xref: /openbmc/linux/fs/btrfs/ctree.c (revision e330fb14)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17 #include "tree-mod-log.h"
18 
19 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
20 		      *root, struct btrfs_path *path, int level);
21 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
22 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
23 		      int data_size, int extend);
24 static int push_node_left(struct btrfs_trans_handle *trans,
25 			  struct extent_buffer *dst,
26 			  struct extent_buffer *src, int empty);
27 static int balance_node_right(struct btrfs_trans_handle *trans,
28 			      struct extent_buffer *dst_buf,
29 			      struct extent_buffer *src_buf);
30 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
31 		    int level, int slot);
32 
33 static const struct btrfs_csums {
34 	u16		size;
35 	const char	name[10];
36 	const char	driver[12];
37 } btrfs_csums[] = {
38 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
39 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
40 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
41 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
42 				     .driver = "blake2b-256" },
43 };
44 
45 int btrfs_super_csum_size(const struct btrfs_super_block *s)
46 {
47 	u16 t = btrfs_super_csum_type(s);
48 	/*
49 	 * csum type is validated at mount time
50 	 */
51 	return btrfs_csums[t].size;
52 }
53 
54 const char *btrfs_super_csum_name(u16 csum_type)
55 {
56 	/* csum type is validated at mount time */
57 	return btrfs_csums[csum_type].name;
58 }
59 
60 /*
61  * Return driver name if defined, otherwise the name that's also a valid driver
62  * name
63  */
64 const char *btrfs_super_csum_driver(u16 csum_type)
65 {
66 	/* csum type is validated at mount time */
67 	return btrfs_csums[csum_type].driver[0] ?
68 		btrfs_csums[csum_type].driver :
69 		btrfs_csums[csum_type].name;
70 }
71 
72 size_t __attribute_const__ btrfs_get_num_csums(void)
73 {
74 	return ARRAY_SIZE(btrfs_csums);
75 }
76 
77 struct btrfs_path *btrfs_alloc_path(void)
78 {
79 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
80 }
81 
82 /* this also releases the path */
83 void btrfs_free_path(struct btrfs_path *p)
84 {
85 	if (!p)
86 		return;
87 	btrfs_release_path(p);
88 	kmem_cache_free(btrfs_path_cachep, p);
89 }
90 
91 /*
92  * path release drops references on the extent buffers in the path
93  * and it drops any locks held by this path
94  *
95  * It is safe to call this on paths that no locks or extent buffers held.
96  */
97 noinline void btrfs_release_path(struct btrfs_path *p)
98 {
99 	int i;
100 
101 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
102 		p->slots[i] = 0;
103 		if (!p->nodes[i])
104 			continue;
105 		if (p->locks[i]) {
106 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
107 			p->locks[i] = 0;
108 		}
109 		free_extent_buffer(p->nodes[i]);
110 		p->nodes[i] = NULL;
111 	}
112 }
113 
114 /*
115  * safely gets a reference on the root node of a tree.  A lock
116  * is not taken, so a concurrent writer may put a different node
117  * at the root of the tree.  See btrfs_lock_root_node for the
118  * looping required.
119  *
120  * The extent buffer returned by this has a reference taken, so
121  * it won't disappear.  It may stop being the root of the tree
122  * at any time because there are no locks held.
123  */
124 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
125 {
126 	struct extent_buffer *eb;
127 
128 	while (1) {
129 		rcu_read_lock();
130 		eb = rcu_dereference(root->node);
131 
132 		/*
133 		 * RCU really hurts here, we could free up the root node because
134 		 * it was COWed but we may not get the new root node yet so do
135 		 * the inc_not_zero dance and if it doesn't work then
136 		 * synchronize_rcu and try again.
137 		 */
138 		if (atomic_inc_not_zero(&eb->refs)) {
139 			rcu_read_unlock();
140 			break;
141 		}
142 		rcu_read_unlock();
143 		synchronize_rcu();
144 	}
145 	return eb;
146 }
147 
148 /*
149  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
150  * just get put onto a simple dirty list.  Transaction walks this list to make
151  * sure they get properly updated on disk.
152  */
153 static void add_root_to_dirty_list(struct btrfs_root *root)
154 {
155 	struct btrfs_fs_info *fs_info = root->fs_info;
156 
157 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
158 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
159 		return;
160 
161 	spin_lock(&fs_info->trans_lock);
162 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
163 		/* Want the extent tree to be the last on the list */
164 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
165 			list_move_tail(&root->dirty_list,
166 				       &fs_info->dirty_cowonly_roots);
167 		else
168 			list_move(&root->dirty_list,
169 				  &fs_info->dirty_cowonly_roots);
170 	}
171 	spin_unlock(&fs_info->trans_lock);
172 }
173 
174 /*
175  * used by snapshot creation to make a copy of a root for a tree with
176  * a given objectid.  The buffer with the new root node is returned in
177  * cow_ret, and this func returns zero on success or a negative error code.
178  */
179 int btrfs_copy_root(struct btrfs_trans_handle *trans,
180 		      struct btrfs_root *root,
181 		      struct extent_buffer *buf,
182 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
183 {
184 	struct btrfs_fs_info *fs_info = root->fs_info;
185 	struct extent_buffer *cow;
186 	int ret = 0;
187 	int level;
188 	struct btrfs_disk_key disk_key;
189 
190 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
191 		trans->transid != fs_info->running_transaction->transid);
192 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
193 		trans->transid != root->last_trans);
194 
195 	level = btrfs_header_level(buf);
196 	if (level == 0)
197 		btrfs_item_key(buf, &disk_key, 0);
198 	else
199 		btrfs_node_key(buf, &disk_key, 0);
200 
201 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
202 				     &disk_key, level, buf->start, 0,
203 				     BTRFS_NESTING_NEW_ROOT);
204 	if (IS_ERR(cow))
205 		return PTR_ERR(cow);
206 
207 	copy_extent_buffer_full(cow, buf);
208 	btrfs_set_header_bytenr(cow, cow->start);
209 	btrfs_set_header_generation(cow, trans->transid);
210 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
211 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
212 				     BTRFS_HEADER_FLAG_RELOC);
213 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
214 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
215 	else
216 		btrfs_set_header_owner(cow, new_root_objectid);
217 
218 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
219 
220 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
221 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
222 		ret = btrfs_inc_ref(trans, root, cow, 1);
223 	else
224 		ret = btrfs_inc_ref(trans, root, cow, 0);
225 	if (ret) {
226 		btrfs_tree_unlock(cow);
227 		free_extent_buffer(cow);
228 		btrfs_abort_transaction(trans, ret);
229 		return ret;
230 	}
231 
232 	btrfs_mark_buffer_dirty(cow);
233 	*cow_ret = cow;
234 	return 0;
235 }
236 
237 /*
238  * check if the tree block can be shared by multiple trees
239  */
240 int btrfs_block_can_be_shared(struct btrfs_root *root,
241 			      struct extent_buffer *buf)
242 {
243 	/*
244 	 * Tree blocks not in shareable trees and tree roots are never shared.
245 	 * If a block was allocated after the last snapshot and the block was
246 	 * not allocated by tree relocation, we know the block is not shared.
247 	 */
248 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
249 	    buf != root->node && buf != root->commit_root &&
250 	    (btrfs_header_generation(buf) <=
251 	     btrfs_root_last_snapshot(&root->root_item) ||
252 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
253 		return 1;
254 
255 	return 0;
256 }
257 
258 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
259 				       struct btrfs_root *root,
260 				       struct extent_buffer *buf,
261 				       struct extent_buffer *cow,
262 				       int *last_ref)
263 {
264 	struct btrfs_fs_info *fs_info = root->fs_info;
265 	u64 refs;
266 	u64 owner;
267 	u64 flags;
268 	u64 new_flags = 0;
269 	int ret;
270 
271 	/*
272 	 * Backrefs update rules:
273 	 *
274 	 * Always use full backrefs for extent pointers in tree block
275 	 * allocated by tree relocation.
276 	 *
277 	 * If a shared tree block is no longer referenced by its owner
278 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
279 	 * use full backrefs for extent pointers in tree block.
280 	 *
281 	 * If a tree block is been relocating
282 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
283 	 * use full backrefs for extent pointers in tree block.
284 	 * The reason for this is some operations (such as drop tree)
285 	 * are only allowed for blocks use full backrefs.
286 	 */
287 
288 	if (btrfs_block_can_be_shared(root, buf)) {
289 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
290 					       btrfs_header_level(buf), 1,
291 					       &refs, &flags);
292 		if (ret)
293 			return ret;
294 		if (refs == 0) {
295 			ret = -EROFS;
296 			btrfs_handle_fs_error(fs_info, ret, NULL);
297 			return ret;
298 		}
299 	} else {
300 		refs = 1;
301 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
302 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
303 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
304 		else
305 			flags = 0;
306 	}
307 
308 	owner = btrfs_header_owner(buf);
309 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
310 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
311 
312 	if (refs > 1) {
313 		if ((owner == root->root_key.objectid ||
314 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
315 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
316 			ret = btrfs_inc_ref(trans, root, buf, 1);
317 			if (ret)
318 				return ret;
319 
320 			if (root->root_key.objectid ==
321 			    BTRFS_TREE_RELOC_OBJECTID) {
322 				ret = btrfs_dec_ref(trans, root, buf, 0);
323 				if (ret)
324 					return ret;
325 				ret = btrfs_inc_ref(trans, root, cow, 1);
326 				if (ret)
327 					return ret;
328 			}
329 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
330 		} else {
331 
332 			if (root->root_key.objectid ==
333 			    BTRFS_TREE_RELOC_OBJECTID)
334 				ret = btrfs_inc_ref(trans, root, cow, 1);
335 			else
336 				ret = btrfs_inc_ref(trans, root, cow, 0);
337 			if (ret)
338 				return ret;
339 		}
340 		if (new_flags != 0) {
341 			int level = btrfs_header_level(buf);
342 
343 			ret = btrfs_set_disk_extent_flags(trans, buf,
344 							  new_flags, level, 0);
345 			if (ret)
346 				return ret;
347 		}
348 	} else {
349 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
350 			if (root->root_key.objectid ==
351 			    BTRFS_TREE_RELOC_OBJECTID)
352 				ret = btrfs_inc_ref(trans, root, cow, 1);
353 			else
354 				ret = btrfs_inc_ref(trans, root, cow, 0);
355 			if (ret)
356 				return ret;
357 			ret = btrfs_dec_ref(trans, root, buf, 1);
358 			if (ret)
359 				return ret;
360 		}
361 		btrfs_clean_tree_block(buf);
362 		*last_ref = 1;
363 	}
364 	return 0;
365 }
366 
367 /*
368  * does the dirty work in cow of a single block.  The parent block (if
369  * supplied) is updated to point to the new cow copy.  The new buffer is marked
370  * dirty and returned locked.  If you modify the block it needs to be marked
371  * dirty again.
372  *
373  * search_start -- an allocation hint for the new block
374  *
375  * empty_size -- a hint that you plan on doing more cow.  This is the size in
376  * bytes the allocator should try to find free next to the block it returns.
377  * This is just a hint and may be ignored by the allocator.
378  */
379 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
380 			     struct btrfs_root *root,
381 			     struct extent_buffer *buf,
382 			     struct extent_buffer *parent, int parent_slot,
383 			     struct extent_buffer **cow_ret,
384 			     u64 search_start, u64 empty_size,
385 			     enum btrfs_lock_nesting nest)
386 {
387 	struct btrfs_fs_info *fs_info = root->fs_info;
388 	struct btrfs_disk_key disk_key;
389 	struct extent_buffer *cow;
390 	int level, ret;
391 	int last_ref = 0;
392 	int unlock_orig = 0;
393 	u64 parent_start = 0;
394 
395 	if (*cow_ret == buf)
396 		unlock_orig = 1;
397 
398 	btrfs_assert_tree_locked(buf);
399 
400 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
401 		trans->transid != fs_info->running_transaction->transid);
402 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
403 		trans->transid != root->last_trans);
404 
405 	level = btrfs_header_level(buf);
406 
407 	if (level == 0)
408 		btrfs_item_key(buf, &disk_key, 0);
409 	else
410 		btrfs_node_key(buf, &disk_key, 0);
411 
412 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
413 		parent_start = parent->start;
414 
415 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
416 				     root->root_key.objectid, &disk_key, level,
417 				     search_start, empty_size, nest);
418 	if (IS_ERR(cow))
419 		return PTR_ERR(cow);
420 
421 	/* cow is set to blocking by btrfs_init_new_buffer */
422 
423 	copy_extent_buffer_full(cow, buf);
424 	btrfs_set_header_bytenr(cow, cow->start);
425 	btrfs_set_header_generation(cow, trans->transid);
426 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
427 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
428 				     BTRFS_HEADER_FLAG_RELOC);
429 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
430 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
431 	else
432 		btrfs_set_header_owner(cow, root->root_key.objectid);
433 
434 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
435 
436 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
437 	if (ret) {
438 		btrfs_tree_unlock(cow);
439 		free_extent_buffer(cow);
440 		btrfs_abort_transaction(trans, ret);
441 		return ret;
442 	}
443 
444 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
445 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
446 		if (ret) {
447 			btrfs_tree_unlock(cow);
448 			free_extent_buffer(cow);
449 			btrfs_abort_transaction(trans, ret);
450 			return ret;
451 		}
452 	}
453 
454 	if (buf == root->node) {
455 		WARN_ON(parent && parent != buf);
456 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
457 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
458 			parent_start = buf->start;
459 
460 		atomic_inc(&cow->refs);
461 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
462 		BUG_ON(ret < 0);
463 		rcu_assign_pointer(root->node, cow);
464 
465 		btrfs_free_tree_block(trans, root, buf, parent_start,
466 				      last_ref);
467 		free_extent_buffer(buf);
468 		add_root_to_dirty_list(root);
469 	} else {
470 		WARN_ON(trans->transid != btrfs_header_generation(parent));
471 		btrfs_tree_mod_log_insert_key(parent, parent_slot,
472 					      BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
473 		btrfs_set_node_blockptr(parent, parent_slot,
474 					cow->start);
475 		btrfs_set_node_ptr_generation(parent, parent_slot,
476 					      trans->transid);
477 		btrfs_mark_buffer_dirty(parent);
478 		if (last_ref) {
479 			ret = btrfs_tree_mod_log_free_eb(buf);
480 			if (ret) {
481 				btrfs_tree_unlock(cow);
482 				free_extent_buffer(cow);
483 				btrfs_abort_transaction(trans, ret);
484 				return ret;
485 			}
486 		}
487 		btrfs_free_tree_block(trans, root, buf, parent_start,
488 				      last_ref);
489 	}
490 	if (unlock_orig)
491 		btrfs_tree_unlock(buf);
492 	free_extent_buffer_stale(buf);
493 	btrfs_mark_buffer_dirty(cow);
494 	*cow_ret = cow;
495 	return 0;
496 }
497 
498 static inline int should_cow_block(struct btrfs_trans_handle *trans,
499 				   struct btrfs_root *root,
500 				   struct extent_buffer *buf)
501 {
502 	if (btrfs_is_testing(root->fs_info))
503 		return 0;
504 
505 	/* Ensure we can see the FORCE_COW bit */
506 	smp_mb__before_atomic();
507 
508 	/*
509 	 * We do not need to cow a block if
510 	 * 1) this block is not created or changed in this transaction;
511 	 * 2) this block does not belong to TREE_RELOC tree;
512 	 * 3) the root is not forced COW.
513 	 *
514 	 * What is forced COW:
515 	 *    when we create snapshot during committing the transaction,
516 	 *    after we've finished copying src root, we must COW the shared
517 	 *    block to ensure the metadata consistency.
518 	 */
519 	if (btrfs_header_generation(buf) == trans->transid &&
520 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
521 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
522 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
523 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
524 		return 0;
525 	return 1;
526 }
527 
528 /*
529  * cows a single block, see __btrfs_cow_block for the real work.
530  * This version of it has extra checks so that a block isn't COWed more than
531  * once per transaction, as long as it hasn't been written yet
532  */
533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
534 		    struct btrfs_root *root, struct extent_buffer *buf,
535 		    struct extent_buffer *parent, int parent_slot,
536 		    struct extent_buffer **cow_ret,
537 		    enum btrfs_lock_nesting nest)
538 {
539 	struct btrfs_fs_info *fs_info = root->fs_info;
540 	u64 search_start;
541 	int ret;
542 
543 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
544 		btrfs_err(fs_info,
545 			"COW'ing blocks on a fs root that's being dropped");
546 
547 	if (trans->transaction != fs_info->running_transaction)
548 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
549 		       trans->transid,
550 		       fs_info->running_transaction->transid);
551 
552 	if (trans->transid != fs_info->generation)
553 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
554 		       trans->transid, fs_info->generation);
555 
556 	if (!should_cow_block(trans, root, buf)) {
557 		*cow_ret = buf;
558 		return 0;
559 	}
560 
561 	search_start = buf->start & ~((u64)SZ_1G - 1);
562 
563 	/*
564 	 * Before CoWing this block for later modification, check if it's
565 	 * the subtree root and do the delayed subtree trace if needed.
566 	 *
567 	 * Also We don't care about the error, as it's handled internally.
568 	 */
569 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
570 	ret = __btrfs_cow_block(trans, root, buf, parent,
571 				 parent_slot, cow_ret, search_start, 0, nest);
572 
573 	trace_btrfs_cow_block(root, buf, *cow_ret);
574 
575 	return ret;
576 }
577 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
578 
579 /*
580  * helper function for defrag to decide if two blocks pointed to by a
581  * node are actually close by
582  */
583 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
584 {
585 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
586 		return 1;
587 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
588 		return 1;
589 	return 0;
590 }
591 
592 #ifdef __LITTLE_ENDIAN
593 
594 /*
595  * Compare two keys, on little-endian the disk order is same as CPU order and
596  * we can avoid the conversion.
