xref: /openbmc/linux/fs/btrfs/free-space-tree.c (revision 4e1a33b1)
1 /*
2  * Copyright (C) 2015 Facebook.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/vmalloc.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "free-space-tree.h"
25 #include "transaction.h"
26 
27 static int __add_block_group_free_space(struct btrfs_trans_handle *trans,
28 					struct btrfs_fs_info *fs_info,
29 					struct btrfs_block_group_cache *block_group,
30 					struct btrfs_path *path);
31 
32 void set_free_space_tree_thresholds(struct btrfs_block_group_cache *cache)
33 {
34 	u32 bitmap_range;
35 	size_t bitmap_size;
36 	u64 num_bitmaps, total_bitmap_size;
37 
38 	/*
39 	 * We convert to bitmaps when the disk space required for using extents
40 	 * exceeds that required for using bitmaps.
41 	 */
42 	bitmap_range = cache->fs_info->sectorsize * BTRFS_FREE_SPACE_BITMAP_BITS;
43 	num_bitmaps = div_u64(cache->key.offset + bitmap_range - 1,
44 			      bitmap_range);
45 	bitmap_size = sizeof(struct btrfs_item) + BTRFS_FREE_SPACE_BITMAP_SIZE;
46 	total_bitmap_size = num_bitmaps * bitmap_size;
47 	cache->bitmap_high_thresh = div_u64(total_bitmap_size,
48 					    sizeof(struct btrfs_item));
49 
50 	/*
51 	 * We allow for a small buffer between the high threshold and low
52 	 * threshold to avoid thrashing back and forth between the two formats.
53 	 */
54 	if (cache->bitmap_high_thresh > 100)
55 		cache->bitmap_low_thresh = cache->bitmap_high_thresh - 100;
56 	else
57 		cache->bitmap_low_thresh = 0;
58 }
59 
60 static int add_new_free_space_info(struct btrfs_trans_handle *trans,
61 				   struct btrfs_fs_info *fs_info,
62 				   struct btrfs_block_group_cache *block_group,
63 				   struct btrfs_path *path)
64 {
65 	struct btrfs_root *root = fs_info->free_space_root;
66 	struct btrfs_free_space_info *info;
67 	struct btrfs_key key;
68 	struct extent_buffer *leaf;
69 	int ret;
70 
71 	key.objectid = block_group->key.objectid;
72 	key.type = BTRFS_FREE_SPACE_INFO_KEY;
73 	key.offset = block_group->key.offset;
74 
75 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*info));
76 	if (ret)
77 		goto out;
78 
79 	leaf = path->nodes[0];
80 	info = btrfs_item_ptr(leaf, path->slots[0],
81 			      struct btrfs_free_space_info);
82 	btrfs_set_free_space_extent_count(leaf, info, 0);
83 	btrfs_set_free_space_flags(leaf, info, 0);
84 	btrfs_mark_buffer_dirty(leaf);
85 
86 	ret = 0;
87 out:
88 	btrfs_release_path(path);
89 	return ret;
90 }
91 
92 struct btrfs_free_space_info *
93 search_free_space_info(struct btrfs_trans_handle *trans,
94 		       struct btrfs_fs_info *fs_info,
95 		       struct btrfs_block_group_cache *block_group,
96 		       struct btrfs_path *path, int cow)
97 {
98 	struct btrfs_root *root = fs_info->free_space_root;
99 	struct btrfs_key key;
100 	int ret;
101 
102 	key.objectid = block_group->key.objectid;
103 	key.type = BTRFS_FREE_SPACE_INFO_KEY;
104 	key.offset = block_group->key.offset;
105 
106 	ret = btrfs_search_slot(trans, root, &key, path, 0, cow);
107 	if (ret < 0)
108 		return ERR_PTR(ret);
109 	if (ret != 0) {
110 		btrfs_warn(fs_info, "missing free space info for %llu",
111 			   block_group->key.objectid);
112 		ASSERT(0);
113 		return ERR_PTR(-ENOENT);
114 	}
115 
116 	return btrfs_item_ptr(path->nodes[0], path->slots[0],
117 			      struct btrfs_free_space_info);
118 }
119 
120 /*
121  * btrfs_search_slot() but we're looking for the greatest key less than the
122  * passed key.
123  */
124 static int btrfs_search_prev_slot(struct btrfs_trans_handle *trans,
125 				  struct btrfs_root *root,
126 				  struct btrfs_key *key, struct btrfs_path *p,
127 				  int ins_len, int cow)
128 {
129 	int ret;
130 
131 	ret = btrfs_search_slot(trans, root, key, p, ins_len, cow);
132 	if (ret < 0)
133 		return ret;
134 
135 	if (ret == 0) {
136 		ASSERT(0);
137 		return -EIO;
138 	}
139 
140 	if (p->slots[0] == 0) {
141 		ASSERT(0);
142 		return -EIO;
143 	}
144 	p->slots[0]--;
145 
146 	return 0;
147 }
148 
149 static inline u32 free_space_bitmap_size(u64 size, u32 sectorsize)
150 {
151 	return DIV_ROUND_UP((u32)div_u64(size, sectorsize), BITS_PER_BYTE);
152 }
153 
154 static u8 *alloc_bitmap(u32 bitmap_size)
155 {
156 	void *mem;
157 
158 	/*
159 	 * The allocation size varies, observed numbers were < 4K up to 16K.
160 	 * Using vmalloc unconditionally would be too heavy, we'll try
161 	 * contiguous allocations first.
