xref: /openbmc/linux/fs/btrfs/ctree.c (revision ee8ec048)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "ctree.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "print-tree.h"
15 #include "locking.h"
16 #include "volumes.h"
17 #include "qgroup.h"
18 #include "tree-mod-log.h"
19 
20 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
21 		      *root, struct btrfs_path *path, int level);
22 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
23 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
24 		      int data_size, int extend);
25 static int push_node_left(struct btrfs_trans_handle *trans,
26 			  struct extent_buffer *dst,
27 			  struct extent_buffer *src, int empty);
28 static int balance_node_right(struct btrfs_trans_handle *trans,
29 			      struct extent_buffer *dst_buf,
30 			      struct extent_buffer *src_buf);
31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32 		    int level, int slot);
33 
34 static const struct btrfs_csums {
35 	u16		size;
36 	const char	name[10];
37 	const char	driver[12];
38 } btrfs_csums[] = {
39 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
40 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
41 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
42 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
43 				     .driver = "blake2b-256" },
44 };
45 
46 int btrfs_super_csum_size(const struct btrfs_super_block *s)
47 {
48 	u16 t = btrfs_super_csum_type(s);
49 	/*
50 	 * csum type is validated at mount time
51 	 */
52 	return btrfs_csums[t].size;
53 }
54 
55 const char *btrfs_super_csum_name(u16 csum_type)
56 {
57 	/* csum type is validated at mount time */
58 	return btrfs_csums[csum_type].name;
59 }
60 
61 /*
62  * Return driver name if defined, otherwise the name that's also a valid driver
63  * name
64  */
65 const char *btrfs_super_csum_driver(u16 csum_type)
66 {
67 	/* csum type is validated at mount time */
68 	return btrfs_csums[csum_type].driver[0] ?
69 		btrfs_csums[csum_type].driver :
70 		btrfs_csums[csum_type].name;
71 }
72 
73 size_t __attribute_const__ btrfs_get_num_csums(void)
74 {
75 	return ARRAY_SIZE(btrfs_csums);
76 }
77 
78 struct btrfs_path *btrfs_alloc_path(void)
79 {
80 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
81 }
82 
83 /* this also releases the path */
84 void btrfs_free_path(struct btrfs_path *p)
85 {
86 	if (!p)
87 		return;
88 	btrfs_release_path(p);
89 	kmem_cache_free(btrfs_path_cachep, p);
90 }
91 
92 /*
93  * path release drops references on the extent buffers in the path
94  * and it drops any locks held by this path
95  *
96  * It is safe to call this on paths that no locks or extent buffers held.
97  */
98 noinline void btrfs_release_path(struct btrfs_path *p)
99 {
100 	int i;
101 
102 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
103 		p->slots[i] = 0;
104 		if (!p->nodes[i])
105 			continue;
106 		if (p->locks[i]) {
107 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
108 			p->locks[i] = 0;
109 		}
110 		free_extent_buffer(p->nodes[i]);
111 		p->nodes[i] = NULL;
112 	}
113 }
114 
115 /*
116  * safely gets a reference on the root node of a tree.  A lock
117  * is not taken, so a concurrent writer may put a different node
118  * at the root of the tree.  See btrfs_lock_root_node for the
119  * looping required.
120  *
121  * The extent buffer returned by this has a reference taken, so
122  * it won't disappear.  It may stop being the root of the tree
123  * at any time because there are no locks held.
124  */
125 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
126 {
127 	struct extent_buffer *eb;
128 
129 	while (1) {
130 		rcu_read_lock();
131 		eb = rcu_dereference(root->node);
132 
133 		/*
134 		 * RCU really hurts here, we could free up the root node because
135 		 * it was COWed but we may not get the new root node yet so do
136 		 * the inc_not_zero dance and if it doesn't work then
137 		 * synchronize_rcu and try again.
138 		 */
139 		if (atomic_inc_not_zero(&eb->refs)) {
140 			rcu_read_unlock();
141 			break;
142 		}
143 		rcu_read_unlock();
144 		synchronize_rcu();
145 	}
146 	return eb;
147 }
148 
149 /*
150  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
151  * just get put onto a simple dirty list.  Transaction walks this list to make
152  * sure they get properly updated on disk.
153  */
154 static void add_root_to_dirty_list(struct btrfs_root *root)
155 {
156 	struct btrfs_fs_info *fs_info = root->fs_info;
157 
158 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
159 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
160 		return;
161 
162 	spin_lock(&fs_info->trans_lock);
163 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
164 		/* Want the extent tree to be the last on the list */
165 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
166 			list_move_tail(&root->dirty_list,
167 				       &fs_info->dirty_cowonly_roots);
168 		else
169 			list_move(&root->dirty_list,
170 				  &fs_info->dirty_cowonly_roots);
171 	}
172 	spin_unlock(&fs_info->trans_lock);
173 }
174 
175 /*
176  * used by snapshot creation to make a copy of a root for a tree with
177  * a given objectid.  The buffer with the new root node is returned in
178  * cow_ret, and this func returns zero on success or a negative error code.
179  */
180 int btrfs_copy_root(struct btrfs_trans_handle *trans,
181 		      struct btrfs_root *root,
182 		      struct extent_buffer *buf,
183 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
184 {
185 	struct btrfs_fs_info *fs_info = root->fs_info;
186 	struct extent_buffer *cow;
187 	int ret = 0;
188 	int level;
189 	struct btrfs_disk_key disk_key;
190 
191 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192 		trans->transid != fs_info->running_transaction->transid);
193 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
194 		trans->transid != root->last_trans);
195 
196 	level = btrfs_header_level(buf);
197 	if (level == 0)
198 		btrfs_item_key(buf, &disk_key, 0);
199 	else
200 		btrfs_node_key(buf, &disk_key, 0);
201 
202 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
203 				     &disk_key, level, buf->start, 0,
204 				     BTRFS_NESTING_NEW_ROOT);
205 	if (IS_ERR(cow))
206 		return PTR_ERR(cow);
207 
208 	copy_extent_buffer_full(cow, buf);
209 	btrfs_set_header_bytenr(cow, cow->start);
210 	btrfs_set_header_generation(cow, trans->transid);
211 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
212 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
213 				     BTRFS_HEADER_FLAG_RELOC);
214 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
215 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
216 	else
217 		btrfs_set_header_owner(cow, new_root_objectid);
218 
219 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
220 
221 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
222 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
223 		ret = btrfs_inc_ref(trans, root, cow, 1);
224 	else
225 		ret = btrfs_inc_ref(trans, root, cow, 0);
226 	if (ret) {
227 		btrfs_tree_unlock(cow);
228 		free_extent_buffer(cow);
229 		btrfs_abort_transaction(trans, ret);
230 		return ret;
231 	}
232 
233 	btrfs_mark_buffer_dirty(cow);
234 	*cow_ret = cow;
235 	return 0;
236 }
237 
238 /*
239  * check if the tree block can be shared by multiple trees
240  */
241 int btrfs_block_can_be_shared(struct btrfs_root *root,
242 			      struct extent_buffer *buf)
243 {
244 	/*
245 	 * Tree blocks not in shareable trees and tree roots are never shared.
246 	 * If a block was allocated after the last snapshot and the block was
247 	 * not allocated by tree relocation, we know the block is not shared.
248 	 */
249 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
250 	    buf != root->node && buf != root->commit_root &&
251 	    (btrfs_header_generation(buf) <=
252 	     btrfs_root_last_snapshot(&root->root_item) ||
253 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
254 		return 1;
255 
256 	return 0;
257 }
258 
259 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
260 				       struct btrfs_root *root,
261 				       struct extent_buffer *buf,
262 				       struct extent_buffer *cow,
263 				       int *last_ref)
264 {
265 	struct btrfs_fs_info *fs_info = root->fs_info;
266 	u64 refs;
267 	u64 owner;
268 	u64 flags;
269 	u64 new_flags = 0;
270 	int ret;
271 
272 	/*
273 	 * Backrefs update rules:
274 	 *
275 	 * Always use full backrefs for extent pointers in tree block
276 	 * allocated by tree relocation.
277 	 *
278 	 * If a shared tree block is no longer referenced by its owner
279 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
280 	 * use full backrefs for extent pointers in tree block.
281 	 *
282 	 * If a tree block is been relocating
283 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
284 	 * use full backrefs for extent pointers in tree block.
285 	 * The reason for this is some operations (such as drop tree)
286 	 * are only allowed for blocks use full backrefs.
287 	 */
288 
289 	if (btrfs_block_can_be_shared(root, buf)) {
290 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
291 					       btrfs_header_level(buf), 1,
292 					       &refs, &flags);
293 		if (ret)
294 			return ret;
295 		if (refs == 0) {
296 			ret = -EROFS;
297 			btrfs_handle_fs_error(fs_info, ret, NULL);
298 			return ret;
299 		}
300 	} else {
301 		refs = 1;
302 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
303 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
304 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
305 		else
306 			flags = 0;
307 	}
308 
309 	owner = btrfs_header_owner(buf);
310 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
311 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
312 
313 	if (refs > 1) {
314 		if ((owner == root->root_key.objectid ||
315 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
316 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
317 			ret = btrfs_inc_ref(trans, root, buf, 1);
318 			if (ret)
319 				return ret;
320 
321 			if (root->root_key.objectid ==
322 			    BTRFS_TREE_RELOC_OBJECTID) {
323 				ret = btrfs_dec_ref(trans, root, buf, 0);
324 				if (ret)
325 					return ret;
326 				ret = btrfs_inc_ref(trans, root, cow, 1);
327 				if (ret)
328 					return ret;
329 			}
330 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
331 		} else {
332 
333 			if (root->root_key.objectid ==
334 			    BTRFS_TREE_RELOC_OBJECTID)
335 				ret = btrfs_inc_ref(trans, root, cow, 1);
336 			else
337 				ret = btrfs_inc_ref(trans, root, cow, 0);
338 			if (ret)
339 				return ret;
340 		}
341 		if (new_flags != 0) {
342 			int level = btrfs_header_level(buf);
343 
344 			ret = btrfs_set_disk_extent_flags(trans, buf,
345 							  new_flags, level, 0);
346 			if (ret)
347 				return ret;
348 		}
349 	} else {
350 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
351 			if (root->root_key.objectid ==
352 			    BTRFS_TREE_RELOC_OBJECTID)
353 				ret = btrfs_inc_ref(trans, root, cow, 1);
354 			else
355 				ret = btrfs_inc_ref(trans, root, cow, 0);
356 			if (ret)
357 				return ret;
358 			ret = btrfs_dec_ref(trans, root, buf, 1);
359 			if (ret)
360 				return ret;
361 		}
362 		btrfs_clean_tree_block(buf);
363 		*last_ref = 1;
364 	}
365 	return 0;
366 }
367 
368 /*
369  * does the dirty work in cow of a single block.  The parent block (if
370  * supplied) is updated to point to the new cow copy.  The new buffer is marked
371  * dirty and returned locked.  If you modify the block it needs to be marked
372  * dirty again.
373  *
374  * search_start -- an allocation hint for the new block
375  *
376  * empty_size -- a hint that you plan on doing more cow.  This is the size in
377  * bytes the allocator should try to find free next to the block it returns.
378  * This is just a hint and may be ignored by the allocator.
379  */
380 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
381 			     struct btrfs_root *root,
382 			     struct extent_buffer *buf,
383 			     struct extent_buffer *parent, int parent_slot,
384 			     struct extent_buffer **cow_ret,
385 			     u64 search_start, u64 empty_size,
386 			     enum btrfs_lock_nesting nest)
387 {
388 	struct btrfs_fs_info *fs_info = root->fs_info;
389 	struct btrfs_disk_key disk_key;
390 	struct extent_buffer *cow;
391 	int level, ret;
392 	int last_ref = 0;
393 	int unlock_orig = 0;
394 	u64 parent_start = 0;
395 
396 	if (*cow_ret == buf)
397 		unlock_orig = 1;
398 
399 	btrfs_assert_tree_write_locked(buf);
400 
401 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
402 		trans->transid != fs_info->running_transaction->transid);
403 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
404 		trans->transid != root->last_trans);
405 
406 	level = btrfs_header_level(buf);
407 
408 	if (level == 0)
409 		btrfs_item_key(buf, &disk_key, 0);
410 	else
411 		btrfs_node_key(buf, &disk_key, 0);
412 
413 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
414 		parent_start = parent->start;
415 
416 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
417 				     root->root_key.objectid, &disk_key, level,
418 				     search_start, empty_size, nest);
419 	if (IS_ERR(cow))
420 		return PTR_ERR(cow);
421 
422 	/* cow is set to blocking by btrfs_init_new_buffer */
423 
424 	copy_extent_buffer_full(cow, buf);
425 	btrfs_set_header_bytenr(cow, cow->start);
426 	btrfs_set_header_generation(cow, trans->transid);
427 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
428 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
429 				     BTRFS_HEADER_FLAG_RELOC);
430 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
431 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
432 	else
433 		btrfs_set_header_owner(cow, root->root_key.objectid);
434 
435 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
436 
437 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
438 	if (ret) {
439 		btrfs_tree_unlock(cow);
440 		free_extent_buffer(cow);
441 		btrfs_abort_transaction(trans, ret);
442 		return ret;
443 	}
444 
445 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
446 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
447 		if (ret) {
448 			btrfs_tree_unlock(cow);
449 			free_extent_buffer(cow);
450 			btrfs_abort_transaction(trans, ret);
451 			return ret;
452 		}
453 	}
454 
455 	if (buf == root->node) {
456 		WARN_ON(parent && parent != buf);
457 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
458 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
459 			parent_start = buf->start;
460 
461 		atomic_inc(&cow->refs);
462 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
463 		BUG_ON(ret < 0);
464 		rcu_assign_pointer(root->node, cow);
465 
466 		btrfs_free_tree_block(trans, root, buf, parent_start,
467 				      last_ref);
468 		free_extent_buffer(buf);
469 		add_root_to_dirty_list(root);
470 	} else {
471 		WARN_ON(trans->transid != btrfs_header_generation(parent));
472 		btrfs_tree_mod_log_insert_key(parent, parent_slot,
473 					      BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
474 		btrfs_set_node_blockptr(parent, parent_slot,
475 					cow->start);
476 		btrfs_set_node_ptr_generation(parent, parent_slot,
477 					      trans->transid);
478 		btrfs_mark_buffer_dirty(parent);
479 		if (last_ref) {
480 			ret = btrfs_tree_mod_log_free_eb(buf);
481 			if (ret) {
482 				btrfs_tree_unlock(cow);
483 				free_extent_buffer(cow);
484 				btrfs_abort_transaction(trans, ret);
485 				return ret;
486 			}
487 		}
488 		btrfs_free_tree_block(trans, root, buf, parent_start,
489 				      last_ref);
490 	}
491 	if (unlock_orig)
492 		btrfs_tree_unlock(buf);
493 	free_extent_buffer_stale(buf);
494 	btrfs_mark_buffer_dirty(cow);
495 	*cow_ret = cow;
496 	return 0;
497 }
498 
499 static inline int should_cow_block(struct btrfs_trans_handle *trans,
500 				   struct btrfs_root *root,
501 				   struct extent_buffer *buf)
502 {
503 	if (btrfs_is_testing(root->fs_info))
504 		return 0;
505 
506 	/* Ensure we can see the FORCE_COW bit */
507 	smp_mb__before_atomic();
508 
509 	/*
510 	 * We do not need to cow a block if
511 	 * 1) this block is not created or changed in this transaction;
512 	 * 2) this block does not belong to TREE_RELOC tree;
513 	 * 3) the root is not forced COW.
514 	 *
515 	 * What is forced COW:
516 	 *    when we create snapshot during committing the transaction,
517 	 *    after we've finished copying src root, we must COW the shared
518 	 *    block to ensure the metadata consistency.
519 	 */
520 	if (btrfs_header_generation(buf) == trans->transid &&
521 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
522 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
523 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
524 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
525 		return 0;
526 	return 1;
527 }
528 
529 /*
530  * cows a single block, see __btrfs_cow_block for the real work.
531  * This version of it has extra checks so that a block isn't COWed more than
532  * once per transaction, as long as it hasn't been written yet
533  */
534 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
535 		    struct btrfs_root *root, struct extent_buffer *buf,
536 		    struct extent_buffer *parent, int parent_slot,
537 		    struct extent_buffer **cow_ret,
538 		    enum btrfs_lock_nesting nest)
539 {
540 	struct btrfs_fs_info *fs_info = root->fs_info;
541 	u64 search_start;
542 	int ret;
543 
544 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
545 		btrfs_err(fs_info,
546 			"COW'ing blocks on a fs root that's being dropped");
547 
548 	if (trans->transaction != fs_info->running_transaction)
549 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
550 		       trans->transid,
551 		       fs_info->running_transaction->transid);
552 
553 	if (trans->transid != fs_info->generation)
554 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
555 		       trans->transid, fs_info->generation);
556 
557 	if (!should_cow_block(trans, root, buf)) {
558 		*cow_ret = buf;
559 		return 0;
560 	}
561 
562 	search_start = buf->start & ~((u64)SZ_1G - 1);
563 
564 	/*
565 	 * Before CoWing this block for later modification, check if it's
566 	 * the subtree root and do the delayed subtree trace if needed.
567 	 *
568 	 * Also We don't care about the error, as it's handled internally.
569 	 */
570 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
571 	ret = __btrfs_cow_block(trans, root, buf, parent,
572 				 parent_slot, cow_ret, search_start, 0, nest);
573 
574 	trace_btrfs_cow_block(root, buf, *cow_ret);
575 
576 	return ret;
577 }
578 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
579 
580 /*
581  * helper function for defrag to decide if two blocks pointed to by a
582  * node are actually close by
583  */
584 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
585 {
586 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
587 		return 1;
588 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
589 		return 1;
590 	return 0;
591 }
592 
593 #ifdef __LITTLE_ENDIAN
594 
595 /*
596  * Compare two keys, on little-endian the disk order is same as CPU order and
597  * we can avoid the conversion.
