xref: /openbmc/linux/fs/btrfs/ctree.c (revision e3d786a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 
16 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
17 		      *root, struct btrfs_path *path, int level);
18 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
19 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
20 		      int data_size, int extend);
21 static int push_node_left(struct btrfs_trans_handle *trans,
22 			  struct btrfs_fs_info *fs_info,
23 			  struct extent_buffer *dst,
24 			  struct extent_buffer *src, int empty);
25 static int balance_node_right(struct btrfs_trans_handle *trans,
26 			      struct btrfs_fs_info *fs_info,
27 			      struct extent_buffer *dst_buf,
28 			      struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 		    int level, int slot);
31 
32 struct btrfs_path *btrfs_alloc_path(void)
33 {
34 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
35 }
36 
37 /*
38  * set all locked nodes in the path to blocking locks.  This should
39  * be done before scheduling
40  */
41 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
42 {
43 	int i;
44 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 		if (!p->nodes[i] || !p->locks[i])
46 			continue;
47 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
48 		if (p->locks[i] == BTRFS_READ_LOCK)
49 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
50 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
51 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
52 	}
53 }
54 
55 /* this also releases the path */
56 void btrfs_free_path(struct btrfs_path *p)
57 {
58 	if (!p)
59 		return;
60 	btrfs_release_path(p);
61 	kmem_cache_free(btrfs_path_cachep, p);
62 }
63 
64 /*
65  * path release drops references on the extent buffers in the path
66  * and it drops any locks held by this path
67  *
68  * It is safe to call this on paths that no locks or extent buffers held.
69  */
70 noinline void btrfs_release_path(struct btrfs_path *p)
71 {
72 	int i;
73 
74 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
75 		p->slots[i] = 0;
76 		if (!p->nodes[i])
77 			continue;
78 		if (p->locks[i]) {
79 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
80 			p->locks[i] = 0;
81 		}
82 		free_extent_buffer(p->nodes[i]);
83 		p->nodes[i] = NULL;
84 	}
85 }
86 
87 /*
88  * safely gets a reference on the root node of a tree.  A lock
89  * is not taken, so a concurrent writer may put a different node
90  * at the root of the tree.  See btrfs_lock_root_node for the
91  * looping required.
92  *
93  * The extent buffer returned by this has a reference taken, so
94  * it won't disappear.  It may stop being the root of the tree
95  * at any time because there are no locks held.
96  */
97 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
98 {
99 	struct extent_buffer *eb;
100 
101 	while (1) {
102 		rcu_read_lock();
103 		eb = rcu_dereference(root->node);
104 
105 		/*
106 		 * RCU really hurts here, we could free up the root node because
107 		 * it was COWed but we may not get the new root node yet so do
108 		 * the inc_not_zero dance and if it doesn't work then
109 		 * synchronize_rcu and try again.
110 		 */
111 		if (atomic_inc_not_zero(&eb->refs)) {
112 			rcu_read_unlock();
113 			break;
114 		}
115 		rcu_read_unlock();
116 		synchronize_rcu();
117 	}
118 	return eb;
119 }
120 
121 /* loop around taking references on and locking the root node of the
122  * tree until you end up with a lock on the root.  A locked buffer
123  * is returned, with a reference held.
124  */
125 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
126 {
127 	struct extent_buffer *eb;
128 
129 	while (1) {
130 		eb = btrfs_root_node(root);
131 		btrfs_tree_lock(eb);
132 		if (eb == root->node)
133 			break;
134 		btrfs_tree_unlock(eb);
135 		free_extent_buffer(eb);
136 	}
137 	return eb;
138 }
139 
140 /* loop around taking references on and locking the root node of the
141  * tree until you end up with a lock on the root.  A locked buffer
142  * is returned, with a reference held.
143  */
144 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
145 {
146 	struct extent_buffer *eb;
147 
148 	while (1) {
149 		eb = btrfs_root_node(root);
150 		btrfs_tree_read_lock(eb);
151 		if (eb == root->node)
152 			break;
153 		btrfs_tree_read_unlock(eb);
154 		free_extent_buffer(eb);
155 	}
156 	return eb;
157 }
158 
159 /* cowonly root (everything not a reference counted cow subvolume), just get
160  * put onto a simple dirty list.  transaction.c walks this to make sure they
161  * get properly updated on disk.
162  */
163 static void add_root_to_dirty_list(struct btrfs_root *root)
164 {
165 	struct btrfs_fs_info *fs_info = root->fs_info;
166 
167 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
168 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
169 		return;
170 
171 	spin_lock(&fs_info->trans_lock);
172 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
173 		/* Want the extent tree to be the last on the list */
174 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
175 			list_move_tail(&root->dirty_list,
176 				       &fs_info->dirty_cowonly_roots);
177 		else
178 			list_move(&root->dirty_list,
179 				  &fs_info->dirty_cowonly_roots);
180 	}
181 	spin_unlock(&fs_info->trans_lock);
182 }
183 
184 /*
185  * used by snapshot creation to make a copy of a root for a tree with
186  * a given objectid.  The buffer with the new root node is returned in
187  * cow_ret, and this func returns zero on success or a negative error code.
188  */
189 int btrfs_copy_root(struct btrfs_trans_handle *trans,
190 		      struct btrfs_root *root,
191 		      struct extent_buffer *buf,
192 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
193 {
194 	struct btrfs_fs_info *fs_info = root->fs_info;
195 	struct extent_buffer *cow;
196 	int ret = 0;
197 	int level;
198 	struct btrfs_disk_key disk_key;
199 
200 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
201 		trans->transid != fs_info->running_transaction->transid);
202 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
203 		trans->transid != root->last_trans);
204 
205 	level = btrfs_header_level(buf);
206 	if (level == 0)
207 		btrfs_item_key(buf, &disk_key, 0);
208 	else
209 		btrfs_node_key(buf, &disk_key, 0);
210 
211 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
212 			&disk_key, level, buf->start, 0);
213 	if (IS_ERR(cow))
214 		return PTR_ERR(cow);
215 
216 	copy_extent_buffer_full(cow, buf);
217 	btrfs_set_header_bytenr(cow, cow->start);
218 	btrfs_set_header_generation(cow, trans->transid);
219 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
220 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
221 				     BTRFS_HEADER_FLAG_RELOC);
222 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
223 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
224 	else
225 		btrfs_set_header_owner(cow, new_root_objectid);
226 
227 	write_extent_buffer_fsid(cow, fs_info->fsid);
228 
229 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
230 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
231 		ret = btrfs_inc_ref(trans, root, cow, 1);
232 	else
233 		ret = btrfs_inc_ref(trans, root, cow, 0);
234 
235 	if (ret)
236 		return ret;
237 
238 	btrfs_mark_buffer_dirty(cow);
239 	*cow_ret = cow;
240 	return 0;
241 }
242 
243 enum mod_log_op {
244 	MOD_LOG_KEY_REPLACE,
245 	MOD_LOG_KEY_ADD,
246 	MOD_LOG_KEY_REMOVE,
247 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
248 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
249 	MOD_LOG_MOVE_KEYS,
250 	MOD_LOG_ROOT_REPLACE,
251 };
252 
253 struct tree_mod_root {
254 	u64 logical;
255 	u8 level;
256 };
257 
258 struct tree_mod_elem {
259 	struct rb_node node;
260 	u64 logical;
261 	u64 seq;
262 	enum mod_log_op op;
263 
264 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
265 	int slot;
266 
267 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
268 	u64 generation;
269 
270 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
271 	struct btrfs_disk_key key;
272 	u64 blockptr;
273 
274 	/* this is used for op == MOD_LOG_MOVE_KEYS */
275 	struct {
276 		int dst_slot;
277 		int nr_items;
278 	} move;
279 
280 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
281 	struct tree_mod_root old_root;
282 };
283 
284 /*
285  * Pull a new tree mod seq number for our operation.
286  */
287 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
288 {
289 	return atomic64_inc_return(&fs_info->tree_mod_seq);
290 }
291 
292 /*
293  * This adds a new blocker to the tree mod log's blocker list if the @elem
294  * passed does not already have a sequence number set. So when a caller expects
295  * to record tree modifications, it should ensure to set elem->seq to zero
296  * before calling btrfs_get_tree_mod_seq.
297  * Returns a fresh, unused tree log modification sequence number, even if no new
298  * blocker was added.
299  */
300 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
301 			   struct seq_list *elem)
302 {
303 	write_lock(&fs_info->tree_mod_log_lock);
304 	spin_lock(&fs_info->tree_mod_seq_lock);
305 	if (!elem->seq) {
306 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
307 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
308 	}
309 	spin_unlock(&fs_info->tree_mod_seq_lock);
310 	write_unlock(&fs_info->tree_mod_log_lock);
311 
312 	return elem->seq;
313 }
314 
315 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
316 			    struct seq_list *elem)
317 {
318 	struct rb_root *tm_root;
319 	struct rb_node *node;
320 	struct rb_node *next;
321 	struct seq_list *cur_elem;
322 	struct tree_mod_elem *tm;
323 	u64 min_seq = (u64)-1;
324 	u64 seq_putting = elem->seq;
325 
326 	if (!seq_putting)
327 		return;
328 
329 	spin_lock(&fs_info->tree_mod_seq_lock);
330 	list_del(&elem->list);
331 	elem->seq = 0;
332 
333 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
334 		if (cur_elem->seq < min_seq) {
335 			if (seq_putting > cur_elem->seq) {
336 				/*
337 				 * blocker with lower sequence number exists, we
338 				 * cannot remove anything from the log
339 				 */
340 				spin_unlock(&fs_info->tree_mod_seq_lock);
341 				return;
342 			}
343 			min_seq = cur_elem->seq;
344 		}
345 	}
346 	spin_unlock(&fs_info->tree_mod_seq_lock);
347 
348 	/*
349 	 * anything that's lower than the lowest existing (read: blocked)
350 	 * sequence number can be removed from the tree.
351 	 */
352 	write_lock(&fs_info->tree_mod_log_lock);
353 	tm_root = &fs_info->tree_mod_log;
354 	for (node = rb_first(tm_root); node; node = next) {
355 		next = rb_next(node);
356 		tm = rb_entry(node, struct tree_mod_elem, node);
357 		if (tm->seq > min_seq)
358 			continue;
359 		rb_erase(node, tm_root);
360 		kfree(tm);
361 	}
362 	write_unlock(&fs_info->tree_mod_log_lock);
363 }
364 
365 /*
366  * key order of the log:
367  *       node/leaf start address -> sequence
368  *
369  * The 'start address' is the logical address of the *new* root node
370  * for root replace operations, or the logical address of the affected
371  * block for all other operations.
372  *
373  * Note: must be called with write lock for fs_info::tree_mod_log_lock.
374  */
375 static noinline int
376 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
377 {
378 	struct rb_root *tm_root;
379 	struct rb_node **new;
380 	struct rb_node *parent = NULL;
381 	struct tree_mod_elem *cur;
382 
383 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
384 
385 	tm_root = &fs_info->tree_mod_log;
386 	new = &tm_root->rb_node;
387 	while (*new) {
388 		cur = rb_entry(*new, struct tree_mod_elem, node);
389 		parent = *new;
390 		if (cur->logical < tm->logical)
391 			new = &((*new)->rb_left);
392 		else if (cur->logical > tm->logical)
393 			new = &((*new)->rb_right);
394 		else if (cur->seq < tm->seq)
395 			new = &((*new)->rb_left);
396 		else if (cur->seq > tm->seq)
397 			new = &((*new)->rb_right);
398 		else
399 			return -EEXIST;
400 	}
401 
402 	rb_link_node(&tm->node, parent, new);
403 	rb_insert_color(&tm->node, tm_root);
404 	return 0;
405 }
406 
407 /*
408  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
409  * returns zero with the tree_mod_log_lock acquired. The caller must hold
410  * this until all tree mod log insertions are recorded in the rb tree and then
411  * write unlock fs_info::tree_mod_log_lock.
412  */
413 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
414 				    struct extent_buffer *eb) {
415 	smp_mb();
416 	if (list_empty(&(fs_info)->tree_mod_seq_list))
417 		return 1;
418 	if (eb && btrfs_header_level(eb) == 0)
419 		return 1;
420 
421 	write_lock(&fs_info->tree_mod_log_lock);
422 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
423 		write_unlock(&fs_info->tree_mod_log_lock);
424 		return 1;
425 	}
426 
427 	return 0;
428 }
429 
430 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
431 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
432 				    struct extent_buffer *eb)
433 {
434 	smp_mb();
435 	if (list_empty(&(fs_info)->tree_mod_seq_list))
436 		return 0;
437 	if (eb && btrfs_header_level(eb) == 0)
438 		return 0;
439 
440 	return 1;
441 }
442 
443 static struct tree_mod_elem *
444 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
445 		    enum mod_log_op op, gfp_t flags)
446 {
447 	struct tree_mod_elem *tm;
448 
449 	tm = kzalloc(sizeof(*tm), flags);
450 	if (!tm)
451 		return NULL;
452 
453 	tm->logical = eb->start;
454 	if (op != MOD_LOG_KEY_ADD) {
455 		btrfs_node_key(eb, &tm->key, slot);
456 		tm->blockptr = btrfs_node_blockptr(eb, slot);
457 	}
458 	tm->op = op;
459 	tm->slot = slot;
460 	tm->generation = btrfs_node_ptr_generation(eb, slot);
461 	RB_CLEAR_NODE(&tm->node);
462 
463 	return tm;
464 }
465 
466 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
467 		enum mod_log_op op, gfp_t flags)
468 {
469 	struct tree_mod_elem *tm;
470 	int ret;
471 
472 	if (!tree_mod_need_log(eb->fs_info, eb))
473 		return 0;
474 
475 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
476 	if (!tm)
477 		return -ENOMEM;
478 
479 	if (tree_mod_dont_log(eb->fs_info, eb)) {
480 		kfree(tm);
481 		return 0;
482 	}
483 
484 	ret = __tree_mod_log_insert(eb->fs_info, tm);
485 	write_unlock(&eb->fs_info->tree_mod_log_lock);
486 	if (ret)
487 		kfree(tm);
488 
489 	return ret;
490 }
491 
492 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
493 		int dst_slot, int src_slot, int nr_items)
494 {
495 	struct tree_mod_elem *tm = NULL;
496 	struct tree_mod_elem **tm_list = NULL;
497 	int ret = 0;
498 	int i;
499 	int locked = 0;
500 
501 	if (!tree_mod_need_log(eb->fs_info, eb))
502 		return 0;
503 
504 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
505 	if (!tm_list)
506 		return -ENOMEM;
507 
508 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
509 	if (!tm) {
510 		ret = -ENOMEM;
511 		goto free_tms;
512 	}
513 
514 	tm->logical = eb->start;
515 	tm->slot = src_slot;
516 	tm->move.dst_slot = dst_slot;
517 	tm->move.nr_items = nr_items;
518 	tm->op = MOD_LOG_MOVE_KEYS;
519 
520 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
521 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
522 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
523 		if (!tm_list[i]) {
524 			ret = -ENOMEM;
525 			goto free_tms;
526 		}
527 	}
528 
529 	if (tree_mod_dont_log(eb->fs_info, eb))
530 		goto free_tms;
531 	locked = 1;
532 
533 	/*
534 	 * When we override something during the move, we log these removals.
535 	 * This can only happen when we move towards the beginning of the
536 	 * buffer, i.e. dst_slot < src_slot.
537 	 */
538 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
539 		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
540 		if (ret)
541 			goto free_tms;
542 	}
543 
544 	ret = __tree_mod_log_insert(eb->fs_info, tm);
545 	if (ret)
546 		goto free_tms;
547 	write_unlock(&eb->fs_info->tree_mod_log_lock);
548 	kfree(tm_list);
549 
550 	return 0;
551 free_tms:
552 	for (i = 0; i < nr_items; i++) {
553 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
554 			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
555 		kfree(tm_list[i]);
556 	}
557 	if (locked)
558 		write_unlock(&eb->fs_info->tree_mod_log_lock);
559 	kfree(tm_list);
560 	kfree(tm);
561 
562 	return ret;
563 }
564 
565 static inline int
566 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
567 		       struct tree_mod_elem **tm_list,
568 		       int nritems)
569 {
570 	int i, j;
571 	int ret;
572 
573 	for (i = nritems - 1; i >= 0; i--) {
574 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
575 		if (ret) {
576 			for (j = nritems - 1; j > i; j--)
577 				rb_erase(&tm_list[j]->node,
578 					 &fs_info->tree_mod_log);
579 			return ret;
580 		}
581 	}
582 
583 	return 0;
584 }
585 
586 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
587 			 struct extent_buffer *new_root, int log_removal)
588 {
589 	struct btrfs_fs_info *fs_info = old_root->fs_info;
590 	struct tree_mod_elem *tm = NULL;
591 	struct tree_mod_elem **tm_list = NULL;
592 	int nritems = 0;
593 	int ret = 0;
594 	int i;
595 
596 	if (!tree_mod_need_log(fs_info, NULL))
597 		return 0;
598 
599 	if (log_removal && btrfs_header_level(old_root) > 0) {
600 		nritems = btrfs_header_nritems(old_root);
601 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
602 				  GFP_NOFS);
603 		if (!tm_list) {
604 			ret = -ENOMEM;
605 			goto free_tms;
606 		}
607 		for (i = 0; i < nritems; i++) {
608 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
609 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
610 			if (!tm_list[i]) {
611 				ret = -ENOMEM;
612 				goto free_tms;
613 			}
614 		}
615 	}
616 
617 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
618 	if (!tm) {
619 		ret = -ENOMEM;
620 		goto free_tms;
621 	}
622 
623 	tm->logical = new_root->start;
624 	tm->old_root.logical = old_root->start;
625 	tm->old_root.level = btrfs_header_level(old_root);
626 	tm->generation = btrfs_header_generation(old_root);
627 	tm->op = MOD_LOG_ROOT_REPLACE;
628 
629 	if (tree_mod_dont_log(fs_info, NULL))
630 		goto free_tms;
631 
632 	if (tm_list)
633 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
634 	if (!ret)
635 		ret = __tree_mod_log_insert(fs_info, tm);
636 
637 	write_unlock(&fs_info->tree_mod_log_lock);
638 	if (ret)
639 		goto free_tms;
640 	kfree(tm_list);
641 
642 	return ret;
643 
644 free_tms:
645 	if (tm_list) {
646 		for (i = 0; i < nritems; i++)
647 			kfree(tm_list[i]);
648 		kfree(tm_list);
649 	}
650 	kfree(tm);
651 
652 	return ret;
653 }
654 
655 static struct tree_mod_elem *
656 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
657 		      int smallest)
658 {
659 	struct rb_root *tm_root;
660 	struct rb_node *node;
661 	struct tree_mod_elem *cur = NULL;
662 	struct tree_mod_elem *found = NULL;
663 
664 	read_lock(&fs_info->tree_mod_log_lock);
665 	tm_root = &fs_info->tree_mod_log;
666 	node = tm_root->rb_node;
667 	while (node) {
668 		cur = rb_entry(node, struct tree_mod_elem, node);
669 		if (cur->logical < start) {
670 			node = node->rb_left;
671 		} else if (cur->logical > start) {
672 			node = node->rb_right;
673 		} else if (cur->seq < min_seq) {
674 			node = node->rb_left;
675 		} else if (!smallest) {
676 			/* we want the node with the highest seq */
677 			if (found)
678 				BUG_ON(found->seq > cur->seq);
679 			found = cur;
680 			node = node->rb_left;
681 		} else if (cur->seq > min_seq) {
682 			/* we want the node with the smallest seq */
683 			if (found)
684 				BUG_ON(found->seq < cur->seq);
685 			found = cur;
686 			node = node->rb_right;
687 		} else {
688 			found = cur;
689 			break;
690 		}
691 	}
692 	read_unlock(&fs_info->tree_mod_log_lock);
693 
694 	return found;
695 }
696 
697 /*
698  * this returns the element from the log with the smallest time sequence
699  * value that's in the log (the oldest log item). any element with a time
700  * sequence lower than min_seq will be ignored.
701  */
702 static struct tree_mod_elem *
703 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
704 			   u64 min_seq)
705 {
706 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
707 }
708 
709 /*
710  * this returns the element from the log with the largest time sequence
711  * value that's in the log (the most recent log item). any element with
712  * a time sequence lower than min_seq will be ignored.
713  */
714 static struct tree_mod_elem *
715 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
716 {
717 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
718 }
719 
720 static noinline int
721 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
722 		     struct extent_buffer *src, unsigned long dst_offset,
723 		     unsigned long src_offset, int nr_items)
724 {
725 	int ret = 0;
726 	struct tree_mod_elem **tm_list = NULL;
727 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
728 	int i;
729 	int locked = 0;
730 
731 	if (!tree_mod_need_log(fs_info, NULL))
732 		return 0;
733 
734 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
735 		return 0;
736 
737 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
738 			  GFP_NOFS);
739 	if (!tm_list)
740 		return -ENOMEM;
741 
742 	tm_list_add = tm_list;
743 	tm_list_rem = tm_list + nr_items;
744 	for (i = 0; i < nr_items; i++) {
745 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
746 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
747 		if (!tm_list_rem[i]) {
748 			ret = -ENOMEM;
749 			goto free_tms;
750 		}
751 
752 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
753 		    MOD_LOG_KEY_ADD, GFP_NOFS);
754 		if (!tm_list_add[i]) {
755 			ret = -ENOMEM;
756 			goto free_tms;
757 		}
758 	}
759 
760 	if (tree_mod_dont_log(fs_info, NULL))
761 		goto free_tms;
762 	locked = 1;
763 
764 	for (i = 0; i < nr_items; i++) {
765 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
766 		if (ret)
767 			goto free_tms;
768 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
769 		if (ret)
770 			goto free_tms;
771 	}
772 
773 	write_unlock(&fs_info->tree_mod_log_lock);
774 	kfree(tm_list);
775 
776 	return 0;
777 
778 free_tms:
779 	for (i = 0; i < nr_items * 2; i++) {
780 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
781 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
782 		kfree(tm_list[i]);
783 	}
784 	if (locked)
785 		write_unlock(&fs_info->tree_mod_log_lock);
786 	kfree(tm_list);
787 
788 	return ret;
789 }
790 
791 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
792 {
793 	struct tree_mod_elem **tm_list = NULL;
794 	int nritems = 0;
795 	int i;
796 	int ret = 0;
797 
798 	if (btrfs_header_level(eb) == 0)
799 		return 0;
800 
801 	if (!tree_mod_need_log(eb->fs_info, NULL))
802 		return 0;
803 
804 	nritems = btrfs_header_nritems(eb);
805 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
806 	if (!tm_list)
807 		return -ENOMEM;
808 
809 	for (i = 0; i < nritems; i++) {
810 		tm_list[i] = alloc_tree_mod_elem(eb, i,
811 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
812 		if (!tm_list[i]) {
813 			ret = -ENOMEM;
814 			goto free_tms;
815 		}
816 	}
817 
818 	if (tree_mod_dont_log(eb->fs_info, eb))
819 		goto free_tms;
820 
821 	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
822 	write_unlock(&eb->fs_info->tree_mod_log_lock);
823 	if (ret)
824 		goto free_tms;
825 	kfree(tm_list);
826 
827 	return 0;
828 
829 free_tms:
830 	for (i = 0; i < nritems; i++)
831 		kfree(tm_list[i]);
832 	kfree(tm_list);
833 
834 	return ret;
835 }
836 
837 /*
838  * check if the tree block can be shared by multiple trees
839  */
840 int btrfs_block_can_be_shared(struct btrfs_root *root,
841 			      struct extent_buffer *buf)
842 {
843 	/*
844 	 * Tree blocks not in reference counted trees and tree roots
845 	 * are never shared. If a block was allocated after the last
846 	 * snapshot and the block was not allocated by tree relocation,
847 	 * we know the block is not shared.
