1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include <linux/error-injection.h> 11 #include "messages.h" 12 #include "ctree.h" 13 #include "disk-io.h" 14 #include "transaction.h" 15 #include "print-tree.h" 16 #include "locking.h" 17 #include "volumes.h" 18 #include "qgroup.h" 19 #include "tree-mod-log.h" 20 #include "tree-checker.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 #include "relocation.h" 25 #include "file-item.h" 26 27 static struct kmem_cache *btrfs_path_cachep; 28 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_path *path, int level); 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 32 const struct btrfs_key *ins_key, struct btrfs_path *path, 33 int data_size, int extend); 34 static int push_node_left(struct btrfs_trans_handle *trans, 35 struct extent_buffer *dst, 36 struct extent_buffer *src, int empty); 37 static int balance_node_right(struct btrfs_trans_handle *trans, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42 43 static const struct btrfs_csums { 44 u16 size; 45 const char name[10]; 46 const char driver[12]; 47 } btrfs_csums[] = { 48 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 49 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 50 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 51 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 52 .driver = "blake2b-256" }, 53 }; 54 55 /* 56 * The leaf data grows from end-to-front in the node. this returns the address 57 * of the start of the last item, which is the stop of the leaf data stack. 58 */ 59 static unsigned int leaf_data_end(const struct extent_buffer *leaf) 60 { 61 u32 nr = btrfs_header_nritems(leaf); 62 63 if (nr == 0) 64 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 65 return btrfs_item_offset(leaf, nr - 1); 66 } 67 68 /* 69 * Move data in a @leaf (using memmove, safe for overlapping ranges). 70 * 71 * @leaf: leaf that we're doing a memmove on 72 * @dst_offset: item data offset we're moving to 73 * @src_offset: item data offset were' moving from 74 * @len: length of the data we're moving 75 * 76 * Wrapper around memmove_extent_buffer() that takes into account the header on 77 * the leaf. The btrfs_item offset's start directly after the header, so we 78 * have to adjust any offsets to account for the header in the leaf. This 79 * handles that math to simplify the callers. 80 */ 81 static inline void memmove_leaf_data(const struct extent_buffer *leaf, 82 unsigned long dst_offset, 83 unsigned long src_offset, 84 unsigned long len) 85 { 86 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset, 87 btrfs_item_nr_offset(leaf, 0) + src_offset, len); 88 } 89 90 /* 91 * Copy item data from @src into @dst at the given @offset. 92 * 93 * @dst: destination leaf that we're copying into 94 * @src: source leaf that we're copying from 95 * @dst_offset: item data offset we're copying to 96 * @src_offset: item data offset were' copying from 97 * @len: length of the data we're copying 98 * 99 * Wrapper around copy_extent_buffer() that takes into account the header on 100 * the leaf. The btrfs_item offset's start directly after the header, so we 101 * have to adjust any offsets to account for the header in the leaf. This 102 * handles that math to simplify the callers. 103 */ 104 static inline void copy_leaf_data(const struct extent_buffer *dst, 105 const struct extent_buffer *src, 106 unsigned long dst_offset, 107 unsigned long src_offset, unsigned long len) 108 { 109 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset, 110 btrfs_item_nr_offset(src, 0) + src_offset, len); 111 } 112 113 /* 114 * Move items in a @leaf (using memmove). 115 * 116 * @dst: destination leaf for the items 117 * @dst_item: the item nr we're copying into 118 * @src_item: the item nr we're copying from 119 * @nr_items: the number of items to copy 120 * 121 * Wrapper around memmove_extent_buffer() that does the math to get the 122 * appropriate offsets into the leaf from the item numbers. 123 */ 124 static inline void memmove_leaf_items(const struct extent_buffer *leaf, 125 int dst_item, int src_item, int nr_items) 126 { 127 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item), 128 btrfs_item_nr_offset(leaf, src_item), 129 nr_items * sizeof(struct btrfs_item)); 130 } 131 132 /* 133 * Copy items from @src into @dst at the given @offset. 134 * 135 * @dst: destination leaf for the items 136 * @src: source leaf for the items 137 * @dst_item: the item nr we're copying into 138 * @src_item: the item nr we're copying from 139 * @nr_items: the number of items to copy 140 * 141 * Wrapper around copy_extent_buffer() that does the math to get the 142 * appropriate offsets into the leaf from the item numbers. 143 */ 144 static inline void copy_leaf_items(const struct extent_buffer *dst, 145 const struct extent_buffer *src, 146 int dst_item, int src_item, int nr_items) 147 { 148 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item), 149 btrfs_item_nr_offset(src, src_item), 150 nr_items * sizeof(struct btrfs_item)); 151 } 152 153 int btrfs_super_csum_size(const struct btrfs_super_block *s) 154 { 155 u16 t = btrfs_super_csum_type(s); 156 /* 157 * csum type is validated at mount time 158 */ 159 return btrfs_csums[t].size; 160 } 161 162 const char *btrfs_super_csum_name(u16 csum_type) 163 { 164 /* csum type is validated at mount time */ 165 return btrfs_csums[csum_type].name; 166 } 167 168 /* 169 * Return driver name if defined, otherwise the name that's also a valid driver 170 * name 171 */ 172 const char *btrfs_super_csum_driver(u16 csum_type) 173 { 174 /* csum type is validated at mount time */ 175 return btrfs_csums[csum_type].driver[0] ? 176 btrfs_csums[csum_type].driver : 177 btrfs_csums[csum_type].name; 178 } 179 180 size_t __attribute_const__ btrfs_get_num_csums(void) 181 { 182 return ARRAY_SIZE(btrfs_csums); 183 } 184 185 struct btrfs_path *btrfs_alloc_path(void) 186 { 187 might_sleep(); 188 189 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 190 } 191 192 /* this also releases the path */ 193 void btrfs_free_path(struct btrfs_path *p) 194 { 195 if (!p) 196 return; 197 btrfs_release_path(p); 198 kmem_cache_free(btrfs_path_cachep, p); 199 } 200 201 /* 202 * path release drops references on the extent buffers in the path 203 * and it drops any locks held by this path 204 * 205 * It is safe to call this on paths that no locks or extent buffers held. 206 */ 207 noinline void btrfs_release_path(struct btrfs_path *p) 208 { 209 int i; 210 211 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 212 p->slots[i] = 0; 213 if (!p->nodes[i]) 214 continue; 215 if (p->locks[i]) { 216 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 217 p->locks[i] = 0; 218 } 219 free_extent_buffer(p->nodes[i]); 220 p->nodes[i] = NULL; 221 } 222 } 223 224 /* 225 * We want the transaction abort to print stack trace only for errors where the 226 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are 227 * caused by external factors. 228 */ 229 bool __cold abort_should_print_stack(int errno) 230 { 231 switch (errno) { 232 case -EIO: 233 case -EROFS: 234 case -ENOMEM: 235 return false; 236 } 237 return true; 238 } 239 240 /* 241 * safely gets a reference on the root node of a tree. A lock 242 * is not taken, so a concurrent writer may put a different node 243 * at the root of the tree. See btrfs_lock_root_node for the 244 * looping required. 245 * 246 * The extent buffer returned by this has a reference taken, so 247 * it won't disappear. It may stop being the root of the tree 248 * at any time because there are no locks held. 249 */ 250 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 251 { 252 struct extent_buffer *eb; 253 254 while (1) { 255 rcu_read_lock(); 256 eb = rcu_dereference(root->node); 257 258 /* 259 * RCU really hurts here, we could free up the root node because 260 * it was COWed but we may not get the new root node yet so do 261 * the inc_not_zero dance and if it doesn't work then 262 * synchronize_rcu and try again. 263 */ 264 if (atomic_inc_not_zero(&eb->refs)) { 265 rcu_read_unlock(); 266 break; 267 } 268 rcu_read_unlock(); 269 synchronize_rcu(); 270 } 271 return eb; 272 } 273 274 /* 275 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 276 * just get put onto a simple dirty list. Transaction walks this list to make 277 * sure they get properly updated on disk. 278 */ 279 static void add_root_to_dirty_list(struct btrfs_root *root) 280 { 281 struct btrfs_fs_info *fs_info = root->fs_info; 282 283 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 284 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 285 return; 286 287 spin_lock(&fs_info->trans_lock); 288 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 289 /* Want the extent tree to be the last on the list */ 290 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 291 list_move_tail(&root->dirty_list, 292 &fs_info->dirty_cowonly_roots); 293 else 294 list_move(&root->dirty_list, 295 &fs_info->dirty_cowonly_roots); 296 } 297 spin_unlock(&fs_info->trans_lock); 298 } 299 300 /* 301 * used by snapshot creation to make a copy of a root for a tree with 302 * a given objectid. The buffer with the new root node is returned in 303 * cow_ret, and this func returns zero on success or a negative error code. 304 */ 305 int btrfs_copy_root(struct btrfs_trans_handle *trans, 306 struct btrfs_root *root, 307 struct extent_buffer *buf, 308 struct extent_buffer **cow_ret, u64 new_root_objectid) 309 { 310 struct btrfs_fs_info *fs_info = root->fs_info; 311 struct extent_buffer *cow; 312 int ret = 0; 313 int level; 314 struct btrfs_disk_key disk_key; 315 316 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 317 trans->transid != fs_info->running_transaction->transid); 318 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 319 trans->transid != root->last_trans); 320 321 level = btrfs_header_level(buf); 322 if (level == 0) 323 btrfs_item_key(buf, &disk_key, 0); 324 else 325 btrfs_node_key(buf, &disk_key, 0); 326 327 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 328 &disk_key, level, buf->start, 0, 329 BTRFS_NESTING_NEW_ROOT); 330 if (IS_ERR(cow)) 331 return PTR_ERR(cow); 332 333 copy_extent_buffer_full(cow, buf); 334 btrfs_set_header_bytenr(cow, cow->start); 335 btrfs_set_header_generation(cow, trans->transid); 336 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 337 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 338 BTRFS_HEADER_FLAG_RELOC); 339 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 340 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 341 else 342 btrfs_set_header_owner(cow, new_root_objectid); 343 344 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 345 346 WARN_ON(btrfs_header_generation(buf) > trans->transid); 347 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 348 ret = btrfs_inc_ref(trans, root, cow, 1); 349 else 350 ret = btrfs_inc_ref(trans, root, cow, 0); 351 if (ret) { 352 btrfs_tree_unlock(cow); 353 free_extent_buffer(cow); 354 btrfs_abort_transaction(trans, ret); 355 return ret; 356 } 357 358 btrfs_mark_buffer_dirty(cow); 359 *cow_ret = cow; 360 return 0; 361 } 362 363 /* 364 * check if the tree block can be shared by multiple trees 365 */ 366 int btrfs_block_can_be_shared(struct btrfs_root *root, 367 struct extent_buffer *buf) 368 { 369 /* 370 * Tree blocks not in shareable trees and tree roots are never shared. 371 * If a block was allocated after the last snapshot and the block was 372 * not allocated by tree relocation, we know the block is not shared. 373 */ 374 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 375 buf != root->node && buf != root->commit_root && 376 (btrfs_header_generation(buf) <= 377 btrfs_root_last_snapshot(&root->root_item) || 378 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 379 return 1; 380 381 return 0; 382 } 383 384 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 385 struct btrfs_root *root, 386 struct extent_buffer *buf, 387 struct extent_buffer *cow, 388 int *last_ref) 389 { 390 struct btrfs_fs_info *fs_info = root->fs_info; 391 u64 refs; 392 u64 owner; 393 u64 flags; 394 u64 new_flags = 0; 395 int ret; 396 397 /* 398 * Backrefs update rules: 399 * 400 * Always use full backrefs for extent pointers in tree block 401 * allocated by tree relocation. 402 * 403 * If a shared tree block is no longer referenced by its owner 404 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 405 * use full backrefs for extent pointers in tree block. 406 * 407 * If a tree block is been relocating 408 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 409 * use full backrefs for extent pointers in tree block. 410 * The reason for this is some operations (such as drop tree) 411 * are only allowed for blocks use full backrefs. 412 */ 413 414 if (btrfs_block_can_be_shared(root, buf)) { 415 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 416 btrfs_header_level(buf), 1, 417 &refs, &flags); 418 if (ret) 419 return ret; 420 if (refs == 0) { 421 ret = -EROFS; 422 btrfs_handle_fs_error(fs_info, ret, NULL); 423 return ret; 424 } 425 } else { 426 refs = 1; 427 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 428 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 429 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 430 else 431 flags = 0; 432 } 433 434 owner = btrfs_header_owner(buf); 435 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 436 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 437 438 if (refs > 1) { 439 if ((owner == root->root_key.objectid || 440 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 441 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 442 ret = btrfs_inc_ref(trans, root, buf, 1); 443 if (ret) 444 return ret; 445 446 if (root->root_key.objectid == 447 BTRFS_TREE_RELOC_OBJECTID) { 448 ret = btrfs_dec_ref(trans, root, buf, 0); 449 if (ret) 450 return ret; 451 ret = btrfs_inc_ref(trans, root, cow, 1); 452 if (ret) 453 return ret; 454 } 455 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 456 } else { 457 458 if (root->root_key.objectid == 459 BTRFS_TREE_RELOC_OBJECTID) 460 ret = btrfs_inc_ref(trans, root, cow, 1); 461 else 462 ret = btrfs_inc_ref(trans, root, cow, 0); 463 if (ret) 464 return ret; 465 } 466 if (new_flags != 0) { 467 int level = btrfs_header_level(buf); 468 469 ret = btrfs_set_disk_extent_flags(trans, buf, 470 new_flags, level); 471 if (ret) 472 return ret; 473 } 474 } else { 475 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 476 if (root->root_key.objectid == 477 BTRFS_TREE_RELOC_OBJECTID) 478 ret = btrfs_inc_ref(trans, root, cow, 1); 479 else 480 ret = btrfs_inc_ref(trans, root, cow, 0); 481 if (ret) 482 return ret; 483 ret = btrfs_dec_ref(trans, root, buf, 1); 484 if (ret) 485 return ret; 486 } 487 btrfs_clear_buffer_dirty(trans, buf); 488 *last_ref = 1; 489 } 490 return 0; 491 } 492 493 /* 494 * does the dirty work in cow of a single block. The parent block (if 495 * supplied) is updated to point to the new cow copy. The new buffer is marked 496 * dirty and returned locked. If you modify the block it needs to be marked 497 * dirty again. 498 * 499 * search_start -- an allocation hint for the new block 500 * 501 * empty_size -- a hint that you plan on doing more cow. This is the size in 502 * bytes the allocator should try to find free next to the block it returns. 503 * This is just a hint and may be ignored by the allocator. 504 */ 505 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 506 struct btrfs_root *root, 507 struct extent_buffer *buf, 508 struct extent_buffer *parent, int parent_slot, 509 struct extent_buffer **cow_ret, 510 u64 search_start, u64 empty_size, 511 enum btrfs_lock_nesting nest) 512 { 513 struct btrfs_fs_info *fs_info = root->fs_info; 514 struct btrfs_disk_key disk_key; 515 struct extent_buffer *cow; 516 int level, ret; 517 int last_ref = 0; 518 int unlock_orig = 0; 519 u64 parent_start = 0; 520 521 if (*cow_ret == buf) 522 unlock_orig = 1; 523 524 btrfs_assert_tree_write_locked(buf); 525 526 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 527 trans->transid != fs_info->running_transaction->transid); 528 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 529 trans->transid != root->last_trans); 530 531 level = btrfs_header_level(buf); 532 533 if (level == 0) 534 btrfs_item_key(buf, &disk_key, 0); 535 else 536 btrfs_node_key(buf, &disk_key, 0); 537 538 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 539 parent_start = parent->start; 540 541 cow = btrfs_alloc_tree_block(trans, root, parent_start, 542 root->root_key.objectid, &disk_key, level, 543 search_start, empty_size, nest); 544 if (IS_ERR(cow)) 545 return PTR_ERR(cow); 546 547 /* cow is set to blocking by btrfs_init_new_buffer */ 548 549 copy_extent_buffer_full(cow, buf); 550 btrfs_set_header_bytenr(cow, cow->start); 551 btrfs_set_header_generation(cow, trans->transid); 552 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 553 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 554 BTRFS_HEADER_FLAG_RELOC); 555 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 556 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 557 else 558 btrfs_set_header_owner(cow, root->root_key.objectid); 559 560 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 561 562 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 563 if (ret) { 564 btrfs_tree_unlock(cow); 565 free_extent_buffer(cow); 566 btrfs_abort_transaction(trans, ret); 567 return ret; 568 } 569 570 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 571 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 572 if (ret) { 573 btrfs_tree_unlock(cow); 574 free_extent_buffer(cow); 575 btrfs_abort_transaction(trans, ret); 576 return ret; 577 } 578 } 579 580 if (buf == root->node) { 581 WARN_ON(parent && parent != buf); 582 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 583 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 584 parent_start = buf->start; 585 586 atomic_inc(&cow->refs); 587 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true); 588 BUG_ON(ret < 0); 589 rcu_assign_pointer(root->node, cow); 590 591 btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 592 parent_start, last_ref); 593 free_extent_buffer(buf); 594 add_root_to_dirty_list(root); 595 } else { 596 WARN_ON(trans->transid != btrfs_header_generation(parent)); 597 btrfs_tree_mod_log_insert_key(parent, parent_slot, 598 BTRFS_MOD_LOG_KEY_REPLACE); 599 btrfs_set_node_blockptr(parent, parent_slot, 600 cow->start); 601 btrfs_set_node_ptr_generation(parent, parent_slot, 602 trans->transid); 603 btrfs_mark_buffer_dirty(parent); 604 if (last_ref) { 605 ret = btrfs_tree_mod_log_free_eb(buf); 606 if (ret) { 607 btrfs_tree_unlock(cow); 608 free_extent_buffer(cow); 609 btrfs_abort_transaction(trans, ret); 610 return ret; 611 } 612 } 613 btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 614 parent_start, last_ref); 615 } 616 if (unlock_orig) 617 btrfs_tree_unlock(buf); 618 free_extent_buffer_stale(buf); 619 btrfs_mark_buffer_dirty(cow); 620 *cow_ret = cow; 621 return 0; 622 } 623 624 static inline int should_cow_block(struct btrfs_trans_handle *trans, 625 struct btrfs_root *root, 626 struct extent_buffer *buf) 627 { 628 if (btrfs_is_testing(root->fs_info)) 629 return 0; 630 631 /* Ensure we can see the FORCE_COW bit */ 632 smp_mb__before_atomic(); 633 634 /* 635 * We do not need to cow a block if 636 * 1) this block is not created or changed in this transaction; 637 * 2) this block does not belong to TREE_RELOC tree; 638 * 3) the root is not forced COW. 639 * 640 * What is forced COW: 641 * when we create snapshot during committing the transaction, 642 * after we've finished copying src root, we must COW the shared 643 * block to ensure the metadata consistency. 