597  */
598 static int comp_keys(const struct btrfs_disk_key *disk_key,
599 		     const struct btrfs_key *k2)
600 {
601 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
602 
603 	return btrfs_comp_cpu_keys(k1, k2);
604 }
605 
606 #else
607 
608 /*
609  * compare two keys in a memcmp fashion
610  */
611 static int comp_keys(const struct btrfs_disk_key *disk,
612 		     const struct btrfs_key *k2)
613 {
614 	struct btrfs_key k1;
615 
616 	btrfs_disk_key_to_cpu(&k1, disk);
617 
618 	return btrfs_comp_cpu_keys(&k1, k2);
619 }
620 #endif
621 
622 /*
623  * same as comp_keys only with two btrfs_key's
624  */
625 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
626 {
627 	if (k1->objectid > k2->objectid)
628 		return 1;
629 	if (k1->objectid < k2->objectid)
630 		return -1;
631 	if (k1->type > k2->type)
632 		return 1;
633 	if (k1->type < k2->type)
634 		return -1;
635 	if (k1->offset > k2->offset)
636 		return 1;
637 	if (k1->offset < k2->offset)
638 		return -1;
639 	return 0;
640 }
641 
642 /*
643  * this is used by the defrag code to go through all the
644  * leaves pointed to by a node and reallocate them so that
645  * disk order is close to key order
646  */
647 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
648 		       struct btrfs_root *root, struct extent_buffer *parent,
649 		       int start_slot, u64 *last_ret,
650 		       struct btrfs_key *progress)
651 {
652 	struct btrfs_fs_info *fs_info = root->fs_info;
653 	struct extent_buffer *cur;
654 	u64 blocknr;
655 	u64 search_start = *last_ret;
656 	u64 last_block = 0;
657 	u64 other;
658 	u32 parent_nritems;
659 	int end_slot;
660 	int i;
661 	int err = 0;
662 	u32 blocksize;
663 	int progress_passed = 0;
664 	struct btrfs_disk_key disk_key;
665 
666 	WARN_ON(trans->transaction != fs_info->running_transaction);
667 	WARN_ON(trans->transid != fs_info->generation);
668 
669 	parent_nritems = btrfs_header_nritems(parent);
670 	blocksize = fs_info->nodesize;
671 	end_slot = parent_nritems - 1;
672 
673 	if (parent_nritems <= 1)
674 		return 0;
675 
676 	for (i = start_slot; i <= end_slot; i++) {
677 		int close = 1;
678 
679 		btrfs_node_key(parent, &disk_key, i);
680 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
681 			continue;
682 
683 		progress_passed = 1;
684 		blocknr = btrfs_node_blockptr(parent, i);
685 		if (last_block == 0)
686 			last_block = blocknr;
687 
688 		if (i > 0) {
689 			other = btrfs_node_blockptr(parent, i - 1);
690 			close = close_blocks(blocknr, other, blocksize);
691 		}
692 		if (!close && i < end_slot) {
693 			other = btrfs_node_blockptr(parent, i + 1);
694 			close = close_blocks(blocknr, other, blocksize);
695 		}
696 		if (close) {
697 			last_block = blocknr;
698 			continue;
699 		}
700 
701 		cur = btrfs_read_node_slot(parent, i);
702 		if (IS_ERR(cur))
703 			return PTR_ERR(cur);
704 		if (search_start == 0)
705 			search_start = last_block;
706 
707 		btrfs_tree_lock(cur);
708 		err = __btrfs_cow_block(trans, root, cur, parent, i,
709 					&cur, search_start,
710 					min(16 * blocksize,
711 					    (end_slot - i) * blocksize),
712 					BTRFS_NESTING_COW);
713 		if (err) {
714 			btrfs_tree_unlock(cur);
715 			free_extent_buffer(cur);
716 			break;
717 		}
718 		search_start = cur->start;
719 		last_block = cur->start;
720 		*last_ret = search_start;
721 		btrfs_tree_unlock(cur);
722 		free_extent_buffer(cur);
723 	}
724 	return err;
725 }
726 
727 /*
728  * search for key in the extent_buffer.  The items start at offset p,
729  * and they are item_size apart.
730  *
731  * the slot in the array is returned via slot, and it points to
732  * the place where you would insert key if it is not found in
733  * the array.
734  *
735  * Slot may point to total number of items if the key is bigger than
736  * all of the keys
737  */
738 static noinline int generic_bin_search(struct extent_buffer *eb,
739 				       unsigned long p, int item_size,
740 				       const struct btrfs_key *key, int *slot)
741 {
742 	int low = 0;
743 	int high = btrfs_header_nritems(eb);
744 	int ret;
745 	const int key_size = sizeof(struct btrfs_disk_key);
746 
747 	if (low > high) {
748 		btrfs_err(eb->fs_info,
749 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
750 			  __func__, low, high, eb->start,
751 			  btrfs_header_owner(eb), btrfs_header_level(eb));
752 		return -EINVAL;
753 	}
754 
755 	while (low < high) {
756 		unsigned long oip;
757 		unsigned long offset;
758 		struct btrfs_disk_key *tmp;
759 		struct btrfs_disk_key unaligned;
760 		int mid;
761 
762 		mid = (low + high) / 2;
763 		offset = p + mid * item_size;
764 		oip = offset_in_page(offset);
765 
766 		if (oip + key_size <= PAGE_SIZE) {
767 			const unsigned long idx = get_eb_page_index(offset);
768 			char *kaddr = page_address(eb->pages[idx]);
769 
770 			oip = get_eb_offset_in_page(eb, offset);
771 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
772 		} else {
773 			read_extent_buffer(eb, &unaligned, offset, key_size);
774 			tmp = &unaligned;
775 		}
776 
777 		ret = comp_keys(tmp, key);
778 
779 		if (ret < 0)
780 			low = mid + 1;
781 		else if (ret > 0)
782 			high = mid;
783 		else {
784 			*slot = mid;
785 			return 0;
786 		}
787 	}
788 	*slot = low;
789 	return 1;
790 }
791 
792 /*
793  * simple bin_search frontend that does the right thing for
794  * leaves vs nodes
795  */
796 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
797 		     int *slot)
798 {
799 	if (btrfs_header_level(eb) == 0)
800 		return generic_bin_search(eb,
801 					  offsetof(struct btrfs_leaf, items),
802 					  sizeof(struct btrfs_item), key, slot);
803 	else
804 		return generic_bin_search(eb,
805 					  offsetof(struct btrfs_node, ptrs),
806 					  sizeof(struct btrfs_key_ptr), key, slot);
807 }
808 
809 static void root_add_used(struct btrfs_root *root, u32 size)
810 {
811 	spin_lock(&root->accounting_lock);
812 	btrfs_set_root_used(&root->root_item,
813 			    btrfs_root_used(&root->root_item) + size);
814 	spin_unlock(&root->accounting_lock);
815 }
816 
817 static void root_sub_used(struct btrfs_root *root, u32 size)
818 {
819 	spin_lock(&root->accounting_lock);
820 	btrfs_set_root_used(&root->root_item,
821 			    btrfs_root_used(&root->root_item) - size);
822 	spin_unlock(&root->accounting_lock);
823 }
824 
825 /* given a node and slot number, this reads the blocks it points to.  The
826  * extent buffer is returned with a reference taken (but unlocked).
827  */
828 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
829 					   int slot)
830 {
831 	int level = btrfs_header_level(parent);
832 	struct extent_buffer *eb;
833 	struct btrfs_key first_key;
834 
835 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
836 		return ERR_PTR(-ENOENT);
837 
838 	BUG_ON(level == 0);
839 
840 	btrfs_node_key_to_cpu(parent, &first_key, slot);
841 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
842 			     btrfs_header_owner(parent),
843 			     btrfs_node_ptr_generation(parent, slot),
844 			     level - 1, &first_key);
845 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
846 		free_extent_buffer(eb);
847 		eb = ERR_PTR(-EIO);
848 	}
849 
850 	return eb;
851 }
852 
853 /*
854  * node level balancing, used to make sure nodes are in proper order for
855  * item deletion.  We balance from the top down, so we have to make sure
856  * that a deletion won't leave an node completely empty later on.
857  */
858 static noinline int balance_level(struct btrfs_trans_handle *trans,
859 			 struct btrfs_root *root,
860 			 struct btrfs_path *path, int level)
861 {
862 	struct btrfs_fs_info *fs_info = root->fs_info;
863 	struct extent_buffer *right = NULL;
864 	struct extent_buffer *mid;
865 	struct extent_buffer *left = NULL;
866 	struct extent_buffer *parent = NULL;
867 	int ret = 0;
868 	int wret;
869 	int pslot;
870 	int orig_slot = path->slots[level];
871 	u64 orig_ptr;
872 
873 	ASSERT(level > 0);
874 
875 	mid = path->nodes[level];
876 
877 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
878 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
879 
880 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
881 
882 	if (level < BTRFS_MAX_LEVEL - 1) {
883 		parent = path->nodes[level + 1];
884 		pslot = path->slots[level + 1];
885 	}
886 
887 	/*
888 	 * deal with the case where there is only one pointer in the root
889 	 * by promoting the node below to a root
890 	 */
891 	if (!parent) {
892 		struct extent_buffer *child;
893 
894 		if (btrfs_header_nritems(mid) != 1)
895 			return 0;
896 
897 		/* promote the child to a root */
898 		child = btrfs_read_node_slot(mid, 0);
899 		if (IS_ERR(child)) {
900 			ret = PTR_ERR(child);
901 			btrfs_handle_fs_error(fs_info, ret, NULL);
902 			goto enospc;
903 		}
904 
905 		btrfs_tree_lock(child);
906 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
907 				      BTRFS_NESTING_COW);
908 		if (ret) {
909 			btrfs_tree_unlock(child);
910 			free_extent_buffer(child);
911 			goto enospc;
912 		}
913 
914 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
915 		BUG_ON(ret < 0);
916 		rcu_assign_pointer(root->node, child);
917 
918 		add_root_to_dirty_list(root);
919 		btrfs_tree_unlock(child);
920 
921 		path->locks[level] = 0;
922 		path->nodes[level] = NULL;
923 		btrfs_clean_tree_block(mid);
924 		btrfs_tree_unlock(mid);
925 		/* once for the path */
926 		free_extent_buffer(mid);
927 
928 		root_sub_used(root, mid->len);
929 		btrfs_free_tree_block(trans, root, mid, 0, 1);
930 		/* once for the root ptr */
931 		free_extent_buffer_stale(mid);
932 		return 0;
933 	}
934 	if (btrfs_header_nritems(mid) >
935 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
936 		return 0;
937 
938 	left = btrfs_read_node_slot(parent, pslot - 1);
939 	if (IS_ERR(left))
940 		left = NULL;
941 
942 	if (left) {
943 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
944 		wret = btrfs_cow_block(trans, root, left,
945 				       parent, pslot - 1, &left,
946 				       BTRFS_NESTING_LEFT_COW);
947 		if (wret) {
948 			ret = wret;
949 			goto enospc;
950 		}
951 	}
952 
953 	right = btrfs_read_node_slot(parent, pslot + 1);
954 	if (IS_ERR(right))
955 		right = NULL;
956 
957 	if (right) {
958 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
959 		wret = btrfs_cow_block(trans, root, right,
960 				       parent, pslot + 1, &right,
961 				       BTRFS_NESTING_RIGHT_COW);
962 		if (wret) {
963 			ret = wret;
964 			goto enospc;
965 		}
966 	}
967 
968 	/* first, try to make some room in the middle buffer */
969 	if (left) {
970 		orig_slot += btrfs_header_nritems(left);
971 		wret = push_node_left(trans, left, mid, 1);
972 		if (wret < 0)
973 			ret = wret;
974 	}
975 
976 	/*
977 	 * then try to empty the right most buffer into the middle
978 	 */
979 	if (right) {
980 		wret = push_node_left(trans, mid, right, 1);
981 		if (wret < 0 && wret != -ENOSPC)
982 			ret = wret;
983 		if (btrfs_header_nritems(right) == 0) {
984 			btrfs_clean_tree_block(right);
985 			btrfs_tree_unlock(right);
986 			del_ptr(root, path, level + 1, pslot + 1);
987 			root_sub_used(root, right->len);
988 			btrfs_free_tree_block(trans, root, right, 0, 1);
989 			free_extent_buffer_stale(right);
990 			right = NULL;
991 		} else {
992 			struct btrfs_disk_key right_key;
993 			btrfs_node_key(right, &right_key, 0);
994 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
995 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
996 			BUG_ON(ret < 0);
997 			btrfs_set_node_key(parent, &right_key, pslot + 1);
998 			btrfs_mark_buffer_dirty(parent);
999 		}
1000 	}
1001 	if (btrfs_header_nritems(mid) == 1) {
1002 		/*
1003 		 * we're not allowed to leave a node with one item in the
1004 		 * tree during a delete.  A deletion from lower in the tree
1005 		 * could try to delete the only pointer in this node.
1006 		 * So, pull some keys from the left.
1007 		 * There has to be a left pointer at this point because
1008 		 * otherwise we would have pulled some pointers from the
1009 		 * right
1010 		 */
1011 		if (!left) {
1012 			ret = -EROFS;
1013 			btrfs_handle_fs_error(fs_info, ret, NULL);
1014 			goto enospc;
1015 		}
1016 		wret = balance_node_right(trans, mid, left);
1017 		if (wret < 0) {
1018 			ret = wret;
1019 			goto enospc;
1020 		}
1021 		if (wret == 1) {
1022 			wret = push_node_left(trans, left, mid, 1);
1023 			if (wret < 0)
1024 				ret = wret;
1025 		}
1026 		BUG_ON(wret == 1);
1027 	}
1028 	if (btrfs_header_nritems(mid) == 0) {
1029 		btrfs_clean_tree_block(mid);
1030 		btrfs_tree_unlock(mid);
1031 		del_ptr(root, path, level + 1, pslot);
1032 		root_sub_used(root, mid->len);
1033 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1034 		free_extent_buffer_stale(mid);
1035 		mid = NULL;
1036 	} else {
1037 		/* update the parent key to reflect our changes */
1038 		struct btrfs_disk_key mid_key;
1039 		btrfs_node_key(mid, &mid_key, 0);
1040 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1041 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1042 		BUG_ON(ret < 0);
1043 		btrfs_set_node_key(parent, &mid_key, pslot);
1044 		btrfs_mark_buffer_dirty(parent);
1045 	}
1046 
1047 	/* update the path */
1048 	if (left) {
1049 		if (btrfs_header_nritems(left) > orig_slot) {
1050 			atomic_inc(&left->refs);
1051 			/* left was locked after cow */
1052 			path->nodes[level] = left;
1053 			path->slots[level + 1] -= 1;
1054 			path->slots[level] = orig_slot;
1055 			if (mid) {
1056 				btrfs_tree_unlock(mid);
1057 				free_extent_buffer(mid);
1058 			}
1059 		} else {
1060 			orig_slot -= btrfs_header_nritems(left);
1061 			path->slots[level] = orig_slot;
1062 		}
1063 	}
1064 	/* double check we haven't messed things up */
1065 	if (orig_ptr !=
1066 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1067 		BUG();
1068 enospc:
1069 	if (right) {
1070 		btrfs_tree_unlock(right);
1071 		free_extent_buffer(right);
1072 	}
1073 	if (left) {
1074 		if (path->nodes[level] != left)
1075 			btrfs_tree_unlock(left);
1076 		free_extent_buffer(left);
1077 	}
1078 	return ret;
1079 }
1080 
1081 /* Node balancing for insertion.  Here we only split or push nodes around
1082  * when they are completely full.  This is also done top down, so we
1083  * have to be pessimistic.
1084  */
1085 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1086 					  struct btrfs_root *root,
1087 					  struct btrfs_path *path, int level)
1088 {
1089 	struct btrfs_fs_info *fs_info = root->fs_info;
1090 	struct extent_buffer *right = NULL;
1091 	struct extent_buffer *mid;
1092 	struct extent_buffer *left = NULL;
1093 	struct extent_buffer *parent = NULL;
1094 	int ret = 0;
1095 	int wret;
1096 	int pslot;
1097 	int orig_slot = path->slots[level];
1098 
1099 	if (level == 0)
1100 		return 1;
1101 
1102 	mid = path->nodes[level];
1103 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1104 
1105 	if (level < BTRFS_MAX_LEVEL - 1) {
1106 		parent = path->nodes[level + 1];
1107 		pslot = path->slots[level + 1];
1108 	}
1109 
1110 	if (!parent)
1111 		return 1;
1112 
1113 	left = btrfs_read_node_slot(parent, pslot - 1);
1114 	if (IS_ERR(left))
1115 		left = NULL;
1116 
1117 	/* first, try to make some room in the middle buffer */
1118 	if (left) {
1119 		u32 left_nr;
1120 
1121 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1122 
1123 		left_nr = btrfs_header_nritems(left);
1124 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1125 			wret = 1;
1126 		} else {
1127 			ret = btrfs_cow_block(trans, root, left, parent,
1128 					      pslot - 1, &left,
1129 					      BTRFS_NESTING_LEFT_COW);
1130 			if (ret)
1131 				wret = 1;
1132 			else {
1133 				wret = push_node_left(trans, left, mid, 0);
1134 			}
1135 		}
1136 		if (wret < 0)
1137 			ret = wret;
1138 		if (wret == 0) {
1139 			struct btrfs_disk_key disk_key;
1140 			orig_slot += left_nr;
1141 			btrfs_node_key(mid, &disk_key, 0);
1142 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1143 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1144 			BUG_ON(ret < 0);
1145 			btrfs_set_node_key(parent, &disk_key, pslot);
1146 			btrfs_mark_buffer_dirty(parent);
1147 			if (btrfs_header_nritems(left) > orig_slot) {
1148 				path->nodes[level] = left;
1149 				path->slots[level + 1] -= 1;
1150 				path->slots[level] = orig_slot;
1151 				btrfs_tree_unlock(mid);
1152 				free_extent_buffer(mid);
1153 			} else {
1154 				orig_slot -=
1155 					btrfs_header_nritems(left);
1156 				path->slots[level] = orig_slot;
1157 				btrfs_tree_unlock(left);
1158 				free_extent_buffer(left);
1159 			}
1160 			return 0;
1161 		}
1162 		btrfs_tree_unlock(left);
1163 		free_extent_buffer(left);
1164 	}
1165 	right = btrfs_read_node_slot(parent, pslot + 1);
1166 	if (IS_ERR(right))
1167 		right = NULL;
1168 
1169 	/*
1170 	 * then try to empty the right most buffer into the middle
1171 	 */
1172 	if (right) {
1173 		u32 right_nr;
1174 
1175 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1176 
1177 		right_nr = btrfs_header_nritems(right);
1178 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1179 			wret = 1;
1180 		} else {
1181 			ret = btrfs_cow_block(trans, root, right,
1182 					      parent, pslot + 1,
1183 					      &right, BTRFS_NESTING_RIGHT_COW);
1184 			if (ret)
1185 				wret = 1;
1186 			else {
1187 				wret = balance_node_right(trans, right, mid);
1188 			}
1189 		}
1190 		if (wret < 0)
1191 			ret = wret;
1192 		if (wret == 0) {
1193 			struct btrfs_disk_key disk_key;
1194 
1195 			btrfs_node_key(right, &disk_key, 0);
1196 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1197 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1198 			BUG_ON(ret < 0);
1199 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1200 			btrfs_mark_buffer_dirty(parent);
1201 
1202 			if (btrfs_header_nritems(mid) <= orig_slot) {
1203 				path->nodes[level] = right;
1204 				path->slots[level + 1] += 1;
1205 				path->slots[level] = orig_slot -
1206 					btrfs_header_nritems(mid);
1207 				btrfs_tree_unlock(mid);
1208 				free_extent_buffer(mid);
1209 			} else {
1210 				btrfs_tree_unlock(right);
1211 				free_extent_buffer(right);
1212 			}
1213 			return 0;
1214 		}
1215 		btrfs_tree_unlock(right);
1216 		free_extent_buffer(right);
1217 	}
1218 	return 1;
1219 }
1220 
1221 /*
1222  * readahead one full node of leaves, finding things that are close
1223  * to the block in 'slot', and triggering ra on them.
