1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 45 struct btrfs_path *btrfs_alloc_path(void) 46 { 47 struct btrfs_path *path; 48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 49 return path; 50 } 51 52 /* 53 * set all locked nodes in the path to blocking locks. This should 54 * be done before scheduling 55 */ 56 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 57 { 58 int i; 59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 60 if (!p->nodes[i] || !p->locks[i]) 61 continue; 62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 63 if (p->locks[i] == BTRFS_READ_LOCK) 64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 65 else if (p->locks[i] == BTRFS_WRITE_LOCK) 66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 67 } 68 } 69 70 /* 71 * reset all the locked nodes in the patch to spinning locks. 72 * 73 * held is used to keep lockdep happy, when lockdep is enabled 74 * we set held to a blocking lock before we go around and 75 * retake all the spinlocks in the path. You can safely use NULL 76 * for held 77 */ 78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 79 struct extent_buffer *held, int held_rw) 80 { 81 int i; 82 83 if (held) { 84 btrfs_set_lock_blocking_rw(held, held_rw); 85 if (held_rw == BTRFS_WRITE_LOCK) 86 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 87 else if (held_rw == BTRFS_READ_LOCK) 88 held_rw = BTRFS_READ_LOCK_BLOCKING; 89 } 90 btrfs_set_path_blocking(p); 91 92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 93 if (p->nodes[i] && p->locks[i]) { 94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 96 p->locks[i] = BTRFS_WRITE_LOCK; 97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 98 p->locks[i] = BTRFS_READ_LOCK; 99 } 100 } 101 102 if (held) 103 btrfs_clear_lock_blocking_rw(held, held_rw); 104 } 105 106 /* this also releases the path */ 107 void btrfs_free_path(struct btrfs_path *p) 108 { 109 if (!p) 110 return; 111 btrfs_release_path(p); 112 kmem_cache_free(btrfs_path_cachep, p); 113 } 114 115 /* 116 * path release drops references on the extent buffers in the path 117 * and it drops any locks held by this path 118 * 119 * It is safe to call this on paths that no locks or extent buffers held. 120 */ 121 noinline void btrfs_release_path(struct btrfs_path *p) 122 { 123 int i; 124 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 126 p->slots[i] = 0; 127 if (!p->nodes[i]) 128 continue; 129 if (p->locks[i]) { 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 131 p->locks[i] = 0; 132 } 133 free_extent_buffer(p->nodes[i]); 134 p->nodes[i] = NULL; 135 } 136 } 137 138 /* 139 * safely gets a reference on the root node of a tree. A lock 140 * is not taken, so a concurrent writer may put a different node 141 * at the root of the tree. See btrfs_lock_root_node for the 142 * looping required. 143 * 144 * The extent buffer returned by this has a reference taken, so 145 * it won't disappear. It may stop being the root of the tree 146 * at any time because there are no locks held. 147 */ 148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 149 { 150 struct extent_buffer *eb; 151 152 while (1) { 153 rcu_read_lock(); 154 eb = rcu_dereference(root->node); 155 156 /* 157 * RCU really hurts here, we could free up the root node because 158 * it was cow'ed but we may not get the new root node yet so do 159 * the inc_not_zero dance and if it doesn't work then 160 * synchronize_rcu and try again. 161 */ 162 if (atomic_inc_not_zero(&eb->refs)) { 163 rcu_read_unlock(); 164 break; 165 } 166 rcu_read_unlock(); 167 synchronize_rcu(); 168 } 169 return eb; 170 } 171 172 /* loop around taking references on and locking the root node of the 173 * tree until you end up with a lock on the root. A locked buffer 174 * is returned, with a reference held. 175 */ 176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 177 { 178 struct extent_buffer *eb; 179 180 while (1) { 181 eb = btrfs_root_node(root); 182 btrfs_tree_lock(eb); 183 if (eb == root->node) 184 break; 185 btrfs_tree_unlock(eb); 186 free_extent_buffer(eb); 187 } 188 return eb; 189 } 190 191 /* loop around taking references on and locking the root node of the 192 * tree until you end up with a lock on the root. A locked buffer 193 * is returned, with a reference held. 194 */ 195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 196 { 197 struct extent_buffer *eb; 198 199 while (1) { 200 eb = btrfs_root_node(root); 201 btrfs_tree_read_lock(eb); 202 if (eb == root->node) 203 break; 204 btrfs_tree_read_unlock(eb); 205 free_extent_buffer(eb); 206 } 207 return eb; 208 } 209 210 /* cowonly root (everything not a reference counted cow subvolume), just get 211 * put onto a simple dirty list. transaction.c walks this to make sure they 212 * get properly updated on disk. 213 */ 214 static void add_root_to_dirty_list(struct btrfs_root *root) 215 { 216 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 217 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 218 return; 219 220 spin_lock(&root->fs_info->trans_lock); 221 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 222 /* Want the extent tree to be the last on the list */ 223 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 224 list_move_tail(&root->dirty_list, 225 &root->fs_info->dirty_cowonly_roots); 226 else 227 list_move(&root->dirty_list, 228 &root->fs_info->dirty_cowonly_roots); 229 } 230 spin_unlock(&root->fs_info->trans_lock); 231 } 232 233 /* 234 * used by snapshot creation to make a copy of a root for a tree with 235 * a given objectid. The buffer with the new root node is returned in 236 * cow_ret, and this func returns zero on success or a negative error code. 237 */ 238 int btrfs_copy_root(struct btrfs_trans_handle *trans, 239 struct btrfs_root *root, 240 struct extent_buffer *buf, 241 struct extent_buffer **cow_ret, u64 new_root_objectid) 242 { 243 struct extent_buffer *cow; 244 int ret = 0; 245 int level; 246 struct btrfs_disk_key disk_key; 247 248 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 249 trans->transid != root->fs_info->running_transaction->transid); 250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 251 trans->transid != root->last_trans); 252 253 level = btrfs_header_level(buf); 254 if (level == 0) 255 btrfs_item_key(buf, &disk_key, 0); 256 else 257 btrfs_node_key(buf, &disk_key, 0); 258 259 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 260 &disk_key, level, buf->start, 0); 261 if (IS_ERR(cow)) 262 return PTR_ERR(cow); 263 264 copy_extent_buffer(cow, buf, 0, 0, cow->len); 265 btrfs_set_header_bytenr(cow, cow->start); 266 btrfs_set_header_generation(cow, trans->transid); 267 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 268 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 269 BTRFS_HEADER_FLAG_RELOC); 270 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 271 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 272 else 273 btrfs_set_header_owner(cow, new_root_objectid); 274 275 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 276 BTRFS_FSID_SIZE); 277 278 WARN_ON(btrfs_header_generation(buf) > trans->transid); 279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 280 ret = btrfs_inc_ref(trans, root, cow, 1); 281 else 282 ret = btrfs_inc_ref(trans, root, cow, 0); 283 284 if (ret) 285 return ret; 286 287 btrfs_mark_buffer_dirty(cow); 288 *cow_ret = cow; 289 return 0; 290 } 291 292 enum mod_log_op { 293 MOD_LOG_KEY_REPLACE, 294 MOD_LOG_KEY_ADD, 295 MOD_LOG_KEY_REMOVE, 296 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 297 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 298 MOD_LOG_MOVE_KEYS, 299 MOD_LOG_ROOT_REPLACE, 300 }; 301 302 struct tree_mod_move { 303 int dst_slot; 304 int nr_items; 305 }; 306 307 struct tree_mod_root { 308 u64 logical; 309 u8 level; 310 }; 311 312 struct tree_mod_elem { 313 struct rb_node node; 314 u64 index; /* shifted logical */ 315 u64 seq; 316 enum mod_log_op op; 317 318 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 319 int slot; 320 321 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 322 u64 generation; 323 324 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 325 struct btrfs_disk_key key; 326 u64 blockptr; 327 328 /* this is used for op == MOD_LOG_MOVE_KEYS */ 329 struct tree_mod_move move; 330 331 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 332 struct tree_mod_root old_root; 333 }; 334 335 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 336 { 337 read_lock(&fs_info->tree_mod_log_lock); 338 } 339 340 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 341 { 342 read_unlock(&fs_info->tree_mod_log_lock); 343 } 344 345 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 346 { 347 write_lock(&fs_info->tree_mod_log_lock); 348 } 349 350 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 351 { 352 write_unlock(&fs_info->tree_mod_log_lock); 353 } 354 355 /* 356 * Pull a new tree mod seq number for our operation. 357 */ 358 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 359 { 360 return atomic64_inc_return(&fs_info->tree_mod_seq); 361 } 362 363 /* 364 * This adds a new blocker to the tree mod log's blocker list if the @elem 365 * passed does not already have a sequence number set. So when a caller expects 366 * to record tree modifications, it should ensure to set elem->seq to zero 367 * before calling btrfs_get_tree_mod_seq. 368 * Returns a fresh, unused tree log modification sequence number, even if no new 369 * blocker was added. 370 */ 371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 372 struct seq_list *elem) 373 { 374 tree_mod_log_write_lock(fs_info); 375 spin_lock(&fs_info->tree_mod_seq_lock); 376 if (!elem->seq) { 377 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 378 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 379 } 380 spin_unlock(&fs_info->tree_mod_seq_lock); 381 tree_mod_log_write_unlock(fs_info); 382 383 return elem->seq; 384 } 385 386 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 387 struct seq_list *elem) 388 { 389 struct rb_root *tm_root; 390 struct rb_node *node; 391 struct rb_node *next; 392 struct seq_list *cur_elem; 393 struct tree_mod_elem *tm; 394 u64 min_seq = (u64)-1; 395 u64 seq_putting = elem->seq; 396 397 if (!seq_putting) 398 return; 399 400 spin_lock(&fs_info->tree_mod_seq_lock); 401 list_del(&elem->list); 402 elem->seq = 0; 403 404 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 405 if (cur_elem->seq < min_seq) { 406 if (seq_putting > cur_elem->seq) { 407 /* 408 * blocker with lower sequence number exists, we 409 * cannot remove anything from the log 410 */ 411 spin_unlock(&fs_info->tree_mod_seq_lock); 412 return; 413 } 414 min_seq = cur_elem->seq; 415 } 416 } 417 spin_unlock(&fs_info->tree_mod_seq_lock); 418 419 /* 420 * anything that's lower than the lowest existing (read: blocked) 421 * sequence number can be removed from the tree. 422 */ 423 tree_mod_log_write_lock(fs_info); 424 tm_root = &fs_info->tree_mod_log; 425 for (node = rb_first(tm_root); node; node = next) { 426 next = rb_next(node); 427 tm = container_of(node, struct tree_mod_elem, node); 428 if (tm->seq > min_seq) 429 continue; 430 rb_erase(node, tm_root); 431 kfree(tm); 432 } 433 tree_mod_log_write_unlock(fs_info); 434 } 435 436 /* 437 * key order of the log: 438 * index -> sequence 439 * 440 * the index is the shifted logical of the *new* root node for root replace 441 * operations, or the shifted logical of the affected block for all other 442 * operations. 443 * 444 * Note: must be called with write lock (tree_mod_log_write_lock). 445 */ 446 static noinline int 447 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 448 { 449 struct rb_root *tm_root; 450 struct rb_node **new; 451 struct rb_node *parent = NULL; 452 struct tree_mod_elem *cur; 453 454 BUG_ON(!tm); 455 456 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 457 458 tm_root = &fs_info->tree_mod_log; 459 new = &tm_root->rb_node; 460 while (*new) { 461 cur = container_of(*new, struct tree_mod_elem, node); 462 parent = *new; 463 if (cur->index < tm->index) 464 new = &((*new)->rb_left); 465 else if (cur->index > tm->index) 466 new = &((*new)->rb_right); 467 else if (cur->seq < tm->seq) 468 new = &((*new)->rb_left); 469 else if (cur->seq > tm->seq) 470 new = &((*new)->rb_right); 471 else 472 return -EEXIST; 473 } 474 475 rb_link_node(&tm->node, parent, new); 476 rb_insert_color(&tm->node, tm_root); 477 return 0; 478 } 479 480 /* 481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 482 * returns zero with the tree_mod_log_lock acquired. The caller must hold 483 * this until all tree mod log insertions are recorded in the rb tree and then 484 * call tree_mod_log_write_unlock() to release. 485 */ 486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 487 struct extent_buffer *eb) { 488 smp_mb(); 489 if (list_empty(&(fs_info)->tree_mod_seq_list)) 490 return 1; 491 if (eb && btrfs_header_level(eb) == 0) 492 return 1; 493 494 tree_mod_log_write_lock(fs_info); 495 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 496 tree_mod_log_write_unlock(fs_info); 497 return 1; 498 } 499 500 return 0; 501 } 502 503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 505 struct extent_buffer *eb) 506 { 507 smp_mb(); 508 if (list_empty(&(fs_info)->tree_mod_seq_list)) 509 return 0; 510 if (eb && btrfs_header_level(eb) == 0) 511 return 0; 512 513 return 1; 514 } 515 516 static struct tree_mod_elem * 517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 518 enum mod_log_op op, gfp_t flags) 519 { 520 struct tree_mod_elem *tm; 521 522 tm = kzalloc(sizeof(*tm), flags); 523 if (!tm) 524 return NULL; 525 526 tm->index = eb->start >> PAGE_CACHE_SHIFT; 527 if (op != MOD_LOG_KEY_ADD) { 528 btrfs_node_key(eb, &tm->key, slot); 529 tm->blockptr = btrfs_node_blockptr(eb, slot); 530 } 531 tm->op = op; 532 tm->slot = slot; 533 tm->generation = btrfs_node_ptr_generation(eb, slot); 534 RB_CLEAR_NODE(&tm->node); 535 536 return tm; 537 } 538 539 static noinline int 540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 541 struct extent_buffer *eb, int slot, 542 enum mod_log_op op, gfp_t flags) 543 { 544 struct tree_mod_elem *tm; 545 int ret; 546 547 if (!tree_mod_need_log(fs_info, eb)) 548 return 0; 549 550 tm = alloc_tree_mod_elem(eb, slot, op, flags); 551 if (!tm) 552 return -ENOMEM; 553 554 if (tree_mod_dont_log(fs_info, eb)) { 555 kfree(tm); 556 return 0; 557 } 558 559 ret = __tree_mod_log_insert(fs_info, tm); 560 tree_mod_log_write_unlock(fs_info); 561 if (ret) 562 kfree(tm); 563 564 return ret; 565 } 566 567 static noinline int 568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 569 struct extent_buffer *eb, int dst_slot, int src_slot, 570 int nr_items, gfp_t flags) 571 { 572 struct tree_mod_elem *tm = NULL; 573 struct tree_mod_elem **tm_list = NULL; 574 int ret = 0; 575 int i; 576 int locked = 0; 577 578 if (!tree_mod_need_log(fs_info, eb)) 579 return 0; 580 581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags); 582 if (!tm_list) 583 return -ENOMEM; 584 585 tm = kzalloc(sizeof(*tm), flags); 586 if (!tm) { 587 ret = -ENOMEM; 588 goto free_tms; 589 } 590 591 tm->index = eb->start >> PAGE_CACHE_SHIFT; 592 tm->slot = src_slot; 593 tm->move.dst_slot = dst_slot; 594 tm->move.nr_items = nr_items; 595 tm->op = MOD_LOG_MOVE_KEYS; 596 597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 600 if (!tm_list[i]) { 601 ret = -ENOMEM; 602 goto free_tms; 603 } 604 } 605 606 if (tree_mod_dont_log(fs_info, eb)) 607 goto free_tms; 608 locked = 1; 609 610 /* 611 * When we override something during the move, we log these removals. 612 * This can only happen when we move towards the beginning of the 613 * buffer, i.e. dst_slot < src_slot. 614 */ 615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 616 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 617 if (ret) 618 goto free_tms; 619 } 620 621 ret = __tree_mod_log_insert(fs_info, tm); 622 if (ret) 623 goto free_tms; 624 tree_mod_log_write_unlock(fs_info); 625 kfree(tm_list); 626 627 return 0; 628 free_tms: 629 for (i = 0; i < nr_items; i++) { 630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 632 kfree(tm_list[i]); 633 } 634 if (locked) 635 tree_mod_log_write_unlock(fs_info); 636 kfree(tm_list); 637 kfree(tm); 638 639 return ret; 640 } 641 642 static inline int 643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 644 struct tree_mod_elem **tm_list, 645 int nritems) 646 { 647 int i, j; 648 int ret; 649 650 for (i = nritems - 1; i >= 0; i--) { 651 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 652 if (ret) { 653 for (j = nritems - 1; j > i; j--) 654 rb_erase(&tm_list[j]->node, 655 &fs_info->tree_mod_log); 656 return ret; 657 } 658 } 659 660 return 0; 661 } 662 663 static noinline int 664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 665 struct extent_buffer *old_root, 666 struct extent_buffer *new_root, gfp_t flags, 667 int log_removal) 668 { 669 struct tree_mod_elem *tm = NULL; 670 struct tree_mod_elem **tm_list = NULL; 671 int nritems = 0; 672 int ret = 0; 673 int i; 674 675 if (!tree_mod_need_log(fs_info, NULL)) 676 return 0; 677 678 if (log_removal && btrfs_header_level(old_root) > 0) { 679 nritems = btrfs_header_nritems(old_root); 680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 681 flags); 682 if (!tm_list) { 683 ret = -ENOMEM; 684 goto free_tms; 685 } 686 for (i = 0; i < nritems; i++) { 687 tm_list[i] = alloc_tree_mod_elem(old_root, i, 688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 689 if (!tm_list[i]) { 690 ret = -ENOMEM; 691 goto free_tms; 692 } 693 } 694 } 695 696 tm = kzalloc(sizeof(*tm), flags); 697 if (!tm) { 698 ret = -ENOMEM; 699 goto free_tms; 700 } 701 702 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 703 tm->old_root.logical = old_root->start; 704 tm->old_root.level = btrfs_header_level(old_root); 705 tm->generation = btrfs_header_generation(old_root); 706 tm->op = MOD_LOG_ROOT_REPLACE; 707 708 if (tree_mod_dont_log(fs_info, NULL)) 709 goto free_tms; 710 711 if (tm_list) 712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 713 if (!ret) 714 ret = __tree_mod_log_insert(fs_info, tm); 715 716 tree_mod_log_write_unlock(fs_info); 717 if (ret) 718 goto free_tms; 719 kfree(tm_list); 720 721 return ret; 722 723 free_tms: 724 if (tm_list) { 725 for (i = 0; i < nritems; i++) 726 kfree(tm_list[i]); 727 kfree(tm_list); 728 } 729 kfree(tm); 730 731 return ret; 732 } 733 734 static struct tree_mod_elem * 735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 736 int smallest) 737 { 738 struct rb_root *tm_root; 739 struct rb_node *node; 740 struct tree_mod_elem *cur = NULL; 741 struct tree_mod_elem *found = NULL; 742 u64 index = start >> PAGE_CACHE_SHIFT; 743 744 tree_mod_log_read_lock(fs_info); 745 tm_root = &fs_info->tree_mod_log; 746 node = tm_root->rb_node; 747 while (node) { 748 cur = container_of(node, struct tree_mod_elem, node); 749 if (cur->index < index) { 750 node = node->rb_left; 751 } else if (cur->index > index) { 752 node = node->rb_right; 753 } else if (cur->seq < min_seq) { 754 node = node->rb_left; 755 } else if (!smallest) { 756 /* we want the node with the highest seq */ 757 if (found) 758 BUG_ON(found->seq > cur->seq); 759 found = cur; 760 node = node->rb_left; 761 } else if (cur->seq > min_seq) { 762 /* we want the node with the smallest seq */ 763 if (found) 764 BUG_ON(found->seq < cur->seq); 765 found = cur; 766 node = node->rb_right; 767 } else { 768 found = cur; 769 break; 770 } 771 } 772 tree_mod_log_read_unlock(fs_info); 773 774 return found; 775 } 776 777 /* 778 * this returns the element from the log with the smallest time sequence 779 * value that's in the log (the oldest log item). any element with a time 780 * sequence lower than min_seq will be ignored. 781 */ 782 static struct tree_mod_elem * 783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 784 u64 min_seq) 785 { 786 return __tree_mod_log_search(fs_info, start, min_seq, 1); 787 } 788 789 /* 790 * this returns the element from the log with the largest time sequence 791 * value that's in the log (the most recent log item). any element with 792 * a time sequence lower than min_seq will be ignored. 