xref: /openbmc/linux/fs/btrfs/ctree.c (revision fd589a8f)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25 
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 		      *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_key *ins_key,
30 		      struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 			  struct btrfs_root *root, struct extent_buffer *dst,
33 			  struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 			      struct btrfs_root *root,
36 			      struct extent_buffer *dst_buf,
37 			      struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 		   struct btrfs_path *path, int level, int slot);
40 
41 struct btrfs_path *btrfs_alloc_path(void)
42 {
43 	struct btrfs_path *path;
44 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
45 	if (path)
46 		path->reada = 1;
47 	return path;
48 }
49 
50 /*
51  * set all locked nodes in the path to blocking locks.  This should
52  * be done before scheduling
53  */
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
55 {
56 	int i;
57 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58 		if (p->nodes[i] && p->locks[i])
59 			btrfs_set_lock_blocking(p->nodes[i]);
60 	}
61 }
62 
63 /*
64  * reset all the locked nodes in the patch to spinning locks.
65  *
66  * held is used to keep lockdep happy, when lockdep is enabled
67  * we set held to a blocking lock before we go around and
68  * retake all the spinlocks in the path.  You can safely use NULL
69  * for held
70  */
71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
72 					struct extent_buffer *held)
73 {
74 	int i;
75 
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77 	/* lockdep really cares that we take all of these spinlocks
78 	 * in the right order.  If any of the locks in the path are not
79 	 * currently blocking, it is going to complain.  So, make really
80 	 * really sure by forcing the path to blocking before we clear
81 	 * the path blocking.
82 	 */
83 	if (held)
84 		btrfs_set_lock_blocking(held);
85 	btrfs_set_path_blocking(p);
86 #endif
87 
88 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
89 		if (p->nodes[i] && p->locks[i])
90 			btrfs_clear_lock_blocking(p->nodes[i]);
91 	}
92 
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 	if (held)
95 		btrfs_clear_lock_blocking(held);
96 #endif
97 }
98 
99 /* this also releases the path */
100 void btrfs_free_path(struct btrfs_path *p)
101 {
102 	btrfs_release_path(NULL, p);
103 	kmem_cache_free(btrfs_path_cachep, p);
104 }
105 
106 /*
107  * path release drops references on the extent buffers in the path
108  * and it drops any locks held by this path
109  *
110  * It is safe to call this on paths that no locks or extent buffers held.
111  */
112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
113 {
114 	int i;
115 
116 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
117 		p->slots[i] = 0;
118 		if (!p->nodes[i])
119 			continue;
120 		if (p->locks[i]) {
121 			btrfs_tree_unlock(p->nodes[i]);
122 			p->locks[i] = 0;
123 		}
124 		free_extent_buffer(p->nodes[i]);
125 		p->nodes[i] = NULL;
126 	}
127 }
128 
129 /*
130  * safely gets a reference on the root node of a tree.  A lock
131  * is not taken, so a concurrent writer may put a different node
132  * at the root of the tree.  See btrfs_lock_root_node for the
133  * looping required.
134  *
135  * The extent buffer returned by this has a reference taken, so
136  * it won't disappear.  It may stop being the root of the tree
137  * at any time because there are no locks held.
138  */
139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
140 {
141 	struct extent_buffer *eb;
142 	spin_lock(&root->node_lock);
143 	eb = root->node;
144 	extent_buffer_get(eb);
145 	spin_unlock(&root->node_lock);
146 	return eb;
147 }
148 
149 /* loop around taking references on and locking the root node of the
150  * tree until you end up with a lock on the root.  A locked buffer
151  * is returned, with a reference held.
152  */
153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
154 {
155 	struct extent_buffer *eb;
156 
157 	while (1) {
158 		eb = btrfs_root_node(root);
159 		btrfs_tree_lock(eb);
160 
161 		spin_lock(&root->node_lock);
162 		if (eb == root->node) {
163 			spin_unlock(&root->node_lock);
164 			break;
165 		}
166 		spin_unlock(&root->node_lock);
167 
168 		btrfs_tree_unlock(eb);
169 		free_extent_buffer(eb);
170 	}
171 	return eb;
172 }
173 
174 /* cowonly root (everything not a reference counted cow subvolume), just get
175  * put onto a simple dirty list.  transaction.c walks this to make sure they
176  * get properly updated on disk.
177  */
178 static void add_root_to_dirty_list(struct btrfs_root *root)
179 {
180 	if (root->track_dirty && list_empty(&root->dirty_list)) {
181 		list_add(&root->dirty_list,
182 			 &root->fs_info->dirty_cowonly_roots);
183 	}
184 }
185 
186 /*
187  * used by snapshot creation to make a copy of a root for a tree with
188  * a given objectid.  The buffer with the new root node is returned in
189  * cow_ret, and this func returns zero on success or a negative error code.
190  */
191 int btrfs_copy_root(struct btrfs_trans_handle *trans,
192 		      struct btrfs_root *root,
193 		      struct extent_buffer *buf,
194 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
195 {
196 	struct extent_buffer *cow;
197 	u32 nritems;
198 	int ret = 0;
199 	int level;
200 	struct btrfs_disk_key disk_key;
201 
202 	WARN_ON(root->ref_cows && trans->transid !=
203 		root->fs_info->running_transaction->transid);
204 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
205 
206 	level = btrfs_header_level(buf);
207 	nritems = btrfs_header_nritems(buf);
208 	if (level == 0)
209 		btrfs_item_key(buf, &disk_key, 0);
210 	else
211 		btrfs_node_key(buf, &disk_key, 0);
212 
213 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
214 				     new_root_objectid, &disk_key, level,
215 				     buf->start, 0);
216 	if (IS_ERR(cow))
217 		return PTR_ERR(cow);
218 
219 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
220 	btrfs_set_header_bytenr(cow, cow->start);
221 	btrfs_set_header_generation(cow, trans->transid);
222 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
223 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
224 				     BTRFS_HEADER_FLAG_RELOC);
225 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
226 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
227 	else
228 		btrfs_set_header_owner(cow, new_root_objectid);
229 
230 	write_extent_buffer(cow, root->fs_info->fsid,
231 			    (unsigned long)btrfs_header_fsid(cow),
232 			    BTRFS_FSID_SIZE);
233 
234 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
235 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
236 		ret = btrfs_inc_ref(trans, root, cow, 1);
237 	else
238 		ret = btrfs_inc_ref(trans, root, cow, 0);
239 
240 	if (ret)
241 		return ret;
242 
243 	btrfs_mark_buffer_dirty(cow);
244 	*cow_ret = cow;
245 	return 0;
246 }
247 
248 /*
249  * check if the tree block can be shared by multiple trees
250  */
251 int btrfs_block_can_be_shared(struct btrfs_root *root,
252 			      struct extent_buffer *buf)
253 {
254 	/*
255 	 * Tree blocks not in refernece counted trees and tree roots
256 	 * are never shared. If a block was allocated after the last
257 	 * snapshot and the block was not allocated by tree relocation,
258 	 * we know the block is not shared.
259 	 */
260 	if (root->ref_cows &&
261 	    buf != root->node && buf != root->commit_root &&
262 	    (btrfs_header_generation(buf) <=
263 	     btrfs_root_last_snapshot(&root->root_item) ||
264 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
265 		return 1;
266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
267 	if (root->ref_cows &&
268 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
269 		return 1;
270 #endif
271 	return 0;
272 }
273 
274 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
275 				       struct btrfs_root *root,
276 				       struct extent_buffer *buf,
277 				       struct extent_buffer *cow)
278 {
279 	u64 refs;
280 	u64 owner;
281 	u64 flags;
282 	u64 new_flags = 0;
283 	int ret;
284 
285 	/*
286 	 * Backrefs update rules:
287 	 *
288 	 * Always use full backrefs for extent pointers in tree block
289 	 * allocated by tree relocation.
290 	 *
291 	 * If a shared tree block is no longer referenced by its owner
292 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
293 	 * use full backrefs for extent pointers in tree block.
294 	 *
295 	 * If a tree block is been relocating
296 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
297 	 * use full backrefs for extent pointers in tree block.
298 	 * The reason for this is some operations (such as drop tree)
299 	 * are only allowed for blocks use full backrefs.
300 	 */
301 
302 	if (btrfs_block_can_be_shared(root, buf)) {
303 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
304 					       buf->len, &refs, &flags);
305 		BUG_ON(ret);
306 		BUG_ON(refs == 0);
307 	} else {
308 		refs = 1;
309 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
310 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
311 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
312 		else
313 			flags = 0;
314 	}
315 
316 	owner = btrfs_header_owner(buf);
317 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
318 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
319 
320 	if (refs > 1) {
321 		if ((owner == root->root_key.objectid ||
322 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
323 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
324 			ret = btrfs_inc_ref(trans, root, buf, 1);
325 			BUG_ON(ret);
326 
327 			if (root->root_key.objectid ==
328 			    BTRFS_TREE_RELOC_OBJECTID) {
329 				ret = btrfs_dec_ref(trans, root, buf, 0);
330 				BUG_ON(ret);
331 				ret = btrfs_inc_ref(trans, root, cow, 1);
332 				BUG_ON(ret);
333 			}
334 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
335 		} else {
336 
337 			if (root->root_key.objectid ==
338 			    BTRFS_TREE_RELOC_OBJECTID)
339 				ret = btrfs_inc_ref(trans, root, cow, 1);
340 			else
341 				ret = btrfs_inc_ref(trans, root, cow, 0);
342 			BUG_ON(ret);
343 		}
344 		if (new_flags != 0) {
345 			ret = btrfs_set_disk_extent_flags(trans, root,
346 							  buf->start,
347 							  buf->len,
348 							  new_flags, 0);
349 			BUG_ON(ret);
350 		}
351 	} else {
352 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
353 			if (root->root_key.objectid ==
354 			    BTRFS_TREE_RELOC_OBJECTID)
355 				ret = btrfs_inc_ref(trans, root, cow, 1);
356 			else
357 				ret = btrfs_inc_ref(trans, root, cow, 0);
358 			BUG_ON(ret);
359 			ret = btrfs_dec_ref(trans, root, buf, 1);
360 			BUG_ON(ret);
361 		}
362 		clean_tree_block(trans, root, buf);
363 	}
364 	return 0;
365 }
366 
367 /*
368  * does the dirty work in cow of a single block.  The parent block (if
369  * supplied) is updated to point to the new cow copy.  The new buffer is marked
370  * dirty and returned locked.  If you modify the block it needs to be marked
371  * dirty again.
372  *
373  * search_start -- an allocation hint for the new block
374  *
375  * empty_size -- a hint that you plan on doing more cow.  This is the size in
376  * bytes the allocator should try to find free next to the block it returns.
377  * This is just a hint and may be ignored by the allocator.
378  */
379 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
380 			     struct btrfs_root *root,
381 			     struct extent_buffer *buf,
382 			     struct extent_buffer *parent, int parent_slot,
383 			     struct extent_buffer **cow_ret,
384 			     u64 search_start, u64 empty_size)
385 {
386 	struct btrfs_disk_key disk_key;
387 	struct extent_buffer *cow;
388 	int level;
389 	int unlock_orig = 0;
390 	u64 parent_start;
391 
392 	if (*cow_ret == buf)
393 		unlock_orig = 1;
394 
395 	btrfs_assert_tree_locked(buf);
396 
397 	WARN_ON(root->ref_cows && trans->transid !=
398 		root->fs_info->running_transaction->transid);
399 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
400 
401 	level = btrfs_header_level(buf);
402 
403 	if (level == 0)
404 		btrfs_item_key(buf, &disk_key, 0);
405 	else
406 		btrfs_node_key(buf, &disk_key, 0);
407 
408 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
409 		if (parent)
410 			parent_start = parent->start;
411 		else
412 			parent_start = 0;
413 	} else
414 		parent_start = 0;
415 
416 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
417 				     root->root_key.objectid, &disk_key,
418 				     level, search_start, empty_size);
419 	if (IS_ERR(cow))
420 		return PTR_ERR(cow);
421 
422 	/* cow is set to blocking by btrfs_init_new_buffer */
423 
424 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
425 	btrfs_set_header_bytenr(cow, cow->start);
426 	btrfs_set_header_generation(cow, trans->transid);
427 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
428 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
429 				     BTRFS_HEADER_FLAG_RELOC);
430 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
431 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
432 	else
433 		btrfs_set_header_owner(cow, root->root_key.objectid);
434 
435 	write_extent_buffer(cow, root->fs_info->fsid,
436 			    (unsigned long)btrfs_header_fsid(cow),
437 			    BTRFS_FSID_SIZE);
438 
439 	update_ref_for_cow(trans, root, buf, cow);
440 
441 	if (buf == root->node) {
442 		WARN_ON(parent && parent != buf);
443 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
444 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
445 			parent_start = buf->start;
446 		else
447 			parent_start = 0;
448 
449 		spin_lock(&root->node_lock);
450 		root->node = cow;
451 		extent_buffer_get(cow);
452 		spin_unlock(&root->node_lock);
453 
454 		btrfs_free_extent(trans, root, buf->start, buf->len,
455 				  parent_start, root->root_key.objectid,
456 				  level, 0);
457 		free_extent_buffer(buf);
458 		add_root_to_dirty_list(root);
459 	} else {
460 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
461 			parent_start = parent->start;
462 		else
463 			parent_start = 0;
464 
465 		WARN_ON(trans->transid != btrfs_header_generation(parent));
466 		btrfs_set_node_blockptr(parent, parent_slot,
467 					cow->start);
468 		btrfs_set_node_ptr_generation(parent, parent_slot,
469 					      trans->transid);
470 		btrfs_mark_buffer_dirty(parent);
471 		btrfs_free_extent(trans, root, buf->start, buf->len,
472 				  parent_start, root->root_key.objectid,
473 				  level, 0);
474 	}
475 	if (unlock_orig)
476 		btrfs_tree_unlock(buf);
477 	free_extent_buffer(buf);
478 	btrfs_mark_buffer_dirty(cow);
479 	*cow_ret = cow;
480 	return 0;
481 }
482 
483 static inline int should_cow_block(struct btrfs_trans_handle *trans,
484 				   struct btrfs_root *root,
485 				   struct extent_buffer *buf)
486 {
487 	if (btrfs_header_generation(buf) == trans->transid &&
488 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
489 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
490 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
491 		return 0;
492 	return 1;
493 }
494 
495 /*
496  * cows a single block, see __btrfs_cow_block for the real work.
