xref: /openbmc/linux/fs/btrfs/ctree.c (revision f3a8b664)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32 		      *root, struct btrfs_key *ins_key,
33 		      struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct btrfs_root *root, struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct btrfs_root *root,
39 			      struct extent_buffer *dst_buf,
40 			      struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42 		    int level, int slot);
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 				 struct extent_buffer *eb);
45 
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 }
50 
51 /*
52  * set all locked nodes in the path to blocking locks.  This should
53  * be done before scheduling
54  */
55 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
56 {
57 	int i;
58 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
59 		if (!p->nodes[i] || !p->locks[i])
60 			continue;
61 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
62 		if (p->locks[i] == BTRFS_READ_LOCK)
63 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
64 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
65 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
66 	}
67 }
68 
69 /*
70  * reset all the locked nodes in the patch to spinning locks.
71  *
72  * held is used to keep lockdep happy, when lockdep is enabled
73  * we set held to a blocking lock before we go around and
74  * retake all the spinlocks in the path.  You can safely use NULL
75  * for held
76  */
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78 					struct extent_buffer *held, int held_rw)
79 {
80 	int i;
81 
82 	if (held) {
83 		btrfs_set_lock_blocking_rw(held, held_rw);
84 		if (held_rw == BTRFS_WRITE_LOCK)
85 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
86 		else if (held_rw == BTRFS_READ_LOCK)
87 			held_rw = BTRFS_READ_LOCK_BLOCKING;
88 	}
89 	btrfs_set_path_blocking(p);
90 
91 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
92 		if (p->nodes[i] && p->locks[i]) {
93 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
94 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
95 				p->locks[i] = BTRFS_WRITE_LOCK;
96 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
97 				p->locks[i] = BTRFS_READ_LOCK;
98 		}
99 	}
100 
101 	if (held)
102 		btrfs_clear_lock_blocking_rw(held, held_rw);
103 }
104 
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
107 {
108 	if (!p)
109 		return;
110 	btrfs_release_path(p);
111 	kmem_cache_free(btrfs_path_cachep, p);
112 }
113 
114 /*
115  * path release drops references on the extent buffers in the path
116  * and it drops any locks held by this path
117  *
118  * It is safe to call this on paths that no locks or extent buffers held.
119  */
120 noinline void btrfs_release_path(struct btrfs_path *p)
121 {
122 	int i;
123 
124 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
125 		p->slots[i] = 0;
126 		if (!p->nodes[i])
127 			continue;
128 		if (p->locks[i]) {
129 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
130 			p->locks[i] = 0;
131 		}
132 		free_extent_buffer(p->nodes[i]);
133 		p->nodes[i] = NULL;
134 	}
135 }
136 
137 /*
138  * safely gets a reference on the root node of a tree.  A lock
139  * is not taken, so a concurrent writer may put a different node
140  * at the root of the tree.  See btrfs_lock_root_node for the
141  * looping required.
142  *
143  * The extent buffer returned by this has a reference taken, so
144  * it won't disappear.  It may stop being the root of the tree
145  * at any time because there are no locks held.
146  */
147 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
148 {
149 	struct extent_buffer *eb;
150 
151 	while (1) {
152 		rcu_read_lock();
153 		eb = rcu_dereference(root->node);
154 
155 		/*
156 		 * RCU really hurts here, we could free up the root node because
157 		 * it was COWed but we may not get the new root node yet so do
158 		 * the inc_not_zero dance and if it doesn't work then
159 		 * synchronize_rcu and try again.
160 		 */
161 		if (atomic_inc_not_zero(&eb->refs)) {
162 			rcu_read_unlock();
163 			break;
164 		}
165 		rcu_read_unlock();
166 		synchronize_rcu();
167 	}
168 	return eb;
169 }
170 
171 /* loop around taking references on and locking the root node of the
172  * tree until you end up with a lock on the root.  A locked buffer
173  * is returned, with a reference held.
174  */
175 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
176 {
177 	struct extent_buffer *eb;
178 
179 	while (1) {
180 		eb = btrfs_root_node(root);
181 		btrfs_tree_lock(eb);
182 		if (eb == root->node)
183 			break;
184 		btrfs_tree_unlock(eb);
185 		free_extent_buffer(eb);
186 	}
187 	return eb;
188 }
189 
190 /* loop around taking references on and locking the root node of the
191  * tree until you end up with a lock on the root.  A locked buffer
192  * is returned, with a reference held.
193  */
194 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
195 {
196 	struct extent_buffer *eb;
197 
198 	while (1) {
199 		eb = btrfs_root_node(root);
200 		btrfs_tree_read_lock(eb);
201 		if (eb == root->node)
202 			break;
203 		btrfs_tree_read_unlock(eb);
204 		free_extent_buffer(eb);
205 	}
206 	return eb;
207 }
208 
209 /* cowonly root (everything not a reference counted cow subvolume), just get
210  * put onto a simple dirty list.  transaction.c walks this to make sure they
211  * get properly updated on disk.
212  */
213 static void add_root_to_dirty_list(struct btrfs_root *root)
214 {
215 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
216 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
217 		return;
218 
219 	spin_lock(&root->fs_info->trans_lock);
220 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
221 		/* Want the extent tree to be the last on the list */
222 		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
223 			list_move_tail(&root->dirty_list,
224 				       &root->fs_info->dirty_cowonly_roots);
225 		else
226 			list_move(&root->dirty_list,
227 				  &root->fs_info->dirty_cowonly_roots);
228 	}
229 	spin_unlock(&root->fs_info->trans_lock);
230 }
231 
232 /*
233  * used by snapshot creation to make a copy of a root for a tree with
234  * a given objectid.  The buffer with the new root node is returned in
235  * cow_ret, and this func returns zero on success or a negative error code.
236  */
237 int btrfs_copy_root(struct btrfs_trans_handle *trans,
238 		      struct btrfs_root *root,
239 		      struct extent_buffer *buf,
240 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
241 {
242 	struct extent_buffer *cow;
243 	int ret = 0;
244 	int level;
245 	struct btrfs_disk_key disk_key;
246 
247 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
248 		trans->transid != root->fs_info->running_transaction->transid);
249 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250 		trans->transid != root->last_trans);
251 
252 	level = btrfs_header_level(buf);
253 	if (level == 0)
254 		btrfs_item_key(buf, &disk_key, 0);
255 	else
256 		btrfs_node_key(buf, &disk_key, 0);
257 
258 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
259 			&disk_key, level, buf->start, 0);
260 	if (IS_ERR(cow))
261 		return PTR_ERR(cow);
262 
263 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
264 	btrfs_set_header_bytenr(cow, cow->start);
265 	btrfs_set_header_generation(cow, trans->transid);
266 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
267 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
268 				     BTRFS_HEADER_FLAG_RELOC);
269 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
270 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
271 	else
272 		btrfs_set_header_owner(cow, new_root_objectid);
273 
274 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
275 			    BTRFS_FSID_SIZE);
276 
277 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
278 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 		ret = btrfs_inc_ref(trans, root, cow, 1);
280 	else
281 		ret = btrfs_inc_ref(trans, root, cow, 0);
282 
283 	if (ret)
284 		return ret;
285 
286 	btrfs_mark_buffer_dirty(cow);
287 	*cow_ret = cow;
288 	return 0;
289 }
290 
291 enum mod_log_op {
292 	MOD_LOG_KEY_REPLACE,
293 	MOD_LOG_KEY_ADD,
294 	MOD_LOG_KEY_REMOVE,
295 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
296 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
297 	MOD_LOG_MOVE_KEYS,
298 	MOD_LOG_ROOT_REPLACE,
299 };
300 
301 struct tree_mod_move {
302 	int dst_slot;
303 	int nr_items;
304 };
305 
306 struct tree_mod_root {
307 	u64 logical;
308 	u8 level;
309 };
310 
311 struct tree_mod_elem {
312 	struct rb_node node;
313 	u64 logical;
314 	u64 seq;
315 	enum mod_log_op op;
316 
317 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
318 	int slot;
319 
320 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
321 	u64 generation;
322 
323 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
324 	struct btrfs_disk_key key;
325 	u64 blockptr;
326 
327 	/* this is used for op == MOD_LOG_MOVE_KEYS */
328 	struct tree_mod_move move;
329 
330 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
331 	struct tree_mod_root old_root;
332 };
333 
334 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
335 {
336 	read_lock(&fs_info->tree_mod_log_lock);
337 }
338 
339 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
340 {
341 	read_unlock(&fs_info->tree_mod_log_lock);
342 }
343 
344 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
345 {
346 	write_lock(&fs_info->tree_mod_log_lock);
347 }
348 
349 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
350 {
351 	write_unlock(&fs_info->tree_mod_log_lock);
352 }
353 
354 /*
355  * Pull a new tree mod seq number for our operation.
356  */
357 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
358 {
359 	return atomic64_inc_return(&fs_info->tree_mod_seq);
360 }
361 
362 /*
363  * This adds a new blocker to the tree mod log's blocker list if the @elem
364  * passed does not already have a sequence number set. So when a caller expects
365  * to record tree modifications, it should ensure to set elem->seq to zero
366  * before calling btrfs_get_tree_mod_seq.
367  * Returns a fresh, unused tree log modification sequence number, even if no new
368  * blocker was added.
369  */
370 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
371 			   struct seq_list *elem)
372 {
373 	tree_mod_log_write_lock(fs_info);
374 	spin_lock(&fs_info->tree_mod_seq_lock);
375 	if (!elem->seq) {
376 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
377 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
378 	}
379 	spin_unlock(&fs_info->tree_mod_seq_lock);
380 	tree_mod_log_write_unlock(fs_info);
381 
382 	return elem->seq;
383 }
384 
385 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
386 			    struct seq_list *elem)
387 {
388 	struct rb_root *tm_root;
389 	struct rb_node *node;
390 	struct rb_node *next;
391 	struct seq_list *cur_elem;
392 	struct tree_mod_elem *tm;
393 	u64 min_seq = (u64)-1;
394 	u64 seq_putting = elem->seq;
395 
396 	if (!seq_putting)
397 		return;
398 
399 	spin_lock(&fs_info->tree_mod_seq_lock);
400 	list_del(&elem->list);
401 	elem->seq = 0;
402 
403 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
404 		if (cur_elem->seq < min_seq) {
405 			if (seq_putting > cur_elem->seq) {
406 				/*
407 				 * blocker with lower sequence number exists, we
408 				 * cannot remove anything from the log
409 				 */
410 				spin_unlock(&fs_info->tree_mod_seq_lock);
411 				return;
412 			}
413 			min_seq = cur_elem->seq;
414 		}
415 	}
416 	spin_unlock(&fs_info->tree_mod_seq_lock);
417 
418 	/*
419 	 * anything that's lower than the lowest existing (read: blocked)
420 	 * sequence number can be removed from the tree.
421 	 */
422 	tree_mod_log_write_lock(fs_info);
423 	tm_root = &fs_info->tree_mod_log;
424 	for (node = rb_first(tm_root); node; node = next) {
425 		next = rb_next(node);
426 		tm = container_of(node, struct tree_mod_elem, node);
427 		if (tm->seq > min_seq)
428 			continue;
429 		rb_erase(node, tm_root);
430 		kfree(tm);
431 	}
432 	tree_mod_log_write_unlock(fs_info);
433 }
434 
435 /*
436  * key order of the log:
437  *       node/leaf start address -> sequence
438  *
439  * The 'start address' is the logical address of the *new* root node
440  * for root replace operations, or the logical address of the affected
441  * block for all other operations.
442  *
443  * Note: must be called with write lock (tree_mod_log_write_lock).
444  */
445 static noinline int
446 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
447 {
448 	struct rb_root *tm_root;
449 	struct rb_node **new;
450 	struct rb_node *parent = NULL;
451 	struct tree_mod_elem *cur;
452 
453 	BUG_ON(!tm);
454 
455 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
456 
457 	tm_root = &fs_info->tree_mod_log;
458 	new = &tm_root->rb_node;
459 	while (*new) {
460 		cur = container_of(*new, struct tree_mod_elem, node);
461 		parent = *new;
462 		if (cur->logical < tm->logical)
463 			new = &((*new)->rb_left);
464 		else if (cur->logical > tm->logical)
465 			new = &((*new)->rb_right);
466 		else if (cur->seq < tm->seq)
467 			new = &((*new)->rb_left);
468 		else if (cur->seq > tm->seq)
469 			new = &((*new)->rb_right);
470 		else
471 			return -EEXIST;
472 	}
473 
474 	rb_link_node(&tm->node, parent, new);
475 	rb_insert_color(&tm->node, tm_root);
476 	return 0;
477 }
478 
479 /*
480  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
481  * returns zero with the tree_mod_log_lock acquired. The caller must hold
482  * this until all tree mod log insertions are recorded in the rb tree and then
483  * call tree_mod_log_write_unlock() to release.
484  */
485 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
486 				    struct extent_buffer *eb) {
487 	smp_mb();
488 	if (list_empty(&(fs_info)->tree_mod_seq_list))
489 		return 1;
490 	if (eb && btrfs_header_level(eb) == 0)
491 		return 1;
492 
493 	tree_mod_log_write_lock(fs_info);
494 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
495 		tree_mod_log_write_unlock(fs_info);
496 		return 1;
497 	}
498 
499 	return 0;
500 }
501 
502 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
503 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
504 				    struct extent_buffer *eb)
505 {
506 	smp_mb();
507 	if (list_empty(&(fs_info)->tree_mod_seq_list))
508 		return 0;
509 	if (eb && btrfs_header_level(eb) == 0)
510 		return 0;
511 
512 	return 1;
513 }
514 
515 static struct tree_mod_elem *
516 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
517 		    enum mod_log_op op, gfp_t flags)
518 {
519 	struct tree_mod_elem *tm;
520 
521 	tm = kzalloc(sizeof(*tm), flags);
522 	if (!tm)
523 		return NULL;
524 
525 	tm->logical = eb->start;
526 	if (op != MOD_LOG_KEY_ADD) {
527 		btrfs_node_key(eb, &tm->key, slot);
528 		tm->blockptr = btrfs_node_blockptr(eb, slot);
529 	}
530 	tm->op = op;
531 	tm->slot = slot;
532 	tm->generation = btrfs_node_ptr_generation(eb, slot);
533 	RB_CLEAR_NODE(&tm->node);
534 
535 	return tm;
536 }
537 
538 static noinline int
539 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
540 			struct extent_buffer *eb, int slot,
541 			enum mod_log_op op, gfp_t flags)
542 {
543 	struct tree_mod_elem *tm;
544 	int ret;
545 
546 	if (!tree_mod_need_log(fs_info, eb))
547 		return 0;
548 
549 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
550 	if (!tm)
551 		return -ENOMEM;
552 
553 	if (tree_mod_dont_log(fs_info, eb)) {
554 		kfree(tm);
555 		return 0;
556 	}
557 
558 	ret = __tree_mod_log_insert(fs_info, tm);
559 	tree_mod_log_write_unlock(fs_info);
560 	if (ret)
561 		kfree(tm);
562 
563 	return ret;
564 }
565 
566 static noinline int
567 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
568 			 struct extent_buffer *eb, int dst_slot, int src_slot,
569 			 int nr_items, gfp_t flags)
570 {
571 	struct tree_mod_elem *tm = NULL;
572 	struct tree_mod_elem **tm_list = NULL;
573 	int ret = 0;
574 	int i;
575 	int locked = 0;
576 
577 	if (!tree_mod_need_log(fs_info, eb))
578 		return 0;
579 
580 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
581 	if (!tm_list)
582 		return -ENOMEM;
583 
584 	tm = kzalloc(sizeof(*tm), flags);
585 	if (!tm) {
586 		ret = -ENOMEM;
587 		goto free_tms;
588 	}
589 
590 	tm->logical = eb->start;
591 	tm->slot = src_slot;
592 	tm->move.dst_slot = dst_slot;
593 	tm->move.nr_items = nr_items;
594 	tm->op = MOD_LOG_MOVE_KEYS;
595 
596 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
597 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
598 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
599 		if (!tm_list[i]) {
600 			ret = -ENOMEM;
601 			goto free_tms;
602 		}
603 	}
604 
605 	if (tree_mod_dont_log(fs_info, eb))
606 		goto free_tms;
607 	locked = 1;
608 
609 	/*
610 	 * When we override something during the move, we log these removals.
611 	 * This can only happen when we move towards the beginning of the
612 	 * buffer, i.e. dst_slot < src_slot.
613 	 */
614 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
615 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
616 		if (ret)
617 			goto free_tms;
618 	}
619 
620 	ret = __tree_mod_log_insert(fs_info, tm);
621 	if (ret)
622 		goto free_tms;
623 	tree_mod_log_write_unlock(fs_info);
624 	kfree(tm_list);
625 
626 	return 0;
627 free_tms:
628 	for (i = 0; i < nr_items; i++) {
629 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
630 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
631 		kfree(tm_list[i]);
632 	}
633 	if (locked)
634 		tree_mod_log_write_unlock(fs_info);
635 	kfree(tm_list);
636 	kfree(tm);
637 
638 	return ret;
639 }
640 
641 static inline int
642 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
643 		       struct tree_mod_elem **tm_list,
644 		       int nritems)
645 {
646 	int i, j;
647 	int ret;
648 
649 	for (i = nritems - 1; i >= 0; i--) {
650 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
651 		if (ret) {
652 			for (j = nritems - 1; j > i; j--)
653 				rb_erase(&tm_list[j]->node,
654 					 &fs_info->tree_mod_log);
655 			return ret;
656 		}
657 	}
658 
659 	return 0;
660 }
661 
662 static noinline int
663 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
664 			 struct extent_buffer *old_root,
665 			 struct extent_buffer *new_root, gfp_t flags,
666 			 int log_removal)
667 {
668 	struct tree_mod_elem *tm = NULL;
669 	struct tree_mod_elem **tm_list = NULL;
670 	int nritems = 0;
671 	int ret = 0;
672 	int i;
673 
674 	if (!tree_mod_need_log(fs_info, NULL))
675 		return 0;
676 
677 	if (log_removal && btrfs_header_level(old_root) > 0) {
678 		nritems = btrfs_header_nritems(old_root);
679 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
680 				  flags);
681 		if (!tm_list) {
682 			ret = -ENOMEM;
683 			goto free_tms;
684 		}
685 		for (i = 0; i < nritems; i++) {
686 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
687 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
688 			if (!tm_list[i]) {
689 				ret = -ENOMEM;
690 				goto free_tms;
691 			}
692 		}
693 	}
694 
695 	tm = kzalloc(sizeof(*tm), flags);
696 	if (!tm) {
697 		ret = -ENOMEM;
698 		goto free_tms;
699 	}
700 
701 	tm->logical = new_root->start;
702 	tm->old_root.logical = old_root->start;
703 	tm->old_root.level = btrfs_header_level(old_root);
704 	tm->generation = btrfs_header_generation(old_root);
705 	tm->op = MOD_LOG_ROOT_REPLACE;
706 
707 	if (tree_mod_dont_log(fs_info, NULL))
708 		goto free_tms;
709 
710 	if (tm_list)
711 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
712 	if (!ret)
713 		ret = __tree_mod_log_insert(fs_info, tm);
714 
715 	tree_mod_log_write_unlock(fs_info);
716 	if (ret)
717 		goto free_tms;
718 	kfree(tm_list);
719 
720 	return ret;
721 
722 free_tms:
723 	if (tm_list) {
724 		for (i = 0; i < nritems; i++)
725 			kfree(tm_list[i]);
726 		kfree(tm_list);
727 	}
728 	kfree(tm);
729 
730 	return ret;
731 }
732 
733 static struct tree_mod_elem *
734 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
735 		      int smallest)
736 {
737 	struct rb_root *tm_root;
738 	struct rb_node *node;
739 	struct tree_mod_elem *cur = NULL;
740 	struct tree_mod_elem *found = NULL;
741 
742 	tree_mod_log_read_lock(fs_info);
743 	tm_root = &fs_info->tree_mod_log;
744 	node = tm_root->rb_node;
745 	while (node) {
746 		cur = container_of(node, struct tree_mod_elem, node);
747 		if (cur->logical < start) {
748 			node = node->rb_left;
749 		} else if (cur->logical > start) {
750 			node = node->rb_right;
751 		} else if (cur->seq < min_seq) {
752 			node = node->rb_left;
753 		} else if (!smallest) {
754 			/* we want the node with the highest seq */
755 			if (found)
756 				BUG_ON(found->seq > cur->seq);
757 			found = cur;
758 			node = node->rb_left;
759 		} else if (cur->seq > min_seq) {
760 			/* we want the node with the smallest seq */
761 			if (found)
762 				BUG_ON(found->seq < cur->seq);
763 			found = cur;
764 			node = node->rb_right;
765 		} else {
766 			found = cur;
767 			break;
768 		}
769 	}
770 	tree_mod_log_read_unlock(fs_info);
771 
772 	return found;
773 }
774 
775 /*
776  * this returns the element from the log with the smallest time sequence
777  * value that's in the log (the oldest log item). any element with a time
778  * sequence lower than min_seq will be ignored.
779  */
780 static struct tree_mod_elem *
781 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
782 			   u64 min_seq)
783 {
784 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
785 }
786 
787 /*
788  * this returns the element from the log with the largest time sequence
789  * value that's in the log (the most recent log item). any element with
790  * a time sequence lower than min_seq will be ignored.