644 */ 645 if (btrfs_header_generation(buf) == trans->transid && 646 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 647 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 648 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 649 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 650 return 0; 651 return 1; 652 } 653 654 /* 655 * cows a single block, see __btrfs_cow_block for the real work. 656 * This version of it has extra checks so that a block isn't COWed more than 657 * once per transaction, as long as it hasn't been written yet 658 */ 659 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 660 struct btrfs_root *root, struct extent_buffer *buf, 661 struct extent_buffer *parent, int parent_slot, 662 struct extent_buffer **cow_ret, 663 enum btrfs_lock_nesting nest) 664 { 665 struct btrfs_fs_info *fs_info = root->fs_info; 666 u64 search_start; 667 int ret; 668 669 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 670 btrfs_err(fs_info, 671 "COW'ing blocks on a fs root that's being dropped"); 672 673 if (trans->transaction != fs_info->running_transaction) 674 WARN(1, KERN_CRIT "trans %llu running %llu\n", 675 trans->transid, 676 fs_info->running_transaction->transid); 677 678 if (trans->transid != fs_info->generation) 679 WARN(1, KERN_CRIT "trans %llu running %llu\n", 680 trans->transid, fs_info->generation); 681 682 if (!should_cow_block(trans, root, buf)) { 683 *cow_ret = buf; 684 return 0; 685 } 686 687 search_start = buf->start & ~((u64)SZ_1G - 1); 688 689 /* 690 * Before CoWing this block for later modification, check if it's 691 * the subtree root and do the delayed subtree trace if needed. 692 * 693 * Also We don't care about the error, as it's handled internally. 694 */ 695 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 696 ret = __btrfs_cow_block(trans, root, buf, parent, 697 parent_slot, cow_ret, search_start, 0, nest); 698 699 trace_btrfs_cow_block(root, buf, *cow_ret); 700 701 return ret; 702 } 703 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO); 704 705 /* 706 * helper function for defrag to decide if two blocks pointed to by a 707 * node are actually close by 708 */ 709 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 710 { 711 if (blocknr < other && other - (blocknr + blocksize) < 32768) 712 return 1; 713 if (blocknr > other && blocknr - (other + blocksize) < 32768) 714 return 1; 715 return 0; 716 } 717 718 #ifdef __LITTLE_ENDIAN 719 720 /* 721 * Compare two keys, on little-endian the disk order is same as CPU order and 722 * we can avoid the conversion. 723 */ 724 static int comp_keys(const struct btrfs_disk_key *disk_key, 725 const struct btrfs_key *k2) 726 { 727 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 728 729 return btrfs_comp_cpu_keys(k1, k2); 730 } 731 732 #else 733 734 /* 735 * compare two keys in a memcmp fashion 736 */ 737 static int comp_keys(const struct btrfs_disk_key *disk, 738 const struct btrfs_key *k2) 739 { 740 struct btrfs_key k1; 741 742 btrfs_disk_key_to_cpu(&k1, disk); 743 744 return btrfs_comp_cpu_keys(&k1, k2); 745 } 746 #endif 747 748 /* 749 * same as comp_keys only with two btrfs_key's 750 */ 751 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 752 { 753 if (k1->objectid > k2->objectid) 754 return 1; 755 if (k1->objectid < k2->objectid) 756 return -1; 757 if (k1->type > k2->type) 758 return 1; 759 if (k1->type < k2->type) 760 return -1; 761 if (k1->offset > k2->offset) 762 return 1; 763 if (k1->offset < k2->offset) 764 return -1; 765 return 0; 766 } 767 768 /* 769 * this is used by the defrag code to go through all the 770 * leaves pointed to by a node and reallocate them so that 771 * disk order is close to key order 772 */ 773 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 774 struct btrfs_root *root, struct extent_buffer *parent, 775 int start_slot, u64 *last_ret, 776 struct btrfs_key *progress) 777 { 778 struct btrfs_fs_info *fs_info = root->fs_info; 779 struct extent_buffer *cur; 780 u64 blocknr; 781 u64 search_start = *last_ret; 782 u64 last_block = 0; 783 u64 other; 784 u32 parent_nritems; 785 int end_slot; 786 int i; 787 int err = 0; 788 u32 blocksize; 789 int progress_passed = 0; 790 struct btrfs_disk_key disk_key; 791 792 WARN_ON(trans->transaction != fs_info->running_transaction); 793 WARN_ON(trans->transid != fs_info->generation); 794 795 parent_nritems = btrfs_header_nritems(parent); 796 blocksize = fs_info->nodesize; 797 end_slot = parent_nritems - 1; 798 799 if (parent_nritems <= 1) 800 return 0; 801 802 for (i = start_slot; i <= end_slot; i++) { 803 int close = 1; 804 805 btrfs_node_key(parent, &disk_key, i); 806 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 807 continue; 808 809 progress_passed = 1; 810 blocknr = btrfs_node_blockptr(parent, i); 811 if (last_block == 0) 812 last_block = blocknr; 813 814 if (i > 0) { 815 other = btrfs_node_blockptr(parent, i - 1); 816 close = close_blocks(blocknr, other, blocksize); 817 } 818 if (!close && i < end_slot) { 819 other = btrfs_node_blockptr(parent, i + 1); 820 close = close_blocks(blocknr, other, blocksize); 821 } 822 if (close) { 823 last_block = blocknr; 824 continue; 825 } 826 827 cur = btrfs_read_node_slot(parent, i); 828 if (IS_ERR(cur)) 829 return PTR_ERR(cur); 830 if (search_start == 0) 831 search_start = last_block; 832 833 btrfs_tree_lock(cur); 834 err = __btrfs_cow_block(trans, root, cur, parent, i, 835 &cur, search_start, 836 min(16 * blocksize, 837 (end_slot - i) * blocksize), 838 BTRFS_NESTING_COW); 839 if (err) { 840 btrfs_tree_unlock(cur); 841 free_extent_buffer(cur); 842 break; 843 } 844 search_start = cur->start; 845 last_block = cur->start; 846 *last_ret = search_start; 847 btrfs_tree_unlock(cur); 848 free_extent_buffer(cur); 849 } 850 return err; 851 } 852 853 /* 854 * Search for a key in the given extent_buffer. 855 * 856 * The lower boundary for the search is specified by the slot number @first_slot. 857 * Use a value of 0 to search over the whole extent buffer. Works for both 858 * leaves and nodes. 859 * 860 * The slot in the extent buffer is returned via @slot. If the key exists in the 861 * extent buffer, then @slot will point to the slot where the key is, otherwise 862 * it points to the slot where you would insert the key. 863 * 864 * Slot may point to the total number of items (i.e. one position beyond the last 865 * key) if the key is bigger than the last key in the extent buffer. 866 */ 867 int btrfs_bin_search(struct extent_buffer *eb, int first_slot, 868 const struct btrfs_key *key, int *slot) 869 { 870 unsigned long p; 871 int item_size; 872 /* 873 * Use unsigned types for the low and high slots, so that we get a more 874 * efficient division in the search loop below. 875 */ 876 u32 low = first_slot; 877 u32 high = btrfs_header_nritems(eb); 878 int ret; 879 const int key_size = sizeof(struct btrfs_disk_key); 880 881 if (unlikely(low > high)) { 882 btrfs_err(eb->fs_info, 883 "%s: low (%u) > high (%u) eb %llu owner %llu level %d", 884 __func__, low, high, eb->start, 885 btrfs_header_owner(eb), btrfs_header_level(eb)); 886 return -EINVAL; 887 } 888 889 if (btrfs_header_level(eb) == 0) { 890 p = offsetof(struct btrfs_leaf, items); 891 item_size = sizeof(struct btrfs_item); 892 } else { 893 p = offsetof(struct btrfs_node, ptrs); 894 item_size = sizeof(struct btrfs_key_ptr); 895 } 896 897 while (low < high) { 898 unsigned long oip; 899 unsigned long offset; 900 struct btrfs_disk_key *tmp; 901 struct btrfs_disk_key unaligned; 902 int mid; 903 904 mid = (low + high) / 2; 905 offset = p + mid * item_size; 906 oip = offset_in_page(offset); 907 908 if (oip + key_size <= PAGE_SIZE) { 909 const unsigned long idx = get_eb_page_index(offset); 910 char *kaddr = page_address(eb->pages[idx]); 911 912 oip = get_eb_offset_in_page(eb, offset); 913 tmp = (struct btrfs_disk_key *)(kaddr + oip); 914 } else { 915 read_extent_buffer(eb, &unaligned, offset, key_size); 916 tmp = &unaligned; 917 } 918 919 ret = comp_keys(tmp, key); 920 921 if (ret < 0) 922 low = mid + 1; 923 else if (ret > 0) 924 high = mid; 925 else { 926 *slot = mid; 927 return 0; 928 } 929 } 930 *slot = low; 931 return 1; 932 } 933 934 static void root_add_used(struct btrfs_root *root, u32 size) 935 { 936 spin_lock(&root->accounting_lock); 937 btrfs_set_root_used(&root->root_item, 938 btrfs_root_used(&root->root_item) + size); 939 spin_unlock(&root->accounting_lock); 940 } 941 942 static void root_sub_used(struct btrfs_root *root, u32 size) 943 { 944 spin_lock(&root->accounting_lock); 945 btrfs_set_root_used(&root->root_item, 946 btrfs_root_used(&root->root_item) - size); 947 spin_unlock(&root->accounting_lock); 948 } 949 950 /* given a node and slot number, this reads the blocks it points to. The 951 * extent buffer is returned with a reference taken (but unlocked). 952 */ 953 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 954 int slot) 955 { 956 int level = btrfs_header_level(parent); 957 struct btrfs_tree_parent_check check = { 0 }; 958 struct extent_buffer *eb; 959 960 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 961 return ERR_PTR(-ENOENT); 962 963 ASSERT(level); 964 965 check.level = level - 1; 966 check.transid = btrfs_node_ptr_generation(parent, slot); 967 check.owner_root = btrfs_header_owner(parent); 968 check.has_first_key = true; 969 btrfs_node_key_to_cpu(parent, &check.first_key, slot); 970 971 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 972 &check); 973 if (IS_ERR(eb)) 974 return eb; 975 if (!extent_buffer_uptodate(eb)) { 976 free_extent_buffer(eb); 977 return ERR_PTR(-EIO); 978 } 979 980 return eb; 981 } 982 983 /* 984 * node level balancing, used to make sure nodes are in proper order for 985 * item deletion. We balance from the top down, so we have to make sure 986 * that a deletion won't leave an node completely empty later on. 987 */ 988 static noinline int balance_level(struct btrfs_trans_handle *trans, 989 struct btrfs_root *root, 990 struct btrfs_path *path, int level) 991 { 992 struct btrfs_fs_info *fs_info = root->fs_info; 993 struct extent_buffer *right = NULL; 994 struct extent_buffer *mid; 995 struct extent_buffer *left = NULL; 996 struct extent_buffer *parent = NULL; 997 int ret = 0; 998 int wret; 999 int pslot; 1000 int orig_slot = path->slots[level]; 1001 u64 orig_ptr; 1002 1003 ASSERT(level > 0); 1004 1005 mid = path->nodes[level]; 1006 1007 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); 1008 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1009 1010 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1011 1012 if (level < BTRFS_MAX_LEVEL - 1) { 1013 parent = path->nodes[level + 1]; 1014 pslot = path->slots[level + 1]; 1015 } 1016 1017 /* 1018 * deal with the case where there is only one pointer in the root 1019 * by promoting the node below to a root 1020 */ 1021 if (!parent) { 1022 struct extent_buffer *child; 1023 1024 if (btrfs_header_nritems(mid) != 1) 1025 return 0; 1026 1027 /* promote the child to a root */ 1028 child = btrfs_read_node_slot(mid, 0); 1029 if (IS_ERR(child)) { 1030 ret = PTR_ERR(child); 1031 btrfs_handle_fs_error(fs_info, ret, NULL); 1032 goto enospc; 1033 } 1034 1035 btrfs_tree_lock(child); 1036 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 1037 BTRFS_NESTING_COW); 1038 if (ret) { 1039 btrfs_tree_unlock(child); 1040 free_extent_buffer(child); 1041 goto enospc; 1042 } 1043 1044 ret = btrfs_tree_mod_log_insert_root(root->node, child, true); 1045 BUG_ON(ret < 0); 1046 rcu_assign_pointer(root->node, child); 1047 1048 add_root_to_dirty_list(root); 1049 btrfs_tree_unlock(child); 1050 1051 path->locks[level] = 0; 1052 path->nodes[level] = NULL; 1053 btrfs_clear_buffer_dirty(trans, mid); 1054 btrfs_tree_unlock(mid); 1055 /* once for the path */ 1056 free_extent_buffer(mid); 1057 1058 root_sub_used(root, mid->len); 1059 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 1060 /* once for the root ptr */ 1061 free_extent_buffer_stale(mid); 1062 return 0; 1063 } 1064 if (btrfs_header_nritems(mid) > 1065 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1066 return 0; 1067 1068 if (pslot) { 1069 left = btrfs_read_node_slot(parent, pslot - 1); 1070 if (IS_ERR(left)) { 1071 ret = PTR_ERR(left); 1072 left = NULL; 1073 goto enospc; 1074 } 1075 1076 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 1077 wret = btrfs_cow_block(trans, root, left, 1078 parent, pslot - 1, &left, 1079 BTRFS_NESTING_LEFT_COW); 1080 if (wret) { 1081 ret = wret; 1082 goto enospc; 1083 } 1084 } 1085 1086 if (pslot + 1 < btrfs_header_nritems(parent)) { 1087 right = btrfs_read_node_slot(parent, pslot + 1); 1088 if (IS_ERR(right)) { 1089 ret = PTR_ERR(right); 1090 right = NULL; 1091 goto enospc; 1092 } 1093 1094 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 1095 wret = btrfs_cow_block(trans, root, right, 1096 parent, pslot + 1, &right, 1097 BTRFS_NESTING_RIGHT_COW); 1098 if (wret) { 1099 ret = wret; 1100 goto enospc; 1101 } 1102 } 1103 1104 /* first, try to make some room in the middle buffer */ 1105 if (left) { 1106 orig_slot += btrfs_header_nritems(left); 1107 wret = push_node_left(trans, left, mid, 1); 1108 if (wret < 0) 1109 ret = wret; 1110 } 1111 1112 /* 1113 * then try to empty the right most buffer into the middle 1114 */ 1115 if (right) { 1116 wret = push_node_left(trans, mid, right, 1); 1117 if (wret < 0 && wret != -ENOSPC) 1118 ret = wret; 1119 if (btrfs_header_nritems(right) == 0) { 1120 btrfs_clear_buffer_dirty(trans, right); 1121 btrfs_tree_unlock(right); 1122 del_ptr(root, path, level + 1, pslot + 1); 1123 root_sub_used(root, right->len); 1124 btrfs_free_tree_block(trans, btrfs_root_id(root), right, 1125 0, 1); 1126 free_extent_buffer_stale(right); 1127 right = NULL; 1128 } else { 1129 struct btrfs_disk_key right_key; 1130 btrfs_node_key(right, &right_key, 0); 1131 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1132 BTRFS_MOD_LOG_KEY_REPLACE); 1133 BUG_ON(ret < 0); 1134 btrfs_set_node_key(parent, &right_key, pslot + 1); 1135 btrfs_mark_buffer_dirty(parent); 1136 } 1137 } 1138 if (btrfs_header_nritems(mid) == 1) { 1139 /* 1140 * we're not allowed to leave a node with one item in the 1141 * tree during a delete. A deletion from lower in the tree 1142 * could try to delete the only pointer in this node. 1143 * So, pull some keys from the left. 1144 * There has to be a left pointer at this point because 1145 * otherwise we would have pulled some pointers from the 1146 * right 1147 */ 1148 if (!left) { 1149 ret = -EROFS; 1150 btrfs_handle_fs_error(fs_info, ret, NULL); 1151 goto enospc; 1152 } 1153 wret = balance_node_right(trans, mid, left); 1154 if (wret < 0) { 1155 ret = wret; 1156 goto enospc; 1157 } 1158 if (wret == 1) { 1159 wret = push_node_left(trans, left, mid, 1); 1160 if (wret < 0) 1161 ret = wret; 1162 } 1163 BUG_ON(wret == 1); 1164 } 1165 if (btrfs_header_nritems(mid) == 0) { 1166 btrfs_clear_buffer_dirty(trans, mid); 1167 btrfs_tree_unlock(mid); 1168 del_ptr(root, path, level + 1, pslot); 1169 root_sub_used(root, mid->len); 1170 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 1171 free_extent_buffer_stale(mid); 1172 mid = NULL; 1173 } else { 1174 /* update the parent key to reflect our changes */ 1175 struct btrfs_disk_key mid_key; 1176 btrfs_node_key(mid, &mid_key, 0); 1177 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1178 BTRFS_MOD_LOG_KEY_REPLACE); 1179 BUG_ON(ret < 0); 1180 btrfs_set_node_key(parent, &mid_key, pslot); 1181 btrfs_mark_buffer_dirty(parent); 1182 } 1183 1184 /* update the path */ 1185 if (left) { 1186 if (btrfs_header_nritems(left) > orig_slot) { 1187 atomic_inc(&left->refs); 1188 /* left was locked after cow */ 1189 path->nodes[level] = left; 1190 path->slots[level + 1] -= 1; 1191 path->slots[level] = orig_slot; 1192 if (mid) { 1193 btrfs_tree_unlock(mid); 1194 free_extent_buffer(mid); 1195 } 1196 } else { 1197 orig_slot -= btrfs_header_nritems(left); 1198 path->slots[level] = orig_slot; 1199 } 1200 } 1201 /* double check we haven't messed things up */ 1202 if (orig_ptr != 1203 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1204 BUG(); 1205 enospc: 1206 if (right) { 1207 btrfs_tree_unlock(right); 1208 free_extent_buffer(right); 1209 } 1210 if (left) { 1211 if (path->nodes[level] != left) 1212 btrfs_tree_unlock(left); 1213 free_extent_buffer(left); 1214 } 1215 return ret; 1216 } 1217 1218 /* Node balancing for insertion. Here we only split or push nodes around 1219 * when they are completely full. This is also done top down, so we 1220 * have to be pessimistic. 