1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 19 *root, struct btrfs_path *path, int level); 20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 21 const struct btrfs_key *ins_key, struct btrfs_path *path, 22 int data_size, int extend); 23 static int push_node_left(struct btrfs_trans_handle *trans, 24 struct extent_buffer *dst, 25 struct extent_buffer *src, int empty); 26 static int balance_node_right(struct btrfs_trans_handle *trans, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32 static const struct btrfs_csums { 33 u16 size; 34 const char name[10]; 35 const char driver[12]; 36 } btrfs_csums[] = { 37 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 38 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 39 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 40 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 41 .driver = "blake2b-256" }, 42 }; 43 44 int btrfs_super_csum_size(const struct btrfs_super_block *s) 45 { 46 u16 t = btrfs_super_csum_type(s); 47 /* 48 * csum type is validated at mount time 49 */ 50 return btrfs_csums[t].size; 51 } 52 53 const char *btrfs_super_csum_name(u16 csum_type) 54 { 55 /* csum type is validated at mount time */ 56 return btrfs_csums[csum_type].name; 57 } 58 59 /* 60 * Return driver name if defined, otherwise the name that's also a valid driver 61 * name 62 */ 63 const char *btrfs_super_csum_driver(u16 csum_type) 64 { 65 /* csum type is validated at mount time */ 66 return btrfs_csums[csum_type].driver[0] ? 67 btrfs_csums[csum_type].driver : 68 btrfs_csums[csum_type].name; 69 } 70 71 size_t __attribute_const__ btrfs_get_num_csums(void) 72 { 73 return ARRAY_SIZE(btrfs_csums); 74 } 75 76 struct btrfs_path *btrfs_alloc_path(void) 77 { 78 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 79 } 80 81 /* this also releases the path */ 82 void btrfs_free_path(struct btrfs_path *p) 83 { 84 if (!p) 85 return; 86 btrfs_release_path(p); 87 kmem_cache_free(btrfs_path_cachep, p); 88 } 89 90 /* 91 * path release drops references on the extent buffers in the path 92 * and it drops any locks held by this path 93 * 94 * It is safe to call this on paths that no locks or extent buffers held. 95 */ 96 noinline void btrfs_release_path(struct btrfs_path *p) 97 { 98 int i; 99 100 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 101 p->slots[i] = 0; 102 if (!p->nodes[i]) 103 continue; 104 if (p->locks[i]) { 105 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 106 p->locks[i] = 0; 107 } 108 free_extent_buffer(p->nodes[i]); 109 p->nodes[i] = NULL; 110 } 111 } 112 113 /* 114 * safely gets a reference on the root node of a tree. A lock 115 * is not taken, so a concurrent writer may put a different node 116 * at the root of the tree. See btrfs_lock_root_node for the 117 * looping required. 118 * 119 * The extent buffer returned by this has a reference taken, so 120 * it won't disappear. It may stop being the root of the tree 121 * at any time because there are no locks held. 122 */ 123 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 124 { 125 struct extent_buffer *eb; 126 127 while (1) { 128 rcu_read_lock(); 129 eb = rcu_dereference(root->node); 130 131 /* 132 * RCU really hurts here, we could free up the root node because 133 * it was COWed but we may not get the new root node yet so do 134 * the inc_not_zero dance and if it doesn't work then 135 * synchronize_rcu and try again. 136 */ 137 if (atomic_inc_not_zero(&eb->refs)) { 138 rcu_read_unlock(); 139 break; 140 } 141 rcu_read_unlock(); 142 synchronize_rcu(); 143 } 144 return eb; 145 } 146 147 /* 148 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 149 * just get put onto a simple dirty list. Transaction walks this list to make 150 * sure they get properly updated on disk. 151 */ 152 static void add_root_to_dirty_list(struct btrfs_root *root) 153 { 154 struct btrfs_fs_info *fs_info = root->fs_info; 155 156 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 157 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 158 return; 159 160 spin_lock(&fs_info->trans_lock); 161 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 162 /* Want the extent tree to be the last on the list */ 163 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 164 list_move_tail(&root->dirty_list, 165 &fs_info->dirty_cowonly_roots); 166 else 167 list_move(&root->dirty_list, 168 &fs_info->dirty_cowonly_roots); 169 } 170 spin_unlock(&fs_info->trans_lock); 171 } 172 173 /* 174 * used by snapshot creation to make a copy of a root for a tree with 175 * a given objectid. The buffer with the new root node is returned in 176 * cow_ret, and this func returns zero on success or a negative error code. 177 */ 178 int btrfs_copy_root(struct btrfs_trans_handle *trans, 179 struct btrfs_root *root, 180 struct extent_buffer *buf, 181 struct extent_buffer **cow_ret, u64 new_root_objectid) 182 { 183 struct btrfs_fs_info *fs_info = root->fs_info; 184 struct extent_buffer *cow; 185 int ret = 0; 186 int level; 187 struct btrfs_disk_key disk_key; 188 189 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 190 trans->transid != fs_info->running_transaction->transid); 191 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 192 trans->transid != root->last_trans); 193 194 level = btrfs_header_level(buf); 195 if (level == 0) 196 btrfs_item_key(buf, &disk_key, 0); 197 else 198 btrfs_node_key(buf, &disk_key, 0); 199 200 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 201 &disk_key, level, buf->start, 0); 202 if (IS_ERR(cow)) 203 return PTR_ERR(cow); 204 205 copy_extent_buffer_full(cow, buf); 206 btrfs_set_header_bytenr(cow, cow->start); 207 btrfs_set_header_generation(cow, trans->transid); 208 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 209 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 210 BTRFS_HEADER_FLAG_RELOC); 211 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 212 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 213 else 214 btrfs_set_header_owner(cow, new_root_objectid); 215 216 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 217 218 WARN_ON(btrfs_header_generation(buf) > trans->transid); 219 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 220 ret = btrfs_inc_ref(trans, root, cow, 1); 221 else 222 ret = btrfs_inc_ref(trans, root, cow, 0); 223 224 if (ret) 225 return ret; 226 227 btrfs_mark_buffer_dirty(cow); 228 *cow_ret = cow; 229 return 0; 230 } 231 232 enum mod_log_op { 233 MOD_LOG_KEY_REPLACE, 234 MOD_LOG_KEY_ADD, 235 MOD_LOG_KEY_REMOVE, 236 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 237 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 238 MOD_LOG_MOVE_KEYS, 239 MOD_LOG_ROOT_REPLACE, 240 }; 241 242 struct tree_mod_root { 243 u64 logical; 244 u8 level; 245 }; 246 247 struct tree_mod_elem { 248 struct rb_node node; 249 u64 logical; 250 u64 seq; 251 enum mod_log_op op; 252 253 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 254 int slot; 255 256 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 257 u64 generation; 258 259 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 260 struct btrfs_disk_key key; 261 u64 blockptr; 262 263 /* this is used for op == MOD_LOG_MOVE_KEYS */ 264 struct { 265 int dst_slot; 266 int nr_items; 267 } move; 268 269 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 270 struct tree_mod_root old_root; 271 }; 272 273 /* 274 * Pull a new tree mod seq number for our operation. 275 */ 276 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 277 { 278 return atomic64_inc_return(&fs_info->tree_mod_seq); 279 } 280 281 /* 282 * This adds a new blocker to the tree mod log's blocker list if the @elem 283 * passed does not already have a sequence number set. So when a caller expects 284 * to record tree modifications, it should ensure to set elem->seq to zero 285 * before calling btrfs_get_tree_mod_seq. 286 * Returns a fresh, unused tree log modification sequence number, even if no new 287 * blocker was added. 288 */ 289 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 290 struct seq_list *elem) 291 { 292 write_lock(&fs_info->tree_mod_log_lock); 293 if (!elem->seq) { 294 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 295 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 296 } 297 write_unlock(&fs_info->tree_mod_log_lock); 298 299 return elem->seq; 300 } 301 302 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 303 struct seq_list *elem) 304 { 305 struct rb_root *tm_root; 306 struct rb_node *node; 307 struct rb_node *next; 308 struct tree_mod_elem *tm; 309 u64 min_seq = (u64)-1; 310 u64 seq_putting = elem->seq; 311 312 if (!seq_putting) 313 return; 314 315 write_lock(&fs_info->tree_mod_log_lock); 316 list_del(&elem->list); 317 elem->seq = 0; 318 319 if (!list_empty(&fs_info->tree_mod_seq_list)) { 320 struct seq_list *first; 321 322 first = list_first_entry(&fs_info->tree_mod_seq_list, 323 struct seq_list, list); 324 if (seq_putting > first->seq) { 325 /* 326 * Blocker with lower sequence number exists, we 327 * cannot remove anything from the log. 328 */ 329 write_unlock(&fs_info->tree_mod_log_lock); 330 return; 331 } 332 min_seq = first->seq; 333 } 334 335 /* 336 * anything that's lower than the lowest existing (read: blocked) 337 * sequence number can be removed from the tree. 338 */ 339 tm_root = &fs_info->tree_mod_log; 340 for (node = rb_first(tm_root); node; node = next) { 341 next = rb_next(node); 342 tm = rb_entry(node, struct tree_mod_elem, node); 343 if (tm->seq >= min_seq) 344 continue; 345 rb_erase(node, tm_root); 346 kfree(tm); 347 } 348 write_unlock(&fs_info->tree_mod_log_lock); 349 } 350 351 /* 352 * key order of the log: 353 * node/leaf start address -> sequence 354 * 355 * The 'start address' is the logical address of the *new* root node 356 * for root replace operations, or the logical address of the affected 357 * block for all other operations. 