1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "print-tree.h" 24 #include "locking.h" 25 26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 27 *root, struct btrfs_path *path, int level); 28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_key *ins_key, 30 struct btrfs_path *path, int data_size, int extend); 31 static int push_node_left(struct btrfs_trans_handle *trans, 32 struct btrfs_root *root, struct extent_buffer *dst, 33 struct extent_buffer *src, int empty); 34 static int balance_node_right(struct btrfs_trans_handle *trans, 35 struct btrfs_root *root, 36 struct extent_buffer *dst_buf, 37 struct extent_buffer *src_buf); 38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 39 struct btrfs_path *path, int level, int slot); 40 41 struct btrfs_path *btrfs_alloc_path(void) 42 { 43 struct btrfs_path *path; 44 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 45 if (path) 46 path->reada = 1; 47 return path; 48 } 49 50 /* 51 * set all locked nodes in the path to blocking locks. This should 52 * be done before scheduling 53 */ 54 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 55 { 56 int i; 57 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 58 if (p->nodes[i] && p->locks[i]) 59 btrfs_set_lock_blocking(p->nodes[i]); 60 } 61 } 62 63 /* 64 * reset all the locked nodes in the patch to spinning locks. 65 * 66 * held is used to keep lockdep happy, when lockdep is enabled 67 * we set held to a blocking lock before we go around and 68 * retake all the spinlocks in the path. You can safely use NULL 69 * for held 70 */ 71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 72 struct extent_buffer *held) 73 { 74 int i; 75 76 #ifdef CONFIG_DEBUG_LOCK_ALLOC 77 /* lockdep really cares that we take all of these spinlocks 78 * in the right order. If any of the locks in the path are not 79 * currently blocking, it is going to complain. So, make really 80 * really sure by forcing the path to blocking before we clear 81 * the path blocking. 82 */ 83 if (held) 84 btrfs_set_lock_blocking(held); 85 btrfs_set_path_blocking(p); 86 #endif 87 88 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 89 if (p->nodes[i] && p->locks[i]) 90 btrfs_clear_lock_blocking(p->nodes[i]); 91 } 92 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 if (held) 95 btrfs_clear_lock_blocking(held); 96 #endif 97 } 98 99 /* this also releases the path */ 100 void btrfs_free_path(struct btrfs_path *p) 101 { 102 btrfs_release_path(NULL, p); 103 kmem_cache_free(btrfs_path_cachep, p); 104 } 105 106 /* 107 * path release drops references on the extent buffers in the path 108 * and it drops any locks held by this path 109 * 110 * It is safe to call this on paths that no locks or extent buffers held. 111 */ 112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) 113 { 114 int i; 115 116 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 117 p->slots[i] = 0; 118 if (!p->nodes[i]) 119 continue; 120 if (p->locks[i]) { 121 btrfs_tree_unlock(p->nodes[i]); 122 p->locks[i] = 0; 123 } 124 free_extent_buffer(p->nodes[i]); 125 p->nodes[i] = NULL; 126 } 127 } 128 129 /* 130 * safely gets a reference on the root node of a tree. A lock 131 * is not taken, so a concurrent writer may put a different node 132 * at the root of the tree. See btrfs_lock_root_node for the 133 * looping required. 134 * 135 * The extent buffer returned by this has a reference taken, so 136 * it won't disappear. It may stop being the root of the tree 137 * at any time because there are no locks held. 138 */ 139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 140 { 141 struct extent_buffer *eb; 142 spin_lock(&root->node_lock); 143 eb = root->node; 144 extent_buffer_get(eb); 145 spin_unlock(&root->node_lock); 146 return eb; 147 } 148 149 /* loop around taking references on and locking the root node of the 150 * tree until you end up with a lock on the root. A locked buffer 151 * is returned, with a reference held. 152 */ 153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 154 { 155 struct extent_buffer *eb; 156 157 while (1) { 158 eb = btrfs_root_node(root); 159 btrfs_tree_lock(eb); 160 161 spin_lock(&root->node_lock); 162 if (eb == root->node) { 163 spin_unlock(&root->node_lock); 164 break; 165 } 166 spin_unlock(&root->node_lock); 167 168 btrfs_tree_unlock(eb); 169 free_extent_buffer(eb); 170 } 171 return eb; 172 } 173 174 /* cowonly root (everything not a reference counted cow subvolume), just get 175 * put onto a simple dirty list. transaction.c walks this to make sure they 176 * get properly updated on disk. 177 */ 178 static void add_root_to_dirty_list(struct btrfs_root *root) 179 { 180 if (root->track_dirty && list_empty(&root->dirty_list)) { 181 list_add(&root->dirty_list, 182 &root->fs_info->dirty_cowonly_roots); 183 } 184 } 185 186 /* 187 * used by snapshot creation to make a copy of a root for a tree with 188 * a given objectid. The buffer with the new root node is returned in 189 * cow_ret, and this func returns zero on success or a negative error code. 190 */ 191 int btrfs_copy_root(struct btrfs_trans_handle *trans, 192 struct btrfs_root *root, 193 struct extent_buffer *buf, 194 struct extent_buffer **cow_ret, u64 new_root_objectid) 195 { 196 struct extent_buffer *cow; 197 u32 nritems; 198 int ret = 0; 199 int level; 200 struct btrfs_disk_key disk_key; 201 202 WARN_ON(root->ref_cows && trans->transid != 203 root->fs_info->running_transaction->transid); 204 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 205 206 level = btrfs_header_level(buf); 207 nritems = btrfs_header_nritems(buf); 208 if (level == 0) 209 btrfs_item_key(buf, &disk_key, 0); 210 else 211 btrfs_node_key(buf, &disk_key, 0); 212 213 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 214 new_root_objectid, &disk_key, level, 215 buf->start, 0); 216 if (IS_ERR(cow)) 217 return PTR_ERR(cow); 218 219 copy_extent_buffer(cow, buf, 0, 0, cow->len); 220 btrfs_set_header_bytenr(cow, cow->start); 221 btrfs_set_header_generation(cow, trans->transid); 222 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 223 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 224 BTRFS_HEADER_FLAG_RELOC); 225 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 226 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 227 else 228 btrfs_set_header_owner(cow, new_root_objectid); 229 230 write_extent_buffer(cow, root->fs_info->fsid, 231 (unsigned long)btrfs_header_fsid(cow), 232 BTRFS_FSID_SIZE); 233 234 WARN_ON(btrfs_header_generation(buf) > trans->transid); 235 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 236 ret = btrfs_inc_ref(trans, root, cow, 1); 237 else 238 ret = btrfs_inc_ref(trans, root, cow, 0); 239 240 if (ret) 241 return ret; 242 243 btrfs_mark_buffer_dirty(cow); 244 *cow_ret = cow; 245 return 0; 246 } 247 248 /* 249 * check if the tree block can be shared by multiple trees 250 */ 251 int btrfs_block_can_be_shared(struct btrfs_root *root, 252 struct extent_buffer *buf) 253 { 254 /* 255 * Tree blocks not in refernece counted trees and tree roots 256 * are never shared. If a block was allocated after the last 257 * snapshot and the block was not allocated by tree relocation, 258 * we know the block is not shared. 259 */ 260 if (root->ref_cows && 261 buf != root->node && buf != root->commit_root && 262 (btrfs_header_generation(buf) <= 263 btrfs_root_last_snapshot(&root->root_item) || 264 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 265 return 1; 266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 267 if (root->ref_cows && 268 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 269 return 1; 270 #endif 271 return 0; 272 } 273 274 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 275 struct btrfs_root *root, 276 struct extent_buffer *buf, 277 struct extent_buffer *cow) 278 { 279 u64 refs; 280 u64 owner; 281 u64 flags; 282 u64 new_flags = 0; 283 int ret; 284 285 /* 286 * Backrefs update rules: 287 * 288 * Always use full backrefs for extent pointers in tree block 289 * allocated by tree relocation. 290 * 291 * If a shared tree block is no longer referenced by its owner 292 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 293 * use full backrefs for extent pointers in tree block. 294 * 295 * If a tree block is been relocating 296 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 297 * use full backrefs for extent pointers in tree block. 298 * The reason for this is some operations (such as drop tree) 299 * are only allowed for blocks use full backrefs. 300 */ 301 302 if (btrfs_block_can_be_shared(root, buf)) { 303 ret = btrfs_lookup_extent_info(trans, root, buf->start, 304 buf->len, &refs, &flags); 305 BUG_ON(ret); 306 BUG_ON(refs == 0); 307 } else { 308 refs = 1; 309 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 310 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 311 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 312 else 313 flags = 0; 314 } 315 316 owner = btrfs_header_owner(buf); 317 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 318 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 319 320 if (refs > 1) { 321 if ((owner == root->root_key.objectid || 322 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 323 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 324 ret = btrfs_inc_ref(trans, root, buf, 1); 325 BUG_ON(ret); 326 327 if (root->root_key.objectid == 328 BTRFS_TREE_RELOC_OBJECTID) { 329 ret = btrfs_dec_ref(trans, root, buf, 0); 330 BUG_ON(ret); 331 ret = btrfs_inc_ref(trans, root, cow, 1); 332 BUG_ON(ret); 333 } 334 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 335 } else { 336 337 if (root->root_key.objectid == 338 BTRFS_TREE_RELOC_OBJECTID) 339 ret = btrfs_inc_ref(trans, root, cow, 1); 340 else 341 ret = btrfs_inc_ref(trans, root, cow, 0); 342 BUG_ON(ret); 343 } 344 if (new_flags != 0) { 345 ret = btrfs_set_disk_extent_flags(trans, root, 346 buf->start, 347 buf->len, 348 new_flags, 0); 349 BUG_ON(ret); 350 } 351 } else { 352 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 353 if (root->root_key.objectid == 354 BTRFS_TREE_RELOC_OBJECTID) 355 ret = btrfs_inc_ref(trans, root, cow, 1); 356 else 357 ret = btrfs_inc_ref(trans, root, cow, 0); 358 BUG_ON(ret); 359 ret = btrfs_dec_ref(trans, root, buf, 1); 360 BUG_ON(ret); 361 } 362 clean_tree_block(trans, root, buf); 363 } 364 return 0; 365 } 366 367 /* 368 * does the dirty work in cow of a single block. The parent block (if 369 * supplied) is updated to point to the new cow copy. The new buffer is marked 370 * dirty and returned locked. If you modify the block it needs to be marked 371 * dirty again. 372 * 373 * search_start -- an allocation hint for the new block 374 * 375 * empty_size -- a hint that you plan on doing more cow. This is the size in 376 * bytes the allocator should try to find free next to the block it returns. 377 * This is just a hint and may be ignored by the allocator. 378 */ 379 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 380 struct btrfs_root *root, 381 struct extent_buffer *buf, 382 struct extent_buffer *parent, int parent_slot, 383 struct extent_buffer **cow_ret, 384 u64 search_start, u64 empty_size) 385 { 386 struct btrfs_disk_key disk_key; 387 struct extent_buffer *cow; 388 int level; 389 int unlock_orig = 0; 390 u64 parent_start; 391 392 if (*cow_ret == buf) 393 unlock_orig = 1; 394 395 btrfs_assert_tree_locked(buf); 396 397 WARN_ON(root->ref_cows && trans->transid != 398 root->fs_info->running_transaction->transid); 399 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 400 401 level = btrfs_header_level(buf); 402 403 if (level == 0) 404 btrfs_item_key(buf, &disk_key, 0); 405 else 406 btrfs_node_key(buf, &disk_key, 0); 407 408 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 409 if (parent) 410 parent_start = parent->start; 411 else 412 parent_start = 0; 413 } else 414 parent_start = 0; 415 416 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 417 root->root_key.objectid, &disk_key, 418 level, search_start, empty_size); 419 if (IS_ERR(cow)) 420 return PTR_ERR(cow); 421 422 /* cow is set to blocking by btrfs_init_new_buffer */ 423 424 copy_extent_buffer(cow, buf, 0, 0, cow->len); 425 btrfs_set_header_bytenr(cow, cow->start); 426 btrfs_set_header_generation(cow, trans->transid); 427 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 428 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 429 BTRFS_HEADER_FLAG_RELOC); 430 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 431 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 432 else 433 btrfs_set_header_owner(cow, root->root_key.objectid); 434 435 write_extent_buffer(cow, root->fs_info->fsid, 436 (unsigned long)btrfs_header_fsid(cow), 437 BTRFS_FSID_SIZE); 438 439 update_ref_for_cow(trans, root, buf, cow); 440 441 if (buf == root->node) { 442 WARN_ON(parent && parent != buf); 443 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 444 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 445 parent_start = buf->start; 446 else 447 parent_start = 0; 448 449 spin_lock(&root->node_lock); 450 root->node = cow; 451 extent_buffer_get(cow); 452 spin_unlock(&root->node_lock); 453 454 btrfs_free_extent(trans, root, buf->start, buf->len, 455 parent_start, root->root_key.objectid, 456 level, 0); 457 free_extent_buffer(buf); 458 add_root_to_dirty_list(root); 459 } else { 460 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 461 parent_start = parent->start; 462 else 463 parent_start = 0; 464 465 WARN_ON(trans->transid != btrfs_header_generation(parent)); 466 btrfs_set_node_blockptr(parent, parent_slot, 467 cow->start); 468 btrfs_set_node_ptr_generation(parent, parent_slot, 469 trans->transid); 470 btrfs_mark_buffer_dirty(parent); 471 btrfs_free_extent(trans, root, buf->start, buf->len, 472 parent_start, root->root_key.objectid, 473 level, 0); 474 } 475 if (unlock_orig) 476 btrfs_tree_unlock(buf); 477 free_extent_buffer(buf); 478 btrfs_mark_buffer_dirty(cow); 479 *cow_ret = cow; 480 return 0; 481 } 482 483 static inline int should_cow_block(struct btrfs_trans_handle *trans, 484 struct btrfs_root *root, 485 struct extent_buffer *buf) 486 { 487 if (btrfs_header_generation(buf) == trans->transid && 488 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 489 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 490 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 491 return 0; 492 return 1; 493 } 494 495 /* 496 * cows a single block, see __btrfs_cow_block for the real work. 497 * This version of it has extra checks so that a block isn't cow'd more than 498 * once per transaction, as long as it hasn't been written yet 499 */ 500 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 501 struct btrfs_root *root, struct extent_buffer *buf, 502 struct extent_buffer *parent, int parent_slot, 503 struct extent_buffer **cow_ret) 504 { 505 u64 search_start; 506 int ret; 507 508 if (trans->transaction != root->fs_info->running_transaction) { 509 printk(KERN_CRIT "trans %llu running %llu\n", 510 (unsigned long long)trans->transid, 511 (unsigned long long) 512 root->fs_info->running_transaction->transid); 513 WARN_ON(1); 514 } 515 if (trans->transid != root->fs_info->generation) { 516 printk(KERN_CRIT "trans %llu running %llu\n", 517 (unsigned long long)trans->transid, 518 (unsigned long long)root->fs_info->generation); 519 WARN_ON(1); 520 } 521 522 if (!should_cow_block(trans, root, buf)) { 523 *cow_ret = buf; 524 return 0; 525 } 526 527 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 528 529 if (parent) 530 btrfs_set_lock_blocking(parent); 531 btrfs_set_lock_blocking(buf); 532 533 ret = __btrfs_cow_block(trans, root, buf, parent, 534 parent_slot, cow_ret, search_start, 0); 535 return ret; 536 } 537 538 /* 539 * helper function for defrag to decide if two blocks pointed to by a 540 * node are actually close by 541 */ 542 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 543 { 544 if (blocknr < other && other - (blocknr + blocksize) < 32768) 545 return 1; 546 if (blocknr > other && blocknr - (other + blocksize) < 32768) 547 return 1; 548 return 0; 549 } 550 551 /* 552 * compare two keys in a memcmp fashion 553 */ 554 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 555 { 556 struct btrfs_key k1; 557 558 btrfs_disk_key_to_cpu(&k1, disk); 559 560 return btrfs_comp_cpu_keys(&k1, k2); 561 } 562 563 /* 564 * same as comp_keys only with two btrfs_key's 565 */ 566 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 567 { 568 if (k1->objectid > k2->objectid) 569 return 1; 570 if (k1->objectid < k2->objectid) 571 return -1; 572 if (k1->type > k2->type) 573 return 1; 574 if (k1->type < k2->type) 575 return -1; 576 if (k1->offset > k2->offset) 577 return 1; 578 if (k1->offset < k2->offset) 579 return -1; 580 return 0; 581 } 582 583 /* 584 * this is used by the defrag code to go through all the 585 * leaves pointed to by a node and reallocate them so that 586 * disk order is close to key order 587 */ 588 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 589 struct btrfs_root *root, struct extent_buffer *parent, 590 int start_slot, int cache_only, u64 *last_ret, 591 struct btrfs_key *progress) 592 { 593 struct extent_buffer *cur; 594 u64 blocknr; 595 u64 gen; 596 u64 search_start = *last_ret; 597 u64 last_block = 0; 598 u64 other; 599 u32 parent_nritems; 600 int end_slot; 601 int i; 602 int err = 0; 603 int parent_level; 604 int uptodate; 605 u32 blocksize; 606 int progress_passed = 0; 607 struct btrfs_disk_key disk_key; 608 609 parent_level = btrfs_header_level(parent); 610 if (cache_only && parent_level != 1) 611 return 0; 612 613 if (trans->transaction != root->fs_info->running_transaction) 614 WARN_ON(1); 615 if (trans->transid != root->fs_info->generation) 616 WARN_ON(1); 617 618 parent_nritems = btrfs_header_nritems(parent); 619 blocksize = btrfs_level_size(root, parent_level - 1); 620 end_slot = parent_nritems; 621 622 if (parent_nritems == 1) 623 return 0; 624 625 btrfs_set_lock_blocking(parent); 626 627 for (i = start_slot; i < end_slot; i++) { 628 int close = 1; 629 630 if (!parent->map_token) { 631 map_extent_buffer(parent, 632 btrfs_node_key_ptr_offset(i), 633 sizeof(struct btrfs_key_ptr), 634 &parent->map_token, &parent->kaddr, 635 &parent->map_start, &parent->map_len, 636 KM_USER1); 637 } 638 btrfs_node_key(parent, &disk_key, i); 639 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 640 continue; 641 642 progress_passed = 1; 643 blocknr = btrfs_node_blockptr(parent, i); 644 gen = btrfs_node_ptr_generation(parent, i); 645 if (last_block == 0) 646 last_block = blocknr; 647 648 if (i > 0) { 649 other = btrfs_node_blockptr(parent, i - 1); 650 close = close_blocks(blocknr, other, blocksize); 651 } 652 if (!close && i < end_slot - 2) { 653 other = btrfs_node_blockptr(parent, i + 1); 654 close = close_blocks(blocknr, other, blocksize); 655 } 656 if (close) { 657 last_block = blocknr; 658 continue; 659 } 660 if (parent->map_token) { 661 unmap_extent_buffer(parent, parent->map_token, 662 KM_USER1); 663 parent->map_token = NULL; 664 } 665 666 cur = btrfs_find_tree_block(root, blocknr, blocksize); 667 if (cur) 668 uptodate = btrfs_buffer_uptodate(cur, gen); 669 else 670 uptodate = 0; 671 if (!cur || !uptodate) { 672 if (cache_only) { 673 free_extent_buffer(cur); 674 continue; 675 } 676 if (!cur) { 677 cur = read_tree_block(root, blocknr, 678 blocksize, gen); 679 } else if (!uptodate) { 680 btrfs_read_buffer(cur, gen); 681 } 682 } 683 if (search_start == 0) 684 search_start = last_block; 685 686 btrfs_tree_lock(cur); 687 btrfs_set_lock_blocking(cur); 688 err = __btrfs_cow_block(trans, root, cur, parent, i, 689 &cur, search_start, 690 min(16 * blocksize, 691 (end_slot - i) * blocksize)); 692 if (err) { 693 btrfs_tree_unlock(cur); 694 free_extent_buffer(cur); 695 break; 696 } 697 search_start = cur->start; 698 last_block = cur->start; 699 *last_ret = search_start; 700 btrfs_tree_unlock(cur); 701 free_extent_buffer(cur); 702 } 703 if (parent->map_token) { 704 unmap_extent_buffer(parent, parent->map_token, 705 KM_USER1); 706 parent->map_token = NULL; 707 } 708 return err; 709 } 710 711 /* 712 * The leaf data grows from end-to-front in the node. 713 * this returns the address of the start of the last item, 714 * which is the stop of the leaf data stack 715 */ 716 static inline unsigned int leaf_data_end(struct btrfs_root *root, 717 struct extent_buffer *leaf) 718 { 719 u32 nr = btrfs_header_nritems(leaf); 720 if (nr == 0) 721 return BTRFS_LEAF_DATA_SIZE(root); 722 return btrfs_item_offset_nr(leaf, nr - 1); 723 } 724 725 /* 726 * extra debugging checks to make sure all the items in a key are 727 * well formed and in the proper order 728 */ 729 static int check_node(struct btrfs_root *root, struct btrfs_path *path, 730 int level) 731 { 732 struct extent_buffer *parent = NULL; 733 struct extent_buffer *node = path->nodes[level]; 734 struct btrfs_disk_key parent_key; 735 struct btrfs_disk_key node_key; 736 int parent_slot; 737 int slot; 738 struct btrfs_key cpukey; 739 u32 nritems = btrfs_header_nritems(node); 740 741 if (path->nodes[level + 1]) 742 parent = path->nodes[level + 1]; 743 744 slot = path->slots[level]; 745 BUG_ON(nritems == 0); 746 if (parent) { 747 parent_slot = path->slots[level + 1]; 748 btrfs_node_key(parent, &parent_key, parent_slot); 749 btrfs_node_key(node, &node_key, 0); 750 BUG_ON(memcmp(&parent_key, &node_key, 751 sizeof(struct btrfs_disk_key))); 752 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 753 btrfs_header_bytenr(node)); 754 } 755 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); 756 if (slot != 0) { 757 btrfs_node_key_to_cpu(node, &cpukey, slot - 1); 758 btrfs_node_key(node, &node_key, slot); 759 BUG_ON(comp_keys(&node_key, &cpukey) <= 0); 760 } 761 if (slot < nritems - 1) { 762 btrfs_node_key_to_cpu(node, &cpukey, slot + 1); 763 btrfs_node_key(node, &node_key, slot); 764 BUG_ON(comp_keys(&node_key, &cpukey) >= 0); 765 } 766 return 0; 767 } 768 769 /* 770 * extra checking to make sure all the items in a leaf are 771 * well formed and in the proper order 772 */ 773 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, 774 int level) 775 { 776 struct extent_buffer *leaf = path->nodes[level]; 777 struct extent_buffer *parent = NULL; 778 int parent_slot; 779 struct btrfs_key cpukey; 780 struct btrfs_disk_key parent_key; 781 struct btrfs_disk_key leaf_key; 782 int slot = path->slots[0]; 783 784 u32 nritems = btrfs_header_nritems(leaf); 785 786 if (path->nodes[level + 1]) 787 parent = path->nodes[level + 1]; 788 789 if (nritems == 0) 790 return 0; 791 792 if (parent) { 793 parent_slot = path->slots[level + 1]; 794 btrfs_node_key(parent, &parent_key, parent_slot); 795 btrfs_item_key(leaf, &leaf_key, 0); 796 797 BUG_ON(memcmp(&parent_key, &leaf_key, 798 sizeof(struct btrfs_disk_key))); 799 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 800 btrfs_header_bytenr(leaf)); 801 } 802 if (slot != 0 && slot < nritems - 1) { 803 btrfs_item_key(leaf, &leaf_key, slot); 804 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); 805 if (comp_keys(&leaf_key, &cpukey) <= 0) { 806 btrfs_print_leaf(root, leaf); 807 printk(KERN_CRIT "slot %d offset bad key\n", slot); 808 BUG_ON(1); 809 } 810 if (btrfs_item_offset_nr(leaf, slot - 1) != 811 btrfs_item_end_nr(leaf, slot)) { 812 btrfs_print_leaf(root, leaf); 813 printk(KERN_CRIT "slot %d offset bad\n", slot); 814 BUG_ON(1); 815 } 816 } 817 if (slot < nritems - 1) { 818 btrfs_item_key(leaf, &leaf_key, slot); 819 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); 820 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); 821 if (btrfs_item_offset_nr(leaf, slot) != 822 btrfs_item_end_nr(leaf, slot + 1)) { 823 btrfs_print_leaf(root, leaf); 824 printk(KERN_CRIT "slot %d offset bad\n", slot); 825 BUG_ON(1); 826 } 827 } 828 BUG_ON(btrfs_item_offset_nr(leaf, 0) + 829 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); 830 return 0; 831 } 832 833 static noinline int check_block(struct btrfs_root *root, 834 struct btrfs_path *path, int level) 835 { 836 return 0; 837 if (level == 0) 838 return check_leaf(root, path, level); 839 return check_node(root, path, level); 840 } 841 842 /* 843 * search for key in the extent_buffer. The items start at offset p, 844 * and they are item_size apart. There are 'max' items in p. 845 * 846 * the slot in the array is returned via slot, and it points to 847 * the place where you would insert key if it is not found in 848 * the array. 849 * 850 * slot may point to max if the key is bigger than all of the keys 851 */ 852 static noinline int generic_bin_search(struct extent_buffer *eb, 853 unsigned long p, 854 int item_size, struct btrfs_key *key, 855 int max, int *slot) 856 { 857 int low = 0; 858 int high = max; 859 int mid; 860 int ret; 861 struct btrfs_disk_key *tmp = NULL; 862 struct btrfs_disk_key unaligned; 863 unsigned long offset; 864 char *map_token = NULL; 865 char *kaddr = NULL; 866 unsigned long map_start = 0; 867 unsigned long map_len = 0; 868 int err; 869 870 while (low < high) { 871 mid = (low + high) / 2; 872 offset = p + mid * item_size; 873 874 if (!map_token || offset < map_start || 875 (offset + sizeof(struct btrfs_disk_key)) > 876 map_start + map_len) { 877 if (map_token) { 878 unmap_extent_buffer(eb, map_token, KM_USER0); 879 map_token = NULL; 880 } 881 882 err = map_private_extent_buffer(eb, offset, 883 sizeof(struct btrfs_disk_key), 884 &map_token, &kaddr, 885 &map_start, &map_len, KM_USER0); 886 887 if (!err) { 888 tmp = (struct btrfs_disk_key *)(kaddr + offset - 889 map_start); 890 } else { 891 read_extent_buffer(eb, &unaligned, 892 offset, sizeof(unaligned)); 893 tmp = &unaligned; 894 } 895 896 } else { 897 tmp = (struct btrfs_disk_key *)(kaddr + offset - 898 map_start); 899 } 900 ret = comp_keys(tmp, key); 901 902 if (ret < 0) 903 low = mid + 1; 904 else if (ret > 0) 905 high = mid; 906 else { 907 *slot = mid; 908 if (map_token) 909 unmap_extent_buffer(eb, map_token, KM_USER0); 910 return 0; 911 } 912 } 913 *slot = low; 914 if (map_token) 915 unmap_extent_buffer(eb, map_token, KM_USER0); 916 return 1; 917 } 918 919 /* 920 * simple bin_search frontend that does the right thing for 921 * leaves vs nodes 922 */ 923 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 924 int level, int *slot) 925 { 926 if (level == 0) { 927 return generic_bin_search(eb, 928 offsetof(struct btrfs_leaf, items), 929 sizeof(struct btrfs_item), 930 key, btrfs_header_nritems(eb), 931 slot); 932 } else { 933 return generic_bin_search(eb, 934 offsetof(struct btrfs_node, ptrs), 935 sizeof(struct btrfs_key_ptr), 936 key, btrfs_header_nritems(eb), 937 slot); 938 } 939 return -1; 940 } 941 942 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 943 int level, int *slot) 944 { 945 return bin_search(eb, key, level, slot); 946 } 947 948 /* given a node and slot number, this reads the blocks it points to. The 949 * extent buffer is returned with a reference taken (but unlocked). 950 * NULL is returned on error. 951 */ 952 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 953 struct extent_buffer *parent, int slot) 954 { 955 int level = btrfs_header_level(parent); 956 if (slot < 0) 957 return NULL; 958 if (slot >= btrfs_header_nritems(parent)) 959 return NULL; 960 961 BUG_ON(level == 0); 962 963 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 964 btrfs_level_size(root, level - 1), 965 btrfs_node_ptr_generation(parent, slot)); 966 } 967 968 /* 969 * node level balancing, used to make sure nodes are in proper order for 970 * item deletion. We balance from the top down, so we have to make sure 971 * that a deletion won't leave an node completely empty later on. 972 */ 973 static noinline int balance_level(struct btrfs_trans_handle *trans, 974 struct btrfs_root *root, 975 struct btrfs_path *path, int level) 976 { 977 struct extent_buffer *right = NULL; 978 struct extent_buffer *mid; 979 struct extent_buffer *left = NULL; 980 struct extent_buffer *parent = NULL; 981 int ret = 0; 982 int wret; 983 int pslot; 984 int orig_slot = path->slots[level]; 985 int err_on_enospc = 0; 986 u64 orig_ptr; 987 988 if (level == 0) 989 return 0; 990 991 mid = path->nodes[level]; 992 993 WARN_ON(!path->locks[level]); 994 WARN_ON(btrfs_header_generation(mid) != trans->transid); 995 996 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 997 998 if (level < BTRFS_MAX_LEVEL - 1) 999 parent = path->nodes[level + 1]; 1000 pslot = path->slots[level + 1]; 1001 1002 /* 1003 * deal with the case where there is only one pointer in the root 1004 * by promoting the node below to a root 1005 */ 1006 if (!parent) { 1007 struct extent_buffer *child; 1008 1009 if (btrfs_header_nritems(mid) != 1) 1010 return 0; 1011 1012 /* promote the child to a root */ 1013 child = read_node_slot(root, mid, 0); 1014 BUG_ON(!child); 1015 btrfs_tree_lock(child); 1016 btrfs_set_lock_blocking(child); 1017 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1018 BUG_ON(ret); 1019 1020 spin_lock(&root->node_lock); 1021 root->node = child; 1022 spin_unlock(&root->node_lock); 1023 1024 add_root_to_dirty_list(root); 1025 btrfs_tree_unlock(child); 1026 1027 path->locks[level] = 0; 1028 path->nodes[level] = NULL; 1029 clean_tree_block(trans, root, mid); 1030 btrfs_tree_unlock(mid); 1031 /* once for the path */ 1032 free_extent_buffer(mid); 1033 ret = btrfs_free_extent(trans, root, mid->start, mid->len, 1034 0, root->root_key.objectid, level, 1); 1035 /* once for the root ptr */ 1036 free_extent_buffer(mid); 1037 return ret; 1038 } 1039 if (btrfs_header_nritems(mid) > 1040 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1041 return 0; 1042 1043 if (btrfs_header_nritems(mid) < 2) 1044 err_on_enospc = 1; 1045 1046 left = read_node_slot(root, parent, pslot - 1); 1047 if (left) { 1048 btrfs_tree_lock(left); 1049 btrfs_set_lock_blocking(left); 1050 wret = btrfs_cow_block(trans, root, left, 1051 parent, pslot - 1, &left); 1052 if (wret) { 1053 ret = wret; 1054 goto enospc; 1055 } 1056 } 1057 right = read_node_slot(root, parent, pslot + 1); 1058 if (right) { 1059 btrfs_tree_lock(right); 1060 btrfs_set_lock_blocking(right); 1061 wret = btrfs_cow_block(trans, root, right, 1062 parent, pslot + 1, &right); 1063 if (wret) { 1064 ret = wret; 1065 goto enospc; 1066 } 1067 } 1068 1069 /* first, try to make some room in the middle buffer */ 1070 if (left) { 1071 orig_slot += btrfs_header_nritems(left); 1072 wret = push_node_left(trans, root, left, mid, 1); 1073 if (wret < 0) 1074 ret = wret; 1075 if (btrfs_header_nritems(mid) < 2) 1076 err_on_enospc = 1; 1077 } 1078 1079 /* 1080 * then try to empty the right most buffer into the middle 1081 */ 1082 if (right) { 1083 wret = push_node_left(trans, root, mid, right, 1); 1084 if (wret < 0 && wret != -ENOSPC) 1085 ret = wret; 1086 if (btrfs_header_nritems(right) == 0) { 1087 u64 bytenr = right->start; 1088 u32 blocksize = right->len; 1089 1090 clean_tree_block(trans, root, right); 1091 btrfs_tree_unlock(right); 1092 free_extent_buffer(right); 1093 right = NULL; 1094 wret = del_ptr(trans, root, path, level + 1, pslot + 1095 1); 1096 if (wret) 1097 ret = wret; 1098 wret = btrfs_free_extent(trans, root, bytenr, 1099 blocksize, 0, 1100 root->root_key.objectid, 1101 level, 0); 1102 if (wret) 1103 ret = wret; 1104 } else { 1105 struct btrfs_disk_key right_key; 1106 btrfs_node_key(right, &right_key, 0); 1107 btrfs_set_node_key(parent, &right_key, pslot + 1); 1108 btrfs_mark_buffer_dirty(parent); 1109 } 1110 } 1111 if (btrfs_header_nritems(mid) == 1) { 1112 /* 1113 * we're not allowed to leave a node with one item in the 1114 * tree during a delete. A deletion from lower in the tree 1115 * could try to delete the only pointer in this node. 1116 * So, pull some keys from the left. 1117 * There has to be a left pointer at this point because 1118 * otherwise we would have pulled some pointers from the 1119 * right 1120 */ 1121 BUG_ON(!left); 1122 wret = balance_node_right(trans, root, mid, left); 1123 if (wret < 0) { 1124 ret = wret; 1125 goto enospc; 1126 } 1127 if (wret == 1) { 1128 wret = push_node_left(trans, root, left, mid, 1); 1129 if (wret < 0) 1130 ret = wret; 1131 } 1132 BUG_ON(wret == 1); 1133 } 1134 if (btrfs_header_nritems(mid) == 0) { 1135 /* we've managed to empty the middle node, drop it */ 1136 u64 bytenr = mid->start; 1137 u32 blocksize = mid->len; 1138 1139 clean_tree_block(trans, root, mid); 1140 btrfs_tree_unlock(mid); 1141 free_extent_buffer(mid); 1142 mid = NULL; 1143 wret = del_ptr(trans, root, path, level + 1, pslot); 1144 if (wret) 1145 ret = wret; 1146 wret = btrfs_free_extent(trans, root, bytenr, blocksize, 1147 0, root->root_key.objectid, 1148 level, 0); 1149 if (wret) 1150 ret = wret; 1151 } else { 1152 /* update the parent key to reflect our changes */ 1153 struct btrfs_disk_key mid_key; 1154 btrfs_node_key(mid, &mid_key, 0); 1155 btrfs_set_node_key(parent, &mid_key, pslot); 1156 btrfs_mark_buffer_dirty(parent); 1157 } 1158 1159 /* update the path */ 1160 if (left) { 1161 if (btrfs_header_nritems(left) > orig_slot) { 1162 extent_buffer_get(left); 1163 /* left was locked after cow */ 1164 path->nodes[level] = left; 1165 path->slots[level + 1] -= 1; 1166 path->slots[level] = orig_slot; 1167 if (mid) { 1168 btrfs_tree_unlock(mid); 1169 free_extent_buffer(mid); 1170 } 1171 } else { 1172 orig_slot -= btrfs_header_nritems(left); 1173 path->slots[level] = orig_slot; 1174 } 1175 } 1176 /* double check we haven't messed things up */ 1177 check_block(root, path, level); 1178 if (orig_ptr != 1179 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1180 BUG(); 1181 enospc: 1182 if (right) { 1183 btrfs_tree_unlock(right); 1184 free_extent_buffer(right); 1185 } 1186 if (left) { 1187 if (path->nodes[level] != left) 1188 btrfs_tree_unlock(left); 1189 free_extent_buffer(left); 1190 } 1191 return ret; 1192 } 1193 1194 /* Node balancing for insertion. Here we only split or push nodes around 1195 * when they are completely full. This is also done top down, so we 1196 * have to be pessimistic. 1197 */ 1198 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1199 struct btrfs_root *root, 1200 struct btrfs_path *path, int level) 1201 { 1202 struct extent_buffer *right = NULL; 1203 struct extent_buffer *mid; 1204 struct extent_buffer *left = NULL; 1205 struct extent_buffer *parent = NULL; 1206 int ret = 0; 1207 int wret; 1208 int pslot; 1209 int orig_slot = path->slots[level]; 1210 u64 orig_ptr; 1211 1212 if (level == 0) 1213 return 1; 1214 1215 mid = path->nodes[level]; 1216 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1217 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1218 1219 if (level < BTRFS_MAX_LEVEL - 1) 1220 parent = path->nodes[level + 1]; 1221 pslot = path->slots[level + 1]; 1222 1223 if (!parent) 1224 return 1; 1225 1226 left = read_node_slot(root, parent, pslot - 1); 1227 1228 /* first, try to make some room in the middle buffer */ 1229 if (left) { 1230 u32 left_nr; 1231 1232 btrfs_tree_lock(left); 1233 btrfs_set_lock_blocking(left); 1234 1235 left_nr = btrfs_header_nritems(left); 1236 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1237 wret = 1; 1238 } else { 1239 ret = btrfs_cow_block(trans, root, left, parent, 1240 pslot - 1, &left); 1241 if (ret) 1242 wret = 1; 1243 else { 1244 wret = push_node_left(trans, root, 1245 left, mid, 0); 1246 } 1247 } 1248 if (wret < 0) 1249 ret = wret; 1250 if (wret == 0) { 1251 struct btrfs_disk_key disk_key; 1252 orig_slot += left_nr; 1253 btrfs_node_key(mid, &disk_key, 0); 1254 btrfs_set_node_key(parent, &disk_key, pslot); 1255 btrfs_mark_buffer_dirty(parent); 1256 if (btrfs_header_nritems(left) > orig_slot) { 1257 path->nodes[level] = left; 1258 path->slots[level + 1] -= 1; 1259 path->slots[level] = orig_slot; 1260 btrfs_tree_unlock(mid); 1261 free_extent_buffer(mid); 1262 } else { 1263 orig_slot -= 1264 btrfs_header_nritems(left); 1265 path->slots[level] = orig_slot; 1266 btrfs_tree_unlock(left); 1267 free_extent_buffer(left); 1268 } 1269 return 0; 1270 } 1271 btrfs_tree_unlock(left); 1272 free_extent_buffer(left); 1273 } 1274 right = read_node_slot(root, parent, pslot + 1); 1275 1276 /* 1277 * then try to empty the right most buffer into the middle 1278 */ 1279 if (right) { 1280 u32 right_nr; 1281 1282 btrfs_tree_lock(right); 1283 btrfs_set_lock_blocking(right); 1284 1285 right_nr = btrfs_header_nritems(right); 1286 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1287 wret = 1; 1288 } else { 1289 ret = btrfs_cow_block(trans, root, right, 1290 parent, pslot + 1, 1291 &right); 1292 if (ret) 1293 wret = 1; 1294 else { 1295 wret = balance_node_right(trans, root, 1296 right, mid); 1297 } 1298 } 1299 if (wret < 0) 1300 ret = wret; 1301 if (wret == 0) { 1302 struct btrfs_disk_key disk_key; 1303 1304 btrfs_node_key(right, &disk_key, 0); 1305 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1306 btrfs_mark_buffer_dirty(parent); 1307 1308 if (btrfs_header_nritems(mid) <= orig_slot) { 1309 path->nodes[level] = right; 1310 path->slots[level + 1] += 1; 1311 path->slots[level] = orig_slot - 1312 btrfs_header_nritems(mid); 1313 btrfs_tree_unlock(mid); 1314 free_extent_buffer(mid); 1315 } else { 1316 btrfs_tree_unlock(right); 1317 free_extent_buffer(right); 1318 } 1319 return 0; 1320 } 1321 btrfs_tree_unlock(right); 1322 free_extent_buffer(right); 1323 } 1324 return 1; 1325 } 1326 1327 /* 1328 * readahead one full node of leaves, finding things that are close 1329 * to the block in 'slot', and triggering ra on them. 1330 */ 1331 static void reada_for_search(struct btrfs_root *root, 1332 struct btrfs_path *path, 1333 int level, int slot, u64 objectid) 1334 { 1335 struct extent_buffer *node; 1336 struct btrfs_disk_key disk_key; 1337 u32 nritems; 1338 u64 search; 1339 u64 target; 1340 u64 nread = 0; 1341 int direction = path->reada; 1342 struct extent_buffer *eb; 1343 u32 nr; 1344 u32 blocksize; 1345 u32 nscan = 0; 1346 1347 if (level != 1) 1348 return; 1349 1350 if (!path->nodes[level]) 1351 return; 1352 1353 node = path->nodes[level]; 1354 1355 search = btrfs_node_blockptr(node, slot); 1356 blocksize = btrfs_level_size(root, level - 1); 1357 eb = btrfs_find_tree_block(root, search, blocksize); 1358 if (eb) { 1359 free_extent_buffer(eb); 1360 return; 1361 } 1362 1363 target = search; 1364 1365 nritems = btrfs_header_nritems(node); 1366 nr = slot; 1367 while (1) { 1368 if (direction < 0) { 1369 if (nr == 0) 1370 break; 1371 nr--; 1372 } else if (direction > 0) { 1373 nr++; 1374 if (nr >= nritems) 1375 break; 1376 } 1377 if (path->reada < 0 && objectid) { 1378 btrfs_node_key(node, &disk_key, nr); 1379 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1380 break; 1381 } 1382 search = btrfs_node_blockptr(node, nr); 1383 if ((search <= target && target - search <= 65536) || 1384 (search > target && search - target <= 65536)) { 1385 readahead_tree_block(root, search, blocksize, 1386 btrfs_node_ptr_generation(node, nr)); 1387 nread += blocksize; 1388 } 1389 nscan++; 1390 if ((nread > 65536 || nscan > 32)) 1391 break; 1392 } 1393 } 1394 1395 /* 1396 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1397 * cache 1398 */ 1399 static noinline int reada_for_balance(struct btrfs_root *root, 1400 struct btrfs_path *path, int level) 1401 { 1402 int slot; 1403 int nritems; 1404 struct extent_buffer *parent; 1405 struct extent_buffer *eb; 1406 u64 gen; 1407 u64 block1 = 0; 1408 u64 block2 = 0; 1409 int ret = 0; 1410 int blocksize; 1411 1412 parent = path->nodes[level + 1]; 1413 if (!parent) 1414 return 0; 1415 1416 nritems = btrfs_header_nritems(parent); 1417 slot = path->slots[level + 1]; 1418 blocksize = btrfs_level_size(root, level); 1419 1420 if (slot > 0) { 1421 block1 = btrfs_node_blockptr(parent, slot - 1); 1422 gen = btrfs_node_ptr_generation(parent, slot - 1); 1423 eb = btrfs_find_tree_block(root, block1, blocksize); 1424 if (eb && btrfs_buffer_uptodate(eb, gen)) 1425 block1 = 0; 1426 free_extent_buffer(eb); 1427 } 1428 if (slot + 1 < nritems) { 1429 block2 = btrfs_node_blockptr(parent, slot + 1); 1430 gen = btrfs_node_ptr_generation(parent, slot + 1); 1431 eb = btrfs_find_tree_block(root, block2, blocksize); 1432 if (eb && btrfs_buffer_uptodate(eb, gen)) 1433 block2 = 0; 1434 free_extent_buffer(eb); 1435 } 1436 if (block1 || block2) { 1437 ret = -EAGAIN; 1438 1439 /* release the whole path */ 1440 btrfs_release_path(root, path); 1441 1442 /* read the blocks */ 1443 if (block1) 1444 readahead_tree_block(root, block1, blocksize, 0); 1445 if (block2) 1446 readahead_tree_block(root, block2, blocksize, 0); 1447 1448 if (block1) { 1449 eb = read_tree_block(root, block1, blocksize, 0); 1450 free_extent_buffer(eb); 1451 } 1452 if (block2) { 1453 eb = read_tree_block(root, block2, blocksize, 0); 1454 free_extent_buffer(eb); 1455 } 1456 } 1457 return ret; 1458 } 1459 1460 1461 /* 1462 * when we walk down the tree, it is usually safe to unlock the higher layers 1463 * in the tree. The exceptions are when our path goes through slot 0, because 1464 * operations on the tree might require changing key pointers higher up in the 1465 * tree. 1466 * 1467 * callers might also have set path->keep_locks, which tells this code to keep 1468 * the lock if the path points to the last slot in the block. This is part of 1469 * walking through the tree, and selecting the next slot in the higher block. 1470 * 1471 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1472 * if lowest_unlock is 1, level 0 won't be unlocked 1473 */ 1474 static noinline void unlock_up(struct btrfs_path *path, int level, 1475 int lowest_unlock) 1476 { 1477 int i; 1478 int skip_level = level; 1479 int no_skips = 0; 1480 struct extent_buffer *t; 1481 1482 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1483 if (!path->nodes[i]) 1484 break; 1485 if (!path->locks[i]) 1486 break; 1487 if (!no_skips && path->slots[i] == 0) { 1488 skip_level = i + 1; 1489 continue; 1490 } 1491 if (!no_skips && path->keep_locks) { 1492 u32 nritems; 1493 t = path->nodes[i]; 1494 nritems = btrfs_header_nritems(t); 1495 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1496 skip_level = i + 1; 1497 continue; 1498 } 1499 } 1500 if (skip_level < i && i >= lowest_unlock) 1501 no_skips = 1; 1502 1503 t = path->nodes[i]; 1504 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1505 btrfs_tree_unlock(t); 1506 path->locks[i] = 0; 1507 } 1508 } 1509 } 1510 1511 /* 1512 * This releases any locks held in the path starting at level and 1513 * going all the way up to the root. 1514 * 1515 * btrfs_search_slot will keep the lock held on higher nodes in a few 1516 * corner cases, such as COW of the block at slot zero in the node. This 1517 * ignores those rules, and it should only be called when there are no 1518 * more updates to be done higher up in the tree. 1519 */ 1520 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1521 { 1522 int i; 1523 1524 if (path->keep_locks) 1525 return; 1526 1527 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1528 if (!path->nodes[i]) 1529 continue; 1530 if (!path->locks[i]) 1531 continue; 1532 btrfs_tree_unlock(path->nodes[i]); 1533 path->locks[i] = 0; 1534 } 1535 } 1536 1537 /* 1538 * helper function for btrfs_search_slot. The goal is to find a block 1539 * in cache without setting the path to blocking. If we find the block 1540 * we return zero and the path is unchanged. 1541 * 1542 * If we can't find the block, we set the path blocking and do some 1543 * reada. -EAGAIN is returned and the search must be repeated. 1544 */ 1545 static int 1546 read_block_for_search(struct btrfs_trans_handle *trans, 1547 struct btrfs_root *root, struct btrfs_path *p, 1548 struct extent_buffer **eb_ret, int level, int slot, 1549 struct btrfs_key *key) 1550 { 1551 u64 blocknr; 1552 u64 gen; 1553 u32 blocksize; 1554 struct extent_buffer *b = *eb_ret; 1555 struct extent_buffer *tmp; 1556 int ret; 1557 1558 blocknr = btrfs_node_blockptr(b, slot); 1559 gen = btrfs_node_ptr_generation(b, slot); 1560 blocksize = btrfs_level_size(root, level - 1); 1561 1562 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1563 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 1564 /* 1565 * we found an up to date block without sleeping, return 1566 * right away 1567 */ 1568 *eb_ret = tmp; 1569 return 0; 1570 } 1571 1572 /* 1573 * reduce lock contention at high levels 1574 * of the btree by dropping locks before 1575 * we read. Don't release the lock on the current 1576 * level because we need to walk this node to figure 1577 * out which blocks to read. 1578 */ 1579 btrfs_unlock_up_safe(p, level + 1); 1580 btrfs_set_path_blocking(p); 1581 1582 if (tmp) 1583 free_extent_buffer(tmp); 1584 if (p->reada) 1585 reada_for_search(root, p, level, slot, key->objectid); 1586 1587 btrfs_release_path(NULL, p); 1588 1589 ret = -EAGAIN; 1590 tmp = read_tree_block(root, blocknr, blocksize, gen); 1591 if (tmp) { 1592 /* 1593 * If the read above didn't mark this buffer up to date, 1594 * it will never end up being up to date. Set ret to EIO now 1595 * and give up so that our caller doesn't loop forever 1596 * on our EAGAINs. 