848 	 */
849 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
850 	    buf != root->node && buf != root->commit_root &&
851 	    (btrfs_header_generation(buf) <=
852 	     btrfs_root_last_snapshot(&root->root_item) ||
853 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
854 		return 1;
855 
856 	return 0;
857 }
858 
859 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
860 				       struct btrfs_root *root,
861 				       struct extent_buffer *buf,
862 				       struct extent_buffer *cow,
863 				       int *last_ref)
864 {
865 	struct btrfs_fs_info *fs_info = root->fs_info;
866 	u64 refs;
867 	u64 owner;
868 	u64 flags;
869 	u64 new_flags = 0;
870 	int ret;
871 
872 	/*
873 	 * Backrefs update rules:
874 	 *
875 	 * Always use full backrefs for extent pointers in tree block
876 	 * allocated by tree relocation.
877 	 *
878 	 * If a shared tree block is no longer referenced by its owner
879 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
880 	 * use full backrefs for extent pointers in tree block.
881 	 *
882 	 * If a tree block is been relocating
883 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
884 	 * use full backrefs for extent pointers in tree block.
885 	 * The reason for this is some operations (such as drop tree)
886 	 * are only allowed for blocks use full backrefs.
887 	 */
888 
889 	if (btrfs_block_can_be_shared(root, buf)) {
890 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
891 					       btrfs_header_level(buf), 1,
892 					       &refs, &flags);
893 		if (ret)
894 			return ret;
895 		if (refs == 0) {
896 			ret = -EROFS;
897 			btrfs_handle_fs_error(fs_info, ret, NULL);
898 			return ret;
899 		}
900 	} else {
901 		refs = 1;
902 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
903 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
904 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
905 		else
906 			flags = 0;
907 	}
908 
909 	owner = btrfs_header_owner(buf);
910 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
911 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
912 
913 	if (refs > 1) {
914 		if ((owner == root->root_key.objectid ||
915 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
916 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
917 			ret = btrfs_inc_ref(trans, root, buf, 1);
918 			if (ret)
919 				return ret;
920 
921 			if (root->root_key.objectid ==
922 			    BTRFS_TREE_RELOC_OBJECTID) {
923 				ret = btrfs_dec_ref(trans, root, buf, 0);
924 				if (ret)
925 					return ret;
926 				ret = btrfs_inc_ref(trans, root, cow, 1);
927 				if (ret)
928 					return ret;
929 			}
930 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
931 		} else {
932 
933 			if (root->root_key.objectid ==
934 			    BTRFS_TREE_RELOC_OBJECTID)
935 				ret = btrfs_inc_ref(trans, root, cow, 1);
936 			else
937 				ret = btrfs_inc_ref(trans, root, cow, 0);
938 			if (ret)
939 				return ret;
940 		}
941 		if (new_flags != 0) {
942 			int level = btrfs_header_level(buf);
943 
944 			ret = btrfs_set_disk_extent_flags(trans, fs_info,
945 							  buf->start,
946 							  buf->len,
947 							  new_flags, level, 0);
948 			if (ret)
949 				return ret;
950 		}
951 	} else {
952 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
953 			if (root->root_key.objectid ==
954 			    BTRFS_TREE_RELOC_OBJECTID)
955 				ret = btrfs_inc_ref(trans, root, cow, 1);
956 			else
957 				ret = btrfs_inc_ref(trans, root, cow, 0);
958 			if (ret)
959 				return ret;
960 			ret = btrfs_dec_ref(trans, root, buf, 1);
961 			if (ret)
962 				return ret;
963 		}
964 		clean_tree_block(fs_info, buf);
965 		*last_ref = 1;
966 	}
967 	return 0;
968 }
969 
970 /*
971  * does the dirty work in cow of a single block.  The parent block (if
972  * supplied) is updated to point to the new cow copy.  The new buffer is marked
973  * dirty and returned locked.  If you modify the block it needs to be marked
974  * dirty again.
975  *
976  * search_start -- an allocation hint for the new block
977  *
978  * empty_size -- a hint that you plan on doing more cow.  This is the size in
979  * bytes the allocator should try to find free next to the block it returns.
980  * This is just a hint and may be ignored by the allocator.
981  */
982 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
983 			     struct btrfs_root *root,
984 			     struct extent_buffer *buf,
985 			     struct extent_buffer *parent, int parent_slot,
986 			     struct extent_buffer **cow_ret,
987 			     u64 search_start, u64 empty_size)
988 {
989 	struct btrfs_fs_info *fs_info = root->fs_info;
990 	struct btrfs_disk_key disk_key;
991 	struct extent_buffer *cow;
992 	int level, ret;
993 	int last_ref = 0;
994 	int unlock_orig = 0;
995 	u64 parent_start = 0;
996 
997 	if (*cow_ret == buf)
998 		unlock_orig = 1;
999 
1000 	btrfs_assert_tree_locked(buf);
1001 
1002 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1003 		trans->transid != fs_info->running_transaction->transid);
1004 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1005 		trans->transid != root->last_trans);
1006 
1007 	level = btrfs_header_level(buf);
1008 
1009 	if (level == 0)
1010 		btrfs_item_key(buf, &disk_key, 0);
1011 	else
1012 		btrfs_node_key(buf, &disk_key, 0);
1013 
1014 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1015 		parent_start = parent->start;
1016 
1017 	/*
1018 	 * If we are COWing a node/leaf from the extent, chunk or device trees,
1019 	 * make sure that we do not finish block group creation of pending block
1020 	 * groups. We do this to avoid a deadlock.
1021 	 * COWing can result in allocation of a new chunk, and flushing pending
1022 	 * block groups (btrfs_create_pending_block_groups()) can be triggered
1023 	 * when finishing allocation of a new chunk. Creation of a pending block
1024 	 * group modifies the extent, chunk and device trees, therefore we could
1025 	 * deadlock with ourselves since we are holding a lock on an extent
1026 	 * buffer that btrfs_create_pending_block_groups() may try to COW later.
1027 	 */
1028 	if (root == fs_info->extent_root ||
1029 	    root == fs_info->chunk_root ||
1030 	    root == fs_info->dev_root)
1031 		trans->can_flush_pending_bgs = false;
1032 
1033 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1034 			root->root_key.objectid, &disk_key, level,
1035 			search_start, empty_size);
1036 	trans->can_flush_pending_bgs = true;
1037 	if (IS_ERR(cow))
1038 		return PTR_ERR(cow);
1039 
1040 	/* cow is set to blocking by btrfs_init_new_buffer */
1041 
1042 	copy_extent_buffer_full(cow, buf);
1043 	btrfs_set_header_bytenr(cow, cow->start);
1044 	btrfs_set_header_generation(cow, trans->transid);
1045 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1046 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1047 				     BTRFS_HEADER_FLAG_RELOC);
1048 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1049 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1050 	else
1051 		btrfs_set_header_owner(cow, root->root_key.objectid);
1052 
1053 	write_extent_buffer_fsid(cow, fs_info->fsid);
1054 
1055 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1056 	if (ret) {
1057 		btrfs_abort_transaction(trans, ret);
1058 		return ret;
1059 	}
1060 
1061 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1062 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1063 		if (ret) {
1064 			btrfs_abort_transaction(trans, ret);
1065 			return ret;
1066 		}
1067 	}
1068 
1069 	if (buf == root->node) {
1070 		WARN_ON(parent && parent != buf);
1071 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1072 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1073 			parent_start = buf->start;
1074 
1075 		extent_buffer_get(cow);
1076 		ret = tree_mod_log_insert_root(root->node, cow, 1);
1077 		BUG_ON(ret < 0);
1078 		rcu_assign_pointer(root->node, cow);
1079 
1080 		btrfs_free_tree_block(trans, root, buf, parent_start,
1081 				      last_ref);
1082 		free_extent_buffer(buf);
1083 		add_root_to_dirty_list(root);
1084 	} else {
1085 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1086 		tree_mod_log_insert_key(parent, parent_slot,
1087 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1088 		btrfs_set_node_blockptr(parent, parent_slot,
1089 					cow->start);
1090 		btrfs_set_node_ptr_generation(parent, parent_slot,
1091 					      trans->transid);
1092 		btrfs_mark_buffer_dirty(parent);
1093 		if (last_ref) {
1094 			ret = tree_mod_log_free_eb(buf);
1095 			if (ret) {
1096 				btrfs_abort_transaction(trans, ret);
1097 				return ret;
1098 			}
1099 		}
1100 		btrfs_free_tree_block(trans, root, buf, parent_start,
1101 				      last_ref);
1102 	}
1103 	if (unlock_orig)
1104 		btrfs_tree_unlock(buf);
1105 	free_extent_buffer_stale(buf);
1106 	btrfs_mark_buffer_dirty(cow);
1107 	*cow_ret = cow;
1108 	return 0;
1109 }
1110 
1111 /*
1112  * returns the logical address of the oldest predecessor of the given root.
1113  * entries older than time_seq are ignored.
1114  */
1115 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1116 		struct extent_buffer *eb_root, u64 time_seq)
1117 {
1118 	struct tree_mod_elem *tm;
1119 	struct tree_mod_elem *found = NULL;
1120 	u64 root_logical = eb_root->start;
1121 	int looped = 0;
1122 
1123 	if (!time_seq)
1124 		return NULL;
1125 
1126 	/*
1127 	 * the very last operation that's logged for a root is the
1128 	 * replacement operation (if it is replaced at all). this has
1129 	 * the logical address of the *new* root, making it the very
1130 	 * first operation that's logged for this root.
1131 	 */
1132 	while (1) {
1133 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1134 						time_seq);
1135 		if (!looped && !tm)
1136 			return NULL;
1137 		/*
1138 		 * if there are no tree operation for the oldest root, we simply
1139 		 * return it. this should only happen if that (old) root is at
1140 		 * level 0.
1141 		 */
1142 		if (!tm)
1143 			break;
1144 
1145 		/*
1146 		 * if there's an operation that's not a root replacement, we
1147 		 * found the oldest version of our root. normally, we'll find a
1148 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1149 		 */
1150 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1151 			break;
1152 
1153 		found = tm;
1154 		root_logical = tm->old_root.logical;
1155 		looped = 1;
1156 	}
1157 
1158 	/* if there's no old root to return, return what we found instead */
1159 	if (!found)
1160 		found = tm;
1161 
1162 	return found;
1163 }
1164 
1165 /*
1166  * tm is a pointer to the first operation to rewind within eb. then, all
1167  * previous operations will be rewound (until we reach something older than
1168  * time_seq).
1169  */
1170 static void
1171 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1172 		      u64 time_seq, struct tree_mod_elem *first_tm)
1173 {
1174 	u32 n;
1175 	struct rb_node *next;
1176 	struct tree_mod_elem *tm = first_tm;
1177 	unsigned long o_dst;
1178 	unsigned long o_src;
1179 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1180 
1181 	n = btrfs_header_nritems(eb);
1182 	read_lock(&fs_info->tree_mod_log_lock);
1183 	while (tm && tm->seq >= time_seq) {
1184 		/*
1185 		 * all the operations are recorded with the operator used for
1186 		 * the modification. as we're going backwards, we do the
1187 		 * opposite of each operation here.
1188 		 */
1189 		switch (tm->op) {
1190 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1191 			BUG_ON(tm->slot < n);
1192 			/* Fallthrough */
1193 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1194 		case MOD_LOG_KEY_REMOVE:
1195 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1196 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1197 			btrfs_set_node_ptr_generation(eb, tm->slot,
1198 						      tm->generation);
1199 			n++;
1200 			break;
1201 		case MOD_LOG_KEY_REPLACE:
1202 			BUG_ON(tm->slot >= n);
1203 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1204 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1205 			btrfs_set_node_ptr_generation(eb, tm->slot,
1206 						      tm->generation);
1207 			break;
1208 		case MOD_LOG_KEY_ADD:
1209 			/* if a move operation is needed it's in the log */
1210 			n--;
1211 			break;
1212 		case MOD_LOG_MOVE_KEYS:
1213 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1214 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1215 			memmove_extent_buffer(eb, o_dst, o_src,
1216 					      tm->move.nr_items * p_size);
1217 			break;
1218 		case MOD_LOG_ROOT_REPLACE:
1219 			/*
1220 			 * this operation is special. for roots, this must be
1221 			 * handled explicitly before rewinding.
1222 			 * for non-roots, this operation may exist if the node
1223 			 * was a root: root A -> child B; then A gets empty and
1224 			 * B is promoted to the new root. in the mod log, we'll
1225 			 * have a root-replace operation for B, a tree block
1226 			 * that is no root. we simply ignore that operation.
1227 			 */
1228 			break;
1229 		}
1230 		next = rb_next(&tm->node);
1231 		if (!next)
1232 			break;
1233 		tm = rb_entry(next, struct tree_mod_elem, node);
1234 		if (tm->logical != first_tm->logical)
1235 			break;
1236 	}
1237 	read_unlock(&fs_info->tree_mod_log_lock);
1238 	btrfs_set_header_nritems(eb, n);
1239 }
1240 
1241 /*
1242  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1243  * is returned. If rewind operations happen, a fresh buffer is returned. The
1244  * returned buffer is always read-locked. If the returned buffer is not the
1245  * input buffer, the lock on the input buffer is released and the input buffer
1246  * is freed (its refcount is decremented).
1247  */
1248 static struct extent_buffer *
1249 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1250 		    struct extent_buffer *eb, u64 time_seq)
1251 {
1252 	struct extent_buffer *eb_rewin;
1253 	struct tree_mod_elem *tm;
1254 
1255 	if (!time_seq)
1256 		return eb;
1257 
1258 	if (btrfs_header_level(eb) == 0)
1259 		return eb;
1260 
1261 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1262 	if (!tm)
1263 		return eb;
1264 
1265 	btrfs_set_path_blocking(path);
1266 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1267 
1268 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1269 		BUG_ON(tm->slot != 0);
1270 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1271 		if (!eb_rewin) {
1272 			btrfs_tree_read_unlock_blocking(eb);
1273 			free_extent_buffer(eb);
1274 			return NULL;
1275 		}
1276 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1277 		btrfs_set_header_backref_rev(eb_rewin,
1278 					     btrfs_header_backref_rev(eb));
1279 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1280 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1281 	} else {
1282 		eb_rewin = btrfs_clone_extent_buffer(eb);
1283 		if (!eb_rewin) {
1284 			btrfs_tree_read_unlock_blocking(eb);
1285 			free_extent_buffer(eb);
1286 			return NULL;
1287 		}
1288 	}
1289 
1290 	btrfs_tree_read_unlock_blocking(eb);
1291 	free_extent_buffer(eb);
1292 
1293 	extent_buffer_get(eb_rewin);
1294 	btrfs_tree_read_lock(eb_rewin);
1295 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1296 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1297 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1298 
1299 	return eb_rewin;
1300 }
1301 
1302 /*
1303  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1304  * value. If there are no changes, the current root->root_node is returned. If
1305  * anything changed in between, there's a fresh buffer allocated on which the
1306  * rewind operations are done. In any case, the returned buffer is read locked.
1307  * Returns NULL on error (with no locks held).
1308  */
1309 static inline struct extent_buffer *
1310 get_old_root(struct btrfs_root *root, u64 time_seq)
1311 {
1312 	struct btrfs_fs_info *fs_info = root->fs_info;
1313 	struct tree_mod_elem *tm;
1314 	struct extent_buffer *eb = NULL;
1315 	struct extent_buffer *eb_root;
1316 	struct extent_buffer *old;
1317 	struct tree_mod_root *old_root = NULL;
1318 	u64 old_generation = 0;
1319 	u64 logical;
1320 	int level;
1321 
1322 	eb_root = btrfs_read_lock_root_node(root);
1323 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1324 	if (!tm)
1325 		return eb_root;
1326 
1327 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1328 		old_root = &tm->old_root;
1329 		old_generation = tm->generation;
1330 		logical = old_root->logical;
1331 		level = old_root->level;
1332 	} else {
1333 		logical = eb_root->start;
1334 		level = btrfs_header_level(eb_root);
1335 	}
1336 
1337 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1338 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1339 		btrfs_tree_read_unlock(eb_root);
1340 		free_extent_buffer(eb_root);
1341 		old = read_tree_block(fs_info, logical, 0, level, NULL);
1342 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1343 			if (!IS_ERR(old))
1344 				free_extent_buffer(old);
1345 			btrfs_warn(fs_info,
1346 				   "failed to read tree block %llu from get_old_root",
1347 				   logical);
1348 		} else {
1349 			eb = btrfs_clone_extent_buffer(old);
1350 			free_extent_buffer(old);
1351 		}
1352 	} else if (old_root) {
1353 		btrfs_tree_read_unlock(eb_root);
1354 		free_extent_buffer(eb_root);
1355 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1356 	} else {
1357 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1358 		eb = btrfs_clone_extent_buffer(eb_root);
1359 		btrfs_tree_read_unlock_blocking(eb_root);
1360 		free_extent_buffer(eb_root);
1361 	}
1362 
1363 	if (!eb)
1364 		return NULL;
1365 	extent_buffer_get(eb);
1366 	btrfs_tree_read_lock(eb);
1367 	if (old_root) {
1368 		btrfs_set_header_bytenr(eb, eb->start);
1369 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1370 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1371 		btrfs_set_header_level(eb, old_root->level);
1372 		btrfs_set_header_generation(eb, old_generation);
1373 	}
1374 	if (tm)
1375 		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1376 	else
1377 		WARN_ON(btrfs_header_level(eb) != 0);
1378 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1379 
1380 	return eb;
1381 }
1382 
1383 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1384 {
1385 	struct tree_mod_elem *tm;
1386 	int level;
1387 	struct extent_buffer *eb_root = btrfs_root_node(root);
1388 
1389 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1390 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1391 		level = tm->old_root.level;
1392 	} else {
1393 		level = btrfs_header_level(eb_root);
1394 	}
1395 	free_extent_buffer(eb_root);
1396 
1397 	return level;
1398 }
1399 
1400 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1401 				   struct btrfs_root *root,
1402 				   struct extent_buffer *buf)
1403 {
1404 	if (btrfs_is_testing(root->fs_info))
1405 		return 0;
1406 
1407 	/* Ensure we can see the FORCE_COW bit */
1408 	smp_mb__before_atomic();
1409 
1410 	/*
1411 	 * We do not need to cow a block if
1412 	 * 1) this block is not created or changed in this transaction;
1413 	 * 2) this block does not belong to TREE_RELOC tree;
1414 	 * 3) the root is not forced COW.
1415 	 *
1416 	 * What is forced COW:
1417 	 *    when we create snapshot during committing the transaction,
1418 	 *    after we've finished coping src root, we must COW the shared
1419 	 *    block to ensure the metadata consistency.
1420 	 */
1421 	if (btrfs_header_generation(buf) == trans->transid &&
1422 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1423 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1424 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1425 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1426 		return 0;
1427 	return 1;
1428 }
1429 
1430 /*
1431  * cows a single block, see __btrfs_cow_block for the real work.
1432  * This version of it has extra checks so that a block isn't COWed more than
1433  * once per transaction, as long as it hasn't been written yet
1434  */
1435 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1436 		    struct btrfs_root *root, struct extent_buffer *buf,
1437 		    struct extent_buffer *parent, int parent_slot,
1438 		    struct extent_buffer **cow_ret)
1439 {
1440 	struct btrfs_fs_info *fs_info = root->fs_info;
1441 	u64 search_start;
1442 	int ret;
1443 
1444 	if (trans->transaction != fs_info->running_transaction)
1445 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1446 		       trans->transid,
1447 		       fs_info->running_transaction->transid);
1448 
1449 	if (trans->transid != fs_info->generation)
1450 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1451 		       trans->transid, fs_info->generation);
1452 
1453 	if (!should_cow_block(trans, root, buf)) {
1454 		trans->dirty = true;
1455 		*cow_ret = buf;
1456 		return 0;
1457 	}
1458 
1459 	search_start = buf->start & ~((u64)SZ_1G - 1);
1460 
1461 	if (parent)
1462 		btrfs_set_lock_blocking(parent);
1463 	btrfs_set_lock_blocking(buf);
1464 
1465 	ret = __btrfs_cow_block(trans, root, buf, parent,
1466 				 parent_slot, cow_ret, search_start, 0);
1467 
1468 	trace_btrfs_cow_block(root, buf, *cow_ret);
1469 
1470 	return ret;
1471 }
1472 
1473 /*
1474  * helper function for defrag to decide if two blocks pointed to by a
1475  * node are actually close by
1476  */
1477 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1478 {
1479 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1480 		return 1;
1481 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1482 		return 1;
1483 	return 0;
1484 }
1485 
1486 /*
1487  * compare two keys in a memcmp fashion
1488  */
1489 static int comp_keys(const struct btrfs_disk_key *disk,
1490 		     const struct btrfs_key *k2)
1491 {
1492 	struct btrfs_key k1;
1493 
1494 	btrfs_disk_key_to_cpu(&k1, disk);
1495 
1496 	return btrfs_comp_cpu_keys(&k1, k2);
1497 }
1498 
1499 /*
1500  * same as comp_keys only with two btrfs_key's
1501  */
1502 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1503 {
1504 	if (k1->objectid > k2->objectid)
1505 		return 1;
1506 	if (k1->objectid < k2->objectid)
1507 		return -1;
1508 	if (k1->type > k2->type)
1509 		return 1;
1510 	if (k1->type < k2->type)
1511 		return -1;
1512 	if (k1->offset > k2->offset)
1513 		return 1;
1514 	if (k1->offset < k2->offset)
1515 		return -1;
1516 	return 0;
1517 }
1518 
1519 /*
1520  * this is used by the defrag code to go through all the
1521  * leaves pointed to by a node and reallocate them so that
1522  * disk order is close to key order
1523  */
1524 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1525 		       struct btrfs_root *root, struct extent_buffer *parent,
1526 		       int start_slot, u64 *last_ret,
1527 		       struct btrfs_key *progress)
1528 {
1529 	struct btrfs_fs_info *fs_info = root->fs_info;
1530 	struct extent_buffer *cur;
1531 	u64 blocknr;
1532 	u64 gen;
1533 	u64 search_start = *last_ret;
1534 	u64 last_block = 0;
1535 	u64 other;
1536 	u32 parent_nritems;
1537 	int end_slot;
1538 	int i;
1539 	int err = 0;
1540 	int parent_level;
1541 	int uptodate;
1542 	u32 blocksize;
1543 	int progress_passed = 0;
1544 	struct btrfs_disk_key disk_key;
1545 
1546 	parent_level = btrfs_header_level(parent);
1547 
1548 	WARN_ON(trans->transaction != fs_info->running_transaction);
1549 	WARN_ON(trans->transid != fs_info->generation);
1550 
1551 	parent_nritems = btrfs_header_nritems(parent);
1552 	blocksize = fs_info->nodesize;
1553 	end_slot = parent_nritems - 1;
1554 
1555 	if (parent_nritems <= 1)
1556 		return 0;
1557 
1558 	btrfs_set_lock_blocking(parent);
1559 
1560 	for (i = start_slot; i <= end_slot; i++) {
1561 		struct btrfs_key first_key;
1562 		int close = 1;
1563 
1564 		btrfs_node_key(parent, &disk_key, i);
1565 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1566 			continue;
1567 
1568 		progress_passed = 1;
1569 		blocknr = btrfs_node_blockptr(parent, i);
1570 		gen = btrfs_node_ptr_generation(parent, i);
1571 		btrfs_node_key_to_cpu(parent, &first_key, i);
1572 		if (last_block == 0)
1573 			last_block = blocknr;
1574 
1575 		if (i > 0) {
1576 			other = btrfs_node_blockptr(parent, i - 1);
1577 			close = close_blocks(blocknr, other, blocksize);
1578 		}
1579 		if (!close && i < end_slot) {
1580 			other = btrfs_node_blockptr(parent, i + 1);
1581 			close = close_blocks(blocknr, other, blocksize);
1582 		}
1583 		if (close) {
1584 			last_block = blocknr;
1585 			continue;
1586 		}
1587 
1588 		cur = find_extent_buffer(fs_info, blocknr);
1589 		if (cur)
1590 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1591 		else
1592 			uptodate = 0;
1593 		if (!cur || !uptodate) {
1594 			if (!cur) {
1595 				cur = read_tree_block(fs_info, blocknr, gen,
1596 						      parent_level - 1,
1597 						      &first_key);
1598 				if (IS_ERR(cur)) {
1599 					return PTR_ERR(cur);
1600 				} else if (!extent_buffer_uptodate(cur)) {
1601 					free_extent_buffer(cur);
1602 					return -EIO;
1603 				}
1604 			} else if (!uptodate) {
1605 				err = btrfs_read_buffer(cur, gen,
1606 						parent_level - 1,&first_key);
1607 				if (err) {
1608 					free_extent_buffer(cur);
1609 					return err;
1610 				}
1611 			}
1612 		}
1613 		if (search_start == 0)
1614 			search_start = last_block;
1615 
1616 		btrfs_tree_lock(cur);
1617 		btrfs_set_lock_blocking(cur);
1618 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1619 					&cur, search_start,
1620 					min(16 * blocksize,
1621 					    (end_slot - i) * blocksize));
1622 		if (err) {
1623 			btrfs_tree_unlock(cur);
1624 			free_extent_buffer(cur);
1625 			break;
1626 		}
1627 		search_start = cur->start;
1628 		last_block = cur->start;
1629 		*last_ret = search_start;
1630 		btrfs_tree_unlock(cur);
1631 		free_extent_buffer(cur);
1632 	}
1633 	return err;
1634 }
1635 
1636 /*
1637  * search for key in the extent_buffer.  The items start at offset p,
1638  * and they are item_size apart.  There are 'max' items in p.