1221 */ 1222 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1223 struct btrfs_root *root, 1224 struct btrfs_path *path, int level) 1225 { 1226 struct btrfs_fs_info *fs_info = root->fs_info; 1227 struct extent_buffer *right = NULL; 1228 struct extent_buffer *mid; 1229 struct extent_buffer *left = NULL; 1230 struct extent_buffer *parent = NULL; 1231 int ret = 0; 1232 int wret; 1233 int pslot; 1234 int orig_slot = path->slots[level]; 1235 1236 if (level == 0) 1237 return 1; 1238 1239 mid = path->nodes[level]; 1240 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1241 1242 if (level < BTRFS_MAX_LEVEL - 1) { 1243 parent = path->nodes[level + 1]; 1244 pslot = path->slots[level + 1]; 1245 } 1246 1247 if (!parent) 1248 return 1; 1249 1250 /* first, try to make some room in the middle buffer */ 1251 if (pslot) { 1252 u32 left_nr; 1253 1254 left = btrfs_read_node_slot(parent, pslot - 1); 1255 if (IS_ERR(left)) 1256 return PTR_ERR(left); 1257 1258 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 1259 1260 left_nr = btrfs_header_nritems(left); 1261 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1262 wret = 1; 1263 } else { 1264 ret = btrfs_cow_block(trans, root, left, parent, 1265 pslot - 1, &left, 1266 BTRFS_NESTING_LEFT_COW); 1267 if (ret) 1268 wret = 1; 1269 else { 1270 wret = push_node_left(trans, left, mid, 0); 1271 } 1272 } 1273 if (wret < 0) 1274 ret = wret; 1275 if (wret == 0) { 1276 struct btrfs_disk_key disk_key; 1277 orig_slot += left_nr; 1278 btrfs_node_key(mid, &disk_key, 0); 1279 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1280 BTRFS_MOD_LOG_KEY_REPLACE); 1281 BUG_ON(ret < 0); 1282 btrfs_set_node_key(parent, &disk_key, pslot); 1283 btrfs_mark_buffer_dirty(parent); 1284 if (btrfs_header_nritems(left) > orig_slot) { 1285 path->nodes[level] = left; 1286 path->slots[level + 1] -= 1; 1287 path->slots[level] = orig_slot; 1288 btrfs_tree_unlock(mid); 1289 free_extent_buffer(mid); 1290 } else { 1291 orig_slot -= 1292 btrfs_header_nritems(left); 1293 path->slots[level] = orig_slot; 1294 btrfs_tree_unlock(left); 1295 free_extent_buffer(left); 1296 } 1297 return 0; 1298 } 1299 btrfs_tree_unlock(left); 1300 free_extent_buffer(left); 1301 } 1302 1303 /* 1304 * then try to empty the right most buffer into the middle 1305 */ 1306 if (pslot + 1 < btrfs_header_nritems(parent)) { 1307 u32 right_nr; 1308 1309 right = btrfs_read_node_slot(parent, pslot + 1); 1310 if (IS_ERR(right)) 1311 return PTR_ERR(right); 1312 1313 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 1314 1315 right_nr = btrfs_header_nritems(right); 1316 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1317 wret = 1; 1318 } else { 1319 ret = btrfs_cow_block(trans, root, right, 1320 parent, pslot + 1, 1321 &right, BTRFS_NESTING_RIGHT_COW); 1322 if (ret) 1323 wret = 1; 1324 else { 1325 wret = balance_node_right(trans, right, mid); 1326 } 1327 } 1328 if (wret < 0) 1329 ret = wret; 1330 if (wret == 0) { 1331 struct btrfs_disk_key disk_key; 1332 1333 btrfs_node_key(right, &disk_key, 0); 1334 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1335 BTRFS_MOD_LOG_KEY_REPLACE); 1336 BUG_ON(ret < 0); 1337 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1338 btrfs_mark_buffer_dirty(parent); 1339 1340 if (btrfs_header_nritems(mid) <= orig_slot) { 1341 path->nodes[level] = right; 1342 path->slots[level + 1] += 1; 1343 path->slots[level] = orig_slot - 1344 btrfs_header_nritems(mid); 1345 btrfs_tree_unlock(mid); 1346 free_extent_buffer(mid); 1347 } else { 1348 btrfs_tree_unlock(right); 1349 free_extent_buffer(right); 1350 } 1351 return 0; 1352 } 1353 btrfs_tree_unlock(right); 1354 free_extent_buffer(right); 1355 } 1356 return 1; 1357 } 1358 1359 /* 1360 * readahead one full node of leaves, finding things that are close 1361 * to the block in 'slot', and triggering ra on them. 1362 */ 1363 static void reada_for_search(struct btrfs_fs_info *fs_info, 1364 struct btrfs_path *path, 1365 int level, int slot, u64 objectid) 1366 { 1367 struct extent_buffer *node; 1368 struct btrfs_disk_key disk_key; 1369 u32 nritems; 1370 u64 search; 1371 u64 target; 1372 u64 nread = 0; 1373 u64 nread_max; 1374 u32 nr; 1375 u32 blocksize; 1376 u32 nscan = 0; 1377 1378 if (level != 1 && path->reada != READA_FORWARD_ALWAYS) 1379 return; 1380 1381 if (!path->nodes[level]) 1382 return; 1383 1384 node = path->nodes[level]; 1385 1386 /* 1387 * Since the time between visiting leaves is much shorter than the time 1388 * between visiting nodes, limit read ahead of nodes to 1, to avoid too 1389 * much IO at once (possibly random). 1390 */ 1391 if (path->reada == READA_FORWARD_ALWAYS) { 1392 if (level > 1) 1393 nread_max = node->fs_info->nodesize; 1394 else 1395 nread_max = SZ_128K; 1396 } else { 1397 nread_max = SZ_64K; 1398 } 1399 1400 search = btrfs_node_blockptr(node, slot); 1401 blocksize = fs_info->nodesize; 1402 if (path->reada != READA_FORWARD_ALWAYS) { 1403 struct extent_buffer *eb; 1404 1405 eb = find_extent_buffer(fs_info, search); 1406 if (eb) { 1407 free_extent_buffer(eb); 1408 return; 1409 } 1410 } 1411 1412 target = search; 1413 1414 nritems = btrfs_header_nritems(node); 1415 nr = slot; 1416 1417 while (1) { 1418 if (path->reada == READA_BACK) { 1419 if (nr == 0) 1420 break; 1421 nr--; 1422 } else if (path->reada == READA_FORWARD || 1423 path->reada == READA_FORWARD_ALWAYS) { 1424 nr++; 1425 if (nr >= nritems) 1426 break; 1427 } 1428 if (path->reada == READA_BACK && objectid) { 1429 btrfs_node_key(node, &disk_key, nr); 1430 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1431 break; 1432 } 1433 search = btrfs_node_blockptr(node, nr); 1434 if (path->reada == READA_FORWARD_ALWAYS || 1435 (search <= target && target - search <= 65536) || 1436 (search > target && search - target <= 65536)) { 1437 btrfs_readahead_node_child(node, nr); 1438 nread += blocksize; 1439 } 1440 nscan++; 1441 if (nread > nread_max || nscan > 32) 1442 break; 1443 } 1444 } 1445 1446 static noinline void reada_for_balance(struct btrfs_path *path, int level) 1447 { 1448 struct extent_buffer *parent; 1449 int slot; 1450 int nritems; 1451 1452 parent = path->nodes[level + 1]; 1453 if (!parent) 1454 return; 1455 1456 nritems = btrfs_header_nritems(parent); 1457 slot = path->slots[level + 1]; 1458 1459 if (slot > 0) 1460 btrfs_readahead_node_child(parent, slot - 1); 1461 if (slot + 1 < nritems) 1462 btrfs_readahead_node_child(parent, slot + 1); 1463 } 1464 1465 1466 /* 1467 * when we walk down the tree, it is usually safe to unlock the higher layers 1468 * in the tree. The exceptions are when our path goes through slot 0, because 1469 * operations on the tree might require changing key pointers higher up in the 1470 * tree. 1471 * 1472 * callers might also have set path->keep_locks, which tells this code to keep 1473 * the lock if the path points to the last slot in the block. This is part of 1474 * walking through the tree, and selecting the next slot in the higher block. 1475 * 1476 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1477 * if lowest_unlock is 1, level 0 won't be unlocked 1478 */ 1479 static noinline void unlock_up(struct btrfs_path *path, int level, 1480 int lowest_unlock, int min_write_lock_level, 1481 int *write_lock_level) 1482 { 1483 int i; 1484 int skip_level = level; 1485 bool check_skip = true; 1486 1487 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1488 if (!path->nodes[i]) 1489 break; 1490 if (!path->locks[i]) 1491 break; 1492 1493 if (check_skip) { 1494 if (path->slots[i] == 0) { 1495 skip_level = i + 1; 1496 continue; 1497 } 1498 1499 if (path->keep_locks) { 1500 u32 nritems; 1501 1502 nritems = btrfs_header_nritems(path->nodes[i]); 1503 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1504 skip_level = i + 1; 1505 continue; 1506 } 1507 } 1508 } 1509 1510 if (i >= lowest_unlock && i > skip_level) { 1511 check_skip = false; 1512 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 1513 path->locks[i] = 0; 1514 if (write_lock_level && 1515 i > min_write_lock_level && 1516 i <= *write_lock_level) { 1517 *write_lock_level = i - 1; 1518 } 1519 } 1520 } 1521 } 1522 1523 /* 1524 * Helper function for btrfs_search_slot() and other functions that do a search 1525 * on a btree. The goal is to find a tree block in the cache (the radix tree at 1526 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read 1527 * its pages from disk. 1528 * 1529 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the 1530 * whole btree search, starting again from the current root node. 1531 */ 1532 static int 1533 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 1534 struct extent_buffer **eb_ret, int level, int slot, 1535 const struct btrfs_key *key) 1536 { 1537 struct btrfs_fs_info *fs_info = root->fs_info; 1538 struct btrfs_tree_parent_check check = { 0 }; 1539 u64 blocknr; 1540 u64 gen; 1541 struct extent_buffer *tmp; 1542 int ret; 1543 int parent_level; 1544 bool unlock_up; 1545 1546 unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]); 1547 blocknr = btrfs_node_blockptr(*eb_ret, slot); 1548 gen = btrfs_node_ptr_generation(*eb_ret, slot); 1549 parent_level = btrfs_header_level(*eb_ret); 1550 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot); 1551 check.has_first_key = true; 1552 check.level = parent_level - 1; 1553 check.transid = gen; 1554 check.owner_root = root->root_key.objectid; 1555 1556 /* 1557 * If we need to read an extent buffer from disk and we are holding locks 1558 * on upper level nodes, we unlock all the upper nodes before reading the 1559 * extent buffer, and then return -EAGAIN to the caller as it needs to 1560 * restart the search. We don't release the lock on the current level 1561 * because we need to walk this node to figure out which blocks to read. 1562 */ 1563 tmp = find_extent_buffer(fs_info, blocknr); 1564 if (tmp) { 1565 if (p->reada == READA_FORWARD_ALWAYS) 1566 reada_for_search(fs_info, p, level, slot, key->objectid); 1567 1568 /* first we do an atomic uptodate check */ 1569 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 1570 /* 1571 * Do extra check for first_key, eb can be stale due to 1572 * being cached, read from scrub, or have multiple 1573 * parents (shared tree blocks). 1574 */ 1575 if (btrfs_verify_level_key(tmp, 1576 parent_level - 1, &check.first_key, gen)) { 1577 free_extent_buffer(tmp); 1578 return -EUCLEAN; 1579 } 1580 *eb_ret = tmp; 1581 return 0; 1582 } 1583 1584 if (p->nowait) { 1585 free_extent_buffer(tmp); 1586 return -EAGAIN; 1587 } 1588 1589 if (unlock_up) 1590 btrfs_unlock_up_safe(p, level + 1); 1591 1592 /* now we're allowed to do a blocking uptodate check */ 1593 ret = btrfs_read_extent_buffer(tmp, &check); 1594 if (ret) { 1595 free_extent_buffer(tmp); 1596 btrfs_release_path(p); 1597 return -EIO; 1598 } 1599 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) { 1600 free_extent_buffer(tmp); 1601 btrfs_release_path(p); 1602 return -EUCLEAN; 1603 } 1604 1605 if (unlock_up) 1606 ret = -EAGAIN; 1607 1608 goto out; 1609 } else if (p->nowait) { 1610 return -EAGAIN; 1611 } 1612 1613 if (unlock_up) { 1614 btrfs_unlock_up_safe(p, level + 1); 1615 ret = -EAGAIN; 1616 } else { 1617 ret = 0; 1618 } 1619 1620 if (p->reada != READA_NONE) 1621 reada_for_search(fs_info, p, level, slot, key->objectid); 1622 1623 tmp = read_tree_block(fs_info, blocknr, &check); 1624 if (IS_ERR(tmp)) { 1625 btrfs_release_path(p); 1626 return PTR_ERR(tmp); 1627 } 1628 /* 1629 * If the read above didn't mark this buffer up to date, 1630 * it will never end up being up to date. Set ret to EIO now 1631 * and give up so that our caller doesn't loop forever 1632 * on our EAGAINs. 1633 */ 1634 if (!extent_buffer_uptodate(tmp)) 1635 ret = -EIO; 1636 1637 out: 1638 if (ret == 0) { 1639 *eb_ret = tmp; 1640 } else { 1641 free_extent_buffer(tmp); 1642 btrfs_release_path(p); 1643 } 1644 1645 return ret; 1646 } 1647 1648 /* 1649 * helper function for btrfs_search_slot. This does all of the checks 1650 * for node-level blocks and does any balancing required based on 1651 * the ins_len. 1652 * 1653 * If no extra work was required, zero is returned. If we had to 1654 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1655 * start over 1656 */ 1657 static int 1658 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1659 struct btrfs_root *root, struct btrfs_path *p, 1660 struct extent_buffer *b, int level, int ins_len, 1661 int *write_lock_level) 1662 { 1663 struct btrfs_fs_info *fs_info = root->fs_info; 1664 int ret = 0; 1665 1666 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1667 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 1668 1669 if (*write_lock_level < level + 1) { 1670 *write_lock_level = level + 1; 1671 btrfs_release_path(p); 1672 return -EAGAIN; 1673 } 1674 1675 reada_for_balance(p, level); 1676 ret = split_node(trans, root, p, level); 1677 1678 b = p->nodes[level]; 1679 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1680 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 1681 1682 if (*write_lock_level < level + 1) { 1683 *write_lock_level = level + 1; 1684 btrfs_release_path(p); 1685 return -EAGAIN; 1686 } 1687 1688 reada_for_balance(p, level); 1689 ret = balance_level(trans, root, p, level); 1690 if (ret) 1691 return ret; 1692 1693 b = p->nodes[level]; 1694 if (!b) { 1695 btrfs_release_path(p); 1696 return -EAGAIN; 1697 } 1698 BUG_ON(btrfs_header_nritems(b) == 1); 1699 } 1700 return ret; 1701 } 1702 1703 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 1704 u64 iobjectid, u64 ioff, u8 key_type, 1705 struct btrfs_key *found_key) 1706 { 1707 int ret; 1708 struct btrfs_key key; 1709 struct extent_buffer *eb; 1710 1711 ASSERT(path); 1712 ASSERT(found_key); 1713 1714 key.type = key_type; 1715 key.objectid = iobjectid; 1716 key.offset = ioff; 1717 1718 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1719 if (ret < 0) 1720 return ret; 1721 1722 eb = path->nodes[0]; 1723 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1724 ret = btrfs_next_leaf(fs_root, path); 1725 if (ret) 1726 return ret; 1727 eb = path->nodes[0]; 1728 } 1729 1730 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1731 if (found_key->type != key.type || 1732 found_key->objectid != key.objectid) 1733 return 1; 1734 1735 return 0; 1736 } 1737 1738 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 1739 struct btrfs_path *p, 1740 int write_lock_level) 1741 { 1742 struct extent_buffer *b; 1743 int root_lock = 0; 1744 int level = 0; 1745 1746 if (p->search_commit_root) { 1747 b = root->commit_root; 1748 atomic_inc(&b->refs); 1749 level = btrfs_header_level(b); 1750 /* 1751 * Ensure that all callers have set skip_locking when 1752 * p->search_commit_root = 1. 1753 */ 1754 ASSERT(p->skip_locking == 1); 1755 1756 goto out; 1757 } 1758 1759 if (p->skip_locking) { 1760 b = btrfs_root_node(root); 1761 level = btrfs_header_level(b); 1762 goto out; 1763 } 1764 1765 /* We try very hard to do read locks on the root */ 1766 root_lock = BTRFS_READ_LOCK; 1767 1768 /* 1769 * If the level is set to maximum, we can skip trying to get the read 1770 * lock. 1771 */ 1772 if (write_lock_level < BTRFS_MAX_LEVEL) { 1773 /* 1774 * We don't know the level of the root node until we actually 1775 * have it read locked 1776 */ 1777 if (p->nowait) { 1778 b = btrfs_try_read_lock_root_node(root); 1779 if (IS_ERR(b)) 1780 return b; 1781 } else { 1782 b = btrfs_read_lock_root_node(root); 1783 } 1784 level = btrfs_header_level(b); 1785 if (level > write_lock_level) 1786 goto out; 1787 1788 /* Whoops, must trade for write lock */ 1789 btrfs_tree_read_unlock(b); 1790 free_extent_buffer(b); 1791 } 1792 1793 b = btrfs_lock_root_node(root); 1794 root_lock = BTRFS_WRITE_LOCK; 1795 1796 /* The level might have changed, check again */ 1797 level = btrfs_header_level(b); 1798 1799 out: 1800 /* 1801 * The root may have failed to write out at some point, and thus is no 1802 * longer valid, return an error in this case. 1803 */ 1804 if (!extent_buffer_uptodate(b)) { 1805 if (root_lock) 1806 btrfs_tree_unlock_rw(b, root_lock); 1807 free_extent_buffer(b); 1808 return ERR_PTR(-EIO); 1809 } 1810 1811 p->nodes[level] = b; 1812 if (!p->skip_locking) 1813 p->locks[level] = root_lock; 1814 /* 1815 * Callers are responsible for dropping b's references. 1816 */ 1817 return b; 1818 } 1819 1820 /* 1821 * Replace the extent buffer at the lowest level of the path with a cloned 1822 * version. The purpose is to be able to use it safely, after releasing the 1823 * commit root semaphore, even if relocation is happening in parallel, the 1824 * transaction used for relocation is committed and the extent buffer is 1825 * reallocated in the next transaction. 1826 * 1827 * This is used in a context where the caller does not prevent transaction 1828 * commits from happening, either by holding a transaction handle or holding 1829 * some lock, while it's doing searches through a commit root. 1830 * At the moment it's only used for send operations. 1831 */ 1832 static int finish_need_commit_sem_search(struct btrfs_path *path) 1833 { 1834 const int i = path->lowest_level; 1835 const int slot = path->slots[i]; 1836 struct extent_buffer *lowest = path->nodes[i]; 1837 struct extent_buffer *clone; 1838 1839 ASSERT(path->need_commit_sem); 1840 1841 if (!lowest) 1842 return 0; 1843 1844 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem); 1845 1846 clone = btrfs_clone_extent_buffer(lowest); 1847 if (!clone) 1848 return -ENOMEM; 1849 1850 btrfs_release_path(path); 1851 path->nodes[i] = clone; 1852 path->slots[i] = slot; 1853 1854 return 0; 1855 } 1856 1857 static inline int search_for_key_slot(struct extent_buffer *eb, 1858 int search_low_slot, 1859 const struct btrfs_key *key, 1860 int prev_cmp, 1861 int *slot) 1862 { 1863 /* 1864 * If a previous call to btrfs_bin_search() on a parent node returned an 1865 * exact match (prev_cmp == 0), we can safely assume the target key will 1866 * always be at slot 0 on lower levels, since each key pointer 1867 * (struct btrfs_key_ptr) refers to the lowest key accessible from the 1868 * subtree it points to. Thus we can skip searching lower levels. 