1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2015 Facebook. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/sched/mm.h> 8 #include "messages.h" 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "locking.h" 12 #include "free-space-tree.h" 13 #include "transaction.h" 14 #include "block-group.h" 15 #include "fs.h" 16 #include "accessors.h" 17 #include "extent-tree.h" 18 #include "root-tree.h" 19 20 static int __add_block_group_free_space(struct btrfs_trans_handle *trans, 21 struct btrfs_block_group *block_group, 22 struct btrfs_path *path); 23 24 static struct btrfs_root *btrfs_free_space_root( 25 struct btrfs_block_group *block_group) 26 { 27 struct btrfs_key key = { 28 .objectid = BTRFS_FREE_SPACE_TREE_OBJECTID, 29 .type = BTRFS_ROOT_ITEM_KEY, 30 .offset = 0, 31 }; 32 33 if (btrfs_fs_incompat(block_group->fs_info, EXTENT_TREE_V2)) 34 key.offset = block_group->global_root_id; 35 return btrfs_global_root(block_group->fs_info, &key); 36 } 37 38 void set_free_space_tree_thresholds(struct btrfs_block_group *cache) 39 { 40 u32 bitmap_range; 41 size_t bitmap_size; 42 u64 num_bitmaps, total_bitmap_size; 43 44 if (WARN_ON(cache->length == 0)) 45 btrfs_warn(cache->fs_info, "block group %llu length is zero", 46 cache->start); 47 48 /* 49 * We convert to bitmaps when the disk space required for using extents 50 * exceeds that required for using bitmaps. 51 */ 52 bitmap_range = cache->fs_info->sectorsize * BTRFS_FREE_SPACE_BITMAP_BITS; 53 num_bitmaps = div_u64(cache->length + bitmap_range - 1, bitmap_range); 54 bitmap_size = sizeof(struct btrfs_item) + BTRFS_FREE_SPACE_BITMAP_SIZE; 55 total_bitmap_size = num_bitmaps * bitmap_size; 56 cache->bitmap_high_thresh = div_u64(total_bitmap_size, 57 sizeof(struct btrfs_item)); 58 59 /* 60 * We allow for a small buffer between the high threshold and low 61 * threshold to avoid thrashing back and forth between the two formats. 62 */ 63 if (cache->bitmap_high_thresh > 100) 64 cache->bitmap_low_thresh = cache->bitmap_high_thresh - 100; 65 else 66 cache->bitmap_low_thresh = 0; 67 } 68 69 static int add_new_free_space_info(struct btrfs_trans_handle *trans, 70 struct btrfs_block_group *block_group, 71 struct btrfs_path *path) 72 { 73 struct btrfs_root *root = btrfs_free_space_root(block_group); 74 struct btrfs_free_space_info *info; 75 struct btrfs_key key; 76 struct extent_buffer *leaf; 77 int ret; 78 79 key.objectid = block_group->start; 80 key.type = BTRFS_FREE_SPACE_INFO_KEY; 81 key.offset = block_group->length; 82 83 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*info)); 84 if (ret) 85 goto out; 86 87 leaf = path->nodes[0]; 88 info = btrfs_item_ptr(leaf, path->slots[0], 89 struct btrfs_free_space_info); 90 btrfs_set_free_space_extent_count(leaf, info, 0); 91 btrfs_set_free_space_flags(leaf, info, 0); 92 btrfs_mark_buffer_dirty(leaf); 93 94 ret = 0; 95 out: 96 btrfs_release_path(path); 97 return ret; 98 } 99 100 EXPORT_FOR_TESTS 101 struct btrfs_free_space_info *search_free_space_info( 102 struct btrfs_trans_handle *trans, 103 struct btrfs_block_group *block_group, 104 struct btrfs_path *path, int cow) 105 { 106 struct btrfs_fs_info *fs_info = block_group->fs_info; 107 struct btrfs_root *root = btrfs_free_space_root(block_group); 108 struct btrfs_key key; 109 int ret; 110 111 key.objectid = block_group->start; 112 key.type = BTRFS_FREE_SPACE_INFO_KEY; 113 key.offset = block_group->length; 114 115 ret = btrfs_search_slot(trans, root, &key, path, 0, cow); 116 if (ret < 0) 117 return ERR_PTR(ret); 118 if (ret != 0) { 119 btrfs_warn(fs_info, "missing free space info for %llu", 120 block_group->start); 121 ASSERT(0); 122 return ERR_PTR(-ENOENT); 123 } 124 125 return btrfs_item_ptr(path->nodes[0], path->slots[0], 126 struct btrfs_free_space_info); 127 } 128 129 /* 130 * btrfs_search_slot() but we're looking for the greatest key less than the 131 * passed key. 132 */ 133 static int btrfs_search_prev_slot(struct btrfs_trans_handle *trans, 134 struct btrfs_root *root, 135 struct btrfs_key *key, struct btrfs_path *p, 136 int ins_len, int cow) 137 { 138 int ret; 139 140 ret = btrfs_search_slot(trans, root, key, p, ins_len, cow); 141 if (ret < 0) 142 return ret; 143 144 if (ret == 0) { 145 ASSERT(0); 146 return -EIO; 147 } 148 149 if (p->slots[0] == 0) { 150 ASSERT(0); 151 return -EIO; 152 } 153 p->slots[0]--; 154 155 return 0; 156 } 157 158 static inline u32 free_space_bitmap_size(const struct btrfs_fs_info *fs_info, 159 u64 size) 160 { 161 return DIV_ROUND_UP(size >> fs_info->sectorsize_bits, BITS_PER_BYTE); 162 } 163 164 static unsigned long *alloc_bitmap(u32 bitmap_size) 165 { 166 unsigned long *ret; 167 unsigned int nofs_flag; 168 u32 bitmap_rounded_size = round_up(bitmap_size, sizeof(unsigned long)); 169 170 /* 171 * GFP_NOFS doesn't work with kvmalloc(), but we really can't recurse 172 * into the filesystem as the free space bitmap can be modified in the 173 * critical section of a transaction commit. 174 * 175 * TODO: push the memalloc_nofs_{save,restore}() to the caller where we 176 * know that recursion is unsafe. 