xref: /openbmc/linux/fs/btrfs/ctree.c (revision d5e09e38)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26 
27 static struct kmem_cache *btrfs_path_cachep;
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33 		      int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 
41 static const struct btrfs_csums {
42 	u16		size;
43 	const char	name[10];
44 	const char	driver[12];
45 } btrfs_csums[] = {
46 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 				     .driver = "blake2b-256" },
51 };
52 
53 /*
54  * The leaf data grows from end-to-front in the node.  this returns the address
55  * of the start of the last item, which is the stop of the leaf data stack.
56  */
leaf_data_end(const struct extent_buffer * leaf)57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59 	u32 nr = btrfs_header_nritems(leaf);
60 
61 	if (nr == 0)
62 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 	return btrfs_item_offset(leaf, nr - 1);
64 }
65 
66 /*
67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
68  *
69  * @leaf:	leaf that we're doing a memmove on
70  * @dst_offset:	item data offset we're moving to
71  * @src_offset:	item data offset were' moving from
72  * @len:	length of the data we're moving
73  *
74  * Wrapper around memmove_extent_buffer() that takes into account the header on
75  * the leaf.  The btrfs_item offset's start directly after the header, so we
76  * have to adjust any offsets to account for the header in the leaf.  This
77  * handles that math to simplify the callers.
78  */
memmove_leaf_data(const struct extent_buffer * leaf,unsigned long dst_offset,unsigned long src_offset,unsigned long len)79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 				     unsigned long dst_offset,
81 				     unsigned long src_offset,
82 				     unsigned long len)
83 {
84 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87 
88 /*
89  * Copy item data from @src into @dst at the given @offset.
90  *
91  * @dst:	destination leaf that we're copying into
92  * @src:	source leaf that we're copying from
93  * @dst_offset:	item data offset we're copying to
94  * @src_offset:	item data offset were' copying from
95  * @len:	length of the data we're copying
96  *
97  * Wrapper around copy_extent_buffer() that takes into account the header on
98  * the leaf.  The btrfs_item offset's start directly after the header, so we
99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
copy_leaf_data(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103 				  const struct extent_buffer *src,
104 				  unsigned long dst_offset,
105 				  unsigned long src_offset, unsigned long len)
106 {
107 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 			   btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110 
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:	destination leaf for the items
115  * @dst_item:	the item nr we're copying into
116  * @src_item:	the item nr we're copying from
117  * @nr_items:	the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
memmove_leaf_items(const struct extent_buffer * leaf,int dst_item,int src_item,int nr_items)122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 				      int dst_item, int src_item, int nr_items)
124 {
125 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 			      btrfs_item_nr_offset(leaf, src_item),
127 			      nr_items * sizeof(struct btrfs_item));
128 }
129 
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:	destination leaf for the items
134  * @src:	source leaf for the items
135  * @dst_item:	the item nr we're copying into
136  * @src_item:	the item nr we're copying from
137  * @nr_items:	the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
copy_leaf_items(const struct extent_buffer * dst,const struct extent_buffer * src,int dst_item,int src_item,int nr_items)142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143 				   const struct extent_buffer *src,
144 				   int dst_item, int src_item, int nr_items)
145 {
146 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 			      btrfs_item_nr_offset(src, src_item),
148 			      nr_items * sizeof(struct btrfs_item));
149 }
150 
151 /* This exists for btrfs-progs usages. */
btrfs_csum_type_size(u16 type)152 u16 btrfs_csum_type_size(u16 type)
153 {
154 	return btrfs_csums[type].size;
155 }
156 
btrfs_super_csum_size(const struct btrfs_super_block * s)157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159 	u16 t = btrfs_super_csum_type(s);
160 	/*
161 	 * csum type is validated at mount time
162 	 */
163 	return btrfs_csum_type_size(t);
164 }
165 
btrfs_super_csum_name(u16 csum_type)166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168 	/* csum type is validated at mount time */
169 	return btrfs_csums[csum_type].name;
170 }
171 
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
btrfs_super_csum_driver(u16 csum_type)176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178 	/* csum type is validated at mount time */
179 	return btrfs_csums[csum_type].driver[0] ?
180 		btrfs_csums[csum_type].driver :
181 		btrfs_csums[csum_type].name;
182 }
183 
btrfs_get_num_csums(void)184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186 	return ARRAY_SIZE(btrfs_csums);
187 }
188 
btrfs_alloc_path(void)189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191 	might_sleep();
192 
193 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195 
196 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)197 void btrfs_free_path(struct btrfs_path *p)
198 {
199 	if (!p)
200 		return;
201 	btrfs_release_path(p);
202 	kmem_cache_free(btrfs_path_cachep, p);
203 }
204 
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
btrfs_release_path(struct btrfs_path * p)211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213 	int i;
214 
215 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 		p->slots[i] = 0;
217 		if (!p->nodes[i])
218 			continue;
219 		if (p->locks[i]) {
220 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221 			p->locks[i] = 0;
222 		}
223 		free_extent_buffer(p->nodes[i]);
224 		p->nodes[i] = NULL;
225 	}
226 }
227 
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
abort_should_print_stack(int errno)233 bool __cold abort_should_print_stack(int errno)
234 {
235 	switch (errno) {
236 	case -EIO:
237 	case -EROFS:
238 	case -ENOMEM:
239 		return false;
240 	}
241 	return true;
242 }
243 
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
btrfs_root_node(struct btrfs_root * root)254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256 	struct extent_buffer *eb;
257 
258 	while (1) {
259 		rcu_read_lock();
260 		eb = rcu_dereference(root->node);
261 
262 		/*
263 		 * RCU really hurts here, we could free up the root node because
264 		 * it was COWed but we may not get the new root node yet so do
265 		 * the inc_not_zero dance and if it doesn't work then
266 		 * synchronize_rcu and try again.
267 		 */
268 		if (atomic_inc_not_zero(&eb->refs)) {
269 			rcu_read_unlock();
270 			break;
271 		}
272 		rcu_read_unlock();
273 		synchronize_rcu();
274 	}
275 	return eb;
276 }
277 
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
add_root_to_dirty_list(struct btrfs_root * root)283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285 	struct btrfs_fs_info *fs_info = root->fs_info;
286 
287 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289 		return;
290 
291 	spin_lock(&fs_info->trans_lock);
292 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 		/* Want the extent tree to be the last on the list */
294 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
295 			list_move_tail(&root->dirty_list,
296 				       &fs_info->dirty_cowonly_roots);
297 		else
298 			list_move(&root->dirty_list,
299 				  &fs_info->dirty_cowonly_roots);
300 	}
301 	spin_unlock(&fs_info->trans_lock);
302 }
303 
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 		      struct btrfs_root *root,
311 		      struct extent_buffer *buf,
312 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314 	struct btrfs_fs_info *fs_info = root->fs_info;
315 	struct extent_buffer *cow;
316 	int ret = 0;
317 	int level;
318 	struct btrfs_disk_key disk_key;
319 
320 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
321 		trans->transid != fs_info->running_transaction->transid);
322 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
323 		trans->transid != root->last_trans);
324 
325 	level = btrfs_header_level(buf);
326 	if (level == 0)
327 		btrfs_item_key(buf, &disk_key, 0);
328 	else
329 		btrfs_node_key(buf, &disk_key, 0);
330 
331 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
332 				     &disk_key, level, buf->start, 0,
333 				     BTRFS_NESTING_NEW_ROOT);
334 	if (IS_ERR(cow))
335 		return PTR_ERR(cow);
336 
337 	copy_extent_buffer_full(cow, buf);
338 	btrfs_set_header_bytenr(cow, cow->start);
339 	btrfs_set_header_generation(cow, trans->transid);
340 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
341 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
342 				     BTRFS_HEADER_FLAG_RELOC);
343 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
344 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
345 	else
346 		btrfs_set_header_owner(cow, new_root_objectid);
347 
348 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
349 
350 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
351 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
352 		ret = btrfs_inc_ref(trans, root, cow, 1);
353 	else
354 		ret = btrfs_inc_ref(trans, root, cow, 0);
355 	if (ret) {
356 		btrfs_tree_unlock(cow);
357 		free_extent_buffer(cow);
358 		btrfs_abort_transaction(trans, ret);
359 		return ret;
360 	}
361 
362 	btrfs_mark_buffer_dirty(trans, cow);
363 	*cow_ret = cow;
364 	return 0;
365 }
366 
367 /*
368  * check if the tree block can be shared by multiple trees
369  */
btrfs_block_can_be_shared(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)370 int btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
371 			      struct btrfs_root *root,
372 			      struct extent_buffer *buf)
373 {
374 	/*
375 	 * Tree blocks not in shareable trees and tree roots are never shared.
376 	 * If a block was allocated after the last snapshot and the block was
377 	 * not allocated by tree relocation, we know the block is not shared.
378 	 */
379 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
380 	    buf != root->node &&
381 	    (btrfs_header_generation(buf) <=
382 	     btrfs_root_last_snapshot(&root->root_item) ||
383 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) {
384 		if (buf != root->commit_root)
385 			return 1;
386 		/*
387 		 * An extent buffer that used to be the commit root may still be
388 		 * shared because the tree height may have increased and it
389 		 * became a child of a higher level root. This can happen when
390 		 * snapshotting a subvolume created in the current transaction.
391 		 */
392 		if (btrfs_header_generation(buf) == trans->transid)
393 			return 1;
394 	}
395 
396 	return 0;
397 }
398 
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)399 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
400 				       struct btrfs_root *root,
401 				       struct extent_buffer *buf,
402 				       struct extent_buffer *cow,
403 				       int *last_ref)
404 {
405 	struct btrfs_fs_info *fs_info = root->fs_info;
406 	u64 refs;
407 	u64 owner;
408 	u64 flags;
409 	u64 new_flags = 0;
410 	int ret;
411 
412 	/*
413 	 * Backrefs update rules:
414 	 *
415 	 * Always use full backrefs for extent pointers in tree block
416 	 * allocated by tree relocation.
417 	 *
418 	 * If a shared tree block is no longer referenced by its owner
419 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
420 	 * use full backrefs for extent pointers in tree block.
421 	 *
422 	 * If a tree block is been relocating
423 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
424 	 * use full backrefs for extent pointers in tree block.
425 	 * The reason for this is some operations (such as drop tree)
426 	 * are only allowed for blocks use full backrefs.
427 	 */
428 
429 	if (btrfs_block_can_be_shared(trans, root, buf)) {
430 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
431 					       btrfs_header_level(buf), 1,
432 					       &refs, &flags);
433 		if (ret)
434 			return ret;
435 		if (unlikely(refs == 0)) {
436 			btrfs_crit(fs_info,
437 		"found 0 references for tree block at bytenr %llu level %d root %llu",
438 				   buf->start, btrfs_header_level(buf),
439 				   btrfs_root_id(root));
440 			ret = -EUCLEAN;
441 			btrfs_abort_transaction(trans, ret);
442 			return ret;
443 		}
444 	} else {
445 		refs = 1;
446 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
447 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
448 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
449 		else
450 			flags = 0;
451 	}
452 
453 	owner = btrfs_header_owner(buf);
454 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
455 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
456 
457 	if (refs > 1) {
458 		if ((owner == root->root_key.objectid ||
459 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
460 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
461 			ret = btrfs_inc_ref(trans, root, buf, 1);
462 			if (ret)
463 				return ret;
464 
465 			if (root->root_key.objectid ==
466 			    BTRFS_TREE_RELOC_OBJECTID) {
467 				ret = btrfs_dec_ref(trans, root, buf, 0);
468 				if (ret)
469 					return ret;
470 				ret = btrfs_inc_ref(trans, root, cow, 1);
471 				if (ret)
472 					return ret;
473 			}
474 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
475 		} else {
476 
477 			if (root->root_key.objectid ==
478 			    BTRFS_TREE_RELOC_OBJECTID)
479 				ret = btrfs_inc_ref(trans, root, cow, 1);
480 			else
481 				ret = btrfs_inc_ref(trans, root, cow, 0);
482 			if (ret)
483 				return ret;
484 		}
485 		if (new_flags != 0) {
486 			ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
487 			if (ret)
488 				return ret;
489 		}
490 	} else {
491 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
492 			if (root->root_key.objectid ==
493 			    BTRFS_TREE_RELOC_OBJECTID)
494 				ret = btrfs_inc_ref(trans, root, cow, 1);
495 			else
496 				ret = btrfs_inc_ref(trans, root, cow, 0);
497 			if (ret)
498 				return ret;
499 			ret = btrfs_dec_ref(trans, root, buf, 1);
500 			if (ret)
501 				return ret;
502 		}
503 		btrfs_clear_buffer_dirty(trans, buf);
504 		*last_ref = 1;
505 	}
506 	return 0;
507 }
508 
509 /*
510  * does the dirty work in cow of a single block.  The parent block (if
511  * supplied) is updated to point to the new cow copy.  The new buffer is marked
512  * dirty and returned locked.  If you modify the block it needs to be marked
513  * dirty again.
514  *
515  * search_start -- an allocation hint for the new block
516  *
517  * empty_size -- a hint that you plan on doing more cow.  This is the size in
518  * bytes the allocator should try to find free next to the block it returns.
519  * This is just a hint and may be ignored by the allocator.
520  */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size,enum btrfs_lock_nesting nest)521 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
522 			     struct btrfs_root *root,
523 			     struct extent_buffer *buf,
524 			     struct extent_buffer *parent, int parent_slot,
525 			     struct extent_buffer **cow_ret,
526 			     u64 search_start, u64 empty_size,
527 			     enum btrfs_lock_nesting nest)
528 {
529 	struct btrfs_fs_info *fs_info = root->fs_info;
530 	struct btrfs_disk_key disk_key;
531 	struct extent_buffer *cow;
532 	int level, ret;
533 	int last_ref = 0;
534 	int unlock_orig = 0;
535 	u64 parent_start = 0;
536 
537 	if (*cow_ret == buf)
538 		unlock_orig = 1;
539 
540 	btrfs_assert_tree_write_locked(buf);
541 
542 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
543 		trans->transid != fs_info->running_transaction->transid);
544 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
545 		trans->transid != root->last_trans);
546 
547 	level = btrfs_header_level(buf);
548 
549 	if (level == 0)
550 		btrfs_item_key(buf, &disk_key, 0);
551 	else
552 		btrfs_node_key(buf, &disk_key, 0);
553 
554 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
555 		parent_start = parent->start;
556 
557 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
558 				     root->root_key.objectid, &disk_key, level,
559 				     search_start, empty_size, nest);
560 	if (IS_ERR(cow))
561 		return PTR_ERR(cow);
562 
563 	/* cow is set to blocking by btrfs_init_new_buffer */
564 
565 	copy_extent_buffer_full(cow, buf);
566 	btrfs_set_header_bytenr(cow, cow->start);
567 	btrfs_set_header_generation(cow, trans->transid);
568 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
569 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
570 				     BTRFS_HEADER_FLAG_RELOC);
571 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
572 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
573 	else
574 		btrfs_set_header_owner(cow, root->root_key.objectid);
575 
576 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
577 
578 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
579 	if (ret) {
580 		btrfs_tree_unlock(cow);
581 		free_extent_buffer(cow);
582 		btrfs_abort_transaction(trans, ret);
583 		return ret;
584 	}
585 
586 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
587 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
588 		if (ret) {
589 			btrfs_tree_unlock(cow);
590 			free_extent_buffer(cow);
591 			btrfs_abort_transaction(trans, ret);
592 			return ret;
593 		}
594 	}
595 
596 	if (buf == root->node) {
597 		WARN_ON(parent && parent != buf);
598 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
599 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
600 			parent_start = buf->start;
601 
602 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
603 		if (ret < 0) {
604 			btrfs_tree_unlock(cow);
605 			free_extent_buffer(cow);
606 			btrfs_abort_transaction(trans, ret);
607 			return ret;
608 		}
609 		atomic_inc(&cow->refs);
610 		rcu_assign_pointer(root->node, cow);
611 
612 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
613 				      parent_start, last_ref);
614 		free_extent_buffer(buf);
615 		add_root_to_dirty_list(root);
616 	} else {
617 		WARN_ON(trans->transid != btrfs_header_generation(parent));
618 		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
619 						    BTRFS_MOD_LOG_KEY_REPLACE);
620 		if (ret) {
621 			btrfs_tree_unlock(cow);
622 			free_extent_buffer(cow);
623 			btrfs_abort_transaction(trans, ret);
624 			return ret;
625 		}
626 		btrfs_set_node_blockptr(parent, parent_slot,
627 					cow->start);
628 		btrfs_set_node_ptr_generation(parent, parent_slot,
629 					      trans->transid);
630 		btrfs_mark_buffer_dirty(trans, parent);
631 		if (last_ref) {
632 			ret = btrfs_tree_mod_log_free_eb(buf);
633 			if (ret) {
634 				btrfs_tree_unlock(cow);
635 				free_extent_buffer(cow);
636 				btrfs_abort_transaction(trans, ret);
637 				return ret;
638 			}
639 		}
640 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
641 				      parent_start, last_ref);
642 	}
643 	if (unlock_orig)
644 		btrfs_tree_unlock(buf);
645 	free_extent_buffer_stale(buf);
646 	btrfs_mark_buffer_dirty(trans, cow);
647 	*cow_ret = cow;
648 	return 0;
649 }
650 
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)651 static inline int should_cow_block(struct btrfs_trans_handle *trans,
652 				   struct btrfs_root *root,
653 				   struct extent_buffer *buf)
654 {
655 	if (btrfs_is_testing(root->fs_info))
656 		return 0;
657 
658 	/* Ensure we can see the FORCE_COW bit */
659 	smp_mb__before_atomic();
660 
661 	/*
662 	 * We do not need to cow a block if
663 	 * 1) this block is not created or changed in this transaction;
664 	 * 2) this block does not belong to TREE_RELOC tree;
665 	 * 3) the root is not forced COW.
666 	 *
667 	 * What is forced COW:
668 	 *    when we create snapshot during committing the transaction,
669 	 *    after we've finished copying src root, we must COW the shared
670 	 *    block to ensure the metadata consistency.
671 	 */
672 	if (btrfs_header_generation(buf) == trans->transid &&
673 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
674 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
675 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
676 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
677 		return 0;
678 	return 1;
679 }
680 
681 /*
682  * cows a single block, see __btrfs_cow_block for the real work.
683  * This version of it has extra checks so that a block isn't COWed more than
684  * once per transaction, as long as it hasn't been written yet
685  */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,enum btrfs_lock_nesting nest)686 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
687 		    struct btrfs_root *root, struct extent_buffer *buf,
688 		    struct extent_buffer *parent, int parent_slot,
689 		    struct extent_buffer **cow_ret,
690 		    enum btrfs_lock_nesting nest)
691 {
692 	struct btrfs_fs_info *fs_info = root->fs_info;
693 	u64 search_start;
694 	int ret;
695 
696 	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
697 		btrfs_abort_transaction(trans, -EUCLEAN);
698 		btrfs_crit(fs_info,
699 		   "attempt to COW block %llu on root %llu that is being deleted",
700 			   buf->start, btrfs_root_id(root));
701 		return -EUCLEAN;
702 	}
703 
704 	/*
705 	 * COWing must happen through a running transaction, which always
706 	 * matches the current fs generation (it's a transaction with a state
707 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
708 	 * into error state to prevent the commit of any transaction.
709 	 */
710 	if (unlikely(trans->transaction != fs_info->running_transaction ||
711 		     trans->transid != fs_info->generation)) {
712 		btrfs_abort_transaction(trans, -EUCLEAN);
713 		btrfs_crit(fs_info,
714 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
715 			   buf->start, btrfs_root_id(root), trans->transid,
716 			   fs_info->running_transaction->transid,
717 			   fs_info->generation);
718 		return -EUCLEAN;
719 	}
720 
721 	if (!should_cow_block(trans, root, buf)) {
722 		*cow_ret = buf;
723 		return 0;
724 	}
725 
726 	search_start = buf->start & ~((u64)SZ_1G - 1);
727 
728 	/*
729 	 * Before CoWing this block for later modification, check if it's
730 	 * the subtree root and do the delayed subtree trace if needed.
731 	 *
732 	 * Also We don't care about the error, as it's handled internally.
733 	 */
734 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
735 	ret = __btrfs_cow_block(trans, root, buf, parent,
736 				 parent_slot, cow_ret, search_start, 0, nest);
737 
738 	trace_btrfs_cow_block(root, buf, *cow_ret);
739 
740 	return ret;
741 }
742 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
743 
744 /*
745  * helper function for defrag to decide if two blocks pointed to by a
746  * node are actually close by
747  */
close_blocks(u64 blocknr,u64 other,u32 blocksize)748 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
749 {
750 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
751 		return 1;
752 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
753 		return 1;
754 	return 0;
755 }
756 
757 #ifdef __LITTLE_ENDIAN
758 
759 /*
760  * Compare two keys, on little-endian the disk order is same as CPU order and
761  * we can avoid the conversion.