791  */
792 static struct tree_mod_elem *
793 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
794 {
795 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
796 }
797 
798 static noinline int
799 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
800 		     struct extent_buffer *src, unsigned long dst_offset,
801 		     unsigned long src_offset, int nr_items)
802 {
803 	int ret = 0;
804 	struct tree_mod_elem **tm_list = NULL;
805 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
806 	int i;
807 	int locked = 0;
808 
809 	if (!tree_mod_need_log(fs_info, NULL))
810 		return 0;
811 
812 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
813 		return 0;
814 
815 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
816 			  GFP_NOFS);
817 	if (!tm_list)
818 		return -ENOMEM;
819 
820 	tm_list_add = tm_list;
821 	tm_list_rem = tm_list + nr_items;
822 	for (i = 0; i < nr_items; i++) {
823 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
824 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
825 		if (!tm_list_rem[i]) {
826 			ret = -ENOMEM;
827 			goto free_tms;
828 		}
829 
830 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
831 		    MOD_LOG_KEY_ADD, GFP_NOFS);
832 		if (!tm_list_add[i]) {
833 			ret = -ENOMEM;
834 			goto free_tms;
835 		}
836 	}
837 
838 	if (tree_mod_dont_log(fs_info, NULL))
839 		goto free_tms;
840 	locked = 1;
841 
842 	for (i = 0; i < nr_items; i++) {
843 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
844 		if (ret)
845 			goto free_tms;
846 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
847 		if (ret)
848 			goto free_tms;
849 	}
850 
851 	tree_mod_log_write_unlock(fs_info);
852 	kfree(tm_list);
853 
854 	return 0;
855 
856 free_tms:
857 	for (i = 0; i < nr_items * 2; i++) {
858 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
859 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
860 		kfree(tm_list[i]);
861 	}
862 	if (locked)
863 		tree_mod_log_write_unlock(fs_info);
864 	kfree(tm_list);
865 
866 	return ret;
867 }
868 
869 static inline void
870 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
871 		     int dst_offset, int src_offset, int nr_items)
872 {
873 	int ret;
874 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
875 				       nr_items, GFP_NOFS);
876 	BUG_ON(ret < 0);
877 }
878 
879 static noinline void
880 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
881 			  struct extent_buffer *eb, int slot, int atomic)
882 {
883 	int ret;
884 
885 	ret = tree_mod_log_insert_key(fs_info, eb, slot,
886 					MOD_LOG_KEY_REPLACE,
887 					atomic ? GFP_ATOMIC : GFP_NOFS);
888 	BUG_ON(ret < 0);
889 }
890 
891 static noinline int
892 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
893 {
894 	struct tree_mod_elem **tm_list = NULL;
895 	int nritems = 0;
896 	int i;
897 	int ret = 0;
898 
899 	if (btrfs_header_level(eb) == 0)
900 		return 0;
901 
902 	if (!tree_mod_need_log(fs_info, NULL))
903 		return 0;
904 
905 	nritems = btrfs_header_nritems(eb);
906 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
907 	if (!tm_list)
908 		return -ENOMEM;
909 
910 	for (i = 0; i < nritems; i++) {
911 		tm_list[i] = alloc_tree_mod_elem(eb, i,
912 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
913 		if (!tm_list[i]) {
914 			ret = -ENOMEM;
915 			goto free_tms;
916 		}
917 	}
918 
919 	if (tree_mod_dont_log(fs_info, eb))
920 		goto free_tms;
921 
922 	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
923 	tree_mod_log_write_unlock(fs_info);
924 	if (ret)
925 		goto free_tms;
926 	kfree(tm_list);
927 
928 	return 0;
929 
930 free_tms:
931 	for (i = 0; i < nritems; i++)
932 		kfree(tm_list[i]);
933 	kfree(tm_list);
934 
935 	return ret;
936 }
937 
938 static noinline void
939 tree_mod_log_set_root_pointer(struct btrfs_root *root,
940 			      struct extent_buffer *new_root_node,
941 			      int log_removal)
942 {
943 	int ret;
944 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
945 				       new_root_node, GFP_NOFS, log_removal);
946 	BUG_ON(ret < 0);
947 }
948 
949 /*
950  * check if the tree block can be shared by multiple trees
951  */
952 int btrfs_block_can_be_shared(struct btrfs_root *root,
953 			      struct extent_buffer *buf)
954 {
955 	/*
956 	 * Tree blocks not in reference counted trees and tree roots
957 	 * are never shared. If a block was allocated after the last
958 	 * snapshot and the block was not allocated by tree relocation,
959 	 * we know the block is not shared.
960 	 */
961 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
962 	    buf != root->node && buf != root->commit_root &&
963 	    (btrfs_header_generation(buf) <=
964 	     btrfs_root_last_snapshot(&root->root_item) ||
965 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
966 		return 1;
967 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
968 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
969 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
970 		return 1;
971 #endif
972 	return 0;
973 }
974 
975 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
976 				       struct btrfs_root *root,
977 				       struct extent_buffer *buf,
978 				       struct extent_buffer *cow,
979 				       int *last_ref)
980 {
981 	u64 refs;
982 	u64 owner;
983 	u64 flags;
984 	u64 new_flags = 0;
985 	int ret;
986 
987 	/*
988 	 * Backrefs update rules:
989 	 *
990 	 * Always use full backrefs for extent pointers in tree block
991 	 * allocated by tree relocation.
992 	 *
993 	 * If a shared tree block is no longer referenced by its owner
994 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
995 	 * use full backrefs for extent pointers in tree block.
996 	 *
997 	 * If a tree block is been relocating
998 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
999 	 * use full backrefs for extent pointers in tree block.
1000 	 * The reason for this is some operations (such as drop tree)
1001 	 * are only allowed for blocks use full backrefs.
1002 	 */
1003 
1004 	if (btrfs_block_can_be_shared(root, buf)) {
1005 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
1006 					       btrfs_header_level(buf), 1,
1007 					       &refs, &flags);
1008 		if (ret)
1009 			return ret;
1010 		if (refs == 0) {
1011 			ret = -EROFS;
1012 			btrfs_handle_fs_error(root->fs_info, ret, NULL);
1013 			return ret;
1014 		}
1015 	} else {
1016 		refs = 1;
1017 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1018 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1019 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1020 		else
1021 			flags = 0;
1022 	}
1023 
1024 	owner = btrfs_header_owner(buf);
1025 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1026 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1027 
1028 	if (refs > 1) {
1029 		if ((owner == root->root_key.objectid ||
1030 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1031 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1032 			ret = btrfs_inc_ref(trans, root, buf, 1);
1033 			BUG_ON(ret); /* -ENOMEM */
1034 
1035 			if (root->root_key.objectid ==
1036 			    BTRFS_TREE_RELOC_OBJECTID) {
1037 				ret = btrfs_dec_ref(trans, root, buf, 0);
1038 				BUG_ON(ret); /* -ENOMEM */
1039 				ret = btrfs_inc_ref(trans, root, cow, 1);
1040 				BUG_ON(ret); /* -ENOMEM */
1041 			}
1042 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1043 		} else {
1044 
1045 			if (root->root_key.objectid ==
1046 			    BTRFS_TREE_RELOC_OBJECTID)
1047 				ret = btrfs_inc_ref(trans, root, cow, 1);
1048 			else
1049 				ret = btrfs_inc_ref(trans, root, cow, 0);
1050 			BUG_ON(ret); /* -ENOMEM */
1051 		}
1052 		if (new_flags != 0) {
1053 			int level = btrfs_header_level(buf);
1054 
1055 			ret = btrfs_set_disk_extent_flags(trans, root,
1056 							  buf->start,
1057 							  buf->len,
1058 							  new_flags, level, 0);
1059 			if (ret)
1060 				return ret;
1061 		}
1062 	} else {
1063 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1064 			if (root->root_key.objectid ==
1065 			    BTRFS_TREE_RELOC_OBJECTID)
1066 				ret = btrfs_inc_ref(trans, root, cow, 1);
1067 			else
1068 				ret = btrfs_inc_ref(trans, root, cow, 0);
1069 			BUG_ON(ret); /* -ENOMEM */
1070 			ret = btrfs_dec_ref(trans, root, buf, 1);
1071 			BUG_ON(ret); /* -ENOMEM */
1072 		}
1073 		clean_tree_block(trans, root->fs_info, buf);
1074 		*last_ref = 1;
1075 	}
1076 	return 0;
1077 }
1078 
1079 /*
1080  * does the dirty work in cow of a single block.  The parent block (if
1081  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1082  * dirty and returned locked.  If you modify the block it needs to be marked
1083  * dirty again.
1084  *
1085  * search_start -- an allocation hint for the new block
1086  *
1087  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1088  * bytes the allocator should try to find free next to the block it returns.
1089  * This is just a hint and may be ignored by the allocator.
1090  */
1091 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1092 			     struct btrfs_root *root,
1093 			     struct extent_buffer *buf,
1094 			     struct extent_buffer *parent, int parent_slot,
1095 			     struct extent_buffer **cow_ret,
1096 			     u64 search_start, u64 empty_size)
1097 {
1098 	struct btrfs_disk_key disk_key;
1099 	struct extent_buffer *cow;
1100 	int level, ret;
1101 	int last_ref = 0;
1102 	int unlock_orig = 0;
1103 	u64 parent_start = 0;
1104 
1105 	if (*cow_ret == buf)
1106 		unlock_orig = 1;
1107 
1108 	btrfs_assert_tree_locked(buf);
1109 
1110 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1111 		trans->transid != root->fs_info->running_transaction->transid);
1112 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 		trans->transid != root->last_trans);
1114 
1115 	level = btrfs_header_level(buf);
1116 
1117 	if (level == 0)
1118 		btrfs_item_key(buf, &disk_key, 0);
1119 	else
1120 		btrfs_node_key(buf, &disk_key, 0);
1121 
1122 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1123 		parent_start = parent->start;
1124 
1125 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1126 			root->root_key.objectid, &disk_key, level,
1127 			search_start, empty_size);
1128 	if (IS_ERR(cow))
1129 		return PTR_ERR(cow);
1130 
1131 	/* cow is set to blocking by btrfs_init_new_buffer */
1132 
1133 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1134 	btrfs_set_header_bytenr(cow, cow->start);
1135 	btrfs_set_header_generation(cow, trans->transid);
1136 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1137 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1138 				     BTRFS_HEADER_FLAG_RELOC);
1139 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1140 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1141 	else
1142 		btrfs_set_header_owner(cow, root->root_key.objectid);
1143 
1144 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1145 			    BTRFS_FSID_SIZE);
1146 
1147 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1148 	if (ret) {
1149 		btrfs_abort_transaction(trans, ret);
1150 		return ret;
1151 	}
1152 
1153 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1154 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1155 		if (ret) {
1156 			btrfs_abort_transaction(trans, ret);
1157 			return ret;
1158 		}
1159 	}
1160 
1161 	if (buf == root->node) {
1162 		WARN_ON(parent && parent != buf);
1163 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1164 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1165 			parent_start = buf->start;
1166 
1167 		extent_buffer_get(cow);
1168 		tree_mod_log_set_root_pointer(root, cow, 1);
1169 		rcu_assign_pointer(root->node, cow);
1170 
1171 		btrfs_free_tree_block(trans, root, buf, parent_start,
1172 				      last_ref);
1173 		free_extent_buffer(buf);
1174 		add_root_to_dirty_list(root);
1175 	} else {
1176 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1177 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1178 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1179 		btrfs_set_node_blockptr(parent, parent_slot,
1180 					cow->start);
1181 		btrfs_set_node_ptr_generation(parent, parent_slot,
1182 					      trans->transid);
1183 		btrfs_mark_buffer_dirty(parent);
1184 		if (last_ref) {
1185 			ret = tree_mod_log_free_eb(root->fs_info, buf);
1186 			if (ret) {
1187 				btrfs_abort_transaction(trans, ret);
1188 				return ret;
1189 			}
1190 		}
1191 		btrfs_free_tree_block(trans, root, buf, parent_start,
1192 				      last_ref);
1193 	}
1194 	if (unlock_orig)
1195 		btrfs_tree_unlock(buf);
1196 	free_extent_buffer_stale(buf);
1197 	btrfs_mark_buffer_dirty(cow);
1198 	*cow_ret = cow;
1199 	return 0;
1200 }
1201 
1202 /*
1203  * returns the logical address of the oldest predecessor of the given root.
1204  * entries older than time_seq are ignored.
1205  */
1206 static struct tree_mod_elem *
1207 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1208 			   struct extent_buffer *eb_root, u64 time_seq)
1209 {
1210 	struct tree_mod_elem *tm;
1211 	struct tree_mod_elem *found = NULL;
1212 	u64 root_logical = eb_root->start;
1213 	int looped = 0;
1214 
1215 	if (!time_seq)
1216 		return NULL;
1217 
1218 	/*
1219 	 * the very last operation that's logged for a root is the
1220 	 * replacement operation (if it is replaced at all). this has
1221 	 * the logical address of the *new* root, making it the very
1222 	 * first operation that's logged for this root.
1223 	 */
1224 	while (1) {
1225 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1226 						time_seq);
1227 		if (!looped && !tm)
1228 			return NULL;
1229 		/*
1230 		 * if there are no tree operation for the oldest root, we simply
1231 		 * return it. this should only happen if that (old) root is at
1232 		 * level 0.
1233 		 */
1234 		if (!tm)
1235 			break;
1236 
1237 		/*
1238 		 * if there's an operation that's not a root replacement, we
1239 		 * found the oldest version of our root. normally, we'll find a
1240 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1241 		 */
1242 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1243 			break;
1244 
1245 		found = tm;
1246 		root_logical = tm->old_root.logical;
1247 		looped = 1;
1248 	}
1249 
1250 	/* if there's no old root to return, return what we found instead */
1251 	if (!found)
1252 		found = tm;
1253 
1254 	return found;
1255 }
1256 
1257 /*
1258  * tm is a pointer to the first operation to rewind within eb. then, all
1259  * previous operations will be rewound (until we reach something older than
1260  * time_seq).
1261  */
1262 static void
1263 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1264 		      u64 time_seq, struct tree_mod_elem *first_tm)
1265 {
1266 	u32 n;
1267 	struct rb_node *next;
1268 	struct tree_mod_elem *tm = first_tm;
1269 	unsigned long o_dst;
1270 	unsigned long o_src;
1271 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1272 
1273 	n = btrfs_header_nritems(eb);
1274 	tree_mod_log_read_lock(fs_info);
1275 	while (tm && tm->seq >= time_seq) {
1276 		/*
1277 		 * all the operations are recorded with the operator used for
1278 		 * the modification. as we're going backwards, we do the
1279 		 * opposite of each operation here.
1280 		 */
1281 		switch (tm->op) {
1282 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1283 			BUG_ON(tm->slot < n);
1284 			/* Fallthrough */
1285 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1286 		case MOD_LOG_KEY_REMOVE:
1287 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1288 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1289 			btrfs_set_node_ptr_generation(eb, tm->slot,
1290 						      tm->generation);
1291 			n++;
1292 			break;
1293 		case MOD_LOG_KEY_REPLACE:
1294 			BUG_ON(tm->slot >= n);
1295 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1296 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1297 			btrfs_set_node_ptr_generation(eb, tm->slot,
1298 						      tm->generation);
1299 			break;
1300 		case MOD_LOG_KEY_ADD:
1301 			/* if a move operation is needed it's in the log */
1302 			n--;
1303 			break;
1304 		case MOD_LOG_MOVE_KEYS:
1305 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1306 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1307 			memmove_extent_buffer(eb, o_dst, o_src,
1308 					      tm->move.nr_items * p_size);
1309 			break;
1310 		case MOD_LOG_ROOT_REPLACE:
1311 			/*
1312 			 * this operation is special. for roots, this must be
1313 			 * handled explicitly before rewinding.
1314 			 * for non-roots, this operation may exist if the node
1315 			 * was a root: root A -> child B; then A gets empty and
1316 			 * B is promoted to the new root. in the mod log, we'll
1317 			 * have a root-replace operation for B, a tree block
1318 			 * that is no root. we simply ignore that operation.
1319 			 */
1320 			break;
1321 		}
1322 		next = rb_next(&tm->node);
1323 		if (!next)
1324 			break;
1325 		tm = container_of(next, struct tree_mod_elem, node);
1326 		if (tm->logical != first_tm->logical)
1327 			break;
1328 	}
1329 	tree_mod_log_read_unlock(fs_info);
1330 	btrfs_set_header_nritems(eb, n);
1331 }
1332 
1333 /*
1334  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1335  * is returned. If rewind operations happen, a fresh buffer is returned. The
1336  * returned buffer is always read-locked. If the returned buffer is not the
1337  * input buffer, the lock on the input buffer is released and the input buffer
1338  * is freed (its refcount is decremented).
1339  */
1340 static struct extent_buffer *
1341 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1342 		    struct extent_buffer *eb, u64 time_seq)
1343 {
1344 	struct extent_buffer *eb_rewin;
1345 	struct tree_mod_elem *tm;
1346 
1347 	if (!time_seq)
1348 		return eb;
1349 
1350 	if (btrfs_header_level(eb) == 0)
1351 		return eb;
1352 
1353 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1354 	if (!tm)
1355 		return eb;
1356 
1357 	btrfs_set_path_blocking(path);
1358 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1359 
1360 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1361 		BUG_ON(tm->slot != 0);
1362 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1363 						eb->len);
1364 		if (!eb_rewin) {
1365 			btrfs_tree_read_unlock_blocking(eb);
1366 			free_extent_buffer(eb);
1367 			return NULL;
1368 		}
1369 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1370 		btrfs_set_header_backref_rev(eb_rewin,
1371 					     btrfs_header_backref_rev(eb));
1372 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1373 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1374 	} else {
1375 		eb_rewin = btrfs_clone_extent_buffer(eb);
1376 		if (!eb_rewin) {
1377 			btrfs_tree_read_unlock_blocking(eb);
1378 			free_extent_buffer(eb);
1379 			return NULL;
1380 		}
1381 	}
1382 
1383 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1384 	btrfs_tree_read_unlock_blocking(eb);
1385 	free_extent_buffer(eb);
1386 
1387 	extent_buffer_get(eb_rewin);
1388 	btrfs_tree_read_lock(eb_rewin);
1389 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1390 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1391 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1392 
1393 	return eb_rewin;
1394 }
1395 
1396 /*
1397  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1398  * value. If there are no changes, the current root->root_node is returned. If
1399  * anything changed in between, there's a fresh buffer allocated on which the
1400  * rewind operations are done. In any case, the returned buffer is read locked.
1401  * Returns NULL on error (with no locks held).
1402  */
1403 static inline struct extent_buffer *
1404 get_old_root(struct btrfs_root *root, u64 time_seq)
1405 {
1406 	struct tree_mod_elem *tm;
1407 	struct extent_buffer *eb = NULL;
1408 	struct extent_buffer *eb_root;
1409 	struct extent_buffer *old;
1410 	struct tree_mod_root *old_root = NULL;
1411 	u64 old_generation = 0;
1412 	u64 logical;
1413 
1414 	eb_root = btrfs_read_lock_root_node(root);
1415 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1416 	if (!tm)
1417 		return eb_root;
1418 
1419 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1420 		old_root = &tm->old_root;
1421 		old_generation = tm->generation;
1422 		logical = old_root->logical;
1423 	} else {
1424 		logical = eb_root->start;
1425 	}
1426 
1427 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1428 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1429 		btrfs_tree_read_unlock(eb_root);
1430 		free_extent_buffer(eb_root);
1431 		old = read_tree_block(root, logical, 0);
1432 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1433 			if (!IS_ERR(old))
1434 				free_extent_buffer(old);
1435 			btrfs_warn(root->fs_info,
1436 				"failed to read tree block %llu from get_old_root", logical);
1437 		} else {
1438 			eb = btrfs_clone_extent_buffer(old);
1439 			free_extent_buffer(old);
1440 		}
1441 	} else if (old_root) {
1442 		btrfs_tree_read_unlock(eb_root);
1443 		free_extent_buffer(eb_root);
1444 		eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1445 					root->nodesize);
1446 	} else {
1447 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1448 		eb = btrfs_clone_extent_buffer(eb_root);
1449 		btrfs_tree_read_unlock_blocking(eb_root);
1450 		free_extent_buffer(eb_root);
1451 	}
1452 
1453 	if (!eb)
1454 		return NULL;
1455 	extent_buffer_get(eb);
1456 	btrfs_tree_read_lock(eb);
1457 	if (old_root) {
1458 		btrfs_set_header_bytenr(eb, eb->start);
1459 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1460 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1461 		btrfs_set_header_level(eb, old_root->level);
1462 		btrfs_set_header_generation(eb, old_generation);
1463 	}
1464 	if (tm)
1465 		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1466 	else
1467 		WARN_ON(btrfs_header_level(eb) != 0);
1468 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1469 
1470 	return eb;
1471 }
1472 
1473 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1474 {
1475 	struct tree_mod_elem *tm;
1476 	int level;
1477 	struct extent_buffer *eb_root = btrfs_root_node(root);
1478 
1479 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1480 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1481 		level = tm->old_root.level;
1482 	} else {
1483 		level = btrfs_header_level(eb_root);
1484 	}
1485 	free_extent_buffer(eb_root);
1486 
1487 	return level;
1488 }
1489 
1490 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1491 				   struct btrfs_root *root,
1492 				   struct extent_buffer *buf)
1493 {
1494 	if (btrfs_is_testing(root->fs_info))
1495 		return 0;
1496 
1497 	/* ensure we can see the force_cow */
1498 	smp_rmb();
1499 
1500 	/*
1501 	 * We do not need to cow a block if
1502 	 * 1) this block is not created or changed in this transaction;
1503 	 * 2) this block does not belong to TREE_RELOC tree;
1504 	 * 3) the root is not forced COW.
1505 	 *
1506 	 * What is forced COW:
1507 	 *    when we create snapshot during committing the transaction,
1508 	 *    after we've finished coping src root, we must COW the shared
1509 	 *    block to ensure the metadata consistency.
1510 	 */
1511 	if (btrfs_header_generation(buf) == trans->transid &&
1512 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1513 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1514 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1515 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1516 		return 0;
1517 	return 1;
1518 }
1519 
1520 /*
1521  * cows a single block, see __btrfs_cow_block for the real work.
1522  * This version of it has extra checks so that a block isn't COWed more than
1523  * once per transaction, as long as it hasn't been written yet
1524  */
1525 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1526 		    struct btrfs_root *root, struct extent_buffer *buf,
1527 		    struct extent_buffer *parent, int parent_slot,
1528 		    struct extent_buffer **cow_ret)
1529 {
1530 	u64 search_start;
1531 	int ret;
1532 
1533 	if (trans->transaction != root->fs_info->running_transaction)
1534 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1535 		       trans->transid,
1536 		       root->fs_info->running_transaction->transid);
1537 
1538 	if (trans->transid != root->fs_info->generation)
1539 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1540 		       trans->transid, root->fs_info->generation);
1541 
1542 	if (!should_cow_block(trans, root, buf)) {
1543 		trans->dirty = true;
1544 		*cow_ret = buf;
1545 		return 0;
1546 	}
1547 
1548 	search_start = buf->start & ~((u64)SZ_1G - 1);
1549 
1550 	if (parent)
1551 		btrfs_set_lock_blocking(parent);
1552 	btrfs_set_lock_blocking(buf);
1553 
1554 	ret = __btrfs_cow_block(trans, root, buf, parent,
1555 				 parent_slot, cow_ret, search_start, 0);
1556 
1557 	trace_btrfs_cow_block(root, buf, *cow_ret);
1558 
1559 	return ret;
1560 }
1561 
1562 /*
1563  * helper function for defrag to decide if two blocks pointed to by a
1564  * node are actually close by
1565  */
1566 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1567 {
1568 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1569 		return 1;
1570 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1571 		return 1;
1572 	return 0;
1573 }
1574 
1575 /*
1576  * compare two keys in a memcmp fashion
1577  */
1578 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1579 {
1580 	struct btrfs_key k1;
1581 
1582 	btrfs_disk_key_to_cpu(&k1, disk);
1583 
1584 	return btrfs_comp_cpu_keys(&k1, k2);
1585 }
1586 
1587 /*
1588  * same as comp_keys only with two btrfs_key's
1589  */
1590 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1591 {
1592 	if (k1->objectid > k2->objectid)
1593 		return 1;
1594 	if (k1->objectid < k2->objectid)
1595 		return -1;
1596 	if (k1->type > k2->type)
1597 		return 1;
1598 	if (k1->type < k2->type)
1599 		return -1;
1600 	if (k1->offset > k2->offset)
1601 		return 1;
1602 	if (k1->offset < k2->offset)
1603 		return -1;
1604 	return 0;
1605 }
1606 
1607 /*
1608  * this is used by the defrag code to go through all the
1609  * leaves pointed to by a node and reallocate them so that
1610  * disk order is close to key order
1611  */
1612 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1613 		       struct btrfs_root *root, struct extent_buffer *parent,
1614 		       int start_slot, u64 *last_ret,
1615 		       struct btrfs_key *progress)
1616 {
1617 	struct extent_buffer *cur;
1618 	u64 blocknr;
1619 	u64 gen;
1620 	u64 search_start = *last_ret;
1621 	u64 last_block = 0;
1622 	u64 other;
1623 	u32 parent_nritems;
1624 	int end_slot;
1625 	int i;
1626 	int err = 0;
1627 	int parent_level;
1628 	int uptodate;
1629 	u32 blocksize;
1630 	int progress_passed = 0;
1631 	struct btrfs_disk_key disk_key;
1632 
1633 	parent_level = btrfs_header_level(parent);
1634 
1635 	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1636 	WARN_ON(trans->transid != root->fs_info->generation);
1637 
1638 	parent_nritems = btrfs_header_nritems(parent);
1639 	blocksize = root->nodesize;
1640 	end_slot = parent_nritems - 1;
1641 
1642 	if (parent_nritems <= 1)
1643 		return 0;
1644 
1645 	btrfs_set_lock_blocking(parent);
1646 
1647 	for (i = start_slot; i <= end_slot; i++) {
1648 		int close = 1;
1649 
1650 		btrfs_node_key(parent, &disk_key, i);
1651 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1652 			continue;
1653 
1654 		progress_passed = 1;
1655 		blocknr = btrfs_node_blockptr(parent, i);
1656 		gen = btrfs_node_ptr_generation(parent, i);
1657 		if (last_block == 0)
1658 			last_block = blocknr;
1659 
1660 		if (i > 0) {
1661 			other = btrfs_node_blockptr(parent, i - 1);
1662 			close = close_blocks(blocknr, other, blocksize);
1663 		}
1664 		if (!close && i < end_slot) {
1665 			other = btrfs_node_blockptr(parent, i + 1);
1666 			close = close_blocks(blocknr, other, blocksize);
1667 		}
1668 		if (close) {
1669 			last_block = blocknr;
1670 			continue;
1671 		}
1672 
1673 		cur = btrfs_find_tree_block(root->fs_info, blocknr);
1674 		if (cur)
1675 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1676 		else
1677 			uptodate = 0;
1678 		if (!cur || !uptodate) {
1679 			if (!cur) {
1680 				cur = read_tree_block(root, blocknr, gen);
1681 				if (IS_ERR(cur)) {
1682 					return PTR_ERR(cur);
1683 				} else if (!extent_buffer_uptodate(cur)) {
1684 					free_extent_buffer(cur);
1685 					return -EIO;
1686 				}
1687 			} else if (!uptodate) {
1688 				err = btrfs_read_buffer(cur, gen);
1689 				if (err) {
1690 					free_extent_buffer(cur);
1691 					return err;
1692 				}
1693 			}
1694 		}
1695 		if (search_start == 0)
1696 			search_start = last_block;
1697 
1698 		btrfs_tree_lock(cur);
1699 		btrfs_set_lock_blocking(cur);
1700 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1701 					&cur, search_start,
1702 					min(16 * blocksize,
1703 					    (end_slot - i) * blocksize));
1704 		if (err) {
1705 			btrfs_tree_unlock(cur);
1706 			free_extent_buffer(cur);
1707 			break;
1708 		}
1709 		search_start = cur->start;
1710 		last_block = cur->start;
1711 		*last_ret = search_start;
1712 		btrfs_tree_unlock(cur);
1713 		free_extent_buffer(cur);
1714 	}
1715 	return err;
1716 }
1717 
1718 
1719 /*
1720  * search for key in the extent_buffer.  The items start at offset p,
1721  * and they are item_size apart.  There are 'max' items in p.