598  */
599 static int comp_keys(const struct btrfs_disk_key *disk_key,
600 		     const struct btrfs_key *k2)
601 {
602 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
603 
604 	return btrfs_comp_cpu_keys(k1, k2);
605 }
606 
607 #else
608 
609 /*
610  * compare two keys in a memcmp fashion
611  */
612 static int comp_keys(const struct btrfs_disk_key *disk,
613 		     const struct btrfs_key *k2)
614 {
615 	struct btrfs_key k1;
616 
617 	btrfs_disk_key_to_cpu(&k1, disk);
618 
619 	return btrfs_comp_cpu_keys(&k1, k2);
620 }
621 #endif
622 
623 /*
624  * same as comp_keys only with two btrfs_key's
625  */
626 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
627 {
628 	if (k1->objectid > k2->objectid)
629 		return 1;
630 	if (k1->objectid < k2->objectid)
631 		return -1;
632 	if (k1->type > k2->type)
633 		return 1;
634 	if (k1->type < k2->type)
635 		return -1;
636 	if (k1->offset > k2->offset)
637 		return 1;
638 	if (k1->offset < k2->offset)
639 		return -1;
640 	return 0;
641 }
642 
643 /*
644  * this is used by the defrag code to go through all the
645  * leaves pointed to by a node and reallocate them so that
646  * disk order is close to key order
647  */
648 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
649 		       struct btrfs_root *root, struct extent_buffer *parent,
650 		       int start_slot, u64 *last_ret,
651 		       struct btrfs_key *progress)
652 {
653 	struct btrfs_fs_info *fs_info = root->fs_info;
654 	struct extent_buffer *cur;
655 	u64 blocknr;
656 	u64 search_start = *last_ret;
657 	u64 last_block = 0;
658 	u64 other;
659 	u32 parent_nritems;
660 	int end_slot;
661 	int i;
662 	int err = 0;
663 	u32 blocksize;
664 	int progress_passed = 0;
665 	struct btrfs_disk_key disk_key;
666 
667 	WARN_ON(trans->transaction != fs_info->running_transaction);
668 	WARN_ON(trans->transid != fs_info->generation);
669 
670 	parent_nritems = btrfs_header_nritems(parent);
671 	blocksize = fs_info->nodesize;
672 	end_slot = parent_nritems - 1;
673 
674 	if (parent_nritems <= 1)
675 		return 0;
676 
677 	for (i = start_slot; i <= end_slot; i++) {
678 		int close = 1;
679 
680 		btrfs_node_key(parent, &disk_key, i);
681 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
682 			continue;
683 
684 		progress_passed = 1;
685 		blocknr = btrfs_node_blockptr(parent, i);
686 		if (last_block == 0)
687 			last_block = blocknr;
688 
689 		if (i > 0) {
690 			other = btrfs_node_blockptr(parent, i - 1);
691 			close = close_blocks(blocknr, other, blocksize);
692 		}
693 		if (!close && i < end_slot) {
694 			other = btrfs_node_blockptr(parent, i + 1);
695 			close = close_blocks(blocknr, other, blocksize);
696 		}
697 		if (close) {
698 			last_block = blocknr;
699 			continue;
700 		}
701 
702 		cur = btrfs_read_node_slot(parent, i);
703 		if (IS_ERR(cur))
704 			return PTR_ERR(cur);
705 		if (search_start == 0)
706 			search_start = last_block;
707 
708 		btrfs_tree_lock(cur);
709 		err = __btrfs_cow_block(trans, root, cur, parent, i,
710 					&cur, search_start,
711 					min(16 * blocksize,
712 					    (end_slot - i) * blocksize),
713 					BTRFS_NESTING_COW);
714 		if (err) {
715 			btrfs_tree_unlock(cur);
716 			free_extent_buffer(cur);
717 			break;
718 		}
719 		search_start = cur->start;
720 		last_block = cur->start;
721 		*last_ret = search_start;
722 		btrfs_tree_unlock(cur);
723 		free_extent_buffer(cur);
724 	}
725 	return err;
726 }
727 
728 /*
729  * search for key in the extent_buffer.  The items start at offset p,
730  * and they are item_size apart.
731  *
732  * the slot in the array is returned via slot, and it points to
733  * the place where you would insert key if it is not found in
734  * the array.
735  *
736  * Slot may point to total number of items if the key is bigger than
737  * all of the keys
738  */
739 static noinline int generic_bin_search(struct extent_buffer *eb,
740 				       unsigned long p, int item_size,
741 				       const struct btrfs_key *key, int *slot)
742 {
743 	int low = 0;
744 	int high = btrfs_header_nritems(eb);
745 	int ret;
746 	const int key_size = sizeof(struct btrfs_disk_key);
747 
748 	if (low > high) {
749 		btrfs_err(eb->fs_info,
750 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
751 			  __func__, low, high, eb->start,
752 			  btrfs_header_owner(eb), btrfs_header_level(eb));
753 		return -EINVAL;
754 	}
755 
756 	while (low < high) {
757 		unsigned long oip;
758 		unsigned long offset;
759 		struct btrfs_disk_key *tmp;
760 		struct btrfs_disk_key unaligned;
761 		int mid;
762 
763 		mid = (low + high) / 2;
764 		offset = p + mid * item_size;
765 		oip = offset_in_page(offset);
766 
767 		if (oip + key_size <= PAGE_SIZE) {
768 			const unsigned long idx = get_eb_page_index(offset);
769 			char *kaddr = page_address(eb->pages[idx]);
770 
771 			oip = get_eb_offset_in_page(eb, offset);
772 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
773 		} else {
774 			read_extent_buffer(eb, &unaligned, offset, key_size);
775 			tmp = &unaligned;
776 		}
777 
778 		ret = comp_keys(tmp, key);
779 
780 		if (ret < 0)
781 			low = mid + 1;
782 		else if (ret > 0)
783 			high = mid;
784 		else {
785 			*slot = mid;
786 			return 0;
787 		}
788 	}
789 	*slot = low;
790 	return 1;
791 }
792 
793 /*
794  * simple bin_search frontend that does the right thing for
795  * leaves vs nodes
796  */
797 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
798 		     int *slot)
799 {
800 	if (btrfs_header_level(eb) == 0)
801 		return generic_bin_search(eb,
802 					  offsetof(struct btrfs_leaf, items),
803 					  sizeof(struct btrfs_item), key, slot);
804 	else
805 		return generic_bin_search(eb,
806 					  offsetof(struct btrfs_node, ptrs),
807 					  sizeof(struct btrfs_key_ptr), key, slot);
808 }
809 
810 static void root_add_used(struct btrfs_root *root, u32 size)
811 {
812 	spin_lock(&root->accounting_lock);
813 	btrfs_set_root_used(&root->root_item,
814 			    btrfs_root_used(&root->root_item) + size);
815 	spin_unlock(&root->accounting_lock);
816 }
817 
818 static void root_sub_used(struct btrfs_root *root, u32 size)
819 {
820 	spin_lock(&root->accounting_lock);
821 	btrfs_set_root_used(&root->root_item,
822 			    btrfs_root_used(&root->root_item) - size);
823 	spin_unlock(&root->accounting_lock);
824 }
825 
826 /* given a node and slot number, this reads the blocks it points to.  The
827  * extent buffer is returned with a reference taken (but unlocked).
828  */
829 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
830 					   int slot)
831 {
832 	int level = btrfs_header_level(parent);
833 	struct extent_buffer *eb;
834 	struct btrfs_key first_key;
835 
836 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
837 		return ERR_PTR(-ENOENT);
838 
839 	BUG_ON(level == 0);
840 
841 	btrfs_node_key_to_cpu(parent, &first_key, slot);
842 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
843 			     btrfs_header_owner(parent),
844 			     btrfs_node_ptr_generation(parent, slot),
845 			     level - 1, &first_key);
846 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
847 		free_extent_buffer(eb);
848 		eb = ERR_PTR(-EIO);
849 	}
850 
851 	return eb;
852 }
853 
854 /*
855  * node level balancing, used to make sure nodes are in proper order for
856  * item deletion.  We balance from the top down, so we have to make sure
857  * that a deletion won't leave an node completely empty later on.
858  */
859 static noinline int balance_level(struct btrfs_trans_handle *trans,
860 			 struct btrfs_root *root,
861 			 struct btrfs_path *path, int level)
862 {
863 	struct btrfs_fs_info *fs_info = root->fs_info;
864 	struct extent_buffer *right = NULL;
865 	struct extent_buffer *mid;
866 	struct extent_buffer *left = NULL;
867 	struct extent_buffer *parent = NULL;
868 	int ret = 0;
869 	int wret;
870 	int pslot;
871 	int orig_slot = path->slots[level];
872 	u64 orig_ptr;
873 
874 	ASSERT(level > 0);
875 
876 	mid = path->nodes[level];
877 
878 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
879 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
880 
881 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
882 
883 	if (level < BTRFS_MAX_LEVEL - 1) {
884 		parent = path->nodes[level + 1];
885 		pslot = path->slots[level + 1];
886 	}
887 
888 	/*
889 	 * deal with the case where there is only one pointer in the root
890 	 * by promoting the node below to a root
891 	 */
892 	if (!parent) {
893 		struct extent_buffer *child;
894 
895 		if (btrfs_header_nritems(mid) != 1)
896 			return 0;
897 
898 		/* promote the child to a root */
899 		child = btrfs_read_node_slot(mid, 0);
900 		if (IS_ERR(child)) {
901 			ret = PTR_ERR(child);
902 			btrfs_handle_fs_error(fs_info, ret, NULL);
903 			goto enospc;
904 		}
905 
906 		btrfs_tree_lock(child);
907 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
908 				      BTRFS_NESTING_COW);
909 		if (ret) {
910 			btrfs_tree_unlock(child);
911 			free_extent_buffer(child);
912 			goto enospc;
913 		}
914 
915 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
916 		BUG_ON(ret < 0);
917 		rcu_assign_pointer(root->node, child);
918 
919 		add_root_to_dirty_list(root);
920 		btrfs_tree_unlock(child);
921 
922 		path->locks[level] = 0;
923 		path->nodes[level] = NULL;
924 		btrfs_clean_tree_block(mid);
925 		btrfs_tree_unlock(mid);
926 		/* once for the path */
927 		free_extent_buffer(mid);
928 
929 		root_sub_used(root, mid->len);
930 		btrfs_free_tree_block(trans, root, mid, 0, 1);
931 		/* once for the root ptr */
932 		free_extent_buffer_stale(mid);
933 		return 0;
934 	}
935 	if (btrfs_header_nritems(mid) >
936 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
937 		return 0;
938 
939 	left = btrfs_read_node_slot(parent, pslot - 1);
940 	if (IS_ERR(left))
941 		left = NULL;
942 
943 	if (left) {
944 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
945 		wret = btrfs_cow_block(trans, root, left,
946 				       parent, pslot - 1, &left,
947 				       BTRFS_NESTING_LEFT_COW);
948 		if (wret) {
949 			ret = wret;
950 			goto enospc;
951 		}
952 	}
953 
954 	right = btrfs_read_node_slot(parent, pslot + 1);
955 	if (IS_ERR(right))
956 		right = NULL;
957 
958 	if (right) {
959 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
960 		wret = btrfs_cow_block(trans, root, right,
961 				       parent, pslot + 1, &right,
962 				       BTRFS_NESTING_RIGHT_COW);
963 		if (wret) {
964 			ret = wret;
965 			goto enospc;
966 		}
967 	}
968 
969 	/* first, try to make some room in the middle buffer */
970 	if (left) {
971 		orig_slot += btrfs_header_nritems(left);
972 		wret = push_node_left(trans, left, mid, 1);
973 		if (wret < 0)
974 			ret = wret;
975 	}
976 
977 	/*
978 	 * then try to empty the right most buffer into the middle
979 	 */
980 	if (right) {
981 		wret = push_node_left(trans, mid, right, 1);
982 		if (wret < 0 && wret != -ENOSPC)
983 			ret = wret;
984 		if (btrfs_header_nritems(right) == 0) {
985 			btrfs_clean_tree_block(right);
986 			btrfs_tree_unlock(right);
987 			del_ptr(root, path, level + 1, pslot + 1);
988 			root_sub_used(root, right->len);
989 			btrfs_free_tree_block(trans, root, right, 0, 1);
990 			free_extent_buffer_stale(right);
991 			right = NULL;
992 		} else {
993 			struct btrfs_disk_key right_key;
994 			btrfs_node_key(right, &right_key, 0);
995 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
996 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
997 			BUG_ON(ret < 0);
998 			btrfs_set_node_key(parent, &right_key, pslot + 1);
999 			btrfs_mark_buffer_dirty(parent);
1000 		}
1001 	}
1002 	if (btrfs_header_nritems(mid) == 1) {
1003 		/*
1004 		 * we're not allowed to leave a node with one item in the
1005 		 * tree during a delete.  A deletion from lower in the tree
1006 		 * could try to delete the only pointer in this node.
1007 		 * So, pull some keys from the left.
1008 		 * There has to be a left pointer at this point because
1009 		 * otherwise we would have pulled some pointers from the
1010 		 * right
1011 		 */
1012 		if (!left) {
1013 			ret = -EROFS;
1014 			btrfs_handle_fs_error(fs_info, ret, NULL);
1015 			goto enospc;
1016 		}
1017 		wret = balance_node_right(trans, mid, left);
1018 		if (wret < 0) {
1019 			ret = wret;
1020 			goto enospc;
1021 		}
1022 		if (wret == 1) {
1023 			wret = push_node_left(trans, left, mid, 1);
1024 			if (wret < 0)
1025 				ret = wret;
1026 		}
1027 		BUG_ON(wret == 1);
1028 	}
1029 	if (btrfs_header_nritems(mid) == 0) {
1030 		btrfs_clean_tree_block(mid);
1031 		btrfs_tree_unlock(mid);
1032 		del_ptr(root, path, level + 1, pslot);
1033 		root_sub_used(root, mid->len);
1034 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1035 		free_extent_buffer_stale(mid);
1036 		mid = NULL;
1037 	} else {
1038 		/* update the parent key to reflect our changes */
1039 		struct btrfs_disk_key mid_key;
1040 		btrfs_node_key(mid, &mid_key, 0);
1041 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1042 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1043 		BUG_ON(ret < 0);
1044 		btrfs_set_node_key(parent, &mid_key, pslot);
1045 		btrfs_mark_buffer_dirty(parent);
1046 	}
1047 
1048 	/* update the path */
1049 	if (left) {
1050 		if (btrfs_header_nritems(left) > orig_slot) {
1051 			atomic_inc(&left->refs);
1052 			/* left was locked after cow */
1053 			path->nodes[level] = left;
1054 			path->slots[level + 1] -= 1;
1055 			path->slots[level] = orig_slot;
1056 			if (mid) {
1057 				btrfs_tree_unlock(mid);
1058 				free_extent_buffer(mid);
1059 			}
1060 		} else {
1061 			orig_slot -= btrfs_header_nritems(left);
1062 			path->slots[level] = orig_slot;
1063 		}
1064 	}
1065 	/* double check we haven't messed things up */
1066 	if (orig_ptr !=
1067 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1068 		BUG();
1069 enospc:
1070 	if (right) {
1071 		btrfs_tree_unlock(right);
1072 		free_extent_buffer(right);
1073 	}
1074 	if (left) {
1075 		if (path->nodes[level] != left)
1076 			btrfs_tree_unlock(left);
1077 		free_extent_buffer(left);
1078 	}
1079 	return ret;
1080 }
1081 
1082 /* Node balancing for insertion.  Here we only split or push nodes around
1083  * when they are completely full.  This is also done top down, so we
1084  * have to be pessimistic.
1085  */
1086 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1087 					  struct btrfs_root *root,
1088 					  struct btrfs_path *path, int level)
1089 {
1090 	struct btrfs_fs_info *fs_info = root->fs_info;
1091 	struct extent_buffer *right = NULL;
1092 	struct extent_buffer *mid;
1093 	struct extent_buffer *left = NULL;
1094 	struct extent_buffer *parent = NULL;
1095 	int ret = 0;
1096 	int wret;
1097 	int pslot;
1098 	int orig_slot = path->slots[level];
1099 
1100 	if (level == 0)
1101 		return 1;
1102 
1103 	mid = path->nodes[level];
1104 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1105 
1106 	if (level < BTRFS_MAX_LEVEL - 1) {
1107 		parent = path->nodes[level + 1];
1108 		pslot = path->slots[level + 1];
1109 	}
1110 
1111 	if (!parent)
1112 		return 1;
1113 
1114 	left = btrfs_read_node_slot(parent, pslot - 1);
1115 	if (IS_ERR(left))
1116 		left = NULL;
1117 
1118 	/* first, try to make some room in the middle buffer */
1119 	if (left) {
1120 		u32 left_nr;
1121 
1122 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1123 
1124 		left_nr = btrfs_header_nritems(left);
1125 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1126 			wret = 1;
1127 		} else {
1128 			ret = btrfs_cow_block(trans, root, left, parent,
1129 					      pslot - 1, &left,
1130 					      BTRFS_NESTING_LEFT_COW);
1131 			if (ret)
1132 				wret = 1;
1133 			else {
1134 				wret = push_node_left(trans, left, mid, 0);
1135 			}
1136 		}
1137 		if (wret < 0)
1138 			ret = wret;
1139 		if (wret == 0) {
1140 			struct btrfs_disk_key disk_key;
1141 			orig_slot += left_nr;
1142 			btrfs_node_key(mid, &disk_key, 0);
1143 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1144 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1145 			BUG_ON(ret < 0);
1146 			btrfs_set_node_key(parent, &disk_key, pslot);
1147 			btrfs_mark_buffer_dirty(parent);
1148 			if (btrfs_header_nritems(left) > orig_slot) {
1149 				path->nodes[level] = left;
1150 				path->slots[level + 1] -= 1;
1151 				path->slots[level] = orig_slot;
1152 				btrfs_tree_unlock(mid);
1153 				free_extent_buffer(mid);
1154 			} else {
1155 				orig_slot -=
1156 					btrfs_header_nritems(left);
1157 				path->slots[level] = orig_slot;
1158 				btrfs_tree_unlock(left);
1159 				free_extent_buffer(left);
1160 			}
1161 			return 0;
1162 		}
1163 		btrfs_tree_unlock(left);
1164 		free_extent_buffer(left);
1165 	}
1166 	right = btrfs_read_node_slot(parent, pslot + 1);
1167 	if (IS_ERR(right))
1168 		right = NULL;
1169 
1170 	/*
1171 	 * then try to empty the right most buffer into the middle
1172 	 */
1173 	if (right) {
1174 		u32 right_nr;
1175 
1176 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1177 
1178 		right_nr = btrfs_header_nritems(right);
1179 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1180 			wret = 1;
1181 		} else {
1182 			ret = btrfs_cow_block(trans, root, right,
1183 					      parent, pslot + 1,
1184 					      &right, BTRFS_NESTING_RIGHT_COW);
1185 			if (ret)
1186 				wret = 1;
1187 			else {
1188 				wret = balance_node_right(trans, right, mid);
1189 			}
1190 		}
1191 		if (wret < 0)
1192 			ret = wret;
1193 		if (wret == 0) {
1194 			struct btrfs_disk_key disk_key;
1195 
1196 			btrfs_node_key(right, &disk_key, 0);
1197 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1198 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1199 			BUG_ON(ret < 0);
1200 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1201 			btrfs_mark_buffer_dirty(parent);
1202 
1203 			if (btrfs_header_nritems(mid) <= orig_slot) {
1204 				path->nodes[level] = right;
1205 				path->slots[level + 1] += 1;
1206 				path->slots[level] = orig_slot -
1207 					btrfs_header_nritems(mid);
1208 				btrfs_tree_unlock(mid);
1209 				free_extent_buffer(mid);
1210 			} else {
1211 				btrfs_tree_unlock(right);
1212 				free_extent_buffer(right);
1213 			}
1214 			return 0;
1215 		}
1216 		btrfs_tree_unlock(right);
1217 		free_extent_buffer(right);
1218 	}
1219 	return 1;
1220 }
1221 
1222 /*
1223  * readahead one full node of leaves, finding things that are close
1224  * to the block in 'slot', and triggering ra on them.