1639  *
1640  * the slot in the array is returned via slot, and it points to
1641  * the place where you would insert key if it is not found in
1642  * the array.
1643  *
1644  * slot may point to max if the key is bigger than all of the keys
1645  */
1646 static noinline int generic_bin_search(struct extent_buffer *eb,
1647 				       unsigned long p, int item_size,
1648 				       const struct btrfs_key *key,
1649 				       int max, int *slot)
1650 {
1651 	int low = 0;
1652 	int high = max;
1653 	int mid;
1654 	int ret;
1655 	struct btrfs_disk_key *tmp = NULL;
1656 	struct btrfs_disk_key unaligned;
1657 	unsigned long offset;
1658 	char *kaddr = NULL;
1659 	unsigned long map_start = 0;
1660 	unsigned long map_len = 0;
1661 	int err;
1662 
1663 	if (low > high) {
1664 		btrfs_err(eb->fs_info,
1665 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1666 			  __func__, low, high, eb->start,
1667 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1668 		return -EINVAL;
1669 	}
1670 
1671 	while (low < high) {
1672 		mid = (low + high) / 2;
1673 		offset = p + mid * item_size;
1674 
1675 		if (!kaddr || offset < map_start ||
1676 		    (offset + sizeof(struct btrfs_disk_key)) >
1677 		    map_start + map_len) {
1678 
1679 			err = map_private_extent_buffer(eb, offset,
1680 						sizeof(struct btrfs_disk_key),
1681 						&kaddr, &map_start, &map_len);
1682 
1683 			if (!err) {
1684 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1685 							map_start);
1686 			} else if (err == 1) {
1687 				read_extent_buffer(eb, &unaligned,
1688 						   offset, sizeof(unaligned));
1689 				tmp = &unaligned;
1690 			} else {
1691 				return err;
1692 			}
1693 
1694 		} else {
1695 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1696 							map_start);
1697 		}
1698 		ret = comp_keys(tmp, key);
1699 
1700 		if (ret < 0)
1701 			low = mid + 1;
1702 		else if (ret > 0)
1703 			high = mid;
1704 		else {
1705 			*slot = mid;
1706 			return 0;
1707 		}
1708 	}
1709 	*slot = low;
1710 	return 1;
1711 }
1712 
1713 /*
1714  * simple bin_search frontend that does the right thing for
1715  * leaves vs nodes
1716  */
1717 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1718 		     int level, int *slot)
1719 {
1720 	if (level == 0)
1721 		return generic_bin_search(eb,
1722 					  offsetof(struct btrfs_leaf, items),
1723 					  sizeof(struct btrfs_item),
1724 					  key, btrfs_header_nritems(eb),
1725 					  slot);
1726 	else
1727 		return generic_bin_search(eb,
1728 					  offsetof(struct btrfs_node, ptrs),
1729 					  sizeof(struct btrfs_key_ptr),
1730 					  key, btrfs_header_nritems(eb),
1731 					  slot);
1732 }
1733 
1734 static void root_add_used(struct btrfs_root *root, u32 size)
1735 {
1736 	spin_lock(&root->accounting_lock);
1737 	btrfs_set_root_used(&root->root_item,
1738 			    btrfs_root_used(&root->root_item) + size);
1739 	spin_unlock(&root->accounting_lock);
1740 }
1741 
1742 static void root_sub_used(struct btrfs_root *root, u32 size)
1743 {
1744 	spin_lock(&root->accounting_lock);
1745 	btrfs_set_root_used(&root->root_item,
1746 			    btrfs_root_used(&root->root_item) - size);
1747 	spin_unlock(&root->accounting_lock);
1748 }
1749 
1750 /* given a node and slot number, this reads the blocks it points to.  The
1751  * extent buffer is returned with a reference taken (but unlocked).
1752  */
1753 static noinline struct extent_buffer *
1754 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1755 	       int slot)
1756 {
1757 	int level = btrfs_header_level(parent);
1758 	struct extent_buffer *eb;
1759 	struct btrfs_key first_key;
1760 
1761 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1762 		return ERR_PTR(-ENOENT);
1763 
1764 	BUG_ON(level == 0);
1765 
1766 	btrfs_node_key_to_cpu(parent, &first_key, slot);
1767 	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1768 			     btrfs_node_ptr_generation(parent, slot),
1769 			     level - 1, &first_key);
1770 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1771 		free_extent_buffer(eb);
1772 		eb = ERR_PTR(-EIO);
1773 	}
1774 
1775 	return eb;
1776 }
1777 
1778 /*
1779  * node level balancing, used to make sure nodes are in proper order for
1780  * item deletion.  We balance from the top down, so we have to make sure
1781  * that a deletion won't leave an node completely empty later on.
1782  */
1783 static noinline int balance_level(struct btrfs_trans_handle *trans,
1784 			 struct btrfs_root *root,
1785 			 struct btrfs_path *path, int level)
1786 {
1787 	struct btrfs_fs_info *fs_info = root->fs_info;
1788 	struct extent_buffer *right = NULL;
1789 	struct extent_buffer *mid;
1790 	struct extent_buffer *left = NULL;
1791 	struct extent_buffer *parent = NULL;
1792 	int ret = 0;
1793 	int wret;
1794 	int pslot;
1795 	int orig_slot = path->slots[level];
1796 	u64 orig_ptr;
1797 
1798 	ASSERT(level > 0);
1799 
1800 	mid = path->nodes[level];
1801 
1802 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1803 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1804 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1805 
1806 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1807 
1808 	if (level < BTRFS_MAX_LEVEL - 1) {
1809 		parent = path->nodes[level + 1];
1810 		pslot = path->slots[level + 1];
1811 	}
1812 
1813 	/*
1814 	 * deal with the case where there is only one pointer in the root
1815 	 * by promoting the node below to a root
1816 	 */
1817 	if (!parent) {
1818 		struct extent_buffer *child;
1819 
1820 		if (btrfs_header_nritems(mid) != 1)
1821 			return 0;
1822 
1823 		/* promote the child to a root */
1824 		child = read_node_slot(fs_info, mid, 0);
1825 		if (IS_ERR(child)) {
1826 			ret = PTR_ERR(child);
1827 			btrfs_handle_fs_error(fs_info, ret, NULL);
1828 			goto enospc;
1829 		}
1830 
1831 		btrfs_tree_lock(child);
1832 		btrfs_set_lock_blocking(child);
1833 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1834 		if (ret) {
1835 			btrfs_tree_unlock(child);
1836 			free_extent_buffer(child);
1837 			goto enospc;
1838 		}
1839 
1840 		ret = tree_mod_log_insert_root(root->node, child, 1);
1841 		BUG_ON(ret < 0);
1842 		rcu_assign_pointer(root->node, child);
1843 
1844 		add_root_to_dirty_list(root);
1845 		btrfs_tree_unlock(child);
1846 
1847 		path->locks[level] = 0;
1848 		path->nodes[level] = NULL;
1849 		clean_tree_block(fs_info, mid);
1850 		btrfs_tree_unlock(mid);
1851 		/* once for the path */
1852 		free_extent_buffer(mid);
1853 
1854 		root_sub_used(root, mid->len);
1855 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1856 		/* once for the root ptr */
1857 		free_extent_buffer_stale(mid);
1858 		return 0;
1859 	}
1860 	if (btrfs_header_nritems(mid) >
1861 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1862 		return 0;
1863 
1864 	left = read_node_slot(fs_info, parent, pslot - 1);
1865 	if (IS_ERR(left))
1866 		left = NULL;
1867 
1868 	if (left) {
1869 		btrfs_tree_lock(left);
1870 		btrfs_set_lock_blocking(left);
1871 		wret = btrfs_cow_block(trans, root, left,
1872 				       parent, pslot - 1, &left);
1873 		if (wret) {
1874 			ret = wret;
1875 			goto enospc;
1876 		}
1877 	}
1878 
1879 	right = read_node_slot(fs_info, parent, pslot + 1);
1880 	if (IS_ERR(right))
1881 		right = NULL;
1882 
1883 	if (right) {
1884 		btrfs_tree_lock(right);
1885 		btrfs_set_lock_blocking(right);
1886 		wret = btrfs_cow_block(trans, root, right,
1887 				       parent, pslot + 1, &right);
1888 		if (wret) {
1889 			ret = wret;
1890 			goto enospc;
1891 		}
1892 	}
1893 
1894 	/* first, try to make some room in the middle buffer */
1895 	if (left) {
1896 		orig_slot += btrfs_header_nritems(left);
1897 		wret = push_node_left(trans, fs_info, left, mid, 1);
1898 		if (wret < 0)
1899 			ret = wret;
1900 	}
1901 
1902 	/*
1903 	 * then try to empty the right most buffer into the middle
1904 	 */
1905 	if (right) {
1906 		wret = push_node_left(trans, fs_info, mid, right, 1);
1907 		if (wret < 0 && wret != -ENOSPC)
1908 			ret = wret;
1909 		if (btrfs_header_nritems(right) == 0) {
1910 			clean_tree_block(fs_info, right);
1911 			btrfs_tree_unlock(right);
1912 			del_ptr(root, path, level + 1, pslot + 1);
1913 			root_sub_used(root, right->len);
1914 			btrfs_free_tree_block(trans, root, right, 0, 1);
1915 			free_extent_buffer_stale(right);
1916 			right = NULL;
1917 		} else {
1918 			struct btrfs_disk_key right_key;
1919 			btrfs_node_key(right, &right_key, 0);
1920 			ret = tree_mod_log_insert_key(parent, pslot + 1,
1921 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1922 			BUG_ON(ret < 0);
1923 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1924 			btrfs_mark_buffer_dirty(parent);
1925 		}
1926 	}
1927 	if (btrfs_header_nritems(mid) == 1) {
1928 		/*
1929 		 * we're not allowed to leave a node with one item in the
1930 		 * tree during a delete.  A deletion from lower in the tree
1931 		 * could try to delete the only pointer in this node.
1932 		 * So, pull some keys from the left.
1933 		 * There has to be a left pointer at this point because
1934 		 * otherwise we would have pulled some pointers from the
1935 		 * right
1936 		 */
1937 		if (!left) {
1938 			ret = -EROFS;
1939 			btrfs_handle_fs_error(fs_info, ret, NULL);
1940 			goto enospc;
1941 		}
1942 		wret = balance_node_right(trans, fs_info, mid, left);
1943 		if (wret < 0) {
1944 			ret = wret;
1945 			goto enospc;
1946 		}
1947 		if (wret == 1) {
1948 			wret = push_node_left(trans, fs_info, left, mid, 1);
1949 			if (wret < 0)
1950 				ret = wret;
1951 		}
1952 		BUG_ON(wret == 1);
1953 	}
1954 	if (btrfs_header_nritems(mid) == 0) {
1955 		clean_tree_block(fs_info, mid);
1956 		btrfs_tree_unlock(mid);
1957 		del_ptr(root, path, level + 1, pslot);
1958 		root_sub_used(root, mid->len);
1959 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1960 		free_extent_buffer_stale(mid);
1961 		mid = NULL;
1962 	} else {
1963 		/* update the parent key to reflect our changes */
1964 		struct btrfs_disk_key mid_key;
1965 		btrfs_node_key(mid, &mid_key, 0);
1966 		ret = tree_mod_log_insert_key(parent, pslot,
1967 				MOD_LOG_KEY_REPLACE, GFP_NOFS);
1968 		BUG_ON(ret < 0);
1969 		btrfs_set_node_key(parent, &mid_key, pslot);
1970 		btrfs_mark_buffer_dirty(parent);
1971 	}
1972 
1973 	/* update the path */
1974 	if (left) {
1975 		if (btrfs_header_nritems(left) > orig_slot) {
1976 			extent_buffer_get(left);
1977 			/* left was locked after cow */
1978 			path->nodes[level] = left;
1979 			path->slots[level + 1] -= 1;
1980 			path->slots[level] = orig_slot;
1981 			if (mid) {
1982 				btrfs_tree_unlock(mid);
1983 				free_extent_buffer(mid);
1984 			}
1985 		} else {
1986 			orig_slot -= btrfs_header_nritems(left);
1987 			path->slots[level] = orig_slot;
1988 		}
1989 	}
1990 	/* double check we haven't messed things up */
1991 	if (orig_ptr !=
1992 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1993 		BUG();
1994 enospc:
1995 	if (right) {
1996 		btrfs_tree_unlock(right);
1997 		free_extent_buffer(right);
1998 	}
1999 	if (left) {
2000 		if (path->nodes[level] != left)
2001 			btrfs_tree_unlock(left);
2002 		free_extent_buffer(left);
2003 	}
2004 	return ret;
2005 }
2006 
2007 /* Node balancing for insertion.  Here we only split or push nodes around
2008  * when they are completely full.  This is also done top down, so we
2009  * have to be pessimistic.
2010  */
2011 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2012 					  struct btrfs_root *root,
2013 					  struct btrfs_path *path, int level)
2014 {
2015 	struct btrfs_fs_info *fs_info = root->fs_info;
2016 	struct extent_buffer *right = NULL;
2017 	struct extent_buffer *mid;
2018 	struct extent_buffer *left = NULL;
2019 	struct extent_buffer *parent = NULL;
2020 	int ret = 0;
2021 	int wret;
2022 	int pslot;
2023 	int orig_slot = path->slots[level];
2024 
2025 	if (level == 0)
2026 		return 1;
2027 
2028 	mid = path->nodes[level];
2029 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2030 
2031 	if (level < BTRFS_MAX_LEVEL - 1) {
2032 		parent = path->nodes[level + 1];
2033 		pslot = path->slots[level + 1];
2034 	}
2035 
2036 	if (!parent)
2037 		return 1;
2038 
2039 	left = read_node_slot(fs_info, parent, pslot - 1);
2040 	if (IS_ERR(left))
2041 		left = NULL;
2042 
2043 	/* first, try to make some room in the middle buffer */
2044 	if (left) {
2045 		u32 left_nr;
2046 
2047 		btrfs_tree_lock(left);
2048 		btrfs_set_lock_blocking(left);
2049 
2050 		left_nr = btrfs_header_nritems(left);
2051 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2052 			wret = 1;
2053 		} else {
2054 			ret = btrfs_cow_block(trans, root, left, parent,
2055 					      pslot - 1, &left);
2056 			if (ret)
2057 				wret = 1;
2058 			else {
2059 				wret = push_node_left(trans, fs_info,
2060 						      left, mid, 0);
2061 			}
2062 		}
2063 		if (wret < 0)
2064 			ret = wret;
2065 		if (wret == 0) {
2066 			struct btrfs_disk_key disk_key;
2067 			orig_slot += left_nr;
2068 			btrfs_node_key(mid, &disk_key, 0);
2069 			ret = tree_mod_log_insert_key(parent, pslot,
2070 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2071 			BUG_ON(ret < 0);
2072 			btrfs_set_node_key(parent, &disk_key, pslot);
2073 			btrfs_mark_buffer_dirty(parent);
2074 			if (btrfs_header_nritems(left) > orig_slot) {
2075 				path->nodes[level] = left;
2076 				path->slots[level + 1] -= 1;
2077 				path->slots[level] = orig_slot;
2078 				btrfs_tree_unlock(mid);
2079 				free_extent_buffer(mid);
2080 			} else {
2081 				orig_slot -=
2082 					btrfs_header_nritems(left);
2083 				path->slots[level] = orig_slot;
2084 				btrfs_tree_unlock(left);
2085 				free_extent_buffer(left);
2086 			}
2087 			return 0;
2088 		}
2089 		btrfs_tree_unlock(left);
2090 		free_extent_buffer(left);
2091 	}
2092 	right = read_node_slot(fs_info, parent, pslot + 1);
2093 	if (IS_ERR(right))
2094 		right = NULL;
2095 
2096 	/*
2097 	 * then try to empty the right most buffer into the middle
2098 	 */
2099 	if (right) {
2100 		u32 right_nr;
2101 
2102 		btrfs_tree_lock(right);
2103 		btrfs_set_lock_blocking(right);
2104 
2105 		right_nr = btrfs_header_nritems(right);
2106 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2107 			wret = 1;
2108 		} else {
2109 			ret = btrfs_cow_block(trans, root, right,
2110 					      parent, pslot + 1,
2111 					      &right);
2112 			if (ret)
2113 				wret = 1;
2114 			else {
2115 				wret = balance_node_right(trans, fs_info,
2116 							  right, mid);
2117 			}
2118 		}
2119 		if (wret < 0)
2120 			ret = wret;
2121 		if (wret == 0) {
2122 			struct btrfs_disk_key disk_key;
2123 
2124 			btrfs_node_key(right, &disk_key, 0);
2125 			ret = tree_mod_log_insert_key(parent, pslot + 1,
2126 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2127 			BUG_ON(ret < 0);
2128 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2129 			btrfs_mark_buffer_dirty(parent);
2130 
2131 			if (btrfs_header_nritems(mid) <= orig_slot) {
2132 				path->nodes[level] = right;
2133 				path->slots[level + 1] += 1;
2134 				path->slots[level] = orig_slot -
2135 					btrfs_header_nritems(mid);
2136 				btrfs_tree_unlock(mid);
2137 				free_extent_buffer(mid);
2138 			} else {
2139 				btrfs_tree_unlock(right);
2140 				free_extent_buffer(right);
2141 			}
2142 			return 0;
2143 		}
2144 		btrfs_tree_unlock(right);
2145 		free_extent_buffer(right);
2146 	}
2147 	return 1;
2148 }
2149 
2150 /*
2151  * readahead one full node of leaves, finding things that are close
2152  * to the block in 'slot', and triggering ra on them.
2153  */
2154 static void reada_for_search(struct btrfs_fs_info *fs_info,
2155 			     struct btrfs_path *path,
2156 			     int level, int slot, u64 objectid)
2157 {
2158 	struct extent_buffer *node;
2159 	struct btrfs_disk_key disk_key;
2160 	u32 nritems;
2161 	u64 search;
2162 	u64 target;
2163 	u64 nread = 0;
2164 	struct extent_buffer *eb;
2165 	u32 nr;
2166 	u32 blocksize;
2167 	u32 nscan = 0;
2168 
2169 	if (level != 1)
2170 		return;
2171 
2172 	if (!path->nodes[level])
2173 		return;
2174 
2175 	node = path->nodes[level];
2176 
2177 	search = btrfs_node_blockptr(node, slot);
2178 	blocksize = fs_info->nodesize;
2179 	eb = find_extent_buffer(fs_info, search);
2180 	if (eb) {
2181 		free_extent_buffer(eb);
2182 		return;
2183 	}
2184 
2185 	target = search;
2186 
2187 	nritems = btrfs_header_nritems(node);
2188 	nr = slot;
2189 
2190 	while (1) {
2191 		if (path->reada == READA_BACK) {
2192 			if (nr == 0)
2193 				break;
2194 			nr--;
2195 		} else if (path->reada == READA_FORWARD) {
2196 			nr++;
2197 			if (nr >= nritems)
2198 				break;
2199 		}
2200 		if (path->reada == READA_BACK && objectid) {
2201 			btrfs_node_key(node, &disk_key, nr);
2202 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2203 				break;
2204 		}
2205 		search = btrfs_node_blockptr(node, nr);
2206 		if ((search <= target && target - search <= 65536) ||
2207 		    (search > target && search - target <= 65536)) {
2208 			readahead_tree_block(fs_info, search);
2209 			nread += blocksize;
2210 		}
2211 		nscan++;
2212 		if ((nread > 65536 || nscan > 32))
2213 			break;
2214 	}
2215 }
2216 
2217 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2218 				       struct btrfs_path *path, int level)
2219 {
2220 	int slot;
2221 	int nritems;
2222 	struct extent_buffer *parent;
2223 	struct extent_buffer *eb;
2224 	u64 gen;
2225 	u64 block1 = 0;
2226 	u64 block2 = 0;
2227 
2228 	parent = path->nodes[level + 1];
2229 	if (!parent)
2230 		return;
2231 
2232 	nritems = btrfs_header_nritems(parent);
2233 	slot = path->slots[level + 1];
2234 
2235 	if (slot > 0) {
2236 		block1 = btrfs_node_blockptr(parent, slot - 1);
2237 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2238 		eb = find_extent_buffer(fs_info, block1);
2239 		/*
2240 		 * if we get -eagain from btrfs_buffer_uptodate, we
2241 		 * don't want to return eagain here.  That will loop
2242 		 * forever
2243 		 */
2244 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2245 			block1 = 0;
2246 		free_extent_buffer(eb);
2247 	}
2248 	if (slot + 1 < nritems) {
2249 		block2 = btrfs_node_blockptr(parent, slot + 1);
2250 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2251 		eb = find_extent_buffer(fs_info, block2);
2252 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2253 			block2 = 0;
2254 		free_extent_buffer(eb);
2255 	}
2256 
2257 	if (block1)
2258 		readahead_tree_block(fs_info, block1);
2259 	if (block2)
2260 		readahead_tree_block(fs_info, block2);
2261 }
2262 
2263 
2264 /*
2265  * when we walk down the tree, it is usually safe to unlock the higher layers
2266  * in the tree.  The exceptions are when our path goes through slot 0, because
2267  * operations on the tree might require changing key pointers higher up in the
2268  * tree.