793 */ 794 static struct tree_mod_elem * 795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 796 { 797 return __tree_mod_log_search(fs_info, start, min_seq, 0); 798 } 799 800 static noinline int 801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 802 struct extent_buffer *src, unsigned long dst_offset, 803 unsigned long src_offset, int nr_items) 804 { 805 int ret = 0; 806 struct tree_mod_elem **tm_list = NULL; 807 struct tree_mod_elem **tm_list_add, **tm_list_rem; 808 int i; 809 int locked = 0; 810 811 if (!tree_mod_need_log(fs_info, NULL)) 812 return 0; 813 814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 815 return 0; 816 817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 818 GFP_NOFS); 819 if (!tm_list) 820 return -ENOMEM; 821 822 tm_list_add = tm_list; 823 tm_list_rem = tm_list + nr_items; 824 for (i = 0; i < nr_items; i++) { 825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 826 MOD_LOG_KEY_REMOVE, GFP_NOFS); 827 if (!tm_list_rem[i]) { 828 ret = -ENOMEM; 829 goto free_tms; 830 } 831 832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 833 MOD_LOG_KEY_ADD, GFP_NOFS); 834 if (!tm_list_add[i]) { 835 ret = -ENOMEM; 836 goto free_tms; 837 } 838 } 839 840 if (tree_mod_dont_log(fs_info, NULL)) 841 goto free_tms; 842 locked = 1; 843 844 for (i = 0; i < nr_items; i++) { 845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 846 if (ret) 847 goto free_tms; 848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 849 if (ret) 850 goto free_tms; 851 } 852 853 tree_mod_log_write_unlock(fs_info); 854 kfree(tm_list); 855 856 return 0; 857 858 free_tms: 859 for (i = 0; i < nr_items * 2; i++) { 860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 862 kfree(tm_list[i]); 863 } 864 if (locked) 865 tree_mod_log_write_unlock(fs_info); 866 kfree(tm_list); 867 868 return ret; 869 } 870 871 static inline void 872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 873 int dst_offset, int src_offset, int nr_items) 874 { 875 int ret; 876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 877 nr_items, GFP_NOFS); 878 BUG_ON(ret < 0); 879 } 880 881 static noinline void 882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 883 struct extent_buffer *eb, int slot, int atomic) 884 { 885 int ret; 886 887 ret = tree_mod_log_insert_key(fs_info, eb, slot, 888 MOD_LOG_KEY_REPLACE, 889 atomic ? GFP_ATOMIC : GFP_NOFS); 890 BUG_ON(ret < 0); 891 } 892 893 static noinline int 894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 895 { 896 struct tree_mod_elem **tm_list = NULL; 897 int nritems = 0; 898 int i; 899 int ret = 0; 900 901 if (btrfs_header_level(eb) == 0) 902 return 0; 903 904 if (!tree_mod_need_log(fs_info, NULL)) 905 return 0; 906 907 nritems = btrfs_header_nritems(eb); 908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 909 if (!tm_list) 910 return -ENOMEM; 911 912 for (i = 0; i < nritems; i++) { 913 tm_list[i] = alloc_tree_mod_elem(eb, i, 914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 915 if (!tm_list[i]) { 916 ret = -ENOMEM; 917 goto free_tms; 918 } 919 } 920 921 if (tree_mod_dont_log(fs_info, eb)) 922 goto free_tms; 923 924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 925 tree_mod_log_write_unlock(fs_info); 926 if (ret) 927 goto free_tms; 928 kfree(tm_list); 929 930 return 0; 931 932 free_tms: 933 for (i = 0; i < nritems; i++) 934 kfree(tm_list[i]); 935 kfree(tm_list); 936 937 return ret; 938 } 939 940 static noinline void 941 tree_mod_log_set_root_pointer(struct btrfs_root *root, 942 struct extent_buffer *new_root_node, 943 int log_removal) 944 { 945 int ret; 946 ret = tree_mod_log_insert_root(root->fs_info, root->node, 947 new_root_node, GFP_NOFS, log_removal); 948 BUG_ON(ret < 0); 949 } 950 951 /* 952 * check if the tree block can be shared by multiple trees 953 */ 954 int btrfs_block_can_be_shared(struct btrfs_root *root, 955 struct extent_buffer *buf) 956 { 957 /* 958 * Tree blocks not in refernece counted trees and tree roots 959 * are never shared. If a block was allocated after the last 960 * snapshot and the block was not allocated by tree relocation, 961 * we know the block is not shared. 962 */ 963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 964 buf != root->node && buf != root->commit_root && 965 (btrfs_header_generation(buf) <= 966 btrfs_root_last_snapshot(&root->root_item) || 967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 968 return 1; 969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 972 return 1; 973 #endif 974 return 0; 975 } 976 977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 978 struct btrfs_root *root, 979 struct extent_buffer *buf, 980 struct extent_buffer *cow, 981 int *last_ref) 982 { 983 u64 refs; 984 u64 owner; 985 u64 flags; 986 u64 new_flags = 0; 987 int ret; 988 989 /* 990 * Backrefs update rules: 991 * 992 * Always use full backrefs for extent pointers in tree block 993 * allocated by tree relocation. 994 * 995 * If a shared tree block is no longer referenced by its owner 996 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 997 * use full backrefs for extent pointers in tree block. 998 * 999 * If a tree block is been relocating 1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1001 * use full backrefs for extent pointers in tree block. 1002 * The reason for this is some operations (such as drop tree) 1003 * are only allowed for blocks use full backrefs. 1004 */ 1005 1006 if (btrfs_block_can_be_shared(root, buf)) { 1007 ret = btrfs_lookup_extent_info(trans, root, buf->start, 1008 btrfs_header_level(buf), 1, 1009 &refs, &flags); 1010 if (ret) 1011 return ret; 1012 if (refs == 0) { 1013 ret = -EROFS; 1014 btrfs_std_error(root->fs_info, ret); 1015 return ret; 1016 } 1017 } else { 1018 refs = 1; 1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1022 else 1023 flags = 0; 1024 } 1025 1026 owner = btrfs_header_owner(buf); 1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1029 1030 if (refs > 1) { 1031 if ((owner == root->root_key.objectid || 1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1034 ret = btrfs_inc_ref(trans, root, buf, 1); 1035 BUG_ON(ret); /* -ENOMEM */ 1036 1037 if (root->root_key.objectid == 1038 BTRFS_TREE_RELOC_OBJECTID) { 1039 ret = btrfs_dec_ref(trans, root, buf, 0); 1040 BUG_ON(ret); /* -ENOMEM */ 1041 ret = btrfs_inc_ref(trans, root, cow, 1); 1042 BUG_ON(ret); /* -ENOMEM */ 1043 } 1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1045 } else { 1046 1047 if (root->root_key.objectid == 1048 BTRFS_TREE_RELOC_OBJECTID) 1049 ret = btrfs_inc_ref(trans, root, cow, 1); 1050 else 1051 ret = btrfs_inc_ref(trans, root, cow, 0); 1052 BUG_ON(ret); /* -ENOMEM */ 1053 } 1054 if (new_flags != 0) { 1055 int level = btrfs_header_level(buf); 1056 1057 ret = btrfs_set_disk_extent_flags(trans, root, 1058 buf->start, 1059 buf->len, 1060 new_flags, level, 0); 1061 if (ret) 1062 return ret; 1063 } 1064 } else { 1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1066 if (root->root_key.objectid == 1067 BTRFS_TREE_RELOC_OBJECTID) 1068 ret = btrfs_inc_ref(trans, root, cow, 1); 1069 else 1070 ret = btrfs_inc_ref(trans, root, cow, 0); 1071 BUG_ON(ret); /* -ENOMEM */ 1072 ret = btrfs_dec_ref(trans, root, buf, 1); 1073 BUG_ON(ret); /* -ENOMEM */ 1074 } 1075 clean_tree_block(trans, root->fs_info, buf); 1076 *last_ref = 1; 1077 } 1078 return 0; 1079 } 1080 1081 /* 1082 * does the dirty work in cow of a single block. The parent block (if 1083 * supplied) is updated to point to the new cow copy. The new buffer is marked 1084 * dirty and returned locked. If you modify the block it needs to be marked 1085 * dirty again. 1086 * 1087 * search_start -- an allocation hint for the new block 1088 * 1089 * empty_size -- a hint that you plan on doing more cow. This is the size in 1090 * bytes the allocator should try to find free next to the block it returns. 1091 * This is just a hint and may be ignored by the allocator. 1092 */ 1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1094 struct btrfs_root *root, 1095 struct extent_buffer *buf, 1096 struct extent_buffer *parent, int parent_slot, 1097 struct extent_buffer **cow_ret, 1098 u64 search_start, u64 empty_size) 1099 { 1100 struct btrfs_disk_key disk_key; 1101 struct extent_buffer *cow; 1102 int level, ret; 1103 int last_ref = 0; 1104 int unlock_orig = 0; 1105 u64 parent_start; 1106 1107 if (*cow_ret == buf) 1108 unlock_orig = 1; 1109 1110 btrfs_assert_tree_locked(buf); 1111 1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1113 trans->transid != root->fs_info->running_transaction->transid); 1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1115 trans->transid != root->last_trans); 1116 1117 level = btrfs_header_level(buf); 1118 1119 if (level == 0) 1120 btrfs_item_key(buf, &disk_key, 0); 1121 else 1122 btrfs_node_key(buf, &disk_key, 0); 1123 1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 1125 if (parent) 1126 parent_start = parent->start; 1127 else 1128 parent_start = 0; 1129 } else 1130 parent_start = 0; 1131 1132 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1133 root->root_key.objectid, &disk_key, level, 1134 search_start, empty_size); 1135 if (IS_ERR(cow)) 1136 return PTR_ERR(cow); 1137 1138 /* cow is set to blocking by btrfs_init_new_buffer */ 1139 1140 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1141 btrfs_set_header_bytenr(cow, cow->start); 1142 btrfs_set_header_generation(cow, trans->transid); 1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1145 BTRFS_HEADER_FLAG_RELOC); 1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1148 else 1149 btrfs_set_header_owner(cow, root->root_key.objectid); 1150 1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1152 BTRFS_FSID_SIZE); 1153 1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1155 if (ret) { 1156 btrfs_abort_transaction(trans, root, ret); 1157 return ret; 1158 } 1159 1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1162 if (ret) 1163 return ret; 1164 } 1165 1166 if (buf == root->node) { 1167 WARN_ON(parent && parent != buf); 1168 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1169 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1170 parent_start = buf->start; 1171 else 1172 parent_start = 0; 1173 1174 extent_buffer_get(cow); 1175 tree_mod_log_set_root_pointer(root, cow, 1); 1176 rcu_assign_pointer(root->node, cow); 1177 1178 btrfs_free_tree_block(trans, root, buf, parent_start, 1179 last_ref); 1180 free_extent_buffer(buf); 1181 add_root_to_dirty_list(root); 1182 } else { 1183 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1184 parent_start = parent->start; 1185 else 1186 parent_start = 0; 1187 1188 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1189 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1190 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1191 btrfs_set_node_blockptr(parent, parent_slot, 1192 cow->start); 1193 btrfs_set_node_ptr_generation(parent, parent_slot, 1194 trans->transid); 1195 btrfs_mark_buffer_dirty(parent); 1196 if (last_ref) { 1197 ret = tree_mod_log_free_eb(root->fs_info, buf); 1198 if (ret) { 1199 btrfs_abort_transaction(trans, root, ret); 1200 return ret; 1201 } 1202 } 1203 btrfs_free_tree_block(trans, root, buf, parent_start, 1204 last_ref); 1205 } 1206 if (unlock_orig) 1207 btrfs_tree_unlock(buf); 1208 free_extent_buffer_stale(buf); 1209 btrfs_mark_buffer_dirty(cow); 1210 *cow_ret = cow; 1211 return 0; 1212 } 1213 1214 /* 1215 * returns the logical address of the oldest predecessor of the given root. 1216 * entries older than time_seq are ignored. 1217 */ 1218 static struct tree_mod_elem * 1219 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1220 struct extent_buffer *eb_root, u64 time_seq) 1221 { 1222 struct tree_mod_elem *tm; 1223 struct tree_mod_elem *found = NULL; 1224 u64 root_logical = eb_root->start; 1225 int looped = 0; 1226 1227 if (!time_seq) 1228 return NULL; 1229 1230 /* 1231 * the very last operation that's logged for a root is the replacement 1232 * operation (if it is replaced at all). this has the index of the *new* 1233 * root, making it the very first operation that's logged for this root. 1234 */ 1235 while (1) { 1236 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1237 time_seq); 1238 if (!looped && !tm) 1239 return NULL; 1240 /* 1241 * if there are no tree operation for the oldest root, we simply 1242 * return it. this should only happen if that (old) root is at 1243 * level 0. 1244 */ 1245 if (!tm) 1246 break; 1247 1248 /* 1249 * if there's an operation that's not a root replacement, we 1250 * found the oldest version of our root. normally, we'll find a 1251 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1252 */ 1253 if (tm->op != MOD_LOG_ROOT_REPLACE) 1254 break; 1255 1256 found = tm; 1257 root_logical = tm->old_root.logical; 1258 looped = 1; 1259 } 1260 1261 /* if there's no old root to return, return what we found instead */ 1262 if (!found) 1263 found = tm; 1264 1265 return found; 1266 } 1267 1268 /* 1269 * tm is a pointer to the first operation to rewind within eb. then, all 1270 * previous operations will be rewinded (until we reach something older than 1271 * time_seq). 1272 */ 1273 static void 1274 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1275 u64 time_seq, struct tree_mod_elem *first_tm) 1276 { 1277 u32 n; 1278 struct rb_node *next; 1279 struct tree_mod_elem *tm = first_tm; 1280 unsigned long o_dst; 1281 unsigned long o_src; 1282 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1283 1284 n = btrfs_header_nritems(eb); 1285 tree_mod_log_read_lock(fs_info); 1286 while (tm && tm->seq >= time_seq) { 1287 /* 1288 * all the operations are recorded with the operator used for 1289 * the modification. as we're going backwards, we do the 1290 * opposite of each operation here. 1291 */ 1292 switch (tm->op) { 1293 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1294 BUG_ON(tm->slot < n); 1295 /* Fallthrough */ 1296 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1297 case MOD_LOG_KEY_REMOVE: 1298 btrfs_set_node_key(eb, &tm->key, tm->slot); 1299 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1300 btrfs_set_node_ptr_generation(eb, tm->slot, 1301 tm->generation); 1302 n++; 1303 break; 1304 case MOD_LOG_KEY_REPLACE: 1305 BUG_ON(tm->slot >= n); 1306 btrfs_set_node_key(eb, &tm->key, tm->slot); 1307 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1308 btrfs_set_node_ptr_generation(eb, tm->slot, 1309 tm->generation); 1310 break; 1311 case MOD_LOG_KEY_ADD: 1312 /* if a move operation is needed it's in the log */ 1313 n--; 1314 break; 1315 case MOD_LOG_MOVE_KEYS: 1316 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1317 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1318 memmove_extent_buffer(eb, o_dst, o_src, 1319 tm->move.nr_items * p_size); 1320 break; 1321 case MOD_LOG_ROOT_REPLACE: 1322 /* 1323 * this operation is special. for roots, this must be 1324 * handled explicitly before rewinding. 1325 * for non-roots, this operation may exist if the node 1326 * was a root: root A -> child B; then A gets empty and 1327 * B is promoted to the new root. in the mod log, we'll 1328 * have a root-replace operation for B, a tree block 1329 * that is no root. we simply ignore that operation. 1330 */ 1331 break; 1332 } 1333 next = rb_next(&tm->node); 1334 if (!next) 1335 break; 1336 tm = container_of(next, struct tree_mod_elem, node); 1337 if (tm->index != first_tm->index) 1338 break; 1339 } 1340 tree_mod_log_read_unlock(fs_info); 1341 btrfs_set_header_nritems(eb, n); 1342 } 1343 1344 /* 1345 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1346 * is returned. If rewind operations happen, a fresh buffer is returned. The 1347 * returned buffer is always read-locked. If the returned buffer is not the 1348 * input buffer, the lock on the input buffer is released and the input buffer 1349 * is freed (its refcount is decremented). 1350 */ 1351 static struct extent_buffer * 1352 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1353 struct extent_buffer *eb, u64 time_seq) 1354 { 1355 struct extent_buffer *eb_rewin; 1356 struct tree_mod_elem *tm; 1357 1358 if (!time_seq) 1359 return eb; 1360 1361 if (btrfs_header_level(eb) == 0) 1362 return eb; 1363 1364 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1365 if (!tm) 1366 return eb; 1367 1368 btrfs_set_path_blocking(path); 1369 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1370 1371 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1372 BUG_ON(tm->slot != 0); 1373 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1374 if (!eb_rewin) { 1375 btrfs_tree_read_unlock_blocking(eb); 1376 free_extent_buffer(eb); 1377 return NULL; 1378 } 1379 btrfs_set_header_bytenr(eb_rewin, eb->start); 1380 btrfs_set_header_backref_rev(eb_rewin, 1381 btrfs_header_backref_rev(eb)); 1382 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1383 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1384 } else { 1385 eb_rewin = btrfs_clone_extent_buffer(eb); 1386 if (!eb_rewin) { 1387 btrfs_tree_read_unlock_blocking(eb); 1388 free_extent_buffer(eb); 1389 return NULL; 1390 } 1391 } 1392 1393 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1394 btrfs_tree_read_unlock_blocking(eb); 1395 free_extent_buffer(eb); 1396 1397 extent_buffer_get(eb_rewin); 1398 btrfs_tree_read_lock(eb_rewin); 1399 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1400 WARN_ON(btrfs_header_nritems(eb_rewin) > 1401 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1402 1403 return eb_rewin; 1404 } 1405 1406 /* 1407 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1408 * value. If there are no changes, the current root->root_node is returned. If 1409 * anything changed in between, there's a fresh buffer allocated on which the 1410 * rewind operations are done. In any case, the returned buffer is read locked. 1411 * Returns NULL on error (with no locks held). 1412 */ 1413 static inline struct extent_buffer * 1414 get_old_root(struct btrfs_root *root, u64 time_seq) 1415 { 1416 struct tree_mod_elem *tm; 1417 struct extent_buffer *eb = NULL; 1418 struct extent_buffer *eb_root; 1419 struct extent_buffer *old; 1420 struct tree_mod_root *old_root = NULL; 1421 u64 old_generation = 0; 1422 u64 logical; 1423 1424 eb_root = btrfs_read_lock_root_node(root); 1425 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1426 if (!tm) 1427 return eb_root; 1428 1429 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1430 old_root = &tm->old_root; 1431 old_generation = tm->generation; 1432 logical = old_root->logical; 1433 } else { 1434 logical = eb_root->start; 1435 } 1436 1437 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1438 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1439 btrfs_tree_read_unlock(eb_root); 1440 free_extent_buffer(eb_root); 1441 old = read_tree_block(root, logical, 0); 1442 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1443 if (!IS_ERR(old)) 1444 free_extent_buffer(old); 1445 btrfs_warn(root->fs_info, 1446 "failed to read tree block %llu from get_old_root", logical); 1447 } else { 1448 eb = btrfs_clone_extent_buffer(old); 1449 free_extent_buffer(old); 1450 } 1451 } else if (old_root) { 1452 btrfs_tree_read_unlock(eb_root); 1453 free_extent_buffer(eb_root); 1454 eb = alloc_dummy_extent_buffer(root->fs_info, logical); 1455 } else { 1456 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1457 eb = btrfs_clone_extent_buffer(eb_root); 1458 btrfs_tree_read_unlock_blocking(eb_root); 1459 free_extent_buffer(eb_root); 1460 } 1461 1462 if (!eb) 1463 return NULL; 1464 extent_buffer_get(eb); 1465 btrfs_tree_read_lock(eb); 1466 if (old_root) { 1467 btrfs_set_header_bytenr(eb, eb->start); 1468 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1469 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1470 btrfs_set_header_level(eb, old_root->level); 1471 btrfs_set_header_generation(eb, old_generation); 1472 } 1473 if (tm) 1474 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1475 else 1476 WARN_ON(btrfs_header_level(eb) != 0); 1477 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1478 1479 return eb; 1480 } 1481 1482 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1483 { 1484 struct tree_mod_elem *tm; 1485 int level; 1486 struct extent_buffer *eb_root = btrfs_root_node(root); 1487 1488 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1489 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1490 level = tm->old_root.level; 1491 } else { 1492 level = btrfs_header_level(eb_root); 1493 } 1494 free_extent_buffer(eb_root); 1495 1496 return level; 1497 } 1498 1499 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1500 struct btrfs_root *root, 1501 struct extent_buffer *buf) 1502 { 1503 if (btrfs_test_is_dummy_root(root)) 1504 return 0; 1505 1506 /* ensure we can see the force_cow */ 1507 smp_rmb(); 1508 1509 /* 1510 * We do not need to cow a block if 1511 * 1) this block is not created or changed in this transaction; 1512 * 2) this block does not belong to TREE_RELOC tree; 1513 * 3) the root is not forced COW. 1514 * 1515 * What is forced COW: 1516 * when we create snapshot during commiting the transaction, 1517 * after we've finished coping src root, we must COW the shared 1518 * block to ensure the metadata consistency. 