1722  *
1723  * the slot in the array is returned via slot, and it points to
1724  * the place where you would insert key if it is not found in
1725  * the array.
1726  *
1727  * slot may point to max if the key is bigger than all of the keys
1728  */
1729 static noinline int generic_bin_search(struct extent_buffer *eb,
1730 				       unsigned long p,
1731 				       int item_size, struct btrfs_key *key,
1732 				       int max, int *slot)
1733 {
1734 	int low = 0;
1735 	int high = max;
1736 	int mid;
1737 	int ret;
1738 	struct btrfs_disk_key *tmp = NULL;
1739 	struct btrfs_disk_key unaligned;
1740 	unsigned long offset;
1741 	char *kaddr = NULL;
1742 	unsigned long map_start = 0;
1743 	unsigned long map_len = 0;
1744 	int err;
1745 
1746 	if (low > high) {
1747 		btrfs_err(eb->fs_info,
1748 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1749 			  __func__, low, high, eb->start,
1750 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1751 		return -EINVAL;
1752 	}
1753 
1754 	while (low < high) {
1755 		mid = (low + high) / 2;
1756 		offset = p + mid * item_size;
1757 
1758 		if (!kaddr || offset < map_start ||
1759 		    (offset + sizeof(struct btrfs_disk_key)) >
1760 		    map_start + map_len) {
1761 
1762 			err = map_private_extent_buffer(eb, offset,
1763 						sizeof(struct btrfs_disk_key),
1764 						&kaddr, &map_start, &map_len);
1765 
1766 			if (!err) {
1767 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1768 							map_start);
1769 			} else if (err == 1) {
1770 				read_extent_buffer(eb, &unaligned,
1771 						   offset, sizeof(unaligned));
1772 				tmp = &unaligned;
1773 			} else {
1774 				return err;
1775 			}
1776 
1777 		} else {
1778 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1779 							map_start);
1780 		}
1781 		ret = comp_keys(tmp, key);
1782 
1783 		if (ret < 0)
1784 			low = mid + 1;
1785 		else if (ret > 0)
1786 			high = mid;
1787 		else {
1788 			*slot = mid;
1789 			return 0;
1790 		}
1791 	}
1792 	*slot = low;
1793 	return 1;
1794 }
1795 
1796 /*
1797  * simple bin_search frontend that does the right thing for
1798  * leaves vs nodes
1799  */
1800 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1801 		      int level, int *slot)
1802 {
1803 	if (level == 0)
1804 		return generic_bin_search(eb,
1805 					  offsetof(struct btrfs_leaf, items),
1806 					  sizeof(struct btrfs_item),
1807 					  key, btrfs_header_nritems(eb),
1808 					  slot);
1809 	else
1810 		return generic_bin_search(eb,
1811 					  offsetof(struct btrfs_node, ptrs),
1812 					  sizeof(struct btrfs_key_ptr),
1813 					  key, btrfs_header_nritems(eb),
1814 					  slot);
1815 }
1816 
1817 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1818 		     int level, int *slot)
1819 {
1820 	return bin_search(eb, key, level, slot);
1821 }
1822 
1823 static void root_add_used(struct btrfs_root *root, u32 size)
1824 {
1825 	spin_lock(&root->accounting_lock);
1826 	btrfs_set_root_used(&root->root_item,
1827 			    btrfs_root_used(&root->root_item) + size);
1828 	spin_unlock(&root->accounting_lock);
1829 }
1830 
1831 static void root_sub_used(struct btrfs_root *root, u32 size)
1832 {
1833 	spin_lock(&root->accounting_lock);
1834 	btrfs_set_root_used(&root->root_item,
1835 			    btrfs_root_used(&root->root_item) - size);
1836 	spin_unlock(&root->accounting_lock);
1837 }
1838 
1839 /* given a node and slot number, this reads the blocks it points to.  The
1840  * extent buffer is returned with a reference taken (but unlocked).
1841  */
1842 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1843 				   struct extent_buffer *parent, int slot)
1844 {
1845 	int level = btrfs_header_level(parent);
1846 	struct extent_buffer *eb;
1847 
1848 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1849 		return ERR_PTR(-ENOENT);
1850 
1851 	BUG_ON(level == 0);
1852 
1853 	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1854 			     btrfs_node_ptr_generation(parent, slot));
1855 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1856 		free_extent_buffer(eb);
1857 		eb = ERR_PTR(-EIO);
1858 	}
1859 
1860 	return eb;
1861 }
1862 
1863 /*
1864  * node level balancing, used to make sure nodes are in proper order for
1865  * item deletion.  We balance from the top down, so we have to make sure
1866  * that a deletion won't leave an node completely empty later on.
1867  */
1868 static noinline int balance_level(struct btrfs_trans_handle *trans,
1869 			 struct btrfs_root *root,
1870 			 struct btrfs_path *path, int level)
1871 {
1872 	struct extent_buffer *right = NULL;
1873 	struct extent_buffer *mid;
1874 	struct extent_buffer *left = NULL;
1875 	struct extent_buffer *parent = NULL;
1876 	int ret = 0;
1877 	int wret;
1878 	int pslot;
1879 	int orig_slot = path->slots[level];
1880 	u64 orig_ptr;
1881 
1882 	if (level == 0)
1883 		return 0;
1884 
1885 	mid = path->nodes[level];
1886 
1887 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1888 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1889 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1890 
1891 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1892 
1893 	if (level < BTRFS_MAX_LEVEL - 1) {
1894 		parent = path->nodes[level + 1];
1895 		pslot = path->slots[level + 1];
1896 	}
1897 
1898 	/*
1899 	 * deal with the case where there is only one pointer in the root
1900 	 * by promoting the node below to a root
1901 	 */
1902 	if (!parent) {
1903 		struct extent_buffer *child;
1904 
1905 		if (btrfs_header_nritems(mid) != 1)
1906 			return 0;
1907 
1908 		/* promote the child to a root */
1909 		child = read_node_slot(root, mid, 0);
1910 		if (IS_ERR(child)) {
1911 			ret = PTR_ERR(child);
1912 			btrfs_handle_fs_error(root->fs_info, ret, NULL);
1913 			goto enospc;
1914 		}
1915 
1916 		btrfs_tree_lock(child);
1917 		btrfs_set_lock_blocking(child);
1918 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1919 		if (ret) {
1920 			btrfs_tree_unlock(child);
1921 			free_extent_buffer(child);
1922 			goto enospc;
1923 		}
1924 
1925 		tree_mod_log_set_root_pointer(root, child, 1);
1926 		rcu_assign_pointer(root->node, child);
1927 
1928 		add_root_to_dirty_list(root);
1929 		btrfs_tree_unlock(child);
1930 
1931 		path->locks[level] = 0;
1932 		path->nodes[level] = NULL;
1933 		clean_tree_block(trans, root->fs_info, mid);
1934 		btrfs_tree_unlock(mid);
1935 		/* once for the path */
1936 		free_extent_buffer(mid);
1937 
1938 		root_sub_used(root, mid->len);
1939 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1940 		/* once for the root ptr */
1941 		free_extent_buffer_stale(mid);
1942 		return 0;
1943 	}
1944 	if (btrfs_header_nritems(mid) >
1945 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1946 		return 0;
1947 
1948 	left = read_node_slot(root, parent, pslot - 1);
1949 	if (IS_ERR(left))
1950 		left = NULL;
1951 
1952 	if (left) {
1953 		btrfs_tree_lock(left);
1954 		btrfs_set_lock_blocking(left);
1955 		wret = btrfs_cow_block(trans, root, left,
1956 				       parent, pslot - 1, &left);
1957 		if (wret) {
1958 			ret = wret;
1959 			goto enospc;
1960 		}
1961 	}
1962 
1963 	right = read_node_slot(root, parent, pslot + 1);
1964 	if (IS_ERR(right))
1965 		right = NULL;
1966 
1967 	if (right) {
1968 		btrfs_tree_lock(right);
1969 		btrfs_set_lock_blocking(right);
1970 		wret = btrfs_cow_block(trans, root, right,
1971 				       parent, pslot + 1, &right);
1972 		if (wret) {
1973 			ret = wret;
1974 			goto enospc;
1975 		}
1976 	}
1977 
1978 	/* first, try to make some room in the middle buffer */
1979 	if (left) {
1980 		orig_slot += btrfs_header_nritems(left);
1981 		wret = push_node_left(trans, root, left, mid, 1);
1982 		if (wret < 0)
1983 			ret = wret;
1984 	}
1985 
1986 	/*
1987 	 * then try to empty the right most buffer into the middle
1988 	 */
1989 	if (right) {
1990 		wret = push_node_left(trans, root, mid, right, 1);
1991 		if (wret < 0 && wret != -ENOSPC)
1992 			ret = wret;
1993 		if (btrfs_header_nritems(right) == 0) {
1994 			clean_tree_block(trans, root->fs_info, right);
1995 			btrfs_tree_unlock(right);
1996 			del_ptr(root, path, level + 1, pslot + 1);
1997 			root_sub_used(root, right->len);
1998 			btrfs_free_tree_block(trans, root, right, 0, 1);
1999 			free_extent_buffer_stale(right);
2000 			right = NULL;
2001 		} else {
2002 			struct btrfs_disk_key right_key;
2003 			btrfs_node_key(right, &right_key, 0);
2004 			tree_mod_log_set_node_key(root->fs_info, parent,
2005 						  pslot + 1, 0);
2006 			btrfs_set_node_key(parent, &right_key, pslot + 1);
2007 			btrfs_mark_buffer_dirty(parent);
2008 		}
2009 	}
2010 	if (btrfs_header_nritems(mid) == 1) {
2011 		/*
2012 		 * we're not allowed to leave a node with one item in the
2013 		 * tree during a delete.  A deletion from lower in the tree
2014 		 * could try to delete the only pointer in this node.
2015 		 * So, pull some keys from the left.
2016 		 * There has to be a left pointer at this point because
2017 		 * otherwise we would have pulled some pointers from the
2018 		 * right
2019 		 */
2020 		if (!left) {
2021 			ret = -EROFS;
2022 			btrfs_handle_fs_error(root->fs_info, ret, NULL);
2023 			goto enospc;
2024 		}
2025 		wret = balance_node_right(trans, root, mid, left);
2026 		if (wret < 0) {
2027 			ret = wret;
2028 			goto enospc;
2029 		}
2030 		if (wret == 1) {
2031 			wret = push_node_left(trans, root, left, mid, 1);
2032 			if (wret < 0)
2033 				ret = wret;
2034 		}
2035 		BUG_ON(wret == 1);
2036 	}
2037 	if (btrfs_header_nritems(mid) == 0) {
2038 		clean_tree_block(trans, root->fs_info, mid);
2039 		btrfs_tree_unlock(mid);
2040 		del_ptr(root, path, level + 1, pslot);
2041 		root_sub_used(root, mid->len);
2042 		btrfs_free_tree_block(trans, root, mid, 0, 1);
2043 		free_extent_buffer_stale(mid);
2044 		mid = NULL;
2045 	} else {
2046 		/* update the parent key to reflect our changes */
2047 		struct btrfs_disk_key mid_key;
2048 		btrfs_node_key(mid, &mid_key, 0);
2049 		tree_mod_log_set_node_key(root->fs_info, parent,
2050 					  pslot, 0);
2051 		btrfs_set_node_key(parent, &mid_key, pslot);
2052 		btrfs_mark_buffer_dirty(parent);
2053 	}
2054 
2055 	/* update the path */
2056 	if (left) {
2057 		if (btrfs_header_nritems(left) > orig_slot) {
2058 			extent_buffer_get(left);
2059 			/* left was locked after cow */
2060 			path->nodes[level] = left;
2061 			path->slots[level + 1] -= 1;
2062 			path->slots[level] = orig_slot;
2063 			if (mid) {
2064 				btrfs_tree_unlock(mid);
2065 				free_extent_buffer(mid);
2066 			}
2067 		} else {
2068 			orig_slot -= btrfs_header_nritems(left);
2069 			path->slots[level] = orig_slot;
2070 		}
2071 	}
2072 	/* double check we haven't messed things up */
2073 	if (orig_ptr !=
2074 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2075 		BUG();
2076 enospc:
2077 	if (right) {
2078 		btrfs_tree_unlock(right);
2079 		free_extent_buffer(right);
2080 	}
2081 	if (left) {
2082 		if (path->nodes[level] != left)
2083 			btrfs_tree_unlock(left);
2084 		free_extent_buffer(left);
2085 	}
2086 	return ret;
2087 }
2088 
2089 /* Node balancing for insertion.  Here we only split or push nodes around
2090  * when they are completely full.  This is also done top down, so we
2091  * have to be pessimistic.
2092  */
2093 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2094 					  struct btrfs_root *root,
2095 					  struct btrfs_path *path, int level)
2096 {
2097 	struct extent_buffer *right = NULL;
2098 	struct extent_buffer *mid;
2099 	struct extent_buffer *left = NULL;
2100 	struct extent_buffer *parent = NULL;
2101 	int ret = 0;
2102 	int wret;
2103 	int pslot;
2104 	int orig_slot = path->slots[level];
2105 
2106 	if (level == 0)
2107 		return 1;
2108 
2109 	mid = path->nodes[level];
2110 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2111 
2112 	if (level < BTRFS_MAX_LEVEL - 1) {
2113 		parent = path->nodes[level + 1];
2114 		pslot = path->slots[level + 1];
2115 	}
2116 
2117 	if (!parent)
2118 		return 1;
2119 
2120 	left = read_node_slot(root, parent, pslot - 1);
2121 	if (IS_ERR(left))
2122 		left = NULL;
2123 
2124 	/* first, try to make some room in the middle buffer */
2125 	if (left) {
2126 		u32 left_nr;
2127 
2128 		btrfs_tree_lock(left);
2129 		btrfs_set_lock_blocking(left);
2130 
2131 		left_nr = btrfs_header_nritems(left);
2132 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2133 			wret = 1;
2134 		} else {
2135 			ret = btrfs_cow_block(trans, root, left, parent,
2136 					      pslot - 1, &left);
2137 			if (ret)
2138 				wret = 1;
2139 			else {
2140 				wret = push_node_left(trans, root,
2141 						      left, mid, 0);
2142 			}
2143 		}
2144 		if (wret < 0)
2145 			ret = wret;
2146 		if (wret == 0) {
2147 			struct btrfs_disk_key disk_key;
2148 			orig_slot += left_nr;
2149 			btrfs_node_key(mid, &disk_key, 0);
2150 			tree_mod_log_set_node_key(root->fs_info, parent,
2151 						  pslot, 0);
2152 			btrfs_set_node_key(parent, &disk_key, pslot);
2153 			btrfs_mark_buffer_dirty(parent);
2154 			if (btrfs_header_nritems(left) > orig_slot) {
2155 				path->nodes[level] = left;
2156 				path->slots[level + 1] -= 1;
2157 				path->slots[level] = orig_slot;
2158 				btrfs_tree_unlock(mid);
2159 				free_extent_buffer(mid);
2160 			} else {
2161 				orig_slot -=
2162 					btrfs_header_nritems(left);
2163 				path->slots[level] = orig_slot;
2164 				btrfs_tree_unlock(left);
2165 				free_extent_buffer(left);
2166 			}
2167 			return 0;
2168 		}
2169 		btrfs_tree_unlock(left);
2170 		free_extent_buffer(left);
2171 	}
2172 	right = read_node_slot(root, parent, pslot + 1);
2173 	if (IS_ERR(right))
2174 		right = NULL;
2175 
2176 	/*
2177 	 * then try to empty the right most buffer into the middle
2178 	 */
2179 	if (right) {
2180 		u32 right_nr;
2181 
2182 		btrfs_tree_lock(right);
2183 		btrfs_set_lock_blocking(right);
2184 
2185 		right_nr = btrfs_header_nritems(right);
2186 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2187 			wret = 1;
2188 		} else {
2189 			ret = btrfs_cow_block(trans, root, right,
2190 					      parent, pslot + 1,
2191 					      &right);
2192 			if (ret)
2193 				wret = 1;
2194 			else {
2195 				wret = balance_node_right(trans, root,
2196 							  right, mid);
2197 			}
2198 		}
2199 		if (wret < 0)
2200 			ret = wret;
2201 		if (wret == 0) {
2202 			struct btrfs_disk_key disk_key;
2203 
2204 			btrfs_node_key(right, &disk_key, 0);
2205 			tree_mod_log_set_node_key(root->fs_info, parent,
2206 						  pslot + 1, 0);
2207 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2208 			btrfs_mark_buffer_dirty(parent);
2209 
2210 			if (btrfs_header_nritems(mid) <= orig_slot) {
2211 				path->nodes[level] = right;
2212 				path->slots[level + 1] += 1;
2213 				path->slots[level] = orig_slot -
2214 					btrfs_header_nritems(mid);
2215 				btrfs_tree_unlock(mid);
2216 				free_extent_buffer(mid);
2217 			} else {
2218 				btrfs_tree_unlock(right);
2219 				free_extent_buffer(right);
2220 			}
2221 			return 0;
2222 		}
2223 		btrfs_tree_unlock(right);
2224 		free_extent_buffer(right);
2225 	}
2226 	return 1;
2227 }
2228 
2229 /*
2230  * readahead one full node of leaves, finding things that are close
2231  * to the block in 'slot', and triggering ra on them.
2232  */
2233 static void reada_for_search(struct btrfs_root *root,
2234 			     struct btrfs_path *path,
2235 			     int level, int slot, u64 objectid)
2236 {
2237 	struct extent_buffer *node;
2238 	struct btrfs_disk_key disk_key;
2239 	u32 nritems;
2240 	u64 search;
2241 	u64 target;
2242 	u64 nread = 0;
2243 	struct extent_buffer *eb;
2244 	u32 nr;
2245 	u32 blocksize;
2246 	u32 nscan = 0;
2247 
2248 	if (level != 1)
2249 		return;
2250 
2251 	if (!path->nodes[level])
2252 		return;
2253 
2254 	node = path->nodes[level];
2255 
2256 	search = btrfs_node_blockptr(node, slot);
2257 	blocksize = root->nodesize;
2258 	eb = btrfs_find_tree_block(root->fs_info, search);
2259 	if (eb) {
2260 		free_extent_buffer(eb);
2261 		return;
2262 	}
2263 
2264 	target = search;
2265 
2266 	nritems = btrfs_header_nritems(node);
2267 	nr = slot;
2268 
2269 	while (1) {
2270 		if (path->reada == READA_BACK) {
2271 			if (nr == 0)
2272 				break;
2273 			nr--;
2274 		} else if (path->reada == READA_FORWARD) {
2275 			nr++;
2276 			if (nr >= nritems)
2277 				break;
2278 		}
2279 		if (path->reada == READA_BACK && objectid) {
2280 			btrfs_node_key(node, &disk_key, nr);
2281 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2282 				break;
2283 		}
2284 		search = btrfs_node_blockptr(node, nr);
2285 		if ((search <= target && target - search <= 65536) ||
2286 		    (search > target && search - target <= 65536)) {
2287 			readahead_tree_block(root, search);
2288 			nread += blocksize;
2289 		}
2290 		nscan++;
2291 		if ((nread > 65536 || nscan > 32))
2292 			break;
2293 	}
2294 }
2295 
2296 static noinline void reada_for_balance(struct btrfs_root *root,
2297 				       struct btrfs_path *path, int level)
2298 {
2299 	int slot;
2300 	int nritems;
2301 	struct extent_buffer *parent;
2302 	struct extent_buffer *eb;
2303 	u64 gen;
2304 	u64 block1 = 0;
2305 	u64 block2 = 0;
2306 
2307 	parent = path->nodes[level + 1];
2308 	if (!parent)
2309 		return;
2310 
2311 	nritems = btrfs_header_nritems(parent);
2312 	slot = path->slots[level + 1];
2313 
2314 	if (slot > 0) {
2315 		block1 = btrfs_node_blockptr(parent, slot - 1);
2316 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2317 		eb = btrfs_find_tree_block(root->fs_info, block1);
2318 		/*
2319 		 * if we get -eagain from btrfs_buffer_uptodate, we
2320 		 * don't want to return eagain here.  That will loop
2321 		 * forever
2322 		 */
2323 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2324 			block1 = 0;
2325 		free_extent_buffer(eb);
2326 	}
2327 	if (slot + 1 < nritems) {
2328 		block2 = btrfs_node_blockptr(parent, slot + 1);
2329 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2330 		eb = btrfs_find_tree_block(root->fs_info, block2);
2331 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2332 			block2 = 0;
2333 		free_extent_buffer(eb);
2334 	}
2335 
2336 	if (block1)
2337 		readahead_tree_block(root, block1);
2338 	if (block2)
2339 		readahead_tree_block(root, block2);
2340 }
2341 
2342 
2343 /*
2344  * when we walk down the tree, it is usually safe to unlock the higher layers
2345  * in the tree.  The exceptions are when our path goes through slot 0, because
2346  * operations on the tree might require changing key pointers higher up in the
2347  * tree.