358 */ 359 static noinline int 360 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 361 { 362 struct rb_root *tm_root; 363 struct rb_node **new; 364 struct rb_node *parent = NULL; 365 struct tree_mod_elem *cur; 366 367 lockdep_assert_held_write(&fs_info->tree_mod_log_lock); 368 369 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 370 371 tm_root = &fs_info->tree_mod_log; 372 new = &tm_root->rb_node; 373 while (*new) { 374 cur = rb_entry(*new, struct tree_mod_elem, node); 375 parent = *new; 376 if (cur->logical < tm->logical) 377 new = &((*new)->rb_left); 378 else if (cur->logical > tm->logical) 379 new = &((*new)->rb_right); 380 else if (cur->seq < tm->seq) 381 new = &((*new)->rb_left); 382 else if (cur->seq > tm->seq) 383 new = &((*new)->rb_right); 384 else 385 return -EEXIST; 386 } 387 388 rb_link_node(&tm->node, parent, new); 389 rb_insert_color(&tm->node, tm_root); 390 return 0; 391 } 392 393 /* 394 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 395 * returns zero with the tree_mod_log_lock acquired. The caller must hold 396 * this until all tree mod log insertions are recorded in the rb tree and then 397 * write unlock fs_info::tree_mod_log_lock. 398 */ 399 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 400 struct extent_buffer *eb) { 401 smp_mb(); 402 if (list_empty(&(fs_info)->tree_mod_seq_list)) 403 return 1; 404 if (eb && btrfs_header_level(eb) == 0) 405 return 1; 406 407 write_lock(&fs_info->tree_mod_log_lock); 408 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 409 write_unlock(&fs_info->tree_mod_log_lock); 410 return 1; 411 } 412 413 return 0; 414 } 415 416 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 417 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 418 struct extent_buffer *eb) 419 { 420 smp_mb(); 421 if (list_empty(&(fs_info)->tree_mod_seq_list)) 422 return 0; 423 if (eb && btrfs_header_level(eb) == 0) 424 return 0; 425 426 return 1; 427 } 428 429 static struct tree_mod_elem * 430 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 431 enum mod_log_op op, gfp_t flags) 432 { 433 struct tree_mod_elem *tm; 434 435 tm = kzalloc(sizeof(*tm), flags); 436 if (!tm) 437 return NULL; 438 439 tm->logical = eb->start; 440 if (op != MOD_LOG_KEY_ADD) { 441 btrfs_node_key(eb, &tm->key, slot); 442 tm->blockptr = btrfs_node_blockptr(eb, slot); 443 } 444 tm->op = op; 445 tm->slot = slot; 446 tm->generation = btrfs_node_ptr_generation(eb, slot); 447 RB_CLEAR_NODE(&tm->node); 448 449 return tm; 450 } 451 452 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 453 enum mod_log_op op, gfp_t flags) 454 { 455 struct tree_mod_elem *tm; 456 int ret; 457 458 if (!tree_mod_need_log(eb->fs_info, eb)) 459 return 0; 460 461 tm = alloc_tree_mod_elem(eb, slot, op, flags); 462 if (!tm) 463 return -ENOMEM; 464 465 if (tree_mod_dont_log(eb->fs_info, eb)) { 466 kfree(tm); 467 return 0; 468 } 469 470 ret = __tree_mod_log_insert(eb->fs_info, tm); 471 write_unlock(&eb->fs_info->tree_mod_log_lock); 472 if (ret) 473 kfree(tm); 474 475 return ret; 476 } 477 478 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 479 int dst_slot, int src_slot, int nr_items) 480 { 481 struct tree_mod_elem *tm = NULL; 482 struct tree_mod_elem **tm_list = NULL; 483 int ret = 0; 484 int i; 485 int locked = 0; 486 487 if (!tree_mod_need_log(eb->fs_info, eb)) 488 return 0; 489 490 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 491 if (!tm_list) 492 return -ENOMEM; 493 494 tm = kzalloc(sizeof(*tm), GFP_NOFS); 495 if (!tm) { 496 ret = -ENOMEM; 497 goto free_tms; 498 } 499 500 tm->logical = eb->start; 501 tm->slot = src_slot; 502 tm->move.dst_slot = dst_slot; 503 tm->move.nr_items = nr_items; 504 tm->op = MOD_LOG_MOVE_KEYS; 505 506 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 507 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 508 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 509 if (!tm_list[i]) { 510 ret = -ENOMEM; 511 goto free_tms; 512 } 513 } 514 515 if (tree_mod_dont_log(eb->fs_info, eb)) 516 goto free_tms; 517 locked = 1; 518 519 /* 520 * When we override something during the move, we log these removals. 521 * This can only happen when we move towards the beginning of the 522 * buffer, i.e. dst_slot < src_slot. 523 */ 524 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 525 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 526 if (ret) 527 goto free_tms; 528 } 529 530 ret = __tree_mod_log_insert(eb->fs_info, tm); 531 if (ret) 532 goto free_tms; 533 write_unlock(&eb->fs_info->tree_mod_log_lock); 534 kfree(tm_list); 535 536 return 0; 537 free_tms: 538 for (i = 0; i < nr_items; i++) { 539 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 540 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 541 kfree(tm_list[i]); 542 } 543 if (locked) 544 write_unlock(&eb->fs_info->tree_mod_log_lock); 545 kfree(tm_list); 546 kfree(tm); 547 548 return ret; 549 } 550 551 static inline int 552 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 553 struct tree_mod_elem **tm_list, 554 int nritems) 555 { 556 int i, j; 557 int ret; 558 559 for (i = nritems - 1; i >= 0; i--) { 560 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 561 if (ret) { 562 for (j = nritems - 1; j > i; j--) 563 rb_erase(&tm_list[j]->node, 564 &fs_info->tree_mod_log); 565 return ret; 566 } 567 } 568 569 return 0; 570 } 571 572 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 573 struct extent_buffer *new_root, int log_removal) 574 { 575 struct btrfs_fs_info *fs_info = old_root->fs_info; 576 struct tree_mod_elem *tm = NULL; 577 struct tree_mod_elem **tm_list = NULL; 578 int nritems = 0; 579 int ret = 0; 580 int i; 581 582 if (!tree_mod_need_log(fs_info, NULL)) 583 return 0; 584 585 if (log_removal && btrfs_header_level(old_root) > 0) { 586 nritems = btrfs_header_nritems(old_root); 587 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 588 GFP_NOFS); 589 if (!tm_list) { 590 ret = -ENOMEM; 591 goto free_tms; 592 } 593 for (i = 0; i < nritems; i++) { 594 tm_list[i] = alloc_tree_mod_elem(old_root, i, 595 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 596 if (!tm_list[i]) { 597 ret = -ENOMEM; 598 goto free_tms; 599 } 600 } 601 } 602 603 tm = kzalloc(sizeof(*tm), GFP_NOFS); 604 if (!tm) { 605 ret = -ENOMEM; 606 goto free_tms; 607 } 608 609 tm->logical = new_root->start; 610 tm->old_root.logical = old_root->start; 611 tm->old_root.level = btrfs_header_level(old_root); 612 tm->generation = btrfs_header_generation(old_root); 613 tm->op = MOD_LOG_ROOT_REPLACE; 614 615 if (tree_mod_dont_log(fs_info, NULL)) 616 goto free_tms; 617 618 if (tm_list) 619 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 620 if (!ret) 621 ret = __tree_mod_log_insert(fs_info, tm); 622 623 write_unlock(&fs_info->tree_mod_log_lock); 624 if (ret) 625 goto free_tms; 626 kfree(tm_list); 627 628 return ret; 629 630 free_tms: 631 if (tm_list) { 632 for (i = 0; i < nritems; i++) 633 kfree(tm_list[i]); 634 kfree(tm_list); 635 } 636 kfree(tm); 637 638 return ret; 639 } 640 641 static struct tree_mod_elem * 642 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 643 int smallest) 644 { 645 struct rb_root *tm_root; 646 struct rb_node *node; 647 struct tree_mod_elem *cur = NULL; 648 struct tree_mod_elem *found = NULL; 649 650 read_lock(&fs_info->tree_mod_log_lock); 651 tm_root = &fs_info->tree_mod_log; 652 node = tm_root->rb_node; 653 while (node) { 654 cur = rb_entry(node, struct tree_mod_elem, node); 655 if (cur->logical < start) { 656 node = node->rb_left; 657 } else if (cur->logical > start) { 658 node = node->rb_right; 659 } else if (cur->seq < min_seq) { 660 node = node->rb_left; 661 } else if (!smallest) { 662 /* we want the node with the highest seq */ 663 if (found) 664 BUG_ON(found->seq > cur->seq); 665 found = cur; 666 node = node->rb_left; 667 } else if (cur->seq > min_seq) { 668 /* we want the node with the smallest seq */ 669 if (found) 670 BUG_ON(found->seq < cur->seq); 671 found = cur; 672 node = node->rb_right; 673 } else { 674 found = cur; 675 break; 676 } 677 } 678 read_unlock(&fs_info->tree_mod_log_lock); 679 680 return found; 681 } 682 683 /* 684 * this returns the element from the log with the smallest time sequence 685 * value that's in the log (the oldest log item). any element with a time 686 * sequence lower than min_seq will be ignored. 687 */ 688 static struct tree_mod_elem * 689 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 690 u64 min_seq) 691 { 692 return __tree_mod_log_search(fs_info, start, min_seq, 1); 693 } 694 695 /* 696 * this returns the element from the log with the largest time sequence 697 * value that's in the log (the most recent log item). any element with 698 * a time sequence lower than min_seq will be ignored. 699 */ 700 static struct tree_mod_elem * 701 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 702 { 703 return __tree_mod_log_search(fs_info, start, min_seq, 0); 704 } 705 706 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst, 707 struct extent_buffer *src, unsigned long dst_offset, 708 unsigned long src_offset, int nr_items) 709 { 710 struct btrfs_fs_info *fs_info = dst->fs_info; 711 int ret = 0; 712 struct tree_mod_elem **tm_list = NULL; 713 struct tree_mod_elem **tm_list_add, **tm_list_rem; 714 int i; 715 int locked = 0; 716 717 if (!tree_mod_need_log(fs_info, NULL)) 718 return 0; 719 720 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 721 return 0; 722 723 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 724 GFP_NOFS); 725 if (!tm_list) 726 return -ENOMEM; 727 728 tm_list_add = tm_list; 729 tm_list_rem = tm_list + nr_items; 730 for (i = 0; i < nr_items; i++) { 731 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 732 MOD_LOG_KEY_REMOVE, GFP_NOFS); 733 if (!tm_list_rem[i]) { 734 ret = -ENOMEM; 735 goto free_tms; 736 } 737 738 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 739 MOD_LOG_KEY_ADD, GFP_NOFS); 740 if (!tm_list_add[i]) { 741 ret = -ENOMEM; 742 goto free_tms; 743 } 744 } 745 746 if (tree_mod_dont_log(fs_info, NULL)) 747 goto free_tms; 748 locked = 1; 749 750 for (i = 0; i < nr_items; i++) { 751 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 752 if (ret) 753 goto free_tms; 754 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 755 if (ret) 756 goto free_tms; 757 } 758 759 write_unlock(&fs_info->tree_mod_log_lock); 760 kfree(tm_list); 761 762 return 0; 763 764 free_tms: 765 for (i = 0; i < nr_items * 2; i++) { 766 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 767 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 768 kfree(tm_list[i]); 769 } 770 if (locked) 771 write_unlock(&fs_info->tree_mod_log_lock); 772 kfree(tm_list); 773 774 return ret; 775 } 776 777 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 778 { 779 struct tree_mod_elem **tm_list = NULL; 780 int nritems = 0; 781 int i; 782 int ret = 0; 783 784 if (btrfs_header_level(eb) == 0) 785 return 0; 786 787 if (!tree_mod_need_log(eb->fs_info, NULL)) 788 return 0; 789 790 nritems = btrfs_header_nritems(eb); 791 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 792 if (!tm_list) 793 return -ENOMEM; 794 795 for (i = 0; i < nritems; i++) { 796 tm_list[i] = alloc_tree_mod_elem(eb, i, 797 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 798 if (!tm_list[i]) { 799 ret = -ENOMEM; 800 goto free_tms; 801 } 802 } 803 804 if (tree_mod_dont_log(eb->fs_info, eb)) 805 goto free_tms; 806 807 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 808 write_unlock(&eb->fs_info->tree_mod_log_lock); 809 if (ret) 810 goto free_tms; 811 kfree(tm_list); 812 813 return 0; 814 815 free_tms: 816 for (i = 0; i < nritems; i++) 817 kfree(tm_list[i]); 818 kfree(tm_list); 819 820 return ret; 821 } 822 823 /* 824 * check if the tree block can be shared by multiple trees 825 */ 826 int btrfs_block_can_be_shared(struct btrfs_root *root, 827 struct extent_buffer *buf) 828 { 829 /* 830 * Tree blocks not in shareable trees and tree roots are never shared. 