1869 */ 1870 if (prev_cmp == 0) { 1871 *slot = 0; 1872 return 0; 1873 } 1874 1875 return btrfs_bin_search(eb, search_low_slot, key, slot); 1876 } 1877 1878 static int search_leaf(struct btrfs_trans_handle *trans, 1879 struct btrfs_root *root, 1880 const struct btrfs_key *key, 1881 struct btrfs_path *path, 1882 int ins_len, 1883 int prev_cmp) 1884 { 1885 struct extent_buffer *leaf = path->nodes[0]; 1886 int leaf_free_space = -1; 1887 int search_low_slot = 0; 1888 int ret; 1889 bool do_bin_search = true; 1890 1891 /* 1892 * If we are doing an insertion, the leaf has enough free space and the 1893 * destination slot for the key is not slot 0, then we can unlock our 1894 * write lock on the parent, and any other upper nodes, before doing the 1895 * binary search on the leaf (with search_for_key_slot()), allowing other 1896 * tasks to lock the parent and any other upper nodes. 1897 */ 1898 if (ins_len > 0) { 1899 /* 1900 * Cache the leaf free space, since we will need it later and it 1901 * will not change until then. 1902 */ 1903 leaf_free_space = btrfs_leaf_free_space(leaf); 1904 1905 /* 1906 * !path->locks[1] means we have a single node tree, the leaf is 1907 * the root of the tree. 1908 */ 1909 if (path->locks[1] && leaf_free_space >= ins_len) { 1910 struct btrfs_disk_key first_key; 1911 1912 ASSERT(btrfs_header_nritems(leaf) > 0); 1913 btrfs_item_key(leaf, &first_key, 0); 1914 1915 /* 1916 * Doing the extra comparison with the first key is cheap, 1917 * taking into account that the first key is very likely 1918 * already in a cache line because it immediately follows 1919 * the extent buffer's header and we have recently accessed 1920 * the header's level field. 1921 */ 1922 ret = comp_keys(&first_key, key); 1923 if (ret < 0) { 1924 /* 1925 * The first key is smaller than the key we want 1926 * to insert, so we are safe to unlock all upper 1927 * nodes and we have to do the binary search. 1928 * 1929 * We do use btrfs_unlock_up_safe() and not 1930 * unlock_up() because the later does not unlock 1931 * nodes with a slot of 0 - we can safely unlock 1932 * any node even if its slot is 0 since in this 1933 * case the key does not end up at slot 0 of the 1934 * leaf and there's no need to split the leaf. 1935 */ 1936 btrfs_unlock_up_safe(path, 1); 1937 search_low_slot = 1; 1938 } else { 1939 /* 1940 * The first key is >= then the key we want to 1941 * insert, so we can skip the binary search as 1942 * the target key will be at slot 0. 1943 * 1944 * We can not unlock upper nodes when the key is 1945 * less than the first key, because we will need 1946 * to update the key at slot 0 of the parent node 1947 * and possibly of other upper nodes too. 1948 * If the key matches the first key, then we can 1949 * unlock all the upper nodes, using 1950 * btrfs_unlock_up_safe() instead of unlock_up() 1951 * as stated above. 1952 */ 1953 if (ret == 0) 1954 btrfs_unlock_up_safe(path, 1); 1955 /* 1956 * ret is already 0 or 1, matching the result of 1957 * a btrfs_bin_search() call, so there is no need 1958 * to adjust it. 1959 */ 1960 do_bin_search = false; 1961 path->slots[0] = 0; 1962 } 1963 } 1964 } 1965 1966 if (do_bin_search) { 1967 ret = search_for_key_slot(leaf, search_low_slot, key, 1968 prev_cmp, &path->slots[0]); 1969 if (ret < 0) 1970 return ret; 1971 } 1972 1973 if (ins_len > 0) { 1974 /* 1975 * Item key already exists. In this case, if we are allowed to 1976 * insert the item (for example, in dir_item case, item key 1977 * collision is allowed), it will be merged with the original 1978 * item. Only the item size grows, no new btrfs item will be 1979 * added. If search_for_extension is not set, ins_len already 1980 * accounts the size btrfs_item, deduct it here so leaf space 1981 * check will be correct. 1982 */ 1983 if (ret == 0 && !path->search_for_extension) { 1984 ASSERT(ins_len >= sizeof(struct btrfs_item)); 1985 ins_len -= sizeof(struct btrfs_item); 1986 } 1987 1988 ASSERT(leaf_free_space >= 0); 1989 1990 if (leaf_free_space < ins_len) { 1991 int err; 1992 1993 err = split_leaf(trans, root, key, path, ins_len, 1994 (ret == 0)); 1995 ASSERT(err <= 0); 1996 if (WARN_ON(err > 0)) 1997 err = -EUCLEAN; 1998 if (err) 1999 ret = err; 2000 } 2001 } 2002 2003 return ret; 2004 } 2005 2006 /* 2007 * btrfs_search_slot - look for a key in a tree and perform necessary 2008 * modifications to preserve tree invariants. 2009 * 2010 * @trans: Handle of transaction, used when modifying the tree 2011 * @p: Holds all btree nodes along the search path 2012 * @root: The root node of the tree 2013 * @key: The key we are looking for 2014 * @ins_len: Indicates purpose of search: 2015 * >0 for inserts it's size of item inserted (*) 2016 * <0 for deletions 2017 * 0 for plain searches, not modifying the tree 2018 * 2019 * (*) If size of item inserted doesn't include 2020 * sizeof(struct btrfs_item), then p->search_for_extension must 2021 * be set. 2022 * @cow: boolean should CoW operations be performed. Must always be 1 2023 * when modifying the tree. 2024 * 2025 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2026 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2027 * 2028 * If @key is found, 0 is returned and you can find the item in the leaf level 2029 * of the path (level 0) 2030 * 2031 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2032 * points to the slot where it should be inserted 2033 * 2034 * If an error is encountered while searching the tree a negative error number 2035 * is returned 2036 */ 2037 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2038 const struct btrfs_key *key, struct btrfs_path *p, 2039 int ins_len, int cow) 2040 { 2041 struct btrfs_fs_info *fs_info = root->fs_info; 2042 struct extent_buffer *b; 2043 int slot; 2044 int ret; 2045 int err; 2046 int level; 2047 int lowest_unlock = 1; 2048 /* everything at write_lock_level or lower must be write locked */ 2049 int write_lock_level = 0; 2050 u8 lowest_level = 0; 2051 int min_write_lock_level; 2052 int prev_cmp; 2053 2054 might_sleep(); 2055 2056 lowest_level = p->lowest_level; 2057 WARN_ON(lowest_level && ins_len > 0); 2058 WARN_ON(p->nodes[0] != NULL); 2059 BUG_ON(!cow && ins_len); 2060 2061 /* 2062 * For now only allow nowait for read only operations. There's no 2063 * strict reason why we can't, we just only need it for reads so it's 2064 * only implemented for reads. 2065 */ 2066 ASSERT(!p->nowait || !cow); 2067 2068 if (ins_len < 0) { 2069 lowest_unlock = 2; 2070 2071 /* when we are removing items, we might have to go up to level 2072 * two as we update tree pointers Make sure we keep write 2073 * for those levels as well 2074 */ 2075 write_lock_level = 2; 2076 } else if (ins_len > 0) { 2077 /* 2078 * for inserting items, make sure we have a write lock on 2079 * level 1 so we can update keys 2080 */ 2081 write_lock_level = 1; 2082 } 2083 2084 if (!cow) 2085 write_lock_level = -1; 2086 2087 if (cow && (p->keep_locks || p->lowest_level)) 2088 write_lock_level = BTRFS_MAX_LEVEL; 2089 2090 min_write_lock_level = write_lock_level; 2091 2092 if (p->need_commit_sem) { 2093 ASSERT(p->search_commit_root); 2094 if (p->nowait) { 2095 if (!down_read_trylock(&fs_info->commit_root_sem)) 2096 return -EAGAIN; 2097 } else { 2098 down_read(&fs_info->commit_root_sem); 2099 } 2100 } 2101 2102 again: 2103 prev_cmp = -1; 2104 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2105 if (IS_ERR(b)) { 2106 ret = PTR_ERR(b); 2107 goto done; 2108 } 2109 2110 while (b) { 2111 int dec = 0; 2112 2113 level = btrfs_header_level(b); 2114 2115 if (cow) { 2116 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2117 2118 /* 2119 * if we don't really need to cow this block 2120 * then we don't want to set the path blocking, 2121 * so we test it here 2122 */ 2123 if (!should_cow_block(trans, root, b)) 2124 goto cow_done; 2125 2126 /* 2127 * must have write locks on this node and the 2128 * parent 2129 */ 2130 if (level > write_lock_level || 2131 (level + 1 > write_lock_level && 2132 level + 1 < BTRFS_MAX_LEVEL && 2133 p->nodes[level + 1])) { 2134 write_lock_level = level + 1; 2135 btrfs_release_path(p); 2136 goto again; 2137 } 2138 2139 if (last_level) 2140 err = btrfs_cow_block(trans, root, b, NULL, 0, 2141 &b, 2142 BTRFS_NESTING_COW); 2143 else 2144 err = btrfs_cow_block(trans, root, b, 2145 p->nodes[level + 1], 2146 p->slots[level + 1], &b, 2147 BTRFS_NESTING_COW); 2148 if (err) { 2149 ret = err; 2150 goto done; 2151 } 2152 } 2153 cow_done: 2154 p->nodes[level] = b; 2155 2156 /* 2157 * we have a lock on b and as long as we aren't changing 2158 * the tree, there is no way to for the items in b to change. 2159 * It is safe to drop the lock on our parent before we 2160 * go through the expensive btree search on b. 2161 * 2162 * If we're inserting or deleting (ins_len != 0), then we might 2163 * be changing slot zero, which may require changing the parent. 2164 * So, we can't drop the lock until after we know which slot 2165 * we're operating on. 2166 */ 2167 if (!ins_len && !p->keep_locks) { 2168 int u = level + 1; 2169 2170 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2171 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2172 p->locks[u] = 0; 2173 } 2174 } 2175 2176 if (level == 0) { 2177 if (ins_len > 0) 2178 ASSERT(write_lock_level >= 1); 2179 2180 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp); 2181 if (!p->search_for_split) 2182 unlock_up(p, level, lowest_unlock, 2183 min_write_lock_level, NULL); 2184 goto done; 2185 } 2186 2187 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot); 2188 if (ret < 0) 2189 goto done; 2190 prev_cmp = ret; 2191 2192 if (ret && slot > 0) { 2193 dec = 1; 2194 slot--; 2195 } 2196 p->slots[level] = slot; 2197 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2198 &write_lock_level); 2199 if (err == -EAGAIN) 2200 goto again; 2201 if (err) { 2202 ret = err; 2203 goto done; 2204 } 2205 b = p->nodes[level]; 2206 slot = p->slots[level]; 2207 2208 /* 2209 * Slot 0 is special, if we change the key we have to update 2210 * the parent pointer which means we must have a write lock on 2211 * the parent 2212 */ 2213 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2214 write_lock_level = level + 1; 2215 btrfs_release_path(p); 2216 goto again; 2217 } 2218 2219 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2220 &write_lock_level); 2221 2222 if (level == lowest_level) { 2223 if (dec) 2224 p->slots[level]++; 2225 goto done; 2226 } 2227 2228 err = read_block_for_search(root, p, &b, level, slot, key); 2229 if (err == -EAGAIN) 2230 goto again; 2231 if (err) { 2232 ret = err; 2233 goto done; 2234 } 2235 2236 if (!p->skip_locking) { 2237 level = btrfs_header_level(b); 2238 2239 btrfs_maybe_reset_lockdep_class(root, b); 2240 2241 if (level <= write_lock_level) { 2242 btrfs_tree_lock(b); 2243 p->locks[level] = BTRFS_WRITE_LOCK; 2244 } else { 2245 if (p->nowait) { 2246 if (!btrfs_try_tree_read_lock(b)) { 2247 free_extent_buffer(b); 2248 ret = -EAGAIN; 2249 goto done; 2250 } 2251 } else { 2252 btrfs_tree_read_lock(b); 2253 } 2254 p->locks[level] = BTRFS_READ_LOCK; 2255 } 2256 p->nodes[level] = b; 2257 } 2258 } 2259 ret = 1; 2260 done: 2261 if (ret < 0 && !p->skip_release_on_error) 2262 btrfs_release_path(p); 2263 2264 if (p->need_commit_sem) { 2265 int ret2; 2266 2267 ret2 = finish_need_commit_sem_search(p); 2268 up_read(&fs_info->commit_root_sem); 2269 if (ret2) 2270 ret = ret2; 2271 } 2272 2273 return ret; 2274 } 2275 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO); 2276 2277 /* 2278 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2279 * current state of the tree together with the operations recorded in the tree 2280 * modification log to search for the key in a previous version of this tree, as 2281 * denoted by the time_seq parameter. 2282 * 2283 * Naturally, there is no support for insert, delete or cow operations. 2284 * 2285 * The resulting path and return value will be set up as if we called 2286 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2287 */ 2288 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2289 struct btrfs_path *p, u64 time_seq) 2290 { 2291 struct btrfs_fs_info *fs_info = root->fs_info; 2292 struct extent_buffer *b; 2293 int slot; 2294 int ret; 2295 int err; 2296 int level; 2297 int lowest_unlock = 1; 2298 u8 lowest_level = 0; 2299 2300 lowest_level = p->lowest_level; 2301 WARN_ON(p->nodes[0] != NULL); 2302 ASSERT(!p->nowait); 2303 2304 if (p->search_commit_root) { 2305 BUG_ON(time_seq); 2306 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2307 } 2308 2309 again: 2310 b = btrfs_get_old_root(root, time_seq); 2311 if (!b) { 2312 ret = -EIO; 2313 goto done; 2314 } 2315 level = btrfs_header_level(b); 2316 p->locks[level] = BTRFS_READ_LOCK; 2317 2318 while (b) { 2319 int dec = 0; 2320 2321 level = btrfs_header_level(b); 2322 p->nodes[level] = b; 2323 2324 /* 2325 * we have a lock on b and as long as we aren't changing 2326 * the tree, there is no way to for the items in b to change. 2327 * It is safe to drop the lock on our parent before we 2328 * go through the expensive btree search on b. 2329 */ 2330 btrfs_unlock_up_safe(p, level + 1); 2331 2332 ret = btrfs_bin_search(b, 0, key, &slot); 2333 if (ret < 0) 2334 goto done; 2335 2336 if (level == 0) { 2337 p->slots[level] = slot; 2338 unlock_up(p, level, lowest_unlock, 0, NULL); 2339 goto done; 2340 } 2341 2342 if (ret && slot > 0) { 2343 dec = 1; 2344 slot--; 2345 } 2346 p->slots[level] = slot; 2347 unlock_up(p, level, lowest_unlock, 0, NULL); 2348 2349 if (level == lowest_level) { 2350 if (dec) 2351 p->slots[level]++; 2352 goto done; 2353 } 2354 2355 err = read_block_for_search(root, p, &b, level, slot, key); 2356 if (err == -EAGAIN) 2357 goto again; 2358 if (err) { 2359 ret = err; 2360 goto done; 2361 } 2362 2363 level = btrfs_header_level(b); 2364 btrfs_tree_read_lock(b); 2365 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq); 2366 if (!b) { 2367 ret = -ENOMEM; 2368 goto done; 2369 } 2370 p->locks[level] = BTRFS_READ_LOCK; 2371 p->nodes[level] = b; 2372 } 2373 ret = 1; 2374 done: 2375 if (ret < 0) 2376 btrfs_release_path(p); 2377 2378 return ret; 2379 } 2380 2381 /* 2382 * helper to use instead of search slot if no exact match is needed but 2383 * instead the next or previous item should be returned. 2384 * When find_higher is true, the next higher item is returned, the next lower 2385 * otherwise. 2386 * When return_any and find_higher are both true, and no higher item is found, 2387 * return the next lower instead. 2388 * When return_any is true and find_higher is false, and no lower item is found, 2389 * return the next higher instead. 2390 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2391 * < 0 on error 2392 */ 2393 int btrfs_search_slot_for_read(struct btrfs_root *root, 2394 const struct btrfs_key *key, 2395 struct btrfs_path *p, int find_higher, 2396 int return_any) 2397 { 2398 int ret; 2399 struct extent_buffer *leaf; 2400 2401 again: 2402 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2403 if (ret <= 0) 2404 return ret; 2405 /* 2406 * a return value of 1 means the path is at the position where the 2407 * item should be inserted. Normally this is the next bigger item, 2408 * but in case the previous item is the last in a leaf, path points 2409 * to the first free slot in the previous leaf, i.e. at an invalid 2410 * item. 2411 */ 2412 leaf = p->nodes[0]; 2413 2414 if (find_higher) { 2415 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2416 ret = btrfs_next_leaf(root, p); 2417 if (ret <= 0) 2418 return ret; 2419 if (!return_any) 2420 return 1; 2421 /* 2422 * no higher item found, return the next 2423 * lower instead 2424 */ 2425 return_any = 0; 2426 find_higher = 0; 2427 btrfs_release_path(p); 2428 goto again; 2429 } 2430 } else { 2431 if (p->slots[0] == 0) { 2432 ret = btrfs_prev_leaf(root, p); 2433 if (ret < 0) 2434 return ret; 2435 if (!ret) { 2436 leaf = p->nodes[0]; 2437 if (p->slots[0] == btrfs_header_nritems(leaf)) 2438 p->slots[0]--; 2439 return 0; 2440 } 2441 if (!return_any) 2442 return 1; 2443 /* 2444 * no lower item found, return the next 2445 * higher instead 2446 */ 2447 return_any = 0; 2448 find_higher = 1; 2449 btrfs_release_path(p); 2450 goto again; 2451 } else { 2452 --p->slots[0]; 2453 } 2454 } 2455 return 0; 2456 } 2457 2458 /* 2459 * Execute search and call btrfs_previous_item to traverse backwards if the item 2460 * was not found. 2461 * 2462 * Return 0 if found, 1 if not found and < 0 if error. 2463 */ 2464 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2465 struct btrfs_path *path) 2466 { 2467 int ret; 2468 2469 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 2470 if (ret > 0) 2471 ret = btrfs_previous_item(root, path, key->objectid, key->type); 2472 2473 if (ret == 0) 2474 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); 2475 2476 return ret; 2477 } 2478 2479 /* 2480 * Search for a valid slot for the given path. 2481 * 2482 * @root: The root node of the tree. 2483 * @key: Will contain a valid item if found. 2484 * @path: The starting point to validate the slot. 2485 * 2486 * Return: 0 if the item is valid 2487 * 1 if not found 2488 * <0 if error. 2489 */ 2490 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 2491 struct btrfs_path *path) 2492 { 2493 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2494 int ret; 2495 2496 ret = btrfs_next_leaf(root, path); 2497 if (ret) 2498 return ret; 2499 } 2500 2501 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); 2502 return 0; 2503 } 2504 2505 /* 2506 * adjust the pointers going up the tree, starting at level 2507 * making sure the right key of each node is points to 'key'. 