2269  *
2270  * callers might also have set path->keep_locks, which tells this code to keep
2271  * the lock if the path points to the last slot in the block.  This is part of
2272  * walking through the tree, and selecting the next slot in the higher block.
2273  *
2274  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2275  * if lowest_unlock is 1, level 0 won't be unlocked
2276  */
2277 static noinline void unlock_up(struct btrfs_path *path, int level,
2278 			       int lowest_unlock, int min_write_lock_level,
2279 			       int *write_lock_level)
2280 {
2281 	int i;
2282 	int skip_level = level;
2283 	int no_skips = 0;
2284 	struct extent_buffer *t;
2285 
2286 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2287 		if (!path->nodes[i])
2288 			break;
2289 		if (!path->locks[i])
2290 			break;
2291 		if (!no_skips && path->slots[i] == 0) {
2292 			skip_level = i + 1;
2293 			continue;
2294 		}
2295 		if (!no_skips && path->keep_locks) {
2296 			u32 nritems;
2297 			t = path->nodes[i];
2298 			nritems = btrfs_header_nritems(t);
2299 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2300 				skip_level = i + 1;
2301 				continue;
2302 			}
2303 		}
2304 		if (skip_level < i && i >= lowest_unlock)
2305 			no_skips = 1;
2306 
2307 		t = path->nodes[i];
2308 		if (i >= lowest_unlock && i > skip_level) {
2309 			btrfs_tree_unlock_rw(t, path->locks[i]);
2310 			path->locks[i] = 0;
2311 			if (write_lock_level &&
2312 			    i > min_write_lock_level &&
2313 			    i <= *write_lock_level) {
2314 				*write_lock_level = i - 1;
2315 			}
2316 		}
2317 	}
2318 }
2319 
2320 /*
2321  * This releases any locks held in the path starting at level and
2322  * going all the way up to the root.
2323  *
2324  * btrfs_search_slot will keep the lock held on higher nodes in a few
2325  * corner cases, such as COW of the block at slot zero in the node.  This
2326  * ignores those rules, and it should only be called when there are no
2327  * more updates to be done higher up in the tree.
2328  */
2329 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2330 {
2331 	int i;
2332 
2333 	if (path->keep_locks)
2334 		return;
2335 
2336 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2337 		if (!path->nodes[i])
2338 			continue;
2339 		if (!path->locks[i])
2340 			continue;
2341 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2342 		path->locks[i] = 0;
2343 	}
2344 }
2345 
2346 /*
2347  * helper function for btrfs_search_slot.  The goal is to find a block
2348  * in cache without setting the path to blocking.  If we find the block
2349  * we return zero and the path is unchanged.
2350  *
2351  * If we can't find the block, we set the path blocking and do some
2352  * reada.  -EAGAIN is returned and the search must be repeated.
2353  */
2354 static int
2355 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2356 		      struct extent_buffer **eb_ret, int level, int slot,
2357 		      const struct btrfs_key *key)
2358 {
2359 	struct btrfs_fs_info *fs_info = root->fs_info;
2360 	u64 blocknr;
2361 	u64 gen;
2362 	struct extent_buffer *b = *eb_ret;
2363 	struct extent_buffer *tmp;
2364 	struct btrfs_key first_key;
2365 	int ret;
2366 	int parent_level;
2367 
2368 	blocknr = btrfs_node_blockptr(b, slot);
2369 	gen = btrfs_node_ptr_generation(b, slot);
2370 	parent_level = btrfs_header_level(b);
2371 	btrfs_node_key_to_cpu(b, &first_key, slot);
2372 
2373 	tmp = find_extent_buffer(fs_info, blocknr);
2374 	if (tmp) {
2375 		/* first we do an atomic uptodate check */
2376 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2377 			*eb_ret = tmp;
2378 			return 0;
2379 		}
2380 
2381 		/* the pages were up to date, but we failed
2382 		 * the generation number check.  Do a full
2383 		 * read for the generation number that is correct.
2384 		 * We must do this without dropping locks so
2385 		 * we can trust our generation number
2386 		 */
2387 		btrfs_set_path_blocking(p);
2388 
2389 		/* now we're allowed to do a blocking uptodate check */
2390 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2391 		if (!ret) {
2392 			*eb_ret = tmp;
2393 			return 0;
2394 		}
2395 		free_extent_buffer(tmp);
2396 		btrfs_release_path(p);
2397 		return -EIO;
2398 	}
2399 
2400 	/*
2401 	 * reduce lock contention at high levels
2402 	 * of the btree by dropping locks before
2403 	 * we read.  Don't release the lock on the current
2404 	 * level because we need to walk this node to figure
2405 	 * out which blocks to read.
2406 	 */
2407 	btrfs_unlock_up_safe(p, level + 1);
2408 	btrfs_set_path_blocking(p);
2409 
2410 	if (p->reada != READA_NONE)
2411 		reada_for_search(fs_info, p, level, slot, key->objectid);
2412 
2413 	ret = -EAGAIN;
2414 	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2415 			      &first_key);
2416 	if (!IS_ERR(tmp)) {
2417 		/*
2418 		 * If the read above didn't mark this buffer up to date,
2419 		 * it will never end up being up to date.  Set ret to EIO now
2420 		 * and give up so that our caller doesn't loop forever
2421 		 * on our EAGAINs.
2422 		 */
2423 		if (!extent_buffer_uptodate(tmp))
2424 			ret = -EIO;
2425 		free_extent_buffer(tmp);
2426 	} else {
2427 		ret = PTR_ERR(tmp);
2428 	}
2429 
2430 	btrfs_release_path(p);
2431 	return ret;
2432 }
2433 
2434 /*
2435  * helper function for btrfs_search_slot.  This does all of the checks
2436  * for node-level blocks and does any balancing required based on
2437  * the ins_len.
2438  *
2439  * If no extra work was required, zero is returned.  If we had to
2440  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2441  * start over
2442  */
2443 static int
2444 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2445 		       struct btrfs_root *root, struct btrfs_path *p,
2446 		       struct extent_buffer *b, int level, int ins_len,
2447 		       int *write_lock_level)
2448 {
2449 	struct btrfs_fs_info *fs_info = root->fs_info;
2450 	int ret;
2451 
2452 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2453 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2454 		int sret;
2455 
2456 		if (*write_lock_level < level + 1) {
2457 			*write_lock_level = level + 1;
2458 			btrfs_release_path(p);
2459 			goto again;
2460 		}
2461 
2462 		btrfs_set_path_blocking(p);
2463 		reada_for_balance(fs_info, p, level);
2464 		sret = split_node(trans, root, p, level);
2465 
2466 		BUG_ON(sret > 0);
2467 		if (sret) {
2468 			ret = sret;
2469 			goto done;
2470 		}
2471 		b = p->nodes[level];
2472 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2473 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2474 		int sret;
2475 
2476 		if (*write_lock_level < level + 1) {
2477 			*write_lock_level = level + 1;
2478 			btrfs_release_path(p);
2479 			goto again;
2480 		}
2481 
2482 		btrfs_set_path_blocking(p);
2483 		reada_for_balance(fs_info, p, level);
2484 		sret = balance_level(trans, root, p, level);
2485 
2486 		if (sret) {
2487 			ret = sret;
2488 			goto done;
2489 		}
2490 		b = p->nodes[level];
2491 		if (!b) {
2492 			btrfs_release_path(p);
2493 			goto again;
2494 		}
2495 		BUG_ON(btrfs_header_nritems(b) == 1);
2496 	}
2497 	return 0;
2498 
2499 again:
2500 	ret = -EAGAIN;
2501 done:
2502 	return ret;
2503 }
2504 
2505 static void key_search_validate(struct extent_buffer *b,
2506 				const struct btrfs_key *key,
2507 				int level)
2508 {
2509 #ifdef CONFIG_BTRFS_ASSERT
2510 	struct btrfs_disk_key disk_key;
2511 
2512 	btrfs_cpu_key_to_disk(&disk_key, key);
2513 
2514 	if (level == 0)
2515 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2516 		    offsetof(struct btrfs_leaf, items[0].key),
2517 		    sizeof(disk_key)));
2518 	else
2519 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2520 		    offsetof(struct btrfs_node, ptrs[0].key),
2521 		    sizeof(disk_key)));
2522 #endif
2523 }
2524 
2525 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2526 		      int level, int *prev_cmp, int *slot)
2527 {
2528 	if (*prev_cmp != 0) {
2529 		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2530 		return *prev_cmp;
2531 	}
2532 
2533 	key_search_validate(b, key, level);
2534 	*slot = 0;
2535 
2536 	return 0;
2537 }
2538 
2539 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2540 		u64 iobjectid, u64 ioff, u8 key_type,
2541 		struct btrfs_key *found_key)
2542 {
2543 	int ret;
2544 	struct btrfs_key key;
2545 	struct extent_buffer *eb;
2546 
2547 	ASSERT(path);
2548 	ASSERT(found_key);
2549 
2550 	key.type = key_type;
2551 	key.objectid = iobjectid;
2552 	key.offset = ioff;
2553 
2554 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2555 	if (ret < 0)
2556 		return ret;
2557 
2558 	eb = path->nodes[0];
2559 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2560 		ret = btrfs_next_leaf(fs_root, path);
2561 		if (ret)
2562 			return ret;
2563 		eb = path->nodes[0];
2564 	}
2565 
2566 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2567 	if (found_key->type != key.type ||
2568 			found_key->objectid != key.objectid)
2569 		return 1;
2570 
2571 	return 0;
2572 }
2573 
2574 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2575 							struct btrfs_path *p,
2576 							int write_lock_level)
2577 {
2578 	struct btrfs_fs_info *fs_info = root->fs_info;
2579 	struct extent_buffer *b;
2580 	int root_lock;
2581 	int level = 0;
2582 
2583 	/* We try very hard to do read locks on the root */
2584 	root_lock = BTRFS_READ_LOCK;
2585 
2586 	if (p->search_commit_root) {
2587 		/* The commit roots are read only so we always do read locks */
2588 		if (p->need_commit_sem)
2589 			down_read(&fs_info->commit_root_sem);
2590 		b = root->commit_root;
2591 		extent_buffer_get(b);
2592 		level = btrfs_header_level(b);
2593 		if (p->need_commit_sem)
2594 			up_read(&fs_info->commit_root_sem);
2595 		/*
2596 		 * Ensure that all callers have set skip_locking when
2597 		 * p->search_commit_root = 1.
2598 		 */
2599 		ASSERT(p->skip_locking == 1);
2600 
2601 		goto out;
2602 	}
2603 
2604 	if (p->skip_locking) {
2605 		b = btrfs_root_node(root);
2606 		level = btrfs_header_level(b);
2607 		goto out;
2608 	}
2609 
2610 	/*
2611 	 * If the level is set to maximum, we can skip trying to get the read
2612 	 * lock.
2613 	 */
2614 	if (write_lock_level < BTRFS_MAX_LEVEL) {
2615 		/*
2616 		 * We don't know the level of the root node until we actually
2617 		 * have it read locked
2618 		 */
2619 		b = btrfs_read_lock_root_node(root);
2620 		level = btrfs_header_level(b);
2621 		if (level > write_lock_level)
2622 			goto out;
2623 
2624 		/* Whoops, must trade for write lock */
2625 		btrfs_tree_read_unlock(b);
2626 		free_extent_buffer(b);
2627 	}
2628 
2629 	b = btrfs_lock_root_node(root);
2630 	root_lock = BTRFS_WRITE_LOCK;
2631 
2632 	/* The level might have changed, check again */
2633 	level = btrfs_header_level(b);
2634 
2635 out:
2636 	p->nodes[level] = b;
2637 	if (!p->skip_locking)
2638 		p->locks[level] = root_lock;
2639 	/*
2640 	 * Callers are responsible for dropping b's references.
2641 	 */
2642 	return b;
2643 }
2644 
2645 
2646 /*
2647  * btrfs_search_slot - look for a key in a tree and perform necessary
2648  * modifications to preserve tree invariants.
2649  *
2650  * @trans:	Handle of transaction, used when modifying the tree
2651  * @p:		Holds all btree nodes along the search path
2652  * @root:	The root node of the tree
2653  * @key:	The key we are looking for
2654  * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2655  *		deletions it's -1. 0 for plain searches
2656  * @cow:	boolean should CoW operations be performed. Must always be 1
2657  *		when modifying the tree.
2658  *
2659  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2660  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2661  *
2662  * If @key is found, 0 is returned and you can find the item in the leaf level
2663  * of the path (level 0)
2664  *
2665  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2666  * points to the slot where it should be inserted
2667  *
2668  * If an error is encountered while searching the tree a negative error number
2669  * is returned
2670  */
2671 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2672 		      const struct btrfs_key *key, struct btrfs_path *p,
2673 		      int ins_len, int cow)
2674 {
2675 	struct btrfs_fs_info *fs_info = root->fs_info;
2676 	struct extent_buffer *b;
2677 	int slot;
2678 	int ret;
2679 	int err;
2680 	int level;
2681 	int lowest_unlock = 1;
2682 	/* everything at write_lock_level or lower must be write locked */
2683 	int write_lock_level = 0;
2684 	u8 lowest_level = 0;
2685 	int min_write_lock_level;
2686 	int prev_cmp;
2687 
2688 	lowest_level = p->lowest_level;
2689 	WARN_ON(lowest_level && ins_len > 0);
2690 	WARN_ON(p->nodes[0] != NULL);
2691 	BUG_ON(!cow && ins_len);
2692 
2693 	if (ins_len < 0) {
2694 		lowest_unlock = 2;
2695 
2696 		/* when we are removing items, we might have to go up to level
2697 		 * two as we update tree pointers  Make sure we keep write
2698 		 * for those levels as well
2699 		 */
2700 		write_lock_level = 2;
2701 	} else if (ins_len > 0) {
2702 		/*
2703 		 * for inserting items, make sure we have a write lock on
2704 		 * level 1 so we can update keys
2705 		 */
2706 		write_lock_level = 1;
2707 	}
2708 
2709 	if (!cow)
2710 		write_lock_level = -1;
2711 
2712 	if (cow && (p->keep_locks || p->lowest_level))
2713 		write_lock_level = BTRFS_MAX_LEVEL;
2714 
2715 	min_write_lock_level = write_lock_level;
2716 
2717 again:
2718 	prev_cmp = -1;
2719 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2720 
2721 	while (b) {
2722 		level = btrfs_header_level(b);
2723 
2724 		/*
2725 		 * setup the path here so we can release it under lock
2726 		 * contention with the cow code
2727 		 */
2728 		if (cow) {
2729 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2730 
2731 			/*
2732 			 * if we don't really need to cow this block
2733 			 * then we don't want to set the path blocking,
2734 			 * so we test it here
2735 			 */
2736 			if (!should_cow_block(trans, root, b)) {
2737 				trans->dirty = true;
2738 				goto cow_done;
2739 			}
2740 
2741 			/*
2742 			 * must have write locks on this node and the
2743 			 * parent
2744 			 */
2745 			if (level > write_lock_level ||
2746 			    (level + 1 > write_lock_level &&
2747 			    level + 1 < BTRFS_MAX_LEVEL &&
2748 			    p->nodes[level + 1])) {
2749 				write_lock_level = level + 1;
2750 				btrfs_release_path(p);
2751 				goto again;
2752 			}
2753 
2754 			btrfs_set_path_blocking(p);
2755 			if (last_level)
2756 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2757 						      &b);
2758 			else
2759 				err = btrfs_cow_block(trans, root, b,
2760 						      p->nodes[level + 1],
2761 						      p->slots[level + 1], &b);
2762 			if (err) {
2763 				ret = err;
2764 				goto done;
2765 			}
2766 		}
2767 cow_done:
2768 		p->nodes[level] = b;
2769 		/*
2770 		 * Leave path with blocking locks to avoid massive
2771 		 * lock context switch, this is made on purpose.
2772 		 */
2773 
2774 		/*
2775 		 * we have a lock on b and as long as we aren't changing
2776 		 * the tree, there is no way to for the items in b to change.
2777 		 * It is safe to drop the lock on our parent before we
2778 		 * go through the expensive btree search on b.
2779 		 *
2780 		 * If we're inserting or deleting (ins_len != 0), then we might
2781 		 * be changing slot zero, which may require changing the parent.
2782 		 * So, we can't drop the lock until after we know which slot
2783 		 * we're operating on.
2784 		 */
2785 		if (!ins_len && !p->keep_locks) {
2786 			int u = level + 1;
2787 
2788 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2789 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2790 				p->locks[u] = 0;
2791 			}
2792 		}
2793 
2794 		ret = key_search(b, key, level, &prev_cmp, &slot);
2795 		if (ret < 0)
2796 			goto done;
2797 
2798 		if (level != 0) {
2799 			int dec = 0;
2800 			if (ret && slot > 0) {
2801 				dec = 1;
2802 				slot -= 1;
2803 			}
2804 			p->slots[level] = slot;
2805 			err = setup_nodes_for_search(trans, root, p, b, level,
2806 					     ins_len, &write_lock_level);
2807 			if (err == -EAGAIN)
2808 				goto again;
2809 			if (err) {
2810 				ret = err;
2811 				goto done;
2812 			}
2813 			b = p->nodes[level];
2814 			slot = p->slots[level];
2815 
2816 			/*
2817 			 * slot 0 is special, if we change the key
2818 			 * we have to update the parent pointer
2819 			 * which means we must have a write lock
2820 			 * on the parent
2821 			 */
2822 			if (slot == 0 && ins_len &&
2823 			    write_lock_level < level + 1) {
2824 				write_lock_level = level + 1;
2825 				btrfs_release_path(p);
2826 				goto again;
2827 			}
2828 
2829 			unlock_up(p, level, lowest_unlock,
2830 				  min_write_lock_level, &write_lock_level);
2831 
2832 			if (level == lowest_level) {
2833 				if (dec)
2834 					p->slots[level]++;
2835 				goto done;
2836 			}
2837 
2838 			err = read_block_for_search(root, p, &b, level,
2839 						    slot, key);
2840 			if (err == -EAGAIN)
2841 				goto again;
2842 			if (err) {
2843 				ret = err;
2844 				goto done;
2845 			}
2846 
2847 			if (!p->skip_locking) {
2848 				level = btrfs_header_level(b);
2849 				if (level <= write_lock_level) {
2850 					err = btrfs_try_tree_write_lock(b);
2851 					if (!err) {
2852 						btrfs_set_path_blocking(p);
2853 						btrfs_tree_lock(b);
2854 					}
2855 					p->locks[level] = BTRFS_WRITE_LOCK;
2856 				} else {
2857 					err = btrfs_tree_read_lock_atomic(b);
2858 					if (!err) {
2859 						btrfs_set_path_blocking(p);
2860 						btrfs_tree_read_lock(b);
2861 					}
2862 					p->locks[level] = BTRFS_READ_LOCK;
2863 				}
2864 				p->nodes[level] = b;
2865 			}
2866 		} else {
2867 			p->slots[level] = slot;
2868 			if (ins_len > 0 &&
2869 			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2870 				if (write_lock_level < 1) {
2871 					write_lock_level = 1;
2872 					btrfs_release_path(p);
2873 					goto again;
2874 				}
2875 
2876 				btrfs_set_path_blocking(p);
2877 				err = split_leaf(trans, root, key,
2878 						 p, ins_len, ret == 0);
2879 
2880 				BUG_ON(err > 0);
2881 				if (err) {
2882 					ret = err;
2883 					goto done;
2884 				}
2885 			}
2886 			if (!p->search_for_split)
2887 				unlock_up(p, level, lowest_unlock,
2888 					  min_write_lock_level, NULL);
2889 			goto done;
2890 		}
2891 	}
2892 	ret = 1;
2893 done:
2894 	/*
2895 	 * we don't really know what they plan on doing with the path
2896 	 * from here on, so for now just mark it as blocking
2897 	 */
2898 	if (!p->leave_spinning)
2899 		btrfs_set_path_blocking(p);
2900 	if (ret < 0 && !p->skip_release_on_error)
2901 		btrfs_release_path(p);
2902 	return ret;
2903 }
2904 
2905 /*
2906  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2907  * current state of the tree together with the operations recorded in the tree
2908  * modification log to search for the key in a previous version of this tree, as
2909  * denoted by the time_seq parameter.
2910  *
2911  * Naturally, there is no support for insert, delete or cow operations.
2912  *
2913  * The resulting path and return value will be set up as if we called
2914  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2915  */
2916 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2917 			  struct btrfs_path *p, u64 time_seq)
2918 {
2919 	struct btrfs_fs_info *fs_info = root->fs_info;
2920 	struct extent_buffer *b;
2921 	int slot;
2922 	int ret;
2923 	int err;
2924 	int level;
2925 	int lowest_unlock = 1;
2926 	u8 lowest_level = 0;
2927 	int prev_cmp = -1;
2928 
2929 	lowest_level = p->lowest_level;
2930 	WARN_ON(p->nodes[0] != NULL);
2931 
2932 	if (p->search_commit_root) {
2933 		BUG_ON(time_seq);
2934 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2935 	}
2936 
2937 again:
2938 	b = get_old_root(root, time_seq);
2939 	if (!b) {
2940 		ret = -EIO;
2941 		goto done;
2942 	}
2943 	level = btrfs_header_level(b);
2944 	p->locks[level] = BTRFS_READ_LOCK;
2945 
2946 	while (b) {
2947 		level = btrfs_header_level(b);
2948 		p->nodes[level] = b;
2949 
2950 		/*
2951 		 * we have a lock on b and as long as we aren't changing
2952 		 * the tree, there is no way to for the items in b to change.
2953 		 * It is safe to drop the lock on our parent before we
2954 		 * go through the expensive btree search on b.
2955 		 */
2956 		btrfs_unlock_up_safe(p, level + 1);
2957 
2958 		/*
2959 		 * Since we can unwind ebs we want to do a real search every
2960 		 * time.
2961 		 */
2962 		prev_cmp = -1;
2963 		ret = key_search(b, key, level, &prev_cmp, &slot);
2964 
2965 		if (level != 0) {
2966 			int dec = 0;
2967 			if (ret && slot > 0) {
2968 				dec = 1;
2969 				slot -= 1;
2970 			}
2971 			p->slots[level] = slot;
2972 			unlock_up(p, level, lowest_unlock, 0, NULL);
2973 
2974 			if (level == lowest_level) {
2975 				if (dec)
2976 					p->slots[level]++;
2977 				goto done;
2978 			}
2979 
2980 			err = read_block_for_search(root, p, &b, level,
2981 						    slot, key);
2982 			if (err == -EAGAIN)
2983 				goto again;
2984 			if (err) {
2985 				ret = err;
2986 				goto done;
2987 			}
2988 
2989 			level = btrfs_header_level(b);
2990 			err = btrfs_tree_read_lock_atomic(b);
2991 			if (!err) {
2992 				btrfs_set_path_blocking(p);
2993 				btrfs_tree_read_lock(b);
2994 			}
2995 			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2996 			if (!b) {
2997 				ret = -ENOMEM;
2998 				goto done;
2999 			}
3000 			p->locks[level] = BTRFS_READ_LOCK;
3001 			p->nodes[level] = b;
3002 		} else {
3003 			p->slots[level] = slot;
3004 			unlock_up(p, level, lowest_unlock, 0, NULL);
3005 			goto done;
3006 		}
3007 	}
3008 	ret = 1;
3009 done:
3010 	if (!p->leave_spinning)
3011 		btrfs_set_path_blocking(p);
3012 	if (ret < 0)
3013 		btrfs_release_path(p);
3014 
3015 	return ret;
3016 }
3017 
3018 /*
3019  * helper to use instead of search slot if no exact match is needed but
3020  * instead the next or previous item should be returned.