177 */ 178 nofs_flag = memalloc_nofs_save(); 179 ret = kvzalloc(bitmap_rounded_size, GFP_KERNEL); 180 memalloc_nofs_restore(nofs_flag); 181 return ret; 182 } 183 184 static void le_bitmap_set(unsigned long *map, unsigned int start, int len) 185 { 186 u8 *p = ((u8 *)map) + BIT_BYTE(start); 187 const unsigned int size = start + len; 188 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE); 189 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start); 190 191 while (len - bits_to_set >= 0) { 192 *p |= mask_to_set; 193 len -= bits_to_set; 194 bits_to_set = BITS_PER_BYTE; 195 mask_to_set = ~0; 196 p++; 197 } 198 if (len) { 199 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 200 *p |= mask_to_set; 201 } 202 } 203 204 EXPORT_FOR_TESTS 205 int convert_free_space_to_bitmaps(struct btrfs_trans_handle *trans, 206 struct btrfs_block_group *block_group, 207 struct btrfs_path *path) 208 { 209 struct btrfs_fs_info *fs_info = trans->fs_info; 210 struct btrfs_root *root = btrfs_free_space_root(block_group); 211 struct btrfs_free_space_info *info; 212 struct btrfs_key key, found_key; 213 struct extent_buffer *leaf; 214 unsigned long *bitmap; 215 char *bitmap_cursor; 216 u64 start, end; 217 u64 bitmap_range, i; 218 u32 bitmap_size, flags, expected_extent_count; 219 u32 extent_count = 0; 220 int done = 0, nr; 221 int ret; 222 223 bitmap_size = free_space_bitmap_size(fs_info, block_group->length); 224 bitmap = alloc_bitmap(bitmap_size); 225 if (!bitmap) { 226 ret = -ENOMEM; 227 goto out; 228 } 229 230 start = block_group->start; 231 end = block_group->start + block_group->length; 232 233 key.objectid = end - 1; 234 key.type = (u8)-1; 235 key.offset = (u64)-1; 236 237 while (!done) { 238 ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1); 239 if (ret) 240 goto out; 241 242 leaf = path->nodes[0]; 243 nr = 0; 244 path->slots[0]++; 245 while (path->slots[0] > 0) { 246 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1); 247 248 if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) { 249 ASSERT(found_key.objectid == block_group->start); 250 ASSERT(found_key.offset == block_group->length); 251 done = 1; 252 break; 253 } else if (found_key.type == BTRFS_FREE_SPACE_EXTENT_KEY) { 254 u64 first, last; 255 256 ASSERT(found_key.objectid >= start); 257 ASSERT(found_key.objectid < end); 258 ASSERT(found_key.objectid + found_key.offset <= end); 259 260 first = div_u64(found_key.objectid - start, 261 fs_info->sectorsize); 262 last = div_u64(found_key.objectid + found_key.offset - start, 263 fs_info->sectorsize); 264 le_bitmap_set(bitmap, first, last - first); 265 266 extent_count++; 267 nr++; 268 path->slots[0]--; 269 } else { 270 ASSERT(0); 271 } 272 } 273 274 ret = btrfs_del_items(trans, root, path, path->slots[0], nr); 275 if (ret) 276 goto out; 277 btrfs_release_path(path); 278 } 279 280 info = search_free_space_info(trans, block_group, path, 1); 281 if (IS_ERR(info)) { 282 ret = PTR_ERR(info); 283 goto out; 284 } 285 leaf = path->nodes[0]; 286 flags = btrfs_free_space_flags(leaf, info); 287 flags |= BTRFS_FREE_SPACE_USING_BITMAPS; 288 btrfs_set_free_space_flags(leaf, info, flags); 289 expected_extent_count = btrfs_free_space_extent_count(leaf, info); 290 btrfs_mark_buffer_dirty(leaf); 291 btrfs_release_path(path); 292 293 if (extent_count != expected_extent_count) { 294 btrfs_err(fs_info, 295 "incorrect extent count for %llu; counted %u, expected %u", 296 block_group->start, extent_count, 297 expected_extent_count); 298 ASSERT(0); 299 ret = -EIO; 300 goto out; 301 } 302 303 bitmap_cursor = (char *)bitmap; 304 bitmap_range = fs_info->sectorsize * BTRFS_FREE_SPACE_BITMAP_BITS; 305 i = start; 306 while (i < end) { 307 unsigned long ptr; 308 u64 extent_size; 309 u32 data_size; 310 311 extent_size = min(end - i, bitmap_range); 312 data_size = free_space_bitmap_size(fs_info, extent_size); 313 314 key.objectid = i; 315 key.type = BTRFS_FREE_SPACE_BITMAP_KEY; 316 key.offset = extent_size; 317 318 ret = btrfs_insert_empty_item(trans, root, path, &key, 319 data_size); 320 if (ret) 321 goto out; 322 323 leaf = path->nodes[0]; 324 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 325 write_extent_buffer(leaf, bitmap_cursor, ptr, 326 data_size); 327 btrfs_mark_buffer_dirty(leaf); 328 btrfs_release_path(path); 329 330 i += extent_size; 331 bitmap_cursor += data_size; 332 } 333 334 ret = 0; 335 out: 336 kvfree(bitmap); 337 if (ret) 338 btrfs_abort_transaction(trans, ret); 339 return ret; 340 } 341 342 EXPORT_FOR_TESTS 343 int convert_free_space_to_extents(struct btrfs_trans_handle *trans, 344 struct btrfs_block_group *block_group, 345 struct btrfs_path *path) 346 { 347 struct btrfs_fs_info *fs_info = trans->fs_info; 348 struct btrfs_root *root = btrfs_free_space_root(block_group); 349 struct btrfs_free_space_info *info; 350 struct btrfs_key key, found_key; 351 struct extent_buffer *leaf; 352 unsigned long *bitmap; 353 u64 start, end; 354 u32 bitmap_size, flags, expected_extent_count; 355 unsigned long nrbits, start_bit, end_bit; 356 u32 extent_count = 0; 357 int done = 0, nr; 358 int ret; 359 360 bitmap_size = free_space_bitmap_size(fs_info, block_group->length); 361 bitmap = alloc_bitmap(bitmap_size); 362 if (!bitmap) { 363 ret = -ENOMEM; 364 goto out; 365 } 366 367 start = block_group->start; 368 end = block_group->start + block_group->length; 369 370 key.objectid = end - 1; 371 key.type = (u8)-1; 372 key.offset = (u64)-1; 373 374 while (!done) { 375 ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1); 376 if (ret) 377 goto out; 378 379 leaf = path->nodes[0]; 380 nr = 0; 381 path->slots[0]++; 382 while (path->slots[0] > 0) { 383 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1); 384 385 if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) { 386 ASSERT(found_key.objectid == block_group->start); 387 ASSERT(found_key.offset == block_group->length); 388 done = 1; 389 break; 390 } else if (found_key.type == BTRFS_FREE_SPACE_BITMAP_KEY) { 391 unsigned long ptr; 392 char *bitmap_cursor; 393 u32 bitmap_pos, data_size; 394 395 ASSERT(found_key.objectid >= start); 396 ASSERT(found_key.objectid < end); 397 ASSERT(found_key.objectid + found_key.offset <= end); 398 399 bitmap_pos = div_u64(found_key.objectid - start, 400 fs_info->sectorsize * 401 BITS_PER_BYTE); 402 bitmap_cursor = ((char *)bitmap) + bitmap_pos; 403 data_size = free_space_bitmap_size(fs_info, 404 found_key.offset); 405 406 ptr = btrfs_item_ptr_offset(leaf, path->slots[0] - 1); 407 read_extent_buffer(leaf, bitmap_cursor, ptr, 408 data_size); 409 410 nr++; 411 path->slots[0]--; 412 } else { 413 ASSERT(0); 414 } 415 } 416 417 ret = btrfs_del_items(trans, root, path, path->slots[0], nr); 418 if (ret) 419 goto out; 420 btrfs_release_path(path); 421 } 