162 	 */
163 	if  (bitmap_size <= PAGE_SIZE)
164 		return kzalloc(bitmap_size, GFP_NOFS);
165 
166 	mem = kzalloc(bitmap_size, GFP_NOFS | __GFP_NOWARN);
167 	if (mem)
168 		return mem;
169 
170 	return __vmalloc(bitmap_size, GFP_NOFS | __GFP_HIGHMEM | __GFP_ZERO,
171 			 PAGE_KERNEL);
172 }
173 
174 int convert_free_space_to_bitmaps(struct btrfs_trans_handle *trans,
175 				  struct btrfs_fs_info *fs_info,
176 				  struct btrfs_block_group_cache *block_group,
177 				  struct btrfs_path *path)
178 {
179 	struct btrfs_root *root = fs_info->free_space_root;
180 	struct btrfs_free_space_info *info;
181 	struct btrfs_key key, found_key;
182 	struct extent_buffer *leaf;
183 	u8 *bitmap, *bitmap_cursor;
184 	u64 start, end;
185 	u64 bitmap_range, i;
186 	u32 bitmap_size, flags, expected_extent_count;
187 	u32 extent_count = 0;
188 	int done = 0, nr;
189 	int ret;
190 
191 	bitmap_size = free_space_bitmap_size(block_group->key.offset,
192 					     fs_info->sectorsize);
193 	bitmap = alloc_bitmap(bitmap_size);
194 	if (!bitmap) {
195 		ret = -ENOMEM;
196 		goto out;
197 	}
198 
199 	start = block_group->key.objectid;
200 	end = block_group->key.objectid + block_group->key.offset;
201 
202 	key.objectid = end - 1;
203 	key.type = (u8)-1;
204 	key.offset = (u64)-1;
205 
206 	while (!done) {
207 		ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
208 		if (ret)
209 			goto out;
210 
211 		leaf = path->nodes[0];
212 		nr = 0;
213 		path->slots[0]++;
214 		while (path->slots[0] > 0) {
215 			btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1);
216 
217 			if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) {
218 				ASSERT(found_key.objectid == block_group->key.objectid);
219 				ASSERT(found_key.offset == block_group->key.offset);
220 				done = 1;
221 				break;
222 			} else if (found_key.type == BTRFS_FREE_SPACE_EXTENT_KEY) {
223 				u64 first, last;
224 
225 				ASSERT(found_key.objectid >= start);
226 				ASSERT(found_key.objectid < end);
227 				ASSERT(found_key.objectid + found_key.offset <= end);
228 
229 				first = div_u64(found_key.objectid - start,
230 						fs_info->sectorsize);
231 				last = div_u64(found_key.objectid + found_key.offset - start,
232 					       fs_info->sectorsize);
233 				le_bitmap_set(bitmap, first, last - first);
234 
235 				extent_count++;
236 				nr++;
237 				path->slots[0]--;
238 			} else {
239 				ASSERT(0);
240 			}
241 		}
242 
243 		ret = btrfs_del_items(trans, root, path, path->slots[0], nr);
244 		if (ret)
245 			goto out;
246 		btrfs_release_path(path);
247 	}
248 
249 	info = search_free_space_info(trans, fs_info, block_group, path, 1);
250 	if (IS_ERR(info)) {
251 		ret = PTR_ERR(info);
252 		goto out;
253 	}
254 	leaf = path->nodes[0];
255 	flags = btrfs_free_space_flags(leaf, info);
256 	flags |= BTRFS_FREE_SPACE_USING_BITMAPS;
257 	btrfs_set_free_space_flags(leaf, info, flags);
258 	expected_extent_count = btrfs_free_space_extent_count(leaf, info);
259 	btrfs_mark_buffer_dirty(leaf);
260 	btrfs_release_path(path);
261 
262 	if (extent_count != expected_extent_count) {
263 		btrfs_err(fs_info,
264 			  "incorrect extent count for %llu; counted %u, expected %u",
265 			  block_group->key.objectid, extent_count,
266 			  expected_extent_count);
267 		ASSERT(0);
268 		ret = -EIO;
269 		goto out;
270 	}
271 
272 	bitmap_cursor = bitmap;
273 	bitmap_range = fs_info->sectorsize * BTRFS_FREE_SPACE_BITMAP_BITS;
274 	i = start;
275 	while (i < end) {
276 		unsigned long ptr;
277 		u64 extent_size;
278 		u32 data_size;
279 
280 		extent_size = min(end - i, bitmap_range);
281 		data_size = free_space_bitmap_size(extent_size,
282 						   fs_info->sectorsize);
283 
284 		key.objectid = i;
285 		key.type = BTRFS_FREE_SPACE_BITMAP_KEY;
286 		key.offset = extent_size;
287 
288 		ret = btrfs_insert_empty_item(trans, root, path, &key,
289 					      data_size);
290 		if (ret)
291 			goto out;
292 
293 		leaf = path->nodes[0];
294 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
295 		write_extent_buffer(leaf, bitmap_cursor, ptr,
296 				    data_size);
297 		btrfs_mark_buffer_dirty(leaf);
298 		btrfs_release_path(path);
299 
300 		i += extent_size;
301 		bitmap_cursor += data_size;
302 	}
303 
304 	ret = 0;
305 out:
306 	kvfree(bitmap);
307 	if (ret)
308 		btrfs_abort_transaction(trans, ret);
309 	return ret;
310 }
311 
312 int convert_free_space_to_extents(struct btrfs_trans_handle *trans,
313 				  struct btrfs_fs_info *fs_info,
314 				  struct btrfs_block_group_cache *block_group,
315 				  struct btrfs_path *path)
316 {
317 	struct btrfs_root *root = fs_info->free_space_root;
318 	struct btrfs_free_space_info *info;
319 	struct btrfs_key key, found_key;
320 	struct extent_buffer *leaf;
321 	u8 *bitmap;
322 	u64 start, end;
323 	/* Initialize to silence GCC. */
324 	u64 extent_start = 0;
325 	u64 offset;
326 	u32 bitmap_size, flags, expected_extent_count;
327 	int prev_bit = 0, bit, bitnr;
328 	u32 extent_count = 0;
329 	int done = 0, nr;
330 	int ret;
331 
332 	bitmap_size = free_space_bitmap_size(block_group->key.offset,
333 					     fs_info->sectorsize);
334 	bitmap = alloc_bitmap(bitmap_size);
335 	if (!bitmap) {
336 		ret = -ENOMEM;
337 		goto out;
338 	}
339 
340 	start = block_group->key.objectid;
341 	end = block_group->key.objectid + block_group->key.offset;
342 
343 	key.objectid = end - 1;
344 	key.type = (u8)-1;
345 	key.offset = (u64)-1;
346 
347 	while (!done) {
348 		ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
349 		if (ret)
350 			goto out;
351 
352 		leaf = path->nodes[0];
353 		nr = 0;
354 		path->slots[0]++;
355 		while (path->slots[0] > 0) {
356 			btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1);
357 
358 			if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) {
359 				ASSERT(found_key.objectid == block_group->key.objectid);
360 				ASSERT(found_key.offset == block_group->key.offset);
361 				done = 1;
362 				break;
363 			} else if (found_key.type == BTRFS_FREE_SPACE_BITMAP_KEY) {
364 				unsigned long ptr;
365 				u8 *bitmap_cursor;
366 				u32 bitmap_pos, data_size;
367 
368 				ASSERT(found_key.objectid >= start);
369 				ASSERT(found_key.objectid < end);
370 				ASSERT(found_key.objectid + found_key.offset <= end);
371 
372 				bitmap_pos = div_u64(found_key.objectid - start,
373 						     fs_info->sectorsize *
374 						     BITS_PER_BYTE);
375 				bitmap_cursor = bitmap + bitmap_pos;
376 				data_size = free_space_bitmap_size(found_key.offset,
377 								   fs_info->sectorsize);
378 