1597 */ 1598 if (!btrfs_buffer_uptodate(tmp, 0)) 1599 ret = -EIO; 1600 free_extent_buffer(tmp); 1601 } 1602 return ret; 1603 } 1604 1605 /* 1606 * helper function for btrfs_search_slot. This does all of the checks 1607 * for node-level blocks and does any balancing required based on 1608 * the ins_len. 1609 * 1610 * If no extra work was required, zero is returned. If we had to 1611 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1612 * start over 1613 */ 1614 static int 1615 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1616 struct btrfs_root *root, struct btrfs_path *p, 1617 struct extent_buffer *b, int level, int ins_len) 1618 { 1619 int ret; 1620 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1621 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1622 int sret; 1623 1624 sret = reada_for_balance(root, p, level); 1625 if (sret) 1626 goto again; 1627 1628 btrfs_set_path_blocking(p); 1629 sret = split_node(trans, root, p, level); 1630 btrfs_clear_path_blocking(p, NULL); 1631 1632 BUG_ON(sret > 0); 1633 if (sret) { 1634 ret = sret; 1635 goto done; 1636 } 1637 b = p->nodes[level]; 1638 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1639 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 1640 int sret; 1641 1642 sret = reada_for_balance(root, p, level); 1643 if (sret) 1644 goto again; 1645 1646 btrfs_set_path_blocking(p); 1647 sret = balance_level(trans, root, p, level); 1648 btrfs_clear_path_blocking(p, NULL); 1649 1650 if (sret) { 1651 ret = sret; 1652 goto done; 1653 } 1654 b = p->nodes[level]; 1655 if (!b) { 1656 btrfs_release_path(NULL, p); 1657 goto again; 1658 } 1659 BUG_ON(btrfs_header_nritems(b) == 1); 1660 } 1661 return 0; 1662 1663 again: 1664 ret = -EAGAIN; 1665 done: 1666 return ret; 1667 } 1668 1669 /* 1670 * look for key in the tree. path is filled in with nodes along the way 1671 * if key is found, we return zero and you can find the item in the leaf 1672 * level of the path (level 0) 1673 * 1674 * If the key isn't found, the path points to the slot where it should 1675 * be inserted, and 1 is returned. If there are other errors during the 1676 * search a negative error number is returned. 1677 * 1678 * if ins_len > 0, nodes and leaves will be split as we walk down the 1679 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1680 * possible) 1681 */ 1682 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1683 *root, struct btrfs_key *key, struct btrfs_path *p, int 1684 ins_len, int cow) 1685 { 1686 struct extent_buffer *b; 1687 int slot; 1688 int ret; 1689 int err; 1690 int level; 1691 int lowest_unlock = 1; 1692 u8 lowest_level = 0; 1693 1694 lowest_level = p->lowest_level; 1695 WARN_ON(lowest_level && ins_len > 0); 1696 WARN_ON(p->nodes[0] != NULL); 1697 1698 if (ins_len < 0) 1699 lowest_unlock = 2; 1700 1701 again: 1702 if (p->search_commit_root) { 1703 b = root->commit_root; 1704 extent_buffer_get(b); 1705 if (!p->skip_locking) 1706 btrfs_tree_lock(b); 1707 } else { 1708 if (p->skip_locking) 1709 b = btrfs_root_node(root); 1710 else 1711 b = btrfs_lock_root_node(root); 1712 } 1713 1714 while (b) { 1715 level = btrfs_header_level(b); 1716 1717 /* 1718 * setup the path here so we can release it under lock 1719 * contention with the cow code 1720 */ 1721 p->nodes[level] = b; 1722 if (!p->skip_locking) 1723 p->locks[level] = 1; 1724 1725 if (cow) { 1726 /* 1727 * if we don't really need to cow this block 1728 * then we don't want to set the path blocking, 1729 * so we test it here 1730 */ 1731 if (!should_cow_block(trans, root, b)) 1732 goto cow_done; 1733 1734 btrfs_set_path_blocking(p); 1735 1736 err = btrfs_cow_block(trans, root, b, 1737 p->nodes[level + 1], 1738 p->slots[level + 1], &b); 1739 if (err) { 1740 free_extent_buffer(b); 1741 ret = err; 1742 goto done; 1743 } 1744 } 1745 cow_done: 1746 BUG_ON(!cow && ins_len); 1747 if (level != btrfs_header_level(b)) 1748 WARN_ON(1); 1749 level = btrfs_header_level(b); 1750 1751 p->nodes[level] = b; 1752 if (!p->skip_locking) 1753 p->locks[level] = 1; 1754 1755 btrfs_clear_path_blocking(p, NULL); 1756 1757 /* 1758 * we have a lock on b and as long as we aren't changing 1759 * the tree, there is no way to for the items in b to change. 1760 * It is safe to drop the lock on our parent before we 1761 * go through the expensive btree search on b. 1762 * 1763 * If cow is true, then we might be changing slot zero, 1764 * which may require changing the parent. So, we can't 1765 * drop the lock until after we know which slot we're 1766 * operating on. 1767 */ 1768 if (!cow) 1769 btrfs_unlock_up_safe(p, level + 1); 1770 1771 ret = check_block(root, p, level); 1772 if (ret) { 1773 ret = -1; 1774 goto done; 1775 } 1776 1777 ret = bin_search(b, key, level, &slot); 1778 1779 if (level != 0) { 1780 int dec = 0; 1781 if (ret && slot > 0) { 1782 dec = 1; 1783 slot -= 1; 1784 } 1785 p->slots[level] = slot; 1786 err = setup_nodes_for_search(trans, root, p, b, level, 1787 ins_len); 1788 if (err == -EAGAIN) 1789 goto again; 1790 if (err) { 1791 ret = err; 1792 goto done; 1793 } 1794 b = p->nodes[level]; 1795 slot = p->slots[level]; 1796 1797 unlock_up(p, level, lowest_unlock); 1798 1799 if (level == lowest_level) { 1800 if (dec) 1801 p->slots[level]++; 1802 goto done; 1803 } 1804 1805 err = read_block_for_search(trans, root, p, 1806 &b, level, slot, key); 1807 if (err == -EAGAIN) 1808 goto again; 1809 if (err) { 1810 ret = err; 1811 goto done; 1812 } 1813 1814 if (!p->skip_locking) { 1815 btrfs_clear_path_blocking(p, NULL); 1816 err = btrfs_try_spin_lock(b); 1817 1818 if (!err) { 1819 btrfs_set_path_blocking(p); 1820 btrfs_tree_lock(b); 1821 btrfs_clear_path_blocking(p, b); 1822 } 1823 } 1824 } else { 1825 p->slots[level] = slot; 1826 if (ins_len > 0 && 1827 btrfs_leaf_free_space(root, b) < ins_len) { 1828 btrfs_set_path_blocking(p); 1829 err = split_leaf(trans, root, key, 1830 p, ins_len, ret == 0); 1831 btrfs_clear_path_blocking(p, NULL); 1832 1833 BUG_ON(err > 0); 1834 if (err) { 1835 ret = err; 1836 goto done; 1837 } 1838 } 1839 if (!p->search_for_split) 1840 unlock_up(p, level, lowest_unlock); 1841 goto done; 1842 } 1843 } 1844 ret = 1; 1845 done: 1846 /* 1847 * we don't really know what they plan on doing with the path 1848 * from here on, so for now just mark it as blocking 1849 */ 1850 if (!p->leave_spinning) 1851 btrfs_set_path_blocking(p); 1852 if (ret < 0) 1853 btrfs_release_path(root, p); 1854 return ret; 1855 } 1856 1857 /* 1858 * adjust the pointers going up the tree, starting at level 1859 * making sure the right key of each node is points to 'key'. 1860 * This is used after shifting pointers to the left, so it stops 1861 * fixing up pointers when a given leaf/node is not in slot 0 of the 1862 * higher levels 1863 * 1864 * If this fails to write a tree block, it returns -1, but continues 1865 * fixing up the blocks in ram so the tree is consistent. 1866 */ 1867 static int fixup_low_keys(struct btrfs_trans_handle *trans, 1868 struct btrfs_root *root, struct btrfs_path *path, 1869 struct btrfs_disk_key *key, int level) 1870 { 1871 int i; 1872 int ret = 0; 1873 struct extent_buffer *t; 1874 1875 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1876 int tslot = path->slots[i]; 1877 if (!path->nodes[i]) 1878 break; 1879 t = path->nodes[i]; 1880 btrfs_set_node_key(t, key, tslot); 1881 btrfs_mark_buffer_dirty(path->nodes[i]); 1882 if (tslot != 0) 1883 break; 1884 } 1885 return ret; 1886 } 1887 1888 /* 1889 * update item key. 1890 * 1891 * This function isn't completely safe. It's the caller's responsibility 1892 * that the new key won't break the order 1893 */ 1894 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1895 struct btrfs_root *root, struct btrfs_path *path, 1896 struct btrfs_key *new_key) 1897 { 1898 struct btrfs_disk_key disk_key; 1899 struct extent_buffer *eb; 1900 int slot; 1901 1902 eb = path->nodes[0]; 1903 slot = path->slots[0]; 1904 if (slot > 0) { 1905 btrfs_item_key(eb, &disk_key, slot - 1); 1906 if (comp_keys(&disk_key, new_key) >= 0) 1907 return -1; 1908 } 1909 if (slot < btrfs_header_nritems(eb) - 1) { 1910 btrfs_item_key(eb, &disk_key, slot + 1); 1911 if (comp_keys(&disk_key, new_key) <= 0) 1912 return -1; 1913 } 1914 1915 btrfs_cpu_key_to_disk(&disk_key, new_key); 1916 btrfs_set_item_key(eb, &disk_key, slot); 1917 btrfs_mark_buffer_dirty(eb); 1918 if (slot == 0) 1919 fixup_low_keys(trans, root, path, &disk_key, 1); 1920 return 0; 1921 } 1922 1923 /* 1924 * try to push data from one node into the next node left in the 1925 * tree. 1926 * 1927 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1928 * error, and > 0 if there was no room in the left hand block. 1929 */ 1930 static int push_node_left(struct btrfs_trans_handle *trans, 1931 struct btrfs_root *root, struct extent_buffer *dst, 1932 struct extent_buffer *src, int empty) 1933 { 1934 int push_items = 0; 1935 int src_nritems; 1936 int dst_nritems; 1937 int ret = 0; 1938 1939 src_nritems = btrfs_header_nritems(src); 1940 dst_nritems = btrfs_header_nritems(dst); 1941 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1942 WARN_ON(btrfs_header_generation(src) != trans->transid); 1943 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1944 1945 if (!empty && src_nritems <= 8) 1946 return 1; 1947 1948 if (push_items <= 0) 1949 return 1; 1950 1951 if (empty) { 1952 push_items = min(src_nritems, push_items); 1953 if (push_items < src_nritems) { 1954 /* leave at least 8 pointers in the node if 1955 * we aren't going to empty it 1956 */ 1957 if (src_nritems - push_items < 8) { 1958 if (push_items <= 8) 1959 return 1; 1960 push_items -= 8; 1961 } 1962 } 1963 } else 1964 push_items = min(src_nritems - 8, push_items); 1965 1966 copy_extent_buffer(dst, src, 1967 btrfs_node_key_ptr_offset(dst_nritems), 1968 btrfs_node_key_ptr_offset(0), 1969 push_items * sizeof(struct btrfs_key_ptr)); 1970 1971 if (push_items < src_nritems) { 1972 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 1973 btrfs_node_key_ptr_offset(push_items), 1974 (src_nritems - push_items) * 1975 sizeof(struct btrfs_key_ptr)); 1976 } 1977 btrfs_set_header_nritems(src, src_nritems - push_items); 1978 btrfs_set_header_nritems(dst, dst_nritems + push_items); 1979 btrfs_mark_buffer_dirty(src); 1980 btrfs_mark_buffer_dirty(dst); 1981 1982 return ret; 1983 } 1984 1985 /* 1986 * try to push data from one node into the next node right in the 1987 * tree. 1988 * 1989 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 1990 * error, and > 0 if there was no room in the right hand block. 1991 * 1992 * this will only push up to 1/2 the contents of the left node over 1993 */ 1994 static int balance_node_right(struct btrfs_trans_handle *trans, 1995 struct btrfs_root *root, 1996 struct extent_buffer *dst, 1997 struct extent_buffer *src) 1998 { 1999 int push_items = 0; 2000 int max_push; 2001 int src_nritems; 2002 int dst_nritems; 2003 int ret = 0; 2004 2005 WARN_ON(btrfs_header_generation(src) != trans->transid); 2006 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2007 2008 src_nritems = btrfs_header_nritems(src); 2009 dst_nritems = btrfs_header_nritems(dst); 2010 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2011 if (push_items <= 0) 2012 return 1; 2013 2014 if (src_nritems < 4) 2015 return 1; 2016 2017 max_push = src_nritems / 2 + 1; 2018 /* don't try to empty the node */ 2019 if (max_push >= src_nritems) 2020 return 1; 2021 2022 if (max_push < push_items) 2023 push_items = max_push; 2024 2025 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2026 btrfs_node_key_ptr_offset(0), 2027 (dst_nritems) * 2028 sizeof(struct btrfs_key_ptr)); 2029 2030 copy_extent_buffer(dst, src, 2031 btrfs_node_key_ptr_offset(0), 2032 btrfs_node_key_ptr_offset(src_nritems - push_items), 2033 push_items * sizeof(struct btrfs_key_ptr)); 2034 2035 btrfs_set_header_nritems(src, src_nritems - push_items); 2036 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2037 2038 btrfs_mark_buffer_dirty(src); 2039 btrfs_mark_buffer_dirty(dst); 2040 2041 return ret; 2042 } 2043 2044 /* 2045 * helper function to insert a new root level in the tree. 2046 * A new node is allocated, and a single item is inserted to 2047 * point to the existing root 2048 * 2049 * returns zero on success or < 0 on failure. 2050 */ 2051 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2052 struct btrfs_root *root, 2053 struct btrfs_path *path, int level) 2054 { 2055 u64 lower_gen; 2056 struct extent_buffer *lower; 2057 struct extent_buffer *c; 2058 struct extent_buffer *old; 2059 struct btrfs_disk_key lower_key; 2060 2061 BUG_ON(path->nodes[level]); 2062 BUG_ON(path->nodes[level-1] != root->node); 2063 2064 lower = path->nodes[level-1]; 2065 if (level == 1) 2066 btrfs_item_key(lower, &lower_key, 0); 2067 else 2068 btrfs_node_key(lower, &lower_key, 0); 2069 2070 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2071 root->root_key.objectid, &lower_key, 2072 level, root->node->start, 0); 2073 if (IS_ERR(c)) 2074 return PTR_ERR(c); 2075 2076 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 2077 btrfs_set_header_nritems(c, 1); 2078 btrfs_set_header_level(c, level); 2079 btrfs_set_header_bytenr(c, c->start); 2080 btrfs_set_header_generation(c, trans->transid); 2081 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 2082 btrfs_set_header_owner(c, root->root_key.objectid); 2083 2084 write_extent_buffer(c, root->fs_info->fsid, 2085 (unsigned long)btrfs_header_fsid(c), 2086 BTRFS_FSID_SIZE); 2087 2088 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2089 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2090 BTRFS_UUID_SIZE); 2091 2092 btrfs_set_node_key(c, &lower_key, 0); 2093 btrfs_set_node_blockptr(c, 0, lower->start); 2094 lower_gen = btrfs_header_generation(lower); 2095 WARN_ON(lower_gen != trans->transid); 2096 2097 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2098 2099 btrfs_mark_buffer_dirty(c); 2100 2101 spin_lock(&root->node_lock); 2102 old = root->node; 2103 root->node = c; 2104 spin_unlock(&root->node_lock); 2105 2106 /* the super has an extra ref to root->node */ 2107 free_extent_buffer(old); 2108 2109 add_root_to_dirty_list(root); 2110 extent_buffer_get(c); 2111 path->nodes[level] = c; 2112 path->locks[level] = 1; 2113 path->slots[level] = 0; 2114 return 0; 2115 } 2116 2117 /* 2118 * worker function to insert a single pointer in a node. 2119 * the node should have enough room for the pointer already 2120 * 2121 * slot and level indicate where you want the key to go, and 2122 * blocknr is the block the key points to. 2123 * 2124 * returns zero on success and < 0 on any error 2125 */ 2126 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root 2127 *root, struct btrfs_path *path, struct btrfs_disk_key 2128 *key, u64 bytenr, int slot, int level) 2129 { 2130 struct extent_buffer *lower; 2131 int nritems; 2132 2133 BUG_ON(!path->nodes[level]); 2134 lower = path->nodes[level]; 2135 nritems = btrfs_header_nritems(lower); 2136 BUG_ON(slot > nritems); 2137 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) 2138 BUG(); 2139 if (slot != nritems) { 2140 memmove_extent_buffer(lower, 2141 btrfs_node_key_ptr_offset(slot + 1), 2142 btrfs_node_key_ptr_offset(slot), 2143 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2144 } 2145 btrfs_set_node_key(lower, key, slot); 2146 btrfs_set_node_blockptr(lower, slot, bytenr); 2147 WARN_ON(trans->transid == 0); 2148 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2149 btrfs_set_header_nritems(lower, nritems + 1); 2150 btrfs_mark_buffer_dirty(lower); 2151 return 0; 2152 } 2153 2154 /* 2155 * split the node at the specified level in path in two. 2156 * The path is corrected to point to the appropriate node after the split 2157 * 2158 * Before