1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 45 46 struct btrfs_path *btrfs_alloc_path(void) 47 { 48 struct btrfs_path *path; 49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 50 return path; 51 } 52 53 /* 54 * set all locked nodes in the path to blocking locks. This should 55 * be done before scheduling 56 */ 57 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 58 { 59 int i; 60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 61 if (!p->nodes[i] || !p->locks[i]) 62 continue; 63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 64 if (p->locks[i] == BTRFS_READ_LOCK) 65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 66 else if (p->locks[i] == BTRFS_WRITE_LOCK) 67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 68 } 69 } 70 71 /* 72 * reset all the locked nodes in the patch to spinning locks. 73 * 74 * held is used to keep lockdep happy, when lockdep is enabled 75 * we set held to a blocking lock before we go around and 76 * retake all the spinlocks in the path. You can safely use NULL 77 * for held 78 */ 79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 80 struct extent_buffer *held, int held_rw) 81 { 82 int i; 83 84 #ifdef CONFIG_DEBUG_LOCK_ALLOC 85 /* lockdep really cares that we take all of these spinlocks 86 * in the right order. If any of the locks in the path are not 87 * currently blocking, it is going to complain. So, make really 88 * really sure by forcing the path to blocking before we clear 89 * the path blocking. 90 */ 91 if (held) { 92 btrfs_set_lock_blocking_rw(held, held_rw); 93 if (held_rw == BTRFS_WRITE_LOCK) 94 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 95 else if (held_rw == BTRFS_READ_LOCK) 96 held_rw = BTRFS_READ_LOCK_BLOCKING; 97 } 98 btrfs_set_path_blocking(p); 99 #endif 100 101 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 102 if (p->nodes[i] && p->locks[i]) { 103 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 104 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 105 p->locks[i] = BTRFS_WRITE_LOCK; 106 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 107 p->locks[i] = BTRFS_READ_LOCK; 108 } 109 } 110 111 #ifdef CONFIG_DEBUG_LOCK_ALLOC 112 if (held) 113 btrfs_clear_lock_blocking_rw(held, held_rw); 114 #endif 115 } 116 117 /* this also releases the path */ 118 void btrfs_free_path(struct btrfs_path *p) 119 { 120 if (!p) 121 return; 122 btrfs_release_path(p); 123 kmem_cache_free(btrfs_path_cachep, p); 124 } 125 126 /* 127 * path release drops references on the extent buffers in the path 128 * and it drops any locks held by this path 129 * 130 * It is safe to call this on paths that no locks or extent buffers held. 131 */ 132 noinline void btrfs_release_path(struct btrfs_path *p) 133 { 134 int i; 135 136 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 137 p->slots[i] = 0; 138 if (!p->nodes[i]) 139 continue; 140 if (p->locks[i]) { 141 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 142 p->locks[i] = 0; 143 } 144 free_extent_buffer(p->nodes[i]); 145 p->nodes[i] = NULL; 146 } 147 } 148 149 /* 150 * safely gets a reference on the root node of a tree. A lock 151 * is not taken, so a concurrent writer may put a different node 152 * at the root of the tree. See btrfs_lock_root_node for the 153 * looping required. 154 * 155 * The extent buffer returned by this has a reference taken, so 156 * it won't disappear. It may stop being the root of the tree 157 * at any time because there are no locks held. 158 */ 159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 160 { 161 struct extent_buffer *eb; 162 163 while (1) { 164 rcu_read_lock(); 165 eb = rcu_dereference(root->node); 166 167 /* 168 * RCU really hurts here, we could free up the root node because 169 * it was cow'ed but we may not get the new root node yet so do 170 * the inc_not_zero dance and if it doesn't work then 171 * synchronize_rcu and try again. 172 */ 173 if (atomic_inc_not_zero(&eb->refs)) { 174 rcu_read_unlock(); 175 break; 176 } 177 rcu_read_unlock(); 178 synchronize_rcu(); 179 } 180 return eb; 181 } 182 183 /* loop around taking references on and locking the root node of the 184 * tree until you end up with a lock on the root. A locked buffer 185 * is returned, with a reference held. 186 */ 187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 188 { 189 struct extent_buffer *eb; 190 191 while (1) { 192 eb = btrfs_root_node(root); 193 btrfs_tree_lock(eb); 194 if (eb == root->node) 195 break; 196 btrfs_tree_unlock(eb); 197 free_extent_buffer(eb); 198 } 199 return eb; 200 } 201 202 /* loop around taking references on and locking the root node of the 203 * tree until you end up with a lock on the root. A locked buffer 204 * is returned, with a reference held. 205 */ 206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 207 { 208 struct extent_buffer *eb; 209 210 while (1) { 211 eb = btrfs_root_node(root); 212 btrfs_tree_read_lock(eb); 213 if (eb == root->node) 214 break; 215 btrfs_tree_read_unlock(eb); 216 free_extent_buffer(eb); 217 } 218 return eb; 219 } 220 221 /* cowonly root (everything not a reference counted cow subvolume), just get 222 * put onto a simple dirty list. transaction.c walks this to make sure they 223 * get properly updated on disk. 224 */ 225 static void add_root_to_dirty_list(struct btrfs_root *root) 226 { 227 spin_lock(&root->fs_info->trans_lock); 228 if (root->track_dirty && list_empty(&root->dirty_list)) { 229 list_add(&root->dirty_list, 230 &root->fs_info->dirty_cowonly_roots); 231 } 232 spin_unlock(&root->fs_info->trans_lock); 233 } 234 235 /* 236 * used by snapshot creation to make a copy of a root for a tree with 237 * a given objectid. The buffer with the new root node is returned in 238 * cow_ret, and this func returns zero on success or a negative error code. 239 */ 240 int btrfs_copy_root(struct btrfs_trans_handle *trans, 241 struct btrfs_root *root, 242 struct extent_buffer *buf, 243 struct extent_buffer **cow_ret, u64 new_root_objectid) 244 { 245 struct extent_buffer *cow; 246 int ret = 0; 247 int level; 248 struct btrfs_disk_key disk_key; 249 250 WARN_ON(root->ref_cows && trans->transid != 251 root->fs_info->running_transaction->transid); 252 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 253 254 level = btrfs_header_level(buf); 255 if (level == 0) 256 btrfs_item_key(buf, &disk_key, 0); 257 else 258 btrfs_node_key(buf, &disk_key, 0); 259 260 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 261 new_root_objectid, &disk_key, level, 262 buf->start, 0); 263 if (IS_ERR(cow)) 264 return PTR_ERR(cow); 265 266 copy_extent_buffer(cow, buf, 0, 0, cow->len); 267 btrfs_set_header_bytenr(cow, cow->start); 268 btrfs_set_header_generation(cow, trans->transid); 269 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 270 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 271 BTRFS_HEADER_FLAG_RELOC); 272 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 273 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 274 else 275 btrfs_set_header_owner(cow, new_root_objectid); 276 277 write_extent_buffer(cow, root->fs_info->fsid, 278 (unsigned long)btrfs_header_fsid(cow), 279 BTRFS_FSID_SIZE); 280 281 WARN_ON(btrfs_header_generation(buf) > trans->transid); 282 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 283 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 284 else 285 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 286 287 if (ret) 288 return ret; 289 290 btrfs_mark_buffer_dirty(cow); 291 *cow_ret = cow; 292 return 0; 293 } 294 295 enum mod_log_op { 296 MOD_LOG_KEY_REPLACE, 297 MOD_LOG_KEY_ADD, 298 MOD_LOG_KEY_REMOVE, 299 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 300 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 301 MOD_LOG_MOVE_KEYS, 302 MOD_LOG_ROOT_REPLACE, 303 }; 304 305 struct tree_mod_move { 306 int dst_slot; 307 int nr_items; 308 }; 309 310 struct tree_mod_root { 311 u64 logical; 312 u8 level; 313 }; 314 315 struct tree_mod_elem { 316 struct rb_node node; 317 u64 index; /* shifted logical */ 318 u64 seq; 319 enum mod_log_op op; 320 321 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 322 int slot; 323 324 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 325 u64 generation; 326 327 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 328 struct btrfs_disk_key key; 329 u64 blockptr; 330 331 /* this is used for op == MOD_LOG_MOVE_KEYS */ 332 struct tree_mod_move move; 333 334 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 335 struct tree_mod_root old_root; 336 }; 337 338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 339 { 340 read_lock(&fs_info->tree_mod_log_lock); 341 } 342 343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 344 { 345 read_unlock(&fs_info->tree_mod_log_lock); 346 } 347 348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 349 { 350 write_lock(&fs_info->tree_mod_log_lock); 351 } 352 353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 354 { 355 write_unlock(&fs_info->tree_mod_log_lock); 356 } 357 358 /* 359 * Increment the upper half of tree_mod_seq, set lower half zero. 360 * 361 * Must be called with fs_info->tree_mod_seq_lock held. 362 */ 363 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info) 364 { 365 u64 seq = atomic64_read(&fs_info->tree_mod_seq); 366 seq &= 0xffffffff00000000ull; 367 seq += 1ull << 32; 368 atomic64_set(&fs_info->tree_mod_seq, seq); 369 return seq; 370 } 371 372 /* 373 * Increment the lower half of tree_mod_seq. 374 * 375 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers 376 * are generated should not technically require a spin lock here. (Rationale: 377 * incrementing the minor while incrementing the major seq number is between its 378 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it 379 * just returns a unique sequence number as usual.) We have decided to leave 380 * that requirement in here and rethink it once we notice it really imposes a 381 * problem on some workload. 382 */ 383 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info) 384 { 385 return atomic64_inc_return(&fs_info->tree_mod_seq); 386 } 387 388 /* 389 * return the last minor in the previous major tree_mod_seq number 390 */ 391 u64 btrfs_tree_mod_seq_prev(u64 seq) 392 { 393 return (seq & 0xffffffff00000000ull) - 1ull; 394 } 395 396 /* 397 * This adds a new blocker to the tree mod log's blocker list if the @elem 398 * passed does not already have a sequence number set. So when a caller expects 399 * to record tree modifications, it should ensure to set elem->seq to zero 400 * before calling btrfs_get_tree_mod_seq. 401 * Returns a fresh, unused tree log modification sequence number, even if no new 402 * blocker was added. 403 */ 404 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 405 struct seq_list *elem) 406 { 407 u64 seq; 408 409 tree_mod_log_write_lock(fs_info); 410 spin_lock(&fs_info->tree_mod_seq_lock); 411 if (!elem->seq) { 412 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info); 413 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 414 } 415 seq = btrfs_inc_tree_mod_seq_minor(fs_info); 416 spin_unlock(&fs_info->tree_mod_seq_lock); 417 tree_mod_log_write_unlock(fs_info); 418 419 return seq; 420 } 421 422 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 423 struct seq_list *elem) 424 { 425 struct rb_root *tm_root; 426 struct rb_node *node; 427 struct rb_node *next; 428 struct seq_list *cur_elem; 429 struct tree_mod_elem *tm; 430 u64 min_seq = (u64)-1; 431 u64 seq_putting = elem->seq; 432 433 if (!seq_putting) 434 return; 435 436 spin_lock(&fs_info->tree_mod_seq_lock); 437 list_del(&elem->list); 438 elem->seq = 0; 439 440 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 441 if (cur_elem->seq < min_seq) { 442 if (seq_putting > cur_elem->seq) { 443 /* 444 * blocker with lower sequence number exists, we 445 * cannot remove anything from the log 446 */ 447 spin_unlock(&fs_info->tree_mod_seq_lock); 448 return; 449 } 450 min_seq = cur_elem->seq; 451 } 452 } 453 spin_unlock(&fs_info->tree_mod_seq_lock); 454 455 /* 456 * anything that's lower than the lowest existing (read: blocked) 457 * sequence number can be removed from the tree. 458 */ 459 tree_mod_log_write_lock(fs_info); 460 tm_root = &fs_info->tree_mod_log; 461 for (node = rb_first(tm_root); node; node = next) { 462 next = rb_next(node); 463 tm = container_of(node, struct tree_mod_elem, node); 464 if (tm->seq > min_seq) 465 continue; 466 rb_erase(node, tm_root); 467 kfree(tm); 468 } 469 tree_mod_log_write_unlock(fs_info); 470 } 471 472 /* 473 * key order of the log: 474 * index -> sequence 475 * 476 * the index is the shifted logical of the *new* root node for root replace 477 * operations, or the shifted logical of the affected block for all other 478 * operations. 479 */ 480 static noinline int 481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 482 { 483 struct rb_root *tm_root; 484 struct rb_node **new; 485 struct rb_node *parent = NULL; 486 struct tree_mod_elem *cur; 487 488 BUG_ON(!tm || !tm->seq); 489 490 tm_root = &fs_info->tree_mod_log; 491 new = &tm_root->rb_node; 492 while (*new) { 493 cur = container_of(*new, struct tree_mod_elem, node); 494 parent = *new; 495 if (cur->index < tm->index) 496 new = &((*new)->rb_left); 497 else if (cur->index > tm->index) 498 new = &((*new)->rb_right); 499 else if (cur->seq < tm->seq) 500 new = &((*new)->rb_left); 501 else if (cur->seq > tm->seq) 502 new = &((*new)->rb_right); 503 else { 504 kfree(tm); 505 return -EEXIST; 506 } 507 } 508 509 rb_link_node(&tm->node, parent, new); 510 rb_insert_color(&tm->node, tm_root); 511 return 0; 512 } 513 514 /* 515 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 516 * returns zero with the tree_mod_log_lock acquired. The caller must hold 517 * this until all tree mod log insertions are recorded in the rb tree and then 518 * call tree_mod_log_write_unlock() to release. 519 */ 520 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 521 struct extent_buffer *eb) { 522 smp_mb(); 523 if (list_empty(&(fs_info)->tree_mod_seq_list)) 524 return 1; 525 if (eb && btrfs_header_level(eb) == 0) 526 return 1; 527 528 tree_mod_log_write_lock(fs_info); 529 if (list_empty(&fs_info->tree_mod_seq_list)) { 530 /* 531 * someone emptied the list while we were waiting for the lock. 532 * we must not add to the list when no blocker exists. 533 */ 534 tree_mod_log_write_unlock(fs_info); 535 return 1; 536 } 537 538 return 0; 539 } 540 541 /* 542 * This allocates memory and gets a tree modification sequence number. 543 * 544 * Returns <0 on error. 545 * Returns >0 (the added sequence number) on success. 546 */ 547 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags, 548 struct tree_mod_elem **tm_ret) 549 { 550 struct tree_mod_elem *tm; 551 552 /* 553 * once we switch from spin locks to something different, we should 554 * honor the flags parameter here. 555 */ 556 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC); 557 if (!tm) 558 return -ENOMEM; 559 560 spin_lock(&fs_info->tree_mod_seq_lock); 561 tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info); 562 spin_unlock(&fs_info->tree_mod_seq_lock); 563 564 return tm->seq; 565 } 566 567 static inline int 568 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 569 struct extent_buffer *eb, int slot, 570 enum mod_log_op op, gfp_t flags) 571 { 572 int ret; 573 struct tree_mod_elem *tm; 574 575 ret = tree_mod_alloc(fs_info, flags, &tm); 576 if (ret < 0) 577 return ret; 578 579 tm->index = eb->start >> PAGE_CACHE_SHIFT; 580 if (op != MOD_LOG_KEY_ADD) { 581 btrfs_node_key(eb, &tm->key, slot); 582 tm->blockptr = btrfs_node_blockptr(eb, slot); 583 } 584 tm->op = op; 585 tm->slot = slot; 586 tm->generation = btrfs_node_ptr_generation(eb, slot); 587 588 return __tree_mod_log_insert(fs_info, tm); 589 } 590 591 static noinline int 592 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info, 593 struct extent_buffer *eb, int slot, 594 enum mod_log_op op, gfp_t flags) 595 { 596 int ret; 597 598 if (tree_mod_dont_log(fs_info, eb)) 599 return 0; 600 601 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags); 602 603 tree_mod_log_write_unlock(fs_info); 604 return ret; 605 } 606 607 static noinline int 608 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 609 int slot, enum mod_log_op op) 610 { 611 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS); 612 } 613 614 static noinline int 615 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info, 616 struct extent_buffer *eb, int slot, 617 enum mod_log_op op) 618 { 619 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS); 620 } 621 622 static noinline int 623 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 624 struct extent_buffer *eb, int dst_slot, int src_slot, 625 int nr_items, gfp_t flags) 626 { 627 struct tree_mod_elem *tm; 628 int ret; 629 int i; 630 631 if (tree_mod_dont_log(fs_info, eb)) 632 return 0; 633 634 /* 635 * When we override something during the move, we log these removals. 636 * This can only happen when we move towards the beginning of the 637 * buffer, i.e. dst_slot < src_slot. 638 */ 639 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 640 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot, 641 MOD_LOG_KEY_REMOVE_WHILE_MOVING); 642 BUG_ON(ret < 0); 643 } 644 645 ret = tree_mod_alloc(fs_info, flags, &tm); 646 if (ret < 0) 647 goto out; 648 649 tm->index = eb->start >> PAGE_CACHE_SHIFT; 650 tm->slot = src_slot; 651 tm->move.dst_slot = dst_slot; 652 tm->move.nr_items = nr_items; 653 tm->op = MOD_LOG_MOVE_KEYS; 654 655 ret = __tree_mod_log_insert(fs_info, tm); 656 out: 657 tree_mod_log_write_unlock(fs_info); 658 return ret; 659 } 660 661 static inline void 662 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 663 { 664 int i; 665 u32 nritems; 666 int ret; 667 668 if (btrfs_header_level(eb) == 0) 669 return; 670 671 nritems = btrfs_header_nritems(eb); 672 for (i = nritems - 1; i >= 0; i--) { 673 ret = tree_mod_log_insert_key_locked(fs_info, eb, i, 674 MOD_LOG_KEY_REMOVE_WHILE_FREEING); 675 BUG_ON(ret < 0); 676 } 677 } 678 679 static noinline int 680 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 681 struct extent_buffer *old_root, 682 struct extent_buffer *new_root, gfp_t flags, 683 int log_removal) 684 { 685 struct tree_mod_elem *tm; 686 int ret; 687 688 if (tree_mod_dont_log(fs_info, NULL)) 689 return 0; 690 691 if (log_removal) 692 __tree_mod_log_free_eb(fs_info, old_root); 693 694 ret = tree_mod_alloc(fs_info, flags, &tm); 695 if (ret < 0) 696 goto out; 697 698 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 699 tm->old_root.logical = old_root->start; 700 tm->old_root.level = btrfs_header_level(old_root); 701 tm->generation = btrfs_header_generation(old_root); 702 tm->op = MOD_LOG_ROOT_REPLACE; 703 704 ret = __tree_mod_log_insert(fs_info, tm); 705 out: 706 tree_mod_log_write_unlock(fs_info); 707 return ret; 708 } 709 710 static struct tree_mod_elem * 711 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 712 int smallest) 713 { 714 struct rb_root *tm_root; 715 struct rb_node *node; 716 struct tree_mod_elem *cur = NULL; 717 struct tree_mod_elem *found = NULL; 718 u64 index = start >> PAGE_CACHE_SHIFT; 719 720 tree_mod_log_read_lock(fs_info); 721 tm_root = &fs_info->tree_mod_log; 722 node = tm_root->rb_node; 723 while (node) { 724 cur = container_of(node, struct tree_mod_elem, node); 725 if (cur->index < index) { 726 node = node->rb_left; 727 } else if (cur->index > index) { 728 node = node->rb_right; 729 } else if (cur->seq < min_seq) { 730 node = node->rb_left; 731 } else if (!smallest) { 732 /* we want the node with the highest seq */ 733 if (found) 734 BUG_ON(found->seq > cur->seq); 735 found = cur; 736 node = node->rb_left; 737 } else if (cur->seq > min_seq) { 738 /* we want the node with the smallest seq */ 739 if (found) 740 BUG_ON(found->seq < cur->seq); 741 found = cur; 742 node = node->rb_right; 743 } else { 744 found = cur; 745 break; 746 } 747 } 748 tree_mod_log_read_unlock(fs_info); 749 750 return found; 751 } 752 753 /* 754 * this returns the element from the log with the smallest time sequence 755 * value that's in the log (the oldest log item). any element with a time 756 * sequence lower than min_seq will be ignored. 