379 				ptr = btrfs_item_ptr_offset(leaf, path->slots[0] - 1);
380 				read_extent_buffer(leaf, bitmap_cursor, ptr,
381 						   data_size);
382 
383 				nr++;
384 				path->slots[0]--;
385 			} else {
386 				ASSERT(0);
387 			}
388 		}
389 
390 		ret = btrfs_del_items(trans, root, path, path->slots[0], nr);
391 		if (ret)
392 			goto out;
393 		btrfs_release_path(path);
394 	}
395 
396 	info = search_free_space_info(trans, fs_info, block_group, path, 1);
397 	if (IS_ERR(info)) {
398 		ret = PTR_ERR(info);
399 		goto out;
400 	}
401 	leaf = path->nodes[0];
402 	flags = btrfs_free_space_flags(leaf, info);
403 	flags &= ~BTRFS_FREE_SPACE_USING_BITMAPS;
404 	btrfs_set_free_space_flags(leaf, info, flags);
405 	expected_extent_count = btrfs_free_space_extent_count(leaf, info);
406 	btrfs_mark_buffer_dirty(leaf);
407 	btrfs_release_path(path);
408 
409 	offset = start;
410 	bitnr = 0;
411 	while (offset < end) {
412 		bit = !!le_test_bit(bitnr, bitmap);
413 		if (prev_bit == 0 && bit == 1) {
414 			extent_start = offset;
415 		} else if (prev_bit == 1 && bit == 0) {
416 			key.objectid = extent_start;
417 			key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
418 			key.offset = offset - extent_start;
419 
420 			ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
421 			if (ret)
422 				goto out;
423 			btrfs_release_path(path);
424 
425 			extent_count++;
426 		}
427 		prev_bit = bit;
428 		offset += fs_info->sectorsize;
429 		bitnr++;
430 	}
431 	if (prev_bit == 1) {
432 		key.objectid = extent_start;
433 		key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
434 		key.offset = end - extent_start;
435 
436 		ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
437 		if (ret)
438 			goto out;
439 		btrfs_release_path(path);
440 
441 		extent_count++;
442 	}
443 
444 	if (extent_count != expected_extent_count) {
445 		btrfs_err(fs_info,
446 			  "incorrect extent count for %llu; counted %u, expected %u",
447 			  block_group->key.objectid, extent_count,
448 			  expected_extent_count);
449 		ASSERT(0);
450 		ret = -EIO;
451 		goto out;
452 	}
453 
454 	ret = 0;
455 out:
456 	kvfree(bitmap);
457 	if (ret)
458 		btrfs_abort_transaction(trans, ret);
459 	return ret;
460 }
461 
462 static int update_free_space_extent_count(struct btrfs_trans_handle *trans,
463 					  struct btrfs_fs_info *fs_info,
464 					  struct btrfs_block_group_cache *block_group,
465 					  struct btrfs_path *path,
466 					  int new_extents)
467 {
468 	struct btrfs_free_space_info *info;
469 	u32 flags;
470 	u32 extent_count;
471 	int ret = 0;
472 
473 	if (new_extents == 0)
474 		return 0;
475 
476 	info = search_free_space_info(trans, fs_info, block_group, path, 1);
477 	if (IS_ERR(info)) {
478 		ret = PTR_ERR(info);
479 		goto out;
480 	}
481 	flags = btrfs_free_space_flags(path->nodes[0], info);
482 	extent_count = btrfs_free_space_extent_count(path->nodes[0], info);
483 
484 	extent_count += new_extents;
485 	btrfs_set_free_space_extent_count(path->nodes[0], info, extent_count);
486 	btrfs_mark_buffer_dirty(path->nodes[0]);
487 	btrfs_release_path(path);
488 
489 	if (!(flags & BTRFS_FREE_SPACE_USING_BITMAPS) &&
490 	    extent_count > block_group->bitmap_high_thresh) {
491 		ret = convert_free_space_to_bitmaps(trans, fs_info, block_group,
492 						    path);
493 	} else if ((flags & BTRFS_FREE_SPACE_USING_BITMAPS) &&
494 		   extent_count < block_group->bitmap_low_thresh) {
495 		ret = convert_free_space_to_extents(trans, fs_info, block_group,
496 						    path);
497 	}
498 
499 out:
500 	return ret;
501 }
502 
503 int free_space_test_bit(struct btrfs_block_group_cache *block_group,
504 			struct btrfs_path *path, u64 offset)
505 {
506 	struct extent_buffer *leaf;
507 	struct btrfs_key key;
508 	u64 found_start, found_end;
509 	unsigned long ptr, i;
510 
511 	leaf = path->nodes[0];
512 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
513 	ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY);
514 
515 	found_start = key.objectid;
516 	found_end = key.objectid + key.offset;
517 	ASSERT(offset >= found_start && offset < found_end);
518 
519 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
520 	i = div_u64(offset - found_start,
521 		    block_group->fs_info->sectorsize);
522 	return !!extent_buffer_test_bit(leaf, ptr, i);
523 }
524 
525 static void free_space_set_bits(struct btrfs_block_group_cache *block_group,
526 				struct btrfs_path *path, u64 *start, u64 *size,
527 				int bit)
528 {
529 	struct btrfs_fs_info *fs_info = block_group->fs_info;
530 	struct extent_buffer *leaf;
531 	struct btrfs_key key;
532 	u64 end = *start + *size;
533 	u64 found_start, found_end;
534 	unsigned long ptr, first, last;
535 
536 	leaf = path->nodes[0];
537 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
538 	ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY);
539 
540 	found_start = key.objectid;
541 	found_end = key.objectid + key.offset;
542 	ASSERT(*start >= found_start && *start < found_end);
543 	ASSERT(end > found_start);
544 
545 	if (end > found_end)
546 		end = found_end;
547 
548 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
549 	first = div_u64(*start - found_start, fs_info->sectorsize);
550 	last = div_u64(end - found_start, fs_info->sectorsize);
551 	if (bit)
552 		extent_buffer_bitmap_set(leaf, ptr, first, last - first);
553 	else
554 		extent_buffer_bitmap_clear(leaf, ptr, first, last - first);
555 	btrfs_mark_buffer_dirty(leaf);
556 
557 	*size -= end - *start;
558 	*start = end;
559 }
560 
561 /*
562  * We can't use btrfs_next_item() in modify_free_space_bitmap() because
563  * btrfs_next_leaf() doesn't get the path for writing. We can forgo the fancy
564  * tree walking in btrfs_next_leaf() anyways because we know exactly what we're
565  * looking for.
566  */
567 static int free_space_next_bitmap(struct btrfs_trans_handle *trans,
568 				  struct btrfs_root *root, struct btrfs_path *p)
569 {
570 	struct btrfs_key key;
571 
572 	if (p->slots[0] + 1 < btrfs_header_nritems(p->nodes[0])) {
573 		p->slots[0]++;
574 		return 0;
575 	}
576 
577 	btrfs_item_key_to_cpu(p->nodes[0], &key, p->slots[0]);
578 	btrfs_release_path(p);
579 
580 	key.objectid += key.offset;
581 	key.type = (u8)-1;
582 	key.offset = (u64)-1;
583 
584 	return btrfs_search_prev_slot(trans, root, &key, p, 0, 1);
585 }
586 
587 /*
588  * If remove is 1, then we are removing free space, thus clearing bits in the
589  * bitmap. If remove is 0, then we are adding free space, thus setting bits in
590  * the bitmap.