splitting this tries to make some room in the node by pushing 2159 * left and right, if either one works, it returns right away. 2160 * 2161 * returns 0 on success and < 0 on failure 2162 */ 2163 static noinline int split_node(struct btrfs_trans_handle *trans, 2164 struct btrfs_root *root, 2165 struct btrfs_path *path, int level) 2166 { 2167 struct extent_buffer *c; 2168 struct extent_buffer *split; 2169 struct btrfs_disk_key disk_key; 2170 int mid; 2171 int ret; 2172 int wret; 2173 u32 c_nritems; 2174 2175 c = path->nodes[level]; 2176 WARN_ON(btrfs_header_generation(c) != trans->transid); 2177 if (c == root->node) { 2178 /* trying to split the root, lets make a new one */ 2179 ret = insert_new_root(trans, root, path, level + 1); 2180 if (ret) 2181 return ret; 2182 } else { 2183 ret = push_nodes_for_insert(trans, root, path, level); 2184 c = path->nodes[level]; 2185 if (!ret && btrfs_header_nritems(c) < 2186 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2187 return 0; 2188 if (ret < 0) 2189 return ret; 2190 } 2191 2192 c_nritems = btrfs_header_nritems(c); 2193 mid = (c_nritems + 1) / 2; 2194 btrfs_node_key(c, &disk_key, mid); 2195 2196 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2197 root->root_key.objectid, 2198 &disk_key, level, c->start, 0); 2199 if (IS_ERR(split)) 2200 return PTR_ERR(split); 2201 2202 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 2203 btrfs_set_header_level(split, btrfs_header_level(c)); 2204 btrfs_set_header_bytenr(split, split->start); 2205 btrfs_set_header_generation(split, trans->transid); 2206 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 2207 btrfs_set_header_owner(split, root->root_key.objectid); 2208 write_extent_buffer(split, root->fs_info->fsid, 2209 (unsigned long)btrfs_header_fsid(split), 2210 BTRFS_FSID_SIZE); 2211 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2212 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2213 BTRFS_UUID_SIZE); 2214 2215 2216 copy_extent_buffer(split, c, 2217 btrfs_node_key_ptr_offset(0), 2218 btrfs_node_key_ptr_offset(mid), 2219 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2220 btrfs_set_header_nritems(split, c_nritems - mid); 2221 btrfs_set_header_nritems(c, mid); 2222 ret = 0; 2223 2224 btrfs_mark_buffer_dirty(c); 2225 btrfs_mark_buffer_dirty(split); 2226 2227 wret = insert_ptr(trans, root, path, &disk_key, split->start, 2228 path->slots[level + 1] + 1, 2229 level + 1); 2230 if (wret) 2231 ret = wret; 2232 2233 if (path->slots[level] >= mid) { 2234 path->slots[level] -= mid; 2235 btrfs_tree_unlock(c); 2236 free_extent_buffer(c); 2237 path->nodes[level] = split; 2238 path->slots[level + 1] += 1; 2239 } else { 2240 btrfs_tree_unlock(split); 2241 free_extent_buffer(split); 2242 } 2243 return ret; 2244 } 2245 2246 /* 2247 * how many bytes are required to store the items in a leaf. start 2248 * and nr indicate which items in the leaf to check. This totals up the 2249 * space used both by the item structs and the item data 2250 */ 2251 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2252 { 2253 int data_len; 2254 int nritems = btrfs_header_nritems(l); 2255 int end = min(nritems, start + nr) - 1; 2256 2257 if (!nr) 2258 return 0; 2259 data_len = btrfs_item_end_nr(l, start); 2260 data_len = data_len - btrfs_item_offset_nr(l, end); 2261 data_len += sizeof(struct btrfs_item) * nr; 2262 WARN_ON(data_len < 0); 2263 return data_len; 2264 } 2265 2266 /* 2267 * The space between the end of the leaf items and 2268 * the start of the leaf data. IOW, how much room 2269 * the leaf has left for both items and data 2270 */ 2271 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2272 struct extent_buffer *leaf) 2273 { 2274 int nritems = btrfs_header_nritems(leaf); 2275 int ret; 2276 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2277 if (ret < 0) { 2278 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2279 "used %d nritems %d\n", 2280 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2281 leaf_space_used(leaf, 0, nritems), nritems); 2282 } 2283 return ret; 2284 } 2285 2286 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 2287 struct btrfs_root *root, 2288 struct btrfs_path *path, 2289 int data_size, int empty, 2290 struct extent_buffer *right, 2291 int free_space, u32 left_nritems) 2292 { 2293 struct extent_buffer *left = path->nodes[0]; 2294 struct extent_buffer *upper = path->nodes[1]; 2295 struct btrfs_disk_key disk_key; 2296 int slot; 2297 u32 i; 2298 int push_space = 0; 2299 int push_items = 0; 2300 struct btrfs_item *item; 2301 u32 nr; 2302 u32 right_nritems; 2303 u32 data_end; 2304 u32 this_item_size; 2305 2306 if (empty) 2307 nr = 0; 2308 else 2309 nr = 1; 2310 2311 if (path->slots[0] >= left_nritems) 2312 push_space += data_size; 2313 2314 slot = path->slots[1]; 2315 i = left_nritems - 1; 2316 while (i >= nr) { 2317 item = btrfs_item_nr(left, i); 2318 2319 if (!empty && push_items > 0) { 2320 if (path->slots[0] > i) 2321 break; 2322 if (path->slots[0] == i) { 2323 int space = btrfs_leaf_free_space(root, left); 2324 if (space + push_space * 2 > free_space) 2325 break; 2326 } 2327 } 2328 2329 if (path->slots[0] == i) 2330 push_space += data_size; 2331 2332 if (!left->map_token) { 2333 map_extent_buffer(left, (unsigned long)item, 2334 sizeof(struct btrfs_item), 2335 &left->map_token, &left->kaddr, 2336 &left->map_start, &left->map_len, 2337 KM_USER1); 2338 } 2339 2340 this_item_size = btrfs_item_size(left, item); 2341 if (this_item_size + sizeof(*item) + push_space > free_space) 2342 break; 2343 2344 push_items++; 2345 push_space += this_item_size + sizeof(*item); 2346 if (i == 0) 2347 break; 2348 i--; 2349 } 2350 if (left->map_token) { 2351 unmap_extent_buffer(left, left->map_token, KM_USER1); 2352 left->map_token = NULL; 2353 } 2354 2355 if (push_items == 0) 2356 goto out_unlock; 2357 2358 if (!empty && push_items == left_nritems) 2359 WARN_ON(1); 2360 2361 /* push left to right */ 2362 right_nritems = btrfs_header_nritems(right); 2363 2364 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2365 push_space -= leaf_data_end(root, left); 2366 2367 /* make room in the right data area */ 2368 data_end = leaf_data_end(root, right); 2369 memmove_extent_buffer(right, 2370 btrfs_leaf_data(right) + data_end - push_space, 2371 btrfs_leaf_data(right) + data_end, 2372 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2373 2374 /* copy from the left data area */ 2375 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2376 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2377 btrfs_leaf_data(left) + leaf_data_end(root, left), 2378 push_space); 2379 2380 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2381 btrfs_item_nr_offset(0), 2382 right_nritems * sizeof(struct btrfs_item)); 2383 2384 /* copy the items from left to right */ 2385 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2386 btrfs_item_nr_offset(left_nritems - push_items), 2387 push_items * sizeof(struct btrfs_item)); 2388 2389 /* update the item pointers */ 2390 right_nritems += push_items; 2391 btrfs_set_header_nritems(right, right_nritems); 2392 push_space = BTRFS_LEAF_DATA_SIZE(root); 2393 for (i = 0; i < right_nritems; i++) { 2394 item = btrfs_item_nr(right, i); 2395 if (!right->map_token) { 2396 map_extent_buffer(right, (unsigned long)item, 2397 sizeof(struct btrfs_item), 2398 &right->map_token, &right->kaddr, 2399 &right->map_start, &right->map_len, 2400 KM_USER1); 2401 } 2402 push_space -= btrfs_item_size(right, item); 2403 btrfs_set_item_offset(right, item, push_space); 2404 } 2405 2406 if (right->map_token) { 2407 unmap_extent_buffer(right, right->map_token, KM_USER1); 2408 right->map_token = NULL; 2409 } 2410 left_nritems -= push_items; 2411 btrfs_set_header_nritems(left, left_nritems); 2412 2413 if (left_nritems) 2414 btrfs_mark_buffer_dirty(left); 2415 btrfs_mark_buffer_dirty(right); 2416 2417 btrfs_item_key(right, &disk_key, 0); 2418 btrfs_set_node_key(upper, &disk_key, slot + 1); 2419 btrfs_mark_buffer_dirty(upper); 2420 2421 /* then fixup the leaf pointer in the path */ 2422 if (path->slots[0] >= left_nritems) { 2423 path->slots[0] -= left_nritems; 2424 if (btrfs_header_nritems(path->nodes[0]) == 0) 2425 clean_tree_block(trans, root, path->nodes[0]); 2426 btrfs_tree_unlock(path->nodes[0]); 2427 free_extent_buffer(path->nodes[0]); 2428 path->nodes[0] = right; 2429 path->slots[1] += 1; 2430 } else { 2431 btrfs_tree_unlock(right); 2432 free_extent_buffer(right); 2433 } 2434 return 0; 2435 2436 out_unlock: 2437 btrfs_tree_unlock(right); 2438 free_extent_buffer(right); 2439 return 1; 2440 } 2441 2442 /* 2443 * push some data in the path leaf to the right, trying to free up at 2444 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2445 * 2446 * returns 1 if the push failed because the other node didn't have enough 2447 * room, 0 if everything worked out and < 0 if there were major errors. 2448 */ 2449 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2450 *root, struct btrfs_path *path, int data_size, 2451 int empty) 2452 { 2453 struct extent_buffer *left = path->nodes[0]; 2454 struct extent_buffer *right; 2455 struct extent_buffer *upper; 2456 int slot; 2457 int free_space; 2458 u32 left_nritems; 2459 int ret; 2460 2461 if (!path->nodes[1]) 2462 return 1; 2463 2464 slot = path->slots[1]; 2465 upper = path->nodes[1]; 2466 if (slot >= btrfs_header_nritems(upper) - 1) 2467 return 1; 2468 2469 btrfs_assert_tree_locked(path->nodes[1]); 2470 2471 right = read_node_slot(root, upper, slot + 1); 2472 btrfs_tree_lock(right); 2473 btrfs_set_lock_blocking(right); 2474 2475 free_space = btrfs_leaf_free_space(root, right); 2476 if (free_space < data_size) 2477 goto out_unlock; 2478 2479 /* cow and double check */ 2480 ret = btrfs_cow_block(trans, root, right, upper, 2481 slot + 1, &right); 2482 if (ret) 2483 goto out_unlock; 2484 2485 free_space = btrfs_leaf_free_space(root, right); 2486 if (free_space < data_size) 2487 goto out_unlock; 2488 2489 left_nritems = btrfs_header_nritems(left); 2490 if (left_nritems == 0) 2491 goto out_unlock; 2492 2493 return __push_leaf_right(trans, root, path, data_size, empty, 2494 right, free_space, left_nritems); 2495 out_unlock: 2496 btrfs_tree_unlock(right); 2497 free_extent_buffer(right); 2498 return 1; 2499 } 2500 2501 /* 2502 * push some data in the path leaf to the left, trying to free up at 2503 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2504 */ 2505 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 2506 struct btrfs_root *root, 2507 struct btrfs_path *path, int data_size, 2508 int empty, struct extent_buffer *left, 2509 int free_space, int right_nritems) 2510 { 2511 struct btrfs_disk_key disk_key; 2512 struct extent_buffer *right = path->nodes[0]; 2513 int slot; 2514 int i; 2515 int push_space = 0; 2516 int push_items = 0; 2517 struct btrfs_item *item; 2518 u32 old_left_nritems; 2519 u32 nr; 2520 int ret = 0; 2521 int wret; 2522 u32 this_item_size; 2523 u32 old_left_item_size; 2524 2525 slot = path->slots[1]; 2526 2527 if (empty) 2528 nr = right_nritems; 2529 else 2530 nr = right_nritems - 1; 2531 2532 for (i = 0; i < nr; i++) { 2533 item = btrfs_item_nr(right, i); 2534 if (!right->map_token) { 2535 map_extent_buffer(right, (unsigned long)item, 2536 sizeof(struct btrfs_item), 2537 &right->map_token, &right->kaddr, 2538 &right->map_start, &right->map_len, 2539 KM_USER1); 2540 } 2541 2542 if (!empty && push_items > 0) { 2543 if (path->slots[0] < i) 2544 break; 2545 if (path->slots[0] == i) { 2546 int space = btrfs_leaf_free_space(root, right); 2547 if (space + push_space * 2 > free_space) 2548 break; 2549 } 2550 } 2551 2552 if (path->slots[0] == i) 2553 push_space += data_size; 2554 2555 this_item_size = btrfs_item_size(right, item); 2556 if (this_item_size + sizeof(*item) + push_space > free_space) 2557 break; 2558 2559 push_items++; 2560 push_space += this_item_size + sizeof(*item); 2561 } 2562 2563 if (right->map_token) { 2564 unmap_extent_buffer(right, right->map_token, KM_USER1); 2565 right->map_token = NULL; 2566 } 2567 2568 if (push_items == 0) { 2569 ret = 1; 2570 goto out; 2571 } 2572 if (!empty && push_items == btrfs_header_nritems(right)) 2573 WARN_ON(1); 2574 2575 /* push data from right to left */ 2576 copy_extent_buffer(left, right, 2577 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2578 btrfs_item_nr_offset(0), 2579 push_items * sizeof(struct btrfs_item)); 2580 2581 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2582 btrfs_item_offset_nr(right, push_items - 1); 2583 2584 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2585 leaf_data_end(root, left) - push_space, 2586 btrfs_leaf_data(right) + 2587 btrfs_item_offset_nr(right, push_items - 1), 2588 push_space); 2589 old_left_nritems = btrfs_header_nritems(left); 2590 BUG_ON(old_left_nritems <= 0); 2591 2592 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2593 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2594 u32 ioff; 2595 2596 item = btrfs_item_nr(left, i); 2597 if (!left->map_token) { 2598 map_extent_buffer(left, (unsigned long)item, 2599 sizeof(struct btrfs_item), 2600 &left->map_token, &left->kaddr, 2601 &left->map_start, &left->map_len, 2602 KM_USER1); 2603 } 2604 2605 ioff = btrfs_item_offset(left, item); 2606 btrfs_set_item_offset(left, item, 2607 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); 2608 } 2609 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2610 if (left->map_token) { 2611 unmap_extent_buffer(left, left->map_token, KM_USER1); 2612 left->map_token = NULL; 2613 } 2614 2615 /* fixup right node */ 2616 if (push_items > right_nritems) { 2617 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2618 right_nritems); 2619 WARN_ON(1); 2620 } 2621 2622 if (push_items < right_nritems) { 2623 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2624 leaf_data_end(root, right); 2625 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2626 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2627 btrfs_leaf_data(right) + 2628 leaf_data_end(root, right), push_space); 2629 2630 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2631 btrfs_item_nr_offset(push_items), 2632 (btrfs_header_nritems(right) - push_items) * 2633 sizeof(struct btrfs_item)); 2634 } 2635 right_nritems -= push_items; 2636 btrfs_set_header_nritems(right, right_nritems); 2637 push_space = BTRFS_LEAF_DATA_SIZE(root); 2638 for (i = 0; i < right_nritems; i++) { 2639 item = btrfs_item_nr(right, i); 2640 2641 if (!right->map_token) { 2642 map_extent_buffer(right, (unsigned long)item, 2643 sizeof(struct btrfs_item), 2644 &right->map_token, &right->kaddr, 2645 &right->map_start, &right->map_len, 2646 KM_USER1); 2647 } 2648 2649 push_space = push_space - btrfs_item_size(right, item); 2650 btrfs_set_item_offset(right, item, push_space); 2651 } 2652 if (right->map_token) { 2653 unmap_extent_buffer(right, right->map_token, KM_USER1); 2654 right->map_token = NULL; 2655 } 2656 2657 btrfs_mark_buffer_dirty(left); 2658 if (right_nritems) 2659 btrfs_mark_buffer_dirty(right); 2660 2661 btrfs_item_key(right, &disk_key, 0); 2662 wret = fixup_low_keys(trans, root, path, &disk_key, 1); 2663 if (wret) 2664 ret = wret; 2665 2666 /* then fixup the leaf