3021  * When find_higher is true, the next higher item is returned, the next lower
3022  * otherwise.
3023  * When return_any and find_higher are both true, and no higher item is found,
3024  * return the next lower instead.
3025  * When return_any is true and find_higher is false, and no lower item is found,
3026  * return the next higher instead.
3027  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3028  * < 0 on error
3029  */
3030 int btrfs_search_slot_for_read(struct btrfs_root *root,
3031 			       const struct btrfs_key *key,
3032 			       struct btrfs_path *p, int find_higher,
3033 			       int return_any)
3034 {
3035 	int ret;
3036 	struct extent_buffer *leaf;
3037 
3038 again:
3039 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3040 	if (ret <= 0)
3041 		return ret;
3042 	/*
3043 	 * a return value of 1 means the path is at the position where the
3044 	 * item should be inserted. Normally this is the next bigger item,
3045 	 * but in case the previous item is the last in a leaf, path points
3046 	 * to the first free slot in the previous leaf, i.e. at an invalid
3047 	 * item.
3048 	 */
3049 	leaf = p->nodes[0];
3050 
3051 	if (find_higher) {
3052 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3053 			ret = btrfs_next_leaf(root, p);
3054 			if (ret <= 0)
3055 				return ret;
3056 			if (!return_any)
3057 				return 1;
3058 			/*
3059 			 * no higher item found, return the next
3060 			 * lower instead
3061 			 */
3062 			return_any = 0;
3063 			find_higher = 0;
3064 			btrfs_release_path(p);
3065 			goto again;
3066 		}
3067 	} else {
3068 		if (p->slots[0] == 0) {
3069 			ret = btrfs_prev_leaf(root, p);
3070 			if (ret < 0)
3071 				return ret;
3072 			if (!ret) {
3073 				leaf = p->nodes[0];
3074 				if (p->slots[0] == btrfs_header_nritems(leaf))
3075 					p->slots[0]--;
3076 				return 0;
3077 			}
3078 			if (!return_any)
3079 				return 1;
3080 			/*
3081 			 * no lower item found, return the next
3082 			 * higher instead
3083 			 */
3084 			return_any = 0;
3085 			find_higher = 1;
3086 			btrfs_release_path(p);
3087 			goto again;
3088 		} else {
3089 			--p->slots[0];
3090 		}
3091 	}
3092 	return 0;
3093 }
3094 
3095 /*
3096  * adjust the pointers going up the tree, starting at level
3097  * making sure the right key of each node is points to 'key'.
3098  * This is used after shifting pointers to the left, so it stops
3099  * fixing up pointers when a given leaf/node is not in slot 0 of the
3100  * higher levels
3101  *
3102  */
3103 static void fixup_low_keys(struct btrfs_path *path,
3104 			   struct btrfs_disk_key *key, int level)
3105 {
3106 	int i;
3107 	struct extent_buffer *t;
3108 	int ret;
3109 
3110 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3111 		int tslot = path->slots[i];
3112 
3113 		if (!path->nodes[i])
3114 			break;
3115 		t = path->nodes[i];
3116 		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3117 				GFP_ATOMIC);
3118 		BUG_ON(ret < 0);
3119 		btrfs_set_node_key(t, key, tslot);
3120 		btrfs_mark_buffer_dirty(path->nodes[i]);
3121 		if (tslot != 0)
3122 			break;
3123 	}
3124 }
3125 
3126 /*
3127  * update item key.
3128  *
3129  * This function isn't completely safe. It's the caller's responsibility
3130  * that the new key won't break the order
3131  */
3132 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3133 			     struct btrfs_path *path,
3134 			     const struct btrfs_key *new_key)
3135 {
3136 	struct btrfs_disk_key disk_key;
3137 	struct extent_buffer *eb;
3138 	int slot;
3139 
3140 	eb = path->nodes[0];
3141 	slot = path->slots[0];
3142 	if (slot > 0) {
3143 		btrfs_item_key(eb, &disk_key, slot - 1);
3144 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3145 	}
3146 	if (slot < btrfs_header_nritems(eb) - 1) {
3147 		btrfs_item_key(eb, &disk_key, slot + 1);
3148 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3149 	}
3150 
3151 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3152 	btrfs_set_item_key(eb, &disk_key, slot);
3153 	btrfs_mark_buffer_dirty(eb);
3154 	if (slot == 0)
3155 		fixup_low_keys(path, &disk_key, 1);
3156 }
3157 
3158 /*
3159  * try to push data from one node into the next node left in the
3160  * tree.
3161  *
3162  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3163  * error, and > 0 if there was no room in the left hand block.
3164  */
3165 static int push_node_left(struct btrfs_trans_handle *trans,
3166 			  struct btrfs_fs_info *fs_info,
3167 			  struct extent_buffer *dst,
3168 			  struct extent_buffer *src, int empty)
3169 {
3170 	int push_items = 0;
3171 	int src_nritems;
3172 	int dst_nritems;
3173 	int ret = 0;
3174 
3175 	src_nritems = btrfs_header_nritems(src);
3176 	dst_nritems = btrfs_header_nritems(dst);
3177 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3178 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3179 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3180 
3181 	if (!empty && src_nritems <= 8)
3182 		return 1;
3183 
3184 	if (push_items <= 0)
3185 		return 1;
3186 
3187 	if (empty) {
3188 		push_items = min(src_nritems, push_items);
3189 		if (push_items < src_nritems) {
3190 			/* leave at least 8 pointers in the node if
3191 			 * we aren't going to empty it
3192 			 */
3193 			if (src_nritems - push_items < 8) {
3194 				if (push_items <= 8)
3195 					return 1;
3196 				push_items -= 8;
3197 			}
3198 		}
3199 	} else
3200 		push_items = min(src_nritems - 8, push_items);
3201 
3202 	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3203 				   push_items);
3204 	if (ret) {
3205 		btrfs_abort_transaction(trans, ret);
3206 		return ret;
3207 	}
3208 	copy_extent_buffer(dst, src,
3209 			   btrfs_node_key_ptr_offset(dst_nritems),
3210 			   btrfs_node_key_ptr_offset(0),
3211 			   push_items * sizeof(struct btrfs_key_ptr));
3212 
3213 	if (push_items < src_nritems) {
3214 		/*
3215 		 * Don't call tree_mod_log_insert_move here, key removal was
3216 		 * already fully logged by tree_mod_log_eb_copy above.
3217 		 */
3218 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3219 				      btrfs_node_key_ptr_offset(push_items),
3220 				      (src_nritems - push_items) *
3221 				      sizeof(struct btrfs_key_ptr));
3222 	}
3223 	btrfs_set_header_nritems(src, src_nritems - push_items);
3224 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3225 	btrfs_mark_buffer_dirty(src);
3226 	btrfs_mark_buffer_dirty(dst);
3227 
3228 	return ret;
3229 }
3230 
3231 /*
3232  * try to push data from one node into the next node right in the
3233  * tree.
3234  *
3235  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3236  * error, and > 0 if there was no room in the right hand block.
3237  *
3238  * this will  only push up to 1/2 the contents of the left node over
3239  */
3240 static int balance_node_right(struct btrfs_trans_handle *trans,
3241 			      struct btrfs_fs_info *fs_info,
3242 			      struct extent_buffer *dst,
3243 			      struct extent_buffer *src)
3244 {
3245 	int push_items = 0;
3246 	int max_push;
3247 	int src_nritems;
3248 	int dst_nritems;
3249 	int ret = 0;
3250 
3251 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3252 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3253 
3254 	src_nritems = btrfs_header_nritems(src);
3255 	dst_nritems = btrfs_header_nritems(dst);
3256 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3257 	if (push_items <= 0)
3258 		return 1;
3259 
3260 	if (src_nritems < 4)
3261 		return 1;
3262 
3263 	max_push = src_nritems / 2 + 1;
3264 	/* don't try to empty the node */
3265 	if (max_push >= src_nritems)
3266 		return 1;
3267 
3268 	if (max_push < push_items)
3269 		push_items = max_push;
3270 
3271 	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3272 	BUG_ON(ret < 0);
3273 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3274 				      btrfs_node_key_ptr_offset(0),
3275 				      (dst_nritems) *
3276 				      sizeof(struct btrfs_key_ptr));
3277 
3278 	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3279 				   src_nritems - push_items, push_items);
3280 	if (ret) {
3281 		btrfs_abort_transaction(trans, ret);
3282 		return ret;
3283 	}
3284 	copy_extent_buffer(dst, src,
3285 			   btrfs_node_key_ptr_offset(0),
3286 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3287 			   push_items * sizeof(struct btrfs_key_ptr));
3288 
3289 	btrfs_set_header_nritems(src, src_nritems - push_items);
3290 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3291 
3292 	btrfs_mark_buffer_dirty(src);
3293 	btrfs_mark_buffer_dirty(dst);
3294 
3295 	return ret;
3296 }
3297 
3298 /*
3299  * helper function to insert a new root level in the tree.
3300  * A new node is allocated, and a single item is inserted to
3301  * point to the existing root
3302  *
3303  * returns zero on success or < 0 on failure.
3304  */
3305 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3306 			   struct btrfs_root *root,
3307 			   struct btrfs_path *path, int level)
3308 {
3309 	struct btrfs_fs_info *fs_info = root->fs_info;
3310 	u64 lower_gen;
3311 	struct extent_buffer *lower;
3312 	struct extent_buffer *c;
3313 	struct extent_buffer *old;
3314 	struct btrfs_disk_key lower_key;
3315 	int ret;
3316 
3317 	BUG_ON(path->nodes[level]);
3318 	BUG_ON(path->nodes[level-1] != root->node);
3319 
3320 	lower = path->nodes[level-1];
3321 	if (level == 1)
3322 		btrfs_item_key(lower, &lower_key, 0);
3323 	else
3324 		btrfs_node_key(lower, &lower_key, 0);
3325 
3326 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3327 				   &lower_key, level, root->node->start, 0);
3328 	if (IS_ERR(c))
3329 		return PTR_ERR(c);
3330 
3331 	root_add_used(root, fs_info->nodesize);
3332 
3333 	btrfs_set_header_nritems(c, 1);
3334 	btrfs_set_node_key(c, &lower_key, 0);
3335 	btrfs_set_node_blockptr(c, 0, lower->start);
3336 	lower_gen = btrfs_header_generation(lower);
3337 	WARN_ON(lower_gen != trans->transid);
3338 
3339 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3340 
3341 	btrfs_mark_buffer_dirty(c);
3342 
3343 	old = root->node;
3344 	ret = tree_mod_log_insert_root(root->node, c, 0);
3345 	BUG_ON(ret < 0);
3346 	rcu_assign_pointer(root->node, c);
3347 
3348 	/* the super has an extra ref to root->node */
3349 	free_extent_buffer(old);
3350 
3351 	add_root_to_dirty_list(root);
3352 	extent_buffer_get(c);
3353 	path->nodes[level] = c;
3354 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3355 	path->slots[level] = 0;
3356 	return 0;
3357 }
3358 
3359 /*
3360  * worker function to insert a single pointer in a node.
3361  * the node should have enough room for the pointer already
3362  *
3363  * slot and level indicate where you want the key to go, and
3364  * blocknr is the block the key points to.
3365  */
3366 static void insert_ptr(struct btrfs_trans_handle *trans,
3367 		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3368 		       struct btrfs_disk_key *key, u64 bytenr,
3369 		       int slot, int level)
3370 {
3371 	struct extent_buffer *lower;
3372 	int nritems;
3373 	int ret;
3374 
3375 	BUG_ON(!path->nodes[level]);
3376 	btrfs_assert_tree_locked(path->nodes[level]);
3377 	lower = path->nodes[level];
3378 	nritems = btrfs_header_nritems(lower);
3379 	BUG_ON(slot > nritems);
3380 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3381 	if (slot != nritems) {
3382 		if (level) {
3383 			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3384 					nritems - slot);
3385 			BUG_ON(ret < 0);
3386 		}
3387 		memmove_extent_buffer(lower,
3388 			      btrfs_node_key_ptr_offset(slot + 1),
3389 			      btrfs_node_key_ptr_offset(slot),
3390 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3391 	}
3392 	if (level) {
3393 		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3394 				GFP_NOFS);
3395 		BUG_ON(ret < 0);
3396 	}
3397 	btrfs_set_node_key(lower, key, slot);
3398 	btrfs_set_node_blockptr(lower, slot, bytenr);
3399 	WARN_ON(trans->transid == 0);
3400 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3401 	btrfs_set_header_nritems(lower, nritems + 1);
3402 	btrfs_mark_buffer_dirty(lower);
3403 }
3404 
3405 /*
3406  * split the node at the specified level in path in two.
3407  * The path is corrected to point to the appropriate node after the split
3408  *
3409  * Before splitting this tries to make some room in the node by pushing
3410  * left and right, if either one works, it returns right away.
3411  *
3412  * returns 0 on success and < 0 on failure
3413  */
3414 static noinline int split_node(struct btrfs_trans_handle *trans,
3415 			       struct btrfs_root *root,
3416 			       struct btrfs_path *path, int level)
3417 {
3418 	struct btrfs_fs_info *fs_info = root->fs_info;
3419 	struct extent_buffer *c;
3420 	struct extent_buffer *split;
3421 	struct btrfs_disk_key disk_key;
3422 	int mid;
3423 	int ret;
3424 	u32 c_nritems;
3425 
3426 	c = path->nodes[level];
3427 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3428 	if (c == root->node) {
3429 		/*
3430 		 * trying to split the root, lets make a new one
3431 		 *
3432 		 * tree mod log: We don't log_removal old root in
3433 		 * insert_new_root, because that root buffer will be kept as a
3434 		 * normal node. We are going to log removal of half of the
3435 		 * elements below with tree_mod_log_eb_copy. We're holding a
3436 		 * tree lock on the buffer, which is why we cannot race with
3437 		 * other tree_mod_log users.
3438 		 */
3439 		ret = insert_new_root(trans, root, path, level + 1);
3440 		if (ret)
3441 			return ret;
3442 	} else {
3443 		ret = push_nodes_for_insert(trans, root, path, level);
3444 		c = path->nodes[level];
3445 		if (!ret && btrfs_header_nritems(c) <
3446 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3447 			return 0;
3448 		if (ret < 0)
3449 			return ret;
3450 	}
3451 
3452 	c_nritems = btrfs_header_nritems(c);
3453 	mid = (c_nritems + 1) / 2;
3454 	btrfs_node_key(c, &disk_key, mid);
3455 
3456 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3457 			&disk_key, level, c->start, 0);
3458 	if (IS_ERR(split))
3459 		return PTR_ERR(split);
3460 
3461 	root_add_used(root, fs_info->nodesize);
3462 	ASSERT(btrfs_header_level(c) == level);
3463 
3464 	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3465 	if (ret) {
3466 		btrfs_abort_transaction(trans, ret);
3467 		return ret;
3468 	}
3469 	copy_extent_buffer(split, c,
3470 			   btrfs_node_key_ptr_offset(0),
3471 			   btrfs_node_key_ptr_offset(mid),
3472 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3473 	btrfs_set_header_nritems(split, c_nritems - mid);
3474 	btrfs_set_header_nritems(c, mid);
3475 	ret = 0;
3476 
3477 	btrfs_mark_buffer_dirty(c);
3478 	btrfs_mark_buffer_dirty(split);
3479 
3480 	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3481 		   path->slots[level + 1] + 1, level + 1);
3482 
3483 	if (path->slots[level] >= mid) {
3484 		path->slots[level] -= mid;
3485 		btrfs_tree_unlock(c);
3486 		free_extent_buffer(c);
3487 		path->nodes[level] = split;
3488 		path->slots[level + 1] += 1;
3489 	} else {
3490 		btrfs_tree_unlock(split);
3491 		free_extent_buffer(split);
3492 	}
3493 	return ret;
3494 }
3495 
3496 /*
3497  * how many bytes are required to store the items in a leaf.  start
3498  * and nr indicate which items in the leaf to check.  This totals up the
3499  * space used both by the item structs and the item data
3500  */
3501 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3502 {
3503 	struct btrfs_item *start_item;
3504 	struct btrfs_item *end_item;
3505 	struct btrfs_map_token token;
3506 	int data_len;
3507 	int nritems = btrfs_header_nritems(l);
3508 	int end = min(nritems, start + nr) - 1;
3509 
3510 	if (!nr)
3511 		return 0;
3512 	btrfs_init_map_token(&token);
3513 	start_item = btrfs_item_nr(start);
3514 	end_item = btrfs_item_nr(end);
3515 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3516 		btrfs_token_item_size(l, start_item, &token);
3517 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3518 	data_len += sizeof(struct btrfs_item) * nr;
3519 	WARN_ON(data_len < 0);
3520 	return data_len;
3521 }
3522 
3523 /*
3524  * The space between the end of the leaf items and
3525  * the start of the leaf data.  IOW, how much room
3526  * the leaf has left for both items and data
3527  */
3528 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3529 				   struct extent_buffer *leaf)
3530 {
3531 	int nritems = btrfs_header_nritems(leaf);
3532 	int ret;
3533 
3534 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3535 	if (ret < 0) {
3536 		btrfs_crit(fs_info,
3537 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3538 			   ret,
3539 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3540 			   leaf_space_used(leaf, 0, nritems), nritems);
3541 	}
3542 	return ret;
3543 }
3544 
3545 /*
3546  * min slot controls the lowest index we're willing to push to the
3547  * right.  We'll push up to and including min_slot, but no lower
3548  */
3549 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3550 				      struct btrfs_path *path,
3551 				      int data_size, int empty,
3552 				      struct extent_buffer *right,
3553 				      int free_space, u32 left_nritems,
3554 				      u32 min_slot)
3555 {
3556 	struct extent_buffer *left = path->nodes[0];
3557 	struct extent_buffer *upper = path->nodes[1];
3558 	struct btrfs_map_token token;
3559 	struct btrfs_disk_key disk_key;
3560 	int slot;
3561 	u32 i;
3562 	int push_space = 0;
3563 	int push_items = 0;
3564 	struct btrfs_item *item;
3565 	u32 nr;
3566 	u32 right_nritems;
3567 	u32 data_end;
3568 	u32 this_item_size;
3569 
3570 	btrfs_init_map_token(&token);
3571 
3572 	if (empty)
3573 		nr = 0;
3574 	else
3575 		nr = max_t(u32, 1, min_slot);
3576 
3577 	if (path->slots[0] >= left_nritems)
3578 		push_space += data_size;
3579 
3580 	slot = path->slots[1];
3581 	i = left_nritems - 1;
3582 	while (i >= nr) {
3583 		item = btrfs_item_nr(i);
3584 
3585 		if (!empty && push_items > 0) {
3586 			if (path->slots[0] > i)
3587 				break;
3588 			if (path->slots[0] == i) {
3589 				int space = btrfs_leaf_free_space(fs_info, left);
3590 				if (space + push_space * 2 > free_space)
3591 					break;
3592 			}
3593 		}
3594 
3595 		if (path->slots[0] == i)
3596 			push_space += data_size;
3597 
3598 		this_item_size = btrfs_item_size(left, item);
3599 		if (this_item_size + sizeof(*item) + push_space > free_space)
3600 			break;
3601 
3602 		push_items++;
3603 		push_space += this_item_size + sizeof(*item);
3604 		if (i == 0)
3605 			break;
3606 		i--;
3607 	}
3608 
3609 	if (push_items == 0)
3610 		goto out_unlock;
3611 
3612 	WARN_ON(!empty && push_items == left_nritems);
3613 
3614 	/* push left to right */
3615 	right_nritems = btrfs_header_nritems(right);
3616 
3617 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3618 	push_space -= leaf_data_end(fs_info, left);
3619 
3620 	/* make room in the right data area */
3621 	data_end = leaf_data_end(fs_info, right);
3622 	memmove_extent_buffer(right,
3623 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3624 			      BTRFS_LEAF_DATA_OFFSET + data_end,
3625 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3626 
3627 	/* copy from the left data area */
3628 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3629 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3630 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3631 		     push_space);
3632 
3633 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3634 			      btrfs_item_nr_offset(0),
3635 			      right_nritems * sizeof(struct btrfs_item));
3636 
3637 	/* copy the items from left to right */
3638 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3639 		   btrfs_item_nr_offset(left_nritems - push_items),
3640 		   push_items * sizeof(struct btrfs_item));
3641 
3642 	/* update the item pointers */
3643 	right_nritems += push_items;
3644 	btrfs_set_header_nritems(right, right_nritems);
3645 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3646 	for (i = 0; i < right_nritems; i++) {
3647 		item = btrfs_item_nr(i);
3648 		push_space -= btrfs_token_item_size(right, item, &token);
3649 		btrfs_set_token_item_offset(right, item, push_space, &token);
3650 	}
3651 
3652 	left_nritems -= push_items;
3653 	btrfs_set_header_nritems(left, left_nritems);
3654 
3655 	if (left_nritems)
3656 		btrfs_mark_buffer_dirty(left);
3657 	else
3658 		clean_tree_block(fs_info, left);
3659 
3660 	btrfs_mark_buffer_dirty(right);
3661 
3662 	btrfs_item_key(right, &disk_key, 0);
3663 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3664 	btrfs_mark_buffer_dirty(upper);
3665 
3666 	/* then fixup the leaf pointer in the path */
3667 	if (path->slots[0] >= left_nritems) {
3668 		path->slots[0] -= left_nritems;
3669 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3670 			clean_tree_block(fs_info, path->nodes[0]);
3671 		btrfs_tree_unlock(path->nodes[0]);
3672 		free_extent_buffer(path->nodes[0]);
3673 		path->nodes[0] = right;
3674 		path->slots[1] += 1;
3675 	} else {
3676 		btrfs_tree_unlock(right);
3677 		free_extent_buffer(right);
3678 	}
3679 	return 0;
3680 
3681 out_unlock:
3682 	btrfs_tree_unlock(right);
3683 	free_extent_buffer(right);
3684 	return 1;
3685 }
3686 
3687 /*
3688  * push some data in the path leaf to the right, trying to free up at
3689  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3690  *
3691  * returns 1 if the push failed because the other node didn't have enough
3692  * room, 0 if everything worked out and < 0 if there were major errors.
3693  *
3694  * this will push starting from min_slot to the end of the leaf.  It won't
3695  * push any slot lower than min_slot
3696  */
3697 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3698 			   *root, struct btrfs_path *path,
3699 			   int min_data_size, int data_size,
3700 			   int empty, u32 min_slot)
3701 {
3702 	struct btrfs_fs_info *fs_info = root->fs_info;
3703 	struct extent_buffer *left = path->nodes[0];
3704 	struct extent_buffer *right;
3705 	struct extent_buffer *upper;
3706 	int slot;
3707 	int free_space;
3708 	u32 left_nritems;
3709 	int ret;
3710 
3711 	if (!path->nodes[1])
3712 		return 1;
3713 
3714 	slot = path->slots[1];
3715 	upper = path->nodes[1];
3716 	if (slot >= btrfs_header_nritems(upper) - 1)
3717 		return 1;
3718 
3719 	btrfs_assert_tree_locked(path->nodes[1]);
3720 
3721 	right = read_node_slot(fs_info, upper, slot + 1);
3722 	/*
3723 	 * slot + 1 is not valid or we fail to read the right node,
3724 	 * no big deal, just return.