591  */
592 static int modify_free_space_bitmap(struct btrfs_trans_handle *trans,
593 				    struct btrfs_fs_info *fs_info,
594 				    struct btrfs_block_group_cache *block_group,
595 				    struct btrfs_path *path,
596 				    u64 start, u64 size, int remove)
597 {
598 	struct btrfs_root *root = fs_info->free_space_root;
599 	struct btrfs_key key;
600 	u64 end = start + size;
601 	u64 cur_start, cur_size;
602 	int prev_bit, next_bit;
603 	int new_extents;
604 	int ret;
605 
606 	/*
607 	 * Read the bit for the block immediately before the extent of space if
608 	 * that block is within the block group.
609 	 */
610 	if (start > block_group->key.objectid) {
611 		u64 prev_block = start - block_group->fs_info->sectorsize;
612 
613 		key.objectid = prev_block;
614 		key.type = (u8)-1;
615 		key.offset = (u64)-1;
616 
617 		ret = btrfs_search_prev_slot(trans, root, &key, path, 0, 1);
618 		if (ret)
619 			goto out;
620 
621 		prev_bit = free_space_test_bit(block_group, path, prev_block);
622 
623 		/* The previous block may have been in the previous bitmap. */
624 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
625 		if (start >= key.objectid + key.offset) {
626 			ret = free_space_next_bitmap(trans, root, path);
627 			if (ret)
628 				goto out;
629 		}
630 	} else {
631 		key.objectid = start;
632 		key.type = (u8)-1;
633 		key.offset = (u64)-1;
634 
635 		ret = btrfs_search_prev_slot(trans, root, &key, path, 0, 1);
636 		if (ret)
637 			goto out;
638 
639 		prev_bit = -1;
640 	}
641 
642 	/*
643 	 * Iterate over all of the bitmaps overlapped by the extent of space,
644 	 * clearing/setting bits as required.
645 	 */
646 	cur_start = start;
647 	cur_size = size;
648 	while (1) {
649 		free_space_set_bits(block_group, path, &cur_start, &cur_size,
650 				    !remove);
651 		if (cur_size == 0)
652 			break;
653 		ret = free_space_next_bitmap(trans, root, path);
654 		if (ret)
655 			goto out;
656 	}
657 
658 	/*
659 	 * Read the bit for the block immediately after the extent of space if
660 	 * that block is within the block group.
661 	 */
662 	if (end < block_group->key.objectid + block_group->key.offset) {
663 		/* The next block may be in the next bitmap. */
664 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
665 		if (end >= key.objectid + key.offset) {
666 			ret = free_space_next_bitmap(trans, root, path);
667 			if (ret)
668 				goto out;
669 		}
670 
671 		next_bit = free_space_test_bit(block_group, path, end);
672 	} else {
673 		next_bit = -1;
674 	}
675 
676 	if (remove) {
677 		new_extents = -1;
678 		if (prev_bit == 1) {
679 			/* Leftover on the left. */
680 			new_extents++;
681 		}
682 		if (next_bit == 1) {
683 			/* Leftover on the right. */
684 			new_extents++;
685 		}
686 	} else {
687 		new_extents = 1;
688 		if (prev_bit == 1) {
689 			/* Merging with neighbor on the left. */
690 			new_extents--;
691 		}
692 		if (next_bit == 1) {
693 			/* Merging with neighbor on the right. */
694 			new_extents--;
695 		}
696 	}
697 
698 	btrfs_release_path(path);
699 	ret = update_free_space_extent_count(trans, fs_info, block_group, path,
700 					     new_extents);
701 
702 out:
703 	return ret;
704 }
705 
706 static int remove_free_space_extent(struct btrfs_trans_handle *trans,
707 				    struct btrfs_fs_info *fs_info,
708 				    struct btrfs_block_group_cache *block_group,
709 				    struct btrfs_path *path,
710 				    u64 start, u64 size)
711 {
712 	struct btrfs_root *root = fs_info->free_space_root;
713 	struct btrfs_key key;
714 	u64 found_start, found_end;
715 	u64 end = start + size;
716 	int new_extents = -1;
717 	int ret;
718 
719 	key.objectid = start;
720 	key.type = (u8)-1;
721 	key.offset = (u64)-1;
722 
723 	ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
724 	if (ret)
725 		goto out;
726 
727 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
728 
729 	ASSERT(key.type == BTRFS_FREE_SPACE_EXTENT_KEY);
730 
731 	found_start = key.objectid;
732 	found_end = key.objectid + key.offset;
733 	ASSERT(start >= found_start && end <= found_end);
734 
735 	/*
736 	 * Okay, now that we've found the free space extent which contains the
737 	 * free space that we are removing, there are four cases:
738 	 *
739 	 * 1. We're using the whole extent: delete the key we found and
740 	 * decrement the free space extent count.
741 	 * 2. We are using part of the extent starting at the beginning: delete
742 	 * the key we found and insert a new key representing the leftover at
743 	 * the end. There is no net change in the number of extents.
744 	 * 3. We are using part of the extent ending at the end: delete the key
745 	 * we found and insert a new key representing the leftover at the
746 	 * beginning. There is no net change in the number of extents.
747 	 * 4. We are using part of the extent in the middle: delete the key we
748 	 * found and insert two new keys representing the leftovers on each
749 	 * side. Where we used to have one extent, we now have two, so increment
750 	 * the extent count. We may need to convert the block group to bitmaps
751 	 * as a result.