1225  */
1226 static void reada_for_search(struct btrfs_fs_info *fs_info,
1227 			     struct btrfs_path *path,
1228 			     int level, int slot, u64 objectid)
1229 {
1230 	struct extent_buffer *node;
1231 	struct btrfs_disk_key disk_key;
1232 	u32 nritems;
1233 	u64 search;
1234 	u64 target;
1235 	u64 nread = 0;
1236 	u64 nread_max;
1237 	u32 nr;
1238 	u32 blocksize;
1239 	u32 nscan = 0;
1240 
1241 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1242 		return;
1243 
1244 	if (!path->nodes[level])
1245 		return;
1246 
1247 	node = path->nodes[level];
1248 
1249 	/*
1250 	 * Since the time between visiting leaves is much shorter than the time
1251 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1252 	 * much IO at once (possibly random).
1253 	 */
1254 	if (path->reada == READA_FORWARD_ALWAYS) {
1255 		if (level > 1)
1256 			nread_max = node->fs_info->nodesize;
1257 		else
1258 			nread_max = SZ_128K;
1259 	} else {
1260 		nread_max = SZ_64K;
1261 	}
1262 
1263 	search = btrfs_node_blockptr(node, slot);
1264 	blocksize = fs_info->nodesize;
1265 	if (path->reada != READA_FORWARD_ALWAYS) {
1266 		struct extent_buffer *eb;
1267 
1268 		eb = find_extent_buffer(fs_info, search);
1269 		if (eb) {
1270 			free_extent_buffer(eb);
1271 			return;
1272 		}
1273 	}
1274 
1275 	target = search;
1276 
1277 	nritems = btrfs_header_nritems(node);
1278 	nr = slot;
1279 
1280 	while (1) {
1281 		if (path->reada == READA_BACK) {
1282 			if (nr == 0)
1283 				break;
1284 			nr--;
1285 		} else if (path->reada == READA_FORWARD ||
1286 			   path->reada == READA_FORWARD_ALWAYS) {
1287 			nr++;
1288 			if (nr >= nritems)
1289 				break;
1290 		}
1291 		if (path->reada == READA_BACK && objectid) {
1292 			btrfs_node_key(node, &disk_key, nr);
1293 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1294 				break;
1295 		}
1296 		search = btrfs_node_blockptr(node, nr);
1297 		if (path->reada == READA_FORWARD_ALWAYS ||
1298 		    (search <= target && target - search <= 65536) ||
1299 		    (search > target && search - target <= 65536)) {
1300 			btrfs_readahead_node_child(node, nr);
1301 			nread += blocksize;
1302 		}
1303 		nscan++;
1304 		if (nread > nread_max || nscan > 32)
1305 			break;
1306 	}
1307 }
1308 
1309 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1310 {
1311 	struct extent_buffer *parent;
1312 	int slot;
1313 	int nritems;
1314 
1315 	parent = path->nodes[level + 1];
1316 	if (!parent)
1317 		return;
1318 
1319 	nritems = btrfs_header_nritems(parent);
1320 	slot = path->slots[level + 1];
1321 
1322 	if (slot > 0)
1323 		btrfs_readahead_node_child(parent, slot - 1);
1324 	if (slot + 1 < nritems)
1325 		btrfs_readahead_node_child(parent, slot + 1);
1326 }
1327 
1328 
1329 /*
1330  * when we walk down the tree, it is usually safe to unlock the higher layers
1331  * in the tree.  The exceptions are when our path goes through slot 0, because
1332  * operations on the tree might require changing key pointers higher up in the
1333  * tree.
1334  *
1335  * callers might also have set path->keep_locks, which tells this code to keep
1336  * the lock if the path points to the last slot in the block.  This is part of
1337  * walking through the tree, and selecting the next slot in the higher block.
1338  *
1339  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1340  * if lowest_unlock is 1, level 0 won't be unlocked
1341  */
1342 static noinline void unlock_up(struct btrfs_path *path, int level,
1343 			       int lowest_unlock, int min_write_lock_level,
1344 			       int *write_lock_level)
1345 {
1346 	int i;
1347 	int skip_level = level;
1348 	int no_skips = 0;
1349 	struct extent_buffer *t;
1350 
1351 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1352 		if (!path->nodes[i])
1353 			break;
1354 		if (!path->locks[i])
1355 			break;
1356 		if (!no_skips && path->slots[i] == 0) {
1357 			skip_level = i + 1;
1358 			continue;
1359 		}
1360 		if (!no_skips && path->keep_locks) {
1361 			u32 nritems;
1362 			t = path->nodes[i];
1363 			nritems = btrfs_header_nritems(t);
1364 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1365 				skip_level = i + 1;
1366 				continue;
1367 			}
1368 		}
1369 		if (skip_level < i && i >= lowest_unlock)
1370 			no_skips = 1;
1371 
1372 		t = path->nodes[i];
1373 		if (i >= lowest_unlock && i > skip_level) {
1374 			btrfs_tree_unlock_rw(t, path->locks[i]);
1375 			path->locks[i] = 0;
1376 			if (write_lock_level &&
1377 			    i > min_write_lock_level &&
1378 			    i <= *write_lock_level) {
1379 				*write_lock_level = i - 1;
1380 			}
1381 		}
1382 	}
1383 }
1384 
1385 /*
1386  * helper function for btrfs_search_slot.  The goal is to find a block
1387  * in cache without setting the path to blocking.  If we find the block
1388  * we return zero and the path is unchanged.
1389  *
1390  * If we can't find the block, we set the path blocking and do some
1391  * reada.  -EAGAIN is returned and the search must be repeated.
1392  */
1393 static int
1394 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1395 		      struct extent_buffer **eb_ret, int level, int slot,
1396 		      const struct btrfs_key *key)
1397 {
1398 	struct btrfs_fs_info *fs_info = root->fs_info;
1399 	u64 blocknr;
1400 	u64 gen;
1401 	struct extent_buffer *tmp;
1402 	struct btrfs_key first_key;
1403 	int ret;
1404 	int parent_level;
1405 
1406 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1407 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1408 	parent_level = btrfs_header_level(*eb_ret);
1409 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1410 
1411 	tmp = find_extent_buffer(fs_info, blocknr);
1412 	if (tmp) {
1413 		if (p->reada == READA_FORWARD_ALWAYS)
1414 			reada_for_search(fs_info, p, level, slot, key->objectid);
1415 
1416 		/* first we do an atomic uptodate check */
1417 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1418 			/*
1419 			 * Do extra check for first_key, eb can be stale due to
1420 			 * being cached, read from scrub, or have multiple
1421 			 * parents (shared tree blocks).
1422 			 */
1423 			if (btrfs_verify_level_key(tmp,
1424 					parent_level - 1, &first_key, gen)) {
1425 				free_extent_buffer(tmp);
1426 				return -EUCLEAN;
1427 			}
1428 			*eb_ret = tmp;
1429 			return 0;
1430 		}
1431 
1432 		/* now we're allowed to do a blocking uptodate check */
1433 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1434 		if (!ret) {
1435 			*eb_ret = tmp;
1436 			return 0;
1437 		}
1438 		free_extent_buffer(tmp);
1439 		btrfs_release_path(p);
1440 		return -EIO;
1441 	}
1442 
1443 	/*
1444 	 * reduce lock contention at high levels
1445 	 * of the btree by dropping locks before
1446 	 * we read.  Don't release the lock on the current
1447 	 * level because we need to walk this node to figure
1448 	 * out which blocks to read.
1449 	 */
1450 	btrfs_unlock_up_safe(p, level + 1);
1451 
1452 	if (p->reada != READA_NONE)
1453 		reada_for_search(fs_info, p, level, slot, key->objectid);
1454 
1455 	ret = -EAGAIN;
1456 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1457 			      gen, parent_level - 1, &first_key);
1458 	if (!IS_ERR(tmp)) {
1459 		/*
1460 		 * If the read above didn't mark this buffer up to date,
1461 		 * it will never end up being up to date.  Set ret to EIO now
1462 		 * and give up so that our caller doesn't loop forever
1463 		 * on our EAGAINs.
1464 		 */
1465 		if (!extent_buffer_uptodate(tmp))
1466 			ret = -EIO;
1467 		free_extent_buffer(tmp);
1468 	} else {
1469 		ret = PTR_ERR(tmp);
1470 	}
1471 
1472 	btrfs_release_path(p);
1473 	return ret;
1474 }
1475 
1476 /*
1477  * helper function for btrfs_search_slot.  This does all of the checks
1478  * for node-level blocks and does any balancing required based on
1479  * the ins_len.
1480  *
1481  * If no extra work was required, zero is returned.  If we had to
1482  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1483  * start over
1484  */
1485 static int
1486 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1487 		       struct btrfs_root *root, struct btrfs_path *p,
1488 		       struct extent_buffer *b, int level, int ins_len,
1489 		       int *write_lock_level)
1490 {
1491 	struct btrfs_fs_info *fs_info = root->fs_info;
1492 	int ret = 0;
1493 
1494 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1495 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1496 
1497 		if (*write_lock_level < level + 1) {
1498 			*write_lock_level = level + 1;
1499 			btrfs_release_path(p);
1500 			return -EAGAIN;
1501 		}
1502 
1503 		reada_for_balance(p, level);
1504 		ret = split_node(trans, root, p, level);
1505 
1506 		b = p->nodes[level];
1507 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1508 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1509 
1510 		if (*write_lock_level < level + 1) {
1511 			*write_lock_level = level + 1;
1512 			btrfs_release_path(p);
1513 			return -EAGAIN;
1514 		}
1515 
1516 		reada_for_balance(p, level);
1517 		ret = balance_level(trans, root, p, level);
1518 		if (ret)
1519 			return ret;
1520 
1521 		b = p->nodes[level];
1522 		if (!b) {
1523 			btrfs_release_path(p);
1524 			return -EAGAIN;
1525 		}
1526 		BUG_ON(btrfs_header_nritems(b) == 1);
1527 	}
1528 	return ret;
1529 }
1530 
1531 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1532 		u64 iobjectid, u64 ioff, u8 key_type,
1533 		struct btrfs_key *found_key)
1534 {
1535 	int ret;
1536 	struct btrfs_key key;
1537 	struct extent_buffer *eb;
1538 
1539 	ASSERT(path);
1540 	ASSERT(found_key);
1541 
1542 	key.type = key_type;
1543 	key.objectid = iobjectid;
1544 	key.offset = ioff;
1545 
1546 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1547 	if (ret < 0)
1548 		return ret;
1549 
1550 	eb = path->nodes[0];
1551 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1552 		ret = btrfs_next_leaf(fs_root, path);
1553 		if (ret)
1554 			return ret;
1555 		eb = path->nodes[0];
1556 	}
1557 
1558 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1559 	if (found_key->type != key.type ||
1560 			found_key->objectid != key.objectid)
1561 		return 1;
1562 
1563 	return 0;
1564 }
1565 
1566 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1567 							struct btrfs_path *p,
1568 							int write_lock_level)
1569 {
1570 	struct btrfs_fs_info *fs_info = root->fs_info;
1571 	struct extent_buffer *b;
1572 	int root_lock;
1573 	int level = 0;
1574 
1575 	/* We try very hard to do read locks on the root */
1576 	root_lock = BTRFS_READ_LOCK;
1577 
1578 	if (p->search_commit_root) {
1579 		/*
1580 		 * The commit roots are read only so we always do read locks,
1581 		 * and we always must hold the commit_root_sem when doing
1582 		 * searches on them, the only exception is send where we don't
1583 		 * want to block transaction commits for a long time, so
1584 		 * we need to clone the commit root in order to avoid races
1585 		 * with transaction commits that create a snapshot of one of
1586 		 * the roots used by a send operation.
1587 		 */
1588 		if (p->need_commit_sem) {
1589 			down_read(&fs_info->commit_root_sem);
1590 			b = btrfs_clone_extent_buffer(root->commit_root);
1591 			up_read(&fs_info->commit_root_sem);
1592 			if (!b)
1593 				return ERR_PTR(-ENOMEM);
1594 
1595 		} else {
1596 			b = root->commit_root;
1597 			atomic_inc(&b->refs);
1598 		}
1599 		level = btrfs_header_level(b);
1600 		/*
1601 		 * Ensure that all callers have set skip_locking when
1602 		 * p->search_commit_root = 1.
1603 		 */
1604 		ASSERT(p->skip_locking == 1);
1605 
1606 		goto out;
1607 	}
1608 
1609 	if (p->skip_locking) {
1610 		b = btrfs_root_node(root);
1611 		level = btrfs_header_level(b);
1612 		goto out;
1613 	}
1614 
1615 	/*
1616 	 * If the level is set to maximum, we can skip trying to get the read
1617 	 * lock.
1618 	 */
1619 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1620 		/*
1621 		 * We don't know the level of the root node until we actually
1622 		 * have it read locked
1623 		 */
1624 		b = btrfs_read_lock_root_node(root);
1625 		level = btrfs_header_level(b);
1626 		if (level > write_lock_level)
1627 			goto out;
1628 
1629 		/* Whoops, must trade for write lock */
1630 		btrfs_tree_read_unlock(b);
1631 		free_extent_buffer(b);
1632 	}
1633 
1634 	b = btrfs_lock_root_node(root);
1635 	root_lock = BTRFS_WRITE_LOCK;
1636 
1637 	/* The level might have changed, check again */
1638 	level = btrfs_header_level(b);
1639 
1640 out:
1641 	p->nodes[level] = b;
1642 	if (!p->skip_locking)
1643 		p->locks[level] = root_lock;
1644 	/*
1645 	 * Callers are responsible for dropping b's references.
1646 	 */
1647 	return b;
1648 }
1649 
1650 
1651 /*
1652  * btrfs_search_slot - look for a key in a tree and perform necessary
1653  * modifications to preserve tree invariants.
1654  *
1655  * @trans:	Handle of transaction, used when modifying the tree
1656  * @p:		Holds all btree nodes along the search path
1657  * @root:	The root node of the tree
1658  * @key:	The key we are looking for
1659  * @ins_len:	Indicates purpose of search:
1660  *              >0  for inserts it's size of item inserted (*)
1661  *              <0  for deletions
1662  *               0  for plain searches, not modifying the tree
1663  *
1664  *              (*) If size of item inserted doesn't include
1665  *              sizeof(struct btrfs_item), then p->search_for_extension must
1666  *              be set.
1667  * @cow:	boolean should CoW operations be performed. Must always be 1
1668  *		when modifying the tree.
1669  *
1670  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1671  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1672  *
1673  * If @key is found, 0 is returned and you can find the item in the leaf level
1674  * of the path (level 0)
1675  *
1676  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1677  * points to the slot where it should be inserted
1678  *
1679  * If an error is encountered while searching the tree a negative error number
1680  * is returned
1681  */
1682 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1683 		      const struct btrfs_key *key, struct btrfs_path *p,
1684 		      int ins_len, int cow)
1685 {
1686 	struct extent_buffer *b;
1687 	int slot;
1688 	int ret;
1689 	int err;
1690 	int level;
1691 	int lowest_unlock = 1;
1692 	/* everything at write_lock_level or lower must be write locked */
1693 	int write_lock_level = 0;
1694 	u8 lowest_level = 0;
1695 	int min_write_lock_level;
1696 	int prev_cmp;
1697 
1698 	lowest_level = p->lowest_level;
1699 	WARN_ON(lowest_level && ins_len > 0);
1700 	WARN_ON(p->nodes[0] != NULL);
1701 	BUG_ON(!cow && ins_len);
1702 
1703 	if (ins_len < 0) {
1704 		lowest_unlock = 2;
1705 
1706 		/* when we are removing items, we might have to go up to level
1707 		 * two as we update tree pointers  Make sure we keep write
1708 		 * for those levels as well
1709 		 */
1710 		write_lock_level = 2;
1711 	} else if (ins_len > 0) {
1712 		/*
1713 		 * for inserting items, make sure we have a write lock on
1714 		 * level 1 so we can update keys
1715 		 */
1716 		write_lock_level = 1;
1717 	}
1718 
1719 	if (!cow)
1720 		write_lock_level = -1;
1721 
1722 	if (cow && (p->keep_locks || p->lowest_level))
1723 		write_lock_level = BTRFS_MAX_LEVEL;
1724 
1725 	min_write_lock_level = write_lock_level;
1726 
1727 again:
1728 	prev_cmp = -1;
1729 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
1730 	if (IS_ERR(b)) {
1731 		ret = PTR_ERR(b);
1732 		goto done;
1733 	}
1734 
1735 	while (b) {
1736 		int dec = 0;
1737 
1738 		level = btrfs_header_level(b);
1739 
1740 		if (cow) {
1741 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1742 
1743 			/*
1744 			 * if we don't really need to cow this block
1745 			 * then we don't want to set the path blocking,
1746 			 * so we test it here
1747 			 */
1748 			if (!should_cow_block(trans, root, b))
1749 				goto cow_done;
1750 
1751 			/*
1752 			 * must have write locks on this node and the
1753 			 * parent
1754 			 */
1755 			if (level > write_lock_level ||
1756 			    (level + 1 > write_lock_level &&
1757 			    level + 1 < BTRFS_MAX_LEVEL &&
1758 			    p->nodes[level + 1])) {
1759 				write_lock_level = level + 1;
1760 				btrfs_release_path(p);
1761 				goto again;
1762 			}
1763 
1764 			if (last_level)
1765 				err = btrfs_cow_block(trans, root, b, NULL, 0,
1766 						      &b,
1767 						      BTRFS_NESTING_COW);
1768 			else
1769 				err = btrfs_cow_block(trans, root, b,
1770 						      p->nodes[level + 1],
1771 						      p->slots[level + 1], &b,
1772 						      BTRFS_NESTING_COW);
1773 			if (err) {
1774 				ret = err;
1775 				goto done;
1776 			}
1777 		}
1778 cow_done:
1779 		p->nodes[level] = b;
1780 		/*
1781 		 * Leave path with blocking locks to avoid massive
1782 		 * lock context switch, this is made on purpose.