3725 	 */
3726 	if (IS_ERR(right))
3727 		return 1;
3728 
3729 	btrfs_tree_lock(right);
3730 	btrfs_set_lock_blocking(right);
3731 
3732 	free_space = btrfs_leaf_free_space(fs_info, right);
3733 	if (free_space < data_size)
3734 		goto out_unlock;
3735 
3736 	/* cow and double check */
3737 	ret = btrfs_cow_block(trans, root, right, upper,
3738 			      slot + 1, &right);
3739 	if (ret)
3740 		goto out_unlock;
3741 
3742 	free_space = btrfs_leaf_free_space(fs_info, right);
3743 	if (free_space < data_size)
3744 		goto out_unlock;
3745 
3746 	left_nritems = btrfs_header_nritems(left);
3747 	if (left_nritems == 0)
3748 		goto out_unlock;
3749 
3750 	if (path->slots[0] == left_nritems && !empty) {
3751 		/* Key greater than all keys in the leaf, right neighbor has
3752 		 * enough room for it and we're not emptying our leaf to delete
3753 		 * it, therefore use right neighbor to insert the new item and
3754 		 * no need to touch/dirty our left leaft. */
3755 		btrfs_tree_unlock(left);
3756 		free_extent_buffer(left);
3757 		path->nodes[0] = right;
3758 		path->slots[0] = 0;
3759 		path->slots[1]++;
3760 		return 0;
3761 	}
3762 
3763 	return __push_leaf_right(fs_info, path, min_data_size, empty,
3764 				right, free_space, left_nritems, min_slot);
3765 out_unlock:
3766 	btrfs_tree_unlock(right);
3767 	free_extent_buffer(right);
3768 	return 1;
3769 }
3770 
3771 /*
3772  * push some data in the path leaf to the left, trying to free up at
3773  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3774  *
3775  * max_slot can put a limit on how far into the leaf we'll push items.  The
3776  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3777  * items
3778  */
3779 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3780 				     struct btrfs_path *path, int data_size,
3781 				     int empty, struct extent_buffer *left,
3782 				     int free_space, u32 right_nritems,
3783 				     u32 max_slot)
3784 {
3785 	struct btrfs_disk_key disk_key;
3786 	struct extent_buffer *right = path->nodes[0];
3787 	int i;
3788 	int push_space = 0;
3789 	int push_items = 0;
3790 	struct btrfs_item *item;
3791 	u32 old_left_nritems;
3792 	u32 nr;
3793 	int ret = 0;
3794 	u32 this_item_size;
3795 	u32 old_left_item_size;
3796 	struct btrfs_map_token token;
3797 
3798 	btrfs_init_map_token(&token);
3799 
3800 	if (empty)
3801 		nr = min(right_nritems, max_slot);
3802 	else
3803 		nr = min(right_nritems - 1, max_slot);
3804 
3805 	for (i = 0; i < nr; i++) {
3806 		item = btrfs_item_nr(i);
3807 
3808 		if (!empty && push_items > 0) {
3809 			if (path->slots[0] < i)
3810 				break;
3811 			if (path->slots[0] == i) {
3812 				int space = btrfs_leaf_free_space(fs_info, right);
3813 				if (space + push_space * 2 > free_space)
3814 					break;
3815 			}
3816 		}
3817 
3818 		if (path->slots[0] == i)
3819 			push_space += data_size;
3820 
3821 		this_item_size = btrfs_item_size(right, item);
3822 		if (this_item_size + sizeof(*item) + push_space > free_space)
3823 			break;
3824 
3825 		push_items++;
3826 		push_space += this_item_size + sizeof(*item);
3827 	}
3828 
3829 	if (push_items == 0) {
3830 		ret = 1;
3831 		goto out;
3832 	}
3833 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3834 
3835 	/* push data from right to left */
3836 	copy_extent_buffer(left, right,
3837 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3838 			   btrfs_item_nr_offset(0),
3839 			   push_items * sizeof(struct btrfs_item));
3840 
3841 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3842 		     btrfs_item_offset_nr(right, push_items - 1);
3843 
3844 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3845 		     leaf_data_end(fs_info, left) - push_space,
3846 		     BTRFS_LEAF_DATA_OFFSET +
3847 		     btrfs_item_offset_nr(right, push_items - 1),
3848 		     push_space);
3849 	old_left_nritems = btrfs_header_nritems(left);
3850 	BUG_ON(old_left_nritems <= 0);
3851 
3852 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3853 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3854 		u32 ioff;
3855 
3856 		item = btrfs_item_nr(i);
3857 
3858 		ioff = btrfs_token_item_offset(left, item, &token);
3859 		btrfs_set_token_item_offset(left, item,
3860 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3861 		      &token);
3862 	}
3863 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3864 
3865 	/* fixup right node */
3866 	if (push_items > right_nritems)
3867 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3868 		       right_nritems);
3869 
3870 	if (push_items < right_nritems) {
3871 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3872 						  leaf_data_end(fs_info, right);
3873 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3874 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3875 				      BTRFS_LEAF_DATA_OFFSET +
3876 				      leaf_data_end(fs_info, right), push_space);
3877 
3878 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3879 			      btrfs_item_nr_offset(push_items),
3880 			     (btrfs_header_nritems(right) - push_items) *
3881 			     sizeof(struct btrfs_item));
3882 	}
3883 	right_nritems -= push_items;
3884 	btrfs_set_header_nritems(right, right_nritems);
3885 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3886 	for (i = 0; i < right_nritems; i++) {
3887 		item = btrfs_item_nr(i);
3888 
3889 		push_space = push_space - btrfs_token_item_size(right,
3890 								item, &token);
3891 		btrfs_set_token_item_offset(right, item, push_space, &token);
3892 	}
3893 
3894 	btrfs_mark_buffer_dirty(left);
3895 	if (right_nritems)
3896 		btrfs_mark_buffer_dirty(right);
3897 	else
3898 		clean_tree_block(fs_info, right);
3899 
3900 	btrfs_item_key(right, &disk_key, 0);
3901 	fixup_low_keys(path, &disk_key, 1);
3902 
3903 	/* then fixup the leaf pointer in the path */
3904 	if (path->slots[0] < push_items) {
3905 		path->slots[0] += old_left_nritems;
3906 		btrfs_tree_unlock(path->nodes[0]);
3907 		free_extent_buffer(path->nodes[0]);
3908 		path->nodes[0] = left;
3909 		path->slots[1] -= 1;
3910 	} else {
3911 		btrfs_tree_unlock(left);
3912 		free_extent_buffer(left);
3913 		path->slots[0] -= push_items;
3914 	}
3915 	BUG_ON(path->slots[0] < 0);
3916 	return ret;
3917 out:
3918 	btrfs_tree_unlock(left);
3919 	free_extent_buffer(left);
3920 	return ret;
3921 }
3922 
3923 /*
3924  * push some data in the path leaf to the left, trying to free up at
3925  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3926  *
3927  * max_slot can put a limit on how far into the leaf we'll push items.  The
3928  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3929  * items
3930  */
3931 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3932 			  *root, struct btrfs_path *path, int min_data_size,
3933 			  int data_size, int empty, u32 max_slot)
3934 {
3935 	struct btrfs_fs_info *fs_info = root->fs_info;
3936 	struct extent_buffer *right = path->nodes[0];
3937 	struct extent_buffer *left;
3938 	int slot;
3939 	int free_space;
3940 	u32 right_nritems;
3941 	int ret = 0;
3942 
3943 	slot = path->slots[1];
3944 	if (slot == 0)
3945 		return 1;
3946 	if (!path->nodes[1])
3947 		return 1;
3948 
3949 	right_nritems = btrfs_header_nritems(right);
3950 	if (right_nritems == 0)
3951 		return 1;
3952 
3953 	btrfs_assert_tree_locked(path->nodes[1]);
3954 
3955 	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3956 	/*
3957 	 * slot - 1 is not valid or we fail to read the left node,
3958 	 * no big deal, just return.
3959 	 */
3960 	if (IS_ERR(left))
3961 		return 1;
3962 
3963 	btrfs_tree_lock(left);
3964 	btrfs_set_lock_blocking(left);
3965 
3966 	free_space = btrfs_leaf_free_space(fs_info, left);
3967 	if (free_space < data_size) {
3968 		ret = 1;
3969 		goto out;
3970 	}
3971 
3972 	/* cow and double check */
3973 	ret = btrfs_cow_block(trans, root, left,
3974 			      path->nodes[1], slot - 1, &left);
3975 	if (ret) {
3976 		/* we hit -ENOSPC, but it isn't fatal here */
3977 		if (ret == -ENOSPC)
3978 			ret = 1;
3979 		goto out;
3980 	}
3981 
3982 	free_space = btrfs_leaf_free_space(fs_info, left);
3983 	if (free_space < data_size) {
3984 		ret = 1;
3985 		goto out;
3986 	}
3987 
3988 	return __push_leaf_left(fs_info, path, min_data_size,
3989 			       empty, left, free_space, right_nritems,
3990 			       max_slot);
3991 out:
3992 	btrfs_tree_unlock(left);
3993 	free_extent_buffer(left);
3994 	return ret;
3995 }
3996 
3997 /*
3998  * split the path's leaf in two, making sure there is at least data_size
3999  * available for the resulting leaf level of the path.
4000  */
4001 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4002 				    struct btrfs_fs_info *fs_info,
4003 				    struct btrfs_path *path,
4004 				    struct extent_buffer *l,
4005 				    struct extent_buffer *right,
4006 				    int slot, int mid, int nritems)
4007 {
4008 	int data_copy_size;
4009 	int rt_data_off;
4010 	int i;
4011 	struct btrfs_disk_key disk_key;
4012 	struct btrfs_map_token token;
4013 
4014 	btrfs_init_map_token(&token);
4015 
4016 	nritems = nritems - mid;
4017 	btrfs_set_header_nritems(right, nritems);
4018 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4019 
4020 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4021 			   btrfs_item_nr_offset(mid),
4022 			   nritems * sizeof(struct btrfs_item));
4023 
4024 	copy_extent_buffer(right, l,
4025 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4026 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4027 		     leaf_data_end(fs_info, l), data_copy_size);
4028 
4029 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4030 
4031 	for (i = 0; i < nritems; i++) {
4032 		struct btrfs_item *item = btrfs_item_nr(i);
4033 		u32 ioff;
4034 
4035 		ioff = btrfs_token_item_offset(right, item, &token);
4036 		btrfs_set_token_item_offset(right, item,
4037 					    ioff + rt_data_off, &token);
4038 	}
4039 
4040 	btrfs_set_header_nritems(l, mid);
4041 	btrfs_item_key(right, &disk_key, 0);
4042 	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4043 		   path->slots[1] + 1, 1);
4044 
4045 	btrfs_mark_buffer_dirty(right);
4046 	btrfs_mark_buffer_dirty(l);
4047 	BUG_ON(path->slots[0] != slot);
4048 
4049 	if (mid <= slot) {
4050 		btrfs_tree_unlock(path->nodes[0]);
4051 		free_extent_buffer(path->nodes[0]);
4052 		path->nodes[0] = right;
4053 		path->slots[0] -= mid;
4054 		path->slots[1] += 1;
4055 	} else {
4056 		btrfs_tree_unlock(right);
4057 		free_extent_buffer(right);
4058 	}
4059 
4060 	BUG_ON(path->slots[0] < 0);
4061 }
4062 
4063 /*
4064  * double splits happen when we need to insert a big item in the middle
4065  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4066  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4067  *          A                 B                 C
4068  *
4069  * We avoid this by trying to push the items on either side of our target
4070  * into the adjacent leaves.  If all goes well we can avoid the double split
4071  * completely.
4072  */
4073 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4074 					  struct btrfs_root *root,
4075 					  struct btrfs_path *path,
4076 					  int data_size)
4077 {
4078 	struct btrfs_fs_info *fs_info = root->fs_info;
4079 	int ret;
4080 	int progress = 0;
4081 	int slot;
4082 	u32 nritems;
4083 	int space_needed = data_size;
4084 
4085 	slot = path->slots[0];
4086 	if (slot < btrfs_header_nritems(path->nodes[0]))
4087 		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4088 
4089 	/*
4090 	 * try to push all the items after our slot into the
4091 	 * right leaf
4092 	 */
4093 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4094 	if (ret < 0)
4095 		return ret;
4096 
4097 	if (ret == 0)
4098 		progress++;
4099 
4100 	nritems = btrfs_header_nritems(path->nodes[0]);
4101 	/*
4102 	 * our goal is to get our slot at the start or end of a leaf.  If
4103 	 * we've done so we're done
4104 	 */
4105 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4106 		return 0;
4107 
4108 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4109 		return 0;
4110 
4111 	/* try to push all the items before our slot into the next leaf */
4112 	slot = path->slots[0];
4113 	space_needed = data_size;
4114 	if (slot > 0)
4115 		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4116 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4117 	if (ret < 0)
4118 		return ret;
4119 
4120 	if (ret == 0)
4121 		progress++;
4122 
4123 	if (progress)
4124 		return 0;
4125 	return 1;
4126 }
4127 
4128 /*
4129  * split the path's leaf in two, making sure there is at least data_size
4130  * available for the resulting leaf level of the path.
4131  *
4132  * returns 0 if all went well and < 0 on failure.
4133  */
4134 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4135 			       struct btrfs_root *root,
4136 			       const struct btrfs_key *ins_key,
4137 			       struct btrfs_path *path, int data_size,
4138 			       int extend)
4139 {
4140 	struct btrfs_disk_key disk_key;
4141 	struct extent_buffer *l;
4142 	u32 nritems;
4143 	int mid;
4144 	int slot;
4145 	struct extent_buffer *right;
4146 	struct btrfs_fs_info *fs_info = root->fs_info;
4147 	int ret = 0;
4148 	int wret;
4149 	int split;
4150 	int num_doubles = 0;
4151 	int tried_avoid_double = 0;
4152 
4153 	l = path->nodes[0];
4154 	slot = path->slots[0];
4155 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4156 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4157 		return -EOVERFLOW;
4158 
4159 	/* first try to make some room by pushing left and right */
4160 	if (data_size && path->nodes[1]) {
4161 		int space_needed = data_size;
4162 
4163 		if (slot < btrfs_header_nritems(l))
4164 			space_needed -= btrfs_leaf_free_space(fs_info, l);
4165 
4166 		wret = push_leaf_right(trans, root, path, space_needed,
4167 				       space_needed, 0, 0);
4168 		if (wret < 0)
4169 			return wret;
4170 		if (wret) {
4171 			space_needed = data_size;
4172 			if (slot > 0)
4173 				space_needed -= btrfs_leaf_free_space(fs_info,
4174 								      l);
4175 			wret = push_leaf_left(trans, root, path, space_needed,
4176 					      space_needed, 0, (u32)-1);
4177 			if (wret < 0)
4178 				return wret;
4179 		}
4180 		l = path->nodes[0];
4181 
4182 		/* did the pushes work? */
4183 		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4184 			return 0;
4185 	}
4186 
4187 	if (!path->nodes[1]) {
4188 		ret = insert_new_root(trans, root, path, 1);
4189 		if (ret)
4190 			return ret;
4191 	}
4192 again:
4193 	split = 1;
4194 	l = path->nodes[0];
4195 	slot = path->slots[0];
4196 	nritems = btrfs_header_nritems(l);
4197 	mid = (nritems + 1) / 2;
4198 
4199 	if (mid <= slot) {
4200 		if (nritems == 1 ||
4201 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4202 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4203 			if (slot >= nritems) {
4204 				split = 0;
4205 			} else {
4206 				mid = slot;
4207 				if (mid != nritems &&
4208 				    leaf_space_used(l, mid, nritems - mid) +
4209 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4210 					if (data_size && !tried_avoid_double)
4211 						goto push_for_double;
4212 					split = 2;
4213 				}
4214 			}
4215 		}
4216 	} else {
4217 		if (leaf_space_used(l, 0, mid) + data_size >
4218 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4219 			if (!extend && data_size && slot == 0) {
4220 				split = 0;
4221 			} else if ((extend || !data_size) && slot == 0) {
4222 				mid = 1;
4223 			} else {
4224 				mid = slot;
4225 				if (mid != nritems &&
4226 				    leaf_space_used(l, mid, nritems - mid) +
4227 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4228 					if (data_size && !tried_avoid_double)
4229 						goto push_for_double;
4230 					split = 2;
4231 				}
4232 			}
4233 		}
4234 	}
4235 
4236 	if (split == 0)
4237 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4238 	else
4239 		btrfs_item_key(l, &disk_key, mid);
4240 
4241 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4242 			&disk_key, 0, l->start, 0);
4243 	if (IS_ERR(right))
4244 		return PTR_ERR(right);
4245 
4246 	root_add_used(root, fs_info->nodesize);
4247 
4248 	if (split == 0) {
4249 		if (mid <= slot) {
4250 			btrfs_set_header_nritems(right, 0);
4251 			insert_ptr(trans, fs_info, path, &disk_key,
4252 				   right->start, path->slots[1] + 1, 1);
4253 			btrfs_tree_unlock(path->nodes[0]);
4254 			free_extent_buffer(path->nodes[0]);
4255 			path->nodes[0] = right;
4256 			path->slots[0] = 0;
4257 			path->slots[1] += 1;
4258 		} else {
4259 			btrfs_set_header_nritems(right, 0);
4260 			insert_ptr(trans, fs_info, path, &disk_key,
4261 				   right->start, path->slots[1], 1);
4262 			btrfs_tree_unlock(path->nodes[0]);
4263 			free_extent_buffer(path->nodes[0]);
4264 			path->nodes[0] = right;
4265 			path->slots[0] = 0;
4266 			if (path->slots[1] == 0)
4267 				fixup_low_keys(path, &disk_key, 1);
4268 		}
4269 		/*
4270 		 * We create a new leaf 'right' for the required ins_len and
4271 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4272 		 * the content of ins_len to 'right'.
4273 		 */
4274 		return ret;
4275 	}
4276 
4277 	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4278 
4279 	if (split == 2) {
4280 		BUG_ON(num_doubles != 0);
4281 		num_doubles++;
4282 		goto again;
4283 	}
4284 
4285 	return 0;
4286 
4287 push_for_double:
4288 	push_for_double_split(trans, root, path, data_size);
4289 	tried_avoid_double = 1;
4290 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4291 		return 0;
4292 	goto again;
4293 }
4294 
4295 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4296 					 struct btrfs_root *root,
4297 					 struct btrfs_path *path, int ins_len)
4298 {
4299 	struct btrfs_fs_info *fs_info = root->fs_info;
4300 	struct btrfs_key key;
4301 	struct extent_buffer *leaf;
4302 	struct btrfs_file_extent_item *fi;
4303 	u64 extent_len = 0;
4304 	u32 item_size;
4305 	int ret;
4306 
4307 	leaf = path->nodes[0];
4308 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4309 
4310 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4311 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4312 
4313 	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4314 		return 0;
4315 
4316 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4317 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4318 		fi = btrfs_item_ptr(leaf, path->slots[0],
4319 				    struct btrfs_file_extent_item);
4320 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4321 	}
4322 	btrfs_release_path(path);
4323 
4324 	path->keep_locks = 1;
4325 	path->search_for_split = 1;
4326 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4327 	path->search_for_split = 0;
4328 	if (ret > 0)
4329 		ret = -EAGAIN;
4330 	if (ret < 0)
4331 		goto err;
4332 
4333 	ret = -EAGAIN;
4334 	leaf = path->nodes[0];
4335 	/* if our item isn't there, return now */
4336 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4337 		goto err;
4338 
4339 	/* the leaf has  changed, it now has room.  return now */
4340 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4341 		goto err;
4342 
4343 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4344 		fi = btrfs_item_ptr(leaf, path->slots[0],
4345 				    struct btrfs_file_extent_item);
4346 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4347 			goto err;
4348 	}
4349 
4350 	btrfs_set_path_blocking(path);
4351 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4352 	if (ret)
4353 		goto err;
4354 
4355 	path->keep_locks = 0;
4356 	btrfs_unlock_up_safe(path, 1);
4357 	return 0;
4358 err:
4359 	path->keep_locks = 0;
4360 	return ret;
4361 }
4362 
4363 static noinline int split_item(struct btrfs_fs_info *fs_info,
4364 			       struct btrfs_path *path,
4365 			       const struct btrfs_key *new_key,
4366 			       unsigned long split_offset)
4367 {
4368 	struct extent_buffer *leaf;
4369 	struct btrfs_item *item;
4370 	struct btrfs_item *new_item;
4371 	int slot;
4372 	char *buf;
4373 	u32 nritems;
4374 	u32 item_size;
4375 	u32 orig_offset;
4376 	struct btrfs_disk_key disk_key;
4377 
4378 	leaf = path->nodes[0];
4379 	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4380 
4381 	btrfs_set_path_blocking(path);
4382 
4383 	item = btrfs_item_nr(path->slots[0]);
4384 	orig_offset = btrfs_item_offset(leaf, item);
4385 	item_size = btrfs_item_size(leaf, item);
4386 
4387 	buf = kmalloc(item_size, GFP_NOFS);
4388 	if (!buf)
4389 		return -ENOMEM;
4390 
4391 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4392 			    path->slots[0]), item_size);
4393 
4394 	slot = path->slots[0] + 1;
4395 	nritems = btrfs_header_nritems(leaf);
4396 	if (slot != nritems) {
4397 		/* shift the items */
4398 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4399 				btrfs_item_nr_offset(slot),
4400 				(nritems - slot) * sizeof(struct btrfs_item));
4401 	}
4402 
4403 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4404 	btrfs_set_item_key(leaf, &disk_key, slot);
4405 
4406 	new_item = btrfs_item_nr(slot);
4407 
4408 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4409 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4410 
4411 	btrfs_set_item_offset(leaf, item,
4412 			      orig_offset + item_size - split_offset);
4413 	btrfs_set_item_size(leaf, item, split_offset);
4414 
4415 	btrfs_set_header_nritems(leaf, nritems + 1);
4416 
4417 	/* write the data for the start of the original item */
4418 	write_extent_buffer(leaf, buf,
4419 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4420 			    split_offset);
4421 
4422 	/* write the data for the new item */
4423 	write_extent_buffer(leaf, buf + split_offset,
4424 			    btrfs_item_ptr_offset(leaf, slot),
4425 			    item_size - split_offset);
4426 	btrfs_mark_buffer_dirty(leaf);
4427 
4428 	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4429 	kfree(buf);
4430 	return 0;
4431 }
4432 
4433 /*
4434  * This function splits a single item into two items,
4435  * giving 'new_key' to the new item and splitting the
4436  * old one at split_offset (from the start of the item).
4437  *
4438  * The path may be released by this operation.  After
4439  * the split, the path is pointing to the old item.  The
4440  * new item is going to be in the same node as the old one.
4441  *
4442  * Note, the item being split must be smaller enough to live alone on
4443  * a tree block with room for one extra struct btrfs_item
4444  *
4445  * This allows us to split the item in place, keeping a lock on the
4446  * leaf the entire time.
4447  */
4448 int btrfs_split_item(struct btrfs_trans_handle *trans,
4449 		     struct btrfs_root *root,
4450 		     struct btrfs_path *path,
4451 		     const struct btrfs_key *new_key,
4452 		     unsigned long split_offset)
4453 {
4454 	int ret;
4455 	ret = setup_leaf_for_split(trans, root, path,
4456 				   sizeof(struct btrfs_item));
4457 	if (ret)
4458 		return ret;
4459 
4460 	ret = split_item(root->fs_info, path, new_key, split_offset);
4461 	return ret;
4462 }
4463 
4464 /*
4465  * This function duplicate a item, giving 'new_key' to the new item.