752 	 */
753 
754 	/* Delete the existing key (cases 1-4). */
755 	ret = btrfs_del_item(trans, root, path);
756 	if (ret)
757 		goto out;
758 
759 	/* Add a key for leftovers at the beginning (cases 3 and 4). */
760 	if (start > found_start) {
761 		key.objectid = found_start;
762 		key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
763 		key.offset = start - found_start;
764 
765 		btrfs_release_path(path);
766 		ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
767 		if (ret)
768 			goto out;
769 		new_extents++;
770 	}
771 
772 	/* Add a key for leftovers at the end (cases 2 and 4). */
773 	if (end < found_end) {
774 		key.objectid = end;
775 		key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
776 		key.offset = found_end - end;
777 
778 		btrfs_release_path(path);
779 		ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
780 		if (ret)
781 			goto out;
782 		new_extents++;
783 	}
784 
785 	btrfs_release_path(path);
786 	ret = update_free_space_extent_count(trans, fs_info, block_group, path,
787 					     new_extents);
788 
789 out:
790 	return ret;
791 }
792 
793 int __remove_from_free_space_tree(struct btrfs_trans_handle *trans,
794 				  struct btrfs_fs_info *fs_info,
795 				  struct btrfs_block_group_cache *block_group,
796 				  struct btrfs_path *path, u64 start, u64 size)
797 {
798 	struct btrfs_free_space_info *info;
799 	u32 flags;
800 	int ret;
801 
802 	if (block_group->needs_free_space) {
803 		ret = __add_block_group_free_space(trans, fs_info, block_group,
804 						   path);
805 		if (ret)
806 			return ret;
807 	}
808 
809 	info = search_free_space_info(NULL, fs_info, block_group, path, 0);
810 	if (IS_ERR(info))
811 		return PTR_ERR(info);
812 	flags = btrfs_free_space_flags(path->nodes[0], info);
813 	btrfs_release_path(path);
814 
815 	if (flags & BTRFS_FREE_SPACE_USING_BITMAPS) {
816 		return modify_free_space_bitmap(trans, fs_info, block_group,
817 						path, start, size, 1);
818 	} else {
819 		return remove_free_space_extent(trans, fs_info, block_group,
820 						path, start, size);
821 	}
822 }
823 
824 int remove_from_free_space_tree(struct btrfs_trans_handle *trans,
825 				struct btrfs_fs_info *fs_info,
826 				u64 start, u64 size)
827 {
828 	struct btrfs_block_group_cache *block_group;
829 	struct btrfs_path *path;
830 	int ret;
831 
832 	if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
833 		return 0;
834 
835 	path = btrfs_alloc_path();
836 	if (!path) {
837 		ret = -ENOMEM;
838 		goto out;
839 	}
840 
841 	block_group = btrfs_lookup_block_group(fs_info, start);
842 	if (!block_group) {
843 		ASSERT(0);
844 		ret = -ENOENT;
845 		goto out;
846 	}
847 
848 	mutex_lock(&block_group->free_space_lock);
849 	ret = __remove_from_free_space_tree(trans, fs_info, block_group, path,
850 					    start, size);
851 	mutex_unlock(&block_group->free_space_lock);
852 
853 	btrfs_put_block_group(block_group);
854 out:
855 	btrfs_free_path(path);
856 	if (ret)
857 		btrfs_abort_transaction(trans, ret);
858 	return ret;
859 }
860 
861 static int add_free_space_extent(struct btrfs_trans_handle *trans,
862 				 struct btrfs_fs_info *fs_info,
863 				 struct btrfs_block_group_cache *block_group,
864 				 struct btrfs_path *path,
865 				 u64 start, u64 size)
866 {
867 	struct btrfs_root *root = fs_info->free_space_root;
868 	struct btrfs_key key, new_key;
869 	u64 found_start, found_end;
870 	u64 end = start + size;
871 	int new_extents = 1;
872 	int ret;
873 
874 	/*
875 	 * We are adding a new extent of free space, but we need to merge
876 	 * extents. There are four cases here:
877 	 *
878 	 * 1. The new extent does not have any immediate neighbors to merge
879 	 * with: add the new key and increment the free space extent count. We
880 	 * may need to convert the block group to bitmaps as a result.
881 	 * 2. The new extent has an immediate neighbor before it: remove the
882 	 * previous key and insert a new key combining both of them. There is no
883 	 * net change in the number of extents.
884 	 * 3. The new extent has an immediate neighbor after it: remove the next
885 	 * key and insert a new key combining both of them. There is no net
886 	 * change in the number of extents.
887 	 * 4. The new extent has immediate neighbors on both sides: remove both
888 	 * of the keys and insert a new key combining all of them. Where we used
889 	 * to have two extents, we now have one, so decrement the extent count.
890 	 */
891 
892 	new_key.objectid = start;
893 	new_key.type = BTRFS_FREE_SPACE_EXTENT_KEY;
894 	new_key.offset = size;
895 
896 	/* Search for a neighbor on the left. */
897 	if (start == block_group->key.objectid)
898 		goto right;
899 	key.objectid = start - 1;
900 	key.type = (u8)-1;
901 	key.offset = (u64)-1;
902 
903 	ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
904 	if (ret)
905 		goto out;
906 
907 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
908 
909 	if (key.type != BTRFS_FREE_SPACE_EXTENT_KEY) {
910 		ASSERT(key.type == BTRFS_FREE_SPACE_INFO_KEY);
911 		btrfs_release_path(path);
912 		goto right;
913 	}
914 
915 	found_start = key.objectid;
916 	found_end = key.objectid + key.offset;
917 	ASSERT(found_start >= block_group->key.objectid &&
918 	       found_end > block_group->key.objectid);
919 	ASSERT(found_start < start && found_end <= start);
920 
921 	/*
922 	 * Delete the neighbor on the left and absorb it into the new key (cases
923 	 * 2 and 4).
924 	 */
925 	if (found_end == start) {
926 		ret = btrfs_del_item(trans, root, path);
927 		if (ret)
928 			goto out;
929 		new_key.objectid = found_start;
930 		new_key.offset += key.offset;
931 		new_extents--;
932 	}
933 	btrfs_release_path(path);
934 
935 right:
936 	/* Search for a neighbor on the right. */
937 	if (end == block_group->key.objectid + block_group->key.offset)
938 		goto insert;
939 	key.objectid = end;
940 	key.type = (u8)-1;
941 	key.offset = (u64)-1;
942 
943 	ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
944 	if (ret)
945 		goto out;
946 
947 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
948 
949 	if (key.type != BTRFS_FREE_SPACE_EXTENT_KEY) {
950 		ASSERT(key.type == BTRFS_FREE_SPACE_INFO_KEY);
951 		btrfs_release_path(path);
952 		goto insert;
953 	}
954 
955 	found_start = key.objectid;
956 	found_end = key.objectid + key.offset;
957 	ASSERT(found_start >= block_group->key.objectid &&
958 	       found_end > block_group->key.objectid);
959 	ASSERT((found_start < start && found_end <= start) ||
960 	       (found_start >= end && found_end > end));
961 
962 	/*
963 	 * Delete the neighbor on the right and absorb it into the new key
964 	 * (cases 3 and 4).