497  * This version of it has extra checks so that a block isn't cow'd more than
498  * once per transaction, as long as it hasn't been written yet
499  */
500 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
501 		    struct btrfs_root *root, struct extent_buffer *buf,
502 		    struct extent_buffer *parent, int parent_slot,
503 		    struct extent_buffer **cow_ret)
504 {
505 	u64 search_start;
506 	int ret;
507 
508 	if (trans->transaction != root->fs_info->running_transaction) {
509 		printk(KERN_CRIT "trans %llu running %llu\n",
510 		       (unsigned long long)trans->transid,
511 		       (unsigned long long)
512 		       root->fs_info->running_transaction->transid);
513 		WARN_ON(1);
514 	}
515 	if (trans->transid != root->fs_info->generation) {
516 		printk(KERN_CRIT "trans %llu running %llu\n",
517 		       (unsigned long long)trans->transid,
518 		       (unsigned long long)root->fs_info->generation);
519 		WARN_ON(1);
520 	}
521 
522 	if (!should_cow_block(trans, root, buf)) {
523 		*cow_ret = buf;
524 		return 0;
525 	}
526 
527 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
528 
529 	if (parent)
530 		btrfs_set_lock_blocking(parent);
531 	btrfs_set_lock_blocking(buf);
532 
533 	ret = __btrfs_cow_block(trans, root, buf, parent,
534 				 parent_slot, cow_ret, search_start, 0);
535 	return ret;
536 }
537 
538 /*
539  * helper function for defrag to decide if two blocks pointed to by a
540  * node are actually close by
541  */
542 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
543 {
544 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
545 		return 1;
546 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
547 		return 1;
548 	return 0;
549 }
550 
551 /*
552  * compare two keys in a memcmp fashion
553  */
554 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
555 {
556 	struct btrfs_key k1;
557 
558 	btrfs_disk_key_to_cpu(&k1, disk);
559 
560 	return btrfs_comp_cpu_keys(&k1, k2);
561 }
562 
563 /*
564  * same as comp_keys only with two btrfs_key's
565  */
566 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
567 {
568 	if (k1->objectid > k2->objectid)
569 		return 1;
570 	if (k1->objectid < k2->objectid)
571 		return -1;
572 	if (k1->type > k2->type)
573 		return 1;
574 	if (k1->type < k2->type)
575 		return -1;
576 	if (k1->offset > k2->offset)
577 		return 1;
578 	if (k1->offset < k2->offset)
579 		return -1;
580 	return 0;
581 }
582 
583 /*
584  * this is used by the defrag code to go through all the
585  * leaves pointed to by a node and reallocate them so that
586  * disk order is close to key order
587  */
588 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
589 		       struct btrfs_root *root, struct extent_buffer *parent,
590 		       int start_slot, int cache_only, u64 *last_ret,
591 		       struct btrfs_key *progress)
592 {
593 	struct extent_buffer *cur;
594 	u64 blocknr;
595 	u64 gen;
596 	u64 search_start = *last_ret;
597 	u64 last_block = 0;
598 	u64 other;
599 	u32 parent_nritems;
600 	int end_slot;
601 	int i;
602 	int err = 0;
603 	int parent_level;
604 	int uptodate;
605 	u32 blocksize;
606 	int progress_passed = 0;
607 	struct btrfs_disk_key disk_key;
608 
609 	parent_level = btrfs_header_level(parent);
610 	if (cache_only && parent_level != 1)
611 		return 0;
612 
613 	if (trans->transaction != root->fs_info->running_transaction)
614 		WARN_ON(1);
615 	if (trans->transid != root->fs_info->generation)
616 		WARN_ON(1);
617 
618 	parent_nritems = btrfs_header_nritems(parent);
619 	blocksize = btrfs_level_size(root, parent_level - 1);
620 	end_slot = parent_nritems;
621 
622 	if (parent_nritems == 1)
623 		return 0;
624 
625 	btrfs_set_lock_blocking(parent);
626 
627 	for (i = start_slot; i < end_slot; i++) {
628 		int close = 1;
629 
630 		if (!parent->map_token) {
631 			map_extent_buffer(parent,
632 					btrfs_node_key_ptr_offset(i),
633 					sizeof(struct btrfs_key_ptr),
634 					&parent->map_token, &parent->kaddr,
635 					&parent->map_start, &parent->map_len,
636 					KM_USER1);
637 		}
638 		btrfs_node_key(parent, &disk_key, i);
639 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
640 			continue;
641 
642 		progress_passed = 1;
643 		blocknr = btrfs_node_blockptr(parent, i);
644 		gen = btrfs_node_ptr_generation(parent, i);
645 		if (last_block == 0)
646 			last_block = blocknr;
647 
648 		if (i > 0) {
649 			other = btrfs_node_blockptr(parent, i - 1);
650 			close = close_blocks(blocknr, other, blocksize);
651 		}
652 		if (!close && i < end_slot - 2) {
653 			other = btrfs_node_blockptr(parent, i + 1);
654 			close = close_blocks(blocknr, other, blocksize);
655 		}
656 		if (close) {
657 			last_block = blocknr;
658 			continue;
659 		}
660 		if (parent->map_token) {
661 			unmap_extent_buffer(parent, parent->map_token,
662 					    KM_USER1);
663 			parent->map_token = NULL;
664 		}
665 
666 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
667 		if (cur)
668 			uptodate = btrfs_buffer_uptodate(cur, gen);
669 		else
670 			uptodate = 0;
671 		if (!cur || !uptodate) {
672 			if (cache_only) {
673 				free_extent_buffer(cur);
674 				continue;
675 			}
676 			if (!cur) {
677 				cur = read_tree_block(root, blocknr,
678 							 blocksize, gen);
679 			} else if (!uptodate) {
680 				btrfs_read_buffer(cur, gen);
681 			}
682 		}
683 		if (search_start == 0)
684 			search_start = last_block;
685 
686 		btrfs_tree_lock(cur);
687 		btrfs_set_lock_blocking(cur);
688 		err = __btrfs_cow_block(trans, root, cur, parent, i,
689 					&cur, search_start,
690 					min(16 * blocksize,
691 					    (end_slot - i) * blocksize));
692 		if (err) {
693 			btrfs_tree_unlock(cur);
694 			free_extent_buffer(cur);
695 			break;
696 		}
697 		search_start = cur->start;
698 		last_block = cur->start;
699 		*last_ret = search_start;
700 		btrfs_tree_unlock(cur);
701 		free_extent_buffer(cur);
702 	}
703 	if (parent->map_token) {
704 		unmap_extent_buffer(parent, parent->map_token,
705 				    KM_USER1);
706 		parent->map_token = NULL;
707 	}
708 	return err;
709 }
710 
711 /*
712  * The leaf data grows from end-to-front in the node.
713  * this returns the address of the start of the last item,
714  * which is the stop of the leaf data stack
715  */
716 static inline unsigned int leaf_data_end(struct btrfs_root *root,
717 					 struct extent_buffer *leaf)
718 {
719 	u32 nr = btrfs_header_nritems(leaf);
720 	if (nr == 0)
721 		return BTRFS_LEAF_DATA_SIZE(root);
722 	return btrfs_item_offset_nr(leaf, nr - 1);
723 }
724 
725 /*
726  * extra debugging checks to make sure all the items in a key are
727  * well formed and in the proper order
728  */
729 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
730 		      int level)
731 {
732 	struct extent_buffer *parent = NULL;
733 	struct extent_buffer *node = path->nodes[level];
734 	struct btrfs_disk_key parent_key;
735 	struct btrfs_disk_key node_key;
736 	int parent_slot;
737 	int slot;
738 	struct btrfs_key cpukey;
739 	u32 nritems = btrfs_header_nritems(node);
740 
741 	if (path->nodes[level + 1])
742 		parent = path->nodes[level + 1];
743 
744 	slot = path->slots[level];
745 	BUG_ON(nritems == 0);
746 	if (parent) {
747 		parent_slot = path->slots[level + 1];
748 		btrfs_node_key(parent, &parent_key, parent_slot);
749 		btrfs_node_key(node, &node_key, 0);
750 		BUG_ON(memcmp(&parent_key, &node_key,
751 			      sizeof(struct btrfs_disk_key)));
752 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
753 		       btrfs_header_bytenr(node));
754 	}
755 	BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
756 	if (slot != 0) {
757 		btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
758 		btrfs_node_key(node, &node_key, slot);
759 		BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
760 	}
761 	if (slot < nritems - 1) {
762 		btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
763 		btrfs_node_key(node, &node_key, slot);
764 		BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
765 	}
766 	return 0;
767 }
768 
769 /*
770  * extra checking to make sure all the items in a leaf are
771  * well formed and in the proper order
772  */
773 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
774 		      int level)
775 {
776 	struct extent_buffer *leaf = path->nodes[level];
777 	struct extent_buffer *parent = NULL;
778 	int parent_slot;
779 	struct btrfs_key cpukey;
780 	struct btrfs_disk_key parent_key;
781 	struct btrfs_disk_key leaf_key;
782 	int slot = path->slots[0];
783 
784 	u32 nritems = btrfs_header_nritems(leaf);
785 
786 	if (path->nodes[level + 1])
787 		parent = path->nodes[level + 1];
788 
789 	if (nritems == 0)
790 		return 0;
791 
792 	if (parent) {
793 		parent_slot = path->slots[level + 1];
794 		btrfs_node_key(parent, &parent_key, parent_slot);
795 		btrfs_item_key(leaf, &leaf_key, 0);
796 
797 		BUG_ON(memcmp(&parent_key, &leaf_key,
798 		       sizeof(struct btrfs_disk_key)));
799 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
800 		       btrfs_header_bytenr(leaf));
801 	}
802 	if (slot != 0 && slot < nritems - 1) {
803 		btrfs_item_key(leaf, &leaf_key, slot);
804 		btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
805 		if (comp_keys(&leaf_key, &cpukey) <= 0) {
806 			btrfs_print_leaf(root, leaf);
807 			printk(KERN_CRIT "slot %d offset bad key\n", slot);
808 			BUG_ON(1);
809 		}
810 		if (btrfs_item_offset_nr(leaf, slot - 1) !=
811 		       btrfs_item_end_nr(leaf, slot)) {
812 			btrfs_print_leaf(root, leaf);
813 			printk(KERN_CRIT "slot %d offset bad\n", slot);
814 			BUG_ON(1);
815 		}
816 	}
817 	if (slot < nritems - 1) {
818 		btrfs_item_key(leaf, &leaf_key, slot);
819 		btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
820 		BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
821 		if (btrfs_item_offset_nr(leaf, slot) !=
822 			btrfs_item_end_nr(leaf, slot + 1)) {
823 			btrfs_print_leaf(root, leaf);
824 			printk(KERN_CRIT "slot %d offset bad\n", slot);
825 			BUG_ON(1);
826 		}
827 	}
828 	BUG_ON(btrfs_item_offset_nr(leaf, 0) +
829 	       btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
830 	return 0;
831 }
832 
833 static noinline int check_block(struct btrfs_root *root,
834 				struct btrfs_path *path, int level)
835 {
836 	return 0;
837 	if (level == 0)
838 		return check_leaf(root, path, level);
839 	return check_node(root, path, level);
840 }
841 
842 /*
843  * search for key in the extent_buffer.  The items start at offset p,
844  * and they are item_size apart.  There are 'max' items in p.
845  *
846  * the slot in the array is returned via slot, and it points to
847  * the place where you would insert key if it is not found in
848  * the array.
849  *
850  * slot may point to max if the key is bigger than all of the keys
851  */
852 static noinline int generic_bin_search(struct extent_buffer *eb,
853 				       unsigned long p,
854 				       int item_size, struct btrfs_key *key,
855 				       int max, int *slot)
856 {
857 	int low = 0;
858 	int high = max;
859 	int mid;
860 	int ret;
861 	struct btrfs_disk_key *tmp = NULL;
862 	struct btrfs_disk_key unaligned;
863 	unsigned long offset;
864 	char *map_token = NULL;
865 	char *kaddr = NULL;
866 	unsigned long map_start = 0;
867 	unsigned long map_len = 0;
868 	int err;
869 
870 	while (low < high) {
871 		mid = (low + high) / 2;
872 		offset = p + mid * item_size;
873 
874 		if (!map_token || offset < map_start ||
875 		    (offset + sizeof(struct btrfs_disk_key)) >
876 		    map_start + map_len) {
877 			if (map_token) {
878 				unmap_extent_buffer(eb, map_token, KM_USER0);
879 				map_token = NULL;
880 			}
881 
882 			err = map_private_extent_buffer(eb, offset,
883 						sizeof(struct btrfs_disk_key),
884 						&map_token, &kaddr,
885 						&map_start, &map_len, KM_USER0);
886 
887 			if (!err) {
888 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
889 							map_start);
890 			} else {
891 				read_extent_buffer(eb, &unaligned,
892 						   offset, sizeof(unaligned));
893 				tmp = &unaligned;
894 			}
895 
896 		} else {
897 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
898 							map_start);
899 		}
900 		ret = comp_keys(tmp, key);
901 
902 		if (ret < 0)
903 			low = mid + 1;
904 		else if (ret > 0)
905 			high = mid;
906 		else {
907 			*slot = mid;
908 			if (map_token)
909 				unmap_extent_buffer(eb, map_token, KM_USER0);
910 			return 0;
911 		}
912 	}
913 	*slot = low;
914 	if (map_token)
915 		unmap_extent_buffer(eb, map_token, KM_USER0);
916 	return 1;
917 }
918 
919 /*
920  * simple bin_search frontend that does the right thing for
921  * leaves vs nodes
922  */
923 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
924 		      int level, int *slot)
925 {
926 	if (level == 0) {
927 		return generic_bin_search(eb,
928 					  offsetof(struct btrfs_leaf, items),
929 					  sizeof(struct btrfs_item),
930 					  key, btrfs_header_nritems(eb),
931 					  slot);
932 	} else {
933 		return generic_bin_search(eb,
934 					  offsetof(struct btrfs_node, ptrs),
935 					  sizeof(struct btrfs_key_ptr),
936 					  key, btrfs_header_nritems(eb),
937 					  slot);
938 	}
939 	return -1;
940 }
941 
942 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
943 		     int level, int *slot)
944 {
945 	return bin_search(eb, key, level, slot);
946 }
947 
948 /* given a node and slot number, this reads the blocks it points to.  The
949  * extent buffer is returned with a reference taken (but unlocked).
950  * NULL is returned on error.
951  */
952 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
953 				   struct extent_buffer *parent, int slot)
954 {
955 	int level = btrfs_header_level(parent);
956 	if (slot < 0)
957 		return NULL;
958 	if (slot >= btrfs_header_nritems(parent))
959 		return NULL;
960 
961 	BUG_ON(level == 0);
962 
963 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
964 		       btrfs_level_size(root, level - 1),
965 		       btrfs_node_ptr_generation(parent, slot));
966 }
967 
968 /*
969  * node level balancing, used to make sure nodes are in proper order for
970  * item deletion.  We balance from the top down, so we have to make sure
971  * that a deletion won't leave an node completely empty later on.
972  */
973 static noinline int balance_level(struct btrfs_trans_handle *trans,
974 			 struct btrfs_root *root,
975 			 struct btrfs_path *path, int level)
976 {
977 	struct extent_buffer *right = NULL;
978 	struct extent_buffer *mid;
979 	struct extent_buffer *left = NULL;
980 	struct extent_buffer *parent = NULL;
981 	int ret = 0;
982 	int wret;
983 	int pslot;
984 	int orig_slot = path->slots[level];
985 	int err_on_enospc = 0;
986 	u64 orig_ptr;
987 
988 	if (level == 0)
989 		return 0;
990 
991 	mid = path->nodes[level];
992 
993 	WARN_ON(!path->locks[level]);
994 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
995 
996 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
997 
998 	if (level < BTRFS_MAX_LEVEL - 1)
999 		parent = path->nodes[level + 1];
1000 	pslot = path->slots[level + 1];
1001 
1002 	/*
1003 	 * deal with the case where there is only one pointer in the root
1004 	 * by promoting the node below to a root
1005 	 */
1006 	if (!parent) {
1007 		struct extent_buffer *child;
1008 
1009 		if (btrfs_header_nritems(mid) != 1)
1010 			return 0;
1011 
1012 		/* promote the child to a root */
1013 		child = read_node_slot(root, mid, 0);
1014 		BUG_ON(!child);
1015 		btrfs_tree_lock(child);
1016 		btrfs_set_lock_blocking(child);
1017 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1018 		BUG_ON(ret);
1019 
1020 		spin_lock(&root->node_lock);
1021 		root->node = child;
1022 		spin_unlock(&root->node_lock);
1023 
1024 		add_root_to_dirty_list(root);
1025 		btrfs_tree_unlock(child);
1026 
1027 		path->locks[level] = 0;
1028 		path->nodes[level] = NULL;
1029 		clean_tree_block(trans, root, mid);
1030 		btrfs_tree_unlock(mid);
1031 		/* once for the path */
1032 		free_extent_buffer(mid);
1033 		ret = btrfs_free_extent(trans, root, mid->start, mid->len,
1034 					0, root->root_key.objectid, level, 1);
1035 		/* once for the root ptr */
1036 		free_extent_buffer(mid);
1037 		return ret;
1038 	}
1039 	if (btrfs_header_nritems(mid) >
1040 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1041 		return 0;
1042 
1043 	if (btrfs_header_nritems(mid) < 2)
1044 		err_on_enospc = 1;
1045 
1046 	left = read_node_slot(root, parent, pslot - 1);
1047 	if (left) {
1048 		btrfs_tree_lock(left);
1049 		btrfs_set_lock_blocking(left);
1050 		wret = btrfs_cow_block(trans, root, left,
1051 				       parent, pslot - 1, &left);
1052 		if (wret) {
1053 			ret = wret;
1054 			goto enospc;
1055 		}
1056 	}
1057 	right = read_node_slot(root, parent, pslot + 1);
1058 	if (right) {
1059 		btrfs_tree_lock(right);
1060 		btrfs_set_lock_blocking(right);
1061 		wret = btrfs_cow_block(trans, root, right,
1062 				       parent, pslot + 1, &right);
1063 		if (wret) {
1064 			ret = wret;
1065 			goto enospc;
1066 		}
1067 	}
1068 
1069 	/* first, try to make some room in the middle buffer */
1070 	if (left) {
1071 		orig_slot += btrfs_header_nritems(left);
1072 		wret = push_node_left(trans, root, left, mid, 1);
1073 		if (wret < 0)
1074 			ret = wret;
1075 		if (btrfs_header_nritems(mid) < 2)
1076 			err_on_enospc = 1;
1077 	}
1078 
1079 	/*
1080 	 * then try to empty the right most buffer into the middle
1081 	 */
1082 	if (right) {
1083 		wret = push_node_left(trans, root, mid, right, 1);
1084 		if (wret < 0 && wret != -ENOSPC)
1085 			ret = wret;
1086 		if (btrfs_header_nritems(right) == 0) {
1087 			u64 bytenr = right->start;
1088 			u32 blocksize = right->len;
1089 
1090 			clean_tree_block(trans, root, right);
1091 			btrfs_tree_unlock(right);
1092 			free_extent_buffer(right);
1093 			right = NULL;
1094 			wret = del_ptr(trans, root, path, level + 1, pslot +
1095 				       1);
1096 			if (wret)
1097 				ret = wret;
1098 			wret = btrfs_free_extent(trans, root, bytenr,
1099 						 blocksize, 0,
1100 						 root->root_key.objectid,
1101 						 level, 0);
1102 			if (wret)
1103 				ret = wret;
1104 		} else {
1105 			struct btrfs_disk_key right_key;
1106 			btrfs_node_key(right, &right_key, 0);
1107 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1108 			btrfs_mark_buffer_dirty(parent);
1109 		}
1110 	}
1111 	if (btrfs_header_nritems(mid) == 1) {
1112 		/*
1113 		 * we're not allowed to leave a node with one item in the
1114 		 * tree during a delete.  A deletion from lower in the tree
1115 		 * could try to delete the only pointer in this node.
1116 		 * So, pull some keys from the left.