4466  * It guarantees both items live in the same tree leaf and the new item
4467  * is contiguous with the original item.
4468  *
4469  * This allows us to split file extent in place, keeping a lock on the
4470  * leaf the entire time.
4471  */
4472 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4473 			 struct btrfs_root *root,
4474 			 struct btrfs_path *path,
4475 			 const struct btrfs_key *new_key)
4476 {
4477 	struct extent_buffer *leaf;
4478 	int ret;
4479 	u32 item_size;
4480 
4481 	leaf = path->nodes[0];
4482 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4483 	ret = setup_leaf_for_split(trans, root, path,
4484 				   item_size + sizeof(struct btrfs_item));
4485 	if (ret)
4486 		return ret;
4487 
4488 	path->slots[0]++;
4489 	setup_items_for_insert(root, path, new_key, &item_size,
4490 			       item_size, item_size +
4491 			       sizeof(struct btrfs_item), 1);
4492 	leaf = path->nodes[0];
4493 	memcpy_extent_buffer(leaf,
4494 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4495 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4496 			     item_size);
4497 	return 0;
4498 }
4499 
4500 /*
4501  * make the item pointed to by the path smaller.  new_size indicates
4502  * how small to make it, and from_end tells us if we just chop bytes
4503  * off the end of the item or if we shift the item to chop bytes off
4504  * the front.
4505  */
4506 void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4507 			 struct btrfs_path *path, u32 new_size, int from_end)
4508 {
4509 	int slot;
4510 	struct extent_buffer *leaf;
4511 	struct btrfs_item *item;
4512 	u32 nritems;
4513 	unsigned int data_end;
4514 	unsigned int old_data_start;
4515 	unsigned int old_size;
4516 	unsigned int size_diff;
4517 	int i;
4518 	struct btrfs_map_token token;
4519 
4520 	btrfs_init_map_token(&token);
4521 
4522 	leaf = path->nodes[0];
4523 	slot = path->slots[0];
4524 
4525 	old_size = btrfs_item_size_nr(leaf, slot);
4526 	if (old_size == new_size)
4527 		return;
4528 
4529 	nritems = btrfs_header_nritems(leaf);
4530 	data_end = leaf_data_end(fs_info, leaf);
4531 
4532 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4533 
4534 	size_diff = old_size - new_size;
4535 
4536 	BUG_ON(slot < 0);
4537 	BUG_ON(slot >= nritems);
4538 
4539 	/*
4540 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4541 	 */
4542 	/* first correct the data pointers */
4543 	for (i = slot; i < nritems; i++) {
4544 		u32 ioff;
4545 		item = btrfs_item_nr(i);
4546 
4547 		ioff = btrfs_token_item_offset(leaf, item, &token);
4548 		btrfs_set_token_item_offset(leaf, item,
4549 					    ioff + size_diff, &token);
4550 	}
4551 
4552 	/* shift the data */
4553 	if (from_end) {
4554 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4555 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4556 			      data_end, old_data_start + new_size - data_end);
4557 	} else {
4558 		struct btrfs_disk_key disk_key;
4559 		u64 offset;
4560 
4561 		btrfs_item_key(leaf, &disk_key, slot);
4562 
4563 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4564 			unsigned long ptr;
4565 			struct btrfs_file_extent_item *fi;
4566 
4567 			fi = btrfs_item_ptr(leaf, slot,
4568 					    struct btrfs_file_extent_item);
4569 			fi = (struct btrfs_file_extent_item *)(
4570 			     (unsigned long)fi - size_diff);
4571 
4572 			if (btrfs_file_extent_type(leaf, fi) ==
4573 			    BTRFS_FILE_EXTENT_INLINE) {
4574 				ptr = btrfs_item_ptr_offset(leaf, slot);
4575 				memmove_extent_buffer(leaf, ptr,
4576 				      (unsigned long)fi,
4577 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4578 			}
4579 		}
4580 
4581 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4582 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4583 			      data_end, old_data_start - data_end);
4584 
4585 		offset = btrfs_disk_key_offset(&disk_key);
4586 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4587 		btrfs_set_item_key(leaf, &disk_key, slot);
4588 		if (slot == 0)
4589 			fixup_low_keys(path, &disk_key, 1);
4590 	}
4591 
4592 	item = btrfs_item_nr(slot);
4593 	btrfs_set_item_size(leaf, item, new_size);
4594 	btrfs_mark_buffer_dirty(leaf);
4595 
4596 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4597 		btrfs_print_leaf(leaf);
4598 		BUG();
4599 	}
4600 }
4601 
4602 /*
4603  * make the item pointed to by the path bigger, data_size is the added size.
4604  */
4605 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4606 		       u32 data_size)
4607 {
4608 	int slot;
4609 	struct extent_buffer *leaf;
4610 	struct btrfs_item *item;
4611 	u32 nritems;
4612 	unsigned int data_end;
4613 	unsigned int old_data;
4614 	unsigned int old_size;
4615 	int i;
4616 	struct btrfs_map_token token;
4617 
4618 	btrfs_init_map_token(&token);
4619 
4620 	leaf = path->nodes[0];
4621 
4622 	nritems = btrfs_header_nritems(leaf);
4623 	data_end = leaf_data_end(fs_info, leaf);
4624 
4625 	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4626 		btrfs_print_leaf(leaf);
4627 		BUG();
4628 	}
4629 	slot = path->slots[0];
4630 	old_data = btrfs_item_end_nr(leaf, slot);
4631 
4632 	BUG_ON(slot < 0);
4633 	if (slot >= nritems) {
4634 		btrfs_print_leaf(leaf);
4635 		btrfs_crit(fs_info, "slot %d too large, nritems %d",
4636 			   slot, nritems);
4637 		BUG_ON(1);
4638 	}
4639 
4640 	/*
4641 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4642 	 */
4643 	/* first correct the data pointers */
4644 	for (i = slot; i < nritems; i++) {
4645 		u32 ioff;
4646 		item = btrfs_item_nr(i);
4647 
4648 		ioff = btrfs_token_item_offset(leaf, item, &token);
4649 		btrfs_set_token_item_offset(leaf, item,
4650 					    ioff - data_size, &token);
4651 	}
4652 
4653 	/* shift the data */
4654 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4655 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4656 		      data_end, old_data - data_end);
4657 
4658 	data_end = old_data;
4659 	old_size = btrfs_item_size_nr(leaf, slot);
4660 	item = btrfs_item_nr(slot);
4661 	btrfs_set_item_size(leaf, item, old_size + data_size);
4662 	btrfs_mark_buffer_dirty(leaf);
4663 
4664 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4665 		btrfs_print_leaf(leaf);
4666 		BUG();
4667 	}
4668 }
4669 
4670 /*
4671  * this is a helper for btrfs_insert_empty_items, the main goal here is
4672  * to save stack depth by doing the bulk of the work in a function
4673  * that doesn't call btrfs_search_slot
4674  */
4675 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4676 			    const struct btrfs_key *cpu_key, u32 *data_size,
4677 			    u32 total_data, u32 total_size, int nr)
4678 {
4679 	struct btrfs_fs_info *fs_info = root->fs_info;
4680 	struct btrfs_item *item;
4681 	int i;
4682 	u32 nritems;
4683 	unsigned int data_end;
4684 	struct btrfs_disk_key disk_key;
4685 	struct extent_buffer *leaf;
4686 	int slot;
4687 	struct btrfs_map_token token;
4688 
4689 	if (path->slots[0] == 0) {
4690 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4691 		fixup_low_keys(path, &disk_key, 1);
4692 	}
4693 	btrfs_unlock_up_safe(path, 1);
4694 
4695 	btrfs_init_map_token(&token);
4696 
4697 	leaf = path->nodes[0];
4698 	slot = path->slots[0];
4699 
4700 	nritems = btrfs_header_nritems(leaf);
4701 	data_end = leaf_data_end(fs_info, leaf);
4702 
4703 	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4704 		btrfs_print_leaf(leaf);
4705 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4706 			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4707 		BUG();
4708 	}
4709 
4710 	if (slot != nritems) {
4711 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4712 
4713 		if (old_data < data_end) {
4714 			btrfs_print_leaf(leaf);
4715 			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4716 				   slot, old_data, data_end);
4717 			BUG_ON(1);
4718 		}
4719 		/*
4720 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4721 		 */
4722 		/* first correct the data pointers */
4723 		for (i = slot; i < nritems; i++) {
4724 			u32 ioff;
4725 
4726 			item = btrfs_item_nr(i);
4727 			ioff = btrfs_token_item_offset(leaf, item, &token);
4728 			btrfs_set_token_item_offset(leaf, item,
4729 						    ioff - total_data, &token);
4730 		}
4731 		/* shift the items */
4732 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4733 			      btrfs_item_nr_offset(slot),
4734 			      (nritems - slot) * sizeof(struct btrfs_item));
4735 
4736 		/* shift the data */
4737 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4738 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4739 			      data_end, old_data - data_end);
4740 		data_end = old_data;
4741 	}
4742 
4743 	/* setup the item for the new data */
4744 	for (i = 0; i < nr; i++) {
4745 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4746 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4747 		item = btrfs_item_nr(slot + i);
4748 		btrfs_set_token_item_offset(leaf, item,
4749 					    data_end - data_size[i], &token);
4750 		data_end -= data_size[i];
4751 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4752 	}
4753 
4754 	btrfs_set_header_nritems(leaf, nritems + nr);
4755 	btrfs_mark_buffer_dirty(leaf);
4756 
4757 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4758 		btrfs_print_leaf(leaf);
4759 		BUG();
4760 	}
4761 }
4762 
4763 /*
4764  * Given a key and some data, insert items into the tree.
4765  * This does all the path init required, making room in the tree if needed.
4766  */
4767 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4768 			    struct btrfs_root *root,
4769 			    struct btrfs_path *path,
4770 			    const struct btrfs_key *cpu_key, u32 *data_size,
4771 			    int nr)
4772 {
4773 	int ret = 0;
4774 	int slot;
4775 	int i;
4776 	u32 total_size = 0;
4777 	u32 total_data = 0;
4778 
4779 	for (i = 0; i < nr; i++)
4780 		total_data += data_size[i];
4781 
4782 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4783 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4784 	if (ret == 0)
4785 		return -EEXIST;
4786 	if (ret < 0)
4787 		return ret;
4788 
4789 	slot = path->slots[0];
4790 	BUG_ON(slot < 0);
4791 
4792 	setup_items_for_insert(root, path, cpu_key, data_size,
4793 			       total_data, total_size, nr);
4794 	return 0;
4795 }
4796 
4797 /*
4798  * Given a key and some data, insert an item into the tree.
4799  * This does all the path init required, making room in the tree if needed.
4800  */
4801 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4802 		      const struct btrfs_key *cpu_key, void *data,
4803 		      u32 data_size)
4804 {
4805 	int ret = 0;
4806 	struct btrfs_path *path;
4807 	struct extent_buffer *leaf;
4808 	unsigned long ptr;
4809 
4810 	path = btrfs_alloc_path();
4811 	if (!path)
4812 		return -ENOMEM;
4813 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4814 	if (!ret) {
4815 		leaf = path->nodes[0];
4816 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4817 		write_extent_buffer(leaf, data, ptr, data_size);
4818 		btrfs_mark_buffer_dirty(leaf);
4819 	}
4820 	btrfs_free_path(path);
4821 	return ret;
4822 }
4823 
4824 /*
4825  * delete the pointer from a given node.
4826  *
4827  * the tree should have been previously balanced so the deletion does not
4828  * empty a node.
4829  */
4830 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4831 		    int level, int slot)
4832 {
4833 	struct extent_buffer *parent = path->nodes[level];
4834 	u32 nritems;
4835 	int ret;
4836 
4837 	nritems = btrfs_header_nritems(parent);
4838 	if (slot != nritems - 1) {
4839 		if (level) {
4840 			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4841 					nritems - slot - 1);
4842 			BUG_ON(ret < 0);
4843 		}
4844 		memmove_extent_buffer(parent,
4845 			      btrfs_node_key_ptr_offset(slot),
4846 			      btrfs_node_key_ptr_offset(slot + 1),
4847 			      sizeof(struct btrfs_key_ptr) *
4848 			      (nritems - slot - 1));
4849 	} else if (level) {
4850 		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4851 				GFP_NOFS);
4852 		BUG_ON(ret < 0);
4853 	}
4854 
4855 	nritems--;
4856 	btrfs_set_header_nritems(parent, nritems);
4857 	if (nritems == 0 && parent == root->node) {
4858 		BUG_ON(btrfs_header_level(root->node) != 1);
4859 		/* just turn the root into a leaf and break */
4860 		btrfs_set_header_level(root->node, 0);
4861 	} else if (slot == 0) {
4862 		struct btrfs_disk_key disk_key;
4863 
4864 		btrfs_node_key(parent, &disk_key, 0);
4865 		fixup_low_keys(path, &disk_key, level + 1);
4866 	}
4867 	btrfs_mark_buffer_dirty(parent);
4868 }
4869 
4870 /*
4871  * a helper function to delete the leaf pointed to by path->slots[1] and
4872  * path->nodes[1].
4873  *
4874  * This deletes the pointer in path->nodes[1] and frees the leaf
4875  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4876  *
4877  * The path must have already been setup for deleting the leaf, including
4878  * all the proper balancing.  path->nodes[1] must be locked.
4879  */
4880 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4881 				    struct btrfs_root *root,
4882 				    struct btrfs_path *path,
4883 				    struct extent_buffer *leaf)
4884 {
4885 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4886 	del_ptr(root, path, 1, path->slots[1]);
4887 
4888 	/*
4889 	 * btrfs_free_extent is expensive, we want to make sure we
4890 	 * aren't holding any locks when we call it
4891 	 */
4892 	btrfs_unlock_up_safe(path, 0);
4893 
4894 	root_sub_used(root, leaf->len);
4895 
4896 	extent_buffer_get(leaf);
4897 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4898 	free_extent_buffer_stale(leaf);
4899 }
4900 /*
4901  * delete the item at the leaf level in path.  If that empties
4902  * the leaf, remove it from the tree
4903  */
4904 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4905 		    struct btrfs_path *path, int slot, int nr)
4906 {
4907 	struct btrfs_fs_info *fs_info = root->fs_info;
4908 	struct extent_buffer *leaf;
4909 	struct btrfs_item *item;
4910 	u32 last_off;
4911 	u32 dsize = 0;
4912 	int ret = 0;
4913 	int wret;
4914 	int i;
4915 	u32 nritems;
4916 	struct btrfs_map_token token;
4917 
4918 	btrfs_init_map_token(&token);
4919 
4920 	leaf = path->nodes[0];
4921 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4922 
4923 	for (i = 0; i < nr; i++)
4924 		dsize += btrfs_item_size_nr(leaf, slot + i);
4925 
4926 	nritems = btrfs_header_nritems(leaf);
4927 
4928 	if (slot + nr != nritems) {
4929 		int data_end = leaf_data_end(fs_info, leaf);
4930 
4931 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4932 			      data_end + dsize,
4933 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4934 			      last_off - data_end);
4935 
4936 		for (i = slot + nr; i < nritems; i++) {
4937 			u32 ioff;
4938 
4939 			item = btrfs_item_nr(i);
4940 			ioff = btrfs_token_item_offset(leaf, item, &token);
4941 			btrfs_set_token_item_offset(leaf, item,
4942 						    ioff + dsize, &token);
4943 		}
4944 
4945 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4946 			      btrfs_item_nr_offset(slot + nr),
4947 			      sizeof(struct btrfs_item) *
4948 			      (nritems - slot - nr));
4949 	}
4950 	btrfs_set_header_nritems(leaf, nritems - nr);
4951 	nritems -= nr;
4952 
4953 	/* delete the leaf if we've emptied it */
4954 	if (nritems == 0) {
4955 		if (leaf == root->node) {
4956 			btrfs_set_header_level(leaf, 0);
4957 		} else {
4958 			btrfs_set_path_blocking(path);
4959 			clean_tree_block(fs_info, leaf);
4960 			btrfs_del_leaf(trans, root, path, leaf);
4961 		}
4962 	} else {
4963 		int used = leaf_space_used(leaf, 0, nritems);
4964 		if (slot == 0) {
4965 			struct btrfs_disk_key disk_key;
4966 
4967 			btrfs_item_key(leaf, &disk_key, 0);
4968 			fixup_low_keys(path, &disk_key, 1);
4969 		}
4970 
4971 		/* delete the leaf if it is mostly empty */
4972 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4973 			/* push_leaf_left fixes the path.
4974 			 * make sure the path still points to our leaf
4975 			 * for possible call to del_ptr below
4976 			 */
4977 			slot = path->slots[1];
4978 			extent_buffer_get(leaf);
4979 
4980 			btrfs_set_path_blocking(path);
4981 			wret = push_leaf_left(trans, root, path, 1, 1,
4982 					      1, (u32)-1);
4983 			if (wret < 0 && wret != -ENOSPC)
4984 				ret = wret;
4985 
4986 			if (path->nodes[0] == leaf &&
4987 			    btrfs_header_nritems(leaf)) {
4988 				wret = push_leaf_right(trans, root, path, 1,
4989 						       1, 1, 0);
4990 				if (wret < 0 && wret != -ENOSPC)
4991 					ret = wret;
4992 			}
4993 
4994 			if (btrfs_header_nritems(leaf) == 0) {
4995 				path->slots[1] = slot;
4996 				btrfs_del_leaf(trans, root, path, leaf);
4997 				free_extent_buffer(leaf);
4998 				ret = 0;
4999 			} else {
5000 				/* if we're still in the path, make sure
5001 				 * we're dirty.  Otherwise, one of the
5002 				 * push_leaf functions must have already
5003 				 * dirtied this buffer
5004 				 */
5005 				if (path->nodes[0] == leaf)
5006 					btrfs_mark_buffer_dirty(leaf);
5007 				free_extent_buffer(leaf);
5008 			}
5009 		} else {
5010 			btrfs_mark_buffer_dirty(leaf);
5011 		}
5012 	}
5013 	return ret;
5014 }
5015 
5016 /*
5017  * search the tree again to find a leaf with lesser keys
5018  * returns 0 if it found something or 1 if there are no lesser leaves.
5019  * returns < 0 on io errors.
5020  *
5021  * This may release the path, and so you may lose any locks held at the
5022  * time you call it.
5023  */
5024 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5025 {
5026 	struct btrfs_key key;
5027 	struct btrfs_disk_key found_key;
5028 	int ret;
5029 
5030 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5031 
5032 	if (key.offset > 0) {
5033 		key.offset--;
5034 	} else if (key.type > 0) {
5035 		key.type--;
5036 		key.offset = (u64)-1;
5037 	} else if (key.objectid > 0) {
5038 		key.objectid--;
5039 		key.type = (u8)-1;
5040 		key.offset = (u64)-1;
5041 	} else {
5042 		return 1;
5043 	}
5044 
5045 	btrfs_release_path(path);
5046 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5047 	if (ret < 0)
5048 		return ret;
5049 	btrfs_item_key(path->nodes[0], &found_key, 0);
5050 	ret = comp_keys(&found_key, &key);
5051 	/*
5052 	 * We might have had an item with the previous key in the tree right
5053 	 * before we released our path. And after we released our path, that
5054 	 * item might have been pushed to the first slot (0) of the leaf we
5055 	 * were holding due to a tree balance. Alternatively, an item with the
5056 	 * previous key can exist as the only element of a leaf (big fat item).
5057 	 * Therefore account for these 2 cases, so that our callers (like
5058 	 * btrfs_previous_item) don't miss an existing item with a key matching
5059 	 * the previous key we computed above.
5060 	 */
5061 	if (ret <= 0)
5062 		return 0;
5063 	return 1;
5064 }
5065 
5066 /*
5067  * A helper function to walk down the tree starting at min_key, and looking
5068  * for nodes or leaves that are have a minimum transaction id.
5069  * This is used by the btree defrag code, and tree logging
5070  *
5071  * This does not cow, but it does stuff the starting key it finds back
5072  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5073  * key and get a writable path.
5074  *
5075  * This honors path->lowest_level to prevent descent past a given level
5076  * of the tree.
5077  *
5078  * min_trans indicates the oldest transaction that you are interested
5079  * in walking through.  Any nodes or leaves older than min_trans are
5080  * skipped over (without reading them).
5081  *
5082  * returns zero if something useful was found, < 0 on error and 1 if there
5083  * was nothing in the tree that matched the search criteria.
5084  */
5085 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5086 			 struct btrfs_path *path,
5087 			 u64 min_trans)
5088 {
5089 	struct btrfs_fs_info *fs_info = root->fs_info;
5090 	struct extent_buffer *cur;
5091 	struct btrfs_key found_key;
5092 	int slot;
5093 	int sret;
5094 	u32 nritems;
5095 	int level;
5096 	int ret = 1;
5097 	int keep_locks = path->keep_locks;
5098 
5099 	path->keep_locks = 1;
5100 again:
5101 	cur = btrfs_read_lock_root_node(root);
5102 	level = btrfs_header_level(cur);
5103 	WARN_ON(path->nodes[level]);
5104 	path->nodes[level] = cur;
5105 	path->locks[level] = BTRFS_READ_LOCK;
5106 
5107 	if (btrfs_header_generation(cur) < min_trans) {
5108 		ret = 1;
5109 		goto out;
5110 	}
5111 	while (1) {
5112 		nritems = btrfs_header_nritems(cur);
5113 		level = btrfs_header_level(cur);
5114 		sret = btrfs_bin_search(cur, min_key, level, &slot);
5115 
5116 		/* at the lowest level, we're done, setup the path and exit */
5117 		if (level == path->lowest_level) {
5118 			if (slot >= nritems)
5119 				goto find_next_key;
5120 			ret = 0;
5121 			path->slots[level] = slot;
5122 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5123 			goto out;
5124 		}
5125 		if (sret && slot > 0)
5126 			slot--;
5127 		/*
5128 		 * check this node pointer against the min_trans parameters.
5129 		 * If it is too old, old, skip to the next one.