965 	 */
966 	if (found_start == end) {
967 		ret = btrfs_del_item(trans, root, path);
968 		if (ret)
969 			goto out;
970 		new_key.offset += key.offset;
971 		new_extents--;
972 	}
973 	btrfs_release_path(path);
974 
975 insert:
976 	/* Insert the new key (cases 1-4). */
977 	ret = btrfs_insert_empty_item(trans, root, path, &new_key, 0);
978 	if (ret)
979 		goto out;
980 
981 	btrfs_release_path(path);
982 	ret = update_free_space_extent_count(trans, fs_info, block_group, path,
983 					     new_extents);
984 
985 out:
986 	return ret;
987 }
988 
989 int __add_to_free_space_tree(struct btrfs_trans_handle *trans,
990 			     struct btrfs_fs_info *fs_info,
991 			     struct btrfs_block_group_cache *block_group,
992 			     struct btrfs_path *path, u64 start, u64 size)
993 {
994 	struct btrfs_free_space_info *info;
995 	u32 flags;
996 	int ret;
997 
998 	if (block_group->needs_free_space) {
999 		ret = __add_block_group_free_space(trans, fs_info, block_group,
1000 						   path);
1001 		if (ret)
1002 			return ret;
1003 	}
1004 
1005 	info = search_free_space_info(NULL, fs_info, block_group, path, 0);
1006 	if (IS_ERR(info))
1007 		return PTR_ERR(info);
1008 	flags = btrfs_free_space_flags(path->nodes[0], info);
1009 	btrfs_release_path(path);
1010 
1011 	if (flags & BTRFS_FREE_SPACE_USING_BITMAPS) {
1012 		return modify_free_space_bitmap(trans, fs_info, block_group,
1013 						path, start, size, 0);
1014 	} else {
1015 		return add_free_space_extent(trans, fs_info, block_group, path,
1016 					     start, size);
1017 	}
1018 }
1019 
1020 int add_to_free_space_tree(struct btrfs_trans_handle *trans,
1021 			   struct btrfs_fs_info *fs_info,
1022 			   u64 start, u64 size)
1023 {
1024 	struct btrfs_block_group_cache *block_group;
1025 	struct btrfs_path *path;
1026 	int ret;
1027 
1028 	if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
1029 		return 0;
1030 
1031 	path = btrfs_alloc_path();
1032 	if (!path) {
1033 		ret = -ENOMEM;
1034 		goto out;
1035 	}
1036 
1037 	block_group = btrfs_lookup_block_group(fs_info, start);
1038 	if (!block_group) {
1039 		ASSERT(0);
1040 		ret = -ENOENT;
1041 		goto out;
1042 	}
1043 
1044 	mutex_lock(&block_group->free_space_lock);
1045 	ret = __add_to_free_space_tree(trans, fs_info, block_group, path, start,
1046 				       size);
1047 	mutex_unlock(&block_group->free_space_lock);
1048 
1049 	btrfs_put_block_group(block_group);
1050 out:
1051 	btrfs_free_path(path);
1052 	if (ret)
1053 		btrfs_abort_transaction(trans, ret);
1054 	return ret;
1055 }
1056 
1057 /*
1058  * Populate the free space tree by walking the extent tree. Operations on the
1059  * extent tree that happen as a result of writes to the free space tree will go
1060  * through the normal add/remove hooks.
1061  */
1062 static int populate_free_space_tree(struct btrfs_trans_handle *trans,
1063 				    struct btrfs_fs_info *fs_info,
1064 				    struct btrfs_block_group_cache *block_group)
1065 {
1066 	struct btrfs_root *extent_root = fs_info->extent_root;
1067 	struct btrfs_path *path, *path2;
1068 	struct btrfs_key key;
1069 	u64 start, end;
1070 	int ret;
1071 
1072 	path = btrfs_alloc_path();
1073 	if (!path)
1074 		return -ENOMEM;
1075 	path->reada = 1;
1076 
1077 	path2 = btrfs_alloc_path();
1078 	if (!path2) {
1079 		btrfs_free_path(path);
1080 		return -ENOMEM;
1081 	}
1082 
1083 	ret = add_new_free_space_info(trans, fs_info, block_group, path2);
1084 	if (ret)
1085 		goto out;
1086 
1087 	mutex_lock(&block_group->free_space_lock);
1088 
1089 	/*
1090 	 * Iterate through all of the extent and metadata items in this block
1091 	 * group, adding the free space between them and the free space at the
1092 	 * end. Note that EXTENT_ITEM and METADATA_ITEM are less than
1093 	 * BLOCK_GROUP_ITEM, so an extent may precede the block group that it's
1094 	 * contained in.
1095 	 */
1096 	key.objectid = block_group->key.objectid;
1097 	key.type = BTRFS_EXTENT_ITEM_KEY;
1098 	key.offset = 0;
1099 
1100 	ret = btrfs_search_slot_for_read(extent_root, &key, path, 1, 0);
1101 	if (ret < 0)
1102 		goto out_locked;
1103 	ASSERT(ret == 0);
1104 
1105 	start = block_group->key.objectid;
1106 	end = block_group->key.objectid + block_group->key.offset;
1107 	while (1) {
1108 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1109 
1110 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
1111 		    key.type == BTRFS_METADATA_ITEM_KEY) {
1112 			if (key.objectid >= end)
1113 				break;
1114 
1115 			if (start < key.objectid) {
1116 				ret = __add_to_free_space_tree(trans, fs_info,
1117 							       block_group,
1118 							       path2, start,
1119 							       key.objectid -
1120 							       start);
1121 				if (ret)
1122 					goto out_locked;
1123 			}
1124 			start = key.objectid;
1125 			if (key.type == BTRFS_METADATA_ITEM_KEY)
1126 				start += fs_info->nodesize;
1127 			else
1128 				start += key.offset;
1129 		} else if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1130 			if (key.objectid != block_group->key.objectid)
1131 				break;
1132 		}
1133 
1134 		ret = btrfs_next_item(extent_root, path);
1135 		if (ret < 0)
1136 			goto out_locked;
1137 		if (ret)
1138 			break;
1139 	}
1140 	if (start < end) {
1141 		ret = __add_to_free_space_tree(trans, fs_info, block_group,
1142 					       path2, start, end - start);
1143 		if (ret)
1144 			goto out_locked;
1145 	}
1146 
1147 	ret = 0;
1148 out_locked:
1149 	mutex_unlock(&block_group->free_space_lock);
1150 out:
1151 	btrfs_free_path(path2);
1152 	btrfs_free_path(path);
1153 	return ret;
1154 }
1155 
1156 int btrfs_create_free_space_tree(struct btrfs_fs_info *fs_info)
1157 {
1158 	struct btrfs_trans_handle *trans;
1159 	struct btrfs_root *tree_root = fs_info->tree_root;
1160 	struct btrfs_root *free_space_root;
1161 	struct btrfs_block_group_cache *block_group;
1162 	struct rb_node *node;
1163 	int ret;
1164 
1165 	trans = btrfs_start_transaction(tree_root, 0);
1166 	if (IS_ERR(trans))
1167 		return PTR_ERR(trans);
1168 
1169 	set_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags);
1170 	free_space_root = btrfs_create_tree(trans, fs_info,
1171 					    BTRFS_FREE_SPACE_TREE_OBJECTID);
1172 	if (IS_ERR(free_space_root)) {
1173 		ret = PTR_ERR(free_space_root);