762  */
comp_keys(const struct btrfs_disk_key * disk_key,const struct btrfs_key * k2)763 static int comp_keys(const struct btrfs_disk_key *disk_key,
764 		     const struct btrfs_key *k2)
765 {
766 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
767 
768 	return btrfs_comp_cpu_keys(k1, k2);
769 }
770 
771 #else
772 
773 /*
774  * compare two keys in a memcmp fashion
775  */
comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)776 static int comp_keys(const struct btrfs_disk_key *disk,
777 		     const struct btrfs_key *k2)
778 {
779 	struct btrfs_key k1;
780 
781 	btrfs_disk_key_to_cpu(&k1, disk);
782 
783 	return btrfs_comp_cpu_keys(&k1, k2);
784 }
785 #endif
786 
787 /*
788  * same as comp_keys only with two btrfs_key's
789  */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)790 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
791 {
792 	if (k1->objectid > k2->objectid)
793 		return 1;
794 	if (k1->objectid < k2->objectid)
795 		return -1;
796 	if (k1->type > k2->type)
797 		return 1;
798 	if (k1->type < k2->type)
799 		return -1;
800 	if (k1->offset > k2->offset)
801 		return 1;
802 	if (k1->offset < k2->offset)
803 		return -1;
804 	return 0;
805 }
806 
807 /*
808  * this is used by the defrag code to go through all the
809  * leaves pointed to by a node and reallocate them so that
810  * disk order is close to key order
811  */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)812 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
813 		       struct btrfs_root *root, struct extent_buffer *parent,
814 		       int start_slot, u64 *last_ret,
815 		       struct btrfs_key *progress)
816 {
817 	struct btrfs_fs_info *fs_info = root->fs_info;
818 	struct extent_buffer *cur;
819 	u64 blocknr;
820 	u64 search_start = *last_ret;
821 	u64 last_block = 0;
822 	u64 other;
823 	u32 parent_nritems;
824 	int end_slot;
825 	int i;
826 	int err = 0;
827 	u32 blocksize;
828 	int progress_passed = 0;
829 	struct btrfs_disk_key disk_key;
830 
831 	/*
832 	 * COWing must happen through a running transaction, which always
833 	 * matches the current fs generation (it's a transaction with a state
834 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
835 	 * into error state to prevent the commit of any transaction.
836 	 */
837 	if (unlikely(trans->transaction != fs_info->running_transaction ||
838 		     trans->transid != fs_info->generation)) {
839 		btrfs_abort_transaction(trans, -EUCLEAN);
840 		btrfs_crit(fs_info,
841 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
842 			   parent->start, btrfs_root_id(root), trans->transid,
843 			   fs_info->running_transaction->transid,
844 			   fs_info->generation);
845 		return -EUCLEAN;
846 	}
847 
848 	parent_nritems = btrfs_header_nritems(parent);
849 	blocksize = fs_info->nodesize;
850 	end_slot = parent_nritems - 1;
851 
852 	if (parent_nritems <= 1)
853 		return 0;
854 
855 	for (i = start_slot; i <= end_slot; i++) {
856 		int close = 1;
857 
858 		btrfs_node_key(parent, &disk_key, i);
859 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
860 			continue;
861 
862 		progress_passed = 1;
863 		blocknr = btrfs_node_blockptr(parent, i);
864 		if (last_block == 0)
865 			last_block = blocknr;
866 
867 		if (i > 0) {
868 			other = btrfs_node_blockptr(parent, i - 1);
869 			close = close_blocks(blocknr, other, blocksize);
870 		}
871 		if (!close && i < end_slot) {
872 			other = btrfs_node_blockptr(parent, i + 1);
873 			close = close_blocks(blocknr, other, blocksize);
874 		}
875 		if (close) {
876 			last_block = blocknr;
877 			continue;
878 		}
879 
880 		cur = btrfs_read_node_slot(parent, i);
881 		if (IS_ERR(cur))
882 			return PTR_ERR(cur);
883 		if (search_start == 0)
884 			search_start = last_block;
885 
886 		btrfs_tree_lock(cur);
887 		err = __btrfs_cow_block(trans, root, cur, parent, i,
888 					&cur, search_start,
889 					min(16 * blocksize,
890 					    (end_slot - i) * blocksize),
891 					BTRFS_NESTING_COW);
892 		if (err) {
893 			btrfs_tree_unlock(cur);
894 			free_extent_buffer(cur);
895 			break;
896 		}
897 		search_start = cur->start;
898 		last_block = cur->start;
899 		*last_ret = search_start;
900 		btrfs_tree_unlock(cur);
901 		free_extent_buffer(cur);
902 	}
903 	return err;
904 }
905 
906 /*
907  * Search for a key in the given extent_buffer.
908  *
909  * The lower boundary for the search is specified by the slot number @first_slot.
910  * Use a value of 0 to search over the whole extent buffer. Works for both
911  * leaves and nodes.
912  *
913  * The slot in the extent buffer is returned via @slot. If the key exists in the
914  * extent buffer, then @slot will point to the slot where the key is, otherwise
915  * it points to the slot where you would insert the key.
916  *
917  * Slot may point to the total number of items (i.e. one position beyond the last
918  * key) if the key is bigger than the last key in the extent buffer.
919  */
btrfs_bin_search(struct extent_buffer * eb,int first_slot,const struct btrfs_key * key,int * slot)920 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
921 		     const struct btrfs_key *key, int *slot)
922 {
923 	unsigned long p;
924 	int item_size;
925 	/*
926 	 * Use unsigned types for the low and high slots, so that we get a more
927 	 * efficient division in the search loop below.
928 	 */
929 	u32 low = first_slot;
930 	u32 high = btrfs_header_nritems(eb);
931 	int ret;
932 	const int key_size = sizeof(struct btrfs_disk_key);
933 
934 	if (unlikely(low > high)) {
935 		btrfs_err(eb->fs_info,
936 		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
937 			  __func__, low, high, eb->start,
938 			  btrfs_header_owner(eb), btrfs_header_level(eb));
939 		return -EINVAL;
940 	}
941 
942 	if (btrfs_header_level(eb) == 0) {
943 		p = offsetof(struct btrfs_leaf, items);
944 		item_size = sizeof(struct btrfs_item);
945 	} else {
946 		p = offsetof(struct btrfs_node, ptrs);
947 		item_size = sizeof(struct btrfs_key_ptr);
948 	}
949 
950 	while (low < high) {
951 		unsigned long oip;
952 		unsigned long offset;
953 		struct btrfs_disk_key *tmp;
954 		struct btrfs_disk_key unaligned;
955 		int mid;
956 
957 		mid = (low + high) / 2;
958 		offset = p + mid * item_size;
959 		oip = offset_in_page(offset);
960 
961 		if (oip + key_size <= PAGE_SIZE) {
962 			const unsigned long idx = get_eb_page_index(offset);
963 			char *kaddr = page_address(eb->pages[idx]);
964 
965 			oip = get_eb_offset_in_page(eb, offset);
966 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
967 		} else {
968 			read_extent_buffer(eb, &unaligned, offset, key_size);
969 			tmp = &unaligned;
970 		}
971 
972 		ret = comp_keys(tmp, key);
973 
974 		if (ret < 0)
975 			low = mid + 1;
976 		else if (ret > 0)
977 			high = mid;
978 		else {
979 			*slot = mid;
980 			return 0;
981 		}
982 	}
983 	*slot = low;
984 	return 1;
985 }
986 
root_add_used(struct btrfs_root * root,u32 size)987 static void root_add_used(struct btrfs_root *root, u32 size)
988 {
989 	spin_lock(&root->accounting_lock);
990 	btrfs_set_root_used(&root->root_item,
991 			    btrfs_root_used(&root->root_item) + size);
992 	spin_unlock(&root->accounting_lock);
993 }
994 
root_sub_used(struct btrfs_root * root,u32 size)995 static void root_sub_used(struct btrfs_root *root, u32 size)
996 {
997 	spin_lock(&root->accounting_lock);
998 	btrfs_set_root_used(&root->root_item,
999 			    btrfs_root_used(&root->root_item) - size);
1000 	spin_unlock(&root->accounting_lock);
1001 }
1002 
1003 /* given a node and slot number, this reads the blocks it points to.  The
1004  * extent buffer is returned with a reference taken (but unlocked).
1005  */
btrfs_read_node_slot(struct extent_buffer * parent,int slot)1006 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1007 					   int slot)
1008 {
1009 	int level = btrfs_header_level(parent);
1010 	struct btrfs_tree_parent_check check = { 0 };
1011 	struct extent_buffer *eb;
1012 
1013 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1014 		return ERR_PTR(-ENOENT);
1015 
1016 	ASSERT(level);
1017 
1018 	check.level = level - 1;
1019 	check.transid = btrfs_node_ptr_generation(parent, slot);
1020 	check.owner_root = btrfs_header_owner(parent);
1021 	check.has_first_key = true;
1022 	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
1023 
1024 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1025 			     &check);
1026 	if (IS_ERR(eb))
1027 		return eb;
1028 	if (!extent_buffer_uptodate(eb)) {
1029 		free_extent_buffer(eb);
1030 		return ERR_PTR(-EIO);
1031 	}
1032 
1033 	return eb;
1034 }
1035 
1036 /*
1037  * node level balancing, used to make sure nodes are in proper order for
1038  * item deletion.  We balance from the top down, so we have to make sure
1039  * that a deletion won't leave an node completely empty later on.
1040  */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1041 static noinline int balance_level(struct btrfs_trans_handle *trans,
1042 			 struct btrfs_root *root,
1043 			 struct btrfs_path *path, int level)
1044 {
1045 	struct btrfs_fs_info *fs_info = root->fs_info;
1046 	struct extent_buffer *right = NULL;
1047 	struct extent_buffer *mid;
1048 	struct extent_buffer *left = NULL;
1049 	struct extent_buffer *parent = NULL;
1050 	int ret = 0;
1051 	int wret;
1052 	int pslot;
1053 	int orig_slot = path->slots[level];
1054 	u64 orig_ptr;
1055 
1056 	ASSERT(level > 0);
1057 
1058 	mid = path->nodes[level];
1059 
1060 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1061 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1062 
1063 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1064 
1065 	if (level < BTRFS_MAX_LEVEL - 1) {
1066 		parent = path->nodes[level + 1];
1067 		pslot = path->slots[level + 1];
1068 	}
1069 
1070 	/*
1071 	 * deal with the case where there is only one pointer in the root
1072 	 * by promoting the node below to a root
1073 	 */
1074 	if (!parent) {
1075 		struct extent_buffer *child;
1076 
1077 		if (btrfs_header_nritems(mid) != 1)
1078 			return 0;
1079 
1080 		/* promote the child to a root */
1081 		child = btrfs_read_node_slot(mid, 0);
1082 		if (IS_ERR(child)) {
1083 			ret = PTR_ERR(child);
1084 			goto out;
1085 		}
1086 
1087 		btrfs_tree_lock(child);
1088 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1089 				      BTRFS_NESTING_COW);
1090 		if (ret) {
1091 			btrfs_tree_unlock(child);
1092 			free_extent_buffer(child);
1093 			goto out;
1094 		}
1095 
1096 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1097 		if (ret < 0) {
1098 			btrfs_tree_unlock(child);
1099 			free_extent_buffer(child);
1100 			btrfs_abort_transaction(trans, ret);
1101 			goto out;
1102 		}
1103 		rcu_assign_pointer(root->node, child);
1104 
1105 		add_root_to_dirty_list(root);
1106 		btrfs_tree_unlock(child);
1107 
1108 		path->locks[level] = 0;
1109 		path->nodes[level] = NULL;
1110 		btrfs_clear_buffer_dirty(trans, mid);
1111 		btrfs_tree_unlock(mid);
1112 		/* once for the path */
1113 		free_extent_buffer(mid);
1114 
1115 		root_sub_used(root, mid->len);
1116 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1117 		/* once for the root ptr */
1118 		free_extent_buffer_stale(mid);
1119 		return 0;
1120 	}
1121 	if (btrfs_header_nritems(mid) >
1122 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1123 		return 0;
1124 
1125 	if (pslot) {
1126 		left = btrfs_read_node_slot(parent, pslot - 1);
1127 		if (IS_ERR(left)) {
1128 			ret = PTR_ERR(left);
1129 			left = NULL;
1130 			goto out;
1131 		}
1132 
1133 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1134 		wret = btrfs_cow_block(trans, root, left,
1135 				       parent, pslot - 1, &left,
1136 				       BTRFS_NESTING_LEFT_COW);
1137 		if (wret) {
1138 			ret = wret;
1139 			goto out;
1140 		}
1141 	}
1142 
1143 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1144 		right = btrfs_read_node_slot(parent, pslot + 1);
1145 		if (IS_ERR(right)) {
1146 			ret = PTR_ERR(right);
1147 			right = NULL;
1148 			goto out;
1149 		}
1150 
1151 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1152 		wret = btrfs_cow_block(trans, root, right,
1153 				       parent, pslot + 1, &right,
1154 				       BTRFS_NESTING_RIGHT_COW);
1155 		if (wret) {
1156 			ret = wret;
1157 			goto out;
1158 		}
1159 	}
1160 
1161 	/* first, try to make some room in the middle buffer */
1162 	if (left) {
1163 		orig_slot += btrfs_header_nritems(left);
1164 		wret = push_node_left(trans, left, mid, 1);
1165 		if (wret < 0)
1166 			ret = wret;
1167 	}
1168 
1169 	/*
1170 	 * then try to empty the right most buffer into the middle
1171 	 */
1172 	if (right) {
1173 		wret = push_node_left(trans, mid, right, 1);
1174 		if (wret < 0 && wret != -ENOSPC)
1175 			ret = wret;
1176 		if (btrfs_header_nritems(right) == 0) {
1177 			btrfs_clear_buffer_dirty(trans, right);
1178 			btrfs_tree_unlock(right);
1179 			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1180 			if (ret < 0) {
1181 				free_extent_buffer_stale(right);
1182 				right = NULL;
1183 				goto out;
1184 			}
1185 			root_sub_used(root, right->len);
1186 			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1187 					      0, 1);
1188 			free_extent_buffer_stale(right);
1189 			right = NULL;
1190 		} else {
1191 			struct btrfs_disk_key right_key;
1192 			btrfs_node_key(right, &right_key, 0);
1193 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1194 					BTRFS_MOD_LOG_KEY_REPLACE);
1195 			if (ret < 0) {
1196 				btrfs_abort_transaction(trans, ret);
1197 				goto out;
1198 			}
1199 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1200 			btrfs_mark_buffer_dirty(trans, parent);
1201 		}
1202 	}
1203 	if (btrfs_header_nritems(mid) == 1) {
1204 		/*
1205 		 * we're not allowed to leave a node with one item in the
1206 		 * tree during a delete.  A deletion from lower in the tree
1207 		 * could try to delete the only pointer in this node.
1208 		 * So, pull some keys from the left.
1209 		 * There has to be a left pointer at this point because
1210 		 * otherwise we would have pulled some pointers from the
1211 		 * right
1212 		 */
1213 		if (unlikely(!left)) {
1214 			btrfs_crit(fs_info,
1215 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1216 				   parent->start, btrfs_header_level(parent),
1217 				   mid->start, btrfs_root_id(root));
1218 			ret = -EUCLEAN;
1219 			btrfs_abort_transaction(trans, ret);
1220 			goto out;
1221 		}
1222 		wret = balance_node_right(trans, mid, left);
1223 		if (wret < 0) {
1224 			ret = wret;
1225 			goto out;
1226 		}
1227 		if (wret == 1) {
1228 			wret = push_node_left(trans, left, mid, 1);
1229 			if (wret < 0)
1230 				ret = wret;
1231 		}
1232 		BUG_ON(wret == 1);
1233 	}
1234 	if (btrfs_header_nritems(mid) == 0) {
1235 		btrfs_clear_buffer_dirty(trans, mid);
1236 		btrfs_tree_unlock(mid);
1237 		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1238 		if (ret < 0) {
1239 			free_extent_buffer_stale(mid);
1240 			mid = NULL;
1241 			goto out;
1242 		}
1243 		root_sub_used(root, mid->len);
1244 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1245 		free_extent_buffer_stale(mid);
1246 		mid = NULL;
1247 	} else {
1248 		/* update the parent key to reflect our changes */
1249 		struct btrfs_disk_key mid_key;
1250 		btrfs_node_key(mid, &mid_key, 0);
1251 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1252 						    BTRFS_MOD_LOG_KEY_REPLACE);
1253 		if (ret < 0) {
1254 			btrfs_abort_transaction(trans, ret);
1255 			goto out;
1256 		}
1257 		btrfs_set_node_key(parent, &mid_key, pslot);
1258 		btrfs_mark_buffer_dirty(trans, parent);
1259 	}
1260 
1261 	/* update the path */
1262 	if (left) {
1263 		if (btrfs_header_nritems(left) > orig_slot) {
1264 			atomic_inc(&left->refs);
1265 			/* left was locked after cow */
1266 			path->nodes[level] = left;
1267 			path->slots[level + 1] -= 1;
1268 			path->slots[level] = orig_slot;
1269 			if (mid) {
1270 				btrfs_tree_unlock(mid);
1271 				free_extent_buffer(mid);
1272 			}
1273 		} else {
1274 			orig_slot -= btrfs_header_nritems(left);
1275 			path->slots[level] = orig_slot;
1276 		}
1277 	}
1278 	/* double check we haven't messed things up */
1279 	if (orig_ptr !=
1280 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1281 		BUG();
1282 out:
1283 	if (right) {
1284 		btrfs_tree_unlock(right);
1285 		free_extent_buffer(right);
1286 	}
1287 	if (left) {
1288 		if (path->nodes[level] != left)
1289 			btrfs_tree_unlock(left);
1290 		free_extent_buffer(left);
1291 	}
1292 	return ret;
1293 }
1294 
1295 /* Node balancing for insertion.  Here we only split or push nodes around
1296  * when they are completely full.  This is also done top down, so we
1297  * have to be pessimistic.
1298  */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1299 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1300 					  struct btrfs_root *root,
1301 					  struct btrfs_path *path, int level)
1302 {
1303 	struct btrfs_fs_info *fs_info = root->fs_info;
1304 	struct extent_buffer *right = NULL;
1305 	struct extent_buffer *mid;
1306 	struct extent_buffer *left = NULL;
1307 	struct extent_buffer *parent = NULL;
1308 	int ret = 0;
1309 	int wret;
1310 	int pslot;
1311 	int orig_slot = path->slots[level];
1312 
1313 	if (level == 0)
1314 		return 1;
1315 
1316 	mid = path->nodes[level];
1317 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1318 
1319 	if (level < BTRFS_MAX_LEVEL - 1) {
1320 		parent = path->nodes[level + 1];
1321 		pslot = path->slots[level + 1];
1322 	}
1323 
1324 	if (!parent)
1325 		return 1;
1326 
1327 	/* first, try to make some room in the middle buffer */
1328 	if (pslot) {
1329 		u32 left_nr;
1330 
1331 		left = btrfs_read_node_slot(parent, pslot - 1);
1332 		if (IS_ERR(left))
1333 			return PTR_ERR(left);
1334 
1335 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1336 
1337 		left_nr = btrfs_header_nritems(left);
1338 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1339 			wret = 1;
1340 		} else {
1341 			ret = btrfs_cow_block(trans, root, left, parent,
1342 					      pslot - 1, &left,
1343 					      BTRFS_NESTING_LEFT_COW);
1344 			if (ret)
1345 				wret = 1;
1346 			else {
1347 				wret = push_node_left(trans, left, mid, 0);
1348 			}
1349 		}
1350 		if (wret < 0)
1351 			ret = wret;
1352 		if (wret == 0) {
1353 			struct btrfs_disk_key disk_key;
1354 			orig_slot += left_nr;
1355 			btrfs_node_key(mid, &disk_key, 0);
1356 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1357 					BTRFS_MOD_LOG_KEY_REPLACE);
1358 			if (ret < 0) {
1359 				btrfs_tree_unlock(left);
1360 				free_extent_buffer(left);
1361 				btrfs_abort_transaction(trans, ret);
1362 				return ret;
1363 			}
1364 			btrfs_set_node_key(parent, &disk_key, pslot);
1365 			btrfs_mark_buffer_dirty(trans, parent);
1366 			if (btrfs_header_nritems(left) > orig_slot) {
1367 				path->nodes[level] = left;
1368 				path->slots[level + 1] -= 1;
1369 				path->slots[level] = orig_slot;
1370 				btrfs_tree_unlock(mid);
1371 				free_extent_buffer(mid);
1372 			} else {
1373 				orig_slot -=
1374 					btrfs_header_nritems(left);
1375 				path->slots[level] = orig_slot;
1376 				btrfs_tree_unlock(left);
1377 				free_extent_buffer(left);
1378 			}
1379 			return 0;
1380 		}
1381 		btrfs_tree_unlock(left);
1382 		free_extent_buffer(left);
1383 	}
1384 
1385 	/*
1386 	 * then try to empty the right most buffer into the middle
1387 	 */
1388 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1389 		u32 right_nr;
1390 
1391 		right = btrfs_read_node_slot(parent, pslot + 1);
1392 		if (IS_ERR(right))
1393 			return PTR_ERR(right);
1394 
1395 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1396 
1397 		right_nr = btrfs_header_nritems(right);
1398 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1399 			wret = 1;
1400 		} else {
1401 			ret = btrfs_cow_block(trans, root, right,
1402 					      parent, pslot + 1,
1403 					      &right, BTRFS_NESTING_RIGHT_COW);
1404 			if (ret)
1405 				wret = 1;
1406 			else {
1407 				wret = balance_node_right(trans, right, mid);
1408 			}
1409 		}
1410 		if (wret < 0)
1411 			ret = wret;
1412 		if (wret == 0) {
1413 			struct btrfs_disk_key disk_key;
1414 
1415 			btrfs_node_key(right, &disk_key, 0);
1416 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1417 					BTRFS_MOD_LOG_KEY_REPLACE);
1418 			if (ret < 0) {
1419 				btrfs_tree_unlock(right);
1420 				free_extent_buffer(right);
1421 				btrfs_abort_transaction(trans, ret);
1422 				return ret;
1423 			}
1424 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1425 			btrfs_mark_buffer_dirty(trans, parent);
1426 
1427 			if (btrfs_header_nritems(mid) <= orig_slot) {
1428 				path->nodes[level] = right;
1429 				path->slots[level + 1] += 1;
1430 				path->slots[level] = orig_slot -
1431 					btrfs_header_nritems(mid);
1432 				btrfs_tree_unlock(mid);
1433 				free_extent_buffer(mid);
1434 			} else {
1435 				btrfs_tree_unlock(right);
1436 				free_extent_buffer(right);
1437 			}
1438 			return 0;
1439 		}
1440 		btrfs_tree_unlock(right);
1441 		free_extent_buffer(right);
1442 	}
1443 	return 1;
1444 }
1445 
1446 /*
1447  * readahead one full node of leaves, finding things that are close
1448  * to the block in 'slot', and triggering ra on them.