1519 */ 1520 if (btrfs_header_generation(buf) == trans->transid && 1521 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1522 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1523 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1524 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1525 return 0; 1526 return 1; 1527 } 1528 1529 /* 1530 * cows a single block, see __btrfs_cow_block for the real work. 1531 * This version of it has extra checks so that a block isn't cow'd more than 1532 * once per transaction, as long as it hasn't been written yet 1533 */ 1534 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1535 struct btrfs_root *root, struct extent_buffer *buf, 1536 struct extent_buffer *parent, int parent_slot, 1537 struct extent_buffer **cow_ret) 1538 { 1539 u64 search_start; 1540 int ret; 1541 1542 if (trans->transaction != root->fs_info->running_transaction) 1543 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1544 trans->transid, 1545 root->fs_info->running_transaction->transid); 1546 1547 if (trans->transid != root->fs_info->generation) 1548 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1549 trans->transid, root->fs_info->generation); 1550 1551 if (!should_cow_block(trans, root, buf)) { 1552 *cow_ret = buf; 1553 return 0; 1554 } 1555 1556 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1557 1558 if (parent) 1559 btrfs_set_lock_blocking(parent); 1560 btrfs_set_lock_blocking(buf); 1561 1562 ret = __btrfs_cow_block(trans, root, buf, parent, 1563 parent_slot, cow_ret, search_start, 0); 1564 1565 trace_btrfs_cow_block(root, buf, *cow_ret); 1566 1567 return ret; 1568 } 1569 1570 /* 1571 * helper function for defrag to decide if two blocks pointed to by a 1572 * node are actually close by 1573 */ 1574 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1575 { 1576 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1577 return 1; 1578 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1579 return 1; 1580 return 0; 1581 } 1582 1583 /* 1584 * compare two keys in a memcmp fashion 1585 */ 1586 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1587 { 1588 struct btrfs_key k1; 1589 1590 btrfs_disk_key_to_cpu(&k1, disk); 1591 1592 return btrfs_comp_cpu_keys(&k1, k2); 1593 } 1594 1595 /* 1596 * same as comp_keys only with two btrfs_key's 1597 */ 1598 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1599 { 1600 if (k1->objectid > k2->objectid) 1601 return 1; 1602 if (k1->objectid < k2->objectid) 1603 return -1; 1604 if (k1->type > k2->type) 1605 return 1; 1606 if (k1->type < k2->type) 1607 return -1; 1608 if (k1->offset > k2->offset) 1609 return 1; 1610 if (k1->offset < k2->offset) 1611 return -1; 1612 return 0; 1613 } 1614 1615 /* 1616 * this is used by the defrag code to go through all the 1617 * leaves pointed to by a node and reallocate them so that 1618 * disk order is close to key order 1619 */ 1620 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1621 struct btrfs_root *root, struct extent_buffer *parent, 1622 int start_slot, u64 *last_ret, 1623 struct btrfs_key *progress) 1624 { 1625 struct extent_buffer *cur; 1626 u64 blocknr; 1627 u64 gen; 1628 u64 search_start = *last_ret; 1629 u64 last_block = 0; 1630 u64 other; 1631 u32 parent_nritems; 1632 int end_slot; 1633 int i; 1634 int err = 0; 1635 int parent_level; 1636 int uptodate; 1637 u32 blocksize; 1638 int progress_passed = 0; 1639 struct btrfs_disk_key disk_key; 1640 1641 parent_level = btrfs_header_level(parent); 1642 1643 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1644 WARN_ON(trans->transid != root->fs_info->generation); 1645 1646 parent_nritems = btrfs_header_nritems(parent); 1647 blocksize = root->nodesize; 1648 end_slot = parent_nritems - 1; 1649 1650 if (parent_nritems <= 1) 1651 return 0; 1652 1653 btrfs_set_lock_blocking(parent); 1654 1655 for (i = start_slot; i <= end_slot; i++) { 1656 int close = 1; 1657 1658 btrfs_node_key(parent, &disk_key, i); 1659 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1660 continue; 1661 1662 progress_passed = 1; 1663 blocknr = btrfs_node_blockptr(parent, i); 1664 gen = btrfs_node_ptr_generation(parent, i); 1665 if (last_block == 0) 1666 last_block = blocknr; 1667 1668 if (i > 0) { 1669 other = btrfs_node_blockptr(parent, i - 1); 1670 close = close_blocks(blocknr, other, blocksize); 1671 } 1672 if (!close && i < end_slot) { 1673 other = btrfs_node_blockptr(parent, i + 1); 1674 close = close_blocks(blocknr, other, blocksize); 1675 } 1676 if (close) { 1677 last_block = blocknr; 1678 continue; 1679 } 1680 1681 cur = btrfs_find_tree_block(root->fs_info, blocknr); 1682 if (cur) 1683 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1684 else 1685 uptodate = 0; 1686 if (!cur || !uptodate) { 1687 if (!cur) { 1688 cur = read_tree_block(root, blocknr, gen); 1689 if (IS_ERR(cur)) { 1690 return PTR_ERR(cur); 1691 } else if (!extent_buffer_uptodate(cur)) { 1692 free_extent_buffer(cur); 1693 return -EIO; 1694 } 1695 } else if (!uptodate) { 1696 err = btrfs_read_buffer(cur, gen); 1697 if (err) { 1698 free_extent_buffer(cur); 1699 return err; 1700 } 1701 } 1702 } 1703 if (search_start == 0) 1704 search_start = last_block; 1705 1706 btrfs_tree_lock(cur); 1707 btrfs_set_lock_blocking(cur); 1708 err = __btrfs_cow_block(trans, root, cur, parent, i, 1709 &cur, search_start, 1710 min(16 * blocksize, 1711 (end_slot - i) * blocksize)); 1712 if (err) { 1713 btrfs_tree_unlock(cur); 1714 free_extent_buffer(cur); 1715 break; 1716 } 1717 search_start = cur->start; 1718 last_block = cur->start; 1719 *last_ret = search_start; 1720 btrfs_tree_unlock(cur); 1721 free_extent_buffer(cur); 1722 } 1723 return err; 1724 } 1725 1726 /* 1727 * The leaf data grows from end-to-front in the node. 1728 * this returns the address of the start of the last item, 1729 * which is the stop of the leaf data stack 1730 */ 1731 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1732 struct extent_buffer *leaf) 1733 { 1734 u32 nr = btrfs_header_nritems(leaf); 1735 if (nr == 0) 1736 return BTRFS_LEAF_DATA_SIZE(root); 1737 return btrfs_item_offset_nr(leaf, nr - 1); 1738 } 1739 1740 1741 /* 1742 * search for key in the extent_buffer. The items start at offset p, 1743 * and they are item_size apart. There are 'max' items in p. 1744 * 1745 * the slot in the array is returned via slot, and it points to 1746 * the place where you would insert key if it is not found in 1747 * the array. 1748 * 1749 * slot may point to max if the key is bigger than all of the keys 1750 */ 1751 static noinline int generic_bin_search(struct extent_buffer *eb, 1752 unsigned long p, 1753 int item_size, struct btrfs_key *key, 1754 int max, int *slot) 1755 { 1756 int low = 0; 1757 int high = max; 1758 int mid; 1759 int ret; 1760 struct btrfs_disk_key *tmp = NULL; 1761 struct btrfs_disk_key unaligned; 1762 unsigned long offset; 1763 char *kaddr = NULL; 1764 unsigned long map_start = 0; 1765 unsigned long map_len = 0; 1766 int err; 1767 1768 while (low < high) { 1769 mid = (low + high) / 2; 1770 offset = p + mid * item_size; 1771 1772 if (!kaddr || offset < map_start || 1773 (offset + sizeof(struct btrfs_disk_key)) > 1774 map_start + map_len) { 1775 1776 err = map_private_extent_buffer(eb, offset, 1777 sizeof(struct btrfs_disk_key), 1778 &kaddr, &map_start, &map_len); 1779 1780 if (!err) { 1781 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1782 map_start); 1783 } else { 1784 read_extent_buffer(eb, &unaligned, 1785 offset, sizeof(unaligned)); 1786 tmp = &unaligned; 1787 } 1788 1789 } else { 1790 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1791 map_start); 1792 } 1793 ret = comp_keys(tmp, key); 1794 1795 if (ret < 0) 1796 low = mid + 1; 1797 else if (ret > 0) 1798 high = mid; 1799 else { 1800 *slot = mid; 1801 return 0; 1802 } 1803 } 1804 *slot = low; 1805 return 1; 1806 } 1807 1808 /* 1809 * simple bin_search frontend that does the right thing for 1810 * leaves vs nodes 1811 */ 1812 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1813 int level, int *slot) 1814 { 1815 if (level == 0) 1816 return generic_bin_search(eb, 1817 offsetof(struct btrfs_leaf, items), 1818 sizeof(struct btrfs_item), 1819 key, btrfs_header_nritems(eb), 1820 slot); 1821 else 1822 return generic_bin_search(eb, 1823 offsetof(struct btrfs_node, ptrs), 1824 sizeof(struct btrfs_key_ptr), 1825 key, btrfs_header_nritems(eb), 1826 slot); 1827 } 1828 1829 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1830 int level, int *slot) 1831 { 1832 return bin_search(eb, key, level, slot); 1833 } 1834 1835 static void root_add_used(struct btrfs_root *root, u32 size) 1836 { 1837 spin_lock(&root->accounting_lock); 1838 btrfs_set_root_used(&root->root_item, 1839 btrfs_root_used(&root->root_item) + size); 1840 spin_unlock(&root->accounting_lock); 1841 } 1842 1843 static void root_sub_used(struct btrfs_root *root, u32 size) 1844 { 1845 spin_lock(&root->accounting_lock); 1846 btrfs_set_root_used(&root->root_item, 1847 btrfs_root_used(&root->root_item) - size); 1848 spin_unlock(&root->accounting_lock); 1849 } 1850 1851 /* given a node and slot number, this reads the blocks it points to. The 1852 * extent buffer is returned with a reference taken (but unlocked). 1853 * NULL is returned on error. 1854 */ 1855 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1856 struct extent_buffer *parent, int slot) 1857 { 1858 int level = btrfs_header_level(parent); 1859 struct extent_buffer *eb; 1860 1861 if (slot < 0) 1862 return NULL; 1863 if (slot >= btrfs_header_nritems(parent)) 1864 return NULL; 1865 1866 BUG_ON(level == 0); 1867 1868 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1869 btrfs_node_ptr_generation(parent, slot)); 1870 if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) { 1871 if (!IS_ERR(eb)) 1872 free_extent_buffer(eb); 1873 eb = NULL; 1874 } 1875 1876 return eb; 1877 } 1878 1879 /* 1880 * node level balancing, used to make sure nodes are in proper order for 1881 * item deletion. We balance from the top down, so we have to make sure 1882 * that a deletion won't leave an node completely empty later on. 1883 */ 1884 static noinline int balance_level(struct btrfs_trans_handle *trans, 1885 struct btrfs_root *root, 1886 struct btrfs_path *path, int level) 1887 { 1888 struct extent_buffer *right = NULL; 1889 struct extent_buffer *mid; 1890 struct extent_buffer *left = NULL; 1891 struct extent_buffer *parent = NULL; 1892 int ret = 0; 1893 int wret; 1894 int pslot; 1895 int orig_slot = path->slots[level]; 1896 u64 orig_ptr; 1897 1898 if (level == 0) 1899 return 0; 1900 1901 mid = path->nodes[level]; 1902 1903 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1904 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1905 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1906 1907 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1908 1909 if (level < BTRFS_MAX_LEVEL - 1) { 1910 parent = path->nodes[level + 1]; 1911 pslot = path->slots[level + 1]; 1912 } 1913 1914 /* 1915 * deal with the case where there is only one pointer in the root 1916 * by promoting the node below to a root 1917 */ 1918 if (!parent) { 1919 struct extent_buffer *child; 1920 1921 if (btrfs_header_nritems(mid) != 1) 1922 return 0; 1923 1924 /* promote the child to a root */ 1925 child = read_node_slot(root, mid, 0); 1926 if (!child) { 1927 ret = -EROFS; 1928 btrfs_std_error(root->fs_info, ret); 1929 goto enospc; 1930 } 1931 1932 btrfs_tree_lock(child); 1933 btrfs_set_lock_blocking(child); 1934 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1935 if (ret) { 1936 btrfs_tree_unlock(child); 1937 free_extent_buffer(child); 1938 goto enospc; 1939 } 1940 1941 tree_mod_log_set_root_pointer(root, child, 1); 1942 rcu_assign_pointer(root->node, child); 1943 1944 add_root_to_dirty_list(root); 1945 btrfs_tree_unlock(child); 1946 1947 path->locks[level] = 0; 1948 path->nodes[level] = NULL; 1949 clean_tree_block(trans, root->fs_info, mid); 1950 btrfs_tree_unlock(mid); 1951 /* once for the path */ 1952 free_extent_buffer(mid); 1953 1954 root_sub_used(root, mid->len); 1955 btrfs_free_tree_block(trans, root, mid, 0, 1); 1956 /* once for the root ptr */ 1957 free_extent_buffer_stale(mid); 1958 return 0; 1959 } 1960 if (btrfs_header_nritems(mid) > 1961 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1962 return 0; 1963 1964 left = read_node_slot(root, parent, pslot - 1); 1965 if (left) { 1966 btrfs_tree_lock(left); 1967 btrfs_set_lock_blocking(left); 1968 wret = btrfs_cow_block(trans, root, left, 1969 parent, pslot - 1, &left); 1970 if (wret) { 1971 ret = wret; 1972 goto enospc; 1973 } 1974 } 1975 right = read_node_slot(root, parent, pslot + 1); 1976 if (right) { 1977 btrfs_tree_lock(right); 1978 btrfs_set_lock_blocking(right); 1979 wret = btrfs_cow_block(trans, root, right, 1980 parent, pslot + 1, &right); 1981 if (wret) { 1982 ret = wret; 1983 goto enospc; 1984 } 1985 } 1986 1987 /* first, try to make some room in the middle buffer */ 1988 if (left) { 1989 orig_slot += btrfs_header_nritems(left); 1990 wret = push_node_left(trans, root, left, mid, 1); 1991 if (wret < 0) 1992 ret = wret; 1993 } 1994 1995 /* 1996 * then try to empty the right most buffer into the middle 1997 */ 1998 if (right) { 1999 wret = push_node_left(trans, root, mid, right, 1); 2000 if (wret < 0 && wret != -ENOSPC) 2001 ret = wret; 2002 if (btrfs_header_nritems(right) == 0) { 2003 clean_tree_block(trans, root->fs_info, right); 2004 btrfs_tree_unlock(right); 2005 del_ptr(root, path, level + 1, pslot + 1); 2006 root_sub_used(root, right->len); 2007 btrfs_free_tree_block(trans, root, right, 0, 1); 2008 free_extent_buffer_stale(right); 2009 right = NULL; 2010 } else { 2011 struct btrfs_disk_key right_key; 2012 btrfs_node_key(right, &right_key, 0); 2013 tree_mod_log_set_node_key(root->fs_info, parent, 2014 pslot + 1, 0); 2015 btrfs_set_node_key(parent, &right_key, pslot + 1); 2016 btrfs_mark_buffer_dirty(parent); 2017 } 2018 } 2019 if (btrfs_header_nritems(mid) == 1) { 2020 /* 2021 * we're not allowed to leave a node with one item in the 2022 * tree during a delete. A deletion from lower in the tree 2023 * could try to delete the only pointer in this node. 2024 * So, pull some keys from the left. 2025 * There has to be a left pointer at this point because 2026 * otherwise we would have pulled some pointers from the 2027 * right 2028 */ 2029 if (!left) { 2030 ret = -EROFS; 2031 btrfs_std_error(root->fs_info, ret); 2032 goto enospc; 2033 } 2034 wret = balance_node_right(trans, root, mid, left); 2035 if (wret < 0) { 2036 ret = wret; 2037 goto enospc; 2038 } 2039 if (wret == 1) { 2040 wret = push_node_left(trans, root, left, mid, 1); 2041 if (wret < 0) 2042 ret = wret; 2043 } 2044 BUG_ON(wret == 1); 2045 } 2046 if (btrfs_header_nritems(mid) == 0) { 2047 clean_tree_block(trans, root->fs_info, mid); 2048 btrfs_tree_unlock(mid); 2049 del_ptr(root, path, level + 1, pslot); 2050 root_sub_used(root, mid->len); 2051 btrfs_free_tree_block(trans, root, mid, 0, 1); 2052 free_extent_buffer_stale(mid); 2053 mid = NULL; 2054 } else { 2055 /* update the parent key to reflect our changes */ 2056 struct btrfs_disk_key mid_key; 2057 btrfs_node_key(mid, &mid_key, 0); 2058 tree_mod_log_set_node_key(root->fs_info, parent, 2059 pslot, 0); 2060 btrfs_set_node_key(parent, &mid_key, pslot); 2061 btrfs_mark_buffer_dirty(parent); 2062 } 2063 2064 /* update the path */ 2065 if (left) { 2066 if (btrfs_header_nritems(left) > orig_slot) { 2067 extent_buffer_get(left); 2068 /* left was locked after cow */ 2069 path->nodes[level] = left; 2070 path->slots[level + 1] -= 1; 2071 path->slots[level] = orig_slot; 2072 if (mid) { 2073 btrfs_tree_unlock(mid); 2074 free_extent_buffer(mid); 2075 } 2076 } else { 2077 orig_slot -= btrfs_header_nritems(left); 2078 path->slots[level] = orig_slot; 2079 } 2080 } 2081 /* double check we haven't messed things up */ 2082 if (orig_ptr != 2083 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2084 BUG(); 2085 enospc: 2086 if (right) { 2087 btrfs_tree_unlock(right); 2088 free_extent_buffer(right); 2089 } 2090 if (left) { 2091 if (path->nodes[level] != left) 2092 btrfs_tree_unlock(left); 2093 free_extent_buffer(left); 2094 } 2095 return ret; 2096 } 2097 2098 /* Node balancing for insertion. Here we only split or push nodes around 2099 * when they are completely full. This is also done top down, so we 2100 * have to be pessimistic. 2101 */ 2102 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2103 struct btrfs_root *root, 2104 struct btrfs_path *path, int level) 2105 { 2106 struct extent_buffer *right = NULL; 2107 struct extent_buffer *mid; 2108 struct extent_buffer *left = NULL; 2109 struct extent_buffer *parent = NULL; 2110 int ret = 0; 2111 int wret; 2112 int pslot; 2113 int orig_slot = path->slots[level]; 2114 2115 if (level == 0) 2116 return 1; 2117 2118 mid = path->nodes[level]; 2119 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2120 2121 if (level < BTRFS_MAX_LEVEL - 1) { 2122 parent = path->nodes[level + 1]; 2123 pslot = path->slots[level + 1]; 2124 } 2125 2126 if (!parent) 2127 return 1; 2128 2129 left = read_node_slot(root, parent, pslot - 1); 2130 2131 /* first, try to make some room in the middle buffer */ 2132 if (left) { 2133 u32 left_nr; 2134 2135 btrfs_tree_lock(left); 2136 btrfs_set_lock_blocking(left); 2137 2138 left_nr = btrfs_header_nritems(left); 2139 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2140 wret = 1; 2141 } else { 2142 ret = btrfs_cow_block(trans, root, left, parent, 2143 pslot - 1, &left); 2144 if (ret) 2145 wret = 1; 2146 else { 2147 wret = push_node_left(trans, root, 2148 left, mid, 0); 2149 } 2150 } 2151 if (wret < 0) 2152 ret = wret; 2153 if (wret == 0) { 2154 struct btrfs_disk_key disk_key; 2155 orig_slot += left_nr; 2156 btrfs_node_key(mid, &disk_key, 0); 2157 tree_mod_log_set_node_key(root->fs_info, parent, 2158 pslot, 0); 2159 btrfs_set_node_key(parent, &disk_key, pslot); 2160 btrfs_mark_buffer_dirty(parent); 2161 if (btrfs_header_nritems(left) > orig_slot) { 2162 path->nodes[level] = left; 2163 path->slots[level + 1] -= 1; 2164 path->slots[level] = orig_slot; 2165 btrfs_tree_unlock(mid); 2166 free_extent_buffer(mid); 2167 } else { 2168 orig_slot -= 2169 btrfs_header_nritems(left); 2170 path->slots[level] = orig_slot; 2171 btrfs_tree_unlock(left); 2172 free_extent_buffer(left); 2173 } 2174 return 0; 2175 } 2176 btrfs_tree_unlock(left); 2177 free_extent_buffer(left); 2178 } 2179 right = read_node_slot(root, parent, pslot + 1); 2180 2181 /* 2182 * then try to empty the right most buffer into the middle 2183 */ 2184 if (right) { 2185 u32 right_nr; 2186 2187 btrfs_tree_lock(right); 2188 btrfs_set_lock_blocking(right); 2189 2190 right_nr = btrfs_header_nritems(right); 2191 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2192 wret = 1; 2193 } else { 2194 ret = btrfs_cow_block(trans, root, right, 2195 parent, pslot + 1, 2196 &right); 2197 if (ret) 2198 wret = 1; 2199 else { 2200 wret = balance_node_right(trans, root, 2201 right, mid); 2202 } 2203 } 2204 if (wret < 0) 2205 ret = wret; 2206 if (wret == 0) { 2207 struct btrfs_disk_key disk_key; 2208 2209 btrfs_node_key(right, &disk_key, 0); 2210 tree_mod_log_set_node_key(root->fs_info, parent, 2211 pslot + 1, 0); 2212 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2213 btrfs_mark_buffer_dirty(parent); 2214 2215 if (btrfs_header_nritems(mid) <= orig_slot) { 2216 path->nodes[level] = right; 2217 path->slots[level + 1] += 1; 2218 path->slots[level] = orig_slot - 2219 btrfs_header_nritems(mid); 2220 btrfs_tree_unlock(mid); 2221 free_extent_buffer(mid); 2222 } else { 2223 btrfs_tree_unlock(right); 2224 free_extent_buffer(right); 2225 } 2226 return 0; 2227 } 2228 btrfs_tree_unlock(right); 2229 free_extent_buffer(right); 2230 } 2231 return 1; 2232 } 2233 2234 /* 2235 * readahead one full node of leaves, finding things that are close 2236 * to the block in 'slot', and triggering ra on them. 2237 */ 2238 static void reada_for_search(struct btrfs_root *root, 2239 struct btrfs_path *path, 2240 int level, int slot, u64 objectid) 2241 { 2242 struct extent_buffer *node; 2243 struct btrfs_disk_key disk_key; 2244 u32 nritems; 2245 u64 search; 2246 u64 target; 2247 u64 nread = 0; 2248 u64 gen; 2249 int direction = path->reada; 2250 struct extent_buffer *eb; 2251 u32 nr; 2252 u32 blocksize; 2253 u32 nscan = 0; 2254 2255 if (level != 1) 2256 return; 2257 2258 if (!path->nodes[level]) 2259 return; 2260 2261 node = path->nodes[level]; 2262 2263 search = btrfs_node_blockptr(node, slot); 2264 blocksize = root->nodesize; 2265 eb = btrfs_find_tree_block(root->fs_info, search); 2266 if (eb) { 2267 free_extent_buffer(eb); 2268 return; 2269 } 2270 2271 target = search; 2272 2273 nritems = btrfs_header_nritems(node); 2274 nr = slot; 2275 2276 while (1) { 2277 if (direction < 0) { 2278 if (nr == 0) 2279 break; 2280 nr--; 2281 } else if (direction > 0) { 2282 nr++; 2283 if (nr >= nritems) 2284 break; 2285 } 2286 if (path->reada < 0 && objectid) { 2287 btrfs_node_key(node, &disk_key, nr); 2288 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2289 break; 2290 } 2291 search = btrfs_node_blockptr(node, nr); 2292 if ((search <= target && target - search <= 65536) || 2293 (search > target && search - target <= 65536)) { 2294 gen = btrfs_node_ptr_generation(node, nr); 2295 readahead_tree_block(root, search); 2296 nread += blocksize; 2297 } 2298 nscan++; 2299 if ((nread > 65536 || nscan > 32)) 2300 break; 2301 } 2302 } 2303 2304 static noinline void reada_for_balance(struct btrfs_root *root, 2305 struct btrfs_path *path, int level) 2306 { 2307 int slot; 2308 int nritems; 2309 struct extent_buffer *parent; 2310 struct extent_buffer *eb; 2311 u64 gen; 2312 u64 block1 = 0; 2313 u64 block2 = 0; 2314 2315 parent = path->nodes[level + 1]; 2316 if (!parent) 2317 return; 2318 2319 nritems = btrfs_header_nritems(parent); 2320 slot = path->slots[level + 1]; 2321 2322 if (slot > 0) { 2323 block1 = btrfs_node_blockptr(parent, slot - 1); 2324 gen = btrfs_node_ptr_generation(parent, slot - 1); 2325 eb = btrfs_find_tree_block(root->fs_info, block1); 2326 /* 2327 * if we get -eagain from btrfs_buffer_uptodate, we 2328 * don't want to return eagain here. That will loop 2329 * forever 2330 */ 2331 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2332 block1 = 0; 2333 free_extent_buffer(eb); 2334 } 2335 if (slot + 1 < nritems) { 2336 block2 = btrfs_node_blockptr(parent, slot + 1); 2337 gen = btrfs_node_ptr_generation(parent, slot + 1); 2338 eb = btrfs_find_tree_block(root->fs_info, block2); 2339 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2340 block2 = 0; 2341 free_extent_buffer(eb); 2342 } 2343 2344 if (block1) 2345 readahead_tree_block(root, block1); 2346 if (block2) 2347 readahead_tree_block(root, block2); 2348 } 2349 2350 2351 /* 2352 * when we walk down the tree, it is usually safe to unlock the higher layers 2353 * in the tree. The exceptions are when our path goes through slot 0, because 2354 * operations on the tree might require changing key pointers higher up in the 2355 * tree. 2356 * 2357 * callers might also have set path->keep_locks, which tells this code to keep 2358 * the lock if the path points to the last slot in the block. This is part of 2359 * walking through the tree, and selecting the next slot in the higher block. 