1224  */
1225 static void reada_for_search(struct btrfs_fs_info *fs_info,
1226 			     struct btrfs_path *path,
1227 			     int level, int slot, u64 objectid)
1228 {
1229 	struct extent_buffer *node;
1230 	struct btrfs_disk_key disk_key;
1231 	u32 nritems;
1232 	u64 search;
1233 	u64 target;
1234 	u64 nread = 0;
1235 	u64 nread_max;
1236 	u32 nr;
1237 	u32 blocksize;
1238 	u32 nscan = 0;
1239 
1240 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1241 		return;
1242 
1243 	if (!path->nodes[level])
1244 		return;
1245 
1246 	node = path->nodes[level];
1247 
1248 	/*
1249 	 * Since the time between visiting leaves is much shorter than the time
1250 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1251 	 * much IO at once (possibly random).
1252 	 */
1253 	if (path->reada == READA_FORWARD_ALWAYS) {
1254 		if (level > 1)
1255 			nread_max = node->fs_info->nodesize;
1256 		else
1257 			nread_max = SZ_128K;
1258 	} else {
1259 		nread_max = SZ_64K;
1260 	}
1261 
1262 	search = btrfs_node_blockptr(node, slot);
1263 	blocksize = fs_info->nodesize;
1264 	if (path->reada != READA_FORWARD_ALWAYS) {
1265 		struct extent_buffer *eb;
1266 
1267 		eb = find_extent_buffer(fs_info, search);
1268 		if (eb) {
1269 			free_extent_buffer(eb);
1270 			return;
1271 		}
1272 	}
1273 
1274 	target = search;
1275 
1276 	nritems = btrfs_header_nritems(node);
1277 	nr = slot;
1278 
1279 	while (1) {
1280 		if (path->reada == READA_BACK) {
1281 			if (nr == 0)
1282 				break;
1283 			nr--;
1284 		} else if (path->reada == READA_FORWARD ||
1285 			   path->reada == READA_FORWARD_ALWAYS) {
1286 			nr++;
1287 			if (nr >= nritems)
1288 				break;
1289 		}
1290 		if (path->reada == READA_BACK && objectid) {
1291 			btrfs_node_key(node, &disk_key, nr);
1292 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1293 				break;
1294 		}
1295 		search = btrfs_node_blockptr(node, nr);
1296 		if (path->reada == READA_FORWARD_ALWAYS ||
1297 		    (search <= target && target - search <= 65536) ||
1298 		    (search > target && search - target <= 65536)) {
1299 			btrfs_readahead_node_child(node, nr);
1300 			nread += blocksize;
1301 		}
1302 		nscan++;
1303 		if (nread > nread_max || nscan > 32)
1304 			break;
1305 	}
1306 }
1307 
1308 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1309 {
1310 	struct extent_buffer *parent;
1311 	int slot;
1312 	int nritems;
1313 
1314 	parent = path->nodes[level + 1];
1315 	if (!parent)
1316 		return;
1317 
1318 	nritems = btrfs_header_nritems(parent);
1319 	slot = path->slots[level + 1];
1320 
1321 	if (slot > 0)
1322 		btrfs_readahead_node_child(parent, slot - 1);
1323 	if (slot + 1 < nritems)
1324 		btrfs_readahead_node_child(parent, slot + 1);
1325 }
1326 
1327 
1328 /*
1329  * when we walk down the tree, it is usually safe to unlock the higher layers
1330  * in the tree.  The exceptions are when our path goes through slot 0, because
1331  * operations on the tree might require changing key pointers higher up in the
1332  * tree.
1333  *
1334  * callers might also have set path->keep_locks, which tells this code to keep
1335  * the lock if the path points to the last slot in the block.  This is part of
1336  * walking through the tree, and selecting the next slot in the higher block.
1337  *
1338  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1339  * if lowest_unlock is 1, level 0 won't be unlocked
1340  */
1341 static noinline void unlock_up(struct btrfs_path *path, int level,
1342 			       int lowest_unlock, int min_write_lock_level,
1343 			       int *write_lock_level)
1344 {
1345 	int i;
1346 	int skip_level = level;
1347 	int no_skips = 0;
1348 	struct extent_buffer *t;
1349 
1350 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1351 		if (!path->nodes[i])
1352 			break;
1353 		if (!path->locks[i])
1354 			break;
1355 		if (!no_skips && path->slots[i] == 0) {
1356 			skip_level = i + 1;
1357 			continue;
1358 		}
1359 		if (!no_skips && path->keep_locks) {
1360 			u32 nritems;
1361 			t = path->nodes[i];
1362 			nritems = btrfs_header_nritems(t);
1363 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1364 				skip_level = i + 1;
1365 				continue;
1366 			}
1367 		}
1368 		if (skip_level < i && i >= lowest_unlock)
1369 			no_skips = 1;
1370 
1371 		t = path->nodes[i];
1372 		if (i >= lowest_unlock && i > skip_level) {
1373 			btrfs_tree_unlock_rw(t, path->locks[i]);
1374 			path->locks[i] = 0;
1375 			if (write_lock_level &&
1376 			    i > min_write_lock_level &&
1377 			    i <= *write_lock_level) {
1378 				*write_lock_level = i - 1;
1379 			}
1380 		}
1381 	}
1382 }
1383 
1384 /*
1385  * helper function for btrfs_search_slot.  The goal is to find a block
1386  * in cache without setting the path to blocking.  If we find the block
1387  * we return zero and the path is unchanged.
1388  *
1389  * If we can't find the block, we set the path blocking and do some
1390  * reada.  -EAGAIN is returned and the search must be repeated.
1391  */
1392 static int
1393 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1394 		      struct extent_buffer **eb_ret, int level, int slot,
1395 		      const struct btrfs_key *key)
1396 {
1397 	struct btrfs_fs_info *fs_info = root->fs_info;
1398 	u64 blocknr;
1399 	u64 gen;
1400 	struct extent_buffer *tmp;
1401 	struct btrfs_key first_key;
1402 	int ret;
1403 	int parent_level;
1404 
1405 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1406 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1407 	parent_level = btrfs_header_level(*eb_ret);
1408 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1409 
1410 	tmp = find_extent_buffer(fs_info, blocknr);
1411 	if (tmp) {
1412 		if (p->reada == READA_FORWARD_ALWAYS)
1413 			reada_for_search(fs_info, p, level, slot, key->objectid);
1414 
1415 		/* first we do an atomic uptodate check */
1416 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1417 			/*
1418 			 * Do extra check for first_key, eb can be stale due to
1419 			 * being cached, read from scrub, or have multiple
1420 			 * parents (shared tree blocks).
1421 			 */
1422 			if (btrfs_verify_level_key(tmp,
1423 					parent_level - 1, &first_key, gen)) {
1424 				free_extent_buffer(tmp);
1425 				return -EUCLEAN;
1426 			}
1427 			*eb_ret = tmp;
1428 			return 0;
1429 		}
1430 
1431 		/* now we're allowed to do a blocking uptodate check */
1432 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1433 		if (!ret) {
1434 			*eb_ret = tmp;
1435 			return 0;
1436 		}
1437 		free_extent_buffer(tmp);
1438 		btrfs_release_path(p);
1439 		return -EIO;
1440 	}
1441 
1442 	/*
1443 	 * reduce lock contention at high levels
1444 	 * of the btree by dropping locks before
1445 	 * we read.  Don't release the lock on the current
1446 	 * level because we need to walk this node to figure
1447 	 * out which blocks to read.
1448 	 */
1449 	btrfs_unlock_up_safe(p, level + 1);
1450 
1451 	if (p->reada != READA_NONE)
1452 		reada_for_search(fs_info, p, level, slot, key->objectid);
1453 
1454 	ret = -EAGAIN;
1455 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1456 			      gen, parent_level - 1, &first_key);
1457 	if (!IS_ERR(tmp)) {
1458 		/*
1459 		 * If the read above didn't mark this buffer up to date,
1460 		 * it will never end up being up to date.  Set ret to EIO now
1461 		 * and give up so that our caller doesn't loop forever
1462 		 * on our EAGAINs.
1463 		 */
1464 		if (!extent_buffer_uptodate(tmp))
1465 			ret = -EIO;
1466 		free_extent_buffer(tmp);
1467 	} else {
1468 		ret = PTR_ERR(tmp);
1469 	}
1470 
1471 	btrfs_release_path(p);
1472 	return ret;
1473 }
1474 
1475 /*
1476  * helper function for btrfs_search_slot.  This does all of the checks
1477  * for node-level blocks and does any balancing required based on
1478  * the ins_len.
1479  *
1480  * If no extra work was required, zero is returned.  If we had to
1481  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1482  * start over
1483  */
1484 static int
1485 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1486 		       struct btrfs_root *root, struct btrfs_path *p,
1487 		       struct extent_buffer *b, int level, int ins_len,
1488 		       int *write_lock_level)
1489 {
1490 	struct btrfs_fs_info *fs_info = root->fs_info;
1491 	int ret = 0;
1492 
1493 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1494 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1495 
1496 		if (*write_lock_level < level + 1) {
1497 			*write_lock_level = level + 1;
1498 			btrfs_release_path(p);
1499 			return -EAGAIN;
1500 		}
1501 
1502 		reada_for_balance(p, level);
1503 		ret = split_node(trans, root, p, level);
1504 
1505 		b = p->nodes[level];
1506 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1507 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1508 
1509 		if (*write_lock_level < level + 1) {
1510 			*write_lock_level = level + 1;
1511 			btrfs_release_path(p);
1512 			return -EAGAIN;
1513 		}
1514 
1515 		reada_for_balance(p, level);
1516 		ret = balance_level(trans, root, p, level);
1517 		if (ret)
1518 			return ret;
1519 
1520 		b = p->nodes[level];
1521 		if (!b) {
1522 			btrfs_release_path(p);
1523 			return -EAGAIN;
1524 		}
1525 		BUG_ON(btrfs_header_nritems(b) == 1);
1526 	}
1527 	return ret;
1528 }
1529 
1530 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1531 		u64 iobjectid, u64 ioff, u8 key_type,
1532 		struct btrfs_key *found_key)
1533 {
1534 	int ret;
1535 	struct btrfs_key key;
1536 	struct extent_buffer *eb;
1537 
1538 	ASSERT(path);
1539 	ASSERT(found_key);
1540 
1541 	key.type = key_type;
1542 	key.objectid = iobjectid;
1543 	key.offset = ioff;
1544 
1545 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1546 	if (ret < 0)
1547 		return ret;
1548 
1549 	eb = path->nodes[0];
1550 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1551 		ret = btrfs_next_leaf(fs_root, path);
1552 		if (ret)
1553 			return ret;
1554 		eb = path->nodes[0];
1555 	}
1556 
1557 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1558 	if (found_key->type != key.type ||
1559 			found_key->objectid != key.objectid)
1560 		return 1;
1561 
1562 	return 0;
1563 }
1564 
1565 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1566 							struct btrfs_path *p,
1567 							int write_lock_level)
1568 {
1569 	struct btrfs_fs_info *fs_info = root->fs_info;
1570 	struct extent_buffer *b;
1571 	int root_lock;
1572 	int level = 0;
1573 
1574 	/* We try very hard to do read locks on the root */
1575 	root_lock = BTRFS_READ_LOCK;
1576 
1577 	if (p->search_commit_root) {
1578 		/*
1579 		 * The commit roots are read only so we always do read locks,
1580 		 * and we always must hold the commit_root_sem when doing
1581 		 * searches on them, the only exception is send where we don't
1582 		 * want to block transaction commits for a long time, so
1583 		 * we need to clone the commit root in order to avoid races
1584 		 * with transaction commits that create a snapshot of one of
1585 		 * the roots used by a send operation.
1586 		 */
1587 		if (p->need_commit_sem) {
1588 			down_read(&fs_info->commit_root_sem);
1589 			b = btrfs_clone_extent_buffer(root->commit_root);
1590 			up_read(&fs_info->commit_root_sem);
1591 			if (!b)
1592 				return ERR_PTR(-ENOMEM);
1593 
1594 		} else {
1595 			b = root->commit_root;
1596 			atomic_inc(&b->refs);
1597 		}
1598 		level = btrfs_header_level(b);
1599 		/*
1600 		 * Ensure that all callers have set skip_locking when
1601 		 * p->search_commit_root = 1.
1602 		 */
1603 		ASSERT(p->skip_locking == 1);
1604 
1605 		goto out;
1606 	}
1607 
1608 	if (p->skip_locking) {
1609 		b = btrfs_root_node(root);
1610 		level = btrfs_header_level(b);
1611 		goto out;
1612 	}
1613 
1614 	/*
1615 	 * If the level is set to maximum, we can skip trying to get the read
1616 	 * lock.
1617 	 */
1618 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1619 		/*
1620 		 * We don't know the level of the root node until we actually
1621 		 * have it read locked
1622 		 */
1623 		b = btrfs_read_lock_root_node(root);
1624 		level = btrfs_header_level(b);
1625 		if (level > write_lock_level)
1626 			goto out;
1627 
1628 		/* Whoops, must trade for write lock */
1629 		btrfs_tree_read_unlock(b);
1630 		free_extent_buffer(b);
1631 	}
1632 
1633 	b = btrfs_lock_root_node(root);
1634 	root_lock = BTRFS_WRITE_LOCK;
1635 
1636 	/* The level might have changed, check again */
1637 	level = btrfs_header_level(b);
1638 
1639 out:
1640 	p->nodes[level] = b;
1641 	if (!p->skip_locking)
1642 		p->locks[level] = root_lock;
1643 	/*
1644 	 * Callers are responsible for dropping b's references.
1645 	 */
1646 	return b;
1647 }
1648 
1649 
1650 /*
1651  * btrfs_search_slot - look for a key in a tree and perform necessary
1652  * modifications to preserve tree invariants.
1653  *
1654  * @trans:	Handle of transaction, used when modifying the tree
1655  * @p:		Holds all btree nodes along the search path
1656  * @root:	The root node of the tree
1657  * @key:	The key we are looking for
1658  * @ins_len:	Indicates purpose of search:
1659  *              >0  for inserts it's size of item inserted (*)
1660  *              <0  for deletions
1661  *               0  for plain searches, not modifying the tree
1662  *
1663  *              (*) If size of item inserted doesn't include
1664  *              sizeof(struct btrfs_item), then p->search_for_extension must
1665  *              be set.
1666  * @cow:	boolean should CoW operations be performed. Must always be 1
1667  *		when modifying the tree.
1668  *
1669  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1670  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1671  *
1672  * If @key is found, 0 is returned and you can find the item in the leaf level
1673  * of the path (level 0)
1674  *
1675  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1676  * points to the slot where it should be inserted
1677  *
1678  * If an error is encountered while searching the tree a negative error number
1679  * is returned
1680  */
1681 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1682 		      const struct btrfs_key *key, struct btrfs_path *p,
1683 		      int ins_len, int cow)
1684 {
1685 	struct extent_buffer *b;
1686 	int slot;
1687 	int ret;
1688 	int err;
1689 	int level;
1690 	int lowest_unlock = 1;
1691 	/* everything at write_lock_level or lower must be write locked */
1692 	int write_lock_level = 0;
1693 	u8 lowest_level = 0;
1694 	int min_write_lock_level;
1695 	int prev_cmp;
1696 
1697 	lowest_level = p->lowest_level;
1698 	WARN_ON(lowest_level && ins_len > 0);
1699 	WARN_ON(p->nodes[0] != NULL);
1700 	BUG_ON(!cow && ins_len);
1701 
1702 	if (ins_len < 0) {
1703 		lowest_unlock = 2;
1704 
1705 		/* when we are removing items, we might have to go up to level
1706 		 * two as we update tree pointers  Make sure we keep write
1707 		 * for those levels as well
1708 		 */
1709 		write_lock_level = 2;
1710 	} else if (ins_len > 0) {
1711 		/*
1712 		 * for inserting items, make sure we have a write lock on
1713 		 * level 1 so we can update keys
1714 		 */
1715 		write_lock_level = 1;
1716 	}
1717 
1718 	if (!cow)
1719 		write_lock_level = -1;
1720 
1721 	if (cow && (p->keep_locks || p->lowest_level))
1722 		write_lock_level = BTRFS_MAX_LEVEL;
1723 
1724 	min_write_lock_level = write_lock_level;
1725 
1726 again:
1727 	prev_cmp = -1;
1728 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
1729 	if (IS_ERR(b)) {
1730 		ret = PTR_ERR(b);
1731 		goto done;
1732 	}
1733 
1734 	while (b) {
1735 		int dec = 0;
1736 
1737 		level = btrfs_header_level(b);
1738 
1739 		if (cow) {
1740 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1741 
1742 			/*
1743 			 * if we don't really need to cow this block
1744 			 * then we don't want to set the path blocking,
1745 			 * so we test it here
1746 			 */
1747 			if (!should_cow_block(trans, root, b))
1748 				goto cow_done;
1749 
1750 			/*
1751 			 * must have write locks on this node and the
1752 			 * parent
1753 			 */
1754 			if (level > write_lock_level ||
1755 			    (level + 1 > write_lock_level &&
1756 			    level + 1 < BTRFS_MAX_LEVEL &&
1757 			    p->nodes[level + 1])) {
1758 				write_lock_level = level + 1;
1759 				btrfs_release_path(p);
1760 				goto again;
1761 			}
1762 
1763 			if (last_level)
1764 				err = btrfs_cow_block(trans, root, b, NULL, 0,
1765 						      &b,
1766 						      BTRFS_NESTING_COW);
1767 			else
1768 				err = btrfs_cow_block(trans, root, b,
1769 						      p->nodes[level + 1],
1770 						      p->slots[level + 1], &b,
1771 						      BTRFS_NESTING_COW);
1772 			if (err) {
1773 				ret = err;
1774 				goto done;
1775 			}
1776 		}
1777 cow_done:
1778 		p->nodes[level] = b;
1779 		/*
1780 		 * Leave path with blocking locks to avoid massive
1781 		 * lock context switch, this is made on purpose.