2508 * This is used after shifting pointers to the left, so it stops 2509 * fixing up pointers when a given leaf/node is not in slot 0 of the 2510 * higher levels 2511 * 2512 */ 2513 static void fixup_low_keys(struct btrfs_path *path, 2514 struct btrfs_disk_key *key, int level) 2515 { 2516 int i; 2517 struct extent_buffer *t; 2518 int ret; 2519 2520 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2521 int tslot = path->slots[i]; 2522 2523 if (!path->nodes[i]) 2524 break; 2525 t = path->nodes[i]; 2526 ret = btrfs_tree_mod_log_insert_key(t, tslot, 2527 BTRFS_MOD_LOG_KEY_REPLACE); 2528 BUG_ON(ret < 0); 2529 btrfs_set_node_key(t, key, tslot); 2530 btrfs_mark_buffer_dirty(path->nodes[i]); 2531 if (tslot != 0) 2532 break; 2533 } 2534 } 2535 2536 /* 2537 * update item key. 2538 * 2539 * This function isn't completely safe. It's the caller's responsibility 2540 * that the new key won't break the order 2541 */ 2542 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2543 struct btrfs_path *path, 2544 const struct btrfs_key *new_key) 2545 { 2546 struct btrfs_disk_key disk_key; 2547 struct extent_buffer *eb; 2548 int slot; 2549 2550 eb = path->nodes[0]; 2551 slot = path->slots[0]; 2552 if (slot > 0) { 2553 btrfs_item_key(eb, &disk_key, slot - 1); 2554 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 2555 btrfs_crit(fs_info, 2556 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2557 slot, btrfs_disk_key_objectid(&disk_key), 2558 btrfs_disk_key_type(&disk_key), 2559 btrfs_disk_key_offset(&disk_key), 2560 new_key->objectid, new_key->type, 2561 new_key->offset); 2562 btrfs_print_leaf(eb); 2563 BUG(); 2564 } 2565 } 2566 if (slot < btrfs_header_nritems(eb) - 1) { 2567 btrfs_item_key(eb, &disk_key, slot + 1); 2568 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 2569 btrfs_crit(fs_info, 2570 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2571 slot, btrfs_disk_key_objectid(&disk_key), 2572 btrfs_disk_key_type(&disk_key), 2573 btrfs_disk_key_offset(&disk_key), 2574 new_key->objectid, new_key->type, 2575 new_key->offset); 2576 btrfs_print_leaf(eb); 2577 BUG(); 2578 } 2579 } 2580 2581 btrfs_cpu_key_to_disk(&disk_key, new_key); 2582 btrfs_set_item_key(eb, &disk_key, slot); 2583 btrfs_mark_buffer_dirty(eb); 2584 if (slot == 0) 2585 fixup_low_keys(path, &disk_key, 1); 2586 } 2587 2588 /* 2589 * Check key order of two sibling extent buffers. 2590 * 2591 * Return true if something is wrong. 2592 * Return false if everything is fine. 2593 * 2594 * Tree-checker only works inside one tree block, thus the following 2595 * corruption can not be detected by tree-checker: 2596 * 2597 * Leaf @left | Leaf @right 2598 * -------------------------------------------------------------- 2599 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 2600 * 2601 * Key f6 in leaf @left itself is valid, but not valid when the next 2602 * key in leaf @right is 7. 2603 * This can only be checked at tree block merge time. 2604 * And since tree checker has ensured all key order in each tree block 2605 * is correct, we only need to bother the last key of @left and the first 2606 * key of @right. 2607 */ 2608 static bool check_sibling_keys(struct extent_buffer *left, 2609 struct extent_buffer *right) 2610 { 2611 struct btrfs_key left_last; 2612 struct btrfs_key right_first; 2613 int level = btrfs_header_level(left); 2614 int nr_left = btrfs_header_nritems(left); 2615 int nr_right = btrfs_header_nritems(right); 2616 2617 /* No key to check in one of the tree blocks */ 2618 if (!nr_left || !nr_right) 2619 return false; 2620 2621 if (level) { 2622 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 2623 btrfs_node_key_to_cpu(right, &right_first, 0); 2624 } else { 2625 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 2626 btrfs_item_key_to_cpu(right, &right_first, 0); 2627 } 2628 2629 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) { 2630 btrfs_crit(left->fs_info, 2631 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 2632 left_last.objectid, left_last.type, 2633 left_last.offset, right_first.objectid, 2634 right_first.type, right_first.offset); 2635 return true; 2636 } 2637 return false; 2638 } 2639 2640 /* 2641 * try to push data from one node into the next node left in the 2642 * tree. 2643 * 2644 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2645 * error, and > 0 if there was no room in the left hand block. 2646 */ 2647 static int push_node_left(struct btrfs_trans_handle *trans, 2648 struct extent_buffer *dst, 2649 struct extent_buffer *src, int empty) 2650 { 2651 struct btrfs_fs_info *fs_info = trans->fs_info; 2652 int push_items = 0; 2653 int src_nritems; 2654 int dst_nritems; 2655 int ret = 0; 2656 2657 src_nritems = btrfs_header_nritems(src); 2658 dst_nritems = btrfs_header_nritems(dst); 2659 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2660 WARN_ON(btrfs_header_generation(src) != trans->transid); 2661 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2662 2663 if (!empty && src_nritems <= 8) 2664 return 1; 2665 2666 if (push_items <= 0) 2667 return 1; 2668 2669 if (empty) { 2670 push_items = min(src_nritems, push_items); 2671 if (push_items < src_nritems) { 2672 /* leave at least 8 pointers in the node if 2673 * we aren't going to empty it 2674 */ 2675 if (src_nritems - push_items < 8) { 2676 if (push_items <= 8) 2677 return 1; 2678 push_items -= 8; 2679 } 2680 } 2681 } else 2682 push_items = min(src_nritems - 8, push_items); 2683 2684 /* dst is the left eb, src is the middle eb */ 2685 if (check_sibling_keys(dst, src)) { 2686 ret = -EUCLEAN; 2687 btrfs_abort_transaction(trans, ret); 2688 return ret; 2689 } 2690 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 2691 if (ret) { 2692 btrfs_abort_transaction(trans, ret); 2693 return ret; 2694 } 2695 copy_extent_buffer(dst, src, 2696 btrfs_node_key_ptr_offset(dst, dst_nritems), 2697 btrfs_node_key_ptr_offset(src, 0), 2698 push_items * sizeof(struct btrfs_key_ptr)); 2699 2700 if (push_items < src_nritems) { 2701 /* 2702 * Don't call btrfs_tree_mod_log_insert_move() here, key removal 2703 * was already fully logged by btrfs_tree_mod_log_eb_copy() above. 2704 */ 2705 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0), 2706 btrfs_node_key_ptr_offset(src, push_items), 2707 (src_nritems - push_items) * 2708 sizeof(struct btrfs_key_ptr)); 2709 } 2710 btrfs_set_header_nritems(src, src_nritems - push_items); 2711 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2712 btrfs_mark_buffer_dirty(src); 2713 btrfs_mark_buffer_dirty(dst); 2714 2715 return ret; 2716 } 2717 2718 /* 2719 * try to push data from one node into the next node right in the 2720 * tree. 2721 * 2722 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2723 * error, and > 0 if there was no room in the right hand block. 2724 * 2725 * this will only push up to 1/2 the contents of the left node over 2726 */ 2727 static int balance_node_right(struct btrfs_trans_handle *trans, 2728 struct extent_buffer *dst, 2729 struct extent_buffer *src) 2730 { 2731 struct btrfs_fs_info *fs_info = trans->fs_info; 2732 int push_items = 0; 2733 int max_push; 2734 int src_nritems; 2735 int dst_nritems; 2736 int ret = 0; 2737 2738 WARN_ON(btrfs_header_generation(src) != trans->transid); 2739 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2740 2741 src_nritems = btrfs_header_nritems(src); 2742 dst_nritems = btrfs_header_nritems(dst); 2743 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2744 if (push_items <= 0) 2745 return 1; 2746 2747 if (src_nritems < 4) 2748 return 1; 2749 2750 max_push = src_nritems / 2 + 1; 2751 /* don't try to empty the node */ 2752 if (max_push >= src_nritems) 2753 return 1; 2754 2755 if (max_push < push_items) 2756 push_items = max_push; 2757 2758 /* dst is the right eb, src is the middle eb */ 2759 if (check_sibling_keys(src, dst)) { 2760 ret = -EUCLEAN; 2761 btrfs_abort_transaction(trans, ret); 2762 return ret; 2763 } 2764 ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 2765 BUG_ON(ret < 0); 2766 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items), 2767 btrfs_node_key_ptr_offset(dst, 0), 2768 (dst_nritems) * 2769 sizeof(struct btrfs_key_ptr)); 2770 2771 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 2772 push_items); 2773 if (ret) { 2774 btrfs_abort_transaction(trans, ret); 2775 return ret; 2776 } 2777 copy_extent_buffer(dst, src, 2778 btrfs_node_key_ptr_offset(dst, 0), 2779 btrfs_node_key_ptr_offset(src, src_nritems - push_items), 2780 push_items * sizeof(struct btrfs_key_ptr)); 2781 2782 btrfs_set_header_nritems(src, src_nritems - push_items); 2783 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2784 2785 btrfs_mark_buffer_dirty(src); 2786 btrfs_mark_buffer_dirty(dst); 2787 2788 return ret; 2789 } 2790 2791 /* 2792 * helper function to insert a new root level in the tree. 2793 * A new node is allocated, and a single item is inserted to 2794 * point to the existing root 2795 * 2796 * returns zero on success or < 0 on failure. 2797 */ 2798 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2799 struct btrfs_root *root, 2800 struct btrfs_path *path, int level) 2801 { 2802 struct btrfs_fs_info *fs_info = root->fs_info; 2803 u64 lower_gen; 2804 struct extent_buffer *lower; 2805 struct extent_buffer *c; 2806 struct extent_buffer *old; 2807 struct btrfs_disk_key lower_key; 2808 int ret; 2809 2810 BUG_ON(path->nodes[level]); 2811 BUG_ON(path->nodes[level-1] != root->node); 2812 2813 lower = path->nodes[level-1]; 2814 if (level == 1) 2815 btrfs_item_key(lower, &lower_key, 0); 2816 else 2817 btrfs_node_key(lower, &lower_key, 0); 2818 2819 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 2820 &lower_key, level, root->node->start, 0, 2821 BTRFS_NESTING_NEW_ROOT); 2822 if (IS_ERR(c)) 2823 return PTR_ERR(c); 2824 2825 root_add_used(root, fs_info->nodesize); 2826 2827 btrfs_set_header_nritems(c, 1); 2828 btrfs_set_node_key(c, &lower_key, 0); 2829 btrfs_set_node_blockptr(c, 0, lower->start); 2830 lower_gen = btrfs_header_generation(lower); 2831 WARN_ON(lower_gen != trans->transid); 2832 2833 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2834 2835 btrfs_mark_buffer_dirty(c); 2836 2837 old = root->node; 2838 ret = btrfs_tree_mod_log_insert_root(root->node, c, false); 2839 BUG_ON(ret < 0); 2840 rcu_assign_pointer(root->node, c); 2841 2842 /* the super has an extra ref to root->node */ 2843 free_extent_buffer(old); 2844 2845 add_root_to_dirty_list(root); 2846 atomic_inc(&c->refs); 2847 path->nodes[level] = c; 2848 path->locks[level] = BTRFS_WRITE_LOCK; 2849 path->slots[level] = 0; 2850 return 0; 2851 } 2852 2853 /* 2854 * worker function to insert a single pointer in a node. 2855 * the node should have enough room for the pointer already 2856 * 2857 * slot and level indicate where you want the key to go, and 2858 * blocknr is the block the key points to. 2859 */ 2860 static void insert_ptr(struct btrfs_trans_handle *trans, 2861 struct btrfs_path *path, 2862 struct btrfs_disk_key *key, u64 bytenr, 2863 int slot, int level) 2864 { 2865 struct extent_buffer *lower; 2866 int nritems; 2867 int ret; 2868 2869 BUG_ON(!path->nodes[level]); 2870 btrfs_assert_tree_write_locked(path->nodes[level]); 2871 lower = path->nodes[level]; 2872 nritems = btrfs_header_nritems(lower); 2873 BUG_ON(slot > nritems); 2874 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 2875 if (slot != nritems) { 2876 if (level) { 2877 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1, 2878 slot, nritems - slot); 2879 BUG_ON(ret < 0); 2880 } 2881 memmove_extent_buffer(lower, 2882 btrfs_node_key_ptr_offset(lower, slot + 1), 2883 btrfs_node_key_ptr_offset(lower, slot), 2884 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2885 } 2886 if (level) { 2887 ret = btrfs_tree_mod_log_insert_key(lower, slot, 2888 BTRFS_MOD_LOG_KEY_ADD); 2889 BUG_ON(ret < 0); 2890 } 2891 btrfs_set_node_key(lower, key, slot); 2892 btrfs_set_node_blockptr(lower, slot, bytenr); 2893 WARN_ON(trans->transid == 0); 2894 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2895 btrfs_set_header_nritems(lower, nritems + 1); 2896 btrfs_mark_buffer_dirty(lower); 2897 } 2898 2899 /* 2900 * split the node at the specified level in path in two. 2901 * The path is corrected to point to the appropriate node after the split 2902 * 2903 * Before splitting this tries to make some room in the node by pushing 2904 * left and right, if either one works, it returns right away. 2905 * 2906 * returns 0 on success and < 0 on failure 2907 */ 2908 static noinline int split_node(struct btrfs_trans_handle *trans, 2909 struct btrfs_root *root, 2910 struct btrfs_path *path, int level) 2911 { 2912 struct btrfs_fs_info *fs_info = root->fs_info; 2913 struct extent_buffer *c; 2914 struct extent_buffer *split; 2915 struct btrfs_disk_key disk_key; 2916 int mid; 2917 int ret; 2918 u32 c_nritems; 2919 2920 c = path->nodes[level]; 2921 WARN_ON(btrfs_header_generation(c) != trans->transid); 2922 if (c == root->node) { 2923 /* 2924 * trying to split the root, lets make a new one 2925 * 2926 * tree mod log: We don't log_removal old root in 2927 * insert_new_root, because that root buffer will be kept as a 2928 * normal node. We are going to log removal of half of the 2929 * elements below with btrfs_tree_mod_log_eb_copy(). We're 2930 * holding a tree lock on the buffer, which is why we cannot 2931 * race with other tree_mod_log users. 2932 */ 2933 ret = insert_new_root(trans, root, path, level + 1); 2934 if (ret) 2935 return ret; 2936 } else { 2937 ret = push_nodes_for_insert(trans, root, path, level); 2938 c = path->nodes[level]; 2939 if (!ret && btrfs_header_nritems(c) < 2940 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 2941 return 0; 2942 if (ret < 0) 2943 return ret; 2944 } 2945 2946 c_nritems = btrfs_header_nritems(c); 2947 mid = (c_nritems + 1) / 2; 2948 btrfs_node_key(c, &disk_key, mid); 2949 2950 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 2951 &disk_key, level, c->start, 0, 2952 BTRFS_NESTING_SPLIT); 2953 if (IS_ERR(split)) 2954 return PTR_ERR(split); 2955 2956 root_add_used(root, fs_info->nodesize); 2957 ASSERT(btrfs_header_level(c) == level); 2958 2959 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 2960 if (ret) { 2961 btrfs_abort_transaction(trans, ret); 2962 return ret; 2963 } 2964 copy_extent_buffer(split, c, 2965 btrfs_node_key_ptr_offset(split, 0), 2966 btrfs_node_key_ptr_offset(c, mid), 2967 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2968 btrfs_set_header_nritems(split, c_nritems - mid); 2969 btrfs_set_header_nritems(c, mid); 2970 2971 btrfs_mark_buffer_dirty(c); 2972 btrfs_mark_buffer_dirty(split); 2973 2974 insert_ptr(trans, path, &disk_key, split->start, 2975 path->slots[level + 1] + 1, level + 1); 2976 2977 if (path->slots[level] >= mid) { 2978 path->slots[level] -= mid; 2979 btrfs_tree_unlock(c); 2980 free_extent_buffer(c); 2981 path->nodes[level] = split; 2982 path->slots[level + 1] += 1; 2983 } else { 2984 btrfs_tree_unlock(split); 2985 free_extent_buffer(split); 2986 } 2987 return 0; 2988 } 2989 2990 /* 2991 * how many bytes are required to store the items in a leaf. start 2992 * and nr indicate which items in the leaf to check. This totals up the 2993 * space used both by the item structs and the item data 2994 */ 2995 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2996 { 2997 int data_len; 2998 int nritems = btrfs_header_nritems(l); 2999 int end = min(nritems, start + nr) - 1; 3000 3001 if (!nr) 3002 return 0; 3003 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start); 3004 data_len = data_len - btrfs_item_offset(l, end); 3005 data_len += sizeof(struct btrfs_item) * nr; 3006 WARN_ON(data_len < 0); 3007 return data_len; 3008 } 3009 3010 /* 3011 * The space between the end of the leaf items and 3012 * the start of the leaf data. IOW, how much room 3013 * the leaf has left for both items and data 3014 */ 3015 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 3016 { 3017 struct btrfs_fs_info *fs_info = leaf->fs_info; 3018 int nritems = btrfs_header_nritems(leaf); 3019 int ret; 3020 3021 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3022 if (ret < 0) { 3023 btrfs_crit(fs_info, 3024 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3025 ret, 3026 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3027 leaf_space_used(leaf, 0, nritems), nritems); 3028 } 3029 return ret; 3030 } 3031 3032 /* 3033 * min slot controls the lowest index we're willing to push to the 3034 * right. We'll push up to and including min_slot, but no lower 3035 */ 3036 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3037 struct btrfs_path *path, 3038 int data_size, int empty, 3039 struct extent_buffer *right, 3040 int free_space, u32 left_nritems, 3041 u32 min_slot) 3042 { 3043 struct btrfs_fs_info *fs_info = right->fs_info; 3044 struct extent_buffer *left = path->nodes[0]; 3045 struct extent_buffer *upper = path->nodes[1]; 3046 struct btrfs_map_token token; 3047 struct btrfs_disk_key disk_key; 3048 int slot; 3049 u32 i; 3050 int push_space = 0; 3051 int push_items = 0; 3052 u32 nr; 3053 u32 right_nritems; 3054 u32 data_end; 3055 u32 this_item_size; 3056 3057 if (empty) 3058 nr = 0; 3059 else 3060 nr = max_t(u32, 1, min_slot); 3061 3062 if (path->slots[0] >= left_nritems) 3063 push_space += data_size; 3064 3065 slot = path->slots[1]; 3066 i = left_nritems - 1; 3067 while (i >= nr) { 3068 if (!empty && push_items > 0) { 3069 if (path->slots[0] > i) 3070 break; 3071 if (path->slots[0] == i) { 3072 int space = btrfs_leaf_free_space(left); 3073 3074 if (space + push_space * 2 > free_space) 3075 break; 3076 } 3077 } 3078 3079 if (path->slots[0] == i) 3080 push_space += data_size; 3081 3082 this_item_size = btrfs_item_size(left, i); 3083 if (this_item_size + sizeof(struct btrfs_item) + 3084 push_space > free_space) 3085 break; 3086 3087 push_items++; 3088 push_space += this_item_size + sizeof(struct btrfs_item); 3089 if (i == 0) 3090 break; 3091 i--; 3092 } 3093 3094 if (push_items == 0) 3095 goto out_unlock; 3096 3097 WARN_ON(!empty && push_items == left_nritems); 3098 3099 /* push left to right */ 3100 right_nritems = btrfs_header_nritems(right); 3101 3102 push_space = btrfs_item_data_end(left, left_nritems - push_items); 3103 push_space -= leaf_data_end(left); 3104 3105 /* make room in the right data area */ 3106 data_end = leaf_data_end(right); 3107 memmove_leaf_data(right, data_end - push_space, data_end, 3108 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3109 3110 /* copy from the left data area */ 3111 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3112 leaf_data_end(left), push_space); 3113 3114 memmove_leaf_items(right, push_items, 0, right_nritems); 3115 3116 /* copy the items from left to right */ 3117 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items); 3118 3119 /* update the item pointers */ 3120 btrfs_init_map_token(&token, right); 3121 right_nritems += push_items; 3122 btrfs_set_header_nritems(right, right_nritems); 3123 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3124 for (i = 0; i < right_nritems; i++) { 3125 push_space -= btrfs_token_item_size(&token, i); 3126 btrfs_set_token_item_offset(&token, i, push_space); 3127 } 3128 3129 left_nritems -= push_items; 3130 btrfs_set_header_nritems(left, left_nritems); 3131 3132 if (left_nritems) 3133 btrfs_mark_buffer_dirty(left); 3134 else 3135 btrfs_clear_buffer_dirty(trans, left); 3136 3137 btrfs_mark_buffer_dirty(right); 3138 3139 btrfs_item_key(right, &disk_key, 0); 3140 btrfs_set_node_key(upper, &disk_key, slot + 1); 3141 btrfs_mark_buffer_dirty(upper); 3142 3143 /* then fixup the leaf pointer in the path */ 3144 if (path->slots[0] >= left_nritems) { 3145 path->slots[0] -= left_nritems; 3146 if (btrfs_header_nritems(path->nodes[0]) == 0) 3147 btrfs_clear_buffer_dirty(trans, path->nodes[0]); 3148 btrfs_tree_unlock(path->nodes[0]); 3149 free_extent_buffer(path->nodes[0]); 3150 path->nodes[0] = right; 3151 path->slots[1] += 1; 3152 } else { 3153 btrfs_tree_unlock(right); 3154 free_extent_buffer(right); 3155 } 3156 return 0; 3157 3158 out_unlock: 3159 btrfs_tree_unlock(right); 3160 free_extent_buffer(right); 3161 return 1; 3162 } 3163 3164 /* 3165 * push some data in the path leaf to the right, trying to free up at 3166 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3167 * 3168 * returns 1 if the push failed because the other node didn't have enough 3169 * room, 0 if everything worked out and < 0 if there were major errors. 