1117 		 * There has to be a left pointer at this point because
1118 		 * otherwise we would have pulled some pointers from the
1119 		 * right
1120 		 */
1121 		BUG_ON(!left);
1122 		wret = balance_node_right(trans, root, mid, left);
1123 		if (wret < 0) {
1124 			ret = wret;
1125 			goto enospc;
1126 		}
1127 		if (wret == 1) {
1128 			wret = push_node_left(trans, root, left, mid, 1);
1129 			if (wret < 0)
1130 				ret = wret;
1131 		}
1132 		BUG_ON(wret == 1);
1133 	}
1134 	if (btrfs_header_nritems(mid) == 0) {
1135 		/* we've managed to empty the middle node, drop it */
1136 		u64 bytenr = mid->start;
1137 		u32 blocksize = mid->len;
1138 
1139 		clean_tree_block(trans, root, mid);
1140 		btrfs_tree_unlock(mid);
1141 		free_extent_buffer(mid);
1142 		mid = NULL;
1143 		wret = del_ptr(trans, root, path, level + 1, pslot);
1144 		if (wret)
1145 			ret = wret;
1146 		wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1147 					 0, root->root_key.objectid,
1148 					 level, 0);
1149 		if (wret)
1150 			ret = wret;
1151 	} else {
1152 		/* update the parent key to reflect our changes */
1153 		struct btrfs_disk_key mid_key;
1154 		btrfs_node_key(mid, &mid_key, 0);
1155 		btrfs_set_node_key(parent, &mid_key, pslot);
1156 		btrfs_mark_buffer_dirty(parent);
1157 	}
1158 
1159 	/* update the path */
1160 	if (left) {
1161 		if (btrfs_header_nritems(left) > orig_slot) {
1162 			extent_buffer_get(left);
1163 			/* left was locked after cow */
1164 			path->nodes[level] = left;
1165 			path->slots[level + 1] -= 1;
1166 			path->slots[level] = orig_slot;
1167 			if (mid) {
1168 				btrfs_tree_unlock(mid);
1169 				free_extent_buffer(mid);
1170 			}
1171 		} else {
1172 			orig_slot -= btrfs_header_nritems(left);
1173 			path->slots[level] = orig_slot;
1174 		}
1175 	}
1176 	/* double check we haven't messed things up */
1177 	check_block(root, path, level);
1178 	if (orig_ptr !=
1179 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1180 		BUG();
1181 enospc:
1182 	if (right) {
1183 		btrfs_tree_unlock(right);
1184 		free_extent_buffer(right);
1185 	}
1186 	if (left) {
1187 		if (path->nodes[level] != left)
1188 			btrfs_tree_unlock(left);
1189 		free_extent_buffer(left);
1190 	}
1191 	return ret;
1192 }
1193 
1194 /* Node balancing for insertion.  Here we only split or push nodes around
1195  * when they are completely full.  This is also done top down, so we
1196  * have to be pessimistic.
1197  */
1198 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1199 					  struct btrfs_root *root,
1200 					  struct btrfs_path *path, int level)
1201 {
1202 	struct extent_buffer *right = NULL;
1203 	struct extent_buffer *mid;
1204 	struct extent_buffer *left = NULL;
1205 	struct extent_buffer *parent = NULL;
1206 	int ret = 0;
1207 	int wret;
1208 	int pslot;
1209 	int orig_slot = path->slots[level];
1210 	u64 orig_ptr;
1211 
1212 	if (level == 0)
1213 		return 1;
1214 
1215 	mid = path->nodes[level];
1216 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1217 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1218 
1219 	if (level < BTRFS_MAX_LEVEL - 1)
1220 		parent = path->nodes[level + 1];
1221 	pslot = path->slots[level + 1];
1222 
1223 	if (!parent)
1224 		return 1;
1225 
1226 	left = read_node_slot(root, parent, pslot - 1);
1227 
1228 	/* first, try to make some room in the middle buffer */
1229 	if (left) {
1230 		u32 left_nr;
1231 
1232 		btrfs_tree_lock(left);
1233 		btrfs_set_lock_blocking(left);
1234 
1235 		left_nr = btrfs_header_nritems(left);
1236 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1237 			wret = 1;
1238 		} else {
1239 			ret = btrfs_cow_block(trans, root, left, parent,
1240 					      pslot - 1, &left);
1241 			if (ret)
1242 				wret = 1;
1243 			else {
1244 				wret = push_node_left(trans, root,
1245 						      left, mid, 0);
1246 			}
1247 		}
1248 		if (wret < 0)
1249 			ret = wret;
1250 		if (wret == 0) {
1251 			struct btrfs_disk_key disk_key;
1252 			orig_slot += left_nr;
1253 			btrfs_node_key(mid, &disk_key, 0);
1254 			btrfs_set_node_key(parent, &disk_key, pslot);
1255 			btrfs_mark_buffer_dirty(parent);
1256 			if (btrfs_header_nritems(left) > orig_slot) {
1257 				path->nodes[level] = left;
1258 				path->slots[level + 1] -= 1;
1259 				path->slots[level] = orig_slot;
1260 				btrfs_tree_unlock(mid);
1261 				free_extent_buffer(mid);
1262 			} else {
1263 				orig_slot -=
1264 					btrfs_header_nritems(left);
1265 				path->slots[level] = orig_slot;
1266 				btrfs_tree_unlock(left);
1267 				free_extent_buffer(left);
1268 			}
1269 			return 0;
1270 		}
1271 		btrfs_tree_unlock(left);
1272 		free_extent_buffer(left);
1273 	}
1274 	right = read_node_slot(root, parent, pslot + 1);
1275 
1276 	/*
1277 	 * then try to empty the right most buffer into the middle
1278 	 */
1279 	if (right) {
1280 		u32 right_nr;
1281 
1282 		btrfs_tree_lock(right);
1283 		btrfs_set_lock_blocking(right);
1284 
1285 		right_nr = btrfs_header_nritems(right);
1286 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1287 			wret = 1;
1288 		} else {
1289 			ret = btrfs_cow_block(trans, root, right,
1290 					      parent, pslot + 1,
1291 					      &right);
1292 			if (ret)
1293 				wret = 1;
1294 			else {
1295 				wret = balance_node_right(trans, root,
1296 							  right, mid);
1297 			}
1298 		}
1299 		if (wret < 0)
1300 			ret = wret;
1301 		if (wret == 0) {
1302 			struct btrfs_disk_key disk_key;
1303 
1304 			btrfs_node_key(right, &disk_key, 0);
1305 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1306 			btrfs_mark_buffer_dirty(parent);
1307 
1308 			if (btrfs_header_nritems(mid) <= orig_slot) {
1309 				path->nodes[level] = right;
1310 				path->slots[level + 1] += 1;
1311 				path->slots[level] = orig_slot -
1312 					btrfs_header_nritems(mid);
1313 				btrfs_tree_unlock(mid);
1314 				free_extent_buffer(mid);
1315 			} else {
1316 				btrfs_tree_unlock(right);
1317 				free_extent_buffer(right);
1318 			}
1319 			return 0;
1320 		}
1321 		btrfs_tree_unlock(right);
1322 		free_extent_buffer(right);
1323 	}
1324 	return 1;
1325 }
1326 
1327 /*
1328  * readahead one full node of leaves, finding things that are close
1329  * to the block in 'slot', and triggering ra on them.
1330  */
1331 static void reada_for_search(struct btrfs_root *root,
1332 			     struct btrfs_path *path,
1333 			     int level, int slot, u64 objectid)
1334 {
1335 	struct extent_buffer *node;
1336 	struct btrfs_disk_key disk_key;
1337 	u32 nritems;
1338 	u64 search;
1339 	u64 target;
1340 	u64 nread = 0;
1341 	int direction = path->reada;
1342 	struct extent_buffer *eb;
1343 	u32 nr;
1344 	u32 blocksize;
1345 	u32 nscan = 0;
1346 
1347 	if (level != 1)
1348 		return;
1349 
1350 	if (!path->nodes[level])
1351 		return;
1352 
1353 	node = path->nodes[level];
1354 
1355 	search = btrfs_node_blockptr(node, slot);
1356 	blocksize = btrfs_level_size(root, level - 1);
1357 	eb = btrfs_find_tree_block(root, search, blocksize);
1358 	if (eb) {
1359 		free_extent_buffer(eb);
1360 		return;
1361 	}
1362 
1363 	target = search;
1364 
1365 	nritems = btrfs_header_nritems(node);
1366 	nr = slot;
1367 	while (1) {
1368 		if (direction < 0) {
1369 			if (nr == 0)
1370 				break;
1371 			nr--;
1372 		} else if (direction > 0) {
1373 			nr++;
1374 			if (nr >= nritems)
1375 				break;
1376 		}
1377 		if (path->reada < 0 && objectid) {
1378 			btrfs_node_key(node, &disk_key, nr);
1379 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1380 				break;
1381 		}
1382 		search = btrfs_node_blockptr(node, nr);
1383 		if ((search <= target && target - search <= 65536) ||
1384 		    (search > target && search - target <= 65536)) {
1385 			readahead_tree_block(root, search, blocksize,
1386 				     btrfs_node_ptr_generation(node, nr));
1387 			nread += blocksize;
1388 		}
1389 		nscan++;
1390 		if ((nread > 65536 || nscan > 32))
1391 			break;
1392 	}
1393 }
1394 
1395 /*
1396  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1397  * cache
1398  */
1399 static noinline int reada_for_balance(struct btrfs_root *root,
1400 				      struct btrfs_path *path, int level)
1401 {
1402 	int slot;
1403 	int nritems;
1404 	struct extent_buffer *parent;
1405 	struct extent_buffer *eb;
1406 	u64 gen;
1407 	u64 block1 = 0;
1408 	u64 block2 = 0;
1409 	int ret = 0;
1410 	int blocksize;
1411 
1412 	parent = path->nodes[level + 1];
1413 	if (!parent)
1414 		return 0;
1415 
1416 	nritems = btrfs_header_nritems(parent);
1417 	slot = path->slots[level + 1];
1418 	blocksize = btrfs_level_size(root, level);
1419 
1420 	if (slot > 0) {
1421 		block1 = btrfs_node_blockptr(parent, slot - 1);
1422 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1423 		eb = btrfs_find_tree_block(root, block1, blocksize);
1424 		if (eb && btrfs_buffer_uptodate(eb, gen))
1425 			block1 = 0;
1426 		free_extent_buffer(eb);
1427 	}
1428 	if (slot + 1 < nritems) {
1429 		block2 = btrfs_node_blockptr(parent, slot + 1);
1430 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1431 		eb = btrfs_find_tree_block(root, block2, blocksize);
1432 		if (eb && btrfs_buffer_uptodate(eb, gen))
1433 			block2 = 0;
1434 		free_extent_buffer(eb);
1435 	}
1436 	if (block1 || block2) {
1437 		ret = -EAGAIN;
1438 
1439 		/* release the whole path */
1440 		btrfs_release_path(root, path);
1441 
1442 		/* read the blocks */
1443 		if (block1)
1444 			readahead_tree_block(root, block1, blocksize, 0);
1445 		if (block2)
1446 			readahead_tree_block(root, block2, blocksize, 0);
1447 
1448 		if (block1) {
1449 			eb = read_tree_block(root, block1, blocksize, 0);
1450 			free_extent_buffer(eb);
1451 		}
1452 		if (block2) {
1453 			eb = read_tree_block(root, block2, blocksize, 0);
1454 			free_extent_buffer(eb);
1455 		}
1456 	}
1457 	return ret;
1458 }
1459 
1460 
1461 /*
1462  * when we walk down the tree, it is usually safe to unlock the higher layers
1463  * in the tree.  The exceptions are when our path goes through slot 0, because
1464  * operations on the tree might require changing key pointers higher up in the
1465  * tree.
1466  *
1467  * callers might also have set path->keep_locks, which tells this code to keep
1468  * the lock if the path points to the last slot in the block.  This is part of
1469  * walking through the tree, and selecting the next slot in the higher block.
1470  *
1471  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1472  * if lowest_unlock is 1, level 0 won't be unlocked
1473  */
1474 static noinline void unlock_up(struct btrfs_path *path, int level,
1475 			       int lowest_unlock)
1476 {
1477 	int i;
1478 	int skip_level = level;
1479 	int no_skips = 0;
1480 	struct extent_buffer *t;
1481 
1482 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1483 		if (!path->nodes[i])
1484 			break;
1485 		if (!path->locks[i])
1486 			break;
1487 		if (!no_skips && path->slots[i] == 0) {
1488 			skip_level = i + 1;
1489 			continue;
1490 		}
1491 		if (!no_skips && path->keep_locks) {
1492 			u32 nritems;
1493 			t = path->nodes[i];
1494 			nritems = btrfs_header_nritems(t);
1495 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1496 				skip_level = i + 1;
1497 				continue;
1498 			}
1499 		}
1500 		if (skip_level < i && i >= lowest_unlock)
1501 			no_skips = 1;
1502 
1503 		t = path->nodes[i];
1504 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1505 			btrfs_tree_unlock(t);
1506 			path->locks[i] = 0;
1507 		}
1508 	}
1509 }
1510 
1511 /*
1512  * This releases any locks held in the path starting at level and
1513  * going all the way up to the root.
1514  *
1515  * btrfs_search_slot will keep the lock held on higher nodes in a few
1516  * corner cases, such as COW of the block at slot zero in the node.  This
1517  * ignores those rules, and it should only be called when there are no
1518  * more updates to be done higher up in the tree.
1519  */
1520 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1521 {
1522 	int i;
1523 
1524 	if (path->keep_locks)
1525 		return;
1526 
1527 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1528 		if (!path->nodes[i])
1529 			continue;
1530 		if (!path->locks[i])
1531 			continue;
1532 		btrfs_tree_unlock(path->nodes[i]);
1533 		path->locks[i] = 0;
1534 	}
1535 }
1536 
1537 /*
1538  * helper function for btrfs_search_slot.  The goal is to find a block
1539  * in cache without setting the path to blocking.  If we find the block
1540  * we return zero and the path is unchanged.
1541  *
1542  * If we can't find the block, we set the path blocking and do some
1543  * reada.  -EAGAIN is returned and the search must be repeated.
1544  */
1545 static int
1546 read_block_for_search(struct btrfs_trans_handle *trans,
1547 		       struct btrfs_root *root, struct btrfs_path *p,
1548 		       struct extent_buffer **eb_ret, int level, int slot,
1549 		       struct btrfs_key *key)
1550 {
1551 	u64 blocknr;
1552 	u64 gen;
1553 	u32 blocksize;
1554 	struct extent_buffer *b = *eb_ret;
1555 	struct extent_buffer *tmp;
1556 	int ret;
1557 
1558 	blocknr = btrfs_node_blockptr(b, slot);
1559 	gen = btrfs_node_ptr_generation(b, slot);
1560 	blocksize = btrfs_level_size(root, level - 1);
1561 
1562 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1563 	if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1564 		/*
1565 		 * we found an up to date block without sleeping, return
1566 		 * right away
1567 		 */
1568 		*eb_ret = tmp;
1569 		return 0;
1570 	}
1571 
1572 	/*
1573 	 * reduce lock contention at high levels
1574 	 * of the btree by dropping locks before
1575 	 * we read.  Don't release the lock on the current
1576 	 * level because we need to walk this node to figure
1577 	 * out which blocks to read.
1578 	 */
1579 	btrfs_unlock_up_safe(p, level + 1);
1580 	btrfs_set_path_blocking(p);
1581 
1582 	if (tmp)
1583 		free_extent_buffer(tmp);
1584 	if (p->reada)
1585 		reada_for_search(root, p, level, slot, key->objectid);
1586 
1587 	btrfs_release_path(NULL, p);
1588 
1589 	ret = -EAGAIN;
1590 	tmp = read_tree_block(root, blocknr, blocksize, gen);
1591 	if (tmp) {
1592 		/*
1593 		 * If the read above didn't mark this buffer up to date,
1594 		 * it will never end up being up to date.  Set ret to EIO now
1595 		 * and give up so that our caller doesn't loop forever
1596 		 * on our EAGAINs.
1597 		 */
1598 		if (!btrfs_buffer_uptodate(tmp, 0))
1599 			ret = -EIO;
1600 		free_extent_buffer(tmp);
1601 	}
1602 	return ret;
1603 }
1604 
1605 /*
1606  * helper function for btrfs_search_slot.  This does all of the checks
1607  * for node-level blocks and does any balancing required based on
1608  * the ins_len.