757 */ 758 static struct tree_mod_elem * 759 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 760 u64 min_seq) 761 { 762 return __tree_mod_log_search(fs_info, start, min_seq, 1); 763 } 764 765 /* 766 * this returns the element from the log with the largest time sequence 767 * value that's in the log (the most recent log item). any element with 768 * a time sequence lower than min_seq will be ignored. 769 */ 770 static struct tree_mod_elem * 771 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 772 { 773 return __tree_mod_log_search(fs_info, start, min_seq, 0); 774 } 775 776 static noinline void 777 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 778 struct extent_buffer *src, unsigned long dst_offset, 779 unsigned long src_offset, int nr_items) 780 { 781 int ret; 782 int i; 783 784 if (tree_mod_dont_log(fs_info, NULL)) 785 return; 786 787 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) { 788 tree_mod_log_write_unlock(fs_info); 789 return; 790 } 791 792 for (i = 0; i < nr_items; i++) { 793 ret = tree_mod_log_insert_key_locked(fs_info, src, 794 i + src_offset, 795 MOD_LOG_KEY_REMOVE); 796 BUG_ON(ret < 0); 797 ret = tree_mod_log_insert_key_locked(fs_info, dst, 798 i + dst_offset, 799 MOD_LOG_KEY_ADD); 800 BUG_ON(ret < 0); 801 } 802 803 tree_mod_log_write_unlock(fs_info); 804 } 805 806 static inline void 807 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 808 int dst_offset, int src_offset, int nr_items) 809 { 810 int ret; 811 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 812 nr_items, GFP_NOFS); 813 BUG_ON(ret < 0); 814 } 815 816 static noinline void 817 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 818 struct extent_buffer *eb, int slot, int atomic) 819 { 820 int ret; 821 822 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot, 823 MOD_LOG_KEY_REPLACE, 824 atomic ? GFP_ATOMIC : GFP_NOFS); 825 BUG_ON(ret < 0); 826 } 827 828 static noinline void 829 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 830 { 831 if (tree_mod_dont_log(fs_info, eb)) 832 return; 833 834 __tree_mod_log_free_eb(fs_info, eb); 835 836 tree_mod_log_write_unlock(fs_info); 837 } 838 839 static noinline void 840 tree_mod_log_set_root_pointer(struct btrfs_root *root, 841 struct extent_buffer *new_root_node, 842 int log_removal) 843 { 844 int ret; 845 ret = tree_mod_log_insert_root(root->fs_info, root->node, 846 new_root_node, GFP_NOFS, log_removal); 847 BUG_ON(ret < 0); 848 } 849 850 /* 851 * check if the tree block can be shared by multiple trees 852 */ 853 int btrfs_block_can_be_shared(struct btrfs_root *root, 854 struct extent_buffer *buf) 855 { 856 /* 857 * Tree blocks not in refernece counted trees and tree roots 858 * are never shared. If a block was allocated after the last 859 * snapshot and the block was not allocated by tree relocation, 860 * we know the block is not shared. 861 */ 862 if (root->ref_cows && 863 buf != root->node && buf != root->commit_root && 864 (btrfs_header_generation(buf) <= 865 btrfs_root_last_snapshot(&root->root_item) || 866 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 867 return 1; 868 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 869 if (root->ref_cows && 870 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 871 return 1; 872 #endif 873 return 0; 874 } 875 876 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 877 struct btrfs_root *root, 878 struct extent_buffer *buf, 879 struct extent_buffer *cow, 880 int *last_ref) 881 { 882 u64 refs; 883 u64 owner; 884 u64 flags; 885 u64 new_flags = 0; 886 int ret; 887 888 /* 889 * Backrefs update rules: 890 * 891 * Always use full backrefs for extent pointers in tree block 892 * allocated by tree relocation. 893 * 894 * If a shared tree block is no longer referenced by its owner 895 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 896 * use full backrefs for extent pointers in tree block. 897 * 898 * If a tree block is been relocating 899 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 900 * use full backrefs for extent pointers in tree block. 901 * The reason for this is some operations (such as drop tree) 902 * are only allowed for blocks use full backrefs. 903 */ 904 905 if (btrfs_block_can_be_shared(root, buf)) { 906 ret = btrfs_lookup_extent_info(trans, root, buf->start, 907 btrfs_header_level(buf), 1, 908 &refs, &flags); 909 if (ret) 910 return ret; 911 if (refs == 0) { 912 ret = -EROFS; 913 btrfs_std_error(root->fs_info, ret); 914 return ret; 915 } 916 } else { 917 refs = 1; 918 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 919 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 920 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 921 else 922 flags = 0; 923 } 924 925 owner = btrfs_header_owner(buf); 926 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 927 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 928 929 if (refs > 1) { 930 if ((owner == root->root_key.objectid || 931 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 932 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 933 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 934 BUG_ON(ret); /* -ENOMEM */ 935 936 if (root->root_key.objectid == 937 BTRFS_TREE_RELOC_OBJECTID) { 938 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 939 BUG_ON(ret); /* -ENOMEM */ 940 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 941 BUG_ON(ret); /* -ENOMEM */ 942 } 943 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 944 } else { 945 946 if (root->root_key.objectid == 947 BTRFS_TREE_RELOC_OBJECTID) 948 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 949 else 950 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 951 BUG_ON(ret); /* -ENOMEM */ 952 } 953 if (new_flags != 0) { 954 int level = btrfs_header_level(buf); 955 956 ret = btrfs_set_disk_extent_flags(trans, root, 957 buf->start, 958 buf->len, 959 new_flags, level, 0); 960 if (ret) 961 return ret; 962 } 963 } else { 964 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 965 if (root->root_key.objectid == 966 BTRFS_TREE_RELOC_OBJECTID) 967 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 968 else 969 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 970 BUG_ON(ret); /* -ENOMEM */ 971 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 972 BUG_ON(ret); /* -ENOMEM */ 973 } 974 clean_tree_block(trans, root, buf); 975 *last_ref = 1; 976 } 977 return 0; 978 } 979 980 /* 981 * does the dirty work in cow of a single block. The parent block (if 982 * supplied) is updated to point to the new cow copy. The new buffer is marked 983 * dirty and returned locked. If you modify the block it needs to be marked 984 * dirty again. 985 * 986 * search_start -- an allocation hint for the new block 987 * 988 * empty_size -- a hint that you plan on doing more cow. This is the size in 989 * bytes the allocator should try to find free next to the block it returns. 990 * This is just a hint and may be ignored by the allocator. 991 */ 992 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 993 struct btrfs_root *root, 994 struct extent_buffer *buf, 995 struct extent_buffer *parent, int parent_slot, 996 struct extent_buffer **cow_ret, 997 u64 search_start, u64 empty_size) 998 { 999 struct btrfs_disk_key disk_key; 1000 struct extent_buffer *cow; 1001 int level, ret; 1002 int last_ref = 0; 1003 int unlock_orig = 0; 1004 u64 parent_start; 1005 1006 if (*cow_ret == buf) 1007 unlock_orig = 1; 1008 1009 btrfs_assert_tree_locked(buf); 1010 1011 WARN_ON(root->ref_cows && trans->transid != 1012 root->fs_info->running_transaction->transid); 1013 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 1014 1015 level = btrfs_header_level(buf); 1016 1017 if (level == 0) 1018 btrfs_item_key(buf, &disk_key, 0); 1019 else 1020 btrfs_node_key(buf, &disk_key, 0); 1021 1022 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 1023 if (parent) 1024 parent_start = parent->start; 1025 else 1026 parent_start = 0; 1027 } else 1028 parent_start = 0; 1029 1030 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 1031 root->root_key.objectid, &disk_key, 1032 level, search_start, empty_size); 1033 if (IS_ERR(cow)) 1034 return PTR_ERR(cow); 1035 1036 /* cow is set to blocking by btrfs_init_new_buffer */ 1037 1038 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1039 btrfs_set_header_bytenr(cow, cow->start); 1040 btrfs_set_header_generation(cow, trans->transid); 1041 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1042 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1043 BTRFS_HEADER_FLAG_RELOC); 1044 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1045 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1046 else 1047 btrfs_set_header_owner(cow, root->root_key.objectid); 1048 1049 write_extent_buffer(cow, root->fs_info->fsid, 1050 (unsigned long)btrfs_header_fsid(cow), 1051 BTRFS_FSID_SIZE); 1052 1053 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1054 if (ret) { 1055 btrfs_abort_transaction(trans, root, ret); 1056 return ret; 1057 } 1058 1059 if (root->ref_cows) 1060 btrfs_reloc_cow_block(trans, root, buf, cow); 1061 1062 if (buf == root->node) { 1063 WARN_ON(parent && parent != buf); 1064 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1065 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1066 parent_start = buf->start; 1067 else 1068 parent_start = 0; 1069 1070 extent_buffer_get(cow); 1071 tree_mod_log_set_root_pointer(root, cow, 1); 1072 rcu_assign_pointer(root->node, cow); 1073 1074 btrfs_free_tree_block(trans, root, buf, parent_start, 1075 last_ref); 1076 free_extent_buffer(buf); 1077 add_root_to_dirty_list(root); 1078 } else { 1079 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1080 parent_start = parent->start; 1081 else 1082 parent_start = 0; 1083 1084 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1085 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1086 MOD_LOG_KEY_REPLACE); 1087 btrfs_set_node_blockptr(parent, parent_slot, 1088 cow->start); 1089 btrfs_set_node_ptr_generation(parent, parent_slot, 1090 trans->transid); 1091 btrfs_mark_buffer_dirty(parent); 1092 if (last_ref) 1093 tree_mod_log_free_eb(root->fs_info, buf); 1094 btrfs_free_tree_block(trans, root, buf, parent_start, 1095 last_ref); 1096 } 1097 if (unlock_orig) 1098 btrfs_tree_unlock(buf); 1099 free_extent_buffer_stale(buf); 1100 btrfs_mark_buffer_dirty(cow); 1101 *cow_ret = cow; 1102 return 0; 1103 } 1104 1105 /* 1106 * returns the logical address of the oldest predecessor of the given root. 1107 * entries older than time_seq are ignored. 1108 */ 1109 static struct tree_mod_elem * 1110 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1111 struct extent_buffer *eb_root, u64 time_seq) 1112 { 1113 struct tree_mod_elem *tm; 1114 struct tree_mod_elem *found = NULL; 1115 u64 root_logical = eb_root->start; 1116 int looped = 0; 1117 1118 if (!time_seq) 1119 return 0; 1120 1121 /* 1122 * the very last operation that's logged for a root is the replacement 1123 * operation (if it is replaced at all). this has the index of the *new* 1124 * root, making it the very first operation that's logged for this root. 1125 */ 1126 while (1) { 1127 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1128 time_seq); 1129 if (!looped && !tm) 1130 return 0; 1131 /* 1132 * if there are no tree operation for the oldest root, we simply 1133 * return it. this should only happen if that (old) root is at 1134 * level 0. 1135 */ 1136 if (!tm) 1137 break; 1138 1139 /* 1140 * if there's an operation that's not a root replacement, we 1141 * found the oldest version of our root. normally, we'll find a 1142 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1143 */ 1144 if (tm->op != MOD_LOG_ROOT_REPLACE) 1145 break; 1146 1147 found = tm; 1148 root_logical = tm->old_root.logical; 1149 looped = 1; 1150 } 1151 1152 /* if there's no old root to return, return what we found instead */ 1153 if (!found) 1154 found = tm; 1155 1156 return found; 1157 } 1158 1159 /* 1160 * tm is a pointer to the first operation to rewind within eb. then, all 1161 * previous operations will be rewinded (until we reach something older than 1162 * time_seq). 1163 */ 1164 static void 1165 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1166 u64 time_seq, struct tree_mod_elem *first_tm) 1167 { 1168 u32 n; 1169 struct rb_node *next; 1170 struct tree_mod_elem *tm = first_tm; 1171 unsigned long o_dst; 1172 unsigned long o_src; 1173 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1174 1175 n = btrfs_header_nritems(eb); 1176 tree_mod_log_read_lock(fs_info); 1177 while (tm && tm->seq >= time_seq) { 1178 /* 1179 * all the operations are recorded with the operator used for 1180 * the modification. as we're going backwards, we do the 1181 * opposite of each operation here. 1182 */ 1183 switch (tm->op) { 1184 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1185 BUG_ON(tm->slot < n); 1186 /* Fallthrough */ 1187 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1188 case MOD_LOG_KEY_REMOVE: 1189 btrfs_set_node_key(eb, &tm->key, tm->slot); 1190 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1191 btrfs_set_node_ptr_generation(eb, tm->slot, 1192 tm->generation); 1193 n++; 1194 break; 1195 case MOD_LOG_KEY_REPLACE: 1196 BUG_ON(tm->slot >= n); 1197 btrfs_set_node_key(eb, &tm->key, tm->slot); 1198 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1199 btrfs_set_node_ptr_generation(eb, tm->slot, 1200 tm->generation); 1201 break; 1202 case MOD_LOG_KEY_ADD: 1203 /* if a move operation is needed it's in the log */ 1204 n--; 1205 break; 1206 case MOD_LOG_MOVE_KEYS: 1207 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1208 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1209 memmove_extent_buffer(eb, o_dst, o_src, 1210 tm->move.nr_items * p_size); 1211 break; 1212 case MOD_LOG_ROOT_REPLACE: 1213 /* 1214 * this operation is special. for roots, this must be 1215 * handled explicitly before rewinding. 1216 * for non-roots, this operation may exist if the node 1217 * was a root: root A -> child B; then A gets empty and 1218 * B is promoted to the new root. in the mod log, we'll 1219 * have a root-replace operation for B, a tree block 1220 * that is no root. we simply ignore that operation. 1221 */ 1222 break; 1223 } 1224 next = rb_next(&tm->node); 1225 if (!next) 1226 break; 1227 tm = container_of(next, struct tree_mod_elem, node); 1228 if (tm->index != first_tm->index) 1229 break; 1230 } 1231 tree_mod_log_read_unlock(fs_info); 1232 btrfs_set_header_nritems(eb, n); 1233 } 1234 1235 /* 1236 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1237 * is returned. If rewind operations happen, a fresh buffer is returned. The 1238 * returned buffer is always read-locked. If the returned buffer is not the 1239 * input buffer, the lock on the input buffer is released and the input buffer 1240 * is freed (its refcount is decremented). 1241 */ 1242 static struct extent_buffer * 1243 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1244 u64 time_seq) 1245 { 1246 struct extent_buffer *eb_rewin; 1247 struct tree_mod_elem *tm; 1248 1249 if (!time_seq) 1250 return eb; 1251 1252 if (btrfs_header_level(eb) == 0) 1253 return eb; 1254 1255 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1256 if (!tm) 1257 return eb; 1258 1259 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1260 BUG_ON(tm->slot != 0); 1261 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1262 fs_info->tree_root->nodesize); 1263 BUG_ON(!eb_rewin); 1264 btrfs_set_header_bytenr(eb_rewin, eb->start); 1265 btrfs_set_header_backref_rev(eb_rewin, 1266 btrfs_header_backref_rev(eb)); 1267 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1268 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1269 } else { 1270 eb_rewin = btrfs_clone_extent_buffer(eb); 1271 BUG_ON(!eb_rewin); 1272 } 1273 1274 btrfs_tree_read_unlock(eb); 1275 free_extent_buffer(eb); 1276 1277 extent_buffer_get(eb_rewin); 1278 btrfs_tree_read_lock(eb_rewin); 1279 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1280 WARN_ON(btrfs_header_nritems(eb_rewin) > 1281 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1282 1283 return eb_rewin; 1284 } 1285 1286 /* 1287 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1288 * value. If there are no changes, the current root->root_node is returned. If 1289 * anything changed in between, there's a fresh buffer allocated on which the 1290 * rewind operations are done. In any case, the returned buffer is read locked. 1291 * Returns NULL on error (with no locks held). 1292 */ 1293 static inline struct extent_buffer * 1294 get_old_root(struct btrfs_root *root, u64 time_seq) 1295 { 1296 struct tree_mod_elem *tm; 1297 struct extent_buffer *eb = NULL; 1298 struct extent_buffer *eb_root; 1299 struct extent_buffer *old; 1300 struct tree_mod_root *old_root = NULL; 1301 u64 old_generation = 0; 1302 u64 logical; 1303 u32 blocksize; 1304 1305 eb_root = btrfs_read_lock_root_node(root); 1306 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1307 if (!tm) 1308 return eb_root; 1309 1310 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1311 old_root = &tm->old_root; 1312 old_generation = tm->generation; 1313 logical = old_root->logical; 1314 } else { 1315 logical = eb_root->start; 1316 } 1317 1318 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1319 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1320 btrfs_tree_read_unlock(eb_root); 1321 free_extent_buffer(eb_root); 1322 blocksize = btrfs_level_size(root, old_root->level); 1323 old = read_tree_block(root, logical, blocksize, 0); 1324 if (!old || !extent_buffer_uptodate(old)) { 1325 free_extent_buffer(old); 1326 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n", 1327 logical); 1328 WARN_ON(1); 1329 } else { 1330 eb = btrfs_clone_extent_buffer(old); 1331 free_extent_buffer(old); 1332 } 1333 } else if (old_root) { 1334 btrfs_tree_read_unlock(eb_root); 1335 free_extent_buffer(eb_root); 1336 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1337 } else { 1338 eb = btrfs_clone_extent_buffer(eb_root); 1339 btrfs_tree_read_unlock(eb_root); 1340 free_extent_buffer(eb_root); 1341 } 1342 1343 if (!eb) 1344 return NULL; 1345 extent_buffer_get(eb); 1346 btrfs_tree_read_lock(eb); 1347 if (old_root) { 1348 btrfs_set_header_bytenr(eb, eb->start); 1349 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1350 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1351 btrfs_set_header_level(eb, old_root->level); 1352 btrfs_set_header_generation(eb, old_generation); 1353 } 1354 if (tm) 1355 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1356 else 1357 WARN_ON(btrfs_header_level(eb) != 0); 1358 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1359 1360 return eb; 1361 } 1362 1363 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1364 { 1365 struct tree_mod_elem *tm; 1366 int level; 1367 struct extent_buffer *eb_root = btrfs_root_node(root); 1368 1369 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1370 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1371 level = tm->old_root.level; 1372 } else { 1373 level = btrfs_header_level(eb_root); 1374 } 1375 free_extent_buffer(eb_root); 1376 1377 return level; 1378 } 1379 1380 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1381 struct btrfs_root *root, 1382 struct extent_buffer *buf) 1383 { 1384 /* ensure we can see the force_cow */ 1385 smp_rmb(); 1386 1387 /* 1388 * We do not need to cow a block if 1389 * 1) this block is not created or changed in this transaction; 1390 * 2) this block does not belong to TREE_RELOC tree; 1391 * 3) the root is not forced COW. 1392 * 1393 * What is forced COW: 1394 * when we create snapshot during commiting the transaction, 1395 * after we've finished coping src root, we must COW the shared 1396 * block to ensure the metadata consistency. 