3170 * 3171 * this will push starting from min_slot to the end of the leaf. It won't 3172 * push any slot lower than min_slot 3173 */ 3174 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3175 *root, struct btrfs_path *path, 3176 int min_data_size, int data_size, 3177 int empty, u32 min_slot) 3178 { 3179 struct extent_buffer *left = path->nodes[0]; 3180 struct extent_buffer *right; 3181 struct extent_buffer *upper; 3182 int slot; 3183 int free_space; 3184 u32 left_nritems; 3185 int ret; 3186 3187 if (!path->nodes[1]) 3188 return 1; 3189 3190 slot = path->slots[1]; 3191 upper = path->nodes[1]; 3192 if (slot >= btrfs_header_nritems(upper) - 1) 3193 return 1; 3194 3195 btrfs_assert_tree_write_locked(path->nodes[1]); 3196 3197 right = btrfs_read_node_slot(upper, slot + 1); 3198 if (IS_ERR(right)) 3199 return PTR_ERR(right); 3200 3201 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 3202 3203 free_space = btrfs_leaf_free_space(right); 3204 if (free_space < data_size) 3205 goto out_unlock; 3206 3207 ret = btrfs_cow_block(trans, root, right, upper, 3208 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 3209 if (ret) 3210 goto out_unlock; 3211 3212 left_nritems = btrfs_header_nritems(left); 3213 if (left_nritems == 0) 3214 goto out_unlock; 3215 3216 if (check_sibling_keys(left, right)) { 3217 ret = -EUCLEAN; 3218 btrfs_tree_unlock(right); 3219 free_extent_buffer(right); 3220 return ret; 3221 } 3222 if (path->slots[0] == left_nritems && !empty) { 3223 /* Key greater than all keys in the leaf, right neighbor has 3224 * enough room for it and we're not emptying our leaf to delete 3225 * it, therefore use right neighbor to insert the new item and 3226 * no need to touch/dirty our left leaf. */ 3227 btrfs_tree_unlock(left); 3228 free_extent_buffer(left); 3229 path->nodes[0] = right; 3230 path->slots[0] = 0; 3231 path->slots[1]++; 3232 return 0; 3233 } 3234 3235 return __push_leaf_right(trans, path, min_data_size, empty, right, 3236 free_space, left_nritems, min_slot); 3237 out_unlock: 3238 btrfs_tree_unlock(right); 3239 free_extent_buffer(right); 3240 return 1; 3241 } 3242 3243 /* 3244 * push some data in the path leaf to the left, trying to free up at 3245 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3246 * 3247 * max_slot can put a limit on how far into the leaf we'll push items. The 3248 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3249 * items 3250 */ 3251 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3252 struct btrfs_path *path, int data_size, 3253 int empty, struct extent_buffer *left, 3254 int free_space, u32 right_nritems, 3255 u32 max_slot) 3256 { 3257 struct btrfs_fs_info *fs_info = left->fs_info; 3258 struct btrfs_disk_key disk_key; 3259 struct extent_buffer *right = path->nodes[0]; 3260 int i; 3261 int push_space = 0; 3262 int push_items = 0; 3263 u32 old_left_nritems; 3264 u32 nr; 3265 int ret = 0; 3266 u32 this_item_size; 3267 u32 old_left_item_size; 3268 struct btrfs_map_token token; 3269 3270 if (empty) 3271 nr = min(right_nritems, max_slot); 3272 else 3273 nr = min(right_nritems - 1, max_slot); 3274 3275 for (i = 0; i < nr; i++) { 3276 if (!empty && push_items > 0) { 3277 if (path->slots[0] < i) 3278 break; 3279 if (path->slots[0] == i) { 3280 int space = btrfs_leaf_free_space(right); 3281 3282 if (space + push_space * 2 > free_space) 3283 break; 3284 } 3285 } 3286 3287 if (path->slots[0] == i) 3288 push_space += data_size; 3289 3290 this_item_size = btrfs_item_size(right, i); 3291 if (this_item_size + sizeof(struct btrfs_item) + push_space > 3292 free_space) 3293 break; 3294 3295 push_items++; 3296 push_space += this_item_size + sizeof(struct btrfs_item); 3297 } 3298 3299 if (push_items == 0) { 3300 ret = 1; 3301 goto out; 3302 } 3303 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3304 3305 /* push data from right to left */ 3306 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items); 3307 3308 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3309 btrfs_item_offset(right, push_items - 1); 3310 3311 copy_leaf_data(left, right, leaf_data_end(left) - push_space, 3312 btrfs_item_offset(right, push_items - 1), push_space); 3313 old_left_nritems = btrfs_header_nritems(left); 3314 BUG_ON(old_left_nritems <= 0); 3315 3316 btrfs_init_map_token(&token, left); 3317 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1); 3318 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3319 u32 ioff; 3320 3321 ioff = btrfs_token_item_offset(&token, i); 3322 btrfs_set_token_item_offset(&token, i, 3323 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 3324 } 3325 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3326 3327 /* fixup right node */ 3328 if (push_items > right_nritems) 3329 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3330 right_nritems); 3331 3332 if (push_items < right_nritems) { 3333 push_space = btrfs_item_offset(right, push_items - 1) - 3334 leaf_data_end(right); 3335 memmove_leaf_data(right, 3336 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3337 leaf_data_end(right), push_space); 3338 3339 memmove_leaf_items(right, 0, push_items, 3340 btrfs_header_nritems(right) - push_items); 3341 } 3342 3343 btrfs_init_map_token(&token, right); 3344 right_nritems -= push_items; 3345 btrfs_set_header_nritems(right, right_nritems); 3346 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3347 for (i = 0; i < right_nritems; i++) { 3348 push_space = push_space - btrfs_token_item_size(&token, i); 3349 btrfs_set_token_item_offset(&token, i, push_space); 3350 } 3351 3352 btrfs_mark_buffer_dirty(left); 3353 if (right_nritems) 3354 btrfs_mark_buffer_dirty(right); 3355 else 3356 btrfs_clear_buffer_dirty(trans, right); 3357 3358 btrfs_item_key(right, &disk_key, 0); 3359 fixup_low_keys(path, &disk_key, 1); 3360 3361 /* then fixup the leaf pointer in the path */ 3362 if (path->slots[0] < push_items) { 3363 path->slots[0] += old_left_nritems; 3364 btrfs_tree_unlock(path->nodes[0]); 3365 free_extent_buffer(path->nodes[0]); 3366 path->nodes[0] = left; 3367 path->slots[1] -= 1; 3368 } else { 3369 btrfs_tree_unlock(left); 3370 free_extent_buffer(left); 3371 path->slots[0] -= push_items; 3372 } 3373 BUG_ON(path->slots[0] < 0); 3374 return ret; 3375 out: 3376 btrfs_tree_unlock(left); 3377 free_extent_buffer(left); 3378 return ret; 3379 } 3380 3381 /* 3382 * push some data in the path leaf to the left, trying to free up at 3383 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3384 * 3385 * max_slot can put a limit on how far into the leaf we'll push items. The 3386 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3387 * items 3388 */ 3389 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3390 *root, struct btrfs_path *path, int min_data_size, 3391 int data_size, int empty, u32 max_slot) 3392 { 3393 struct extent_buffer *right = path->nodes[0]; 3394 struct extent_buffer *left; 3395 int slot; 3396 int free_space; 3397 u32 right_nritems; 3398 int ret = 0; 3399 3400 slot = path->slots[1]; 3401 if (slot == 0) 3402 return 1; 3403 if (!path->nodes[1]) 3404 return 1; 3405 3406 right_nritems = btrfs_header_nritems(right); 3407 if (right_nritems == 0) 3408 return 1; 3409 3410 btrfs_assert_tree_write_locked(path->nodes[1]); 3411 3412 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3413 if (IS_ERR(left)) 3414 return PTR_ERR(left); 3415 3416 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 3417 3418 free_space = btrfs_leaf_free_space(left); 3419 if (free_space < data_size) { 3420 ret = 1; 3421 goto out; 3422 } 3423 3424 ret = btrfs_cow_block(trans, root, left, 3425 path->nodes[1], slot - 1, &left, 3426 BTRFS_NESTING_LEFT_COW); 3427 if (ret) { 3428 /* we hit -ENOSPC, but it isn't fatal here */ 3429 if (ret == -ENOSPC) 3430 ret = 1; 3431 goto out; 3432 } 3433 3434 if (check_sibling_keys(left, right)) { 3435 ret = -EUCLEAN; 3436 goto out; 3437 } 3438 return __push_leaf_left(trans, path, min_data_size, empty, left, 3439 free_space, right_nritems, max_slot); 3440 out: 3441 btrfs_tree_unlock(left); 3442 free_extent_buffer(left); 3443 return ret; 3444 } 3445 3446 /* 3447 * split the path's leaf in two, making sure there is at least data_size 3448 * available for the resulting leaf level of the path. 3449 */ 3450 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3451 struct btrfs_path *path, 3452 struct extent_buffer *l, 3453 struct extent_buffer *right, 3454 int slot, int mid, int nritems) 3455 { 3456 struct btrfs_fs_info *fs_info = trans->fs_info; 3457 int data_copy_size; 3458 int rt_data_off; 3459 int i; 3460 struct btrfs_disk_key disk_key; 3461 struct btrfs_map_token token; 3462 3463 nritems = nritems - mid; 3464 btrfs_set_header_nritems(right, nritems); 3465 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l); 3466 3467 copy_leaf_items(right, l, 0, mid, nritems); 3468 3469 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size, 3470 leaf_data_end(l), data_copy_size); 3471 3472 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid); 3473 3474 btrfs_init_map_token(&token, right); 3475 for (i = 0; i < nritems; i++) { 3476 u32 ioff; 3477 3478 ioff = btrfs_token_item_offset(&token, i); 3479 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off); 3480 } 3481 3482 btrfs_set_header_nritems(l, mid); 3483 btrfs_item_key(right, &disk_key, 0); 3484 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 3485 3486 btrfs_mark_buffer_dirty(right); 3487 btrfs_mark_buffer_dirty(l); 3488 BUG_ON(path->slots[0] != slot); 3489 3490 if (mid <= slot) { 3491 btrfs_tree_unlock(path->nodes[0]); 3492 free_extent_buffer(path->nodes[0]); 3493 path->nodes[0] = right; 3494 path->slots[0] -= mid; 3495 path->slots[1] += 1; 3496 } else { 3497 btrfs_tree_unlock(right); 3498 free_extent_buffer(right); 3499 } 3500 3501 BUG_ON(path->slots[0] < 0); 3502 } 3503 3504 /* 3505 * double splits happen when we need to insert a big item in the middle 3506 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3507 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3508 * A B C 3509 * 3510 * We avoid this by trying to push the items on either side of our target 3511 * into the adjacent leaves. If all goes well we can avoid the double split 3512 * completely. 3513 */ 3514 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3515 struct btrfs_root *root, 3516 struct btrfs_path *path, 3517 int data_size) 3518 { 3519 int ret; 3520 int progress = 0; 3521 int slot; 3522 u32 nritems; 3523 int space_needed = data_size; 3524 3525 slot = path->slots[0]; 3526 if (slot < btrfs_header_nritems(path->nodes[0])) 3527 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3528 3529 /* 3530 * try to push all the items after our slot into the 3531 * right leaf 3532 */ 3533 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 3534 if (ret < 0) 3535 return ret; 3536 3537 if (ret == 0) 3538 progress++; 3539 3540 nritems = btrfs_header_nritems(path->nodes[0]); 3541 /* 3542 * our goal is to get our slot at the start or end of a leaf. If 3543 * we've done so we're done 3544 */ 3545 if (path->slots[0] == 0 || path->slots[0] == nritems) 3546 return 0; 3547 3548 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3549 return 0; 3550 3551 /* try to push all the items before our slot into the next leaf */ 3552 slot = path->slots[0]; 3553 space_needed = data_size; 3554 if (slot > 0) 3555 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3556 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 3557 if (ret < 0) 3558 return ret; 3559 3560 if (ret == 0) 3561 progress++; 3562 3563 if (progress) 3564 return 0; 3565 return 1; 3566 } 3567 3568 /* 3569 * split the path's leaf in two, making sure there is at least data_size 3570 * available for the resulting leaf level of the path. 3571 * 3572 * returns 0 if all went well and < 0 on failure. 3573 */ 3574 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3575 struct btrfs_root *root, 3576 const struct btrfs_key *ins_key, 3577 struct btrfs_path *path, int data_size, 3578 int extend) 3579 { 3580 struct btrfs_disk_key disk_key; 3581 struct extent_buffer *l; 3582 u32 nritems; 3583 int mid; 3584 int slot; 3585 struct extent_buffer *right; 3586 struct btrfs_fs_info *fs_info = root->fs_info; 3587 int ret = 0; 3588 int wret; 3589 int split; 3590 int num_doubles = 0; 3591 int tried_avoid_double = 0; 3592 3593 l = path->nodes[0]; 3594 slot = path->slots[0]; 3595 if (extend && data_size + btrfs_item_size(l, slot) + 3596 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 3597 return -EOVERFLOW; 3598 3599 /* first try to make some room by pushing left and right */ 3600 if (data_size && path->nodes[1]) { 3601 int space_needed = data_size; 3602 3603 if (slot < btrfs_header_nritems(l)) 3604 space_needed -= btrfs_leaf_free_space(l); 3605 3606 wret = push_leaf_right(trans, root, path, space_needed, 3607 space_needed, 0, 0); 3608 if (wret < 0) 3609 return wret; 3610 if (wret) { 3611 space_needed = data_size; 3612 if (slot > 0) 3613 space_needed -= btrfs_leaf_free_space(l); 3614 wret = push_leaf_left(trans, root, path, space_needed, 3615 space_needed, 0, (u32)-1); 3616 if (wret < 0) 3617 return wret; 3618 } 3619 l = path->nodes[0]; 3620 3621 /* did the pushes work? */ 3622 if (btrfs_leaf_free_space(l) >= data_size) 3623 return 0; 3624 } 3625 3626 if (!path->nodes[1]) { 3627 ret = insert_new_root(trans, root, path, 1); 3628 if (ret) 3629 return ret; 3630 } 3631 again: 3632 split = 1; 3633 l = path->nodes[0]; 3634 slot = path->slots[0]; 3635 nritems = btrfs_header_nritems(l); 3636 mid = (nritems + 1) / 2; 3637 3638 if (mid <= slot) { 3639 if (nritems == 1 || 3640 leaf_space_used(l, mid, nritems - mid) + data_size > 3641 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3642 if (slot >= nritems) { 3643 split = 0; 3644 } else { 3645 mid = slot; 3646 if (mid != nritems && 3647 leaf_space_used(l, mid, nritems - mid) + 3648 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3649 if (data_size && !tried_avoid_double) 3650 goto push_for_double; 3651 split = 2; 3652 } 3653 } 3654 } 3655 } else { 3656 if (leaf_space_used(l, 0, mid) + data_size > 3657 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3658 if (!extend && data_size && slot == 0) { 3659 split = 0; 3660 } else if ((extend || !data_size) && slot == 0) { 3661 mid = 1; 3662 } else { 3663 mid = slot; 3664 if (mid != nritems && 3665 leaf_space_used(l, mid, nritems - mid) + 3666 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3667 if (data_size && !tried_avoid_double) 3668 goto push_for_double; 3669 split = 2; 3670 } 3671 } 3672 } 3673 } 3674 3675 if (split == 0) 3676 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3677 else 3678 btrfs_item_key(l, &disk_key, mid); 3679 3680 /* 3681 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 3682 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 3683 * subclasses, which is 8 at the time of this patch, and we've maxed it 3684 * out. In the future we could add a 3685 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 3686 * use BTRFS_NESTING_NEW_ROOT. 3687 */ 3688 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3689 &disk_key, 0, l->start, 0, 3690 num_doubles ? BTRFS_NESTING_NEW_ROOT : 3691 BTRFS_NESTING_SPLIT); 3692 if (IS_ERR(right)) 3693 return PTR_ERR(right); 3694 3695 root_add_used(root, fs_info->nodesize); 3696 3697 if (split == 0) { 3698 if (mid <= slot) { 3699 btrfs_set_header_nritems(right, 0); 3700 insert_ptr(trans, path, &disk_key, 3701 right->start, path->slots[1] + 1, 1); 3702 btrfs_tree_unlock(path->nodes[0]); 3703 free_extent_buffer(path->nodes[0]); 3704 path->nodes[0] = right; 3705 path->slots[0] = 0; 3706 path->slots[1] += 1; 3707 } else { 3708 btrfs_set_header_nritems(right, 0); 3709 insert_ptr(trans, path, &disk_key, 3710 right->start, path->slots[1], 1); 3711 btrfs_tree_unlock(path->nodes[0]); 3712 free_extent_buffer(path->nodes[0]); 3713 path->nodes[0] = right; 3714 path->slots[0] = 0; 3715 if (path->slots[1] == 0) 3716 fixup_low_keys(path, &disk_key, 1); 3717 } 3718 /* 3719 * We create a new leaf 'right' for the required ins_len and 3720 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 3721 * the content of ins_len to 'right'. 