422 423 info = search_free_space_info(trans, block_group, path, 1); 424 if (IS_ERR(info)) { 425 ret = PTR_ERR(info); 426 goto out; 427 } 428 leaf = path->nodes[0]; 429 flags = btrfs_free_space_flags(leaf, info); 430 flags &= ~BTRFS_FREE_SPACE_USING_BITMAPS; 431 btrfs_set_free_space_flags(leaf, info, flags); 432 expected_extent_count = btrfs_free_space_extent_count(leaf, info); 433 btrfs_mark_buffer_dirty(leaf); 434 btrfs_release_path(path); 435 436 nrbits = block_group->length >> block_group->fs_info->sectorsize_bits; 437 start_bit = find_next_bit_le(bitmap, nrbits, 0); 438 439 while (start_bit < nrbits) { 440 end_bit = find_next_zero_bit_le(bitmap, nrbits, start_bit); 441 ASSERT(start_bit < end_bit); 442 443 key.objectid = start + start_bit * block_group->fs_info->sectorsize; 444 key.type = BTRFS_FREE_SPACE_EXTENT_KEY; 445 key.offset = (end_bit - start_bit) * block_group->fs_info->sectorsize; 446 447 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 448 if (ret) 449 goto out; 450 btrfs_release_path(path); 451 452 extent_count++; 453 454 start_bit = find_next_bit_le(bitmap, nrbits, end_bit); 455 } 456 457 if (extent_count != expected_extent_count) { 458 btrfs_err(fs_info, 459 "incorrect extent count for %llu; counted %u, expected %u", 460 block_group->start, extent_count, 461 expected_extent_count); 462 ASSERT(0); 463 ret = -EIO; 464 goto out; 465 } 466 467 ret = 0; 468 out: 469 kvfree(bitmap); 470 if (ret) 471 btrfs_abort_transaction(trans, ret); 472 return ret; 473 } 474 475 static int update_free_space_extent_count(struct btrfs_trans_handle *trans, 476 struct btrfs_block_group *block_group, 477 struct btrfs_path *path, 478 int new_extents) 479 { 480 struct btrfs_free_space_info *info; 481 u32 flags; 482 u32 extent_count; 483 int ret = 0; 484 485 if (new_extents == 0) 486 return 0; 487 488 info = search_free_space_info(trans, block_group, path, 1); 489 if (IS_ERR(info)) { 490 ret = PTR_ERR(info); 491 goto out; 492 } 493 flags = btrfs_free_space_flags(path->nodes[0], info); 494 extent_count = btrfs_free_space_extent_count(path->nodes[0], info); 495 496 extent_count += new_extents; 497 btrfs_set_free_space_extent_count(path->nodes[0], info, extent_count); 498 btrfs_mark_buffer_dirty(path->nodes[0]); 499 btrfs_release_path(path); 500 501 if (!(flags & BTRFS_FREE_SPACE_USING_BITMAPS) && 502 extent_count > block_group->bitmap_high_thresh) { 503 ret = convert_free_space_to_bitmaps(trans, block_group, path); 504 } else if ((flags & BTRFS_FREE_SPACE_USING_BITMAPS) && 505 extent_count < block_group->bitmap_low_thresh) { 506 ret = convert_free_space_to_extents(trans, block_group, path); 507 } 508 509 out: 510 return ret; 511 } 512 513 EXPORT_FOR_TESTS 514 int free_space_test_bit(struct btrfs_block_group *block_group, 515 struct btrfs_path *path, u64 offset) 516 { 517 struct extent_buffer *leaf; 518 struct btrfs_key key; 519 u64 found_start, found_end; 520 unsigned long ptr, i; 521 522 leaf = path->nodes[0]; 523 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 524 ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY); 525 526 found_start = key.objectid; 527 found_end = key.objectid + key.offset; 528 ASSERT(offset >= found_start && offset < found_end); 529 530 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 531 i = div_u64(offset - found_start, 532 block_group->fs_info->sectorsize); 533 return !!extent_buffer_test_bit(leaf, ptr, i); 534 } 535 536 static void free_space_set_bits(struct btrfs_block_group *block_group, 537 struct btrfs_path *path, u64 *start, u64 *size, 538 int bit) 539 { 540 struct btrfs_fs_info *fs_info = block_group->fs_info; 541 struct extent_buffer *leaf; 542 struct btrfs_key key; 543 u64 end = *start + *size; 544 u64 found_start, found_end; 545 unsigned long ptr, first, last; 546 547 leaf = path->nodes[0]; 548 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 549 ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY); 550 551 found_start = key.objectid; 552 found_end = key.objectid + key.offset; 553 ASSERT(*start >= found_start && *start < found_end); 554 ASSERT(end > found_start); 555 556 if (end > found_end) 557 end = found_end; 558 559 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 560 first = (*start - found_start) >> fs_info->sectorsize_bits; 561 last = (end - found_start) >> fs_info->sectorsize_bits; 562 if (bit) 563 extent_buffer_bitmap_set(leaf, ptr, first, last - first); 564 else 565 extent_buffer_bitmap_clear(leaf, ptr, first, last - first); 566 btrfs_mark_buffer_dirty(leaf); 567 568 *size -= end - *start; 569 *start = end; 570 } 571 572 /* 573 * We can't use btrfs_next_item() in modify_free_space_bitmap() because 574 * btrfs_next_leaf() doesn't get the path for writing. We can forgo the fancy 575 * tree walking in btrfs_next_leaf() anyways because we know exactly what we're 576 * looking for. 577 */ 578 static int free_space_next_bitmap(struct btrfs_trans_handle *trans, 579 struct btrfs_root *root, struct btrfs_path *p) 580 { 581 struct btrfs_key key; 582 583 if (p->slots[0] + 1 < btrfs_header_nritems(p->nodes[0])) { 584 p->slots[0]++; 585 return 0; 586 } 587 588 btrfs_item_key_to_cpu(p->nodes[0], &key, p->slots[0]); 589 btrfs_release_path(p); 590 591 key.objectid += key.offset; 592 key.type = (u8)-1; 593 key.offset = (u64)-1; 594 595 return btrfs_search_prev_slot(trans, root, &key, p, 0, 1); 596 } 597 598 /* 599 * If remove is 1, then we are removing free space, thus clearing bits in the 600 * bitmap. If remove is 0, then we are adding free space, thus setting bits in 601 * the bitmap. 602 */ 603 static int modify_free_space_bitmap(struct btrfs_trans_handle *trans, 604 struct btrfs_block_group *block_group, 605 struct btrfs_path *path, 606 u64 start, u64 size, int remove) 607 { 608 struct btrfs_root *root = btrfs_free_space_root(block_group); 609 struct btrfs_key key; 610 u64 end = start + size; 611 u64 cur_start, cur_size; 612 int prev_bit, next_bit; 613 int new_extents; 614 int ret; 615 616 /* 617 * Read the bit for the block immediately before the extent of space if 618 * that block is within the block group. 