2348  *
2349  * callers might also have set path->keep_locks, which tells this code to keep
2350  * the lock if the path points to the last slot in the block.  This is part of
2351  * walking through the tree, and selecting the next slot in the higher block.
2352  *
2353  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2354  * if lowest_unlock is 1, level 0 won't be unlocked
2355  */
2356 static noinline void unlock_up(struct btrfs_path *path, int level,
2357 			       int lowest_unlock, int min_write_lock_level,
2358 			       int *write_lock_level)
2359 {
2360 	int i;
2361 	int skip_level = level;
2362 	int no_skips = 0;
2363 	struct extent_buffer *t;
2364 
2365 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2366 		if (!path->nodes[i])
2367 			break;
2368 		if (!path->locks[i])
2369 			break;
2370 		if (!no_skips && path->slots[i] == 0) {
2371 			skip_level = i + 1;
2372 			continue;
2373 		}
2374 		if (!no_skips && path->keep_locks) {
2375 			u32 nritems;
2376 			t = path->nodes[i];
2377 			nritems = btrfs_header_nritems(t);
2378 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2379 				skip_level = i + 1;
2380 				continue;
2381 			}
2382 		}
2383 		if (skip_level < i && i >= lowest_unlock)
2384 			no_skips = 1;
2385 
2386 		t = path->nodes[i];
2387 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2388 			btrfs_tree_unlock_rw(t, path->locks[i]);
2389 			path->locks[i] = 0;
2390 			if (write_lock_level &&
2391 			    i > min_write_lock_level &&
2392 			    i <= *write_lock_level) {
2393 				*write_lock_level = i - 1;
2394 			}
2395 		}
2396 	}
2397 }
2398 
2399 /*
2400  * This releases any locks held in the path starting at level and
2401  * going all the way up to the root.
2402  *
2403  * btrfs_search_slot will keep the lock held on higher nodes in a few
2404  * corner cases, such as COW of the block at slot zero in the node.  This
2405  * ignores those rules, and it should only be called when there are no
2406  * more updates to be done higher up in the tree.
2407  */
2408 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2409 {
2410 	int i;
2411 
2412 	if (path->keep_locks)
2413 		return;
2414 
2415 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2416 		if (!path->nodes[i])
2417 			continue;
2418 		if (!path->locks[i])
2419 			continue;
2420 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2421 		path->locks[i] = 0;
2422 	}
2423 }
2424 
2425 /*
2426  * helper function for btrfs_search_slot.  The goal is to find a block
2427  * in cache without setting the path to blocking.  If we find the block
2428  * we return zero and the path is unchanged.
2429  *
2430  * If we can't find the block, we set the path blocking and do some
2431  * reada.  -EAGAIN is returned and the search must be repeated.
2432  */
2433 static int
2434 read_block_for_search(struct btrfs_trans_handle *trans,
2435 		       struct btrfs_root *root, struct btrfs_path *p,
2436 		       struct extent_buffer **eb_ret, int level, int slot,
2437 		       struct btrfs_key *key, u64 time_seq)
2438 {
2439 	u64 blocknr;
2440 	u64 gen;
2441 	struct extent_buffer *b = *eb_ret;
2442 	struct extent_buffer *tmp;
2443 	int ret;
2444 
2445 	blocknr = btrfs_node_blockptr(b, slot);
2446 	gen = btrfs_node_ptr_generation(b, slot);
2447 
2448 	tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2449 	if (tmp) {
2450 		/* first we do an atomic uptodate check */
2451 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2452 			*eb_ret = tmp;
2453 			return 0;
2454 		}
2455 
2456 		/* the pages were up to date, but we failed
2457 		 * the generation number check.  Do a full
2458 		 * read for the generation number that is correct.
2459 		 * We must do this without dropping locks so
2460 		 * we can trust our generation number
2461 		 */
2462 		btrfs_set_path_blocking(p);
2463 
2464 		/* now we're allowed to do a blocking uptodate check */
2465 		ret = btrfs_read_buffer(tmp, gen);
2466 		if (!ret) {
2467 			*eb_ret = tmp;
2468 			return 0;
2469 		}
2470 		free_extent_buffer(tmp);
2471 		btrfs_release_path(p);
2472 		return -EIO;
2473 	}
2474 
2475 	/*
2476 	 * reduce lock contention at high levels
2477 	 * of the btree by dropping locks before
2478 	 * we read.  Don't release the lock on the current
2479 	 * level because we need to walk this node to figure
2480 	 * out which blocks to read.
2481 	 */
2482 	btrfs_unlock_up_safe(p, level + 1);
2483 	btrfs_set_path_blocking(p);
2484 
2485 	free_extent_buffer(tmp);
2486 	if (p->reada != READA_NONE)
2487 		reada_for_search(root, p, level, slot, key->objectid);
2488 
2489 	btrfs_release_path(p);
2490 
2491 	ret = -EAGAIN;
2492 	tmp = read_tree_block(root, blocknr, 0);
2493 	if (!IS_ERR(tmp)) {
2494 		/*
2495 		 * If the read above didn't mark this buffer up to date,
2496 		 * it will never end up being up to date.  Set ret to EIO now
2497 		 * and give up so that our caller doesn't loop forever
2498 		 * on our EAGAINs.
2499 		 */
2500 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2501 			ret = -EIO;
2502 		free_extent_buffer(tmp);
2503 	} else {
2504 		ret = PTR_ERR(tmp);
2505 	}
2506 	return ret;
2507 }
2508 
2509 /*
2510  * helper function for btrfs_search_slot.  This does all of the checks
2511  * for node-level blocks and does any balancing required based on
2512  * the ins_len.
2513  *
2514  * If no extra work was required, zero is returned.  If we had to
2515  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2516  * start over
2517  */
2518 static int
2519 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2520 		       struct btrfs_root *root, struct btrfs_path *p,
2521 		       struct extent_buffer *b, int level, int ins_len,
2522 		       int *write_lock_level)
2523 {
2524 	int ret;
2525 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2526 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2527 		int sret;
2528 
2529 		if (*write_lock_level < level + 1) {
2530 			*write_lock_level = level + 1;
2531 			btrfs_release_path(p);
2532 			goto again;
2533 		}
2534 
2535 		btrfs_set_path_blocking(p);
2536 		reada_for_balance(root, p, level);
2537 		sret = split_node(trans, root, p, level);
2538 		btrfs_clear_path_blocking(p, NULL, 0);
2539 
2540 		BUG_ON(sret > 0);
2541 		if (sret) {
2542 			ret = sret;
2543 			goto done;
2544 		}
2545 		b = p->nodes[level];
2546 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2547 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2548 		int sret;
2549 
2550 		if (*write_lock_level < level + 1) {
2551 			*write_lock_level = level + 1;
2552 			btrfs_release_path(p);
2553 			goto again;
2554 		}
2555 
2556 		btrfs_set_path_blocking(p);
2557 		reada_for_balance(root, p, level);
2558 		sret = balance_level(trans, root, p, level);
2559 		btrfs_clear_path_blocking(p, NULL, 0);
2560 
2561 		if (sret) {
2562 			ret = sret;
2563 			goto done;
2564 		}
2565 		b = p->nodes[level];
2566 		if (!b) {
2567 			btrfs_release_path(p);
2568 			goto again;
2569 		}
2570 		BUG_ON(btrfs_header_nritems(b) == 1);
2571 	}
2572 	return 0;
2573 
2574 again:
2575 	ret = -EAGAIN;
2576 done:
2577 	return ret;
2578 }
2579 
2580 static void key_search_validate(struct extent_buffer *b,
2581 				struct btrfs_key *key,
2582 				int level)
2583 {
2584 #ifdef CONFIG_BTRFS_ASSERT
2585 	struct btrfs_disk_key disk_key;
2586 
2587 	btrfs_cpu_key_to_disk(&disk_key, key);
2588 
2589 	if (level == 0)
2590 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2591 		    offsetof(struct btrfs_leaf, items[0].key),
2592 		    sizeof(disk_key)));
2593 	else
2594 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2595 		    offsetof(struct btrfs_node, ptrs[0].key),
2596 		    sizeof(disk_key)));
2597 #endif
2598 }
2599 
2600 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2601 		      int level, int *prev_cmp, int *slot)
2602 {
2603 	if (*prev_cmp != 0) {
2604 		*prev_cmp = bin_search(b, key, level, slot);
2605 		return *prev_cmp;
2606 	}
2607 
2608 	key_search_validate(b, key, level);
2609 	*slot = 0;
2610 
2611 	return 0;
2612 }
2613 
2614 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2615 		u64 iobjectid, u64 ioff, u8 key_type,
2616 		struct btrfs_key *found_key)
2617 {
2618 	int ret;
2619 	struct btrfs_key key;
2620 	struct extent_buffer *eb;
2621 
2622 	ASSERT(path);
2623 	ASSERT(found_key);
2624 
2625 	key.type = key_type;
2626 	key.objectid = iobjectid;
2627 	key.offset = ioff;
2628 
2629 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2630 	if (ret < 0)
2631 		return ret;
2632 
2633 	eb = path->nodes[0];
2634 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2635 		ret = btrfs_next_leaf(fs_root, path);
2636 		if (ret)
2637 			return ret;
2638 		eb = path->nodes[0];
2639 	}
2640 
2641 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2642 	if (found_key->type != key.type ||
2643 			found_key->objectid != key.objectid)
2644 		return 1;
2645 
2646 	return 0;
2647 }
2648 
2649 /*
2650  * look for key in the tree.  path is filled in with nodes along the way
2651  * if key is found, we return zero and you can find the item in the leaf
2652  * level of the path (level 0)
2653  *
2654  * If the key isn't found, the path points to the slot where it should
2655  * be inserted, and 1 is returned.  If there are other errors during the
2656  * search a negative error number is returned.
2657  *
2658  * if ins_len > 0, nodes and leaves will be split as we walk down the
2659  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2660  * possible)
2661  */
2662 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2663 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2664 		      ins_len, int cow)
2665 {
2666 	struct extent_buffer *b;
2667 	int slot;
2668 	int ret;
2669 	int err;
2670 	int level;
2671 	int lowest_unlock = 1;
2672 	int root_lock;
2673 	/* everything at write_lock_level or lower must be write locked */
2674 	int write_lock_level = 0;
2675 	u8 lowest_level = 0;
2676 	int min_write_lock_level;
2677 	int prev_cmp;
2678 
2679 	lowest_level = p->lowest_level;
2680 	WARN_ON(lowest_level && ins_len > 0);
2681 	WARN_ON(p->nodes[0] != NULL);
2682 	BUG_ON(!cow && ins_len);
2683 
2684 	if (ins_len < 0) {
2685 		lowest_unlock = 2;
2686 
2687 		/* when we are removing items, we might have to go up to level
2688 		 * two as we update tree pointers  Make sure we keep write
2689 		 * for those levels as well
2690 		 */
2691 		write_lock_level = 2;
2692 	} else if (ins_len > 0) {
2693 		/*
2694 		 * for inserting items, make sure we have a write lock on
2695 		 * level 1 so we can update keys
2696 		 */
2697 		write_lock_level = 1;
2698 	}
2699 
2700 	if (!cow)
2701 		write_lock_level = -1;
2702 
2703 	if (cow && (p->keep_locks || p->lowest_level))
2704 		write_lock_level = BTRFS_MAX_LEVEL;
2705 
2706 	min_write_lock_level = write_lock_level;
2707 
2708 again:
2709 	prev_cmp = -1;
2710 	/*
2711 	 * we try very hard to do read locks on the root
2712 	 */
2713 	root_lock = BTRFS_READ_LOCK;
2714 	level = 0;
2715 	if (p->search_commit_root) {
2716 		/*
2717 		 * the commit roots are read only
2718 		 * so we always do read locks
2719 		 */
2720 		if (p->need_commit_sem)
2721 			down_read(&root->fs_info->commit_root_sem);
2722 		b = root->commit_root;
2723 		extent_buffer_get(b);
2724 		level = btrfs_header_level(b);
2725 		if (p->need_commit_sem)
2726 			up_read(&root->fs_info->commit_root_sem);
2727 		if (!p->skip_locking)
2728 			btrfs_tree_read_lock(b);
2729 	} else {
2730 		if (p->skip_locking) {
2731 			b = btrfs_root_node(root);
2732 			level = btrfs_header_level(b);
2733 		} else {
2734 			/* we don't know the level of the root node
2735 			 * until we actually have it read locked
2736 			 */
2737 			b = btrfs_read_lock_root_node(root);
2738 			level = btrfs_header_level(b);
2739 			if (level <= write_lock_level) {
2740 				/* whoops, must trade for write lock */
2741 				btrfs_tree_read_unlock(b);
2742 				free_extent_buffer(b);
2743 				b = btrfs_lock_root_node(root);
2744 				root_lock = BTRFS_WRITE_LOCK;
2745 
2746 				/* the level might have changed, check again */
2747 				level = btrfs_header_level(b);
2748 			}
2749 		}
2750 	}
2751 	p->nodes[level] = b;
2752 	if (!p->skip_locking)
2753 		p->locks[level] = root_lock;
2754 
2755 	while (b) {
2756 		level = btrfs_header_level(b);
2757 
2758 		/*
2759 		 * setup the path here so we can release it under lock
2760 		 * contention with the cow code
2761 		 */
2762 		if (cow) {
2763 			/*
2764 			 * if we don't really need to cow this block
2765 			 * then we don't want to set the path blocking,
2766 			 * so we test it here
2767 			 */
2768 			if (!should_cow_block(trans, root, b)) {
2769 				trans->dirty = true;
2770 				goto cow_done;
2771 			}
2772 
2773 			/*
2774 			 * must have write locks on this node and the
2775 			 * parent
2776 			 */
2777 			if (level > write_lock_level ||
2778 			    (level + 1 > write_lock_level &&
2779 			    level + 1 < BTRFS_MAX_LEVEL &&
2780 			    p->nodes[level + 1])) {
2781 				write_lock_level = level + 1;
2782 				btrfs_release_path(p);
2783 				goto again;
2784 			}
2785 
2786 			btrfs_set_path_blocking(p);
2787 			err = btrfs_cow_block(trans, root, b,
2788 					      p->nodes[level + 1],
2789 					      p->slots[level + 1], &b);
2790 			if (err) {
2791 				ret = err;
2792 				goto done;
2793 			}
2794 		}
2795 cow_done:
2796 		p->nodes[level] = b;
2797 		btrfs_clear_path_blocking(p, NULL, 0);
2798 
2799 		/*
2800 		 * we have a lock on b and as long as we aren't changing
2801 		 * the tree, there is no way to for the items in b to change.
2802 		 * It is safe to drop the lock on our parent before we
2803 		 * go through the expensive btree search on b.
2804 		 *
2805 		 * If we're inserting or deleting (ins_len != 0), then we might
2806 		 * be changing slot zero, which may require changing the parent.
2807 		 * So, we can't drop the lock until after we know which slot
2808 		 * we're operating on.
2809 		 */
2810 		if (!ins_len && !p->keep_locks) {
2811 			int u = level + 1;
2812 
2813 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2814 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2815 				p->locks[u] = 0;
2816 			}
2817 		}
2818 
2819 		ret = key_search(b, key, level, &prev_cmp, &slot);
2820 		if (ret < 0)
2821 			goto done;
2822 
2823 		if (level != 0) {
2824 			int dec = 0;
2825 			if (ret && slot > 0) {
2826 				dec = 1;
2827 				slot -= 1;
2828 			}
2829 			p->slots[level] = slot;
2830 			err = setup_nodes_for_search(trans, root, p, b, level,
2831 					     ins_len, &write_lock_level);
2832 			if (err == -EAGAIN)
2833 				goto again;
2834 			if (err) {
2835 				ret = err;
2836 				goto done;
2837 			}
2838 			b = p->nodes[level];
2839 			slot = p->slots[level];
2840 
2841 			/*
2842 			 * slot 0 is special, if we change the key
2843 			 * we have to update the parent pointer
2844 			 * which means we must have a write lock
2845 			 * on the parent
2846 			 */
2847 			if (slot == 0 && ins_len &&
2848 			    write_lock_level < level + 1) {
2849 				write_lock_level = level + 1;
2850 				btrfs_release_path(p);
2851 				goto again;
2852 			}
2853 
2854 			unlock_up(p, level, lowest_unlock,
2855 				  min_write_lock_level, &write_lock_level);
2856 
2857 			if (level == lowest_level) {
2858 				if (dec)
2859 					p->slots[level]++;
2860 				goto done;
2861 			}
2862 
2863 			err = read_block_for_search(trans, root, p,
2864 						    &b, level, slot, key, 0);
2865 			if (err == -EAGAIN)
2866 				goto again;
2867 			if (err) {
2868 				ret = err;
2869 				goto done;
2870 			}
2871 
2872 			if (!p->skip_locking) {
2873 				level = btrfs_header_level(b);
2874 				if (level <= write_lock_level) {
2875 					err = btrfs_try_tree_write_lock(b);
2876 					if (!err) {
2877 						btrfs_set_path_blocking(p);
2878 						btrfs_tree_lock(b);
2879 						btrfs_clear_path_blocking(p, b,
2880 								  BTRFS_WRITE_LOCK);
2881 					}
2882 					p->locks[level] = BTRFS_WRITE_LOCK;
2883 				} else {
2884 					err = btrfs_tree_read_lock_atomic(b);
2885 					if (!err) {
2886 						btrfs_set_path_blocking(p);
2887 						btrfs_tree_read_lock(b);
2888 						btrfs_clear_path_blocking(p, b,
2889 								  BTRFS_READ_LOCK);
2890 					}
2891 					p->locks[level] = BTRFS_READ_LOCK;
2892 				}
2893 				p->nodes[level] = b;
2894 			}
2895 		} else {
2896 			p->slots[level] = slot;
2897 			if (ins_len > 0 &&
2898 			    btrfs_leaf_free_space(root, b) < ins_len) {
2899 				if (write_lock_level < 1) {
2900 					write_lock_level = 1;
2901 					btrfs_release_path(p);
2902 					goto again;
2903 				}
2904 
2905 				btrfs_set_path_blocking(p);
2906 				err = split_leaf(trans, root, key,
2907 						 p, ins_len, ret == 0);
2908 				btrfs_clear_path_blocking(p, NULL, 0);
2909 
2910 				BUG_ON(err > 0);
2911 				if (err) {
2912 					ret = err;
2913 					goto done;
2914 				}
2915 			}
2916 			if (!p->search_for_split)
2917 				unlock_up(p, level, lowest_unlock,
2918 					  min_write_lock_level, &write_lock_level);
2919 			goto done;
2920 		}
2921 	}
2922 	ret = 1;
2923 done:
2924 	/*
2925 	 * we don't really know what they plan on doing with the path
2926 	 * from here on, so for now just mark it as blocking
2927 	 */
2928 	if (!p->leave_spinning)
2929 		btrfs_set_path_blocking(p);
2930 	if (ret < 0 && !p->skip_release_on_error)
2931 		btrfs_release_path(p);
2932 	return ret;
2933 }
2934 
2935 /*
2936  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2937  * current state of the tree together with the operations recorded in the tree
2938  * modification log to search for the key in a previous version of this tree, as
2939  * denoted by the time_seq parameter.
2940  *
2941  * Naturally, there is no support for insert, delete or cow operations.
2942  *
2943  * The resulting path and return value will be set up as if we called
2944  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2945  */
2946 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2947 			  struct btrfs_path *p, u64 time_seq)
2948 {
2949 	struct extent_buffer *b;
2950 	int slot;
2951 	int ret;
2952 	int err;
2953 	int level;
2954 	int lowest_unlock = 1;
2955 	u8 lowest_level = 0;
2956 	int prev_cmp = -1;
2957 
2958 	lowest_level = p->lowest_level;
2959 	WARN_ON(p->nodes[0] != NULL);
2960 
2961 	if (p->search_commit_root) {
2962 		BUG_ON(time_seq);
2963 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2964 	}
2965 
2966 again:
2967 	b = get_old_root(root, time_seq);
2968 	level = btrfs_header_level(b);
2969 	p->locks[level] = BTRFS_READ_LOCK;
2970 
2971 	while (b) {
2972 		level = btrfs_header_level(b);
2973 		p->nodes[level] = b;
2974 		btrfs_clear_path_blocking(p, NULL, 0);
2975 
2976 		/*
2977 		 * we have a lock on b and as long as we aren't changing
2978 		 * the tree, there is no way to for the items in b to change.
2979 		 * It is safe to drop the lock on our parent before we
2980 		 * go through the expensive btree search on b.
2981 		 */
2982 		btrfs_unlock_up_safe(p, level + 1);
2983 
2984 		/*
2985 		 * Since we can unwind ebs we want to do a real search every
2986 		 * time.
2987 		 */
2988 		prev_cmp = -1;
2989 		ret = key_search(b, key, level, &prev_cmp, &slot);
2990 
2991 		if (level != 0) {
2992 			int dec = 0;
2993 			if (ret && slot > 0) {
2994 				dec = 1;
2995 				slot -= 1;
2996 			}
2997 			p->slots[level] = slot;
2998 			unlock_up(p, level, lowest_unlock, 0, NULL);
2999 
3000 			if (level == lowest_level) {
3001 				if (dec)
3002 					p->slots[level]++;
3003 				goto done;
3004 			}
3005 
3006 			err = read_block_for_search(NULL, root, p, &b, level,
3007 						    slot, key, time_seq);
3008 			if (err == -EAGAIN)
3009 				goto again;
3010 			if (err) {
3011 				ret = err;
3012 				goto done;
3013 			}
3014 
3015 			level = btrfs_header_level(b);
3016 			err = btrfs_tree_read_lock_atomic(b);
3017 			if (!err) {
3018 				btrfs_set_path_blocking(p);
3019 				btrfs_tree_read_lock(b);
3020 				btrfs_clear_path_blocking(p, b,
3021 							  BTRFS_READ_LOCK);
3022 			}
3023 			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3024 			if (!b) {
3025 				ret = -ENOMEM;
3026 				goto done;
3027 			}
3028 			p->locks[level] = BTRFS_READ_LOCK;
3029 			p->nodes[level] = b;
3030 		} else {
3031 			p->slots[level] = slot;
3032 			unlock_up(p, level, lowest_unlock, 0, NULL);
3033 			goto done;
3034 		}
3035 	}
3036 	ret = 1;
3037 done:
3038 	if (!p->leave_spinning)
3039 		btrfs_set_path_blocking(p);
3040 	if (ret < 0)
3041 		btrfs_release_path(p);
3042 
3043 	return ret;
3044 }
3045 
3046 /*
3047  * helper to use instead of search slot if no exact match is needed but
3048  * instead the next or previous item should be returned.
3049  * When find_higher is true, the next higher item is returned, the next lower
3050  * otherwise.
3051  * When return_any and find_higher are both true, and no higher item is found,
3052  * return the next lower instead.
3053  * When return_any is true and find_higher is false, and no lower item is found,
3054  * return the next higher instead.
3055  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3056  * < 0 on error
3057  */
3058 int btrfs_search_slot_for_read(struct btrfs_root *root,
3059 			       struct btrfs_key *key, struct btrfs_path *p,
3060 			       int find_higher, int return_any)
3061 {
3062 	int ret;
3063 	struct extent_buffer *leaf;
3064 
3065 again:
3066 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3067 	if (ret <= 0)
3068 		return ret;
3069 	/*
3070 	 * a return value of 1 means the path is at the position where the
3071 	 * item should be inserted. Normally this is the next bigger item,
3072 	 * but in case the previous item is the last in a leaf, path points
3073 	 * to the first free slot in the previous leaf, i.e. at an invalid
3074 	 * item.