1609  *
1610  * If no extra work was required, zero is returned.  If we had to
1611  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1612  * start over
1613  */
1614 static int
1615 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1616 		       struct btrfs_root *root, struct btrfs_path *p,
1617 		       struct extent_buffer *b, int level, int ins_len)
1618 {
1619 	int ret;
1620 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1621 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1622 		int sret;
1623 
1624 		sret = reada_for_balance(root, p, level);
1625 		if (sret)
1626 			goto again;
1627 
1628 		btrfs_set_path_blocking(p);
1629 		sret = split_node(trans, root, p, level);
1630 		btrfs_clear_path_blocking(p, NULL);
1631 
1632 		BUG_ON(sret > 0);
1633 		if (sret) {
1634 			ret = sret;
1635 			goto done;
1636 		}
1637 		b = p->nodes[level];
1638 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1639 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1640 		int sret;
1641 
1642 		sret = reada_for_balance(root, p, level);
1643 		if (sret)
1644 			goto again;
1645 
1646 		btrfs_set_path_blocking(p);
1647 		sret = balance_level(trans, root, p, level);
1648 		btrfs_clear_path_blocking(p, NULL);
1649 
1650 		if (sret) {
1651 			ret = sret;
1652 			goto done;
1653 		}
1654 		b = p->nodes[level];
1655 		if (!b) {
1656 			btrfs_release_path(NULL, p);
1657 			goto again;
1658 		}
1659 		BUG_ON(btrfs_header_nritems(b) == 1);
1660 	}
1661 	return 0;
1662 
1663 again:
1664 	ret = -EAGAIN;
1665 done:
1666 	return ret;
1667 }
1668 
1669 /*
1670  * look for key in the tree.  path is filled in with nodes along the way
1671  * if key is found, we return zero and you can find the item in the leaf
1672  * level of the path (level 0)
1673  *
1674  * If the key isn't found, the path points to the slot where it should
1675  * be inserted, and 1 is returned.  If there are other errors during the
1676  * search a negative error number is returned.
1677  *
1678  * if ins_len > 0, nodes and leaves will be split as we walk down the
1679  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1680  * possible)
1681  */
1682 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1683 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1684 		      ins_len, int cow)
1685 {
1686 	struct extent_buffer *b;
1687 	int slot;
1688 	int ret;
1689 	int err;
1690 	int level;
1691 	int lowest_unlock = 1;
1692 	u8 lowest_level = 0;
1693 
1694 	lowest_level = p->lowest_level;
1695 	WARN_ON(lowest_level && ins_len > 0);
1696 	WARN_ON(p->nodes[0] != NULL);
1697 
1698 	if (ins_len < 0)
1699 		lowest_unlock = 2;
1700 
1701 again:
1702 	if (p->search_commit_root) {
1703 		b = root->commit_root;
1704 		extent_buffer_get(b);
1705 		if (!p->skip_locking)
1706 			btrfs_tree_lock(b);
1707 	} else {
1708 		if (p->skip_locking)
1709 			b = btrfs_root_node(root);
1710 		else
1711 			b = btrfs_lock_root_node(root);
1712 	}
1713 
1714 	while (b) {
1715 		level = btrfs_header_level(b);
1716 
1717 		/*
1718 		 * setup the path here so we can release it under lock
1719 		 * contention with the cow code
1720 		 */
1721 		p->nodes[level] = b;
1722 		if (!p->skip_locking)
1723 			p->locks[level] = 1;
1724 
1725 		if (cow) {
1726 			/*
1727 			 * if we don't really need to cow this block
1728 			 * then we don't want to set the path blocking,
1729 			 * so we test it here
1730 			 */
1731 			if (!should_cow_block(trans, root, b))
1732 				goto cow_done;
1733 
1734 			btrfs_set_path_blocking(p);
1735 
1736 			err = btrfs_cow_block(trans, root, b,
1737 					      p->nodes[level + 1],
1738 					      p->slots[level + 1], &b);
1739 			if (err) {
1740 				free_extent_buffer(b);
1741 				ret = err;
1742 				goto done;
1743 			}
1744 		}
1745 cow_done:
1746 		BUG_ON(!cow && ins_len);
1747 		if (level != btrfs_header_level(b))
1748 			WARN_ON(1);
1749 		level = btrfs_header_level(b);
1750 
1751 		p->nodes[level] = b;
1752 		if (!p->skip_locking)
1753 			p->locks[level] = 1;
1754 
1755 		btrfs_clear_path_blocking(p, NULL);
1756 
1757 		/*
1758 		 * we have a lock on b and as long as we aren't changing
1759 		 * the tree, there is no way to for the items in b to change.
1760 		 * It is safe to drop the lock on our parent before we
1761 		 * go through the expensive btree search on b.
1762 		 *
1763 		 * If cow is true, then we might be changing slot zero,
1764 		 * which may require changing the parent.  So, we can't
1765 		 * drop the lock until after we know which slot we're
1766 		 * operating on.
1767 		 */
1768 		if (!cow)
1769 			btrfs_unlock_up_safe(p, level + 1);
1770 
1771 		ret = check_block(root, p, level);
1772 		if (ret) {
1773 			ret = -1;
1774 			goto done;
1775 		}
1776 
1777 		ret = bin_search(b, key, level, &slot);
1778 
1779 		if (level != 0) {
1780 			int dec = 0;
1781 			if (ret && slot > 0) {
1782 				dec = 1;
1783 				slot -= 1;
1784 			}
1785 			p->slots[level] = slot;
1786 			err = setup_nodes_for_search(trans, root, p, b, level,
1787 						     ins_len);
1788 			if (err == -EAGAIN)
1789 				goto again;
1790 			if (err) {
1791 				ret = err;
1792 				goto done;
1793 			}
1794 			b = p->nodes[level];
1795 			slot = p->slots[level];
1796 
1797 			unlock_up(p, level, lowest_unlock);
1798 
1799 			if (level == lowest_level) {
1800 				if (dec)
1801 					p->slots[level]++;
1802 				goto done;
1803 			}
1804 
1805 			err = read_block_for_search(trans, root, p,
1806 						    &b, level, slot, key);
1807 			if (err == -EAGAIN)
1808 				goto again;
1809 			if (err) {
1810 				ret = err;
1811 				goto done;
1812 			}
1813 
1814 			if (!p->skip_locking) {
1815 				btrfs_clear_path_blocking(p, NULL);
1816 				err = btrfs_try_spin_lock(b);
1817 
1818 				if (!err) {
1819 					btrfs_set_path_blocking(p);
1820 					btrfs_tree_lock(b);
1821 					btrfs_clear_path_blocking(p, b);
1822 				}
1823 			}
1824 		} else {
1825 			p->slots[level] = slot;
1826 			if (ins_len > 0 &&
1827 			    btrfs_leaf_free_space(root, b) < ins_len) {
1828 				btrfs_set_path_blocking(p);
1829 				err = split_leaf(trans, root, key,
1830 						 p, ins_len, ret == 0);
1831 				btrfs_clear_path_blocking(p, NULL);
1832 
1833 				BUG_ON(err > 0);
1834 				if (err) {
1835 					ret = err;
1836 					goto done;
1837 				}
1838 			}
1839 			if (!p->search_for_split)
1840 				unlock_up(p, level, lowest_unlock);
1841 			goto done;
1842 		}
1843 	}
1844 	ret = 1;
1845 done:
1846 	/*
1847 	 * we don't really know what they plan on doing with the path
1848 	 * from here on, so for now just mark it as blocking
1849 	 */
1850 	if (!p->leave_spinning)
1851 		btrfs_set_path_blocking(p);
1852 	if (ret < 0)
1853 		btrfs_release_path(root, p);
1854 	return ret;
1855 }
1856 
1857 /*
1858  * adjust the pointers going up the tree, starting at level
1859  * making sure the right key of each node is points to 'key'.
1860  * This is used after shifting pointers to the left, so it stops
1861  * fixing up pointers when a given leaf/node is not in slot 0 of the
1862  * higher levels
1863  *
1864  * If this fails to write a tree block, it returns -1, but continues
1865  * fixing up the blocks in ram so the tree is consistent.
1866  */
1867 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1868 			  struct btrfs_root *root, struct btrfs_path *path,
1869 			  struct btrfs_disk_key *key, int level)
1870 {
1871 	int i;
1872 	int ret = 0;
1873 	struct extent_buffer *t;
1874 
1875 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1876 		int tslot = path->slots[i];
1877 		if (!path->nodes[i])
1878 			break;
1879 		t = path->nodes[i];
1880 		btrfs_set_node_key(t, key, tslot);
1881 		btrfs_mark_buffer_dirty(path->nodes[i]);
1882 		if (tslot != 0)
1883 			break;
1884 	}
1885 	return ret;
1886 }
1887 
1888 /*
1889  * update item key.
1890  *
1891  * This function isn't completely safe. It's the caller's responsibility
1892  * that the new key won't break the order
1893  */
1894 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1895 			    struct btrfs_root *root, struct btrfs_path *path,
1896 			    struct btrfs_key *new_key)
1897 {
1898 	struct btrfs_disk_key disk_key;
1899 	struct extent_buffer *eb;
1900 	int slot;
1901 
1902 	eb = path->nodes[0];
1903 	slot = path->slots[0];
1904 	if (slot > 0) {
1905 		btrfs_item_key(eb, &disk_key, slot - 1);
1906 		if (comp_keys(&disk_key, new_key) >= 0)
1907 			return -1;
1908 	}
1909 	if (slot < btrfs_header_nritems(eb) - 1) {
1910 		btrfs_item_key(eb, &disk_key, slot + 1);
1911 		if (comp_keys(&disk_key, new_key) <= 0)
1912 			return -1;
1913 	}
1914 
1915 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1916 	btrfs_set_item_key(eb, &disk_key, slot);
1917 	btrfs_mark_buffer_dirty(eb);
1918 	if (slot == 0)
1919 		fixup_low_keys(trans, root, path, &disk_key, 1);
1920 	return 0;
1921 }
1922 
1923 /*
1924  * try to push data from one node into the next node left in the
1925  * tree.
1926  *
1927  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1928  * error, and > 0 if there was no room in the left hand block.
1929  */
1930 static int push_node_left(struct btrfs_trans_handle *trans,
1931 			  struct btrfs_root *root, struct extent_buffer *dst,
1932 			  struct extent_buffer *src, int empty)
1933 {
1934 	int push_items = 0;
1935 	int src_nritems;
1936 	int dst_nritems;
1937 	int ret = 0;
1938 
1939 	src_nritems = btrfs_header_nritems(src);
1940 	dst_nritems = btrfs_header_nritems(dst);
1941 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1942 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1943 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1944 
1945 	if (!empty && src_nritems <= 8)
1946 		return 1;
1947 
1948 	if (push_items <= 0)
1949 		return 1;
1950 
1951 	if (empty) {
1952 		push_items = min(src_nritems, push_items);
1953 		if (push_items < src_nritems) {
1954 			/* leave at least 8 pointers in the node if
1955 			 * we aren't going to empty it
1956 			 */
1957 			if (src_nritems - push_items < 8) {
1958 				if (push_items <= 8)
1959 					return 1;
1960 				push_items -= 8;
1961 			}
1962 		}
1963 	} else
1964 		push_items = min(src_nritems - 8, push_items);
1965 
1966 	copy_extent_buffer(dst, src,
1967 			   btrfs_node_key_ptr_offset(dst_nritems),
1968 			   btrfs_node_key_ptr_offset(0),
1969 			   push_items * sizeof(struct btrfs_key_ptr));
1970 
1971 	if (push_items < src_nritems) {
1972 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1973 				      btrfs_node_key_ptr_offset(push_items),
1974 				      (src_nritems - push_items) *
1975 				      sizeof(struct btrfs_key_ptr));
1976 	}
1977 	btrfs_set_header_nritems(src, src_nritems - push_items);
1978 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1979 	btrfs_mark_buffer_dirty(src);
1980 	btrfs_mark_buffer_dirty(dst);
1981 
1982 	return ret;
1983 }
1984 
1985 /*
1986  * try to push data from one node into the next node right in the
1987  * tree.
1988  *
1989  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1990  * error, and > 0 if there was no room in the right hand block.
1991  *
1992  * this will  only push up to 1/2 the contents of the left node over
1993  */
1994 static int balance_node_right(struct btrfs_trans_handle *trans,
1995 			      struct btrfs_root *root,
1996 			      struct extent_buffer *dst,
1997 			      struct extent_buffer *src)
1998 {
1999 	int push_items = 0;
2000 	int max_push;
2001 	int src_nritems;
2002 	int dst_nritems;
2003 	int ret = 0;
2004 
2005 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2006 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2007 
2008 	src_nritems = btrfs_header_nritems(src);
2009 	dst_nritems = btrfs_header_nritems(dst);
2010 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2011 	if (push_items <= 0)
2012 		return 1;
2013 
2014 	if (src_nritems < 4)
2015 		return 1;
2016 
2017 	max_push = src_nritems / 2 + 1;
2018 	/* don't try to empty the node */
2019 	if (max_push >= src_nritems)
2020 		return 1;
2021 
2022 	if (max_push < push_items)
2023 		push_items = max_push;
2024 
2025 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2026 				      btrfs_node_key_ptr_offset(0),
2027 				      (dst_nritems) *
2028 				      sizeof(struct btrfs_key_ptr));
2029 
2030 	copy_extent_buffer(dst, src,
2031 			   btrfs_node_key_ptr_offset(0),
2032 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2033 			   push_items * sizeof(struct btrfs_key_ptr));
2034 
2035 	btrfs_set_header_nritems(src, src_nritems - push_items);
2036 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2037 
2038 	btrfs_mark_buffer_dirty(src);
2039 	btrfs_mark_buffer_dirty(dst);
2040 
2041 	return ret;
2042 }
2043 
2044 /*
2045  * helper function to insert a new root level in the tree.
2046  * A new node is allocated, and a single item is inserted to
2047  * point to the existing root
2048  *
2049  * returns zero on success or < 0 on failure.
2050  */
2051 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2052 			   struct btrfs_root *root,
2053 			   struct btrfs_path *path, int level)
2054 {
2055 	u64 lower_gen;
2056 	struct extent_buffer *lower;
2057 	struct extent_buffer *c;
2058 	struct extent_buffer *old;
2059 	struct btrfs_disk_key lower_key;
2060 
2061 	BUG_ON(path->nodes[level]);
2062 	BUG_ON(path->nodes[level-1] != root->node);
2063 
2064 	lower = path->nodes[level-1];
2065 	if (level == 1)
2066 		btrfs_item_key(lower, &lower_key, 0);
2067 	else
2068 		btrfs_node_key(lower, &lower_key, 0);
2069 
2070 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2071 				   root->root_key.objectid, &lower_key,
2072 				   level, root->node->start, 0);
2073 	if (IS_ERR(c))
2074 		return PTR_ERR(c);
2075 
2076 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2077 	btrfs_set_header_nritems(c, 1);
2078 	btrfs_set_header_level(c, level);
2079 	btrfs_set_header_bytenr(c, c->start);
2080 	btrfs_set_header_generation(c, trans->transid);
2081 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2082 	btrfs_set_header_owner(c, root->root_key.objectid);
2083 
2084 	write_extent_buffer(c, root->fs_info->fsid,
2085 			    (unsigned long)btrfs_header_fsid(c),
2086 			    BTRFS_FSID_SIZE);
2087 
2088 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2089 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2090 			    BTRFS_UUID_SIZE);
2091 
2092 	btrfs_set_node_key(c, &lower_key, 0);
2093 	btrfs_set_node_blockptr(c, 0, lower->start);
2094 	lower_gen = btrfs_header_generation(lower);
2095 	WARN_ON(lower_gen != trans->transid);
2096 
2097 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2098 
2099 	btrfs_mark_buffer_dirty(c);
2100 
2101 	spin_lock(&root->node_lock);
2102 	old = root->node;
2103 	root->node = c;
2104 	spin_unlock(&root->node_lock);
2105 
2106 	/* the super has an extra ref to root->node */
2107 	free_extent_buffer(old);
2108 
2109 	add_root_to_dirty_list(root);
2110 	extent_buffer_get(c);
2111 	path->nodes[level] = c;
2112 	path->locks[level] = 1;
2113 	path->slots[level] = 0;
2114 	return 0;
2115 }
2116 
2117 /*
2118  * worker function to insert a single pointer in a node.
2119  * the node should have enough room for the pointer already
2120  *
2121  * slot and level indicate where you want the key to go, and
2122  * blocknr is the block the key points to.
2123  *
2124  * returns zero on success and < 0 on any error
2125  */
2126 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2127 		      *root, struct btrfs_path *path, struct btrfs_disk_key
2128 		      *key, u64 bytenr, int slot, int level)
2129 {
2130 	struct extent_buffer *lower;
2131 	int nritems;
2132 
2133 	BUG_ON(!path->nodes[level]);
2134 	lower = path->nodes[level];
2135 	nritems = btrfs_header_nritems(lower);
2136 	BUG_ON(slot > nritems);
2137 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2138 		BUG();
2139 	if (slot != nritems) {
2140 		memmove_extent_buffer(lower,
2141 			      btrfs_node_key_ptr_offset(slot + 1),
2142 			      btrfs_node_key_ptr_offset(slot),
2143 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2144 	}
2145 	btrfs_set_node_key(lower, key, slot);
2146 	btrfs_set_node_blockptr(lower, slot, bytenr);
2147 	WARN_ON(trans->transid == 0);
2148 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2149 	btrfs_set_header_nritems(lower, nritems + 1);
2150 	btrfs_mark_buffer_dirty(lower);
2151 	return 0;
2152 }
2153 
2154 /*
2155  * split the node at the specified level in path in two.
2156  * The path is corrected to point to the appropriate node after the split
2157  *
2158  * Before splitting this tries to make some room in the node by pushing
2159  * left and right, if either one works, it returns right away.