1174 		goto abort;
1175 	}
1176 	fs_info->free_space_root = free_space_root;
1177 
1178 	node = rb_first(&fs_info->block_group_cache_tree);
1179 	while (node) {
1180 		block_group = rb_entry(node, struct btrfs_block_group_cache,
1181 				       cache_node);
1182 		ret = populate_free_space_tree(trans, fs_info, block_group);
1183 		if (ret)
1184 			goto abort;
1185 		node = rb_next(node);
1186 	}
1187 
1188 	btrfs_set_fs_compat_ro(fs_info, FREE_SPACE_TREE);
1189 	btrfs_set_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID);
1190 	clear_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags);
1191 
1192 	ret = btrfs_commit_transaction(trans);
1193 	if (ret)
1194 		return ret;
1195 
1196 	return 0;
1197 
1198 abort:
1199 	clear_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags);
1200 	btrfs_abort_transaction(trans, ret);
1201 	btrfs_end_transaction(trans);
1202 	return ret;
1203 }
1204 
1205 static int clear_free_space_tree(struct btrfs_trans_handle *trans,
1206 				 struct btrfs_root *root)
1207 {
1208 	struct btrfs_path *path;
1209 	struct btrfs_key key;
1210 	int nr;
1211 	int ret;
1212 
1213 	path = btrfs_alloc_path();
1214 	if (!path)
1215 		return -ENOMEM;
1216 
1217 	path->leave_spinning = 1;
1218 
1219 	key.objectid = 0;
1220 	key.type = 0;
1221 	key.offset = 0;
1222 
1223 	while (1) {
1224 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1225 		if (ret < 0)
1226 			goto out;
1227 
1228 		nr = btrfs_header_nritems(path->nodes[0]);
1229 		if (!nr)
1230 			break;
1231 
1232 		path->slots[0] = 0;
1233 		ret = btrfs_del_items(trans, root, path, 0, nr);
1234 		if (ret)
1235 			goto out;
1236 
1237 		btrfs_release_path(path);
1238 	}
1239 
1240 	ret = 0;
1241 out:
1242 	btrfs_free_path(path);
1243 	return ret;
1244 }
1245 
1246 int btrfs_clear_free_space_tree(struct btrfs_fs_info *fs_info)
1247 {
1248 	struct btrfs_trans_handle *trans;
1249 	struct btrfs_root *tree_root = fs_info->tree_root;
1250 	struct btrfs_root *free_space_root = fs_info->free_space_root;
1251 	int ret;
1252 
1253 	trans = btrfs_start_transaction(tree_root, 0);
1254 	if (IS_ERR(trans))
1255 		return PTR_ERR(trans);
1256 
1257 	btrfs_clear_fs_compat_ro(fs_info, FREE_SPACE_TREE);
1258 	btrfs_clear_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID);
1259 	fs_info->free_space_root = NULL;
1260 
1261 	ret = clear_free_space_tree(trans, free_space_root);
1262 	if (ret)
1263 		goto abort;
1264 
1265 	ret = btrfs_del_root(trans, tree_root, &free_space_root->root_key);
1266 	if (ret)
1267 		goto abort;
1268 
1269 	list_del(&free_space_root->dirty_list);
1270 
1271 	btrfs_tree_lock(free_space_root->node);
1272 	clean_tree_block(trans, fs_info, free_space_root->node);
1273 	btrfs_tree_unlock(free_space_root->node);
1274 	btrfs_free_tree_block(trans, free_space_root, free_space_root->node,
1275 			      0, 1);
1276 
1277 	free_extent_buffer(free_space_root->node);
1278 	free_extent_buffer(free_space_root->commit_root);
1279 	kfree(free_space_root);
1280 
1281 	ret = btrfs_commit_transaction(trans);
1282 	if (ret)
1283 		return ret;
1284 
1285 	return 0;
1286 
1287 abort:
1288 	btrfs_abort_transaction(trans, ret);
1289 	btrfs_end_transaction(trans);
1290 	return ret;
1291 }
1292 
1293 static int __add_block_group_free_space(struct btrfs_trans_handle *trans,
1294 					struct btrfs_fs_info *fs_info,
1295 					struct btrfs_block_group_cache *block_group,
1296 					struct btrfs_path *path)
1297 {
1298 	u64 start, end;
1299 	int ret;
1300 
1301 	start = block_group->key.objectid;
1302 	end = block_group->key.objectid + block_group->key.offset;
1303 
1304 	block_group->needs_free_space = 0;
1305 
1306 	ret = add_new_free_space_info(trans, fs_info, block_group, path);
1307 	if (ret)
1308 		return ret;
1309 
1310 	return __add_to_free_space_tree(trans, fs_info, block_group, path,
1311 					block_group->key.objectid,
1312 					block_group->key.offset);
1313 }
1314 
1315 int add_block_group_free_space(struct btrfs_trans_handle *trans,
1316 			       struct btrfs_fs_info *fs_info,
1317 			       struct btrfs_block_group_cache *block_group)
1318 {
1319 	struct btrfs_path *path = NULL;
1320 	int ret = 0;
1321 
1322 	if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
1323 		return 0;
1324 
1325 	mutex_lock(&block_group->free_space_lock);
1326 	if (!block_group->needs_free_space)
1327 		goto out;
1328 
1329 	path = btrfs_alloc_path();
1330 	if (!path) {
1331 		ret = -ENOMEM;
1332 		goto out;
1333 	}
1334 
1335 	ret = __add_block_group_free_space(trans, fs_info, block_group, path);
1336 
1337 out:
1338 	btrfs_free_path(path);
1339 	mutex_unlock(&block_group->free_space_lock);
1340 	if (ret)
1341 		btrfs_abort_transaction(trans, ret);
1342 	return ret;
1343 }
1344 
1345 int remove_block_group_free_space(struct btrfs_trans_handle *trans,
1346 				  struct btrfs_fs_info *fs_info,
1347 				  struct btrfs_block_group_cache *block_group)
1348 {
1349 	struct btrfs_root *root = fs_info->free_space_root;
1350 	struct btrfs_path *path;
1351 	struct btrfs_key key, found_key;
1352 	struct extent_buffer *leaf;
1353 	u64 start, end;
1354 	int done = 0, nr;
1355 	int ret;
1356 
1357 	if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
1358 		return 0;
1359 
1360 	if (block_group->needs_free_space) {
1361 		/* We never added this block group to the free space tree. */
1362 		return 0;
1363 	}
1364 
1365 	path = btrfs_alloc_path();
1366 	if (!path) {
1367 		ret = -ENOMEM;
1368 		goto out;
1369 	}
1370 
1371 	start = block_group->key.objectid;
1372 	end = block_group->key.objectid + block_group->key.offset;
1373 
1374 	key.objectid = end - 1;
1375 	key.type = (u8)-1;
1376 	key.offset = (u64)-1;
1377 
1378 	while (!done) {
1379 		ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1);
1380 		if (ret)
1381 			goto out;
1382 
1383 		leaf = path->nodes[0];
1384 		nr = 0;
1385 		path->slots[0]++;
1386 		while (path->slots[0] > 0) {
1387 			btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1);
1388 
1389 			if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) {
1390 				ASSERT(found_key.objectid == block_group->key.objectid);
1391 				ASSERT(found_key.offset == block_group->key.offset);
1392 				done = 1;
1393 				nr++;
1394 				path->slots[0]--;
1395 				break;