2360 * 2361 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2362 * if lowest_unlock is 1, level 0 won't be unlocked 2363 */ 2364 static noinline void unlock_up(struct btrfs_path *path, int level, 2365 int lowest_unlock, int min_write_lock_level, 2366 int *write_lock_level) 2367 { 2368 int i; 2369 int skip_level = level; 2370 int no_skips = 0; 2371 struct extent_buffer *t; 2372 2373 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2374 if (!path->nodes[i]) 2375 break; 2376 if (!path->locks[i]) 2377 break; 2378 if (!no_skips && path->slots[i] == 0) { 2379 skip_level = i + 1; 2380 continue; 2381 } 2382 if (!no_skips && path->keep_locks) { 2383 u32 nritems; 2384 t = path->nodes[i]; 2385 nritems = btrfs_header_nritems(t); 2386 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2387 skip_level = i + 1; 2388 continue; 2389 } 2390 } 2391 if (skip_level < i && i >= lowest_unlock) 2392 no_skips = 1; 2393 2394 t = path->nodes[i]; 2395 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2396 btrfs_tree_unlock_rw(t, path->locks[i]); 2397 path->locks[i] = 0; 2398 if (write_lock_level && 2399 i > min_write_lock_level && 2400 i <= *write_lock_level) { 2401 *write_lock_level = i - 1; 2402 } 2403 } 2404 } 2405 } 2406 2407 /* 2408 * This releases any locks held in the path starting at level and 2409 * going all the way up to the root. 2410 * 2411 * btrfs_search_slot will keep the lock held on higher nodes in a few 2412 * corner cases, such as COW of the block at slot zero in the node. This 2413 * ignores those rules, and it should only be called when there are no 2414 * more updates to be done higher up in the tree. 2415 */ 2416 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2417 { 2418 int i; 2419 2420 if (path->keep_locks) 2421 return; 2422 2423 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2424 if (!path->nodes[i]) 2425 continue; 2426 if (!path->locks[i]) 2427 continue; 2428 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2429 path->locks[i] = 0; 2430 } 2431 } 2432 2433 /* 2434 * helper function for btrfs_search_slot. The goal is to find a block 2435 * in cache without setting the path to blocking. If we find the block 2436 * we return zero and the path is unchanged. 2437 * 2438 * If we can't find the block, we set the path blocking and do some 2439 * reada. -EAGAIN is returned and the search must be repeated. 2440 */ 2441 static int 2442 read_block_for_search(struct btrfs_trans_handle *trans, 2443 struct btrfs_root *root, struct btrfs_path *p, 2444 struct extent_buffer **eb_ret, int level, int slot, 2445 struct btrfs_key *key, u64 time_seq) 2446 { 2447 u64 blocknr; 2448 u64 gen; 2449 struct extent_buffer *b = *eb_ret; 2450 struct extent_buffer *tmp; 2451 int ret; 2452 2453 blocknr = btrfs_node_blockptr(b, slot); 2454 gen = btrfs_node_ptr_generation(b, slot); 2455 2456 tmp = btrfs_find_tree_block(root->fs_info, blocknr); 2457 if (tmp) { 2458 /* first we do an atomic uptodate check */ 2459 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2460 *eb_ret = tmp; 2461 return 0; 2462 } 2463 2464 /* the pages were up to date, but we failed 2465 * the generation number check. Do a full 2466 * read for the generation number that is correct. 2467 * We must do this without dropping locks so 2468 * we can trust our generation number 2469 */ 2470 btrfs_set_path_blocking(p); 2471 2472 /* now we're allowed to do a blocking uptodate check */ 2473 ret = btrfs_read_buffer(tmp, gen); 2474 if (!ret) { 2475 *eb_ret = tmp; 2476 return 0; 2477 } 2478 free_extent_buffer(tmp); 2479 btrfs_release_path(p); 2480 return -EIO; 2481 } 2482 2483 /* 2484 * reduce lock contention at high levels 2485 * of the btree by dropping locks before 2486 * we read. Don't release the lock on the current 2487 * level because we need to walk this node to figure 2488 * out which blocks to read. 2489 */ 2490 btrfs_unlock_up_safe(p, level + 1); 2491 btrfs_set_path_blocking(p); 2492 2493 free_extent_buffer(tmp); 2494 if (p->reada) 2495 reada_for_search(root, p, level, slot, key->objectid); 2496 2497 btrfs_release_path(p); 2498 2499 ret = -EAGAIN; 2500 tmp = read_tree_block(root, blocknr, 0); 2501 if (!IS_ERR(tmp)) { 2502 /* 2503 * If the read above didn't mark this buffer up to date, 2504 * it will never end up being up to date. Set ret to EIO now 2505 * and give up so that our caller doesn't loop forever 2506 * on our EAGAINs. 2507 */ 2508 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2509 ret = -EIO; 2510 free_extent_buffer(tmp); 2511 } 2512 return ret; 2513 } 2514 2515 /* 2516 * helper function for btrfs_search_slot. This does all of the checks 2517 * for node-level blocks and does any balancing required based on 2518 * the ins_len. 2519 * 2520 * If no extra work was required, zero is returned. If we had to 2521 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2522 * start over 2523 */ 2524 static int 2525 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2526 struct btrfs_root *root, struct btrfs_path *p, 2527 struct extent_buffer *b, int level, int ins_len, 2528 int *write_lock_level) 2529 { 2530 int ret; 2531 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2532 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2533 int sret; 2534 2535 if (*write_lock_level < level + 1) { 2536 *write_lock_level = level + 1; 2537 btrfs_release_path(p); 2538 goto again; 2539 } 2540 2541 btrfs_set_path_blocking(p); 2542 reada_for_balance(root, p, level); 2543 sret = split_node(trans, root, p, level); 2544 btrfs_clear_path_blocking(p, NULL, 0); 2545 2546 BUG_ON(sret > 0); 2547 if (sret) { 2548 ret = sret; 2549 goto done; 2550 } 2551 b = p->nodes[level]; 2552 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2553 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2554 int sret; 2555 2556 if (*write_lock_level < level + 1) { 2557 *write_lock_level = level + 1; 2558 btrfs_release_path(p); 2559 goto again; 2560 } 2561 2562 btrfs_set_path_blocking(p); 2563 reada_for_balance(root, p, level); 2564 sret = balance_level(trans, root, p, level); 2565 btrfs_clear_path_blocking(p, NULL, 0); 2566 2567 if (sret) { 2568 ret = sret; 2569 goto done; 2570 } 2571 b = p->nodes[level]; 2572 if (!b) { 2573 btrfs_release_path(p); 2574 goto again; 2575 } 2576 BUG_ON(btrfs_header_nritems(b) == 1); 2577 } 2578 return 0; 2579 2580 again: 2581 ret = -EAGAIN; 2582 done: 2583 return ret; 2584 } 2585 2586 static void key_search_validate(struct extent_buffer *b, 2587 struct btrfs_key *key, 2588 int level) 2589 { 2590 #ifdef CONFIG_BTRFS_ASSERT 2591 struct btrfs_disk_key disk_key; 2592 2593 btrfs_cpu_key_to_disk(&disk_key, key); 2594 2595 if (level == 0) 2596 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2597 offsetof(struct btrfs_leaf, items[0].key), 2598 sizeof(disk_key))); 2599 else 2600 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2601 offsetof(struct btrfs_node, ptrs[0].key), 2602 sizeof(disk_key))); 2603 #endif 2604 } 2605 2606 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2607 int level, int *prev_cmp, int *slot) 2608 { 2609 if (*prev_cmp != 0) { 2610 *prev_cmp = bin_search(b, key, level, slot); 2611 return *prev_cmp; 2612 } 2613 2614 key_search_validate(b, key, level); 2615 *slot = 0; 2616 2617 return 0; 2618 } 2619 2620 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2621 u64 iobjectid, u64 ioff, u8 key_type, 2622 struct btrfs_key *found_key) 2623 { 2624 int ret; 2625 struct btrfs_key key; 2626 struct extent_buffer *eb; 2627 2628 ASSERT(path); 2629 ASSERT(found_key); 2630 2631 key.type = key_type; 2632 key.objectid = iobjectid; 2633 key.offset = ioff; 2634 2635 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2636 if (ret < 0) 2637 return ret; 2638 2639 eb = path->nodes[0]; 2640 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2641 ret = btrfs_next_leaf(fs_root, path); 2642 if (ret) 2643 return ret; 2644 eb = path->nodes[0]; 2645 } 2646 2647 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2648 if (found_key->type != key.type || 2649 found_key->objectid != key.objectid) 2650 return 1; 2651 2652 return 0; 2653 } 2654 2655 /* 2656 * look for key in the tree. path is filled in with nodes along the way 2657 * if key is found, we return zero and you can find the item in the leaf 2658 * level of the path (level 0) 2659 * 2660 * If the key isn't found, the path points to the slot where it should 2661 * be inserted, and 1 is returned. If there are other errors during the 2662 * search a negative error number is returned. 2663 * 2664 * if ins_len > 0, nodes and leaves will be split as we walk down the 2665 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2666 * possible) 2667 */ 2668 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2669 *root, struct btrfs_key *key, struct btrfs_path *p, int 2670 ins_len, int cow) 2671 { 2672 struct extent_buffer *b; 2673 int slot; 2674 int ret; 2675 int err; 2676 int level; 2677 int lowest_unlock = 1; 2678 int root_lock; 2679 /* everything at write_lock_level or lower must be write locked */ 2680 int write_lock_level = 0; 2681 u8 lowest_level = 0; 2682 int min_write_lock_level; 2683 int prev_cmp; 2684 2685 lowest_level = p->lowest_level; 2686 WARN_ON(lowest_level && ins_len > 0); 2687 WARN_ON(p->nodes[0] != NULL); 2688 BUG_ON(!cow && ins_len); 2689 2690 if (ins_len < 0) { 2691 lowest_unlock = 2; 2692 2693 /* when we are removing items, we might have to go up to level 2694 * two as we update tree pointers Make sure we keep write 2695 * for those levels as well 2696 */ 2697 write_lock_level = 2; 2698 } else if (ins_len > 0) { 2699 /* 2700 * for inserting items, make sure we have a write lock on 2701 * level 1 so we can update keys 2702 */ 2703 write_lock_level = 1; 2704 } 2705 2706 if (!cow) 2707 write_lock_level = -1; 2708 2709 if (cow && (p->keep_locks || p->lowest_level)) 2710 write_lock_level = BTRFS_MAX_LEVEL; 2711 2712 min_write_lock_level = write_lock_level; 2713 2714 again: 2715 prev_cmp = -1; 2716 /* 2717 * we try very hard to do read locks on the root 2718 */ 2719 root_lock = BTRFS_READ_LOCK; 2720 level = 0; 2721 if (p->search_commit_root) { 2722 /* 2723 * the commit roots are read only 2724 * so we always do read locks 2725 */ 2726 if (p->need_commit_sem) 2727 down_read(&root->fs_info->commit_root_sem); 2728 b = root->commit_root; 2729 extent_buffer_get(b); 2730 level = btrfs_header_level(b); 2731 if (p->need_commit_sem) 2732 up_read(&root->fs_info->commit_root_sem); 2733 if (!p->skip_locking) 2734 btrfs_tree_read_lock(b); 2735 } else { 2736 if (p->skip_locking) { 2737 b = btrfs_root_node(root); 2738 level = btrfs_header_level(b); 2739 } else { 2740 /* we don't know the level of the root node 2741 * until we actually have it read locked 2742 */ 2743 b = btrfs_read_lock_root_node(root); 2744 level = btrfs_header_level(b); 2745 if (level <= write_lock_level) { 2746 /* whoops, must trade for write lock */ 2747 btrfs_tree_read_unlock(b); 2748 free_extent_buffer(b); 2749 b = btrfs_lock_root_node(root); 2750 root_lock = BTRFS_WRITE_LOCK; 2751 2752 /* the level might have changed, check again */ 2753 level = btrfs_header_level(b); 2754 } 2755 } 2756 } 2757 p->nodes[level] = b; 2758 if (!p->skip_locking) 2759 p->locks[level] = root_lock; 2760 2761 while (b) { 2762 level = btrfs_header_level(b); 2763 2764 /* 2765 * setup the path here so we can release it under lock 2766 * contention with the cow code 2767 */ 2768 if (cow) { 2769 /* 2770 * if we don't really need to cow this block 2771 * then we don't want to set the path blocking, 2772 * so we test it here 2773 */ 2774 if (!should_cow_block(trans, root, b)) 2775 goto cow_done; 2776 2777 /* 2778 * must have write locks on this node and the 2779 * parent 2780 */ 2781 if (level > write_lock_level || 2782 (level + 1 > write_lock_level && 2783 level + 1 < BTRFS_MAX_LEVEL && 2784 p->nodes[level + 1])) { 2785 write_lock_level = level + 1; 2786 btrfs_release_path(p); 2787 goto again; 2788 } 2789 2790 btrfs_set_path_blocking(p); 2791 err = btrfs_cow_block(trans, root, b, 2792 p->nodes[level + 1], 2793 p->slots[level + 1], &b); 2794 if (err) { 2795 ret = err; 2796 goto done; 2797 } 2798 } 2799 cow_done: 2800 p->nodes[level] = b; 2801 btrfs_clear_path_blocking(p, NULL, 0); 2802 2803 /* 2804 * we have a lock on b and as long as we aren't changing 2805 * the tree, there is no way to for the items in b to change. 2806 * It is safe to drop the lock on our parent before we 2807 * go through the expensive btree search on b. 2808 * 2809 * If we're inserting or deleting (ins_len != 0), then we might 2810 * be changing slot zero, which may require changing the parent. 2811 * So, we can't drop the lock until after we know which slot 2812 * we're operating on. 2813 */ 2814 if (!ins_len && !p->keep_locks) { 2815 int u = level + 1; 2816 2817 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2818 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2819 p->locks[u] = 0; 2820 } 2821 } 2822 2823 ret = key_search(b, key, level, &prev_cmp, &slot); 2824 2825 if (level != 0) { 2826 int dec = 0; 2827 if (ret && slot > 0) { 2828 dec = 1; 2829 slot -= 1; 2830 } 2831 p->slots[level] = slot; 2832 err = setup_nodes_for_search(trans, root, p, b, level, 2833 ins_len, &write_lock_level); 2834 if (err == -EAGAIN) 2835 goto again; 2836 if (err) { 2837 ret = err; 2838 goto done; 2839 } 2840 b = p->nodes[level]; 2841 slot = p->slots[level]; 2842 2843 /* 2844 * slot 0 is special, if we change the key 2845 * we have to update the parent pointer 2846 * which means we must have a write lock 2847 * on the parent 2848 */ 2849 if (slot == 0 && ins_len && 2850 write_lock_level < level + 1) { 2851 write_lock_level = level + 1; 2852 btrfs_release_path(p); 2853 goto again; 2854 } 2855 2856 unlock_up(p, level, lowest_unlock, 2857 min_write_lock_level, &write_lock_level); 2858 2859 if (level == lowest_level) { 2860 if (dec) 2861 p->slots[level]++; 2862 goto done; 2863 } 2864 2865 err = read_block_for_search(trans, root, p, 2866 &b, level, slot, key, 0); 2867 if (err == -EAGAIN) 2868 goto again; 2869 if (err) { 2870 ret = err; 2871 goto done; 2872 } 2873 2874 if (!p->skip_locking) { 2875 level = btrfs_header_level(b); 2876 if (level <= write_lock_level) { 2877 err = btrfs_try_tree_write_lock(b); 2878 if (!err) { 2879 btrfs_set_path_blocking(p); 2880 btrfs_tree_lock(b); 2881 btrfs_clear_path_blocking(p, b, 2882 BTRFS_WRITE_LOCK); 2883 } 2884 p->locks[level] = BTRFS_WRITE_LOCK; 2885 } else { 2886 err = btrfs_tree_read_lock_atomic(b); 2887 if (!err) { 2888 btrfs_set_path_blocking(p); 2889 btrfs_tree_read_lock(b); 2890 btrfs_clear_path_blocking(p, b, 2891 BTRFS_READ_LOCK); 2892 } 2893 p->locks[level] = BTRFS_READ_LOCK; 2894 } 2895 p->nodes[level] = b; 2896 } 2897 } else { 2898 p->slots[level] = slot; 2899 if (ins_len > 0 && 2900 btrfs_leaf_free_space(root, b) < ins_len) { 2901 if (write_lock_level < 1) { 2902 write_lock_level = 1; 2903 btrfs_release_path(p); 2904 goto again; 2905 } 2906 2907 btrfs_set_path_blocking(p); 2908 err = split_leaf(trans, root, key, 2909 p, ins_len, ret == 0); 2910 btrfs_clear_path_blocking(p, NULL, 0); 2911 2912 BUG_ON(err > 0); 2913 if (err) { 2914 ret = err; 2915 goto done; 2916 } 2917 } 2918 if (!p->search_for_split) 2919 unlock_up(p, level, lowest_unlock, 2920 min_write_lock_level, &write_lock_level); 2921 goto done; 2922 } 2923 } 2924 ret = 1; 2925 done: 2926 /* 2927 * we don't really know what they plan on doing with the path 2928 * from here on, so for now just mark it as blocking 2929 */ 2930 if (!p->leave_spinning) 2931 btrfs_set_path_blocking(p); 2932 if (ret < 0 && !p->skip_release_on_error) 2933 btrfs_release_path(p); 2934 return ret; 2935 } 2936 2937 /* 2938 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2939 * current state of the tree together with the operations recorded in the tree 2940 * modification log to search for the key in a previous version of this tree, as 2941 * denoted by the time_seq parameter. 2942 * 2943 * Naturally, there is no support for insert, delete or cow operations. 2944 * 2945 * The resulting path and return value will be set up as if we called 2946 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2947 */ 2948 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2949 struct btrfs_path *p, u64 time_seq) 2950 { 2951 struct extent_buffer *b; 2952 int slot; 2953 int ret; 2954 int err; 2955 int level; 2956 int lowest_unlock = 1; 2957 u8 lowest_level = 0; 2958 int prev_cmp = -1; 2959 2960 lowest_level = p->lowest_level; 2961 WARN_ON(p->nodes[0] != NULL); 2962 2963 if (p->search_commit_root) { 2964 BUG_ON(time_seq); 2965 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2966 } 2967 2968 again: 2969 b = get_old_root(root, time_seq); 2970 level = btrfs_header_level(b); 2971 p->locks[level] = BTRFS_READ_LOCK; 2972 2973 while (b) { 2974 level = btrfs_header_level(b); 2975 p->nodes[level] = b; 2976 btrfs_clear_path_blocking(p, NULL, 0); 2977 2978 /* 2979 * we have a lock on b and as long as we aren't changing 2980 * the tree, there is no way to for the items in b to change. 2981 * It is safe to drop the lock on our parent before we 2982 * go through the expensive btree search on b. 2983 */ 2984 btrfs_unlock_up_safe(p, level + 1); 2985 2986 /* 2987 * Since we can unwind eb's we want to do a real search every 2988 * time. 2989 */ 2990 prev_cmp = -1; 2991 ret = key_search(b, key, level, &prev_cmp, &slot); 2992 2993 if (level != 0) { 2994 int dec = 0; 2995 if (ret && slot > 0) { 2996 dec = 1; 2997 slot -= 1; 2998 } 2999 p->slots[level] = slot; 3000 unlock_up(p, level, lowest_unlock, 0, NULL); 3001 3002 if (level == lowest_level) { 3003 if (dec) 3004 p->slots[level]++; 3005 goto done; 3006 } 3007 3008 err = read_block_for_search(NULL, root, p, &b, level, 3009 slot, key, time_seq); 3010 if (err == -EAGAIN) 3011 goto again; 3012 if (err) { 3013 ret = err; 3014 goto done; 3015 } 3016 3017 level = btrfs_header_level(b); 3018 err = btrfs_tree_read_lock_atomic(b); 3019 if (!err) { 3020 btrfs_set_path_blocking(p); 3021 btrfs_tree_read_lock(b); 3022 btrfs_clear_path_blocking(p, b, 3023 BTRFS_READ_LOCK); 3024 } 3025 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 3026 if (!b) { 3027 ret = -ENOMEM; 3028 goto done; 3029 } 3030 p->locks[level] = BTRFS_READ_LOCK; 3031 p->nodes[level] = b; 3032 } else { 3033 p->slots[level] = slot; 3034 unlock_up(p, level, lowest_unlock, 0, NULL); 3035 goto done; 3036 } 3037 } 3038 ret = 1; 3039 done: 3040 if (!p->leave_spinning) 3041 btrfs_set_path_blocking(p); 3042 if (ret < 0) 3043 btrfs_release_path(p); 3044 3045 return ret; 3046 } 3047 3048 /* 3049 * helper to use instead of search slot if no exact match is needed but 3050 * instead the next or previous item should be returned. 3051 * When find_higher is true, the next higher item is returned, the next lower 3052 * otherwise. 3053 * When return_any and find_higher are both true, and no higher item is found, 3054 * return the next lower instead. 3055 * When return_any is true and find_higher is false, and no lower item is found, 3056 * return the next higher instead. 