1783 		 */
1784 
1785 		/*
1786 		 * we have a lock on b and as long as we aren't changing
1787 		 * the tree, there is no way to for the items in b to change.
1788 		 * It is safe to drop the lock on our parent before we
1789 		 * go through the expensive btree search on b.
1790 		 *
1791 		 * If we're inserting or deleting (ins_len != 0), then we might
1792 		 * be changing slot zero, which may require changing the parent.
1793 		 * So, we can't drop the lock until after we know which slot
1794 		 * we're operating on.
1795 		 */
1796 		if (!ins_len && !p->keep_locks) {
1797 			int u = level + 1;
1798 
1799 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1800 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1801 				p->locks[u] = 0;
1802 			}
1803 		}
1804 
1805 		/*
1806 		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
1807 		 * we can safely assume the target key will always be in slot 0
1808 		 * on lower levels due to the invariants BTRFS' btree provides,
1809 		 * namely that a btrfs_key_ptr entry always points to the
1810 		 * lowest key in the child node, thus we can skip searching
1811 		 * lower levels
1812 		 */
1813 		if (prev_cmp == 0) {
1814 			slot = 0;
1815 			ret = 0;
1816 		} else {
1817 			ret = btrfs_bin_search(b, key, &slot);
1818 			prev_cmp = ret;
1819 			if (ret < 0)
1820 				goto done;
1821 		}
1822 
1823 		if (level == 0) {
1824 			p->slots[level] = slot;
1825 			/*
1826 			 * Item key already exists. In this case, if we are
1827 			 * allowed to insert the item (for example, in dir_item
1828 			 * case, item key collision is allowed), it will be
1829 			 * merged with the original item. Only the item size
1830 			 * grows, no new btrfs item will be added. If
1831 			 * search_for_extension is not set, ins_len already
1832 			 * accounts the size btrfs_item, deduct it here so leaf
1833 			 * space check will be correct.
1834 			 */
1835 			if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
1836 				ASSERT(ins_len >= sizeof(struct btrfs_item));
1837 				ins_len -= sizeof(struct btrfs_item);
1838 			}
1839 			if (ins_len > 0 &&
1840 			    btrfs_leaf_free_space(b) < ins_len) {
1841 				if (write_lock_level < 1) {
1842 					write_lock_level = 1;
1843 					btrfs_release_path(p);
1844 					goto again;
1845 				}
1846 
1847 				err = split_leaf(trans, root, key,
1848 						 p, ins_len, ret == 0);
1849 
1850 				BUG_ON(err > 0);
1851 				if (err) {
1852 					ret = err;
1853 					goto done;
1854 				}
1855 			}
1856 			if (!p->search_for_split)
1857 				unlock_up(p, level, lowest_unlock,
1858 					  min_write_lock_level, NULL);
1859 			goto done;
1860 		}
1861 		if (ret && slot > 0) {
1862 			dec = 1;
1863 			slot--;
1864 		}
1865 		p->slots[level] = slot;
1866 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
1867 					     &write_lock_level);
1868 		if (err == -EAGAIN)
1869 			goto again;
1870 		if (err) {
1871 			ret = err;
1872 			goto done;
1873 		}
1874 		b = p->nodes[level];
1875 		slot = p->slots[level];
1876 
1877 		/*
1878 		 * Slot 0 is special, if we change the key we have to update
1879 		 * the parent pointer which means we must have a write lock on
1880 		 * the parent
1881 		 */
1882 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
1883 			write_lock_level = level + 1;
1884 			btrfs_release_path(p);
1885 			goto again;
1886 		}
1887 
1888 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
1889 			  &write_lock_level);
1890 
1891 		if (level == lowest_level) {
1892 			if (dec)
1893 				p->slots[level]++;
1894 			goto done;
1895 		}
1896 
1897 		err = read_block_for_search(root, p, &b, level, slot, key);
1898 		if (err == -EAGAIN)
1899 			goto again;
1900 		if (err) {
1901 			ret = err;
1902 			goto done;
1903 		}
1904 
1905 		if (!p->skip_locking) {
1906 			level = btrfs_header_level(b);
1907 			if (level <= write_lock_level) {
1908 				btrfs_tree_lock(b);
1909 				p->locks[level] = BTRFS_WRITE_LOCK;
1910 			} else {
1911 				btrfs_tree_read_lock(b);
1912 				p->locks[level] = BTRFS_READ_LOCK;
1913 			}
1914 			p->nodes[level] = b;
1915 		}
1916 	}
1917 	ret = 1;
1918 done:
1919 	if (ret < 0 && !p->skip_release_on_error)
1920 		btrfs_release_path(p);
1921 	return ret;
1922 }
1923 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
1924 
1925 /*
1926  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
1927  * current state of the tree together with the operations recorded in the tree
1928  * modification log to search for the key in a previous version of this tree, as
1929  * denoted by the time_seq parameter.
1930  *
1931  * Naturally, there is no support for insert, delete or cow operations.
1932  *
1933  * The resulting path and return value will be set up as if we called
1934  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
1935  */
1936 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
1937 			  struct btrfs_path *p, u64 time_seq)
1938 {
1939 	struct btrfs_fs_info *fs_info = root->fs_info;
1940 	struct extent_buffer *b;
1941 	int slot;
1942 	int ret;
1943 	int err;
1944 	int level;
1945 	int lowest_unlock = 1;
1946 	u8 lowest_level = 0;
1947 
1948 	lowest_level = p->lowest_level;
1949 	WARN_ON(p->nodes[0] != NULL);
1950 
1951 	if (p->search_commit_root) {
1952 		BUG_ON(time_seq);
1953 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
1954 	}
1955 
1956 again:
1957 	b = btrfs_get_old_root(root, time_seq);
1958 	if (!b) {
1959 		ret = -EIO;
1960 		goto done;
1961 	}
1962 	level = btrfs_header_level(b);
1963 	p->locks[level] = BTRFS_READ_LOCK;
1964 
1965 	while (b) {
1966 		int dec = 0;
1967 
1968 		level = btrfs_header_level(b);
1969 		p->nodes[level] = b;
1970 
1971 		/*
1972 		 * we have a lock on b and as long as we aren't changing
1973 		 * the tree, there is no way to for the items in b to change.
1974 		 * It is safe to drop the lock on our parent before we
1975 		 * go through the expensive btree search on b.
1976 		 */
1977 		btrfs_unlock_up_safe(p, level + 1);
1978 
1979 		ret = btrfs_bin_search(b, key, &slot);
1980 		if (ret < 0)
1981 			goto done;
1982 
1983 		if (level == 0) {
1984 			p->slots[level] = slot;
1985 			unlock_up(p, level, lowest_unlock, 0, NULL);
1986 			goto done;
1987 		}
1988 
1989 		if (ret && slot > 0) {
1990 			dec = 1;
1991 			slot--;
1992 		}
1993 		p->slots[level] = slot;
1994 		unlock_up(p, level, lowest_unlock, 0, NULL);
1995 
1996 		if (level == lowest_level) {
1997 			if (dec)
1998 				p->slots[level]++;
1999 			goto done;
2000 		}
2001 
2002 		err = read_block_for_search(root, p, &b, level, slot, key);
2003 		if (err == -EAGAIN)
2004 			goto again;
2005 		if (err) {
2006 			ret = err;
2007 			goto done;
2008 		}
2009 
2010 		level = btrfs_header_level(b);
2011 		btrfs_tree_read_lock(b);
2012 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2013 		if (!b) {
2014 			ret = -ENOMEM;
2015 			goto done;
2016 		}
2017 		p->locks[level] = BTRFS_READ_LOCK;
2018 		p->nodes[level] = b;
2019 	}
2020 	ret = 1;
2021 done:
2022 	if (ret < 0)
2023 		btrfs_release_path(p);
2024 
2025 	return ret;
2026 }
2027 
2028 /*
2029  * helper to use instead of search slot if no exact match is needed but
2030  * instead the next or previous item should be returned.
2031  * When find_higher is true, the next higher item is returned, the next lower
2032  * otherwise.
2033  * When return_any and find_higher are both true, and no higher item is found,
2034  * return the next lower instead.
2035  * When return_any is true and find_higher is false, and no lower item is found,
2036  * return the next higher instead.
2037  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2038  * < 0 on error
2039  */
2040 int btrfs_search_slot_for_read(struct btrfs_root *root,
2041 			       const struct btrfs_key *key,
2042 			       struct btrfs_path *p, int find_higher,
2043 			       int return_any)
2044 {
2045 	int ret;
2046 	struct extent_buffer *leaf;
2047 
2048 again:
2049 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2050 	if (ret <= 0)
2051 		return ret;
2052 	/*
2053 	 * a return value of 1 means the path is at the position where the
2054 	 * item should be inserted. Normally this is the next bigger item,
2055 	 * but in case the previous item is the last in a leaf, path points
2056 	 * to the first free slot in the previous leaf, i.e. at an invalid
2057 	 * item.
2058 	 */
2059 	leaf = p->nodes[0];
2060 
2061 	if (find_higher) {
2062 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2063 			ret = btrfs_next_leaf(root, p);
2064 			if (ret <= 0)
2065 				return ret;
2066 			if (!return_any)
2067 				return 1;
2068 			/*
2069 			 * no higher item found, return the next
2070 			 * lower instead
2071 			 */
2072 			return_any = 0;
2073 			find_higher = 0;
2074 			btrfs_release_path(p);
2075 			goto again;
2076 		}
2077 	} else {
2078 		if (p->slots[0] == 0) {
2079 			ret = btrfs_prev_leaf(root, p);
2080 			if (ret < 0)
2081 				return ret;
2082 			if (!ret) {
2083 				leaf = p->nodes[0];
2084 				if (p->slots[0] == btrfs_header_nritems(leaf))
2085 					p->slots[0]--;
2086 				return 0;
2087 			}
2088 			if (!return_any)
2089 				return 1;
2090 			/*
2091 			 * no lower item found, return the next
2092 			 * higher instead
2093 			 */
2094 			return_any = 0;
2095 			find_higher = 1;
2096 			btrfs_release_path(p);
2097 			goto again;
2098 		} else {
2099 			--p->slots[0];
2100 		}
2101 	}
2102 	return 0;
2103 }
2104 
2105 /*
2106  * Execute search and call btrfs_previous_item to traverse backwards if the item
2107  * was not found.
2108  *
2109  * Return 0 if found, 1 if not found and < 0 if error.
2110  */
2111 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2112 			   struct btrfs_path *path)
2113 {
2114 	int ret;
2115 
2116 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2117 	if (ret > 0)
2118 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2119 
2120 	if (ret == 0)
2121 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2122 
2123 	return ret;
2124 }
2125 
2126 /*
2127  * adjust the pointers going up the tree, starting at level
2128  * making sure the right key of each node is points to 'key'.
2129  * This is used after shifting pointers to the left, so it stops
2130  * fixing up pointers when a given leaf/node is not in slot 0 of the
2131  * higher levels
2132  *
2133  */
2134 static void fixup_low_keys(struct btrfs_path *path,
2135 			   struct btrfs_disk_key *key, int level)
2136 {
2137 	int i;
2138 	struct extent_buffer *t;
2139 	int ret;
2140 
2141 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2142 		int tslot = path->slots[i];
2143 
2144 		if (!path->nodes[i])
2145 			break;
2146 		t = path->nodes[i];
2147 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2148 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2149 		BUG_ON(ret < 0);
2150 		btrfs_set_node_key(t, key, tslot);
2151 		btrfs_mark_buffer_dirty(path->nodes[i]);
2152 		if (tslot != 0)
2153 			break;
2154 	}
2155 }
2156 
2157 /*
2158  * update item key.
2159  *
2160  * This function isn't completely safe. It's the caller's responsibility
2161  * that the new key won't break the order
2162  */
2163 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2164 			     struct btrfs_path *path,
2165 			     const struct btrfs_key *new_key)
2166 {
2167 	struct btrfs_disk_key disk_key;
2168 	struct extent_buffer *eb;
2169 	int slot;
2170 
2171 	eb = path->nodes[0];
2172 	slot = path->slots[0];
2173 	if (slot > 0) {
2174 		btrfs_item_key(eb, &disk_key, slot - 1);
2175 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2176 			btrfs_crit(fs_info,
2177 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2178 				   slot, btrfs_disk_key_objectid(&disk_key),
2179 				   btrfs_disk_key_type(&disk_key),
2180 				   btrfs_disk_key_offset(&disk_key),
2181 				   new_key->objectid, new_key->type,
2182 				   new_key->offset);
2183 			btrfs_print_leaf(eb);
2184 			BUG();
2185 		}
2186 	}
2187 	if (slot < btrfs_header_nritems(eb) - 1) {
2188 		btrfs_item_key(eb, &disk_key, slot + 1);
2189 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2190 			btrfs_crit(fs_info,
2191 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2192 				   slot, btrfs_disk_key_objectid(&disk_key),
2193 				   btrfs_disk_key_type(&disk_key),
2194 				   btrfs_disk_key_offset(&disk_key),
2195 				   new_key->objectid, new_key->type,
2196 				   new_key->offset);
2197 			btrfs_print_leaf(eb);
2198 			BUG();
2199 		}
2200 	}
2201 
2202 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2203 	btrfs_set_item_key(eb, &disk_key, slot);
2204 	btrfs_mark_buffer_dirty(eb);
2205 	if (slot == 0)
2206 		fixup_low_keys(path, &disk_key, 1);
2207 }
2208 
2209 /*
2210  * Check key order of two sibling extent buffers.
2211  *
2212  * Return true if something is wrong.
2213  * Return false if everything is fine.
2214  *
2215  * Tree-checker only works inside one tree block, thus the following
2216  * corruption can not be detected by tree-checker:
2217  *
2218  * Leaf @left			| Leaf @right
2219  * --------------------------------------------------------------
2220  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2221  *
2222  * Key f6 in leaf @left itself is valid, but not valid when the next
2223  * key in leaf @right is 7.
2224  * This can only be checked at tree block merge time.
2225  * And since tree checker has ensured all key order in each tree block
2226  * is correct, we only need to bother the last key of @left and the first
2227  * key of @right.
2228  */
2229 static bool check_sibling_keys(struct extent_buffer *left,
2230 			       struct extent_buffer *right)
2231 {
2232 	struct btrfs_key left_last;
2233 	struct btrfs_key right_first;
2234 	int level = btrfs_header_level(left);
2235 	int nr_left = btrfs_header_nritems(left);
2236 	int nr_right = btrfs_header_nritems(right);
2237 
2238 	/* No key to check in one of the tree blocks */
2239 	if (!nr_left || !nr_right)
2240 		return false;
2241 
2242 	if (level) {
2243 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2244 		btrfs_node_key_to_cpu(right, &right_first, 0);
2245 	} else {
2246 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2247 		btrfs_item_key_to_cpu(right, &right_first, 0);
2248 	}
2249 
2250 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2251 		btrfs_crit(left->fs_info,
2252 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2253 			   left_last.objectid, left_last.type,
2254 			   left_last.offset, right_first.objectid,
2255 			   right_first.type, right_first.offset);
2256 		return true;
2257 	}
2258 	return false;
2259 }
2260 
2261 /*
2262  * try to push data from one node into the next node left in the
2263  * tree.
2264  *
2265  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2266  * error, and > 0 if there was no room in the left hand block.
2267  */
2268 static int push_node_left(struct btrfs_trans_handle *trans,
2269 			  struct extent_buffer *dst,
2270 			  struct extent_buffer *src, int empty)
2271 {
2272 	struct btrfs_fs_info *fs_info = trans->fs_info;
2273 	int push_items = 0;
2274 	int src_nritems;
2275 	int dst_nritems;
2276 	int ret = 0;
2277 
2278 	src_nritems = btrfs_header_nritems(src);
2279 	dst_nritems = btrfs_header_nritems(dst);
2280 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2281 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2282 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2283 
2284 	if (!empty && src_nritems <= 8)
2285 		return 1;
2286 
2287 	if (push_items <= 0)
2288 		return 1;
2289 
2290 	if (empty) {
2291 		push_items = min(src_nritems, push_items);
2292 		if (push_items < src_nritems) {
2293 			/* leave at least 8 pointers in the node if
2294 			 * we aren't going to empty it
2295 			 */
2296 			if (src_nritems - push_items < 8) {
2297 				if (push_items <= 8)
2298 					return 1;
2299 				push_items -= 8;
2300 			}
2301 		}
2302 	} else
2303 		push_items = min(src_nritems - 8, push_items);
2304 
2305 	/* dst is the left eb, src is the middle eb */
2306 	if (check_sibling_keys(dst, src)) {
2307 		ret = -EUCLEAN;
2308 		btrfs_abort_transaction(trans, ret);
2309 		return ret;
2310 	}
2311 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2312 	if (ret) {
2313 		btrfs_abort_transaction(trans, ret);
2314 		return ret;
2315 	}
2316 	copy_extent_buffer(dst, src,
2317 			   btrfs_node_key_ptr_offset(dst_nritems),
2318 			   btrfs_node_key_ptr_offset(0),
2319 			   push_items * sizeof(struct btrfs_key_ptr));
2320 
2321 	if (push_items < src_nritems) {
2322 		/*
2323 		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2324 		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2325 		 */
2326 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2327 				      btrfs_node_key_ptr_offset(push_items),
2328 				      (src_nritems - push_items) *
2329 				      sizeof(struct btrfs_key_ptr));
2330 	}
2331 	btrfs_set_header_nritems(src, src_nritems - push_items);
2332 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2333 	btrfs_mark_buffer_dirty(src);
2334 	btrfs_mark_buffer_dirty(dst);
2335 
2336 	return ret;
2337 }
2338 
2339 /*
2340  * try to push data from one node into the next node right in the
2341  * tree.
2342  *
2343  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2344  * error, and > 0 if there was no room in the right hand block.