2160  *
2161  * returns 0 on success and < 0 on failure
2162  */
2163 static noinline int split_node(struct btrfs_trans_handle *trans,
2164 			       struct btrfs_root *root,
2165 			       struct btrfs_path *path, int level)
2166 {
2167 	struct extent_buffer *c;
2168 	struct extent_buffer *split;
2169 	struct btrfs_disk_key disk_key;
2170 	int mid;
2171 	int ret;
2172 	int wret;
2173 	u32 c_nritems;
2174 
2175 	c = path->nodes[level];
2176 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2177 	if (c == root->node) {
2178 		/* trying to split the root, lets make a new one */
2179 		ret = insert_new_root(trans, root, path, level + 1);
2180 		if (ret)
2181 			return ret;
2182 	} else {
2183 		ret = push_nodes_for_insert(trans, root, path, level);
2184 		c = path->nodes[level];
2185 		if (!ret && btrfs_header_nritems(c) <
2186 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2187 			return 0;
2188 		if (ret < 0)
2189 			return ret;
2190 	}
2191 
2192 	c_nritems = btrfs_header_nritems(c);
2193 	mid = (c_nritems + 1) / 2;
2194 	btrfs_node_key(c, &disk_key, mid);
2195 
2196 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2197 					root->root_key.objectid,
2198 					&disk_key, level, c->start, 0);
2199 	if (IS_ERR(split))
2200 		return PTR_ERR(split);
2201 
2202 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2203 	btrfs_set_header_level(split, btrfs_header_level(c));
2204 	btrfs_set_header_bytenr(split, split->start);
2205 	btrfs_set_header_generation(split, trans->transid);
2206 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2207 	btrfs_set_header_owner(split, root->root_key.objectid);
2208 	write_extent_buffer(split, root->fs_info->fsid,
2209 			    (unsigned long)btrfs_header_fsid(split),
2210 			    BTRFS_FSID_SIZE);
2211 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2212 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2213 			    BTRFS_UUID_SIZE);
2214 
2215 
2216 	copy_extent_buffer(split, c,
2217 			   btrfs_node_key_ptr_offset(0),
2218 			   btrfs_node_key_ptr_offset(mid),
2219 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2220 	btrfs_set_header_nritems(split, c_nritems - mid);
2221 	btrfs_set_header_nritems(c, mid);
2222 	ret = 0;
2223 
2224 	btrfs_mark_buffer_dirty(c);
2225 	btrfs_mark_buffer_dirty(split);
2226 
2227 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2228 			  path->slots[level + 1] + 1,
2229 			  level + 1);
2230 	if (wret)
2231 		ret = wret;
2232 
2233 	if (path->slots[level] >= mid) {
2234 		path->slots[level] -= mid;
2235 		btrfs_tree_unlock(c);
2236 		free_extent_buffer(c);
2237 		path->nodes[level] = split;
2238 		path->slots[level + 1] += 1;
2239 	} else {
2240 		btrfs_tree_unlock(split);
2241 		free_extent_buffer(split);
2242 	}
2243 	return ret;
2244 }
2245 
2246 /*
2247  * how many bytes are required to store the items in a leaf.  start
2248  * and nr indicate which items in the leaf to check.  This totals up the
2249  * space used both by the item structs and the item data
2250  */
2251 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2252 {
2253 	int data_len;
2254 	int nritems = btrfs_header_nritems(l);
2255 	int end = min(nritems, start + nr) - 1;
2256 
2257 	if (!nr)
2258 		return 0;
2259 	data_len = btrfs_item_end_nr(l, start);
2260 	data_len = data_len - btrfs_item_offset_nr(l, end);
2261 	data_len += sizeof(struct btrfs_item) * nr;
2262 	WARN_ON(data_len < 0);
2263 	return data_len;
2264 }
2265 
2266 /*
2267  * The space between the end of the leaf items and
2268  * the start of the leaf data.  IOW, how much room
2269  * the leaf has left for both items and data
2270  */
2271 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2272 				   struct extent_buffer *leaf)
2273 {
2274 	int nritems = btrfs_header_nritems(leaf);
2275 	int ret;
2276 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2277 	if (ret < 0) {
2278 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2279 		       "used %d nritems %d\n",
2280 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2281 		       leaf_space_used(leaf, 0, nritems), nritems);
2282 	}
2283 	return ret;
2284 }
2285 
2286 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2287 				      struct btrfs_root *root,
2288 				      struct btrfs_path *path,
2289 				      int data_size, int empty,
2290 				      struct extent_buffer *right,
2291 				      int free_space, u32 left_nritems)
2292 {
2293 	struct extent_buffer *left = path->nodes[0];
2294 	struct extent_buffer *upper = path->nodes[1];
2295 	struct btrfs_disk_key disk_key;
2296 	int slot;
2297 	u32 i;
2298 	int push_space = 0;
2299 	int push_items = 0;
2300 	struct btrfs_item *item;
2301 	u32 nr;
2302 	u32 right_nritems;
2303 	u32 data_end;
2304 	u32 this_item_size;
2305 
2306 	if (empty)
2307 		nr = 0;
2308 	else
2309 		nr = 1;
2310 
2311 	if (path->slots[0] >= left_nritems)
2312 		push_space += data_size;
2313 
2314 	slot = path->slots[1];
2315 	i = left_nritems - 1;
2316 	while (i >= nr) {
2317 		item = btrfs_item_nr(left, i);
2318 
2319 		if (!empty && push_items > 0) {
2320 			if (path->slots[0] > i)
2321 				break;
2322 			if (path->slots[0] == i) {
2323 				int space = btrfs_leaf_free_space(root, left);
2324 				if (space + push_space * 2 > free_space)
2325 					break;
2326 			}
2327 		}
2328 
2329 		if (path->slots[0] == i)
2330 			push_space += data_size;
2331 
2332 		if (!left->map_token) {
2333 			map_extent_buffer(left, (unsigned long)item,
2334 					sizeof(struct btrfs_item),
2335 					&left->map_token, &left->kaddr,
2336 					&left->map_start, &left->map_len,
2337 					KM_USER1);
2338 		}
2339 
2340 		this_item_size = btrfs_item_size(left, item);
2341 		if (this_item_size + sizeof(*item) + push_space > free_space)
2342 			break;
2343 
2344 		push_items++;
2345 		push_space += this_item_size + sizeof(*item);
2346 		if (i == 0)
2347 			break;
2348 		i--;
2349 	}
2350 	if (left->map_token) {
2351 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2352 		left->map_token = NULL;
2353 	}
2354 
2355 	if (push_items == 0)
2356 		goto out_unlock;
2357 
2358 	if (!empty && push_items == left_nritems)
2359 		WARN_ON(1);
2360 
2361 	/* push left to right */
2362 	right_nritems = btrfs_header_nritems(right);
2363 
2364 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2365 	push_space -= leaf_data_end(root, left);
2366 
2367 	/* make room in the right data area */
2368 	data_end = leaf_data_end(root, right);
2369 	memmove_extent_buffer(right,
2370 			      btrfs_leaf_data(right) + data_end - push_space,
2371 			      btrfs_leaf_data(right) + data_end,
2372 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2373 
2374 	/* copy from the left data area */
2375 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2376 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2377 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2378 		     push_space);
2379 
2380 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2381 			      btrfs_item_nr_offset(0),
2382 			      right_nritems * sizeof(struct btrfs_item));
2383 
2384 	/* copy the items from left to right */
2385 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2386 		   btrfs_item_nr_offset(left_nritems - push_items),
2387 		   push_items * sizeof(struct btrfs_item));
2388 
2389 	/* update the item pointers */
2390 	right_nritems += push_items;
2391 	btrfs_set_header_nritems(right, right_nritems);
2392 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2393 	for (i = 0; i < right_nritems; i++) {
2394 		item = btrfs_item_nr(right, i);
2395 		if (!right->map_token) {
2396 			map_extent_buffer(right, (unsigned long)item,
2397 					sizeof(struct btrfs_item),
2398 					&right->map_token, &right->kaddr,
2399 					&right->map_start, &right->map_len,
2400 					KM_USER1);
2401 		}
2402 		push_space -= btrfs_item_size(right, item);
2403 		btrfs_set_item_offset(right, item, push_space);
2404 	}
2405 
2406 	if (right->map_token) {
2407 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2408 		right->map_token = NULL;
2409 	}
2410 	left_nritems -= push_items;
2411 	btrfs_set_header_nritems(left, left_nritems);
2412 
2413 	if (left_nritems)
2414 		btrfs_mark_buffer_dirty(left);
2415 	btrfs_mark_buffer_dirty(right);
2416 
2417 	btrfs_item_key(right, &disk_key, 0);
2418 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2419 	btrfs_mark_buffer_dirty(upper);
2420 
2421 	/* then fixup the leaf pointer in the path */
2422 	if (path->slots[0] >= left_nritems) {
2423 		path->slots[0] -= left_nritems;
2424 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2425 			clean_tree_block(trans, root, path->nodes[0]);
2426 		btrfs_tree_unlock(path->nodes[0]);
2427 		free_extent_buffer(path->nodes[0]);
2428 		path->nodes[0] = right;
2429 		path->slots[1] += 1;
2430 	} else {
2431 		btrfs_tree_unlock(right);
2432 		free_extent_buffer(right);
2433 	}
2434 	return 0;
2435 
2436 out_unlock:
2437 	btrfs_tree_unlock(right);
2438 	free_extent_buffer(right);
2439 	return 1;
2440 }
2441 
2442 /*
2443  * push some data in the path leaf to the right, trying to free up at
2444  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2445  *
2446  * returns 1 if the push failed because the other node didn't have enough
2447  * room, 0 if everything worked out and < 0 if there were major errors.
2448  */
2449 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2450 			   *root, struct btrfs_path *path, int data_size,
2451 			   int empty)
2452 {
2453 	struct extent_buffer *left = path->nodes[0];
2454 	struct extent_buffer *right;
2455 	struct extent_buffer *upper;
2456 	int slot;
2457 	int free_space;
2458 	u32 left_nritems;
2459 	int ret;
2460 
2461 	if (!path->nodes[1])
2462 		return 1;
2463 
2464 	slot = path->slots[1];
2465 	upper = path->nodes[1];
2466 	if (slot >= btrfs_header_nritems(upper) - 1)
2467 		return 1;
2468 
2469 	btrfs_assert_tree_locked(path->nodes[1]);
2470 
2471 	right = read_node_slot(root, upper, slot + 1);
2472 	btrfs_tree_lock(right);
2473 	btrfs_set_lock_blocking(right);
2474 
2475 	free_space = btrfs_leaf_free_space(root, right);
2476 	if (free_space < data_size)
2477 		goto out_unlock;
2478 
2479 	/* cow and double check */
2480 	ret = btrfs_cow_block(trans, root, right, upper,
2481 			      slot + 1, &right);
2482 	if (ret)
2483 		goto out_unlock;
2484 
2485 	free_space = btrfs_leaf_free_space(root, right);
2486 	if (free_space < data_size)
2487 		goto out_unlock;
2488 
2489 	left_nritems = btrfs_header_nritems(left);
2490 	if (left_nritems == 0)
2491 		goto out_unlock;
2492 
2493 	return __push_leaf_right(trans, root, path, data_size, empty,
2494 				right, free_space, left_nritems);
2495 out_unlock:
2496 	btrfs_tree_unlock(right);
2497 	free_extent_buffer(right);
2498 	return 1;
2499 }
2500 
2501 /*
2502  * push some data in the path leaf to the left, trying to free up at
2503  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2504  */
2505 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2506 				     struct btrfs_root *root,
2507 				     struct btrfs_path *path, int data_size,
2508 				     int empty, struct extent_buffer *left,
2509 				     int free_space, int right_nritems)
2510 {
2511 	struct btrfs_disk_key disk_key;
2512 	struct extent_buffer *right = path->nodes[0];
2513 	int slot;
2514 	int i;
2515 	int push_space = 0;
2516 	int push_items = 0;
2517 	struct btrfs_item *item;
2518 	u32 old_left_nritems;
2519 	u32 nr;
2520 	int ret = 0;
2521 	int wret;
2522 	u32 this_item_size;
2523 	u32 old_left_item_size;
2524 
2525 	slot = path->slots[1];
2526 
2527 	if (empty)
2528 		nr = right_nritems;
2529 	else
2530 		nr = right_nritems - 1;
2531 
2532 	for (i = 0; i < nr; i++) {
2533 		item = btrfs_item_nr(right, i);
2534 		if (!right->map_token) {
2535 			map_extent_buffer(right, (unsigned long)item,
2536 					sizeof(struct btrfs_item),
2537 					&right->map_token, &right->kaddr,
2538 					&right->map_start, &right->map_len,
2539 					KM_USER1);
2540 		}
2541 
2542 		if (!empty && push_items > 0) {
2543 			if (path->slots[0] < i)
2544 				break;
2545 			if (path->slots[0] == i) {
2546 				int space = btrfs_leaf_free_space(root, right);
2547 				if (space + push_space * 2 > free_space)
2548 					break;
2549 			}
2550 		}
2551 
2552 		if (path->slots[0] == i)
2553 			push_space += data_size;
2554 
2555 		this_item_size = btrfs_item_size(right, item);
2556 		if (this_item_size + sizeof(*item) + push_space > free_space)
2557 			break;
2558 
2559 		push_items++;
2560 		push_space += this_item_size + sizeof(*item);
2561 	}
2562 
2563 	if (right->map_token) {
2564 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2565 		right->map_token = NULL;
2566 	}
2567 
2568 	if (push_items == 0) {
2569 		ret = 1;
2570 		goto out;
2571 	}
2572 	if (!empty && push_items == btrfs_header_nritems(right))
2573 		WARN_ON(1);
2574 
2575 	/* push data from right to left */
2576 	copy_extent_buffer(left, right,
2577 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2578 			   btrfs_item_nr_offset(0),
2579 			   push_items * sizeof(struct btrfs_item));
2580 
2581 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2582 		     btrfs_item_offset_nr(right, push_items - 1);
2583 
2584 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2585 		     leaf_data_end(root, left) - push_space,
2586 		     btrfs_leaf_data(right) +
2587 		     btrfs_item_offset_nr(right, push_items - 1),
2588 		     push_space);
2589 	old_left_nritems = btrfs_header_nritems(left);
2590 	BUG_ON(old_left_nritems <= 0);
2591 
2592 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2593 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2594 		u32 ioff;
2595 
2596 		item = btrfs_item_nr(left, i);
2597 		if (!left->map_token) {
2598 			map_extent_buffer(left, (unsigned long)item,
2599 					sizeof(struct btrfs_item),
2600 					&left->map_token, &left->kaddr,
2601 					&left->map_start, &left->map_len,
2602 					KM_USER1);
2603 		}
2604 
2605 		ioff = btrfs_item_offset(left, item);
2606 		btrfs_set_item_offset(left, item,
2607 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2608 	}
2609 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2610 	if (left->map_token) {
2611 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2612 		left->map_token = NULL;
2613 	}
2614 
2615 	/* fixup right node */
2616 	if (push_items > right_nritems) {
2617 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2618 		       right_nritems);
2619 		WARN_ON(1);
2620 	}
2621 
2622 	if (push_items < right_nritems) {
2623 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2624 						  leaf_data_end(root, right);
2625 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2626 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2627 				      btrfs_leaf_data(right) +
2628 				      leaf_data_end(root, right), push_space);
2629 
2630 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2631 			      btrfs_item_nr_offset(push_items),
2632 			     (btrfs_header_nritems(right) - push_items) *
2633 			     sizeof(struct btrfs_item));
2634 	}
2635 	right_nritems -= push_items;
2636 	btrfs_set_header_nritems(right, right_nritems);
2637 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2638 	for (i = 0; i < right_nritems; i++) {
2639 		item = btrfs_item_nr(right, i);
2640 
2641 		if (!right->map_token) {
2642 			map_extent_buffer(right, (unsigned long)item,
2643 					sizeof(struct btrfs_item),
2644 					&right->map_token, &right->kaddr,
2645 					&right->map_start, &right->map_len,
2646 					KM_USER1);
2647 		}
2648 
2649 		push_space = push_space - btrfs_item_size(right, item);
2650 		btrfs_set_item_offset(right, item, push_space);
2651 	}
2652 	if (right->map_token) {
2653 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2654 		right->map_token = NULL;
2655 	}
2656 
2657 	btrfs_mark_buffer_dirty(left);
2658 	if (right_nritems)
2659 		btrfs_mark_buffer_dirty(right);
2660 
2661 	btrfs_item_key(right, &disk_key, 0);
2662 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2663 	if (wret)
2664 		ret = wret;
2665 
2666 	/* then fixup the leaf pointer in the path */
2667 	if (path->slots[0] < push_items) {
2668 		path->slots[0] += old_left_nritems;
2669 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2670 			clean_tree_block(trans, root, path->nodes[0]);
2671 		btrfs_tree_unlock(path->nodes[0]);
2672 		free_extent_buffer(path->nodes[0]);
2673 		path->nodes[0] = left;
2674 		path->slots[1] -= 1;
2675 	} else {
2676 		btrfs_tree_unlock(left);
2677 		free_extent_buffer(left);
2678 		path->slots[0] -= push_items;
2679 	}
2680 	BUG_ON(path->slots[0] < 0);
2681 	return ret;
2682 out:
2683 	btrfs_tree_unlock(left);
2684 	free_extent_buffer(left);
2685 	return ret;
2686 }
2687 
2688 /*
2689  * push some data in the path leaf to the left, trying to free up at
2690  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2691  */
2692 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2693 			  *root, struct btrfs_path *path, int data_size,
2694 			  int empty)
2695 {
2696 	struct extent_buffer *right = path->nodes[0];
2697 	struct extent_buffer *left;
2698 	int slot;
2699 	int free_space;
2700 	u32 right_nritems;
2701 	int ret = 0;
2702 
2703 	slot = path->slots[1];
2704 	if (slot == 0)
2705 		return 1;
2706 	if (!path->nodes[1])
2707 		return 1;
2708 
2709 	right_nritems = btrfs_header_nritems(right);
2710 	if (right_nritems == 0)
2711 		return 1;
2712 
2713 	btrfs_assert_tree_locked(path->nodes[1]);
2714 
2715 	left = read_node_slot(root, path->nodes[1], slot - 1);
2716 	btrfs_tree_lock(left);
2717 	btrfs_set_lock_blocking(left);
2718 
2719 	free_space = btrfs_leaf_free_space(root, left);
2720 	if (free_space < data_size) {
2721 		ret = 1;
2722 		goto out;
2723 	}
2724 
2725 	/* cow and double check */
2726 	ret = btrfs_cow_block(trans, root, left,
2727 			      path->nodes[1], slot - 1, &left);
2728 	if (ret) {
2729 		/* we hit -ENOSPC, but it isn't fatal here */
2730 		ret = 1;
2731 		goto out;
2732 	}
2733 
2734 	free_space = btrfs_leaf_free_space(root, left);
2735 	if (free_space < data_size) {
2736 		ret = 1;
2737 		goto out;
2738 	}
2739 
2740 	return __push_leaf_left(trans, root, path, data_size,
2741 			       empty, left, free_space, right_nritems);
2742 out:
2743 	btrfs_tree_unlock(left);
2744 	free_extent_buffer(left);
2745 	return ret;
2746 }
2747 
2748 /*
2749  * split the path's leaf in two, making sure there is at least data_size
2750  * available for the resulting leaf level of the path.