831 * If a block was allocated after the last snapshot and the block was 832 * not allocated by tree relocation, we know the block is not shared. 833 */ 834 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 835 buf != root->node && buf != root->commit_root && 836 (btrfs_header_generation(buf) <= 837 btrfs_root_last_snapshot(&root->root_item) || 838 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 839 return 1; 840 841 return 0; 842 } 843 844 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 845 struct btrfs_root *root, 846 struct extent_buffer *buf, 847 struct extent_buffer *cow, 848 int *last_ref) 849 { 850 struct btrfs_fs_info *fs_info = root->fs_info; 851 u64 refs; 852 u64 owner; 853 u64 flags; 854 u64 new_flags = 0; 855 int ret; 856 857 /* 858 * Backrefs update rules: 859 * 860 * Always use full backrefs for extent pointers in tree block 861 * allocated by tree relocation. 862 * 863 * If a shared tree block is no longer referenced by its owner 864 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 865 * use full backrefs for extent pointers in tree block. 866 * 867 * If a tree block is been relocating 868 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 869 * use full backrefs for extent pointers in tree block. 870 * The reason for this is some operations (such as drop tree) 871 * are only allowed for blocks use full backrefs. 872 */ 873 874 if (btrfs_block_can_be_shared(root, buf)) { 875 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 876 btrfs_header_level(buf), 1, 877 &refs, &flags); 878 if (ret) 879 return ret; 880 if (refs == 0) { 881 ret = -EROFS; 882 btrfs_handle_fs_error(fs_info, ret, NULL); 883 return ret; 884 } 885 } else { 886 refs = 1; 887 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 888 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 889 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 890 else 891 flags = 0; 892 } 893 894 owner = btrfs_header_owner(buf); 895 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 896 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 897 898 if (refs > 1) { 899 if ((owner == root->root_key.objectid || 900 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 901 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 902 ret = btrfs_inc_ref(trans, root, buf, 1); 903 if (ret) 904 return ret; 905 906 if (root->root_key.objectid == 907 BTRFS_TREE_RELOC_OBJECTID) { 908 ret = btrfs_dec_ref(trans, root, buf, 0); 909 if (ret) 910 return ret; 911 ret = btrfs_inc_ref(trans, root, cow, 1); 912 if (ret) 913 return ret; 914 } 915 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 916 } else { 917 918 if (root->root_key.objectid == 919 BTRFS_TREE_RELOC_OBJECTID) 920 ret = btrfs_inc_ref(trans, root, cow, 1); 921 else 922 ret = btrfs_inc_ref(trans, root, cow, 0); 923 if (ret) 924 return ret; 925 } 926 if (new_flags != 0) { 927 int level = btrfs_header_level(buf); 928 929 ret = btrfs_set_disk_extent_flags(trans, buf, 930 new_flags, level, 0); 931 if (ret) 932 return ret; 933 } 934 } else { 935 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 936 if (root->root_key.objectid == 937 BTRFS_TREE_RELOC_OBJECTID) 938 ret = btrfs_inc_ref(trans, root, cow, 1); 939 else 940 ret = btrfs_inc_ref(trans, root, cow, 0); 941 if (ret) 942 return ret; 943 ret = btrfs_dec_ref(trans, root, buf, 1); 944 if (ret) 945 return ret; 946 } 947 btrfs_clean_tree_block(buf); 948 *last_ref = 1; 949 } 950 return 0; 951 } 952 953 static struct extent_buffer *alloc_tree_block_no_bg_flush( 954 struct btrfs_trans_handle *trans, 955 struct btrfs_root *root, 956 u64 parent_start, 957 const struct btrfs_disk_key *disk_key, 958 int level, 959 u64 hint, 960 u64 empty_size) 961 { 962 struct btrfs_fs_info *fs_info = root->fs_info; 963 struct extent_buffer *ret; 964 965 /* 966 * If we are COWing a node/leaf from the extent, chunk, device or free 967 * space trees, make sure that we do not finish block group creation of 968 * pending block groups. We do this to avoid a deadlock. 969 * COWing can result in allocation of a new chunk, and flushing pending 970 * block groups (btrfs_create_pending_block_groups()) can be triggered 971 * when finishing allocation of a new chunk. Creation of a pending block 972 * group modifies the extent, chunk, device and free space trees, 973 * therefore we could deadlock with ourselves since we are holding a 974 * lock on an extent buffer that btrfs_create_pending_block_groups() may 975 * try to COW later. 976 * For similar reasons, we also need to delay flushing pending block 977 * groups when splitting a leaf or node, from one of those trees, since 978 * we are holding a write lock on it and its parent or when inserting a 979 * new root node for one of those trees. 980 */ 981 if (root == fs_info->extent_root || 982 root == fs_info->chunk_root || 983 root == fs_info->dev_root || 984 root == fs_info->free_space_root) 985 trans->can_flush_pending_bgs = false; 986 987 ret = btrfs_alloc_tree_block(trans, root, parent_start, 988 root->root_key.objectid, disk_key, level, 989 hint, empty_size); 990 trans->can_flush_pending_bgs = true; 991 992 return ret; 993 } 994 995 /* 996 * does the dirty work in cow of a single block. The parent block (if 997 * supplied) is updated to point to the new cow copy. The new buffer is marked 998 * dirty and returned locked. If you modify the block it needs to be marked 999 * dirty again. 1000 * 1001 * search_start -- an allocation hint for the new block 1002 * 1003 * empty_size -- a hint that you plan on doing more cow. This is the size in 1004 * bytes the allocator should try to find free next to the block it returns. 1005 * This is just a hint and may be ignored by the allocator. 1006 */ 1007 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1008 struct btrfs_root *root, 1009 struct extent_buffer *buf, 1010 struct extent_buffer *parent, int parent_slot, 1011 struct extent_buffer **cow_ret, 1012 u64 search_start, u64 empty_size) 1013 { 1014 struct btrfs_fs_info *fs_info = root->fs_info; 1015 struct btrfs_disk_key disk_key; 1016 struct extent_buffer *cow; 1017 int level, ret; 1018 int last_ref = 0; 1019 int unlock_orig = 0; 1020 u64 parent_start = 0; 1021 1022 if (*cow_ret == buf) 1023 unlock_orig = 1; 1024 1025 btrfs_assert_tree_locked(buf); 1026 1027 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 1028 trans->transid != fs_info->running_transaction->transid); 1029 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 1030 trans->transid != root->last_trans); 1031 1032 level = btrfs_header_level(buf); 1033 1034 if (level == 0) 1035 btrfs_item_key(buf, &disk_key, 0); 1036 else 1037 btrfs_node_key(buf, &disk_key, 0); 1038 1039 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1040 parent_start = parent->start; 1041 1042 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key, 1043 level, search_start, empty_size); 1044 if (IS_ERR(cow)) 1045 return PTR_ERR(cow); 1046 1047 /* cow is set to blocking by btrfs_init_new_buffer */ 1048 1049 copy_extent_buffer_full(cow, buf); 1050 btrfs_set_header_bytenr(cow, cow->start); 1051 btrfs_set_header_generation(cow, trans->transid); 1052 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1053 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1054 BTRFS_HEADER_FLAG_RELOC); 1055 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1056 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1057 else 1058 btrfs_set_header_owner(cow, root->root_key.objectid); 1059 1060 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1061 1062 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1063 if (ret) { 1064 btrfs_abort_transaction(trans, ret); 1065 return ret; 1066 } 1067 1068 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 1069 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1070 if (ret) { 1071 btrfs_abort_transaction(trans, ret); 1072 return ret; 1073 } 1074 } 1075 1076 if (buf == root->node) { 1077 WARN_ON(parent && parent != buf); 1078 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1079 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1080 parent_start = buf->start; 1081 1082 atomic_inc(&cow->refs); 1083 ret = tree_mod_log_insert_root(root->node, cow, 1); 1084 BUG_ON(ret < 0); 1085 rcu_assign_pointer(root->node, cow); 1086 1087 btrfs_free_tree_block(trans, root, buf, parent_start, 1088 last_ref); 1089 free_extent_buffer(buf); 1090 add_root_to_dirty_list(root); 1091 } else { 1092 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1093 tree_mod_log_insert_key(parent, parent_slot, 1094 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1095 btrfs_set_node_blockptr(parent, parent_slot, 1096 cow->start); 1097 btrfs_set_node_ptr_generation(parent, parent_slot, 1098 trans->transid); 1099 btrfs_mark_buffer_dirty(parent); 1100 if (last_ref) { 1101 ret = tree_mod_log_free_eb(buf); 1102 if (ret) { 1103 btrfs_abort_transaction(trans, ret); 1104 return ret; 1105 } 1106 } 1107 btrfs_free_tree_block(trans, root, buf, parent_start, 1108 last_ref); 1109 } 1110 if (unlock_orig) 1111 btrfs_tree_unlock(buf); 1112 free_extent_buffer_stale(buf); 1113 btrfs_mark_buffer_dirty(cow); 1114 *cow_ret = cow; 1115 return 0; 1116 } 1117 1118 /* 1119 * returns the logical address of the oldest predecessor of the given root. 1120 * entries older than time_seq are ignored. 