2345  *
2346  * this will  only push up to 1/2 the contents of the left node over
2347  */
2348 static int balance_node_right(struct btrfs_trans_handle *trans,
2349 			      struct extent_buffer *dst,
2350 			      struct extent_buffer *src)
2351 {
2352 	struct btrfs_fs_info *fs_info = trans->fs_info;
2353 	int push_items = 0;
2354 	int max_push;
2355 	int src_nritems;
2356 	int dst_nritems;
2357 	int ret = 0;
2358 
2359 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2360 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2361 
2362 	src_nritems = btrfs_header_nritems(src);
2363 	dst_nritems = btrfs_header_nritems(dst);
2364 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2365 	if (push_items <= 0)
2366 		return 1;
2367 
2368 	if (src_nritems < 4)
2369 		return 1;
2370 
2371 	max_push = src_nritems / 2 + 1;
2372 	/* don't try to empty the node */
2373 	if (max_push >= src_nritems)
2374 		return 1;
2375 
2376 	if (max_push < push_items)
2377 		push_items = max_push;
2378 
2379 	/* dst is the right eb, src is the middle eb */
2380 	if (check_sibling_keys(src, dst)) {
2381 		ret = -EUCLEAN;
2382 		btrfs_abort_transaction(trans, ret);
2383 		return ret;
2384 	}
2385 	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2386 	BUG_ON(ret < 0);
2387 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2388 				      btrfs_node_key_ptr_offset(0),
2389 				      (dst_nritems) *
2390 				      sizeof(struct btrfs_key_ptr));
2391 
2392 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2393 					 push_items);
2394 	if (ret) {
2395 		btrfs_abort_transaction(trans, ret);
2396 		return ret;
2397 	}
2398 	copy_extent_buffer(dst, src,
2399 			   btrfs_node_key_ptr_offset(0),
2400 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2401 			   push_items * sizeof(struct btrfs_key_ptr));
2402 
2403 	btrfs_set_header_nritems(src, src_nritems - push_items);
2404 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2405 
2406 	btrfs_mark_buffer_dirty(src);
2407 	btrfs_mark_buffer_dirty(dst);
2408 
2409 	return ret;
2410 }
2411 
2412 /*
2413  * helper function to insert a new root level in the tree.
2414  * A new node is allocated, and a single item is inserted to
2415  * point to the existing root
2416  *
2417  * returns zero on success or < 0 on failure.
2418  */
2419 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2420 			   struct btrfs_root *root,
2421 			   struct btrfs_path *path, int level)
2422 {
2423 	struct btrfs_fs_info *fs_info = root->fs_info;
2424 	u64 lower_gen;
2425 	struct extent_buffer *lower;
2426 	struct extent_buffer *c;
2427 	struct extent_buffer *old;
2428 	struct btrfs_disk_key lower_key;
2429 	int ret;
2430 
2431 	BUG_ON(path->nodes[level]);
2432 	BUG_ON(path->nodes[level-1] != root->node);
2433 
2434 	lower = path->nodes[level-1];
2435 	if (level == 1)
2436 		btrfs_item_key(lower, &lower_key, 0);
2437 	else
2438 		btrfs_node_key(lower, &lower_key, 0);
2439 
2440 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2441 				   &lower_key, level, root->node->start, 0,
2442 				   BTRFS_NESTING_NEW_ROOT);
2443 	if (IS_ERR(c))
2444 		return PTR_ERR(c);
2445 
2446 	root_add_used(root, fs_info->nodesize);
2447 
2448 	btrfs_set_header_nritems(c, 1);
2449 	btrfs_set_node_key(c, &lower_key, 0);
2450 	btrfs_set_node_blockptr(c, 0, lower->start);
2451 	lower_gen = btrfs_header_generation(lower);
2452 	WARN_ON(lower_gen != trans->transid);
2453 
2454 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2455 
2456 	btrfs_mark_buffer_dirty(c);
2457 
2458 	old = root->node;
2459 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2460 	BUG_ON(ret < 0);
2461 	rcu_assign_pointer(root->node, c);
2462 
2463 	/* the super has an extra ref to root->node */
2464 	free_extent_buffer(old);
2465 
2466 	add_root_to_dirty_list(root);
2467 	atomic_inc(&c->refs);
2468 	path->nodes[level] = c;
2469 	path->locks[level] = BTRFS_WRITE_LOCK;
2470 	path->slots[level] = 0;
2471 	return 0;
2472 }
2473 
2474 /*
2475  * worker function to insert a single pointer in a node.
2476  * the node should have enough room for the pointer already
2477  *
2478  * slot and level indicate where you want the key to go, and
2479  * blocknr is the block the key points to.
2480  */
2481 static void insert_ptr(struct btrfs_trans_handle *trans,
2482 		       struct btrfs_path *path,
2483 		       struct btrfs_disk_key *key, u64 bytenr,
2484 		       int slot, int level)
2485 {
2486 	struct extent_buffer *lower;
2487 	int nritems;
2488 	int ret;
2489 
2490 	BUG_ON(!path->nodes[level]);
2491 	btrfs_assert_tree_write_locked(path->nodes[level]);
2492 	lower = path->nodes[level];
2493 	nritems = btrfs_header_nritems(lower);
2494 	BUG_ON(slot > nritems);
2495 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2496 	if (slot != nritems) {
2497 		if (level) {
2498 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2499 					slot, nritems - slot);
2500 			BUG_ON(ret < 0);
2501 		}
2502 		memmove_extent_buffer(lower,
2503 			      btrfs_node_key_ptr_offset(slot + 1),
2504 			      btrfs_node_key_ptr_offset(slot),
2505 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2506 	}
2507 	if (level) {
2508 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2509 					    BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2510 		BUG_ON(ret < 0);
2511 	}
2512 	btrfs_set_node_key(lower, key, slot);
2513 	btrfs_set_node_blockptr(lower, slot, bytenr);
2514 	WARN_ON(trans->transid == 0);
2515 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2516 	btrfs_set_header_nritems(lower, nritems + 1);
2517 	btrfs_mark_buffer_dirty(lower);
2518 }
2519 
2520 /*
2521  * split the node at the specified level in path in two.
2522  * The path is corrected to point to the appropriate node after the split
2523  *
2524  * Before splitting this tries to make some room in the node by pushing
2525  * left and right, if either one works, it returns right away.
2526  *
2527  * returns 0 on success and < 0 on failure
2528  */
2529 static noinline int split_node(struct btrfs_trans_handle *trans,
2530 			       struct btrfs_root *root,
2531 			       struct btrfs_path *path, int level)
2532 {
2533 	struct btrfs_fs_info *fs_info = root->fs_info;
2534 	struct extent_buffer *c;
2535 	struct extent_buffer *split;
2536 	struct btrfs_disk_key disk_key;
2537 	int mid;
2538 	int ret;
2539 	u32 c_nritems;
2540 
2541 	c = path->nodes[level];
2542 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2543 	if (c == root->node) {
2544 		/*
2545 		 * trying to split the root, lets make a new one
2546 		 *
2547 		 * tree mod log: We don't log_removal old root in
2548 		 * insert_new_root, because that root buffer will be kept as a
2549 		 * normal node. We are going to log removal of half of the
2550 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2551 		 * holding a tree lock on the buffer, which is why we cannot
2552 		 * race with other tree_mod_log users.
2553 		 */
2554 		ret = insert_new_root(trans, root, path, level + 1);
2555 		if (ret)
2556 			return ret;
2557 	} else {
2558 		ret = push_nodes_for_insert(trans, root, path, level);
2559 		c = path->nodes[level];
2560 		if (!ret && btrfs_header_nritems(c) <
2561 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2562 			return 0;
2563 		if (ret < 0)
2564 			return ret;
2565 	}
2566 
2567 	c_nritems = btrfs_header_nritems(c);
2568 	mid = (c_nritems + 1) / 2;
2569 	btrfs_node_key(c, &disk_key, mid);
2570 
2571 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2572 				       &disk_key, level, c->start, 0,
2573 				       BTRFS_NESTING_SPLIT);
2574 	if (IS_ERR(split))
2575 		return PTR_ERR(split);
2576 
2577 	root_add_used(root, fs_info->nodesize);
2578 	ASSERT(btrfs_header_level(c) == level);
2579 
2580 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2581 	if (ret) {
2582 		btrfs_abort_transaction(trans, ret);
2583 		return ret;
2584 	}
2585 	copy_extent_buffer(split, c,
2586 			   btrfs_node_key_ptr_offset(0),
2587 			   btrfs_node_key_ptr_offset(mid),
2588 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2589 	btrfs_set_header_nritems(split, c_nritems - mid);
2590 	btrfs_set_header_nritems(c, mid);
2591 
2592 	btrfs_mark_buffer_dirty(c);
2593 	btrfs_mark_buffer_dirty(split);
2594 
2595 	insert_ptr(trans, path, &disk_key, split->start,
2596 		   path->slots[level + 1] + 1, level + 1);
2597 
2598 	if (path->slots[level] >= mid) {
2599 		path->slots[level] -= mid;
2600 		btrfs_tree_unlock(c);
2601 		free_extent_buffer(c);
2602 		path->nodes[level] = split;
2603 		path->slots[level + 1] += 1;
2604 	} else {
2605 		btrfs_tree_unlock(split);
2606 		free_extent_buffer(split);
2607 	}
2608 	return 0;
2609 }
2610 
2611 /*
2612  * how many bytes are required to store the items in a leaf.  start
2613  * and nr indicate which items in the leaf to check.  This totals up the
2614  * space used both by the item structs and the item data
2615  */
2616 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2617 {
2618 	struct btrfs_item *start_item;
2619 	struct btrfs_item *end_item;
2620 	int data_len;
2621 	int nritems = btrfs_header_nritems(l);
2622 	int end = min(nritems, start + nr) - 1;
2623 
2624 	if (!nr)
2625 		return 0;
2626 	start_item = btrfs_item_nr(start);
2627 	end_item = btrfs_item_nr(end);
2628 	data_len = btrfs_item_offset(l, start_item) +
2629 		   btrfs_item_size(l, start_item);
2630 	data_len = data_len - btrfs_item_offset(l, end_item);
2631 	data_len += sizeof(struct btrfs_item) * nr;
2632 	WARN_ON(data_len < 0);
2633 	return data_len;
2634 }
2635 
2636 /*
2637  * The space between the end of the leaf items and
2638  * the start of the leaf data.  IOW, how much room
2639  * the leaf has left for both items and data
2640  */
2641 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2642 {
2643 	struct btrfs_fs_info *fs_info = leaf->fs_info;
2644 	int nritems = btrfs_header_nritems(leaf);
2645 	int ret;
2646 
2647 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2648 	if (ret < 0) {
2649 		btrfs_crit(fs_info,
2650 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2651 			   ret,
2652 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2653 			   leaf_space_used(leaf, 0, nritems), nritems);
2654 	}
2655 	return ret;
2656 }
2657 
2658 /*
2659  * min slot controls the lowest index we're willing to push to the
2660  * right.  We'll push up to and including min_slot, but no lower
2661  */
2662 static noinline int __push_leaf_right(struct btrfs_path *path,
2663 				      int data_size, int empty,
2664 				      struct extent_buffer *right,
2665 				      int free_space, u32 left_nritems,
2666 				      u32 min_slot)
2667 {
2668 	struct btrfs_fs_info *fs_info = right->fs_info;
2669 	struct extent_buffer *left = path->nodes[0];
2670 	struct extent_buffer *upper = path->nodes[1];
2671 	struct btrfs_map_token token;
2672 	struct btrfs_disk_key disk_key;
2673 	int slot;
2674 	u32 i;
2675 	int push_space = 0;
2676 	int push_items = 0;
2677 	struct btrfs_item *item;
2678 	u32 nr;
2679 	u32 right_nritems;
2680 	u32 data_end;
2681 	u32 this_item_size;
2682 
2683 	if (empty)
2684 		nr = 0;
2685 	else
2686 		nr = max_t(u32, 1, min_slot);
2687 
2688 	if (path->slots[0] >= left_nritems)
2689 		push_space += data_size;
2690 
2691 	slot = path->slots[1];
2692 	i = left_nritems - 1;
2693 	while (i >= nr) {
2694 		item = btrfs_item_nr(i);
2695 
2696 		if (!empty && push_items > 0) {
2697 			if (path->slots[0] > i)
2698 				break;
2699 			if (path->slots[0] == i) {
2700 				int space = btrfs_leaf_free_space(left);
2701 
2702 				if (space + push_space * 2 > free_space)
2703 					break;
2704 			}
2705 		}
2706 
2707 		if (path->slots[0] == i)
2708 			push_space += data_size;
2709 
2710 		this_item_size = btrfs_item_size(left, item);
2711 		if (this_item_size + sizeof(*item) + push_space > free_space)
2712 			break;
2713 
2714 		push_items++;
2715 		push_space += this_item_size + sizeof(*item);
2716 		if (i == 0)
2717 			break;
2718 		i--;
2719 	}
2720 
2721 	if (push_items == 0)
2722 		goto out_unlock;
2723 
2724 	WARN_ON(!empty && push_items == left_nritems);
2725 
2726 	/* push left to right */
2727 	right_nritems = btrfs_header_nritems(right);
2728 
2729 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2730 	push_space -= leaf_data_end(left);
2731 
2732 	/* make room in the right data area */
2733 	data_end = leaf_data_end(right);
2734 	memmove_extent_buffer(right,
2735 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2736 			      BTRFS_LEAF_DATA_OFFSET + data_end,
2737 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2738 
2739 	/* copy from the left data area */
2740 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2741 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2742 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2743 		     push_space);
2744 
2745 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2746 			      btrfs_item_nr_offset(0),
2747 			      right_nritems * sizeof(struct btrfs_item));
2748 
2749 	/* copy the items from left to right */
2750 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2751 		   btrfs_item_nr_offset(left_nritems - push_items),
2752 		   push_items * sizeof(struct btrfs_item));
2753 
2754 	/* update the item pointers */
2755 	btrfs_init_map_token(&token, right);
2756 	right_nritems += push_items;
2757 	btrfs_set_header_nritems(right, right_nritems);
2758 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2759 	for (i = 0; i < right_nritems; i++) {
2760 		item = btrfs_item_nr(i);
2761 		push_space -= btrfs_token_item_size(&token, item);
2762 		btrfs_set_token_item_offset(&token, item, push_space);
2763 	}
2764 
2765 	left_nritems -= push_items;
2766 	btrfs_set_header_nritems(left, left_nritems);
2767 
2768 	if (left_nritems)
2769 		btrfs_mark_buffer_dirty(left);
2770 	else
2771 		btrfs_clean_tree_block(left);
2772 
2773 	btrfs_mark_buffer_dirty(right);
2774 
2775 	btrfs_item_key(right, &disk_key, 0);
2776 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2777 	btrfs_mark_buffer_dirty(upper);
2778 
2779 	/* then fixup the leaf pointer in the path */
2780 	if (path->slots[0] >= left_nritems) {
2781 		path->slots[0] -= left_nritems;
2782 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2783 			btrfs_clean_tree_block(path->nodes[0]);
2784 		btrfs_tree_unlock(path->nodes[0]);
2785 		free_extent_buffer(path->nodes[0]);
2786 		path->nodes[0] = right;
2787 		path->slots[1] += 1;
2788 	} else {
2789 		btrfs_tree_unlock(right);
2790 		free_extent_buffer(right);
2791 	}
2792 	return 0;
2793 
2794 out_unlock:
2795 	btrfs_tree_unlock(right);
2796 	free_extent_buffer(right);
2797 	return 1;
2798 }
2799 
2800 /*
2801  * push some data in the path leaf to the right, trying to free up at
2802  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2803  *
2804  * returns 1 if the push failed because the other node didn't have enough
2805  * room, 0 if everything worked out and < 0 if there were major errors.
2806  *
2807  * this will push starting from min_slot to the end of the leaf.  It won't
2808  * push any slot lower than min_slot
2809  */
2810 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2811 			   *root, struct btrfs_path *path,
2812 			   int min_data_size, int data_size,
2813 			   int empty, u32 min_slot)
2814 {
2815 	struct extent_buffer *left = path->nodes[0];
2816 	struct extent_buffer *right;
2817 	struct extent_buffer *upper;
2818 	int slot;
2819 	int free_space;
2820 	u32 left_nritems;
2821 	int ret;
2822 
2823 	if (!path->nodes[1])
2824 		return 1;
2825 
2826 	slot = path->slots[1];
2827 	upper = path->nodes[1];
2828 	if (slot >= btrfs_header_nritems(upper) - 1)
2829 		return 1;
2830 
2831 	btrfs_assert_tree_write_locked(path->nodes[1]);
2832 
2833 	right = btrfs_read_node_slot(upper, slot + 1);
2834 	/*
2835 	 * slot + 1 is not valid or we fail to read the right node,
2836 	 * no big deal, just return.
