struct btrfs_fs_info *fs_info;
1562 	struct btrfs_free_space_info *info;
1563 	struct btrfs_path *path;
1564 	u32 extent_count, flags;
1565 	int ret;
1566 
1567 	block_group = caching_ctl->block_group;
1568 	fs_info = block_group->fs_info;
1569 
1570 	path = btrfs_alloc_path();
1571 	if (!path)
1572 		return -ENOMEM;
1573 
1574 	/*
1575 	 * Just like caching_thread() doesn't want to deadlock on the extent
1576 	 * tree, we don't want to deadlock on the free space tree.
1577 	 */
1578 	path->skip_locking = 1;
1579 	path->search_commit_root = 1;
1580 	path->reada = 1;
1581 
1582 	info = search_free_space_info(NULL, fs_info, block_group, path, 0);
1583 	if (IS_ERR(info)) {
1584 		ret = PTR_ERR(info);
1585 		goto out;
1586 	}
1587 	extent_count = btrfs_free_space_extent_count(path->nodes[0], info);
1588 	flags = btrfs_free_space_flags(path->nodes[0], info);
1589 
1590 	/*
1591 	 * We left path pointing to the free space info item, so now
1592 	 * load_free_space_foo can just iterate through the free space tree from
1593 	 * there.
1594 	 */
1595 	if (flags & BTRFS_FREE_SPACE_USING_BITMAPS)
1596 		ret = load_free_space_bitmaps(caching_ctl, path, extent_count);
1597 	else
1598 		ret = load_free_space_extents(caching_ctl, path, extent_count);
1599 
1600 out:
1601 	btrfs_free_path(path);
1602 	return ret;
1603 }
1604