1449  */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)1450 static void reada_for_search(struct btrfs_fs_info *fs_info,
1451 			     struct btrfs_path *path,
1452 			     int level, int slot, u64 objectid)
1453 {
1454 	struct extent_buffer *node;
1455 	struct btrfs_disk_key disk_key;
1456 	u32 nritems;
1457 	u64 search;
1458 	u64 target;
1459 	u64 nread = 0;
1460 	u64 nread_max;
1461 	u32 nr;
1462 	u32 blocksize;
1463 	u32 nscan = 0;
1464 
1465 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1466 		return;
1467 
1468 	if (!path->nodes[level])
1469 		return;
1470 
1471 	node = path->nodes[level];
1472 
1473 	/*
1474 	 * Since the time between visiting leaves is much shorter than the time
1475 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1476 	 * much IO at once (possibly random).
1477 	 */
1478 	if (path->reada == READA_FORWARD_ALWAYS) {
1479 		if (level > 1)
1480 			nread_max = node->fs_info->nodesize;
1481 		else
1482 			nread_max = SZ_128K;
1483 	} else {
1484 		nread_max = SZ_64K;
1485 	}
1486 
1487 	search = btrfs_node_blockptr(node, slot);
1488 	blocksize = fs_info->nodesize;
1489 	if (path->reada != READA_FORWARD_ALWAYS) {
1490 		struct extent_buffer *eb;
1491 
1492 		eb = find_extent_buffer(fs_info, search);
1493 		if (eb) {
1494 			free_extent_buffer(eb);
1495 			return;
1496 		}
1497 	}
1498 
1499 	target = search;
1500 
1501 	nritems = btrfs_header_nritems(node);
1502 	nr = slot;
1503 
1504 	while (1) {
1505 		if (path->reada == READA_BACK) {
1506 			if (nr == 0)
1507 				break;
1508 			nr--;
1509 		} else if (path->reada == READA_FORWARD ||
1510 			   path->reada == READA_FORWARD_ALWAYS) {
1511 			nr++;
1512 			if (nr >= nritems)
1513 				break;
1514 		}
1515 		if (path->reada == READA_BACK && objectid) {
1516 			btrfs_node_key(node, &disk_key, nr);
1517 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1518 				break;
1519 		}
1520 		search = btrfs_node_blockptr(node, nr);
1521 		if (path->reada == READA_FORWARD_ALWAYS ||
1522 		    (search <= target && target - search <= 65536) ||
1523 		    (search > target && search - target <= 65536)) {
1524 			btrfs_readahead_node_child(node, nr);
1525 			nread += blocksize;
1526 		}
1527 		nscan++;
1528 		if (nread > nread_max || nscan > 32)
1529 			break;
1530 	}
1531 }
1532 
reada_for_balance(struct btrfs_path * path,int level)1533 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1534 {
1535 	struct extent_buffer *parent;
1536 	int slot;
1537 	int nritems;
1538 
1539 	parent = path->nodes[level + 1];
1540 	if (!parent)
1541 		return;
1542 
1543 	nritems = btrfs_header_nritems(parent);
1544 	slot = path->slots[level + 1];
1545 
1546 	if (slot > 0)
1547 		btrfs_readahead_node_child(parent, slot - 1);
1548 	if (slot + 1 < nritems)
1549 		btrfs_readahead_node_child(parent, slot + 1);
1550 }
1551 
1552 
1553 /*
1554  * when we walk down the tree, it is usually safe to unlock the higher layers
1555  * in the tree.  The exceptions are when our path goes through slot 0, because
1556  * operations on the tree might require changing key pointers higher up in the
1557  * tree.
1558  *
1559  * callers might also have set path->keep_locks, which tells this code to keep
1560  * the lock if the path points to the last slot in the block.  This is part of
1561  * walking through the tree, and selecting the next slot in the higher block.
1562  *
1563  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1564  * if lowest_unlock is 1, level 0 won't be unlocked
1565  */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)1566 static noinline void unlock_up(struct btrfs_path *path, int level,
1567 			       int lowest_unlock, int min_write_lock_level,
1568 			       int *write_lock_level)
1569 {
1570 	int i;
1571 	int skip_level = level;
1572 	bool check_skip = true;
1573 
1574 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1575 		if (!path->nodes[i])
1576 			break;
1577 		if (!path->locks[i])
1578 			break;
1579 
1580 		if (check_skip) {
1581 			if (path->slots[i] == 0) {
1582 				skip_level = i + 1;
1583 				continue;
1584 			}
1585 
1586 			if (path->keep_locks) {
1587 				u32 nritems;
1588 
1589 				nritems = btrfs_header_nritems(path->nodes[i]);
1590 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1591 					skip_level = i + 1;
1592 					continue;
1593 				}
1594 			}
1595 		}
1596 
1597 		if (i >= lowest_unlock && i > skip_level) {
1598 			check_skip = false;
1599 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1600 			path->locks[i] = 0;
1601 			if (write_lock_level &&
1602 			    i > min_write_lock_level &&
1603 			    i <= *write_lock_level) {
1604 				*write_lock_level = i - 1;
1605 			}
1606 		}
1607 	}
1608 }
1609 
1610 /*
1611  * Helper function for btrfs_search_slot() and other functions that do a search
1612  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1613  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1614  * its pages from disk.
1615  *
1616  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1617  * whole btree search, starting again from the current root node.
1618  */
1619 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,const struct btrfs_key * key)1620 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1621 		      struct extent_buffer **eb_ret, int level, int slot,
1622 		      const struct btrfs_key *key)
1623 {
1624 	struct btrfs_fs_info *fs_info = root->fs_info;
1625 	struct btrfs_tree_parent_check check = { 0 };
1626 	u64 blocknr;
1627 	u64 gen;
1628 	struct extent_buffer *tmp;
1629 	int ret;
1630 	int parent_level;
1631 	bool unlock_up;
1632 
1633 	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1634 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1635 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1636 	parent_level = btrfs_header_level(*eb_ret);
1637 	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1638 	check.has_first_key = true;
1639 	check.level = parent_level - 1;
1640 	check.transid = gen;
1641 	check.owner_root = root->root_key.objectid;
1642 
1643 	/*
1644 	 * If we need to read an extent buffer from disk and we are holding locks
1645 	 * on upper level nodes, we unlock all the upper nodes before reading the
1646 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1647 	 * restart the search. We don't release the lock on the current level
1648 	 * because we need to walk this node to figure out which blocks to read.
1649 	 */
1650 	tmp = find_extent_buffer(fs_info, blocknr);
1651 	if (tmp) {
1652 		if (p->reada == READA_FORWARD_ALWAYS)
1653 			reada_for_search(fs_info, p, level, slot, key->objectid);
1654 
1655 		/* first we do an atomic uptodate check */
1656 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1657 			/*
1658 			 * Do extra check for first_key, eb can be stale due to
1659 			 * being cached, read from scrub, or have multiple
1660 			 * parents (shared tree blocks).
1661 			 */
1662 			if (btrfs_verify_level_key(tmp,
1663 					parent_level - 1, &check.first_key, gen)) {
1664 				free_extent_buffer(tmp);
1665 				return -EUCLEAN;
1666 			}
1667 			*eb_ret = tmp;
1668 			return 0;
1669 		}
1670 
1671 		if (p->nowait) {
1672 			free_extent_buffer(tmp);
1673 			return -EAGAIN;
1674 		}
1675 
1676 		if (unlock_up)
1677 			btrfs_unlock_up_safe(p, level + 1);
1678 
1679 		/* now we're allowed to do a blocking uptodate check */
1680 		ret = btrfs_read_extent_buffer(tmp, &check);
1681 		if (ret) {
1682 			free_extent_buffer(tmp);
1683 			btrfs_release_path(p);
1684 			return -EIO;
1685 		}
1686 		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1687 			free_extent_buffer(tmp);
1688 			btrfs_release_path(p);
1689 			return -EUCLEAN;
1690 		}
1691 
1692 		if (unlock_up)
1693 			ret = -EAGAIN;
1694 
1695 		goto out;
1696 	} else if (p->nowait) {
1697 		return -EAGAIN;
1698 	}
1699 
1700 	if (unlock_up) {
1701 		btrfs_unlock_up_safe(p, level + 1);
1702 		ret = -EAGAIN;
1703 	} else {
1704 		ret = 0;
1705 	}
1706 
1707 	if (p->reada != READA_NONE)
1708 		reada_for_search(fs_info, p, level, slot, key->objectid);
1709 
1710 	tmp = read_tree_block(fs_info, blocknr, &check);
1711 	if (IS_ERR(tmp)) {
1712 		btrfs_release_path(p);
1713 		return PTR_ERR(tmp);
1714 	}
1715 	/*
1716 	 * If the read above didn't mark this buffer up to date,
1717 	 * it will never end up being up to date.  Set ret to EIO now
1718 	 * and give up so that our caller doesn't loop forever
1719 	 * on our EAGAINs.
1720 	 */
1721 	if (!extent_buffer_uptodate(tmp))
1722 		ret = -EIO;
1723 
1724 out:
1725 	if (ret == 0) {
1726 		*eb_ret = tmp;
1727 	} else {
1728 		free_extent_buffer(tmp);
1729 		btrfs_release_path(p);
1730 	}
1731 
1732 	return ret;
1733 }
1734 
1735 /*
1736  * helper function for btrfs_search_slot.  This does all of the checks
1737  * for node-level blocks and does any balancing required based on
1738  * the ins_len.
1739  *
1740  * If no extra work was required, zero is returned.  If we had to
1741  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1742  * start over
1743  */
1744 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)1745 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1746 		       struct btrfs_root *root, struct btrfs_path *p,
1747 		       struct extent_buffer *b, int level, int ins_len,
1748 		       int *write_lock_level)
1749 {
1750 	struct btrfs_fs_info *fs_info = root->fs_info;
1751 	int ret = 0;
1752 
1753 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1754 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1755 
1756 		if (*write_lock_level < level + 1) {
1757 			*write_lock_level = level + 1;
1758 			btrfs_release_path(p);
1759 			return -EAGAIN;
1760 		}
1761 
1762 		reada_for_balance(p, level);
1763 		ret = split_node(trans, root, p, level);
1764 
1765 		b = p->nodes[level];
1766 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1767 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1768 
1769 		if (*write_lock_level < level + 1) {
1770 			*write_lock_level = level + 1;
1771 			btrfs_release_path(p);
1772 			return -EAGAIN;
1773 		}
1774 
1775 		reada_for_balance(p, level);
1776 		ret = balance_level(trans, root, p, level);
1777 		if (ret)
1778 			return ret;
1779 
1780 		b = p->nodes[level];
1781 		if (!b) {
1782 			btrfs_release_path(p);
1783 			return -EAGAIN;
1784 		}
1785 		BUG_ON(btrfs_header_nritems(b) == 1);
1786 	}
1787 	return ret;
1788 }
1789 
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)1790 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1791 		u64 iobjectid, u64 ioff, u8 key_type,
1792 		struct btrfs_key *found_key)
1793 {
1794 	int ret;
1795 	struct btrfs_key key;
1796 	struct extent_buffer *eb;
1797 
1798 	ASSERT(path);
1799 	ASSERT(found_key);
1800 
1801 	key.type = key_type;
1802 	key.objectid = iobjectid;
1803 	key.offset = ioff;
1804 
1805 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1806 	if (ret < 0)
1807 		return ret;
1808 
1809 	eb = path->nodes[0];
1810 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1811 		ret = btrfs_next_leaf(fs_root, path);
1812 		if (ret)
1813 			return ret;
1814 		eb = path->nodes[0];
1815 	}
1816 
1817 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1818 	if (found_key->type != key.type ||
1819 			found_key->objectid != key.objectid)
1820 		return 1;
1821 
1822 	return 0;
1823 }
1824 
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)1825 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1826 							struct btrfs_path *p,
1827 							int write_lock_level)
1828 {
1829 	struct extent_buffer *b;
1830 	int root_lock = 0;
1831 	int level = 0;
1832 
1833 	if (p->search_commit_root) {
1834 		b = root->commit_root;
1835 		atomic_inc(&b->refs);
1836 		level = btrfs_header_level(b);
1837 		/*
1838 		 * Ensure that all callers have set skip_locking when
1839 		 * p->search_commit_root = 1.
1840 		 */
1841 		ASSERT(p->skip_locking == 1);
1842 
1843 		goto out;
1844 	}
1845 
1846 	if (p->skip_locking) {
1847 		b = btrfs_root_node(root);
1848 		level = btrfs_header_level(b);
1849 		goto out;
1850 	}
1851 
1852 	/* We try very hard to do read locks on the root */
1853 	root_lock = BTRFS_READ_LOCK;
1854 
1855 	/*
1856 	 * If the level is set to maximum, we can skip trying to get the read
1857 	 * lock.
1858 	 */
1859 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1860 		/*
1861 		 * We don't know the level of the root node until we actually
1862 		 * have it read locked
1863 		 */
1864 		if (p->nowait) {
1865 			b = btrfs_try_read_lock_root_node(root);
1866 			if (IS_ERR(b))
1867 				return b;
1868 		} else {
1869 			b = btrfs_read_lock_root_node(root);
1870 		}
1871 		level = btrfs_header_level(b);
1872 		if (level > write_lock_level)
1873 			goto out;
1874 
1875 		/* Whoops, must trade for write lock */
1876 		btrfs_tree_read_unlock(b);
1877 		free_extent_buffer(b);
1878 	}
1879 
1880 	b = btrfs_lock_root_node(root);
1881 	root_lock = BTRFS_WRITE_LOCK;
1882 
1883 	/* The level might have changed, check again */
1884 	level = btrfs_header_level(b);
1885 
1886 out:
1887 	/*
1888 	 * The root may have failed to write out at some point, and thus is no
1889 	 * longer valid, return an error in this case.
1890 	 */
1891 	if (!extent_buffer_uptodate(b)) {
1892 		if (root_lock)
1893 			btrfs_tree_unlock_rw(b, root_lock);
1894 		free_extent_buffer(b);
1895 		return ERR_PTR(-EIO);
1896 	}
1897 
1898 	p->nodes[level] = b;
1899 	if (!p->skip_locking)
1900 		p->locks[level] = root_lock;
1901 	/*
1902 	 * Callers are responsible for dropping b's references.
1903 	 */
1904 	return b;
1905 }
1906 
1907 /*
1908  * Replace the extent buffer at the lowest level of the path with a cloned
1909  * version. The purpose is to be able to use it safely, after releasing the
1910  * commit root semaphore, even if relocation is happening in parallel, the
1911  * transaction used for relocation is committed and the extent buffer is
1912  * reallocated in the next transaction.
1913  *
1914  * This is used in a context where the caller does not prevent transaction
1915  * commits from happening, either by holding a transaction handle or holding
1916  * some lock, while it's doing searches through a commit root.
1917  * At the moment it's only used for send operations.
1918  */
finish_need_commit_sem_search(struct btrfs_path * path)1919 static int finish_need_commit_sem_search(struct btrfs_path *path)
1920 {
1921 	const int i = path->lowest_level;
1922 	const int slot = path->slots[i];
1923 	struct extent_buffer *lowest = path->nodes[i];
1924 	struct extent_buffer *clone;
1925 
1926 	ASSERT(path->need_commit_sem);
1927 
1928 	if (!lowest)
1929 		return 0;
1930 
1931 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1932 
1933 	clone = btrfs_clone_extent_buffer(lowest);
1934 	if (!clone)
1935 		return -ENOMEM;
1936 
1937 	btrfs_release_path(path);
1938 	path->nodes[i] = clone;
1939 	path->slots[i] = slot;
1940 
1941 	return 0;
1942 }
1943 
search_for_key_slot(struct extent_buffer * eb,int search_low_slot,const struct btrfs_key * key,int prev_cmp,int * slot)1944 static inline int search_for_key_slot(struct extent_buffer *eb,
1945 				      int search_low_slot,
1946 				      const struct btrfs_key *key,
1947 				      int prev_cmp,
1948 				      int *slot)
1949 {
1950 	/*
1951 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1952 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1953 	 * always be at slot 0 on lower levels, since each key pointer
1954 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1955 	 * subtree it points to. Thus we can skip searching lower levels.
1956 	 */
1957 	if (prev_cmp == 0) {
1958 		*slot = 0;
1959 		return 0;
1960 	}
1961 
1962 	return btrfs_bin_search(eb, search_low_slot, key, slot);
1963 }
1964 
search_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * path,int ins_len,int prev_cmp)1965 static int search_leaf(struct btrfs_trans_handle *trans,
1966 		       struct btrfs_root *root,
1967 		       const struct btrfs_key *key,
1968 		       struct btrfs_path *path,
1969 		       int ins_len,
1970 		       int prev_cmp)
1971 {
1972 	struct extent_buffer *leaf = path->nodes[0];
1973 	int leaf_free_space = -1;
1974 	int search_low_slot = 0;
1975 	int ret;
1976 	bool do_bin_search = true;
1977 
1978 	/*
1979 	 * If we are doing an insertion, the leaf has enough free space and the
1980 	 * destination slot for the key is not slot 0, then we can unlock our
1981 	 * write lock on the parent, and any other upper nodes, before doing the
1982 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1983 	 * tasks to lock the parent and any other upper nodes.
1984 	 */
1985 	if (ins_len > 0) {
1986 		/*
1987 		 * Cache the leaf free space, since we will need it later and it
1988 		 * will not change until then.
1989 		 */
1990 		leaf_free_space = btrfs_leaf_free_space(leaf);
1991 
1992 		/*
1993 		 * !path->locks[1] means we have a single node tree, the leaf is
1994 		 * the root of the tree.
1995 		 */
1996 		if (path->locks[1] && leaf_free_space >= ins_len) {
1997 			struct btrfs_disk_key first_key;
1998 
1999 			ASSERT(btrfs_header_nritems(leaf) > 0);
2000 			btrfs_item_key(leaf, &first_key, 0);
2001 
2002 			/*
2003 			 * Doing the extra comparison with the first key is cheap,
2004 			 * taking into account that the first key is very likely
2005 			 * already in a cache line because it immediately follows
2006 			 * the extent buffer's header and we have recently accessed
2007 			 * the header's level field.
2008 			 */
2009 			ret = comp_keys(&first_key, key);
2010 			if (ret < 0) {
2011 				/*
2012 				 * The first key is smaller than the key we want
2013 				 * to insert, so we are safe to unlock all upper
2014 				 * nodes and we have to do the binary search.
2015 				 *
2016 				 * We do use btrfs_unlock_up_safe() and not
2017 				 * unlock_up() because the later does not unlock
2018 				 * nodes with a slot of 0 - we can safely unlock
2019 				 * any node even if its slot is 0 since in this
2020 				 * case the key does not end up at slot 0 of the
2021 				 * leaf and there's no need to split the leaf.