3057 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3058 * < 0 on error 3059 */ 3060 int btrfs_search_slot_for_read(struct btrfs_root *root, 3061 struct btrfs_key *key, struct btrfs_path *p, 3062 int find_higher, int return_any) 3063 { 3064 int ret; 3065 struct extent_buffer *leaf; 3066 3067 again: 3068 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3069 if (ret <= 0) 3070 return ret; 3071 /* 3072 * a return value of 1 means the path is at the position where the 3073 * item should be inserted. Normally this is the next bigger item, 3074 * but in case the previous item is the last in a leaf, path points 3075 * to the first free slot in the previous leaf, i.e. at an invalid 3076 * item. 3077 */ 3078 leaf = p->nodes[0]; 3079 3080 if (find_higher) { 3081 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3082 ret = btrfs_next_leaf(root, p); 3083 if (ret <= 0) 3084 return ret; 3085 if (!return_any) 3086 return 1; 3087 /* 3088 * no higher item found, return the next 3089 * lower instead 3090 */ 3091 return_any = 0; 3092 find_higher = 0; 3093 btrfs_release_path(p); 3094 goto again; 3095 } 3096 } else { 3097 if (p->slots[0] == 0) { 3098 ret = btrfs_prev_leaf(root, p); 3099 if (ret < 0) 3100 return ret; 3101 if (!ret) { 3102 leaf = p->nodes[0]; 3103 if (p->slots[0] == btrfs_header_nritems(leaf)) 3104 p->slots[0]--; 3105 return 0; 3106 } 3107 if (!return_any) 3108 return 1; 3109 /* 3110 * no lower item found, return the next 3111 * higher instead 3112 */ 3113 return_any = 0; 3114 find_higher = 1; 3115 btrfs_release_path(p); 3116 goto again; 3117 } else { 3118 --p->slots[0]; 3119 } 3120 } 3121 return 0; 3122 } 3123 3124 /* 3125 * adjust the pointers going up the tree, starting at level 3126 * making sure the right key of each node is points to 'key'. 3127 * This is used after shifting pointers to the left, so it stops 3128 * fixing up pointers when a given leaf/node is not in slot 0 of the 3129 * higher levels 3130 * 3131 */ 3132 static void fixup_low_keys(struct btrfs_fs_info *fs_info, 3133 struct btrfs_path *path, 3134 struct btrfs_disk_key *key, int level) 3135 { 3136 int i; 3137 struct extent_buffer *t; 3138 3139 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3140 int tslot = path->slots[i]; 3141 if (!path->nodes[i]) 3142 break; 3143 t = path->nodes[i]; 3144 tree_mod_log_set_node_key(fs_info, t, tslot, 1); 3145 btrfs_set_node_key(t, key, tslot); 3146 btrfs_mark_buffer_dirty(path->nodes[i]); 3147 if (tslot != 0) 3148 break; 3149 } 3150 } 3151 3152 /* 3153 * update item key. 3154 * 3155 * This function isn't completely safe. It's the caller's responsibility 3156 * that the new key won't break the order 3157 */ 3158 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3159 struct btrfs_path *path, 3160 struct btrfs_key *new_key) 3161 { 3162 struct btrfs_disk_key disk_key; 3163 struct extent_buffer *eb; 3164 int slot; 3165 3166 eb = path->nodes[0]; 3167 slot = path->slots[0]; 3168 if (slot > 0) { 3169 btrfs_item_key(eb, &disk_key, slot - 1); 3170 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3171 } 3172 if (slot < btrfs_header_nritems(eb) - 1) { 3173 btrfs_item_key(eb, &disk_key, slot + 1); 3174 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3175 } 3176 3177 btrfs_cpu_key_to_disk(&disk_key, new_key); 3178 btrfs_set_item_key(eb, &disk_key, slot); 3179 btrfs_mark_buffer_dirty(eb); 3180 if (slot == 0) 3181 fixup_low_keys(fs_info, path, &disk_key, 1); 3182 } 3183 3184 /* 3185 * try to push data from one node into the next node left in the 3186 * tree. 3187 * 3188 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3189 * error, and > 0 if there was no room in the left hand block. 3190 */ 3191 static int push_node_left(struct btrfs_trans_handle *trans, 3192 struct btrfs_root *root, struct extent_buffer *dst, 3193 struct extent_buffer *src, int empty) 3194 { 3195 int push_items = 0; 3196 int src_nritems; 3197 int dst_nritems; 3198 int ret = 0; 3199 3200 src_nritems = btrfs_header_nritems(src); 3201 dst_nritems = btrfs_header_nritems(dst); 3202 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3203 WARN_ON(btrfs_header_generation(src) != trans->transid); 3204 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3205 3206 if (!empty && src_nritems <= 8) 3207 return 1; 3208 3209 if (push_items <= 0) 3210 return 1; 3211 3212 if (empty) { 3213 push_items = min(src_nritems, push_items); 3214 if (push_items < src_nritems) { 3215 /* leave at least 8 pointers in the node if 3216 * we aren't going to empty it 3217 */ 3218 if (src_nritems - push_items < 8) { 3219 if (push_items <= 8) 3220 return 1; 3221 push_items -= 8; 3222 } 3223 } 3224 } else 3225 push_items = min(src_nritems - 8, push_items); 3226 3227 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3228 push_items); 3229 if (ret) { 3230 btrfs_abort_transaction(trans, root, ret); 3231 return ret; 3232 } 3233 copy_extent_buffer(dst, src, 3234 btrfs_node_key_ptr_offset(dst_nritems), 3235 btrfs_node_key_ptr_offset(0), 3236 push_items * sizeof(struct btrfs_key_ptr)); 3237 3238 if (push_items < src_nritems) { 3239 /* 3240 * don't call tree_mod_log_eb_move here, key removal was already 3241 * fully logged by tree_mod_log_eb_copy above. 3242 */ 3243 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3244 btrfs_node_key_ptr_offset(push_items), 3245 (src_nritems - push_items) * 3246 sizeof(struct btrfs_key_ptr)); 3247 } 3248 btrfs_set_header_nritems(src, src_nritems - push_items); 3249 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3250 btrfs_mark_buffer_dirty(src); 3251 btrfs_mark_buffer_dirty(dst); 3252 3253 return ret; 3254 } 3255 3256 /* 3257 * try to push data from one node into the next node right in the 3258 * tree. 3259 * 3260 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3261 * error, and > 0 if there was no room in the right hand block. 3262 * 3263 * this will only push up to 1/2 the contents of the left node over 3264 */ 3265 static int balance_node_right(struct btrfs_trans_handle *trans, 3266 struct btrfs_root *root, 3267 struct extent_buffer *dst, 3268 struct extent_buffer *src) 3269 { 3270 int push_items = 0; 3271 int max_push; 3272 int src_nritems; 3273 int dst_nritems; 3274 int ret = 0; 3275 3276 WARN_ON(btrfs_header_generation(src) != trans->transid); 3277 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3278 3279 src_nritems = btrfs_header_nritems(src); 3280 dst_nritems = btrfs_header_nritems(dst); 3281 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3282 if (push_items <= 0) 3283 return 1; 3284 3285 if (src_nritems < 4) 3286 return 1; 3287 3288 max_push = src_nritems / 2 + 1; 3289 /* don't try to empty the node */ 3290 if (max_push >= src_nritems) 3291 return 1; 3292 3293 if (max_push < push_items) 3294 push_items = max_push; 3295 3296 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3297 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3298 btrfs_node_key_ptr_offset(0), 3299 (dst_nritems) * 3300 sizeof(struct btrfs_key_ptr)); 3301 3302 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3303 src_nritems - push_items, push_items); 3304 if (ret) { 3305 btrfs_abort_transaction(trans, root, ret); 3306 return ret; 3307 } 3308 copy_extent_buffer(dst, src, 3309 btrfs_node_key_ptr_offset(0), 3310 btrfs_node_key_ptr_offset(src_nritems - push_items), 3311 push_items * sizeof(struct btrfs_key_ptr)); 3312 3313 btrfs_set_header_nritems(src, src_nritems - push_items); 3314 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3315 3316 btrfs_mark_buffer_dirty(src); 3317 btrfs_mark_buffer_dirty(dst); 3318 3319 return ret; 3320 } 3321 3322 /* 3323 * helper function to insert a new root level in the tree. 3324 * A new node is allocated, and a single item is inserted to 3325 * point to the existing root 3326 * 3327 * returns zero on success or < 0 on failure. 3328 */ 3329 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3330 struct btrfs_root *root, 3331 struct btrfs_path *path, int level) 3332 { 3333 u64 lower_gen; 3334 struct extent_buffer *lower; 3335 struct extent_buffer *c; 3336 struct extent_buffer *old; 3337 struct btrfs_disk_key lower_key; 3338 3339 BUG_ON(path->nodes[level]); 3340 BUG_ON(path->nodes[level-1] != root->node); 3341 3342 lower = path->nodes[level-1]; 3343 if (level == 1) 3344 btrfs_item_key(lower, &lower_key, 0); 3345 else 3346 btrfs_node_key(lower, &lower_key, 0); 3347 3348 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3349 &lower_key, level, root->node->start, 0); 3350 if (IS_ERR(c)) 3351 return PTR_ERR(c); 3352 3353 root_add_used(root, root->nodesize); 3354 3355 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3356 btrfs_set_header_nritems(c, 1); 3357 btrfs_set_header_level(c, level); 3358 btrfs_set_header_bytenr(c, c->start); 3359 btrfs_set_header_generation(c, trans->transid); 3360 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3361 btrfs_set_header_owner(c, root->root_key.objectid); 3362 3363 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3364 BTRFS_FSID_SIZE); 3365 3366 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3367 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3368 3369 btrfs_set_node_key(c, &lower_key, 0); 3370 btrfs_set_node_blockptr(c, 0, lower->start); 3371 lower_gen = btrfs_header_generation(lower); 3372 WARN_ON(lower_gen != trans->transid); 3373 3374 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3375 3376 btrfs_mark_buffer_dirty(c); 3377 3378 old = root->node; 3379 tree_mod_log_set_root_pointer(root, c, 0); 3380 rcu_assign_pointer(root->node, c); 3381 3382 /* the super has an extra ref to root->node */ 3383 free_extent_buffer(old); 3384 3385 add_root_to_dirty_list(root); 3386 extent_buffer_get(c); 3387 path->nodes[level] = c; 3388 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3389 path->slots[level] = 0; 3390 return 0; 3391 } 3392 3393 /* 3394 * worker function to insert a single pointer in a node. 3395 * the node should have enough room for the pointer already 3396 * 3397 * slot and level indicate where you want the key to go, and 3398 * blocknr is the block the key points to. 3399 */ 3400 static void insert_ptr(struct btrfs_trans_handle *trans, 3401 struct btrfs_root *root, struct btrfs_path *path, 3402 struct btrfs_disk_key *key, u64 bytenr, 3403 int slot, int level) 3404 { 3405 struct extent_buffer *lower; 3406 int nritems; 3407 int ret; 3408 3409 BUG_ON(!path->nodes[level]); 3410 btrfs_assert_tree_locked(path->nodes[level]); 3411 lower = path->nodes[level]; 3412 nritems = btrfs_header_nritems(lower); 3413 BUG_ON(slot > nritems); 3414 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3415 if (slot != nritems) { 3416 if (level) 3417 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3418 slot, nritems - slot); 3419 memmove_extent_buffer(lower, 3420 btrfs_node_key_ptr_offset(slot + 1), 3421 btrfs_node_key_ptr_offset(slot), 3422 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3423 } 3424 if (level) { 3425 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3426 MOD_LOG_KEY_ADD, GFP_NOFS); 3427 BUG_ON(ret < 0); 3428 } 3429 btrfs_set_node_key(lower, key, slot); 3430 btrfs_set_node_blockptr(lower, slot, bytenr); 3431 WARN_ON(trans->transid == 0); 3432 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3433 btrfs_set_header_nritems(lower, nritems + 1); 3434 btrfs_mark_buffer_dirty(lower); 3435 } 3436 3437 /* 3438 * split the node at the specified level in path in two. 3439 * The path is corrected to point to the appropriate node after the split 3440 * 3441 * Before splitting this tries to make some room in the node by pushing 3442 * left and right, if either one works, it returns right away. 3443 * 3444 * returns 0 on success and < 0 on failure 3445 */ 3446 static noinline int split_node(struct btrfs_trans_handle *trans, 3447 struct btrfs_root *root, 3448 struct btrfs_path *path, int level) 3449 { 3450 struct extent_buffer *c; 3451 struct extent_buffer *split; 3452 struct btrfs_disk_key disk_key; 3453 int mid; 3454 int ret; 3455 u32 c_nritems; 3456 3457 c = path->nodes[level]; 3458 WARN_ON(btrfs_header_generation(c) != trans->transid); 3459 if (c == root->node) { 3460 /* 3461 * trying to split the root, lets make a new one 3462 * 3463 * tree mod log: We don't log_removal old root in 3464 * insert_new_root, because that root buffer will be kept as a 3465 * normal node. We are going to log removal of half of the 3466 * elements below with tree_mod_log_eb_copy. We're holding a 3467 * tree lock on the buffer, which is why we cannot race with 3468 * other tree_mod_log users. 3469 */ 3470 ret = insert_new_root(trans, root, path, level + 1); 3471 if (ret) 3472 return ret; 3473 } else { 3474 ret = push_nodes_for_insert(trans, root, path, level); 3475 c = path->nodes[level]; 3476 if (!ret && btrfs_header_nritems(c) < 3477 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3478 return 0; 3479 if (ret < 0) 3480 return ret; 3481 } 3482 3483 c_nritems = btrfs_header_nritems(c); 3484 mid = (c_nritems + 1) / 2; 3485 btrfs_node_key(c, &disk_key, mid); 3486 3487 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3488 &disk_key, level, c->start, 0); 3489 if (IS_ERR(split)) 3490 return PTR_ERR(split); 3491 3492 root_add_used(root, root->nodesize); 3493 3494 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3495 btrfs_set_header_level(split, btrfs_header_level(c)); 3496 btrfs_set_header_bytenr(split, split->start); 3497 btrfs_set_header_generation(split, trans->transid); 3498 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3499 btrfs_set_header_owner(split, root->root_key.objectid); 3500 write_extent_buffer(split, root->fs_info->fsid, 3501 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3502 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3503 btrfs_header_chunk_tree_uuid(split), 3504 BTRFS_UUID_SIZE); 3505 3506 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0, 3507 mid, c_nritems - mid); 3508 if (ret) { 3509 btrfs_abort_transaction(trans, root, ret); 3510 return ret; 3511 } 3512 copy_extent_buffer(split, c, 3513 btrfs_node_key_ptr_offset(0), 3514 btrfs_node_key_ptr_offset(mid), 3515 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3516 btrfs_set_header_nritems(split, c_nritems - mid); 3517 btrfs_set_header_nritems(c, mid); 3518 ret = 0; 3519 3520 btrfs_mark_buffer_dirty(c); 3521 btrfs_mark_buffer_dirty(split); 3522 3523 insert_ptr(trans, root, path, &disk_key, split->start, 3524 path->slots[level + 1] + 1, level + 1); 3525 3526 if (path->slots[level] >= mid) { 3527 path->slots[level] -= mid; 3528 btrfs_tree_unlock(c); 3529 free_extent_buffer(c); 3530 path->nodes[level] = split; 3531 path->slots[level + 1] += 1; 3532 } else { 3533 btrfs_tree_unlock(split); 3534 free_extent_buffer(split); 3535 } 3536 return ret; 3537 } 3538 3539 /* 3540 * how many bytes are required to store the items in a leaf. start 3541 * and nr indicate which items in the leaf to check. This totals up the 3542 * space used both by the item structs and the item data 3543 */ 3544 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3545 { 3546 struct btrfs_item *start_item; 3547 struct btrfs_item *end_item; 3548 struct btrfs_map_token token; 3549 int data_len; 3550 int nritems = btrfs_header_nritems(l); 3551 int end = min(nritems, start + nr) - 1; 3552 3553 if (!nr) 3554 return 0; 3555 btrfs_init_map_token(&token); 3556 start_item = btrfs_item_nr(start); 3557 end_item = btrfs_item_nr(end); 3558 data_len = btrfs_token_item_offset(l, start_item, &token) + 3559 btrfs_token_item_size(l, start_item, &token); 3560 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3561 data_len += sizeof(struct btrfs_item) * nr; 3562 WARN_ON(data_len < 0); 3563 return data_len; 3564 } 3565 3566 /* 3567 * The space between the end of the leaf items and 3568 * the start of the leaf data. IOW, how much room 3569 * the leaf has left for both items and data 3570 */ 3571 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3572 struct extent_buffer *leaf) 3573 { 3574 int nritems = btrfs_header_nritems(leaf); 3575 int ret; 3576 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3577 if (ret < 0) { 3578 btrfs_crit(root->fs_info, 3579 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3580 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3581 leaf_space_used(leaf, 0, nritems), nritems); 3582 } 3583 return ret; 3584 } 3585 3586 /* 3587 * min slot controls the lowest index we're willing to push to the 3588 * right. We'll push up to and including min_slot, but no lower 3589 */ 3590 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3591 struct btrfs_root *root, 3592 struct btrfs_path *path, 3593 int data_size, int empty, 3594 struct extent_buffer *right, 3595 int free_space, u32 left_nritems, 3596 u32 min_slot) 3597 { 3598 struct extent_buffer *left = path->nodes[0]; 3599 struct extent_buffer *upper = path->nodes[1]; 3600 struct btrfs_map_token token; 3601 struct btrfs_disk_key disk_key; 3602 int slot; 3603 u32 i; 3604 int push_space = 0; 3605 int push_items = 0; 3606 struct btrfs_item *item; 3607 u32 nr; 3608 u32 right_nritems; 3609 u32 data_end; 3610 u32 this_item_size; 3611 3612 btrfs_init_map_token(&token); 3613 3614 if (empty) 3615 nr = 0; 3616 else 3617 nr = max_t(u32, 1, min_slot); 3618 3619 if (path->slots[0] >= left_nritems) 3620 push_space += data_size; 3621 3622 slot = path->slots[1]; 3623 i = left_nritems - 1; 3624 while (i >= nr) { 3625 item = btrfs_item_nr(i); 3626 3627 if (!empty && push_items > 0) { 3628 if (path->slots[0] > i) 3629 break; 3630 if (path->slots[0] == i) { 3631 int space = btrfs_leaf_free_space(root, left); 3632 if (space + push_space * 2 > free_space) 3633 break; 3634 } 3635 } 3636 3637 if (path->slots[0] == i) 3638 push_space += data_size; 3639 3640 this_item_size = btrfs_item_size(left, item); 3641 if (this_item_size + sizeof(*item) + push_space > free_space) 3642 break; 3643 3644 push_items++; 3645 push_space += this_item_size + sizeof(*item); 3646 if (i == 0) 3647 break; 3648 i--; 3649 } 3650 3651 if (push_items == 0) 3652 goto out_unlock; 3653 3654 WARN_ON(!empty && push_items == left_nritems); 3655 3656 /* push left to right */ 3657 right_nritems = btrfs_header_nritems(right); 3658 3659 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3660 push_space -= leaf_data_end(root, left); 3661 3662 /* make room in the right data area */ 3663 data_end = leaf_data_end(root, right); 3664 memmove_extent_buffer(right, 3665 btrfs_leaf_data(right) + data_end - push_space, 3666 btrfs_leaf_data(right) + data_end, 3667 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3668 3669 /* copy from the left data area */ 3670 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3671 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3672 btrfs_leaf_data(left) + leaf_data_end(root, left), 3673 push_space); 3674 3675 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3676 btrfs_item_nr_offset(0), 3677 right_nritems * sizeof(struct btrfs_item)); 3678 3679 /* copy the items from left to right */ 3680 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3681 btrfs_item_nr_offset(left_nritems - push_items), 3682 push_items * sizeof(struct btrfs_item)); 3683 3684 /* update the item pointers */ 3685 right_nritems += push_items; 3686 btrfs_set_header_nritems(right, right_nritems); 3687 push_space = BTRFS_LEAF_DATA_SIZE(root); 3688 for (i = 0; i < right_nritems; i++) { 3689 item = btrfs_item_nr(i); 3690 push_space -= btrfs_token_item_size(right, item, &token); 3691 btrfs_set_token_item_offset(right, item, push_space, &token); 3692 } 3693 3694 left_nritems -= push_items; 3695 btrfs_set_header_nritems(left, left_nritems); 3696 3697 if (left_nritems) 3698 btrfs_mark_buffer_dirty(left); 3699 else 3700 clean_tree_block(trans, root->fs_info, left); 3701 3702 btrfs_mark_buffer_dirty(right); 3703 3704 btrfs_item_key(right, &disk_key, 0); 3705 btrfs_set_node_key(upper, &disk_key, slot + 1); 3706 btrfs_mark_buffer_dirty(upper); 3707 3708 /* then fixup the leaf pointer in the path */ 3709 if (path->slots[0] >= left_nritems) { 3710 path->slots[0] -= left_nritems; 3711 if (btrfs_header_nritems(path->nodes[0]) == 0) 3712 clean_tree_block(trans, root->fs_info, path->nodes[0]); 3713 btrfs_tree_unlock(path->nodes[0]); 3714 free_extent_buffer(path->nodes[0]); 3715 path->nodes[0] = right; 3716 path->slots[1] += 1; 3717 } else { 3718 btrfs_tree_unlock(right); 3719 free_extent_buffer(right); 3720 } 3721 return 0; 3722 3723 out_unlock: 3724 btrfs_tree_unlock(right); 3725 free_extent_buffer(right); 3726 return 1; 3727 } 3728 3729 /* 3730 * push some data in the path leaf to the right, trying to free up at 3731 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3732 * 3733 * returns 1 if the push failed because the other node didn't have enough 3734 * room, 0 if everything worked out and < 0 if there were major errors. 