pointer in the path */ 2667 if (path->slots[0] < push_items) { 2668 path->slots[0] += old_left_nritems; 2669 if (btrfs_header_nritems(path->nodes[0]) == 0) 2670 clean_tree_block(trans, root, path->nodes[0]); 2671 btrfs_tree_unlock(path->nodes[0]); 2672 free_extent_buffer(path->nodes[0]); 2673 path->nodes[0] = left; 2674 path->slots[1] -= 1; 2675 } else { 2676 btrfs_tree_unlock(left); 2677 free_extent_buffer(left); 2678 path->slots[0] -= push_items; 2679 } 2680 BUG_ON(path->slots[0] < 0); 2681 return ret; 2682 out: 2683 btrfs_tree_unlock(left); 2684 free_extent_buffer(left); 2685 return ret; 2686 } 2687 2688 /* 2689 * push some data in the path leaf to the left, trying to free up at 2690 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2691 */ 2692 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2693 *root, struct btrfs_path *path, int data_size, 2694 int empty) 2695 { 2696 struct extent_buffer *right = path->nodes[0]; 2697 struct extent_buffer *left; 2698 int slot; 2699 int free_space; 2700 u32 right_nritems; 2701 int ret = 0; 2702 2703 slot = path->slots[1]; 2704 if (slot == 0) 2705 return 1; 2706 if (!path->nodes[1]) 2707 return 1; 2708 2709 right_nritems = btrfs_header_nritems(right); 2710 if (right_nritems == 0) 2711 return 1; 2712 2713 btrfs_assert_tree_locked(path->nodes[1]); 2714 2715 left = read_node_slot(root, path->nodes[1], slot - 1); 2716 btrfs_tree_lock(left); 2717 btrfs_set_lock_blocking(left); 2718 2719 free_space = btrfs_leaf_free_space(root, left); 2720 if (free_space < data_size) { 2721 ret = 1; 2722 goto out; 2723 } 2724 2725 /* cow and double check */ 2726 ret = btrfs_cow_block(trans, root, left, 2727 path->nodes[1], slot - 1, &left); 2728 if (ret) { 2729 /* we hit -ENOSPC, but it isn't fatal here */ 2730 ret = 1; 2731 goto out; 2732 } 2733 2734 free_space = btrfs_leaf_free_space(root, left); 2735 if (free_space < data_size) { 2736 ret = 1; 2737 goto out; 2738 } 2739 2740 return __push_leaf_left(trans, root, path, data_size, 2741 empty, left, free_space, right_nritems); 2742 out: 2743 btrfs_tree_unlock(left); 2744 free_extent_buffer(left); 2745 return ret; 2746 } 2747 2748 /* 2749 * split the path's leaf in two, making sure there is at least data_size 2750 * available for the resulting leaf level of the path. 2751 * 2752 * returns 0 if all went well and < 0 on failure. 2753 */ 2754 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 2755 struct btrfs_root *root, 2756 struct btrfs_path *path, 2757 struct extent_buffer *l, 2758 struct extent_buffer *right, 2759 int slot, int mid, int nritems) 2760 { 2761 int data_copy_size; 2762 int rt_data_off; 2763 int i; 2764 int ret = 0; 2765 int wret; 2766 struct btrfs_disk_key disk_key; 2767 2768 nritems = nritems - mid; 2769 btrfs_set_header_nritems(right, nritems); 2770 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2771 2772 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2773 btrfs_item_nr_offset(mid), 2774 nritems * sizeof(struct btrfs_item)); 2775 2776 copy_extent_buffer(right, l, 2777 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2778 data_copy_size, btrfs_leaf_data(l) + 2779 leaf_data_end(root, l), data_copy_size); 2780 2781 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2782 btrfs_item_end_nr(l, mid); 2783 2784 for (i = 0; i < nritems; i++) { 2785 struct btrfs_item *item = btrfs_item_nr(right, i); 2786 u32 ioff; 2787 2788 if (!right->map_token) { 2789 map_extent_buffer(right, (unsigned long)item, 2790 sizeof(struct btrfs_item), 2791 &right->map_token, &right->kaddr, 2792 &right->map_start, &right->map_len, 2793 KM_USER1); 2794 } 2795 2796 ioff = btrfs_item_offset(right, item); 2797 btrfs_set_item_offset(right, item, ioff + rt_data_off); 2798 } 2799 2800 if (right->map_token) { 2801 unmap_extent_buffer(right, right->map_token, KM_USER1); 2802 right->map_token = NULL; 2803 } 2804 2805 btrfs_set_header_nritems(l, mid); 2806 ret = 0; 2807 btrfs_item_key(right, &disk_key, 0); 2808 wret = insert_ptr(trans, root, path, &disk_key, right->start, 2809 path->slots[1] + 1, 1); 2810 if (wret) 2811 ret = wret; 2812 2813 btrfs_mark_buffer_dirty(right); 2814 btrfs_mark_buffer_dirty(l); 2815 BUG_ON(path->slots[0] != slot); 2816 2817 if (mid <= slot) { 2818 btrfs_tree_unlock(path->nodes[0]); 2819 free_extent_buffer(path->nodes[0]); 2820 path->nodes[0] = right; 2821 path->slots[0] -= mid; 2822 path->slots[1] += 1; 2823 } else { 2824 btrfs_tree_unlock(right); 2825 free_extent_buffer(right); 2826 } 2827 2828 BUG_ON(path->slots[0] < 0); 2829 2830 return ret; 2831 } 2832 2833 /* 2834 * split the path's leaf in two, making sure there is at least data_size 2835 * available for the resulting leaf level of the path. 2836 * 2837 * returns 0 if all went well and < 0 on failure. 2838 */ 2839 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2840 struct btrfs_root *root, 2841 struct btrfs_key *ins_key, 2842 struct btrfs_path *path, int data_size, 2843 int extend) 2844 { 2845 struct btrfs_disk_key disk_key; 2846 struct extent_buffer *l; 2847 u32 nritems; 2848 int mid; 2849 int slot; 2850 struct extent_buffer *right; 2851 int ret = 0; 2852 int wret; 2853 int split; 2854 int num_doubles = 0; 2855 2856 /* first try to make some room by pushing left and right */ 2857 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) { 2858 wret = push_leaf_right(trans, root, path, data_size, 0); 2859 if (wret < 0) 2860 return wret; 2861 if (wret) { 2862 wret = push_leaf_left(trans, root, path, data_size, 0); 2863 if (wret < 0) 2864 return wret; 2865 } 2866 l = path->nodes[0]; 2867 2868 /* did the pushes work? */ 2869 if (btrfs_leaf_free_space(root, l) >= data_size) 2870 return 0; 2871 } 2872 2873 if (!path->nodes[1]) { 2874 ret = insert_new_root(trans, root, path, 1); 2875 if (ret) 2876 return ret; 2877 } 2878 again: 2879 split = 1; 2880 l = path->nodes[0]; 2881 slot = path->slots[0]; 2882 nritems = btrfs_header_nritems(l); 2883 mid = (nritems + 1) / 2; 2884 2885 if (mid <= slot) { 2886 if (nritems == 1 || 2887 leaf_space_used(l, mid, nritems - mid) + data_size > 2888 BTRFS_LEAF_DATA_SIZE(root)) { 2889 if (slot >= nritems) { 2890 split = 0; 2891 } else { 2892 mid = slot; 2893 if (mid != nritems && 2894 leaf_space_used(l, mid, nritems - mid) + 2895 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2896 split = 2; 2897 } 2898 } 2899 } 2900 } else { 2901 if (leaf_space_used(l, 0, mid) + data_size > 2902 BTRFS_LEAF_DATA_SIZE(root)) { 2903 if (!extend && data_size && slot == 0) { 2904 split = 0; 2905 } else if ((extend || !data_size) && slot == 0) { 2906 mid = 1; 2907 } else { 2908 mid = slot; 2909 if (mid != nritems && 2910 leaf_space_used(l, mid, nritems - mid) + 2911 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2912 split = 2 ; 2913 } 2914 } 2915 } 2916 } 2917 2918 if (split == 0) 2919 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2920 else 2921 btrfs_item_key(l, &disk_key, mid); 2922 2923 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 2924 root->root_key.objectid, 2925 &disk_key, 0, l->start, 0); 2926 if (IS_ERR(right)) { 2927 BUG_ON(1); 2928 return PTR_ERR(right); 2929 } 2930 2931 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 2932 btrfs_set_header_bytenr(right, right->start); 2933 btrfs_set_header_generation(right, trans->transid); 2934 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 2935 btrfs_set_header_owner(right, root->root_key.objectid); 2936 btrfs_set_header_level(right, 0); 2937 write_extent_buffer(right, root->fs_info->fsid, 2938 (unsigned long)btrfs_header_fsid(right), 2939 BTRFS_FSID_SIZE); 2940 2941 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 2942 (unsigned long)btrfs_header_chunk_tree_uuid(right), 2943 BTRFS_UUID_SIZE); 2944 2945 if (split == 0) { 2946 if (mid <= slot) { 2947 btrfs_set_header_nritems(right, 0); 2948 wret = insert_ptr(trans, root, path, 2949 &disk_key, right->start, 2950 path->slots[1] + 1, 1); 2951 if (wret) 2952 ret = wret; 2953 2954 btrfs_tree_unlock(path->nodes[0]); 2955 free_extent_buffer(path->nodes[0]); 2956 path->nodes[0] = right; 2957 path->slots[0] = 0; 2958 path->slots[1] += 1; 2959 } else { 2960 btrfs_set_header_nritems(right, 0); 2961 wret = insert_ptr(trans, root, path, 2962 &disk_key, 2963 right->start, 2964 path->slots[1], 1); 2965 if (wret) 2966 ret = wret; 2967 btrfs_tree_unlock(path->nodes[0]); 2968 free_extent_buffer(path->nodes[0]); 2969 path->nodes[0] = right; 2970 path->slots[0] = 0; 2971 if (path->slots[1] == 0) { 2972 wret = fixup_low_keys(trans, root, 2973 path, &disk_key, 1); 2974 if (wret) 2975 ret = wret; 2976 } 2977 } 2978 btrfs_mark_buffer_dirty(right); 2979 return ret; 2980 } 2981 2982 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems); 2983 BUG_ON(ret); 2984 2985 if (split == 2) { 2986 BUG_ON(num_doubles != 0); 2987 num_doubles++; 2988 goto again; 2989 } 2990 2991 return ret; 2992 } 2993 2994 /* 2995 * This function splits a single item into two items, 2996 * giving 'new_key' to the new item and splitting the 2997 * old one at split_offset (from the start of the item). 2998 * 2999 * The path may be released by this operation. After 3000 * the split, the path is pointing to the old item. The 3001 * new item is going to be in the same node as the old one. 3002 * 3003 * Note, the item being split must be smaller enough to live alone on 3004 * a tree block with room for one extra struct btrfs_item 3005 * 3006 * This allows us to split the item in place, keeping a lock on the 3007 * leaf the entire time. 3008 */ 3009 int btrfs_split_item(struct btrfs_trans_handle *trans, 3010 struct btrfs_root *root, 3011 struct btrfs_path *path, 3012 struct btrfs_key *new_key, 3013 unsigned long split_offset) 3014 { 3015 u32 item_size; 3016 struct extent_buffer *leaf; 3017 struct btrfs_key orig_key; 3018 struct btrfs_item *item; 3019 struct btrfs_item *new_item; 3020 int ret = 0; 3021 int slot; 3022 u32 nritems; 3023 u32 orig_offset; 3024 struct btrfs_disk_key disk_key; 3025 char *buf; 3026 3027 leaf = path->nodes[0]; 3028 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]); 3029 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item)) 3030 goto split; 3031 3032 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3033 btrfs_release_path(root, path); 3034 3035 path->search_for_split = 1; 3036 path->keep_locks = 1; 3037 3038 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1); 3039 path->search_for_split = 0; 3040 3041 /* if our item isn't there or got smaller, return now */ 3042 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0], 3043 path->slots[0])) { 3044 path->keep_locks = 0; 3045 return -EAGAIN; 3046 } 3047 3048 btrfs_set_path_blocking(path); 3049 ret = split_leaf(trans, root, &orig_key, path, 3050 sizeof(struct btrfs_item), 1); 3051 path->keep_locks = 0; 3052 BUG_ON(ret); 3053 3054 btrfs_unlock_up_safe(path, 1); 3055 leaf = path->nodes[0]; 3056 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3057 3058 split: 3059 /* 3060 * make sure any changes to the path from split_leaf leave it 3061 * in a blocking state 3062 */ 3063 btrfs_set_path_blocking(path); 3064 3065 item = btrfs_item_nr(leaf, path->slots[0]); 3066 orig_offset = btrfs_item_offset(leaf, item); 3067 item_size = btrfs_item_size(leaf, item); 3068 3069 buf = kmalloc(item_size, GFP_NOFS); 3070 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3071 path->slots[0]), item_size); 3072 slot = path->slots[0] + 1; 3073 leaf = path->nodes[0]; 3074 3075 nritems = btrfs_header_nritems(leaf); 3076 3077 if (slot != nritems) { 3078 /* shift the items */ 3079 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3080 btrfs_item_nr_offset(slot), 3081 (nritems - slot) * sizeof(struct btrfs_item)); 3082 3083 } 3084 3085 btrfs_cpu_key_to_disk(&disk_key, new_key); 3086 btrfs_set_item_key(leaf, &disk_key, slot); 3087 3088 new_item = btrfs_item_nr(leaf, slot); 3089 3090 btrfs_set_item_offset(leaf, new_item, orig_offset); 3091 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3092 3093 btrfs_set_item_offset(leaf, item, 3094 orig_offset + item_size - split_offset); 3095 btrfs_set_item_size(leaf, item, split_offset); 3096 3097 btrfs_set_header_nritems(leaf, nritems + 1); 3098 3099 /* write the data for the start of the original item */ 3100 write_extent_buffer(leaf, buf, 3101 btrfs_item_ptr_offset(leaf, path->slots[0]), 3102 split_offset); 3103 3104 /* write the data for the new item */ 3105 write_extent_buffer(leaf, buf + split_offset, 3106 btrfs_item_ptr_offset(leaf, slot), 3107 item_size - split_offset); 3108 btrfs_mark_buffer_dirty(leaf); 3109 3110 ret = 0; 3111 if (btrfs_leaf_free_space(root, leaf) < 0) { 3112 btrfs_print_leaf(root, leaf); 3113 BUG(); 3114 } 3115 kfree(buf); 3116 return ret; 3117 } 3118 3119 /* 3120 * make the item pointed to by the path smaller. new_size indicates 3121 * how small to make it, and from_end tells us if we just chop bytes 3122 * off the end of the item or if we shift the item to chop bytes off 3123 * the front. 