1782 		 */
1783 
1784 		/*
1785 		 * we have a lock on b and as long as we aren't changing
1786 		 * the tree, there is no way to for the items in b to change.
1787 		 * It is safe to drop the lock on our parent before we
1788 		 * go through the expensive btree search on b.
1789 		 *
1790 		 * If we're inserting or deleting (ins_len != 0), then we might
1791 		 * be changing slot zero, which may require changing the parent.
1792 		 * So, we can't drop the lock until after we know which slot
1793 		 * we're operating on.
1794 		 */
1795 		if (!ins_len && !p->keep_locks) {
1796 			int u = level + 1;
1797 
1798 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1799 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1800 				p->locks[u] = 0;
1801 			}
1802 		}
1803 
1804 		/*
1805 		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
1806 		 * we can safely assume the target key will always be in slot 0
1807 		 * on lower levels due to the invariants BTRFS' btree provides,
1808 		 * namely that a btrfs_key_ptr entry always points to the
1809 		 * lowest key in the child node, thus we can skip searching
1810 		 * lower levels
1811 		 */
1812 		if (prev_cmp == 0) {
1813 			slot = 0;
1814 			ret = 0;
1815 		} else {
1816 			ret = btrfs_bin_search(b, key, &slot);
1817 			prev_cmp = ret;
1818 			if (ret < 0)
1819 				goto done;
1820 		}
1821 
1822 		if (level == 0) {
1823 			p->slots[level] = slot;
1824 			/*
1825 			 * Item key already exists. In this case, if we are
1826 			 * allowed to insert the item (for example, in dir_item
1827 			 * case, item key collision is allowed), it will be
1828 			 * merged with the original item. Only the item size
1829 			 * grows, no new btrfs item will be added. If
1830 			 * search_for_extension is not set, ins_len already
1831 			 * accounts the size btrfs_item, deduct it here so leaf
1832 			 * space check will be correct.
1833 			 */
1834 			if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
1835 				ASSERT(ins_len >= sizeof(struct btrfs_item));
1836 				ins_len -= sizeof(struct btrfs_item);
1837 			}
1838 			if (ins_len > 0 &&
1839 			    btrfs_leaf_free_space(b) < ins_len) {
1840 				if (write_lock_level < 1) {
1841 					write_lock_level = 1;
1842 					btrfs_release_path(p);
1843 					goto again;
1844 				}
1845 
1846 				err = split_leaf(trans, root, key,
1847 						 p, ins_len, ret == 0);
1848 
1849 				BUG_ON(err > 0);
1850 				if (err) {
1851 					ret = err;
1852 					goto done;
1853 				}
1854 			}
1855 			if (!p->search_for_split)
1856 				unlock_up(p, level, lowest_unlock,
1857 					  min_write_lock_level, NULL);
1858 			goto done;
1859 		}
1860 		if (ret && slot > 0) {
1861 			dec = 1;
1862 			slot--;
1863 		}
1864 		p->slots[level] = slot;
1865 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
1866 					     &write_lock_level);
1867 		if (err == -EAGAIN)
1868 			goto again;
1869 		if (err) {
1870 			ret = err;
1871 			goto done;
1872 		}
1873 		b = p->nodes[level];
1874 		slot = p->slots[level];
1875 
1876 		/*
1877 		 * Slot 0 is special, if we change the key we have to update
1878 		 * the parent pointer which means we must have a write lock on
1879 		 * the parent
1880 		 */
1881 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
1882 			write_lock_level = level + 1;
1883 			btrfs_release_path(p);
1884 			goto again;
1885 		}
1886 
1887 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
1888 			  &write_lock_level);
1889 
1890 		if (level == lowest_level) {
1891 			if (dec)
1892 				p->slots[level]++;
1893 			goto done;
1894 		}
1895 
1896 		err = read_block_for_search(root, p, &b, level, slot, key);
1897 		if (err == -EAGAIN)
1898 			goto again;
1899 		if (err) {
1900 			ret = err;
1901 			goto done;
1902 		}
1903 
1904 		if (!p->skip_locking) {
1905 			level = btrfs_header_level(b);
1906 			if (level <= write_lock_level) {
1907 				btrfs_tree_lock(b);
1908 				p->locks[level] = BTRFS_WRITE_LOCK;
1909 			} else {
1910 				btrfs_tree_read_lock(b);
1911 				p->locks[level] = BTRFS_READ_LOCK;
1912 			}
1913 			p->nodes[level] = b;
1914 		}
1915 	}
1916 	ret = 1;
1917 done:
1918 	if (ret < 0 && !p->skip_release_on_error)
1919 		btrfs_release_path(p);
1920 	return ret;
1921 }
1922 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
1923 
1924 /*
1925  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
1926  * current state of the tree together with the operations recorded in the tree
1927  * modification log to search for the key in a previous version of this tree, as
1928  * denoted by the time_seq parameter.
1929  *
1930  * Naturally, there is no support for insert, delete or cow operations.
1931  *
1932  * The resulting path and return value will be set up as if we called
1933  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
1934  */
1935 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
1936 			  struct btrfs_path *p, u64 time_seq)
1937 {
1938 	struct btrfs_fs_info *fs_info = root->fs_info;
1939 	struct extent_buffer *b;
1940 	int slot;
1941 	int ret;
1942 	int err;
1943 	int level;
1944 	int lowest_unlock = 1;
1945 	u8 lowest_level = 0;
1946 
1947 	lowest_level = p->lowest_level;
1948 	WARN_ON(p->nodes[0] != NULL);
1949 
1950 	if (p->search_commit_root) {
1951 		BUG_ON(time_seq);
1952 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
1953 	}
1954 
1955 again:
1956 	b = btrfs_get_old_root(root, time_seq);
1957 	if (!b) {
1958 		ret = -EIO;
1959 		goto done;
1960 	}
1961 	level = btrfs_header_level(b);
1962 	p->locks[level] = BTRFS_READ_LOCK;
1963 
1964 	while (b) {
1965 		int dec = 0;
1966 
1967 		level = btrfs_header_level(b);
1968 		p->nodes[level] = b;
1969 
1970 		/*
1971 		 * we have a lock on b and as long as we aren't changing
1972 		 * the tree, there is no way to for the items in b to change.
1973 		 * It is safe to drop the lock on our parent before we
1974 		 * go through the expensive btree search on b.
1975 		 */
1976 		btrfs_unlock_up_safe(p, level + 1);
1977 
1978 		ret = btrfs_bin_search(b, key, &slot);
1979 		if (ret < 0)
1980 			goto done;
1981 
1982 		if (level == 0) {
1983 			p->slots[level] = slot;
1984 			unlock_up(p, level, lowest_unlock, 0, NULL);
1985 			goto done;
1986 		}
1987 
1988 		if (ret && slot > 0) {
1989 			dec = 1;
1990 			slot--;
1991 		}
1992 		p->slots[level] = slot;
1993 		unlock_up(p, level, lowest_unlock, 0, NULL);
1994 
1995 		if (level == lowest_level) {
1996 			if (dec)
1997 				p->slots[level]++;
1998 			goto done;
1999 		}
2000 
2001 		err = read_block_for_search(root, p, &b, level, slot, key);
2002 		if (err == -EAGAIN)
2003 			goto again;
2004 		if (err) {
2005 			ret = err;
2006 			goto done;
2007 		}
2008 
2009 		level = btrfs_header_level(b);
2010 		btrfs_tree_read_lock(b);
2011 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2012 		if (!b) {
2013 			ret = -ENOMEM;
2014 			goto done;
2015 		}
2016 		p->locks[level] = BTRFS_READ_LOCK;
2017 		p->nodes[level] = b;
2018 	}
2019 	ret = 1;
2020 done:
2021 	if (ret < 0)
2022 		btrfs_release_path(p);
2023 
2024 	return ret;
2025 }
2026 
2027 /*
2028  * helper to use instead of search slot if no exact match is needed but
2029  * instead the next or previous item should be returned.
2030  * When find_higher is true, the next higher item is returned, the next lower
2031  * otherwise.
2032  * When return_any and find_higher are both true, and no higher item is found,
2033  * return the next lower instead.
2034  * When return_any is true and find_higher is false, and no lower item is found,
2035  * return the next higher instead.
2036  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2037  * < 0 on error
2038  */
2039 int btrfs_search_slot_for_read(struct btrfs_root *root,
2040 			       const struct btrfs_key *key,
2041 			       struct btrfs_path *p, int find_higher,
2042 			       int return_any)
2043 {
2044 	int ret;
2045 	struct extent_buffer *leaf;
2046 
2047 again:
2048 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2049 	if (ret <= 0)
2050 		return ret;
2051 	/*
2052 	 * a return value of 1 means the path is at the position where the
2053 	 * item should be inserted. Normally this is the next bigger item,
2054 	 * but in case the previous item is the last in a leaf, path points
2055 	 * to the first free slot in the previous leaf, i.e. at an invalid
2056 	 * item.
2057 	 */
2058 	leaf = p->nodes[0];
2059 
2060 	if (find_higher) {
2061 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2062 			ret = btrfs_next_leaf(root, p);
2063 			if (ret <= 0)
2064 				return ret;
2065 			if (!return_any)
2066 				return 1;
2067 			/*
2068 			 * no higher item found, return the next
2069 			 * lower instead
2070 			 */
2071 			return_any = 0;
2072 			find_higher = 0;
2073 			btrfs_release_path(p);
2074 			goto again;
2075 		}
2076 	} else {
2077 		if (p->slots[0] == 0) {
2078 			ret = btrfs_prev_leaf(root, p);
2079 			if (ret < 0)
2080 				return ret;
2081 			if (!ret) {
2082 				leaf = p->nodes[0];
2083 				if (p->slots[0] == btrfs_header_nritems(leaf))
2084 					p->slots[0]--;
2085 				return 0;
2086 			}
2087 			if (!return_any)
2088 				return 1;
2089 			/*
2090 			 * no lower item found, return the next
2091 			 * higher instead
2092 			 */
2093 			return_any = 0;
2094 			find_higher = 1;
2095 			btrfs_release_path(p);
2096 			goto again;
2097 		} else {
2098 			--p->slots[0];
2099 		}
2100 	}
2101 	return 0;
2102 }
2103 
2104 /*
2105  * Execute search and call btrfs_previous_item to traverse backwards if the item
2106  * was not found.
2107  *
2108  * Return 0 if found, 1 if not found and < 0 if error.
2109  */
2110 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2111 			   struct btrfs_path *path)
2112 {
2113 	int ret;
2114 
2115 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2116 	if (ret > 0)
2117 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2118 
2119 	if (ret == 0)
2120 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2121 
2122 	return ret;
2123 }
2124 
2125 /*
2126  * adjust the pointers going up the tree, starting at level
2127  * making sure the right key of each node is points to 'key'.
2128  * This is used after shifting pointers to the left, so it stops
2129  * fixing up pointers when a given leaf/node is not in slot 0 of the
2130  * higher levels
2131  *
2132  */
2133 static void fixup_low_keys(struct btrfs_path *path,
2134 			   struct btrfs_disk_key *key, int level)
2135 {
2136 	int i;
2137 	struct extent_buffer *t;
2138 	int ret;
2139 
2140 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2141 		int tslot = path->slots[i];
2142 
2143 		if (!path->nodes[i])
2144 			break;
2145 		t = path->nodes[i];
2146 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2147 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2148 		BUG_ON(ret < 0);
2149 		btrfs_set_node_key(t, key, tslot);
2150 		btrfs_mark_buffer_dirty(path->nodes[i]);
2151 		if (tslot != 0)
2152 			break;
2153 	}
2154 }
2155 
2156 /*
2157  * update item key.
2158  *
2159  * This function isn't completely safe. It's the caller's responsibility
2160  * that the new key won't break the order
2161  */
2162 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2163 			     struct btrfs_path *path,
2164 			     const struct btrfs_key *new_key)
2165 {
2166 	struct btrfs_disk_key disk_key;
2167 	struct extent_buffer *eb;
2168 	int slot;
2169 
2170 	eb = path->nodes[0];
2171 	slot = path->slots[0];
2172 	if (slot > 0) {
2173 		btrfs_item_key(eb, &disk_key, slot - 1);
2174 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2175 			btrfs_crit(fs_info,
2176 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2177 				   slot, btrfs_disk_key_objectid(&disk_key),
2178 				   btrfs_disk_key_type(&disk_key),
2179 				   btrfs_disk_key_offset(&disk_key),
2180 				   new_key->objectid, new_key->type,
2181 				   new_key->offset);
2182 			btrfs_print_leaf(eb);
2183 			BUG();
2184 		}
2185 	}
2186 	if (slot < btrfs_header_nritems(eb) - 1) {
2187 		btrfs_item_key(eb, &disk_key, slot + 1);
2188 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2189 			btrfs_crit(fs_info,
2190 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2191 				   slot, btrfs_disk_key_objectid(&disk_key),
2192 				   btrfs_disk_key_type(&disk_key),
2193 				   btrfs_disk_key_offset(&disk_key),
2194 				   new_key->objectid, new_key->type,
2195 				   new_key->offset);
2196 			btrfs_print_leaf(eb);
2197 			BUG();
2198 		}
2199 	}
2200 
2201 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2202 	btrfs_set_item_key(eb, &disk_key, slot);
2203 	btrfs_mark_buffer_dirty(eb);
2204 	if (slot == 0)
2205 		fixup_low_keys(path, &disk_key, 1);
2206 }
2207 
2208 /*
2209  * Check key order of two sibling extent buffers.
2210  *
2211  * Return true if something is wrong.
2212  * Return false if everything is fine.
2213  *
2214  * Tree-checker only works inside one tree block, thus the following
2215  * corruption can not be detected by tree-checker:
2216  *
2217  * Leaf @left			| Leaf @right
2218  * --------------------------------------------------------------
2219  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2220  *
2221  * Key f6 in leaf @left itself is valid, but not valid when the next
2222  * key in leaf @right is 7.
2223  * This can only be checked at tree block merge time.
2224  * And since tree checker has ensured all key order in each tree block
2225  * is correct, we only need to bother the last key of @left and the first
2226  * key of @right.
2227  */
2228 static bool check_sibling_keys(struct extent_buffer *left,
2229 			       struct extent_buffer *right)
2230 {
2231 	struct btrfs_key left_last;
2232 	struct btrfs_key right_first;
2233 	int level = btrfs_header_level(left);
2234 	int nr_left = btrfs_header_nritems(left);
2235 	int nr_right = btrfs_header_nritems(right);
2236 
2237 	/* No key to check in one of the tree blocks */
2238 	if (!nr_left || !nr_right)
2239 		return false;
2240 
2241 	if (level) {
2242 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2243 		btrfs_node_key_to_cpu(right, &right_first, 0);
2244 	} else {
2245 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2246 		btrfs_item_key_to_cpu(right, &right_first, 0);
2247 	}
2248 
2249 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2250 		btrfs_crit(left->fs_info,
2251 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2252 			   left_last.objectid, left_last.type,
2253 			   left_last.offset, right_first.objectid,
2254 			   right_first.type, right_first.offset);
2255 		return true;
2256 	}
2257 	return false;
2258 }
2259 
2260 /*
2261  * try to push data from one node into the next node left in the
2262  * tree.
2263  *
2264  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2265  * error, and > 0 if there was no room in the left hand block.
2266  */
2267 static int push_node_left(struct btrfs_trans_handle *trans,
2268 			  struct extent_buffer *dst,
2269 			  struct extent_buffer *src, int empty)
2270 {
2271 	struct btrfs_fs_info *fs_info = trans->fs_info;
2272 	int push_items = 0;
2273 	int src_nritems;
2274 	int dst_nritems;
2275 	int ret = 0;
2276 
2277 	src_nritems = btrfs_header_nritems(src);
2278 	dst_nritems = btrfs_header_nritems(dst);
2279 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2280 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2281 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2282 
2283 	if (!empty && src_nritems <= 8)
2284 		return 1;
2285 
2286 	if (push_items <= 0)
2287 		return 1;
2288 
2289 	if (empty) {
2290 		push_items = min(src_nritems, push_items);
2291 		if (push_items < src_nritems) {
2292 			/* leave at least 8 pointers in the node if
2293 			 * we aren't going to empty it
2294 			 */
2295 			if (src_nritems - push_items < 8) {
2296 				if (push_items <= 8)
2297 					return 1;
2298 				push_items -= 8;
2299 			}
2300 		}
2301 	} else
2302 		push_items = min(src_nritems - 8, push_items);
2303 
2304 	/* dst is the left eb, src is the middle eb */
2305 	if (check_sibling_keys(dst, src)) {
2306 		ret = -EUCLEAN;
2307 		btrfs_abort_transaction(trans, ret);
2308 		return ret;
2309 	}
2310 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2311 	if (ret) {
2312 		btrfs_abort_transaction(trans, ret);
2313 		return ret;
2314 	}
2315 	copy_extent_buffer(dst, src,
2316 			   btrfs_node_key_ptr_offset(dst_nritems),
2317 			   btrfs_node_key_ptr_offset(0),
2318 			   push_items * sizeof(struct btrfs_key_ptr));
2319 
2320 	if (push_items < src_nritems) {
2321 		/*
2322 		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2323 		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2324 		 */
2325 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2326 				      btrfs_node_key_ptr_offset(push_items),
2327 				      (src_nritems - push_items) *
2328 				      sizeof(struct btrfs_key_ptr));
2329 	}
2330 	btrfs_set_header_nritems(src, src_nritems - push_items);
2331 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2332 	btrfs_mark_buffer_dirty(src);
2333 	btrfs_mark_buffer_dirty(dst);
2334 
2335 	return ret;
2336 }
2337 
2338 /*
2339  * try to push data from one node into the next node right in the
2340  * tree.
2341  *
2342  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2343  * error, and > 0 if there was no room in the right hand block.