2751  *
2752  * returns 0 if all went well and < 0 on failure.
2753  */
2754 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2755 			       struct btrfs_root *root,
2756 			       struct btrfs_path *path,
2757 			       struct extent_buffer *l,
2758 			       struct extent_buffer *right,
2759 			       int slot, int mid, int nritems)
2760 {
2761 	int data_copy_size;
2762 	int rt_data_off;
2763 	int i;
2764 	int ret = 0;
2765 	int wret;
2766 	struct btrfs_disk_key disk_key;
2767 
2768 	nritems = nritems - mid;
2769 	btrfs_set_header_nritems(right, nritems);
2770 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2771 
2772 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2773 			   btrfs_item_nr_offset(mid),
2774 			   nritems * sizeof(struct btrfs_item));
2775 
2776 	copy_extent_buffer(right, l,
2777 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2778 		     data_copy_size, btrfs_leaf_data(l) +
2779 		     leaf_data_end(root, l), data_copy_size);
2780 
2781 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2782 		      btrfs_item_end_nr(l, mid);
2783 
2784 	for (i = 0; i < nritems; i++) {
2785 		struct btrfs_item *item = btrfs_item_nr(right, i);
2786 		u32 ioff;
2787 
2788 		if (!right->map_token) {
2789 			map_extent_buffer(right, (unsigned long)item,
2790 					sizeof(struct btrfs_item),
2791 					&right->map_token, &right->kaddr,
2792 					&right->map_start, &right->map_len,
2793 					KM_USER1);
2794 		}
2795 
2796 		ioff = btrfs_item_offset(right, item);
2797 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2798 	}
2799 
2800 	if (right->map_token) {
2801 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2802 		right->map_token = NULL;
2803 	}
2804 
2805 	btrfs_set_header_nritems(l, mid);
2806 	ret = 0;
2807 	btrfs_item_key(right, &disk_key, 0);
2808 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2809 			  path->slots[1] + 1, 1);
2810 	if (wret)
2811 		ret = wret;
2812 
2813 	btrfs_mark_buffer_dirty(right);
2814 	btrfs_mark_buffer_dirty(l);
2815 	BUG_ON(path->slots[0] != slot);
2816 
2817 	if (mid <= slot) {
2818 		btrfs_tree_unlock(path->nodes[0]);
2819 		free_extent_buffer(path->nodes[0]);
2820 		path->nodes[0] = right;
2821 		path->slots[0] -= mid;
2822 		path->slots[1] += 1;
2823 	} else {
2824 		btrfs_tree_unlock(right);
2825 		free_extent_buffer(right);
2826 	}
2827 
2828 	BUG_ON(path->slots[0] < 0);
2829 
2830 	return ret;
2831 }
2832 
2833 /*
2834  * split the path's leaf in two, making sure there is at least data_size
2835  * available for the resulting leaf level of the path.
2836  *
2837  * returns 0 if all went well and < 0 on failure.
2838  */
2839 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2840 			       struct btrfs_root *root,
2841 			       struct btrfs_key *ins_key,
2842 			       struct btrfs_path *path, int data_size,
2843 			       int extend)
2844 {
2845 	struct btrfs_disk_key disk_key;
2846 	struct extent_buffer *l;
2847 	u32 nritems;
2848 	int mid;
2849 	int slot;
2850 	struct extent_buffer *right;
2851 	int ret = 0;
2852 	int wret;
2853 	int split;
2854 	int num_doubles = 0;
2855 
2856 	/* first try to make some room by pushing left and right */
2857 	if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2858 		wret = push_leaf_right(trans, root, path, data_size, 0);
2859 		if (wret < 0)
2860 			return wret;
2861 		if (wret) {
2862 			wret = push_leaf_left(trans, root, path, data_size, 0);
2863 			if (wret < 0)
2864 				return wret;
2865 		}
2866 		l = path->nodes[0];
2867 
2868 		/* did the pushes work? */
2869 		if (btrfs_leaf_free_space(root, l) >= data_size)
2870 			return 0;
2871 	}
2872 
2873 	if (!path->nodes[1]) {
2874 		ret = insert_new_root(trans, root, path, 1);
2875 		if (ret)
2876 			return ret;
2877 	}
2878 again:
2879 	split = 1;
2880 	l = path->nodes[0];
2881 	slot = path->slots[0];
2882 	nritems = btrfs_header_nritems(l);
2883 	mid = (nritems + 1) / 2;
2884 
2885 	if (mid <= slot) {
2886 		if (nritems == 1 ||
2887 		    leaf_space_used(l, mid, nritems - mid) + data_size >
2888 			BTRFS_LEAF_DATA_SIZE(root)) {
2889 			if (slot >= nritems) {
2890 				split = 0;
2891 			} else {
2892 				mid = slot;
2893 				if (mid != nritems &&
2894 				    leaf_space_used(l, mid, nritems - mid) +
2895 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2896 					split = 2;
2897 				}
2898 			}
2899 		}
2900 	} else {
2901 		if (leaf_space_used(l, 0, mid) + data_size >
2902 			BTRFS_LEAF_DATA_SIZE(root)) {
2903 			if (!extend && data_size && slot == 0) {
2904 				split = 0;
2905 			} else if ((extend || !data_size) && slot == 0) {
2906 				mid = 1;
2907 			} else {
2908 				mid = slot;
2909 				if (mid != nritems &&
2910 				    leaf_space_used(l, mid, nritems - mid) +
2911 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2912 					split = 2 ;
2913 				}
2914 			}
2915 		}
2916 	}
2917 
2918 	if (split == 0)
2919 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
2920 	else
2921 		btrfs_item_key(l, &disk_key, mid);
2922 
2923 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2924 					root->root_key.objectid,
2925 					&disk_key, 0, l->start, 0);
2926 	if (IS_ERR(right)) {
2927 		BUG_ON(1);
2928 		return PTR_ERR(right);
2929 	}
2930 
2931 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2932 	btrfs_set_header_bytenr(right, right->start);
2933 	btrfs_set_header_generation(right, trans->transid);
2934 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2935 	btrfs_set_header_owner(right, root->root_key.objectid);
2936 	btrfs_set_header_level(right, 0);
2937 	write_extent_buffer(right, root->fs_info->fsid,
2938 			    (unsigned long)btrfs_header_fsid(right),
2939 			    BTRFS_FSID_SIZE);
2940 
2941 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2942 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2943 			    BTRFS_UUID_SIZE);
2944 
2945 	if (split == 0) {
2946 		if (mid <= slot) {
2947 			btrfs_set_header_nritems(right, 0);
2948 			wret = insert_ptr(trans, root, path,
2949 					  &disk_key, right->start,
2950 					  path->slots[1] + 1, 1);
2951 			if (wret)
2952 				ret = wret;
2953 
2954 			btrfs_tree_unlock(path->nodes[0]);
2955 			free_extent_buffer(path->nodes[0]);
2956 			path->nodes[0] = right;
2957 			path->slots[0] = 0;
2958 			path->slots[1] += 1;
2959 		} else {
2960 			btrfs_set_header_nritems(right, 0);
2961 			wret = insert_ptr(trans, root, path,
2962 					  &disk_key,
2963 					  right->start,
2964 					  path->slots[1], 1);
2965 			if (wret)
2966 				ret = wret;
2967 			btrfs_tree_unlock(path->nodes[0]);
2968 			free_extent_buffer(path->nodes[0]);
2969 			path->nodes[0] = right;
2970 			path->slots[0] = 0;
2971 			if (path->slots[1] == 0) {
2972 				wret = fixup_low_keys(trans, root,
2973 						path, &disk_key, 1);
2974 				if (wret)
2975 					ret = wret;
2976 			}
2977 		}
2978 		btrfs_mark_buffer_dirty(right);
2979 		return ret;
2980 	}
2981 
2982 	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2983 	BUG_ON(ret);
2984 
2985 	if (split == 2) {
2986 		BUG_ON(num_doubles != 0);
2987 		num_doubles++;
2988 		goto again;
2989 	}
2990 
2991 	return ret;
2992 }
2993 
2994 /*
2995  * This function splits a single item into two items,
2996  * giving 'new_key' to the new item and splitting the
2997  * old one at split_offset (from the start of the item).
2998  *
2999  * The path may be released by this operation.  After
3000  * the split, the path is pointing to the old item.  The
3001  * new item is going to be in the same node as the old one.
3002  *
3003  * Note, the item being split must be smaller enough to live alone on
3004  * a tree block with room for one extra struct btrfs_item
3005  *
3006  * This allows us to split the item in place, keeping a lock on the
3007  * leaf the entire time.
3008  */
3009 int btrfs_split_item(struct btrfs_trans_handle *trans,
3010 		     struct btrfs_root *root,
3011 		     struct btrfs_path *path,
3012 		     struct btrfs_key *new_key,
3013 		     unsigned long split_offset)
3014 {
3015 	u32 item_size;
3016 	struct extent_buffer *leaf;
3017 	struct btrfs_key orig_key;
3018 	struct btrfs_item *item;
3019 	struct btrfs_item *new_item;
3020 	int ret = 0;
3021 	int slot;
3022 	u32 nritems;
3023 	u32 orig_offset;
3024 	struct btrfs_disk_key disk_key;
3025 	char *buf;
3026 
3027 	leaf = path->nodes[0];
3028 	btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
3029 	if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
3030 		goto split;
3031 
3032 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3033 	btrfs_release_path(root, path);
3034 
3035 	path->search_for_split = 1;
3036 	path->keep_locks = 1;
3037 
3038 	ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
3039 	path->search_for_split = 0;
3040 
3041 	/* if our item isn't there or got smaller, return now */
3042 	if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3043 							path->slots[0])) {
3044 		path->keep_locks = 0;
3045 		return -EAGAIN;
3046 	}
3047 
3048 	btrfs_set_path_blocking(path);
3049 	ret = split_leaf(trans, root, &orig_key, path,
3050 			 sizeof(struct btrfs_item), 1);
3051 	path->keep_locks = 0;
3052 	BUG_ON(ret);
3053 
3054 	btrfs_unlock_up_safe(path, 1);
3055 	leaf = path->nodes[0];
3056 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3057 
3058 split:
3059 	/*
3060 	 * make sure any changes to the path from split_leaf leave it
3061 	 * in a blocking state
3062 	 */
3063 	btrfs_set_path_blocking(path);
3064 
3065 	item = btrfs_item_nr(leaf, path->slots[0]);
3066 	orig_offset = btrfs_item_offset(leaf, item);
3067 	item_size = btrfs_item_size(leaf, item);
3068 
3069 	buf = kmalloc(item_size, GFP_NOFS);
3070 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3071 			    path->slots[0]), item_size);
3072 	slot = path->slots[0] + 1;
3073 	leaf = path->nodes[0];
3074 
3075 	nritems = btrfs_header_nritems(leaf);
3076 
3077 	if (slot != nritems) {
3078 		/* shift the items */
3079 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3080 			      btrfs_item_nr_offset(slot),
3081 			      (nritems - slot) * sizeof(struct btrfs_item));
3082 
3083 	}
3084 
3085 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3086 	btrfs_set_item_key(leaf, &disk_key, slot);
3087 
3088 	new_item = btrfs_item_nr(leaf, slot);
3089 
3090 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3091 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3092 
3093 	btrfs_set_item_offset(leaf, item,
3094 			      orig_offset + item_size - split_offset);
3095 	btrfs_set_item_size(leaf, item, split_offset);
3096 
3097 	btrfs_set_header_nritems(leaf, nritems + 1);
3098 
3099 	/* write the data for the start of the original item */
3100 	write_extent_buffer(leaf, buf,
3101 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3102 			    split_offset);
3103 
3104 	/* write the data for the new item */
3105 	write_extent_buffer(leaf, buf + split_offset,
3106 			    btrfs_item_ptr_offset(leaf, slot),
3107 			    item_size - split_offset);
3108 	btrfs_mark_buffer_dirty(leaf);
3109 
3110 	ret = 0;
3111 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3112 		btrfs_print_leaf(root, leaf);
3113 		BUG();
3114 	}
3115 	kfree(buf);
3116 	return ret;
3117 }
3118 
3119 /*
3120  * make the item pointed to by the path smaller.  new_size indicates
3121  * how small to make it, and from_end tells us if we just chop bytes
3122  * off the end of the item or if we shift the item to chop bytes off
3123  * the front.
3124  */
3125 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3126 			struct btrfs_root *root,
3127 			struct btrfs_path *path,
3128 			u32 new_size, int from_end)
3129 {
3130 	int ret = 0;
3131 	int slot;
3132 	int slot_orig;
3133 	struct extent_buffer *leaf;
3134 	struct btrfs_item *item;
3135 	u32 nritems;
3136 	unsigned int data_end;
3137 	unsigned int old_data_start;
3138 	unsigned int old_size;
3139 	unsigned int size_diff;
3140 	int i;
3141 
3142 	slot_orig = path->slots[0];
3143 	leaf = path->nodes[0];
3144 	slot = path->slots[0];
3145 
3146 	old_size = btrfs_item_size_nr(leaf, slot);
3147 	if (old_size == new_size)
3148 		return 0;
3149 
3150 	nritems = btrfs_header_nritems(leaf);
3151 	data_end = leaf_data_end(root, leaf);
3152 
3153 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3154 
3155 	size_diff = old_size - new_size;
3156 
3157 	BUG_ON(slot < 0);
3158 	BUG_ON(slot >= nritems);
3159 
3160 	/*
3161 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3162 	 */
3163 	/* first correct the data pointers */
3164 	for (i = slot; i < nritems; i++) {
3165 		u32 ioff;
3166 		item = btrfs_item_nr(leaf, i);
3167 
3168 		if (!leaf->map_token) {
3169 			map_extent_buffer(leaf, (unsigned long)item,
3170 					sizeof(struct btrfs_item),
3171 					&leaf->map_token, &leaf->kaddr,
3172 					&leaf->map_start, &leaf->map_len,
3173 					KM_USER1);
3174 		}
3175 
3176 		ioff = btrfs_item_offset(leaf, item);
3177 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3178 	}
3179 
3180 	if (leaf->map_token) {
3181 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3182 		leaf->map_token = NULL;
3183 	}
3184 
3185 	/* shift the data */
3186 	if (from_end) {
3187 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3188 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3189 			      data_end, old_data_start + new_size - data_end);
3190 	} else {
3191 		struct btrfs_disk_key disk_key;
3192 		u64 offset;
3193 
3194 		btrfs_item_key(leaf, &disk_key, slot);
3195 
3196 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3197 			unsigned long ptr;
3198 			struct btrfs_file_extent_item *fi;
3199 
3200 			fi = btrfs_item_ptr(leaf, slot,
3201 					    struct btrfs_file_extent_item);
3202 			fi = (struct btrfs_file_extent_item *)(
3203 			     (unsigned long)fi - size_diff);
3204 
3205 			if (btrfs_file_extent_type(leaf, fi) ==
3206 			    BTRFS_FILE_EXTENT_INLINE) {
3207 				ptr = btrfs_item_ptr_offset(leaf, slot);
3208 				memmove_extent_buffer(leaf, ptr,
3209 				      (unsigned long)fi,
3210 				      offsetof(struct btrfs_file_extent_item,
3211 						 disk_bytenr));
3212 			}
3213 		}
3214 
3215 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3216 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3217 			      data_end, old_data_start - data_end);
3218 
3219 		offset = btrfs_disk_key_offset(&disk_key);
3220 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3221 		btrfs_set_item_key(leaf, &disk_key, slot);
3222 		if (slot == 0)
3223 			fixup_low_keys(trans, root, path, &disk_key, 1);
3224 	}
3225 
3226 	item = btrfs_item_nr(leaf, slot);
3227 	btrfs_set_item_size(leaf, item, new_size);
3228 	btrfs_mark_buffer_dirty(leaf);
3229 
3230 	ret = 0;
3231 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3232 		btrfs_print_leaf(root, leaf);
3233 		BUG();
3234 	}
3235 	return ret;
3236 }
3237 
3238 /*
3239  * make the item pointed to by the path bigger, data_size is the new size.