1397 */ 1398 if (btrfs_header_generation(buf) == trans->transid && 1399 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1400 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1401 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1402 !root->force_cow) 1403 return 0; 1404 return 1; 1405 } 1406 1407 /* 1408 * cows a single block, see __btrfs_cow_block for the real work. 1409 * This version of it has extra checks so that a block isn't cow'd more than 1410 * once per transaction, as long as it hasn't been written yet 1411 */ 1412 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1413 struct btrfs_root *root, struct extent_buffer *buf, 1414 struct extent_buffer *parent, int parent_slot, 1415 struct extent_buffer **cow_ret) 1416 { 1417 u64 search_start; 1418 int ret; 1419 1420 if (trans->transaction != root->fs_info->running_transaction) 1421 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1422 (unsigned long long)trans->transid, 1423 (unsigned long long) 1424 root->fs_info->running_transaction->transid); 1425 1426 if (trans->transid != root->fs_info->generation) 1427 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1428 (unsigned long long)trans->transid, 1429 (unsigned long long)root->fs_info->generation); 1430 1431 if (!should_cow_block(trans, root, buf)) { 1432 *cow_ret = buf; 1433 return 0; 1434 } 1435 1436 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1437 1438 if (parent) 1439 btrfs_set_lock_blocking(parent); 1440 btrfs_set_lock_blocking(buf); 1441 1442 ret = __btrfs_cow_block(trans, root, buf, parent, 1443 parent_slot, cow_ret, search_start, 0); 1444 1445 trace_btrfs_cow_block(root, buf, *cow_ret); 1446 1447 return ret; 1448 } 1449 1450 /* 1451 * helper function for defrag to decide if two blocks pointed to by a 1452 * node are actually close by 1453 */ 1454 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1455 { 1456 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1457 return 1; 1458 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1459 return 1; 1460 return 0; 1461 } 1462 1463 /* 1464 * compare two keys in a memcmp fashion 1465 */ 1466 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1467 { 1468 struct btrfs_key k1; 1469 1470 btrfs_disk_key_to_cpu(&k1, disk); 1471 1472 return btrfs_comp_cpu_keys(&k1, k2); 1473 } 1474 1475 /* 1476 * same as comp_keys only with two btrfs_key's 1477 */ 1478 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1479 { 1480 if (k1->objectid > k2->objectid) 1481 return 1; 1482 if (k1->objectid < k2->objectid) 1483 return -1; 1484 if (k1->type > k2->type) 1485 return 1; 1486 if (k1->type < k2->type) 1487 return -1; 1488 if (k1->offset > k2->offset) 1489 return 1; 1490 if (k1->offset < k2->offset) 1491 return -1; 1492 return 0; 1493 } 1494 1495 /* 1496 * this is used by the defrag code to go through all the 1497 * leaves pointed to by a node and reallocate them so that 1498 * disk order is close to key order 1499 */ 1500 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1501 struct btrfs_root *root, struct extent_buffer *parent, 1502 int start_slot, u64 *last_ret, 1503 struct btrfs_key *progress) 1504 { 1505 struct extent_buffer *cur; 1506 u64 blocknr; 1507 u64 gen; 1508 u64 search_start = *last_ret; 1509 u64 last_block = 0; 1510 u64 other; 1511 u32 parent_nritems; 1512 int end_slot; 1513 int i; 1514 int err = 0; 1515 int parent_level; 1516 int uptodate; 1517 u32 blocksize; 1518 int progress_passed = 0; 1519 struct btrfs_disk_key disk_key; 1520 1521 parent_level = btrfs_header_level(parent); 1522 1523 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1524 WARN_ON(trans->transid != root->fs_info->generation); 1525 1526 parent_nritems = btrfs_header_nritems(parent); 1527 blocksize = btrfs_level_size(root, parent_level - 1); 1528 end_slot = parent_nritems; 1529 1530 if (parent_nritems == 1) 1531 return 0; 1532 1533 btrfs_set_lock_blocking(parent); 1534 1535 for (i = start_slot; i < end_slot; i++) { 1536 int close = 1; 1537 1538 btrfs_node_key(parent, &disk_key, i); 1539 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1540 continue; 1541 1542 progress_passed = 1; 1543 blocknr = btrfs_node_blockptr(parent, i); 1544 gen = btrfs_node_ptr_generation(parent, i); 1545 if (last_block == 0) 1546 last_block = blocknr; 1547 1548 if (i > 0) { 1549 other = btrfs_node_blockptr(parent, i - 1); 1550 close = close_blocks(blocknr, other, blocksize); 1551 } 1552 if (!close && i < end_slot - 2) { 1553 other = btrfs_node_blockptr(parent, i + 1); 1554 close = close_blocks(blocknr, other, blocksize); 1555 } 1556 if (close) { 1557 last_block = blocknr; 1558 continue; 1559 } 1560 1561 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1562 if (cur) 1563 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1564 else 1565 uptodate = 0; 1566 if (!cur || !uptodate) { 1567 if (!cur) { 1568 cur = read_tree_block(root, blocknr, 1569 blocksize, gen); 1570 if (!cur || !extent_buffer_uptodate(cur)) { 1571 free_extent_buffer(cur); 1572 return -EIO; 1573 } 1574 } else if (!uptodate) { 1575 err = btrfs_read_buffer(cur, gen); 1576 if (err) { 1577 free_extent_buffer(cur); 1578 return err; 1579 } 1580 } 1581 } 1582 if (search_start == 0) 1583 search_start = last_block; 1584 1585 btrfs_tree_lock(cur); 1586 btrfs_set_lock_blocking(cur); 1587 err = __btrfs_cow_block(trans, root, cur, parent, i, 1588 &cur, search_start, 1589 min(16 * blocksize, 1590 (end_slot - i) * blocksize)); 1591 if (err) { 1592 btrfs_tree_unlock(cur); 1593 free_extent_buffer(cur); 1594 break; 1595 } 1596 search_start = cur->start; 1597 last_block = cur->start; 1598 *last_ret = search_start; 1599 btrfs_tree_unlock(cur); 1600 free_extent_buffer(cur); 1601 } 1602 return err; 1603 } 1604 1605 /* 1606 * The leaf data grows from end-to-front in the node. 1607 * this returns the address of the start of the last item, 1608 * which is the stop of the leaf data stack 1609 */ 1610 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1611 struct extent_buffer *leaf) 1612 { 1613 u32 nr = btrfs_header_nritems(leaf); 1614 if (nr == 0) 1615 return BTRFS_LEAF_DATA_SIZE(root); 1616 return btrfs_item_offset_nr(leaf, nr - 1); 1617 } 1618 1619 1620 /* 1621 * search for key in the extent_buffer. The items start at offset p, 1622 * and they are item_size apart. There are 'max' items in p. 1623 * 1624 * the slot in the array is returned via slot, and it points to 1625 * the place where you would insert key if it is not found in 1626 * the array. 1627 * 1628 * slot may point to max if the key is bigger than all of the keys 1629 */ 1630 static noinline int generic_bin_search(struct extent_buffer *eb, 1631 unsigned long p, 1632 int item_size, struct btrfs_key *key, 1633 int max, int *slot) 1634 { 1635 int low = 0; 1636 int high = max; 1637 int mid; 1638 int ret; 1639 struct btrfs_disk_key *tmp = NULL; 1640 struct btrfs_disk_key unaligned; 1641 unsigned long offset; 1642 char *kaddr = NULL; 1643 unsigned long map_start = 0; 1644 unsigned long map_len = 0; 1645 int err; 1646 1647 while (low < high) { 1648 mid = (low + high) / 2; 1649 offset = p + mid * item_size; 1650 1651 if (!kaddr || offset < map_start || 1652 (offset + sizeof(struct btrfs_disk_key)) > 1653 map_start + map_len) { 1654 1655 err = map_private_extent_buffer(eb, offset, 1656 sizeof(struct btrfs_disk_key), 1657 &kaddr, &map_start, &map_len); 1658 1659 if (!err) { 1660 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1661 map_start); 1662 } else { 1663 read_extent_buffer(eb, &unaligned, 1664 offset, sizeof(unaligned)); 1665 tmp = &unaligned; 1666 } 1667 1668 } else { 1669 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1670 map_start); 1671 } 1672 ret = comp_keys(tmp, key); 1673 1674 if (ret < 0) 1675 low = mid + 1; 1676 else if (ret > 0) 1677 high = mid; 1678 else { 1679 *slot = mid; 1680 return 0; 1681 } 1682 } 1683 *slot = low; 1684 return 1; 1685 } 1686 1687 /* 1688 * simple bin_search frontend that does the right thing for 1689 * leaves vs nodes 1690 */ 1691 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1692 int level, int *slot) 1693 { 1694 if (level == 0) 1695 return generic_bin_search(eb, 1696 offsetof(struct btrfs_leaf, items), 1697 sizeof(struct btrfs_item), 1698 key, btrfs_header_nritems(eb), 1699 slot); 1700 else 1701 return generic_bin_search(eb, 1702 offsetof(struct btrfs_node, ptrs), 1703 sizeof(struct btrfs_key_ptr), 1704 key, btrfs_header_nritems(eb), 1705 slot); 1706 } 1707 1708 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1709 int level, int *slot) 1710 { 1711 return bin_search(eb, key, level, slot); 1712 } 1713 1714 static void root_add_used(struct btrfs_root *root, u32 size) 1715 { 1716 spin_lock(&root->accounting_lock); 1717 btrfs_set_root_used(&root->root_item, 1718 btrfs_root_used(&root->root_item) + size); 1719 spin_unlock(&root->accounting_lock); 1720 } 1721 1722 static void root_sub_used(struct btrfs_root *root, u32 size) 1723 { 1724 spin_lock(&root->accounting_lock); 1725 btrfs_set_root_used(&root->root_item, 1726 btrfs_root_used(&root->root_item) - size); 1727 spin_unlock(&root->accounting_lock); 1728 } 1729 1730 /* given a node and slot number, this reads the blocks it points to. The 1731 * extent buffer is returned with a reference taken (but unlocked). 1732 * NULL is returned on error. 1733 */ 1734 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1735 struct extent_buffer *parent, int slot) 1736 { 1737 int level = btrfs_header_level(parent); 1738 struct extent_buffer *eb; 1739 1740 if (slot < 0) 1741 return NULL; 1742 if (slot >= btrfs_header_nritems(parent)) 1743 return NULL; 1744 1745 BUG_ON(level == 0); 1746 1747 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1748 btrfs_level_size(root, level - 1), 1749 btrfs_node_ptr_generation(parent, slot)); 1750 if (eb && !extent_buffer_uptodate(eb)) { 1751 free_extent_buffer(eb); 1752 eb = NULL; 1753 } 1754 1755 return eb; 1756 } 1757 1758 /* 1759 * node level balancing, used to make sure nodes are in proper order for 1760 * item deletion. We balance from the top down, so we have to make sure 1761 * that a deletion won't leave an node completely empty later on. 1762 */ 1763 static noinline int balance_level(struct btrfs_trans_handle *trans, 1764 struct btrfs_root *root, 1765 struct btrfs_path *path, int level) 1766 { 1767 struct extent_buffer *right = NULL; 1768 struct extent_buffer *mid; 1769 struct extent_buffer *left = NULL; 1770 struct extent_buffer *parent = NULL; 1771 int ret = 0; 1772 int wret; 1773 int pslot; 1774 int orig_slot = path->slots[level]; 1775 u64 orig_ptr; 1776 1777 if (level == 0) 1778 return 0; 1779 1780 mid = path->nodes[level]; 1781 1782 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1783 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1784 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1785 1786 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1787 1788 if (level < BTRFS_MAX_LEVEL - 1) { 1789 parent = path->nodes[level + 1]; 1790 pslot = path->slots[level + 1]; 1791 } 1792 1793 /* 1794 * deal with the case where there is only one pointer in the root 1795 * by promoting the node below to a root 1796 */ 1797 if (!parent) { 1798 struct extent_buffer *child; 1799 1800 if (btrfs_header_nritems(mid) != 1) 1801 return 0; 1802 1803 /* promote the child to a root */ 1804 child = read_node_slot(root, mid, 0); 1805 if (!child) { 1806 ret = -EROFS; 1807 btrfs_std_error(root->fs_info, ret); 1808 goto enospc; 1809 } 1810 1811 btrfs_tree_lock(child); 1812 btrfs_set_lock_blocking(child); 1813 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1814 if (ret) { 1815 btrfs_tree_unlock(child); 1816 free_extent_buffer(child); 1817 goto enospc; 1818 } 1819 1820 tree_mod_log_set_root_pointer(root, child, 1); 1821 rcu_assign_pointer(root->node, child); 1822 1823 add_root_to_dirty_list(root); 1824 btrfs_tree_unlock(child); 1825 1826 path->locks[level] = 0; 1827 path->nodes[level] = NULL; 1828 clean_tree_block(trans, root, mid); 1829 btrfs_tree_unlock(mid); 1830 /* once for the path */ 1831 free_extent_buffer(mid); 1832 1833 root_sub_used(root, mid->len); 1834 btrfs_free_tree_block(trans, root, mid, 0, 1); 1835 /* once for the root ptr */ 1836 free_extent_buffer_stale(mid); 1837 return 0; 1838 } 1839 if (btrfs_header_nritems(mid) > 1840 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1841 return 0; 1842 1843 left = read_node_slot(root, parent, pslot - 1); 1844 if (left) { 1845 btrfs_tree_lock(left); 1846 btrfs_set_lock_blocking(left); 1847 wret = btrfs_cow_block(trans, root, left, 1848 parent, pslot - 1, &left); 1849 if (wret) { 1850 ret = wret; 1851 goto enospc; 1852 } 1853 } 1854 right = read_node_slot(root, parent, pslot + 1); 1855 if (right) { 1856 btrfs_tree_lock(right); 1857 btrfs_set_lock_blocking(right); 1858 wret = btrfs_cow_block(trans, root, right, 1859 parent, pslot + 1, &right); 1860 if (wret) { 1861 ret = wret; 1862 goto enospc; 1863 } 1864 } 1865 1866 /* first, try to make some room in the middle buffer */ 1867 if (left) { 1868 orig_slot += btrfs_header_nritems(left); 1869 wret = push_node_left(trans, root, left, mid, 1); 1870 if (wret < 0) 1871 ret = wret; 1872 } 1873 1874 /* 1875 * then try to empty the right most buffer into the middle 1876 */ 1877 if (right) { 1878 wret = push_node_left(trans, root, mid, right, 1); 1879 if (wret < 0 && wret != -ENOSPC) 1880 ret = wret; 1881 if (btrfs_header_nritems(right) == 0) { 1882 clean_tree_block(trans, root, right); 1883 btrfs_tree_unlock(right); 1884 del_ptr(root, path, level + 1, pslot + 1); 1885 root_sub_used(root, right->len); 1886 btrfs_free_tree_block(trans, root, right, 0, 1); 1887 free_extent_buffer_stale(right); 1888 right = NULL; 1889 } else { 1890 struct btrfs_disk_key right_key; 1891 btrfs_node_key(right, &right_key, 0); 1892 tree_mod_log_set_node_key(root->fs_info, parent, 1893 pslot + 1, 0); 1894 btrfs_set_node_key(parent, &right_key, pslot + 1); 1895 btrfs_mark_buffer_dirty(parent); 1896 } 1897 } 1898 if (btrfs_header_nritems(mid) == 1) { 1899 /* 1900 * we're not allowed to leave a node with one item in the 1901 * tree during a delete. A deletion from lower in the tree 1902 * could try to delete the only pointer in this node. 1903 * So, pull some keys from the left. 1904 * There has to be a left pointer at this point because 1905 * otherwise we would have pulled some pointers from the 1906 * right 1907 */ 1908 if (!left) { 1909 ret = -EROFS; 1910 btrfs_std_error(root->fs_info, ret); 1911 goto enospc; 1912 } 1913 wret = balance_node_right(trans, root, mid, left); 1914 if (wret < 0) { 1915 ret = wret; 1916 goto enospc; 1917 } 1918 if (wret == 1) { 1919 wret = push_node_left(trans, root, left, mid, 1); 1920 if (wret < 0) 1921 ret = wret; 1922 } 1923 BUG_ON(wret == 1); 1924 } 1925 if (btrfs_header_nritems(mid) == 0) { 1926 clean_tree_block(trans, root, mid); 1927 btrfs_tree_unlock(mid); 1928 del_ptr(root, path, level + 1, pslot); 1929 root_sub_used(root, mid->len); 1930 btrfs_free_tree_block(trans, root, mid, 0, 1); 1931 free_extent_buffer_stale(mid); 1932 mid = NULL; 1933 } else { 1934 /* update the parent key to reflect our changes */ 1935 struct btrfs_disk_key mid_key; 1936 btrfs_node_key(mid, &mid_key, 0); 1937 tree_mod_log_set_node_key(root->fs_info, parent, 1938 pslot, 0); 1939 btrfs_set_node_key(parent, &mid_key, pslot); 1940 btrfs_mark_buffer_dirty(parent); 1941 } 1942 1943 /* update the path */ 1944 if (left) { 1945 if (btrfs_header_nritems(left) > orig_slot) { 1946 extent_buffer_get(left); 1947 /* left was locked after cow */ 1948 path->nodes[level] = left; 1949 path->slots[level + 1] -= 1; 1950 path->slots[level] = orig_slot; 1951 if (mid) { 1952 btrfs_tree_unlock(mid); 1953 free_extent_buffer(mid); 1954 } 1955 } else { 1956 orig_slot -= btrfs_header_nritems(left); 1957 path->slots[level] = orig_slot; 1958 } 1959 } 1960 /* double check we haven't messed things up */ 1961 if (orig_ptr != 1962 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1963 BUG(); 1964 enospc: 1965 if (right) { 1966 btrfs_tree_unlock(right); 1967 free_extent_buffer(right); 1968 } 1969 if (left) { 1970 if (path->nodes[level] != left) 1971 btrfs_tree_unlock(left); 1972 free_extent_buffer(left); 1973 } 1974 return ret; 1975 } 1976 1977 /* Node balancing for insertion. Here we only split or push nodes around 1978 * when they are completely full. This is also done top down, so we 1979 * have to be pessimistic. 1980 */ 1981 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1982 struct btrfs_root *root, 1983 struct btrfs_path *path, int level) 1984 { 1985 struct extent_buffer *right = NULL; 1986 struct extent_buffer *mid; 1987 struct extent_buffer *left = NULL; 1988 struct extent_buffer *parent = NULL; 1989 int ret = 0; 1990 int wret; 1991 int pslot; 1992 int orig_slot = path->slots[level]; 1993 1994 if (level == 0) 1995 return 1; 1996 1997 mid = path->nodes[level]; 1998 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1999 2000 if (level < BTRFS_MAX_LEVEL - 1) { 2001 parent = path->nodes[level + 1]; 2002 pslot = path->slots[level + 1]; 2003 } 2004 2005 if (!parent) 2006 return 1; 2007 2008 left = read_node_slot(root, parent, pslot - 1); 2009 2010 /* first, try to make some room in the middle buffer */ 2011 if (left) { 2012 u32 left_nr; 2013 2014 btrfs_tree_lock(left); 2015 btrfs_set_lock_blocking(left); 2016 2017 left_nr = btrfs_header_nritems(left); 2018 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2019 wret = 1; 2020 } else { 2021 ret = btrfs_cow_block(trans, root, left, parent, 2022 pslot - 1, &left); 2023 if (ret) 2024 wret = 1; 2025 else { 2026 wret = push_node_left(trans, root, 2027 left, mid, 0); 2028 } 2029 } 2030 if (wret < 0) 2031 ret = wret; 2032 if (wret == 0) { 2033 struct btrfs_disk_key disk_key; 2034 orig_slot += left_nr; 2035 btrfs_node_key(mid, &disk_key, 0); 2036 tree_mod_log_set_node_key(root->fs_info, parent, 2037 pslot, 0); 2038 btrfs_set_node_key(parent, &disk_key, pslot); 2039 btrfs_mark_buffer_dirty(parent); 2040 if (btrfs_header_nritems(left) > orig_slot) { 2041 path->nodes[level] = left; 2042 path->slots[level + 1] -= 1; 2043 path->slots[level] = orig_slot; 2044 btrfs_tree_unlock(mid); 2045 free_extent_buffer(mid); 2046 } else { 2047 orig_slot -= 2048 btrfs_header_nritems(left); 2049 path->slots[level] = orig_slot; 2050 btrfs_tree_unlock(left); 2051 free_extent_buffer(left); 2052 } 2053 return 0; 2054 } 2055 btrfs_tree_unlock(left); 2056 free_extent_buffer(left); 2057 } 2058 right = read_node_slot(root, parent, pslot + 1); 2059 2060 /* 2061 * then try to empty the right most buffer into the middle 2062 */ 2063 if (right) { 2064 u32 right_nr; 2065 2066 btrfs_tree_lock(right); 2067 btrfs_set_lock_blocking(right); 2068 2069 right_nr = btrfs_header_nritems(right); 2070 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2071 wret = 1; 2072 } else { 2073 ret = btrfs_cow_block(trans, root, right, 2074 parent, pslot + 1, 2075 &right); 2076 if (ret) 2077 wret = 1; 2078 else { 2079 wret = balance_node_right(trans, root, 2080 right, mid); 2081 } 2082 } 2083 if (wret < 0) 2084 ret = wret; 2085 if (wret == 0) { 2086 struct btrfs_disk_key disk_key; 2087 2088 btrfs_node_key(right, &disk_key, 0); 2089 tree_mod_log_set_node_key(root->fs_info, parent, 2090 pslot + 1, 0); 2091 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2092 btrfs_mark_buffer_dirty(parent); 2093 2094 if (btrfs_header_nritems(mid) <= orig_slot) { 2095 path->nodes[level] = right; 2096 path->slots[level + 1] += 1; 2097 path->slots[level] = orig_slot - 2098 btrfs_header_nritems(mid); 2099 btrfs_tree_unlock(mid); 2100 free_extent_buffer(mid); 2101 } else { 2102 btrfs_tree_unlock(right); 2103 free_extent_buffer(right); 2104 } 2105 return 0; 2106 } 2107 btrfs_tree_unlock(right); 2108 free_extent_buffer(right); 2109 } 2110 return 1; 2111 } 2112 2113 /* 2114 * readahead one full node of leaves, finding things that are close 2115 * to the block in 'slot', and triggering ra on them. 2116 */ 2117 static void reada_for_search(struct btrfs_root *root, 2118 struct btrfs_path *path, 2119 int level, int slot, u64 objectid) 2120 { 2121 struct extent_buffer *node; 2122 struct btrfs_disk_key disk_key; 2123 u32 nritems; 2124 u64 search; 2125 u64 target; 2126 u64 nread = 0; 2127 u64 gen; 2128 int direction = path->reada; 2129 struct extent_buffer *eb; 2130 u32 nr; 2131 u32 blocksize; 2132 u32 nscan = 0; 2133 2134 if (level != 1) 2135 return; 2136 2137 if (!path->nodes[level]) 2138 return; 2139 2140 node = path->nodes[level]; 2141 2142 search = btrfs_node_blockptr(node, slot); 2143 blocksize = btrfs_level_size(root, level - 1); 2144 eb = btrfs_find_tree_block(root, search, blocksize); 2145 if (eb) { 2146 free_extent_buffer(eb); 2147 return; 2148 } 2149 2150 target = search; 2151 2152 nritems = btrfs_header_nritems(node); 2153 nr = slot; 2154 2155 while (1) { 2156 if (direction < 0) { 2157 if (nr == 0) 2158 break; 2159 nr--; 2160 } else if (direction > 0) { 2161 nr++; 2162 if (nr >= nritems) 2163 break; 2164 } 2165 if (path->reada < 0 && objectid) { 2166 btrfs_node_key(node, &disk_key, nr); 2167 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2168 break; 2169 } 2170 search = btrfs_node_blockptr(node, nr); 2171 if ((search <= target && target - search <= 65536) || 2172 (search > target && search - target <= 65536)) { 2173 gen = btrfs_node_ptr_generation(node, nr); 2174 readahead_tree_block(root, search, blocksize, gen); 2175 nread += blocksize; 2176 } 2177 nscan++; 2178 if ((nread > 65536 || nscan > 32)) 2179 break; 2180 } 2181 } 2182 2183 static noinline void reada_for_balance(struct btrfs_root *root, 2184 struct btrfs_path *path, int level) 2185 { 2186 int slot; 2187 int nritems; 2188 struct extent_buffer *parent; 2189 struct extent_buffer *eb; 2190 u64 gen; 2191 u64 block1 = 0; 2192 u64 block2 = 0; 2193 int blocksize; 2194 2195 parent = path->nodes[level + 1]; 2196 if (!parent) 2197 return; 2198 2199 nritems = btrfs_header_nritems(parent); 2200 slot = path->slots[level + 1]; 2201 blocksize = btrfs_level_size(root, level); 2202 2203 if (slot > 0) { 2204 block1 = btrfs_node_blockptr(parent, slot - 1); 2205 gen = btrfs_node_ptr_generation(parent, slot - 1); 2206 eb = btrfs_find_tree_block(root, block1, blocksize); 2207 /* 2208 * if we get -eagain from btrfs_buffer_uptodate, we 2209 * don't want to return eagain here. That will loop 2210 * forever 2211 */ 2212 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2213 block1 = 0; 2214 free_extent_buffer(eb); 2215 } 2216 if (slot + 1 < nritems) { 2217 block2 = btrfs_node_blockptr(parent, slot + 1); 2218 gen = btrfs_node_ptr_generation(parent, slot + 1); 2219 eb = btrfs_find_tree_block(root, block2, blocksize); 2220 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2221 block2 = 0; 2222 free_extent_buffer(eb); 2223 } 2224 2225 if (block1) 2226 readahead_tree_block(root, block1, blocksize, 0); 2227 if (block2) 2228 readahead_tree_block(root, block2, blocksize, 0); 2229 } 2230 2231 2232 /* 2233 * when we walk down the tree, it is usually safe to unlock the higher layers 2234 * in the tree. The exceptions are when our path goes through slot 0, because 2235 * operations on the tree might require changing key pointers higher up in the 2236 * tree. 2237 * 2238 * callers might also have set path->keep_locks, which tells this code to keep 2239 * the lock if the path points to the last slot in the block. This is part of 2240 * walking through the tree, and selecting the next slot in the higher block. 