3124 */ 3125 int btrfs_truncate_item(struct btrfs_trans_handle *trans, 3126 struct btrfs_root *root, 3127 struct btrfs_path *path, 3128 u32 new_size, int from_end) 3129 { 3130 int ret = 0; 3131 int slot; 3132 int slot_orig; 3133 struct extent_buffer *leaf; 3134 struct btrfs_item *item; 3135 u32 nritems; 3136 unsigned int data_end; 3137 unsigned int old_data_start; 3138 unsigned int old_size; 3139 unsigned int size_diff; 3140 int i; 3141 3142 slot_orig = path->slots[0]; 3143 leaf = path->nodes[0]; 3144 slot = path->slots[0]; 3145 3146 old_size = btrfs_item_size_nr(leaf, slot); 3147 if (old_size == new_size) 3148 return 0; 3149 3150 nritems = btrfs_header_nritems(leaf); 3151 data_end = leaf_data_end(root, leaf); 3152 3153 old_data_start = btrfs_item_offset_nr(leaf, slot); 3154 3155 size_diff = old_size - new_size; 3156 3157 BUG_ON(slot < 0); 3158 BUG_ON(slot >= nritems); 3159 3160 /* 3161 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3162 */ 3163 /* first correct the data pointers */ 3164 for (i = slot; i < nritems; i++) { 3165 u32 ioff; 3166 item = btrfs_item_nr(leaf, i); 3167 3168 if (!leaf->map_token) { 3169 map_extent_buffer(leaf, (unsigned long)item, 3170 sizeof(struct btrfs_item), 3171 &leaf->map_token, &leaf->kaddr, 3172 &leaf->map_start, &leaf->map_len, 3173 KM_USER1); 3174 } 3175 3176 ioff = btrfs_item_offset(leaf, item); 3177 btrfs_set_item_offset(leaf, item, ioff + size_diff); 3178 } 3179 3180 if (leaf->map_token) { 3181 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3182 leaf->map_token = NULL; 3183 } 3184 3185 /* shift the data */ 3186 if (from_end) { 3187 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3188 data_end + size_diff, btrfs_leaf_data(leaf) + 3189 data_end, old_data_start + new_size - data_end); 3190 } else { 3191 struct btrfs_disk_key disk_key; 3192 u64 offset; 3193 3194 btrfs_item_key(leaf, &disk_key, slot); 3195 3196 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3197 unsigned long ptr; 3198 struct btrfs_file_extent_item *fi; 3199 3200 fi = btrfs_item_ptr(leaf, slot, 3201 struct btrfs_file_extent_item); 3202 fi = (struct btrfs_file_extent_item *)( 3203 (unsigned long)fi - size_diff); 3204 3205 if (btrfs_file_extent_type(leaf, fi) == 3206 BTRFS_FILE_EXTENT_INLINE) { 3207 ptr = btrfs_item_ptr_offset(leaf, slot); 3208 memmove_extent_buffer(leaf, ptr, 3209 (unsigned long)fi, 3210 offsetof(struct btrfs_file_extent_item, 3211 disk_bytenr)); 3212 } 3213 } 3214 3215 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3216 data_end + size_diff, btrfs_leaf_data(leaf) + 3217 data_end, old_data_start - data_end); 3218 3219 offset = btrfs_disk_key_offset(&disk_key); 3220 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3221 btrfs_set_item_key(leaf, &disk_key, slot); 3222 if (slot == 0) 3223 fixup_low_keys(trans, root, path, &disk_key, 1); 3224 } 3225 3226 item = btrfs_item_nr(leaf, slot); 3227 btrfs_set_item_size(leaf, item, new_size); 3228 btrfs_mark_buffer_dirty(leaf); 3229 3230 ret = 0; 3231 if (btrfs_leaf_free_space(root, leaf) < 0) { 3232 btrfs_print_leaf(root, leaf); 3233 BUG(); 3234 } 3235 return ret; 3236 } 3237 3238 /* 3239 * make the item pointed to by the path bigger, data_size is the new size. 3240 */ 3241 int btrfs_extend_item(struct btrfs_trans_handle *trans, 3242 struct btrfs_root *root, struct btrfs_path *path, 3243 u32 data_size) 3244 { 3245 int ret = 0; 3246 int slot; 3247 int slot_orig; 3248 struct extent_buffer *leaf; 3249 struct btrfs_item *item; 3250 u32 nritems; 3251 unsigned int data_end; 3252 unsigned int old_data; 3253 unsigned int old_size; 3254 int i; 3255 3256 slot_orig = path->slots[0]; 3257 leaf = path->nodes[0]; 3258 3259 nritems = btrfs_header_nritems(leaf); 3260 data_end = leaf_data_end(root, leaf); 3261 3262 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3263 btrfs_print_leaf(root, leaf); 3264 BUG(); 3265 } 3266 slot = path->slots[0]; 3267 old_data = btrfs_item_end_nr(leaf, slot); 3268 3269 BUG_ON(slot < 0); 3270 if (slot >= nritems) { 3271 btrfs_print_leaf(root, leaf); 3272 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3273 slot, nritems); 3274 BUG_ON(1); 3275 } 3276 3277 /* 3278 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3279 */ 3280 /* first correct the data pointers */ 3281 for (i = slot; i < nritems; i++) { 3282 u32 ioff; 3283 item = btrfs_item_nr(leaf, i); 3284 3285 if (!leaf->map_token) { 3286 map_extent_buffer(leaf, (unsigned long)item, 3287 sizeof(struct btrfs_item), 3288 &leaf->map_token, &leaf->kaddr, 3289 &leaf->map_start, &leaf->map_len, 3290 KM_USER1); 3291 } 3292 ioff = btrfs_item_offset(leaf, item); 3293 btrfs_set_item_offset(leaf, item, ioff - data_size); 3294 } 3295 3296 if (leaf->map_token) { 3297 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3298 leaf->map_token = NULL; 3299 } 3300 3301 /* shift the data */ 3302 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3303 data_end - data_size, btrfs_leaf_data(leaf) + 3304 data_end, old_data - data_end); 3305 3306 data_end = old_data; 3307 old_size = btrfs_item_size_nr(leaf, slot); 3308 item = btrfs_item_nr(leaf, slot); 3309 btrfs_set_item_size(leaf, item, old_size + data_size); 3310 btrfs_mark_buffer_dirty(leaf); 3311 3312 ret = 0; 3313 if (btrfs_leaf_free_space(root, leaf) < 0) { 3314 btrfs_print_leaf(root, leaf); 3315 BUG(); 3316 } 3317 return ret; 3318 } 3319 3320 /* 3321 * Given a key and some data, insert items into the tree. 3322 * This does all the path init required, making room in the tree if needed. 3323 * Returns the number of keys that were inserted. 3324 */ 3325 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3326 struct btrfs_root *root, 3327 struct btrfs_path *path, 3328 struct btrfs_key *cpu_key, u32 *data_size, 3329 int nr) 3330 { 3331 struct extent_buffer *leaf; 3332 struct btrfs_item *item; 3333 int ret = 0; 3334 int slot; 3335 int i; 3336 u32 nritems; 3337 u32 total_data = 0; 3338 u32 total_size = 0; 3339 unsigned int data_end; 3340 struct btrfs_disk_key disk_key; 3341 struct btrfs_key found_key; 3342 3343 for (i = 0; i < nr; i++) { 3344 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3345 BTRFS_LEAF_DATA_SIZE(root)) { 3346 break; 3347 nr = i; 3348 } 3349 total_data += data_size[i]; 3350 total_size += data_size[i] + sizeof(struct btrfs_item); 3351 } 3352 BUG_ON(nr == 0); 3353 3354 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3355 if (ret == 0) 3356 return -EEXIST; 3357 if (ret < 0) 3358 goto out; 3359 3360 leaf = path->nodes[0]; 3361 3362 nritems = btrfs_header_nritems(leaf); 3363 data_end = leaf_data_end(root, leaf); 3364 3365 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3366 for (i = nr; i >= 0; i--) { 3367 total_data -= data_size[i]; 3368 total_size -= data_size[i] + sizeof(struct btrfs_item); 3369 if (total_size < btrfs_leaf_free_space(root, leaf)) 3370 break; 3371 } 3372 nr = i; 3373 } 3374 3375 slot = path->slots[0]; 3376 BUG_ON(slot < 0); 3377 3378 if (slot != nritems) { 3379 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3380 3381 item = btrfs_item_nr(leaf, slot); 3382 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3383 3384 /* figure out how many keys we can insert in here */ 3385 total_data = data_size[0]; 3386 for (i = 1; i < nr; i++) { 3387 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3388 break; 3389 total_data += data_size[i]; 3390 } 3391 nr = i; 3392 3393 if (old_data < data_end) { 3394 btrfs_print_leaf(root, leaf); 3395 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3396 slot, old_data, data_end); 3397 BUG_ON(1); 3398 } 3399 /* 3400 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3401 */ 3402 /* first correct the data pointers */ 3403 WARN_ON(leaf->map_token); 3404 for (i = slot; i < nritems; i++) { 3405 u32 ioff; 3406 3407 item = btrfs_item_nr(leaf, i); 3408 if (!leaf->map_token) { 3409 map_extent_buffer(leaf, (unsigned long)item, 3410 sizeof(struct btrfs_item), 3411 &leaf->map_token, &leaf->kaddr, 3412 &leaf->map_start, &leaf->map_len, 3413 KM_USER1); 3414 } 3415 3416 ioff = btrfs_item_offset(leaf, item); 3417 btrfs_set_item_offset(leaf, item, ioff - total_data); 3418 } 3419 if (leaf->map_token) { 3420 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3421 leaf->map_token = NULL; 3422 } 3423 3424 /* shift the items */ 3425 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3426 btrfs_item_nr_offset(slot), 3427 (nritems - slot) * sizeof(struct btrfs_item)); 3428 3429 /* shift the data */ 3430 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3431 data_end - total_data, btrfs_leaf_data(leaf) + 3432 data_end, old_data - data_end); 3433 data_end = old_data; 3434 } else { 3435 /* 3436 * this sucks but it has to be done, if we are inserting at 3437 * the end of the leaf only insert 1 of the items, since we 3438 * have no way of knowing whats on the next leaf and we'd have 3439 * to drop our current locks to figure it out 3440 */ 3441 nr = 1; 3442 } 3443 3444 /* setup the item for the new data */ 3445 for (i = 0; i < nr; i++) { 3446 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3447 btrfs_set_item_key(leaf, &disk_key, slot + i); 3448 item = btrfs_item_nr(leaf, slot + i); 3449 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3450 data_end -= data_size[i]; 3451 btrfs_set_item_size(leaf, item, data_size[i]); 3452 } 3453 btrfs_set_header_nritems(leaf, nritems + nr); 3454 btrfs_mark_buffer_dirty(leaf); 3455 3456 ret = 0; 3457 if (slot == 0) { 3458 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3459 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3460 } 3461 3462 if (btrfs_leaf_free_space(root, leaf) < 0) { 3463 btrfs_print_leaf(root, leaf); 3464 BUG(); 3465 } 3466 out: 3467 if (!ret) 3468 ret = nr; 3469 return ret; 3470 } 3471 3472 /* 3473 * this is a helper for btrfs_insert_empty_items, the main goal here is 3474 * to save stack depth by doing the bulk of the work in a function 3475 * that doesn't call btrfs_search_slot 3476 */ 3477 static noinline_for_stack int 3478 setup_items_for_insert(struct btrfs_trans_handle *trans, 3479 struct btrfs_root *root, struct btrfs_path *path, 3480 struct btrfs_key *cpu_key, u32 *data_size, 3481 u32 total_data, u32 total_size, int nr) 3482 { 3483 struct btrfs_item *item; 3484 int i; 3485 u32 nritems; 3486 unsigned int data_end; 3487 struct btrfs_disk_key disk_key; 3488 int ret; 3489 struct extent_buffer *leaf; 3490 int slot; 3491 3492 leaf = path->nodes[0]; 3493 slot = path->slots[0]; 3494 3495 nritems = btrfs_header_nritems(leaf); 3496 data_end = leaf_data_end(root, leaf); 3497 3498 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3499 btrfs_print_leaf(root, leaf); 3500 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3501 total_size, btrfs_leaf_free_space(root, leaf)); 3502 BUG(); 3503 } 3504 3505 if (slot != nritems) { 3506 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3507 3508 if (old_data < data_end) { 3509 btrfs_print_leaf(root, leaf); 3510 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3511 slot, old_data, data_end); 3512 BUG_ON(1); 3513 } 3514 /* 3515 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3516 */ 3517 /* first correct the data pointers */ 3518 WARN_ON(leaf->map_token); 3519 for (i = slot; i < nritems; i++) { 3520 u32 ioff; 3521 3522 item = btrfs_item_nr(leaf, i); 3523 if (!leaf->map_token) { 3524 map_extent_buffer(leaf, (unsigned long)item, 3525 sizeof(struct btrfs_item), 3526 &leaf->map_token, &leaf->kaddr, 3527 &leaf->map_start, &leaf->map_len, 3528 KM_USER1); 3529 } 3530 3531 ioff = btrfs_item_offset(leaf, item); 3532 btrfs_set_item_offset(leaf, item, ioff - total_data); 3533 } 3534 if (leaf->map_token) { 3535 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3536 leaf->map_token = NULL; 3537 } 3538 3539 /* shift the items */ 3540 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3541 btrfs_item_nr_offset(slot), 3542 (nritems - slot) * sizeof(struct btrfs_item)); 3543 3544 /* shift the data */ 3545 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3546 data_end - total_data, btrfs_leaf_data(leaf) + 3547 data_end, old_data - data_end); 3548 data_end = old_data; 3549 } 3550 3551 /* setup the item for the new data */ 3552 for (i = 0; i < nr; i++) { 3553 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3554 btrfs_set_item_key(leaf, &disk_key, slot + i); 3555 item = btrfs_item_nr(leaf, slot + i); 3556 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3557 data_end -= data_size[i]; 3558 btrfs_set_item_size(leaf, item, data_size[i]); 3559 } 3560 3561 btrfs_set_header_nritems(leaf, nritems + nr); 3562 3563 ret = 0; 3564 if (slot == 0) { 3565 struct btrfs_disk_key disk_key; 3566 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3567 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3568 } 3569 btrfs_unlock_up_safe(path, 1); 3570 btrfs_mark_buffer_dirty(leaf); 3571 3572 if (btrfs_leaf_free_space(root, leaf) < 0) { 3573 btrfs_print_leaf(root, leaf); 3574 BUG(); 3575 } 3576 return ret; 3577 } 3578 3579 /* 3580 * Given a key and some data, insert items into the tree. 3581 * This does all the path init required, making room in the tree if needed. 3582 */ 3583 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3584 struct btrfs_root *root, 3585 struct btrfs_path *path, 3586 struct btrfs_key *cpu_key, u32 *data_size, 3587 int nr) 3588 { 3589 struct extent_buffer *leaf; 3590 int ret = 0; 3591 int slot; 3592 int i; 3593 u32 total_size = 0; 3594 u32 total_data = 0; 3595 3596 for (i = 0; i < nr; i++) 3597 total_data += data_size[i]; 3598 3599 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3600 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3601 if (ret == 0) 3602 return -EEXIST; 3603 if (ret < 0) 3604 goto out; 3605 3606 leaf = path->nodes[0]; 3607 slot = path->slots[0]; 3608 BUG_ON(slot < 0); 3609 3610 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size, 3611 total_data, total_size, nr); 3612 3613 out: 3614 return ret; 3615 } 3616 3617 /* 3618 * Given a key and some data, insert an item into the tree. 3619 * This does all the path init required, making room in the tree if needed. 3620 */ 3621 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3622 *root, struct btrfs_key *cpu_key, void *data, u32 3623 data_size) 3624 { 3625 int ret = 0; 3626 struct btrfs_path *path; 3627 struct extent_buffer *leaf; 3628 unsigned long ptr; 3629 3630 path = btrfs_alloc_path(); 3631 BUG_ON(!path); 3632 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3633 if (!ret) { 3634 leaf = path->nodes[0]; 3635 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3636 write_extent_buffer(leaf, data, ptr, data_size); 3637 btrfs_mark_buffer_dirty(leaf); 3638 } 3639 btrfs_free_path(path); 3640 return ret; 3641 } 3642 3643 /* 3644 * delete the pointer from a given node. 3645 * 3646 * the tree should have been previously balanced so the deletion does not 3647 * empty a node. 3648 */ 3649 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3650 struct btrfs_path *path, int level, int slot) 3651 { 3652 struct extent_buffer *parent = path->nodes[level]; 3653 u32 nritems; 3654 int ret = 0; 3655 int wret; 3656 3657 nritems = btrfs_header_nritems(parent); 3658 if (slot != nritems - 1) { 3659 memmove_extent_buffer(parent, 3660 btrfs_node_key_ptr_offset(slot), 3661 btrfs_node_key_ptr_offset(slot + 1), 3662 sizeof(struct btrfs_key_ptr) * 3663 (nritems - slot - 1)); 3664 } 3665 nritems--; 3666 btrfs_set_header_nritems(parent, nritems); 3667 if (nritems == 0 && parent == root->node) { 3668 BUG_ON(btrfs_header_level(root->node) != 1); 3669 /* just turn the root into a leaf and break */ 3670 btrfs_set_header_level(root->node, 0); 3671 } else if (slot == 0) { 3672 struct btrfs_disk_key disk_key; 3673 3674 btrfs_node_key(parent, &disk_key, 0); 3675 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); 3676 if (wret) 3677 ret = wret; 3678 } 3679 btrfs_mark_buffer_dirty(parent); 3680 return ret; 3681 } 3682 3683 /* 3684 * a helper function to delete the leaf pointed to by path->slots[1] and 3685 * path->nodes[1]. 3686 * 3687 * This deletes the pointer in path->nodes[1] and frees the leaf 3688 * block extent. zero is returned if it all worked out, < 0 otherwise. 3689 * 3690 * The path must have already been setup for deleting the leaf, including 3691 * all the proper balancing. path->nodes[1] must be locked. 