3075 	 */
3076 	leaf = p->nodes[0];
3077 
3078 	if (find_higher) {
3079 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3080 			ret = btrfs_next_leaf(root, p);
3081 			if (ret <= 0)
3082 				return ret;
3083 			if (!return_any)
3084 				return 1;
3085 			/*
3086 			 * no higher item found, return the next
3087 			 * lower instead
3088 			 */
3089 			return_any = 0;
3090 			find_higher = 0;
3091 			btrfs_release_path(p);
3092 			goto again;
3093 		}
3094 	} else {
3095 		if (p->slots[0] == 0) {
3096 			ret = btrfs_prev_leaf(root, p);
3097 			if (ret < 0)
3098 				return ret;
3099 			if (!ret) {
3100 				leaf = p->nodes[0];
3101 				if (p->slots[0] == btrfs_header_nritems(leaf))
3102 					p->slots[0]--;
3103 				return 0;
3104 			}
3105 			if (!return_any)
3106 				return 1;
3107 			/*
3108 			 * no lower item found, return the next
3109 			 * higher instead
3110 			 */
3111 			return_any = 0;
3112 			find_higher = 1;
3113 			btrfs_release_path(p);
3114 			goto again;
3115 		} else {
3116 			--p->slots[0];
3117 		}
3118 	}
3119 	return 0;
3120 }
3121 
3122 /*
3123  * adjust the pointers going up the tree, starting at level
3124  * making sure the right key of each node is points to 'key'.
3125  * This is used after shifting pointers to the left, so it stops
3126  * fixing up pointers when a given leaf/node is not in slot 0 of the
3127  * higher levels
3128  *
3129  */
3130 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3131 			   struct btrfs_path *path,
3132 			   struct btrfs_disk_key *key, int level)
3133 {
3134 	int i;
3135 	struct extent_buffer *t;
3136 
3137 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3138 		int tslot = path->slots[i];
3139 		if (!path->nodes[i])
3140 			break;
3141 		t = path->nodes[i];
3142 		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3143 		btrfs_set_node_key(t, key, tslot);
3144 		btrfs_mark_buffer_dirty(path->nodes[i]);
3145 		if (tslot != 0)
3146 			break;
3147 	}
3148 }
3149 
3150 /*
3151  * update item key.
3152  *
3153  * This function isn't completely safe. It's the caller's responsibility
3154  * that the new key won't break the order
3155  */
3156 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3157 			     struct btrfs_path *path,
3158 			     struct btrfs_key *new_key)
3159 {
3160 	struct btrfs_disk_key disk_key;
3161 	struct extent_buffer *eb;
3162 	int slot;
3163 
3164 	eb = path->nodes[0];
3165 	slot = path->slots[0];
3166 	if (slot > 0) {
3167 		btrfs_item_key(eb, &disk_key, slot - 1);
3168 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3169 	}
3170 	if (slot < btrfs_header_nritems(eb) - 1) {
3171 		btrfs_item_key(eb, &disk_key, slot + 1);
3172 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3173 	}
3174 
3175 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3176 	btrfs_set_item_key(eb, &disk_key, slot);
3177 	btrfs_mark_buffer_dirty(eb);
3178 	if (slot == 0)
3179 		fixup_low_keys(fs_info, path, &disk_key, 1);
3180 }
3181 
3182 /*
3183  * try to push data from one node into the next node left in the
3184  * tree.
3185  *
3186  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3187  * error, and > 0 if there was no room in the left hand block.
3188  */
3189 static int push_node_left(struct btrfs_trans_handle *trans,
3190 			  struct btrfs_root *root, struct extent_buffer *dst,
3191 			  struct extent_buffer *src, int empty)
3192 {
3193 	int push_items = 0;
3194 	int src_nritems;
3195 	int dst_nritems;
3196 	int ret = 0;
3197 
3198 	src_nritems = btrfs_header_nritems(src);
3199 	dst_nritems = btrfs_header_nritems(dst);
3200 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3201 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3202 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3203 
3204 	if (!empty && src_nritems <= 8)
3205 		return 1;
3206 
3207 	if (push_items <= 0)
3208 		return 1;
3209 
3210 	if (empty) {
3211 		push_items = min(src_nritems, push_items);
3212 		if (push_items < src_nritems) {
3213 			/* leave at least 8 pointers in the node if
3214 			 * we aren't going to empty it
3215 			 */
3216 			if (src_nritems - push_items < 8) {
3217 				if (push_items <= 8)
3218 					return 1;
3219 				push_items -= 8;
3220 			}
3221 		}
3222 	} else
3223 		push_items = min(src_nritems - 8, push_items);
3224 
3225 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3226 				   push_items);
3227 	if (ret) {
3228 		btrfs_abort_transaction(trans, ret);
3229 		return ret;
3230 	}
3231 	copy_extent_buffer(dst, src,
3232 			   btrfs_node_key_ptr_offset(dst_nritems),
3233 			   btrfs_node_key_ptr_offset(0),
3234 			   push_items * sizeof(struct btrfs_key_ptr));
3235 
3236 	if (push_items < src_nritems) {
3237 		/*
3238 		 * don't call tree_mod_log_eb_move here, key removal was already
3239 		 * fully logged by tree_mod_log_eb_copy above.
3240 		 */
3241 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3242 				      btrfs_node_key_ptr_offset(push_items),
3243 				      (src_nritems - push_items) *
3244 				      sizeof(struct btrfs_key_ptr));
3245 	}
3246 	btrfs_set_header_nritems(src, src_nritems - push_items);
3247 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3248 	btrfs_mark_buffer_dirty(src);
3249 	btrfs_mark_buffer_dirty(dst);
3250 
3251 	return ret;
3252 }
3253 
3254 /*
3255  * try to push data from one node into the next node right in the
3256  * tree.
3257  *
3258  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3259  * error, and > 0 if there was no room in the right hand block.
3260  *
3261  * this will  only push up to 1/2 the contents of the left node over
3262  */
3263 static int balance_node_right(struct btrfs_trans_handle *trans,
3264 			      struct btrfs_root *root,
3265 			      struct extent_buffer *dst,
3266 			      struct extent_buffer *src)
3267 {
3268 	int push_items = 0;
3269 	int max_push;
3270 	int src_nritems;
3271 	int dst_nritems;
3272 	int ret = 0;
3273 
3274 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3275 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3276 
3277 	src_nritems = btrfs_header_nritems(src);
3278 	dst_nritems = btrfs_header_nritems(dst);
3279 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3280 	if (push_items <= 0)
3281 		return 1;
3282 
3283 	if (src_nritems < 4)
3284 		return 1;
3285 
3286 	max_push = src_nritems / 2 + 1;
3287 	/* don't try to empty the node */
3288 	if (max_push >= src_nritems)
3289 		return 1;
3290 
3291 	if (max_push < push_items)
3292 		push_items = max_push;
3293 
3294 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3295 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3296 				      btrfs_node_key_ptr_offset(0),
3297 				      (dst_nritems) *
3298 				      sizeof(struct btrfs_key_ptr));
3299 
3300 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3301 				   src_nritems - push_items, push_items);
3302 	if (ret) {
3303 		btrfs_abort_transaction(trans, ret);
3304 		return ret;
3305 	}
3306 	copy_extent_buffer(dst, src,
3307 			   btrfs_node_key_ptr_offset(0),
3308 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3309 			   push_items * sizeof(struct btrfs_key_ptr));
3310 
3311 	btrfs_set_header_nritems(src, src_nritems - push_items);
3312 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3313 
3314 	btrfs_mark_buffer_dirty(src);
3315 	btrfs_mark_buffer_dirty(dst);
3316 
3317 	return ret;
3318 }
3319 
3320 /*
3321  * helper function to insert a new root level in the tree.
3322  * A new node is allocated, and a single item is inserted to
3323  * point to the existing root
3324  *
3325  * returns zero on success or < 0 on failure.
3326  */
3327 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3328 			   struct btrfs_root *root,
3329 			   struct btrfs_path *path, int level)
3330 {
3331 	u64 lower_gen;
3332 	struct extent_buffer *lower;
3333 	struct extent_buffer *c;
3334 	struct extent_buffer *old;
3335 	struct btrfs_disk_key lower_key;
3336 
3337 	BUG_ON(path->nodes[level]);
3338 	BUG_ON(path->nodes[level-1] != root->node);
3339 
3340 	lower = path->nodes[level-1];
3341 	if (level == 1)
3342 		btrfs_item_key(lower, &lower_key, 0);
3343 	else
3344 		btrfs_node_key(lower, &lower_key, 0);
3345 
3346 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3347 				   &lower_key, level, root->node->start, 0);
3348 	if (IS_ERR(c))
3349 		return PTR_ERR(c);
3350 
3351 	root_add_used(root, root->nodesize);
3352 
3353 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3354 	btrfs_set_header_nritems(c, 1);
3355 	btrfs_set_header_level(c, level);
3356 	btrfs_set_header_bytenr(c, c->start);
3357 	btrfs_set_header_generation(c, trans->transid);
3358 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3359 	btrfs_set_header_owner(c, root->root_key.objectid);
3360 
3361 	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3362 			    BTRFS_FSID_SIZE);
3363 
3364 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3365 			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3366 
3367 	btrfs_set_node_key(c, &lower_key, 0);
3368 	btrfs_set_node_blockptr(c, 0, lower->start);
3369 	lower_gen = btrfs_header_generation(lower);
3370 	WARN_ON(lower_gen != trans->transid);
3371 
3372 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3373 
3374 	btrfs_mark_buffer_dirty(c);
3375 
3376 	old = root->node;
3377 	tree_mod_log_set_root_pointer(root, c, 0);
3378 	rcu_assign_pointer(root->node, c);
3379 
3380 	/* the super has an extra ref to root->node */
3381 	free_extent_buffer(old);
3382 
3383 	add_root_to_dirty_list(root);
3384 	extent_buffer_get(c);
3385 	path->nodes[level] = c;
3386 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3387 	path->slots[level] = 0;
3388 	return 0;
3389 }
3390 
3391 /*
3392  * worker function to insert a single pointer in a node.
3393  * the node should have enough room for the pointer already
3394  *
3395  * slot and level indicate where you want the key to go, and
3396  * blocknr is the block the key points to.
3397  */
3398 static void insert_ptr(struct btrfs_trans_handle *trans,
3399 		       struct btrfs_root *root, struct btrfs_path *path,
3400 		       struct btrfs_disk_key *key, u64 bytenr,
3401 		       int slot, int level)
3402 {
3403 	struct extent_buffer *lower;
3404 	int nritems;
3405 	int ret;
3406 
3407 	BUG_ON(!path->nodes[level]);
3408 	btrfs_assert_tree_locked(path->nodes[level]);
3409 	lower = path->nodes[level];
3410 	nritems = btrfs_header_nritems(lower);
3411 	BUG_ON(slot > nritems);
3412 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3413 	if (slot != nritems) {
3414 		if (level)
3415 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3416 					     slot, nritems - slot);
3417 		memmove_extent_buffer(lower,
3418 			      btrfs_node_key_ptr_offset(slot + 1),
3419 			      btrfs_node_key_ptr_offset(slot),
3420 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3421 	}
3422 	if (level) {
3423 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3424 					      MOD_LOG_KEY_ADD, GFP_NOFS);
3425 		BUG_ON(ret < 0);
3426 	}
3427 	btrfs_set_node_key(lower, key, slot);
3428 	btrfs_set_node_blockptr(lower, slot, bytenr);
3429 	WARN_ON(trans->transid == 0);
3430 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3431 	btrfs_set_header_nritems(lower, nritems + 1);
3432 	btrfs_mark_buffer_dirty(lower);
3433 }
3434 
3435 /*
3436  * split the node at the specified level in path in two.
3437  * The path is corrected to point to the appropriate node after the split
3438  *
3439  * Before splitting this tries to make some room in the node by pushing
3440  * left and right, if either one works, it returns right away.
3441  *
3442  * returns 0 on success and < 0 on failure
3443  */
3444 static noinline int split_node(struct btrfs_trans_handle *trans,
3445 			       struct btrfs_root *root,
3446 			       struct btrfs_path *path, int level)
3447 {
3448 	struct extent_buffer *c;
3449 	struct extent_buffer *split;
3450 	struct btrfs_disk_key disk_key;
3451 	int mid;
3452 	int ret;
3453 	u32 c_nritems;
3454 
3455 	c = path->nodes[level];
3456 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3457 	if (c == root->node) {
3458 		/*
3459 		 * trying to split the root, lets make a new one
3460 		 *
3461 		 * tree mod log: We don't log_removal old root in
3462 		 * insert_new_root, because that root buffer will be kept as a
3463 		 * normal node. We are going to log removal of half of the
3464 		 * elements below with tree_mod_log_eb_copy. We're holding a
3465 		 * tree lock on the buffer, which is why we cannot race with
3466 		 * other tree_mod_log users.
3467 		 */
3468 		ret = insert_new_root(trans, root, path, level + 1);
3469 		if (ret)
3470 			return ret;
3471 	} else {
3472 		ret = push_nodes_for_insert(trans, root, path, level);
3473 		c = path->nodes[level];
3474 		if (!ret && btrfs_header_nritems(c) <
3475 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3476 			return 0;
3477 		if (ret < 0)
3478 			return ret;
3479 	}
3480 
3481 	c_nritems = btrfs_header_nritems(c);
3482 	mid = (c_nritems + 1) / 2;
3483 	btrfs_node_key(c, &disk_key, mid);
3484 
3485 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3486 			&disk_key, level, c->start, 0);
3487 	if (IS_ERR(split))
3488 		return PTR_ERR(split);
3489 
3490 	root_add_used(root, root->nodesize);
3491 
3492 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3493 	btrfs_set_header_level(split, btrfs_header_level(c));
3494 	btrfs_set_header_bytenr(split, split->start);
3495 	btrfs_set_header_generation(split, trans->transid);
3496 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3497 	btrfs_set_header_owner(split, root->root_key.objectid);
3498 	write_extent_buffer(split, root->fs_info->fsid,
3499 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3500 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3501 			    btrfs_header_chunk_tree_uuid(split),
3502 			    BTRFS_UUID_SIZE);
3503 
3504 	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3505 				   mid, c_nritems - mid);
3506 	if (ret) {
3507 		btrfs_abort_transaction(trans, ret);
3508 		return ret;
3509 	}
3510 	copy_extent_buffer(split, c,
3511 			   btrfs_node_key_ptr_offset(0),
3512 			   btrfs_node_key_ptr_offset(mid),
3513 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3514 	btrfs_set_header_nritems(split, c_nritems - mid);
3515 	btrfs_set_header_nritems(c, mid);
3516 	ret = 0;
3517 
3518 	btrfs_mark_buffer_dirty(c);
3519 	btrfs_mark_buffer_dirty(split);
3520 
3521 	insert_ptr(trans, root, path, &disk_key, split->start,
3522 		   path->slots[level + 1] + 1, level + 1);
3523 
3524 	if (path->slots[level] >= mid) {
3525 		path->slots[level] -= mid;
3526 		btrfs_tree_unlock(c);
3527 		free_extent_buffer(c);
3528 		path->nodes[level] = split;
3529 		path->slots[level + 1] += 1;
3530 	} else {
3531 		btrfs_tree_unlock(split);
3532 		free_extent_buffer(split);
3533 	}
3534 	return ret;
3535 }
3536 
3537 /*
3538  * how many bytes are required to store the items in a leaf.  start
3539  * and nr indicate which items in the leaf to check.  This totals up the
3540  * space used both by the item structs and the item data
3541  */
3542 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3543 {
3544 	struct btrfs_item *start_item;
3545 	struct btrfs_item *end_item;
3546 	struct btrfs_map_token token;
3547 	int data_len;
3548 	int nritems = btrfs_header_nritems(l);
3549 	int end = min(nritems, start + nr) - 1;
3550 
3551 	if (!nr)
3552 		return 0;
3553 	btrfs_init_map_token(&token);
3554 	start_item = btrfs_item_nr(start);
3555 	end_item = btrfs_item_nr(end);
3556 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3557 		btrfs_token_item_size(l, start_item, &token);
3558 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3559 	data_len += sizeof(struct btrfs_item) * nr;
3560 	WARN_ON(data_len < 0);
3561 	return data_len;
3562 }
3563 
3564 /*
3565  * The space between the end of the leaf items and
3566  * the start of the leaf data.  IOW, how much room
3567  * the leaf has left for both items and data
3568  */
3569 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3570 				   struct extent_buffer *leaf)
3571 {
3572 	int nritems = btrfs_header_nritems(leaf);
3573 	int ret;
3574 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3575 	if (ret < 0) {
3576 		btrfs_crit(root->fs_info,
3577 			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3578 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3579 		       leaf_space_used(leaf, 0, nritems), nritems);
3580 	}
3581 	return ret;
3582 }
3583 
3584 /*
3585  * min slot controls the lowest index we're willing to push to the
3586  * right.  We'll push up to and including min_slot, but no lower
3587  */
3588 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3589 				      struct btrfs_root *root,
3590 				      struct btrfs_path *path,
3591 				      int data_size, int empty,
3592 				      struct extent_buffer *right,
3593 				      int free_space, u32 left_nritems,
3594 				      u32 min_slot)
3595 {
3596 	struct extent_buffer *left = path->nodes[0];
3597 	struct extent_buffer *upper = path->nodes[1];
3598 	struct btrfs_map_token token;
3599 	struct btrfs_disk_key disk_key;
3600 	int slot;
3601 	u32 i;
3602 	int push_space = 0;
3603 	int push_items = 0;
3604 	struct btrfs_item *item;
3605 	u32 nr;
3606 	u32 right_nritems;
3607 	u32 data_end;
3608 	u32 this_item_size;
3609 
3610 	btrfs_init_map_token(&token);
3611 
3612 	if (empty)
3613 		nr = 0;
3614 	else
3615 		nr = max_t(u32, 1, min_slot);
3616 
3617 	if (path->slots[0] >= left_nritems)
3618 		push_space += data_size;
3619 
3620 	slot = path->slots[1];
3621 	i = left_nritems - 1;
3622 	while (i >= nr) {
3623 		item = btrfs_item_nr(i);
3624 
3625 		if (!empty && push_items > 0) {
3626 			if (path->slots[0] > i)
3627 				break;
3628 			if (path->slots[0] == i) {
3629 				int space = btrfs_leaf_free_space(root, left);
3630 				if (space + push_space * 2 > free_space)
3631 					break;
3632 			}
3633 		}
3634 
3635 		if (path->slots[0] == i)
3636 			push_space += data_size;
3637 
3638 		this_item_size = btrfs_item_size(left, item);
3639 		if (this_item_size + sizeof(*item) + push_space > free_space)
3640 			break;
3641 
3642 		push_items++;
3643 		push_space += this_item_size + sizeof(*item);
3644 		if (i == 0)
3645 			break;
3646 		i--;
3647 	}
3648 
3649 	if (push_items == 0)
3650 		goto out_unlock;
3651 
3652 	WARN_ON(!empty && push_items == left_nritems);
3653 
3654 	/* push left to right */
3655 	right_nritems = btrfs_header_nritems(right);
3656 
3657 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3658 	push_space -= leaf_data_end(root, left);
3659 
3660 	/* make room in the right data area */
3661 	data_end = leaf_data_end(root, right);
3662 	memmove_extent_buffer(right,
3663 			      btrfs_leaf_data(right) + data_end - push_space,
3664 			      btrfs_leaf_data(right) + data_end,
3665 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3666 
3667 	/* copy from the left data area */
3668 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3669 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3670 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3671 		     push_space);
3672 
3673 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3674 			      btrfs_item_nr_offset(0),
3675 			      right_nritems * sizeof(struct btrfs_item));
3676 
3677 	/* copy the items from left to right */
3678 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3679 		   btrfs_item_nr_offset(left_nritems - push_items),
3680 		   push_items * sizeof(struct btrfs_item));
3681 
3682 	/* update the item pointers */
3683 	right_nritems += push_items;
3684 	btrfs_set_header_nritems(right, right_nritems);
3685 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3686 	for (i = 0; i < right_nritems; i++) {
3687 		item = btrfs_item_nr(i);
3688 		push_space -= btrfs_token_item_size(right, item, &token);
3689 		btrfs_set_token_item_offset(right, item, push_space, &token);
3690 	}
3691 
3692 	left_nritems -= push_items;
3693 	btrfs_set_header_nritems(left, left_nritems);
3694 
3695 	if (left_nritems)
3696 		btrfs_mark_buffer_dirty(left);
3697 	else
3698 		clean_tree_block(trans, root->fs_info, left);
3699 
3700 	btrfs_mark_buffer_dirty(right);
3701 
3702 	btrfs_item_key(right, &disk_key, 0);
3703 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3704 	btrfs_mark_buffer_dirty(upper);
3705 
3706 	/* then fixup the leaf pointer in the path */
3707 	if (path->slots[0] >= left_nritems) {
3708 		path->slots[0] -= left_nritems;
3709 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3710 			clean_tree_block(trans, root->fs_info, path->nodes[0]);
3711 		btrfs_tree_unlock(path->nodes[0]);
3712 		free_extent_buffer(path->nodes[0]);
3713 		path->nodes[0] = right;
3714 		path->slots[1] += 1;
3715 	} else {
3716 		btrfs_tree_unlock(right);
3717 		free_extent_buffer(right);
3718 	}
3719 	return 0;
3720 
3721 out_unlock:
3722 	btrfs_tree_unlock(right);
3723 	free_extent_buffer(right);
3724 	return 1;
3725 }
3726 
3727 /*
3728  * push some data in the path leaf to the right, trying to free up at
3729  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3730  *
3731  * returns 1 if the push failed because the other node didn't have enough
3732  * room, 0 if everything worked out and < 0 if there were major errors.
3733  *
3734  * this will push starting from min_slot to the end of the leaf.  It won't
3735  * push any slot lower than min_slot
3736  */
3737 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3738 			   *root, struct btrfs_path *path,
3739 			   int min_data_size, int data_size,
3740 			   int empty, u32 min_slot)
3741 {
3742 	struct extent_buffer *left = path->nodes[0];
3743 	struct extent_buffer *right;
3744 	struct extent_buffer *upper;
3745 	int slot;
3746 	int free_space;
3747 	u32 left_nritems;
3748 	int ret;
3749 
3750 	if (!path->nodes[1])
3751 		return 1;
3752 
3753 	slot = path->slots[1];
3754 	upper = path->nodes[1];
3755 	if (slot >= btrfs_header_nritems(upper) - 1)
3756 		return 1;
3757 
3758 	btrfs_assert_tree_locked(path->nodes[1]);
3759 
3760 	right = read_node_slot(root, upper, slot + 1);
3761 	/*
3762 	 * slot + 1 is not valid or we fail to read the right node,
3763 	 * no big deal, just return.