2837 	 */
2838 	if (IS_ERR(right))
2839 		return 1;
2840 
2841 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2842 
2843 	free_space = btrfs_leaf_free_space(right);
2844 	if (free_space < data_size)
2845 		goto out_unlock;
2846 
2847 	/* cow and double check */
2848 	ret = btrfs_cow_block(trans, root, right, upper,
2849 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2850 	if (ret)
2851 		goto out_unlock;
2852 
2853 	free_space = btrfs_leaf_free_space(right);
2854 	if (free_space < data_size)
2855 		goto out_unlock;
2856 
2857 	left_nritems = btrfs_header_nritems(left);
2858 	if (left_nritems == 0)
2859 		goto out_unlock;
2860 
2861 	if (check_sibling_keys(left, right)) {
2862 		ret = -EUCLEAN;
2863 		btrfs_tree_unlock(right);
2864 		free_extent_buffer(right);
2865 		return ret;
2866 	}
2867 	if (path->slots[0] == left_nritems && !empty) {
2868 		/* Key greater than all keys in the leaf, right neighbor has
2869 		 * enough room for it and we're not emptying our leaf to delete
2870 		 * it, therefore use right neighbor to insert the new item and
2871 		 * no need to touch/dirty our left leaf. */
2872 		btrfs_tree_unlock(left);
2873 		free_extent_buffer(left);
2874 		path->nodes[0] = right;
2875 		path->slots[0] = 0;
2876 		path->slots[1]++;
2877 		return 0;
2878 	}
2879 
2880 	return __push_leaf_right(path, min_data_size, empty,
2881 				right, free_space, left_nritems, min_slot);
2882 out_unlock:
2883 	btrfs_tree_unlock(right);
2884 	free_extent_buffer(right);
2885 	return 1;
2886 }
2887 
2888 /*
2889  * push some data in the path leaf to the left, trying to free up at
2890  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2891  *
2892  * max_slot can put a limit on how far into the leaf we'll push items.  The
2893  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2894  * items
2895  */
2896 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
2897 				     int empty, struct extent_buffer *left,
2898 				     int free_space, u32 right_nritems,
2899 				     u32 max_slot)
2900 {
2901 	struct btrfs_fs_info *fs_info = left->fs_info;
2902 	struct btrfs_disk_key disk_key;
2903 	struct extent_buffer *right = path->nodes[0];
2904 	int i;
2905 	int push_space = 0;
2906 	int push_items = 0;
2907 	struct btrfs_item *item;
2908 	u32 old_left_nritems;
2909 	u32 nr;
2910 	int ret = 0;
2911 	u32 this_item_size;
2912 	u32 old_left_item_size;
2913 	struct btrfs_map_token token;
2914 
2915 	if (empty)
2916 		nr = min(right_nritems, max_slot);
2917 	else
2918 		nr = min(right_nritems - 1, max_slot);
2919 
2920 	for (i = 0; i < nr; i++) {
2921 		item = btrfs_item_nr(i);
2922 
2923 		if (!empty && push_items > 0) {
2924 			if (path->slots[0] < i)
2925 				break;
2926 			if (path->slots[0] == i) {
2927 				int space = btrfs_leaf_free_space(right);
2928 
2929 				if (space + push_space * 2 > free_space)
2930 					break;
2931 			}
2932 		}
2933 
2934 		if (path->slots[0] == i)
2935 			push_space += data_size;
2936 
2937 		this_item_size = btrfs_item_size(right, item);
2938 		if (this_item_size + sizeof(*item) + push_space > free_space)
2939 			break;
2940 
2941 		push_items++;
2942 		push_space += this_item_size + sizeof(*item);
2943 	}
2944 
2945 	if (push_items == 0) {
2946 		ret = 1;
2947 		goto out;
2948 	}
2949 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
2950 
2951 	/* push data from right to left */
2952 	copy_extent_buffer(left, right,
2953 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2954 			   btrfs_item_nr_offset(0),
2955 			   push_items * sizeof(struct btrfs_item));
2956 
2957 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
2958 		     btrfs_item_offset_nr(right, push_items - 1);
2959 
2960 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2961 		     leaf_data_end(left) - push_space,
2962 		     BTRFS_LEAF_DATA_OFFSET +
2963 		     btrfs_item_offset_nr(right, push_items - 1),
2964 		     push_space);
2965 	old_left_nritems = btrfs_header_nritems(left);
2966 	BUG_ON(old_left_nritems <= 0);
2967 
2968 	btrfs_init_map_token(&token, left);
2969 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2970 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2971 		u32 ioff;
2972 
2973 		item = btrfs_item_nr(i);
2974 
2975 		ioff = btrfs_token_item_offset(&token, item);
2976 		btrfs_set_token_item_offset(&token, item,
2977 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
2978 	}
2979 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2980 
2981 	/* fixup right node */
2982 	if (push_items > right_nritems)
2983 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
2984 		       right_nritems);
2985 
2986 	if (push_items < right_nritems) {
2987 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2988 						  leaf_data_end(right);
2989 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
2990 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2991 				      BTRFS_LEAF_DATA_OFFSET +
2992 				      leaf_data_end(right), push_space);
2993 
2994 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2995 			      btrfs_item_nr_offset(push_items),
2996 			     (btrfs_header_nritems(right) - push_items) *
2997 			     sizeof(struct btrfs_item));
2998 	}
2999 
3000 	btrfs_init_map_token(&token, right);
3001 	right_nritems -= push_items;
3002 	btrfs_set_header_nritems(right, right_nritems);
3003 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3004 	for (i = 0; i < right_nritems; i++) {
3005 		item = btrfs_item_nr(i);
3006 
3007 		push_space = push_space - btrfs_token_item_size(&token, item);
3008 		btrfs_set_token_item_offset(&token, item, push_space);
3009 	}
3010 
3011 	btrfs_mark_buffer_dirty(left);
3012 	if (right_nritems)
3013 		btrfs_mark_buffer_dirty(right);
3014 	else
3015 		btrfs_clean_tree_block(right);
3016 
3017 	btrfs_item_key(right, &disk_key, 0);
3018 	fixup_low_keys(path, &disk_key, 1);
3019 
3020 	/* then fixup the leaf pointer in the path */
3021 	if (path->slots[0] < push_items) {
3022 		path->slots[0] += old_left_nritems;
3023 		btrfs_tree_unlock(path->nodes[0]);
3024 		free_extent_buffer(path->nodes[0]);
3025 		path->nodes[0] = left;
3026 		path->slots[1] -= 1;
3027 	} else {
3028 		btrfs_tree_unlock(left);
3029 		free_extent_buffer(left);
3030 		path->slots[0] -= push_items;
3031 	}
3032 	BUG_ON(path->slots[0] < 0);
3033 	return ret;
3034 out:
3035 	btrfs_tree_unlock(left);
3036 	free_extent_buffer(left);
3037 	return ret;
3038 }
3039 
3040 /*
3041  * push some data in the path leaf to the left, trying to free up at
3042  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3043  *
3044  * max_slot can put a limit on how far into the leaf we'll push items.  The
3045  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3046  * items
3047  */
3048 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3049 			  *root, struct btrfs_path *path, int min_data_size,
3050 			  int data_size, int empty, u32 max_slot)
3051 {
3052 	struct extent_buffer *right = path->nodes[0];
3053 	struct extent_buffer *left;
3054 	int slot;
3055 	int free_space;
3056 	u32 right_nritems;
3057 	int ret = 0;
3058 
3059 	slot = path->slots[1];
3060 	if (slot == 0)
3061 		return 1;
3062 	if (!path->nodes[1])
3063 		return 1;
3064 
3065 	right_nritems = btrfs_header_nritems(right);
3066 	if (right_nritems == 0)
3067 		return 1;
3068 
3069 	btrfs_assert_tree_write_locked(path->nodes[1]);
3070 
3071 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3072 	/*
3073 	 * slot - 1 is not valid or we fail to read the left node,
3074 	 * no big deal, just return.
3075 	 */
3076 	if (IS_ERR(left))
3077 		return 1;
3078 
3079 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3080 
3081 	free_space = btrfs_leaf_free_space(left);
3082 	if (free_space < data_size) {
3083 		ret = 1;
3084 		goto out;
3085 	}
3086 
3087 	/* cow and double check */
3088 	ret = btrfs_cow_block(trans, root, left,
3089 			      path->nodes[1], slot - 1, &left,
3090 			      BTRFS_NESTING_LEFT_COW);
3091 	if (ret) {
3092 		/* we hit -ENOSPC, but it isn't fatal here */
3093 		if (ret == -ENOSPC)
3094 			ret = 1;
3095 		goto out;
3096 	}
3097 
3098 	free_space = btrfs_leaf_free_space(left);
3099 	if (free_space < data_size) {
3100 		ret = 1;
3101 		goto out;
3102 	}
3103 
3104 	if (check_sibling_keys(left, right)) {
3105 		ret = -EUCLEAN;
3106 		goto out;
3107 	}
3108 	return __push_leaf_left(path, min_data_size,
3109 			       empty, left, free_space, right_nritems,
3110 			       max_slot);
3111 out:
3112 	btrfs_tree_unlock(left);
3113 	free_extent_buffer(left);
3114 	return ret;
3115 }
3116 
3117 /*
3118  * split the path's leaf in two, making sure there is at least data_size
3119  * available for the resulting leaf level of the path.
3120  */
3121 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3122 				    struct btrfs_path *path,
3123 				    struct extent_buffer *l,
3124 				    struct extent_buffer *right,
3125 				    int slot, int mid, int nritems)
3126 {
3127 	struct btrfs_fs_info *fs_info = trans->fs_info;
3128 	int data_copy_size;
3129 	int rt_data_off;
3130 	int i;
3131 	struct btrfs_disk_key disk_key;
3132 	struct btrfs_map_token token;
3133 
3134 	nritems = nritems - mid;
3135 	btrfs_set_header_nritems(right, nritems);
3136 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
3137 
3138 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3139 			   btrfs_item_nr_offset(mid),
3140 			   nritems * sizeof(struct btrfs_item));
3141 
3142 	copy_extent_buffer(right, l,
3143 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3144 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3145 		     leaf_data_end(l), data_copy_size);
3146 
3147 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
3148 
3149 	btrfs_init_map_token(&token, right);
3150 	for (i = 0; i < nritems; i++) {
3151 		struct btrfs_item *item = btrfs_item_nr(i);
3152 		u32 ioff;
3153 
3154 		ioff = btrfs_token_item_offset(&token, item);
3155 		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
3156 	}
3157 
3158 	btrfs_set_header_nritems(l, mid);
3159 	btrfs_item_key(right, &disk_key, 0);
3160 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3161 
3162 	btrfs_mark_buffer_dirty(right);
3163 	btrfs_mark_buffer_dirty(l);
3164 	BUG_ON(path->slots[0] != slot);
3165 
3166 	if (mid <= slot) {
3167 		btrfs_tree_unlock(path->nodes[0]);
3168 		free_extent_buffer(path->nodes[0]);
3169 		path->nodes[0] = right;
3170 		path->slots[0] -= mid;
3171 		path->slots[1] += 1;
3172 	} else {
3173 		btrfs_tree_unlock(right);
3174 		free_extent_buffer(right);
3175 	}
3176 
3177 	BUG_ON(path->slots[0] < 0);
3178 }
3179 
3180 /*
3181  * double splits happen when we need to insert a big item in the middle
3182  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3183  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3184  *          A                 B                 C
3185  *
3186  * We avoid this by trying to push the items on either side of our target
3187  * into the adjacent leaves.  If all goes well we can avoid the double split
3188  * completely.
3189  */
3190 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3191 					  struct btrfs_root *root,
3192 					  struct btrfs_path *path,
3193 					  int data_size)
3194 {
3195 	int ret;
3196 	int progress = 0;
3197 	int slot;
3198 	u32 nritems;
3199 	int space_needed = data_size;
3200 
3201 	slot = path->slots[0];
3202 	if (slot < btrfs_header_nritems(path->nodes[0]))
3203 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3204 
3205 	/*
3206 	 * try to push all the items after our slot into the
3207 	 * right leaf
3208 	 */
3209 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3210 	if (ret < 0)
3211 		return ret;
3212 
3213 	if (ret == 0)
3214 		progress++;
3215 
3216 	nritems = btrfs_header_nritems(path->nodes[0]);
3217 	/*
3218 	 * our goal is to get our slot at the start or end of a leaf.  If
3219 	 * we've done so we're done
3220 	 */
3221 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3222 		return 0;
3223 
3224 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3225 		return 0;
3226 
3227 	/* try to push all the items before our slot into the next leaf */
3228 	slot = path->slots[0];
3229 	space_needed = data_size;
3230 	if (slot > 0)
3231 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3232 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3233 	if (ret < 0)
3234 		return ret;
3235 
3236 	if (ret == 0)
3237 		progress++;
3238 
3239 	if (progress)
3240 		return 0;
3241 	return 1;
3242 }
3243 
3244 /*
3245  * split the path's leaf in two, making sure there is at least data_size
3246  * available for the resulting leaf level of the path.
3247  *
3248  * returns 0 if all went well and < 0 on failure.
3249  */
3250 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3251 			       struct btrfs_root *root,
3252 			       const struct btrfs_key *ins_key,
3253 			       struct btrfs_path *path, int data_size,
3254 			       int extend)
3255 {
3256 	struct btrfs_disk_key disk_key;
3257 	struct extent_buffer *l;
3258 	u32 nritems;
3259 	int mid;
3260 	int slot;
3261 	struct extent_buffer *right;
3262 	struct btrfs_fs_info *fs_info = root->fs_info;
3263 	int ret = 0;
3264 	int wret;
3265 	int split;
3266 	int num_doubles = 0;
3267 	int tried_avoid_double = 0;
3268 
3269 	l = path->nodes[0];
3270 	slot = path->slots[0];
3271 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3272 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3273 		return -EOVERFLOW;
3274 
3275 	/* first try to make some room by pushing left and right */
3276 	if (data_size && path->nodes[1]) {
3277 		int space_needed = data_size;
3278 
3279 		if (slot < btrfs_header_nritems(l))
3280 			space_needed -= btrfs_leaf_free_space(l);
3281 
3282 		wret = push_leaf_right(trans, root, path, space_needed,
3283 				       space_needed, 0, 0);
3284 		if (wret < 0)
3285 			return wret;
3286 		if (wret) {
3287 			space_needed = data_size;
3288 			if (slot > 0)
3289 				space_needed -= btrfs_leaf_free_space(l);
3290 			wret = push_leaf_left(trans, root, path, space_needed,
3291 					      space_needed, 0, (u32)-1);
3292 			if (wret < 0)
3293 				return wret;
3294 		}
3295 		l = path->nodes[0];
3296 
3297 		/* did the pushes work? */
3298 		if (btrfs_leaf_free_space(l) >= data_size)
3299 			return 0;
3300 	}
3301 
3302 	if (!path->nodes[1]) {
3303 		ret = insert_new_root(trans, root, path, 1);
3304 		if (ret)
3305 			return ret;
3306 	}
3307 again:
3308 	split = 1;
3309 	l = path->nodes[0];
3310 	slot = path->slots[0];
3311 	nritems = btrfs_header_nritems(l);
3312 	mid = (nritems + 1) / 2;
3313 
3314 	if (mid <= slot) {
3315 		if (nritems == 1 ||
3316 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3317 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3318 			if (slot >= nritems) {
3319 				split = 0;
3320 			} else {
3321 				mid = slot;
3322 				if (mid != nritems &&
3323 				    leaf_space_used(l, mid, nritems - mid) +
3324 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3325 					if (data_size && !tried_avoid_double)
3326 						goto push_for_double;
3327 					split = 2;
3328 				}
3329 			}
3330 		}
3331 	} else {
3332 		if (leaf_space_used(l, 0, mid) + data_size >
3333 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3334 			if (!extend && data_size && slot == 0) {
3335 				split = 0;
3336 			} else if ((extend || !data_size) && slot == 0) {
3337 				mid = 1;
3338 			} else {
3339 				mid = slot;
3340 				if (mid != nritems &&
3341 				    leaf_space_used(l, mid, nritems - mid) +
3342 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3343 					if (data_size && !tried_avoid_double)
3344 						goto push_for_double;
3345 					split = 2;
3346 				}
3347 			}
3348 		}
3349 	}
3350 
3351 	if (split == 0)
3352 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3353 	else
3354 		btrfs_item_key(l, &disk_key, mid);
3355 
3356 	/*
3357 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3358 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3359 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3360 	 * out.  In the future we could add a
3361 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3362 	 * use BTRFS_NESTING_NEW_ROOT.
3363 	 */
3364 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3365 				       &disk_key, 0, l->start, 0,
3366 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3367 				       BTRFS_NESTING_SPLIT);
3368 	if (IS_ERR(right))
3369 		return PTR_ERR(right);
3370 
3371 	root_add_used(root, fs_info->nodesize);
3372 
3373 	if (split == 0) {
3374 		if (mid <= slot) {
3375 			btrfs_set_header_nritems(right, 0);
3376 			insert_ptr(trans, path, &disk_key,
3377 				   right->start, path->slots[1] + 1, 1);
3378 			btrfs_tree_unlock(path->nodes[0]);
3379 			free_extent_buffer(path->nodes[0]);
3380 			path->nodes[0] = right;
3381 			path->slots[0] = 0;
3382 			path->slots[1] += 1;
3383 		} else {
3384 			btrfs_set_header_nritems(right, 0);
3385 			insert_ptr(trans, path, &disk_key,
3386 				   right->start, path->slots[1], 1);
3387 			btrfs_tree_unlock(path->nodes[0]);
3388 			free_extent_buffer(path->nodes[0]);
3389 			path->nodes[0] = right;
3390 			path->slots[0] = 0;
3391 			if (path->slots[1] == 0)
3392 				fixup_low_keys(path, &disk_key, 1);
3393 		}
3394 		/*
3395 		 * We create a new leaf 'right' for the required ins_len and
3396 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3397 		 * the content of ins_len to 'right'.
3398 		 */
3399 		return ret;
3400 	}
3401 
3402 	copy_for_split(trans, path, l, right, slot, mid, nritems);
3403 
3404 	if (split == 2) {
3405 		BUG_ON(num_doubles != 0);
3406 		num_doubles++;
3407 		goto again;
3408 	}
3409 
3410 	return 0;
3411 
3412 push_for_double:
3413 	push_for_double_split(trans, root, path, data_size);
3414 	tried_avoid_double = 1;
3415 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3416 		return 0;
3417 	goto again;
3418 }
3419 
3420 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3421 					 struct btrfs_root *root,
3422 					 struct btrfs_path *path, int ins_len)
3423 {
3424 	struct btrfs_key key;
3425 	struct extent_buffer *leaf;
3426 	struct btrfs_file_extent_item *fi;
3427 	u64 extent_len = 0;
3428 	u32 item_size;
3429 	int ret;
3430 
3431 	leaf = path->nodes[0];
3432 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3433 
3434 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3435 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3436 
3437 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3438 		return 0;
3439 
3440 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3441 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3442 		fi = btrfs_item_ptr(leaf, path->slots[0],
3443 				    struct btrfs_file_extent_item);
3444 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3445 	}
3446 	btrfs_release_path(path);
3447 
3448 	path->keep_locks = 1;
3449 	path->search_for_split = 1;
3450 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3451 	path->search_for_split = 0;
3452 	if (ret > 0)
3453 		ret = -EAGAIN;
3454 	if (ret < 0)
3455 		goto err;
3456 
3457 	ret = -EAGAIN;
3458 	leaf = path->nodes[0];
3459 	/* if our item isn't there, return now */
3460 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3461 		goto err;
3462 
3463 	/* the leaf has  changed, it now has room.  return now */
3464 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3465 		goto err;
3466 
3467 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3468 		fi = btrfs_item_ptr(leaf, path->slots[0],
3469 				    struct btrfs_file_extent_item);
3470 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3471 			goto err;
3472 	}
3473 
3474 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3475 	if (ret)
3476 		goto err;
3477 
3478 	path->keep_locks = 0;
3479 	btrfs_unlock_up_safe(path, 1);
3480 	return 0;
3481 err:
3482 	path->keep_locks = 0;
3483 	return ret;
3484 }
3485 
3486 static noinline int split_item(struct btrfs_path *path,
3487 			       const struct btrfs_key *new_key,
3488 			       unsigned long split_offset)
3489 {
3490 	struct extent_buffer *leaf;
3491 	struct btrfs_item *item;
3492 	struct btrfs_item *new_item;
3493 	int slot;
3494 	char *buf;
3495 	u32 nritems;
3496 	u32 item_size;
3497 	u32 orig_offset;
3498 	struct btrfs_disk_key disk_key;
3499 
3500 	leaf = path->nodes[0];
3501 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3502 
3503 	item = btrfs_item_nr(path->slots[0]);
3504 	orig_offset = btrfs_item_offset(leaf, item);
3505 	item_size = btrfs_item_size(leaf, item);
3506 
3507 	buf = kmalloc(item_size, GFP_NOFS);
3508 	if (!buf)
3509 		return -ENOMEM;
3510 
3511 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3512 			    path->slots[0]), item_size);
3513 
3514 	slot = path->slots[0] + 1;
3515 	nritems = btrfs_header_nritems(leaf);
3516 	if (slot != nritems) {
3517 		/* shift the items */
3518 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3519 				btrfs_item_nr_offset(slot),
3520 				(nritems - slot) * sizeof(struct btrfs_item));
3521 	}
3522 
3523 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3524 	btrfs_set_item_key(leaf, &disk_key, slot);
3525 
3526 	new_item = btrfs_item_nr(slot);
3527 
3528 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3529 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3530 
3531 	btrfs_set_item_offset(leaf, item,
3532 			      orig_offset + item_size - split_offset);
3533 	btrfs_set_item_size(leaf, item, split_offset);
3534 
3535 	btrfs_set_header_nritems(leaf, nritems + 1);
3536 
3537 	/* write the data for the start of the original item */
3538 	write_extent_buffer(leaf, buf,
3539 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3540 			    split_offset);
3541 
3542 	/* write the data for the new item */
3543 	write_extent_buffer(leaf, buf + split_offset,
3544 			    btrfs_item_ptr_offset(leaf, slot),
3545 			    item_size - split_offset);
3546 	btrfs_mark_buffer_dirty(leaf);
3547 
3548 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3549 	kfree(buf);
3550 	return 0;
3551 }
3552 
3553 /*
3554  * This function splits a single item into two items,
3555  * giving 'new_key' to the new item and splitting the
3556  * old one at split_offset (from the start of the item).