2344  *
2345  * this will  only push up to 1/2 the contents of the left node over
2346  */
2347 static int balance_node_right(struct btrfs_trans_handle *trans,
2348 			      struct extent_buffer *dst,
2349 			      struct extent_buffer *src)
2350 {
2351 	struct btrfs_fs_info *fs_info = trans->fs_info;
2352 	int push_items = 0;
2353 	int max_push;
2354 	int src_nritems;
2355 	int dst_nritems;
2356 	int ret = 0;
2357 
2358 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2359 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2360 
2361 	src_nritems = btrfs_header_nritems(src);
2362 	dst_nritems = btrfs_header_nritems(dst);
2363 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2364 	if (push_items <= 0)
2365 		return 1;
2366 
2367 	if (src_nritems < 4)
2368 		return 1;
2369 
2370 	max_push = src_nritems / 2 + 1;
2371 	/* don't try to empty the node */
2372 	if (max_push >= src_nritems)
2373 		return 1;
2374 
2375 	if (max_push < push_items)
2376 		push_items = max_push;
2377 
2378 	/* dst is the right eb, src is the middle eb */
2379 	if (check_sibling_keys(src, dst)) {
2380 		ret = -EUCLEAN;
2381 		btrfs_abort_transaction(trans, ret);
2382 		return ret;
2383 	}
2384 	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2385 	BUG_ON(ret < 0);
2386 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2387 				      btrfs_node_key_ptr_offset(0),
2388 				      (dst_nritems) *
2389 				      sizeof(struct btrfs_key_ptr));
2390 
2391 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2392 					 push_items);
2393 	if (ret) {
2394 		btrfs_abort_transaction(trans, ret);
2395 		return ret;
2396 	}
2397 	copy_extent_buffer(dst, src,
2398 			   btrfs_node_key_ptr_offset(0),
2399 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2400 			   push_items * sizeof(struct btrfs_key_ptr));
2401 
2402 	btrfs_set_header_nritems(src, src_nritems - push_items);
2403 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2404 
2405 	btrfs_mark_buffer_dirty(src);
2406 	btrfs_mark_buffer_dirty(dst);
2407 
2408 	return ret;
2409 }
2410 
2411 /*
2412  * helper function to insert a new root level in the tree.
2413  * A new node is allocated, and a single item is inserted to
2414  * point to the existing root
2415  *
2416  * returns zero on success or < 0 on failure.
2417  */
2418 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2419 			   struct btrfs_root *root,
2420 			   struct btrfs_path *path, int level)
2421 {
2422 	struct btrfs_fs_info *fs_info = root->fs_info;
2423 	u64 lower_gen;
2424 	struct extent_buffer *lower;
2425 	struct extent_buffer *c;
2426 	struct extent_buffer *old;
2427 	struct btrfs_disk_key lower_key;
2428 	int ret;
2429 
2430 	BUG_ON(path->nodes[level]);
2431 	BUG_ON(path->nodes[level-1] != root->node);
2432 
2433 	lower = path->nodes[level-1];
2434 	if (level == 1)
2435 		btrfs_item_key(lower, &lower_key, 0);
2436 	else
2437 		btrfs_node_key(lower, &lower_key, 0);
2438 
2439 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2440 				   &lower_key, level, root->node->start, 0,
2441 				   BTRFS_NESTING_NEW_ROOT);
2442 	if (IS_ERR(c))
2443 		return PTR_ERR(c);
2444 
2445 	root_add_used(root, fs_info->nodesize);
2446 
2447 	btrfs_set_header_nritems(c, 1);
2448 	btrfs_set_node_key(c, &lower_key, 0);
2449 	btrfs_set_node_blockptr(c, 0, lower->start);
2450 	lower_gen = btrfs_header_generation(lower);
2451 	WARN_ON(lower_gen != trans->transid);
2452 
2453 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2454 
2455 	btrfs_mark_buffer_dirty(c);
2456 
2457 	old = root->node;
2458 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2459 	BUG_ON(ret < 0);
2460 	rcu_assign_pointer(root->node, c);
2461 
2462 	/* the super has an extra ref to root->node */
2463 	free_extent_buffer(old);
2464 
2465 	add_root_to_dirty_list(root);
2466 	atomic_inc(&c->refs);
2467 	path->nodes[level] = c;
2468 	path->locks[level] = BTRFS_WRITE_LOCK;
2469 	path->slots[level] = 0;
2470 	return 0;
2471 }
2472 
2473 /*
2474  * worker function to insert a single pointer in a node.
2475  * the node should have enough room for the pointer already
2476  *
2477  * slot and level indicate where you want the key to go, and
2478  * blocknr is the block the key points to.
2479  */
2480 static void insert_ptr(struct btrfs_trans_handle *trans,
2481 		       struct btrfs_path *path,
2482 		       struct btrfs_disk_key *key, u64 bytenr,
2483 		       int slot, int level)
2484 {
2485 	struct extent_buffer *lower;
2486 	int nritems;
2487 	int ret;
2488 
2489 	BUG_ON(!path->nodes[level]);
2490 	btrfs_assert_tree_locked(path->nodes[level]);
2491 	lower = path->nodes[level];
2492 	nritems = btrfs_header_nritems(lower);
2493 	BUG_ON(slot > nritems);
2494 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2495 	if (slot != nritems) {
2496 		if (level) {
2497 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2498 					slot, nritems - slot);
2499 			BUG_ON(ret < 0);
2500 		}
2501 		memmove_extent_buffer(lower,
2502 			      btrfs_node_key_ptr_offset(slot + 1),
2503 			      btrfs_node_key_ptr_offset(slot),
2504 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2505 	}
2506 	if (level) {
2507 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2508 					    BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2509 		BUG_ON(ret < 0);
2510 	}
2511 	btrfs_set_node_key(lower, key, slot);
2512 	btrfs_set_node_blockptr(lower, slot, bytenr);
2513 	WARN_ON(trans->transid == 0);
2514 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2515 	btrfs_set_header_nritems(lower, nritems + 1);
2516 	btrfs_mark_buffer_dirty(lower);
2517 }
2518 
2519 /*
2520  * split the node at the specified level in path in two.
2521  * The path is corrected to point to the appropriate node after the split
2522  *
2523  * Before splitting this tries to make some room in the node by pushing
2524  * left and right, if either one works, it returns right away.
2525  *
2526  * returns 0 on success and < 0 on failure
2527  */
2528 static noinline int split_node(struct btrfs_trans_handle *trans,
2529 			       struct btrfs_root *root,
2530 			       struct btrfs_path *path, int level)
2531 {
2532 	struct btrfs_fs_info *fs_info = root->fs_info;
2533 	struct extent_buffer *c;
2534 	struct extent_buffer *split;
2535 	struct btrfs_disk_key disk_key;
2536 	int mid;
2537 	int ret;
2538 	u32 c_nritems;
2539 
2540 	c = path->nodes[level];
2541 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2542 	if (c == root->node) {
2543 		/*
2544 		 * trying to split the root, lets make a new one
2545 		 *
2546 		 * tree mod log: We don't log_removal old root in
2547 		 * insert_new_root, because that root buffer will be kept as a
2548 		 * normal node. We are going to log removal of half of the
2549 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2550 		 * holding a tree lock on the buffer, which is why we cannot
2551 		 * race with other tree_mod_log users.
2552 		 */
2553 		ret = insert_new_root(trans, root, path, level + 1);
2554 		if (ret)
2555 			return ret;
2556 	} else {
2557 		ret = push_nodes_for_insert(trans, root, path, level);
2558 		c = path->nodes[level];
2559 		if (!ret && btrfs_header_nritems(c) <
2560 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2561 			return 0;
2562 		if (ret < 0)
2563 			return ret;
2564 	}
2565 
2566 	c_nritems = btrfs_header_nritems(c);
2567 	mid = (c_nritems + 1) / 2;
2568 	btrfs_node_key(c, &disk_key, mid);
2569 
2570 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2571 				       &disk_key, level, c->start, 0,
2572 				       BTRFS_NESTING_SPLIT);
2573 	if (IS_ERR(split))
2574 		return PTR_ERR(split);
2575 
2576 	root_add_used(root, fs_info->nodesize);
2577 	ASSERT(btrfs_header_level(c) == level);
2578 
2579 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2580 	if (ret) {
2581 		btrfs_abort_transaction(trans, ret);
2582 		return ret;
2583 	}
2584 	copy_extent_buffer(split, c,
2585 			   btrfs_node_key_ptr_offset(0),
2586 			   btrfs_node_key_ptr_offset(mid),
2587 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2588 	btrfs_set_header_nritems(split, c_nritems - mid);
2589 	btrfs_set_header_nritems(c, mid);
2590 
2591 	btrfs_mark_buffer_dirty(c);
2592 	btrfs_mark_buffer_dirty(split);
2593 
2594 	insert_ptr(trans, path, &disk_key, split->start,
2595 		   path->slots[level + 1] + 1, level + 1);
2596 
2597 	if (path->slots[level] >= mid) {
2598 		path->slots[level] -= mid;
2599 		btrfs_tree_unlock(c);
2600 		free_extent_buffer(c);
2601 		path->nodes[level] = split;
2602 		path->slots[level + 1] += 1;
2603 	} else {
2604 		btrfs_tree_unlock(split);
2605 		free_extent_buffer(split);
2606 	}
2607 	return 0;
2608 }
2609 
2610 /*
2611  * how many bytes are required to store the items in a leaf.  start
2612  * and nr indicate which items in the leaf to check.  This totals up the
2613  * space used both by the item structs and the item data
2614  */
2615 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2616 {
2617 	struct btrfs_item *start_item;
2618 	struct btrfs_item *end_item;
2619 	int data_len;
2620 	int nritems = btrfs_header_nritems(l);
2621 	int end = min(nritems, start + nr) - 1;
2622 
2623 	if (!nr)
2624 		return 0;
2625 	start_item = btrfs_item_nr(start);
2626 	end_item = btrfs_item_nr(end);
2627 	data_len = btrfs_item_offset(l, start_item) +
2628 		   btrfs_item_size(l, start_item);
2629 	data_len = data_len - btrfs_item_offset(l, end_item);
2630 	data_len += sizeof(struct btrfs_item) * nr;
2631 	WARN_ON(data_len < 0);
2632 	return data_len;
2633 }
2634 
2635 /*
2636  * The space between the end of the leaf items and
2637  * the start of the leaf data.  IOW, how much room
2638  * the leaf has left for both items and data
2639  */
2640 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2641 {
2642 	struct btrfs_fs_info *fs_info = leaf->fs_info;
2643 	int nritems = btrfs_header_nritems(leaf);
2644 	int ret;
2645 
2646 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2647 	if (ret < 0) {
2648 		btrfs_crit(fs_info,
2649 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2650 			   ret,
2651 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2652 			   leaf_space_used(leaf, 0, nritems), nritems);
2653 	}
2654 	return ret;
2655 }
2656 
2657 /*
2658  * min slot controls the lowest index we're willing to push to the
2659  * right.  We'll push up to and including min_slot, but no lower
2660  */
2661 static noinline int __push_leaf_right(struct btrfs_path *path,
2662 				      int data_size, int empty,
2663 				      struct extent_buffer *right,
2664 				      int free_space, u32 left_nritems,
2665 				      u32 min_slot)
2666 {
2667 	struct btrfs_fs_info *fs_info = right->fs_info;
2668 	struct extent_buffer *left = path->nodes[0];
2669 	struct extent_buffer *upper = path->nodes[1];
2670 	struct btrfs_map_token token;
2671 	struct btrfs_disk_key disk_key;
2672 	int slot;
2673 	u32 i;
2674 	int push_space = 0;
2675 	int push_items = 0;
2676 	struct btrfs_item *item;
2677 	u32 nr;
2678 	u32 right_nritems;
2679 	u32 data_end;
2680 	u32 this_item_size;
2681 
2682 	if (empty)
2683 		nr = 0;
2684 	else
2685 		nr = max_t(u32, 1, min_slot);
2686 
2687 	if (path->slots[0] >= left_nritems)
2688 		push_space += data_size;
2689 
2690 	slot = path->slots[1];
2691 	i = left_nritems - 1;
2692 	while (i >= nr) {
2693 		item = btrfs_item_nr(i);
2694 
2695 		if (!empty && push_items > 0) {
2696 			if (path->slots[0] > i)
2697 				break;
2698 			if (path->slots[0] == i) {
2699 				int space = btrfs_leaf_free_space(left);
2700 
2701 				if (space + push_space * 2 > free_space)
2702 					break;
2703 			}
2704 		}
2705 
2706 		if (path->slots[0] == i)
2707 			push_space += data_size;
2708 
2709 		this_item_size = btrfs_item_size(left, item);
2710 		if (this_item_size + sizeof(*item) + push_space > free_space)
2711 			break;
2712 
2713 		push_items++;
2714 		push_space += this_item_size + sizeof(*item);
2715 		if (i == 0)
2716 			break;
2717 		i--;
2718 	}
2719 
2720 	if (push_items == 0)
2721 		goto out_unlock;
2722 
2723 	WARN_ON(!empty && push_items == left_nritems);
2724 
2725 	/* push left to right */
2726 	right_nritems = btrfs_header_nritems(right);
2727 
2728 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2729 	push_space -= leaf_data_end(left);
2730 
2731 	/* make room in the right data area */
2732 	data_end = leaf_data_end(right);
2733 	memmove_extent_buffer(right,
2734 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2735 			      BTRFS_LEAF_DATA_OFFSET + data_end,
2736 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2737 
2738 	/* copy from the left data area */
2739 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2740 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2741 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2742 		     push_space);
2743 
2744 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2745 			      btrfs_item_nr_offset(0),
2746 			      right_nritems * sizeof(struct btrfs_item));
2747 
2748 	/* copy the items from left to right */
2749 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2750 		   btrfs_item_nr_offset(left_nritems - push_items),
2751 		   push_items * sizeof(struct btrfs_item));
2752 
2753 	/* update the item pointers */
2754 	btrfs_init_map_token(&token, right);
2755 	right_nritems += push_items;
2756 	btrfs_set_header_nritems(right, right_nritems);
2757 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2758 	for (i = 0; i < right_nritems; i++) {
2759 		item = btrfs_item_nr(i);
2760 		push_space -= btrfs_token_item_size(&token, item);
2761 		btrfs_set_token_item_offset(&token, item, push_space);
2762 	}
2763 
2764 	left_nritems -= push_items;
2765 	btrfs_set_header_nritems(left, left_nritems);
2766 
2767 	if (left_nritems)
2768 		btrfs_mark_buffer_dirty(left);
2769 	else
2770 		btrfs_clean_tree_block(left);
2771 
2772 	btrfs_mark_buffer_dirty(right);
2773 
2774 	btrfs_item_key(right, &disk_key, 0);
2775 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2776 	btrfs_mark_buffer_dirty(upper);
2777 
2778 	/* then fixup the leaf pointer in the path */
2779 	if (path->slots[0] >= left_nritems) {
2780 		path->slots[0] -= left_nritems;
2781 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2782 			btrfs_clean_tree_block(path->nodes[0]);
2783 		btrfs_tree_unlock(path->nodes[0]);
2784 		free_extent_buffer(path->nodes[0]);
2785 		path->nodes[0] = right;
2786 		path->slots[1] += 1;
2787 	} else {
2788 		btrfs_tree_unlock(right);
2789 		free_extent_buffer(right);
2790 	}
2791 	return 0;
2792 
2793 out_unlock:
2794 	btrfs_tree_unlock(right);
2795 	free_extent_buffer(right);
2796 	return 1;
2797 }
2798 
2799 /*
2800  * push some data in the path leaf to the right, trying to free up at
2801  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2802  *
2803  * returns 1 if the push failed because the other node didn't have enough
2804  * room, 0 if everything worked out and < 0 if there were major errors.
2805  *
2806  * this will push starting from min_slot to the end of the leaf.  It won't
2807  * push any slot lower than min_slot
2808  */
2809 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2810 			   *root, struct btrfs_path *path,
2811 			   int min_data_size, int data_size,
2812 			   int empty, u32 min_slot)
2813 {
2814 	struct extent_buffer *left = path->nodes[0];
2815 	struct extent_buffer *right;
2816 	struct extent_buffer *upper;
2817 	int slot;
2818 	int free_space;
2819 	u32 left_nritems;
2820 	int ret;
2821 
2822 	if (!path->nodes[1])
2823 		return 1;
2824 
2825 	slot = path->slots[1];
2826 	upper = path->nodes[1];
2827 	if (slot >= btrfs_header_nritems(upper) - 1)
2828 		return 1;
2829 
2830 	btrfs_assert_tree_locked(path->nodes[1]);
2831 
2832 	right = btrfs_read_node_slot(upper, slot + 1);
2833 	/*
2834 	 * slot + 1 is not valid or we fail to read the right node,
2835 	 * no big deal, just return.