3764 	 */
3765 	if (IS_ERR(right))
3766 		return 1;
3767 
3768 	btrfs_tree_lock(right);
3769 	btrfs_set_lock_blocking(right);
3770 
3771 	free_space = btrfs_leaf_free_space(root, right);
3772 	if (free_space < data_size)
3773 		goto out_unlock;
3774 
3775 	/* cow and double check */
3776 	ret = btrfs_cow_block(trans, root, right, upper,
3777 			      slot + 1, &right);
3778 	if (ret)
3779 		goto out_unlock;
3780 
3781 	free_space = btrfs_leaf_free_space(root, right);
3782 	if (free_space < data_size)
3783 		goto out_unlock;
3784 
3785 	left_nritems = btrfs_header_nritems(left);
3786 	if (left_nritems == 0)
3787 		goto out_unlock;
3788 
3789 	if (path->slots[0] == left_nritems && !empty) {
3790 		/* Key greater than all keys in the leaf, right neighbor has
3791 		 * enough room for it and we're not emptying our leaf to delete
3792 		 * it, therefore use right neighbor to insert the new item and
3793 		 * no need to touch/dirty our left leaft. */
3794 		btrfs_tree_unlock(left);
3795 		free_extent_buffer(left);
3796 		path->nodes[0] = right;
3797 		path->slots[0] = 0;
3798 		path->slots[1]++;
3799 		return 0;
3800 	}
3801 
3802 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3803 				right, free_space, left_nritems, min_slot);
3804 out_unlock:
3805 	btrfs_tree_unlock(right);
3806 	free_extent_buffer(right);
3807 	return 1;
3808 }
3809 
3810 /*
3811  * push some data in the path leaf to the left, trying to free up at
3812  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3813  *
3814  * max_slot can put a limit on how far into the leaf we'll push items.  The
3815  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3816  * items
3817  */
3818 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3819 				     struct btrfs_root *root,
3820 				     struct btrfs_path *path, int data_size,
3821 				     int empty, struct extent_buffer *left,
3822 				     int free_space, u32 right_nritems,
3823 				     u32 max_slot)
3824 {
3825 	struct btrfs_disk_key disk_key;
3826 	struct extent_buffer *right = path->nodes[0];
3827 	int i;
3828 	int push_space = 0;
3829 	int push_items = 0;
3830 	struct btrfs_item *item;
3831 	u32 old_left_nritems;
3832 	u32 nr;
3833 	int ret = 0;
3834 	u32 this_item_size;
3835 	u32 old_left_item_size;
3836 	struct btrfs_map_token token;
3837 
3838 	btrfs_init_map_token(&token);
3839 
3840 	if (empty)
3841 		nr = min(right_nritems, max_slot);
3842 	else
3843 		nr = min(right_nritems - 1, max_slot);
3844 
3845 	for (i = 0; i < nr; i++) {
3846 		item = btrfs_item_nr(i);
3847 
3848 		if (!empty && push_items > 0) {
3849 			if (path->slots[0] < i)
3850 				break;
3851 			if (path->slots[0] == i) {
3852 				int space = btrfs_leaf_free_space(root, right);
3853 				if (space + push_space * 2 > free_space)
3854 					break;
3855 			}
3856 		}
3857 
3858 		if (path->slots[0] == i)
3859 			push_space += data_size;
3860 
3861 		this_item_size = btrfs_item_size(right, item);
3862 		if (this_item_size + sizeof(*item) + push_space > free_space)
3863 			break;
3864 
3865 		push_items++;
3866 		push_space += this_item_size + sizeof(*item);
3867 	}
3868 
3869 	if (push_items == 0) {
3870 		ret = 1;
3871 		goto out;
3872 	}
3873 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3874 
3875 	/* push data from right to left */
3876 	copy_extent_buffer(left, right,
3877 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3878 			   btrfs_item_nr_offset(0),
3879 			   push_items * sizeof(struct btrfs_item));
3880 
3881 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3882 		     btrfs_item_offset_nr(right, push_items - 1);
3883 
3884 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3885 		     leaf_data_end(root, left) - push_space,
3886 		     btrfs_leaf_data(right) +
3887 		     btrfs_item_offset_nr(right, push_items - 1),
3888 		     push_space);
3889 	old_left_nritems = btrfs_header_nritems(left);
3890 	BUG_ON(old_left_nritems <= 0);
3891 
3892 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3893 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3894 		u32 ioff;
3895 
3896 		item = btrfs_item_nr(i);
3897 
3898 		ioff = btrfs_token_item_offset(left, item, &token);
3899 		btrfs_set_token_item_offset(left, item,
3900 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3901 		      &token);
3902 	}
3903 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3904 
3905 	/* fixup right node */
3906 	if (push_items > right_nritems)
3907 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3908 		       right_nritems);
3909 
3910 	if (push_items < right_nritems) {
3911 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3912 						  leaf_data_end(root, right);
3913 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3914 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3915 				      btrfs_leaf_data(right) +
3916 				      leaf_data_end(root, right), push_space);
3917 
3918 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3919 			      btrfs_item_nr_offset(push_items),
3920 			     (btrfs_header_nritems(right) - push_items) *
3921 			     sizeof(struct btrfs_item));
3922 	}
3923 	right_nritems -= push_items;
3924 	btrfs_set_header_nritems(right, right_nritems);
3925 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3926 	for (i = 0; i < right_nritems; i++) {
3927 		item = btrfs_item_nr(i);
3928 
3929 		push_space = push_space - btrfs_token_item_size(right,
3930 								item, &token);
3931 		btrfs_set_token_item_offset(right, item, push_space, &token);
3932 	}
3933 
3934 	btrfs_mark_buffer_dirty(left);
3935 	if (right_nritems)
3936 		btrfs_mark_buffer_dirty(right);
3937 	else
3938 		clean_tree_block(trans, root->fs_info, right);
3939 
3940 	btrfs_item_key(right, &disk_key, 0);
3941 	fixup_low_keys(root->fs_info, path, &disk_key, 1);
3942 
3943 	/* then fixup the leaf pointer in the path */
3944 	if (path->slots[0] < push_items) {
3945 		path->slots[0] += old_left_nritems;
3946 		btrfs_tree_unlock(path->nodes[0]);
3947 		free_extent_buffer(path->nodes[0]);
3948 		path->nodes[0] = left;
3949 		path->slots[1] -= 1;
3950 	} else {
3951 		btrfs_tree_unlock(left);
3952 		free_extent_buffer(left);
3953 		path->slots[0] -= push_items;
3954 	}
3955 	BUG_ON(path->slots[0] < 0);
3956 	return ret;
3957 out:
3958 	btrfs_tree_unlock(left);
3959 	free_extent_buffer(left);
3960 	return ret;
3961 }
3962 
3963 /*
3964  * push some data in the path leaf to the left, trying to free up at
3965  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3966  *
3967  * max_slot can put a limit on how far into the leaf we'll push items.  The
3968  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3969  * items
3970  */
3971 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3972 			  *root, struct btrfs_path *path, int min_data_size,
3973 			  int data_size, int empty, u32 max_slot)
3974 {
3975 	struct extent_buffer *right = path->nodes[0];
3976 	struct extent_buffer *left;
3977 	int slot;
3978 	int free_space;
3979 	u32 right_nritems;
3980 	int ret = 0;
3981 
3982 	slot = path->slots[1];
3983 	if (slot == 0)
3984 		return 1;
3985 	if (!path->nodes[1])
3986 		return 1;
3987 
3988 	right_nritems = btrfs_header_nritems(right);
3989 	if (right_nritems == 0)
3990 		return 1;
3991 
3992 	btrfs_assert_tree_locked(path->nodes[1]);
3993 
3994 	left = read_node_slot(root, path->nodes[1], slot - 1);
3995 	/*
3996 	 * slot - 1 is not valid or we fail to read the left node,
3997 	 * no big deal, just return.
3998 	 */
3999 	if (IS_ERR(left))
4000 		return 1;
4001 
4002 	btrfs_tree_lock(left);
4003 	btrfs_set_lock_blocking(left);
4004 
4005 	free_space = btrfs_leaf_free_space(root, left);
4006 	if (free_space < data_size) {
4007 		ret = 1;
4008 		goto out;
4009 	}
4010 
4011 	/* cow and double check */
4012 	ret = btrfs_cow_block(trans, root, left,
4013 			      path->nodes[1], slot - 1, &left);
4014 	if (ret) {
4015 		/* we hit -ENOSPC, but it isn't fatal here */
4016 		if (ret == -ENOSPC)
4017 			ret = 1;
4018 		goto out;
4019 	}
4020 
4021 	free_space = btrfs_leaf_free_space(root, left);
4022 	if (free_space < data_size) {
4023 		ret = 1;
4024 		goto out;
4025 	}
4026 
4027 	return __push_leaf_left(trans, root, path, min_data_size,
4028 			       empty, left, free_space, right_nritems,
4029 			       max_slot);
4030 out:
4031 	btrfs_tree_unlock(left);
4032 	free_extent_buffer(left);
4033 	return ret;
4034 }
4035 
4036 /*
4037  * split the path's leaf in two, making sure there is at least data_size
4038  * available for the resulting leaf level of the path.
4039  */
4040 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4041 				    struct btrfs_root *root,
4042 				    struct btrfs_path *path,
4043 				    struct extent_buffer *l,
4044 				    struct extent_buffer *right,
4045 				    int slot, int mid, int nritems)
4046 {
4047 	int data_copy_size;
4048 	int rt_data_off;
4049 	int i;
4050 	struct btrfs_disk_key disk_key;
4051 	struct btrfs_map_token token;
4052 
4053 	btrfs_init_map_token(&token);
4054 
4055 	nritems = nritems - mid;
4056 	btrfs_set_header_nritems(right, nritems);
4057 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4058 
4059 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4060 			   btrfs_item_nr_offset(mid),
4061 			   nritems * sizeof(struct btrfs_item));
4062 
4063 	copy_extent_buffer(right, l,
4064 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4065 		     data_copy_size, btrfs_leaf_data(l) +
4066 		     leaf_data_end(root, l), data_copy_size);
4067 
4068 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4069 		      btrfs_item_end_nr(l, mid);
4070 
4071 	for (i = 0; i < nritems; i++) {
4072 		struct btrfs_item *item = btrfs_item_nr(i);
4073 		u32 ioff;
4074 
4075 		ioff = btrfs_token_item_offset(right, item, &token);
4076 		btrfs_set_token_item_offset(right, item,
4077 					    ioff + rt_data_off, &token);
4078 	}
4079 
4080 	btrfs_set_header_nritems(l, mid);
4081 	btrfs_item_key(right, &disk_key, 0);
4082 	insert_ptr(trans, root, path, &disk_key, right->start,
4083 		   path->slots[1] + 1, 1);
4084 
4085 	btrfs_mark_buffer_dirty(right);
4086 	btrfs_mark_buffer_dirty(l);
4087 	BUG_ON(path->slots[0] != slot);
4088 
4089 	if (mid <= slot) {
4090 		btrfs_tree_unlock(path->nodes[0]);
4091 		free_extent_buffer(path->nodes[0]);
4092 		path->nodes[0] = right;
4093 		path->slots[0] -= mid;
4094 		path->slots[1] += 1;
4095 	} else {
4096 		btrfs_tree_unlock(right);
4097 		free_extent_buffer(right);
4098 	}
4099 
4100 	BUG_ON(path->slots[0] < 0);
4101 }
4102 
4103 /*
4104  * double splits happen when we need to insert a big item in the middle
4105  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4106  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4107  *          A                 B                 C
4108  *
4109  * We avoid this by trying to push the items on either side of our target
4110  * into the adjacent leaves.  If all goes well we can avoid the double split
4111  * completely.
4112  */
4113 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4114 					  struct btrfs_root *root,
4115 					  struct btrfs_path *path,
4116 					  int data_size)
4117 {
4118 	int ret;
4119 	int progress = 0;
4120 	int slot;
4121 	u32 nritems;
4122 	int space_needed = data_size;
4123 
4124 	slot = path->slots[0];
4125 	if (slot < btrfs_header_nritems(path->nodes[0]))
4126 		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4127 
4128 	/*
4129 	 * try to push all the items after our slot into the
4130 	 * right leaf
4131 	 */
4132 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4133 	if (ret < 0)
4134 		return ret;
4135 
4136 	if (ret == 0)
4137 		progress++;
4138 
4139 	nritems = btrfs_header_nritems(path->nodes[0]);
4140 	/*
4141 	 * our goal is to get our slot at the start or end of a leaf.  If
4142 	 * we've done so we're done
4143 	 */
4144 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4145 		return 0;
4146 
4147 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4148 		return 0;
4149 
4150 	/* try to push all the items before our slot into the next leaf */
4151 	slot = path->slots[0];
4152 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4153 	if (ret < 0)
4154 		return ret;
4155 
4156 	if (ret == 0)
4157 		progress++;
4158 
4159 	if (progress)
4160 		return 0;
4161 	return 1;
4162 }
4163 
4164 /*
4165  * split the path's leaf in two, making sure there is at least data_size
4166  * available for the resulting leaf level of the path.
4167  *
4168  * returns 0 if all went well and < 0 on failure.
4169  */
4170 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4171 			       struct btrfs_root *root,
4172 			       struct btrfs_key *ins_key,
4173 			       struct btrfs_path *path, int data_size,
4174 			       int extend)
4175 {
4176 	struct btrfs_disk_key disk_key;
4177 	struct extent_buffer *l;
4178 	u32 nritems;
4179 	int mid;
4180 	int slot;
4181 	struct extent_buffer *right;
4182 	struct btrfs_fs_info *fs_info = root->fs_info;
4183 	int ret = 0;
4184 	int wret;
4185 	int split;
4186 	int num_doubles = 0;
4187 	int tried_avoid_double = 0;
4188 
4189 	l = path->nodes[0];
4190 	slot = path->slots[0];
4191 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4192 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4193 		return -EOVERFLOW;
4194 
4195 	/* first try to make some room by pushing left and right */
4196 	if (data_size && path->nodes[1]) {
4197 		int space_needed = data_size;
4198 
4199 		if (slot < btrfs_header_nritems(l))
4200 			space_needed -= btrfs_leaf_free_space(root, l);
4201 
4202 		wret = push_leaf_right(trans, root, path, space_needed,
4203 				       space_needed, 0, 0);
4204 		if (wret < 0)
4205 			return wret;
4206 		if (wret) {
4207 			wret = push_leaf_left(trans, root, path, space_needed,
4208 					      space_needed, 0, (u32)-1);
4209 			if (wret < 0)
4210 				return wret;
4211 		}
4212 		l = path->nodes[0];
4213 
4214 		/* did the pushes work? */
4215 		if (btrfs_leaf_free_space(root, l) >= data_size)
4216 			return 0;
4217 	}
4218 
4219 	if (!path->nodes[1]) {
4220 		ret = insert_new_root(trans, root, path, 1);
4221 		if (ret)
4222 			return ret;
4223 	}
4224 again:
4225 	split = 1;
4226 	l = path->nodes[0];
4227 	slot = path->slots[0];
4228 	nritems = btrfs_header_nritems(l);
4229 	mid = (nritems + 1) / 2;
4230 
4231 	if (mid <= slot) {
4232 		if (nritems == 1 ||
4233 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4234 			BTRFS_LEAF_DATA_SIZE(root)) {
4235 			if (slot >= nritems) {
4236 				split = 0;
4237 			} else {
4238 				mid = slot;
4239 				if (mid != nritems &&
4240 				    leaf_space_used(l, mid, nritems - mid) +
4241 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4242 					if (data_size && !tried_avoid_double)
4243 						goto push_for_double;
4244 					split = 2;
4245 				}
4246 			}
4247 		}
4248 	} else {
4249 		if (leaf_space_used(l, 0, mid) + data_size >
4250 			BTRFS_LEAF_DATA_SIZE(root)) {
4251 			if (!extend && data_size && slot == 0) {
4252 				split = 0;
4253 			} else if ((extend || !data_size) && slot == 0) {
4254 				mid = 1;
4255 			} else {
4256 				mid = slot;
4257 				if (mid != nritems &&
4258 				    leaf_space_used(l, mid, nritems - mid) +
4259 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4260 					if (data_size && !tried_avoid_double)
4261 						goto push_for_double;
4262 					split = 2;
4263 				}
4264 			}
4265 		}
4266 	}
4267 
4268 	if (split == 0)
4269 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4270 	else
4271 		btrfs_item_key(l, &disk_key, mid);
4272 
4273 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4274 			&disk_key, 0, l->start, 0);
4275 	if (IS_ERR(right))
4276 		return PTR_ERR(right);
4277 
4278 	root_add_used(root, root->nodesize);
4279 
4280 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4281 	btrfs_set_header_bytenr(right, right->start);
4282 	btrfs_set_header_generation(right, trans->transid);
4283 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4284 	btrfs_set_header_owner(right, root->root_key.objectid);
4285 	btrfs_set_header_level(right, 0);
4286 	write_extent_buffer(right, fs_info->fsid,
4287 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4288 
4289 	write_extent_buffer(right, fs_info->chunk_tree_uuid,
4290 			    btrfs_header_chunk_tree_uuid(right),
4291 			    BTRFS_UUID_SIZE);
4292 
4293 	if (split == 0) {
4294 		if (mid <= slot) {
4295 			btrfs_set_header_nritems(right, 0);
4296 			insert_ptr(trans, root, path, &disk_key, right->start,
4297 				   path->slots[1] + 1, 1);
4298 			btrfs_tree_unlock(path->nodes[0]);
4299 			free_extent_buffer(path->nodes[0]);
4300 			path->nodes[0] = right;
4301 			path->slots[0] = 0;
4302 			path->slots[1] += 1;
4303 		} else {
4304 			btrfs_set_header_nritems(right, 0);
4305 			insert_ptr(trans, root, path, &disk_key, right->start,
4306 					  path->slots[1], 1);
4307 			btrfs_tree_unlock(path->nodes[0]);
4308 			free_extent_buffer(path->nodes[0]);
4309 			path->nodes[0] = right;
4310 			path->slots[0] = 0;
4311 			if (path->slots[1] == 0)
4312 				fixup_low_keys(fs_info, path, &disk_key, 1);
4313 		}
4314 		/*
4315 		 * We create a new leaf 'right' for the required ins_len and
4316 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4317 		 * the content of ins_len to 'right'.
4318 		 */
4319 		return ret;
4320 	}
4321 
4322 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4323 
4324 	if (split == 2) {
4325 		BUG_ON(num_doubles != 0);
4326 		num_doubles++;
4327 		goto again;
4328 	}
4329 
4330 	return 0;
4331 
4332 push_for_double:
4333 	push_for_double_split(trans, root, path, data_size);
4334 	tried_avoid_double = 1;
4335 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4336 		return 0;
4337 	goto again;
4338 }
4339 
4340 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4341 					 struct btrfs_root *root,
4342 					 struct btrfs_path *path, int ins_len)
4343 {
4344 	struct btrfs_key key;
4345 	struct extent_buffer *leaf;
4346 	struct btrfs_file_extent_item *fi;
4347 	u64 extent_len = 0;
4348 	u32 item_size;
4349 	int ret;
4350 
4351 	leaf = path->nodes[0];
4352 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4353 
4354 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4355 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4356 
4357 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4358 		return 0;
4359 
4360 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4361 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4362 		fi = btrfs_item_ptr(leaf, path->slots[0],
4363 				    struct btrfs_file_extent_item);
4364 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4365 	}
4366 	btrfs_release_path(path);
4367 
4368 	path->keep_locks = 1;
4369 	path->search_for_split = 1;
4370 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4371 	path->search_for_split = 0;
4372 	if (ret > 0)
4373 		ret = -EAGAIN;
4374 	if (ret < 0)
4375 		goto err;
4376 
4377 	ret = -EAGAIN;
4378 	leaf = path->nodes[0];
4379 	/* if our item isn't there, return now */
4380 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4381 		goto err;
4382 
4383 	/* the leaf has  changed, it now has room.  return now */
4384 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4385 		goto err;
4386 
4387 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4388 		fi = btrfs_item_ptr(leaf, path->slots[0],
4389 				    struct btrfs_file_extent_item);
4390 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4391 			goto err;
4392 	}
4393 
4394 	btrfs_set_path_blocking(path);
4395 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4396 	if (ret)
4397 		goto err;
4398 
4399 	path->keep_locks = 0;
4400 	btrfs_unlock_up_safe(path, 1);
4401 	return 0;
4402 err:
4403 	path->keep_locks = 0;
4404 	return ret;
4405 }
4406 
4407 static noinline int split_item(struct btrfs_trans_handle *trans,
4408 			       struct btrfs_root *root,
4409 			       struct btrfs_path *path,
4410 			       struct btrfs_key *new_key,
4411 			       unsigned long split_offset)
4412 {
4413 	struct extent_buffer *leaf;
4414 	struct btrfs_item *item;
4415 	struct btrfs_item *new_item;
4416 	int slot;
4417 	char *buf;
4418 	u32 nritems;
4419 	u32 item_size;
4420 	u32 orig_offset;
4421 	struct btrfs_disk_key disk_key;
4422 
4423 	leaf = path->nodes[0];
4424 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4425 
4426 	btrfs_set_path_blocking(path);
4427 
4428 	item = btrfs_item_nr(path->slots[0]);
4429 	orig_offset = btrfs_item_offset(leaf, item);
4430 	item_size = btrfs_item_size(leaf, item);
4431 
4432 	buf = kmalloc(item_size, GFP_NOFS);
4433 	if (!buf)
4434 		return -ENOMEM;
4435 
4436 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4437 			    path->slots[0]), item_size);
4438 
4439 	slot = path->slots[0] + 1;
4440 	nritems = btrfs_header_nritems(leaf);
4441 	if (slot != nritems) {
4442 		/* shift the items */
4443 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4444 				btrfs_item_nr_offset(slot),
4445 				(nritems - slot) * sizeof(struct btrfs_item));
4446 	}
4447 
4448 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4449 	btrfs_set_item_key(leaf, &disk_key, slot);
4450 
4451 	new_item = btrfs_item_nr(slot);
4452 
4453 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4454 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4455 
4456 	btrfs_set_item_offset(leaf, item,
4457 			      orig_offset + item_size - split_offset);
4458 	btrfs_set_item_size(leaf, item, split_offset);
4459 
4460 	btrfs_set_header_nritems(leaf, nritems + 1);
4461 
4462 	/* write the data for the start of the original item */
4463 	write_extent_buffer(leaf, buf,
4464 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4465 			    split_offset);
4466 
4467 	/* write the data for the new item */
4468 	write_extent_buffer(leaf, buf + split_offset,
4469 			    btrfs_item_ptr_offset(leaf, slot),
4470 			    item_size - split_offset);
4471 	btrfs_mark_buffer_dirty(leaf);
4472 
4473 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4474 	kfree(buf);
4475 	return 0;
4476 }
4477 
4478 /*
4479  * This function splits a single item into two items,
4480  * giving 'new_key' to the new item and splitting the
4481  * old one at split_offset (from the start of the item).
4482  *
4483  * The path may be released by this operation.  After
4484  * the split, the path is pointing to the old item.  The
4485  * new item is going to be in the same node as the old one.
4486  *
4487  * Note, the item being split must be smaller enough to live alone on
4488  * a tree block with room for one extra struct btrfs_item
4489  *
4490  * This allows us to split the item in place, keeping a lock on the
4491  * leaf the entire time.
4492  */
4493 int btrfs_split_item(struct btrfs_trans_handle *trans,
4494 		     struct btrfs_root *root,
4495 		     struct btrfs_path *path,
4496 		     struct btrfs_key *new_key,
4497 		     unsigned long split_offset)
4498 {
4499 	int ret;
4500 	ret = setup_leaf_for_split(trans, root, path,
4501 				   sizeof(struct btrfs_item));
4502 	if (ret)
4503 		return ret;
4504 
4505 	ret = split_item(trans, root, path, new_key, split_offset);
4506 	return ret;
4507 }
4508 
4509 /*
4510  * This function duplicate a item, giving 'new_key' to the new item.