619 */ 620 if (start > block_group->start) { 621 u64 prev_block = start - block_group->fs_info->sectorsize; 622 623 key.objectid = prev_block; 624 key.type = (u8)-1; 625 key.offset = (u64)-1; 626 627 ret = btrfs_search_prev_slot(trans, root, &key, path, 0, 1); 628 if (ret) 629 goto out; 630 631 prev_bit = free_space_test_bit(block_group, path, prev_block); 632 633 /* The previous block may have been in the previous bitmap. */ 634 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 635 if (start >= key.objectid + key.offset) { 636 ret = free_space_next_bitmap(trans, root, path); 637 if (ret) 638 goto out; 639 } 640 } else { 641 key.objectid = start; 642 key.type = (u8)-1; 643 key.offset = (u64)-1; 644 645 ret = btrfs_search_prev_slot(trans, root, &key, path, 0, 1); 646 if (ret) 647 goto out; 648 649 prev_bit = -1; 650 } 651 652 /* 653 * Iterate over all of the bitmaps overlapped by the extent of space, 654 * clearing/setting bits as required. 655 */ 656 cur_start = start; 657 cur_size = size; 658 while (1) { 659 free_space_set_bits(block_group, path, &cur_start, &cur_size, 660 !remove); 661 if (cur_size == 0) 662 break; 663 ret = free_space_next_bitmap(trans, root, path); 664 if (ret) 665 goto out; 666 } 667 668 /* 669 * Read the bit for the block immediately after the extent of space if 670 * that block is within the block group. 671 */ 672 if (end < block_group->start + block_group->length) { 673 /* The next block may be in the next bitmap. */ 674 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 675 if (end >= key.objectid + key.offset) { 676 ret = free_space_next_bitmap(trans, root, path); 677 if (ret) 678 goto out; 679 } 680 681 next_bit = free_space_test_bit(block_group, path, end); 682 } else { 683 next_bit = -1; 684 } 685 686 if (remove) { 687 new_extents = -1; 688 if (prev_bit == 1) { 689 /* Leftover on the left. */ 690 new_extents++; 691 } 692 if (next_bit == 1) { 693 /* Leftover on the right. */ 694 new_extents++; 695 } 696 } else { 697 new_extents = 1; 698 if (prev_bit == 1) { 699 /* Merging with neighbor on the left. */ 700 new_extents--; 701 } 702 if (next_bit == 1) { 703 /* Merging with neighbor on the right. */ 704 new_extents--; 705 } 706 } 707 708 btrfs_release_path(path); 709 ret = update_free_space_extent_count(trans, block_group, path, 710 new_extents); 711 712 out: 713 return ret; 714 } 715 716 static int remove_free_space_extent(struct btrfs_trans_handle *trans, 717 struct btrfs_block_group *block_group, 718 struct btrfs_path *path, 719 u64 start, u64 size) 720 { 721 struct btrfs_root *root = btrfs_free_space_root(block_group); 722 struct btrfs_key key; 723 u64 found_start, found_end; 724 u64 end = start + size; 725 int new_extents = -1; 726 int ret; 727 728 key.objectid = start; 729 key.type = (u8)-1; 730 key.offset = (u64)-1; 731 732 ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1); 733 if (ret) 734 goto out; 735 736 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 737 738 ASSERT(key.type == BTRFS_FREE_SPACE_EXTENT_KEY); 739 740 found_start = key.objectid; 741 found_end = key.objectid + key.offset; 742 ASSERT(start >= found_start && end <= found_end); 743 744 /* 745 * Okay, now that we've found the free space extent which contains the 746 * free space that we are removing, there are four cases: 747 * 748 * 1. We're using the whole extent: delete the key we found and 749 * decrement the free space extent count. 750 * 2. We are using part of the extent starting at the beginning: delete 751 * the key we found and insert a new key representing the leftover at 752 * the end. There is no net change in the number of extents. 753 * 3. We are using part of the extent ending at the end: delete the key 754 * we found and insert a new key representing the leftover at the 755 * beginning. There is no net change in the number of extents. 756 * 4. We are using part of the extent in the middle: delete the key we 757 * found and insert two new keys representing the leftovers on each 758 * side. Where we used to have one extent, we now have two, so increment 759 * the extent count. We may need to convert the block group to bitmaps 760 * as a result. 761 */ 762 763 /* Delete the existing key (cases 1-4). */ 764 ret = btrfs_del_item(trans, root, path); 765 if (ret) 766 goto out; 767 768 /* Add a key for leftovers at the beginning (cases 3 and 4). */ 769 if (start > found_start) { 770 key.objectid = found_start; 771 key.type = BTRFS_FREE_SPACE_EXTENT_KEY; 772 key.offset = start - found_start; 773 774 btrfs_release_path(path); 775 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 776 if (ret) 777 goto out; 778 new_extents++; 779 } 780 781 /* Add a key for leftovers at the end (cases 2 and 4). */ 782 if (end < found_end) { 783 key.objectid = end; 784 key.type = BTRFS_FREE_SPACE_EXTENT_KEY; 785 key.offset = found_end - end; 786 787 btrfs_release_path(path); 788 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 789 if (ret) 790 goto out; 791 new_extents++; 792 } 793 794 btrfs_release_path(path); 795 ret = update_free_space_extent_count(trans, block_group, path, 796 new_extents); 797 798 out: 799 return ret; 800 } 801 802 EXPORT_FOR_TESTS 803 int __remove_from_free_space_tree(struct btrfs_trans_handle *trans, 804 struct btrfs_block_group *block_group, 805 struct btrfs_path *path, u64 start, u64 size) 806 { 807 struct btrfs_free_space_info *info; 808 u32 flags; 809 int ret; 810 811 if (test_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &block_group->runtime_flags)) { 812 ret = __add_block_group_free_space(trans, block_group, path); 813 if (ret) 814 return ret; 815 } 816 817 info = search_free_space_info(NULL, block_group, path, 0); 818 if (IS_ERR(info)) 819 return