3557  *
3558  * The path may be released by this operation.  After
3559  * the split, the path is pointing to the old item.  The
3560  * new item is going to be in the same node as the old one.
3561  *
3562  * Note, the item being split must be smaller enough to live alone on
3563  * a tree block with room for one extra struct btrfs_item
3564  *
3565  * This allows us to split the item in place, keeping a lock on the
3566  * leaf the entire time.
3567  */
3568 int btrfs_split_item(struct btrfs_trans_handle *trans,
3569 		     struct btrfs_root *root,
3570 		     struct btrfs_path *path,
3571 		     const struct btrfs_key *new_key,
3572 		     unsigned long split_offset)
3573 {
3574 	int ret;
3575 	ret = setup_leaf_for_split(trans, root, path,
3576 				   sizeof(struct btrfs_item));
3577 	if (ret)
3578 		return ret;
3579 
3580 	ret = split_item(path, new_key, split_offset);
3581 	return ret;
3582 }
3583 
3584 /*
3585  * make the item pointed to by the path smaller.  new_size indicates
3586  * how small to make it, and from_end tells us if we just chop bytes
3587  * off the end of the item or if we shift the item to chop bytes off
3588  * the front.
3589  */
3590 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3591 {
3592 	int slot;
3593 	struct extent_buffer *leaf;
3594 	struct btrfs_item *item;
3595 	u32 nritems;
3596 	unsigned int data_end;
3597 	unsigned int old_data_start;
3598 	unsigned int old_size;
3599 	unsigned int size_diff;
3600 	int i;
3601 	struct btrfs_map_token token;
3602 
3603 	leaf = path->nodes[0];
3604 	slot = path->slots[0];
3605 
3606 	old_size = btrfs_item_size_nr(leaf, slot);
3607 	if (old_size == new_size)
3608 		return;
3609 
3610 	nritems = btrfs_header_nritems(leaf);
3611 	data_end = leaf_data_end(leaf);
3612 
3613 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3614 
3615 	size_diff = old_size - new_size;
3616 
3617 	BUG_ON(slot < 0);
3618 	BUG_ON(slot >= nritems);
3619 
3620 	/*
3621 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3622 	 */
3623 	/* first correct the data pointers */
3624 	btrfs_init_map_token(&token, leaf);
3625 	for (i = slot; i < nritems; i++) {
3626 		u32 ioff;
3627 		item = btrfs_item_nr(i);
3628 
3629 		ioff = btrfs_token_item_offset(&token, item);
3630 		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
3631 	}
3632 
3633 	/* shift the data */
3634 	if (from_end) {
3635 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3636 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3637 			      data_end, old_data_start + new_size - data_end);
3638 	} else {
3639 		struct btrfs_disk_key disk_key;
3640 		u64 offset;
3641 
3642 		btrfs_item_key(leaf, &disk_key, slot);
3643 
3644 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3645 			unsigned long ptr;
3646 			struct btrfs_file_extent_item *fi;
3647 
3648 			fi = btrfs_item_ptr(leaf, slot,
3649 					    struct btrfs_file_extent_item);
3650 			fi = (struct btrfs_file_extent_item *)(
3651 			     (unsigned long)fi - size_diff);
3652 
3653 			if (btrfs_file_extent_type(leaf, fi) ==
3654 			    BTRFS_FILE_EXTENT_INLINE) {
3655 				ptr = btrfs_item_ptr_offset(leaf, slot);
3656 				memmove_extent_buffer(leaf, ptr,
3657 				      (unsigned long)fi,
3658 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3659 			}
3660 		}
3661 
3662 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3663 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3664 			      data_end, old_data_start - data_end);
3665 
3666 		offset = btrfs_disk_key_offset(&disk_key);
3667 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3668 		btrfs_set_item_key(leaf, &disk_key, slot);
3669 		if (slot == 0)
3670 			fixup_low_keys(path, &disk_key, 1);
3671 	}
3672 
3673 	item = btrfs_item_nr(slot);
3674 	btrfs_set_item_size(leaf, item, new_size);
3675 	btrfs_mark_buffer_dirty(leaf);
3676 
3677 	if (btrfs_leaf_free_space(leaf) < 0) {
3678 		btrfs_print_leaf(leaf);
3679 		BUG();
3680 	}
3681 }
3682 
3683 /*
3684  * make the item pointed to by the path bigger, data_size is the added size.
3685  */
3686 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3687 {
3688 	int slot;
3689 	struct extent_buffer *leaf;
3690 	struct btrfs_item *item;
3691 	u32 nritems;
3692 	unsigned int data_end;
3693 	unsigned int old_data;
3694 	unsigned int old_size;
3695 	int i;
3696 	struct btrfs_map_token token;
3697 
3698 	leaf = path->nodes[0];
3699 
3700 	nritems = btrfs_header_nritems(leaf);
3701 	data_end = leaf_data_end(leaf);
3702 
3703 	if (btrfs_leaf_free_space(leaf) < data_size) {
3704 		btrfs_print_leaf(leaf);
3705 		BUG();
3706 	}
3707 	slot = path->slots[0];
3708 	old_data = btrfs_item_end_nr(leaf, slot);
3709 
3710 	BUG_ON(slot < 0);
3711 	if (slot >= nritems) {
3712 		btrfs_print_leaf(leaf);
3713 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3714 			   slot, nritems);
3715 		BUG();
3716 	}
3717 
3718 	/*
3719 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3720 	 */
3721 	/* first correct the data pointers */
3722 	btrfs_init_map_token(&token, leaf);
3723 	for (i = slot; i < nritems; i++) {
3724 		u32 ioff;
3725 		item = btrfs_item_nr(i);
3726 
3727 		ioff = btrfs_token_item_offset(&token, item);
3728 		btrfs_set_token_item_offset(&token, item, ioff - data_size);
3729 	}
3730 
3731 	/* shift the data */
3732 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3733 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3734 		      data_end, old_data - data_end);
3735 
3736 	data_end = old_data;
3737 	old_size = btrfs_item_size_nr(leaf, slot);
3738 	item = btrfs_item_nr(slot);
3739 	btrfs_set_item_size(leaf, item, old_size + data_size);
3740 	btrfs_mark_buffer_dirty(leaf);
3741 
3742 	if (btrfs_leaf_free_space(leaf) < 0) {
3743 		btrfs_print_leaf(leaf);
3744 		BUG();
3745 	}
3746 }
3747 
3748 /**
3749  * setup_items_for_insert - Helper called before inserting one or more items
3750  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3751  * in a function that doesn't call btrfs_search_slot
3752  *
3753  * @root:	root we are inserting items to
3754  * @path:	points to the leaf/slot where we are going to insert new items
3755  * @batch:      information about the batch of items to insert
3756  */
3757 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3758 				   const struct btrfs_item_batch *batch)
3759 {
3760 	struct btrfs_fs_info *fs_info = root->fs_info;
3761 	struct btrfs_item *item;
3762 	int i;
3763 	u32 nritems;
3764 	unsigned int data_end;
3765 	struct btrfs_disk_key disk_key;
3766 	struct extent_buffer *leaf;
3767 	int slot;
3768 	struct btrfs_map_token token;
3769 	u32 total_size;
3770 
3771 	/*
3772 	 * Before anything else, update keys in the parent and other ancestors
3773 	 * if needed, then release the write locks on them, so that other tasks
3774 	 * can use them while we modify the leaf.
3775 	 */
3776 	if (path->slots[0] == 0) {
3777 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
3778 		fixup_low_keys(path, &disk_key, 1);
3779 	}
3780 	btrfs_unlock_up_safe(path, 1);
3781 
3782 	leaf = path->nodes[0];
3783 	slot = path->slots[0];
3784 
3785 	nritems = btrfs_header_nritems(leaf);
3786 	data_end = leaf_data_end(leaf);
3787 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3788 
3789 	if (btrfs_leaf_free_space(leaf) < total_size) {
3790 		btrfs_print_leaf(leaf);
3791 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
3792 			   total_size, btrfs_leaf_free_space(leaf));
3793 		BUG();
3794 	}
3795 
3796 	btrfs_init_map_token(&token, leaf);
3797 	if (slot != nritems) {
3798 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3799 
3800 		if (old_data < data_end) {
3801 			btrfs_print_leaf(leaf);
3802 			btrfs_crit(fs_info,
3803 		"item at slot %d with data offset %u beyond data end of leaf %u",
3804 				   slot, old_data, data_end);
3805 			BUG();
3806 		}
3807 		/*
3808 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3809 		 */
3810 		/* first correct the data pointers */
3811 		for (i = slot; i < nritems; i++) {
3812 			u32 ioff;
3813 
3814 			item = btrfs_item_nr(i);
3815 			ioff = btrfs_token_item_offset(&token, item);
3816 			btrfs_set_token_item_offset(&token, item,
3817 						    ioff - batch->total_data_size);
3818 		}
3819 		/* shift the items */
3820 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
3821 			      btrfs_item_nr_offset(slot),
3822 			      (nritems - slot) * sizeof(struct btrfs_item));
3823 
3824 		/* shift the data */
3825 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3826 				      data_end - batch->total_data_size,
3827 				      BTRFS_LEAF_DATA_OFFSET + data_end,
3828 				      old_data - data_end);
3829 		data_end = old_data;
3830 	}
3831 
3832 	/* setup the item for the new data */
3833 	for (i = 0; i < batch->nr; i++) {
3834 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
3835 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3836 		item = btrfs_item_nr(slot + i);
3837 		data_end -= batch->data_sizes[i];
3838 		btrfs_set_token_item_offset(&token, item, data_end);
3839 		btrfs_set_token_item_size(&token, item, batch->data_sizes[i]);
3840 	}
3841 
3842 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
3843 	btrfs_mark_buffer_dirty(leaf);
3844 
3845 	if (btrfs_leaf_free_space(leaf) < 0) {
3846 		btrfs_print_leaf(leaf);
3847 		BUG();
3848 	}
3849 }
3850 
3851 /*
3852  * Insert a new item into a leaf.
3853  *
3854  * @root:      The root of the btree.
3855  * @path:      A path pointing to the target leaf and slot.
3856  * @key:       The key of the new item.
3857  * @data_size: The size of the data associated with the new key.
3858  */
3859 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3860 				 struct btrfs_path *path,
3861 				 const struct btrfs_key *key,
3862 				 u32 data_size)
3863 {
3864 	struct btrfs_item_batch batch;
3865 
3866 	batch.keys = key;
3867 	batch.data_sizes = &data_size;
3868 	batch.total_data_size = data_size;
3869 	batch.nr = 1;
3870 
3871 	setup_items_for_insert(root, path, &batch);
3872 }
3873 
3874 /*
3875  * Given a key and some data, insert items into the tree.
3876  * This does all the path init required, making room in the tree if needed.
3877  */
3878 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3879 			    struct btrfs_root *root,
3880 			    struct btrfs_path *path,
3881 			    const struct btrfs_item_batch *batch)
3882 {
3883 	int ret = 0;
3884 	int slot;
3885 	u32 total_size;
3886 
3887 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3888 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
3889 	if (ret == 0)
3890 		return -EEXIST;
3891 	if (ret < 0)
3892 		return ret;
3893 
3894 	slot = path->slots[0];
3895 	BUG_ON(slot < 0);
3896 
3897 	setup_items_for_insert(root, path, batch);
3898 	return 0;
3899 }
3900 
3901 /*
3902  * Given a key and some data, insert an item into the tree.
3903  * This does all the path init required, making room in the tree if needed.
3904  */
3905 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3906 		      const struct btrfs_key *cpu_key, void *data,
3907 		      u32 data_size)
3908 {
3909 	int ret = 0;
3910 	struct btrfs_path *path;
3911 	struct extent_buffer *leaf;
3912 	unsigned long ptr;
3913 
3914 	path = btrfs_alloc_path();
3915 	if (!path)
3916 		return -ENOMEM;
3917 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3918 	if (!ret) {
3919 		leaf = path->nodes[0];
3920 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3921 		write_extent_buffer(leaf, data, ptr, data_size);
3922 		btrfs_mark_buffer_dirty(leaf);
3923 	}
3924 	btrfs_free_path(path);
3925 	return ret;
3926 }
3927 
3928 /*
3929  * This function duplicates an item, giving 'new_key' to the new item.
3930  * It guarantees both items live in the same tree leaf and the new item is
3931  * contiguous with the original item.
3932  *
3933  * This allows us to split a file extent in place, keeping a lock on the leaf
3934  * the entire time.
3935  */
3936 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3937 			 struct btrfs_root *root,
3938 			 struct btrfs_path *path,
3939 			 const struct btrfs_key *new_key)
3940 {
3941 	struct extent_buffer *leaf;
3942 	int ret;
3943 	u32 item_size;
3944 
3945 	leaf = path->nodes[0];
3946 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3947 	ret = setup_leaf_for_split(trans, root, path,
3948 				   item_size + sizeof(struct btrfs_item));
3949 	if (ret)
3950 		return ret;
3951 
3952 	path->slots[0]++;
3953 	btrfs_setup_item_for_insert(root, path, new_key, item_size);
3954 	leaf = path->nodes[0];
3955 	memcpy_extent_buffer(leaf,
3956 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3957 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3958 			     item_size);
3959 	return 0;
3960 }
3961 
3962 /*
3963  * delete the pointer from a given node.
3964  *
3965  * the tree should have been previously balanced so the deletion does not
3966  * empty a node.
3967  */
3968 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
3969 		    int level, int slot)
3970 {
3971 	struct extent_buffer *parent = path->nodes[level];
3972 	u32 nritems;
3973 	int ret;
3974 
3975 	nritems = btrfs_header_nritems(parent);
3976 	if (slot != nritems - 1) {
3977 		if (level) {
3978 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
3979 					slot + 1, nritems - slot - 1);
3980 			BUG_ON(ret < 0);
3981 		}
3982 		memmove_extent_buffer(parent,
3983 			      btrfs_node_key_ptr_offset(slot),
3984 			      btrfs_node_key_ptr_offset(slot + 1),
3985 			      sizeof(struct btrfs_key_ptr) *
3986 			      (nritems - slot - 1));
3987 	} else if (level) {
3988 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
3989 				BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
3990 		BUG_ON(ret < 0);
3991 	}
3992 
3993 	nritems--;
3994 	btrfs_set_header_nritems(parent, nritems);
3995 	if (nritems == 0 && parent == root->node) {
3996 		BUG_ON(btrfs_header_level(root->node) != 1);
3997 		/* just turn the root into a leaf and break */
3998 		btrfs_set_header_level(root->node, 0);
3999 	} else if (slot == 0) {
4000 		struct btrfs_disk_key disk_key;
4001 
4002 		btrfs_node_key(parent, &disk_key, 0);
4003 		fixup_low_keys(path, &disk_key, level + 1);
4004 	}
4005 	btrfs_mark_buffer_dirty(parent);
4006 }
4007 
4008 /*
4009  * a helper function to delete the leaf pointed to by path->slots[1] and
4010  * path->nodes[1].
4011  *
4012  * This deletes the pointer in path->nodes[1] and frees the leaf
4013  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4014  *
4015  * The path must have already been setup for deleting the leaf, including
4016  * all the proper balancing.  path->nodes[1] must be locked.