3240  */
3241 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3242 		      struct btrfs_root *root, struct btrfs_path *path,
3243 		      u32 data_size)
3244 {
3245 	int ret = 0;
3246 	int slot;
3247 	int slot_orig;
3248 	struct extent_buffer *leaf;
3249 	struct btrfs_item *item;
3250 	u32 nritems;
3251 	unsigned int data_end;
3252 	unsigned int old_data;
3253 	unsigned int old_size;
3254 	int i;
3255 
3256 	slot_orig = path->slots[0];
3257 	leaf = path->nodes[0];
3258 
3259 	nritems = btrfs_header_nritems(leaf);
3260 	data_end = leaf_data_end(root, leaf);
3261 
3262 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3263 		btrfs_print_leaf(root, leaf);
3264 		BUG();
3265 	}
3266 	slot = path->slots[0];
3267 	old_data = btrfs_item_end_nr(leaf, slot);
3268 
3269 	BUG_ON(slot < 0);
3270 	if (slot >= nritems) {
3271 		btrfs_print_leaf(root, leaf);
3272 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3273 		       slot, nritems);
3274 		BUG_ON(1);
3275 	}
3276 
3277 	/*
3278 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3279 	 */
3280 	/* first correct the data pointers */
3281 	for (i = slot; i < nritems; i++) {
3282 		u32 ioff;
3283 		item = btrfs_item_nr(leaf, i);
3284 
3285 		if (!leaf->map_token) {
3286 			map_extent_buffer(leaf, (unsigned long)item,
3287 					sizeof(struct btrfs_item),
3288 					&leaf->map_token, &leaf->kaddr,
3289 					&leaf->map_start, &leaf->map_len,
3290 					KM_USER1);
3291 		}
3292 		ioff = btrfs_item_offset(leaf, item);
3293 		btrfs_set_item_offset(leaf, item, ioff - data_size);
3294 	}
3295 
3296 	if (leaf->map_token) {
3297 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3298 		leaf->map_token = NULL;
3299 	}
3300 
3301 	/* shift the data */
3302 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3303 		      data_end - data_size, btrfs_leaf_data(leaf) +
3304 		      data_end, old_data - data_end);
3305 
3306 	data_end = old_data;
3307 	old_size = btrfs_item_size_nr(leaf, slot);
3308 	item = btrfs_item_nr(leaf, slot);
3309 	btrfs_set_item_size(leaf, item, old_size + data_size);
3310 	btrfs_mark_buffer_dirty(leaf);
3311 
3312 	ret = 0;
3313 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3314 		btrfs_print_leaf(root, leaf);
3315 		BUG();
3316 	}
3317 	return ret;
3318 }
3319 
3320 /*
3321  * Given a key and some data, insert items into the tree.
3322  * This does all the path init required, making room in the tree if needed.
3323  * Returns the number of keys that were inserted.
3324  */
3325 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3326 			    struct btrfs_root *root,
3327 			    struct btrfs_path *path,
3328 			    struct btrfs_key *cpu_key, u32 *data_size,
3329 			    int nr)
3330 {
3331 	struct extent_buffer *leaf;
3332 	struct btrfs_item *item;
3333 	int ret = 0;
3334 	int slot;
3335 	int i;
3336 	u32 nritems;
3337 	u32 total_data = 0;
3338 	u32 total_size = 0;
3339 	unsigned int data_end;
3340 	struct btrfs_disk_key disk_key;
3341 	struct btrfs_key found_key;
3342 
3343 	for (i = 0; i < nr; i++) {
3344 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3345 		    BTRFS_LEAF_DATA_SIZE(root)) {
3346 			break;
3347 			nr = i;
3348 		}
3349 		total_data += data_size[i];
3350 		total_size += data_size[i] + sizeof(struct btrfs_item);
3351 	}
3352 	BUG_ON(nr == 0);
3353 
3354 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3355 	if (ret == 0)
3356 		return -EEXIST;
3357 	if (ret < 0)
3358 		goto out;
3359 
3360 	leaf = path->nodes[0];
3361 
3362 	nritems = btrfs_header_nritems(leaf);
3363 	data_end = leaf_data_end(root, leaf);
3364 
3365 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3366 		for (i = nr; i >= 0; i--) {
3367 			total_data -= data_size[i];
3368 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3369 			if (total_size < btrfs_leaf_free_space(root, leaf))
3370 				break;
3371 		}
3372 		nr = i;
3373 	}
3374 
3375 	slot = path->slots[0];
3376 	BUG_ON(slot < 0);
3377 
3378 	if (slot != nritems) {
3379 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3380 
3381 		item = btrfs_item_nr(leaf, slot);
3382 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3383 
3384 		/* figure out how many keys we can insert in here */
3385 		total_data = data_size[0];
3386 		for (i = 1; i < nr; i++) {
3387 			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3388 				break;
3389 			total_data += data_size[i];
3390 		}
3391 		nr = i;
3392 
3393 		if (old_data < data_end) {
3394 			btrfs_print_leaf(root, leaf);
3395 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3396 			       slot, old_data, data_end);
3397 			BUG_ON(1);
3398 		}
3399 		/*
3400 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3401 		 */
3402 		/* first correct the data pointers */
3403 		WARN_ON(leaf->map_token);
3404 		for (i = slot; i < nritems; i++) {
3405 			u32 ioff;
3406 
3407 			item = btrfs_item_nr(leaf, i);
3408 			if (!leaf->map_token) {
3409 				map_extent_buffer(leaf, (unsigned long)item,
3410 					sizeof(struct btrfs_item),
3411 					&leaf->map_token, &leaf->kaddr,
3412 					&leaf->map_start, &leaf->map_len,
3413 					KM_USER1);
3414 			}
3415 
3416 			ioff = btrfs_item_offset(leaf, item);
3417 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3418 		}
3419 		if (leaf->map_token) {
3420 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3421 			leaf->map_token = NULL;
3422 		}
3423 
3424 		/* shift the items */
3425 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3426 			      btrfs_item_nr_offset(slot),
3427 			      (nritems - slot) * sizeof(struct btrfs_item));
3428 
3429 		/* shift the data */
3430 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3431 			      data_end - total_data, btrfs_leaf_data(leaf) +
3432 			      data_end, old_data - data_end);
3433 		data_end = old_data;
3434 	} else {
3435 		/*
3436 		 * this sucks but it has to be done, if we are inserting at
3437 		 * the end of the leaf only insert 1 of the items, since we
3438 		 * have no way of knowing whats on the next leaf and we'd have
3439 		 * to drop our current locks to figure it out
3440 		 */
3441 		nr = 1;
3442 	}
3443 
3444 	/* setup the item for the new data */
3445 	for (i = 0; i < nr; i++) {
3446 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3447 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3448 		item = btrfs_item_nr(leaf, slot + i);
3449 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3450 		data_end -= data_size[i];
3451 		btrfs_set_item_size(leaf, item, data_size[i]);
3452 	}
3453 	btrfs_set_header_nritems(leaf, nritems + nr);
3454 	btrfs_mark_buffer_dirty(leaf);
3455 
3456 	ret = 0;
3457 	if (slot == 0) {
3458 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3459 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3460 	}
3461 
3462 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3463 		btrfs_print_leaf(root, leaf);
3464 		BUG();
3465 	}
3466 out:
3467 	if (!ret)
3468 		ret = nr;
3469 	return ret;
3470 }
3471 
3472 /*
3473  * this is a helper for btrfs_insert_empty_items, the main goal here is
3474  * to save stack depth by doing the bulk of the work in a function
3475  * that doesn't call btrfs_search_slot
3476  */
3477 static noinline_for_stack int
3478 setup_items_for_insert(struct btrfs_trans_handle *trans,
3479 		      struct btrfs_root *root, struct btrfs_path *path,
3480 		      struct btrfs_key *cpu_key, u32 *data_size,
3481 		      u32 total_data, u32 total_size, int nr)
3482 {
3483 	struct btrfs_item *item;
3484 	int i;
3485 	u32 nritems;
3486 	unsigned int data_end;
3487 	struct btrfs_disk_key disk_key;
3488 	int ret;
3489 	struct extent_buffer *leaf;
3490 	int slot;
3491 
3492 	leaf = path->nodes[0];
3493 	slot = path->slots[0];
3494 
3495 	nritems = btrfs_header_nritems(leaf);
3496 	data_end = leaf_data_end(root, leaf);
3497 
3498 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3499 		btrfs_print_leaf(root, leaf);
3500 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3501 		       total_size, btrfs_leaf_free_space(root, leaf));
3502 		BUG();
3503 	}
3504 
3505 	if (slot != nritems) {
3506 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3507 
3508 		if (old_data < data_end) {
3509 			btrfs_print_leaf(root, leaf);
3510 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3511 			       slot, old_data, data_end);
3512 			BUG_ON(1);
3513 		}
3514 		/*
3515 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3516 		 */
3517 		/* first correct the data pointers */
3518 		WARN_ON(leaf->map_token);
3519 		for (i = slot; i < nritems; i++) {
3520 			u32 ioff;
3521 
3522 			item = btrfs_item_nr(leaf, i);
3523 			if (!leaf->map_token) {
3524 				map_extent_buffer(leaf, (unsigned long)item,
3525 					sizeof(struct btrfs_item),
3526 					&leaf->map_token, &leaf->kaddr,
3527 					&leaf->map_start, &leaf->map_len,
3528 					KM_USER1);
3529 			}
3530 
3531 			ioff = btrfs_item_offset(leaf, item);
3532 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3533 		}
3534 		if (leaf->map_token) {
3535 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3536 			leaf->map_token = NULL;
3537 		}
3538 
3539 		/* shift the items */
3540 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3541 			      btrfs_item_nr_offset(slot),
3542 			      (nritems - slot) * sizeof(struct btrfs_item));
3543 
3544 		/* shift the data */
3545 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3546 			      data_end - total_data, btrfs_leaf_data(leaf) +
3547 			      data_end, old_data - data_end);
3548 		data_end = old_data;
3549 	}
3550 
3551 	/* setup the item for the new data */
3552 	for (i = 0; i < nr; i++) {
3553 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3554 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3555 		item = btrfs_item_nr(leaf, slot + i);
3556 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3557 		data_end -= data_size[i];
3558 		btrfs_set_item_size(leaf, item, data_size[i]);
3559 	}
3560 
3561 	btrfs_set_header_nritems(leaf, nritems + nr);
3562 
3563 	ret = 0;
3564 	if (slot == 0) {
3565 		struct btrfs_disk_key disk_key;
3566 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3567 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3568 	}
3569 	btrfs_unlock_up_safe(path, 1);
3570 	btrfs_mark_buffer_dirty(leaf);
3571 
3572 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3573 		btrfs_print_leaf(root, leaf);
3574 		BUG();
3575 	}
3576 	return ret;
3577 }
3578 
3579 /*
3580  * Given a key and some data, insert items into the tree.
3581  * This does all the path init required, making room in the tree if needed.
3582  */
3583 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3584 			    struct btrfs_root *root,
3585 			    struct btrfs_path *path,
3586 			    struct btrfs_key *cpu_key, u32 *data_size,
3587 			    int nr)
3588 {
3589 	struct extent_buffer *leaf;
3590 	int ret = 0;
3591 	int slot;
3592 	int i;
3593 	u32 total_size = 0;
3594 	u32 total_data = 0;
3595 
3596 	for (i = 0; i < nr; i++)
3597 		total_data += data_size[i];
3598 
3599 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3600 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3601 	if (ret == 0)
3602 		return -EEXIST;
3603 	if (ret < 0)
3604 		goto out;
3605 
3606 	leaf = path->nodes[0];
3607 	slot = path->slots[0];
3608 	BUG_ON(slot < 0);
3609 
3610 	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3611 			       total_data, total_size, nr);
3612 
3613 out:
3614 	return ret;
3615 }
3616 
3617 /*
3618  * Given a key and some data, insert an item into the tree.
3619  * This does all the path init required, making room in the tree if needed.
3620  */
3621 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3622 		      *root, struct btrfs_key *cpu_key, void *data, u32
3623 		      data_size)
3624 {
3625 	int ret = 0;
3626 	struct btrfs_path *path;
3627 	struct extent_buffer *leaf;
3628 	unsigned long ptr;
3629 
3630 	path = btrfs_alloc_path();
3631 	BUG_ON(!path);
3632 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3633 	if (!ret) {
3634 		leaf = path->nodes[0];
3635 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3636 		write_extent_buffer(leaf, data, ptr, data_size);
3637 		btrfs_mark_buffer_dirty(leaf);
3638 	}
3639 	btrfs_free_path(path);
3640 	return ret;
3641 }
3642 
3643 /*
3644  * delete the pointer from a given node.
3645  *
3646  * the tree should have been previously balanced so the deletion does not
3647  * empty a node.
3648  */
3649 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3650 		   struct btrfs_path *path, int level, int slot)
3651 {
3652 	struct extent_buffer *parent = path->nodes[level];
3653 	u32 nritems;
3654 	int ret = 0;
3655 	int wret;
3656 
3657 	nritems = btrfs_header_nritems(parent);
3658 	if (slot != nritems - 1) {
3659 		memmove_extent_buffer(parent,
3660 			      btrfs_node_key_ptr_offset(slot),
3661 			      btrfs_node_key_ptr_offset(slot + 1),
3662 			      sizeof(struct btrfs_key_ptr) *
3663 			      (nritems - slot - 1));
3664 	}
3665 	nritems--;
3666 	btrfs_set_header_nritems(parent, nritems);
3667 	if (nritems == 0 && parent == root->node) {
3668 		BUG_ON(btrfs_header_level(root->node) != 1);
3669 		/* just turn the root into a leaf and break */
3670 		btrfs_set_header_level(root->node, 0);
3671 	} else if (slot == 0) {
3672 		struct btrfs_disk_key disk_key;
3673 
3674 		btrfs_node_key(parent, &disk_key, 0);
3675 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3676 		if (wret)
3677 			ret = wret;
3678 	}
3679 	btrfs_mark_buffer_dirty(parent);
3680 	return ret;
3681 }
3682 
3683 /*
3684  * a helper function to delete the leaf pointed to by path->slots[1] and
3685  * path->nodes[1].
3686  *
3687  * This deletes the pointer in path->nodes[1] and frees the leaf
3688  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3689  *
3690  * The path must have already been setup for deleting the leaf, including
3691  * all the proper balancing.  path->nodes[1] must be locked.
3692  */
3693 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3694 				   struct btrfs_root *root,
3695 				   struct btrfs_path *path,
3696 				   struct extent_buffer *leaf)
3697 {
3698 	int ret;
3699 
3700 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3701 	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3702 	if (ret)
3703 		return ret;
3704 
3705 	/*
3706 	 * btrfs_free_extent is expensive, we want to make sure we
3707 	 * aren't holding any locks when we call it
3708 	 */
3709 	btrfs_unlock_up_safe(path, 0);
3710 
3711 	ret = btrfs_free_extent(trans, root, leaf->start, leaf->len,
3712 				0, root->root_key.objectid, 0, 0);
3713 	return ret;
3714 }
3715 /*
3716  * delete the item at the leaf level in path.  If that empties
3717  * the leaf, remove it from the tree
3718  */
3719 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3720 		    struct btrfs_path *path, int slot, int nr)
3721 {
3722 	struct extent_buffer *leaf;
3723 	struct btrfs_item *item;
3724 	int last_off;
3725 	int dsize = 0;
3726 	int ret = 0;
3727 	int wret;
3728 	int i;
3729 	u32 nritems;
3730 
3731 	leaf = path->nodes[0];
3732 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3733 
3734 	for (i = 0; i < nr; i++)
3735 		dsize += btrfs_item_size_nr(leaf, slot + i);
3736 
3737 	nritems = btrfs_header_nritems(leaf);
3738 
3739 	if (slot + nr != nritems) {
3740 		int data_end = leaf_data_end(root, leaf);
3741 
3742 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3743 			      data_end + dsize,
3744 			      btrfs_leaf_data(leaf) + data_end,
3745 			      last_off - data_end);
3746 
3747 		for (i = slot + nr; i < nritems; i++) {
3748 			u32 ioff;
3749 
3750 			item = btrfs_item_nr(leaf, i);
3751 			if (!leaf->map_token) {
3752 				map_extent_buffer(leaf, (unsigned long)item,
3753 					sizeof(struct btrfs_item),
3754 					&leaf->map_token, &leaf->kaddr,
3755 					&leaf->map_start, &leaf->map_len,
3756 					KM_USER1);
3757 			}
3758 			ioff = btrfs_item_offset(leaf, item);
3759 			btrfs_set_item_offset(leaf, item, ioff + dsize);
3760 		}
3761 
3762 		if (leaf->map_token) {
3763 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3764 			leaf->map_token = NULL;
3765 		}
3766 
3767 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3768 			      btrfs_item_nr_offset(slot + nr),
3769 			      sizeof(struct btrfs_item) *
3770 			      (nritems - slot - nr));
3771 	}
3772 	btrfs_set_header_nritems(leaf, nritems - nr);
3773 	nritems -= nr;
3774 
3775 	/* delete the leaf if we've emptied it */
3776 	if (nritems == 0) {
3777 		if (leaf == root->node) {
3778 			btrfs_set_header_level(leaf, 0);
3779 		} else {
3780 			ret = btrfs_del_leaf(trans, root, path, leaf);
3781 			BUG_ON(ret);
3782 		}
3783 	} else {
3784 		int used = leaf_space_used(leaf, 0, nritems);
3785 		if (slot == 0) {
3786 			struct btrfs_disk_key disk_key;
3787 
3788 			btrfs_item_key(leaf, &disk_key, 0);
3789 			wret = fixup_low_keys(trans, root, path,
3790 					      &disk_key, 1);
3791 			if (wret)
3792 				ret = wret;
3793 		}
3794 
3795 		/* delete the leaf if it is mostly empty */
3796 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3797 			/* push_leaf_left fixes the path.