3722 */ 3723 return ret; 3724 } 3725 3726 copy_for_split(trans, path, l, right, slot, mid, nritems); 3727 3728 if (split == 2) { 3729 BUG_ON(num_doubles != 0); 3730 num_doubles++; 3731 goto again; 3732 } 3733 3734 return 0; 3735 3736 push_for_double: 3737 push_for_double_split(trans, root, path, data_size); 3738 tried_avoid_double = 1; 3739 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3740 return 0; 3741 goto again; 3742 } 3743 3744 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3745 struct btrfs_root *root, 3746 struct btrfs_path *path, int ins_len) 3747 { 3748 struct btrfs_key key; 3749 struct extent_buffer *leaf; 3750 struct btrfs_file_extent_item *fi; 3751 u64 extent_len = 0; 3752 u32 item_size; 3753 int ret; 3754 3755 leaf = path->nodes[0]; 3756 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3757 3758 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3759 key.type != BTRFS_EXTENT_CSUM_KEY); 3760 3761 if (btrfs_leaf_free_space(leaf) >= ins_len) 3762 return 0; 3763 3764 item_size = btrfs_item_size(leaf, path->slots[0]); 3765 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3766 fi = btrfs_item_ptr(leaf, path->slots[0], 3767 struct btrfs_file_extent_item); 3768 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3769 } 3770 btrfs_release_path(path); 3771 3772 path->keep_locks = 1; 3773 path->search_for_split = 1; 3774 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3775 path->search_for_split = 0; 3776 if (ret > 0) 3777 ret = -EAGAIN; 3778 if (ret < 0) 3779 goto err; 3780 3781 ret = -EAGAIN; 3782 leaf = path->nodes[0]; 3783 /* if our item isn't there, return now */ 3784 if (item_size != btrfs_item_size(leaf, path->slots[0])) 3785 goto err; 3786 3787 /* the leaf has changed, it now has room. return now */ 3788 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 3789 goto err; 3790 3791 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3792 fi = btrfs_item_ptr(leaf, path->slots[0], 3793 struct btrfs_file_extent_item); 3794 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3795 goto err; 3796 } 3797 3798 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3799 if (ret) 3800 goto err; 3801 3802 path->keep_locks = 0; 3803 btrfs_unlock_up_safe(path, 1); 3804 return 0; 3805 err: 3806 path->keep_locks = 0; 3807 return ret; 3808 } 3809 3810 static noinline int split_item(struct btrfs_path *path, 3811 const struct btrfs_key *new_key, 3812 unsigned long split_offset) 3813 { 3814 struct extent_buffer *leaf; 3815 int orig_slot, slot; 3816 char *buf; 3817 u32 nritems; 3818 u32 item_size; 3819 u32 orig_offset; 3820 struct btrfs_disk_key disk_key; 3821 3822 leaf = path->nodes[0]; 3823 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 3824 3825 orig_slot = path->slots[0]; 3826 orig_offset = btrfs_item_offset(leaf, path->slots[0]); 3827 item_size = btrfs_item_size(leaf, path->slots[0]); 3828 3829 buf = kmalloc(item_size, GFP_NOFS); 3830 if (!buf) 3831 return -ENOMEM; 3832 3833 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3834 path->slots[0]), item_size); 3835 3836 slot = path->slots[0] + 1; 3837 nritems = btrfs_header_nritems(leaf); 3838 if (slot != nritems) { 3839 /* shift the items */ 3840 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot); 3841 } 3842 3843 btrfs_cpu_key_to_disk(&disk_key, new_key); 3844 btrfs_set_item_key(leaf, &disk_key, slot); 3845 3846 btrfs_set_item_offset(leaf, slot, orig_offset); 3847 btrfs_set_item_size(leaf, slot, item_size - split_offset); 3848 3849 btrfs_set_item_offset(leaf, orig_slot, 3850 orig_offset + item_size - split_offset); 3851 btrfs_set_item_size(leaf, orig_slot, split_offset); 3852 3853 btrfs_set_header_nritems(leaf, nritems + 1); 3854 3855 /* write the data for the start of the original item */ 3856 write_extent_buffer(leaf, buf, 3857 btrfs_item_ptr_offset(leaf, path->slots[0]), 3858 split_offset); 3859 3860 /* write the data for the new item */ 3861 write_extent_buffer(leaf, buf + split_offset, 3862 btrfs_item_ptr_offset(leaf, slot), 3863 item_size - split_offset); 3864 btrfs_mark_buffer_dirty(leaf); 3865 3866 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 3867 kfree(buf); 3868 return 0; 3869 } 3870 3871 /* 3872 * This function splits a single item into two items, 3873 * giving 'new_key' to the new item and splitting the 3874 * old one at split_offset (from the start of the item). 3875 * 3876 * The path may be released by this operation. After 3877 * the split, the path is pointing to the old item. The 3878 * new item is going to be in the same node as the old one. 3879 * 3880 * Note, the item being split must be smaller enough to live alone on 3881 * a tree block with room for one extra struct btrfs_item 3882 * 3883 * This allows us to split the item in place, keeping a lock on the 3884 * leaf the entire time. 3885 */ 3886 int btrfs_split_item(struct btrfs_trans_handle *trans, 3887 struct btrfs_root *root, 3888 struct btrfs_path *path, 3889 const struct btrfs_key *new_key, 3890 unsigned long split_offset) 3891 { 3892 int ret; 3893 ret = setup_leaf_for_split(trans, root, path, 3894 sizeof(struct btrfs_item)); 3895 if (ret) 3896 return ret; 3897 3898 ret = split_item(path, new_key, split_offset); 3899 return ret; 3900 } 3901 3902 /* 3903 * make the item pointed to by the path smaller. new_size indicates 3904 * how small to make it, and from_end tells us if we just chop bytes 3905 * off the end of the item or if we shift the item to chop bytes off 3906 * the front. 3907 */ 3908 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 3909 { 3910 int slot; 3911 struct extent_buffer *leaf; 3912 u32 nritems; 3913 unsigned int data_end; 3914 unsigned int old_data_start; 3915 unsigned int old_size; 3916 unsigned int size_diff; 3917 int i; 3918 struct btrfs_map_token token; 3919 3920 leaf = path->nodes[0]; 3921 slot = path->slots[0]; 3922 3923 old_size = btrfs_item_size(leaf, slot); 3924 if (old_size == new_size) 3925 return; 3926 3927 nritems = btrfs_header_nritems(leaf); 3928 data_end = leaf_data_end(leaf); 3929 3930 old_data_start = btrfs_item_offset(leaf, slot); 3931 3932 size_diff = old_size - new_size; 3933 3934 BUG_ON(slot < 0); 3935 BUG_ON(slot >= nritems); 3936 3937 /* 3938 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3939 */ 3940 /* first correct the data pointers */ 3941 btrfs_init_map_token(&token, leaf); 3942 for (i = slot; i < nritems; i++) { 3943 u32 ioff; 3944 3945 ioff = btrfs_token_item_offset(&token, i); 3946 btrfs_set_token_item_offset(&token, i, ioff + size_diff); 3947 } 3948 3949 /* shift the data */ 3950 if (from_end) { 3951 memmove_leaf_data(leaf, data_end + size_diff, data_end, 3952 old_data_start + new_size - data_end); 3953 } else { 3954 struct btrfs_disk_key disk_key; 3955 u64 offset; 3956 3957 btrfs_item_key(leaf, &disk_key, slot); 3958 3959 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3960 unsigned long ptr; 3961 struct btrfs_file_extent_item *fi; 3962 3963 fi = btrfs_item_ptr(leaf, slot, 3964 struct btrfs_file_extent_item); 3965 fi = (struct btrfs_file_extent_item *)( 3966 (unsigned long)fi - size_diff); 3967 3968 if (btrfs_file_extent_type(leaf, fi) == 3969 BTRFS_FILE_EXTENT_INLINE) { 3970 ptr = btrfs_item_ptr_offset(leaf, slot); 3971 memmove_extent_buffer(leaf, ptr, 3972 (unsigned long)fi, 3973 BTRFS_FILE_EXTENT_INLINE_DATA_START); 3974 } 3975 } 3976 3977 memmove_leaf_data(leaf, data_end + size_diff, data_end, 3978 old_data_start - data_end); 3979 3980 offset = btrfs_disk_key_offset(&disk_key); 3981 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3982 btrfs_set_item_key(leaf, &disk_key, slot); 3983 if (slot == 0) 3984 fixup_low_keys(path, &disk_key, 1); 3985 } 3986 3987 btrfs_set_item_size(leaf, slot, new_size); 3988 btrfs_mark_buffer_dirty(leaf); 3989 3990 if (btrfs_leaf_free_space(leaf) < 0) { 3991 btrfs_print_leaf(leaf); 3992 BUG(); 3993 } 3994 } 3995 3996 /* 3997 * make the item pointed to by the path bigger, data_size is the added size. 3998 */ 3999 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 4000 { 4001 int slot; 4002 struct extent_buffer *leaf; 4003 u32 nritems; 4004 unsigned int data_end; 4005 unsigned int old_data; 4006 unsigned int old_size; 4007 int i; 4008 struct btrfs_map_token token; 4009 4010 leaf = path->nodes[0]; 4011 4012 nritems = btrfs_header_nritems(leaf); 4013 data_end = leaf_data_end(leaf); 4014 4015 if (btrfs_leaf_free_space(leaf) < data_size) { 4016 btrfs_print_leaf(leaf); 4017 BUG(); 4018 } 4019 slot = path->slots[0]; 4020 old_data = btrfs_item_data_end(leaf, slot); 4021 4022 BUG_ON(slot < 0); 4023 if (slot >= nritems) { 4024 btrfs_print_leaf(leaf); 4025 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4026 slot, nritems); 4027 BUG(); 4028 } 4029 4030 /* 4031 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4032 */ 4033 /* first correct the data pointers */ 4034 btrfs_init_map_token(&token, leaf); 4035 for (i = slot; i < nritems; i++) { 4036 u32 ioff; 4037 4038 ioff = btrfs_token_item_offset(&token, i); 4039 btrfs_set_token_item_offset(&token, i, ioff - data_size); 4040 } 4041 4042 /* shift the data */ 4043 memmove_leaf_data(leaf, data_end - data_size, data_end, 4044 old_data - data_end); 4045 4046 data_end = old_data; 4047 old_size = btrfs_item_size(leaf, slot); 4048 btrfs_set_item_size(leaf, slot, old_size + data_size); 4049 btrfs_mark_buffer_dirty(leaf); 4050 4051 if (btrfs_leaf_free_space(leaf) < 0) { 4052 btrfs_print_leaf(leaf); 4053 BUG(); 4054 } 4055 } 4056 4057 /* 4058 * Make space in the node before inserting one or more items. 4059 * 4060 * @root: root we are inserting items to 4061 * @path: points to the leaf/slot where we are going to insert new items 4062 * @batch: information about the batch of items to insert 4063 * 4064 * Main purpose is to save stack depth by doing the bulk of the work in a 4065 * function that doesn't call btrfs_search_slot 4066 */ 4067 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4068 const struct btrfs_item_batch *batch) 4069 { 4070 struct btrfs_fs_info *fs_info = root->fs_info; 4071 int i; 4072 u32 nritems; 4073 unsigned int data_end; 4074 struct btrfs_disk_key disk_key; 4075 struct extent_buffer *leaf; 4076 int slot; 4077 struct btrfs_map_token token; 4078 u32 total_size; 4079 4080 /* 4081 * Before anything else, update keys in the parent and other ancestors 4082 * if needed, then release the write locks on them, so that other tasks 4083 * can use them while we modify the leaf. 4084 */ 4085 if (path->slots[0] == 0) { 4086 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]); 4087 fixup_low_keys(path, &disk_key, 1); 4088 } 4089 btrfs_unlock_up_safe(path, 1); 4090 4091 leaf = path->nodes[0]; 4092 slot = path->slots[0]; 4093 4094 nritems = btrfs_header_nritems(leaf); 4095 data_end = leaf_data_end(leaf); 4096 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 4097 4098 if (btrfs_leaf_free_space(leaf) < total_size) { 4099 btrfs_print_leaf(leaf); 4100 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4101 total_size, btrfs_leaf_free_space(leaf)); 4102 BUG(); 4103 } 4104 4105 btrfs_init_map_token(&token, leaf); 4106 if (slot != nritems) { 4107 unsigned int old_data = btrfs_item_data_end(leaf, slot); 4108 4109 if (old_data < data_end) { 4110 btrfs_print_leaf(leaf); 4111 btrfs_crit(fs_info, 4112 "item at slot %d with data offset %u beyond data end of leaf %u", 4113 slot, old_data, data_end); 4114 BUG(); 4115 } 4116 /* 4117 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4118 */ 4119 /* first correct the data pointers */ 4120 for (i = slot; i < nritems; i++) { 4121 u32 ioff; 4122 4123 ioff = btrfs_token_item_offset(&token, i); 4124 btrfs_set_token_item_offset(&token, i, 4125 ioff - batch->total_data_size); 4126 } 4127 /* shift the items */ 4128 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot); 4129 4130 /* shift the data */ 4131 memmove_leaf_data(leaf, data_end - batch->total_data_size, 4132 data_end, old_data - data_end); 4133 data_end = old_data; 4134 } 4135 4136 /* setup the item for the new data */ 4137 for (i = 0; i < batch->nr; i++) { 4138 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]); 4139 btrfs_set_item_key(leaf, &disk_key, slot + i); 4140 data_end -= batch->data_sizes[i]; 4141 btrfs_set_token_item_offset(&token, slot + i, data_end); 4142 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]); 4143 } 4144 4145 btrfs_set_header_nritems(leaf, nritems + batch->nr); 4146 btrfs_mark_buffer_dirty(leaf); 4147 4148 if (btrfs_leaf_free_space(leaf) < 0) { 4149 btrfs_print_leaf(leaf); 4150 BUG(); 4151 } 4152 } 4153 4154 /* 4155 * Insert a new item into a leaf. 4156 * 4157 * @root: The root of the btree. 4158 * @path: A path pointing to the target leaf and slot. 4159 * @key: The key of the new item. 4160 * @data_size: The size of the data associated with the new key. 4161 */ 4162 void btrfs_setup_item_for_insert(struct btrfs_root *root, 4163 struct btrfs_path *path, 4164 const struct btrfs_key *key, 4165 u32 data_size) 4166 { 4167 struct btrfs_item_batch batch; 4168 4169 batch.keys = key; 4170 batch.data_sizes = &data_size; 4171 batch.total_data_size = data_size; 4172 batch.nr = 1; 4173 4174 setup_items_for_insert(root, path, &batch); 4175 } 4176 4177 /* 4178 * Given a key and some data, insert items into the tree. 4179 * This does all the path init required, making room in the tree if needed. 4180 */ 4181 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4182 struct btrfs_root *root, 4183 struct btrfs_path *path, 4184 const struct btrfs_item_batch *batch) 4185 { 4186 int ret = 0; 4187 int slot; 4188 u32 total_size; 4189 4190 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 4191 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1); 4192 if (ret == 0) 4193 return -EEXIST; 4194 if (ret < 0) 4195 return ret; 4196 4197 slot = path->slots[0]; 4198 BUG_ON(slot < 0); 4199 4200 setup_items_for_insert(root, path, batch); 4201 return 0; 4202 } 4203 4204 /* 4205 * Given a key and some data, insert an item into the tree. 4206 * This does all the path init required, making room in the tree if needed. 4207 */ 4208 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4209 const struct btrfs_key *cpu_key, void *data, 4210 u32 data_size) 4211 { 4212 int ret = 0; 4213 struct btrfs_path *path; 4214 struct extent_buffer *leaf; 4215 unsigned long ptr; 4216 4217 path = btrfs_alloc_path(); 4218 if (!path) 4219 return -ENOMEM; 4220 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4221 if (!ret) { 4222 leaf = path->nodes[0]; 4223 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4224 write_extent_buffer(leaf, data, ptr, data_size); 4225 btrfs_mark_buffer_dirty(leaf); 4226 } 4227 btrfs_free_path(path); 4228 return ret; 4229 } 4230 4231 /* 4232 * This function duplicates an item, giving 'new_key' to the new item. 4233 * It guarantees both items live in the same tree leaf and the new item is 4234 * contiguous with the original item. 4235 * 4236 * This allows us to split a file extent in place, keeping a lock on the leaf 4237 * the entire time. 4238 */ 4239 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4240 struct btrfs_root *root, 4241 struct btrfs_path *path, 4242 const struct btrfs_key *new_key) 4243 { 4244 struct extent_buffer *leaf; 4245 int ret; 4246 u32 item_size; 4247 4248 leaf = path->nodes[0]; 4249 item_size = btrfs_item_size(leaf, path->slots[0]); 4250 ret = setup_leaf_for_split(trans, root, path, 4251 item_size + sizeof(struct btrfs_item)); 4252 if (ret) 4253 return ret; 4254 4255 path->slots[0]++; 4256 btrfs_setup_item_for_insert(root, path, new_key, item_size); 4257 leaf = path->nodes[0]; 4258 memcpy_extent_buffer(leaf, 4259 btrfs_item_ptr_offset(leaf, path->slots[0]), 4260 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4261 item_size); 4262 return 0; 4263 } 4264 4265 /* 4266 * delete the pointer from a given node. 4267 * 4268 * the tree should have been previously balanced so the deletion does not 4269 * empty a node. 4270 */ 4271 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4272 int level, int slot) 4273 { 4274 struct extent_buffer *parent = path->nodes[level]; 4275 u32 nritems; 4276 int ret; 4277 4278 nritems = btrfs_header_nritems(parent); 4279 if (slot != nritems - 1) { 4280 if (level) { 4281 ret = btrfs_tree_mod_log_insert_move(parent, slot, 4282 slot + 1, nritems - slot - 1); 4283 BUG_ON(ret < 0); 4284 } 4285 memmove_extent_buffer(parent, 4286 btrfs_node_key_ptr_offset(parent, slot), 4287 btrfs_node_key_ptr_offset(parent, slot + 1), 4288 sizeof(struct btrfs_key_ptr) * 4289 (nritems - slot - 1)); 4290 } else if (level) { 4291 ret = btrfs_tree_mod_log_insert_key(parent, slot, 4292 BTRFS_MOD_LOG_KEY_REMOVE); 4293 BUG_ON(ret < 0); 4294 } 4295 4296 nritems--; 4297 btrfs_set_header_nritems(parent, nritems); 4298 if (nritems == 0 && parent == root->node) { 4299 BUG_ON(btrfs_header_level(root->node) != 1); 4300 /* just turn the root into a leaf and break */ 4301 btrfs_set_header_level(root->node, 0); 4302 } else if (slot == 0) { 4303 struct btrfs_disk_key disk_key; 4304 4305 btrfs_node_key(parent, &disk_key, 0); 4306 fixup_low_keys(path, &disk_key, level + 1); 4307 } 4308 btrfs_mark_buffer_dirty(parent); 4309 } 4310 4311 /* 4312 * a helper function to delete the leaf pointed to by path->slots[1] and 4313 * path->nodes[1]. 4314 * 4315 * This deletes the pointer in path->nodes[1] and frees the leaf 4316 * block extent. zero is returned if it all worked out, < 0 otherwise. 4317 * 4318 * The path must have already been setup for deleting the leaf, including 4319 * all the proper balancing. path->nodes[1] must be locked. 4320 */ 4321 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4322 struct btrfs_root *root, 4323 struct btrfs_path *path, 4324 struct extent_buffer *leaf) 4325 { 4326 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4327 del_ptr(root, path, 1, path->slots[1]); 4328 4329 /* 4330 * btrfs_free_extent is expensive, we want to make sure we 4331 * aren't holding any locks when we call it 4332 */ 4333 btrfs_unlock_up_safe(path, 0); 4334 4335 root_sub_used(root, leaf->len); 4336 4337 atomic_inc(&leaf->refs); 4338 btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1); 4339 free_extent_buffer_stale(leaf); 4340 } 4341 /* 4342 * delete the item at the leaf level in path. If that empties 4343 * the leaf, remove it from the tree 4344 */ 4345 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4346 struct btrfs_path *path, int slot, int nr) 4347 { 4348 struct btrfs_fs_info *fs_info = root->fs_info; 4349 struct extent_buffer *leaf; 4350 int ret = 0; 4351 int wret; 4352 u32 nritems; 4353 4354 leaf = path->nodes[0]; 4355 nritems = btrfs_header_nritems(leaf); 4356 4357 if (slot + nr != nritems) { 4358 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1); 4359 const int data_end = leaf_data_end(leaf); 4360 struct btrfs_map_token token; 4361 u32 dsize = 0; 4362 int i; 4363 4364 for (i = 0; i < nr; i++) 4365 dsize += btrfs_item_size(leaf, slot + i); 4366 4367 memmove_leaf_data(leaf, data_end + dsize, data_end, 4368 last_off - data_end); 4369 4370 btrfs_init_map_token(&token, leaf); 4371 for (i = slot + nr; i < nritems; i++) { 4372 u32 ioff; 4373 4374 ioff = btrfs_token_item_offset(&token, i); 4375 btrfs_set_token_item_offset(&token, i, ioff + dsize); 4376 } 4377 4378 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr); 4379 } 4380 btrfs_set_header_nritems(leaf, nritems - nr); 4381 nritems -= nr; 4382 4383 /* delete the leaf if we've emptied it */ 4384 if (nritems == 0) { 4385 if (leaf == root->node) { 4386 btrfs_set_header_level(leaf, 0); 4387 } else { 4388 btrfs_clear_buffer_dirty(trans, leaf); 4389 btrfs_del_leaf(trans, root, path, leaf); 4390 } 4391 } else { 4392 int used = leaf_space_used(leaf, 0, nritems); 4393 if (slot == 0) { 4394 struct btrfs_disk_key disk_key; 4395 4396 btrfs_item_key(leaf, &disk_key, 0); 4397 fixup_low_keys(path, &disk_key, 1); 4398 } 4399 4400 /* 4401 * Try to delete the leaf if it is mostly empty. We do this by 4402 * trying to move all its items into its left and right neighbours. 