2241 * 2242 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2243 * if lowest_unlock is 1, level 0 won't be unlocked 2244 */ 2245 static noinline void unlock_up(struct btrfs_path *path, int level, 2246 int lowest_unlock, int min_write_lock_level, 2247 int *write_lock_level) 2248 { 2249 int i; 2250 int skip_level = level; 2251 int no_skips = 0; 2252 struct extent_buffer *t; 2253 2254 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2255 if (!path->nodes[i]) 2256 break; 2257 if (!path->locks[i]) 2258 break; 2259 if (!no_skips && path->slots[i] == 0) { 2260 skip_level = i + 1; 2261 continue; 2262 } 2263 if (!no_skips && path->keep_locks) { 2264 u32 nritems; 2265 t = path->nodes[i]; 2266 nritems = btrfs_header_nritems(t); 2267 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2268 skip_level = i + 1; 2269 continue; 2270 } 2271 } 2272 if (skip_level < i && i >= lowest_unlock) 2273 no_skips = 1; 2274 2275 t = path->nodes[i]; 2276 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2277 btrfs_tree_unlock_rw(t, path->locks[i]); 2278 path->locks[i] = 0; 2279 if (write_lock_level && 2280 i > min_write_lock_level && 2281 i <= *write_lock_level) { 2282 *write_lock_level = i - 1; 2283 } 2284 } 2285 } 2286 } 2287 2288 /* 2289 * This releases any locks held in the path starting at level and 2290 * going all the way up to the root. 2291 * 2292 * btrfs_search_slot will keep the lock held on higher nodes in a few 2293 * corner cases, such as COW of the block at slot zero in the node. This 2294 * ignores those rules, and it should only be called when there are no 2295 * more updates to be done higher up in the tree. 2296 */ 2297 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2298 { 2299 int i; 2300 2301 if (path->keep_locks) 2302 return; 2303 2304 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2305 if (!path->nodes[i]) 2306 continue; 2307 if (!path->locks[i]) 2308 continue; 2309 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2310 path->locks[i] = 0; 2311 } 2312 } 2313 2314 /* 2315 * helper function for btrfs_search_slot. The goal is to find a block 2316 * in cache without setting the path to blocking. If we find the block 2317 * we return zero and the path is unchanged. 2318 * 2319 * If we can't find the block, we set the path blocking and do some 2320 * reada. -EAGAIN is returned and the search must be repeated. 2321 */ 2322 static int 2323 read_block_for_search(struct btrfs_trans_handle *trans, 2324 struct btrfs_root *root, struct btrfs_path *p, 2325 struct extent_buffer **eb_ret, int level, int slot, 2326 struct btrfs_key *key, u64 time_seq) 2327 { 2328 u64 blocknr; 2329 u64 gen; 2330 u32 blocksize; 2331 struct extent_buffer *b = *eb_ret; 2332 struct extent_buffer *tmp; 2333 int ret; 2334 2335 blocknr = btrfs_node_blockptr(b, slot); 2336 gen = btrfs_node_ptr_generation(b, slot); 2337 blocksize = btrfs_level_size(root, level - 1); 2338 2339 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2340 if (tmp) { 2341 /* first we do an atomic uptodate check */ 2342 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2343 *eb_ret = tmp; 2344 return 0; 2345 } 2346 2347 /* the pages were up to date, but we failed 2348 * the generation number check. Do a full 2349 * read for the generation number that is correct. 2350 * We must do this without dropping locks so 2351 * we can trust our generation number 2352 */ 2353 btrfs_set_path_blocking(p); 2354 2355 /* now we're allowed to do a blocking uptodate check */ 2356 ret = btrfs_read_buffer(tmp, gen); 2357 if (!ret) { 2358 *eb_ret = tmp; 2359 return 0; 2360 } 2361 free_extent_buffer(tmp); 2362 btrfs_release_path(p); 2363 return -EIO; 2364 } 2365 2366 /* 2367 * reduce lock contention at high levels 2368 * of the btree by dropping locks before 2369 * we read. Don't release the lock on the current 2370 * level because we need to walk this node to figure 2371 * out which blocks to read. 2372 */ 2373 btrfs_unlock_up_safe(p, level + 1); 2374 btrfs_set_path_blocking(p); 2375 2376 free_extent_buffer(tmp); 2377 if (p->reada) 2378 reada_for_search(root, p, level, slot, key->objectid); 2379 2380 btrfs_release_path(p); 2381 2382 ret = -EAGAIN; 2383 tmp = read_tree_block(root, blocknr, blocksize, 0); 2384 if (tmp) { 2385 /* 2386 * If the read above didn't mark this buffer up to date, 2387 * it will never end up being up to date. Set ret to EIO now 2388 * and give up so that our caller doesn't loop forever 2389 * on our EAGAINs. 2390 */ 2391 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2392 ret = -EIO; 2393 free_extent_buffer(tmp); 2394 } 2395 return ret; 2396 } 2397 2398 /* 2399 * helper function for btrfs_search_slot. This does all of the checks 2400 * for node-level blocks and does any balancing required based on 2401 * the ins_len. 2402 * 2403 * If no extra work was required, zero is returned. If we had to 2404 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2405 * start over 2406 */ 2407 static int 2408 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2409 struct btrfs_root *root, struct btrfs_path *p, 2410 struct extent_buffer *b, int level, int ins_len, 2411 int *write_lock_level) 2412 { 2413 int ret; 2414 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2415 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2416 int sret; 2417 2418 if (*write_lock_level < level + 1) { 2419 *write_lock_level = level + 1; 2420 btrfs_release_path(p); 2421 goto again; 2422 } 2423 2424 btrfs_set_path_blocking(p); 2425 reada_for_balance(root, p, level); 2426 sret = split_node(trans, root, p, level); 2427 btrfs_clear_path_blocking(p, NULL, 0); 2428 2429 BUG_ON(sret > 0); 2430 if (sret) { 2431 ret = sret; 2432 goto done; 2433 } 2434 b = p->nodes[level]; 2435 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2436 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2437 int sret; 2438 2439 if (*write_lock_level < level + 1) { 2440 *write_lock_level = level + 1; 2441 btrfs_release_path(p); 2442 goto again; 2443 } 2444 2445 btrfs_set_path_blocking(p); 2446 reada_for_balance(root, p, level); 2447 sret = balance_level(trans, root, p, level); 2448 btrfs_clear_path_blocking(p, NULL, 0); 2449 2450 if (sret) { 2451 ret = sret; 2452 goto done; 2453 } 2454 b = p->nodes[level]; 2455 if (!b) { 2456 btrfs_release_path(p); 2457 goto again; 2458 } 2459 BUG_ON(btrfs_header_nritems(b) == 1); 2460 } 2461 return 0; 2462 2463 again: 2464 ret = -EAGAIN; 2465 done: 2466 return ret; 2467 } 2468 2469 /* 2470 * look for key in the tree. path is filled in with nodes along the way 2471 * if key is found, we return zero and you can find the item in the leaf 2472 * level of the path (level 0) 2473 * 2474 * If the key isn't found, the path points to the slot where it should 2475 * be inserted, and 1 is returned. If there are other errors during the 2476 * search a negative error number is returned. 2477 * 2478 * if ins_len > 0, nodes and leaves will be split as we walk down the 2479 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2480 * possible) 2481 */ 2482 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2483 *root, struct btrfs_key *key, struct btrfs_path *p, int 2484 ins_len, int cow) 2485 { 2486 struct extent_buffer *b; 2487 int slot; 2488 int ret; 2489 int err; 2490 int level; 2491 int lowest_unlock = 1; 2492 int root_lock; 2493 /* everything at write_lock_level or lower must be write locked */ 2494 int write_lock_level = 0; 2495 u8 lowest_level = 0; 2496 int min_write_lock_level; 2497 2498 lowest_level = p->lowest_level; 2499 WARN_ON(lowest_level && ins_len > 0); 2500 WARN_ON(p->nodes[0] != NULL); 2501 2502 if (ins_len < 0) { 2503 lowest_unlock = 2; 2504 2505 /* when we are removing items, we might have to go up to level 2506 * two as we update tree pointers Make sure we keep write 2507 * for those levels as well 2508 */ 2509 write_lock_level = 2; 2510 } else if (ins_len > 0) { 2511 /* 2512 * for inserting items, make sure we have a write lock on 2513 * level 1 so we can update keys 2514 */ 2515 write_lock_level = 1; 2516 } 2517 2518 if (!cow) 2519 write_lock_level = -1; 2520 2521 if (cow && (p->keep_locks || p->lowest_level)) 2522 write_lock_level = BTRFS_MAX_LEVEL; 2523 2524 min_write_lock_level = write_lock_level; 2525 2526 again: 2527 /* 2528 * we try very hard to do read locks on the root 2529 */ 2530 root_lock = BTRFS_READ_LOCK; 2531 level = 0; 2532 if (p->search_commit_root) { 2533 /* 2534 * the commit roots are read only 2535 * so we always do read locks 2536 */ 2537 b = root->commit_root; 2538 extent_buffer_get(b); 2539 level = btrfs_header_level(b); 2540 if (!p->skip_locking) 2541 btrfs_tree_read_lock(b); 2542 } else { 2543 if (p->skip_locking) { 2544 b = btrfs_root_node(root); 2545 level = btrfs_header_level(b); 2546 } else { 2547 /* we don't know the level of the root node 2548 * until we actually have it read locked 2549 */ 2550 b = btrfs_read_lock_root_node(root); 2551 level = btrfs_header_level(b); 2552 if (level <= write_lock_level) { 2553 /* whoops, must trade for write lock */ 2554 btrfs_tree_read_unlock(b); 2555 free_extent_buffer(b); 2556 b = btrfs_lock_root_node(root); 2557 root_lock = BTRFS_WRITE_LOCK; 2558 2559 /* the level might have changed, check again */ 2560 level = btrfs_header_level(b); 2561 } 2562 } 2563 } 2564 p->nodes[level] = b; 2565 if (!p->skip_locking) 2566 p->locks[level] = root_lock; 2567 2568 while (b) { 2569 level = btrfs_header_level(b); 2570 2571 /* 2572 * setup the path here so we can release it under lock 2573 * contention with the cow code 2574 */ 2575 if (cow) { 2576 /* 2577 * if we don't really need to cow this block 2578 * then we don't want to set the path blocking, 2579 * so we test it here 2580 */ 2581 if (!should_cow_block(trans, root, b)) 2582 goto cow_done; 2583 2584 btrfs_set_path_blocking(p); 2585 2586 /* 2587 * must have write locks on this node and the 2588 * parent 2589 */ 2590 if (level > write_lock_level || 2591 (level + 1 > write_lock_level && 2592 level + 1 < BTRFS_MAX_LEVEL && 2593 p->nodes[level + 1])) { 2594 write_lock_level = level + 1; 2595 btrfs_release_path(p); 2596 goto again; 2597 } 2598 2599 err = btrfs_cow_block(trans, root, b, 2600 p->nodes[level + 1], 2601 p->slots[level + 1], &b); 2602 if (err) { 2603 ret = err; 2604 goto done; 2605 } 2606 } 2607 cow_done: 2608 BUG_ON(!cow && ins_len); 2609 2610 p->nodes[level] = b; 2611 btrfs_clear_path_blocking(p, NULL, 0); 2612 2613 /* 2614 * we have a lock on b and as long as we aren't changing 2615 * the tree, there is no way to for the items in b to change. 2616 * It is safe to drop the lock on our parent before we 2617 * go through the expensive btree search on b. 2618 * 2619 * If cow is true, then we might be changing slot zero, 2620 * which may require changing the parent. So, we can't 2621 * drop the lock until after we know which slot we're 2622 * operating on. 2623 */ 2624 if (!cow) 2625 btrfs_unlock_up_safe(p, level + 1); 2626 2627 ret = bin_search(b, key, level, &slot); 2628 2629 if (level != 0) { 2630 int dec = 0; 2631 if (ret && slot > 0) { 2632 dec = 1; 2633 slot -= 1; 2634 } 2635 p->slots[level] = slot; 2636 err = setup_nodes_for_search(trans, root, p, b, level, 2637 ins_len, &write_lock_level); 2638 if (err == -EAGAIN) 2639 goto again; 2640 if (err) { 2641 ret = err; 2642 goto done; 2643 } 2644 b = p->nodes[level]; 2645 slot = p->slots[level]; 2646 2647 /* 2648 * slot 0 is special, if we change the key 2649 * we have to update the parent pointer 2650 * which means we must have a write lock 2651 * on the parent 2652 */ 2653 if (slot == 0 && cow && 2654 write_lock_level < level + 1) { 2655 write_lock_level = level + 1; 2656 btrfs_release_path(p); 2657 goto again; 2658 } 2659 2660 unlock_up(p, level, lowest_unlock, 2661 min_write_lock_level, &write_lock_level); 2662 2663 if (level == lowest_level) { 2664 if (dec) 2665 p->slots[level]++; 2666 goto done; 2667 } 2668 2669 err = read_block_for_search(trans, root, p, 2670 &b, level, slot, key, 0); 2671 if (err == -EAGAIN) 2672 goto again; 2673 if (err) { 2674 ret = err; 2675 goto done; 2676 } 2677 2678 if (!p->skip_locking) { 2679 level = btrfs_header_level(b); 2680 if (level <= write_lock_level) { 2681 err = btrfs_try_tree_write_lock(b); 2682 if (!err) { 2683 btrfs_set_path_blocking(p); 2684 btrfs_tree_lock(b); 2685 btrfs_clear_path_blocking(p, b, 2686 BTRFS_WRITE_LOCK); 2687 } 2688 p->locks[level] = BTRFS_WRITE_LOCK; 2689 } else { 2690 err = btrfs_try_tree_read_lock(b); 2691 if (!err) { 2692 btrfs_set_path_blocking(p); 2693 btrfs_tree_read_lock(b); 2694 btrfs_clear_path_blocking(p, b, 2695 BTRFS_READ_LOCK); 2696 } 2697 p->locks[level] = BTRFS_READ_LOCK; 2698 } 2699 p->nodes[level] = b; 2700 } 2701 } else { 2702 p->slots[level] = slot; 2703 if (ins_len > 0 && 2704 btrfs_leaf_free_space(root, b) < ins_len) { 2705 if (write_lock_level < 1) { 2706 write_lock_level = 1; 2707 btrfs_release_path(p); 2708 goto again; 2709 } 2710 2711 btrfs_set_path_blocking(p); 2712 err = split_leaf(trans, root, key, 2713 p, ins_len, ret == 0); 2714 btrfs_clear_path_blocking(p, NULL, 0); 2715 2716 BUG_ON(err > 0); 2717 if (err) { 2718 ret = err; 2719 goto done; 2720 } 2721 } 2722 if (!p->search_for_split) 2723 unlock_up(p, level, lowest_unlock, 2724 min_write_lock_level, &write_lock_level); 2725 goto done; 2726 } 2727 } 2728 ret = 1; 2729 done: 2730 /* 2731 * we don't really know what they plan on doing with the path 2732 * from here on, so for now just mark it as blocking 2733 */ 2734 if (!p->leave_spinning) 2735 btrfs_set_path_blocking(p); 2736 if (ret < 0) 2737 btrfs_release_path(p); 2738 return ret; 2739 } 2740 2741 /* 2742 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2743 * current state of the tree together with the operations recorded in the tree 2744 * modification log to search for the key in a previous version of this tree, as 2745 * denoted by the time_seq parameter. 2746 * 2747 * Naturally, there is no support for insert, delete or cow operations. 2748 * 2749 * The resulting path and return value will be set up as if we called 2750 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2751 */ 2752 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2753 struct btrfs_path *p, u64 time_seq) 2754 { 2755 struct extent_buffer *b; 2756 int slot; 2757 int ret; 2758 int err; 2759 int level; 2760 int lowest_unlock = 1; 2761 u8 lowest_level = 0; 2762 2763 lowest_level = p->lowest_level; 2764 WARN_ON(p->nodes[0] != NULL); 2765 2766 if (p->search_commit_root) { 2767 BUG_ON(time_seq); 2768 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2769 } 2770 2771 again: 2772 b = get_old_root(root, time_seq); 2773 level = btrfs_header_level(b); 2774 p->locks[level] = BTRFS_READ_LOCK; 2775 2776 while (b) { 2777 level = btrfs_header_level(b); 2778 p->nodes[level] = b; 2779 btrfs_clear_path_blocking(p, NULL, 0); 2780 2781 /* 2782 * we have a lock on b and as long as we aren't changing 2783 * the tree, there is no way to for the items in b to change. 2784 * It is safe to drop the lock on our parent before we 2785 * go through the expensive btree search on b. 2786 */ 2787 btrfs_unlock_up_safe(p, level + 1); 2788 2789 ret = bin_search(b, key, level, &slot); 2790 2791 if (level != 0) { 2792 int dec = 0; 2793 if (ret && slot > 0) { 2794 dec = 1; 2795 slot -= 1; 2796 } 2797 p->slots[level] = slot; 2798 unlock_up(p, level, lowest_unlock, 0, NULL); 2799 2800 if (level == lowest_level) { 2801 if (dec) 2802 p->slots[level]++; 2803 goto done; 2804 } 2805 2806 err = read_block_for_search(NULL, root, p, &b, level, 2807 slot, key, time_seq); 2808 if (err == -EAGAIN) 2809 goto again; 2810 if (err) { 2811 ret = err; 2812 goto done; 2813 } 2814 2815 level = btrfs_header_level(b); 2816 err = btrfs_try_tree_read_lock(b); 2817 if (!err) { 2818 btrfs_set_path_blocking(p); 2819 btrfs_tree_read_lock(b); 2820 btrfs_clear_path_blocking(p, b, 2821 BTRFS_READ_LOCK); 2822 } 2823 b = tree_mod_log_rewind(root->fs_info, b, time_seq); 2824 p->locks[level] = BTRFS_READ_LOCK; 2825 p->nodes[level] = b; 2826 } else { 2827 p->slots[level] = slot; 2828 unlock_up(p, level, lowest_unlock, 0, NULL); 2829 goto done; 2830 } 2831 } 2832 ret = 1; 2833 done: 2834 if (!p->leave_spinning) 2835 btrfs_set_path_blocking(p); 2836 if (ret < 0) 2837 btrfs_release_path(p); 2838 2839 return ret; 2840 } 2841 2842 /* 2843 * helper to use instead of search slot if no exact match is needed but 2844 * instead the next or previous item should be returned. 2845 * When find_higher is true, the next higher item is returned, the next lower 2846 * otherwise. 2847 * When return_any and find_higher are both true, and no higher item is found, 2848 * return the next lower instead. 2849 * When return_any is true and find_higher is false, and no lower item is found, 2850 * return the next higher instead. 2851 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2852 * < 0 on error 2853 */ 2854 int btrfs_search_slot_for_read(struct btrfs_root *root, 2855 struct btrfs_key *key, struct btrfs_path *p, 2856 int find_higher, int return_any) 2857 { 2858 int ret; 2859 struct extent_buffer *leaf; 2860 2861 again: 2862 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2863 if (ret <= 0) 2864 return ret; 2865 /* 2866 * a return value of 1 means the path is at the position where the 2867 * item should be inserted. Normally this is the next bigger item, 2868 * but in case the previous item is the last in a leaf, path points 2869 * to the first free slot in the previous leaf, i.e. at an invalid 2870 * item. 2871 */ 2872 leaf = p->nodes[0]; 2873 2874 if (find_higher) { 2875 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2876 ret = btrfs_next_leaf(root, p); 2877 if (ret <= 0) 2878 return ret; 2879 if (!return_any) 2880 return 1; 2881 /* 2882 * no higher item found, return the next 2883 * lower instead 2884 */ 2885 return_any = 0; 2886 find_higher = 0; 2887 btrfs_release_path(p); 2888 goto again; 2889 } 2890 } else { 2891 if (p->slots[0] == 0) { 2892 ret = btrfs_prev_leaf(root, p); 2893 if (ret < 0) 2894 return ret; 2895 if (!ret) { 2896 p->slots[0] = btrfs_header_nritems(leaf) - 1; 2897 return 0; 2898 } 2899 if (!return_any) 2900 return 1; 2901 /* 2902 * no lower item found, return the next 2903 * higher instead 2904 */ 2905 return_any = 0; 2906 find_higher = 1; 2907 btrfs_release_path(p); 2908 goto again; 2909 } else { 2910 --p->slots[0]; 2911 } 2912 } 2913 return 0; 2914 } 2915 2916 /* 2917 * adjust the pointers going up the tree, starting at level 2918 * making sure the right key of each node is points to 'key'. 