2022 				 */
2023 				btrfs_unlock_up_safe(path, 1);
2024 				search_low_slot = 1;
2025 			} else {
2026 				/*
2027 				 * The first key is >= then the key we want to
2028 				 * insert, so we can skip the binary search as
2029 				 * the target key will be at slot 0.
2030 				 *
2031 				 * We can not unlock upper nodes when the key is
2032 				 * less than the first key, because we will need
2033 				 * to update the key at slot 0 of the parent node
2034 				 * and possibly of other upper nodes too.
2035 				 * If the key matches the first key, then we can
2036 				 * unlock all the upper nodes, using
2037 				 * btrfs_unlock_up_safe() instead of unlock_up()
2038 				 * as stated above.
2039 				 */
2040 				if (ret == 0)
2041 					btrfs_unlock_up_safe(path, 1);
2042 				/*
2043 				 * ret is already 0 or 1, matching the result of
2044 				 * a btrfs_bin_search() call, so there is no need
2045 				 * to adjust it.
2046 				 */
2047 				do_bin_search = false;
2048 				path->slots[0] = 0;
2049 			}
2050 		}
2051 	}
2052 
2053 	if (do_bin_search) {
2054 		ret = search_for_key_slot(leaf, search_low_slot, key,
2055 					  prev_cmp, &path->slots[0]);
2056 		if (ret < 0)
2057 			return ret;
2058 	}
2059 
2060 	if (ins_len > 0) {
2061 		/*
2062 		 * Item key already exists. In this case, if we are allowed to
2063 		 * insert the item (for example, in dir_item case, item key
2064 		 * collision is allowed), it will be merged with the original
2065 		 * item. Only the item size grows, no new btrfs item will be
2066 		 * added. If search_for_extension is not set, ins_len already
2067 		 * accounts the size btrfs_item, deduct it here so leaf space
2068 		 * check will be correct.
2069 		 */
2070 		if (ret == 0 && !path->search_for_extension) {
2071 			ASSERT(ins_len >= sizeof(struct btrfs_item));
2072 			ins_len -= sizeof(struct btrfs_item);
2073 		}
2074 
2075 		ASSERT(leaf_free_space >= 0);
2076 
2077 		if (leaf_free_space < ins_len) {
2078 			int err;
2079 
2080 			err = split_leaf(trans, root, key, path, ins_len,
2081 					 (ret == 0));
2082 			ASSERT(err <= 0);
2083 			if (WARN_ON(err > 0))
2084 				err = -EUCLEAN;
2085 			if (err)
2086 				ret = err;
2087 		}
2088 	}
2089 
2090 	return ret;
2091 }
2092 
2093 /*
2094  * btrfs_search_slot - look for a key in a tree and perform necessary
2095  * modifications to preserve tree invariants.
2096  *
2097  * @trans:	Handle of transaction, used when modifying the tree
2098  * @p:		Holds all btree nodes along the search path
2099  * @root:	The root node of the tree
2100  * @key:	The key we are looking for
2101  * @ins_len:	Indicates purpose of search:
2102  *              >0  for inserts it's size of item inserted (*)
2103  *              <0  for deletions
2104  *               0  for plain searches, not modifying the tree
2105  *
2106  *              (*) If size of item inserted doesn't include
2107  *              sizeof(struct btrfs_item), then p->search_for_extension must
2108  *              be set.
2109  * @cow:	boolean should CoW operations be performed. Must always be 1
2110  *		when modifying the tree.
2111  *
2112  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2113  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2114  *
2115  * If @key is found, 0 is returned and you can find the item in the leaf level
2116  * of the path (level 0)
2117  *
2118  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2119  * points to the slot where it should be inserted
2120  *
2121  * If an error is encountered while searching the tree a negative error number
2122  * is returned
2123  */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2124 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2125 		      const struct btrfs_key *key, struct btrfs_path *p,
2126 		      int ins_len, int cow)
2127 {
2128 	struct btrfs_fs_info *fs_info = root->fs_info;
2129 	struct extent_buffer *b;
2130 	int slot;
2131 	int ret;
2132 	int err;
2133 	int level;
2134 	int lowest_unlock = 1;
2135 	/* everything at write_lock_level or lower must be write locked */
2136 	int write_lock_level = 0;
2137 	u8 lowest_level = 0;
2138 	int min_write_lock_level;
2139 	int prev_cmp;
2140 
2141 	might_sleep();
2142 
2143 	lowest_level = p->lowest_level;
2144 	WARN_ON(lowest_level && ins_len > 0);
2145 	WARN_ON(p->nodes[0] != NULL);
2146 	BUG_ON(!cow && ins_len);
2147 
2148 	/*
2149 	 * For now only allow nowait for read only operations.  There's no
2150 	 * strict reason why we can't, we just only need it for reads so it's
2151 	 * only implemented for reads.
2152 	 */
2153 	ASSERT(!p->nowait || !cow);
2154 
2155 	if (ins_len < 0) {
2156 		lowest_unlock = 2;
2157 
2158 		/* when we are removing items, we might have to go up to level
2159 		 * two as we update tree pointers  Make sure we keep write
2160 		 * for those levels as well
2161 		 */
2162 		write_lock_level = 2;
2163 	} else if (ins_len > 0) {
2164 		/*
2165 		 * for inserting items, make sure we have a write lock on
2166 		 * level 1 so we can update keys
2167 		 */
2168 		write_lock_level = 1;
2169 	}
2170 
2171 	if (!cow)
2172 		write_lock_level = -1;
2173 
2174 	if (cow && (p->keep_locks || p->lowest_level))
2175 		write_lock_level = BTRFS_MAX_LEVEL;
2176 
2177 	min_write_lock_level = write_lock_level;
2178 
2179 	if (p->need_commit_sem) {
2180 		ASSERT(p->search_commit_root);
2181 		if (p->nowait) {
2182 			if (!down_read_trylock(&fs_info->commit_root_sem))
2183 				return -EAGAIN;
2184 		} else {
2185 			down_read(&fs_info->commit_root_sem);
2186 		}
2187 	}
2188 
2189 again:
2190 	prev_cmp = -1;
2191 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2192 	if (IS_ERR(b)) {
2193 		ret = PTR_ERR(b);
2194 		goto done;
2195 	}
2196 
2197 	while (b) {
2198 		int dec = 0;
2199 
2200 		level = btrfs_header_level(b);
2201 
2202 		if (cow) {
2203 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2204 
2205 			/*
2206 			 * if we don't really need to cow this block
2207 			 * then we don't want to set the path blocking,
2208 			 * so we test it here
2209 			 */
2210 			if (!should_cow_block(trans, root, b))
2211 				goto cow_done;
2212 
2213 			/*
2214 			 * must have write locks on this node and the
2215 			 * parent
2216 			 */
2217 			if (level > write_lock_level ||
2218 			    (level + 1 > write_lock_level &&
2219 			    level + 1 < BTRFS_MAX_LEVEL &&
2220 			    p->nodes[level + 1])) {
2221 				write_lock_level = level + 1;
2222 				btrfs_release_path(p);
2223 				goto again;
2224 			}
2225 
2226 			if (last_level)
2227 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2228 						      &b,
2229 						      BTRFS_NESTING_COW);
2230 			else
2231 				err = btrfs_cow_block(trans, root, b,
2232 						      p->nodes[level + 1],
2233 						      p->slots[level + 1], &b,
2234 						      BTRFS_NESTING_COW);
2235 			if (err) {
2236 				ret = err;
2237 				goto done;
2238 			}
2239 		}
2240 cow_done:
2241 		p->nodes[level] = b;
2242 
2243 		/*
2244 		 * we have a lock on b and as long as we aren't changing
2245 		 * the tree, there is no way to for the items in b to change.
2246 		 * It is safe to drop the lock on our parent before we
2247 		 * go through the expensive btree search on b.
2248 		 *
2249 		 * If we're inserting or deleting (ins_len != 0), then we might
2250 		 * be changing slot zero, which may require changing the parent.
2251 		 * So, we can't drop the lock until after we know which slot
2252 		 * we're operating on.
2253 		 */
2254 		if (!ins_len && !p->keep_locks) {
2255 			int u = level + 1;
2256 
2257 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2258 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2259 				p->locks[u] = 0;
2260 			}
2261 		}
2262 
2263 		if (level == 0) {
2264 			if (ins_len > 0)
2265 				ASSERT(write_lock_level >= 1);
2266 
2267 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2268 			if (!p->search_for_split)
2269 				unlock_up(p, level, lowest_unlock,
2270 					  min_write_lock_level, NULL);
2271 			goto done;
2272 		}
2273 
2274 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2275 		if (ret < 0)
2276 			goto done;
2277 		prev_cmp = ret;
2278 
2279 		if (ret && slot > 0) {
2280 			dec = 1;
2281 			slot--;
2282 		}
2283 		p->slots[level] = slot;
2284 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2285 					     &write_lock_level);
2286 		if (err == -EAGAIN)
2287 			goto again;
2288 		if (err) {
2289 			ret = err;
2290 			goto done;
2291 		}
2292 		b = p->nodes[level];
2293 		slot = p->slots[level];
2294 
2295 		/*
2296 		 * Slot 0 is special, if we change the key we have to update
2297 		 * the parent pointer which means we must have a write lock on
2298 		 * the parent
2299 		 */
2300 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2301 			write_lock_level = level + 1;
2302 			btrfs_release_path(p);
2303 			goto again;
2304 		}
2305 
2306 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2307 			  &write_lock_level);
2308 
2309 		if (level == lowest_level) {
2310 			if (dec)
2311 				p->slots[level]++;
2312 			goto done;
2313 		}
2314 
2315 		err = read_block_for_search(root, p, &b, level, slot, key);
2316 		if (err == -EAGAIN)
2317 			goto again;
2318 		if (err) {
2319 			ret = err;
2320 			goto done;
2321 		}
2322 
2323 		if (!p->skip_locking) {
2324 			level = btrfs_header_level(b);
2325 
2326 			btrfs_maybe_reset_lockdep_class(root, b);
2327 
2328 			if (level <= write_lock_level) {
2329 				btrfs_tree_lock(b);
2330 				p->locks[level] = BTRFS_WRITE_LOCK;
2331 			} else {
2332 				if (p->nowait) {
2333 					if (!btrfs_try_tree_read_lock(b)) {
2334 						free_extent_buffer(b);
2335 						ret = -EAGAIN;
2336 						goto done;
2337 					}
2338 				} else {
2339 					btrfs_tree_read_lock(b);
2340 				}
2341 				p->locks[level] = BTRFS_READ_LOCK;
2342 			}
2343 			p->nodes[level] = b;
2344 		}
2345 	}
2346 	ret = 1;
2347 done:
2348 	if (ret < 0 && !p->skip_release_on_error)
2349 		btrfs_release_path(p);
2350 
2351 	if (p->need_commit_sem) {
2352 		int ret2;
2353 
2354 		ret2 = finish_need_commit_sem_search(p);
2355 		up_read(&fs_info->commit_root_sem);
2356 		if (ret2)
2357 			ret = ret2;
2358 	}
2359 
2360 	return ret;
2361 }
2362 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2363 
2364 /*
2365  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2366  * current state of the tree together with the operations recorded in the tree
2367  * modification log to search for the key in a previous version of this tree, as
2368  * denoted by the time_seq parameter.
2369  *
2370  * Naturally, there is no support for insert, delete or cow operations.
2371  *
2372  * The resulting path and return value will be set up as if we called
2373  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2374  */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2375 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2376 			  struct btrfs_path *p, u64 time_seq)
2377 {
2378 	struct btrfs_fs_info *fs_info = root->fs_info;
2379 	struct extent_buffer *b;
2380 	int slot;
2381 	int ret;
2382 	int err;
2383 	int level;
2384 	int lowest_unlock = 1;
2385 	u8 lowest_level = 0;
2386 
2387 	lowest_level = p->lowest_level;
2388 	WARN_ON(p->nodes[0] != NULL);
2389 	ASSERT(!p->nowait);
2390 
2391 	if (p->search_commit_root) {
2392 		BUG_ON(time_seq);
2393 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2394 	}
2395 
2396 again:
2397 	b = btrfs_get_old_root(root, time_seq);
2398 	if (!b) {
2399 		ret = -EIO;
2400 		goto done;
2401 	}
2402 	level = btrfs_header_level(b);
2403 	p->locks[level] = BTRFS_READ_LOCK;
2404 
2405 	while (b) {
2406 		int dec = 0;
2407 
2408 		level = btrfs_header_level(b);
2409 		p->nodes[level] = b;
2410 
2411 		/*
2412 		 * we have a lock on b and as long as we aren't changing
2413 		 * the tree, there is no way to for the items in b to change.
2414 		 * It is safe to drop the lock on our parent before we
2415 		 * go through the expensive btree search on b.
2416 		 */
2417 		btrfs_unlock_up_safe(p, level + 1);
2418 
2419 		ret = btrfs_bin_search(b, 0, key, &slot);
2420 		if (ret < 0)
2421 			goto done;
2422 
2423 		if (level == 0) {
2424 			p->slots[level] = slot;
2425 			unlock_up(p, level, lowest_unlock, 0, NULL);
2426 			goto done;
2427 		}
2428 
2429 		if (ret && slot > 0) {
2430 			dec = 1;
2431 			slot--;
2432 		}
2433 		p->slots[level] = slot;
2434 		unlock_up(p, level, lowest_unlock, 0, NULL);
2435 
2436 		if (level == lowest_level) {
2437 			if (dec)
2438 				p->slots[level]++;
2439 			goto done;
2440 		}
2441 
2442 		err = read_block_for_search(root, p, &b, level, slot, key);
2443 		if (err == -EAGAIN)
2444 			goto again;
2445 		if (err) {
2446 			ret = err;
2447 			goto done;
2448 		}
2449 
2450 		level = btrfs_header_level(b);
2451 		btrfs_tree_read_lock(b);
2452 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2453 		if (!b) {
2454 			ret = -ENOMEM;
2455 			goto done;
2456 		}
2457 		p->locks[level] = BTRFS_READ_LOCK;
2458 		p->nodes[level] = b;
2459 	}
2460 	ret = 1;
2461 done:
2462 	if (ret < 0)
2463 		btrfs_release_path(p);
2464 
2465 	return ret;
2466 }
2467 
2468 /*
2469  * Search the tree again to find a leaf with smaller keys.
2470  * Returns 0 if it found something.
2471  * Returns 1 if there are no smaller keys.
2472  * Returns < 0 on error.
2473  *
2474  * This may release the path, and so you may lose any locks held at the
2475  * time you call it.
2476  */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)2477 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2478 {
2479 	struct btrfs_key key;
2480 	struct btrfs_key orig_key;
2481 	struct btrfs_disk_key found_key;
2482 	int ret;
2483 
2484 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2485 	orig_key = key;
2486 
2487 	if (key.offset > 0) {
2488 		key.offset--;
2489 	} else if (key.type > 0) {
2490 		key.type--;
2491 		key.offset = (u64)-1;
2492 	} else if (key.objectid > 0) {
2493 		key.objectid--;
2494 		key.type = (u8)-1;
2495 		key.offset = (u64)-1;
2496 	} else {
2497 		return 1;
2498 	}
2499 
2500 	btrfs_release_path(path);
2501 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2502 	if (ret <= 0)
2503 		return ret;
2504 
2505 	/*
2506 	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2507 	 * before releasing the path and calling btrfs_search_slot(), we now may
2508 	 * be in a slot pointing to the same original key - this can happen if
2509 	 * after we released the path, one of more items were moved from a
2510 	 * sibling leaf into the front of the leaf we had due to an insertion
2511 	 * (see push_leaf_right()).
2512 	 * If we hit this case and our slot is > 0 and just decrement the slot
2513 	 * so that the caller does not process the same key again, which may or
2514 	 * may not break the caller, depending on its logic.
2515 	 */
2516 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2517 		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2518 		ret = comp_keys(&found_key, &orig_key);
2519 		if (ret == 0) {
2520 			if (path->slots[0] > 0) {
2521 				path->slots[0]--;
2522 				return 0;
2523 			}
2524 			/*
2525 			 * At slot 0, same key as before, it means orig_key is
2526 			 * the lowest, leftmost, key in the tree. We're done.
2527 			 */
2528 			return 1;
2529 		}
2530 	}
2531 
2532 	btrfs_item_key(path->nodes[0], &found_key, 0);
2533 	ret = comp_keys(&found_key, &key);
2534 	/*
2535 	 * We might have had an item with the previous key in the tree right
2536 	 * before we released our path. And after we released our path, that
2537 	 * item might have been pushed to the first slot (0) of the leaf we
2538 	 * were holding due to a tree balance. Alternatively, an item with the
2539 	 * previous key can exist as the only element of a leaf (big fat item).
2540 	 * Therefore account for these 2 cases, so that our callers (like
2541 	 * btrfs_previous_item) don't miss an existing item with a key matching
2542 	 * the previous key we computed above.
2543 	 */
2544 	if (ret <= 0)
2545 		return 0;
2546 	return 1;
2547 }
2548 
2549 /*
2550  * helper to use instead of search slot if no exact match is needed but
2551  * instead the next or previous item should be returned.
2552  * When find_higher is true, the next higher item is returned, the next lower
2553  * otherwise.
2554  * When return_any and find_higher are both true, and no higher item is found,
2555  * return the next lower instead.
2556  * When return_any is true and find_higher is false, and no lower item is found,
2557  * return the next higher instead.
2558  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2559  * < 0 on error
2560  */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)2561 int btrfs_search_slot_for_read(struct btrfs_root *root,
2562 			       const struct btrfs_key *key,
2563 			       struct btrfs_path *p, int find_higher,
2564 			       int return_any)
2565 {
2566 	int ret;
2567 	struct extent_buffer *leaf;
2568 
2569 again:
2570 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2571 	if (ret <= 0)
2572 		return ret;
2573 	/*
2574 	 * a return value of 1 means the path is at the position where the
2575 	 * item should be inserted. Normally this is the next bigger item,
2576 	 * but in case the previous item is the last in a leaf, path points
2577 	 * to the first free slot in the previous leaf, i.e. at an invalid
2578 	 * item.
2579 	 */
2580 	leaf = p->nodes[0];
2581 
2582 	if (find_higher) {
2583 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2584 			ret = btrfs_next_leaf(root, p);
2585 			if (ret <= 0)
2586 				return ret;
2587 			if (!return_any)
2588 				return 1;
2589 			/*
2590 			 * no higher item found, return the next
2591 			 * lower instead
2592 			 */
2593 			return_any = 0;
2594 			find_higher = 0;
2595 			btrfs_release_path(p);
2596 			goto again;
2597 		}
2598 	} else {
2599 		if (p->slots[0] == 0) {
2600 			ret = btrfs_prev_leaf(root, p);
2601 			if (ret < 0)
2602 				return ret;
2603 			if (!ret) {
2604 				leaf = p->nodes[0];
2605 				if (p->slots[0] == btrfs_header_nritems(leaf))
2606 					p->slots[0]--;
2607 				return 0;
2608 			}
2609 			if (!return_any)
2610 				return 1;
2611 			/*
2612 			 * no lower item found, return the next
2613 			 * higher instead
2614 			 */
2615 			return_any = 0;
2616 			find_higher = 1;
2617 			btrfs_release_path(p);
2618 			goto again;
2619 		} else {
2620 			--p->slots[0];
2621 		}
2622 	}
2623 	return 0;
2624 }
2625 
2626 /*
2627  * Execute search and call btrfs_previous_item to traverse backwards if the item
2628  * was not found.
2629  *
2630  * Return 0 if found, 1 if not found and < 0 if error.
2631  */
btrfs_search_backwards(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2632 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2633 			   struct btrfs_path *path)
2634 {
2635 	int ret;
2636 
2637 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2638 	if (ret > 0)
2639 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2640 
2641 	if (ret == 0)
2642 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2643 
2644 	return ret;
2645 }
2646 
2647 /*
2648  * Search for a valid slot for the given path.
2649  *
2650  * @root:	The root node of the tree.
2651  * @key:	Will contain a valid item if found.
2652  * @path:	The starting point to validate the slot.
2653  *
2654  * Return: 0  if the item is valid
2655  *         1  if not found
2656  *         <0 if error.
2657  */
btrfs_get_next_valid_item(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * path)2658 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2659 			      struct btrfs_path *path)
2660 {
2661 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2662 		int ret;
2663 
2664 		ret = btrfs_next_leaf(root, path);
2665 		if (ret)
2666 			return ret;
2667 	}
2668 
2669 	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2670 	return 0;
2671 }
2672 
2673 /*
2674  * adjust the pointers going up the tree, starting at level
2675  * making sure the right key of each node is points to 'key'.