3692 */ 3693 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 3694 struct btrfs_root *root, 3695 struct btrfs_path *path, 3696 struct extent_buffer *leaf) 3697 { 3698 int ret; 3699 3700 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 3701 ret = del_ptr(trans, root, path, 1, path->slots[1]); 3702 if (ret) 3703 return ret; 3704 3705 /* 3706 * btrfs_free_extent is expensive, we want to make sure we 3707 * aren't holding any locks when we call it 3708 */ 3709 btrfs_unlock_up_safe(path, 0); 3710 3711 ret = btrfs_free_extent(trans, root, leaf->start, leaf->len, 3712 0, root->root_key.objectid, 0, 0); 3713 return ret; 3714 } 3715 /* 3716 * delete the item at the leaf level in path. If that empties 3717 * the leaf, remove it from the tree 3718 */ 3719 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3720 struct btrfs_path *path, int slot, int nr) 3721 { 3722 struct extent_buffer *leaf; 3723 struct btrfs_item *item; 3724 int last_off; 3725 int dsize = 0; 3726 int ret = 0; 3727 int wret; 3728 int i; 3729 u32 nritems; 3730 3731 leaf = path->nodes[0]; 3732 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3733 3734 for (i = 0; i < nr; i++) 3735 dsize += btrfs_item_size_nr(leaf, slot + i); 3736 3737 nritems = btrfs_header_nritems(leaf); 3738 3739 if (slot + nr != nritems) { 3740 int data_end = leaf_data_end(root, leaf); 3741 3742 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3743 data_end + dsize, 3744 btrfs_leaf_data(leaf) + data_end, 3745 last_off - data_end); 3746 3747 for (i = slot + nr; i < nritems; i++) { 3748 u32 ioff; 3749 3750 item = btrfs_item_nr(leaf, i); 3751 if (!leaf->map_token) { 3752 map_extent_buffer(leaf, (unsigned long)item, 3753 sizeof(struct btrfs_item), 3754 &leaf->map_token, &leaf->kaddr, 3755 &leaf->map_start, &leaf->map_len, 3756 KM_USER1); 3757 } 3758 ioff = btrfs_item_offset(leaf, item); 3759 btrfs_set_item_offset(leaf, item, ioff + dsize); 3760 } 3761 3762 if (leaf->map_token) { 3763 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3764 leaf->map_token = NULL; 3765 } 3766 3767 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3768 btrfs_item_nr_offset(slot + nr), 3769 sizeof(struct btrfs_item) * 3770 (nritems - slot - nr)); 3771 } 3772 btrfs_set_header_nritems(leaf, nritems - nr); 3773 nritems -= nr; 3774 3775 /* delete the leaf if we've emptied it */ 3776 if (nritems == 0) { 3777 if (leaf == root->node) { 3778 btrfs_set_header_level(leaf, 0); 3779 } else { 3780 ret = btrfs_del_leaf(trans, root, path, leaf); 3781 BUG_ON(ret); 3782 } 3783 } else { 3784 int used = leaf_space_used(leaf, 0, nritems); 3785 if (slot == 0) { 3786 struct btrfs_disk_key disk_key; 3787 3788 btrfs_item_key(leaf, &disk_key, 0); 3789 wret = fixup_low_keys(trans, root, path, 3790 &disk_key, 1); 3791 if (wret) 3792 ret = wret; 3793 } 3794 3795 /* delete the leaf if it is mostly empty */ 3796 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 3797 /* push_leaf_left fixes the path. 3798 * make sure the path still points to our leaf 3799 * for possible call to del_ptr below 3800 */ 3801 slot = path->slots[1]; 3802 extent_buffer_get(leaf); 3803 3804 btrfs_set_path_blocking(path); 3805 wret = push_leaf_left(trans, root, path, 1, 1); 3806 if (wret < 0 && wret != -ENOSPC) 3807 ret = wret; 3808 3809 if (path->nodes[0] == leaf && 3810 btrfs_header_nritems(leaf)) { 3811 wret = push_leaf_right(trans, root, path, 1, 1); 3812 if (wret < 0 && wret != -ENOSPC) 3813 ret = wret; 3814 } 3815 3816 if (btrfs_header_nritems(leaf) == 0) { 3817 path->slots[1] = slot; 3818 ret = btrfs_del_leaf(trans, root, path, leaf); 3819 BUG_ON(ret); 3820 free_extent_buffer(leaf); 3821 } else { 3822 /* if we're still in the path, make sure 3823 * we're dirty. Otherwise, one of the 3824 * push_leaf functions must have already 3825 * dirtied this buffer 3826 */ 3827 if (path->nodes[0] == leaf) 3828 btrfs_mark_buffer_dirty(leaf); 3829 free_extent_buffer(leaf); 3830 } 3831 } else { 3832 btrfs_mark_buffer_dirty(leaf); 3833 } 3834 } 3835 return ret; 3836 } 3837 3838 /* 3839 * search the tree again to find a leaf with lesser keys 3840 * returns 0 if it found something or 1 if there are no lesser leaves. 3841 * returns < 0 on io errors. 3842 * 3843 * This may release the path, and so you may lose any locks held at the 3844 * time you call it. 3845 */ 3846 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 3847 { 3848 struct btrfs_key key; 3849 struct btrfs_disk_key found_key; 3850 int ret; 3851 3852 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 3853 3854 if (key.offset > 0) 3855 key.offset--; 3856 else if (key.type > 0) 3857 key.type--; 3858 else if (key.objectid > 0) 3859 key.objectid--; 3860 else 3861 return 1; 3862 3863 btrfs_release_path(root, path); 3864 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3865 if (ret < 0) 3866 return ret; 3867 btrfs_item_key(path->nodes[0], &found_key, 0); 3868 ret = comp_keys(&found_key, &key); 3869 if (ret < 0) 3870 return 0; 3871 return 1; 3872 } 3873 3874 /* 3875 * A helper function to walk down the tree starting at min_key, and looking 3876 * for nodes or leaves that are either in cache or have a minimum 3877 * transaction id. This is used by the btree defrag code, and tree logging 3878 * 3879 * This does not cow, but it does stuff the starting key it finds back 3880 * into min_key, so you can call btrfs_search_slot with cow=1 on the 3881 * key and get a writable path. 3882 * 3883 * This does lock as it descends, and path->keep_locks should be set 3884 * to 1 by the caller. 3885 * 3886 * This honors path->lowest_level to prevent descent past a given level 3887 * of the tree. 3888 * 3889 * min_trans indicates the oldest transaction that you are interested 3890 * in walking through. Any nodes or leaves older than min_trans are 3891 * skipped over (without reading them). 3892 * 3893 * returns zero if something useful was found, < 0 on error and 1 if there 3894 * was nothing in the tree that matched the search criteria. 3895 */ 3896 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3897 struct btrfs_key *max_key, 3898 struct btrfs_path *path, int cache_only, 3899 u64 min_trans) 3900 { 3901 struct extent_buffer *cur; 3902 struct btrfs_key found_key; 3903 int slot; 3904 int sret; 3905 u32 nritems; 3906 int level; 3907 int ret = 1; 3908 3909 WARN_ON(!path->keep_locks); 3910 again: 3911 cur = btrfs_lock_root_node(root); 3912 level = btrfs_header_level(cur); 3913 WARN_ON(path->nodes[level]); 3914 path->nodes[level] = cur; 3915 path->locks[level] = 1; 3916 3917 if (btrfs_header_generation(cur) < min_trans) { 3918 ret = 1; 3919 goto out; 3920 } 3921 while (1) { 3922 nritems = btrfs_header_nritems(cur); 3923 level = btrfs_header_level(cur); 3924 sret = bin_search(cur, min_key, level, &slot); 3925 3926 /* at the lowest level, we're done, setup the path and exit */ 3927 if (level == path->lowest_level) { 3928 if (slot >= nritems) 3929 goto find_next_key; 3930 ret = 0; 3931 path->slots[level] = slot; 3932 btrfs_item_key_to_cpu(cur, &found_key, slot); 3933 goto out; 3934 } 3935 if (sret && slot > 0) 3936 slot--; 3937 /* 3938 * check this node pointer against the cache_only and 3939 * min_trans parameters. If it isn't in cache or is too 3940 * old, skip to the next one. 3941 */ 3942 while (slot < nritems) { 3943 u64 blockptr; 3944 u64 gen; 3945 struct extent_buffer *tmp; 3946 struct btrfs_disk_key disk_key; 3947 3948 blockptr = btrfs_node_blockptr(cur, slot); 3949 gen = btrfs_node_ptr_generation(cur, slot); 3950 if (gen < min_trans) { 3951 slot++; 3952 continue; 3953 } 3954 if (!cache_only) 3955 break; 3956 3957 if (max_key) { 3958 btrfs_node_key(cur, &disk_key, slot); 3959 if (comp_keys(&disk_key, max_key) >= 0) { 3960 ret = 1; 3961 goto out; 3962 } 3963 } 3964 3965 tmp = btrfs_find_tree_block(root, blockptr, 3966 btrfs_level_size(root, level - 1)); 3967 3968 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 3969 free_extent_buffer(tmp); 3970 break; 3971 } 3972 if (tmp) 3973 free_extent_buffer(tmp); 3974 slot++; 3975 } 3976 find_next_key: 3977 /* 3978 * we didn't find a candidate key in this node, walk forward 3979 * and find another one 3980 */ 3981 if (slot >= nritems) { 3982 path->slots[level] = slot; 3983 btrfs_set_path_blocking(path); 3984 sret = btrfs_find_next_key(root, path, min_key, level, 3985 cache_only, min_trans); 3986 if (sret == 0) { 3987 btrfs_release_path(root, path); 3988 goto again; 3989 } else { 3990 goto out; 3991 } 3992 } 3993 /* save our key for returning back */ 3994 btrfs_node_key_to_cpu(cur, &found_key, slot); 3995 path->slots[level] = slot; 3996 if (level == path->lowest_level) { 3997 ret = 0; 3998 unlock_up(path, level, 1); 3999 goto out; 4000 } 4001 btrfs_set_path_blocking(path); 4002 cur = read_node_slot(root, cur, slot); 4003 4004 btrfs_tree_lock(cur); 4005 4006 path->locks[level - 1] = 1; 4007 path->nodes[level - 1] = cur; 4008 unlock_up(path, level, 1); 4009 btrfs_clear_path_blocking(path, NULL); 4010 } 4011 out: 4012 if (ret == 0) 4013 memcpy(min_key, &found_key, sizeof(found_key)); 4014 btrfs_set_path_blocking(path); 4015 return ret; 4016 } 4017 4018 /* 4019 * this is similar to btrfs_next_leaf, but does not try to preserve 4020 * and fixup the path. It looks for and returns the next key in the 4021 * tree based on the current path and the cache_only and min_trans 4022 * parameters. 4023 * 4024 * 0 is returned if another key is found, < 0 if there are any errors 4025 * and 1 is returned if there are no higher keys in the tree 4026 * 4027 * path->keep_locks should be set to 1 on the search made before 4028 * calling this function. 4029 */ 4030 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4031 struct btrfs_key *key, int level, 4032 int cache_only, u64 min_trans) 4033 { 4034 int slot; 4035 struct extent_buffer *c; 4036 4037 WARN_ON(!path->keep_locks); 4038 while (level < BTRFS_MAX_LEVEL) { 4039 if (!path->nodes[level]) 4040 return 1; 4041 4042 slot = path->slots[level] + 1; 4043 c = path->nodes[level]; 4044 next: 4045 if (slot >= btrfs_header_nritems(c)) { 4046 int ret; 4047 int orig_lowest; 4048 struct btrfs_key cur_key; 4049 if (level + 1 >= BTRFS_MAX_LEVEL || 4050 !path->nodes[level + 1]) 4051 return 1; 4052 4053 if (path->locks[level + 1]) { 4054 level++; 4055 continue; 4056 } 4057 4058 slot = btrfs_header_nritems(c) - 1; 4059 if (level == 0) 4060 btrfs_item_key_to_cpu(c, &cur_key, slot); 4061 else 4062 btrfs_node_key_to_cpu(c, &cur_key, slot); 4063 4064 orig_lowest = path->lowest_level; 4065 btrfs_release_path(root, path); 4066 path->lowest_level = level; 4067 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4068 0, 0); 4069 path->lowest_level = orig_lowest; 4070 if (ret < 0) 4071 return ret; 4072 4073 c = path->nodes[level]; 4074 slot = path->slots[level]; 4075 if (ret == 0) 4076 slot++; 4077 goto next; 4078 } 4079 4080 if (level == 0) 4081 btrfs_item_key_to_cpu(c, key, slot); 4082 else { 4083 u64 blockptr = btrfs_node_blockptr(c, slot); 4084 u64 gen = btrfs_node_ptr_generation(c, slot); 4085 4086 if (cache_only) { 4087 struct extent_buffer *cur; 4088 cur = btrfs_find_tree_block(root, blockptr, 4089 btrfs_level_size(root, level - 1)); 4090 if (!cur || !btrfs_buffer_uptodate(cur, gen)) { 4091 slot++; 4092 if (cur) 4093 free_extent_buffer(cur); 4094 goto next; 4095 } 4096 free_extent_buffer(cur); 4097 } 4098 if (gen < min_trans) { 4099 slot++; 4100 goto next; 4101 } 4102 btrfs_node_key_to_cpu(c, key, slot); 4103 } 4104 return 0; 4105 } 4106 return 1; 4107 } 4108 4109 /* 4110 * search the tree again to find a leaf with greater keys 4111 * returns 0 if it found something or 1 if there are no greater leaves. 4112 * returns < 0 on io errors. 4113 */ 4114 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4115 { 4116 int slot; 4117 int level; 4118 struct extent_buffer *c; 4119 struct extent_buffer *next; 4120 struct btrfs_key key; 4121 u32 nritems; 4122 int ret; 4123 int old_spinning = path->leave_spinning; 4124 int force_blocking = 0; 4125 4126 nritems = btrfs_header_nritems(path->nodes[0]); 4127 if (nritems == 0) 4128 return 1; 4129 4130 /* 4131 * we take the blocks in an order that upsets lockdep. Using 4132 * blocking mode is the only way around it. 4133 */ 4134 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4135 force_blocking = 1; 4136 #endif 4137 4138 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4139 again: 4140 level = 1; 4141 next = NULL; 4142 btrfs_release_path(root, path); 4143 4144 path->keep_locks = 1; 4145 4146 if (!force_blocking) 4147 path->leave_spinning = 1; 4148 4149 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4150 path->keep_locks = 0; 4151 4152 if (ret < 0) 4153 return ret; 4154 4155 nritems = btrfs_header_nritems(path->nodes[0]); 4156 /* 4157 * by releasing the path above we dropped all our locks. A balance 4158 * could have added more items next to the key that used to be 4159 * at the very end of the block. So, check again here and 4160 * advance the path if there are now more items available. 4161 */ 4162 if (nritems > 0 && path->slots[0] < nritems - 1) { 4163 if (ret == 0) 4164 path->slots[0]++; 4165 ret = 0; 4166 goto done; 4167 } 4168 4169 while (level < BTRFS_MAX_LEVEL) { 4170 if (!path->nodes[level]) { 4171 ret = 1; 4172 goto done; 4173 } 4174 4175 slot = path->slots[level] + 1; 4176 c = path->nodes[level]; 4177 if (slot >= btrfs_header_nritems(c)) { 4178 level++; 4179 if (level == BTRFS_MAX_LEVEL) { 4180 ret = 1; 4181 goto done; 4182 } 4183 continue; 4184 } 4185 4186 if (next) { 4187 btrfs_tree_unlock(next); 4188 free_extent_buffer(next); 4189 } 4190 4191 next = c; 4192 ret = read_block_for_search(NULL, root, path, &next, level, 4193 slot, &key); 4194 if (ret == -EAGAIN) 4195 goto again; 4196 4197 if (ret < 0) { 4198 btrfs_release_path(root, path); 4199 goto done; 4200 } 4201 4202 if (!path->skip_locking) { 4203 ret = btrfs_try_spin_lock(next); 4204 if (!ret) { 4205 btrfs_set_path_blocking(path); 4206 btrfs_tree_lock(next); 4207 if (!force_blocking) 4208 btrfs_clear_path_blocking(path, next); 4209 } 4210 if (force_blocking) 4211 btrfs_set_lock_blocking(next); 4212 } 4213 break; 4214 } 4215 path->slots[level] = slot; 4216 while (1) { 4217 level--; 4218 c = path->nodes[level]; 4219 if (path->locks[level]) 4220 btrfs_tree_unlock(c); 4221 4222 free_extent_buffer(c); 4223 path->nodes[level] = next; 4224 path->slots[level] = 0; 4225 if (!path->skip_locking) 4226 path->locks[level] = 1; 4227 4228 if (!level) 4229 break; 4230 4231 ret = read_block_for_search(NULL, root, path, &next, level, 4232 0, &key); 4233 if (ret == -EAGAIN) 4234 goto again; 4235 4236 if (ret < 0) { 4237 btrfs_release_path(root, path); 4238 goto done; 4239 } 4240 4241 if (!path->skip_locking) { 4242 btrfs_assert_tree_locked(path->nodes[level]); 4243 ret = btrfs_try_spin_lock(next); 4244 if (!ret) { 4245 btrfs_set_path_blocking(path); 4246 btrfs_tree_lock(next); 4247 if (!force_blocking) 4248 btrfs_clear_path_blocking(path, next); 4249 } 4250 if (force_blocking) 4251 btrfs_set_lock_blocking(next); 4252 } 4253 } 4254 ret = 0; 4255 done: 4256 unlock_up(path, 0, 1); 4257 path->leave_spinning = old_spinning; 4258 if (!old_spinning) 4259 btrfs_set_path_blocking(path); 4260 4261 return ret; 4262 } 4263 4264 /* 4265 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4266 * searching until it gets past min_objectid or finds an item of 'type' 4267 * 4268 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4269 */ 4270 int btrfs_previous_item(struct btrfs_root *root, 4271 struct btrfs_path *path, u64 min_objectid, 4272 int type) 4273 { 4274 struct btrfs_key found_key; 4275 struct extent_buffer *leaf; 4276 u32 nritems; 4277 int ret; 4278 4279 while (1) { 4280 if (path->slots[0] == 0) { 4281 btrfs_set_path_blocking(path); 4282 ret = btrfs_prev_leaf(root, path); 4283 if (ret != 0) 4284 return ret; 4285 } else { 4286 path->slots[0]--; 4287 } 4288 leaf = path->nodes[0]; 4289 nritems = btrfs_header_nritems(leaf); 4290 if (nritems == 0) 4291 return 1; 4292 if (path->slots[0] == nritems) 4293 path->slots[0]--; 4294 4295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4296 if (found_key.objectid < min_objectid) 4297 break; 4298 if (found_key.type == type) 4299 return 0; 4300 if (found_key.objectid == min_objectid && 4301 found_key.type < type) 4302 break; 4303 } 4304 return 1; 4305 } 4306