2836 	 */
2837 	if (IS_ERR(right))
2838 		return 1;
2839 
2840 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2841 
2842 	free_space = btrfs_leaf_free_space(right);
2843 	if (free_space < data_size)
2844 		goto out_unlock;
2845 
2846 	/* cow and double check */
2847 	ret = btrfs_cow_block(trans, root, right, upper,
2848 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2849 	if (ret)
2850 		goto out_unlock;
2851 
2852 	free_space = btrfs_leaf_free_space(right);
2853 	if (free_space < data_size)
2854 		goto out_unlock;
2855 
2856 	left_nritems = btrfs_header_nritems(left);
2857 	if (left_nritems == 0)
2858 		goto out_unlock;
2859 
2860 	if (check_sibling_keys(left, right)) {
2861 		ret = -EUCLEAN;
2862 		btrfs_tree_unlock(right);
2863 		free_extent_buffer(right);
2864 		return ret;
2865 	}
2866 	if (path->slots[0] == left_nritems && !empty) {
2867 		/* Key greater than all keys in the leaf, right neighbor has
2868 		 * enough room for it and we're not emptying our leaf to delete
2869 		 * it, therefore use right neighbor to insert the new item and
2870 		 * no need to touch/dirty our left leaf. */
2871 		btrfs_tree_unlock(left);
2872 		free_extent_buffer(left);
2873 		path->nodes[0] = right;
2874 		path->slots[0] = 0;
2875 		path->slots[1]++;
2876 		return 0;
2877 	}
2878 
2879 	return __push_leaf_right(path, min_data_size, empty,
2880 				right, free_space, left_nritems, min_slot);
2881 out_unlock:
2882 	btrfs_tree_unlock(right);
2883 	free_extent_buffer(right);
2884 	return 1;
2885 }
2886 
2887 /*
2888  * push some data in the path leaf to the left, trying to free up at
2889  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2890  *
2891  * max_slot can put a limit on how far into the leaf we'll push items.  The
2892  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2893  * items
2894  */
2895 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
2896 				     int empty, struct extent_buffer *left,
2897 				     int free_space, u32 right_nritems,
2898 				     u32 max_slot)
2899 {
2900 	struct btrfs_fs_info *fs_info = left->fs_info;
2901 	struct btrfs_disk_key disk_key;
2902 	struct extent_buffer *right = path->nodes[0];
2903 	int i;
2904 	int push_space = 0;
2905 	int push_items = 0;
2906 	struct btrfs_item *item;
2907 	u32 old_left_nritems;
2908 	u32 nr;
2909 	int ret = 0;
2910 	u32 this_item_size;
2911 	u32 old_left_item_size;
2912 	struct btrfs_map_token token;
2913 
2914 	if (empty)
2915 		nr = min(right_nritems, max_slot);
2916 	else
2917 		nr = min(right_nritems - 1, max_slot);
2918 
2919 	for (i = 0; i < nr; i++) {
2920 		item = btrfs_item_nr(i);
2921 
2922 		if (!empty && push_items > 0) {
2923 			if (path->slots[0] < i)
2924 				break;
2925 			if (path->slots[0] == i) {
2926 				int space = btrfs_leaf_free_space(right);
2927 
2928 				if (space + push_space * 2 > free_space)
2929 					break;
2930 			}
2931 		}
2932 
2933 		if (path->slots[0] == i)
2934 			push_space += data_size;
2935 
2936 		this_item_size = btrfs_item_size(right, item);
2937 		if (this_item_size + sizeof(*item) + push_space > free_space)
2938 			break;
2939 
2940 		push_items++;
2941 		push_space += this_item_size + sizeof(*item);
2942 	}
2943 
2944 	if (push_items == 0) {
2945 		ret = 1;
2946 		goto out;
2947 	}
2948 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
2949 
2950 	/* push data from right to left */
2951 	copy_extent_buffer(left, right,
2952 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2953 			   btrfs_item_nr_offset(0),
2954 			   push_items * sizeof(struct btrfs_item));
2955 
2956 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
2957 		     btrfs_item_offset_nr(right, push_items - 1);
2958 
2959 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2960 		     leaf_data_end(left) - push_space,
2961 		     BTRFS_LEAF_DATA_OFFSET +
2962 		     btrfs_item_offset_nr(right, push_items - 1),
2963 		     push_space);
2964 	old_left_nritems = btrfs_header_nritems(left);
2965 	BUG_ON(old_left_nritems <= 0);
2966 
2967 	btrfs_init_map_token(&token, left);
2968 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2969 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2970 		u32 ioff;
2971 
2972 		item = btrfs_item_nr(i);
2973 
2974 		ioff = btrfs_token_item_offset(&token, item);
2975 		btrfs_set_token_item_offset(&token, item,
2976 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
2977 	}
2978 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2979 
2980 	/* fixup right node */
2981 	if (push_items > right_nritems)
2982 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
2983 		       right_nritems);
2984 
2985 	if (push_items < right_nritems) {
2986 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2987 						  leaf_data_end(right);
2988 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
2989 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2990 				      BTRFS_LEAF_DATA_OFFSET +
2991 				      leaf_data_end(right), push_space);
2992 
2993 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2994 			      btrfs_item_nr_offset(push_items),
2995 			     (btrfs_header_nritems(right) - push_items) *
2996 			     sizeof(struct btrfs_item));
2997 	}
2998 
2999 	btrfs_init_map_token(&token, right);
3000 	right_nritems -= push_items;
3001 	btrfs_set_header_nritems(right, right_nritems);
3002 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3003 	for (i = 0; i < right_nritems; i++) {
3004 		item = btrfs_item_nr(i);
3005 
3006 		push_space = push_space - btrfs_token_item_size(&token, item);
3007 		btrfs_set_token_item_offset(&token, item, push_space);
3008 	}
3009 
3010 	btrfs_mark_buffer_dirty(left);
3011 	if (right_nritems)
3012 		btrfs_mark_buffer_dirty(right);
3013 	else
3014 		btrfs_clean_tree_block(right);
3015 
3016 	btrfs_item_key(right, &disk_key, 0);
3017 	fixup_low_keys(path, &disk_key, 1);
3018 
3019 	/* then fixup the leaf pointer in the path */
3020 	if (path->slots[0] < push_items) {
3021 		path->slots[0] += old_left_nritems;
3022 		btrfs_tree_unlock(path->nodes[0]);
3023 		free_extent_buffer(path->nodes[0]);
3024 		path->nodes[0] = left;
3025 		path->slots[1] -= 1;
3026 	} else {
3027 		btrfs_tree_unlock(left);
3028 		free_extent_buffer(left);
3029 		path->slots[0] -= push_items;
3030 	}
3031 	BUG_ON(path->slots[0] < 0);
3032 	return ret;
3033 out:
3034 	btrfs_tree_unlock(left);
3035 	free_extent_buffer(left);
3036 	return ret;
3037 }
3038 
3039 /*
3040  * push some data in the path leaf to the left, trying to free up at
3041  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3042  *
3043  * max_slot can put a limit on how far into the leaf we'll push items.  The
3044  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3045  * items
3046  */
3047 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3048 			  *root, struct btrfs_path *path, int min_data_size,
3049 			  int data_size, int empty, u32 max_slot)
3050 {
3051 	struct extent_buffer *right = path->nodes[0];
3052 	struct extent_buffer *left;
3053 	int slot;
3054 	int free_space;
3055 	u32 right_nritems;
3056 	int ret = 0;
3057 
3058 	slot = path->slots[1];
3059 	if (slot == 0)
3060 		return 1;
3061 	if (!path->nodes[1])
3062 		return 1;
3063 
3064 	right_nritems = btrfs_header_nritems(right);
3065 	if (right_nritems == 0)
3066 		return 1;
3067 
3068 	btrfs_assert_tree_locked(path->nodes[1]);
3069 
3070 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3071 	/*
3072 	 * slot - 1 is not valid or we fail to read the left node,
3073 	 * no big deal, just return.
3074 	 */
3075 	if (IS_ERR(left))
3076 		return 1;
3077 
3078 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3079 
3080 	free_space = btrfs_leaf_free_space(left);
3081 	if (free_space < data_size) {
3082 		ret = 1;
3083 		goto out;
3084 	}
3085 
3086 	/* cow and double check */
3087 	ret = btrfs_cow_block(trans, root, left,
3088 			      path->nodes[1], slot - 1, &left,
3089 			      BTRFS_NESTING_LEFT_COW);
3090 	if (ret) {
3091 		/* we hit -ENOSPC, but it isn't fatal here */
3092 		if (ret == -ENOSPC)
3093 			ret = 1;
3094 		goto out;
3095 	}
3096 
3097 	free_space = btrfs_leaf_free_space(left);
3098 	if (free_space < data_size) {
3099 		ret = 1;
3100 		goto out;
3101 	}
3102 
3103 	if (check_sibling_keys(left, right)) {
3104 		ret = -EUCLEAN;
3105 		goto out;
3106 	}
3107 	return __push_leaf_left(path, min_data_size,
3108 			       empty, left, free_space, right_nritems,
3109 			       max_slot);
3110 out:
3111 	btrfs_tree_unlock(left);
3112 	free_extent_buffer(left);
3113 	return ret;
3114 }
3115 
3116 /*
3117  * split the path's leaf in two, making sure there is at least data_size
3118  * available for the resulting leaf level of the path.
3119  */
3120 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3121 				    struct btrfs_path *path,
3122 				    struct extent_buffer *l,
3123 				    struct extent_buffer *right,
3124 				    int slot, int mid, int nritems)
3125 {
3126 	struct btrfs_fs_info *fs_info = trans->fs_info;
3127 	int data_copy_size;
3128 	int rt_data_off;
3129 	int i;
3130 	struct btrfs_disk_key disk_key;
3131 	struct btrfs_map_token token;
3132 
3133 	nritems = nritems - mid;
3134 	btrfs_set_header_nritems(right, nritems);
3135 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
3136 
3137 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3138 			   btrfs_item_nr_offset(mid),
3139 			   nritems * sizeof(struct btrfs_item));
3140 
3141 	copy_extent_buffer(right, l,
3142 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3143 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3144 		     leaf_data_end(l), data_copy_size);
3145 
3146 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
3147 
3148 	btrfs_init_map_token(&token, right);
3149 	for (i = 0; i < nritems; i++) {
3150 		struct btrfs_item *item = btrfs_item_nr(i);
3151 		u32 ioff;
3152 
3153 		ioff = btrfs_token_item_offset(&token, item);
3154 		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
3155 	}
3156 
3157 	btrfs_set_header_nritems(l, mid);
3158 	btrfs_item_key(right, &disk_key, 0);
3159 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3160 
3161 	btrfs_mark_buffer_dirty(right);
3162 	btrfs_mark_buffer_dirty(l);
3163 	BUG_ON(path->slots[0] != slot);
3164 
3165 	if (mid <= slot) {
3166 		btrfs_tree_unlock(path->nodes[0]);
3167 		free_extent_buffer(path->nodes[0]);
3168 		path->nodes[0] = right;
3169 		path->slots[0] -= mid;
3170 		path->slots[1] += 1;
3171 	} else {
3172 		btrfs_tree_unlock(right);
3173 		free_extent_buffer(right);
3174 	}
3175 
3176 	BUG_ON(path->slots[0] < 0);
3177 }
3178 
3179 /*
3180  * double splits happen when we need to insert a big item in the middle
3181  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3182  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3183  *          A                 B                 C
3184  *
3185  * We avoid this by trying to push the items on either side of our target
3186  * into the adjacent leaves.  If all goes well we can avoid the double split
3187  * completely.
3188  */
3189 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3190 					  struct btrfs_root *root,
3191 					  struct btrfs_path *path,
3192 					  int data_size)
3193 {
3194 	int ret;
3195 	int progress = 0;
3196 	int slot;
3197 	u32 nritems;
3198 	int space_needed = data_size;
3199 
3200 	slot = path->slots[0];
3201 	if (slot < btrfs_header_nritems(path->nodes[0]))
3202 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3203 
3204 	/*
3205 	 * try to push all the items after our slot into the
3206 	 * right leaf
3207 	 */
3208 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3209 	if (ret < 0)
3210 		return ret;
3211 
3212 	if (ret == 0)
3213 		progress++;
3214 
3215 	nritems = btrfs_header_nritems(path->nodes[0]);
3216 	/*
3217 	 * our goal is to get our slot at the start or end of a leaf.  If
3218 	 * we've done so we're done
3219 	 */
3220 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3221 		return 0;
3222 
3223 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3224 		return 0;
3225 
3226 	/* try to push all the items before our slot into the next leaf */
3227 	slot = path->slots[0];
3228 	space_needed = data_size;
3229 	if (slot > 0)
3230 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3231 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3232 	if (ret < 0)
3233 		return ret;
3234 
3235 	if (ret == 0)
3236 		progress++;
3237 
3238 	if (progress)
3239 		return 0;
3240 	return 1;
3241 }
3242 
3243 /*
3244  * split the path's leaf in two, making sure there is at least data_size
3245  * available for the resulting leaf level of the path.
3246  *
3247  * returns 0 if all went well and < 0 on failure.
3248  */
3249 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3250 			       struct btrfs_root *root,
3251 			       const struct btrfs_key *ins_key,
3252 			       struct btrfs_path *path, int data_size,
3253 			       int extend)
3254 {
3255 	struct btrfs_disk_key disk_key;
3256 	struct extent_buffer *l;
3257 	u32 nritems;
3258 	int mid;
3259 	int slot;
3260 	struct extent_buffer *right;
3261 	struct btrfs_fs_info *fs_info = root->fs_info;
3262 	int ret = 0;
3263 	int wret;
3264 	int split;
3265 	int num_doubles = 0;
3266 	int tried_avoid_double = 0;
3267 
3268 	l = path->nodes[0];
3269 	slot = path->slots[0];
3270 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3271 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3272 		return -EOVERFLOW;
3273 
3274 	/* first try to make some room by pushing left and right */
3275 	if (data_size && path->nodes[1]) {
3276 		int space_needed = data_size;
3277 
3278 		if (slot < btrfs_header_nritems(l))
3279 			space_needed -= btrfs_leaf_free_space(l);
3280 
3281 		wret = push_leaf_right(trans, root, path, space_needed,
3282 				       space_needed, 0, 0);
3283 		if (wret < 0)
3284 			return wret;
3285 		if (wret) {
3286 			space_needed = data_size;
3287 			if (slot > 0)
3288 				space_needed -= btrfs_leaf_free_space(l);
3289 			wret = push_leaf_left(trans, root, path, space_needed,
3290 					      space_needed, 0, (u32)-1);
3291 			if (wret < 0)
3292 				return wret;
3293 		}
3294 		l = path->nodes[0];
3295 
3296 		/* did the pushes work? */
3297 		if (btrfs_leaf_free_space(l) >= data_size)
3298 			return 0;
3299 	}
3300 
3301 	if (!path->nodes[1]) {
3302 		ret = insert_new_root(trans, root, path, 1);
3303 		if (ret)
3304 			return ret;
3305 	}
3306 again:
3307 	split = 1;
3308 	l = path->nodes[0];
3309 	slot = path->slots[0];
3310 	nritems = btrfs_header_nritems(l);
3311 	mid = (nritems + 1) / 2;
3312 
3313 	if (mid <= slot) {
3314 		if (nritems == 1 ||
3315 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3316 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3317 			if (slot >= nritems) {
3318 				split = 0;
3319 			} else {
3320 				mid = slot;
3321 				if (mid != nritems &&
3322 				    leaf_space_used(l, mid, nritems - mid) +
3323 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3324 					if (data_size && !tried_avoid_double)
3325 						goto push_for_double;
3326 					split = 2;
3327 				}
3328 			}
3329 		}
3330 	} else {
3331 		if (leaf_space_used(l, 0, mid) + data_size >
3332 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3333 			if (!extend && data_size && slot == 0) {
3334 				split = 0;
3335 			} else if ((extend || !data_size) && slot == 0) {
3336 				mid = 1;
3337 			} else {
3338 				mid = slot;
3339 				if (mid != nritems &&
3340 				    leaf_space_used(l, mid, nritems - mid) +
3341 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3342 					if (data_size && !tried_avoid_double)
3343 						goto push_for_double;
3344 					split = 2;
3345 				}
3346 			}
3347 		}
3348 	}
3349 
3350 	if (split == 0)
3351 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3352 	else
3353 		btrfs_item_key(l, &disk_key, mid);
3354 
3355 	/*
3356 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3357 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3358 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3359 	 * out.  In the future we could add a
3360 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3361 	 * use BTRFS_NESTING_NEW_ROOT.
3362 	 */
3363 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3364 				       &disk_key, 0, l->start, 0,
3365 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3366 				       BTRFS_NESTING_SPLIT);
3367 	if (IS_ERR(right))
3368 		return PTR_ERR(right);
3369 
3370 	root_add_used(root, fs_info->nodesize);
3371 
3372 	if (split == 0) {
3373 		if (mid <= slot) {
3374 			btrfs_set_header_nritems(right, 0);
3375 			insert_ptr(trans, path, &disk_key,
3376 				   right->start, path->slots[1] + 1, 1);
3377 			btrfs_tree_unlock(path->nodes[0]);
3378 			free_extent_buffer(path->nodes[0]);
3379 			path->nodes[0] = right;
3380 			path->slots[0] = 0;
3381 			path->slots[1] += 1;
3382 		} else {
3383 			btrfs_set_header_nritems(right, 0);
3384 			insert_ptr(trans, path, &disk_key,
3385 				   right->start, path->slots[1], 1);
3386 			btrfs_tree_unlock(path->nodes[0]);
3387 			free_extent_buffer(path->nodes[0]);
3388 			path->nodes[0] = right;
3389 			path->slots[0] = 0;
3390 			if (path->slots[1] == 0)
3391 				fixup_low_keys(path, &disk_key, 1);
3392 		}
3393 		/*
3394 		 * We create a new leaf 'right' for the required ins_len and
3395 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3396 		 * the content of ins_len to 'right'.