1396 			} else if (found_key.type == BTRFS_FREE_SPACE_EXTENT_KEY ||
1397 				   found_key.type == BTRFS_FREE_SPACE_BITMAP_KEY) {
1398 				ASSERT(found_key.objectid >= start);
1399 				ASSERT(found_key.objectid < end);
1400 				ASSERT(found_key.objectid + found_key.offset <= end);
1401 				nr++;
1402 				path->slots[0]--;
1403 			} else {
1404 				ASSERT(0);
1405 			}
1406 		}
1407 
1408 		ret = btrfs_del_items(trans, root, path, path->slots[0], nr);
1409 		if (ret)
1410 			goto out;
1411 		btrfs_release_path(path);
1412 	}
1413 
1414 	ret = 0;
1415 out:
1416 	btrfs_free_path(path);
1417 	if (ret)
1418 		btrfs_abort_transaction(trans, ret);
1419 	return ret;
1420 }
1421 
1422 static int load_free_space_bitmaps(struct btrfs_caching_control *caching_ctl,
1423 				   struct btrfs_path *path,
1424 				   u32 expected_extent_count)
1425 {
1426 	struct btrfs_block_group_cache *block_group;
1427 	struct btrfs_fs_info *fs_info;
1428 	struct btrfs_root *root;
1429 	struct btrfs_key key;
1430 	int prev_bit = 0, bit;
1431 	/* Initialize to silence GCC. */
1432 	u64 extent_start = 0;
1433 	u64 end, offset;
1434 	u64 total_found = 0;
1435 	u32 extent_count = 0;
1436 	int ret;
1437 
1438 	block_group = caching_ctl->block_group;
1439 	fs_info = block_group->fs_info;
1440 	root = fs_info->free_space_root;
1441 
1442 	end = block_group->key.objectid + block_group->key.offset;
1443 
1444 	while (1) {
1445 		ret = btrfs_next_item(root, path);
1446 		if (ret < 0)
1447 			goto out;
1448 		if (ret)
1449 			break;
1450 
1451 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1452 
1453 		if (key.type == BTRFS_FREE_SPACE_INFO_KEY)
1454 			break;
1455 
1456 		ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY);
1457 		ASSERT(key.objectid < end && key.objectid + key.offset <= end);
1458 
1459 		caching_ctl->progress = key.objectid;
1460 
1461 		offset = key.objectid;
1462 		while (offset < key.objectid + key.offset) {
1463 			bit = free_space_test_bit(block_group, path, offset);
1464 			if (prev_bit == 0 && bit == 1) {
1465 				extent_start = offset;
1466 			} else if (prev_bit == 1 && bit == 0) {
1467 				total_found += add_new_free_space(block_group,
1468 								  fs_info,
1469 								  extent_start,
1470 								  offset);
1471 				if (total_found > CACHING_CTL_WAKE_UP) {
1472 					total_found = 0;
1473 					wake_up(&caching_ctl->wait);
1474 				}
1475 				extent_count++;
1476 			}
1477 			prev_bit = bit;
1478 			offset += fs_info->sectorsize;
1479 		}
1480 	}
1481 	if (prev_bit == 1) {
1482 		total_found += add_new_free_space(block_group, fs_info,
1483 						  extent_start, end);
1484 		extent_count++;
1485 	}
1486 
1487 	if (extent_count != expected_extent_count) {
1488 		btrfs_err(fs_info,
1489 			  "incorrect extent count for %llu; counted %u, expected %u",
1490 			  block_group->key.objectid, extent_count,
1491 			  expected_extent_count);
1492 		ASSERT(0);
1493 		ret = -EIO;
1494 		goto out;
1495 	}
1496 
1497 	caching_ctl->progress = (u64)-1;
1498 
1499 	ret = 0;
1500 out:
1501 	return ret;
1502 }
1503 
1504 static int load_free_space_extents(struct btrfs_caching_control *caching_ctl,
1505 				   struct btrfs_path *path,
1506 				   u32 expected_extent_count)
1507 {
1508 	struct btrfs_block_group_cache *block_group;
1509 	struct btrfs_fs_info *fs_info;
1510 	struct btrfs_root *root;
1511 	struct btrfs_key key;
1512 	u64 end;
1513 	u64 total_found = 0;
1514 	u32 extent_count = 0;
1515 	int ret;
1516 
1517 	block_group = caching_ctl->block_group;
1518 	fs_info = block_group->fs_info;
1519 	root = fs_info->free_space_root;
1520 
1521 	end = block_group->key.objectid + block_group->key.offset;
1522 
1523 	while (1) {
1524 		ret = btrfs_next_item(root, path);
1525 		if (ret < 0)
1526 			goto out;
1527 		if (ret)
1528 			break;
1529 
1530 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1531 
1532 		if (key.type == BTRFS_FREE_SPACE_INFO_KEY)
1533 			break;
1534 
1535 		ASSERT(key.type == BTRFS_FREE_SPACE_EXTENT_KEY);
1536 		ASSERT(key.objectid < end && key.objectid + key.offset <= end);
1537 
1538 		caching_ctl->progress = key.objectid;
1539 
1540 		total_found += add_new_free_space(block_group, fs_info,
1541 						  key.objectid,
1542 						  key.objectid + key.offset);
1543 		if (total_found > CACHING_CTL_WAKE_UP) {
1544 			total_found = 0;
1545 			wake_up(&caching_ctl->wait);
1546 		}
1547 		extent_count++;
1548 	}
1549 
1550 	if (extent_count != expected_extent_count) {
1551 		btrfs_err(fs_info,
1552 			  "incorrect extent count for %llu; counted %u, expected %u",
1553 			  block_group->key.objectid, extent_count,
1554 			  expected_extent_count);
1555 		ASSERT(0);
1556 		ret = -EIO;
1557 		goto out;
1558 	}
1559 
1560 	caching_ctl->progress = (u64)-1;
1561 
1562 	ret = 0;
1563 out:
1564 	return ret;
1565 }
1566 
1567 int load_free_space_tree(struct btrfs_caching_control *caching_ctl)
1568 {
1569 	struct btrfs_block_group_cache *block_group;
1570 	struct btrfs_fs_info *fs_info;
1571 	struct btrfs_free_space_info *info;
1572 	struct btrfs_path *path;
1573 	u32 extent_count, flags;
1574 	int ret;
1575 
1576 	block_group = caching_ctl->block_group;
1577 	fs_info = block_group->fs_info;
1578 
1579 	path = btrfs_alloc_path();
1580 	if (!path)
1581 		return -ENOMEM;
1582 
1583 	/*
1584 	 * Just like caching_thread() doesn't want to deadlock on the extent
1585 	 * tree, we don't want to deadlock on the free space tree.
1586 	 */
1587 	path->skip_locking = 1;
1588 	path->search_commit_root = 1;
1589 	path->reada = 1;
1590 
1591 	info = search_free_space_info(NULL, fs_info, block_group, path, 0);
1592 	if (IS_ERR(info)) {
1593 		ret = PTR_ERR(info);
1594 		goto out;
1595 	}
1596 	extent_count = btrfs_free_space_extent_count(path->nodes[0], info);
1597 	flags = btrfs_free_space_flags(path->nodes[0], info);
1598 
1599 	/*
1600 	 * We left path pointing to the free space info item, so now
1601 	 * load_free_space_foo can just iterate through the free space tree from
1602 	 * there.
1603 	 */
1604 	if (flags & BTRFS_FREE_SPACE_USING_BITMAPS)
1605 		ret = load_free_space_bitmaps(caching_ctl, path, extent_count);
1606 	else
1607 		ret = load_free_space_extents(caching_ctl, path, extent_count);
1608 
1609 out:
1610 	btrfs_free_path(path);
1611 	return ret;
1612 }
1613