4017  */
4018 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4019 				    struct btrfs_root *root,
4020 				    struct btrfs_path *path,
4021 				    struct extent_buffer *leaf)
4022 {
4023 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4024 	del_ptr(root, path, 1, path->slots[1]);
4025 
4026 	/*
4027 	 * btrfs_free_extent is expensive, we want to make sure we
4028 	 * aren't holding any locks when we call it
4029 	 */
4030 	btrfs_unlock_up_safe(path, 0);
4031 
4032 	root_sub_used(root, leaf->len);
4033 
4034 	atomic_inc(&leaf->refs);
4035 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4036 	free_extent_buffer_stale(leaf);
4037 }
4038 /*
4039  * delete the item at the leaf level in path.  If that empties
4040  * the leaf, remove it from the tree
4041  */
4042 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4043 		    struct btrfs_path *path, int slot, int nr)
4044 {
4045 	struct btrfs_fs_info *fs_info = root->fs_info;
4046 	struct extent_buffer *leaf;
4047 	struct btrfs_item *item;
4048 	u32 last_off;
4049 	u32 dsize = 0;
4050 	int ret = 0;
4051 	int wret;
4052 	int i;
4053 	u32 nritems;
4054 
4055 	leaf = path->nodes[0];
4056 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4057 
4058 	for (i = 0; i < nr; i++)
4059 		dsize += btrfs_item_size_nr(leaf, slot + i);
4060 
4061 	nritems = btrfs_header_nritems(leaf);
4062 
4063 	if (slot + nr != nritems) {
4064 		int data_end = leaf_data_end(leaf);
4065 		struct btrfs_map_token token;
4066 
4067 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4068 			      data_end + dsize,
4069 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4070 			      last_off - data_end);
4071 
4072 		btrfs_init_map_token(&token, leaf);
4073 		for (i = slot + nr; i < nritems; i++) {
4074 			u32 ioff;
4075 
4076 			item = btrfs_item_nr(i);
4077 			ioff = btrfs_token_item_offset(&token, item);
4078 			btrfs_set_token_item_offset(&token, item, ioff + dsize);
4079 		}
4080 
4081 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4082 			      btrfs_item_nr_offset(slot + nr),
4083 			      sizeof(struct btrfs_item) *
4084 			      (nritems - slot - nr));
4085 	}
4086 	btrfs_set_header_nritems(leaf, nritems - nr);
4087 	nritems -= nr;
4088 
4089 	/* delete the leaf if we've emptied it */
4090 	if (nritems == 0) {
4091 		if (leaf == root->node) {
4092 			btrfs_set_header_level(leaf, 0);
4093 		} else {
4094 			btrfs_clean_tree_block(leaf);
4095 			btrfs_del_leaf(trans, root, path, leaf);
4096 		}
4097 	} else {
4098 		int used = leaf_space_used(leaf, 0, nritems);
4099 		if (slot == 0) {
4100 			struct btrfs_disk_key disk_key;
4101 
4102 			btrfs_item_key(leaf, &disk_key, 0);
4103 			fixup_low_keys(path, &disk_key, 1);
4104 		}
4105 
4106 		/* delete the leaf if it is mostly empty */
4107 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4108 			/* push_leaf_left fixes the path.
4109 			 * make sure the path still points to our leaf
4110 			 * for possible call to del_ptr below
4111 			 */
4112 			slot = path->slots[1];
4113 			atomic_inc(&leaf->refs);
4114 
4115 			wret = push_leaf_left(trans, root, path, 1, 1,
4116 					      1, (u32)-1);
4117 			if (wret < 0 && wret != -ENOSPC)
4118 				ret = wret;
4119 
4120 			if (path->nodes[0] == leaf &&
4121 			    btrfs_header_nritems(leaf)) {
4122 				wret = push_leaf_right(trans, root, path, 1,
4123 						       1, 1, 0);
4124 				if (wret < 0 && wret != -ENOSPC)
4125 					ret = wret;
4126 			}
4127 
4128 			if (btrfs_header_nritems(leaf) == 0) {
4129 				path->slots[1] = slot;
4130 				btrfs_del_leaf(trans, root, path, leaf);
4131 				free_extent_buffer(leaf);
4132 				ret = 0;
4133 			} else {
4134 				/* if we're still in the path, make sure
4135 				 * we're dirty.  Otherwise, one of the
4136 				 * push_leaf functions must have already
4137 				 * dirtied this buffer
4138 				 */
4139 				if (path->nodes[0] == leaf)
4140 					btrfs_mark_buffer_dirty(leaf);
4141 				free_extent_buffer(leaf);
4142 			}
4143 		} else {
4144 			btrfs_mark_buffer_dirty(leaf);
4145 		}
4146 	}
4147 	return ret;
4148 }
4149 
4150 /*
4151  * search the tree again to find a leaf with lesser keys
4152  * returns 0 if it found something or 1 if there are no lesser leaves.
4153  * returns < 0 on io errors.
4154  *
4155  * This may release the path, and so you may lose any locks held at the
4156  * time you call it.
4157  */
4158 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4159 {
4160 	struct btrfs_key key;
4161 	struct btrfs_disk_key found_key;
4162 	int ret;
4163 
4164 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4165 
4166 	if (key.offset > 0) {
4167 		key.offset--;
4168 	} else if (key.type > 0) {
4169 		key.type--;
4170 		key.offset = (u64)-1;
4171 	} else if (key.objectid > 0) {
4172 		key.objectid--;
4173 		key.type = (u8)-1;
4174 		key.offset = (u64)-1;
4175 	} else {
4176 		return 1;
4177 	}
4178 
4179 	btrfs_release_path(path);
4180 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4181 	if (ret < 0)
4182 		return ret;
4183 	btrfs_item_key(path->nodes[0], &found_key, 0);
4184 	ret = comp_keys(&found_key, &key);
4185 	/*
4186 	 * We might have had an item with the previous key in the tree right
4187 	 * before we released our path. And after we released our path, that
4188 	 * item might have been pushed to the first slot (0) of the leaf we
4189 	 * were holding due to a tree balance. Alternatively, an item with the
4190 	 * previous key can exist as the only element of a leaf (big fat item).
4191 	 * Therefore account for these 2 cases, so that our callers (like
4192 	 * btrfs_previous_item) don't miss an existing item with a key matching
4193 	 * the previous key we computed above.
4194 	 */
4195 	if (ret <= 0)
4196 		return 0;
4197 	return 1;
4198 }
4199 
4200 /*
4201  * A helper function to walk down the tree starting at min_key, and looking
4202  * for nodes or leaves that are have a minimum transaction id.
4203  * This is used by the btree defrag code, and tree logging
4204  *
4205  * This does not cow, but it does stuff the starting key it finds back
4206  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4207  * key and get a writable path.
4208  *
4209  * This honors path->lowest_level to prevent descent past a given level
4210  * of the tree.
4211  *
4212  * min_trans indicates the oldest transaction that you are interested
4213  * in walking through.  Any nodes or leaves older than min_trans are
4214  * skipped over (without reading them).
4215  *
4216  * returns zero if something useful was found, < 0 on error and 1 if there
4217  * was nothing in the tree that matched the search criteria.
4218  */
4219 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4220 			 struct btrfs_path *path,
4221 			 u64 min_trans)
4222 {
4223 	struct extent_buffer *cur;
4224 	struct btrfs_key found_key;
4225 	int slot;
4226 	int sret;
4227 	u32 nritems;
4228 	int level;
4229 	int ret = 1;
4230 	int keep_locks = path->keep_locks;
4231 
4232 	path->keep_locks = 1;
4233 again:
4234 	cur = btrfs_read_lock_root_node(root);
4235 	level = btrfs_header_level(cur);
4236 	WARN_ON(path->nodes[level]);
4237 	path->nodes[level] = cur;
4238 	path->locks[level] = BTRFS_READ_LOCK;
4239 
4240 	if (btrfs_header_generation(cur) < min_trans) {
4241 		ret = 1;
4242 		goto out;
4243 	}
4244 	while (1) {
4245 		nritems = btrfs_header_nritems(cur);
4246 		level = btrfs_header_level(cur);
4247 		sret = btrfs_bin_search(cur, min_key, &slot);
4248 		if (sret < 0) {
4249 			ret = sret;
4250 			goto out;
4251 		}
4252 
4253 		/* at the lowest level, we're done, setup the path and exit */
4254 		if (level == path->lowest_level) {
4255 			if (slot >= nritems)
4256 				goto find_next_key;
4257 			ret = 0;
4258 			path->slots[level] = slot;
4259 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4260 			goto out;
4261 		}
4262 		if (sret && slot > 0)
4263 			slot--;
4264 		/*
4265 		 * check this node pointer against the min_trans parameters.
4266 		 * If it is too old, skip to the next one.
4267 		 */
4268 		while (slot < nritems) {
4269 			u64 gen;
4270 
4271 			gen = btrfs_node_ptr_generation(cur, slot);
4272 			if (gen < min_trans) {
4273 				slot++;
4274 				continue;
4275 			}
4276 			break;
4277 		}
4278 find_next_key:
4279 		/*
4280 		 * we didn't find a candidate key in this node, walk forward
4281 		 * and find another one
4282 		 */
4283 		if (slot >= nritems) {
4284 			path->slots[level] = slot;
4285 			sret = btrfs_find_next_key(root, path, min_key, level,
4286 						  min_trans);
4287 			if (sret == 0) {
4288 				btrfs_release_path(path);
4289 				goto again;
4290 			} else {
4291 				goto out;
4292 			}
4293 		}
4294 		/* save our key for returning back */
4295 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4296 		path->slots[level] = slot;
4297 		if (level == path->lowest_level) {
4298 			ret = 0;
4299 			goto out;
4300 		}
4301 		cur = btrfs_read_node_slot(cur, slot);
4302 		if (IS_ERR(cur)) {
4303 			ret = PTR_ERR(cur);
4304 			goto out;
4305 		}
4306 
4307 		btrfs_tree_read_lock(cur);
4308 
4309 		path->locks[level - 1] = BTRFS_READ_LOCK;
4310 		path->nodes[level - 1] = cur;
4311 		unlock_up(path, level, 1, 0, NULL);
4312 	}
4313 out:
4314 	path->keep_locks = keep_locks;
4315 	if (ret == 0) {
4316 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4317 		memcpy(min_key, &found_key, sizeof(found_key));
4318 	}
4319 	return ret;
4320 }
4321 
4322 /*
4323  * this is similar to btrfs_next_leaf, but does not try to preserve
4324  * and fixup the path.  It looks for and returns the next key in the
4325  * tree based on the current path and the min_trans parameters.
4326  *
4327  * 0 is returned if another key is found, < 0 if there are any errors
4328  * and 1 is returned if there are no higher keys in the tree
4329  *
4330  * path->keep_locks should be set to 1 on the search made before
4331  * calling this function.
4332  */
4333 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4334 			struct btrfs_key *key, int level, u64 min_trans)
4335 {
4336 	int slot;
4337 	struct extent_buffer *c;
4338 
4339 	WARN_ON(!path->keep_locks && !path->skip_locking);
4340 	while (level < BTRFS_MAX_LEVEL) {
4341 		if (!path->nodes[level])
4342 			return 1;
4343 
4344 		slot = path->slots[level] + 1;
4345 		c = path->nodes[level];
4346 next:
4347 		if (slot >= btrfs_header_nritems(c)) {
4348 			int ret;
4349 			int orig_lowest;
4350 			struct btrfs_key cur_key;
4351 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4352 			    !path->nodes[level + 1])
4353 				return 1;
4354 
4355 			if (path->locks[level + 1] || path->skip_locking) {
4356 				level++;
4357 				continue;
4358 			}
4359 
4360 			slot = btrfs_header_nritems(c) - 1;
4361 			if (level == 0)
4362 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4363 			else
4364 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4365 
4366 			orig_lowest = path->lowest_level;
4367 			btrfs_release_path(path);
4368 			path->lowest_level = level;
4369 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4370 						0, 0);
4371 			path->lowest_level = orig_lowest;
4372 			if (ret < 0)
4373 				return ret;
4374 
4375 			c = path->nodes[level];
4376 			slot = path->slots[level];
4377 			if (ret == 0)
4378 				slot++;
4379 			goto next;
4380 		}
4381 
4382 		if (level == 0)
4383 			btrfs_item_key_to_cpu(c, key, slot);
4384 		else {
4385 			u64 gen = btrfs_node_ptr_generation(c, slot);
4386 
4387 			if (gen < min_trans) {
4388 				slot++;
4389 				goto next;
4390 			}
4391 			btrfs_node_key_to_cpu(c, key, slot);
4392 		}
4393 		return 0;
4394 	}
4395 	return 1;
4396 }
4397 
4398 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4399 			u64 time_seq)
4400 {
4401 	int slot;
4402 	int level;
4403 	struct extent_buffer *c;
4404 	struct extent_buffer *next;
4405 	struct btrfs_key key;
4406 	u32 nritems;
4407 	int ret;
4408 	int i;
4409 
4410 	nritems = btrfs_header_nritems(path->nodes[0]);
4411 	if (nritems == 0)
4412 		return 1;
4413 
4414 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4415 again:
4416 	level = 1;
4417 	next = NULL;
4418 	btrfs_release_path(path);
4419 
4420 	path->keep_locks = 1;
4421 
4422 	if (time_seq)
4423 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4424 	else
4425 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4426 	path->keep_locks = 0;
4427 
4428 	if (ret < 0)
4429 		return ret;
4430 
4431 	nritems = btrfs_header_nritems(path->nodes[0]);
4432 	/*
4433 	 * by releasing the path above we dropped all our locks.  A balance
4434 	 * could have added more items next to the key that used to be
4435 	 * at the very end of the block.  So, check again here and
4436 	 * advance the path if there are now more items available.
4437 	 */
4438 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4439 		if (ret == 0)
4440 			path->slots[0]++;
4441 		ret = 0;
4442 		goto done;
4443 	}
4444 	/*
4445 	 * So the above check misses one case:
4446 	 * - after releasing the path above, someone has removed the item that
4447 	 *   used to be at the very end of the block, and balance between leafs
4448 	 *   gets another one with bigger key.offset to replace it.
4449 	 *
4450 	 * This one should be returned as well, or we can get leaf corruption
4451 	 * later(esp. in __btrfs_drop_extents()).
4452 	 *
4453 	 * And a bit more explanation about this check,
4454 	 * with ret > 0, the key isn't found, the path points to the slot
4455 	 * where it should be inserted, so the path->slots[0] item must be the
4456 	 * bigger one.
4457 	 */
4458 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4459 		ret = 0;
4460 		goto done;
4461 	}
4462 
4463 	while (level < BTRFS_MAX_LEVEL) {
4464 		if (!path->nodes[level]) {
4465 			ret = 1;
4466 			goto done;
4467 		}
4468 
4469 		slot = path->slots[level] + 1;
4470 		c = path->nodes[level];
4471 		if (slot >= btrfs_header_nritems(c)) {
4472 			level++;
4473 			if (level == BTRFS_MAX_LEVEL) {
4474 				ret = 1;
4475 				goto done;
4476 			}
4477 			continue;
4478 		}
4479 
4480 
4481 		/*
4482 		 * Our current level is where we're going to start from, and to
4483 		 * make sure lockdep doesn't complain we need to drop our locks
4484 		 * and nodes from 0 to our current level.
4485 		 */
4486 		for (i = 0; i < level; i++) {
4487 			if (path->locks[level]) {
4488 				btrfs_tree_read_unlock(path->nodes[i]);
4489 				path->locks[i] = 0;
4490 			}
4491 			free_extent_buffer(path->nodes[i]);
4492 			path->nodes[i] = NULL;
4493 		}
4494 
4495 		next = c;
4496 		ret = read_block_for_search(root, path, &next, level,
4497 					    slot, &key);
4498 		if (ret == -EAGAIN)
4499 			goto again;
4500 
4501 		if (ret < 0) {
4502 			btrfs_release_path(path);
4503 			goto done;
4504 		}
4505 
4506 		if (!path->skip_locking) {
4507 			ret = btrfs_try_tree_read_lock(next);
4508 			if (!ret && time_seq) {
4509 				/*
4510 				 * If we don't get the lock, we may be racing
4511 				 * with push_leaf_left, holding that lock while
4512 				 * itself waiting for the leaf we've currently
4513 				 * locked. To solve this situation, we give up
4514 				 * on our lock and cycle.
4515 				 */
4516 				free_extent_buffer(next);
4517 				btrfs_release_path(path);
4518 				cond_resched();
4519 				goto again;
4520 			}
4521 			if (!ret)
4522 				btrfs_tree_read_lock(next);
4523 		}
4524 		break;
4525 	}
4526 	path->slots[level] = slot;
4527 	while (1) {
4528 		level--;
4529 		path->nodes[level] = next;
4530 		path->slots[level] = 0;
4531 		if (!path->skip_locking)
4532 			path->locks[level] = BTRFS_READ_LOCK;
4533 		if (!level)
4534 			break;
4535 
4536 		ret = read_block_for_search(root, path, &next, level,
4537 					    0, &key);
4538 		if (ret == -EAGAIN)
4539 			goto again;
4540 
4541 		if (ret < 0) {
4542 			btrfs_release_path(path);
4543 			goto done;
4544 		}
4545 
4546 		if (!path->skip_locking)
4547 			btrfs_tree_read_lock(next);
4548 	}
4549 	ret = 0;
4550 done:
4551 	unlock_up(path, 0, 1, 0, NULL);
4552 
4553 	return ret;
4554 }
4555 
4556 /*
4557  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4558  * searching until it gets past min_objectid or finds an item of 'type'
4559  *
4560  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4561  */
4562 int btrfs_previous_item(struct btrfs_root *root,
4563 			struct btrfs_path *path, u64 min_objectid,
4564 			int type)
4565 {
4566 	struct btrfs_key found_key;
4567 	struct extent_buffer *leaf;
4568 	u32 nritems;
4569 	int ret;
4570 
4571 	while (1) {
4572 		if (path->slots[0] == 0) {
4573 			ret = btrfs_prev_leaf(root, path);
4574 			if (ret != 0)
4575 				return ret;
4576 		} else {
4577 			path->slots[0]--;
4578 		}
4579 		leaf = path->nodes[0];
4580 		nritems = btrfs_header_nritems(leaf);
4581 		if (nritems == 0)
4582 			return 1;
4583 		if (path->slots[0] == nritems)
4584 			path->slots[0]--;
4585 
4586 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4587 		if (found_key.objectid < min_objectid)
4588 			break;
4589 		if (found_key.type == type)
4590 			return 0;
4591 		if (found_key.objectid == min_objectid &&
4592 		    found_key.type < type)
4593 			break;
4594 	}
4595 	return 1;
4596 }
4597 
4598 /*
4599  * search in extent tree to find a previous Metadata/Data extent item with
4600  * min objecitd.
4601  *
4602  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4603  */
4604 int btrfs_previous_extent_item(struct btrfs_root *root,
4605 			struct btrfs_path *path, u64 min_objectid)
4606 {
4607 	struct btrfs_key found_key;
4608 	struct extent_buffer *leaf;
4609 	u32 nritems;
4610 	int ret;
4611 
4612 	while (1) {
4613 		if (path->slots[0] == 0) {
4614 			ret = btrfs_prev_leaf(root, path);
4615 			if (ret != 0)
4616 				return ret;
4617 		} else {
4618 			path->slots[0]--;
4619 		}
4620 		leaf = path->nodes[0];
4621 		nritems = btrfs_header_nritems(leaf);
4622 		if (nritems == 0)
4623 			return 1;
4624 		if (path->slots[0] == nritems)
4625 			path->slots[0]--;
4626 
4627 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4628 		if (found_key.objectid < min_objectid)
4629 			break;
4630 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4631 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
4632 			return 0;
4633 		if (found_key.objectid == min_objectid &&
4634 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
4635 			break;
4636 	}
4637 	return 1;
4638 }
4639