3397 		 */
3398 		return ret;
3399 	}
3400 
3401 	copy_for_split(trans, path, l, right, slot, mid, nritems);
3402 
3403 	if (split == 2) {
3404 		BUG_ON(num_doubles != 0);
3405 		num_doubles++;
3406 		goto again;
3407 	}
3408 
3409 	return 0;
3410 
3411 push_for_double:
3412 	push_for_double_split(trans, root, path, data_size);
3413 	tried_avoid_double = 1;
3414 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3415 		return 0;
3416 	goto again;
3417 }
3418 
3419 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3420 					 struct btrfs_root *root,
3421 					 struct btrfs_path *path, int ins_len)
3422 {
3423 	struct btrfs_key key;
3424 	struct extent_buffer *leaf;
3425 	struct btrfs_file_extent_item *fi;
3426 	u64 extent_len = 0;
3427 	u32 item_size;
3428 	int ret;
3429 
3430 	leaf = path->nodes[0];
3431 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3432 
3433 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3434 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3435 
3436 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3437 		return 0;
3438 
3439 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3440 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3441 		fi = btrfs_item_ptr(leaf, path->slots[0],
3442 				    struct btrfs_file_extent_item);
3443 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3444 	}
3445 	btrfs_release_path(path);
3446 
3447 	path->keep_locks = 1;
3448 	path->search_for_split = 1;
3449 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3450 	path->search_for_split = 0;
3451 	if (ret > 0)
3452 		ret = -EAGAIN;
3453 	if (ret < 0)
3454 		goto err;
3455 
3456 	ret = -EAGAIN;
3457 	leaf = path->nodes[0];
3458 	/* if our item isn't there, return now */
3459 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3460 		goto err;
3461 
3462 	/* the leaf has  changed, it now has room.  return now */
3463 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3464 		goto err;
3465 
3466 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3467 		fi = btrfs_item_ptr(leaf, path->slots[0],
3468 				    struct btrfs_file_extent_item);
3469 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3470 			goto err;
3471 	}
3472 
3473 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3474 	if (ret)
3475 		goto err;
3476 
3477 	path->keep_locks = 0;
3478 	btrfs_unlock_up_safe(path, 1);
3479 	return 0;
3480 err:
3481 	path->keep_locks = 0;
3482 	return ret;
3483 }
3484 
3485 static noinline int split_item(struct btrfs_path *path,
3486 			       const struct btrfs_key *new_key,
3487 			       unsigned long split_offset)
3488 {
3489 	struct extent_buffer *leaf;
3490 	struct btrfs_item *item;
3491 	struct btrfs_item *new_item;
3492 	int slot;
3493 	char *buf;
3494 	u32 nritems;
3495 	u32 item_size;
3496 	u32 orig_offset;
3497 	struct btrfs_disk_key disk_key;
3498 
3499 	leaf = path->nodes[0];
3500 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3501 
3502 	item = btrfs_item_nr(path->slots[0]);
3503 	orig_offset = btrfs_item_offset(leaf, item);
3504 	item_size = btrfs_item_size(leaf, item);
3505 
3506 	buf = kmalloc(item_size, GFP_NOFS);
3507 	if (!buf)
3508 		return -ENOMEM;
3509 
3510 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3511 			    path->slots[0]), item_size);
3512 
3513 	slot = path->slots[0] + 1;
3514 	nritems = btrfs_header_nritems(leaf);
3515 	if (slot != nritems) {
3516 		/* shift the items */
3517 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3518 				btrfs_item_nr_offset(slot),
3519 				(nritems - slot) * sizeof(struct btrfs_item));
3520 	}
3521 
3522 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3523 	btrfs_set_item_key(leaf, &disk_key, slot);
3524 
3525 	new_item = btrfs_item_nr(slot);
3526 
3527 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3528 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3529 
3530 	btrfs_set_item_offset(leaf, item,
3531 			      orig_offset + item_size - split_offset);
3532 	btrfs_set_item_size(leaf, item, split_offset);
3533 
3534 	btrfs_set_header_nritems(leaf, nritems + 1);
3535 
3536 	/* write the data for the start of the original item */
3537 	write_extent_buffer(leaf, buf,
3538 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3539 			    split_offset);
3540 
3541 	/* write the data for the new item */
3542 	write_extent_buffer(leaf, buf + split_offset,
3543 			    btrfs_item_ptr_offset(leaf, slot),
3544 			    item_size - split_offset);
3545 	btrfs_mark_buffer_dirty(leaf);
3546 
3547 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3548 	kfree(buf);
3549 	return 0;
3550 }
3551 
3552 /*
3553  * This function splits a single item into two items,
3554  * giving 'new_key' to the new item and splitting the
3555  * old one at split_offset (from the start of the item).
3556  *
3557  * The path may be released by this operation.  After
3558  * the split, the path is pointing to the old item.  The
3559  * new item is going to be in the same node as the old one.
3560  *
3561  * Note, the item being split must be smaller enough to live alone on
3562  * a tree block with room for one extra struct btrfs_item
3563  *
3564  * This allows us to split the item in place, keeping a lock on the
3565  * leaf the entire time.
3566  */
3567 int btrfs_split_item(struct btrfs_trans_handle *trans,
3568 		     struct btrfs_root *root,
3569 		     struct btrfs_path *path,
3570 		     const struct btrfs_key *new_key,
3571 		     unsigned long split_offset)
3572 {
3573 	int ret;
3574 	ret = setup_leaf_for_split(trans, root, path,
3575 				   sizeof(struct btrfs_item));
3576 	if (ret)
3577 		return ret;
3578 
3579 	ret = split_item(path, new_key, split_offset);
3580 	return ret;
3581 }
3582 
3583 /*
3584  * This function duplicate a item, giving 'new_key' to the new item.
3585  * It guarantees both items live in the same tree leaf and the new item
3586  * is contiguous with the original item.
3587  *
3588  * This allows us to split file extent in place, keeping a lock on the
3589  * leaf the entire time.
3590  */
3591 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3592 			 struct btrfs_root *root,
3593 			 struct btrfs_path *path,
3594 			 const struct btrfs_key *new_key)
3595 {
3596 	struct extent_buffer *leaf;
3597 	int ret;
3598 	u32 item_size;
3599 
3600 	leaf = path->nodes[0];
3601 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3602 	ret = setup_leaf_for_split(trans, root, path,
3603 				   item_size + sizeof(struct btrfs_item));
3604 	if (ret)
3605 		return ret;
3606 
3607 	path->slots[0]++;
3608 	setup_items_for_insert(root, path, new_key, &item_size, 1);
3609 	leaf = path->nodes[0];
3610 	memcpy_extent_buffer(leaf,
3611 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3612 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3613 			     item_size);
3614 	return 0;
3615 }
3616 
3617 /*
3618  * make the item pointed to by the path smaller.  new_size indicates
3619  * how small to make it, and from_end tells us if we just chop bytes
3620  * off the end of the item or if we shift the item to chop bytes off
3621  * the front.
3622  */
3623 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3624 {
3625 	int slot;
3626 	struct extent_buffer *leaf;
3627 	struct btrfs_item *item;
3628 	u32 nritems;
3629 	unsigned int data_end;
3630 	unsigned int old_data_start;
3631 	unsigned int old_size;
3632 	unsigned int size_diff;
3633 	int i;
3634 	struct btrfs_map_token token;
3635 
3636 	leaf = path->nodes[0];
3637 	slot = path->slots[0];
3638 
3639 	old_size = btrfs_item_size_nr(leaf, slot);
3640 	if (old_size == new_size)
3641 		return;
3642 
3643 	nritems = btrfs_header_nritems(leaf);
3644 	data_end = leaf_data_end(leaf);
3645 
3646 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3647 
3648 	size_diff = old_size - new_size;
3649 
3650 	BUG_ON(slot < 0);
3651 	BUG_ON(slot >= nritems);
3652 
3653 	/*
3654 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3655 	 */
3656 	/* first correct the data pointers */
3657 	btrfs_init_map_token(&token, leaf);
3658 	for (i = slot; i < nritems; i++) {
3659 		u32 ioff;
3660 		item = btrfs_item_nr(i);
3661 
3662 		ioff = btrfs_token_item_offset(&token, item);
3663 		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
3664 	}
3665 
3666 	/* shift the data */
3667 	if (from_end) {
3668 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3669 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3670 			      data_end, old_data_start + new_size - data_end);
3671 	} else {
3672 		struct btrfs_disk_key disk_key;
3673 		u64 offset;
3674 
3675 		btrfs_item_key(leaf, &disk_key, slot);
3676 
3677 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3678 			unsigned long ptr;
3679 			struct btrfs_file_extent_item *fi;
3680 
3681 			fi = btrfs_item_ptr(leaf, slot,
3682 					    struct btrfs_file_extent_item);
3683 			fi = (struct btrfs_file_extent_item *)(
3684 			     (unsigned long)fi - size_diff);
3685 
3686 			if (btrfs_file_extent_type(leaf, fi) ==
3687 			    BTRFS_FILE_EXTENT_INLINE) {
3688 				ptr = btrfs_item_ptr_offset(leaf, slot);
3689 				memmove_extent_buffer(leaf, ptr,
3690 				      (unsigned long)fi,
3691 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3692 			}
3693 		}
3694 
3695 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3696 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3697 			      data_end, old_data_start - data_end);
3698 
3699 		offset = btrfs_disk_key_offset(&disk_key);
3700 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3701 		btrfs_set_item_key(leaf, &disk_key, slot);
3702 		if (slot == 0)
3703 			fixup_low_keys(path, &disk_key, 1);
3704 	}
3705 
3706 	item = btrfs_item_nr(slot);
3707 	btrfs_set_item_size(leaf, item, new_size);
3708 	btrfs_mark_buffer_dirty(leaf);
3709 
3710 	if (btrfs_leaf_free_space(leaf) < 0) {
3711 		btrfs_print_leaf(leaf);
3712 		BUG();
3713 	}
3714 }
3715 
3716 /*
3717  * make the item pointed to by the path bigger, data_size is the added size.
3718  */
3719 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3720 {
3721 	int slot;
3722 	struct extent_buffer *leaf;
3723 	struct btrfs_item *item;
3724 	u32 nritems;
3725 	unsigned int data_end;
3726 	unsigned int old_data;
3727 	unsigned int old_size;
3728 	int i;
3729 	struct btrfs_map_token token;
3730 
3731 	leaf = path->nodes[0];
3732 
3733 	nritems = btrfs_header_nritems(leaf);
3734 	data_end = leaf_data_end(leaf);
3735 
3736 	if (btrfs_leaf_free_space(leaf) < data_size) {
3737 		btrfs_print_leaf(leaf);
3738 		BUG();
3739 	}
3740 	slot = path->slots[0];
3741 	old_data = btrfs_item_end_nr(leaf, slot);
3742 
3743 	BUG_ON(slot < 0);
3744 	if (slot >= nritems) {
3745 		btrfs_print_leaf(leaf);
3746 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3747 			   slot, nritems);
3748 		BUG();
3749 	}
3750 
3751 	/*
3752 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3753 	 */
3754 	/* first correct the data pointers */
3755 	btrfs_init_map_token(&token, leaf);
3756 	for (i = slot; i < nritems; i++) {
3757 		u32 ioff;
3758 		item = btrfs_item_nr(i);
3759 
3760 		ioff = btrfs_token_item_offset(&token, item);
3761 		btrfs_set_token_item_offset(&token, item, ioff - data_size);
3762 	}
3763 
3764 	/* shift the data */
3765 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3766 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3767 		      data_end, old_data - data_end);
3768 
3769 	data_end = old_data;
3770 	old_size = btrfs_item_size_nr(leaf, slot);
3771 	item = btrfs_item_nr(slot);
3772 	btrfs_set_item_size(leaf, item, old_size + data_size);
3773 	btrfs_mark_buffer_dirty(leaf);
3774 
3775 	if (btrfs_leaf_free_space(leaf) < 0) {
3776 		btrfs_print_leaf(leaf);
3777 		BUG();
3778 	}
3779 }
3780 
3781 /**
3782  * setup_items_for_insert - Helper called before inserting one or more items
3783  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3784  * in a function that doesn't call btrfs_search_slot
3785  *
3786  * @root:	root we are inserting items to
3787  * @path:	points to the leaf/slot where we are going to insert new items
3788  * @cpu_key:	array of keys for items to be inserted
3789  * @data_size:	size of the body of each item we are going to insert
3790  * @nr:		size of @cpu_key/@data_size arrays
3791  */
3792 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3793 			    const struct btrfs_key *cpu_key, u32 *data_size,
3794 			    int nr)
3795 {
3796 	struct btrfs_fs_info *fs_info = root->fs_info;
3797 	struct btrfs_item *item;
3798 	int i;
3799 	u32 nritems;
3800 	unsigned int data_end;
3801 	struct btrfs_disk_key disk_key;
3802 	struct extent_buffer *leaf;
3803 	int slot;
3804 	struct btrfs_map_token token;
3805 	u32 total_size;
3806 	u32 total_data = 0;
3807 
3808 	for (i = 0; i < nr; i++)
3809 		total_data += data_size[i];
3810 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3811 
3812 	if (path->slots[0] == 0) {
3813 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3814 		fixup_low_keys(path, &disk_key, 1);
3815 	}
3816 	btrfs_unlock_up_safe(path, 1);
3817 
3818 	leaf = path->nodes[0];
3819 	slot = path->slots[0];
3820 
3821 	nritems = btrfs_header_nritems(leaf);
3822 	data_end = leaf_data_end(leaf);
3823 
3824 	if (btrfs_leaf_free_space(leaf) < total_size) {
3825 		btrfs_print_leaf(leaf);
3826 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
3827 			   total_size, btrfs_leaf_free_space(leaf));
3828 		BUG();
3829 	}
3830 
3831 	btrfs_init_map_token(&token, leaf);
3832 	if (slot != nritems) {
3833 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3834 
3835 		if (old_data < data_end) {
3836 			btrfs_print_leaf(leaf);
3837 			btrfs_crit(fs_info,
3838 		"item at slot %d with data offset %u beyond data end of leaf %u",
3839 				   slot, old_data, data_end);
3840 			BUG();
3841 		}
3842 		/*
3843 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3844 		 */
3845 		/* first correct the data pointers */
3846 		for (i = slot; i < nritems; i++) {
3847 			u32 ioff;
3848 
3849 			item = btrfs_item_nr(i);
3850 			ioff = btrfs_token_item_offset(&token, item);
3851 			btrfs_set_token_item_offset(&token, item,
3852 						    ioff - total_data);
3853 		}
3854 		/* shift the items */
3855 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3856 			      btrfs_item_nr_offset(slot),
3857 			      (nritems - slot) * sizeof(struct btrfs_item));
3858 
3859 		/* shift the data */
3860 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3861 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
3862 			      data_end, old_data - data_end);
3863 		data_end = old_data;
3864 	}
3865 
3866 	/* setup the item for the new data */
3867 	for (i = 0; i < nr; i++) {
3868 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3869 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3870 		item = btrfs_item_nr(slot + i);
3871 		data_end -= data_size[i];
3872 		btrfs_set_token_item_offset(&token, item, data_end);
3873 		btrfs_set_token_item_size(&token, item, data_size[i]);
3874 	}
3875 
3876 	btrfs_set_header_nritems(leaf, nritems + nr);
3877 	btrfs_mark_buffer_dirty(leaf);
3878 
3879 	if (btrfs_leaf_free_space(leaf) < 0) {
3880 		btrfs_print_leaf(leaf);
3881 		BUG();
3882 	}
3883 }
3884 
3885 /*
3886  * Given a key and some data, insert items into the tree.
3887  * This does all the path init required, making room in the tree if needed.
3888  */
3889 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3890 			    struct btrfs_root *root,
3891 			    struct btrfs_path *path,
3892 			    const struct btrfs_key *cpu_key, u32 *data_size,
3893 			    int nr)
3894 {
3895 	int ret = 0;
3896 	int slot;
3897 	int i;
3898 	u32 total_size = 0;
3899 	u32 total_data = 0;
3900 
3901 	for (i = 0; i < nr; i++)
3902 		total_data += data_size[i];
3903 
3904 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3905 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3906 	if (ret == 0)
3907 		return -EEXIST;
3908 	if (ret < 0)
3909 		return ret;
3910 
3911 	slot = path->slots[0];
3912 	BUG_ON(slot < 0);
3913 
3914 	setup_items_for_insert(root, path, cpu_key, data_size, nr);
3915 	return 0;
3916 }
3917 
3918 /*
3919  * Given a key and some data, insert an item into the tree.
3920  * This does all the path init required, making room in the tree if needed.
3921  */
3922 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3923 		      const struct btrfs_key *cpu_key, void *data,
3924 		      u32 data_size)
3925 {
3926 	int ret = 0;
3927 	struct btrfs_path *path;
3928 	struct extent_buffer *leaf;
3929 	unsigned long ptr;
3930 
3931 	path = btrfs_alloc_path();
3932 	if (!path)
3933 		return -ENOMEM;
3934 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3935 	if (!ret) {
3936 		leaf = path->nodes[0];
3937 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3938 		write_extent_buffer(leaf, data, ptr, data_size);
3939 		btrfs_mark_buffer_dirty(leaf);
3940 	}
3941 	btrfs_free_path(path);
3942 	return ret;
3943 }
3944 
3945 /*
3946  * delete the pointer from a given node.
3947  *
3948  * the tree should have been previously balanced so the deletion does not
3949  * empty a node.
3950  */
3951 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
3952 		    int level, int slot)
3953 {
3954 	struct extent_buffer *parent = path->nodes[level];
3955 	u32 nritems;
3956 	int ret;
3957 
3958 	nritems = btrfs_header_nritems(parent);
3959 	if (slot != nritems - 1) {
3960 		if (level) {
3961 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
3962 					slot + 1, nritems - slot - 1);
3963 			BUG_ON(ret < 0);
3964 		}
3965 		memmove_extent_buffer(parent,
3966 			      btrfs_node_key_ptr_offset(slot),
3967 			      btrfs_node_key_ptr_offset(slot + 1),
3968 			      sizeof(struct btrfs_key_ptr) *
3969 			      (nritems - slot - 1));
3970 	} else if (level) {
3971 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
3972 				BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
3973 		BUG_ON(ret < 0);
3974 	}
3975 
3976 	nritems--;
3977 	btrfs_set_header_nritems(parent, nritems);
3978 	if (nritems == 0 && parent == root->node) {
3979 		BUG_ON(btrfs_header_level(root->node) != 1);
3980 		/* just turn the root into a leaf and break */
3981 		btrfs_set_header_level(root->node, 0);
3982 	} else if (slot == 0) {
3983 		struct btrfs_disk_key disk_key;
3984 
3985 		btrfs_node_key(parent, &disk_key, 0);
3986 		fixup_low_keys(path, &disk_key, level + 1);
3987 	}
3988 	btrfs_mark_buffer_dirty(parent);
3989 }
3990 
3991 /*
3992  * a helper function to delete the leaf pointed to by path->slots[1] and
3993  * path->nodes[1].
3994  *
3995  * This deletes the pointer in path->nodes[1] and frees the leaf
3996  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3997  *
3998  * The path must have already been setup for deleting the leaf, including
3999  * all the proper balancing.  path->nodes[1] must be locked.