3798 			 * make sure the path still points to our leaf
3799 			 * for possible call to del_ptr below
3800 			 */
3801 			slot = path->slots[1];
3802 			extent_buffer_get(leaf);
3803 
3804 			btrfs_set_path_blocking(path);
3805 			wret = push_leaf_left(trans, root, path, 1, 1);
3806 			if (wret < 0 && wret != -ENOSPC)
3807 				ret = wret;
3808 
3809 			if (path->nodes[0] == leaf &&
3810 			    btrfs_header_nritems(leaf)) {
3811 				wret = push_leaf_right(trans, root, path, 1, 1);
3812 				if (wret < 0 && wret != -ENOSPC)
3813 					ret = wret;
3814 			}
3815 
3816 			if (btrfs_header_nritems(leaf) == 0) {
3817 				path->slots[1] = slot;
3818 				ret = btrfs_del_leaf(trans, root, path, leaf);
3819 				BUG_ON(ret);
3820 				free_extent_buffer(leaf);
3821 			} else {
3822 				/* if we're still in the path, make sure
3823 				 * we're dirty.  Otherwise, one of the
3824 				 * push_leaf functions must have already
3825 				 * dirtied this buffer
3826 				 */
3827 				if (path->nodes[0] == leaf)
3828 					btrfs_mark_buffer_dirty(leaf);
3829 				free_extent_buffer(leaf);
3830 			}
3831 		} else {
3832 			btrfs_mark_buffer_dirty(leaf);
3833 		}
3834 	}
3835 	return ret;
3836 }
3837 
3838 /*
3839  * search the tree again to find a leaf with lesser keys
3840  * returns 0 if it found something or 1 if there are no lesser leaves.
3841  * returns < 0 on io errors.
3842  *
3843  * This may release the path, and so you may lose any locks held at the
3844  * time you call it.
3845  */
3846 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3847 {
3848 	struct btrfs_key key;
3849 	struct btrfs_disk_key found_key;
3850 	int ret;
3851 
3852 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3853 
3854 	if (key.offset > 0)
3855 		key.offset--;
3856 	else if (key.type > 0)
3857 		key.type--;
3858 	else if (key.objectid > 0)
3859 		key.objectid--;
3860 	else
3861 		return 1;
3862 
3863 	btrfs_release_path(root, path);
3864 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3865 	if (ret < 0)
3866 		return ret;
3867 	btrfs_item_key(path->nodes[0], &found_key, 0);
3868 	ret = comp_keys(&found_key, &key);
3869 	if (ret < 0)
3870 		return 0;
3871 	return 1;
3872 }
3873 
3874 /*
3875  * A helper function to walk down the tree starting at min_key, and looking
3876  * for nodes or leaves that are either in cache or have a minimum
3877  * transaction id.  This is used by the btree defrag code, and tree logging
3878  *
3879  * This does not cow, but it does stuff the starting key it finds back
3880  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3881  * key and get a writable path.
3882  *
3883  * This does lock as it descends, and path->keep_locks should be set
3884  * to 1 by the caller.
3885  *
3886  * This honors path->lowest_level to prevent descent past a given level
3887  * of the tree.
3888  *
3889  * min_trans indicates the oldest transaction that you are interested
3890  * in walking through.  Any nodes or leaves older than min_trans are
3891  * skipped over (without reading them).
3892  *
3893  * returns zero if something useful was found, < 0 on error and 1 if there
3894  * was nothing in the tree that matched the search criteria.
3895  */
3896 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3897 			 struct btrfs_key *max_key,
3898 			 struct btrfs_path *path, int cache_only,
3899 			 u64 min_trans)
3900 {
3901 	struct extent_buffer *cur;
3902 	struct btrfs_key found_key;
3903 	int slot;
3904 	int sret;
3905 	u32 nritems;
3906 	int level;
3907 	int ret = 1;
3908 
3909 	WARN_ON(!path->keep_locks);
3910 again:
3911 	cur = btrfs_lock_root_node(root);
3912 	level = btrfs_header_level(cur);
3913 	WARN_ON(path->nodes[level]);
3914 	path->nodes[level] = cur;
3915 	path->locks[level] = 1;
3916 
3917 	if (btrfs_header_generation(cur) < min_trans) {
3918 		ret = 1;
3919 		goto out;
3920 	}
3921 	while (1) {
3922 		nritems = btrfs_header_nritems(cur);
3923 		level = btrfs_header_level(cur);
3924 		sret = bin_search(cur, min_key, level, &slot);
3925 
3926 		/* at the lowest level, we're done, setup the path and exit */
3927 		if (level == path->lowest_level) {
3928 			if (slot >= nritems)
3929 				goto find_next_key;
3930 			ret = 0;
3931 			path->slots[level] = slot;
3932 			btrfs_item_key_to_cpu(cur, &found_key, slot);
3933 			goto out;
3934 		}
3935 		if (sret && slot > 0)
3936 			slot--;
3937 		/*
3938 		 * check this node pointer against the cache_only and
3939 		 * min_trans parameters.  If it isn't in cache or is too
3940 		 * old, skip to the next one.
3941 		 */
3942 		while (slot < nritems) {
3943 			u64 blockptr;
3944 			u64 gen;
3945 			struct extent_buffer *tmp;
3946 			struct btrfs_disk_key disk_key;
3947 
3948 			blockptr = btrfs_node_blockptr(cur, slot);
3949 			gen = btrfs_node_ptr_generation(cur, slot);
3950 			if (gen < min_trans) {
3951 				slot++;
3952 				continue;
3953 			}
3954 			if (!cache_only)
3955 				break;
3956 
3957 			if (max_key) {
3958 				btrfs_node_key(cur, &disk_key, slot);
3959 				if (comp_keys(&disk_key, max_key) >= 0) {
3960 					ret = 1;
3961 					goto out;
3962 				}
3963 			}
3964 
3965 			tmp = btrfs_find_tree_block(root, blockptr,
3966 					    btrfs_level_size(root, level - 1));
3967 
3968 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3969 				free_extent_buffer(tmp);
3970 				break;
3971 			}
3972 			if (tmp)
3973 				free_extent_buffer(tmp);
3974 			slot++;
3975 		}
3976 find_next_key:
3977 		/*
3978 		 * we didn't find a candidate key in this node, walk forward
3979 		 * and find another one
3980 		 */
3981 		if (slot >= nritems) {
3982 			path->slots[level] = slot;
3983 			btrfs_set_path_blocking(path);
3984 			sret = btrfs_find_next_key(root, path, min_key, level,
3985 						  cache_only, min_trans);
3986 			if (sret == 0) {
3987 				btrfs_release_path(root, path);
3988 				goto again;
3989 			} else {
3990 				goto out;
3991 			}
3992 		}
3993 		/* save our key for returning back */
3994 		btrfs_node_key_to_cpu(cur, &found_key, slot);
3995 		path->slots[level] = slot;
3996 		if (level == path->lowest_level) {
3997 			ret = 0;
3998 			unlock_up(path, level, 1);
3999 			goto out;
4000 		}
4001 		btrfs_set_path_blocking(path);
4002 		cur = read_node_slot(root, cur, slot);
4003 
4004 		btrfs_tree_lock(cur);
4005 
4006 		path->locks[level - 1] = 1;
4007 		path->nodes[level - 1] = cur;
4008 		unlock_up(path, level, 1);
4009 		btrfs_clear_path_blocking(path, NULL);
4010 	}
4011 out:
4012 	if (ret == 0)
4013 		memcpy(min_key, &found_key, sizeof(found_key));
4014 	btrfs_set_path_blocking(path);
4015 	return ret;
4016 }
4017 
4018 /*
4019  * this is similar to btrfs_next_leaf, but does not try to preserve
4020  * and fixup the path.  It looks for and returns the next key in the
4021  * tree based on the current path and the cache_only and min_trans
4022  * parameters.
4023  *
4024  * 0 is returned if another key is found, < 0 if there are any errors
4025  * and 1 is returned if there are no higher keys in the tree
4026  *
4027  * path->keep_locks should be set to 1 on the search made before
4028  * calling this function.
4029  */
4030 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4031 			struct btrfs_key *key, int level,
4032 			int cache_only, u64 min_trans)
4033 {
4034 	int slot;
4035 	struct extent_buffer *c;
4036 
4037 	WARN_ON(!path->keep_locks);
4038 	while (level < BTRFS_MAX_LEVEL) {
4039 		if (!path->nodes[level])
4040 			return 1;
4041 
4042 		slot = path->slots[level] + 1;
4043 		c = path->nodes[level];
4044 next:
4045 		if (slot >= btrfs_header_nritems(c)) {
4046 			int ret;
4047 			int orig_lowest;
4048 			struct btrfs_key cur_key;
4049 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4050 			    !path->nodes[level + 1])
4051 				return 1;
4052 
4053 			if (path->locks[level + 1]) {
4054 				level++;
4055 				continue;
4056 			}
4057 
4058 			slot = btrfs_header_nritems(c) - 1;
4059 			if (level == 0)
4060 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4061 			else
4062 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4063 
4064 			orig_lowest = path->lowest_level;
4065 			btrfs_release_path(root, path);
4066 			path->lowest_level = level;
4067 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4068 						0, 0);
4069 			path->lowest_level = orig_lowest;
4070 			if (ret < 0)
4071 				return ret;
4072 
4073 			c = path->nodes[level];
4074 			slot = path->slots[level];
4075 			if (ret == 0)
4076 				slot++;
4077 			goto next;
4078 		}
4079 
4080 		if (level == 0)
4081 			btrfs_item_key_to_cpu(c, key, slot);
4082 		else {
4083 			u64 blockptr = btrfs_node_blockptr(c, slot);
4084 			u64 gen = btrfs_node_ptr_generation(c, slot);
4085 
4086 			if (cache_only) {
4087 				struct extent_buffer *cur;
4088 				cur = btrfs_find_tree_block(root, blockptr,
4089 					    btrfs_level_size(root, level - 1));
4090 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4091 					slot++;
4092 					if (cur)
4093 						free_extent_buffer(cur);
4094 					goto next;
4095 				}
4096 				free_extent_buffer(cur);
4097 			}
4098 			if (gen < min_trans) {
4099 				slot++;
4100 				goto next;
4101 			}
4102 			btrfs_node_key_to_cpu(c, key, slot);
4103 		}
4104 		return 0;
4105 	}
4106 	return 1;
4107 }
4108 
4109 /*
4110  * search the tree again to find a leaf with greater keys
4111  * returns 0 if it found something or 1 if there are no greater leaves.
4112  * returns < 0 on io errors.
4113  */
4114 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4115 {
4116 	int slot;
4117 	int level;
4118 	struct extent_buffer *c;
4119 	struct extent_buffer *next;
4120 	struct btrfs_key key;
4121 	u32 nritems;
4122 	int ret;
4123 	int old_spinning = path->leave_spinning;
4124 	int force_blocking = 0;
4125 
4126 	nritems = btrfs_header_nritems(path->nodes[0]);
4127 	if (nritems == 0)
4128 		return 1;
4129 
4130 	/*
4131 	 * we take the blocks in an order that upsets lockdep.  Using
4132 	 * blocking mode is the only way around it.
4133 	 */
4134 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4135 	force_blocking = 1;
4136 #endif
4137 
4138 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4139 again:
4140 	level = 1;
4141 	next = NULL;
4142 	btrfs_release_path(root, path);
4143 
4144 	path->keep_locks = 1;
4145 
4146 	if (!force_blocking)
4147 		path->leave_spinning = 1;
4148 
4149 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4150 	path->keep_locks = 0;
4151 
4152 	if (ret < 0)
4153 		return ret;
4154 
4155 	nritems = btrfs_header_nritems(path->nodes[0]);
4156 	/*
4157 	 * by releasing the path above we dropped all our locks.  A balance
4158 	 * could have added more items next to the key that used to be
4159 	 * at the very end of the block.  So, check again here and
4160 	 * advance the path if there are now more items available.
4161 	 */
4162 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4163 		if (ret == 0)
4164 			path->slots[0]++;
4165 		ret = 0;
4166 		goto done;
4167 	}
4168 
4169 	while (level < BTRFS_MAX_LEVEL) {
4170 		if (!path->nodes[level]) {
4171 			ret = 1;
4172 			goto done;
4173 		}
4174 
4175 		slot = path->slots[level] + 1;
4176 		c = path->nodes[level];
4177 		if (slot >= btrfs_header_nritems(c)) {
4178 			level++;
4179 			if (level == BTRFS_MAX_LEVEL) {
4180 				ret = 1;
4181 				goto done;
4182 			}
4183 			continue;
4184 		}
4185 
4186 		if (next) {
4187 			btrfs_tree_unlock(next);
4188 			free_extent_buffer(next);
4189 		}
4190 
4191 		next = c;
4192 		ret = read_block_for_search(NULL, root, path, &next, level,
4193 					    slot, &key);
4194 		if (ret == -EAGAIN)
4195 			goto again;
4196 
4197 		if (ret < 0) {
4198 			btrfs_release_path(root, path);
4199 			goto done;
4200 		}
4201 
4202 		if (!path->skip_locking) {
4203 			ret = btrfs_try_spin_lock(next);
4204 			if (!ret) {
4205 				btrfs_set_path_blocking(path);
4206 				btrfs_tree_lock(next);
4207 				if (!force_blocking)
4208 					btrfs_clear_path_blocking(path, next);
4209 			}
4210 			if (force_blocking)
4211 				btrfs_set_lock_blocking(next);
4212 		}
4213 		break;
4214 	}
4215 	path->slots[level] = slot;
4216 	while (1) {
4217 		level--;
4218 		c = path->nodes[level];
4219 		if (path->locks[level])
4220 			btrfs_tree_unlock(c);
4221 
4222 		free_extent_buffer(c);
4223 		path->nodes[level] = next;
4224 		path->slots[level] = 0;
4225 		if (!path->skip_locking)
4226 			path->locks[level] = 1;
4227 
4228 		if (!level)
4229 			break;
4230 
4231 		ret = read_block_for_search(NULL, root, path, &next, level,
4232 					    0, &key);
4233 		if (ret == -EAGAIN)
4234 			goto again;
4235 
4236 		if (ret < 0) {
4237 			btrfs_release_path(root, path);
4238 			goto done;
4239 		}
4240 
4241 		if (!path->skip_locking) {
4242 			btrfs_assert_tree_locked(path->nodes[level]);
4243 			ret = btrfs_try_spin_lock(next);
4244 			if (!ret) {
4245 				btrfs_set_path_blocking(path);
4246 				btrfs_tree_lock(next);
4247 				if (!force_blocking)
4248 					btrfs_clear_path_blocking(path, next);
4249 			}
4250 			if (force_blocking)
4251 				btrfs_set_lock_blocking(next);
4252 		}
4253 	}
4254 	ret = 0;
4255 done:
4256 	unlock_up(path, 0, 1);
4257 	path->leave_spinning = old_spinning;
4258 	if (!old_spinning)
4259 		btrfs_set_path_blocking(path);
4260 
4261 	return ret;
4262 }
4263 
4264 /*
4265  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4266  * searching until it gets past min_objectid or finds an item of 'type'
4267  *
4268  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4269  */
4270 int btrfs_previous_item(struct btrfs_root *root,
4271 			struct btrfs_path *path, u64 min_objectid,
4272 			int type)
4273 {
4274 	struct btrfs_key found_key;
4275 	struct extent_buffer *leaf;
4276 	u32 nritems;
4277 	int ret;
4278 
4279 	while (1) {
4280 		if (path->slots[0] == 0) {
4281 			btrfs_set_path_blocking(path);
4282 			ret = btrfs_prev_leaf(root, path);
4283 			if (ret != 0)
4284 				return ret;
4285 		} else {
4286 			path->slots[0]--;
4287 		}
4288 		leaf = path->nodes[0];
4289 		nritems = btrfs_header_nritems(leaf);
4290 		if (nritems == 0)
4291 			return 1;
4292 		if (path->slots[0] == nritems)
4293 			path->slots[0]--;
4294 
4295 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4296 		if (found_key.objectid < min_objectid)
4297 			break;
4298 		if (found_key.type == type)
4299 			return 0;
4300 		if (found_key.objectid == min_objectid &&
4301 		    found_key.type < type)
4302 			break;
4303 	}
4304 	return 1;
4305 }
4306