4403 * If we can't move all the items, then we don't delete it - it's 4404 * not ideal, but future insertions might fill the leaf with more 4405 * items, or items from other leaves might be moved later into our 4406 * leaf due to deletions on those leaves. 4407 */ 4408 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4409 u32 min_push_space; 4410 4411 /* push_leaf_left fixes the path. 4412 * make sure the path still points to our leaf 4413 * for possible call to del_ptr below 4414 */ 4415 slot = path->slots[1]; 4416 atomic_inc(&leaf->refs); 4417 /* 4418 * We want to be able to at least push one item to the 4419 * left neighbour leaf, and that's the first item. 4420 */ 4421 min_push_space = sizeof(struct btrfs_item) + 4422 btrfs_item_size(leaf, 0); 4423 wret = push_leaf_left(trans, root, path, 0, 4424 min_push_space, 1, (u32)-1); 4425 if (wret < 0 && wret != -ENOSPC) 4426 ret = wret; 4427 4428 if (path->nodes[0] == leaf && 4429 btrfs_header_nritems(leaf)) { 4430 /* 4431 * If we were not able to push all items from our 4432 * leaf to its left neighbour, then attempt to 4433 * either push all the remaining items to the 4434 * right neighbour or none. There's no advantage 4435 * in pushing only some items, instead of all, as 4436 * it's pointless to end up with a leaf having 4437 * too few items while the neighbours can be full 4438 * or nearly full. 4439 */ 4440 nritems = btrfs_header_nritems(leaf); 4441 min_push_space = leaf_space_used(leaf, 0, nritems); 4442 wret = push_leaf_right(trans, root, path, 0, 4443 min_push_space, 1, 0); 4444 if (wret < 0 && wret != -ENOSPC) 4445 ret = wret; 4446 } 4447 4448 if (btrfs_header_nritems(leaf) == 0) { 4449 path->slots[1] = slot; 4450 btrfs_del_leaf(trans, root, path, leaf); 4451 free_extent_buffer(leaf); 4452 ret = 0; 4453 } else { 4454 /* if we're still in the path, make sure 4455 * we're dirty. Otherwise, one of the 4456 * push_leaf functions must have already 4457 * dirtied this buffer 4458 */ 4459 if (path->nodes[0] == leaf) 4460 btrfs_mark_buffer_dirty(leaf); 4461 free_extent_buffer(leaf); 4462 } 4463 } else { 4464 btrfs_mark_buffer_dirty(leaf); 4465 } 4466 } 4467 return ret; 4468 } 4469 4470 /* 4471 * search the tree again to find a leaf with lesser keys 4472 * returns 0 if it found something or 1 if there are no lesser leaves. 4473 * returns < 0 on io errors. 4474 * 4475 * This may release the path, and so you may lose any locks held at the 4476 * time you call it. 4477 */ 4478 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4479 { 4480 struct btrfs_key key; 4481 struct btrfs_disk_key found_key; 4482 int ret; 4483 4484 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4485 4486 if (key.offset > 0) { 4487 key.offset--; 4488 } else if (key.type > 0) { 4489 key.type--; 4490 key.offset = (u64)-1; 4491 } else if (key.objectid > 0) { 4492 key.objectid--; 4493 key.type = (u8)-1; 4494 key.offset = (u64)-1; 4495 } else { 4496 return 1; 4497 } 4498 4499 btrfs_release_path(path); 4500 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4501 if (ret < 0) 4502 return ret; 4503 btrfs_item_key(path->nodes[0], &found_key, 0); 4504 ret = comp_keys(&found_key, &key); 4505 /* 4506 * We might have had an item with the previous key in the tree right 4507 * before we released our path. And after we released our path, that 4508 * item might have been pushed to the first slot (0) of the leaf we 4509 * were holding due to a tree balance. Alternatively, an item with the 4510 * previous key can exist as the only element of a leaf (big fat item). 4511 * Therefore account for these 2 cases, so that our callers (like 4512 * btrfs_previous_item) don't miss an existing item with a key matching 4513 * the previous key we computed above. 4514 */ 4515 if (ret <= 0) 4516 return 0; 4517 return 1; 4518 } 4519 4520 /* 4521 * A helper function to walk down the tree starting at min_key, and looking 4522 * for nodes or leaves that are have a minimum transaction id. 4523 * This is used by the btree defrag code, and tree logging 4524 * 4525 * This does not cow, but it does stuff the starting key it finds back 4526 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4527 * key and get a writable path. 4528 * 4529 * This honors path->lowest_level to prevent descent past a given level 4530 * of the tree. 4531 * 4532 * min_trans indicates the oldest transaction that you are interested 4533 * in walking through. Any nodes or leaves older than min_trans are 4534 * skipped over (without reading them). 4535 * 4536 * returns zero if something useful was found, < 0 on error and 1 if there 4537 * was nothing in the tree that matched the search criteria. 4538 */ 4539 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4540 struct btrfs_path *path, 4541 u64 min_trans) 4542 { 4543 struct extent_buffer *cur; 4544 struct btrfs_key found_key; 4545 int slot; 4546 int sret; 4547 u32 nritems; 4548 int level; 4549 int ret = 1; 4550 int keep_locks = path->keep_locks; 4551 4552 ASSERT(!path->nowait); 4553 path->keep_locks = 1; 4554 again: 4555 cur = btrfs_read_lock_root_node(root); 4556 level = btrfs_header_level(cur); 4557 WARN_ON(path->nodes[level]); 4558 path->nodes[level] = cur; 4559 path->locks[level] = BTRFS_READ_LOCK; 4560 4561 if (btrfs_header_generation(cur) < min_trans) { 4562 ret = 1; 4563 goto out; 4564 } 4565 while (1) { 4566 nritems = btrfs_header_nritems(cur); 4567 level = btrfs_header_level(cur); 4568 sret = btrfs_bin_search(cur, 0, min_key, &slot); 4569 if (sret < 0) { 4570 ret = sret; 4571 goto out; 4572 } 4573 4574 /* at the lowest level, we're done, setup the path and exit */ 4575 if (level == path->lowest_level) { 4576 if (slot >= nritems) 4577 goto find_next_key; 4578 ret = 0; 4579 path->slots[level] = slot; 4580 btrfs_item_key_to_cpu(cur, &found_key, slot); 4581 goto out; 4582 } 4583 if (sret && slot > 0) 4584 slot--; 4585 /* 4586 * check this node pointer against the min_trans parameters. 4587 * If it is too old, skip to the next one. 4588 */ 4589 while (slot < nritems) { 4590 u64 gen; 4591 4592 gen = btrfs_node_ptr_generation(cur, slot); 4593 if (gen < min_trans) { 4594 slot++; 4595 continue; 4596 } 4597 break; 4598 } 4599 find_next_key: 4600 /* 4601 * we didn't find a candidate key in this node, walk forward 4602 * and find another one 4603 */ 4604 if (slot >= nritems) { 4605 path->slots[level] = slot; 4606 sret = btrfs_find_next_key(root, path, min_key, level, 4607 min_trans); 4608 if (sret == 0) { 4609 btrfs_release_path(path); 4610 goto again; 4611 } else { 4612 goto out; 4613 } 4614 } 4615 /* save our key for returning back */ 4616 btrfs_node_key_to_cpu(cur, &found_key, slot); 4617 path->slots[level] = slot; 4618 if (level == path->lowest_level) { 4619 ret = 0; 4620 goto out; 4621 } 4622 cur = btrfs_read_node_slot(cur, slot); 4623 if (IS_ERR(cur)) { 4624 ret = PTR_ERR(cur); 4625 goto out; 4626 } 4627 4628 btrfs_tree_read_lock(cur); 4629 4630 path->locks[level - 1] = BTRFS_READ_LOCK; 4631 path->nodes[level - 1] = cur; 4632 unlock_up(path, level, 1, 0, NULL); 4633 } 4634 out: 4635 path->keep_locks = keep_locks; 4636 if (ret == 0) { 4637 btrfs_unlock_up_safe(path, path->lowest_level + 1); 4638 memcpy(min_key, &found_key, sizeof(found_key)); 4639 } 4640 return ret; 4641 } 4642 4643 /* 4644 * this is similar to btrfs_next_leaf, but does not try to preserve 4645 * and fixup the path. It looks for and returns the next key in the 4646 * tree based on the current path and the min_trans parameters. 4647 * 4648 * 0 is returned if another key is found, < 0 if there are any errors 4649 * and 1 is returned if there are no higher keys in the tree 4650 * 4651 * path->keep_locks should be set to 1 on the search made before 4652 * calling this function. 4653 */ 4654 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4655 struct btrfs_key *key, int level, u64 min_trans) 4656 { 4657 int slot; 4658 struct extent_buffer *c; 4659 4660 WARN_ON(!path->keep_locks && !path->skip_locking); 4661 while (level < BTRFS_MAX_LEVEL) { 4662 if (!path->nodes[level]) 4663 return 1; 4664 4665 slot = path->slots[level] + 1; 4666 c = path->nodes[level]; 4667 next: 4668 if (slot >= btrfs_header_nritems(c)) { 4669 int ret; 4670 int orig_lowest; 4671 struct btrfs_key cur_key; 4672 if (level + 1 >= BTRFS_MAX_LEVEL || 4673 !path->nodes[level + 1]) 4674 return 1; 4675 4676 if (path->locks[level + 1] || path->skip_locking) { 4677 level++; 4678 continue; 4679 } 4680 4681 slot = btrfs_header_nritems(c) - 1; 4682 if (level == 0) 4683 btrfs_item_key_to_cpu(c, &cur_key, slot); 4684 else 4685 btrfs_node_key_to_cpu(c, &cur_key, slot); 4686 4687 orig_lowest = path->lowest_level; 4688 btrfs_release_path(path); 4689 path->lowest_level = level; 4690 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4691 0, 0); 4692 path->lowest_level = orig_lowest; 4693 if (ret < 0) 4694 return ret; 4695 4696 c = path->nodes[level]; 4697 slot = path->slots[level]; 4698 if (ret == 0) 4699 slot++; 4700 goto next; 4701 } 4702 4703 if (level == 0) 4704 btrfs_item_key_to_cpu(c, key, slot); 4705 else { 4706 u64 gen = btrfs_node_ptr_generation(c, slot); 4707 4708 if (gen < min_trans) { 4709 slot++; 4710 goto next; 4711 } 4712 btrfs_node_key_to_cpu(c, key, slot); 4713 } 4714 return 0; 4715 } 4716 return 1; 4717 } 4718 4719 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 4720 u64 time_seq) 4721 { 4722 int slot; 4723 int level; 4724 struct extent_buffer *c; 4725 struct extent_buffer *next; 4726 struct btrfs_fs_info *fs_info = root->fs_info; 4727 struct btrfs_key key; 4728 bool need_commit_sem = false; 4729 u32 nritems; 4730 int ret; 4731 int i; 4732 4733 /* 4734 * The nowait semantics are used only for write paths, where we don't 4735 * use the tree mod log and sequence numbers. 4736 */ 4737 if (time_seq) 4738 ASSERT(!path->nowait); 4739 4740 nritems = btrfs_header_nritems(path->nodes[0]); 4741 if (nritems == 0) 4742 return 1; 4743 4744 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4745 again: 4746 level = 1; 4747 next = NULL; 4748 btrfs_release_path(path); 4749 4750 path->keep_locks = 1; 4751 4752 if (time_seq) { 4753 ret = btrfs_search_old_slot(root, &key, path, time_seq); 4754 } else { 4755 if (path->need_commit_sem) { 4756 path->need_commit_sem = 0; 4757 need_commit_sem = true; 4758 if (path->nowait) { 4759 if (!down_read_trylock(&fs_info->commit_root_sem)) { 4760 ret = -EAGAIN; 4761 goto done; 4762 } 4763 } else { 4764 down_read(&fs_info->commit_root_sem); 4765 } 4766 } 4767 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4768 } 4769 path->keep_locks = 0; 4770 4771 if (ret < 0) 4772 goto done; 4773 4774 nritems = btrfs_header_nritems(path->nodes[0]); 4775 /* 4776 * by releasing the path above we dropped all our locks. A balance 4777 * could have added more items next to the key that used to be 4778 * at the very end of the block. So, check again here and 4779 * advance the path if there are now more items available. 4780 */ 4781 if (nritems > 0 && path->slots[0] < nritems - 1) { 4782 if (ret == 0) 4783 path->slots[0]++; 4784 ret = 0; 4785 goto done; 4786 } 4787 /* 4788 * So the above check misses one case: 4789 * - after releasing the path above, someone has removed the item that 4790 * used to be at the very end of the block, and balance between leafs 4791 * gets another one with bigger key.offset to replace it. 4792 * 4793 * This one should be returned as well, or we can get leaf corruption 4794 * later(esp. in __btrfs_drop_extents()). 4795 * 4796 * And a bit more explanation about this check, 4797 * with ret > 0, the key isn't found, the path points to the slot 4798 * where it should be inserted, so the path->slots[0] item must be the 4799 * bigger one. 4800 */ 4801 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 4802 ret = 0; 4803 goto done; 4804 } 4805 4806 while (level < BTRFS_MAX_LEVEL) { 4807 if (!path->nodes[level]) { 4808 ret = 1; 4809 goto done; 4810 } 4811 4812 slot = path->slots[level] + 1; 4813 c = path->nodes[level]; 4814 if (slot >= btrfs_header_nritems(c)) { 4815 level++; 4816 if (level == BTRFS_MAX_LEVEL) { 4817 ret = 1; 4818 goto done; 4819 } 4820 continue; 4821 } 4822 4823 4824 /* 4825 * Our current level is where we're going to start from, and to 4826 * make sure lockdep doesn't complain we need to drop our locks 4827 * and nodes from 0 to our current level. 4828 */ 4829 for (i = 0; i < level; i++) { 4830 if (path->locks[level]) { 4831 btrfs_tree_read_unlock(path->nodes[i]); 4832 path->locks[i] = 0; 4833 } 4834 free_extent_buffer(path->nodes[i]); 4835 path->nodes[i] = NULL; 4836 } 4837 4838 next = c; 4839 ret = read_block_for_search(root, path, &next, level, 4840 slot, &key); 4841 if (ret == -EAGAIN && !path->nowait) 4842 goto again; 4843 4844 if (ret < 0) { 4845 btrfs_release_path(path); 4846 goto done; 4847 } 4848 4849 if (!path->skip_locking) { 4850 ret = btrfs_try_tree_read_lock(next); 4851 if (!ret && path->nowait) { 4852 ret = -EAGAIN; 4853 goto done; 4854 } 4855 if (!ret && time_seq) { 4856 /* 4857 * If we don't get the lock, we may be racing 4858 * with push_leaf_left, holding that lock while 4859 * itself waiting for the leaf we've currently 4860 * locked. To solve this situation, we give up 4861 * on our lock and cycle. 4862 */ 4863 free_extent_buffer(next); 4864 btrfs_release_path(path); 4865 cond_resched(); 4866 goto again; 4867 } 4868 if (!ret) 4869 btrfs_tree_read_lock(next); 4870 } 4871 break; 4872 } 4873 path->slots[level] = slot; 4874 while (1) { 4875 level--; 4876 path->nodes[level] = next; 4877 path->slots[level] = 0; 4878 if (!path->skip_locking) 4879 path->locks[level] = BTRFS_READ_LOCK; 4880 if (!level) 4881 break; 4882 4883 ret = read_block_for_search(root, path, &next, level, 4884 0, &key); 4885 if (ret == -EAGAIN && !path->nowait) 4886 goto again; 4887 4888 if (ret < 0) { 4889 btrfs_release_path(path); 4890 goto done; 4891 } 4892 4893 if (!path->skip_locking) { 4894 if (path->nowait) { 4895 if (!btrfs_try_tree_read_lock(next)) { 4896 ret = -EAGAIN; 4897 goto done; 4898 } 4899 } else { 4900 btrfs_tree_read_lock(next); 4901 } 4902 } 4903 } 4904 ret = 0; 4905 done: 4906 unlock_up(path, 0, 1, 0, NULL); 4907 if (need_commit_sem) { 4908 int ret2; 4909 4910 path->need_commit_sem = 1; 4911 ret2 = finish_need_commit_sem_search(path); 4912 up_read(&fs_info->commit_root_sem); 4913 if (ret2) 4914 ret = ret2; 4915 } 4916 4917 return ret; 4918 } 4919 4920 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq) 4921 { 4922 path->slots[0]++; 4923 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 4924 return btrfs_next_old_leaf(root, path, time_seq); 4925 return 0; 4926 } 4927 4928 /* 4929 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4930 * searching until it gets past min_objectid or finds an item of 'type' 4931 * 4932 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4933 */ 4934 int btrfs_previous_item(struct btrfs_root *root, 4935 struct btrfs_path *path, u64 min_objectid, 4936 int type) 4937 { 4938 struct btrfs_key found_key; 4939 struct extent_buffer *leaf; 4940 u32 nritems; 4941 int ret; 4942 4943 while (1) { 4944 if (path->slots[0] == 0) { 4945 ret = btrfs_prev_leaf(root, path); 4946 if (ret != 0) 4947 return ret; 4948 } else { 4949 path->slots[0]--; 4950 } 4951 leaf = path->nodes[0]; 4952 nritems = btrfs_header_nritems(leaf); 4953 if (nritems == 0) 4954 return 1; 4955 if (path->slots[0] == nritems) 4956 path->slots[0]--; 4957 4958 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4959 if (found_key.objectid < min_objectid) 4960 break; 4961 if (found_key.type == type) 4962 return 0; 4963 if (found_key.objectid == min_objectid && 4964 found_key.type < type) 4965 break; 4966 } 4967 return 1; 4968 } 4969 4970 /* 4971 * search in extent tree to find a previous Metadata/Data extent item with 4972 * min objecitd. 4973 * 4974 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4975 */ 4976 int btrfs_previous_extent_item(struct btrfs_root *root, 4977 struct btrfs_path *path, u64 min_objectid) 4978 { 4979 struct btrfs_key found_key; 4980 struct extent_buffer *leaf; 4981 u32 nritems; 4982 int ret; 4983 4984 while (1) { 4985 if (path->slots[0] == 0) { 4986 ret = btrfs_prev_leaf(root, path); 4987 if (ret != 0) 4988 return ret; 4989 } else { 4990 path->slots[0]--; 4991 } 4992 leaf = path->nodes[0]; 4993 nritems = btrfs_header_nritems(leaf); 4994 if (nritems == 0) 4995 return 1; 4996 if (path->slots[0] == nritems) 4997 path->slots[0]--; 4998 4999 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5000 if (found_key.objectid < min_objectid) 5001 break; 5002 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5003 found_key.type == BTRFS_METADATA_ITEM_KEY) 5004 return 0; 5005 if (found_key.objectid == min_objectid && 5006 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5007 break; 5008 } 5009 return 1; 5010 } 5011 5012 int __init btrfs_ctree_init(void) 5013 { 5014 btrfs_path_cachep = kmem_cache_create("btrfs_path", 5015 sizeof(struct btrfs_path), 0, 5016 SLAB_MEM_SPREAD, NULL); 5017 if (!btrfs_path_cachep) 5018 return -ENOMEM; 5019 return 0; 5020 } 5021 5022 void __cold btrfs_ctree_exit(void) 5023 { 5024 kmem_cache_destroy(btrfs_path_cachep); 5025 } 5026