5130 		 */
5131 		while (slot < nritems) {
5132 			u64 gen;
5133 
5134 			gen = btrfs_node_ptr_generation(cur, slot);
5135 			if (gen < min_trans) {
5136 				slot++;
5137 				continue;
5138 			}
5139 			break;
5140 		}
5141 find_next_key:
5142 		/*
5143 		 * we didn't find a candidate key in this node, walk forward
5144 		 * and find another one
5145 		 */
5146 		if (slot >= nritems) {
5147 			path->slots[level] = slot;
5148 			btrfs_set_path_blocking(path);
5149 			sret = btrfs_find_next_key(root, path, min_key, level,
5150 						  min_trans);
5151 			if (sret == 0) {
5152 				btrfs_release_path(path);
5153 				goto again;
5154 			} else {
5155 				goto out;
5156 			}
5157 		}
5158 		/* save our key for returning back */
5159 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5160 		path->slots[level] = slot;
5161 		if (level == path->lowest_level) {
5162 			ret = 0;
5163 			goto out;
5164 		}
5165 		btrfs_set_path_blocking(path);
5166 		cur = read_node_slot(fs_info, cur, slot);
5167 		if (IS_ERR(cur)) {
5168 			ret = PTR_ERR(cur);
5169 			goto out;
5170 		}
5171 
5172 		btrfs_tree_read_lock(cur);
5173 
5174 		path->locks[level - 1] = BTRFS_READ_LOCK;
5175 		path->nodes[level - 1] = cur;
5176 		unlock_up(path, level, 1, 0, NULL);
5177 	}
5178 out:
5179 	path->keep_locks = keep_locks;
5180 	if (ret == 0) {
5181 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5182 		btrfs_set_path_blocking(path);
5183 		memcpy(min_key, &found_key, sizeof(found_key));
5184 	}
5185 	return ret;
5186 }
5187 
5188 static int tree_move_down(struct btrfs_fs_info *fs_info,
5189 			   struct btrfs_path *path,
5190 			   int *level)
5191 {
5192 	struct extent_buffer *eb;
5193 
5194 	BUG_ON(*level == 0);
5195 	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5196 	if (IS_ERR(eb))
5197 		return PTR_ERR(eb);
5198 
5199 	path->nodes[*level - 1] = eb;
5200 	path->slots[*level - 1] = 0;
5201 	(*level)--;
5202 	return 0;
5203 }
5204 
5205 static int tree_move_next_or_upnext(struct btrfs_path *path,
5206 				    int *level, int root_level)
5207 {
5208 	int ret = 0;
5209 	int nritems;
5210 	nritems = btrfs_header_nritems(path->nodes[*level]);
5211 
5212 	path->slots[*level]++;
5213 
5214 	while (path->slots[*level] >= nritems) {
5215 		if (*level == root_level)
5216 			return -1;
5217 
5218 		/* move upnext */
5219 		path->slots[*level] = 0;
5220 		free_extent_buffer(path->nodes[*level]);
5221 		path->nodes[*level] = NULL;
5222 		(*level)++;
5223 		path->slots[*level]++;
5224 
5225 		nritems = btrfs_header_nritems(path->nodes[*level]);
5226 		ret = 1;
5227 	}
5228 	return ret;
5229 }
5230 
5231 /*
5232  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5233  * or down.
5234  */
5235 static int tree_advance(struct btrfs_fs_info *fs_info,
5236 			struct btrfs_path *path,
5237 			int *level, int root_level,
5238 			int allow_down,
5239 			struct btrfs_key *key)
5240 {
5241 	int ret;
5242 
5243 	if (*level == 0 || !allow_down) {
5244 		ret = tree_move_next_or_upnext(path, level, root_level);
5245 	} else {
5246 		ret = tree_move_down(fs_info, path, level);
5247 	}
5248 	if (ret >= 0) {
5249 		if (*level == 0)
5250 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5251 					path->slots[*level]);
5252 		else
5253 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5254 					path->slots[*level]);
5255 	}
5256 	return ret;
5257 }
5258 
5259 static int tree_compare_item(struct btrfs_path *left_path,
5260 			     struct btrfs_path *right_path,
5261 			     char *tmp_buf)
5262 {
5263 	int cmp;
5264 	int len1, len2;
5265 	unsigned long off1, off2;
5266 
5267 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5268 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5269 	if (len1 != len2)
5270 		return 1;
5271 
5272 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5273 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5274 				right_path->slots[0]);
5275 
5276 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5277 
5278 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5279 	if (cmp)
5280 		return 1;
5281 	return 0;
5282 }
5283 
5284 #define ADVANCE 1
5285 #define ADVANCE_ONLY_NEXT -1
5286 
5287 /*
5288  * This function compares two trees and calls the provided callback for
5289  * every changed/new/deleted item it finds.
5290  * If shared tree blocks are encountered, whole subtrees are skipped, making
5291  * the compare pretty fast on snapshotted subvolumes.
5292  *
5293  * This currently works on commit roots only. As commit roots are read only,
5294  * we don't do any locking. The commit roots are protected with transactions.
5295  * Transactions are ended and rejoined when a commit is tried in between.
5296  *
5297  * This function checks for modifications done to the trees while comparing.
5298  * If it detects a change, it aborts immediately.
5299  */
5300 int btrfs_compare_trees(struct btrfs_root *left_root,
5301 			struct btrfs_root *right_root,
5302 			btrfs_changed_cb_t changed_cb, void *ctx)
5303 {
5304 	struct btrfs_fs_info *fs_info = left_root->fs_info;
5305 	int ret;
5306 	int cmp;
5307 	struct btrfs_path *left_path = NULL;
5308 	struct btrfs_path *right_path = NULL;
5309 	struct btrfs_key left_key;
5310 	struct btrfs_key right_key;
5311 	char *tmp_buf = NULL;
5312 	int left_root_level;
5313 	int right_root_level;
5314 	int left_level;
5315 	int right_level;
5316 	int left_end_reached;
5317 	int right_end_reached;
5318 	int advance_left;
5319 	int advance_right;
5320 	u64 left_blockptr;
5321 	u64 right_blockptr;
5322 	u64 left_gen;
5323 	u64 right_gen;
5324 
5325 	left_path = btrfs_alloc_path();
5326 	if (!left_path) {
5327 		ret = -ENOMEM;
5328 		goto out;
5329 	}
5330 	right_path = btrfs_alloc_path();
5331 	if (!right_path) {
5332 		ret = -ENOMEM;
5333 		goto out;
5334 	}
5335 
5336 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5337 	if (!tmp_buf) {
5338 		ret = -ENOMEM;
5339 		goto out;
5340 	}
5341 
5342 	left_path->search_commit_root = 1;
5343 	left_path->skip_locking = 1;
5344 	right_path->search_commit_root = 1;
5345 	right_path->skip_locking = 1;
5346 
5347 	/*
5348 	 * Strategy: Go to the first items of both trees. Then do
5349 	 *
5350 	 * If both trees are at level 0
5351 	 *   Compare keys of current items
5352 	 *     If left < right treat left item as new, advance left tree
5353 	 *       and repeat
5354 	 *     If left > right treat right item as deleted, advance right tree
5355 	 *       and repeat
5356 	 *     If left == right do deep compare of items, treat as changed if
5357 	 *       needed, advance both trees and repeat
5358 	 * If both trees are at the same level but not at level 0
5359 	 *   Compare keys of current nodes/leafs
5360 	 *     If left < right advance left tree and repeat
5361 	 *     If left > right advance right tree and repeat
5362 	 *     If left == right compare blockptrs of the next nodes/leafs
5363 	 *       If they match advance both trees but stay at the same level
5364 	 *         and repeat
5365 	 *       If they don't match advance both trees while allowing to go
5366 	 *         deeper and repeat
5367 	 * If tree levels are different
5368 	 *   Advance the tree that needs it and repeat
5369 	 *
5370 	 * Advancing a tree means:
5371 	 *   If we are at level 0, try to go to the next slot. If that's not
5372 	 *   possible, go one level up and repeat. Stop when we found a level
5373 	 *   where we could go to the next slot. We may at this point be on a
5374 	 *   node or a leaf.
5375 	 *
5376 	 *   If we are not at level 0 and not on shared tree blocks, go one
5377 	 *   level deeper.
5378 	 *
5379 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5380 	 *   the right if possible or go up and right.
5381 	 */
5382 
5383 	down_read(&fs_info->commit_root_sem);
5384 	left_level = btrfs_header_level(left_root->commit_root);
5385 	left_root_level = left_level;
5386 	left_path->nodes[left_level] =
5387 			btrfs_clone_extent_buffer(left_root->commit_root);
5388 	if (!left_path->nodes[left_level]) {
5389 		up_read(&fs_info->commit_root_sem);
5390 		ret = -ENOMEM;
5391 		goto out;
5392 	}
5393 	extent_buffer_get(left_path->nodes[left_level]);
5394 
5395 	right_level = btrfs_header_level(right_root->commit_root);
5396 	right_root_level = right_level;
5397 	right_path->nodes[right_level] =
5398 			btrfs_clone_extent_buffer(right_root->commit_root);
5399 	if (!right_path->nodes[right_level]) {
5400 		up_read(&fs_info->commit_root_sem);
5401 		ret = -ENOMEM;
5402 		goto out;
5403 	}
5404 	extent_buffer_get(right_path->nodes[right_level]);
5405 	up_read(&fs_info->commit_root_sem);
5406 
5407 	if (left_level == 0)
5408 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5409 				&left_key, left_path->slots[left_level]);
5410 	else
5411 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5412 				&left_key, left_path->slots[left_level]);
5413 	if (right_level == 0)
5414 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5415 				&right_key, right_path->slots[right_level]);
5416 	else
5417 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5418 				&right_key, right_path->slots[right_level]);
5419 
5420 	left_end_reached = right_end_reached = 0;
5421 	advance_left = advance_right = 0;
5422 
5423 	while (1) {
5424 		if (advance_left && !left_end_reached) {
5425 			ret = tree_advance(fs_info, left_path, &left_level,
5426 					left_root_level,
5427 					advance_left != ADVANCE_ONLY_NEXT,
5428 					&left_key);
5429 			if (ret == -1)
5430 				left_end_reached = ADVANCE;
5431 			else if (ret < 0)
5432 				goto out;
5433 			advance_left = 0;
5434 		}
5435 		if (advance_right && !right_end_reached) {
5436 			ret = tree_advance(fs_info, right_path, &right_level,
5437 					right_root_level,
5438 					advance_right != ADVANCE_ONLY_NEXT,
5439 					&right_key);
5440 			if (ret == -1)
5441 				right_end_reached = ADVANCE;
5442 			else if (ret < 0)
5443 				goto out;
5444 			advance_right = 0;
5445 		}
5446 
5447 		if (left_end_reached && right_end_reached) {
5448 			ret = 0;
5449 			goto out;
5450 		} else if (left_end_reached) {
5451 			if (right_level == 0) {
5452 				ret = changed_cb(left_path, right_path,
5453 						&right_key,
5454 						BTRFS_COMPARE_TREE_DELETED,
5455 						ctx);
5456 				if (ret < 0)
5457 					goto out;
5458 			}
5459 			advance_right = ADVANCE;
5460 			continue;
5461 		} else if (right_end_reached) {
5462 			if (left_level == 0) {
5463 				ret = changed_cb(left_path, right_path,
5464 						&left_key,
5465 						BTRFS_COMPARE_TREE_NEW,
5466 						ctx);
5467 				if (ret < 0)
5468 					goto out;
5469 			}
5470 			advance_left = ADVANCE;
5471 			continue;
5472 		}
5473 
5474 		if (left_level == 0 && right_level == 0) {
5475 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5476 			if (cmp < 0) {
5477 				ret = changed_cb(left_path, right_path,
5478 						&left_key,
5479 						BTRFS_COMPARE_TREE_NEW,
5480 						ctx);
5481 				if (ret < 0)
5482 					goto out;
5483 				advance_left = ADVANCE;
5484 			} else if (cmp > 0) {
5485 				ret = changed_cb(left_path, right_path,
5486 						&right_key,
5487 						BTRFS_COMPARE_TREE_DELETED,
5488 						ctx);
5489 				if (ret < 0)
5490 					goto out;
5491 				advance_right = ADVANCE;
5492 			} else {
5493 				enum btrfs_compare_tree_result result;
5494 
5495 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5496 				ret = tree_compare_item(left_path, right_path,
5497 							tmp_buf);
5498 				if (ret)
5499 					result = BTRFS_COMPARE_TREE_CHANGED;
5500 				else
5501 					result = BTRFS_COMPARE_TREE_SAME;
5502 				ret = changed_cb(left_path, right_path,
5503 						 &left_key, result, ctx);
5504 				if (ret < 0)
5505 					goto out;
5506 				advance_left = ADVANCE;
5507 				advance_right = ADVANCE;
5508 			}
5509 		} else if (left_level == right_level) {
5510 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5511 			if (cmp < 0) {
5512 				advance_left = ADVANCE;
5513 			} else if (cmp > 0) {
5514 				advance_right = ADVANCE;
5515 			} else {
5516 				left_blockptr = btrfs_node_blockptr(
5517 						left_path->nodes[left_level],
5518 						left_path->slots[left_level]);
5519 				right_blockptr = btrfs_node_blockptr(
5520 						right_path->nodes[right_level],
5521 						right_path->slots[right_level]);
5522 				left_gen = btrfs_node_ptr_generation(
5523 						left_path->nodes[left_level],
5524 						left_path->slots[left_level]);
5525 				right_gen = btrfs_node_ptr_generation(
5526 						right_path->nodes[right_level],
5527 						right_path->slots[right_level]);
5528 				if (left_blockptr == right_blockptr &&
5529 				    left_gen == right_gen) {
5530 					/*
5531 					 * As we're on a shared block, don't
5532 					 * allow to go deeper.
5533 					 */
5534 					advance_left = ADVANCE_ONLY_NEXT;
5535 					advance_right = ADVANCE_ONLY_NEXT;
5536 				} else {
5537 					advance_left = ADVANCE;
5538 					advance_right = ADVANCE;
5539 				}
5540 			}
5541 		} else if (left_level < right_level) {
5542 			advance_right = ADVANCE;
5543 		} else {
5544 			advance_left = ADVANCE;
5545 		}
5546 	}
5547 
5548 out:
5549 	btrfs_free_path(left_path);
5550 	btrfs_free_path(right_path);
5551 	kvfree(tmp_buf);
5552 	return ret;
5553 }
5554 
5555 /*
5556  * this is similar to btrfs_next_leaf, but does not try to preserve
5557  * and fixup the path.  It looks for and returns the next key in the
5558  * tree based on the current path and the min_trans parameters.
5559  *
5560  * 0 is returned if another key is found, < 0 if there are any errors
5561  * and 1 is returned if there are no higher keys in the tree
5562  *
5563  * path->keep_locks should be set to 1 on the search made before
5564  * calling this function.
5565  */
5566 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5567 			struct btrfs_key *key, int level, u64 min_trans)
5568 {
5569 	int slot;
5570 	struct extent_buffer *c;
5571 
5572 	WARN_ON(!path->keep_locks);
5573 	while (level < BTRFS_MAX_LEVEL) {
5574 		if (!path->nodes[level])
5575 			return 1;
5576 
5577 		slot = path->slots[level] + 1;
5578 		c = path->nodes[level];
5579 next:
5580 		if (slot >= btrfs_header_nritems(c)) {
5581 			int ret;
5582 			int orig_lowest;
5583 			struct btrfs_key cur_key;
5584 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5585 			    !path->nodes[level + 1])
5586 				return 1;
5587 
5588 			if (path->locks[level + 1]) {
5589 				level++;
5590 				continue;
5591 			}
5592 
5593 			slot = btrfs_header_nritems(c) - 1;
5594 			if (level == 0)
5595 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5596 			else
5597 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5598 
5599 			orig_lowest = path->lowest_level;
5600 			btrfs_release_path(path);
5601 			path->lowest_level = level;
5602 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5603 						0, 0);
5604 			path->lowest_level = orig_lowest;
5605 			if (ret < 0)
5606 				return ret;
5607 
5608 			c = path->nodes[level];
5609 			slot = path->slots[level];
5610 			if (ret == 0)
5611 				slot++;
5612 			goto next;
5613 		}
5614 
5615 		if (level == 0)
5616 			btrfs_item_key_to_cpu(c, key, slot);
5617 		else {
5618 			u64 gen = btrfs_node_ptr_generation(c, slot);
5619 
5620 			if (gen < min_trans) {
5621 				slot++;
5622 				goto next;
5623 			}
5624 			btrfs_node_key_to_cpu(c, key, slot);
5625 		}
5626 		return 0;
5627 	}
5628 	return 1;
5629 }
5630 
5631 /*
5632  * search the tree again to find a leaf with greater keys
5633  * returns 0 if it found something or 1 if there are no greater leaves.
5634  * returns < 0 on io errors.
5635  */
5636 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5637 {
5638 	return btrfs_next_old_leaf(root, path, 0);
5639 }
5640 
5641 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5642 			u64 time_seq)
5643 {
5644 	int slot;
5645 	int level;
5646 	struct extent_buffer *c;
5647 	struct extent_buffer *next;
5648 	struct btrfs_key key;
5649 	u32 nritems;
5650 	int ret;
5651 	int old_spinning = path->leave_spinning;
5652 	int next_rw_lock = 0;
5653 
5654 	nritems = btrfs_header_nritems(path->nodes[0]);
5655 	if (nritems == 0)
5656 		return 1;
5657 
5658 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5659 again:
5660 	level = 1;
5661 	next = NULL;
5662 	next_rw_lock = 0;
5663 	btrfs_release_path(path);
5664 
5665 	path->keep_locks = 1;
5666 	path->leave_spinning = 1;
5667 
5668 	if (time_seq)
5669 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5670 	else
5671 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5672 	path->keep_locks = 0;
5673 
5674 	if (ret < 0)
5675 		return ret;
5676 
5677 	nritems = btrfs_header_nritems(path->nodes[0]);
5678 	/*
5679 	 * by releasing the path above we dropped all our locks.  A balance
5680 	 * could have added more items next to the key that used to be
5681 	 * at the very end of the block.  So, check again here and
5682 	 * advance the path if there are now more items available.
5683 	 */
5684 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5685 		if (ret == 0)
5686 			path->slots[0]++;
5687 		ret = 0;
5688 		goto done;
5689 	}
5690 	/*
5691 	 * So the above check misses one case:
5692 	 * - after releasing the path above, someone has removed the item that
5693 	 *   used to be at the very end of the block, and balance between leafs
5694 	 *   gets another one with bigger key.offset to replace it.
5695 	 *
5696 	 * This one should be returned as well, or we can get leaf corruption
5697 	 * later(esp. in __btrfs_drop_extents()).
5698 	 *
5699 	 * And a bit more explanation about this check,
5700 	 * with ret > 0, the key isn't found, the path points to the slot
5701 	 * where it should be inserted, so the path->slots[0] item must be the
5702 	 * bigger one.
5703 	 */
5704 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5705 		ret = 0;
5706 		goto done;
5707 	}
5708 
5709 	while (level < BTRFS_MAX_LEVEL) {
5710 		if (!path->nodes[level]) {
5711 			ret = 1;
5712 			goto done;
5713 		}
5714 
5715 		slot = path->slots[level] + 1;
5716 		c = path->nodes[level];
5717 		if (slot >= btrfs_header_nritems(c)) {
5718 			level++;
5719 			if (level == BTRFS_MAX_LEVEL) {
5720 				ret = 1;
5721 				goto done;
5722 			}
5723 			continue;
5724 		}
5725 
5726 		if (next) {
5727 			btrfs_tree_unlock_rw(next, next_rw_lock);
5728 			free_extent_buffer(next);
5729 		}
5730 
5731 		next = c;
5732 		next_rw_lock = path->locks[level];
5733 		ret = read_block_for_search(root, path, &next, level,
5734 					    slot, &key);
5735 		if (ret == -EAGAIN)
5736 			goto again;
5737 
5738 		if (ret < 0) {
5739 			btrfs_release_path(path);
5740 			goto done;
5741 		}
5742 
5743 		if (!path->skip_locking) {
5744 			ret = btrfs_try_tree_read_lock(next);
5745 			if (!ret && time_seq) {
5746 				/*
5747 				 * If we don't get the lock, we may be racing
5748 				 * with push_leaf_left, holding that lock while
5749 				 * itself waiting for the leaf we've currently
5750 				 * locked. To solve this situation, we give up
5751 				 * on our lock and cycle.
5752 				 */
5753 				free_extent_buffer(next);
5754 				btrfs_release_path(path);
5755 				cond_resched();
5756 				goto again;
5757 			}
5758 			if (!ret) {
5759 				btrfs_set_path_blocking(path);
5760 				btrfs_tree_read_lock(next);
5761 			}
5762 			next_rw_lock = BTRFS_READ_LOCK;
5763 		}
5764 		break;
5765 	}
5766 	path->slots[level] = slot;
5767 	while (1) {
5768 		level--;
5769 		c = path->nodes[level];
5770 		if (path->locks[level])
5771 			btrfs_tree_unlock_rw(c, path->locks[level]);
5772 
5773 		free_extent_buffer(c);
5774 		path->nodes[level] = next;
5775 		path->slots[level] = 0;
5776 		if (!path->skip_locking)
5777 			path->locks[level] = next_rw_lock;
5778 		if (!level)
5779 			break;
5780 
5781 		ret = read_block_for_search(root, path, &next, level,
5782 					    0, &key);
5783 		if (ret == -EAGAIN)
5784 			goto again;
5785 
5786 		if (ret < 0) {
5787 			btrfs_release_path(path);
5788 			goto done;
5789 		}
5790 
5791 		if (!path->skip_locking) {
5792 			ret = btrfs_try_tree_read_lock(next);
5793 			if (!ret) {
5794 				btrfs_set_path_blocking(path);
5795 				btrfs_tree_read_lock(next);
5796 			}
5797 			next_rw_lock = BTRFS_READ_LOCK;
5798 		}
5799 	}
5800 	ret = 0;
5801 done:
5802 	unlock_up(path, 0, 1, 0, NULL);
5803 	path->leave_spinning = old_spinning;
5804 	if (!old_spinning)
5805 		btrfs_set_path_blocking(path);
5806 
5807 	return ret;
5808 }
5809 
5810 /*
5811  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5812  * searching until it gets past min_objectid or finds an item of 'type'
5813  *
5814  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5815  */
5816 int btrfs_previous_item(struct btrfs_root *root,
5817 			struct btrfs_path *path, u64 min_objectid,
5818 			int type)
5819 {
5820 	struct btrfs_key found_key;
5821 	struct extent_buffer *leaf;
5822 	u32 nritems;
5823 	int ret;
5824 
5825 	while (1) {
5826 		if (path->slots[0] == 0) {
5827 			btrfs_set_path_blocking(path);
5828 			ret = btrfs_prev_leaf(root, path);
5829 			if (ret != 0)
5830 				return ret;
5831 		} else {
5832 			path->slots[0]--;
5833 		}
5834 		leaf = path->nodes[0];
5835 		nritems = btrfs_header_nritems(leaf);
5836 		if (nritems == 0)
5837 			return 1;
5838 		if (path->slots[0] == nritems)
5839 			path->slots[0]--;
5840 
5841 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5842 		if (found_key.objectid < min_objectid)
5843 			break;
5844 		if (found_key.type == type)
5845 			return 0;
5846 		if (found_key.objectid == min_objectid &&
5847 		    found_key.type < type)
5848 			break;
5849 	}
5850 	return 1;
5851 }
5852 
5853 /*
5854  * search in extent tree to find a previous Metadata/Data extent item with
5855  * min objecitd.
5856  *
5857  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5858  */
5859 int btrfs_previous_extent_item(struct btrfs_root *root,
5860 			struct btrfs_path *path, u64 min_objectid)
5861 {
5862 	struct btrfs_key found_key;
5863 	struct extent_buffer *leaf;
5864 	u32 nritems;
5865 	int ret;
5866 
5867 	while (1) {
5868 		if (path->slots[0] == 0) {
5869 			btrfs_set_path_blocking(path);
5870 			ret = btrfs_prev_leaf(root, path);
5871 			if (ret != 0)
5872 				return ret;
5873 		} else {
5874 			path->slots[0]--;
5875 		}
5876 		leaf = path->nodes[0];
5877 		nritems = btrfs_header_nritems(leaf);
5878 		if (nritems == 0)
5879 			return 1;
5880 		if (path->slots[0] == nritems)
5881 			path->slots[0]--;
5882 
5883 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5884 		if (found_key.objectid < min_objectid)
5885 			break;
5886 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5887 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5888 			return 0;
5889 		if (found_key.objectid == min_objectid &&
5890 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5891 			break;
5892 	}
5893 	return 1;
5894 }
5895