3735 * 3736 * this will push starting from min_slot to the end of the leaf. It won't 3737 * push any slot lower than min_slot 3738 */ 3739 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3740 *root, struct btrfs_path *path, 3741 int min_data_size, int data_size, 3742 int empty, u32 min_slot) 3743 { 3744 struct extent_buffer *left = path->nodes[0]; 3745 struct extent_buffer *right; 3746 struct extent_buffer *upper; 3747 int slot; 3748 int free_space; 3749 u32 left_nritems; 3750 int ret; 3751 3752 if (!path->nodes[1]) 3753 return 1; 3754 3755 slot = path->slots[1]; 3756 upper = path->nodes[1]; 3757 if (slot >= btrfs_header_nritems(upper) - 1) 3758 return 1; 3759 3760 btrfs_assert_tree_locked(path->nodes[1]); 3761 3762 right = read_node_slot(root, upper, slot + 1); 3763 if (right == NULL) 3764 return 1; 3765 3766 btrfs_tree_lock(right); 3767 btrfs_set_lock_blocking(right); 3768 3769 free_space = btrfs_leaf_free_space(root, right); 3770 if (free_space < data_size) 3771 goto out_unlock; 3772 3773 /* cow and double check */ 3774 ret = btrfs_cow_block(trans, root, right, upper, 3775 slot + 1, &right); 3776 if (ret) 3777 goto out_unlock; 3778 3779 free_space = btrfs_leaf_free_space(root, right); 3780 if (free_space < data_size) 3781 goto out_unlock; 3782 3783 left_nritems = btrfs_header_nritems(left); 3784 if (left_nritems == 0) 3785 goto out_unlock; 3786 3787 if (path->slots[0] == left_nritems && !empty) { 3788 /* Key greater than all keys in the leaf, right neighbor has 3789 * enough room for it and we're not emptying our leaf to delete 3790 * it, therefore use right neighbor to insert the new item and 3791 * no need to touch/dirty our left leaft. */ 3792 btrfs_tree_unlock(left); 3793 free_extent_buffer(left); 3794 path->nodes[0] = right; 3795 path->slots[0] = 0; 3796 path->slots[1]++; 3797 return 0; 3798 } 3799 3800 return __push_leaf_right(trans, root, path, min_data_size, empty, 3801 right, free_space, left_nritems, min_slot); 3802 out_unlock: 3803 btrfs_tree_unlock(right); 3804 free_extent_buffer(right); 3805 return 1; 3806 } 3807 3808 /* 3809 * push some data in the path leaf to the left, trying to free up at 3810 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3811 * 3812 * max_slot can put a limit on how far into the leaf we'll push items. The 3813 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3814 * items 3815 */ 3816 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3817 struct btrfs_root *root, 3818 struct btrfs_path *path, int data_size, 3819 int empty, struct extent_buffer *left, 3820 int free_space, u32 right_nritems, 3821 u32 max_slot) 3822 { 3823 struct btrfs_disk_key disk_key; 3824 struct extent_buffer *right = path->nodes[0]; 3825 int i; 3826 int push_space = 0; 3827 int push_items = 0; 3828 struct btrfs_item *item; 3829 u32 old_left_nritems; 3830 u32 nr; 3831 int ret = 0; 3832 u32 this_item_size; 3833 u32 old_left_item_size; 3834 struct btrfs_map_token token; 3835 3836 btrfs_init_map_token(&token); 3837 3838 if (empty) 3839 nr = min(right_nritems, max_slot); 3840 else 3841 nr = min(right_nritems - 1, max_slot); 3842 3843 for (i = 0; i < nr; i++) { 3844 item = btrfs_item_nr(i); 3845 3846 if (!empty && push_items > 0) { 3847 if (path->slots[0] < i) 3848 break; 3849 if (path->slots[0] == i) { 3850 int space = btrfs_leaf_free_space(root, right); 3851 if (space + push_space * 2 > free_space) 3852 break; 3853 } 3854 } 3855 3856 if (path->slots[0] == i) 3857 push_space += data_size; 3858 3859 this_item_size = btrfs_item_size(right, item); 3860 if (this_item_size + sizeof(*item) + push_space > free_space) 3861 break; 3862 3863 push_items++; 3864 push_space += this_item_size + sizeof(*item); 3865 } 3866 3867 if (push_items == 0) { 3868 ret = 1; 3869 goto out; 3870 } 3871 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3872 3873 /* push data from right to left */ 3874 copy_extent_buffer(left, right, 3875 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3876 btrfs_item_nr_offset(0), 3877 push_items * sizeof(struct btrfs_item)); 3878 3879 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3880 btrfs_item_offset_nr(right, push_items - 1); 3881 3882 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3883 leaf_data_end(root, left) - push_space, 3884 btrfs_leaf_data(right) + 3885 btrfs_item_offset_nr(right, push_items - 1), 3886 push_space); 3887 old_left_nritems = btrfs_header_nritems(left); 3888 BUG_ON(old_left_nritems <= 0); 3889 3890 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3891 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3892 u32 ioff; 3893 3894 item = btrfs_item_nr(i); 3895 3896 ioff = btrfs_token_item_offset(left, item, &token); 3897 btrfs_set_token_item_offset(left, item, 3898 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3899 &token); 3900 } 3901 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3902 3903 /* fixup right node */ 3904 if (push_items > right_nritems) 3905 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3906 right_nritems); 3907 3908 if (push_items < right_nritems) { 3909 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3910 leaf_data_end(root, right); 3911 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3912 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3913 btrfs_leaf_data(right) + 3914 leaf_data_end(root, right), push_space); 3915 3916 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3917 btrfs_item_nr_offset(push_items), 3918 (btrfs_header_nritems(right) - push_items) * 3919 sizeof(struct btrfs_item)); 3920 } 3921 right_nritems -= push_items; 3922 btrfs_set_header_nritems(right, right_nritems); 3923 push_space = BTRFS_LEAF_DATA_SIZE(root); 3924 for (i = 0; i < right_nritems; i++) { 3925 item = btrfs_item_nr(i); 3926 3927 push_space = push_space - btrfs_token_item_size(right, 3928 item, &token); 3929 btrfs_set_token_item_offset(right, item, push_space, &token); 3930 } 3931 3932 btrfs_mark_buffer_dirty(left); 3933 if (right_nritems) 3934 btrfs_mark_buffer_dirty(right); 3935 else 3936 clean_tree_block(trans, root->fs_info, right); 3937 3938 btrfs_item_key(right, &disk_key, 0); 3939 fixup_low_keys(root->fs_info, path, &disk_key, 1); 3940 3941 /* then fixup the leaf pointer in the path */ 3942 if (path->slots[0] < push_items) { 3943 path->slots[0] += old_left_nritems; 3944 btrfs_tree_unlock(path->nodes[0]); 3945 free_extent_buffer(path->nodes[0]); 3946 path->nodes[0] = left; 3947 path->slots[1] -= 1; 3948 } else { 3949 btrfs_tree_unlock(left); 3950 free_extent_buffer(left); 3951 path->slots[0] -= push_items; 3952 } 3953 BUG_ON(path->slots[0] < 0); 3954 return ret; 3955 out: 3956 btrfs_tree_unlock(left); 3957 free_extent_buffer(left); 3958 return ret; 3959 } 3960 3961 /* 3962 * push some data in the path leaf to the left, trying to free up at 3963 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3964 * 3965 * max_slot can put a limit on how far into the leaf we'll push items. The 3966 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3967 * items 3968 */ 3969 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3970 *root, struct btrfs_path *path, int min_data_size, 3971 int data_size, int empty, u32 max_slot) 3972 { 3973 struct extent_buffer *right = path->nodes[0]; 3974 struct extent_buffer *left; 3975 int slot; 3976 int free_space; 3977 u32 right_nritems; 3978 int ret = 0; 3979 3980 slot = path->slots[1]; 3981 if (slot == 0) 3982 return 1; 3983 if (!path->nodes[1]) 3984 return 1; 3985 3986 right_nritems = btrfs_header_nritems(right); 3987 if (right_nritems == 0) 3988 return 1; 3989 3990 btrfs_assert_tree_locked(path->nodes[1]); 3991 3992 left = read_node_slot(root, path->nodes[1], slot - 1); 3993 if (left == NULL) 3994 return 1; 3995 3996 btrfs_tree_lock(left); 3997 btrfs_set_lock_blocking(left); 3998 3999 free_space = btrfs_leaf_free_space(root, left); 4000 if (free_space < data_size) { 4001 ret = 1; 4002 goto out; 4003 } 4004 4005 /* cow and double check */ 4006 ret = btrfs_cow_block(trans, root, left, 4007 path->nodes[1], slot - 1, &left); 4008 if (ret) { 4009 /* we hit -ENOSPC, but it isn't fatal here */ 4010 if (ret == -ENOSPC) 4011 ret = 1; 4012 goto out; 4013 } 4014 4015 free_space = btrfs_leaf_free_space(root, left); 4016 if (free_space < data_size) { 4017 ret = 1; 4018 goto out; 4019 } 4020 4021 return __push_leaf_left(trans, root, path, min_data_size, 4022 empty, left, free_space, right_nritems, 4023 max_slot); 4024 out: 4025 btrfs_tree_unlock(left); 4026 free_extent_buffer(left); 4027 return ret; 4028 } 4029 4030 /* 4031 * split the path's leaf in two, making sure there is at least data_size 4032 * available for the resulting leaf level of the path. 4033 */ 4034 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4035 struct btrfs_root *root, 4036 struct btrfs_path *path, 4037 struct extent_buffer *l, 4038 struct extent_buffer *right, 4039 int slot, int mid, int nritems) 4040 { 4041 int data_copy_size; 4042 int rt_data_off; 4043 int i; 4044 struct btrfs_disk_key disk_key; 4045 struct btrfs_map_token token; 4046 4047 btrfs_init_map_token(&token); 4048 4049 nritems = nritems - mid; 4050 btrfs_set_header_nritems(right, nritems); 4051 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 4052 4053 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4054 btrfs_item_nr_offset(mid), 4055 nritems * sizeof(struct btrfs_item)); 4056 4057 copy_extent_buffer(right, l, 4058 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 4059 data_copy_size, btrfs_leaf_data(l) + 4060 leaf_data_end(root, l), data_copy_size); 4061 4062 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 4063 btrfs_item_end_nr(l, mid); 4064 4065 for (i = 0; i < nritems; i++) { 4066 struct btrfs_item *item = btrfs_item_nr(i); 4067 u32 ioff; 4068 4069 ioff = btrfs_token_item_offset(right, item, &token); 4070 btrfs_set_token_item_offset(right, item, 4071 ioff + rt_data_off, &token); 4072 } 4073 4074 btrfs_set_header_nritems(l, mid); 4075 btrfs_item_key(right, &disk_key, 0); 4076 insert_ptr(trans, root, path, &disk_key, right->start, 4077 path->slots[1] + 1, 1); 4078 4079 btrfs_mark_buffer_dirty(right); 4080 btrfs_mark_buffer_dirty(l); 4081 BUG_ON(path->slots[0] != slot); 4082 4083 if (mid <= slot) { 4084 btrfs_tree_unlock(path->nodes[0]); 4085 free_extent_buffer(path->nodes[0]); 4086 path->nodes[0] = right; 4087 path->slots[0] -= mid; 4088 path->slots[1] += 1; 4089 } else { 4090 btrfs_tree_unlock(right); 4091 free_extent_buffer(right); 4092 } 4093 4094 BUG_ON(path->slots[0] < 0); 4095 } 4096 4097 /* 4098 * double splits happen when we need to insert a big item in the middle 4099 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4100 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4101 * A B C 4102 * 4103 * We avoid this by trying to push the items on either side of our target 4104 * into the adjacent leaves. If all goes well we can avoid the double split 4105 * completely. 4106 */ 4107 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4108 struct btrfs_root *root, 4109 struct btrfs_path *path, 4110 int data_size) 4111 { 4112 int ret; 4113 int progress = 0; 4114 int slot; 4115 u32 nritems; 4116 int space_needed = data_size; 4117 4118 slot = path->slots[0]; 4119 if (slot < btrfs_header_nritems(path->nodes[0])) 4120 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]); 4121 4122 /* 4123 * try to push all the items after our slot into the 4124 * right leaf 4125 */ 4126 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4127 if (ret < 0) 4128 return ret; 4129 4130 if (ret == 0) 4131 progress++; 4132 4133 nritems = btrfs_header_nritems(path->nodes[0]); 4134 /* 4135 * our goal is to get our slot at the start or end of a leaf. If 4136 * we've done so we're done 4137 */ 4138 if (path->slots[0] == 0 || path->slots[0] == nritems) 4139 return 0; 4140 4141 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4142 return 0; 4143 4144 /* try to push all the items before our slot into the next leaf */ 4145 slot = path->slots[0]; 4146 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4147 if (ret < 0) 4148 return ret; 4149 4150 if (ret == 0) 4151 progress++; 4152 4153 if (progress) 4154 return 0; 4155 return 1; 4156 } 4157 4158 /* 4159 * split the path's leaf in two, making sure there is at least data_size 4160 * available for the resulting leaf level of the path. 4161 * 4162 * returns 0 if all went well and < 0 on failure. 4163 */ 4164 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4165 struct btrfs_root *root, 4166 struct btrfs_key *ins_key, 4167 struct btrfs_path *path, int data_size, 4168 int extend) 4169 { 4170 struct btrfs_disk_key disk_key; 4171 struct extent_buffer *l; 4172 u32 nritems; 4173 int mid; 4174 int slot; 4175 struct extent_buffer *right; 4176 struct btrfs_fs_info *fs_info = root->fs_info; 4177 int ret = 0; 4178 int wret; 4179 int split; 4180 int num_doubles = 0; 4181 int tried_avoid_double = 0; 4182 4183 l = path->nodes[0]; 4184 slot = path->slots[0]; 4185 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4186 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 4187 return -EOVERFLOW; 4188 4189 /* first try to make some room by pushing left and right */ 4190 if (data_size && path->nodes[1]) { 4191 int space_needed = data_size; 4192 4193 if (slot < btrfs_header_nritems(l)) 4194 space_needed -= btrfs_leaf_free_space(root, l); 4195 4196 wret = push_leaf_right(trans, root, path, space_needed, 4197 space_needed, 0, 0); 4198 if (wret < 0) 4199 return wret; 4200 if (wret) { 4201 wret = push_leaf_left(trans, root, path, space_needed, 4202 space_needed, 0, (u32)-1); 4203 if (wret < 0) 4204 return wret; 4205 } 4206 l = path->nodes[0]; 4207 4208 /* did the pushes work? */ 4209 if (btrfs_leaf_free_space(root, l) >= data_size) 4210 return 0; 4211 } 4212 4213 if (!path->nodes[1]) { 4214 ret = insert_new_root(trans, root, path, 1); 4215 if (ret) 4216 return ret; 4217 } 4218 again: 4219 split = 1; 4220 l = path->nodes[0]; 4221 slot = path->slots[0]; 4222 nritems = btrfs_header_nritems(l); 4223 mid = (nritems + 1) / 2; 4224 4225 if (mid <= slot) { 4226 if (nritems == 1 || 4227 leaf_space_used(l, mid, nritems - mid) + data_size > 4228 BTRFS_LEAF_DATA_SIZE(root)) { 4229 if (slot >= nritems) { 4230 split = 0; 4231 } else { 4232 mid = slot; 4233 if (mid != nritems && 4234 leaf_space_used(l, mid, nritems - mid) + 4235 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4236 if (data_size && !tried_avoid_double) 4237 goto push_for_double; 4238 split = 2; 4239 } 4240 } 4241 } 4242 } else { 4243 if (leaf_space_used(l, 0, mid) + data_size > 4244 BTRFS_LEAF_DATA_SIZE(root)) { 4245 if (!extend && data_size && slot == 0) { 4246 split = 0; 4247 } else if ((extend || !data_size) && slot == 0) { 4248 mid = 1; 4249 } else { 4250 mid = slot; 4251 if (mid != nritems && 4252 leaf_space_used(l, mid, nritems - mid) + 4253 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4254 if (data_size && !tried_avoid_double) 4255 goto push_for_double; 4256 split = 2; 4257 } 4258 } 4259 } 4260 } 4261 4262 if (split == 0) 4263 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4264 else 4265 btrfs_item_key(l, &disk_key, mid); 4266 4267 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4268 &disk_key, 0, l->start, 0); 4269 if (IS_ERR(right)) 4270 return PTR_ERR(right); 4271 4272 root_add_used(root, root->nodesize); 4273 4274 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4275 btrfs_set_header_bytenr(right, right->start); 4276 btrfs_set_header_generation(right, trans->transid); 4277 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4278 btrfs_set_header_owner(right, root->root_key.objectid); 4279 btrfs_set_header_level(right, 0); 4280 write_extent_buffer(right, fs_info->fsid, 4281 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4282 4283 write_extent_buffer(right, fs_info->chunk_tree_uuid, 4284 btrfs_header_chunk_tree_uuid(right), 4285 BTRFS_UUID_SIZE); 4286 4287 if (split == 0) { 4288 if (mid <= slot) { 4289 btrfs_set_header_nritems(right, 0); 4290 insert_ptr(trans, root, path, &disk_key, right->start, 4291 path->slots[1] + 1, 1); 4292 btrfs_tree_unlock(path->nodes[0]); 4293 free_extent_buffer(path->nodes[0]); 4294 path->nodes[0] = right; 4295 path->slots[0] = 0; 4296 path->slots[1] += 1; 4297 } else { 4298 btrfs_set_header_nritems(right, 0); 4299 insert_ptr(trans, root, path, &disk_key, right->start, 4300 path->slots[1], 1); 4301 btrfs_tree_unlock(path->nodes[0]); 4302 free_extent_buffer(path->nodes[0]); 4303 path->nodes[0] = right; 4304 path->slots[0] = 0; 4305 if (path->slots[1] == 0) 4306 fixup_low_keys(fs_info, path, &disk_key, 1); 4307 } 4308 btrfs_mark_buffer_dirty(right); 4309 return ret; 4310 } 4311 4312 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4313 4314 if (split == 2) { 4315 BUG_ON(num_doubles != 0); 4316 num_doubles++; 4317 goto again; 4318 } 4319 4320 return 0; 4321 4322 push_for_double: 4323 push_for_double_split(trans, root, path, data_size); 4324 tried_avoid_double = 1; 4325 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4326 return 0; 4327 goto again; 4328 } 4329 4330 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4331 struct btrfs_root *root, 4332 struct btrfs_path *path, int ins_len) 4333 { 4334 struct btrfs_key key; 4335 struct extent_buffer *leaf; 4336 struct btrfs_file_extent_item *fi; 4337 u64 extent_len = 0; 4338 u32 item_size; 4339 int ret; 4340 4341 leaf = path->nodes[0]; 4342 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4343 4344 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4345 key.type != BTRFS_EXTENT_CSUM_KEY); 4346 4347 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4348 return 0; 4349 4350 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4351 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4352 fi = btrfs_item_ptr(leaf, path->slots[0], 4353 struct btrfs_file_extent_item); 4354 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4355 } 4356 btrfs_release_path(path); 4357 4358 path->keep_locks = 1; 4359 path->search_for_split = 1; 4360 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4361 path->search_for_split = 0; 4362 if (ret > 0) 4363 ret = -EAGAIN; 4364 if (ret < 0) 4365 goto err; 4366 4367 ret = -EAGAIN; 4368 leaf = path->nodes[0]; 4369 /* if our item isn't there, return now */ 4370 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4371 goto err; 4372 4373 /* the leaf has changed, it now has room. return now */ 4374 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4375 goto err; 4376 4377 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4378 fi = btrfs_item_ptr(leaf, path->slots[0], 4379 struct btrfs_file_extent_item); 4380 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4381 goto err; 4382 } 4383 4384 btrfs_set_path_blocking(path); 4385 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4386 if (ret) 4387 goto err; 4388 4389 path->keep_locks = 0; 4390 btrfs_unlock_up_safe(path, 1); 4391 return 0; 4392 err: 4393 path->keep_locks = 0; 4394 return ret; 4395 } 4396 4397 static noinline int split_item(struct btrfs_trans_handle *trans, 4398 struct btrfs_root *root, 4399 struct btrfs_path *path, 4400 struct btrfs_key *new_key, 4401 unsigned long split_offset) 4402 { 4403 struct extent_buffer *leaf; 4404 struct btrfs_item *item; 4405 struct btrfs_item *new_item; 4406 int slot; 4407 char *buf; 4408 u32 nritems; 4409 u32 item_size; 4410 u32 orig_offset; 4411 struct btrfs_disk_key disk_key; 4412 4413 leaf = path->nodes[0]; 4414 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4415 4416 btrfs_set_path_blocking(path); 4417 4418 item = btrfs_item_nr(path->slots[0]); 4419 orig_offset = btrfs_item_offset(leaf, item); 4420 item_size = btrfs_item_size(leaf, item); 4421 4422 buf = kmalloc(item_size, GFP_NOFS); 4423 if (!buf) 4424 return -ENOMEM; 4425 4426 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4427 path->slots[0]), item_size); 4428 4429 slot = path->slots[0] + 1; 4430 nritems = btrfs_header_nritems(leaf); 4431 if (slot != nritems) { 4432 /* shift the items */ 4433 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4434 btrfs_item_nr_offset(slot), 4435 (nritems - slot) * sizeof(struct btrfs_item)); 4436 } 4437 4438 btrfs_cpu_key_to_disk(&disk_key, new_key); 4439 btrfs_set_item_key(leaf, &disk_key, slot); 4440 4441 new_item = btrfs_item_nr(slot); 4442 4443 btrfs_set_item_offset(leaf, new_item, orig_offset); 4444 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4445 4446 btrfs_set_item_offset(leaf, item, 4447 orig_offset + item_size - split_offset); 4448 btrfs_set_item_size(leaf, item, split_offset); 4449 4450 btrfs_set_header_nritems(leaf, nritems + 1); 4451 4452 /* write the data for the start of the original item */ 4453 write_extent_buffer(leaf, buf, 4454 btrfs_item_ptr_offset(leaf, path->slots[0]), 4455 split_offset); 4456 4457 /* write the data for the new item */ 4458 write_extent_buffer(leaf, buf + split_offset, 4459 btrfs_item_ptr_offset(leaf, slot), 4460 item_size - split_offset); 4461 btrfs_mark_buffer_dirty(leaf); 4462 4463 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4464 kfree(buf); 4465 return 0; 4466 } 4467 4468 /* 4469 * This function splits a single item into two items, 4470 * giving 'new_key' to the new item and splitting the 4471 * old one at split_offset (from the start of the item). 