1121 */ 1122 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1123 struct extent_buffer *eb_root, u64 time_seq) 1124 { 1125 struct tree_mod_elem *tm; 1126 struct tree_mod_elem *found = NULL; 1127 u64 root_logical = eb_root->start; 1128 int looped = 0; 1129 1130 if (!time_seq) 1131 return NULL; 1132 1133 /* 1134 * the very last operation that's logged for a root is the 1135 * replacement operation (if it is replaced at all). this has 1136 * the logical address of the *new* root, making it the very 1137 * first operation that's logged for this root. 1138 */ 1139 while (1) { 1140 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1141 time_seq); 1142 if (!looped && !tm) 1143 return NULL; 1144 /* 1145 * if there are no tree operation for the oldest root, we simply 1146 * return it. this should only happen if that (old) root is at 1147 * level 0. 1148 */ 1149 if (!tm) 1150 break; 1151 1152 /* 1153 * if there's an operation that's not a root replacement, we 1154 * found the oldest version of our root. normally, we'll find a 1155 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1156 */ 1157 if (tm->op != MOD_LOG_ROOT_REPLACE) 1158 break; 1159 1160 found = tm; 1161 root_logical = tm->old_root.logical; 1162 looped = 1; 1163 } 1164 1165 /* if there's no old root to return, return what we found instead */ 1166 if (!found) 1167 found = tm; 1168 1169 return found; 1170 } 1171 1172 /* 1173 * tm is a pointer to the first operation to rewind within eb. then, all 1174 * previous operations will be rewound (until we reach something older than 1175 * time_seq). 1176 */ 1177 static void 1178 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1179 u64 time_seq, struct tree_mod_elem *first_tm) 1180 { 1181 u32 n; 1182 struct rb_node *next; 1183 struct tree_mod_elem *tm = first_tm; 1184 unsigned long o_dst; 1185 unsigned long o_src; 1186 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1187 1188 n = btrfs_header_nritems(eb); 1189 read_lock(&fs_info->tree_mod_log_lock); 1190 while (tm && tm->seq >= time_seq) { 1191 /* 1192 * all the operations are recorded with the operator used for 1193 * the modification. as we're going backwards, we do the 1194 * opposite of each operation here. 1195 */ 1196 switch (tm->op) { 1197 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1198 BUG_ON(tm->slot < n); 1199 fallthrough; 1200 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1201 case MOD_LOG_KEY_REMOVE: 1202 btrfs_set_node_key(eb, &tm->key, tm->slot); 1203 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1204 btrfs_set_node_ptr_generation(eb, tm->slot, 1205 tm->generation); 1206 n++; 1207 break; 1208 case MOD_LOG_KEY_REPLACE: 1209 BUG_ON(tm->slot >= n); 1210 btrfs_set_node_key(eb, &tm->key, tm->slot); 1211 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1212 btrfs_set_node_ptr_generation(eb, tm->slot, 1213 tm->generation); 1214 break; 1215 case MOD_LOG_KEY_ADD: 1216 /* if a move operation is needed it's in the log */ 1217 n--; 1218 break; 1219 case MOD_LOG_MOVE_KEYS: 1220 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1221 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1222 memmove_extent_buffer(eb, o_dst, o_src, 1223 tm->move.nr_items * p_size); 1224 break; 1225 case MOD_LOG_ROOT_REPLACE: 1226 /* 1227 * this operation is special. for roots, this must be 1228 * handled explicitly before rewinding. 1229 * for non-roots, this operation may exist if the node 1230 * was a root: root A -> child B; then A gets empty and 1231 * B is promoted to the new root. in the mod log, we'll 1232 * have a root-replace operation for B, a tree block 1233 * that is no root. we simply ignore that operation. 1234 */ 1235 break; 1236 } 1237 next = rb_next(&tm->node); 1238 if (!next) 1239 break; 1240 tm = rb_entry(next, struct tree_mod_elem, node); 1241 if (tm->logical != first_tm->logical) 1242 break; 1243 } 1244 read_unlock(&fs_info->tree_mod_log_lock); 1245 btrfs_set_header_nritems(eb, n); 1246 } 1247 1248 /* 1249 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1250 * is returned. If rewind operations happen, a fresh buffer is returned. The 1251 * returned buffer is always read-locked. If the returned buffer is not the 1252 * input buffer, the lock on the input buffer is released and the input buffer 1253 * is freed (its refcount is decremented). 1254 */ 1255 static struct extent_buffer * 1256 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1257 struct extent_buffer *eb, u64 time_seq) 1258 { 1259 struct extent_buffer *eb_rewin; 1260 struct tree_mod_elem *tm; 1261 1262 if (!time_seq) 1263 return eb; 1264 1265 if (btrfs_header_level(eb) == 0) 1266 return eb; 1267 1268 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1269 if (!tm) 1270 return eb; 1271 1272 btrfs_set_path_blocking(path); 1273 btrfs_set_lock_blocking_read(eb); 1274 1275 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1276 BUG_ON(tm->slot != 0); 1277 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1278 if (!eb_rewin) { 1279 btrfs_tree_read_unlock_blocking(eb); 1280 free_extent_buffer(eb); 1281 return NULL; 1282 } 1283 btrfs_set_header_bytenr(eb_rewin, eb->start); 1284 btrfs_set_header_backref_rev(eb_rewin, 1285 btrfs_header_backref_rev(eb)); 1286 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1287 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1288 } else { 1289 eb_rewin = btrfs_clone_extent_buffer(eb); 1290 if (!eb_rewin) { 1291 btrfs_tree_read_unlock_blocking(eb); 1292 free_extent_buffer(eb); 1293 return NULL; 1294 } 1295 } 1296 1297 btrfs_tree_read_unlock_blocking(eb); 1298 free_extent_buffer(eb); 1299 1300 btrfs_tree_read_lock(eb_rewin); 1301 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1302 WARN_ON(btrfs_header_nritems(eb_rewin) > 1303 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1304 1305 return eb_rewin; 1306 } 1307 1308 /* 1309 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1310 * value. If there are no changes, the current root->root_node is returned. If 1311 * anything changed in between, there's a fresh buffer allocated on which the 1312 * rewind operations are done. In any case, the returned buffer is read locked. 1313 * Returns NULL on error (with no locks held). 1314 */ 1315 static inline struct extent_buffer * 1316 get_old_root(struct btrfs_root *root, u64 time_seq) 1317 { 1318 struct btrfs_fs_info *fs_info = root->fs_info; 1319 struct tree_mod_elem *tm; 1320 struct extent_buffer *eb = NULL; 1321 struct extent_buffer *eb_root; 1322 u64 eb_root_owner = 0; 1323 struct extent_buffer *old; 1324 struct tree_mod_root *old_root = NULL; 1325 u64 old_generation = 0; 1326 u64 logical; 1327 int level; 1328 1329 eb_root = btrfs_read_lock_root_node(root); 1330 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1331 if (!tm) 1332 return eb_root; 1333 1334 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1335 old_root = &tm->old_root; 1336 old_generation = tm->generation; 1337 logical = old_root->logical; 1338 level = old_root->level; 1339 } else { 1340 logical = eb_root->start; 1341 level = btrfs_header_level(eb_root); 1342 } 1343 1344 tm = tree_mod_log_search(fs_info, logical, time_seq); 1345 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1346 btrfs_tree_read_unlock(eb_root); 1347 free_extent_buffer(eb_root); 1348 old = read_tree_block(fs_info, logical, 0, level, NULL); 1349 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1350 if (!IS_ERR(old)) 1351 free_extent_buffer(old); 1352 btrfs_warn(fs_info, 1353 "failed to read tree block %llu from get_old_root", 1354 logical); 1355 } else { 1356 eb = btrfs_clone_extent_buffer(old); 1357 free_extent_buffer(old); 1358 } 1359 } else if (old_root) { 1360 eb_root_owner = btrfs_header_owner(eb_root); 1361 btrfs_tree_read_unlock(eb_root); 1362 free_extent_buffer(eb_root); 1363 eb = alloc_dummy_extent_buffer(fs_info, logical); 1364 } else { 1365 btrfs_set_lock_blocking_read(eb_root); 1366 eb = btrfs_clone_extent_buffer(eb_root); 1367 btrfs_tree_read_unlock_blocking(eb_root); 1368 free_extent_buffer(eb_root); 1369 } 1370 1371 if (!eb) 1372 return NULL; 1373 btrfs_tree_read_lock(eb); 1374 if (old_root) { 1375 btrfs_set_header_bytenr(eb, eb->start); 1376 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1377 btrfs_set_header_owner(eb, eb_root_owner); 1378 btrfs_set_header_level(eb, old_root->level); 1379 btrfs_set_header_generation(eb, old_generation); 1380 } 1381 if (tm) 1382 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1383 else 1384 WARN_ON(btrfs_header_level(eb) != 0); 1385 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1386 1387 return eb; 1388 } 1389 1390 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1391 { 1392 struct tree_mod_elem *tm; 1393 int level; 1394 struct extent_buffer *eb_root = btrfs_root_node(root); 1395 1396 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1397 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1398 level = tm->old_root.level; 1399 } else { 1400 level = btrfs_header_level(eb_root); 1401 } 1402 free_extent_buffer(eb_root); 1403 1404 return level; 1405 } 1406 1407 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1408 struct btrfs_root *root, 1409 struct extent_buffer *buf) 1410 { 1411 if (btrfs_is_testing(root->fs_info)) 1412 return 0; 1413 1414 /* Ensure we can see the FORCE_COW bit */ 1415 smp_mb__before_atomic(); 1416 1417 /* 1418 * We do not need to cow a block if 1419 * 1) this block is not created or changed in this transaction; 1420 * 2) this block does not belong to TREE_RELOC tree; 1421 * 3) the root is not forced COW. 1422 * 1423 * What is forced COW: 1424 * when we create snapshot during committing the transaction, 1425 * after we've finished copying src root, we must COW the shared 1426 * block to ensure the metadata consistency. 