4511  * It guarantees both items live in the same tree leaf and the new item
4512  * is contiguous with the original item.
4513  *
4514  * This allows us to split file extent in place, keeping a lock on the
4515  * leaf the entire time.
4516  */
4517 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4518 			 struct btrfs_root *root,
4519 			 struct btrfs_path *path,
4520 			 struct btrfs_key *new_key)
4521 {
4522 	struct extent_buffer *leaf;
4523 	int ret;
4524 	u32 item_size;
4525 
4526 	leaf = path->nodes[0];
4527 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4528 	ret = setup_leaf_for_split(trans, root, path,
4529 				   item_size + sizeof(struct btrfs_item));
4530 	if (ret)
4531 		return ret;
4532 
4533 	path->slots[0]++;
4534 	setup_items_for_insert(root, path, new_key, &item_size,
4535 			       item_size, item_size +
4536 			       sizeof(struct btrfs_item), 1);
4537 	leaf = path->nodes[0];
4538 	memcpy_extent_buffer(leaf,
4539 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4540 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4541 			     item_size);
4542 	return 0;
4543 }
4544 
4545 /*
4546  * make the item pointed to by the path smaller.  new_size indicates
4547  * how small to make it, and from_end tells us if we just chop bytes
4548  * off the end of the item or if we shift the item to chop bytes off
4549  * the front.
4550  */
4551 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4552 			 u32 new_size, int from_end)
4553 {
4554 	int slot;
4555 	struct extent_buffer *leaf;
4556 	struct btrfs_item *item;
4557 	u32 nritems;
4558 	unsigned int data_end;
4559 	unsigned int old_data_start;
4560 	unsigned int old_size;
4561 	unsigned int size_diff;
4562 	int i;
4563 	struct btrfs_map_token token;
4564 
4565 	btrfs_init_map_token(&token);
4566 
4567 	leaf = path->nodes[0];
4568 	slot = path->slots[0];
4569 
4570 	old_size = btrfs_item_size_nr(leaf, slot);
4571 	if (old_size == new_size)
4572 		return;
4573 
4574 	nritems = btrfs_header_nritems(leaf);
4575 	data_end = leaf_data_end(root, leaf);
4576 
4577 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4578 
4579 	size_diff = old_size - new_size;
4580 
4581 	BUG_ON(slot < 0);
4582 	BUG_ON(slot >= nritems);
4583 
4584 	/*
4585 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4586 	 */
4587 	/* first correct the data pointers */
4588 	for (i = slot; i < nritems; i++) {
4589 		u32 ioff;
4590 		item = btrfs_item_nr(i);
4591 
4592 		ioff = btrfs_token_item_offset(leaf, item, &token);
4593 		btrfs_set_token_item_offset(leaf, item,
4594 					    ioff + size_diff, &token);
4595 	}
4596 
4597 	/* shift the data */
4598 	if (from_end) {
4599 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4600 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4601 			      data_end, old_data_start + new_size - data_end);
4602 	} else {
4603 		struct btrfs_disk_key disk_key;
4604 		u64 offset;
4605 
4606 		btrfs_item_key(leaf, &disk_key, slot);
4607 
4608 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4609 			unsigned long ptr;
4610 			struct btrfs_file_extent_item *fi;
4611 
4612 			fi = btrfs_item_ptr(leaf, slot,
4613 					    struct btrfs_file_extent_item);
4614 			fi = (struct btrfs_file_extent_item *)(
4615 			     (unsigned long)fi - size_diff);
4616 
4617 			if (btrfs_file_extent_type(leaf, fi) ==
4618 			    BTRFS_FILE_EXTENT_INLINE) {
4619 				ptr = btrfs_item_ptr_offset(leaf, slot);
4620 				memmove_extent_buffer(leaf, ptr,
4621 				      (unsigned long)fi,
4622 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4623 			}
4624 		}
4625 
4626 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4627 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4628 			      data_end, old_data_start - data_end);
4629 
4630 		offset = btrfs_disk_key_offset(&disk_key);
4631 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4632 		btrfs_set_item_key(leaf, &disk_key, slot);
4633 		if (slot == 0)
4634 			fixup_low_keys(root->fs_info, path, &disk_key, 1);
4635 	}
4636 
4637 	item = btrfs_item_nr(slot);
4638 	btrfs_set_item_size(leaf, item, new_size);
4639 	btrfs_mark_buffer_dirty(leaf);
4640 
4641 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4642 		btrfs_print_leaf(root, leaf);
4643 		BUG();
4644 	}
4645 }
4646 
4647 /*
4648  * make the item pointed to by the path bigger, data_size is the added size.
4649  */
4650 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4651 		       u32 data_size)
4652 {
4653 	int slot;
4654 	struct extent_buffer *leaf;
4655 	struct btrfs_item *item;
4656 	u32 nritems;
4657 	unsigned int data_end;
4658 	unsigned int old_data;
4659 	unsigned int old_size;
4660 	int i;
4661 	struct btrfs_map_token token;
4662 
4663 	btrfs_init_map_token(&token);
4664 
4665 	leaf = path->nodes[0];
4666 
4667 	nritems = btrfs_header_nritems(leaf);
4668 	data_end = leaf_data_end(root, leaf);
4669 
4670 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4671 		btrfs_print_leaf(root, leaf);
4672 		BUG();
4673 	}
4674 	slot = path->slots[0];
4675 	old_data = btrfs_item_end_nr(leaf, slot);
4676 
4677 	BUG_ON(slot < 0);
4678 	if (slot >= nritems) {
4679 		btrfs_print_leaf(root, leaf);
4680 		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4681 		       slot, nritems);
4682 		BUG_ON(1);
4683 	}
4684 
4685 	/*
4686 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4687 	 */
4688 	/* first correct the data pointers */
4689 	for (i = slot; i < nritems; i++) {
4690 		u32 ioff;
4691 		item = btrfs_item_nr(i);
4692 
4693 		ioff = btrfs_token_item_offset(leaf, item, &token);
4694 		btrfs_set_token_item_offset(leaf, item,
4695 					    ioff - data_size, &token);
4696 	}
4697 
4698 	/* shift the data */
4699 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4700 		      data_end - data_size, btrfs_leaf_data(leaf) +
4701 		      data_end, old_data - data_end);
4702 
4703 	data_end = old_data;
4704 	old_size = btrfs_item_size_nr(leaf, slot);
4705 	item = btrfs_item_nr(slot);
4706 	btrfs_set_item_size(leaf, item, old_size + data_size);
4707 	btrfs_mark_buffer_dirty(leaf);
4708 
4709 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4710 		btrfs_print_leaf(root, leaf);
4711 		BUG();
4712 	}
4713 }
4714 
4715 /*
4716  * this is a helper for btrfs_insert_empty_items, the main goal here is
4717  * to save stack depth by doing the bulk of the work in a function
4718  * that doesn't call btrfs_search_slot
4719  */
4720 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4721 			    struct btrfs_key *cpu_key, u32 *data_size,
4722 			    u32 total_data, u32 total_size, int nr)
4723 {
4724 	struct btrfs_item *item;
4725 	int i;
4726 	u32 nritems;
4727 	unsigned int data_end;
4728 	struct btrfs_disk_key disk_key;
4729 	struct extent_buffer *leaf;
4730 	int slot;
4731 	struct btrfs_map_token token;
4732 
4733 	if (path->slots[0] == 0) {
4734 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4735 		fixup_low_keys(root->fs_info, path, &disk_key, 1);
4736 	}
4737 	btrfs_unlock_up_safe(path, 1);
4738 
4739 	btrfs_init_map_token(&token);
4740 
4741 	leaf = path->nodes[0];
4742 	slot = path->slots[0];
4743 
4744 	nritems = btrfs_header_nritems(leaf);
4745 	data_end = leaf_data_end(root, leaf);
4746 
4747 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4748 		btrfs_print_leaf(root, leaf);
4749 		btrfs_crit(root->fs_info,
4750 			   "not enough freespace need %u have %d",
4751 			   total_size, btrfs_leaf_free_space(root, leaf));
4752 		BUG();
4753 	}
4754 
4755 	if (slot != nritems) {
4756 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4757 
4758 		if (old_data < data_end) {
4759 			btrfs_print_leaf(root, leaf);
4760 			btrfs_crit(root->fs_info,
4761 				   "slot %d old_data %d data_end %d",
4762 				   slot, old_data, data_end);
4763 			BUG_ON(1);
4764 		}
4765 		/*
4766 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4767 		 */
4768 		/* first correct the data pointers */
4769 		for (i = slot; i < nritems; i++) {
4770 			u32 ioff;
4771 
4772 			item = btrfs_item_nr(i);
4773 			ioff = btrfs_token_item_offset(leaf, item, &token);
4774 			btrfs_set_token_item_offset(leaf, item,
4775 						    ioff - total_data, &token);
4776 		}
4777 		/* shift the items */
4778 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4779 			      btrfs_item_nr_offset(slot),
4780 			      (nritems - slot) * sizeof(struct btrfs_item));
4781 
4782 		/* shift the data */
4783 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4784 			      data_end - total_data, btrfs_leaf_data(leaf) +
4785 			      data_end, old_data - data_end);
4786 		data_end = old_data;
4787 	}
4788 
4789 	/* setup the item for the new data */
4790 	for (i = 0; i < nr; i++) {
4791 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4792 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4793 		item = btrfs_item_nr(slot + i);
4794 		btrfs_set_token_item_offset(leaf, item,
4795 					    data_end - data_size[i], &token);
4796 		data_end -= data_size[i];
4797 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4798 	}
4799 
4800 	btrfs_set_header_nritems(leaf, nritems + nr);
4801 	btrfs_mark_buffer_dirty(leaf);
4802 
4803 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4804 		btrfs_print_leaf(root, leaf);
4805 		BUG();
4806 	}
4807 }
4808 
4809 /*
4810  * Given a key and some data, insert items into the tree.
4811  * This does all the path init required, making room in the tree if needed.
4812  */
4813 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4814 			    struct btrfs_root *root,
4815 			    struct btrfs_path *path,
4816 			    struct btrfs_key *cpu_key, u32 *data_size,
4817 			    int nr)
4818 {
4819 	int ret = 0;
4820 	int slot;
4821 	int i;
4822 	u32 total_size = 0;
4823 	u32 total_data = 0;
4824 
4825 	for (i = 0; i < nr; i++)
4826 		total_data += data_size[i];
4827 
4828 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4829 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4830 	if (ret == 0)
4831 		return -EEXIST;
4832 	if (ret < 0)
4833 		return ret;
4834 
4835 	slot = path->slots[0];
4836 	BUG_ON(slot < 0);
4837 
4838 	setup_items_for_insert(root, path, cpu_key, data_size,
4839 			       total_data, total_size, nr);
4840 	return 0;
4841 }
4842 
4843 /*
4844  * Given a key and some data, insert an item into the tree.
4845  * This does all the path init required, making room in the tree if needed.
4846  */
4847 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4848 		      *root, struct btrfs_key *cpu_key, void *data, u32
4849 		      data_size)
4850 {
4851 	int ret = 0;
4852 	struct btrfs_path *path;
4853 	struct extent_buffer *leaf;
4854 	unsigned long ptr;
4855 
4856 	path = btrfs_alloc_path();
4857 	if (!path)
4858 		return -ENOMEM;
4859 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4860 	if (!ret) {
4861 		leaf = path->nodes[0];
4862 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4863 		write_extent_buffer(leaf, data, ptr, data_size);
4864 		btrfs_mark_buffer_dirty(leaf);
4865 	}
4866 	btrfs_free_path(path);
4867 	return ret;
4868 }
4869 
4870 /*
4871  * delete the pointer from a given node.
4872  *
4873  * the tree should have been previously balanced so the deletion does not
4874  * empty a node.
4875  */
4876 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4877 		    int level, int slot)
4878 {
4879 	struct extent_buffer *parent = path->nodes[level];
4880 	u32 nritems;
4881 	int ret;
4882 
4883 	nritems = btrfs_header_nritems(parent);
4884 	if (slot != nritems - 1) {
4885 		if (level)
4886 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4887 					     slot + 1, nritems - slot - 1);
4888 		memmove_extent_buffer(parent,
4889 			      btrfs_node_key_ptr_offset(slot),
4890 			      btrfs_node_key_ptr_offset(slot + 1),
4891 			      sizeof(struct btrfs_key_ptr) *
4892 			      (nritems - slot - 1));
4893 	} else if (level) {
4894 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4895 					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4896 		BUG_ON(ret < 0);
4897 	}
4898 
4899 	nritems--;
4900 	btrfs_set_header_nritems(parent, nritems);
4901 	if (nritems == 0 && parent == root->node) {
4902 		BUG_ON(btrfs_header_level(root->node) != 1);
4903 		/* just turn the root into a leaf and break */
4904 		btrfs_set_header_level(root->node, 0);
4905 	} else if (slot == 0) {
4906 		struct btrfs_disk_key disk_key;
4907 
4908 		btrfs_node_key(parent, &disk_key, 0);
4909 		fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4910 	}
4911 	btrfs_mark_buffer_dirty(parent);
4912 }
4913 
4914 /*
4915  * a helper function to delete the leaf pointed to by path->slots[1] and
4916  * path->nodes[1].
4917  *
4918  * This deletes the pointer in path->nodes[1] and frees the leaf
4919  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4920  *
4921  * The path must have already been setup for deleting the leaf, including
4922  * all the proper balancing.  path->nodes[1] must be locked.
4923  */
4924 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4925 				    struct btrfs_root *root,
4926 				    struct btrfs_path *path,
4927 				    struct extent_buffer *leaf)
4928 {
4929 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4930 	del_ptr(root, path, 1, path->slots[1]);
4931 
4932 	/*
4933 	 * btrfs_free_extent is expensive, we want to make sure we
4934 	 * aren't holding any locks when we call it
4935 	 */
4936 	btrfs_unlock_up_safe(path, 0);
4937 
4938 	root_sub_used(root, leaf->len);
4939 
4940 	extent_buffer_get(leaf);
4941 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4942 	free_extent_buffer_stale(leaf);
4943 }
4944 /*
4945  * delete the item at the leaf level in path.  If that empties
4946  * the leaf, remove it from the tree
4947  */
4948 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4949 		    struct btrfs_path *path, int slot, int nr)
4950 {
4951 	struct extent_buffer *leaf;
4952 	struct btrfs_item *item;
4953 	u32 last_off;
4954 	u32 dsize = 0;
4955 	int ret = 0;
4956 	int wret;
4957 	int i;
4958 	u32 nritems;
4959 	struct btrfs_map_token token;
4960 
4961 	btrfs_init_map_token(&token);
4962 
4963 	leaf = path->nodes[0];
4964 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4965 
4966 	for (i = 0; i < nr; i++)
4967 		dsize += btrfs_item_size_nr(leaf, slot + i);
4968 
4969 	nritems = btrfs_header_nritems(leaf);
4970 
4971 	if (slot + nr != nritems) {
4972 		int data_end = leaf_data_end(root, leaf);
4973 
4974 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4975 			      data_end + dsize,
4976 			      btrfs_leaf_data(leaf) + data_end,
4977 			      last_off - data_end);
4978 
4979 		for (i = slot + nr; i < nritems; i++) {
4980 			u32 ioff;
4981 
4982 			item = btrfs_item_nr(i);
4983 			ioff = btrfs_token_item_offset(leaf, item, &token);
4984 			btrfs_set_token_item_offset(leaf, item,
4985 						    ioff + dsize, &token);
4986 		}
4987 
4988 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4989 			      btrfs_item_nr_offset(slot + nr),
4990 			      sizeof(struct btrfs_item) *
4991 			      (nritems - slot - nr));
4992 	}
4993 	btrfs_set_header_nritems(leaf, nritems - nr);
4994 	nritems -= nr;
4995 
4996 	/* delete the leaf if we've emptied it */
4997 	if (nritems == 0) {
4998 		if (leaf == root->node) {
4999 			btrfs_set_header_level(leaf, 0);
5000 		} else {
5001 			btrfs_set_path_blocking(path);
5002 			clean_tree_block(trans, root->fs_info, leaf);
5003 			btrfs_del_leaf(trans, root, path, leaf);
5004 		}
5005 	} else {
5006 		int used = leaf_space_used(leaf, 0, nritems);
5007 		if (slot == 0) {
5008 			struct btrfs_disk_key disk_key;
5009 
5010 			btrfs_item_key(leaf, &disk_key, 0);
5011 			fixup_low_keys(root->fs_info, path, &disk_key, 1);
5012 		}
5013 
5014 		/* delete the leaf if it is mostly empty */
5015 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5016 			/* push_leaf_left fixes the path.
5017 			 * make sure the path still points to our leaf
5018 			 * for possible call to del_ptr below
5019 			 */
5020 			slot = path->slots[1];
5021 			extent_buffer_get(leaf);
5022 
5023 			btrfs_set_path_blocking(path);
5024 			wret = push_leaf_left(trans, root, path, 1, 1,
5025 					      1, (u32)-1);
5026 			if (wret < 0 && wret != -ENOSPC)
5027 				ret = wret;
5028 
5029 			if (path->nodes[0] == leaf &&
5030 			    btrfs_header_nritems(leaf)) {
5031 				wret = push_leaf_right(trans, root, path, 1,
5032 						       1, 1, 0);
5033 				if (wret < 0 && wret != -ENOSPC)
5034 					ret = wret;
5035 			}
5036 
5037 			if (btrfs_header_nritems(leaf) == 0) {
5038 				path->slots[1] = slot;
5039 				btrfs_del_leaf(trans, root, path, leaf);
5040 				free_extent_buffer(leaf);
5041 				ret = 0;
5042 			} else {
5043 				/* if we're still in the path, make sure
5044 				 * we're dirty.  Otherwise, one of the
5045 				 * push_leaf functions must have already
5046 				 * dirtied this buffer
5047 				 */
5048 				if (path->nodes[0] == leaf)
5049 					btrfs_mark_buffer_dirty(leaf);
5050 				free_extent_buffer(leaf);
5051 			}
5052 		} else {
5053 			btrfs_mark_buffer_dirty(leaf);
5054 		}
5055 	}
5056 	return ret;
5057 }
5058 
5059 /*
5060  * search the tree again to find a leaf with lesser keys
5061  * returns 0 if it found something or 1 if there are no lesser leaves.
5062  * returns < 0 on io errors.
5063  *
5064  * This may release the path, and so you may lose any locks held at the
5065  * time you call it.
5066  */
5067 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5068 {
5069 	struct btrfs_key key;
5070 	struct btrfs_disk_key found_key;
5071 	int ret;
5072 
5073 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5074 
5075 	if (key.offset > 0) {
5076 		key.offset--;
5077 	} else if (key.type > 0) {
5078 		key.type--;
5079 		key.offset = (u64)-1;
5080 	} else if (key.objectid > 0) {
5081 		key.objectid--;
5082 		key.type = (u8)-1;
5083 		key.offset = (u64)-1;
5084 	} else {
5085 		return 1;
5086 	}
5087 
5088 	btrfs_release_path(path);
5089 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5090 	if (ret < 0)
5091 		return ret;
5092 	btrfs_item_key(path->nodes[0], &found_key, 0);
5093 	ret = comp_keys(&found_key, &key);
5094 	/*
5095 	 * We might have had an item with the previous key in the tree right
5096 	 * before we released our path. And after we released our path, that
5097 	 * item might have been pushed to the first slot (0) of the leaf we
5098 	 * were holding due to a tree balance. Alternatively, an item with the
5099 	 * previous key can exist as the only element of a leaf (big fat item).
5100 	 * Therefore account for these 2 cases, so that our callers (like
5101 	 * btrfs_previous_item) don't miss an existing item with a key matching
5102 	 * the previous key we computed above.
5103 	 */
5104 	if (ret <= 0)
5105 		return 0;
5106 	return 1;
5107 }
5108 
5109 /*
5110  * A helper function to walk down the tree starting at min_key, and looking
5111  * for nodes or leaves that are have a minimum transaction id.
5112  * This is used by the btree defrag code, and tree logging
5113  *
5114  * This does not cow, but it does stuff the starting key it finds back
5115  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5116  * key and get a writable path.
5117  *
5118  * This does lock as it descends, and path->keep_locks should be set
5119  * to 1 by the caller.
5120  *
5121  * This honors path->lowest_level to prevent descent past a given level
5122  * of the tree.
5123  *
5124  * min_trans indicates the oldest transaction that you are interested
5125  * in walking through.  Any nodes or leaves older than min_trans are
5126  * skipped over (without reading them).
5127  *
5128  * returns zero if something useful was found, < 0 on error and 1 if there
5129  * was nothing in the tree that matched the search criteria.
5130  */
5131 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5132 			 struct btrfs_path *path,
5133 			 u64 min_trans)
5134 {
5135 	struct extent_buffer *cur;
5136 	struct btrfs_key found_key;
5137 	int slot;
5138 	int sret;
5139 	u32 nritems;
5140 	int level;
5141 	int ret = 1;
5142 	int keep_locks = path->keep_locks;
5143 
5144 	path->keep_locks = 1;
5145 again:
5146 	cur = btrfs_read_lock_root_node(root);
5147 	level = btrfs_header_level(cur);
5148 	WARN_ON(path->nodes[level]);
5149 	path->nodes[level] = cur;
5150 	path->locks[level] = BTRFS_READ_LOCK;
5151 
5152 	if (btrfs_header_generation(cur) < min_trans) {
5153 		ret = 1;
5154 		goto out;
5155 	}
5156 	while (1) {
5157 		nritems = btrfs_header_nritems(cur);
5158 		level = btrfs_header_level(cur);
5159 		sret = bin_search(cur, min_key, level, &slot);
5160 
5161 		/* at the lowest level, we're done, setup the path and exit */
5162 		if (level == path->lowest_level) {
5163 			if (slot >= nritems)
5164 				goto find_next_key;
5165 			ret = 0;
5166 			path->slots[level] = slot;
5167 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5168 			goto out;
5169 		}
5170 		if (sret && slot > 0)
5171 			slot--;
5172 		/*
5173 		 * check this node pointer against the min_trans parameters.
5174 		 * If it is too old, old, skip to the next one.