PTR_ERR(info); 820 flags = btrfs_free_space_flags(path->nodes[0], info); 821 btrfs_release_path(path); 822 823 if (flags & BTRFS_FREE_SPACE_USING_BITMAPS) { 824 return modify_free_space_bitmap(trans, block_group, path, 825 start, size, 1); 826 } else { 827 return remove_free_space_extent(trans, block_group, path, 828 start, size); 829 } 830 } 831 832 int remove_from_free_space_tree(struct btrfs_trans_handle *trans, 833 u64 start, u64 size) 834 { 835 struct btrfs_block_group *block_group; 836 struct btrfs_path *path; 837 int ret; 838 839 if (!btrfs_fs_compat_ro(trans->fs_info, FREE_SPACE_TREE)) 840 return 0; 841 842 path = btrfs_alloc_path(); 843 if (!path) { 844 ret = -ENOMEM; 845 goto out; 846 } 847 848 block_group = btrfs_lookup_block_group(trans->fs_info, start); 849 if (!block_group) { 850 ASSERT(0); 851 ret = -ENOENT; 852 goto out; 853 } 854 855 mutex_lock(&block_group->free_space_lock); 856 ret = __remove_from_free_space_tree(trans, block_group, path, start, 857 size); 858 mutex_unlock(&block_group->free_space_lock); 859 860 btrfs_put_block_group(block_group); 861 out: 862 btrfs_free_path(path); 863 if (ret) 864 btrfs_abort_transaction(trans, ret); 865 return ret; 866 } 867 868 static int add_free_space_extent(struct btrfs_trans_handle *trans, 869 struct btrfs_block_group *block_group, 870 struct btrfs_path *path, 871 u64 start, u64 size) 872 { 873 struct btrfs_root *root = btrfs_free_space_root(block_group); 874 struct btrfs_key key, new_key; 875 u64 found_start, found_end; 876 u64 end = start + size; 877 int new_extents = 1; 878 int ret; 879 880 /* 881 * We are adding a new extent of free space, but we need to merge 882 * extents. There are four cases here: 883 * 884 * 1. The new extent does not have any immediate neighbors to merge 885 * with: add the new key and increment the free space extent count. We 886 * may need to convert the block group to bitmaps as a result. 887 * 2. The new extent has an immediate neighbor before it: remove the 888 * previous key and insert a new key combining both of them. There is no 889 * net change in the number of extents. 890 * 3. The new extent has an immediate neighbor after it: remove the next 891 * key and insert a new key combining both of them. There is no net 892 * change in the number of extents. 893 * 4. The new extent has immediate neighbors on both sides: remove both 894 * of the keys and insert a new key combining all of them. Where we used 895 * to have two extents, we now have one, so decrement the extent count. 896 */ 897 898 new_key.objectid = start; 899 new_key.type = BTRFS_FREE_SPACE_EXTENT_KEY; 900 new_key.offset = size; 901 902 /* Search for a neighbor on the left. */ 903 if (start == block_group->start) 904 goto right; 905 key.objectid = start - 1; 906 key.type = (u8)-1; 907 key.offset = (u64)-1; 908 909 ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1); 910 if (ret) 911 goto out; 912 913 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 914 915 if (key.type != BTRFS_FREE_SPACE_EXTENT_KEY) { 916 ASSERT(key.type == BTRFS_FREE_SPACE_INFO_KEY); 917 btrfs_release_path(path); 918 goto right; 919 } 920 921 found_start = key.objectid; 922 found_end = key.objectid + key.offset; 923 ASSERT(found_start >= block_group->start && 924 found_end > block_group->start); 925 ASSERT(found_start < start && found_end <= start); 926 927 /* 928 * Delete the neighbor on the left and absorb it into the new key (cases 929 * 2 and 4). 930 */ 931 if (found_end == start) { 932 ret = btrfs_del_item(trans, root, path); 933 if (ret) 934 goto out; 935 new_key.objectid = found_start; 936 new_key.offset += key.offset; 937 new_extents--; 938 } 939 btrfs_release_path(path); 940 941 right: 942 /* Search for a neighbor on the right. */ 943 if (end == block_group->start + block_group->length) 944 goto insert; 945 key.objectid = end; 946 key.type = (u8)-1; 947 key.offset = (u64)-1; 948 949 ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1); 950 if (ret) 951 goto out; 952 953 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 954 955 if (key.type != BTRFS_FREE_SPACE_EXTENT_KEY) { 956 ASSERT(key.type == BTRFS_FREE_SPACE_INFO_KEY); 957 btrfs_release_path(path); 958 goto insert; 959 } 960 961 found_start = key.objectid; 962 found_end = key.objectid + key.offset; 963 ASSERT(found_start >= block_group->start && 964 found_end > block_group->start); 965 ASSERT((found_start < start && found_end <= start) || 966 (found_start >= end && found_end > end)); 967 968 /* 969 * Delete the neighbor on the right and absorb it into the new key 970 * (cases 3 and 4). 971 */ 972 if (found_start == end) { 973 ret = btrfs_del_item(trans, root, path); 974 if (ret) 975 goto out; 976 new_key.offset += key.offset; 977 new_extents--; 978 } 979 btrfs_release_path(path); 980 981 insert: 982 /* Insert the new key (cases 1-4). */ 983 ret = btrfs_insert_empty_item(trans, root, path, &new_key, 0); 984 if (ret) 985 goto out; 986 987 btrfs_release_path(path); 988 ret = update_free_space_extent_count(trans, block_group, path, 989 new_extents); 990 991 out: 992 return ret; 993 } 994 995 EXPORT_FOR_TESTS 996 int __add_to_free_space_tree(struct btrfs_trans_handle *trans, 997 struct btrfs_block_group *block_group, 998 struct btrfs_path *path, u64 start, u64 size) 999 { 1000 struct btrfs_free_space_info *info; 1001 u32 flags; 1002 int ret; 1003 1004 if (test_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &block_group->runtime_flags)) { 1005 ret = __add_block_group_free_space(trans, block_group, path); 1006 if (ret) 1007 return ret; 1008 } 1009 1010 info = search_free_space_info(NULL, block_group, path, 0); 1011 if (IS_ERR(info)) 1012 return PTR_ERR(info); 1013 flags = btrfs_free_space_flags(path->nodes[0], info); 1014 btrfs_release_path(path); 1015 1016 if (flags & BTRFS_FREE_SPACE_USING_BITMAPS) { 1017 return modify_free_space_bitmap(trans, block_group, path, 1018 start, size, 