1427 */ 1428 if (btrfs_header_generation(buf) == trans->transid && 1429 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1430 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1431 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1432 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1433 return 0; 1434 return 1; 1435 } 1436 1437 /* 1438 * cows a single block, see __btrfs_cow_block for the real work. 1439 * This version of it has extra checks so that a block isn't COWed more than 1440 * once per transaction, as long as it hasn't been written yet 1441 */ 1442 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1443 struct btrfs_root *root, struct extent_buffer *buf, 1444 struct extent_buffer *parent, int parent_slot, 1445 struct extent_buffer **cow_ret) 1446 { 1447 struct btrfs_fs_info *fs_info = root->fs_info; 1448 u64 search_start; 1449 int ret; 1450 1451 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1452 btrfs_err(fs_info, 1453 "COW'ing blocks on a fs root that's being dropped"); 1454 1455 if (trans->transaction != fs_info->running_transaction) 1456 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1457 trans->transid, 1458 fs_info->running_transaction->transid); 1459 1460 if (trans->transid != fs_info->generation) 1461 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1462 trans->transid, fs_info->generation); 1463 1464 if (!should_cow_block(trans, root, buf)) { 1465 trans->dirty = true; 1466 *cow_ret = buf; 1467 return 0; 1468 } 1469 1470 search_start = buf->start & ~((u64)SZ_1G - 1); 1471 1472 if (parent) 1473 btrfs_set_lock_blocking_write(parent); 1474 btrfs_set_lock_blocking_write(buf); 1475 1476 /* 1477 * Before CoWing this block for later modification, check if it's 1478 * the subtree root and do the delayed subtree trace if needed. 1479 * 1480 * Also We don't care about the error, as it's handled internally. 1481 */ 1482 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 1483 ret = __btrfs_cow_block(trans, root, buf, parent, 1484 parent_slot, cow_ret, search_start, 0); 1485 1486 trace_btrfs_cow_block(root, buf, *cow_ret); 1487 1488 return ret; 1489 } 1490 1491 /* 1492 * helper function for defrag to decide if two blocks pointed to by a 1493 * node are actually close by 1494 */ 1495 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1496 { 1497 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1498 return 1; 1499 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1500 return 1; 1501 return 0; 1502 } 1503 1504 #ifdef __LITTLE_ENDIAN 1505 1506 /* 1507 * Compare two keys, on little-endian the disk order is same as CPU order and 1508 * we can avoid the conversion. 1509 */ 1510 static int comp_keys(const struct btrfs_disk_key *disk_key, 1511 const struct btrfs_key *k2) 1512 { 1513 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 1514 1515 return btrfs_comp_cpu_keys(k1, k2); 1516 } 1517 1518 #else 1519 1520 /* 1521 * compare two keys in a memcmp fashion 1522 */ 1523 static int comp_keys(const struct btrfs_disk_key *disk, 1524 const struct btrfs_key *k2) 1525 { 1526 struct btrfs_key k1; 1527 1528 btrfs_disk_key_to_cpu(&k1, disk); 1529 1530 return btrfs_comp_cpu_keys(&k1, k2); 1531 } 1532 #endif 1533 1534 /* 1535 * same as comp_keys only with two btrfs_key's 1536 */ 1537 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1538 { 1539 if (k1->objectid > k2->objectid) 1540 return 1; 1541 if (k1->objectid < k2->objectid) 1542 return -1; 1543 if (k1->type > k2->type) 1544 return 1; 1545 if (k1->type < k2->type) 1546 return -1; 1547 if (k1->offset > k2->offset) 1548 return 1; 1549 if (k1->offset < k2->offset) 1550 return -1; 1551 return 0; 1552 } 1553 1554 /* 1555 * this is used by the defrag code to go through all the 1556 * leaves pointed to by a node and reallocate them so that 1557 * disk order is close to key order 1558 */ 1559 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1560 struct btrfs_root *root, struct extent_buffer *parent, 1561 int start_slot, u64 *last_ret, 1562 struct btrfs_key *progress) 1563 { 1564 struct btrfs_fs_info *fs_info = root->fs_info; 1565 struct extent_buffer *cur; 1566 u64 blocknr; 1567 u64 gen; 1568 u64 search_start = *last_ret; 1569 u64 last_block = 0; 1570 u64 other; 1571 u32 parent_nritems; 1572 int end_slot; 1573 int i; 1574 int err = 0; 1575 int parent_level; 1576 int uptodate; 1577 u32 blocksize; 1578 int progress_passed = 0; 1579 struct btrfs_disk_key disk_key; 1580 1581 parent_level = btrfs_header_level(parent); 1582 1583 WARN_ON(trans->transaction != fs_info->running_transaction); 1584 WARN_ON(trans->transid != fs_info->generation); 1585 1586 parent_nritems = btrfs_header_nritems(parent); 1587 blocksize = fs_info->nodesize; 1588 end_slot = parent_nritems - 1; 1589 1590 if (parent_nritems <= 1) 1591 return 0; 1592 1593 btrfs_set_lock_blocking_write(parent); 1594 1595 for (i = start_slot; i <= end_slot; i++) { 1596 struct btrfs_key first_key; 1597 int close = 1; 1598 1599 btrfs_node_key(parent, &disk_key, i); 1600 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1601 continue; 1602 1603 progress_passed = 1; 1604 blocknr = btrfs_node_blockptr(parent, i); 1605 gen = btrfs_node_ptr_generation(parent, i); 1606 btrfs_node_key_to_cpu(parent, &first_key, i); 1607 if (last_block == 0) 1608 last_block = blocknr; 1609 1610 if (i > 0) { 1611 other = btrfs_node_blockptr(parent, i - 1); 1612 close = close_blocks(blocknr, other, blocksize); 1613 } 1614 if (!close && i < end_slot) { 1615 other = btrfs_node_blockptr(parent, i + 1); 1616 close = close_blocks(blocknr, other, blocksize); 1617 } 1618 if (close) { 1619 last_block = blocknr; 1620 continue; 1621 } 1622 1623 cur = find_extent_buffer(fs_info, blocknr); 1624 if (cur) 1625 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1626 else 1627 uptodate = 0; 1628 if (!cur || !uptodate) { 1629 if (!cur) { 1630 cur = read_tree_block(fs_info, blocknr, gen, 1631 parent_level - 1, 1632 &first_key); 1633 if (IS_ERR(cur)) { 1634 return PTR_ERR(cur); 1635 } else if (!extent_buffer_uptodate(cur)) { 1636 free_extent_buffer(cur); 1637 return -EIO; 1638 } 1639 } else if (!uptodate) { 1640 err = btrfs_read_buffer(cur, gen, 1641 parent_level - 1,&first_key); 1642 if (err) { 1643 free_extent_buffer(cur); 1644 return err; 1645 } 1646 } 1647 } 1648 if (search_start == 0) 1649 search_start = last_block; 1650 1651 btrfs_tree_lock(cur); 1652 btrfs_set_lock_blocking_write(cur); 1653 err = __btrfs_cow_block(trans, root, cur, parent, i, 1654 &cur, search_start, 1655 min(16 * blocksize, 1656 (end_slot - i) * blocksize)); 1657 if (err) { 1658 btrfs_tree_unlock(cur); 1659 free_extent_buffer(cur); 1660 break; 1661 } 1662 search_start = cur->start; 1663 last_block = cur->start; 1664 *last_ret = search_start; 1665 btrfs_tree_unlock(cur); 1666 free_extent_buffer(cur); 1667 } 1668 return err; 1669 } 1670 1671 /* 1672 * search for key in the extent_buffer. The items start at offset p, 1673 * and they are item_size apart. There are 'max' items in p. 1674 * 1675 * the slot in the array is returned via slot, and it points to 1676 * the place where you would insert key if it is not found in 1677 * the array. 1678 * 1679 * slot may point to max if the key is bigger than all of the keys 1680 */ 1681 static noinline int generic_bin_search(struct extent_buffer *eb, 1682 unsigned long p, int item_size, 1683 const struct btrfs_key *key, 1684 int max, int *slot) 1685 { 1686 int low = 0; 1687 int high = max; 1688 int ret; 1689 const int key_size = sizeof(struct btrfs_disk_key); 1690 1691 if (low > high) { 1692 btrfs_err(eb->fs_info, 1693 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1694 __func__, low, high, eb->start, 1695 btrfs_header_owner(eb), btrfs_header_level(eb)); 1696 return -EINVAL; 1697 } 1698 1699 while (low < high) { 1700 unsigned long oip; 1701 unsigned long offset; 1702 struct btrfs_disk_key *tmp; 1703 struct btrfs_disk_key unaligned; 1704 int mid; 1705 1706 mid = (low + high) / 2; 1707 offset = p + mid * item_size; 1708 oip = offset_in_page(offset); 1709 1710 if (oip + key_size <= PAGE_SIZE) { 1711 const unsigned long idx = offset >> PAGE_SHIFT; 1712 char *kaddr = page_address(eb->pages[idx]); 1713 1714 tmp = (struct btrfs_disk_key *)(kaddr + oip); 1715 } else { 1716 read_extent_buffer(eb, &unaligned, offset, key_size); 1717 tmp = &unaligned; 1718 } 1719 1720 ret = comp_keys(tmp, key); 1721 1722 if (ret < 0) 1723 low = mid + 1; 1724 else if (ret > 0) 1725 high = mid; 1726 else { 1727 *slot = mid; 1728 return 0; 1729 } 1730 } 1731 *slot = low; 1732 return 1; 1733 } 1734 1735 /* 1736 * simple bin_search frontend that does the right thing for 1737 * leaves vs nodes 1738 */ 1739 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1740 int *slot) 1741 { 1742 if (btrfs_header_level(eb) == 0) 1743 return generic_bin_search(eb, 1744 offsetof(struct btrfs_leaf, items), 1745 sizeof(struct btrfs_item), 1746 key, btrfs_header_nritems(eb), 1747 slot); 1748 else 1749 return generic_bin_search(eb, 1750 offsetof(struct btrfs_node, ptrs), 1751 sizeof(struct btrfs_key_ptr), 1752 key, btrfs_header_nritems(eb), 1753 slot); 1754 } 1755 1756 static void root_add_used(struct btrfs_root *root, u32 size) 1757 { 1758 spin_lock(&root->accounting_lock); 1759 btrfs_set_root_used(&root->root_item, 1760 btrfs_root_used(&root->root_item) + size); 1761 spin_unlock(&root->accounting_lock); 1762 } 1763 1764 static void root_sub_used(struct btrfs_root *root, u32 size) 1765 { 1766 spin_lock(&root->accounting_lock); 1767 btrfs_set_root_used(&root->root_item, 1768 btrfs_root_used(&root->root_item) - size); 1769 spin_unlock(&root->accounting_lock); 1770 } 1771 1772 /* given a node and slot number, this reads the blocks it points to. The 1773 * extent buffer is returned with a reference taken (but unlocked). 