5175 		 */
5176 		while (slot < nritems) {
5177 			u64 gen;
5178 
5179 			gen = btrfs_node_ptr_generation(cur, slot);
5180 			if (gen < min_trans) {
5181 				slot++;
5182 				continue;
5183 			}
5184 			break;
5185 		}
5186 find_next_key:
5187 		/*
5188 		 * we didn't find a candidate key in this node, walk forward
5189 		 * and find another one
5190 		 */
5191 		if (slot >= nritems) {
5192 			path->slots[level] = slot;
5193 			btrfs_set_path_blocking(path);
5194 			sret = btrfs_find_next_key(root, path, min_key, level,
5195 						  min_trans);
5196 			if (sret == 0) {
5197 				btrfs_release_path(path);
5198 				goto again;
5199 			} else {
5200 				goto out;
5201 			}
5202 		}
5203 		/* save our key for returning back */
5204 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5205 		path->slots[level] = slot;
5206 		if (level == path->lowest_level) {
5207 			ret = 0;
5208 			goto out;
5209 		}
5210 		btrfs_set_path_blocking(path);
5211 		cur = read_node_slot(root, cur, slot);
5212 		if (IS_ERR(cur)) {
5213 			ret = PTR_ERR(cur);
5214 			goto out;
5215 		}
5216 
5217 		btrfs_tree_read_lock(cur);
5218 
5219 		path->locks[level - 1] = BTRFS_READ_LOCK;
5220 		path->nodes[level - 1] = cur;
5221 		unlock_up(path, level, 1, 0, NULL);
5222 		btrfs_clear_path_blocking(path, NULL, 0);
5223 	}
5224 out:
5225 	path->keep_locks = keep_locks;
5226 	if (ret == 0) {
5227 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5228 		btrfs_set_path_blocking(path);
5229 		memcpy(min_key, &found_key, sizeof(found_key));
5230 	}
5231 	return ret;
5232 }
5233 
5234 static int tree_move_down(struct btrfs_root *root,
5235 			   struct btrfs_path *path,
5236 			   int *level, int root_level)
5237 {
5238 	struct extent_buffer *eb;
5239 
5240 	BUG_ON(*level == 0);
5241 	eb = read_node_slot(root, path->nodes[*level], path->slots[*level]);
5242 	if (IS_ERR(eb))
5243 		return PTR_ERR(eb);
5244 
5245 	path->nodes[*level - 1] = eb;
5246 	path->slots[*level - 1] = 0;
5247 	(*level)--;
5248 	return 0;
5249 }
5250 
5251 static int tree_move_next_or_upnext(struct btrfs_root *root,
5252 				    struct btrfs_path *path,
5253 				    int *level, int root_level)
5254 {
5255 	int ret = 0;
5256 	int nritems;
5257 	nritems = btrfs_header_nritems(path->nodes[*level]);
5258 
5259 	path->slots[*level]++;
5260 
5261 	while (path->slots[*level] >= nritems) {
5262 		if (*level == root_level)
5263 			return -1;
5264 
5265 		/* move upnext */
5266 		path->slots[*level] = 0;
5267 		free_extent_buffer(path->nodes[*level]);
5268 		path->nodes[*level] = NULL;
5269 		(*level)++;
5270 		path->slots[*level]++;
5271 
5272 		nritems = btrfs_header_nritems(path->nodes[*level]);
5273 		ret = 1;
5274 	}
5275 	return ret;
5276 }
5277 
5278 /*
5279  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5280  * or down.
5281  */
5282 static int tree_advance(struct btrfs_root *root,
5283 			struct btrfs_path *path,
5284 			int *level, int root_level,
5285 			int allow_down,
5286 			struct btrfs_key *key)
5287 {
5288 	int ret;
5289 
5290 	if (*level == 0 || !allow_down) {
5291 		ret = tree_move_next_or_upnext(root, path, level, root_level);
5292 	} else {
5293 		ret = tree_move_down(root, path, level, root_level);
5294 	}
5295 	if (ret >= 0) {
5296 		if (*level == 0)
5297 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5298 					path->slots[*level]);
5299 		else
5300 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5301 					path->slots[*level]);
5302 	}
5303 	return ret;
5304 }
5305 
5306 static int tree_compare_item(struct btrfs_root *left_root,
5307 			     struct btrfs_path *left_path,
5308 			     struct btrfs_path *right_path,
5309 			     char *tmp_buf)
5310 {
5311 	int cmp;
5312 	int len1, len2;
5313 	unsigned long off1, off2;
5314 
5315 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5316 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5317 	if (len1 != len2)
5318 		return 1;
5319 
5320 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5321 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5322 				right_path->slots[0]);
5323 
5324 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5325 
5326 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5327 	if (cmp)
5328 		return 1;
5329 	return 0;
5330 }
5331 
5332 #define ADVANCE 1
5333 #define ADVANCE_ONLY_NEXT -1
5334 
5335 /*
5336  * This function compares two trees and calls the provided callback for
5337  * every changed/new/deleted item it finds.
5338  * If shared tree blocks are encountered, whole subtrees are skipped, making
5339  * the compare pretty fast on snapshotted subvolumes.
5340  *
5341  * This currently works on commit roots only. As commit roots are read only,
5342  * we don't do any locking. The commit roots are protected with transactions.
5343  * Transactions are ended and rejoined when a commit is tried in between.
5344  *
5345  * This function checks for modifications done to the trees while comparing.
5346  * If it detects a change, it aborts immediately.
5347  */
5348 int btrfs_compare_trees(struct btrfs_root *left_root,
5349 			struct btrfs_root *right_root,
5350 			btrfs_changed_cb_t changed_cb, void *ctx)
5351 {
5352 	int ret;
5353 	int cmp;
5354 	struct btrfs_path *left_path = NULL;
5355 	struct btrfs_path *right_path = NULL;
5356 	struct btrfs_key left_key;
5357 	struct btrfs_key right_key;
5358 	char *tmp_buf = NULL;
5359 	int left_root_level;
5360 	int right_root_level;
5361 	int left_level;
5362 	int right_level;
5363 	int left_end_reached;
5364 	int right_end_reached;
5365 	int advance_left;
5366 	int advance_right;
5367 	u64 left_blockptr;
5368 	u64 right_blockptr;
5369 	u64 left_gen;
5370 	u64 right_gen;
5371 
5372 	left_path = btrfs_alloc_path();
5373 	if (!left_path) {
5374 		ret = -ENOMEM;
5375 		goto out;
5376 	}
5377 	right_path = btrfs_alloc_path();
5378 	if (!right_path) {
5379 		ret = -ENOMEM;
5380 		goto out;
5381 	}
5382 
5383 	tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5384 	if (!tmp_buf) {
5385 		tmp_buf = vmalloc(left_root->nodesize);
5386 		if (!tmp_buf) {
5387 			ret = -ENOMEM;
5388 			goto out;
5389 		}
5390 	}
5391 
5392 	left_path->search_commit_root = 1;
5393 	left_path->skip_locking = 1;
5394 	right_path->search_commit_root = 1;
5395 	right_path->skip_locking = 1;
5396 
5397 	/*
5398 	 * Strategy: Go to the first items of both trees. Then do
5399 	 *
5400 	 * If both trees are at level 0
5401 	 *   Compare keys of current items
5402 	 *     If left < right treat left item as new, advance left tree
5403 	 *       and repeat
5404 	 *     If left > right treat right item as deleted, advance right tree
5405 	 *       and repeat
5406 	 *     If left == right do deep compare of items, treat as changed if
5407 	 *       needed, advance both trees and repeat
5408 	 * If both trees are at the same level but not at level 0
5409 	 *   Compare keys of current nodes/leafs
5410 	 *     If left < right advance left tree and repeat
5411 	 *     If left > right advance right tree and repeat
5412 	 *     If left == right compare blockptrs of the next nodes/leafs
5413 	 *       If they match advance both trees but stay at the same level
5414 	 *         and repeat
5415 	 *       If they don't match advance both trees while allowing to go
5416 	 *         deeper and repeat
5417 	 * If tree levels are different
5418 	 *   Advance the tree that needs it and repeat
5419 	 *
5420 	 * Advancing a tree means:
5421 	 *   If we are at level 0, try to go to the next slot. If that's not
5422 	 *   possible, go one level up and repeat. Stop when we found a level
5423 	 *   where we could go to the next slot. We may at this point be on a
5424 	 *   node or a leaf.
5425 	 *
5426 	 *   If we are not at level 0 and not on shared tree blocks, go one
5427 	 *   level deeper.
5428 	 *
5429 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5430 	 *   the right if possible or go up and right.
5431 	 */
5432 
5433 	down_read(&left_root->fs_info->commit_root_sem);
5434 	left_level = btrfs_header_level(left_root->commit_root);
5435 	left_root_level = left_level;
5436 	left_path->nodes[left_level] = left_root->commit_root;
5437 	extent_buffer_get(left_path->nodes[left_level]);
5438 
5439 	right_level = btrfs_header_level(right_root->commit_root);
5440 	right_root_level = right_level;
5441 	right_path->nodes[right_level] = right_root->commit_root;
5442 	extent_buffer_get(right_path->nodes[right_level]);
5443 	up_read(&left_root->fs_info->commit_root_sem);
5444 
5445 	if (left_level == 0)
5446 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5447 				&left_key, left_path->slots[left_level]);
5448 	else
5449 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5450 				&left_key, left_path->slots[left_level]);
5451 	if (right_level == 0)
5452 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5453 				&right_key, right_path->slots[right_level]);
5454 	else
5455 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5456 				&right_key, right_path->slots[right_level]);
5457 
5458 	left_end_reached = right_end_reached = 0;
5459 	advance_left = advance_right = 0;
5460 
5461 	while (1) {
5462 		if (advance_left && !left_end_reached) {
5463 			ret = tree_advance(left_root, left_path, &left_level,
5464 					left_root_level,
5465 					advance_left != ADVANCE_ONLY_NEXT,
5466 					&left_key);
5467 			if (ret == -1)
5468 				left_end_reached = ADVANCE;
5469 			else if (ret < 0)
5470 				goto out;
5471 			advance_left = 0;
5472 		}
5473 		if (advance_right && !right_end_reached) {
5474 			ret = tree_advance(right_root, right_path, &right_level,
5475 					right_root_level,
5476 					advance_right != ADVANCE_ONLY_NEXT,
5477 					&right_key);
5478 			if (ret == -1)
5479 				right_end_reached = ADVANCE;
5480 			else if (ret < 0)
5481 				goto out;
5482 			advance_right = 0;
5483 		}
5484 
5485 		if (left_end_reached && right_end_reached) {
5486 			ret = 0;
5487 			goto out;
5488 		} else if (left_end_reached) {
5489 			if (right_level == 0) {
5490 				ret = changed_cb(left_root, right_root,
5491 						left_path, right_path,
5492 						&right_key,
5493 						BTRFS_COMPARE_TREE_DELETED,
5494 						ctx);
5495 				if (ret < 0)
5496 					goto out;
5497 			}
5498 			advance_right = ADVANCE;
5499 			continue;
5500 		} else if (right_end_reached) {
5501 			if (left_level == 0) {
5502 				ret = changed_cb(left_root, right_root,
5503 						left_path, right_path,
5504 						&left_key,
5505 						BTRFS_COMPARE_TREE_NEW,
5506 						ctx);
5507 				if (ret < 0)
5508 					goto out;
5509 			}
5510 			advance_left = ADVANCE;
5511 			continue;
5512 		}
5513 
5514 		if (left_level == 0 && right_level == 0) {
5515 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5516 			if (cmp < 0) {
5517 				ret = changed_cb(left_root, right_root,
5518 						left_path, right_path,
5519 						&left_key,
5520 						BTRFS_COMPARE_TREE_NEW,
5521 						ctx);
5522 				if (ret < 0)
5523 					goto out;
5524 				advance_left = ADVANCE;
5525 			} else if (cmp > 0) {
5526 				ret = changed_cb(left_root, right_root,
5527 						left_path, right_path,
5528 						&right_key,
5529 						BTRFS_COMPARE_TREE_DELETED,
5530 						ctx);
5531 				if (ret < 0)
5532 					goto out;
5533 				advance_right = ADVANCE;
5534 			} else {
5535 				enum btrfs_compare_tree_result result;
5536 
5537 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5538 				ret = tree_compare_item(left_root, left_path,
5539 						right_path, tmp_buf);
5540 				if (ret)
5541 					result = BTRFS_COMPARE_TREE_CHANGED;
5542 				else
5543 					result = BTRFS_COMPARE_TREE_SAME;
5544 				ret = changed_cb(left_root, right_root,
5545 						 left_path, right_path,
5546 						 &left_key, result, ctx);
5547 				if (ret < 0)
5548 					goto out;
5549 				advance_left = ADVANCE;
5550 				advance_right = ADVANCE;
5551 			}
5552 		} else if (left_level == right_level) {
5553 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5554 			if (cmp < 0) {
5555 				advance_left = ADVANCE;
5556 			} else if (cmp > 0) {
5557 				advance_right = ADVANCE;
5558 			} else {
5559 				left_blockptr = btrfs_node_blockptr(
5560 						left_path->nodes[left_level],
5561 						left_path->slots[left_level]);
5562 				right_blockptr = btrfs_node_blockptr(
5563 						right_path->nodes[right_level],
5564 						right_path->slots[right_level]);
5565 				left_gen = btrfs_node_ptr_generation(
5566 						left_path->nodes[left_level],
5567 						left_path->slots[left_level]);
5568 				right_gen = btrfs_node_ptr_generation(
5569 						right_path->nodes[right_level],
5570 						right_path->slots[right_level]);
5571 				if (left_blockptr == right_blockptr &&
5572 				    left_gen == right_gen) {
5573 					/*
5574 					 * As we're on a shared block, don't
5575 					 * allow to go deeper.
5576 					 */
5577 					advance_left = ADVANCE_ONLY_NEXT;
5578 					advance_right = ADVANCE_ONLY_NEXT;
5579 				} else {
5580 					advance_left = ADVANCE;
5581 					advance_right = ADVANCE;
5582 				}
5583 			}
5584 		} else if (left_level < right_level) {
5585 			advance_right = ADVANCE;
5586 		} else {
5587 			advance_left = ADVANCE;
5588 		}
5589 	}
5590 
5591 out:
5592 	btrfs_free_path(left_path);
5593 	btrfs_free_path(right_path);
5594 	kvfree(tmp_buf);
5595 	return ret;
5596 }
5597 
5598 /*
5599  * this is similar to btrfs_next_leaf, but does not try to preserve
5600  * and fixup the path.  It looks for and returns the next key in the
5601  * tree based on the current path and the min_trans parameters.
5602  *
5603  * 0 is returned if another key is found, < 0 if there are any errors
5604  * and 1 is returned if there are no higher keys in the tree
5605  *
5606  * path->keep_locks should be set to 1 on the search made before
5607  * calling this function.
5608  */
5609 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5610 			struct btrfs_key *key, int level, u64 min_trans)
5611 {
5612 	int slot;
5613 	struct extent_buffer *c;
5614 
5615 	WARN_ON(!path->keep_locks);
5616 	while (level < BTRFS_MAX_LEVEL) {
5617 		if (!path->nodes[level])
5618 			return 1;
5619 
5620 		slot = path->slots[level] + 1;
5621 		c = path->nodes[level];
5622 next:
5623 		if (slot >= btrfs_header_nritems(c)) {
5624 			int ret;
5625 			int orig_lowest;
5626 			struct btrfs_key cur_key;
5627 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5628 			    !path->nodes[level + 1])
5629 				return 1;
5630 
5631 			if (path->locks[level + 1]) {
5632 				level++;
5633 				continue;
5634 			}
5635 
5636 			slot = btrfs_header_nritems(c) - 1;
5637 			if (level == 0)
5638 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5639 			else
5640 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5641 
5642 			orig_lowest = path->lowest_level;
5643 			btrfs_release_path(path);
5644 			path->lowest_level = level;
5645 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5646 						0, 0);
5647 			path->lowest_level = orig_lowest;
5648 			if (ret < 0)
5649 				return ret;
5650 
5651 			c = path->nodes[level];
5652 			slot = path->slots[level];
5653 			if (ret == 0)
5654 				slot++;
5655 			goto next;
5656 		}
5657 
5658 		if (level == 0)
5659 			btrfs_item_key_to_cpu(c, key, slot);
5660 		else {
5661 			u64 gen = btrfs_node_ptr_generation(c, slot);
5662 
5663 			if (gen < min_trans) {
5664 				slot++;
5665 				goto next;
5666 			}
5667 			btrfs_node_key_to_cpu(c, key, slot);
5668 		}
5669 		return 0;
5670 	}
5671 	return 1;
5672 }
5673 
5674 /*
5675  * search the tree again to find a leaf with greater keys
5676  * returns 0 if it found something or 1 if there are no greater leaves.
5677  * returns < 0 on io errors.
5678  */
5679 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5680 {
5681 	return btrfs_next_old_leaf(root, path, 0);
5682 }
5683 
5684 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5685 			u64 time_seq)
5686 {
5687 	int slot;
5688 	int level;
5689 	struct extent_buffer *c;
5690 	struct extent_buffer *next;
5691 	struct btrfs_key key;
5692 	u32 nritems;
5693 	int ret;
5694 	int old_spinning = path->leave_spinning;
5695 	int next_rw_lock = 0;
5696 
5697 	nritems = btrfs_header_nritems(path->nodes[0]);
5698 	if (nritems == 0)
5699 		return 1;
5700 
5701 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5702 again:
5703 	level = 1;
5704 	next = NULL;
5705 	next_rw_lock = 0;
5706 	btrfs_release_path(path);
5707 
5708 	path->keep_locks = 1;
5709 	path->leave_spinning = 1;
5710 
5711 	if (time_seq)
5712 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5713 	else
5714 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5715 	path->keep_locks = 0;
5716 
5717 	if (ret < 0)
5718 		return ret;
5719 
5720 	nritems = btrfs_header_nritems(path->nodes[0]);
5721 	/*
5722 	 * by releasing the path above we dropped all our locks.  A balance
5723 	 * could have added more items next to the key that used to be
5724 	 * at the very end of the block.  So, check again here and
5725 	 * advance the path if there are now more items available.
5726 	 */
5727 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5728 		if (ret == 0)
5729 			path->slots[0]++;
5730 		ret = 0;
5731 		goto done;
5732 	}
5733 	/*
5734 	 * So the above check misses one case:
5735 	 * - after releasing the path above, someone has removed the item that
5736 	 *   used to be at the very end of the block, and balance between leafs
5737 	 *   gets another one with bigger key.offset to replace it.
5738 	 *
5739 	 * This one should be returned as well, or we can get leaf corruption
5740 	 * later(esp. in __btrfs_drop_extents()).
5741 	 *
5742 	 * And a bit more explanation about this check,
5743 	 * with ret > 0, the key isn't found, the path points to the slot
5744 	 * where it should be inserted, so the path->slots[0] item must be the
5745 	 * bigger one.
5746 	 */
5747 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5748 		ret = 0;
5749 		goto done;
5750 	}
5751 
5752 	while (level < BTRFS_MAX_LEVEL) {
5753 		if (!path->nodes[level]) {
5754 			ret = 1;
5755 			goto done;
5756 		}
5757 
5758 		slot = path->slots[level] + 1;
5759 		c = path->nodes[level];
5760 		if (slot >= btrfs_header_nritems(c)) {
5761 			level++;
5762 			if (level == BTRFS_MAX_LEVEL) {
5763 				ret = 1;
5764 				goto done;
5765 			}
5766 			continue;
5767 		}
5768 
5769 		if (next) {
5770 			btrfs_tree_unlock_rw(next, next_rw_lock);
5771 			free_extent_buffer(next);
5772 		}
5773 
5774 		next = c;
5775 		next_rw_lock = path->locks[level];
5776 		ret = read_block_for_search(NULL, root, path, &next, level,
5777 					    slot, &key, 0);
5778 		if (ret == -EAGAIN)
5779 			goto again;
5780 
5781 		if (ret < 0) {
5782 			btrfs_release_path(path);
5783 			goto done;
5784 		}
5785 
5786 		if (!path->skip_locking) {
5787 			ret = btrfs_try_tree_read_lock(next);
5788 			if (!ret && time_seq) {
5789 				/*
5790 				 * If we don't get the lock, we may be racing
5791 				 * with push_leaf_left, holding that lock while
5792 				 * itself waiting for the leaf we've currently
5793 				 * locked. To solve this situation, we give up
5794 				 * on our lock and cycle.
5795 				 */
5796 				free_extent_buffer(next);
5797 				btrfs_release_path(path);
5798 				cond_resched();
5799 				goto again;
5800 			}
5801 			if (!ret) {
5802 				btrfs_set_path_blocking(path);
5803 				btrfs_tree_read_lock(next);
5804 				btrfs_clear_path_blocking(path, next,
5805 							  BTRFS_READ_LOCK);
5806 			}
5807 			next_rw_lock = BTRFS_READ_LOCK;
5808 		}
5809 		break;
5810 	}
5811 	path->slots[level] = slot;
5812 	while (1) {
5813 		level--;
5814 		c = path->nodes[level];
5815 		if (path->locks[level])
5816 			btrfs_tree_unlock_rw(c, path->locks[level]);
5817 
5818 		free_extent_buffer(c);
5819 		path->nodes[level] = next;
5820 		path->slots[level] = 0;
5821 		if (!path->skip_locking)
5822 			path->locks[level] = next_rw_lock;
5823 		if (!level)
5824 			break;
5825 
5826 		ret = read_block_for_search(NULL, root, path, &next, level,
5827 					    0, &key, 0);
5828 		if (ret == -EAGAIN)
5829 			goto again;
5830 
5831 		if (ret < 0) {
5832 			btrfs_release_path(path);
5833 			goto done;
5834 		}
5835 
5836 		if (!path->skip_locking) {
5837 			ret = btrfs_try_tree_read_lock(next);
5838 			if (!ret) {
5839 				btrfs_set_path_blocking(path);
5840 				btrfs_tree_read_lock(next);
5841 				btrfs_clear_path_blocking(path, next,
5842 							  BTRFS_READ_LOCK);
5843 			}
5844 			next_rw_lock = BTRFS_READ_LOCK;
5845 		}
5846 	}
5847 	ret = 0;
5848 done:
5849 	unlock_up(path, 0, 1, 0, NULL);
5850 	path->leave_spinning = old_spinning;
5851 	if (!old_spinning)
5852 		btrfs_set_path_blocking(path);
5853 
5854 	return ret;
5855 }
5856 
5857 /*
5858  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5859  * searching until it gets past min_objectid or finds an item of 'type'
5860  *
5861  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5862  */
5863 int btrfs_previous_item(struct btrfs_root *root,
5864 			struct btrfs_path *path, u64 min_objectid,
5865 			int type)
5866 {
5867 	struct btrfs_key found_key;
5868 	struct extent_buffer *leaf;
5869 	u32 nritems;
5870 	int ret;
5871 
5872 	while (1) {
5873 		if (path->slots[0] == 0) {
5874 			btrfs_set_path_blocking(path);
5875 			ret = btrfs_prev_leaf(root, path);
5876 			if (ret != 0)
5877 				return ret;
5878 		} else {
5879 			path->slots[0]--;
5880 		}
5881 		leaf = path->nodes[0];
5882 		nritems = btrfs_header_nritems(leaf);
5883 		if (nritems == 0)
5884 			return 1;
5885 		if (path->slots[0] == nritems)
5886 			path->slots[0]--;
5887 
5888 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5889 		if (found_key.objectid < min_objectid)
5890 			break;
5891 		if (found_key.type == type)
5892 			return 0;
5893 		if (found_key.objectid == min_objectid &&
5894 		    found_key.type < type)
5895 			break;
5896 	}
5897 	return 1;
5898 }
5899 
5900 /*
5901  * search in extent tree to find a previous Metadata/Data extent item with
5902  * min objecitd.
5903  *
5904  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5905  */
5906 int btrfs_previous_extent_item(struct btrfs_root *root,
5907 			struct btrfs_path *path, u64 min_objectid)
5908 {
5909 	struct btrfs_key found_key;
5910 	struct extent_buffer *leaf;
5911 	u32 nritems;
5912 	int ret;
5913 
5914 	while (1) {
5915 		if (path->slots[0] == 0) {
5916 			btrfs_set_path_blocking(path);
5917 			ret = btrfs_prev_leaf(root, path);
5918 			if (ret != 0)
5919 				return ret;
5920 		} else {
5921 			path->slots[0]--;
5922 		}
5923 		leaf = path->nodes[0];
5924 		nritems = btrfs_header_nritems(leaf);
5925 		if (nritems == 0)
5926 			return 1;
5927 		if (path->slots[0] == nritems)
5928 			path->slots[0]--;
5929 
5930 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5931 		if (found_key.objectid < min_objectid)
5932 			break;
5933 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5934 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5935 			return 0;
5936 		if (found_key.objectid == min_objectid &&
5937 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5938 			break;
5939 	}
5940 	return 1;
5941 }
5942