2676  * This is used after shifting pointers to the left, so it stops
2677  * fixing up pointers when a given leaf/node is not in slot 0 of the
2678  * higher levels
2679  *
2680  */
fixup_low_keys(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_disk_key * key,int level)2681 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2682 			   struct btrfs_path *path,
2683 			   struct btrfs_disk_key *key, int level)
2684 {
2685 	int i;
2686 	struct extent_buffer *t;
2687 	int ret;
2688 
2689 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2690 		int tslot = path->slots[i];
2691 
2692 		if (!path->nodes[i])
2693 			break;
2694 		t = path->nodes[i];
2695 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2696 						    BTRFS_MOD_LOG_KEY_REPLACE);
2697 		BUG_ON(ret < 0);
2698 		btrfs_set_node_key(t, key, tslot);
2699 		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2700 		if (tslot != 0)
2701 			break;
2702 	}
2703 }
2704 
2705 /*
2706  * update item key.
2707  *
2708  * This function isn't completely safe. It's the caller's responsibility
2709  * that the new key won't break the order
2710  */
btrfs_set_item_key_safe(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_key * new_key)2711 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2712 			     struct btrfs_path *path,
2713 			     const struct btrfs_key *new_key)
2714 {
2715 	struct btrfs_fs_info *fs_info = trans->fs_info;
2716 	struct btrfs_disk_key disk_key;
2717 	struct extent_buffer *eb;
2718 	int slot;
2719 
2720 	eb = path->nodes[0];
2721 	slot = path->slots[0];
2722 	if (slot > 0) {
2723 		btrfs_item_key(eb, &disk_key, slot - 1);
2724 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2725 			btrfs_print_leaf(eb);
2726 			btrfs_crit(fs_info,
2727 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2728 				   slot, btrfs_disk_key_objectid(&disk_key),
2729 				   btrfs_disk_key_type(&disk_key),
2730 				   btrfs_disk_key_offset(&disk_key),
2731 				   new_key->objectid, new_key->type,
2732 				   new_key->offset);
2733 			BUG();
2734 		}
2735 	}
2736 	if (slot < btrfs_header_nritems(eb) - 1) {
2737 		btrfs_item_key(eb, &disk_key, slot + 1);
2738 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2739 			btrfs_print_leaf(eb);
2740 			btrfs_crit(fs_info,
2741 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2742 				   slot, btrfs_disk_key_objectid(&disk_key),
2743 				   btrfs_disk_key_type(&disk_key),
2744 				   btrfs_disk_key_offset(&disk_key),
2745 				   new_key->objectid, new_key->type,
2746 				   new_key->offset);
2747 			BUG();
2748 		}
2749 	}
2750 
2751 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2752 	btrfs_set_item_key(eb, &disk_key, slot);
2753 	btrfs_mark_buffer_dirty(trans, eb);
2754 	if (slot == 0)
2755 		fixup_low_keys(trans, path, &disk_key, 1);
2756 }
2757 
2758 /*
2759  * Check key order of two sibling extent buffers.
2760  *
2761  * Return true if something is wrong.
2762  * Return false if everything is fine.
2763  *
2764  * Tree-checker only works inside one tree block, thus the following
2765  * corruption can not be detected by tree-checker:
2766  *
2767  * Leaf @left			| Leaf @right
2768  * --------------------------------------------------------------
2769  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2770  *
2771  * Key f6 in leaf @left itself is valid, but not valid when the next
2772  * key in leaf @right is 7.
2773  * This can only be checked at tree block merge time.
2774  * And since tree checker has ensured all key order in each tree block
2775  * is correct, we only need to bother the last key of @left and the first
2776  * key of @right.
2777  */
check_sibling_keys(struct extent_buffer * left,struct extent_buffer * right)2778 static bool check_sibling_keys(struct extent_buffer *left,
2779 			       struct extent_buffer *right)
2780 {
2781 	struct btrfs_key left_last;
2782 	struct btrfs_key right_first;
2783 	int level = btrfs_header_level(left);
2784 	int nr_left = btrfs_header_nritems(left);
2785 	int nr_right = btrfs_header_nritems(right);
2786 
2787 	/* No key to check in one of the tree blocks */
2788 	if (!nr_left || !nr_right)
2789 		return false;
2790 
2791 	if (level) {
2792 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2793 		btrfs_node_key_to_cpu(right, &right_first, 0);
2794 	} else {
2795 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2796 		btrfs_item_key_to_cpu(right, &right_first, 0);
2797 	}
2798 
2799 	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2800 		btrfs_crit(left->fs_info, "left extent buffer:");
2801 		btrfs_print_tree(left, false);
2802 		btrfs_crit(left->fs_info, "right extent buffer:");
2803 		btrfs_print_tree(right, false);
2804 		btrfs_crit(left->fs_info,
2805 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2806 			   left_last.objectid, left_last.type,
2807 			   left_last.offset, right_first.objectid,
2808 			   right_first.type, right_first.offset);
2809 		return true;
2810 	}
2811 	return false;
2812 }
2813 
2814 /*
2815  * try to push data from one node into the next node left in the
2816  * tree.
2817  *
2818  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2819  * error, and > 0 if there was no room in the left hand block.
2820  */
push_node_left(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src,int empty)2821 static int push_node_left(struct btrfs_trans_handle *trans,
2822 			  struct extent_buffer *dst,
2823 			  struct extent_buffer *src, int empty)
2824 {
2825 	struct btrfs_fs_info *fs_info = trans->fs_info;
2826 	int push_items = 0;
2827 	int src_nritems;
2828 	int dst_nritems;
2829 	int ret = 0;
2830 
2831 	src_nritems = btrfs_header_nritems(src);
2832 	dst_nritems = btrfs_header_nritems(dst);
2833 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2834 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2835 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2836 
2837 	if (!empty && src_nritems <= 8)
2838 		return 1;
2839 
2840 	if (push_items <= 0)
2841 		return 1;
2842 
2843 	if (empty) {
2844 		push_items = min(src_nritems, push_items);
2845 		if (push_items < src_nritems) {
2846 			/* leave at least 8 pointers in the node if
2847 			 * we aren't going to empty it
2848 			 */
2849 			if (src_nritems - push_items < 8) {
2850 				if (push_items <= 8)
2851 					return 1;
2852 				push_items -= 8;
2853 			}
2854 		}
2855 	} else
2856 		push_items = min(src_nritems - 8, push_items);
2857 
2858 	/* dst is the left eb, src is the middle eb */
2859 	if (check_sibling_keys(dst, src)) {
2860 		ret = -EUCLEAN;
2861 		btrfs_abort_transaction(trans, ret);
2862 		return ret;
2863 	}
2864 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2865 	if (ret) {
2866 		btrfs_abort_transaction(trans, ret);
2867 		return ret;
2868 	}
2869 	copy_extent_buffer(dst, src,
2870 			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2871 			   btrfs_node_key_ptr_offset(src, 0),
2872 			   push_items * sizeof(struct btrfs_key_ptr));
2873 
2874 	if (push_items < src_nritems) {
2875 		/*
2876 		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2877 		 * don't need to do an explicit tree mod log operation for it.
2878 		 */
2879 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2880 				      btrfs_node_key_ptr_offset(src, push_items),
2881 				      (src_nritems - push_items) *
2882 				      sizeof(struct btrfs_key_ptr));
2883 	}
2884 	btrfs_set_header_nritems(src, src_nritems - push_items);
2885 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2886 	btrfs_mark_buffer_dirty(trans, src);
2887 	btrfs_mark_buffer_dirty(trans, dst);
2888 
2889 	return ret;
2890 }
2891 
2892 /*
2893  * try to push data from one node into the next node right in the
2894  * tree.
2895  *
2896  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2897  * error, and > 0 if there was no room in the right hand block.
2898  *
2899  * this will  only push up to 1/2 the contents of the left node over
2900  */
balance_node_right(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src)2901 static int balance_node_right(struct btrfs_trans_handle *trans,
2902 			      struct extent_buffer *dst,
2903 			      struct extent_buffer *src)
2904 {
2905 	struct btrfs_fs_info *fs_info = trans->fs_info;
2906 	int push_items = 0;
2907 	int max_push;
2908 	int src_nritems;
2909 	int dst_nritems;
2910 	int ret = 0;
2911 
2912 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2913 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2914 
2915 	src_nritems = btrfs_header_nritems(src);
2916 	dst_nritems = btrfs_header_nritems(dst);
2917 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2918 	if (push_items <= 0)
2919 		return 1;
2920 
2921 	if (src_nritems < 4)
2922 		return 1;
2923 
2924 	max_push = src_nritems / 2 + 1;
2925 	/* don't try to empty the node */
2926 	if (max_push >= src_nritems)
2927 		return 1;
2928 
2929 	if (max_push < push_items)
2930 		push_items = max_push;
2931 
2932 	/* dst is the right eb, src is the middle eb */
2933 	if (check_sibling_keys(src, dst)) {
2934 		ret = -EUCLEAN;
2935 		btrfs_abort_transaction(trans, ret);
2936 		return ret;
2937 	}
2938 
2939 	/*
2940 	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2941 	 * need to do an explicit tree mod log operation for it.
2942 	 */
2943 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2944 				      btrfs_node_key_ptr_offset(dst, 0),
2945 				      (dst_nritems) *
2946 				      sizeof(struct btrfs_key_ptr));
2947 
2948 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2949 					 push_items);
2950 	if (ret) {
2951 		btrfs_abort_transaction(trans, ret);
2952 		return ret;
2953 	}
2954 	copy_extent_buffer(dst, src,
2955 			   btrfs_node_key_ptr_offset(dst, 0),
2956 			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2957 			   push_items * sizeof(struct btrfs_key_ptr));
2958 
2959 	btrfs_set_header_nritems(src, src_nritems - push_items);
2960 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2961 
2962 	btrfs_mark_buffer_dirty(trans, src);
2963 	btrfs_mark_buffer_dirty(trans, dst);
2964 
2965 	return ret;
2966 }
2967 
2968 /*
2969  * helper function to insert a new root level in the tree.
2970  * A new node is allocated, and a single item is inserted to
2971  * point to the existing root
2972  *
2973  * returns zero on success or < 0 on failure.
2974  */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2975 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2976 			   struct btrfs_root *root,
2977 			   struct btrfs_path *path, int level)
2978 {
2979 	struct btrfs_fs_info *fs_info = root->fs_info;
2980 	u64 lower_gen;
2981 	struct extent_buffer *lower;
2982 	struct extent_buffer *c;
2983 	struct extent_buffer *old;
2984 	struct btrfs_disk_key lower_key;
2985 	int ret;
2986 
2987 	BUG_ON(path->nodes[level]);
2988 	BUG_ON(path->nodes[level-1] != root->node);
2989 
2990 	lower = path->nodes[level-1];
2991 	if (level == 1)
2992 		btrfs_item_key(lower, &lower_key, 0);
2993 	else
2994 		btrfs_node_key(lower, &lower_key, 0);
2995 
2996 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2997 				   &lower_key, level, root->node->start, 0,
2998 				   BTRFS_NESTING_NEW_ROOT);
2999 	if (IS_ERR(c))
3000 		return PTR_ERR(c);
3001 
3002 	root_add_used(root, fs_info->nodesize);
3003 
3004 	btrfs_set_header_nritems(c, 1);
3005 	btrfs_set_node_key(c, &lower_key, 0);
3006 	btrfs_set_node_blockptr(c, 0, lower->start);
3007 	lower_gen = btrfs_header_generation(lower);
3008 	WARN_ON(lower_gen != trans->transid);
3009 
3010 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3011 
3012 	btrfs_mark_buffer_dirty(trans, c);
3013 
3014 	old = root->node;
3015 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
3016 	if (ret < 0) {
3017 		btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
3018 		btrfs_tree_unlock(c);
3019 		free_extent_buffer(c);
3020 		return ret;
3021 	}
3022 	rcu_assign_pointer(root->node, c);
3023 
3024 	/* the super has an extra ref to root->node */
3025 	free_extent_buffer(old);
3026 
3027 	add_root_to_dirty_list(root);
3028 	atomic_inc(&c->refs);
3029 	path->nodes[level] = c;
3030 	path->locks[level] = BTRFS_WRITE_LOCK;
3031 	path->slots[level] = 0;
3032 	return 0;
3033 }
3034 
3035 /*
3036  * worker function to insert a single pointer in a node.
3037  * the node should have enough room for the pointer already
3038  *
3039  * slot and level indicate where you want the key to go, and
3040  * blocknr is the block the key points to.
3041  */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)3042 static int insert_ptr(struct btrfs_trans_handle *trans,
3043 		      struct btrfs_path *path,
3044 		      struct btrfs_disk_key *key, u64 bytenr,
3045 		      int slot, int level)
3046 {
3047 	struct extent_buffer *lower;
3048 	int nritems;
3049 	int ret;
3050 
3051 	BUG_ON(!path->nodes[level]);
3052 	btrfs_assert_tree_write_locked(path->nodes[level]);
3053 	lower = path->nodes[level];
3054 	nritems = btrfs_header_nritems(lower);
3055 	BUG_ON(slot > nritems);
3056 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3057 	if (slot != nritems) {
3058 		if (level) {
3059 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
3060 					slot, nritems - slot);
3061 			if (ret < 0) {
3062 				btrfs_abort_transaction(trans, ret);
3063 				return ret;
3064 			}
3065 		}
3066 		memmove_extent_buffer(lower,
3067 			      btrfs_node_key_ptr_offset(lower, slot + 1),
3068 			      btrfs_node_key_ptr_offset(lower, slot),
3069 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3070 	}
3071 	if (level) {
3072 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
3073 						    BTRFS_MOD_LOG_KEY_ADD);
3074 		if (ret < 0) {
3075 			btrfs_abort_transaction(trans, ret);
3076 			return ret;
3077 		}
3078 	}
3079 	btrfs_set_node_key(lower, key, slot);
3080 	btrfs_set_node_blockptr(lower, slot, bytenr);
3081 	WARN_ON(trans->transid == 0);
3082 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3083 	btrfs_set_header_nritems(lower, nritems + 1);
3084 	btrfs_mark_buffer_dirty(trans, lower);
3085 
3086 	return 0;
3087 }
3088 
3089 /*
3090  * split the node at the specified level in path in two.
3091  * The path is corrected to point to the appropriate node after the split
3092  *
3093  * Before splitting this tries to make some room in the node by pushing
3094  * left and right, if either one works, it returns right away.
3095  *
3096  * returns 0 on success and < 0 on failure
3097  */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3098 static noinline int split_node(struct btrfs_trans_handle *trans,
3099 			       struct btrfs_root *root,
3100 			       struct btrfs_path *path, int level)
3101 {
3102 	struct btrfs_fs_info *fs_info = root->fs_info;
3103 	struct extent_buffer *c;
3104 	struct extent_buffer *split;
3105 	struct btrfs_disk_key disk_key;
3106 	int mid;
3107 	int ret;
3108 	u32 c_nritems;
3109 
3110 	c = path->nodes[level];
3111 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3112 	if (c == root->node) {
3113 		/*
3114 		 * trying to split the root, lets make a new one
3115 		 *
3116 		 * tree mod log: We don't log_removal old root in
3117 		 * insert_new_root, because that root buffer will be kept as a
3118 		 * normal node. We are going to log removal of half of the
3119 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3120 		 * holding a tree lock on the buffer, which is why we cannot
3121 		 * race with other tree_mod_log users.
3122 		 */
3123 		ret = insert_new_root(trans, root, path, level + 1);
3124 		if (ret)
3125 			return ret;
3126 	} else {
3127 		ret = push_nodes_for_insert(trans, root, path, level);
3128 		c = path->nodes[level];
3129 		if (!ret && btrfs_header_nritems(c) <
3130 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3131 			return 0;
3132 		if (ret < 0)
3133 			return ret;
3134 	}
3135 
3136 	c_nritems = btrfs_header_nritems(c);
3137 	mid = (c_nritems + 1) / 2;
3138 	btrfs_node_key(c, &disk_key, mid);
3139 
3140 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3141 				       &disk_key, level, c->start, 0,
3142 				       BTRFS_NESTING_SPLIT);
3143 	if (IS_ERR(split))
3144 		return PTR_ERR(split);
3145 
3146 	root_add_used(root, fs_info->nodesize);
3147 	ASSERT(btrfs_header_level(c) == level);
3148 
3149 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3150 	if (ret) {
3151 		btrfs_tree_unlock(split);
3152 		free_extent_buffer(split);
3153 		btrfs_abort_transaction(trans, ret);
3154 		return ret;
3155 	}
3156 	copy_extent_buffer(split, c,
3157 			   btrfs_node_key_ptr_offset(split, 0),
3158 			   btrfs_node_key_ptr_offset(c, mid),
3159 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3160 	btrfs_set_header_nritems(split, c_nritems - mid);
3161 	btrfs_set_header_nritems(c, mid);
3162 
3163 	btrfs_mark_buffer_dirty(trans, c);
3164 	btrfs_mark_buffer_dirty(trans, split);
3165 
3166 	ret = insert_ptr(trans, path, &disk_key, split->start,
3167 			 path->slots[level + 1] + 1, level + 1);
3168 	if (ret < 0) {
3169 		btrfs_tree_unlock(split);
3170 		free_extent_buffer(split);
3171 		return ret;
3172 	}
3173 
3174 	if (path->slots[level] >= mid) {
3175 		path->slots[level] -= mid;
3176 		btrfs_tree_unlock(c);
3177 		free_extent_buffer(c);
3178 		path->nodes[level] = split;
3179 		path->slots[level + 1] += 1;
3180 	} else {
3181 		btrfs_tree_unlock(split);
3182 		free_extent_buffer(split);
3183 	}
3184 	return 0;
3185 }
3186 
3187 /*
3188  * how many bytes are required to store the items in a leaf.  start
3189  * and nr indicate which items in the leaf to check.  This totals up the
3190  * space used both by the item structs and the item data
3191  */
leaf_space_used(const struct extent_buffer * l,int start,int nr)3192 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3193 {
3194 	int data_len;
3195 	int nritems = btrfs_header_nritems(l);
3196 	int end = min(nritems, start + nr) - 1;
3197 
3198 	if (!nr)
3199 		return 0;
3200 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3201 	data_len = data_len - btrfs_item_offset(l, end);
3202 	data_len += sizeof(struct btrfs_item) * nr;
3203 	WARN_ON(data_len < 0);
3204 	return data_len;
3205 }
3206 
3207 /*
3208  * The space between the end of the leaf items and
3209  * the start of the leaf data.  IOW, how much room
3210  * the leaf has left for both items and data
3211  */
btrfs_leaf_free_space(const struct extent_buffer * leaf)3212 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3213 {
3214 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3215 	int nritems = btrfs_header_nritems(leaf);
3216 	int ret;
3217 
3218 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3219 	if (ret < 0) {
3220 		btrfs_crit(fs_info,
3221 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3222 			   ret,
3223 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3224 			   leaf_space_used(leaf, 0, nritems), nritems);
3225 	}
3226 	return ret;
3227 }
3228 
3229 /*
3230  * min slot controls the lowest index we're willing to push to the
3231  * right.  We'll push up to and including min_slot, but no lower
3232  */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3233 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3234 				      struct btrfs_path *path,
3235 				      int data_size, int empty,
3236 				      struct extent_buffer *right,
3237 				      int free_space, u32 left_nritems,
3238 				      u32 min_slot)
3239 {
3240 	struct btrfs_fs_info *fs_info = right->fs_info;
3241 	struct extent_buffer *left = path->nodes[0];
3242 	struct extent_buffer *upper = path->nodes[1];
3243 	struct btrfs_map_token token;
3244 	struct btrfs_disk_key disk_key;
3245 	int slot;
3246 	u32 i;
3247 	int push_space = 0;
3248 	int push_items = 0;
3249 	u32 nr;
3250 	u32 right_nritems;
3251 	u32 data_end;
3252 	u32 this_item_size;
3253 
3254 	if (empty)
3255 		nr = 0;
3256 	else
3257 		nr = max_t(u32, 1, min_slot);
3258 
3259 	if (path->slots[0] >= left_nritems)
3260 		push_space += data_size;
3261 
3262 	slot = path->slots[1];
3263 	i = left_nritems - 1;
3264 	while (i >= nr) {
3265 		if (!empty && push_items > 0) {
3266 			if (path->slots[0] > i)
3267 				break;
3268 			if (path->slots[0] == i) {
3269 				int space = btrfs_leaf_free_space(left);
3270 
3271 				if (space + push_space * 2 > free_space)
3272 					break;
3273 			}
3274 		}
3275 
3276 		if (path->slots[0] == i)
3277 			push_space += data_size;
3278 
3279 		this_item_size = btrfs_item_size(left, i);
3280 		if (this_item_size + sizeof(struct btrfs_item) +
3281 		    push_space > free_space)
3282 			break;
3283 
3284 		push_items++;
3285 		push_space += this_item_size + sizeof(struct btrfs_item);
3286 		if (i == 0)
3287 			break;
3288 		i--;
3289 	}
3290 
3291 	if (push_items == 0)
3292 		goto out_unlock;
3293 
3294 	WARN_ON(!empty && push_items == left_nritems);
3295 
3296 	/* push left to right */
3297 	right_nritems = btrfs_header_nritems(right);
3298 
3299 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3300 	push_space -= leaf_data_end(left);
3301 
3302 	/* make room in the right data area */
3303 	data_end = leaf_data_end(right);
3304 	memmove_leaf_data(right, data_end - push_space, data_end,
3305 			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3306 
3307 	/* copy from the left data area */
3308 	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3309 		       leaf_data_end(left), push_space);
3310 
3311 	memmove_leaf_items(right, push_items, 0, right_nritems);
3312 
3313 	/* copy the items from left to right */
3314 	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3315 
3316 	/* update the item pointers */
3317 	btrfs_init_map_token(&token, right);
3318 	right_nritems += push_items;
3319 	btrfs_set_header_nritems(right, right_nritems);
3320 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3321 	for (i = 0; i < right_nritems; i++) {
3322 		push_space -= btrfs_token_item_size(&token, i);
3323 		btrfs_set_token_item_offset(&token, i, push_space);
3324 	}
3325 
3326 	left_nritems -= push_items;
3327 	btrfs_set_header_nritems(left, left_nritems);
3328 
3329 	if (left_nritems)
3330 		btrfs_mark_buffer_dirty(trans, left);
3331 	else
3332 		btrfs_clear_buffer_dirty(trans, left);
3333 
3334 	btrfs_mark_buffer_dirty(trans, right);
3335 
3336 	btrfs_item_key(right, &disk_key, 0);
3337 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3338 	btrfs_mark_buffer_dirty(trans, upper);
3339 
3340 	/* then fixup the leaf pointer in the path */
3341 	if (path->slots[0] >= left_nritems) {
3342 		path->slots[0] -= left_nritems;
3343 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3344 			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3345 		btrfs_tree_unlock(path->nodes[0]);
3346 		free_extent_buffer(path->nodes[0]);
3347 		path->nodes[0] = right;
3348 		path->slots[1] += 1;
3349 	} else {
3350 		btrfs_tree_unlock(right);
3351 		free_extent_buffer(right);
3352 	}
3353 	return 0;
3354 
3355 out_unlock:
3356 	btrfs_tree_unlock(right);
3357 	free_extent_buffer(right);
3358 	return 1;
3359 }
3360 
3361 /*
3362  * push some data in the path leaf to the right, trying to free up at
3363  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3364  *
3365  * returns 1 if the push failed because the other node didn't have enough
3366  * room, 0 if everything worked out and < 0 if there were major errors.