1774 */ 1775 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 1776 int slot) 1777 { 1778 int level = btrfs_header_level(parent); 1779 struct extent_buffer *eb; 1780 struct btrfs_key first_key; 1781 1782 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1783 return ERR_PTR(-ENOENT); 1784 1785 BUG_ON(level == 0); 1786 1787 btrfs_node_key_to_cpu(parent, &first_key, slot); 1788 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 1789 btrfs_node_ptr_generation(parent, slot), 1790 level - 1, &first_key); 1791 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1792 free_extent_buffer(eb); 1793 eb = ERR_PTR(-EIO); 1794 } 1795 1796 return eb; 1797 } 1798 1799 /* 1800 * node level balancing, used to make sure nodes are in proper order for 1801 * item deletion. We balance from the top down, so we have to make sure 1802 * that a deletion won't leave an node completely empty later on. 1803 */ 1804 static noinline int balance_level(struct btrfs_trans_handle *trans, 1805 struct btrfs_root *root, 1806 struct btrfs_path *path, int level) 1807 { 1808 struct btrfs_fs_info *fs_info = root->fs_info; 1809 struct extent_buffer *right = NULL; 1810 struct extent_buffer *mid; 1811 struct extent_buffer *left = NULL; 1812 struct extent_buffer *parent = NULL; 1813 int ret = 0; 1814 int wret; 1815 int pslot; 1816 int orig_slot = path->slots[level]; 1817 u64 orig_ptr; 1818 1819 ASSERT(level > 0); 1820 1821 mid = path->nodes[level]; 1822 1823 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1824 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1825 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1826 1827 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1828 1829 if (level < BTRFS_MAX_LEVEL - 1) { 1830 parent = path->nodes[level + 1]; 1831 pslot = path->slots[level + 1]; 1832 } 1833 1834 /* 1835 * deal with the case where there is only one pointer in the root 1836 * by promoting the node below to a root 1837 */ 1838 if (!parent) { 1839 struct extent_buffer *child; 1840 1841 if (btrfs_header_nritems(mid) != 1) 1842 return 0; 1843 1844 /* promote the child to a root */ 1845 child = btrfs_read_node_slot(mid, 0); 1846 if (IS_ERR(child)) { 1847 ret = PTR_ERR(child); 1848 btrfs_handle_fs_error(fs_info, ret, NULL); 1849 goto enospc; 1850 } 1851 1852 btrfs_tree_lock(child); 1853 btrfs_set_lock_blocking_write(child); 1854 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1855 if (ret) { 1856 btrfs_tree_unlock(child); 1857 free_extent_buffer(child); 1858 goto enospc; 1859 } 1860 1861 ret = tree_mod_log_insert_root(root->node, child, 1); 1862 BUG_ON(ret < 0); 1863 rcu_assign_pointer(root->node, child); 1864 1865 add_root_to_dirty_list(root); 1866 btrfs_tree_unlock(child); 1867 1868 path->locks[level] = 0; 1869 path->nodes[level] = NULL; 1870 btrfs_clean_tree_block(mid); 1871 btrfs_tree_unlock(mid); 1872 /* once for the path */ 1873 free_extent_buffer(mid); 1874 1875 root_sub_used(root, mid->len); 1876 btrfs_free_tree_block(trans, root, mid, 0, 1); 1877 /* once for the root ptr */ 1878 free_extent_buffer_stale(mid); 1879 return 0; 1880 } 1881 if (btrfs_header_nritems(mid) > 1882 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1883 return 0; 1884 1885 left = btrfs_read_node_slot(parent, pslot - 1); 1886 if (IS_ERR(left)) 1887 left = NULL; 1888 1889 if (left) { 1890 btrfs_tree_lock(left); 1891 btrfs_set_lock_blocking_write(left); 1892 wret = btrfs_cow_block(trans, root, left, 1893 parent, pslot - 1, &left); 1894 if (wret) { 1895 ret = wret; 1896 goto enospc; 1897 } 1898 } 1899 1900 right = btrfs_read_node_slot(parent, pslot + 1); 1901 if (IS_ERR(right)) 1902 right = NULL; 1903 1904 if (right) { 1905 btrfs_tree_lock(right); 1906 btrfs_set_lock_blocking_write(right); 1907 wret = btrfs_cow_block(trans, root, right, 1908 parent, pslot + 1, &right); 1909 if (wret) { 1910 ret = wret; 1911 goto enospc; 1912 } 1913 } 1914 1915 /* first, try to make some room in the middle buffer */ 1916 if (left) { 1917 orig_slot += btrfs_header_nritems(left); 1918 wret = push_node_left(trans, left, mid, 1); 1919 if (wret < 0) 1920 ret = wret; 1921 } 1922 1923 /* 1924 * then try to empty the right most buffer into the middle 1925 */ 1926 if (right) { 1927 wret = push_node_left(trans, mid, right, 1); 1928 if (wret < 0 && wret != -ENOSPC) 1929 ret = wret; 1930 if (btrfs_header_nritems(right) == 0) { 1931 btrfs_clean_tree_block(right); 1932 btrfs_tree_unlock(right); 1933 del_ptr(root, path, level + 1, pslot + 1); 1934 root_sub_used(root, right->len); 1935 btrfs_free_tree_block(trans, root, right, 0, 1); 1936 free_extent_buffer_stale(right); 1937 right = NULL; 1938 } else { 1939 struct btrfs_disk_key right_key; 1940 btrfs_node_key(right, &right_key, 0); 1941 ret = tree_mod_log_insert_key(parent, pslot + 1, 1942 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1943 BUG_ON(ret < 0); 1944 btrfs_set_node_key(parent, &right_key, pslot + 1); 1945 btrfs_mark_buffer_dirty(parent); 1946 } 1947 } 1948 if (btrfs_header_nritems(mid) == 1) { 1949 /* 1950 * we're not allowed to leave a node with one item in the 1951 * tree during a delete. A deletion from lower in the tree 1952 * could try to delete the only pointer in this node. 1953 * So, pull some keys from the left. 1954 * There has to be a left pointer at this point because 1955 * otherwise we would have pulled some pointers from the 1956 * right 1957 */ 1958 if (!left) { 1959 ret = -EROFS; 1960 btrfs_handle_fs_error(fs_info, ret, NULL); 1961 goto enospc; 1962 } 1963 wret = balance_node_right(trans, mid, left); 1964 if (wret < 0) { 1965 ret = wret; 1966 goto enospc; 1967 } 1968 if (wret == 1) { 1969 wret = push_node_left(trans, left, mid, 1); 1970 if (wret < 0) 1971 ret = wret; 1972 } 1973 BUG_ON(wret == 1); 1974 } 1975 if (btrfs_header_nritems(mid) == 0) { 1976 btrfs_clean_tree_block(mid); 1977 btrfs_tree_unlock(mid); 1978 del_ptr(root, path, level + 1, pslot); 1979 root_sub_used(root, mid->len); 1980 btrfs_free_tree_block(trans, root, mid, 0, 1); 1981 free_extent_buffer_stale(mid); 1982 mid = NULL; 1983 } else { 1984 /* update the parent key to reflect our changes */ 1985 struct btrfs_disk_key mid_key; 1986 btrfs_node_key(mid, &mid_key, 0); 1987 ret = tree_mod_log_insert_key(parent, pslot, 1988 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1989 BUG_ON(ret < 0); 1990 btrfs_set_node_key(parent, &mid_key, pslot); 1991 btrfs_mark_buffer_dirty(parent); 1992 } 1993 1994 /* update the path */ 1995 if (left) { 1996 if (btrfs_header_nritems(left) > orig_slot) { 1997 atomic_inc(&left->refs); 1998 /* left was locked after cow */ 1999 path->nodes[level] = left; 2000 path->slots[level + 1] -= 1; 2001 path->slots[level] = orig_slot; 2002 if (mid) { 2003 btrfs_tree_unlock(mid); 2004 free_extent_buffer(mid); 2005 } 2006 } else { 2007 orig_slot -= btrfs_header_nritems(left); 2008 path->slots[level] = orig_slot; 2009 } 2010 } 2011 /* double check we haven't messed things up */ 2012 if (orig_ptr != 2013 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2014 BUG(); 2015 enospc: 2016 if (right) { 2017 btrfs_tree_unlock(right); 2018 free_extent_buffer(right); 2019 } 2020 if (left) { 2021 if (path->nodes[level] != left) 2022 btrfs_tree_unlock(left); 2023 free_extent_buffer(left); 2024 } 2025 return ret; 2026 } 2027 2028 /* Node balancing for insertion. Here we only split or push nodes around 2029 * when they are completely full. This is also done top down, so we 2030 * have to be pessimistic. 2031 */ 2032 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2033 struct btrfs_root *root, 2034 struct btrfs_path *path, int level) 2035 { 2036 struct btrfs_fs_info *fs_info = root->fs_info; 2037 struct extent_buffer *right = NULL; 2038 struct extent_buffer *mid; 2039 struct extent_buffer *left = NULL; 2040 struct extent_buffer *parent = NULL; 2041 int ret = 0; 2042 int wret; 2043 int pslot; 2044 int orig_slot = path->slots[level]; 2045 2046 if (level == 0) 2047 return 1; 2048 2049 mid = path->nodes[level]; 2050 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2051 2052 if (level < BTRFS_MAX_LEVEL - 1) { 2053 parent = path->nodes[level + 1]; 2054 pslot = path->slots[level + 1]; 2055 } 2056 2057 if (!parent) 2058 return 1; 2059 2060 left = btrfs_read_node_slot(parent, pslot - 1); 2061 if (IS_ERR(left)) 2062 left = NULL; 2063 2064 /* first, try to make some room in the middle buffer */ 2065 if (left) { 2066 u32 left_nr; 2067 2068 btrfs_tree_lock(left); 2069 btrfs_set_lock_blocking_write(left); 2070 2071 left_nr = btrfs_header_nritems(left); 2072 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2073 wret = 1; 2074 } else { 2075 ret = btrfs_cow_block(trans, root, left, parent, 2076 pslot - 1, &left); 2077 if (ret) 2078 wret = 1; 2079 else { 2080 wret = push_node_left(trans, left, mid, 0); 2081 } 2082 } 2083 if (wret < 0) 2084 ret = wret; 2085 if (wret == 0) { 2086 struct btrfs_disk_key disk_key; 2087 orig_slot += left_nr; 2088 btrfs_node_key(mid, &disk_key, 0); 2089 ret = tree_mod_log_insert_key(parent, pslot, 2090 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2091 BUG_ON(ret < 0); 2092 btrfs_set_node_key(parent, &disk_key, pslot); 2093 btrfs_mark_buffer_dirty(parent); 2094 if (btrfs_header_nritems(left) > orig_slot) { 2095 path->nodes[level] = left; 2096 path->slots[level + 1] -= 1; 2097 path->slots[level] = orig_slot; 2098 btrfs_tree_unlock(mid); 2099 free_extent_buffer(mid); 2100 } else { 2101 orig_slot -= 2102 btrfs_header_nritems(left); 2103 path->slots[level] = orig_slot; 2104 btrfs_tree_unlock(left); 2105 free_extent_buffer(left); 2106 } 2107 return 0; 2108 } 2109 btrfs_tree_unlock(left); 2110 free_extent_buffer(left); 2111 } 2112 right = btrfs_read_node_slot(parent, pslot + 1); 2113 if (IS_ERR(right)) 2114 right = NULL; 2115 2116 /* 2117 * then try to empty the right most buffer into the middle 2118 */ 2119 if (right) { 2120 u32 right_nr; 2121 2122 btrfs_tree_lock(right); 2123 btrfs_set_lock_blocking_write(right); 2124 2125 right_nr = btrfs_header_nritems(right); 2126 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2127 wret = 1; 2128 } else { 2129 ret = btrfs_cow_block(trans, root, right, 2130 parent, pslot + 1, 2131 &right); 2132 if (ret) 2133 wret = 1; 2134 else { 2135 wret = balance_node_right(trans, right, mid); 2136 } 2137 } 2138 if (wret < 0) 2139 ret = wret; 2140 if (wret == 0) { 2141 struct btrfs_disk_key disk_key; 2142 2143 btrfs_node_key(right, &disk_key, 0); 2144 ret = tree_mod_log_insert_key(parent, pslot + 1, 2145 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2146 BUG_ON(ret < 0); 2147 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2148 btrfs_mark_buffer_dirty(parent); 2149 2150 if (btrfs_header_nritems(mid) <= orig_slot) { 2151 path->nodes[level] = right; 2152 path->slots[level + 1] += 1; 2153 path->slots[level] = orig_slot - 2154 btrfs_header_nritems(mid); 2155 btrfs_tree_unlock(mid); 2156 free_extent_buffer(mid); 2157 } else { 2158 btrfs_tree_unlock(right); 2159 free_extent_buffer(right); 2160 } 2161 return 0; 2162 } 2163 btrfs_tree_unlock(right); 2164 free_extent_buffer(right); 2165 } 2166 return 1; 2167 } 2168 2169 /* 2170 * readahead one full node of leaves, finding things that are close 2171 * to the block in 'slot', and triggering ra on them. 2172 */ 2173 static void reada_for_search(struct btrfs_fs_info *fs_info, 2174 struct btrfs_path *path, 2175 int level, int slot, u64 objectid) 2176 { 2177 struct extent_buffer *node; 2178 struct btrfs_disk_key disk_key; 2179 u32 nritems; 2180 u64 search; 2181 u64 target; 2182 u64 nread = 0; 2183 struct extent_buffer *eb; 2184 u32 nr; 2185 u32 blocksize; 2186 u32 nscan = 0; 2187 2188 if (level != 1) 2189 return; 2190 2191 if (!path->nodes[level]) 2192 return; 2193 2194 node = path->nodes[level]; 2195 2196 