2919 * This is used after shifting pointers to the left, so it stops 2920 * fixing up pointers when a given leaf/node is not in slot 0 of the 2921 * higher levels 2922 * 2923 */ 2924 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path, 2925 struct btrfs_disk_key *key, int level) 2926 { 2927 int i; 2928 struct extent_buffer *t; 2929 2930 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2931 int tslot = path->slots[i]; 2932 if (!path->nodes[i]) 2933 break; 2934 t = path->nodes[i]; 2935 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1); 2936 btrfs_set_node_key(t, key, tslot); 2937 btrfs_mark_buffer_dirty(path->nodes[i]); 2938 if (tslot != 0) 2939 break; 2940 } 2941 } 2942 2943 /* 2944 * update item key. 2945 * 2946 * This function isn't completely safe. It's the caller's responsibility 2947 * that the new key won't break the order 2948 */ 2949 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path, 2950 struct btrfs_key *new_key) 2951 { 2952 struct btrfs_disk_key disk_key; 2953 struct extent_buffer *eb; 2954 int slot; 2955 2956 eb = path->nodes[0]; 2957 slot = path->slots[0]; 2958 if (slot > 0) { 2959 btrfs_item_key(eb, &disk_key, slot - 1); 2960 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 2961 } 2962 if (slot < btrfs_header_nritems(eb) - 1) { 2963 btrfs_item_key(eb, &disk_key, slot + 1); 2964 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 2965 } 2966 2967 btrfs_cpu_key_to_disk(&disk_key, new_key); 2968 btrfs_set_item_key(eb, &disk_key, slot); 2969 btrfs_mark_buffer_dirty(eb); 2970 if (slot == 0) 2971 fixup_low_keys(root, path, &disk_key, 1); 2972 } 2973 2974 /* 2975 * try to push data from one node into the next node left in the 2976 * tree. 2977 * 2978 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2979 * error, and > 0 if there was no room in the left hand block. 2980 */ 2981 static int push_node_left(struct btrfs_trans_handle *trans, 2982 struct btrfs_root *root, struct extent_buffer *dst, 2983 struct extent_buffer *src, int empty) 2984 { 2985 int push_items = 0; 2986 int src_nritems; 2987 int dst_nritems; 2988 int ret = 0; 2989 2990 src_nritems = btrfs_header_nritems(src); 2991 dst_nritems = btrfs_header_nritems(dst); 2992 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2993 WARN_ON(btrfs_header_generation(src) != trans->transid); 2994 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2995 2996 if (!empty && src_nritems <= 8) 2997 return 1; 2998 2999 if (push_items <= 0) 3000 return 1; 3001 3002 if (empty) { 3003 push_items = min(src_nritems, push_items); 3004 if (push_items < src_nritems) { 3005 /* leave at least 8 pointers in the node if 3006 * we aren't going to empty it 3007 */ 3008 if (src_nritems - push_items < 8) { 3009 if (push_items <= 8) 3010 return 1; 3011 push_items -= 8; 3012 } 3013 } 3014 } else 3015 push_items = min(src_nritems - 8, push_items); 3016 3017 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3018 push_items); 3019 copy_extent_buffer(dst, src, 3020 btrfs_node_key_ptr_offset(dst_nritems), 3021 btrfs_node_key_ptr_offset(0), 3022 push_items * sizeof(struct btrfs_key_ptr)); 3023 3024 if (push_items < src_nritems) { 3025 /* 3026 * don't call tree_mod_log_eb_move here, key removal was already 3027 * fully logged by tree_mod_log_eb_copy above. 3028 */ 3029 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3030 btrfs_node_key_ptr_offset(push_items), 3031 (src_nritems - push_items) * 3032 sizeof(struct btrfs_key_ptr)); 3033 } 3034 btrfs_set_header_nritems(src, src_nritems - push_items); 3035 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3036 btrfs_mark_buffer_dirty(src); 3037 btrfs_mark_buffer_dirty(dst); 3038 3039 return ret; 3040 } 3041 3042 /* 3043 * try to push data from one node into the next node right in the 3044 * tree. 3045 * 3046 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3047 * error, and > 0 if there was no room in the right hand block. 3048 * 3049 * this will only push up to 1/2 the contents of the left node over 3050 */ 3051 static int balance_node_right(struct btrfs_trans_handle *trans, 3052 struct btrfs_root *root, 3053 struct extent_buffer *dst, 3054 struct extent_buffer *src) 3055 { 3056 int push_items = 0; 3057 int max_push; 3058 int src_nritems; 3059 int dst_nritems; 3060 int ret = 0; 3061 3062 WARN_ON(btrfs_header_generation(src) != trans->transid); 3063 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3064 3065 src_nritems = btrfs_header_nritems(src); 3066 dst_nritems = btrfs_header_nritems(dst); 3067 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3068 if (push_items <= 0) 3069 return 1; 3070 3071 if (src_nritems < 4) 3072 return 1; 3073 3074 max_push = src_nritems / 2 + 1; 3075 /* don't try to empty the node */ 3076 if (max_push >= src_nritems) 3077 return 1; 3078 3079 if (max_push < push_items) 3080 push_items = max_push; 3081 3082 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3083 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3084 btrfs_node_key_ptr_offset(0), 3085 (dst_nritems) * 3086 sizeof(struct btrfs_key_ptr)); 3087 3088 tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3089 src_nritems - push_items, push_items); 3090 copy_extent_buffer(dst, src, 3091 btrfs_node_key_ptr_offset(0), 3092 btrfs_node_key_ptr_offset(src_nritems - push_items), 3093 push_items * sizeof(struct btrfs_key_ptr)); 3094 3095 btrfs_set_header_nritems(src, src_nritems - push_items); 3096 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3097 3098 btrfs_mark_buffer_dirty(src); 3099 btrfs_mark_buffer_dirty(dst); 3100 3101 return ret; 3102 } 3103 3104 /* 3105 * helper function to insert a new root level in the tree. 3106 * A new node is allocated, and a single item is inserted to 3107 * point to the existing root 3108 * 3109 * returns zero on success or < 0 on failure. 3110 */ 3111 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3112 struct btrfs_root *root, 3113 struct btrfs_path *path, int level) 3114 { 3115 u64 lower_gen; 3116 struct extent_buffer *lower; 3117 struct extent_buffer *c; 3118 struct extent_buffer *old; 3119 struct btrfs_disk_key lower_key; 3120 3121 BUG_ON(path->nodes[level]); 3122 BUG_ON(path->nodes[level-1] != root->node); 3123 3124 lower = path->nodes[level-1]; 3125 if (level == 1) 3126 btrfs_item_key(lower, &lower_key, 0); 3127 else 3128 btrfs_node_key(lower, &lower_key, 0); 3129 3130 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3131 root->root_key.objectid, &lower_key, 3132 level, root->node->start, 0); 3133 if (IS_ERR(c)) 3134 return PTR_ERR(c); 3135 3136 root_add_used(root, root->nodesize); 3137 3138 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3139 btrfs_set_header_nritems(c, 1); 3140 btrfs_set_header_level(c, level); 3141 btrfs_set_header_bytenr(c, c->start); 3142 btrfs_set_header_generation(c, trans->transid); 3143 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3144 btrfs_set_header_owner(c, root->root_key.objectid); 3145 3146 write_extent_buffer(c, root->fs_info->fsid, 3147 (unsigned long)btrfs_header_fsid(c), 3148 BTRFS_FSID_SIZE); 3149 3150 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3151 (unsigned long)btrfs_header_chunk_tree_uuid(c), 3152 BTRFS_UUID_SIZE); 3153 3154 btrfs_set_node_key(c, &lower_key, 0); 3155 btrfs_set_node_blockptr(c, 0, lower->start); 3156 lower_gen = btrfs_header_generation(lower); 3157 WARN_ON(lower_gen != trans->transid); 3158 3159 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3160 3161 btrfs_mark_buffer_dirty(c); 3162 3163 old = root->node; 3164 tree_mod_log_set_root_pointer(root, c, 0); 3165 rcu_assign_pointer(root->node, c); 3166 3167 /* the super has an extra ref to root->node */ 3168 free_extent_buffer(old); 3169 3170 add_root_to_dirty_list(root); 3171 extent_buffer_get(c); 3172 path->nodes[level] = c; 3173 path->locks[level] = BTRFS_WRITE_LOCK; 3174 path->slots[level] = 0; 3175 return 0; 3176 } 3177 3178 /* 3179 * worker function to insert a single pointer in a node. 3180 * the node should have enough room for the pointer already 3181 * 3182 * slot and level indicate where you want the key to go, and 3183 * blocknr is the block the key points to. 3184 */ 3185 static void insert_ptr(struct btrfs_trans_handle *trans, 3186 struct btrfs_root *root, struct btrfs_path *path, 3187 struct btrfs_disk_key *key, u64 bytenr, 3188 int slot, int level) 3189 { 3190 struct extent_buffer *lower; 3191 int nritems; 3192 int ret; 3193 3194 BUG_ON(!path->nodes[level]); 3195 btrfs_assert_tree_locked(path->nodes[level]); 3196 lower = path->nodes[level]; 3197 nritems = btrfs_header_nritems(lower); 3198 BUG_ON(slot > nritems); 3199 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3200 if (slot != nritems) { 3201 if (level) 3202 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3203 slot, nritems - slot); 3204 memmove_extent_buffer(lower, 3205 btrfs_node_key_ptr_offset(slot + 1), 3206 btrfs_node_key_ptr_offset(slot), 3207 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3208 } 3209 if (level) { 3210 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3211 MOD_LOG_KEY_ADD); 3212 BUG_ON(ret < 0); 3213 } 3214 btrfs_set_node_key(lower, key, slot); 3215 btrfs_set_node_blockptr(lower, slot, bytenr); 3216 WARN_ON(trans->transid == 0); 3217 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3218 btrfs_set_header_nritems(lower, nritems + 1); 3219 btrfs_mark_buffer_dirty(lower); 3220 } 3221 3222 /* 3223 * split the node at the specified level in path in two. 3224 * The path is corrected to point to the appropriate node after the split 3225 * 3226 * Before splitting this tries to make some room in the node by pushing 3227 * left and right, if either one works, it returns right away. 3228 * 3229 * returns 0 on success and < 0 on failure 3230 */ 3231 static noinline int split_node(struct btrfs_trans_handle *trans, 3232 struct btrfs_root *root, 3233 struct btrfs_path *path, int level) 3234 { 3235 struct extent_buffer *c; 3236 struct extent_buffer *split; 3237 struct btrfs_disk_key disk_key; 3238 int mid; 3239 int ret; 3240 u32 c_nritems; 3241 3242 c = path->nodes[level]; 3243 WARN_ON(btrfs_header_generation(c) != trans->transid); 3244 if (c == root->node) { 3245 /* 3246 * trying to split the root, lets make a new one 3247 * 3248 * tree mod log: We don't log_removal old root in 3249 * insert_new_root, because that root buffer will be kept as a 3250 * normal node. We are going to log removal of half of the 3251 * elements below with tree_mod_log_eb_copy. We're holding a 3252 * tree lock on the buffer, which is why we cannot race with 3253 * other tree_mod_log users. 3254 */ 3255 ret = insert_new_root(trans, root, path, level + 1); 3256 if (ret) 3257 return ret; 3258 } else { 3259 ret = push_nodes_for_insert(trans, root, path, level); 3260 c = path->nodes[level]; 3261 if (!ret && btrfs_header_nritems(c) < 3262 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3263 return 0; 3264 if (ret < 0) 3265 return ret; 3266 } 3267 3268 c_nritems = btrfs_header_nritems(c); 3269 mid = (c_nritems + 1) / 2; 3270 btrfs_node_key(c, &disk_key, mid); 3271 3272 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3273 root->root_key.objectid, 3274 &disk_key, level, c->start, 0); 3275 if (IS_ERR(split)) 3276 return PTR_ERR(split); 3277 3278 root_add_used(root, root->nodesize); 3279 3280 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3281 btrfs_set_header_level(split, btrfs_header_level(c)); 3282 btrfs_set_header_bytenr(split, split->start); 3283 btrfs_set_header_generation(split, trans->transid); 3284 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3285 btrfs_set_header_owner(split, root->root_key.objectid); 3286 write_extent_buffer(split, root->fs_info->fsid, 3287 (unsigned long)btrfs_header_fsid(split), 3288 BTRFS_FSID_SIZE); 3289 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3290 (unsigned long)btrfs_header_chunk_tree_uuid(split), 3291 BTRFS_UUID_SIZE); 3292 3293 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid); 3294 copy_extent_buffer(split, c, 3295 btrfs_node_key_ptr_offset(0), 3296 btrfs_node_key_ptr_offset(mid), 3297 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3298 btrfs_set_header_nritems(split, c_nritems - mid); 3299 btrfs_set_header_nritems(c, mid); 3300 ret = 0; 3301 3302 btrfs_mark_buffer_dirty(c); 3303 btrfs_mark_buffer_dirty(split); 3304 3305 insert_ptr(trans, root, path, &disk_key, split->start, 3306 path->slots[level + 1] + 1, level + 1); 3307 3308 if (path->slots[level] >= mid) { 3309 path->slots[level] -= mid; 3310 btrfs_tree_unlock(c); 3311 free_extent_buffer(c); 3312 path->nodes[level] = split; 3313 path->slots[level + 1] += 1; 3314 } else { 3315 btrfs_tree_unlock(split); 3316 free_extent_buffer(split); 3317 } 3318 return ret; 3319 } 3320 3321 /* 3322 * how many bytes are required to store the items in a leaf. start 3323 * and nr indicate which items in the leaf to check. This totals up the 3324 * space used both by the item structs and the item data 3325 */ 3326 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3327 { 3328 struct btrfs_item *start_item; 3329 struct btrfs_item *end_item; 3330 struct btrfs_map_token token; 3331 int data_len; 3332 int nritems = btrfs_header_nritems(l); 3333 int end = min(nritems, start + nr) - 1; 3334 3335 if (!nr) 3336 return 0; 3337 btrfs_init_map_token(&token); 3338 start_item = btrfs_item_nr(l, start); 3339 end_item = btrfs_item_nr(l, end); 3340 data_len = btrfs_token_item_offset(l, start_item, &token) + 3341 btrfs_token_item_size(l, start_item, &token); 3342 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3343 data_len += sizeof(struct btrfs_item) * nr; 3344 WARN_ON(data_len < 0); 3345 return data_len; 3346 } 3347 3348 /* 3349 * The space between the end of the leaf items and 3350 * the start of the leaf data. IOW, how much room 3351 * the leaf has left for both items and data 3352 */ 3353 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3354 struct extent_buffer *leaf) 3355 { 3356 int nritems = btrfs_header_nritems(leaf); 3357 int ret; 3358 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3359 if (ret < 0) { 3360 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 3361 "used %d nritems %d\n", 3362 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3363 leaf_space_used(leaf, 0, nritems), nritems); 3364 } 3365 return ret; 3366 } 3367 3368 /* 3369 * min slot controls the lowest index we're willing to push to the 3370 * right. We'll push up to and including min_slot, but no lower 3371 */ 3372 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3373 struct btrfs_root *root, 3374 struct btrfs_path *path, 3375 int data_size, int empty, 3376 struct extent_buffer *right, 3377 int free_space, u32 left_nritems, 3378 u32 min_slot) 3379 { 3380 struct extent_buffer *left = path->nodes[0]; 3381 struct extent_buffer *upper = path->nodes[1]; 3382 struct btrfs_map_token token; 3383 struct btrfs_disk_key disk_key; 3384 int slot; 3385 u32 i; 3386 int push_space = 0; 3387 int push_items = 0; 3388 struct btrfs_item *item; 3389 u32 nr; 3390 u32 right_nritems; 3391 u32 data_end; 3392 u32 this_item_size; 3393 3394 btrfs_init_map_token(&token); 3395 3396 if (empty) 3397 nr = 0; 3398 else 3399 nr = max_t(u32, 1, min_slot); 3400 3401 if (path->slots[0] >= left_nritems) 3402 push_space += data_size; 3403 3404 slot = path->slots[1]; 3405 i = left_nritems - 1; 3406 while (i >= nr) { 3407 item = btrfs_item_nr(left, i); 3408 3409 if (!empty && push_items > 0) { 3410 if (path->slots[0] > i) 3411 break; 3412 if (path->slots[0] == i) { 3413 int space = btrfs_leaf_free_space(root, left); 3414 if (space + push_space * 2 > free_space) 3415 break; 3416 } 3417 } 3418 3419 if (path->slots[0] == i) 3420 push_space += data_size; 3421 3422 this_item_size = btrfs_item_size(left, item); 3423 if (this_item_size + sizeof(*item) + push_space > free_space) 3424 break; 3425 3426 push_items++; 3427 push_space += this_item_size + sizeof(*item); 3428 if (i == 0) 3429 break; 3430 i--; 3431 } 3432 3433 if (push_items == 0) 3434 goto out_unlock; 3435 3436 WARN_ON(!empty && push_items == left_nritems); 3437 3438 /* push left to right */ 3439 right_nritems = btrfs_header_nritems(right); 3440 3441 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3442 push_space -= leaf_data_end(root, left); 3443 3444 /* make room in the right data area */ 3445 data_end = leaf_data_end(root, right); 3446 memmove_extent_buffer(right, 3447 btrfs_leaf_data(right) + data_end - push_space, 3448 btrfs_leaf_data(right) + data_end, 3449 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3450 3451 /* copy from the left data area */ 3452 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3453 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3454 btrfs_leaf_data(left) + leaf_data_end(root, left), 3455 push_space); 3456 3457 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3458 btrfs_item_nr_offset(0), 3459 right_nritems * sizeof(struct btrfs_item)); 3460 3461 /* copy the items from left to right */ 3462 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3463 btrfs_item_nr_offset(left_nritems - push_items), 3464 push_items * sizeof(struct btrfs_item)); 3465 3466 /* update the item pointers */ 3467 right_nritems += push_items; 3468 btrfs_set_header_nritems(right, right_nritems); 3469 push_space = BTRFS_LEAF_DATA_SIZE(root); 3470 for (i = 0; i < right_nritems; i++) { 3471 item = btrfs_item_nr(right, i); 3472 push_space -= btrfs_token_item_size(right, item, &token); 3473 btrfs_set_token_item_offset(right, item, push_space, &token); 3474 } 3475 3476 left_nritems -= push_items; 3477 btrfs_set_header_nritems(left, left_nritems); 3478 3479 if (left_nritems) 3480 btrfs_mark_buffer_dirty(left); 3481 else 3482 clean_tree_block(trans, root, left); 3483 3484 btrfs_mark_buffer_dirty(right); 3485 3486 btrfs_item_key(right, &disk_key, 0); 3487 btrfs_set_node_key(upper, &disk_key, slot + 1); 3488 btrfs_mark_buffer_dirty(upper); 3489 3490 /* then fixup the leaf pointer in the path */ 3491 if (path->slots[0] >= left_nritems) { 3492 path->slots[0] -= left_nritems; 3493 if (btrfs_header_nritems(path->nodes[0]) == 0) 3494 clean_tree_block(trans, root, path->nodes[0]); 3495 btrfs_tree_unlock(path->nodes[0]); 3496 free_extent_buffer(path->nodes[0]); 3497 path->nodes[0] = right; 3498 path->slots[1] += 1; 3499 } else { 3500 btrfs_tree_unlock(right); 3501 free_extent_buffer(right); 3502 } 3503 return 0; 3504 3505 out_unlock: 3506 btrfs_tree_unlock(right); 3507 free_extent_buffer(right); 3508 return 1; 3509 } 3510 3511 /* 3512 * push some data in the path leaf to the right, trying to free up at 3513 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3514 * 3515 * returns 1 if the push failed because the other node didn't have enough 3516 * room, 0 if everything worked out and < 0 if there were major errors. 