3367  *
3368  * this will push starting from min_slot to the end of the leaf.  It won't
3369  * push any slot lower than min_slot
3370  */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3371 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3372 			   *root, struct btrfs_path *path,
3373 			   int min_data_size, int data_size,
3374 			   int empty, u32 min_slot)
3375 {
3376 	struct extent_buffer *left = path->nodes[0];
3377 	struct extent_buffer *right;
3378 	struct extent_buffer *upper;
3379 	int slot;
3380 	int free_space;
3381 	u32 left_nritems;
3382 	int ret;
3383 
3384 	if (!path->nodes[1])
3385 		return 1;
3386 
3387 	slot = path->slots[1];
3388 	upper = path->nodes[1];
3389 	if (slot >= btrfs_header_nritems(upper) - 1)
3390 		return 1;
3391 
3392 	btrfs_assert_tree_write_locked(path->nodes[1]);
3393 
3394 	right = btrfs_read_node_slot(upper, slot + 1);
3395 	if (IS_ERR(right))
3396 		return PTR_ERR(right);
3397 
3398 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3399 
3400 	free_space = btrfs_leaf_free_space(right);
3401 	if (free_space < data_size)
3402 		goto out_unlock;
3403 
3404 	ret = btrfs_cow_block(trans, root, right, upper,
3405 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3406 	if (ret)
3407 		goto out_unlock;
3408 
3409 	left_nritems = btrfs_header_nritems(left);
3410 	if (left_nritems == 0)
3411 		goto out_unlock;
3412 
3413 	if (check_sibling_keys(left, right)) {
3414 		ret = -EUCLEAN;
3415 		btrfs_abort_transaction(trans, ret);
3416 		btrfs_tree_unlock(right);
3417 		free_extent_buffer(right);
3418 		return ret;
3419 	}
3420 	if (path->slots[0] == left_nritems && !empty) {
3421 		/* Key greater than all keys in the leaf, right neighbor has
3422 		 * enough room for it and we're not emptying our leaf to delete
3423 		 * it, therefore use right neighbor to insert the new item and
3424 		 * no need to touch/dirty our left leaf. */
3425 		btrfs_tree_unlock(left);
3426 		free_extent_buffer(left);
3427 		path->nodes[0] = right;
3428 		path->slots[0] = 0;
3429 		path->slots[1]++;
3430 		return 0;
3431 	}
3432 
3433 	return __push_leaf_right(trans, path, min_data_size, empty, right,
3434 				 free_space, left_nritems, min_slot);
3435 out_unlock:
3436 	btrfs_tree_unlock(right);
3437 	free_extent_buffer(right);
3438 	return 1;
3439 }
3440 
3441 /*
3442  * push some data in the path leaf to the left, trying to free up at
3443  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3444  *
3445  * max_slot can put a limit on how far into the leaf we'll push items.  The
3446  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3447  * items
3448  */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3449 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3450 				     struct btrfs_path *path, int data_size,
3451 				     int empty, struct extent_buffer *left,
3452 				     int free_space, u32 right_nritems,
3453 				     u32 max_slot)
3454 {
3455 	struct btrfs_fs_info *fs_info = left->fs_info;
3456 	struct btrfs_disk_key disk_key;
3457 	struct extent_buffer *right = path->nodes[0];
3458 	int i;
3459 	int push_space = 0;
3460 	int push_items = 0;
3461 	u32 old_left_nritems;
3462 	u32 nr;
3463 	int ret = 0;
3464 	u32 this_item_size;
3465 	u32 old_left_item_size;
3466 	struct btrfs_map_token token;
3467 
3468 	if (empty)
3469 		nr = min(right_nritems, max_slot);
3470 	else
3471 		nr = min(right_nritems - 1, max_slot);
3472 
3473 	for (i = 0; i < nr; i++) {
3474 		if (!empty && push_items > 0) {
3475 			if (path->slots[0] < i)
3476 				break;
3477 			if (path->slots[0] == i) {
3478 				int space = btrfs_leaf_free_space(right);
3479 
3480 				if (space + push_space * 2 > free_space)
3481 					break;
3482 			}
3483 		}
3484 
3485 		if (path->slots[0] == i)
3486 			push_space += data_size;
3487 
3488 		this_item_size = btrfs_item_size(right, i);
3489 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3490 		    free_space)
3491 			break;
3492 
3493 		push_items++;
3494 		push_space += this_item_size + sizeof(struct btrfs_item);
3495 	}
3496 
3497 	if (push_items == 0) {
3498 		ret = 1;
3499 		goto out;
3500 	}
3501 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3502 
3503 	/* push data from right to left */
3504 	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3505 
3506 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3507 		     btrfs_item_offset(right, push_items - 1);
3508 
3509 	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3510 		       btrfs_item_offset(right, push_items - 1), push_space);
3511 	old_left_nritems = btrfs_header_nritems(left);
3512 	BUG_ON(old_left_nritems <= 0);
3513 
3514 	btrfs_init_map_token(&token, left);
3515 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3516 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3517 		u32 ioff;
3518 
3519 		ioff = btrfs_token_item_offset(&token, i);
3520 		btrfs_set_token_item_offset(&token, i,
3521 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3522 	}
3523 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3524 
3525 	/* fixup right node */
3526 	if (push_items > right_nritems)
3527 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3528 		       right_nritems);
3529 
3530 	if (push_items < right_nritems) {
3531 		push_space = btrfs_item_offset(right, push_items - 1) -
3532 						  leaf_data_end(right);
3533 		memmove_leaf_data(right,
3534 				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3535 				  leaf_data_end(right), push_space);
3536 
3537 		memmove_leaf_items(right, 0, push_items,
3538 				   btrfs_header_nritems(right) - push_items);
3539 	}
3540 
3541 	btrfs_init_map_token(&token, right);
3542 	right_nritems -= push_items;
3543 	btrfs_set_header_nritems(right, right_nritems);
3544 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3545 	for (i = 0; i < right_nritems; i++) {
3546 		push_space = push_space - btrfs_token_item_size(&token, i);
3547 		btrfs_set_token_item_offset(&token, i, push_space);
3548 	}
3549 
3550 	btrfs_mark_buffer_dirty(trans, left);
3551 	if (right_nritems)
3552 		btrfs_mark_buffer_dirty(trans, right);
3553 	else
3554 		btrfs_clear_buffer_dirty(trans, right);
3555 
3556 	btrfs_item_key(right, &disk_key, 0);
3557 	fixup_low_keys(trans, path, &disk_key, 1);
3558 
3559 	/* then fixup the leaf pointer in the path */
3560 	if (path->slots[0] < push_items) {
3561 		path->slots[0] += old_left_nritems;
3562 		btrfs_tree_unlock(path->nodes[0]);
3563 		free_extent_buffer(path->nodes[0]);
3564 		path->nodes[0] = left;
3565 		path->slots[1] -= 1;
3566 	} else {
3567 		btrfs_tree_unlock(left);
3568 		free_extent_buffer(left);
3569 		path->slots[0] -= push_items;
3570 	}
3571 	BUG_ON(path->slots[0] < 0);
3572 	return ret;
3573 out:
3574 	btrfs_tree_unlock(left);
3575 	free_extent_buffer(left);
3576 	return ret;
3577 }
3578 
3579 /*
3580  * push some data in the path leaf to the left, trying to free up at
3581  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3582  *
3583  * max_slot can put a limit on how far into the leaf we'll push items.  The
3584  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3585  * items
3586  */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3587 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3588 			  *root, struct btrfs_path *path, int min_data_size,
3589 			  int data_size, int empty, u32 max_slot)
3590 {
3591 	struct extent_buffer *right = path->nodes[0];
3592 	struct extent_buffer *left;
3593 	int slot;
3594 	int free_space;
3595 	u32 right_nritems;
3596 	int ret = 0;
3597 
3598 	slot = path->slots[1];
3599 	if (slot == 0)
3600 		return 1;
3601 	if (!path->nodes[1])
3602 		return 1;
3603 
3604 	right_nritems = btrfs_header_nritems(right);
3605 	if (right_nritems == 0)
3606 		return 1;
3607 
3608 	btrfs_assert_tree_write_locked(path->nodes[1]);
3609 
3610 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3611 	if (IS_ERR(left))
3612 		return PTR_ERR(left);
3613 
3614 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3615 
3616 	free_space = btrfs_leaf_free_space(left);
3617 	if (free_space < data_size) {
3618 		ret = 1;
3619 		goto out;
3620 	}
3621 
3622 	ret = btrfs_cow_block(trans, root, left,
3623 			      path->nodes[1], slot - 1, &left,
3624 			      BTRFS_NESTING_LEFT_COW);
3625 	if (ret) {
3626 		/* we hit -ENOSPC, but it isn't fatal here */
3627 		if (ret == -ENOSPC)
3628 			ret = 1;
3629 		goto out;
3630 	}
3631 
3632 	if (check_sibling_keys(left, right)) {
3633 		ret = -EUCLEAN;
3634 		btrfs_abort_transaction(trans, ret);
3635 		goto out;
3636 	}
3637 	return __push_leaf_left(trans, path, min_data_size, empty, left,
3638 				free_space, right_nritems, max_slot);
3639 out:
3640 	btrfs_tree_unlock(left);
3641 	free_extent_buffer(left);
3642 	return ret;
3643 }
3644 
3645 /*
3646  * split the path's leaf in two, making sure there is at least data_size
3647  * available for the resulting leaf level of the path.
3648  */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)3649 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3650 				   struct btrfs_path *path,
3651 				   struct extent_buffer *l,
3652 				   struct extent_buffer *right,
3653 				   int slot, int mid, int nritems)
3654 {
3655 	struct btrfs_fs_info *fs_info = trans->fs_info;
3656 	int data_copy_size;
3657 	int rt_data_off;
3658 	int i;
3659 	int ret;
3660 	struct btrfs_disk_key disk_key;
3661 	struct btrfs_map_token token;
3662 
3663 	nritems = nritems - mid;
3664 	btrfs_set_header_nritems(right, nritems);
3665 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3666 
3667 	copy_leaf_items(right, l, 0, mid, nritems);
3668 
3669 	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3670 		       leaf_data_end(l), data_copy_size);
3671 
3672 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3673 
3674 	btrfs_init_map_token(&token, right);
3675 	for (i = 0; i < nritems; i++) {
3676 		u32 ioff;
3677 
3678 		ioff = btrfs_token_item_offset(&token, i);
3679 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3680 	}
3681 
3682 	btrfs_set_header_nritems(l, mid);
3683 	btrfs_item_key(right, &disk_key, 0);
3684 	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3685 	if (ret < 0)
3686 		return ret;
3687 
3688 	btrfs_mark_buffer_dirty(trans, right);
3689 	btrfs_mark_buffer_dirty(trans, l);
3690 	BUG_ON(path->slots[0] != slot);
3691 
3692 	if (mid <= slot) {
3693 		btrfs_tree_unlock(path->nodes[0]);
3694 		free_extent_buffer(path->nodes[0]);
3695 		path->nodes[0] = right;
3696 		path->slots[0] -= mid;
3697 		path->slots[1] += 1;
3698 	} else {
3699 		btrfs_tree_unlock(right);
3700 		free_extent_buffer(right);
3701 	}
3702 
3703 	BUG_ON(path->slots[0] < 0);
3704 
3705 	return 0;
3706 }
3707 
3708 /*
3709  * double splits happen when we need to insert a big item in the middle
3710  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3711  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3712  *          A                 B                 C
3713  *
3714  * We avoid this by trying to push the items on either side of our target
3715  * into the adjacent leaves.  If all goes well we can avoid the double split
3716  * completely.
3717  */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)3718 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3719 					  struct btrfs_root *root,
3720 					  struct btrfs_path *path,
3721 					  int data_size)
3722 {
3723 	int ret;
3724 	int progress = 0;
3725 	int slot;
3726 	u32 nritems;
3727 	int space_needed = data_size;
3728 
3729 	slot = path->slots[0];
3730 	if (slot < btrfs_header_nritems(path->nodes[0]))
3731 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3732 
3733 	/*
3734 	 * try to push all the items after our slot into the
3735 	 * right leaf
3736 	 */
3737 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3738 	if (ret < 0)
3739 		return ret;
3740 
3741 	if (ret == 0)
3742 		progress++;
3743 
3744 	nritems = btrfs_header_nritems(path->nodes[0]);
3745 	/*
3746 	 * our goal is to get our slot at the start or end of a leaf.  If
3747 	 * we've done so we're done
3748 	 */
3749 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3750 		return 0;
3751 
3752 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3753 		return 0;
3754 
3755 	/* try to push all the items before our slot into the next leaf */
3756 	slot = path->slots[0];
3757 	space_needed = data_size;
3758 	if (slot > 0)
3759 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3760 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3761 	if (ret < 0)
3762 		return ret;
3763 
3764 	if (ret == 0)
3765 		progress++;
3766 
3767 	if (progress)
3768 		return 0;
3769 	return 1;
3770 }
3771 
3772 /*
3773  * split the path's leaf in two, making sure there is at least data_size
3774  * available for the resulting leaf level of the path.
3775  *
3776  * returns 0 if all went well and < 0 on failure.
3777  */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)3778 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3779 			       struct btrfs_root *root,
3780 			       const struct btrfs_key *ins_key,
3781 			       struct btrfs_path *path, int data_size,
3782 			       int extend)
3783 {
3784 	struct btrfs_disk_key disk_key;
3785 	struct extent_buffer *l;
3786 	u32 nritems;
3787 	int mid;
3788 	int slot;
3789 	struct extent_buffer *right;
3790 	struct btrfs_fs_info *fs_info = root->fs_info;
3791 	int ret = 0;
3792 	int wret;
3793 	int split;
3794 	int num_doubles = 0;
3795 	int tried_avoid_double = 0;
3796 
3797 	l = path->nodes[0];
3798 	slot = path->slots[0];
3799 	if (extend && data_size + btrfs_item_size(l, slot) +
3800 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3801 		return -EOVERFLOW;
3802 
3803 	/* first try to make some room by pushing left and right */
3804 	if (data_size && path->nodes[1]) {
3805 		int space_needed = data_size;
3806 
3807 		if (slot < btrfs_header_nritems(l))
3808 			space_needed -= btrfs_leaf_free_space(l);
3809 
3810 		wret = push_leaf_right(trans, root, path, space_needed,
3811 				       space_needed, 0, 0);
3812 		if (wret < 0)
3813 			return wret;
3814 		if (wret) {
3815 			space_needed = data_size;
3816 			if (slot > 0)
3817 				space_needed -= btrfs_leaf_free_space(l);
3818 			wret = push_leaf_left(trans, root, path, space_needed,
3819 					      space_needed, 0, (u32)-1);
3820 			if (wret < 0)
3821 				return wret;
3822 		}
3823 		l = path->nodes[0];
3824 
3825 		/* did the pushes work? */
3826 		if (btrfs_leaf_free_space(l) >= data_size)
3827 			return 0;
3828 	}
3829 
3830 	if (!path->nodes[1]) {
3831 		ret = insert_new_root(trans, root, path, 1);
3832 		if (ret)
3833 			return ret;
3834 	}
3835 again:
3836 	split = 1;
3837 	l = path->nodes[0];
3838 	slot = path->slots[0];
3839 	nritems = btrfs_header_nritems(l);
3840 	mid = (nritems + 1) / 2;
3841 
3842 	if (mid <= slot) {
3843 		if (nritems == 1 ||
3844 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3845 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3846 			if (slot >= nritems) {
3847 				split = 0;
3848 			} else {
3849 				mid = slot;
3850 				if (mid != nritems &&
3851 				    leaf_space_used(l, mid, nritems - mid) +
3852 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3853 					if (data_size && !tried_avoid_double)
3854 						goto push_for_double;
3855 					split = 2;
3856 				}
3857 			}
3858 		}
3859 	} else {
3860 		if (leaf_space_used(l, 0, mid) + data_size >
3861 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3862 			if (!extend && data_size && slot == 0) {
3863 				split = 0;
3864 			} else if ((extend || !data_size) && slot == 0) {
3865 				mid = 1;
3866 			} else {
3867 				mid = slot;
3868 				if (mid != nritems &&
3869 				    leaf_space_used(l, mid, nritems - mid) +
3870 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3871 					if (data_size && !tried_avoid_double)
3872 						goto push_for_double;
3873 					split = 2;
3874 				}
3875 			}
3876 		}
3877 	}
3878 
3879 	if (split == 0)
3880 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3881 	else
3882 		btrfs_item_key(l, &disk_key, mid);
3883 
3884 	/*
3885 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3886 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3887 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3888 	 * out.  In the future we could add a
3889 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3890 	 * use BTRFS_NESTING_NEW_ROOT.
3891 	 */
3892 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3893 				       &disk_key, 0, l->start, 0,
3894 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3895 				       BTRFS_NESTING_SPLIT);
3896 	if (IS_ERR(right))
3897 		return PTR_ERR(right);
3898 
3899 	root_add_used(root, fs_info->nodesize);
3900 
3901 	if (split == 0) {
3902 		if (mid <= slot) {
3903 			btrfs_set_header_nritems(right, 0);
3904 			ret = insert_ptr(trans, path, &disk_key,
3905 					 right->start, path->slots[1] + 1, 1);
3906 			if (ret < 0) {
3907 				btrfs_tree_unlock(right);
3908 				free_extent_buffer(right);
3909 				return ret;
3910 			}
3911 			btrfs_tree_unlock(path->nodes[0]);
3912 			free_extent_buffer(path->nodes[0]);
3913 			path->nodes[0] = right;
3914 			path->slots[0] = 0;
3915 			path->slots[1] += 1;
3916 		} else {
3917 			btrfs_set_header_nritems(right, 0);
3918 			ret = insert_ptr(trans, path, &disk_key,
3919 					 right->start, path->slots[1], 1);
3920 			if (ret < 0) {
3921 				btrfs_tree_unlock(right);
3922 				free_extent_buffer(right);
3923 				return ret;
3924 			}
3925 			btrfs_tree_unlock(path->nodes[0]);
3926 			free_extent_buffer(path->nodes[0]);
3927 			path->nodes[0] = right;
3928 			path->slots[0] = 0;
3929 			if (path->slots[1] == 0)
3930 				fixup_low_keys(trans, path, &disk_key, 1);
3931 		}
3932 		/*
3933 		 * We create a new leaf 'right' for the required ins_len and
3934 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3935 		 * the content of ins_len to 'right'.