search = btrfs_node_blockptr(node, slot); 2197 blocksize = fs_info->nodesize; 2198 eb = find_extent_buffer(fs_info, search); 2199 if (eb) { 2200 free_extent_buffer(eb); 2201 return; 2202 } 2203 2204 target = search; 2205 2206 nritems = btrfs_header_nritems(node); 2207 nr = slot; 2208 2209 while (1) { 2210 if (path->reada == READA_BACK) { 2211 if (nr == 0) 2212 break; 2213 nr--; 2214 } else if (path->reada == READA_FORWARD) { 2215 nr++; 2216 if (nr >= nritems) 2217 break; 2218 } 2219 if (path->reada == READA_BACK && objectid) { 2220 btrfs_node_key(node, &disk_key, nr); 2221 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2222 break; 2223 } 2224 search = btrfs_node_blockptr(node, nr); 2225 if ((search <= target && target - search <= 65536) || 2226 (search > target && search - target <= 65536)) { 2227 readahead_tree_block(fs_info, search); 2228 nread += blocksize; 2229 } 2230 nscan++; 2231 if ((nread > 65536 || nscan > 32)) 2232 break; 2233 } 2234 } 2235 2236 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2237 struct btrfs_path *path, int level) 2238 { 2239 int slot; 2240 int nritems; 2241 struct extent_buffer *parent; 2242 struct extent_buffer *eb; 2243 u64 gen; 2244 u64 block1 = 0; 2245 u64 block2 = 0; 2246 2247 parent = path->nodes[level + 1]; 2248 if (!parent) 2249 return; 2250 2251 nritems = btrfs_header_nritems(parent); 2252 slot = path->slots[level + 1]; 2253 2254 if (slot > 0) { 2255 block1 = btrfs_node_blockptr(parent, slot - 1); 2256 gen = btrfs_node_ptr_generation(parent, slot - 1); 2257 eb = find_extent_buffer(fs_info, block1); 2258 /* 2259 * if we get -eagain from btrfs_buffer_uptodate, we 2260 * don't want to return eagain here. That will loop 2261 * forever 2262 */ 2263 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2264 block1 = 0; 2265 free_extent_buffer(eb); 2266 } 2267 if (slot + 1 < nritems) { 2268 block2 = btrfs_node_blockptr(parent, slot + 1); 2269 gen = btrfs_node_ptr_generation(parent, slot + 1); 2270 eb = find_extent_buffer(fs_info, block2); 2271 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2272 block2 = 0; 2273 free_extent_buffer(eb); 2274 } 2275 2276 if (block1) 2277 readahead_tree_block(fs_info, block1); 2278 if (block2) 2279 readahead_tree_block(fs_info, block2); 2280 } 2281 2282 2283 /* 2284 * when we walk down the tree, it is usually safe to unlock the higher layers 2285 * in the tree. The exceptions are when our path goes through slot 0, because 2286 * operations on the tree might require changing key pointers higher up in the 2287 * tree. 2288 * 2289 * callers might also have set path->keep_locks, which tells this code to keep 2290 * the lock if the path points to the last slot in the block. This is part of 2291 * walking through the tree, and selecting the next slot in the higher block. 2292 * 2293 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2294 * if lowest_unlock is 1, level 0 won't be unlocked 2295 */ 2296 static noinline void unlock_up(struct btrfs_path *path, int level, 2297 int lowest_unlock, int min_write_lock_level, 2298 int *write_lock_level) 2299 { 2300 int i; 2301 int skip_level = level; 2302 int no_skips = 0; 2303 struct extent_buffer *t; 2304 2305 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2306 if (!path->nodes[i]) 2307 break; 2308 if (!path->locks[i]) 2309 break; 2310 if (!no_skips && path->slots[i] == 0) { 2311 skip_level = i + 1; 2312 continue; 2313 } 2314 if (!no_skips && path->keep_locks) { 2315 u32 nritems; 2316 t = path->nodes[i]; 2317 nritems = btrfs_header_nritems(t); 2318 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2319 skip_level = i + 1; 2320 continue; 2321 } 2322 } 2323 if (skip_level < i && i >= lowest_unlock) 2324 no_skips = 1; 2325 2326 t = path->nodes[i]; 2327 if (i >= lowest_unlock && i > skip_level) { 2328 btrfs_tree_unlock_rw(t, path->locks[i]); 2329 path->locks[i] = 0; 2330 if (write_lock_level && 2331 i > min_write_lock_level && 2332 i <= *write_lock_level) { 2333 *write_lock_level = i - 1; 2334 } 2335 } 2336 } 2337 } 2338 2339 /* 2340 * helper function for btrfs_search_slot. The goal is to find a block 2341 * in cache without setting the path to blocking. If we find the block 2342 * we return zero and the path is unchanged. 2343 * 2344 * If we can't find the block, we set the path blocking and do some 2345 * reada. -EAGAIN is returned and the search must be repeated. 2346 */ 2347 static int 2348 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2349 struct extent_buffer **eb_ret, int level, int slot, 2350 const struct btrfs_key *key) 2351 { 2352 struct btrfs_fs_info *fs_info = root->fs_info; 2353 u64 blocknr; 2354 u64 gen; 2355 struct extent_buffer *tmp; 2356 struct btrfs_key first_key; 2357 int ret; 2358 int parent_level; 2359 2360 blocknr = btrfs_node_blockptr(*eb_ret, slot); 2361 gen = btrfs_node_ptr_generation(*eb_ret, slot); 2362 parent_level = btrfs_header_level(*eb_ret); 2363 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot); 2364 2365 tmp = find_extent_buffer(fs_info, blocknr); 2366 if (tmp) { 2367 /* first we do an atomic uptodate check */ 2368 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2369 /* 2370 * Do extra check for first_key, eb can be stale due to 2371 * being cached, read from scrub, or have multiple 2372 * parents (shared tree blocks). 2373 */ 2374 if (btrfs_verify_level_key(tmp, 2375 parent_level - 1, &first_key, gen)) { 2376 free_extent_buffer(tmp); 2377 return -EUCLEAN; 2378 } 2379 *eb_ret = tmp; 2380 return 0; 2381 } 2382 2383 /* the pages were up to date, but we failed 2384 * the generation number check. Do a full 2385 * read for the generation number that is correct. 2386 * We must do this without dropping locks so 2387 * we can trust our generation number 2388 */ 2389 btrfs_set_path_blocking(p); 2390 2391 /* now we're allowed to do a blocking uptodate check */ 2392 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2393 if (!ret) { 2394 *eb_ret = tmp; 2395 return 0; 2396 } 2397 free_extent_buffer(tmp); 2398 btrfs_release_path(p); 2399 return -EIO; 2400 } 2401 2402 /* 2403 * reduce lock contention at high levels 2404 * of the btree by dropping locks before 2405 * we read. Don't release the lock on the current 2406 * level because we need to walk this node to figure 2407 * out which blocks to read. 2408 */ 2409 btrfs_unlock_up_safe(p, level + 1); 2410 btrfs_set_path_blocking(p); 2411 2412 if (p->reada != READA_NONE) 2413 reada_for_search(fs_info, p, level, slot, key->objectid); 2414 2415 ret = -EAGAIN; 2416 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2417 &first_key); 2418 if (!IS_ERR(tmp)) { 2419 /* 2420 * If the read above didn't mark this buffer up to date, 2421 * it will never end up being up to date. Set ret to EIO now 2422 * and give up so that our caller doesn't loop forever 2423 * on our EAGAINs. 2424 */ 2425 if (!extent_buffer_uptodate(tmp)) 2426 ret = -EIO; 2427 free_extent_buffer(tmp); 2428 } else { 2429 ret = PTR_ERR(tmp); 2430 } 2431 2432 btrfs_release_path(p); 2433 return ret; 2434 } 2435 2436 /* 2437 * helper function for btrfs_search_slot. This does all of the checks 2438 * for node-level blocks and does any balancing required based on 2439 * the ins_len. 2440 * 2441 * If no extra work was required, zero is returned. If we had to 2442 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2443 * start over 2444 */ 2445 static int 2446 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2447 struct btrfs_root *root, struct btrfs_path *p, 2448 struct extent_buffer *b, int level, int ins_len, 2449 int *write_lock_level) 2450 { 2451 struct btrfs_fs_info *fs_info = root->fs_info; 2452 int ret; 2453 2454 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2455 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2456 int sret; 2457 2458 if (*write_lock_level < level + 1) { 2459 *write_lock_level = level + 1; 2460 btrfs_release_path(p); 2461 goto again; 2462 } 2463 2464 btrfs_set_path_blocking(p); 2465 reada_for_balance(fs_info, p, level); 2466 sret = split_node(trans, root, p, level); 2467 2468 BUG_ON(sret > 0); 2469 if (sret) { 2470 ret = sret; 2471 goto done; 2472 } 2473 b = p->nodes[level]; 2474 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2475 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2476 int sret; 2477 2478 if (*write_lock_level < level + 1) { 2479 *write_lock_level = level + 1; 2480 btrfs_release_path(p); 2481 goto again; 2482 } 2483 2484 btrfs_set_path_blocking(p); 2485 reada_for_balance(fs_info, p, level); 2486 sret = balance_level(trans, root, p, level); 2487 2488 if (sret) { 2489 ret = sret; 2490 goto done; 2491 } 2492 b = p->nodes[level]; 2493 if (!b) { 2494 btrfs_release_path(p); 2495 goto again; 2496 } 2497 BUG_ON(btrfs_header_nritems(b) == 1); 2498 } 2499 return 0; 2500 2501 again: 2502 ret = -EAGAIN; 2503 done: 2504 return ret; 2505 } 2506 2507 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2508 u64 iobjectid, u64 ioff, u8 key_type, 2509 struct btrfs_key *found_key) 2510 { 2511 int ret; 2512 struct btrfs_key key; 2513 struct extent_buffer *eb; 2514 2515 ASSERT(path); 2516 ASSERT(found_key); 2517 2518 key.type = key_type; 2519 key.objectid = iobjectid; 2520 key.offset = ioff; 2521 2522 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2523 if (ret < 0) 2524 return ret; 2525 2526 eb = path->nodes[0]; 2527 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2528 ret = btrfs_next_leaf(fs_root, path); 2529 if (ret) 2530 return ret; 2531 eb = path->nodes[0]; 2532 } 2533 2534 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2535 if (found_key->type != key.type || 2536 found_key->objectid != key.objectid) 2537 return 1; 2538 2539 return 0; 2540 } 2541 2542 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2543 struct btrfs_path *p, 2544 int write_lock_level) 2545 { 2546 struct btrfs_fs_info *fs_info = root->fs_info; 2547 struct extent_buffer *b; 2548 int root_lock; 2549 int level = 0; 2550 2551 /* We try very hard to do read locks on the root */ 2552 root_lock = BTRFS_READ_LOCK; 2553 2554 if (p->search_commit_root) { 2555 /* 2556 * The commit roots are read only so we always do read locks, 2557 * and we always must hold the commit_root_sem when doing 2558 * searches on them, the only exception is send where we don't 2559 * want to block transaction commits for a long time, so 2560 * we need to clone the commit root in order to avoid races 2561 * with transaction commits that create a snapshot of one of 2562 * the roots used by a send operation. 