0); 1019 } else { 1020 return add_free_space_extent(trans, block_group, path, start, 1021 size); 1022 } 1023 } 1024 1025 int add_to_free_space_tree(struct btrfs_trans_handle *trans, 1026 u64 start, u64 size) 1027 { 1028 struct btrfs_block_group *block_group; 1029 struct btrfs_path *path; 1030 int ret; 1031 1032 if (!btrfs_fs_compat_ro(trans->fs_info, FREE_SPACE_TREE)) 1033 return 0; 1034 1035 path = btrfs_alloc_path(); 1036 if (!path) { 1037 ret = -ENOMEM; 1038 goto out; 1039 } 1040 1041 block_group = btrfs_lookup_block_group(trans->fs_info, start); 1042 if (!block_group) { 1043 ASSERT(0); 1044 ret = -ENOENT; 1045 goto out; 1046 } 1047 1048 mutex_lock(&block_group->free_space_lock); 1049 ret = __add_to_free_space_tree(trans, block_group, path, start, size); 1050 mutex_unlock(&block_group->free_space_lock); 1051 1052 btrfs_put_block_group(block_group); 1053 out: 1054 btrfs_free_path(path); 1055 if (ret) 1056 btrfs_abort_transaction(trans, ret); 1057 return ret; 1058 } 1059 1060 /* 1061 * Populate the free space tree by walking the extent tree. Operations on the 1062 * extent tree that happen as a result of writes to the free space tree will go 1063 * through the normal add/remove hooks. 1064 */ 1065 static int populate_free_space_tree(struct btrfs_trans_handle *trans, 1066 struct btrfs_block_group *block_group) 1067 { 1068 struct btrfs_root *extent_root; 1069 struct btrfs_path *path, *path2; 1070 struct btrfs_key key; 1071 u64 start, end; 1072 int ret; 1073 1074 path = btrfs_alloc_path(); 1075 if (!path) 1076 return -ENOMEM; 1077 path->reada = READA_FORWARD; 1078 1079 path2 = btrfs_alloc_path(); 1080 if (!path2) { 1081 btrfs_free_path(path); 1082 return -ENOMEM; 1083 } 1084 1085 ret = add_new_free_space_info(trans, block_group, path2); 1086 if (ret) 1087 goto out; 1088 1089 mutex_lock(&block_group->free_space_lock); 1090 1091 /* 1092 * Iterate through all of the extent and metadata items in this block 1093 * group, adding the free space between them and the free space at the 1094 * end. Note that EXTENT_ITEM and METADATA_ITEM are less than 1095 * BLOCK_GROUP_ITEM, so an extent may precede the block group that it's 1096 * contained in. 1097 */ 1098 key.objectid = block_group->start; 1099 key.type = BTRFS_EXTENT_ITEM_KEY; 1100 key.offset = 0; 1101 1102 extent_root = btrfs_extent_root(trans->fs_info, key.objectid); 1103 ret = btrfs_search_slot_for_read(extent_root, &key, path, 1, 0); 1104 if (ret < 0) 1105 goto out_locked; 1106 ASSERT(ret == 0); 1107 1108 start = block_group->start; 1109 end = block_group->start + block_group->length; 1110 while (1) { 1111 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1112 1113 if (key.type == BTRFS_EXTENT_ITEM_KEY || 1114 key.type == BTRFS_METADATA_ITEM_KEY) { 1115 if (key.objectid >= end) 1116 break; 1117 1118 if (start < key.objectid) { 1119 ret = __add_to_free_space_tree(trans, 1120 block_group, 1121 path2, start, 1122 key.objectid - 1123 start); 1124 if (ret) 1125 goto out_locked; 1126 } 1127 start = key.objectid; 1128 if (key.type == BTRFS_METADATA_ITEM_KEY) 1129 start += trans->fs_info->nodesize; 1130 else 1131 start += key.offset; 1132 } else if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 1133 if (key.objectid != block_group->start) 1134 break; 1135 } 1136 1137 ret = btrfs_next_item(extent_root, path); 1138 if (ret < 0) 1139 goto out_locked; 1140 if (ret) 1141 break; 1142 } 1143 if (start < end) { 1144 ret = __add_to_free_space_tree(trans, block_group, path2, 1145 start, end - start); 1146 if (ret) 1147 goto out_locked; 1148 } 1149 1150 ret = 0; 1151 out_locked: 1152 mutex_unlock(&block_group->free_space_lock); 1153 out: 1154 btrfs_free_path(path2); 1155 btrfs_free_path(path); 1156 return ret; 1157 } 1158 1159 int btrfs_create_free_space_tree(struct btrfs_fs_info *fs_info) 1160 { 1161 struct btrfs_trans_handle *trans; 1162 struct btrfs_root *tree_root = fs_info->tree_root; 1163 struct btrfs_root *free_space_root; 1164 struct btrfs_block_group *block_group; 1165 struct rb_node *node; 1166 int ret; 1167 1168 trans = btrfs_start_transaction(tree_root, 0); 1169 if (IS_ERR(trans)) 1170 return PTR_ERR(trans); 1171 1172 set_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags); 1173 set_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags); 1174 free_space_root = btrfs_create_tree(trans, 1175 BTRFS_FREE_SPACE_TREE_OBJECTID); 1176 if (IS_ERR(free_space_root)) { 1177 ret = PTR_ERR(free_space_root); 1178 goto abort; 1179 } 1180 ret = btrfs_global_root_insert(free_space_root); 1181 if (ret) { 1182 btrfs_put_root(free_space_root); 1183 goto abort; 1184 } 1185 1186 node = rb_first_cached(&fs_info->block_group_cache_tree); 1187 while (node) { 1188 block_group = rb_entry(node, struct btrfs_block_group, 1189 cache_node); 1190 ret = populate_free_space_tree(trans, block_group); 1191 if (ret) 1192 goto abort; 1193 node = rb_next(node); 1194 } 1195 1196 btrfs_set_fs_compat_ro(fs_info, FREE_SPACE_TREE); 1197 btrfs_set_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID); 1198 clear_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags); 1199 ret = btrfs_commit_transaction(trans); 1200 1201 /* 1202 * Now that we've committed the transaction any reading of our commit 1203 * root will be safe, so we can cache from the free space tree now. 1204 */ 1205 clear_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags); 1206 return ret; 1207 1208 abort: 1209 clear_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags); 1210 clear_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags); 1211 btrfs_abort_transaction(trans, ret); 1212 btrfs_end_transaction(trans); 1213 return ret; 1214 } 1215 1216 static int clear_free_space_tree(struct btrfs_trans_handle *trans, 1217 struct btrfs_root *root) 1218 { 1219 struct btrfs_path *path; 1220 struct btrfs_key key; 1221 int nr; 1222 int ret; 1223 1224 path = btrfs_alloc_path(); 1225 if (!path) 1226 