4472 * 4473 * The path may be released by this operation. After 4474 * the split, the path is pointing to the old item. The 4475 * new item is going to be in the same node as the old one. 4476 * 4477 * Note, the item being split must be smaller enough to live alone on 4478 * a tree block with room for one extra struct btrfs_item 4479 * 4480 * This allows us to split the item in place, keeping a lock on the 4481 * leaf the entire time. 4482 */ 4483 int btrfs_split_item(struct btrfs_trans_handle *trans, 4484 struct btrfs_root *root, 4485 struct btrfs_path *path, 4486 struct btrfs_key *new_key, 4487 unsigned long split_offset) 4488 { 4489 int ret; 4490 ret = setup_leaf_for_split(trans, root, path, 4491 sizeof(struct btrfs_item)); 4492 if (ret) 4493 return ret; 4494 4495 ret = split_item(trans, root, path, new_key, split_offset); 4496 return ret; 4497 } 4498 4499 /* 4500 * This function duplicate a item, giving 'new_key' to the new item. 4501 * It guarantees both items live in the same tree leaf and the new item 4502 * is contiguous with the original item. 4503 * 4504 * This allows us to split file extent in place, keeping a lock on the 4505 * leaf the entire time. 4506 */ 4507 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4508 struct btrfs_root *root, 4509 struct btrfs_path *path, 4510 struct btrfs_key *new_key) 4511 { 4512 struct extent_buffer *leaf; 4513 int ret; 4514 u32 item_size; 4515 4516 leaf = path->nodes[0]; 4517 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4518 ret = setup_leaf_for_split(trans, root, path, 4519 item_size + sizeof(struct btrfs_item)); 4520 if (ret) 4521 return ret; 4522 4523 path->slots[0]++; 4524 setup_items_for_insert(root, path, new_key, &item_size, 4525 item_size, item_size + 4526 sizeof(struct btrfs_item), 1); 4527 leaf = path->nodes[0]; 4528 memcpy_extent_buffer(leaf, 4529 btrfs_item_ptr_offset(leaf, path->slots[0]), 4530 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4531 item_size); 4532 return 0; 4533 } 4534 4535 /* 4536 * make the item pointed to by the path smaller. new_size indicates 4537 * how small to make it, and from_end tells us if we just chop bytes 4538 * off the end of the item or if we shift the item to chop bytes off 4539 * the front. 4540 */ 4541 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4542 u32 new_size, int from_end) 4543 { 4544 int slot; 4545 struct extent_buffer *leaf; 4546 struct btrfs_item *item; 4547 u32 nritems; 4548 unsigned int data_end; 4549 unsigned int old_data_start; 4550 unsigned int old_size; 4551 unsigned int size_diff; 4552 int i; 4553 struct btrfs_map_token token; 4554 4555 btrfs_init_map_token(&token); 4556 4557 leaf = path->nodes[0]; 4558 slot = path->slots[0]; 4559 4560 old_size = btrfs_item_size_nr(leaf, slot); 4561 if (old_size == new_size) 4562 return; 4563 4564 nritems = btrfs_header_nritems(leaf); 4565 data_end = leaf_data_end(root, leaf); 4566 4567 old_data_start = btrfs_item_offset_nr(leaf, slot); 4568 4569 size_diff = old_size - new_size; 4570 4571 BUG_ON(slot < 0); 4572 BUG_ON(slot >= nritems); 4573 4574 /* 4575 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4576 */ 4577 /* first correct the data pointers */ 4578 for (i = slot; i < nritems; i++) { 4579 u32 ioff; 4580 item = btrfs_item_nr(i); 4581 4582 ioff = btrfs_token_item_offset(leaf, item, &token); 4583 btrfs_set_token_item_offset(leaf, item, 4584 ioff + size_diff, &token); 4585 } 4586 4587 /* shift the data */ 4588 if (from_end) { 4589 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4590 data_end + size_diff, btrfs_leaf_data(leaf) + 4591 data_end, old_data_start + new_size - data_end); 4592 } else { 4593 struct btrfs_disk_key disk_key; 4594 u64 offset; 4595 4596 btrfs_item_key(leaf, &disk_key, slot); 4597 4598 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4599 unsigned long ptr; 4600 struct btrfs_file_extent_item *fi; 4601 4602 fi = btrfs_item_ptr(leaf, slot, 4603 struct btrfs_file_extent_item); 4604 fi = (struct btrfs_file_extent_item *)( 4605 (unsigned long)fi - size_diff); 4606 4607 if (btrfs_file_extent_type(leaf, fi) == 4608 BTRFS_FILE_EXTENT_INLINE) { 4609 ptr = btrfs_item_ptr_offset(leaf, slot); 4610 memmove_extent_buffer(leaf, ptr, 4611 (unsigned long)fi, 4612 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4613 } 4614 } 4615 4616 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4617 data_end + size_diff, btrfs_leaf_data(leaf) + 4618 data_end, old_data_start - data_end); 4619 4620 offset = btrfs_disk_key_offset(&disk_key); 4621 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4622 btrfs_set_item_key(leaf, &disk_key, slot); 4623 if (slot == 0) 4624 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4625 } 4626 4627 item = btrfs_item_nr(slot); 4628 btrfs_set_item_size(leaf, item, new_size); 4629 btrfs_mark_buffer_dirty(leaf); 4630 4631 if (btrfs_leaf_free_space(root, leaf) < 0) { 4632 btrfs_print_leaf(root, leaf); 4633 BUG(); 4634 } 4635 } 4636 4637 /* 4638 * make the item pointed to by the path bigger, data_size is the added size. 4639 */ 4640 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4641 u32 data_size) 4642 { 4643 int slot; 4644 struct extent_buffer *leaf; 4645 struct btrfs_item *item; 4646 u32 nritems; 4647 unsigned int data_end; 4648 unsigned int old_data; 4649 unsigned int old_size; 4650 int i; 4651 struct btrfs_map_token token; 4652 4653 btrfs_init_map_token(&token); 4654 4655 leaf = path->nodes[0]; 4656 4657 nritems = btrfs_header_nritems(leaf); 4658 data_end = leaf_data_end(root, leaf); 4659 4660 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4661 btrfs_print_leaf(root, leaf); 4662 BUG(); 4663 } 4664 slot = path->slots[0]; 4665 old_data = btrfs_item_end_nr(leaf, slot); 4666 4667 BUG_ON(slot < 0); 4668 if (slot >= nritems) { 4669 btrfs_print_leaf(root, leaf); 4670 btrfs_crit(root->fs_info, "slot %d too large, nritems %d", 4671 slot, nritems); 4672 BUG_ON(1); 4673 } 4674 4675 /* 4676 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4677 */ 4678 /* first correct the data pointers */ 4679 for (i = slot; i < nritems; i++) { 4680 u32 ioff; 4681 item = btrfs_item_nr(i); 4682 4683 ioff = btrfs_token_item_offset(leaf, item, &token); 4684 btrfs_set_token_item_offset(leaf, item, 4685 ioff - data_size, &token); 4686 } 4687 4688 /* shift the data */ 4689 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4690 data_end - data_size, btrfs_leaf_data(leaf) + 4691 data_end, old_data - data_end); 4692 4693 data_end = old_data; 4694 old_size = btrfs_item_size_nr(leaf, slot); 4695 item = btrfs_item_nr(slot); 4696 btrfs_set_item_size(leaf, item, old_size + data_size); 4697 btrfs_mark_buffer_dirty(leaf); 4698 4699 if (btrfs_leaf_free_space(root, leaf) < 0) { 4700 btrfs_print_leaf(root, leaf); 4701 BUG(); 4702 } 4703 } 4704 4705 /* 4706 * this is a helper for btrfs_insert_empty_items, the main goal here is 4707 * to save stack depth by doing the bulk of the work in a function 4708 * that doesn't call btrfs_search_slot 4709 */ 4710 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4711 struct btrfs_key *cpu_key, u32 *data_size, 4712 u32 total_data, u32 total_size, int nr) 4713 { 4714 struct btrfs_item *item; 4715 int i; 4716 u32 nritems; 4717 unsigned int data_end; 4718 struct btrfs_disk_key disk_key; 4719 struct extent_buffer *leaf; 4720 int slot; 4721 struct btrfs_map_token token; 4722 4723 if (path->slots[0] == 0) { 4724 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4725 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4726 } 4727 btrfs_unlock_up_safe(path, 1); 4728 4729 btrfs_init_map_token(&token); 4730 4731 leaf = path->nodes[0]; 4732 slot = path->slots[0]; 4733 4734 nritems = btrfs_header_nritems(leaf); 4735 data_end = leaf_data_end(root, leaf); 4736 4737 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4738 btrfs_print_leaf(root, leaf); 4739 btrfs_crit(root->fs_info, "not enough freespace need %u have %d", 4740 total_size, btrfs_leaf_free_space(root, leaf)); 4741 BUG(); 4742 } 4743 4744 if (slot != nritems) { 4745 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4746 4747 if (old_data < data_end) { 4748 btrfs_print_leaf(root, leaf); 4749 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d", 4750 slot, old_data, data_end); 4751 BUG_ON(1); 4752 } 4753 /* 4754 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4755 */ 4756 /* first correct the data pointers */ 4757 for (i = slot; i < nritems; i++) { 4758 u32 ioff; 4759 4760 item = btrfs_item_nr( i); 4761 ioff = btrfs_token_item_offset(leaf, item, &token); 4762 btrfs_set_token_item_offset(leaf, item, 4763 ioff - total_data, &token); 4764 } 4765 /* shift the items */ 4766 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4767 btrfs_item_nr_offset(slot), 4768 (nritems - slot) * sizeof(struct btrfs_item)); 4769 4770 /* shift the data */ 4771 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4772 data_end - total_data, btrfs_leaf_data(leaf) + 4773 data_end, old_data - data_end); 4774 data_end = old_data; 4775 } 4776 4777 /* setup the item for the new data */ 4778 for (i = 0; i < nr; i++) { 4779 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4780 btrfs_set_item_key(leaf, &disk_key, slot + i); 4781 item = btrfs_item_nr(slot + i); 4782 btrfs_set_token_item_offset(leaf, item, 4783 data_end - data_size[i], &token); 4784 data_end -= data_size[i]; 4785 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4786 } 4787 4788 btrfs_set_header_nritems(leaf, nritems + nr); 4789 btrfs_mark_buffer_dirty(leaf); 4790 4791 if (btrfs_leaf_free_space(root, leaf) < 0) { 4792 btrfs_print_leaf(root, leaf); 4793 BUG(); 4794 } 4795 } 4796 4797 /* 4798 * Given a key and some data, insert items into the tree. 4799 * This does all the path init required, making room in the tree if needed. 4800 */ 4801 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4802 struct btrfs_root *root, 4803 struct btrfs_path *path, 4804 struct btrfs_key *cpu_key, u32 *data_size, 4805 int nr) 4806 { 4807 int ret = 0; 4808 int slot; 4809 int i; 4810 u32 total_size = 0; 4811 u32 total_data = 0; 4812 4813 for (i = 0; i < nr; i++) 4814 total_data += data_size[i]; 4815 4816 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4817 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4818 if (ret == 0) 4819 return -EEXIST; 4820 if (ret < 0) 4821 return ret; 4822 4823 slot = path->slots[0]; 4824 BUG_ON(slot < 0); 4825 4826 setup_items_for_insert(root, path, cpu_key, data_size, 4827 total_data, total_size, nr); 4828 return 0; 4829 } 4830 4831 /* 4832 * Given a key and some data, insert an item into the tree. 4833 * This does all the path init required, making room in the tree if needed. 4834 */ 4835 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4836 *root, struct btrfs_key *cpu_key, void *data, u32 4837 data_size) 4838 { 4839 int ret = 0; 4840 struct btrfs_path *path; 4841 struct extent_buffer *leaf; 4842 unsigned long ptr; 4843 4844 path = btrfs_alloc_path(); 4845 if (!path) 4846 return -ENOMEM; 4847 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4848 if (!ret) { 4849 leaf = path->nodes[0]; 4850 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4851 write_extent_buffer(leaf, data, ptr, data_size); 4852 btrfs_mark_buffer_dirty(leaf); 4853 } 4854 btrfs_free_path(path); 4855 return ret; 4856 } 4857 4858 /* 4859 * delete the pointer from a given node. 4860 * 4861 * the tree should have been previously balanced so the deletion does not 4862 * empty a node. 4863 */ 4864 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4865 int level, int slot) 4866 { 4867 struct extent_buffer *parent = path->nodes[level]; 4868 u32 nritems; 4869 int ret; 4870 4871 nritems = btrfs_header_nritems(parent); 4872 if (slot != nritems - 1) { 4873 if (level) 4874 tree_mod_log_eb_move(root->fs_info, parent, slot, 4875 slot + 1, nritems - slot - 1); 4876 memmove_extent_buffer(parent, 4877 btrfs_node_key_ptr_offset(slot), 4878 btrfs_node_key_ptr_offset(slot + 1), 4879 sizeof(struct btrfs_key_ptr) * 4880 (nritems - slot - 1)); 4881 } else if (level) { 4882 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4883 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4884 BUG_ON(ret < 0); 4885 } 4886 4887 nritems--; 4888 btrfs_set_header_nritems(parent, nritems); 4889 if (nritems == 0 && parent == root->node) { 4890 BUG_ON(btrfs_header_level(root->node) != 1); 4891 /* just turn the root into a leaf and break */ 4892 btrfs_set_header_level(root->node, 0); 4893 } else if (slot == 0) { 4894 struct btrfs_disk_key disk_key; 4895 4896 btrfs_node_key(parent, &disk_key, 0); 4897 fixup_low_keys(root->fs_info, path, &disk_key, level + 1); 4898 } 4899 btrfs_mark_buffer_dirty(parent); 4900 } 4901 4902 /* 4903 * a helper function to delete the leaf pointed to by path->slots[1] and 4904 * path->nodes[1]. 4905 * 4906 * This deletes the pointer in path->nodes[1] and frees the leaf 4907 * block extent. zero is returned if it all worked out, < 0 otherwise. 4908 * 4909 * The path must have already been setup for deleting the leaf, including 4910 * all the proper balancing. path->nodes[1] must be locked. 4911 */ 4912 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4913 struct btrfs_root *root, 4914 struct btrfs_path *path, 4915 struct extent_buffer *leaf) 4916 { 4917 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4918 del_ptr(root, path, 1, path->slots[1]); 4919 4920 /* 4921 * btrfs_free_extent is expensive, we want to make sure we 4922 * aren't holding any locks when we call it 4923 */ 4924 btrfs_unlock_up_safe(path, 0); 4925 4926 root_sub_used(root, leaf->len); 4927 4928 extent_buffer_get(leaf); 4929 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4930 free_extent_buffer_stale(leaf); 4931 } 4932 /* 4933 * delete the item at the leaf level in path. If that empties 4934 * the leaf, remove it from the tree 4935 */ 4936 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4937 struct btrfs_path *path, int slot, int nr) 4938 { 4939 struct extent_buffer *leaf; 4940 struct btrfs_item *item; 4941 int last_off; 4942 int dsize = 0; 4943 int ret = 0; 4944 int wret; 4945 int i; 4946 u32 nritems; 4947 struct btrfs_map_token token; 4948 4949 btrfs_init_map_token(&token); 4950 4951 leaf = path->nodes[0]; 4952 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4953 4954 for (i = 0; i < nr; i++) 4955 dsize += btrfs_item_size_nr(leaf, slot + i); 4956 4957 nritems = btrfs_header_nritems(leaf); 4958 4959 if (slot + nr != nritems) { 4960 int data_end = leaf_data_end(root, leaf); 4961 4962 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4963 data_end + dsize, 4964 btrfs_leaf_data(leaf) + data_end, 4965 last_off - data_end); 4966 4967 for (i = slot + nr; i < nritems; i++) { 4968 u32 ioff; 4969 4970 item = btrfs_item_nr(i); 4971 ioff = btrfs_token_item_offset(leaf, item, &token); 4972 btrfs_set_token_item_offset(leaf, item, 4973 ioff + dsize, &token); 4974 } 4975 4976 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4977 btrfs_item_nr_offset(slot + nr), 4978 sizeof(struct btrfs_item) * 4979 (nritems - slot - nr)); 4980 } 4981 btrfs_set_header_nritems(leaf, nritems - nr); 4982 nritems -= nr; 4983 4984 /* delete the leaf if we've emptied it */ 4985 if (nritems == 0) { 4986 if (leaf == root->node) { 4987 btrfs_set_header_level(leaf, 0); 4988 } else { 4989 btrfs_set_path_blocking(path); 4990 clean_tree_block(trans, root->fs_info, leaf); 4991 btrfs_del_leaf(trans, root, path, leaf); 4992 } 4993 } else { 4994 int used = leaf_space_used(leaf, 0, nritems); 4995 if (slot == 0) { 4996 struct btrfs_disk_key disk_key; 4997 4998 btrfs_item_key(leaf, &disk_key, 0); 4999 fixup_low_keys(root->fs_info, path, &disk_key, 1); 5000 } 5001 5002 /* delete the leaf if it is mostly empty */ 5003 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 5004 /* push_leaf_left fixes the path. 5005 * make sure the path still points to our leaf 5006 * for possible call to del_ptr below 5007 */ 5008 slot = path->slots[1]; 5009 extent_buffer_get(leaf); 5010 5011 btrfs_set_path_blocking(path); 5012 wret = push_leaf_left(trans, root, path, 1, 1, 5013 1, (u32)-1); 5014 if (wret < 0 && wret != -ENOSPC) 5015 ret = wret; 5016 5017 if (path->nodes[0] == leaf && 5018 btrfs_header_nritems(leaf)) { 5019 wret = push_leaf_right(trans, root, path, 1, 5020 1, 1, 0); 5021 if (wret < 0 && wret != -ENOSPC) 5022 ret = wret; 5023 } 5024 5025 if (btrfs_header_nritems(leaf) == 0) { 5026 path->slots[1] = slot; 5027 btrfs_del_leaf(trans, root, path, leaf); 5028 free_extent_buffer(leaf); 5029 ret = 0; 5030 } else { 5031 /* if we're still in the path, make sure 5032 * we're dirty. Otherwise, one of the 5033 * push_leaf functions must have already 5034 * dirtied this buffer 5035 */ 5036 if (path->nodes[0] == leaf) 5037 btrfs_mark_buffer_dirty(leaf); 5038 free_extent_buffer(leaf); 5039 } 5040 } else { 5041 btrfs_mark_buffer_dirty(leaf); 5042 } 5043 } 5044 return ret; 5045 } 5046 5047 /* 5048 * search the tree again to find a leaf with lesser keys 5049 * returns 0 if it found something or 1 if there are no lesser leaves. 5050 * returns < 0 on io errors. 5051 * 5052 * This may release the path, and so you may lose any locks held at the 5053 * time you call it. 5054 */ 5055 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5056 { 5057 struct btrfs_key key; 5058 struct btrfs_disk_key found_key; 5059 int ret; 5060 5061 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5062 5063 if (key.offset > 0) { 5064 key.offset--; 5065 } else if (key.type > 0) { 5066 key.type--; 5067 key.offset = (u64)-1; 5068 } else if (key.objectid > 0) { 5069 key.objectid--; 5070 key.type = (u8)-1; 5071 key.offset = (u64)-1; 5072 } else { 5073 return 1; 5074 } 5075 5076 btrfs_release_path(path); 5077 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5078 if (ret < 0) 5079 return ret; 5080 btrfs_item_key(path->nodes[0], &found_key, 0); 5081 ret = comp_keys(&found_key, &key); 5082 /* 5083 * We might have had an item with the previous key in the tree right 5084 * before we released our path. And after we released our path, that 5085 * item might have been pushed to the first slot (0) of the leaf we 5086 * were holding due to a tree balance. Alternatively, an item with the 5087 * previous key can exist as the only element of a leaf (big fat item). 5088 * Therefore account for these 2 cases, so that our callers (like 5089 * btrfs_previous_item) don't miss an existing item with a key matching 5090 * the previous key we computed above. 5091 */ 5092 if (ret <= 0) 5093 return 0; 5094 return 1; 5095 } 5096 5097 /* 5098 * A helper function to walk down the tree starting at min_key, and looking 5099 * for nodes or leaves that are have a minimum transaction id. 5100 * This is used by the btree defrag code, and tree logging 5101 * 5102 * This does not cow, but it does stuff the starting key it finds back 5103 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5104 * key and get a writable path. 5105 * 5106 * This does lock as it descends, and path->keep_locks should be set 5107 * to 1 by the caller. 5108 * 5109 * This honors path->lowest_level to prevent descent past a given level 5110 * of the tree. 5111 * 5112 * min_trans indicates the oldest transaction that you are interested 5113 * in walking through. Any nodes or leaves older than min_trans are 5114 * skipped over (without reading them). 5115 * 5116 * returns zero if something useful was found, < 0 on error and 1 if there 5117 * was nothing in the tree that matched the search criteria. 5118 */ 5119 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5120 struct btrfs_path *path, 5121 u64 min_trans) 5122 { 5123 struct extent_buffer *cur; 5124 struct btrfs_key found_key; 5125 int slot; 5126 int sret; 5127 u32 nritems; 5128 int level; 5129 int ret = 1; 5130 int keep_locks = path->keep_locks; 5131 5132 path->keep_locks = 1; 5133 again: 5134 cur = btrfs_read_lock_root_node(root); 5135 level = btrfs_header_level(cur); 5136 WARN_ON(path->nodes[level]); 5137 path->nodes[level] = cur; 5138 path->locks[level] = BTRFS_READ_LOCK; 5139 5140 if (btrfs_header_generation(cur) < min_trans) { 5141 ret = 1; 5142 goto out; 5143 } 5144 while (1) { 5145 nritems = btrfs_header_nritems(cur); 5146 level = btrfs_header_level(cur); 5147 sret = bin_search(cur, min_key, level, &slot); 5148 5149 /* at the lowest level, we're done, setup the path and exit */ 5150 if (level == path->lowest_level) { 5151 if (slot >= nritems) 5152 goto find_next_key; 5153 ret = 0; 5154 path->slots[level] = slot; 5155 btrfs_item_key_to_cpu(cur, &found_key, slot); 5156 goto out; 5157 } 5158 if (sret && slot > 0) 5159 slot--; 5160 /* 5161 * check this node pointer against the min_trans parameters. 