3517 * 3518 * this will push starting from min_slot to the end of the leaf. It won't 3519 * push any slot lower than min_slot 3520 */ 3521 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3522 *root, struct btrfs_path *path, 3523 int min_data_size, int data_size, 3524 int empty, u32 min_slot) 3525 { 3526 struct extent_buffer *left = path->nodes[0]; 3527 struct extent_buffer *right; 3528 struct extent_buffer *upper; 3529 int slot; 3530 int free_space; 3531 u32 left_nritems; 3532 int ret; 3533 3534 if (!path->nodes[1]) 3535 return 1; 3536 3537 slot = path->slots[1]; 3538 upper = path->nodes[1]; 3539 if (slot >= btrfs_header_nritems(upper) - 1) 3540 return 1; 3541 3542 btrfs_assert_tree_locked(path->nodes[1]); 3543 3544 right = read_node_slot(root, upper, slot + 1); 3545 if (right == NULL) 3546 return 1; 3547 3548 btrfs_tree_lock(right); 3549 btrfs_set_lock_blocking(right); 3550 3551 free_space = btrfs_leaf_free_space(root, right); 3552 if (free_space < data_size) 3553 goto out_unlock; 3554 3555 /* cow and double check */ 3556 ret = btrfs_cow_block(trans, root, right, upper, 3557 slot + 1, &right); 3558 if (ret) 3559 goto out_unlock; 3560 3561 free_space = btrfs_leaf_free_space(root, right); 3562 if (free_space < data_size) 3563 goto out_unlock; 3564 3565 left_nritems = btrfs_header_nritems(left); 3566 if (left_nritems == 0) 3567 goto out_unlock; 3568 3569 return __push_leaf_right(trans, root, path, min_data_size, empty, 3570 right, free_space, left_nritems, min_slot); 3571 out_unlock: 3572 btrfs_tree_unlock(right); 3573 free_extent_buffer(right); 3574 return 1; 3575 } 3576 3577 /* 3578 * push some data in the path leaf to the left, trying to free up at 3579 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3580 * 3581 * max_slot can put a limit on how far into the leaf we'll push items. The 3582 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3583 * items 3584 */ 3585 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3586 struct btrfs_root *root, 3587 struct btrfs_path *path, int data_size, 3588 int empty, struct extent_buffer *left, 3589 int free_space, u32 right_nritems, 3590 u32 max_slot) 3591 { 3592 struct btrfs_disk_key disk_key; 3593 struct extent_buffer *right = path->nodes[0]; 3594 int i; 3595 int push_space = 0; 3596 int push_items = 0; 3597 struct btrfs_item *item; 3598 u32 old_left_nritems; 3599 u32 nr; 3600 int ret = 0; 3601 u32 this_item_size; 3602 u32 old_left_item_size; 3603 struct btrfs_map_token token; 3604 3605 btrfs_init_map_token(&token); 3606 3607 if (empty) 3608 nr = min(right_nritems, max_slot); 3609 else 3610 nr = min(right_nritems - 1, max_slot); 3611 3612 for (i = 0; i < nr; i++) { 3613 item = btrfs_item_nr(right, i); 3614 3615 if (!empty && push_items > 0) { 3616 if (path->slots[0] < i) 3617 break; 3618 if (path->slots[0] == i) { 3619 int space = btrfs_leaf_free_space(root, right); 3620 if (space + push_space * 2 > free_space) 3621 break; 3622 } 3623 } 3624 3625 if (path->slots[0] == i) 3626 push_space += data_size; 3627 3628 this_item_size = btrfs_item_size(right, item); 3629 if (this_item_size + sizeof(*item) + push_space > free_space) 3630 break; 3631 3632 push_items++; 3633 push_space += this_item_size + sizeof(*item); 3634 } 3635 3636 if (push_items == 0) { 3637 ret = 1; 3638 goto out; 3639 } 3640 if (!empty && push_items == btrfs_header_nritems(right)) 3641 WARN_ON(1); 3642 3643 /* push data from right to left */ 3644 copy_extent_buffer(left, right, 3645 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3646 btrfs_item_nr_offset(0), 3647 push_items * sizeof(struct btrfs_item)); 3648 3649 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3650 btrfs_item_offset_nr(right, push_items - 1); 3651 3652 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3653 leaf_data_end(root, left) - push_space, 3654 btrfs_leaf_data(right) + 3655 btrfs_item_offset_nr(right, push_items - 1), 3656 push_space); 3657 old_left_nritems = btrfs_header_nritems(left); 3658 BUG_ON(old_left_nritems <= 0); 3659 3660 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3661 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3662 u32 ioff; 3663 3664 item = btrfs_item_nr(left, i); 3665 3666 ioff = btrfs_token_item_offset(left, item, &token); 3667 btrfs_set_token_item_offset(left, item, 3668 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3669 &token); 3670 } 3671 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3672 3673 /* fixup right node */ 3674 if (push_items > right_nritems) 3675 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3676 right_nritems); 3677 3678 if (push_items < right_nritems) { 3679 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3680 leaf_data_end(root, right); 3681 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3682 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3683 btrfs_leaf_data(right) + 3684 leaf_data_end(root, right), push_space); 3685 3686 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3687 btrfs_item_nr_offset(push_items), 3688 (btrfs_header_nritems(right) - push_items) * 3689 sizeof(struct btrfs_item)); 3690 } 3691 right_nritems -= push_items; 3692 btrfs_set_header_nritems(right, right_nritems); 3693 push_space = BTRFS_LEAF_DATA_SIZE(root); 3694 for (i = 0; i < right_nritems; i++) { 3695 item = btrfs_item_nr(right, i); 3696 3697 push_space = push_space - btrfs_token_item_size(right, 3698 item, &token); 3699 btrfs_set_token_item_offset(right, item, push_space, &token); 3700 } 3701 3702 btrfs_mark_buffer_dirty(left); 3703 if (right_nritems) 3704 btrfs_mark_buffer_dirty(right); 3705 else 3706 clean_tree_block(trans, root, right); 3707 3708 btrfs_item_key(right, &disk_key, 0); 3709 fixup_low_keys(root, path, &disk_key, 1); 3710 3711 /* then fixup the leaf pointer in the path */ 3712 if (path->slots[0] < push_items) { 3713 path->slots[0] += old_left_nritems; 3714 btrfs_tree_unlock(path->nodes[0]); 3715 free_extent_buffer(path->nodes[0]); 3716 path->nodes[0] = left; 3717 path->slots[1] -= 1; 3718 } else { 3719 btrfs_tree_unlock(left); 3720 free_extent_buffer(left); 3721 path->slots[0] -= push_items; 3722 } 3723 BUG_ON(path->slots[0] < 0); 3724 return ret; 3725 out: 3726 btrfs_tree_unlock(left); 3727 free_extent_buffer(left); 3728 return ret; 3729 } 3730 3731 /* 3732 * push some data in the path leaf to the left, trying to free up at 3733 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3734 * 3735 * max_slot can put a limit on how far into the leaf we'll push items. The 3736 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3737 * items 3738 */ 3739 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3740 *root, struct btrfs_path *path, int min_data_size, 3741 int data_size, int empty, u32 max_slot) 3742 { 3743 struct extent_buffer *right = path->nodes[0]; 3744 struct extent_buffer *left; 3745 int slot; 3746 int free_space; 3747 u32 right_nritems; 3748 int ret = 0; 3749 3750 slot = path->slots[1]; 3751 if (slot == 0) 3752 return 1; 3753 if (!path->nodes[1]) 3754 return 1; 3755 3756 right_nritems = btrfs_header_nritems(right); 3757 if (right_nritems == 0) 3758 return 1; 3759 3760 btrfs_assert_tree_locked(path->nodes[1]); 3761 3762 left = read_node_slot(root, path->nodes[1], slot - 1); 3763 if (left == NULL) 3764 return 1; 3765 3766 btrfs_tree_lock(left); 3767 btrfs_set_lock_blocking(left); 3768 3769 free_space = btrfs_leaf_free_space(root, left); 3770 if (free_space < data_size) { 3771 ret = 1; 3772 goto out; 3773 } 3774 3775 /* cow and double check */ 3776 ret = btrfs_cow_block(trans, root, left, 3777 path->nodes[1], slot - 1, &left); 3778 if (ret) { 3779 /* we hit -ENOSPC, but it isn't fatal here */ 3780 if (ret == -ENOSPC) 3781 ret = 1; 3782 goto out; 3783 } 3784 3785 free_space = btrfs_leaf_free_space(root, left); 3786 if (free_space < data_size) { 3787 ret = 1; 3788 goto out; 3789 } 3790 3791 return __push_leaf_left(trans, root, path, min_data_size, 3792 empty, left, free_space, right_nritems, 3793 max_slot); 3794 out: 3795 btrfs_tree_unlock(left); 3796 free_extent_buffer(left); 3797 return ret; 3798 } 3799 3800 /* 3801 * split the path's leaf in two, making sure there is at least data_size 3802 * available for the resulting leaf level of the path. 3803 */ 3804 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3805 struct btrfs_root *root, 3806 struct btrfs_path *path, 3807 struct extent_buffer *l, 3808 struct extent_buffer *right, 3809 int slot, int mid, int nritems) 3810 { 3811 int data_copy_size; 3812 int rt_data_off; 3813 int i; 3814 struct btrfs_disk_key disk_key; 3815 struct btrfs_map_token token; 3816 3817 btrfs_init_map_token(&token); 3818 3819 nritems = nritems - mid; 3820 btrfs_set_header_nritems(right, nritems); 3821 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 3822 3823 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3824 btrfs_item_nr_offset(mid), 3825 nritems * sizeof(struct btrfs_item)); 3826 3827 copy_extent_buffer(right, l, 3828 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 3829 data_copy_size, btrfs_leaf_data(l) + 3830 leaf_data_end(root, l), data_copy_size); 3831 3832 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 3833 btrfs_item_end_nr(l, mid); 3834 3835 for (i = 0; i < nritems; i++) { 3836 struct btrfs_item *item = btrfs_item_nr(right, i); 3837 u32 ioff; 3838 3839 ioff = btrfs_token_item_offset(right, item, &token); 3840 btrfs_set_token_item_offset(right, item, 3841 ioff + rt_data_off, &token); 3842 } 3843 3844 btrfs_set_header_nritems(l, mid); 3845 btrfs_item_key(right, &disk_key, 0); 3846 insert_ptr(trans, root, path, &disk_key, right->start, 3847 path->slots[1] + 1, 1); 3848 3849 btrfs_mark_buffer_dirty(right); 3850 btrfs_mark_buffer_dirty(l); 3851 BUG_ON(path->slots[0] != slot); 3852 3853 if (mid <= slot) { 3854 btrfs_tree_unlock(path->nodes[0]); 3855 free_extent_buffer(path->nodes[0]); 3856 path->nodes[0] = right; 3857 path->slots[0] -= mid; 3858 path->slots[1] += 1; 3859 } else { 3860 btrfs_tree_unlock(right); 3861 free_extent_buffer(right); 3862 } 3863 3864 BUG_ON(path->slots[0] < 0); 3865 } 3866 3867 /* 3868 * double splits happen when we need to insert a big item in the middle 3869 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3870 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3871 * A B C 3872 * 3873 * We avoid this by trying to push the items on either side of our target 3874 * into the adjacent leaves. If all goes well we can avoid the double split 3875 * completely. 3876 */ 3877 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3878 struct btrfs_root *root, 3879 struct btrfs_path *path, 3880 int data_size) 3881 { 3882 int ret; 3883 int progress = 0; 3884 int slot; 3885 u32 nritems; 3886 3887 slot = path->slots[0]; 3888 3889 /* 3890 * try to push all the items after our slot into the 3891 * right leaf 3892 */ 3893 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 3894 if (ret < 0) 3895 return ret; 3896 3897 if (ret == 0) 3898 progress++; 3899 3900 nritems = btrfs_header_nritems(path->nodes[0]); 3901 /* 3902 * our goal is to get our slot at the start or end of a leaf. If 3903 * we've done so we're done 3904 */ 3905 if (path->slots[0] == 0 || path->slots[0] == nritems) 3906 return 0; 3907 3908 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3909 return 0; 3910 3911 /* try to push all the items before our slot into the next leaf */ 3912 slot = path->slots[0]; 3913 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 3914 if (ret < 0) 3915 return ret; 3916 3917 if (ret == 0) 3918 progress++; 3919 3920 if (progress) 3921 return 0; 3922 return 1; 3923 } 3924 3925 /* 3926 * split the path's leaf in two, making sure there is at least data_size 3927 * available for the resulting leaf level of the path. 3928 * 3929 * returns 0 if all went well and < 0 on failure. 3930 */ 3931 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3932 struct btrfs_root *root, 3933 struct btrfs_key *ins_key, 3934 struct btrfs_path *path, int data_size, 3935 int extend) 3936 { 3937 struct btrfs_disk_key disk_key; 3938 struct extent_buffer *l; 3939 u32 nritems; 3940 int mid; 3941 int slot; 3942 struct extent_buffer *right; 3943 int ret = 0; 3944 int wret; 3945 int split; 3946 int num_doubles = 0; 3947 int tried_avoid_double = 0; 3948 3949 l = path->nodes[0]; 3950 slot = path->slots[0]; 3951 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3952 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 3953 return -EOVERFLOW; 3954 3955 /* first try to make some room by pushing left and right */ 3956 if (data_size && path->nodes[1]) { 3957 wret = push_leaf_right(trans, root, path, data_size, 3958 data_size, 0, 0); 3959 if (wret < 0) 3960 return wret; 3961 if (wret) { 3962 wret = push_leaf_left(trans, root, path, data_size, 3963 data_size, 0, (u32)-1); 3964 if (wret < 0) 3965 return wret; 3966 } 3967 l = path->nodes[0]; 3968 3969 /* did the pushes work? */ 3970 if (btrfs_leaf_free_space(root, l) >= data_size) 3971 return 0; 3972 } 3973 3974 if (!path->nodes[1]) { 3975 ret = insert_new_root(trans, root, path, 1); 3976 if (ret) 3977 return ret; 3978 } 3979 again: 3980 split = 1; 3981 l = path->nodes[0]; 3982 slot = path->slots[0]; 3983 nritems = btrfs_header_nritems(l); 3984 mid = (nritems + 1) / 2; 3985 3986 if (mid <= slot) { 3987 if (nritems == 1 || 3988 leaf_space_used(l, mid, nritems - mid) + data_size > 3989 BTRFS_LEAF_DATA_SIZE(root)) { 3990 if (slot >= nritems) { 3991 split = 0; 3992 } else { 3993 mid = slot; 3994 if (mid != nritems && 3995 leaf_space_used(l, mid, nritems - mid) + 3996 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3997 if (data_size && !tried_avoid_double) 3998 goto push_for_double; 3999 split = 2; 4000 } 4001 } 4002 } 4003 } else { 4004 if (leaf_space_used(l, 0, mid) + data_size > 4005 BTRFS_LEAF_DATA_SIZE(root)) { 4006 if (!extend && data_size && slot == 0) { 4007 split = 0; 4008 } else if ((extend || !data_size) && slot == 0) { 4009 mid = 1; 4010 } else { 4011 mid = slot; 4012 if (mid != nritems && 4013 leaf_space_used(l, mid, nritems - mid) + 4014 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4015 if (data_size && !tried_avoid_double) 4016 goto push_for_double; 4017 split = 2 ; 4018 } 4019 } 4020 } 4021 } 4022 4023 if (split == 0) 4024 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4025 else 4026 btrfs_item_key(l, &disk_key, mid); 4027 4028 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 4029 root->root_key.objectid, 4030 &disk_key, 0, l->start, 0); 4031 if (IS_ERR(right)) 4032 return PTR_ERR(right); 4033 4034 root_add_used(root, root->leafsize); 4035 4036 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4037 btrfs_set_header_bytenr(right, right->start); 4038 btrfs_set_header_generation(right, trans->transid); 4039 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4040 btrfs_set_header_owner(right, root->root_key.objectid); 4041 btrfs_set_header_level(right, 0); 4042 write_extent_buffer(right, root->fs_info->fsid, 4043 (unsigned long)btrfs_header_fsid(right), 4044 BTRFS_FSID_SIZE); 4045 4046 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 4047 (unsigned long)btrfs_header_chunk_tree_uuid(right), 4048 BTRFS_UUID_SIZE); 4049 4050 if (split == 0) { 4051 if (mid <= slot) { 4052 btrfs_set_header_nritems(right, 0); 4053 insert_ptr(trans, root, path, &disk_key, right->start, 4054 path->slots[1] + 1, 1); 4055 btrfs_tree_unlock(path->nodes[0]); 4056 free_extent_buffer(path->nodes[0]); 4057 path->nodes[0] = right; 4058 path->slots[0] = 0; 4059 path->slots[1] += 1; 4060 } else { 4061 btrfs_set_header_nritems(right, 0); 4062 insert_ptr(trans, root, path, &disk_key, right->start, 4063 path->slots[1], 1); 4064 btrfs_tree_unlock(path->nodes[0]); 4065 free_extent_buffer(path->nodes[0]); 4066 path->nodes[0] = right; 4067 path->slots[0] = 0; 4068 if (path->slots[1] == 0) 4069 fixup_low_keys(root, path, &disk_key, 1); 4070 } 4071 btrfs_mark_buffer_dirty(right); 4072 return ret; 4073 } 4074 4075 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4076 4077 if (split == 2) { 4078 BUG_ON(num_doubles != 0); 4079 num_doubles++; 4080 goto again; 4081 } 4082 4083 return 0; 4084 4085 push_for_double: 4086 push_for_double_split(trans, root, path, data_size); 4087 tried_avoid_double = 1; 4088 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4089 return 0; 4090 goto again; 4091 } 4092 4093 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4094 struct btrfs_root *root, 4095 struct btrfs_path *path, int ins_len) 4096 { 4097 struct btrfs_key key; 4098 struct extent_buffer *leaf; 4099 struct btrfs_file_extent_item *fi; 4100 u64 extent_len = 0; 4101 u32 item_size; 4102 int ret; 4103 4104 leaf = path->nodes[0]; 4105 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4106 4107 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4108 key.type != BTRFS_EXTENT_CSUM_KEY); 4109 4110 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4111 return 0; 4112 4113 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4114 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4115 fi = btrfs_item_ptr(leaf, path->slots[0], 4116 struct btrfs_file_extent_item); 4117 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4118 } 4119 btrfs_release_path(path); 4120 4121 path->keep_locks = 1; 4122 path->search_for_split = 1; 4123 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4124 path->search_for_split = 0; 4125 if (ret < 0) 4126 goto err; 4127 4128 ret = -EAGAIN; 4129 leaf = path->nodes[0]; 4130 /* if our item isn't there or got smaller, return now */ 4131 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4132 goto err; 4133 4134 /* the leaf has changed, it now has room. return now */ 4135 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4136 goto err; 4137 4138 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4139 fi = btrfs_item_ptr(leaf, path->slots[0], 4140 struct btrfs_file_extent_item); 4141 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4142 goto err; 4143 } 4144 4145 btrfs_set_path_blocking(path); 4146 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4147 if (ret) 4148 goto err; 4149 4150 path->keep_locks = 0; 4151 btrfs_unlock_up_safe(path, 1); 4152 return 0; 4153 err: 4154 path->keep_locks = 0; 4155 return ret; 4156 } 4157 4158 static noinline int split_item(struct btrfs_trans_handle *trans, 4159 struct btrfs_root *root, 4160 struct btrfs_path *path, 4161 struct btrfs_key *new_key, 4162 unsigned long split_offset) 4163 { 4164 struct extent_buffer *leaf; 4165 struct btrfs_item *item; 4166 struct btrfs_item *new_item; 4167 int slot; 4168 char *buf; 4169 u32 nritems; 4170 u32 item_size; 4171 u32 orig_offset; 4172 struct btrfs_disk_key disk_key; 4173 4174 leaf = path->nodes[0]; 4175 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4176 4177 btrfs_set_path_blocking(path); 4178 4179 item = btrfs_item_nr(leaf, path->slots[0]); 4180 orig_offset = btrfs_item_offset(leaf, item); 4181 item_size = btrfs_item_size(leaf, item); 4182 4183 buf = kmalloc(item_size, GFP_NOFS); 4184 if (!buf) 4185 return -ENOMEM; 4186 4187 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4188 path->slots[0]), item_size); 4189 4190 slot = path->slots[0] + 1; 4191 nritems = btrfs_header_nritems(leaf); 4192 if (slot != nritems) { 4193 /* shift the items */ 4194 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4195 btrfs_item_nr_offset(slot), 4196 (nritems - slot) * sizeof(struct btrfs_item)); 4197 } 4198 4199 btrfs_cpu_key_to_disk(&disk_key, new_key); 4200 btrfs_set_item_key(leaf, &disk_key, slot); 4201 4202 new_item = btrfs_item_nr(leaf, slot); 4203 4204 btrfs_set_item_offset(leaf, new_item, orig_offset); 4205 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4206 4207 btrfs_set_item_offset(leaf, item, 4208 orig_offset + item_size - split_offset); 4209 btrfs_set_item_size(leaf, item, split_offset); 4210 4211 btrfs_set_header_nritems(leaf, nritems + 1); 4212 4213 /* write the data for the start of the original item */ 4214 write_extent_buffer(leaf, buf, 4215 btrfs_item_ptr_offset(leaf, path->slots[0]), 4216 split_offset); 4217 4218 /* write the data for the new item */ 4219 write_extent_buffer(leaf, buf + split_offset, 4220 btrfs_item_ptr_offset(leaf, slot), 4221 item_size - split_offset); 4222 btrfs_mark_buffer_dirty(leaf); 4223 4224 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4225 kfree(buf); 4226 return 0; 4227 } 4228 4229 /* 4230 * This function splits a single item into two items, 4231 * giving 'new_key' to the new item and splitting the 4232 * old one at split_offset (from the start of the item). 