3936 		 */
3937 		return ret;
3938 	}
3939 
3940 	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3941 	if (ret < 0) {
3942 		btrfs_tree_unlock(right);
3943 		free_extent_buffer(right);
3944 		return ret;
3945 	}
3946 
3947 	if (split == 2) {
3948 		BUG_ON(num_doubles != 0);
3949 		num_doubles++;
3950 		goto again;
3951 	}
3952 
3953 	return 0;
3954 
3955 push_for_double:
3956 	push_for_double_split(trans, root, path, data_size);
3957 	tried_avoid_double = 1;
3958 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3959 		return 0;
3960 	goto again;
3961 }
3962 
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)3963 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3964 					 struct btrfs_root *root,
3965 					 struct btrfs_path *path, int ins_len)
3966 {
3967 	struct btrfs_key key;
3968 	struct extent_buffer *leaf;
3969 	struct btrfs_file_extent_item *fi;
3970 	u64 extent_len = 0;
3971 	u32 item_size;
3972 	int ret;
3973 
3974 	leaf = path->nodes[0];
3975 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3976 
3977 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3978 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3979 
3980 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3981 		return 0;
3982 
3983 	item_size = btrfs_item_size(leaf, path->slots[0]);
3984 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3985 		fi = btrfs_item_ptr(leaf, path->slots[0],
3986 				    struct btrfs_file_extent_item);
3987 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3988 	}
3989 	btrfs_release_path(path);
3990 
3991 	path->keep_locks = 1;
3992 	path->search_for_split = 1;
3993 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3994 	path->search_for_split = 0;
3995 	if (ret > 0)
3996 		ret = -EAGAIN;
3997 	if (ret < 0)
3998 		goto err;
3999 
4000 	ret = -EAGAIN;
4001 	leaf = path->nodes[0];
4002 	/* if our item isn't there, return now */
4003 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
4004 		goto err;
4005 
4006 	/* the leaf has  changed, it now has room.  return now */
4007 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4008 		goto err;
4009 
4010 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4011 		fi = btrfs_item_ptr(leaf, path->slots[0],
4012 				    struct btrfs_file_extent_item);
4013 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4014 			goto err;
4015 	}
4016 
4017 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4018 	if (ret)
4019 		goto err;
4020 
4021 	path->keep_locks = 0;
4022 	btrfs_unlock_up_safe(path, 1);
4023 	return 0;
4024 err:
4025 	path->keep_locks = 0;
4026 	return ret;
4027 }
4028 
split_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4029 static noinline int split_item(struct btrfs_trans_handle *trans,
4030 			       struct btrfs_path *path,
4031 			       const struct btrfs_key *new_key,
4032 			       unsigned long split_offset)
4033 {
4034 	struct extent_buffer *leaf;
4035 	int orig_slot, slot;
4036 	char *buf;
4037 	u32 nritems;
4038 	u32 item_size;
4039 	u32 orig_offset;
4040 	struct btrfs_disk_key disk_key;
4041 
4042 	leaf = path->nodes[0];
4043 	/*
4044 	 * Shouldn't happen because the caller must have previously called
4045 	 * setup_leaf_for_split() to make room for the new item in the leaf.
4046 	 */
4047 	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
4048 		return -ENOSPC;
4049 
4050 	orig_slot = path->slots[0];
4051 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
4052 	item_size = btrfs_item_size(leaf, path->slots[0]);
4053 
4054 	buf = kmalloc(item_size, GFP_NOFS);
4055 	if (!buf)
4056 		return -ENOMEM;
4057 
4058 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4059 			    path->slots[0]), item_size);
4060 
4061 	slot = path->slots[0] + 1;
4062 	nritems = btrfs_header_nritems(leaf);
4063 	if (slot != nritems) {
4064 		/* shift the items */
4065 		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
4066 	}
4067 
4068 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4069 	btrfs_set_item_key(leaf, &disk_key, slot);
4070 
4071 	btrfs_set_item_offset(leaf, slot, orig_offset);
4072 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
4073 
4074 	btrfs_set_item_offset(leaf, orig_slot,
4075 				 orig_offset + item_size - split_offset);
4076 	btrfs_set_item_size(leaf, orig_slot, split_offset);
4077 
4078 	btrfs_set_header_nritems(leaf, nritems + 1);
4079 
4080 	/* write the data for the start of the original item */
4081 	write_extent_buffer(leaf, buf,
4082 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4083 			    split_offset);
4084 
4085 	/* write the data for the new item */
4086 	write_extent_buffer(leaf, buf + split_offset,
4087 			    btrfs_item_ptr_offset(leaf, slot),
4088 			    item_size - split_offset);
4089 	btrfs_mark_buffer_dirty(trans, leaf);
4090 
4091 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4092 	kfree(buf);
4093 	return 0;
4094 }
4095 
4096 /*
4097  * This function splits a single item into two items,
4098  * giving 'new_key' to the new item and splitting the
4099  * old one at split_offset (from the start of the item).
4100  *
4101  * The path may be released by this operation.  After
4102  * the split, the path is pointing to the old item.  The
4103  * new item is going to be in the same node as the old one.
4104  *
4105  * Note, the item being split must be smaller enough to live alone on
4106  * a tree block with room for one extra struct btrfs_item
4107  *
4108  * This allows us to split the item in place, keeping a lock on the
4109  * leaf the entire time.
4110  */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4111 int btrfs_split_item(struct btrfs_trans_handle *trans,
4112 		     struct btrfs_root *root,
4113 		     struct btrfs_path *path,
4114 		     const struct btrfs_key *new_key,
4115 		     unsigned long split_offset)
4116 {
4117 	int ret;
4118 	ret = setup_leaf_for_split(trans, root, path,
4119 				   sizeof(struct btrfs_item));
4120 	if (ret)
4121 		return ret;
4122 
4123 	ret = split_item(trans, path, new_key, split_offset);
4124 	return ret;
4125 }
4126 
4127 /*
4128  * make the item pointed to by the path smaller.  new_size indicates
4129  * how small to make it, and from_end tells us if we just chop bytes
4130  * off the end of the item or if we shift the item to chop bytes off
4131  * the front.
4132  */
btrfs_truncate_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,u32 new_size,int from_end)4133 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4134 			 struct btrfs_path *path, u32 new_size, int from_end)
4135 {
4136 	int slot;
4137 	struct extent_buffer *leaf;
4138 	u32 nritems;
4139 	unsigned int data_end;
4140 	unsigned int old_data_start;
4141 	unsigned int old_size;
4142 	unsigned int size_diff;
4143 	int i;
4144 	struct btrfs_map_token token;
4145 
4146 	leaf = path->nodes[0];
4147 	slot = path->slots[0];
4148 
4149 	old_size = btrfs_item_size(leaf, slot);
4150 	if (old_size == new_size)
4151 		return;
4152 
4153 	nritems = btrfs_header_nritems(leaf);
4154 	data_end = leaf_data_end(leaf);
4155 
4156 	old_data_start = btrfs_item_offset(leaf, slot);
4157 
4158 	size_diff = old_size - new_size;
4159 
4160 	BUG_ON(slot < 0);
4161 	BUG_ON(slot >= nritems);
4162 
4163 	/*
4164 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4165 	 */
4166 	/* first correct the data pointers */
4167 	btrfs_init_map_token(&token, leaf);
4168 	for (i = slot; i < nritems; i++) {
4169 		u32 ioff;
4170 
4171 		ioff = btrfs_token_item_offset(&token, i);
4172 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4173 	}
4174 
4175 	/* shift the data */
4176 	if (from_end) {
4177 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4178 				  old_data_start + new_size - data_end);
4179 	} else {
4180 		struct btrfs_disk_key disk_key;
4181 		u64 offset;
4182 
4183 		btrfs_item_key(leaf, &disk_key, slot);
4184 
4185 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4186 			unsigned long ptr;
4187 			struct btrfs_file_extent_item *fi;
4188 
4189 			fi = btrfs_item_ptr(leaf, slot,
4190 					    struct btrfs_file_extent_item);
4191 			fi = (struct btrfs_file_extent_item *)(
4192 			     (unsigned long)fi - size_diff);
4193 
4194 			if (btrfs_file_extent_type(leaf, fi) ==
4195 			    BTRFS_FILE_EXTENT_INLINE) {
4196 				ptr = btrfs_item_ptr_offset(leaf, slot);
4197 				memmove_extent_buffer(leaf, ptr,
4198 				      (unsigned long)fi,
4199 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4200 			}
4201 		}
4202 
4203 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4204 				  old_data_start - data_end);
4205 
4206 		offset = btrfs_disk_key_offset(&disk_key);
4207 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4208 		btrfs_set_item_key(leaf, &disk_key, slot);
4209 		if (slot == 0)
4210 			fixup_low_keys(trans, path, &disk_key, 1);
4211 	}
4212 
4213 	btrfs_set_item_size(leaf, slot, new_size);
4214 	btrfs_mark_buffer_dirty(trans, leaf);
4215 
4216 	if (btrfs_leaf_free_space(leaf) < 0) {
4217 		btrfs_print_leaf(leaf);
4218 		BUG();
4219 	}
4220 }
4221 
4222 /*
4223  * make the item pointed to by the path bigger, data_size is the added size.
4224  */
btrfs_extend_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,u32 data_size)4225 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4226 		       struct btrfs_path *path, u32 data_size)
4227 {
4228 	int slot;
4229 	struct extent_buffer *leaf;
4230 	u32 nritems;
4231 	unsigned int data_end;
4232 	unsigned int old_data;
4233 	unsigned int old_size;
4234 	int i;
4235 	struct btrfs_map_token token;
4236 
4237 	leaf = path->nodes[0];
4238 
4239 	nritems = btrfs_header_nritems(leaf);
4240 	data_end = leaf_data_end(leaf);
4241 
4242 	if (btrfs_leaf_free_space(leaf) < data_size) {
4243 		btrfs_print_leaf(leaf);
4244 		BUG();
4245 	}
4246 	slot = path->slots[0];
4247 	old_data = btrfs_item_data_end(leaf, slot);
4248 
4249 	BUG_ON(slot < 0);
4250 	if (slot >= nritems) {
4251 		btrfs_print_leaf(leaf);
4252 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4253 			   slot, nritems);
4254 		BUG();
4255 	}
4256 
4257 	/*
4258 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4259 	 */
4260 	/* first correct the data pointers */
4261 	btrfs_init_map_token(&token, leaf);
4262 	for (i = slot; i < nritems; i++) {
4263 		u32 ioff;
4264 
4265 		ioff = btrfs_token_item_offset(&token, i);
4266 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4267 	}
4268 
4269 	/* shift the data */
4270 	memmove_leaf_data(leaf, data_end - data_size, data_end,
4271 			  old_data - data_end);
4272 
4273 	data_end = old_data;
4274 	old_size = btrfs_item_size(leaf, slot);
4275 	btrfs_set_item_size(leaf, slot, old_size + data_size);
4276 	btrfs_mark_buffer_dirty(trans, leaf);
4277 
4278 	if (btrfs_leaf_free_space(leaf) < 0) {
4279 		btrfs_print_leaf(leaf);
4280 		BUG();
4281 	}
4282 }
4283 
4284 /*
4285  * Make space in the node before inserting one or more items.
4286  *
4287  * @trans:	transaction handle
4288  * @root:	root we are inserting items to
4289  * @path:	points to the leaf/slot where we are going to insert new items
4290  * @batch:      information about the batch of items to insert
4291  *
4292  * Main purpose is to save stack depth by doing the bulk of the work in a
4293  * function that doesn't call btrfs_search_slot
4294  */
setup_items_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4295 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4296 				   struct btrfs_root *root, struct btrfs_path *path,
4297 				   const struct btrfs_item_batch *batch)
4298 {
4299 	struct btrfs_fs_info *fs_info = root->fs_info;
4300 	int i;
4301 	u32 nritems;
4302 	unsigned int data_end;
4303 	struct btrfs_disk_key disk_key;
4304 	struct extent_buffer *leaf;
4305 	int slot;
4306 	struct btrfs_map_token token;
4307 	u32 total_size;
4308 
4309 	/*
4310 	 * Before anything else, update keys in the parent and other ancestors
4311 	 * if needed, then release the write locks on them, so that other tasks
4312 	 * can use them while we modify the leaf.
4313 	 */
4314 	if (path->slots[0] == 0) {
4315 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4316 		fixup_low_keys(trans, path, &disk_key, 1);
4317 	}
4318 	btrfs_unlock_up_safe(path, 1);
4319 
4320 	leaf = path->nodes[0];
4321 	slot = path->slots[0];
4322 
4323 	nritems = btrfs_header_nritems(leaf);
4324 	data_end = leaf_data_end(leaf);
4325 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4326 
4327 	if (btrfs_leaf_free_space(leaf) < total_size) {
4328 		btrfs_print_leaf(leaf);
4329 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4330 			   total_size, btrfs_leaf_free_space(leaf));
4331 		BUG();
4332 	}
4333 
4334 	btrfs_init_map_token(&token, leaf);
4335 	if (slot != nritems) {
4336 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4337 
4338 		if (old_data < data_end) {
4339 			btrfs_print_leaf(leaf);
4340 			btrfs_crit(fs_info,
4341 		"item at slot %d with data offset %u beyond data end of leaf %u",
4342 				   slot, old_data, data_end);
4343 			BUG();
4344 		}
4345 		/*
4346 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4347 		 */
4348 		/* first correct the data pointers */
4349 		for (i = slot; i < nritems; i++) {
4350 			u32 ioff;
4351 
4352 			ioff = btrfs_token_item_offset(&token, i);
4353 			btrfs_set_token_item_offset(&token, i,
4354 						       ioff - batch->total_data_size);
4355 		}
4356 		/* shift the items */
4357 		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4358 
4359 		/* shift the data */
4360 		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4361 				  data_end, old_data - data_end);
4362 		data_end = old_data;
4363 	}
4364 
4365 	/* setup the item for the new data */
4366 	for (i = 0; i < batch->nr; i++) {
4367 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4368 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4369 		data_end -= batch->data_sizes[i];
4370 		btrfs_set_token_item_offset(&token, slot + i, data_end);
4371 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4372 	}
4373 
4374 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4375 	btrfs_mark_buffer_dirty(trans, leaf);
4376 
4377 	if (btrfs_leaf_free_space(leaf) < 0) {
4378 		btrfs_print_leaf(leaf);
4379 		BUG();
4380 	}
4381 }
4382 
4383 /*
4384  * Insert a new item into a leaf.
4385  *
4386  * @trans:     Transaction handle.
4387  * @root:      The root of the btree.
4388  * @path:      A path pointing to the target leaf and slot.
4389  * @key:       The key of the new item.
4390  * @data_size: The size of the data associated with the new key.
4391  */
btrfs_setup_item_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)4392 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4393 				 struct btrfs_root *root,
4394 				 struct btrfs_path *path,
4395 				 const struct btrfs_key *key,
4396 				 u32 data_size)
4397 {
4398 	struct btrfs_item_batch batch;
4399 
4400 	batch.keys = key;
4401 	batch.data_sizes = &data_size;
4402 	batch.total_data_size = data_size;
4403 	batch.nr = 1;
4404 
4405 	setup_items_for_insert(trans, root, path, &batch);
4406 }
4407 
4408 /*
4409  * Given a key and some data, insert items into the tree.
4410  * This does all the path init required, making room in the tree if needed.
4411  */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_item_batch * batch)4412 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4413 			    struct btrfs_root *root,
4414 			    struct btrfs_path *path,
4415 			    const struct btrfs_item_batch *batch)
4416 {
4417 	int ret = 0;
4418 	int slot;
4419 	u32 total_size;
4420 
4421 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4422 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4423 	if (ret == 0)
4424 		return -EEXIST;
4425 	if (ret < 0)
4426 		return ret;
4427 
4428 	slot = path->slots[0];
4429 	BUG_ON(slot < 0);
4430 
4431 	setup_items_for_insert(trans, root, path, batch);
4432 	return 0;
4433 }
4434 
4435 /*
4436  * Given a key and some data, insert an item into the tree.
4437  * This does all the path init required, making room in the tree if needed.
4438  */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4439 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4440 		      const struct btrfs_key *cpu_key, void *data,
4441 		      u32 data_size)
4442 {
4443 	int ret = 0;
4444 	struct btrfs_path *path;
4445 	struct extent_buffer *leaf;
4446 	unsigned long ptr;
4447 
4448 	path = btrfs_alloc_path();
4449 	if (!path)
4450 		return -ENOMEM;
4451 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4452 	if (!ret) {
4453 		leaf = path->nodes[0];
4454 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4455 		write_extent_buffer(leaf, data, ptr, data_size);
4456 		btrfs_mark_buffer_dirty(trans, leaf);
4457 	}
4458 	btrfs_free_path(path);
4459 	return ret;
4460 }
4461 
4462 /*
4463  * This function duplicates an item, giving 'new_key' to the new item.
4464  * It guarantees both items live in the same tree leaf and the new item is
4465  * contiguous with the original item.
4466  *
4467  * This allows us to split a file extent in place, keeping a lock on the leaf
4468  * the entire time.
4469  */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4470 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4471 			 struct btrfs_root *root,
4472 			 struct btrfs_path *path,
4473 			 const struct btrfs_key *new_key)
4474 {
4475 	struct extent_buffer *leaf;
4476 	int ret;
4477 	u32 item_size;
4478 
4479 	leaf = path->nodes[0];
4480 	item_size = btrfs_item_size(leaf, path->slots[0]);
4481 	ret = setup_leaf_for_split(trans, root, path,
4482 				   item_size + sizeof(struct btrfs_item));
4483 	if (ret)
4484 		return ret;
4485 
4486 	path->slots[0]++;
4487 	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4488 	leaf = path->nodes[0];
4489 	memcpy_extent_buffer(leaf,
4490 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4491 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4492 			     item_size);
4493 	return 0;
4494 }
4495 
4496 /*
4497  * delete the pointer from a given node.
4498  *
4499  * the tree should have been previously balanced so the deletion does not
4500  * empty a node.
4501  *
4502  * This is exported for use inside btrfs-progs, don't un-export it.
4503  */
btrfs_del_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4504 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4505 		  struct btrfs_path *path, int level, int slot)
4506 {
4507 	struct extent_buffer *parent = path->nodes[level];
4508 	u32 nritems;
4509 	int ret;
4510 
4511 	nritems = btrfs_header_nritems(parent);
4512 	if (slot != nritems - 1) {
4513 		if (level) {
4514 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4515 					slot + 1, nritems - slot - 1);
4516 			if (ret < 0) {
4517 				btrfs_abort_transaction(trans, ret);
4518 				return ret;
4519 			}
4520 		}
4521 		memmove_extent_buffer(parent,
4522 			      btrfs_node_key_ptr_offset(parent, slot),
4523 			      btrfs_node_key_ptr_offset(parent, slot + 1),
4524 			      sizeof(struct btrfs_key_ptr) *
4525 			      (nritems - slot - 1));
4526 	} else if (level) {
4527 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4528 						    BTRFS_MOD_LOG_KEY_REMOVE);
4529 		if (ret < 0) {
4530 			btrfs_abort_transaction(trans, ret);
4531 			return ret;
4532 		}
4533 	}
4534 
4535 	nritems--;
4536 	btrfs_set_header_nritems(parent, nritems);
4537 	if (nritems == 0 && parent == root->node) {
4538 		BUG_ON(btrfs_header_level(root->node) != 1);
4539 		/* just turn the root into a leaf and break */
4540 		btrfs_set_header_level(root->node, 0);
4541 	} else if (slot == 0) {
4542 		struct btrfs_disk_key disk_key;
4543 
4544 		btrfs_node_key(parent, &disk_key, 0);
4545 		fixup_low_keys(trans, path, &disk_key, level + 1);
4546 	}
4547 	btrfs_mark_buffer_dirty(trans, parent);
4548 	return 0;
4549 }
4550 
4551 /*
4552  * a helper function to delete the leaf pointed to by path->slots[1] and
4553  * path->nodes[1].
4554  *
4555  * This deletes the pointer in path->nodes[1] and frees the leaf
4556  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4557  *
4558  * The path must have already been setup for deleting the leaf, including
4559  * all the proper balancing.  path->nodes[1] must be locked.