5162 * If it is too old, old, skip to the next one. 5163 */ 5164 while (slot < nritems) { 5165 u64 gen; 5166 5167 gen = btrfs_node_ptr_generation(cur, slot); 5168 if (gen < min_trans) { 5169 slot++; 5170 continue; 5171 } 5172 break; 5173 } 5174 find_next_key: 5175 /* 5176 * we didn't find a candidate key in this node, walk forward 5177 * and find another one 5178 */ 5179 if (slot >= nritems) { 5180 path->slots[level] = slot; 5181 btrfs_set_path_blocking(path); 5182 sret = btrfs_find_next_key(root, path, min_key, level, 5183 min_trans); 5184 if (sret == 0) { 5185 btrfs_release_path(path); 5186 goto again; 5187 } else { 5188 goto out; 5189 } 5190 } 5191 /* save our key for returning back */ 5192 btrfs_node_key_to_cpu(cur, &found_key, slot); 5193 path->slots[level] = slot; 5194 if (level == path->lowest_level) { 5195 ret = 0; 5196 goto out; 5197 } 5198 btrfs_set_path_blocking(path); 5199 cur = read_node_slot(root, cur, slot); 5200 BUG_ON(!cur); /* -ENOMEM */ 5201 5202 btrfs_tree_read_lock(cur); 5203 5204 path->locks[level - 1] = BTRFS_READ_LOCK; 5205 path->nodes[level - 1] = cur; 5206 unlock_up(path, level, 1, 0, NULL); 5207 btrfs_clear_path_blocking(path, NULL, 0); 5208 } 5209 out: 5210 path->keep_locks = keep_locks; 5211 if (ret == 0) { 5212 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5213 btrfs_set_path_blocking(path); 5214 memcpy(min_key, &found_key, sizeof(found_key)); 5215 } 5216 return ret; 5217 } 5218 5219 static void tree_move_down(struct btrfs_root *root, 5220 struct btrfs_path *path, 5221 int *level, int root_level) 5222 { 5223 BUG_ON(*level == 0); 5224 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 5225 path->slots[*level]); 5226 path->slots[*level - 1] = 0; 5227 (*level)--; 5228 } 5229 5230 static int tree_move_next_or_upnext(struct btrfs_root *root, 5231 struct btrfs_path *path, 5232 int *level, int root_level) 5233 { 5234 int ret = 0; 5235 int nritems; 5236 nritems = btrfs_header_nritems(path->nodes[*level]); 5237 5238 path->slots[*level]++; 5239 5240 while (path->slots[*level] >= nritems) { 5241 if (*level == root_level) 5242 return -1; 5243 5244 /* move upnext */ 5245 path->slots[*level] = 0; 5246 free_extent_buffer(path->nodes[*level]); 5247 path->nodes[*level] = NULL; 5248 (*level)++; 5249 path->slots[*level]++; 5250 5251 nritems = btrfs_header_nritems(path->nodes[*level]); 5252 ret = 1; 5253 } 5254 return ret; 5255 } 5256 5257 /* 5258 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5259 * or down. 5260 */ 5261 static int tree_advance(struct btrfs_root *root, 5262 struct btrfs_path *path, 5263 int *level, int root_level, 5264 int allow_down, 5265 struct btrfs_key *key) 5266 { 5267 int ret; 5268 5269 if (*level == 0 || !allow_down) { 5270 ret = tree_move_next_or_upnext(root, path, level, root_level); 5271 } else { 5272 tree_move_down(root, path, level, root_level); 5273 ret = 0; 5274 } 5275 if (ret >= 0) { 5276 if (*level == 0) 5277 btrfs_item_key_to_cpu(path->nodes[*level], key, 5278 path->slots[*level]); 5279 else 5280 btrfs_node_key_to_cpu(path->nodes[*level], key, 5281 path->slots[*level]); 5282 } 5283 return ret; 5284 } 5285 5286 static int tree_compare_item(struct btrfs_root *left_root, 5287 struct btrfs_path *left_path, 5288 struct btrfs_path *right_path, 5289 char *tmp_buf) 5290 { 5291 int cmp; 5292 int len1, len2; 5293 unsigned long off1, off2; 5294 5295 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5296 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5297 if (len1 != len2) 5298 return 1; 5299 5300 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5301 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5302 right_path->slots[0]); 5303 5304 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5305 5306 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5307 if (cmp) 5308 return 1; 5309 return 0; 5310 } 5311 5312 #define ADVANCE 1 5313 #define ADVANCE_ONLY_NEXT -1 5314 5315 /* 5316 * This function compares two trees and calls the provided callback for 5317 * every changed/new/deleted item it finds. 5318 * If shared tree blocks are encountered, whole subtrees are skipped, making 5319 * the compare pretty fast on snapshotted subvolumes. 5320 * 5321 * This currently works on commit roots only. As commit roots are read only, 5322 * we don't do any locking. The commit roots are protected with transactions. 5323 * Transactions are ended and rejoined when a commit is tried in between. 5324 * 5325 * This function checks for modifications done to the trees while comparing. 5326 * If it detects a change, it aborts immediately. 5327 */ 5328 int btrfs_compare_trees(struct btrfs_root *left_root, 5329 struct btrfs_root *right_root, 5330 btrfs_changed_cb_t changed_cb, void *ctx) 5331 { 5332 int ret; 5333 int cmp; 5334 struct btrfs_path *left_path = NULL; 5335 struct btrfs_path *right_path = NULL; 5336 struct btrfs_key left_key; 5337 struct btrfs_key right_key; 5338 char *tmp_buf = NULL; 5339 int left_root_level; 5340 int right_root_level; 5341 int left_level; 5342 int right_level; 5343 int left_end_reached; 5344 int right_end_reached; 5345 int advance_left; 5346 int advance_right; 5347 u64 left_blockptr; 5348 u64 right_blockptr; 5349 u64 left_gen; 5350 u64 right_gen; 5351 5352 left_path = btrfs_alloc_path(); 5353 if (!left_path) { 5354 ret = -ENOMEM; 5355 goto out; 5356 } 5357 right_path = btrfs_alloc_path(); 5358 if (!right_path) { 5359 ret = -ENOMEM; 5360 goto out; 5361 } 5362 5363 tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS); 5364 if (!tmp_buf) { 5365 ret = -ENOMEM; 5366 goto out; 5367 } 5368 5369 left_path->search_commit_root = 1; 5370 left_path->skip_locking = 1; 5371 right_path->search_commit_root = 1; 5372 right_path->skip_locking = 1; 5373 5374 /* 5375 * Strategy: Go to the first items of both trees. Then do 5376 * 5377 * If both trees are at level 0 5378 * Compare keys of current items 5379 * If left < right treat left item as new, advance left tree 5380 * and repeat 5381 * If left > right treat right item as deleted, advance right tree 5382 * and repeat 5383 * If left == right do deep compare of items, treat as changed if 5384 * needed, advance both trees and repeat 5385 * If both trees are at the same level but not at level 0 5386 * Compare keys of current nodes/leafs 5387 * If left < right advance left tree and repeat 5388 * If left > right advance right tree and repeat 5389 * If left == right compare blockptrs of the next nodes/leafs 5390 * If they match advance both trees but stay at the same level 5391 * and repeat 5392 * If they don't match advance both trees while allowing to go 5393 * deeper and repeat 5394 * If tree levels are different 5395 * Advance the tree that needs it and repeat 5396 * 5397 * Advancing a tree means: 5398 * If we are at level 0, try to go to the next slot. If that's not 5399 * possible, go one level up and repeat. Stop when we found a level 5400 * where we could go to the next slot. We may at this point be on a 5401 * node or a leaf. 5402 * 5403 * If we are not at level 0 and not on shared tree blocks, go one 5404 * level deeper. 5405 * 5406 * If we are not at level 0 and on shared tree blocks, go one slot to 5407 * the right if possible or go up and right. 5408 */ 5409 5410 down_read(&left_root->fs_info->commit_root_sem); 5411 left_level = btrfs_header_level(left_root->commit_root); 5412 left_root_level = left_level; 5413 left_path->nodes[left_level] = left_root->commit_root; 5414 extent_buffer_get(left_path->nodes[left_level]); 5415 5416 right_level = btrfs_header_level(right_root->commit_root); 5417 right_root_level = right_level; 5418 right_path->nodes[right_level] = right_root->commit_root; 5419 extent_buffer_get(right_path->nodes[right_level]); 5420 up_read(&left_root->fs_info->commit_root_sem); 5421 5422 if (left_level == 0) 5423 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5424 &left_key, left_path->slots[left_level]); 5425 else 5426 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5427 &left_key, left_path->slots[left_level]); 5428 if (right_level == 0) 5429 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5430 &right_key, right_path->slots[right_level]); 5431 else 5432 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5433 &right_key, right_path->slots[right_level]); 5434 5435 left_end_reached = right_end_reached = 0; 5436 advance_left = advance_right = 0; 5437 5438 while (1) { 5439 if (advance_left && !left_end_reached) { 5440 ret = tree_advance(left_root, left_path, &left_level, 5441 left_root_level, 5442 advance_left != ADVANCE_ONLY_NEXT, 5443 &left_key); 5444 if (ret < 0) 5445 left_end_reached = ADVANCE; 5446 advance_left = 0; 5447 } 5448 if (advance_right && !right_end_reached) { 5449 ret = tree_advance(right_root, right_path, &right_level, 5450 right_root_level, 5451 advance_right != ADVANCE_ONLY_NEXT, 5452 &right_key); 5453 if (ret < 0) 5454 right_end_reached = ADVANCE; 5455 advance_right = 0; 5456 } 5457 5458 if (left_end_reached && right_end_reached) { 5459 ret = 0; 5460 goto out; 5461 } else if (left_end_reached) { 5462 if (right_level == 0) { 5463 ret = changed_cb(left_root, right_root, 5464 left_path, right_path, 5465 &right_key, 5466 BTRFS_COMPARE_TREE_DELETED, 5467 ctx); 5468 if (ret < 0) 5469 goto out; 5470 } 5471 advance_right = ADVANCE; 5472 continue; 5473 } else if (right_end_reached) { 5474 if (left_level == 0) { 5475 ret = changed_cb(left_root, right_root, 5476 left_path, right_path, 5477 &left_key, 5478 BTRFS_COMPARE_TREE_NEW, 5479 ctx); 5480 if (ret < 0) 5481 goto out; 5482 } 5483 advance_left = ADVANCE; 5484 continue; 5485 } 5486 5487 if (left_level == 0 && right_level == 0) { 5488 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5489 if (cmp < 0) { 5490 ret = changed_cb(left_root, right_root, 5491 left_path, right_path, 5492 &left_key, 5493 BTRFS_COMPARE_TREE_NEW, 5494 ctx); 5495 if (ret < 0) 5496 goto out; 5497 advance_left = ADVANCE; 5498 } else if (cmp > 0) { 5499 ret = changed_cb(left_root, right_root, 5500 left_path, right_path, 5501 &right_key, 5502 BTRFS_COMPARE_TREE_DELETED, 5503 ctx); 5504 if (ret < 0) 5505 goto out; 5506 advance_right = ADVANCE; 5507 } else { 5508 enum btrfs_compare_tree_result result; 5509 5510 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5511 ret = tree_compare_item(left_root, left_path, 5512 right_path, tmp_buf); 5513 if (ret) 5514 result = BTRFS_COMPARE_TREE_CHANGED; 5515 else 5516 result = BTRFS_COMPARE_TREE_SAME; 5517 ret = changed_cb(left_root, right_root, 5518 left_path, right_path, 5519 &left_key, result, ctx); 5520 if (ret < 0) 5521 goto out; 5522 advance_left = ADVANCE; 5523 advance_right = ADVANCE; 5524 } 5525 } else if (left_level == right_level) { 5526 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5527 if (cmp < 0) { 5528 advance_left = ADVANCE; 5529 } else if (cmp > 0) { 5530 advance_right = ADVANCE; 5531 } else { 5532 left_blockptr = btrfs_node_blockptr( 5533 left_path->nodes[left_level], 5534 left_path->slots[left_level]); 5535 right_blockptr = btrfs_node_blockptr( 5536 right_path->nodes[right_level], 5537 right_path->slots[right_level]); 5538 left_gen = btrfs_node_ptr_generation( 5539 left_path->nodes[left_level], 5540 left_path->slots[left_level]); 5541 right_gen = btrfs_node_ptr_generation( 5542 right_path->nodes[right_level], 5543 right_path->slots[right_level]); 5544 if (left_blockptr == right_blockptr && 5545 left_gen == right_gen) { 5546 /* 5547 * As we're on a shared block, don't 5548 * allow to go deeper. 5549 */ 5550 advance_left = ADVANCE_ONLY_NEXT; 5551 advance_right = ADVANCE_ONLY_NEXT; 5552 } else { 5553 advance_left = ADVANCE; 5554 advance_right = ADVANCE; 5555 } 5556 } 5557 } else if (left_level < right_level) { 5558 advance_right = ADVANCE; 5559 } else { 5560 advance_left = ADVANCE; 5561 } 5562 } 5563 5564 out: 5565 btrfs_free_path(left_path); 5566 btrfs_free_path(right_path); 5567 kfree(tmp_buf); 5568 return ret; 5569 } 5570 5571 /* 5572 * this is similar to btrfs_next_leaf, but does not try to preserve 5573 * and fixup the path. It looks for and returns the next key in the 5574 * tree based on the current path and the min_trans parameters. 5575 * 5576 * 0 is returned if another key is found, < 0 if there are any errors 5577 * and 1 is returned if there are no higher keys in the tree 5578 * 5579 * path->keep_locks should be set to 1 on the search made before 5580 * calling this function. 5581 */ 5582 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5583 struct btrfs_key *key, int level, u64 min_trans) 5584 { 5585 int slot; 5586 struct extent_buffer *c; 5587 5588 WARN_ON(!path->keep_locks); 5589 while (level < BTRFS_MAX_LEVEL) { 5590 if (!path->nodes[level]) 5591 return 1; 5592 5593 slot = path->slots[level] + 1; 5594 c = path->nodes[level]; 5595 next: 5596 if (slot >= btrfs_header_nritems(c)) { 5597 int ret; 5598 int orig_lowest; 5599 struct btrfs_key cur_key; 5600 if (level + 1 >= BTRFS_MAX_LEVEL || 5601 !path->nodes[level + 1]) 5602 return 1; 5603 5604 if (path->locks[level + 1]) { 5605 level++; 5606 continue; 5607 } 5608 5609 slot = btrfs_header_nritems(c) - 1; 5610 if (level == 0) 5611 btrfs_item_key_to_cpu(c, &cur_key, slot); 5612 else 5613 btrfs_node_key_to_cpu(c, &cur_key, slot); 5614 5615 orig_lowest = path->lowest_level; 5616 btrfs_release_path(path); 5617 path->lowest_level = level; 5618 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5619 0, 0); 5620 path->lowest_level = orig_lowest; 5621 if (ret < 0) 5622 return ret; 5623 5624 c = path->nodes[level]; 5625 slot = path->slots[level]; 5626 if (ret == 0) 5627 slot++; 5628 goto next; 5629 } 5630 5631 if (level == 0) 5632 btrfs_item_key_to_cpu(c, key, slot); 5633 else { 5634 u64 gen = btrfs_node_ptr_generation(c, slot); 5635 5636 if (gen < min_trans) { 5637 slot++; 5638 goto next; 5639 } 5640 btrfs_node_key_to_cpu(c, key, slot); 5641 } 5642 return 0; 5643 } 5644 return 1; 5645 } 5646 5647 /* 5648 * search the tree again to find a leaf with greater keys 5649 * returns 0 if it found something or 1 if there are no greater leaves. 5650 * returns < 0 on io errors. 5651 */ 5652 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5653 { 5654 return btrfs_next_old_leaf(root, path, 0); 5655 } 5656 5657 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5658 u64 time_seq) 5659 { 5660 int slot; 5661 int level; 5662 struct extent_buffer *c; 5663 struct extent_buffer *next; 5664 struct btrfs_key key; 5665 u32 nritems; 5666 int ret; 5667 int old_spinning = path->leave_spinning; 5668 int next_rw_lock = 0; 5669 5670 nritems = btrfs_header_nritems(path->nodes[0]); 5671 if (nritems == 0) 5672 return 1; 5673 5674 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5675 again: 5676 level = 1; 5677 next = NULL; 5678 next_rw_lock = 0; 5679 btrfs_release_path(path); 5680 5681 path->keep_locks = 1; 5682 path->leave_spinning = 1; 5683 5684 if (time_seq) 5685 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5686 else 5687 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5688 path->keep_locks = 0; 5689 5690 if (ret < 0) 5691 return ret; 5692 5693 nritems = btrfs_header_nritems(path->nodes[0]); 5694 /* 5695 * by releasing the path above we dropped all our locks. A balance 5696 * could have added more items next to the key that used to be 5697 * at the very end of the block. So, check again here and 5698 * advance the path if there are now more items available. 5699 */ 5700 if (nritems > 0 && path->slots[0] < nritems - 1) { 5701 if (ret == 0) 5702 path->slots[0]++; 5703 ret = 0; 5704 goto done; 5705 } 5706 /* 5707 * So the above check misses one case: 5708 * - after releasing the path above, someone has removed the item that 5709 * used to be at the very end of the block, and balance between leafs 5710 * gets another one with bigger key.offset to replace it. 5711 * 5712 * This one should be returned as well, or we can get leaf corruption 5713 * later(esp. in __btrfs_drop_extents()). 5714 * 5715 * And a bit more explanation about this check, 5716 * with ret > 0, the key isn't found, the path points to the slot 5717 * where it should be inserted, so the path->slots[0] item must be the 5718 * bigger one. 5719 */ 5720 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5721 ret = 0; 5722 goto done; 5723 } 5724 5725 while (level < BTRFS_MAX_LEVEL) { 5726 if (!path->nodes[level]) { 5727 ret = 1; 5728 goto done; 5729 } 5730 5731 slot = path->slots[level] + 1; 5732 c = path->nodes[level]; 5733 if (slot >= btrfs_header_nritems(c)) { 5734 level++; 5735 if (level == BTRFS_MAX_LEVEL) { 5736 ret = 1; 5737 goto done; 5738 } 5739 continue; 5740 } 5741 5742 if (next) { 5743 btrfs_tree_unlock_rw(next, next_rw_lock); 5744 free_extent_buffer(next); 5745 } 5746 5747 next = c; 5748 next_rw_lock = path->locks[level]; 5749 ret = read_block_for_search(NULL, root, path, &next, level, 5750 slot, &key, 0); 5751 if (ret == -EAGAIN) 5752 goto again; 5753 5754 if (ret < 0) { 5755 btrfs_release_path(path); 5756 goto done; 5757 } 5758 5759 if (!path->skip_locking) { 5760 ret = btrfs_try_tree_read_lock(next); 5761 if (!ret && time_seq) { 5762 /* 5763 * If we don't get the lock, we may be racing 5764 * with push_leaf_left, holding that lock while 5765 * itself waiting for the leaf we've currently 5766 * locked. To solve this situation, we give up 5767 * on our lock and cycle. 5768 */ 5769 free_extent_buffer(next); 5770 btrfs_release_path(path); 5771 cond_resched(); 5772 goto again; 5773 } 5774 if (!ret) { 5775 btrfs_set_path_blocking(path); 5776 btrfs_tree_read_lock(next); 5777 btrfs_clear_path_blocking(path, next, 5778 BTRFS_READ_LOCK); 5779 } 5780 next_rw_lock = BTRFS_READ_LOCK; 5781 } 5782 break; 5783 } 5784 path->slots[level] = slot; 5785 while (1) { 5786 level--; 5787 c = path->nodes[level]; 5788 if (path->locks[level]) 5789 btrfs_tree_unlock_rw(c, path->locks[level]); 5790 5791 free_extent_buffer(c); 5792 path->nodes[level] = next; 5793 path->slots[level] = 0; 5794 if (!path->skip_locking) 5795 path->locks[level] = next_rw_lock; 5796 if (!level) 5797 break; 5798 5799 ret = read_block_for_search(NULL, root, path, &next, level, 5800 0, &key, 0); 5801 if (ret == -EAGAIN) 5802 goto again; 5803 5804 if (ret < 0) { 5805 btrfs_release_path(path); 5806 goto done; 5807 } 5808 5809 if (!path->skip_locking) { 5810 ret = btrfs_try_tree_read_lock(next); 5811 if (!ret) { 5812 btrfs_set_path_blocking(path); 5813 btrfs_tree_read_lock(next); 5814 btrfs_clear_path_blocking(path, next, 5815 BTRFS_READ_LOCK); 5816 } 5817 next_rw_lock = BTRFS_READ_LOCK; 5818 } 5819 } 5820 ret = 0; 5821 done: 5822 unlock_up(path, 0, 1, 0, NULL); 5823 path->leave_spinning = old_spinning; 5824 if (!old_spinning) 5825 btrfs_set_path_blocking(path); 5826 5827 return ret; 5828 } 5829 5830 /* 5831 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5832 * searching until it gets past min_objectid or finds an item of 'type' 5833 * 5834 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5835 */ 5836 int btrfs_previous_item(struct btrfs_root *root, 5837 struct btrfs_path *path, u64 min_objectid, 5838 int type) 5839 { 5840 struct btrfs_key found_key; 5841 struct extent_buffer *leaf; 5842 u32 nritems; 5843 int ret; 5844 5845 while (1) { 5846 if (path->slots[0] == 0) { 5847 btrfs_set_path_blocking(path); 5848 ret = btrfs_prev_leaf(root, path); 5849 if (ret != 0) 5850 return ret; 5851 } else { 5852 path->slots[0]--; 5853 } 5854 leaf = path->nodes[0]; 5855 nritems = btrfs_header_nritems(leaf); 5856 if (nritems == 0) 5857 return 1; 5858 if (path->slots[0] == nritems) 5859 path->slots[0]--; 5860 5861 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5862 if (found_key.objectid < min_objectid) 5863 break; 5864 if (found_key.type == type) 5865 return 0; 5866 if (found_key.objectid == min_objectid && 5867 found_key.type < type) 5868 break; 5869 } 5870 return 1; 5871 } 5872 5873 /* 5874 * search in extent tree to find a previous Metadata/Data extent item with 5875 * min objecitd. 5876 * 5877 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5878 */ 5879 int btrfs_previous_extent_item(struct btrfs_root *root, 5880 struct btrfs_path *path, u64 min_objectid) 5881 { 5882 struct btrfs_key found_key; 5883 struct extent_buffer *leaf; 5884 u32 nritems; 5885 int ret; 5886 5887 while (1) { 5888 if (path->slots[0] == 0) { 5889 btrfs_set_path_blocking(path); 5890 ret = btrfs_prev_leaf(root, path); 5891 if (ret != 0) 5892 return ret; 5893 } else { 5894 path->slots[0]--; 5895 } 5896 leaf = path->nodes[0]; 5897 nritems = btrfs_header_nritems(leaf); 5898 if (nritems == 0) 5899 return 1; 5900 if (path->slots[0] == nritems) 5901 path->slots[0]--; 5902 5903 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5904 if (found_key.objectid < min_objectid) 5905 break; 5906 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5907 found_key.type == BTRFS_METADATA_ITEM_KEY) 5908 return 0; 5909 if (found_key.objectid == min_objectid && 5910 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5911 break; 5912 } 5913 return 1; 5914 } 5915