return -ENOMEM; 1227 1228 key.objectid = 0; 1229 key.type = 0; 1230 key.offset = 0; 1231 1232 while (1) { 1233 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1234 if (ret < 0) 1235 goto out; 1236 1237 nr = btrfs_header_nritems(path->nodes[0]); 1238 if (!nr) 1239 break; 1240 1241 path->slots[0] = 0; 1242 ret = btrfs_del_items(trans, root, path, 0, nr); 1243 if (ret) 1244 goto out; 1245 1246 btrfs_release_path(path); 1247 } 1248 1249 ret = 0; 1250 out: 1251 btrfs_free_path(path); 1252 return ret; 1253 } 1254 1255 int btrfs_delete_free_space_tree(struct btrfs_fs_info *fs_info) 1256 { 1257 struct btrfs_trans_handle *trans; 1258 struct btrfs_root *tree_root = fs_info->tree_root; 1259 struct btrfs_key key = { 1260 .objectid = BTRFS_FREE_SPACE_TREE_OBJECTID, 1261 .type = BTRFS_ROOT_ITEM_KEY, 1262 .offset = 0, 1263 }; 1264 struct btrfs_root *free_space_root = btrfs_global_root(fs_info, &key); 1265 int ret; 1266 1267 trans = btrfs_start_transaction(tree_root, 0); 1268 if (IS_ERR(trans)) 1269 return PTR_ERR(trans); 1270 1271 btrfs_clear_fs_compat_ro(fs_info, FREE_SPACE_TREE); 1272 btrfs_clear_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID); 1273 1274 ret = clear_free_space_tree(trans, free_space_root); 1275 if (ret) 1276 goto abort; 1277 1278 ret = btrfs_del_root(trans, &free_space_root->root_key); 1279 if (ret) 1280 goto abort; 1281 1282 btrfs_global_root_delete(free_space_root); 1283 1284 spin_lock(&fs_info->trans_lock); 1285 list_del(&free_space_root->dirty_list); 1286 spin_unlock(&fs_info->trans_lock); 1287 1288 btrfs_tree_lock(free_space_root->node); 1289 btrfs_clear_buffer_dirty(trans, free_space_root->node); 1290 btrfs_tree_unlock(free_space_root->node); 1291 btrfs_free_tree_block(trans, btrfs_root_id(free_space_root), 1292 free_space_root->node, 0, 1); 1293 1294 btrfs_put_root(free_space_root); 1295 1296 return btrfs_commit_transaction(trans); 1297 1298 abort: 1299 btrfs_abort_transaction(trans, ret); 1300 btrfs_end_transaction(trans); 1301 return ret; 1302 } 1303 1304 int btrfs_rebuild_free_space_tree(struct btrfs_fs_info *fs_info) 1305 { 1306 struct btrfs_trans_handle *trans; 1307 struct btrfs_key key = { 1308 .objectid = BTRFS_FREE_SPACE_TREE_OBJECTID, 1309 .type = BTRFS_ROOT_ITEM_KEY, 1310 .offset = 0, 1311 }; 1312 struct btrfs_root *free_space_root = btrfs_global_root(fs_info, &key); 1313 struct rb_node *node; 1314 int ret; 1315 1316 trans = btrfs_start_transaction(free_space_root, 1); 1317 if (IS_ERR(trans)) 1318 return PTR_ERR(trans); 1319 1320 set_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags); 1321 set_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags); 1322 1323 ret = clear_free_space_tree(trans, free_space_root); 1324 if (ret) 1325 goto abort; 1326 1327 node = rb_first_cached(&fs_info->block_group_cache_tree); 1328 while (node) { 1329 struct btrfs_block_group *block_group; 1330 1331 block_group = rb_entry(node, struct btrfs_block_group, 1332 cache_node); 1333 ret = populate_free_space_tree(trans, block_group); 1334 if (ret) 1335 goto abort; 1336 node = rb_next(node); 1337 } 1338 1339 btrfs_set_fs_compat_ro(fs_info, FREE_SPACE_TREE); 1340 btrfs_set_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID); 1341 clear_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags); 1342 1343 ret = btrfs_commit_transaction(trans); 1344 clear_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags); 1345 return ret; 1346 abort: 1347 btrfs_abort_transaction(trans, ret); 1348 btrfs_end_transaction(trans); 1349 return ret; 1350 } 1351 1352 static int __add_block_group_free_space(struct btrfs_trans_handle *trans, 1353 struct btrfs_block_group *block_group, 1354 struct btrfs_path *path) 1355 { 1356 int ret; 1357 1358 clear_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &block_group->runtime_flags); 1359 1360 ret = add_new_free_space_info(trans, block_group, path); 1361 if (ret) 1362 return ret; 1363 1364 return __add_to_free_space_tree(trans, block_group, path, 1365 block_group->start, 1366 block_group->length); 1367 } 1368 1369 int add_block_group_free_space(struct btrfs_trans_handle *trans, 1370 struct btrfs_block_group *block_group) 1371 { 1372 struct btrfs_fs_info *fs_info = trans->fs_info; 1373 struct btrfs_path *path = NULL; 1374 int ret = 0; 1375 1376 if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 1377 return 0; 1378 1379 mutex_lock(&block_group->free_space_lock); 1380 if (!test_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &block_group->runtime_flags)) 1381 goto out; 1382 1383 path = btrfs_alloc_path(); 1384 if (!path) { 1385 ret = -ENOMEM; 1386 goto out; 1387 } 1388 1389 ret = __add_block_group_free_space(trans, block_group, path); 1390 1391 out: 1392 btrfs_free_path(path); 1393 mutex_unlock(&block_group->free_space_lock); 1394 if (ret) 1395 btrfs_abort_transaction(trans, ret); 1396 return ret; 1397 } 1398 1399 int remove_block_group_free_space(struct btrfs_trans_handle *trans, 1400 struct btrfs_block_group *block_group) 1401 { 1402 struct btrfs_root *root = btrfs_free_space_root(block_group); 1403 struct btrfs_path *path; 1404 struct btrfs_key key, found_key; 1405 struct extent_buffer *leaf; 1406 u64 start, end; 1407 int done = 0, nr; 1408 int ret; 1409 1410 if (!btrfs_fs_compat_ro(trans->fs_info, FREE_SPACE_TREE)) 1411 return 0; 1412 1413 if (test_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &block_group->runtime_flags)) { 1414 /* We never added this block group to the free space tree. */ 1415 return 0; 1416 } 1417 1418 path = btrfs_alloc_path(); 1419 if (!path) { 1420 ret = -ENOMEM; 1421 goto out; 1422 } 1423 1424 start = block_group->start; 1425 end = block_group->start + block_group->length; 1426 1427 key.objectid = end - 1; 1428 key.type = (u8)-1; 1429 key.offset = (u64)-1; 1430 1431 while (!done) { 1432 ret = btrfs_search_prev_slot(trans, root, &key, path, -1, 1); 1433 if (ret) 1434 goto out; 1435 1436 leaf = path->nodes[0]; 1437 nr = 0; 1438 path->slots[0]++; 1439 while (path->slots[0] > 0) { 1440 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0] - 1); 1441 1442 if (found_key.type == BTRFS_FREE_SPACE_INFO_KEY) { 1443 ASSERT(found_key.objectid == block_group->start); 1444 ASSERT(found_key.offset == block_group->length); 1445 done = 1; 1446 nr++; 1447 path->slots[0]--; 1448 break; 1449 } else if (found_key.type == BTRFS_FREE_SPACE_EXTENT_KEY || 1450 found_key.type == BTRFS_FREE_SPACE_BITMAP_KEY) { 1451 ASSERT(found_key.objectid >= start); 1452 ASSERT(found_key.objectid < end); 1453 ASSERT(found_key.objectid + found_key.offset <= end); 1454 nr++; 1455 path->slots[0]--; 1456 } else { 1457 ASSERT(0); 1458 } 1459 } 1460 1461 ret = btrfs_del_items(trans, root, path, path->slots[0], nr); 1462 if (ret) 1463 goto out; 1464 btrfs_release_path(path); 1465 } 1466 1467 ret = 0; 1468 out: 1469 btrfs_free_path(path); 1470 if (ret) 1471 btrfs_abort_transaction(trans, ret); 1472 return ret; 1473 } 1474 1475 static int load_free_space_bitmaps(struct btrfs_caching_control *caching_ctl, 1476 struct btrfs_path *path, 1477 u32 expected_extent_count) 1478 { 1479 struct btrfs_block_group *block_group; 1480 struct btrfs_fs_info *fs_info; 1481 struct btrfs_root *root; 1482 struct btrfs_key key; 1483 int prev_bit = 0, bit; 1484 /* Initialize to silence GCC. */ 1485 u64 extent_start = 0; 1486 u64 end, offset; 1487 u64 total_found = 0; 1488 u32 extent_count = 0; 1489 int ret; 1490 1491 block_group = caching_ctl->block_group; 1492 fs_info = block_group->fs_info; 1493 root = btrfs_free_space_root(block_group); 1494 1495 end = block_group->start + block_group->length; 1496 1497 while (1) { 1498 ret = btrfs_next_item(root, path); 1499 if (ret < 0) 1500 goto out; 1501 if (ret) 1502 break; 1503 1504 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1505 1506 if (key.type == BTRFS_FREE_SPACE_INFO_KEY) 1507 break; 1508 1509 ASSERT(key.type == BTRFS_FREE_SPACE_BITMAP_KEY); 1510 ASSERT(key.objectid < end && key.objectid + key.offset <= end); 1511 1512 offset = key.objectid; 1513 while (offset < key.objectid + key.offset) { 1514 bit = free_space_test_bit(block_group, path, offset); 1515 if (prev_bit == 0 && bit == 1) { 1516 extent_start = offset; 1517 } else if (prev_bit == 1 && bit == 0) { 1518 total_found += add_new_free_space(block_group, 1519 extent_start, 1520 offset); 1521 if (total_found > CACHING_CTL_WAKE_UP) { 1522 total_found = 0; 1523 wake_up(&caching_ctl->wait); 1524 } 1525 extent_count++; 1526 } 1527 prev_bit = bit; 1528 offset += fs_info->sectorsize; 1529 } 1530 } 1531 if (prev_bit == 1) { 1532 total_found += add_new_free_space(block_group, extent_start, 1533 end); 1534 extent_count++; 1535 } 1536 1537 if (extent_count != expected_extent_count) { 1538 btrfs_err(fs_info, 1539 "incorrect extent count for %llu; counted %u, expected %u", 1540 block_group->start, extent_count, 1541 expected_extent_count); 1542 ASSERT(0); 1543 ret = -EIO; 1544 goto out; 1545 } 1546 1547 ret = 0; 1548 out: 1549 return ret; 1550 } 1551 1552 static int load_free_space_extents(struct btrfs_caching_control *caching_ctl, 1553 struct btrfs_path *path, 1554 u32 expected_extent_count) 1555 { 1556 struct btrfs_block_group *block_group; 1557 struct btrfs_fs_info *fs_info; 1558 struct btrfs_root *root; 1559 struct btrfs_key key; 1560 u64 end; 1561 u64 total_found = 0; 1562 u32 extent_count = 0; 1563 int ret; 1564 1565 block_group = caching_ctl->block_group; 1566 fs_info = block_group->fs_info; 1567 root = btrfs_free_space_root(block_group); 1568 1569 end = block_group->start + block_group->length; 1570 1571 while (1) { 1572 ret = btrfs_next_item(root, path); 1573 if (ret < 0) 1574 goto out; 1575 if (ret) 1576 break; 1577 1578 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1579 1580 if (key.type == BTRFS_FREE_SPACE_INFO_KEY) 1581 break; 1582 1583 ASSERT(key.type == BTRFS_FREE_SPACE_EXTENT_KEY); 1584 ASSERT(key.objectid < end && key.objectid + key.offset <= end); 1585 1586 total_found += add_new_free_space(block_group, key.objectid, 1587 key.objectid + key.offset); 1588 if (total_found > CACHING_CTL_WAKE_UP) { 1589 total_found = 0; 1590 wake_up(&caching_ctl->wait); 1591 } 1592 extent_count++; 1593 } 1594 1595 if (extent_count != expected_extent_count) { 1596 btrfs_err(fs_info, 1597 "incorrect extent count for %llu; counted %u, expected %u", 1598 block_group->start, extent_count, 1599 expected_extent_count); 1600 ASSERT(0); 1601 ret = -EIO; 1602 goto out; 1603 } 1604 1605 ret = 0; 1606 out: 1607 return ret; 1608 } 1609 1610 int load_free_space_tree(struct btrfs_caching_control *caching_ctl) 1611 { 1612 struct btrfs_block_group *block_group; 1613 struct btrfs_free_space_info *info; 1614 struct btrfs_path *path; 1615 u32 extent_count, flags; 1616 int ret; 1617 1618 block_group = caching_ctl->block_group; 1619 1620 path = btrfs_alloc_path(); 1621 if (!path) 1622 return -ENOMEM; 1623 1624 /* 1625 * Just like caching_thread() doesn't want to deadlock on the extent 1626 * tree, we don't want to deadlock on the free space tree. 1627 */ 1628 path->skip_locking = 1; 1629 path->search_commit_root = 1; 1630 path->reada = READA_FORWARD; 1631 1632 info = search_free_space_info(NULL, block_group, path, 0); 1633 if (IS_ERR(info)) { 1634 ret = PTR_ERR(info); 1635 goto out; 1636 } 1637 extent_count = btrfs_free_space_extent_count(path->nodes[0], info); 1638 flags = btrfs_free_space_flags(path->nodes[0], info); 1639 1640 /* 1641 * We left path pointing to the free space info item, so now 1642 * load_free_space_foo can just iterate through the free space tree from 1643 * there. 1644 */ 1645 if (flags & BTRFS_FREE_SPACE_USING_BITMAPS) 1646 ret = load_free_space_bitmaps(caching_ctl, path, extent_count); 1647 else 1648 ret = load_free_space_extents(caching_ctl, path, extent_count); 1649 1650 out: 1651 btrfs_free_path(path); 1652 return ret; 1653 } 1654