4560  */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4561 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4562 				   struct btrfs_root *root,
4563 				   struct btrfs_path *path,
4564 				   struct extent_buffer *leaf)
4565 {
4566 	int ret;
4567 
4568 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4569 	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4570 	if (ret < 0)
4571 		return ret;
4572 
4573 	/*
4574 	 * btrfs_free_extent is expensive, we want to make sure we
4575 	 * aren't holding any locks when we call it
4576 	 */
4577 	btrfs_unlock_up_safe(path, 0);
4578 
4579 	root_sub_used(root, leaf->len);
4580 
4581 	atomic_inc(&leaf->refs);
4582 	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4583 	free_extent_buffer_stale(leaf);
4584 	return 0;
4585 }
4586 /*
4587  * delete the item at the leaf level in path.  If that empties
4588  * the leaf, remove it from the tree
4589  */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4590 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4591 		    struct btrfs_path *path, int slot, int nr)
4592 {
4593 	struct btrfs_fs_info *fs_info = root->fs_info;
4594 	struct extent_buffer *leaf;
4595 	int ret = 0;
4596 	int wret;
4597 	u32 nritems;
4598 
4599 	leaf = path->nodes[0];
4600 	nritems = btrfs_header_nritems(leaf);
4601 
4602 	if (slot + nr != nritems) {
4603 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4604 		const int data_end = leaf_data_end(leaf);
4605 		struct btrfs_map_token token;
4606 		u32 dsize = 0;
4607 		int i;
4608 
4609 		for (i = 0; i < nr; i++)
4610 			dsize += btrfs_item_size(leaf, slot + i);
4611 
4612 		memmove_leaf_data(leaf, data_end + dsize, data_end,
4613 				  last_off - data_end);
4614 
4615 		btrfs_init_map_token(&token, leaf);
4616 		for (i = slot + nr; i < nritems; i++) {
4617 			u32 ioff;
4618 
4619 			ioff = btrfs_token_item_offset(&token, i);
4620 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4621 		}
4622 
4623 		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4624 	}
4625 	btrfs_set_header_nritems(leaf, nritems - nr);
4626 	nritems -= nr;
4627 
4628 	/* delete the leaf if we've emptied it */
4629 	if (nritems == 0) {
4630 		if (leaf == root->node) {
4631 			btrfs_set_header_level(leaf, 0);
4632 		} else {
4633 			btrfs_clear_buffer_dirty(trans, leaf);
4634 			ret = btrfs_del_leaf(trans, root, path, leaf);
4635 			if (ret < 0)
4636 				return ret;
4637 		}
4638 	} else {
4639 		int used = leaf_space_used(leaf, 0, nritems);
4640 		if (slot == 0) {
4641 			struct btrfs_disk_key disk_key;
4642 
4643 			btrfs_item_key(leaf, &disk_key, 0);
4644 			fixup_low_keys(trans, path, &disk_key, 1);
4645 		}
4646 
4647 		/*
4648 		 * Try to delete the leaf if it is mostly empty. We do this by
4649 		 * trying to move all its items into its left and right neighbours.
4650 		 * If we can't move all the items, then we don't delete it - it's
4651 		 * not ideal, but future insertions might fill the leaf with more
4652 		 * items, or items from other leaves might be moved later into our
4653 		 * leaf due to deletions on those leaves.
4654 		 */
4655 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4656 			u32 min_push_space;
4657 
4658 			/* push_leaf_left fixes the path.
4659 			 * make sure the path still points to our leaf
4660 			 * for possible call to btrfs_del_ptr below
4661 			 */
4662 			slot = path->slots[1];
4663 			atomic_inc(&leaf->refs);
4664 			/*
4665 			 * We want to be able to at least push one item to the
4666 			 * left neighbour leaf, and that's the first item.
4667 			 */
4668 			min_push_space = sizeof(struct btrfs_item) +
4669 				btrfs_item_size(leaf, 0);
4670 			wret = push_leaf_left(trans, root, path, 0,
4671 					      min_push_space, 1, (u32)-1);
4672 			if (wret < 0 && wret != -ENOSPC)
4673 				ret = wret;
4674 
4675 			if (path->nodes[0] == leaf &&
4676 			    btrfs_header_nritems(leaf)) {
4677 				/*
4678 				 * If we were not able to push all items from our
4679 				 * leaf to its left neighbour, then attempt to
4680 				 * either push all the remaining items to the
4681 				 * right neighbour or none. There's no advantage
4682 				 * in pushing only some items, instead of all, as
4683 				 * it's pointless to end up with a leaf having
4684 				 * too few items while the neighbours can be full
4685 				 * or nearly full.
4686 				 */
4687 				nritems = btrfs_header_nritems(leaf);
4688 				min_push_space = leaf_space_used(leaf, 0, nritems);
4689 				wret = push_leaf_right(trans, root, path, 0,
4690 						       min_push_space, 1, 0);
4691 				if (wret < 0 && wret != -ENOSPC)
4692 					ret = wret;
4693 			}
4694 
4695 			if (btrfs_header_nritems(leaf) == 0) {
4696 				path->slots[1] = slot;
4697 				ret = btrfs_del_leaf(trans, root, path, leaf);
4698 				if (ret < 0)
4699 					return ret;
4700 				free_extent_buffer(leaf);
4701 				ret = 0;
4702 			} else {
4703 				/* if we're still in the path, make sure
4704 				 * we're dirty.  Otherwise, one of the
4705 				 * push_leaf functions must have already
4706 				 * dirtied this buffer
4707 				 */
4708 				if (path->nodes[0] == leaf)
4709 					btrfs_mark_buffer_dirty(trans, leaf);
4710 				free_extent_buffer(leaf);
4711 			}
4712 		} else {
4713 			btrfs_mark_buffer_dirty(trans, leaf);
4714 		}
4715 	}
4716 	return ret;
4717 }
4718 
4719 /*
4720  * A helper function to walk down the tree starting at min_key, and looking
4721  * for nodes or leaves that are have a minimum transaction id.
4722  * This is used by the btree defrag code, and tree logging
4723  *
4724  * This does not cow, but it does stuff the starting key it finds back
4725  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4726  * key and get a writable path.
4727  *
4728  * This honors path->lowest_level to prevent descent past a given level
4729  * of the tree.
4730  *
4731  * min_trans indicates the oldest transaction that you are interested
4732  * in walking through.  Any nodes or leaves older than min_trans are
4733  * skipped over (without reading them).
4734  *
4735  * returns zero if something useful was found, < 0 on error and 1 if there
4736  * was nothing in the tree that matched the search criteria.
4737  */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)4738 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4739 			 struct btrfs_path *path,
4740 			 u64 min_trans)
4741 {
4742 	struct extent_buffer *cur;
4743 	struct btrfs_key found_key;
4744 	int slot;
4745 	int sret;
4746 	u32 nritems;
4747 	int level;
4748 	int ret = 1;
4749 	int keep_locks = path->keep_locks;
4750 
4751 	ASSERT(!path->nowait);
4752 	path->keep_locks = 1;
4753 again:
4754 	cur = btrfs_read_lock_root_node(root);
4755 	level = btrfs_header_level(cur);
4756 	WARN_ON(path->nodes[level]);
4757 	path->nodes[level] = cur;
4758 	path->locks[level] = BTRFS_READ_LOCK;
4759 
4760 	if (btrfs_header_generation(cur) < min_trans) {
4761 		ret = 1;
4762 		goto out;
4763 	}
4764 	while (1) {
4765 		nritems = btrfs_header_nritems(cur);
4766 		level = btrfs_header_level(cur);
4767 		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4768 		if (sret < 0) {
4769 			ret = sret;
4770 			goto out;
4771 		}
4772 
4773 		/* at the lowest level, we're done, setup the path and exit */
4774 		if (level == path->lowest_level) {
4775 			if (slot >= nritems)
4776 				goto find_next_key;
4777 			ret = 0;
4778 			path->slots[level] = slot;
4779 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4780 			goto out;
4781 		}
4782 		if (sret && slot > 0)
4783 			slot--;
4784 		/*
4785 		 * check this node pointer against the min_trans parameters.
4786 		 * If it is too old, skip to the next one.
4787 		 */
4788 		while (slot < nritems) {
4789 			u64 gen;
4790 
4791 			gen = btrfs_node_ptr_generation(cur, slot);
4792 			if (gen < min_trans) {
4793 				slot++;
4794 				continue;
4795 			}
4796 			break;
4797 		}
4798 find_next_key:
4799 		/*
4800 		 * we didn't find a candidate key in this node, walk forward
4801 		 * and find another one
4802 		 */
4803 		if (slot >= nritems) {
4804 			path->slots[level] = slot;
4805 			sret = btrfs_find_next_key(root, path, min_key, level,
4806 						  min_trans);
4807 			if (sret == 0) {
4808 				btrfs_release_path(path);
4809 				goto again;
4810 			} else {
4811 				goto out;
4812 			}
4813 		}
4814 		/* save our key for returning back */
4815 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4816 		path->slots[level] = slot;
4817 		if (level == path->lowest_level) {
4818 			ret = 0;
4819 			goto out;
4820 		}
4821 		cur = btrfs_read_node_slot(cur, slot);
4822 		if (IS_ERR(cur)) {
4823 			ret = PTR_ERR(cur);
4824 			goto out;
4825 		}
4826 
4827 		btrfs_tree_read_lock(cur);
4828 
4829 		path->locks[level - 1] = BTRFS_READ_LOCK;
4830 		path->nodes[level - 1] = cur;
4831 		unlock_up(path, level, 1, 0, NULL);
4832 	}
4833 out:
4834 	path->keep_locks = keep_locks;
4835 	if (ret == 0) {
4836 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4837 		memcpy(min_key, &found_key, sizeof(found_key));
4838 	}
4839 	return ret;
4840 }
4841 
4842 /*
4843  * this is similar to btrfs_next_leaf, but does not try to preserve
4844  * and fixup the path.  It looks for and returns the next key in the
4845  * tree based on the current path and the min_trans parameters.
4846  *
4847  * 0 is returned if another key is found, < 0 if there are any errors
4848  * and 1 is returned if there are no higher keys in the tree
4849  *
4850  * path->keep_locks should be set to 1 on the search made before
4851  * calling this function.
4852  */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)4853 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4854 			struct btrfs_key *key, int level, u64 min_trans)
4855 {
4856 	int slot;
4857 	struct extent_buffer *c;
4858 
4859 	WARN_ON(!path->keep_locks && !path->skip_locking);
4860 	while (level < BTRFS_MAX_LEVEL) {
4861 		if (!path->nodes[level])
4862 			return 1;
4863 
4864 		slot = path->slots[level] + 1;
4865 		c = path->nodes[level];
4866 next:
4867 		if (slot >= btrfs_header_nritems(c)) {
4868 			int ret;
4869 			int orig_lowest;
4870 			struct btrfs_key cur_key;
4871 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4872 			    !path->nodes[level + 1])
4873 				return 1;
4874 
4875 			if (path->locks[level + 1] || path->skip_locking) {
4876 				level++;
4877 				continue;
4878 			}
4879 
4880 			slot = btrfs_header_nritems(c) - 1;
4881 			if (level == 0)
4882 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4883 			else
4884 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4885 
4886 			orig_lowest = path->lowest_level;
4887 			btrfs_release_path(path);
4888 			path->lowest_level = level;
4889 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4890 						0, 0);
4891 			path->lowest_level = orig_lowest;
4892 			if (ret < 0)
4893 				return ret;
4894 
4895 			c = path->nodes[level];
4896 			slot = path->slots[level];
4897 			if (ret == 0)
4898 				slot++;
4899 			goto next;
4900 		}
4901 
4902 		if (level == 0)
4903 			btrfs_item_key_to_cpu(c, key, slot);
4904 		else {
4905 			u64 gen = btrfs_node_ptr_generation(c, slot);
4906 
4907 			if (gen < min_trans) {
4908 				slot++;
4909 				goto next;
4910 			}
4911 			btrfs_node_key_to_cpu(c, key, slot);
4912 		}
4913 		return 0;
4914 	}
4915 	return 1;
4916 }
4917 
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)4918 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4919 			u64 time_seq)
4920 {
4921 	int slot;
4922 	int level;
4923 	struct extent_buffer *c;
4924 	struct extent_buffer *next;
4925 	struct btrfs_fs_info *fs_info = root->fs_info;
4926 	struct btrfs_key key;
4927 	bool need_commit_sem = false;
4928 	u32 nritems;
4929 	int ret;
4930 	int i;
4931 
4932 	/*
4933 	 * The nowait semantics are used only for write paths, where we don't
4934 	 * use the tree mod log and sequence numbers.
4935 	 */
4936 	if (time_seq)
4937 		ASSERT(!path->nowait);
4938 
4939 	nritems = btrfs_header_nritems(path->nodes[0]);
4940 	if (nritems == 0)
4941 		return 1;
4942 
4943 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4944 again:
4945 	level = 1;
4946 	next = NULL;
4947 	btrfs_release_path(path);
4948 
4949 	path->keep_locks = 1;
4950 
4951 	if (time_seq) {
4952 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4953 	} else {
4954 		if (path->need_commit_sem) {
4955 			path->need_commit_sem = 0;
4956 			need_commit_sem = true;
4957 			if (path->nowait) {
4958 				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4959 					ret = -EAGAIN;
4960 					goto done;
4961 				}
4962 			} else {
4963 				down_read(&fs_info->commit_root_sem);
4964 			}
4965 		}
4966 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4967 	}
4968 	path->keep_locks = 0;
4969 
4970 	if (ret < 0)
4971 		goto done;
4972 
4973 	nritems = btrfs_header_nritems(path->nodes[0]);
4974 	/*
4975 	 * by releasing the path above we dropped all our locks.  A balance
4976 	 * could have added more items next to the key that used to be
4977 	 * at the very end of the block.  So, check again here and
4978 	 * advance the path if there are now more items available.
4979 	 */
4980 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4981 		if (ret == 0)
4982 			path->slots[0]++;
4983 		ret = 0;
4984 		goto done;
4985 	}
4986 	/*
4987 	 * So the above check misses one case:
4988 	 * - after releasing the path above, someone has removed the item that
4989 	 *   used to be at the very end of the block, and balance between leafs
4990 	 *   gets another one with bigger key.offset to replace it.
4991 	 *
4992 	 * This one should be returned as well, or we can get leaf corruption
4993 	 * later(esp. in __btrfs_drop_extents()).
4994 	 *
4995 	 * And a bit more explanation about this check,
4996 	 * with ret > 0, the key isn't found, the path points to the slot
4997 	 * where it should be inserted, so the path->slots[0] item must be the
4998 	 * bigger one.
4999 	 */
5000 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5001 		ret = 0;
5002 		goto done;
5003 	}
5004 
5005 	while (level < BTRFS_MAX_LEVEL) {
5006 		if (!path->nodes[level]) {
5007 			ret = 1;
5008 			goto done;
5009 		}
5010 
5011 		slot = path->slots[level] + 1;
5012 		c = path->nodes[level];
5013 		if (slot >= btrfs_header_nritems(c)) {
5014 			level++;
5015 			if (level == BTRFS_MAX_LEVEL) {
5016 				ret = 1;
5017 				goto done;
5018 			}
5019 			continue;
5020 		}
5021 
5022 
5023 		/*
5024 		 * Our current level is where we're going to start from, and to
5025 		 * make sure lockdep doesn't complain we need to drop our locks
5026 		 * and nodes from 0 to our current level.
5027 		 */
5028 		for (i = 0; i < level; i++) {
5029 			if (path->locks[level]) {
5030 				btrfs_tree_read_unlock(path->nodes[i]);
5031 				path->locks[i] = 0;
5032 			}
5033 			free_extent_buffer(path->nodes[i]);
5034 			path->nodes[i] = NULL;
5035 		}
5036 
5037 		next = c;
5038 		ret = read_block_for_search(root, path, &next, level,
5039 					    slot, &key);
5040 		if (ret == -EAGAIN && !path->nowait)
5041 			goto again;
5042 
5043 		if (ret < 0) {
5044 			btrfs_release_path(path);
5045 			goto done;
5046 		}
5047 
5048 		if (!path->skip_locking) {
5049 			ret = btrfs_try_tree_read_lock(next);
5050 			if (!ret && path->nowait) {
5051 				ret = -EAGAIN;
5052 				goto done;
5053 			}
5054 			if (!ret && time_seq) {
5055 				/*
5056 				 * If we don't get the lock, we may be racing
5057 				 * with push_leaf_left, holding that lock while
5058 				 * itself waiting for the leaf we've currently
5059 				 * locked. To solve this situation, we give up
5060 				 * on our lock and cycle.
5061 				 */
5062 				free_extent_buffer(next);
5063 				btrfs_release_path(path);
5064 				cond_resched();
5065 				goto again;
5066 			}
5067 			if (!ret)
5068 				btrfs_tree_read_lock(next);
5069 		}
5070 		break;
5071 	}
5072 	path->slots[level] = slot;
5073 	while (1) {
5074 		level--;
5075 		path->nodes[level] = next;
5076 		path->slots[level] = 0;
5077 		if (!path->skip_locking)
5078 			path->locks[level] = BTRFS_READ_LOCK;
5079 		if (!level)
5080 			break;
5081 
5082 		ret = read_block_for_search(root, path, &next, level,
5083 					    0, &key);
5084 		if (ret == -EAGAIN && !path->nowait)
5085 			goto again;
5086 
5087 		if (ret < 0) {
5088 			btrfs_release_path(path);
5089 			goto done;
5090 		}
5091 
5092 		if (!path->skip_locking) {
5093 			if (path->nowait) {
5094 				if (!btrfs_try_tree_read_lock(next)) {
5095 					ret = -EAGAIN;
5096 					goto done;
5097 				}
5098 			} else {
5099 				btrfs_tree_read_lock(next);
5100 			}
5101 		}
5102 	}
5103 	ret = 0;
5104 done:
5105 	unlock_up(path, 0, 1, 0, NULL);
5106 	if (need_commit_sem) {
5107 		int ret2;
5108 
5109 		path->need_commit_sem = 1;
5110 		ret2 = finish_need_commit_sem_search(path);
5111 		up_read(&fs_info->commit_root_sem);
5112 		if (ret2)
5113 			ret = ret2;
5114 	}
5115 
5116 	return ret;
5117 }
5118 
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)5119 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5120 {
5121 	path->slots[0]++;
5122 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5123 		return btrfs_next_old_leaf(root, path, time_seq);
5124 	return 0;
5125 }
5126 
5127 /*
5128  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5129  * searching until it gets past min_objectid or finds an item of 'type'
5130  *
5131  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5132  */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5133 int btrfs_previous_item(struct btrfs_root *root,
5134 			struct btrfs_path *path, u64 min_objectid,
5135 			int type)
5136 {
5137 	struct btrfs_key found_key;
5138 	struct extent_buffer *leaf;
5139 	u32 nritems;
5140 	int ret;
5141 
5142 	while (1) {
5143 		if (path->slots[0] == 0) {
5144 			ret = btrfs_prev_leaf(root, path);
5145 			if (ret != 0)
5146 				return ret;
5147 		} else {
5148 			path->slots[0]--;
5149 		}
5150 		leaf = path->nodes[0];
5151 		nritems = btrfs_header_nritems(leaf);
5152 		if (nritems == 0)
5153 			return 1;
5154 		if (path->slots[0] == nritems)
5155 			path->slots[0]--;
5156 
5157 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5158 		if (found_key.objectid < min_objectid)
5159 			break;
5160 		if (found_key.type == type)
5161 			return 0;
5162 		if (found_key.objectid == min_objectid &&
5163 		    found_key.type < type)
5164 			break;
5165 	}
5166 	return 1;
5167 }
5168 
5169 /*
5170  * search in extent tree to find a previous Metadata/Data extent item with
5171  * min objecitd.
5172  *
5173  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5174  */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5175 int btrfs_previous_extent_item(struct btrfs_root *root,
5176 			struct btrfs_path *path, u64 min_objectid)
5177 {
5178 	struct btrfs_key found_key;
5179 	struct extent_buffer *leaf;
5180 	u32 nritems;
5181 	int ret;
5182 
5183 	while (1) {
5184 		if (path->slots[0] == 0) {
5185 			ret = btrfs_prev_leaf(root, path);
5186 			if (ret != 0)
5187 				return ret;
5188 		} else {
5189 			path->slots[0]--;
5190 		}
5191 		leaf = path->nodes[0];
5192 		nritems = btrfs_header_nritems(leaf);
5193 		if (nritems == 0)
5194 			return 1;
5195 		if (path->slots[0] == nritems)
5196 			path->slots[0]--;
5197 
5198 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5199 		if (found_key.objectid < min_objectid)
5200 			break;
5201 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5202 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5203 			return 0;
5204 		if (found_key.objectid == min_objectid &&
5205 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5206 			break;
5207 	}
5208 	return 1;
5209 }
5210 
btrfs_ctree_init(void)5211 int __init btrfs_ctree_init(void)
5212 {
5213 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5214 			sizeof(struct btrfs_path), 0,
5215 			SLAB_MEM_SPREAD, NULL);
5216 	if (!btrfs_path_cachep)
5217 		return -ENOMEM;
5218 	return 0;
5219 }
5220 
btrfs_ctree_exit(void)5221 void __cold btrfs_ctree_exit(void)
5222 {
5223 	kmem_cache_destroy(btrfs_path_cachep);
5224 }
5225