4233 * 4234 * The path may be released by this operation. After 4235 * the split, the path is pointing to the old item. The 4236 * new item is going to be in the same node as the old one. 4237 * 4238 * Note, the item being split must be smaller enough to live alone on 4239 * a tree block with room for one extra struct btrfs_item 4240 * 4241 * This allows us to split the item in place, keeping a lock on the 4242 * leaf the entire time. 4243 */ 4244 int btrfs_split_item(struct btrfs_trans_handle *trans, 4245 struct btrfs_root *root, 4246 struct btrfs_path *path, 4247 struct btrfs_key *new_key, 4248 unsigned long split_offset) 4249 { 4250 int ret; 4251 ret = setup_leaf_for_split(trans, root, path, 4252 sizeof(struct btrfs_item)); 4253 if (ret) 4254 return ret; 4255 4256 ret = split_item(trans, root, path, new_key, split_offset); 4257 return ret; 4258 } 4259 4260 /* 4261 * This function duplicate a item, giving 'new_key' to the new item. 4262 * It guarantees both items live in the same tree leaf and the new item 4263 * is contiguous with the original item. 4264 * 4265 * This allows us to split file extent in place, keeping a lock on the 4266 * leaf the entire time. 4267 */ 4268 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4269 struct btrfs_root *root, 4270 struct btrfs_path *path, 4271 struct btrfs_key *new_key) 4272 { 4273 struct extent_buffer *leaf; 4274 int ret; 4275 u32 item_size; 4276 4277 leaf = path->nodes[0]; 4278 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4279 ret = setup_leaf_for_split(trans, root, path, 4280 item_size + sizeof(struct btrfs_item)); 4281 if (ret) 4282 return ret; 4283 4284 path->slots[0]++; 4285 setup_items_for_insert(root, path, new_key, &item_size, 4286 item_size, item_size + 4287 sizeof(struct btrfs_item), 1); 4288 leaf = path->nodes[0]; 4289 memcpy_extent_buffer(leaf, 4290 btrfs_item_ptr_offset(leaf, path->slots[0]), 4291 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4292 item_size); 4293 return 0; 4294 } 4295 4296 /* 4297 * make the item pointed to by the path smaller. new_size indicates 4298 * how small to make it, and from_end tells us if we just chop bytes 4299 * off the end of the item or if we shift the item to chop bytes off 4300 * the front. 4301 */ 4302 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4303 u32 new_size, int from_end) 4304 { 4305 int slot; 4306 struct extent_buffer *leaf; 4307 struct btrfs_item *item; 4308 u32 nritems; 4309 unsigned int data_end; 4310 unsigned int old_data_start; 4311 unsigned int old_size; 4312 unsigned int size_diff; 4313 int i; 4314 struct btrfs_map_token token; 4315 4316 btrfs_init_map_token(&token); 4317 4318 leaf = path->nodes[0]; 4319 slot = path->slots[0]; 4320 4321 old_size = btrfs_item_size_nr(leaf, slot); 4322 if (old_size == new_size) 4323 return; 4324 4325 nritems = btrfs_header_nritems(leaf); 4326 data_end = leaf_data_end(root, leaf); 4327 4328 old_data_start = btrfs_item_offset_nr(leaf, slot); 4329 4330 size_diff = old_size - new_size; 4331 4332 BUG_ON(slot < 0); 4333 BUG_ON(slot >= nritems); 4334 4335 /* 4336 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4337 */ 4338 /* first correct the data pointers */ 4339 for (i = slot; i < nritems; i++) { 4340 u32 ioff; 4341 item = btrfs_item_nr(leaf, i); 4342 4343 ioff = btrfs_token_item_offset(leaf, item, &token); 4344 btrfs_set_token_item_offset(leaf, item, 4345 ioff + size_diff, &token); 4346 } 4347 4348 /* shift the data */ 4349 if (from_end) { 4350 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4351 data_end + size_diff, btrfs_leaf_data(leaf) + 4352 data_end, old_data_start + new_size - data_end); 4353 } else { 4354 struct btrfs_disk_key disk_key; 4355 u64 offset; 4356 4357 btrfs_item_key(leaf, &disk_key, slot); 4358 4359 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4360 unsigned long ptr; 4361 struct btrfs_file_extent_item *fi; 4362 4363 fi = btrfs_item_ptr(leaf, slot, 4364 struct btrfs_file_extent_item); 4365 fi = (struct btrfs_file_extent_item *)( 4366 (unsigned long)fi - size_diff); 4367 4368 if (btrfs_file_extent_type(leaf, fi) == 4369 BTRFS_FILE_EXTENT_INLINE) { 4370 ptr = btrfs_item_ptr_offset(leaf, slot); 4371 memmove_extent_buffer(leaf, ptr, 4372 (unsigned long)fi, 4373 offsetof(struct btrfs_file_extent_item, 4374 disk_bytenr)); 4375 } 4376 } 4377 4378 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4379 data_end + size_diff, btrfs_leaf_data(leaf) + 4380 data_end, old_data_start - data_end); 4381 4382 offset = btrfs_disk_key_offset(&disk_key); 4383 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4384 btrfs_set_item_key(leaf, &disk_key, slot); 4385 if (slot == 0) 4386 fixup_low_keys(root, path, &disk_key, 1); 4387 } 4388 4389 item = btrfs_item_nr(leaf, slot); 4390 btrfs_set_item_size(leaf, item, new_size); 4391 btrfs_mark_buffer_dirty(leaf); 4392 4393 if (btrfs_leaf_free_space(root, leaf) < 0) { 4394 btrfs_print_leaf(root, leaf); 4395 BUG(); 4396 } 4397 } 4398 4399 /* 4400 * make the item pointed to by the path bigger, data_size is the added size. 4401 */ 4402 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4403 u32 data_size) 4404 { 4405 int slot; 4406 struct extent_buffer *leaf; 4407 struct btrfs_item *item; 4408 u32 nritems; 4409 unsigned int data_end; 4410 unsigned int old_data; 4411 unsigned int old_size; 4412 int i; 4413 struct btrfs_map_token token; 4414 4415 btrfs_init_map_token(&token); 4416 4417 leaf = path->nodes[0]; 4418 4419 nritems = btrfs_header_nritems(leaf); 4420 data_end = leaf_data_end(root, leaf); 4421 4422 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4423 btrfs_print_leaf(root, leaf); 4424 BUG(); 4425 } 4426 slot = path->slots[0]; 4427 old_data = btrfs_item_end_nr(leaf, slot); 4428 4429 BUG_ON(slot < 0); 4430 if (slot >= nritems) { 4431 btrfs_print_leaf(root, leaf); 4432 printk(KERN_CRIT "slot %d too large, nritems %d\n", 4433 slot, nritems); 4434 BUG_ON(1); 4435 } 4436 4437 /* 4438 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4439 */ 4440 /* first correct the data pointers */ 4441 for (i = slot; i < nritems; i++) { 4442 u32 ioff; 4443 item = btrfs_item_nr(leaf, i); 4444 4445 ioff = btrfs_token_item_offset(leaf, item, &token); 4446 btrfs_set_token_item_offset(leaf, item, 4447 ioff - data_size, &token); 4448 } 4449 4450 /* shift the data */ 4451 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4452 data_end - data_size, btrfs_leaf_data(leaf) + 4453 data_end, old_data - data_end); 4454 4455 data_end = old_data; 4456 old_size = btrfs_item_size_nr(leaf, slot); 4457 item = btrfs_item_nr(leaf, slot); 4458 btrfs_set_item_size(leaf, item, old_size + data_size); 4459 btrfs_mark_buffer_dirty(leaf); 4460 4461 if (btrfs_leaf_free_space(root, leaf) < 0) { 4462 btrfs_print_leaf(root, leaf); 4463 BUG(); 4464 } 4465 } 4466 4467 /* 4468 * this is a helper for btrfs_insert_empty_items, the main goal here is 4469 * to save stack depth by doing the bulk of the work in a function 4470 * that doesn't call btrfs_search_slot 4471 */ 4472 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4473 struct btrfs_key *cpu_key, u32 *data_size, 4474 u32 total_data, u32 total_size, int nr) 4475 { 4476 struct btrfs_item *item; 4477 int i; 4478 u32 nritems; 4479 unsigned int data_end; 4480 struct btrfs_disk_key disk_key; 4481 struct extent_buffer *leaf; 4482 int slot; 4483 struct btrfs_map_token token; 4484 4485 btrfs_init_map_token(&token); 4486 4487 leaf = path->nodes[0]; 4488 slot = path->slots[0]; 4489 4490 nritems = btrfs_header_nritems(leaf); 4491 data_end = leaf_data_end(root, leaf); 4492 4493 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4494 btrfs_print_leaf(root, leaf); 4495 printk(KERN_CRIT "not enough freespace need %u have %d\n", 4496 total_size, btrfs_leaf_free_space(root, leaf)); 4497 BUG(); 4498 } 4499 4500 if (slot != nritems) { 4501 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4502 4503 if (old_data < data_end) { 4504 btrfs_print_leaf(root, leaf); 4505 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4506 slot, old_data, data_end); 4507 BUG_ON(1); 4508 } 4509 /* 4510 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4511 */ 4512 /* first correct the data pointers */ 4513 for (i = slot; i < nritems; i++) { 4514 u32 ioff; 4515 4516 item = btrfs_item_nr(leaf, i); 4517 ioff = btrfs_token_item_offset(leaf, item, &token); 4518 btrfs_set_token_item_offset(leaf, item, 4519 ioff - total_data, &token); 4520 } 4521 /* shift the items */ 4522 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4523 btrfs_item_nr_offset(slot), 4524 (nritems - slot) * sizeof(struct btrfs_item)); 4525 4526 /* shift the data */ 4527 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4528 data_end - total_data, btrfs_leaf_data(leaf) + 4529 data_end, old_data - data_end); 4530 data_end = old_data; 4531 } 4532 4533 /* setup the item for the new data */ 4534 for (i = 0; i < nr; i++) { 4535 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4536 btrfs_set_item_key(leaf, &disk_key, slot + i); 4537 item = btrfs_item_nr(leaf, slot + i); 4538 btrfs_set_token_item_offset(leaf, item, 4539 data_end - data_size[i], &token); 4540 data_end -= data_size[i]; 4541 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4542 } 4543 4544 btrfs_set_header_nritems(leaf, nritems + nr); 4545 4546 if (slot == 0) { 4547 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4548 fixup_low_keys(root, path, &disk_key, 1); 4549 } 4550 btrfs_unlock_up_safe(path, 1); 4551 btrfs_mark_buffer_dirty(leaf); 4552 4553 if (btrfs_leaf_free_space(root, leaf) < 0) { 4554 btrfs_print_leaf(root, leaf); 4555 BUG(); 4556 } 4557 } 4558 4559 /* 4560 * Given a key and some data, insert items into the tree. 4561 * This does all the path init required, making room in the tree if needed. 4562 */ 4563 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4564 struct btrfs_root *root, 4565 struct btrfs_path *path, 4566 struct btrfs_key *cpu_key, u32 *data_size, 4567 int nr) 4568 { 4569 int ret = 0; 4570 int slot; 4571 int i; 4572 u32 total_size = 0; 4573 u32 total_data = 0; 4574 4575 for (i = 0; i < nr; i++) 4576 total_data += data_size[i]; 4577 4578 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4579 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4580 if (ret == 0) 4581 return -EEXIST; 4582 if (ret < 0) 4583 return ret; 4584 4585 slot = path->slots[0]; 4586 BUG_ON(slot < 0); 4587 4588 setup_items_for_insert(root, path, cpu_key, data_size, 4589 total_data, total_size, nr); 4590 return 0; 4591 } 4592 4593 /* 4594 * Given a key and some data, insert an item into the tree. 4595 * This does all the path init required, making room in the tree if needed. 4596 */ 4597 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4598 *root, struct btrfs_key *cpu_key, void *data, u32 4599 data_size) 4600 { 4601 int ret = 0; 4602 struct btrfs_path *path; 4603 struct extent_buffer *leaf; 4604 unsigned long ptr; 4605 4606 path = btrfs_alloc_path(); 4607 if (!path) 4608 return -ENOMEM; 4609 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4610 if (!ret) { 4611 leaf = path->nodes[0]; 4612 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4613 write_extent_buffer(leaf, data, ptr, data_size); 4614 btrfs_mark_buffer_dirty(leaf); 4615 } 4616 btrfs_free_path(path); 4617 return ret; 4618 } 4619 4620 /* 4621 * delete the pointer from a given node. 4622 * 4623 * the tree should have been previously balanced so the deletion does not 4624 * empty a node. 4625 */ 4626 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4627 int level, int slot) 4628 { 4629 struct extent_buffer *parent = path->nodes[level]; 4630 u32 nritems; 4631 int ret; 4632 4633 nritems = btrfs_header_nritems(parent); 4634 if (slot != nritems - 1) { 4635 if (level) 4636 tree_mod_log_eb_move(root->fs_info, parent, slot, 4637 slot + 1, nritems - slot - 1); 4638 memmove_extent_buffer(parent, 4639 btrfs_node_key_ptr_offset(slot), 4640 btrfs_node_key_ptr_offset(slot + 1), 4641 sizeof(struct btrfs_key_ptr) * 4642 (nritems - slot - 1)); 4643 } else if (level) { 4644 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4645 MOD_LOG_KEY_REMOVE); 4646 BUG_ON(ret < 0); 4647 } 4648 4649 nritems--; 4650 btrfs_set_header_nritems(parent, nritems); 4651 if (nritems == 0 && parent == root->node) { 4652 BUG_ON(btrfs_header_level(root->node) != 1); 4653 /* just turn the root into a leaf and break */ 4654 btrfs_set_header_level(root->node, 0); 4655 } else if (slot == 0) { 4656 struct btrfs_disk_key disk_key; 4657 4658 btrfs_node_key(parent, &disk_key, 0); 4659 fixup_low_keys(root, path, &disk_key, level + 1); 4660 } 4661 btrfs_mark_buffer_dirty(parent); 4662 } 4663 4664 /* 4665 * a helper function to delete the leaf pointed to by path->slots[1] and 4666 * path->nodes[1]. 4667 * 4668 * This deletes the pointer in path->nodes[1] and frees the leaf 4669 * block extent. zero is returned if it all worked out, < 0 otherwise. 4670 * 4671 * The path must have already been setup for deleting the leaf, including 4672 * all the proper balancing. path->nodes[1] must be locked. 4673 */ 4674 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4675 struct btrfs_root *root, 4676 struct btrfs_path *path, 4677 struct extent_buffer *leaf) 4678 { 4679 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4680 del_ptr(root, path, 1, path->slots[1]); 4681 4682 /* 4683 * btrfs_free_extent is expensive, we want to make sure we 4684 * aren't holding any locks when we call it 4685 */ 4686 btrfs_unlock_up_safe(path, 0); 4687 4688 root_sub_used(root, leaf->len); 4689 4690 extent_buffer_get(leaf); 4691 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4692 free_extent_buffer_stale(leaf); 4693 } 4694 /* 4695 * delete the item at the leaf level in path. If that empties 4696 * the leaf, remove it from the tree 4697 */ 4698 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4699 struct btrfs_path *path, int slot, int nr) 4700 { 4701 struct extent_buffer *leaf; 4702 struct btrfs_item *item; 4703 int last_off; 4704 int dsize = 0; 4705 int ret = 0; 4706 int wret; 4707 int i; 4708 u32 nritems; 4709 struct btrfs_map_token token; 4710 4711 btrfs_init_map_token(&token); 4712 4713 leaf = path->nodes[0]; 4714 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4715 4716 for (i = 0; i < nr; i++) 4717 dsize += btrfs_item_size_nr(leaf, slot + i); 4718 4719 nritems = btrfs_header_nritems(leaf); 4720 4721 if (slot + nr != nritems) { 4722 int data_end = leaf_data_end(root, leaf); 4723 4724 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4725 data_end + dsize, 4726 btrfs_leaf_data(leaf) + data_end, 4727 last_off - data_end); 4728 4729 for (i = slot + nr; i < nritems; i++) { 4730 u32 ioff; 4731 4732 item = btrfs_item_nr(leaf, i); 4733 ioff = btrfs_token_item_offset(leaf, item, &token); 4734 btrfs_set_token_item_offset(leaf, item, 4735 ioff + dsize, &token); 4736 } 4737 4738 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4739 btrfs_item_nr_offset(slot + nr), 4740 sizeof(struct btrfs_item) * 4741 (nritems - slot - nr)); 4742 } 4743 btrfs_set_header_nritems(leaf, nritems - nr); 4744 nritems -= nr; 4745 4746 /* delete the leaf if we've emptied it */ 4747 if (nritems == 0) { 4748 if (leaf == root->node) { 4749 btrfs_set_header_level(leaf, 0); 4750 } else { 4751 btrfs_set_path_blocking(path); 4752 clean_tree_block(trans, root, leaf); 4753 btrfs_del_leaf(trans, root, path, leaf); 4754 } 4755 } else { 4756 int used = leaf_space_used(leaf, 0, nritems); 4757 if (slot == 0) { 4758 struct btrfs_disk_key disk_key; 4759 4760 btrfs_item_key(leaf, &disk_key, 0); 4761 fixup_low_keys(root, path, &disk_key, 1); 4762 } 4763 4764 /* delete the leaf if it is mostly empty */ 4765 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4766 /* push_leaf_left fixes the path. 4767 * make sure the path still points to our leaf 4768 * for possible call to del_ptr below 4769 */ 4770 slot = path->slots[1]; 4771 extent_buffer_get(leaf); 4772 4773 btrfs_set_path_blocking(path); 4774 wret = push_leaf_left(trans, root, path, 1, 1, 4775 1, (u32)-1); 4776 if (wret < 0 && wret != -ENOSPC) 4777 ret = wret; 4778 4779 if (path->nodes[0] == leaf && 4780 btrfs_header_nritems(leaf)) { 4781 wret = push_leaf_right(trans, root, path, 1, 4782 1, 1, 0); 4783 if (wret < 0 && wret != -ENOSPC) 4784 ret = wret; 4785 } 4786 4787 if (btrfs_header_nritems(leaf) == 0) { 4788 path->slots[1] = slot; 4789 btrfs_del_leaf(trans, root, path, leaf); 4790 free_extent_buffer(leaf); 4791 ret = 0; 4792 } else { 4793 /* if we're still in the path, make sure 4794 * we're dirty. Otherwise, one of the 4795 * push_leaf functions must have already 4796 * dirtied this buffer 4797 */ 4798 if (path->nodes[0] == leaf) 4799 btrfs_mark_buffer_dirty(leaf); 4800 free_extent_buffer(leaf); 4801 } 4802 } else { 4803 btrfs_mark_buffer_dirty(leaf); 4804 } 4805 } 4806 return ret; 4807 } 4808 4809 /* 4810 * search the tree again to find a leaf with lesser keys 4811 * returns 0 if it found something or 1 if there are no lesser leaves. 4812 * returns < 0 on io errors. 4813 * 4814 * This may release the path, and so you may lose any locks held at the 4815 * time you call it. 4816 */ 4817 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4818 { 4819 struct btrfs_key key; 4820 struct btrfs_disk_key found_key; 4821 int ret; 4822 4823 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4824 4825 if (key.offset > 0) 4826 key.offset--; 4827 else if (key.type > 0) 4828 key.type--; 4829 else if (key.objectid > 0) 4830 key.objectid--; 4831 else 4832 return 1; 4833 4834 btrfs_release_path(path); 4835 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4836 if (ret < 0) 4837 return ret; 4838 btrfs_item_key(path->nodes[0], &found_key, 0); 4839 ret = comp_keys(&found_key, &key); 4840 if (ret < 0) 4841 return 0; 4842 return 1; 4843 } 4844 4845 /* 4846 * A helper function to walk down the tree starting at min_key, and looking 4847 * for nodes or leaves that are have a minimum transaction id. 4848 * This is used by the btree defrag code, and tree logging 4849 * 4850 * This does not cow, but it does stuff the starting key it finds back 4851 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4852 * key and get a writable path. 4853 * 4854 * This does lock as it descends, and path->keep_locks should be set 4855 * to 1 by the caller. 4856 * 4857 * This honors path->lowest_level to prevent descent past a given level 4858 * of the tree. 4859 * 4860 * min_trans indicates the oldest transaction that you are interested 4861 * in walking through. Any nodes or leaves older than min_trans are 4862 * skipped over (without reading them). 4863 * 4864 * returns zero if something useful was found, < 0 on error and 1 if there 4865 * was nothing in the tree that matched the search criteria. 4866 */ 4867 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4868 struct btrfs_key *max_key, 4869 struct btrfs_path *path, 4870 u64 min_trans) 4871 { 4872 struct extent_buffer *cur; 4873 struct btrfs_key found_key; 4874 int slot; 4875 int sret; 4876 u32 nritems; 4877 int level; 4878 int ret = 1; 4879 4880 WARN_ON(!path->keep_locks); 4881 again: 4882 cur = btrfs_read_lock_root_node(root); 4883 level = btrfs_header_level(cur); 4884 WARN_ON(path->nodes[level]); 4885 path->nodes[level] = cur; 4886 path->locks[level] = BTRFS_READ_LOCK; 4887 4888 if (btrfs_header_generation(cur) < min_trans) { 4889 ret = 1; 4890 goto out; 4891 } 4892 while (1) { 4893 nritems = btrfs_header_nritems(cur); 4894 level = btrfs_header_level(cur); 4895 sret = bin_search(cur, min_key, level, &slot); 4896 4897 /* at the lowest level, we're done, setup the path and exit */ 4898 if (level == path->lowest_level) { 4899 if (slot >= nritems) 4900 goto find_next_key; 4901 ret = 0; 4902 path->slots[level] = slot; 4903 btrfs_item_key_to_cpu(cur, &found_key, slot); 4904 goto out; 4905 } 4906 if (sret && slot > 0) 4907 slot--; 4908 /* 4909 * check this node pointer against the min_trans parameters. 