4000  */
4001 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4002 				    struct btrfs_root *root,
4003 				    struct btrfs_path *path,
4004 				    struct extent_buffer *leaf)
4005 {
4006 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4007 	del_ptr(root, path, 1, path->slots[1]);
4008 
4009 	/*
4010 	 * btrfs_free_extent is expensive, we want to make sure we
4011 	 * aren't holding any locks when we call it
4012 	 */
4013 	btrfs_unlock_up_safe(path, 0);
4014 
4015 	root_sub_used(root, leaf->len);
4016 
4017 	atomic_inc(&leaf->refs);
4018 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4019 	free_extent_buffer_stale(leaf);
4020 }
4021 /*
4022  * delete the item at the leaf level in path.  If that empties
4023  * the leaf, remove it from the tree
4024  */
4025 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4026 		    struct btrfs_path *path, int slot, int nr)
4027 {
4028 	struct btrfs_fs_info *fs_info = root->fs_info;
4029 	struct extent_buffer *leaf;
4030 	struct btrfs_item *item;
4031 	u32 last_off;
4032 	u32 dsize = 0;
4033 	int ret = 0;
4034 	int wret;
4035 	int i;
4036 	u32 nritems;
4037 
4038 	leaf = path->nodes[0];
4039 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4040 
4041 	for (i = 0; i < nr; i++)
4042 		dsize += btrfs_item_size_nr(leaf, slot + i);
4043 
4044 	nritems = btrfs_header_nritems(leaf);
4045 
4046 	if (slot + nr != nritems) {
4047 		int data_end = leaf_data_end(leaf);
4048 		struct btrfs_map_token token;
4049 
4050 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4051 			      data_end + dsize,
4052 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4053 			      last_off - data_end);
4054 
4055 		btrfs_init_map_token(&token, leaf);
4056 		for (i = slot + nr; i < nritems; i++) {
4057 			u32 ioff;
4058 
4059 			item = btrfs_item_nr(i);
4060 			ioff = btrfs_token_item_offset(&token, item);
4061 			btrfs_set_token_item_offset(&token, item, ioff + dsize);
4062 		}
4063 
4064 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4065 			      btrfs_item_nr_offset(slot + nr),
4066 			      sizeof(struct btrfs_item) *
4067 			      (nritems - slot - nr));
4068 	}
4069 	btrfs_set_header_nritems(leaf, nritems - nr);
4070 	nritems -= nr;
4071 
4072 	/* delete the leaf if we've emptied it */
4073 	if (nritems == 0) {
4074 		if (leaf == root->node) {
4075 			btrfs_set_header_level(leaf, 0);
4076 		} else {
4077 			btrfs_clean_tree_block(leaf);
4078 			btrfs_del_leaf(trans, root, path, leaf);
4079 		}
4080 	} else {
4081 		int used = leaf_space_used(leaf, 0, nritems);
4082 		if (slot == 0) {
4083 			struct btrfs_disk_key disk_key;
4084 
4085 			btrfs_item_key(leaf, &disk_key, 0);
4086 			fixup_low_keys(path, &disk_key, 1);
4087 		}
4088 
4089 		/* delete the leaf if it is mostly empty */
4090 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4091 			/* push_leaf_left fixes the path.
4092 			 * make sure the path still points to our leaf
4093 			 * for possible call to del_ptr below
4094 			 */
4095 			slot = path->slots[1];
4096 			atomic_inc(&leaf->refs);
4097 
4098 			wret = push_leaf_left(trans, root, path, 1, 1,
4099 					      1, (u32)-1);
4100 			if (wret < 0 && wret != -ENOSPC)
4101 				ret = wret;
4102 
4103 			if (path->nodes[0] == leaf &&
4104 			    btrfs_header_nritems(leaf)) {
4105 				wret = push_leaf_right(trans, root, path, 1,
4106 						       1, 1, 0);
4107 				if (wret < 0 && wret != -ENOSPC)
4108 					ret = wret;
4109 			}
4110 
4111 			if (btrfs_header_nritems(leaf) == 0) {
4112 				path->slots[1] = slot;
4113 				btrfs_del_leaf(trans, root, path, leaf);
4114 				free_extent_buffer(leaf);
4115 				ret = 0;
4116 			} else {
4117 				/* if we're still in the path, make sure
4118 				 * we're dirty.  Otherwise, one of the
4119 				 * push_leaf functions must have already
4120 				 * dirtied this buffer
4121 				 */
4122 				if (path->nodes[0] == leaf)
4123 					btrfs_mark_buffer_dirty(leaf);
4124 				free_extent_buffer(leaf);
4125 			}
4126 		} else {
4127 			btrfs_mark_buffer_dirty(leaf);
4128 		}
4129 	}
4130 	return ret;
4131 }
4132 
4133 /*
4134  * search the tree again to find a leaf with lesser keys
4135  * returns 0 if it found something or 1 if there are no lesser leaves.
4136  * returns < 0 on io errors.
4137  *
4138  * This may release the path, and so you may lose any locks held at the
4139  * time you call it.
4140  */
4141 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4142 {
4143 	struct btrfs_key key;
4144 	struct btrfs_disk_key found_key;
4145 	int ret;
4146 
4147 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4148 
4149 	if (key.offset > 0) {
4150 		key.offset--;
4151 	} else if (key.type > 0) {
4152 		key.type--;
4153 		key.offset = (u64)-1;
4154 	} else if (key.objectid > 0) {
4155 		key.objectid--;
4156 		key.type = (u8)-1;
4157 		key.offset = (u64)-1;
4158 	} else {
4159 		return 1;
4160 	}
4161 
4162 	btrfs_release_path(path);
4163 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4164 	if (ret < 0)
4165 		return ret;
4166 	btrfs_item_key(path->nodes[0], &found_key, 0);
4167 	ret = comp_keys(&found_key, &key);
4168 	/*
4169 	 * We might have had an item with the previous key in the tree right
4170 	 * before we released our path. And after we released our path, that
4171 	 * item might have been pushed to the first slot (0) of the leaf we
4172 	 * were holding due to a tree balance. Alternatively, an item with the
4173 	 * previous key can exist as the only element of a leaf (big fat item).
4174 	 * Therefore account for these 2 cases, so that our callers (like
4175 	 * btrfs_previous_item) don't miss an existing item with a key matching
4176 	 * the previous key we computed above.
4177 	 */
4178 	if (ret <= 0)
4179 		return 0;
4180 	return 1;
4181 }
4182 
4183 /*
4184  * A helper function to walk down the tree starting at min_key, and looking
4185  * for nodes or leaves that are have a minimum transaction id.
4186  * This is used by the btree defrag code, and tree logging
4187  *
4188  * This does not cow, but it does stuff the starting key it finds back
4189  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4190  * key and get a writable path.
4191  *
4192  * This honors path->lowest_level to prevent descent past a given level
4193  * of the tree.
4194  *
4195  * min_trans indicates the oldest transaction that you are interested
4196  * in walking through.  Any nodes or leaves older than min_trans are
4197  * skipped over (without reading them).
4198  *
4199  * returns zero if something useful was found, < 0 on error and 1 if there
4200  * was nothing in the tree that matched the search criteria.
4201  */
4202 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4203 			 struct btrfs_path *path,
4204 			 u64 min_trans)
4205 {
4206 	struct extent_buffer *cur;
4207 	struct btrfs_key found_key;
4208 	int slot;
4209 	int sret;
4210 	u32 nritems;
4211 	int level;
4212 	int ret = 1;
4213 	int keep_locks = path->keep_locks;
4214 
4215 	path->keep_locks = 1;
4216 again:
4217 	cur = btrfs_read_lock_root_node(root);
4218 	level = btrfs_header_level(cur);
4219 	WARN_ON(path->nodes[level]);
4220 	path->nodes[level] = cur;
4221 	path->locks[level] = BTRFS_READ_LOCK;
4222 
4223 	if (btrfs_header_generation(cur) < min_trans) {
4224 		ret = 1;
4225 		goto out;
4226 	}
4227 	while (1) {
4228 		nritems = btrfs_header_nritems(cur);
4229 		level = btrfs_header_level(cur);
4230 		sret = btrfs_bin_search(cur, min_key, &slot);
4231 		if (sret < 0) {
4232 			ret = sret;
4233 			goto out;
4234 		}
4235 
4236 		/* at the lowest level, we're done, setup the path and exit */
4237 		if (level == path->lowest_level) {
4238 			if (slot >= nritems)
4239 				goto find_next_key;
4240 			ret = 0;
4241 			path->slots[level] = slot;
4242 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4243 			goto out;
4244 		}
4245 		if (sret && slot > 0)
4246 			slot--;
4247 		/*
4248 		 * check this node pointer against the min_trans parameters.
4249 		 * If it is too old, skip to the next one.
4250 		 */
4251 		while (slot < nritems) {
4252 			u64 gen;
4253 
4254 			gen = btrfs_node_ptr_generation(cur, slot);
4255 			if (gen < min_trans) {
4256 				slot++;
4257 				continue;
4258 			}
4259 			break;
4260 		}
4261 find_next_key:
4262 		/*
4263 		 * we didn't find a candidate key in this node, walk forward
4264 		 * and find another one
4265 		 */
4266 		if (slot >= nritems) {
4267 			path->slots[level] = slot;
4268 			sret = btrfs_find_next_key(root, path, min_key, level,
4269 						  min_trans);
4270 			if (sret == 0) {
4271 				btrfs_release_path(path);
4272 				goto again;
4273 			} else {
4274 				goto out;
4275 			}
4276 		}
4277 		/* save our key for returning back */
4278 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4279 		path->slots[level] = slot;
4280 		if (level == path->lowest_level) {
4281 			ret = 0;
4282 			goto out;
4283 		}
4284 		cur = btrfs_read_node_slot(cur, slot);
4285 		if (IS_ERR(cur)) {
4286 			ret = PTR_ERR(cur);
4287 			goto out;
4288 		}
4289 
4290 		btrfs_tree_read_lock(cur);
4291 
4292 		path->locks[level - 1] = BTRFS_READ_LOCK;
4293 		path->nodes[level - 1] = cur;
4294 		unlock_up(path, level, 1, 0, NULL);
4295 	}
4296 out:
4297 	path->keep_locks = keep_locks;
4298 	if (ret == 0) {
4299 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4300 		memcpy(min_key, &found_key, sizeof(found_key));
4301 	}
4302 	return ret;
4303 }
4304 
4305 /*
4306  * this is similar to btrfs_next_leaf, but does not try to preserve
4307  * and fixup the path.  It looks for and returns the next key in the
4308  * tree based on the current path and the min_trans parameters.
4309  *
4310  * 0 is returned if another key is found, < 0 if there are any errors
4311  * and 1 is returned if there are no higher keys in the tree
4312  *
4313  * path->keep_locks should be set to 1 on the search made before
4314  * calling this function.
4315  */
4316 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4317 			struct btrfs_key *key, int level, u64 min_trans)
4318 {
4319 	int slot;
4320 	struct extent_buffer *c;
4321 
4322 	WARN_ON(!path->keep_locks && !path->skip_locking);
4323 	while (level < BTRFS_MAX_LEVEL) {
4324 		if (!path->nodes[level])
4325 			return 1;
4326 
4327 		slot = path->slots[level] + 1;
4328 		c = path->nodes[level];
4329 next:
4330 		if (slot >= btrfs_header_nritems(c)) {
4331 			int ret;
4332 			int orig_lowest;
4333 			struct btrfs_key cur_key;
4334 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4335 			    !path->nodes[level + 1])
4336 				return 1;
4337 
4338 			if (path->locks[level + 1] || path->skip_locking) {
4339 				level++;
4340 				continue;
4341 			}
4342 
4343 			slot = btrfs_header_nritems(c) - 1;
4344 			if (level == 0)
4345 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4346 			else
4347 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4348 
4349 			orig_lowest = path->lowest_level;
4350 			btrfs_release_path(path);
4351 			path->lowest_level = level;
4352 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4353 						0, 0);
4354 			path->lowest_level = orig_lowest;
4355 			if (ret < 0)
4356 				return ret;
4357 
4358 			c = path->nodes[level];
4359 			slot = path->slots[level];
4360 			if (ret == 0)
4361 				slot++;
4362 			goto next;
4363 		}
4364 
4365 		if (level == 0)
4366 			btrfs_item_key_to_cpu(c, key, slot);
4367 		else {
4368 			u64 gen = btrfs_node_ptr_generation(c, slot);
4369 
4370 			if (gen < min_trans) {
4371 				slot++;
4372 				goto next;
4373 			}
4374 			btrfs_node_key_to_cpu(c, key, slot);
4375 		}
4376 		return 0;
4377 	}
4378 	return 1;
4379 }
4380 
4381 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4382 			u64 time_seq)
4383 {
4384 	int slot;
4385 	int level;
4386 	struct extent_buffer *c;
4387 	struct extent_buffer *next;
4388 	struct btrfs_key key;
4389 	u32 nritems;
4390 	int ret;
4391 	int i;
4392 
4393 	nritems = btrfs_header_nritems(path->nodes[0]);
4394 	if (nritems == 0)
4395 		return 1;
4396 
4397 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4398 again:
4399 	level = 1;
4400 	next = NULL;
4401 	btrfs_release_path(path);
4402 
4403 	path->keep_locks = 1;
4404 
4405 	if (time_seq)
4406 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4407 	else
4408 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4409 	path->keep_locks = 0;
4410 
4411 	if (ret < 0)
4412 		return ret;
4413 
4414 	nritems = btrfs_header_nritems(path->nodes[0]);
4415 	/*
4416 	 * by releasing the path above we dropped all our locks.  A balance
4417 	 * could have added more items next to the key that used to be
4418 	 * at the very end of the block.  So, check again here and
4419 	 * advance the path if there are now more items available.
4420 	 */
4421 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4422 		if (ret == 0)
4423 			path->slots[0]++;
4424 		ret = 0;
4425 		goto done;
4426 	}
4427 	/*
4428 	 * So the above check misses one case:
4429 	 * - after releasing the path above, someone has removed the item that
4430 	 *   used to be at the very end of the block, and balance between leafs
4431 	 *   gets another one with bigger key.offset to replace it.
4432 	 *
4433 	 * This one should be returned as well, or we can get leaf corruption
4434 	 * later(esp. in __btrfs_drop_extents()).
4435 	 *
4436 	 * And a bit more explanation about this check,
4437 	 * with ret > 0, the key isn't found, the path points to the slot
4438 	 * where it should be inserted, so the path->slots[0] item must be the
4439 	 * bigger one.
4440 	 */
4441 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4442 		ret = 0;
4443 		goto done;
4444 	}
4445 
4446 	while (level < BTRFS_MAX_LEVEL) {
4447 		if (!path->nodes[level]) {
4448 			ret = 1;
4449 			goto done;
4450 		}
4451 
4452 		slot = path->slots[level] + 1;
4453 		c = path->nodes[level];
4454 		if (slot >= btrfs_header_nritems(c)) {
4455 			level++;
4456 			if (level == BTRFS_MAX_LEVEL) {
4457 				ret = 1;
4458 				goto done;
4459 			}
4460 			continue;
4461 		}
4462 
4463 
4464 		/*
4465 		 * Our current level is where we're going to start from, and to
4466 		 * make sure lockdep doesn't complain we need to drop our locks
4467 		 * and nodes from 0 to our current level.
4468 		 */
4469 		for (i = 0; i < level; i++) {
4470 			if (path->locks[level]) {
4471 				btrfs_tree_read_unlock(path->nodes[i]);
4472 				path->locks[i] = 0;
4473 			}
4474 			free_extent_buffer(path->nodes[i]);
4475 			path->nodes[i] = NULL;
4476 		}
4477 
4478 		next = c;
4479 		ret = read_block_for_search(root, path, &next, level,
4480 					    slot, &key);
4481 		if (ret == -EAGAIN)
4482 			goto again;
4483 
4484 		if (ret < 0) {
4485 			btrfs_release_path(path);
4486 			goto done;
4487 		}
4488 
4489 		if (!path->skip_locking) {
4490 			ret = btrfs_try_tree_read_lock(next);
4491 			if (!ret && time_seq) {
4492 				/*
4493 				 * If we don't get the lock, we may be racing
4494 				 * with push_leaf_left, holding that lock while
4495 				 * itself waiting for the leaf we've currently
4496 				 * locked. To solve this situation, we give up
4497 				 * on our lock and cycle.
4498 				 */
4499 				free_extent_buffer(next);
4500 				btrfs_release_path(path);
4501 				cond_resched();
4502 				goto again;
4503 			}
4504 			if (!ret)
4505 				btrfs_tree_read_lock(next);
4506 		}
4507 		break;
4508 	}
4509 	path->slots[level] = slot;
4510 	while (1) {
4511 		level--;
4512 		path->nodes[level] = next;
4513 		path->slots[level] = 0;
4514 		if (!path->skip_locking)
4515 			path->locks[level] = BTRFS_READ_LOCK;
4516 		if (!level)
4517 			break;
4518 
4519 		ret = read_block_for_search(root, path, &next, level,
4520 					    0, &key);
4521 		if (ret == -EAGAIN)
4522 			goto again;
4523 
4524 		if (ret < 0) {
4525 			btrfs_release_path(path);
4526 			goto done;
4527 		}
4528 
4529 		if (!path->skip_locking)
4530 			btrfs_tree_read_lock(next);
4531 	}
4532 	ret = 0;
4533 done:
4534 	unlock_up(path, 0, 1, 0, NULL);
4535 
4536 	return ret;
4537 }
4538 
4539 /*
4540  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4541  * searching until it gets past min_objectid or finds an item of 'type'
4542  *
4543  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4544  */
4545 int btrfs_previous_item(struct btrfs_root *root,
4546 			struct btrfs_path *path, u64 min_objectid,
4547 			int type)
4548 {
4549 	struct btrfs_key found_key;
4550 	struct extent_buffer *leaf;
4551 	u32 nritems;
4552 	int ret;
4553 
4554 	while (1) {
4555 		if (path->slots[0] == 0) {
4556 			ret = btrfs_prev_leaf(root, path);
4557 			if (ret != 0)
4558 				return ret;
4559 		} else {
4560 			path->slots[0]--;
4561 		}
4562 		leaf = path->nodes[0];
4563 		nritems = btrfs_header_nritems(leaf);
4564 		if (nritems == 0)
4565 			return 1;
4566 		if (path->slots[0] == nritems)
4567 			path->slots[0]--;
4568 
4569 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4570 		if (found_key.objectid < min_objectid)
4571 			break;
4572 		if (found_key.type == type)
4573 			return 0;
4574 		if (found_key.objectid == min_objectid &&
4575 		    found_key.type < type)
4576 			break;
4577 	}
4578 	return 1;
4579 }
4580 
4581 /*
4582  * search in extent tree to find a previous Metadata/Data extent item with
4583  * min objecitd.
4584  *
4585  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4586  */
4587 int btrfs_previous_extent_item(struct btrfs_root *root,
4588 			struct btrfs_path *path, u64 min_objectid)
4589 {
4590 	struct btrfs_key found_key;
4591 	struct extent_buffer *leaf;
4592 	u32 nritems;
4593 	int ret;
4594 
4595 	while (1) {
4596 		if (path->slots[0] == 0) {
4597 			ret = btrfs_prev_leaf(root, path);
4598 			if (ret != 0)
4599 				return ret;
4600 		} else {
4601 			path->slots[0]--;
4602 		}
4603 		leaf = path->nodes[0];
4604 		nritems = btrfs_header_nritems(leaf);
4605 		if (nritems == 0)
4606 			return 1;
4607 		if (path->slots[0] == nritems)
4608 			path->slots[0]--;
4609 
4610 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4611 		if (found_key.objectid < min_objectid)
4612 			break;
4613 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4614 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
4615 			return 0;
4616 		if (found_key.objectid == min_objectid &&
4617 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
4618 			break;
4619 	}
4620 	return 1;
4621 }
4622