4910 * If it is too old, old, skip to the next one. 4911 */ 4912 while (slot < nritems) { 4913 u64 blockptr; 4914 u64 gen; 4915 4916 blockptr = btrfs_node_blockptr(cur, slot); 4917 gen = btrfs_node_ptr_generation(cur, slot); 4918 if (gen < min_trans) { 4919 slot++; 4920 continue; 4921 } 4922 break; 4923 } 4924 find_next_key: 4925 /* 4926 * we didn't find a candidate key in this node, walk forward 4927 * and find another one 4928 */ 4929 if (slot >= nritems) { 4930 path->slots[level] = slot; 4931 btrfs_set_path_blocking(path); 4932 sret = btrfs_find_next_key(root, path, min_key, level, 4933 min_trans); 4934 if (sret == 0) { 4935 btrfs_release_path(path); 4936 goto again; 4937 } else { 4938 goto out; 4939 } 4940 } 4941 /* save our key for returning back */ 4942 btrfs_node_key_to_cpu(cur, &found_key, slot); 4943 path->slots[level] = slot; 4944 if (level == path->lowest_level) { 4945 ret = 0; 4946 unlock_up(path, level, 1, 0, NULL); 4947 goto out; 4948 } 4949 btrfs_set_path_blocking(path); 4950 cur = read_node_slot(root, cur, slot); 4951 BUG_ON(!cur); /* -ENOMEM */ 4952 4953 btrfs_tree_read_lock(cur); 4954 4955 path->locks[level - 1] = BTRFS_READ_LOCK; 4956 path->nodes[level - 1] = cur; 4957 unlock_up(path, level, 1, 0, NULL); 4958 btrfs_clear_path_blocking(path, NULL, 0); 4959 } 4960 out: 4961 if (ret == 0) 4962 memcpy(min_key, &found_key, sizeof(found_key)); 4963 btrfs_set_path_blocking(path); 4964 return ret; 4965 } 4966 4967 static void tree_move_down(struct btrfs_root *root, 4968 struct btrfs_path *path, 4969 int *level, int root_level) 4970 { 4971 BUG_ON(*level == 0); 4972 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 4973 path->slots[*level]); 4974 path->slots[*level - 1] = 0; 4975 (*level)--; 4976 } 4977 4978 static int tree_move_next_or_upnext(struct btrfs_root *root, 4979 struct btrfs_path *path, 4980 int *level, int root_level) 4981 { 4982 int ret = 0; 4983 int nritems; 4984 nritems = btrfs_header_nritems(path->nodes[*level]); 4985 4986 path->slots[*level]++; 4987 4988 while (path->slots[*level] >= nritems) { 4989 if (*level == root_level) 4990 return -1; 4991 4992 /* move upnext */ 4993 path->slots[*level] = 0; 4994 free_extent_buffer(path->nodes[*level]); 4995 path->nodes[*level] = NULL; 4996 (*level)++; 4997 path->slots[*level]++; 4998 4999 nritems = btrfs_header_nritems(path->nodes[*level]); 5000 ret = 1; 5001 } 5002 return ret; 5003 } 5004 5005 /* 5006 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5007 * or down. 5008 */ 5009 static int tree_advance(struct btrfs_root *root, 5010 struct btrfs_path *path, 5011 int *level, int root_level, 5012 int allow_down, 5013 struct btrfs_key *key) 5014 { 5015 int ret; 5016 5017 if (*level == 0 || !allow_down) { 5018 ret = tree_move_next_or_upnext(root, path, level, root_level); 5019 } else { 5020 tree_move_down(root, path, level, root_level); 5021 ret = 0; 5022 } 5023 if (ret >= 0) { 5024 if (*level == 0) 5025 btrfs_item_key_to_cpu(path->nodes[*level], key, 5026 path->slots[*level]); 5027 else 5028 btrfs_node_key_to_cpu(path->nodes[*level], key, 5029 path->slots[*level]); 5030 } 5031 return ret; 5032 } 5033 5034 static int tree_compare_item(struct btrfs_root *left_root, 5035 struct btrfs_path *left_path, 5036 struct btrfs_path *right_path, 5037 char *tmp_buf) 5038 { 5039 int cmp; 5040 int len1, len2; 5041 unsigned long off1, off2; 5042 5043 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5044 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5045 if (len1 != len2) 5046 return 1; 5047 5048 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5049 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5050 right_path->slots[0]); 5051 5052 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5053 5054 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5055 if (cmp) 5056 return 1; 5057 return 0; 5058 } 5059 5060 #define ADVANCE 1 5061 #define ADVANCE_ONLY_NEXT -1 5062 5063 /* 5064 * This function compares two trees and calls the provided callback for 5065 * every changed/new/deleted item it finds. 5066 * If shared tree blocks are encountered, whole subtrees are skipped, making 5067 * the compare pretty fast on snapshotted subvolumes. 5068 * 5069 * This currently works on commit roots only. As commit roots are read only, 5070 * we don't do any locking. The commit roots are protected with transactions. 5071 * Transactions are ended and rejoined when a commit is tried in between. 5072 * 5073 * This function checks for modifications done to the trees while comparing. 5074 * If it detects a change, it aborts immediately. 5075 */ 5076 int btrfs_compare_trees(struct btrfs_root *left_root, 5077 struct btrfs_root *right_root, 5078 btrfs_changed_cb_t changed_cb, void *ctx) 5079 { 5080 int ret; 5081 int cmp; 5082 struct btrfs_trans_handle *trans = NULL; 5083 struct btrfs_path *left_path = NULL; 5084 struct btrfs_path *right_path = NULL; 5085 struct btrfs_key left_key; 5086 struct btrfs_key right_key; 5087 char *tmp_buf = NULL; 5088 int left_root_level; 5089 int right_root_level; 5090 int left_level; 5091 int right_level; 5092 int left_end_reached; 5093 int right_end_reached; 5094 int advance_left; 5095 int advance_right; 5096 u64 left_blockptr; 5097 u64 right_blockptr; 5098 u64 left_start_ctransid; 5099 u64 right_start_ctransid; 5100 u64 ctransid; 5101 5102 left_path = btrfs_alloc_path(); 5103 if (!left_path) { 5104 ret = -ENOMEM; 5105 goto out; 5106 } 5107 right_path = btrfs_alloc_path(); 5108 if (!right_path) { 5109 ret = -ENOMEM; 5110 goto out; 5111 } 5112 5113 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS); 5114 if (!tmp_buf) { 5115 ret = -ENOMEM; 5116 goto out; 5117 } 5118 5119 left_path->search_commit_root = 1; 5120 left_path->skip_locking = 1; 5121 right_path->search_commit_root = 1; 5122 right_path->skip_locking = 1; 5123 5124 spin_lock(&left_root->root_item_lock); 5125 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item); 5126 spin_unlock(&left_root->root_item_lock); 5127 5128 spin_lock(&right_root->root_item_lock); 5129 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item); 5130 spin_unlock(&right_root->root_item_lock); 5131 5132 trans = btrfs_join_transaction(left_root); 5133 if (IS_ERR(trans)) { 5134 ret = PTR_ERR(trans); 5135 trans = NULL; 5136 goto out; 5137 } 5138 5139 /* 5140 * Strategy: Go to the first items of both trees. Then do 5141 * 5142 * If both trees are at level 0 5143 * Compare keys of current items 5144 * If left < right treat left item as new, advance left tree 5145 * and repeat 5146 * If left > right treat right item as deleted, advance right tree 5147 * and repeat 5148 * If left == right do deep compare of items, treat as changed if 5149 * needed, advance both trees and repeat 5150 * If both trees are at the same level but not at level 0 5151 * Compare keys of current nodes/leafs 5152 * If left < right advance left tree and repeat 5153 * If left > right advance right tree and repeat 5154 * If left == right compare blockptrs of the next nodes/leafs 5155 * If they match advance both trees but stay at the same level 5156 * and repeat 5157 * If they don't match advance both trees while allowing to go 5158 * deeper and repeat 5159 * If tree levels are different 5160 * Advance the tree that needs it and repeat 5161 * 5162 * Advancing a tree means: 5163 * If we are at level 0, try to go to the next slot. If that's not 5164 * possible, go one level up and repeat. Stop when we found a level 5165 * where we could go to the next slot. We may at this point be on a 5166 * node or a leaf. 5167 * 5168 * If we are not at level 0 and not on shared tree blocks, go one 5169 * level deeper. 5170 * 5171 * If we are not at level 0 and on shared tree blocks, go one slot to 5172 * the right if possible or go up and right. 5173 */ 5174 5175 left_level = btrfs_header_level(left_root->commit_root); 5176 left_root_level = left_level; 5177 left_path->nodes[left_level] = left_root->commit_root; 5178 extent_buffer_get(left_path->nodes[left_level]); 5179 5180 right_level = btrfs_header_level(right_root->commit_root); 5181 right_root_level = right_level; 5182 right_path->nodes[right_level] = right_root->commit_root; 5183 extent_buffer_get(right_path->nodes[right_level]); 5184 5185 if (left_level == 0) 5186 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5187 &left_key, left_path->slots[left_level]); 5188 else 5189 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5190 &left_key, left_path->slots[left_level]); 5191 if (right_level == 0) 5192 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5193 &right_key, right_path->slots[right_level]); 5194 else 5195 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5196 &right_key, right_path->slots[right_level]); 5197 5198 left_end_reached = right_end_reached = 0; 5199 advance_left = advance_right = 0; 5200 5201 while (1) { 5202 /* 5203 * We need to make sure the transaction does not get committed 5204 * while we do anything on commit roots. This means, we need to 5205 * join and leave transactions for every item that we process. 5206 */ 5207 if (trans && btrfs_should_end_transaction(trans, left_root)) { 5208 btrfs_release_path(left_path); 5209 btrfs_release_path(right_path); 5210 5211 ret = btrfs_end_transaction(trans, left_root); 5212 trans = NULL; 5213 if (ret < 0) 5214 goto out; 5215 } 5216 /* now rejoin the transaction */ 5217 if (!trans) { 5218 trans = btrfs_join_transaction(left_root); 5219 if (IS_ERR(trans)) { 5220 ret = PTR_ERR(trans); 5221 trans = NULL; 5222 goto out; 5223 } 5224 5225 spin_lock(&left_root->root_item_lock); 5226 ctransid = btrfs_root_ctransid(&left_root->root_item); 5227 spin_unlock(&left_root->root_item_lock); 5228 if (ctransid != left_start_ctransid) 5229 left_start_ctransid = 0; 5230 5231 spin_lock(&right_root->root_item_lock); 5232 ctransid = btrfs_root_ctransid(&right_root->root_item); 5233 spin_unlock(&right_root->root_item_lock); 5234 if (ctransid != right_start_ctransid) 5235 right_start_ctransid = 0; 5236 5237 if (!left_start_ctransid || !right_start_ctransid) { 5238 WARN(1, KERN_WARNING 5239 "btrfs: btrfs_compare_tree detected " 5240 "a change in one of the trees while " 5241 "iterating. This is probably a " 5242 "bug.\n"); 5243 ret = -EIO; 5244 goto out; 5245 } 5246 5247 /* 5248 * the commit root may have changed, so start again 5249 * where we stopped 5250 */ 5251 left_path->lowest_level = left_level; 5252 right_path->lowest_level = right_level; 5253 ret = btrfs_search_slot(NULL, left_root, 5254 &left_key, left_path, 0, 0); 5255 if (ret < 0) 5256 goto out; 5257 ret = btrfs_search_slot(NULL, right_root, 5258 &right_key, right_path, 0, 0); 5259 if (ret < 0) 5260 goto out; 5261 } 5262 5263 if (advance_left && !left_end_reached) { 5264 ret = tree_advance(left_root, left_path, &left_level, 5265 left_root_level, 5266 advance_left != ADVANCE_ONLY_NEXT, 5267 &left_key); 5268 if (ret < 0) 5269 left_end_reached = ADVANCE; 5270 advance_left = 0; 5271 } 5272 if (advance_right && !right_end_reached) { 5273 ret = tree_advance(right_root, right_path, &right_level, 5274 right_root_level, 5275 advance_right != ADVANCE_ONLY_NEXT, 5276 &right_key); 5277 if (ret < 0) 5278 right_end_reached = ADVANCE; 5279 advance_right = 0; 5280 } 5281 5282 if (left_end_reached && right_end_reached) { 5283 ret = 0; 5284 goto out; 5285 } else if (left_end_reached) { 5286 if (right_level == 0) { 5287 ret = changed_cb(left_root, right_root, 5288 left_path, right_path, 5289 &right_key, 5290 BTRFS_COMPARE_TREE_DELETED, 5291 ctx); 5292 if (ret < 0) 5293 goto out; 5294 } 5295 advance_right = ADVANCE; 5296 continue; 5297 } else if (right_end_reached) { 5298 if (left_level == 0) { 5299 ret = changed_cb(left_root, right_root, 5300 left_path, right_path, 5301 &left_key, 5302 BTRFS_COMPARE_TREE_NEW, 5303 ctx); 5304 if (ret < 0) 5305 goto out; 5306 } 5307 advance_left = ADVANCE; 5308 continue; 5309 } 5310 5311 if (left_level == 0 && right_level == 0) { 5312 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5313 if (cmp < 0) { 5314 ret = changed_cb(left_root, right_root, 5315 left_path, right_path, 5316 &left_key, 5317 BTRFS_COMPARE_TREE_NEW, 5318 ctx); 5319 if (ret < 0) 5320 goto out; 5321 advance_left = ADVANCE; 5322 } else if (cmp > 0) { 5323 ret = changed_cb(left_root, right_root, 5324 left_path, right_path, 5325 &right_key, 5326 BTRFS_COMPARE_TREE_DELETED, 5327 ctx); 5328 if (ret < 0) 5329 goto out; 5330 advance_right = ADVANCE; 5331 } else { 5332 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5333 ret = tree_compare_item(left_root, left_path, 5334 right_path, tmp_buf); 5335 if (ret) { 5336 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5337 ret = changed_cb(left_root, right_root, 5338 left_path, right_path, 5339 &left_key, 5340 BTRFS_COMPARE_TREE_CHANGED, 5341 ctx); 5342 if (ret < 0) 5343 goto out; 5344 } 5345 advance_left = ADVANCE; 5346 advance_right = ADVANCE; 5347 } 5348 } else if (left_level == right_level) { 5349 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5350 if (cmp < 0) { 5351 advance_left = ADVANCE; 5352 } else if (cmp > 0) { 5353 advance_right = ADVANCE; 5354 } else { 5355 left_blockptr = btrfs_node_blockptr( 5356 left_path->nodes[left_level], 5357 left_path->slots[left_level]); 5358 right_blockptr = btrfs_node_blockptr( 5359 right_path->nodes[right_level], 5360 right_path->slots[right_level]); 5361 if (left_blockptr == right_blockptr) { 5362 /* 5363 * As we're on a shared block, don't 5364 * allow to go deeper. 5365 */ 5366 advance_left = ADVANCE_ONLY_NEXT; 5367 advance_right = ADVANCE_ONLY_NEXT; 5368 } else { 5369 advance_left = ADVANCE; 5370 advance_right = ADVANCE; 5371 } 5372 } 5373 } else if (left_level < right_level) { 5374 advance_right = ADVANCE; 5375 } else { 5376 advance_left = ADVANCE; 5377 } 5378 } 5379 5380 out: 5381 btrfs_free_path(left_path); 5382 btrfs_free_path(right_path); 5383 kfree(tmp_buf); 5384 5385 if (trans) { 5386 if (!ret) 5387 ret = btrfs_end_transaction(trans, left_root); 5388 else 5389 btrfs_end_transaction(trans, left_root); 5390 } 5391 5392 return ret; 5393 } 5394 5395 /* 5396 * this is similar to btrfs_next_leaf, but does not try to preserve 5397 * and fixup the path. It looks for and returns the next key in the 5398 * tree based on the current path and the min_trans parameters. 5399 * 5400 * 0 is returned if another key is found, < 0 if there are any errors 5401 * and 1 is returned if there are no higher keys in the tree 5402 * 5403 * path->keep_locks should be set to 1 on the search made before 5404 * calling this function. 5405 */ 5406 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5407 struct btrfs_key *key, int level, u64 min_trans) 5408 { 5409 int slot; 5410 struct extent_buffer *c; 5411 5412 WARN_ON(!path->keep_locks); 5413 while (level < BTRFS_MAX_LEVEL) { 5414 if (!path->nodes[level]) 5415 return 1; 5416 5417 slot = path->slots[level] + 1; 5418 c = path->nodes[level]; 5419 next: 5420 if (slot >= btrfs_header_nritems(c)) { 5421 int ret; 5422 int orig_lowest; 5423 struct btrfs_key cur_key; 5424 if (level + 1 >= BTRFS_MAX_LEVEL || 5425 !path->nodes[level + 1]) 5426 return 1; 5427 5428 if (path->locks[level + 1]) { 5429 level++; 5430 continue; 5431 } 5432 5433 slot = btrfs_header_nritems(c) - 1; 5434 if (level == 0) 5435 btrfs_item_key_to_cpu(c, &cur_key, slot); 5436 else 5437 btrfs_node_key_to_cpu(c, &cur_key, slot); 5438 5439 orig_lowest = path->lowest_level; 5440 btrfs_release_path(path); 5441 path->lowest_level = level; 5442 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5443 0, 0); 5444 path->lowest_level = orig_lowest; 5445 if (ret < 0) 5446 return ret; 5447 5448 c = path->nodes[level]; 5449 slot = path->slots[level]; 5450 if (ret == 0) 5451 slot++; 5452 goto next; 5453 } 5454 5455 if (level == 0) 5456 btrfs_item_key_to_cpu(c, key, slot); 5457 else { 5458 u64 gen = btrfs_node_ptr_generation(c, slot); 5459 5460 if (gen < min_trans) { 5461 slot++; 5462 goto next; 5463 } 5464 btrfs_node_key_to_cpu(c, key, slot); 5465 } 5466 return 0; 5467 } 5468 return 1; 5469 } 5470 5471 /* 5472 * search the tree again to find a leaf with greater keys 5473 * returns 0 if it found something or 1 if there are no greater leaves. 5474 * returns < 0 on io errors. 5475 */ 5476 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5477 { 5478 return btrfs_next_old_leaf(root, path, 0); 5479 } 5480 5481 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5482 u64 time_seq) 5483 { 5484 int slot; 5485 int level; 5486 struct extent_buffer *c; 5487 struct extent_buffer *next; 5488 struct btrfs_key key; 5489 u32 nritems; 5490 int ret; 5491 int old_spinning = path->leave_spinning; 5492 int next_rw_lock = 0; 5493 5494 nritems = btrfs_header_nritems(path->nodes[0]); 5495 if (nritems == 0) 5496 return 1; 5497 5498 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5499 again: 5500 level = 1; 5501 next = NULL; 5502 next_rw_lock = 0; 5503 btrfs_release_path(path); 5504 5505 path->keep_locks = 1; 5506 path->leave_spinning = 1; 5507 5508 if (time_seq) 5509 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5510 else 5511 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5512 path->keep_locks = 0; 5513 5514 if (ret < 0) 5515 return ret; 5516 5517 nritems = btrfs_header_nritems(path->nodes[0]); 5518 /* 5519 * by releasing the path above we dropped all our locks. A balance 5520 * could have added more items next to the key that used to be 5521 * at the very end of the block. So, check again here and 5522 * advance the path if there are now more items available. 5523 */ 5524 if (nritems > 0 && path->slots[0] < nritems - 1) { 5525 if (ret == 0) 5526 path->slots[0]++; 5527 ret = 0; 5528 goto done; 5529 } 5530 5531 while (level < BTRFS_MAX_LEVEL) { 5532 if (!path->nodes[level]) { 5533 ret = 1; 5534 goto done; 5535 } 5536 5537 slot = path->slots[level] + 1; 5538 c = path->nodes[level]; 5539 if (slot >= btrfs_header_nritems(c)) { 5540 level++; 5541 if (level == BTRFS_MAX_LEVEL) { 5542 ret = 1; 5543 goto done; 5544 } 5545 continue; 5546 } 5547 5548 if (next) { 5549 btrfs_tree_unlock_rw(next, next_rw_lock); 5550 free_extent_buffer(next); 5551 } 5552 5553 next = c; 5554 next_rw_lock = path->locks[level]; 5555 ret = read_block_for_search(NULL, root, path, &next, level, 5556 slot, &key, 0); 5557 if (ret == -EAGAIN) 5558 goto again; 5559 5560 if (ret < 0) { 5561 btrfs_release_path(path); 5562 goto done; 5563 } 5564 5565 if (!path->skip_locking) { 5566 ret = btrfs_try_tree_read_lock(next); 5567 if (!ret && time_seq) { 5568 /* 5569 * If we don't get the lock, we may be racing 5570 * with push_leaf_left, holding that lock while 5571 * itself waiting for the leaf we've currently 5572 * locked. To solve this situation, we give up 5573 * on our lock and cycle. 5574 */ 5575 free_extent_buffer(next); 5576 btrfs_release_path(path); 5577 cond_resched(); 5578 goto again; 5579 } 5580 if (!ret) { 5581 btrfs_set_path_blocking(path); 5582 btrfs_tree_read_lock(next); 5583 btrfs_clear_path_blocking(path, next, 5584 BTRFS_READ_LOCK); 5585 } 5586 next_rw_lock = BTRFS_READ_LOCK; 5587 } 5588 break; 5589 } 5590 path->slots[level] = slot; 5591 while (1) { 5592 level--; 5593 c = path->nodes[level]; 5594 if (path->locks[level]) 5595 btrfs_tree_unlock_rw(c, path->locks[level]); 5596 5597 free_extent_buffer(c); 5598 path->nodes[level] = next; 5599 path->slots[level] = 0; 5600 if (!path->skip_locking) 5601 path->locks[level] = next_rw_lock; 5602 if (!level) 5603 break; 5604 5605 ret = read_block_for_search(NULL, root, path, &next, level, 5606 0, &key, 0); 5607 if (ret == -EAGAIN) 5608 goto again; 5609 5610 if (ret < 0) { 5611 btrfs_release_path(path); 5612 goto done; 5613 } 5614 5615 if (!path->skip_locking) { 5616 ret = btrfs_try_tree_read_lock(next); 5617 if (!ret) { 5618 btrfs_set_path_blocking(path); 5619 btrfs_tree_read_lock(next); 5620 btrfs_clear_path_blocking(path, next, 5621 BTRFS_READ_LOCK); 5622 } 5623 next_rw_lock = BTRFS_READ_LOCK; 5624 } 5625 } 5626 ret = 0; 5627 done: 5628 unlock_up(path, 0, 1, 0, NULL); 5629 path->leave_spinning = old_spinning; 5630 if (!old_spinning) 5631 btrfs_set_path_blocking(path); 5632 5633 return ret; 5634 } 5635 5636 /* 5637 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5638 * searching until it gets past min_objectid or finds an item of 'type' 5639 * 5640 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5641 */ 5642 int btrfs_previous_item(struct btrfs_root *root, 5643 struct btrfs_path *path, u64 min_objectid, 5644 int type) 5645 { 5646 struct btrfs_key found_key; 5647 struct extent_buffer *leaf; 5648 u32 nritems; 5649 int ret; 5650 5651 while (1) { 5652 if (path->slots[0] == 0) { 5653 btrfs_set_path_blocking(path); 5654 ret = btrfs_prev_leaf(root, path); 5655 if (ret != 0) 5656 return ret; 5657 } else { 5658 path->slots[0]--; 5659 } 5660 leaf = path->nodes[0]; 5661 nritems = btrfs_header_nritems(leaf); 5662 if (nritems == 0) 5663 return 1; 5664 if (path->slots[0] == nritems) 5665 path->slots[0]--; 5666 5667 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5668 if (found_key.objectid < min_objectid) 5669 break; 5670 if (found_key.type == type) 5671 return 0; 5672 if (found_key.objectid == min_objectid && 5673 found_key.type < type) 5674 break; 5675 } 5676 return 1; 5677 } 5678