2563 */ 2564 if (p->need_commit_sem) { 2565 down_read(&fs_info->commit_root_sem); 2566 b = btrfs_clone_extent_buffer(root->commit_root); 2567 up_read(&fs_info->commit_root_sem); 2568 if (!b) 2569 return ERR_PTR(-ENOMEM); 2570 2571 } else { 2572 b = root->commit_root; 2573 atomic_inc(&b->refs); 2574 } 2575 level = btrfs_header_level(b); 2576 /* 2577 * Ensure that all callers have set skip_locking when 2578 * p->search_commit_root = 1. 2579 */ 2580 ASSERT(p->skip_locking == 1); 2581 2582 goto out; 2583 } 2584 2585 if (p->skip_locking) { 2586 b = btrfs_root_node(root); 2587 level = btrfs_header_level(b); 2588 goto out; 2589 } 2590 2591 /* 2592 * If the level is set to maximum, we can skip trying to get the read 2593 * lock. 2594 */ 2595 if (write_lock_level < BTRFS_MAX_LEVEL) { 2596 /* 2597 * We don't know the level of the root node until we actually 2598 * have it read locked 2599 */ 2600 b = btrfs_read_lock_root_node(root); 2601 level = btrfs_header_level(b); 2602 if (level > write_lock_level) 2603 goto out; 2604 2605 /* Whoops, must trade for write lock */ 2606 btrfs_tree_read_unlock(b); 2607 free_extent_buffer(b); 2608 } 2609 2610 b = btrfs_lock_root_node(root); 2611 root_lock = BTRFS_WRITE_LOCK; 2612 2613 /* The level might have changed, check again */ 2614 level = btrfs_header_level(b); 2615 2616 out: 2617 p->nodes[level] = b; 2618 if (!p->skip_locking) 2619 p->locks[level] = root_lock; 2620 /* 2621 * Callers are responsible for dropping b's references. 2622 */ 2623 return b; 2624 } 2625 2626 2627 /* 2628 * btrfs_search_slot - look for a key in a tree and perform necessary 2629 * modifications to preserve tree invariants. 2630 * 2631 * @trans: Handle of transaction, used when modifying the tree 2632 * @p: Holds all btree nodes along the search path 2633 * @root: The root node of the tree 2634 * @key: The key we are looking for 2635 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2636 * deletions it's -1. 0 for plain searches 2637 * @cow: boolean should CoW operations be performed. Must always be 1 2638 * when modifying the tree. 2639 * 2640 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2641 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2642 * 2643 * If @key is found, 0 is returned and you can find the item in the leaf level 2644 * of the path (level 0) 2645 * 2646 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2647 * points to the slot where it should be inserted 2648 * 2649 * If an error is encountered while searching the tree a negative error number 2650 * is returned 2651 */ 2652 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2653 const struct btrfs_key *key, struct btrfs_path *p, 2654 int ins_len, int cow) 2655 { 2656 struct extent_buffer *b; 2657 int slot; 2658 int ret; 2659 int err; 2660 int level; 2661 int lowest_unlock = 1; 2662 /* everything at write_lock_level or lower must be write locked */ 2663 int write_lock_level = 0; 2664 u8 lowest_level = 0; 2665 int min_write_lock_level; 2666 int prev_cmp; 2667 2668 lowest_level = p->lowest_level; 2669 WARN_ON(lowest_level && ins_len > 0); 2670 WARN_ON(p->nodes[0] != NULL); 2671 BUG_ON(!cow && ins_len); 2672 2673 if (ins_len < 0) { 2674 lowest_unlock = 2; 2675 2676 /* when we are removing items, we might have to go up to level 2677 * two as we update tree pointers Make sure we keep write 2678 * for those levels as well 2679 */ 2680 write_lock_level = 2; 2681 } else if (ins_len > 0) { 2682 /* 2683 * for inserting items, make sure we have a write lock on 2684 * level 1 so we can update keys 2685 */ 2686 write_lock_level = 1; 2687 } 2688 2689 if (!cow) 2690 write_lock_level = -1; 2691 2692 if (cow && (p->keep_locks || p->lowest_level)) 2693 write_lock_level = BTRFS_MAX_LEVEL; 2694 2695 min_write_lock_level = write_lock_level; 2696 2697 again: 2698 prev_cmp = -1; 2699 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2700 if (IS_ERR(b)) { 2701 ret = PTR_ERR(b); 2702 goto done; 2703 } 2704 2705 while (b) { 2706 int dec = 0; 2707 2708 level = btrfs_header_level(b); 2709 2710 if (cow) { 2711 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2712 2713 /* 2714 * if we don't really need to cow this block 2715 * then we don't want to set the path blocking, 2716 * so we test it here 2717 */ 2718 if (!should_cow_block(trans, root, b)) { 2719 trans->dirty = true; 2720 goto cow_done; 2721 } 2722 2723 /* 2724 * must have write locks on this node and the 2725 * parent 2726 */ 2727 if (level > write_lock_level || 2728 (level + 1 > write_lock_level && 2729 level + 1 < BTRFS_MAX_LEVEL && 2730 p->nodes[level + 1])) { 2731 write_lock_level = level + 1; 2732 btrfs_release_path(p); 2733 goto again; 2734 } 2735 2736 btrfs_set_path_blocking(p); 2737 if (last_level) 2738 err = btrfs_cow_block(trans, root, b, NULL, 0, 2739 &b); 2740 else 2741 err = btrfs_cow_block(trans, root, b, 2742 p->nodes[level + 1], 2743 p->slots[level + 1], &b); 2744 if (err) { 2745 ret = err; 2746 goto done; 2747 } 2748 } 2749 cow_done: 2750 p->nodes[level] = b; 2751 /* 2752 * Leave path with blocking locks to avoid massive 2753 * lock context switch, this is made on purpose. 2754 */ 2755 2756 /* 2757 * we have a lock on b and as long as we aren't changing 2758 * the tree, there is no way to for the items in b to change. 2759 * It is safe to drop the lock on our parent before we 2760 * go through the expensive btree search on b. 2761 * 2762 * If we're inserting or deleting (ins_len != 0), then we might 2763 * be changing slot zero, which may require changing the parent. 2764 * So, we can't drop the lock until after we know which slot 2765 * we're operating on. 2766 */ 2767 if (!ins_len && !p->keep_locks) { 2768 int u = level + 1; 2769 2770 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2771 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2772 p->locks[u] = 0; 2773 } 2774 } 2775 2776 /* 2777 * If btrfs_bin_search returns an exact match (prev_cmp == 0) 2778 * we can safely assume the target key will always be in slot 0 2779 * on lower levels due to the invariants BTRFS' btree provides, 2780 * namely that a btrfs_key_ptr entry always points to the 2781 * lowest key in the child node, thus we can skip searching 2782 * lower levels 2783 */ 2784 if (prev_cmp == 0) { 2785 slot = 0; 2786 ret = 0; 2787 } else { 2788 ret = btrfs_bin_search(b, key, &slot); 2789 prev_cmp = ret; 2790 if (ret < 0) 2791 goto done; 2792 } 2793 2794 if (level == 0) { 2795 p->slots[level] = slot; 2796 if (ins_len > 0 && 2797 btrfs_leaf_free_space(b) < ins_len) { 2798 if (write_lock_level < 1) { 2799 write_lock_level = 1; 2800 btrfs_release_path(p); 2801 goto again; 2802 } 2803 2804 btrfs_set_path_blocking(p); 2805 err = split_leaf(trans, root, key, 2806 p, ins_len, ret == 0); 2807 2808 BUG_ON(err > 0); 2809 if (err) { 2810 ret = err; 2811 goto done; 2812 } 2813 } 2814 if (!p->search_for_split) 2815 unlock_up(p, level, lowest_unlock, 2816 min_write_lock_level, NULL); 2817 goto done; 2818 } 2819 if (ret && slot > 0) { 2820 dec = 1; 2821 slot--; 2822 } 2823 p->slots[level] = slot; 2824 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2825 &write_lock_level); 2826 if (err == -EAGAIN) 2827 goto again; 2828 if (err) { 2829 ret = err; 2830 goto done; 2831 } 2832 b = p->nodes[level]; 2833 slot = p->slots[level]; 2834 2835 /* 2836 * Slot 0 is special, if we change the key we have to update 2837 * the parent pointer which means we must have a write lock on 2838 * the parent 2839 */ 2840 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2841 write_lock_level = level + 1; 2842 btrfs_release_path(p); 2843 goto again; 2844 } 2845 2846 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2847 &write_lock_level); 2848 2849 if (level == lowest_level) { 2850 if (dec) 2851 p->slots[level]++; 2852 goto done; 2853 } 2854 2855 err = read_block_for_search(root, p, &b, level, slot, key); 2856 if (err == -EAGAIN) 2857 goto again; 2858 if (err) { 2859 ret = err; 2860 goto done; 2861 } 2862 2863 if (!p->skip_locking) { 2864 level = btrfs_header_level(b); 2865 if (level <= write_lock_level) { 2866 if (!btrfs_try_tree_write_lock(b)) { 2867 btrfs_set_path_blocking(p); 2868 btrfs_tree_lock(b); 2869 } 2870 p->locks[level] = BTRFS_WRITE_LOCK; 2871 } else { 2872 if (!btrfs_tree_read_lock_atomic(b)) { 2873 btrfs_set_path_blocking(p); 2874 btrfs_tree_read_lock(b); 2875 } 2876 p->locks[level] = BTRFS_READ_LOCK; 2877 } 2878 p->nodes[level] = b; 2879 } 2880 } 2881 ret = 1; 2882 done: 2883 /* 2884 * we don't really know what they plan on doing with the path 2885 * from here on, so for now just mark it as blocking 2886 */ 2887 if (!p->leave_spinning) 2888 btrfs_set_path_blocking(p); 2889 if (ret < 0 && !p->skip_release_on_error) 2890 btrfs_release_path(p); 2891 return ret; 2892 } 2893 2894 /* 2895 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2896 * current state of the tree together with the operations recorded in the tree 2897 * modification log to search for the key in a previous version of this tree, as 2898 * denoted by the time_seq parameter. 2899 * 2900 * Naturally, there is no support for insert, delete or cow operations. 2901 * 2902 * The resulting path and return value will be set up as if we called 2903 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2904 */ 2905 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2906 struct btrfs_path *p, u64 time_seq) 2907 { 2908 struct btrfs_fs_info *fs_info = root->fs_info; 2909 struct extent_buffer *b; 2910 int slot; 2911 int ret; 2912 int err; 2913 int level; 2914 int lowest_unlock = 1; 2915 u8 lowest_level = 0; 2916 2917 lowest_level = p->lowest_level; 2918 WARN_ON(p->nodes[0] != NULL); 2919 2920 if (p->search_commit_root) { 2921 BUG_ON(time_seq); 2922 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2923 } 2924 2925 again: 2926 b = get_old_root(root, time_seq); 2927 if (!b) { 2928 ret = -EIO; 2929 goto done; 2930 } 2931 level = btrfs_header_level(b); 2932 p->locks[level] = BTRFS_READ_LOCK; 2933 2934 while (b) { 2935 int dec = 0; 2936 2937 level = btrfs_header_level(b); 2938 p->nodes[level] = b; 2939 2940 /* 2941 * we have a lock on b and as long as we aren't changing 2942 * the tree, there is no way to for the items in b to change. 2943 * It is safe to drop the lock on our parent before we 2944 * go through the expensive btree search on b. 2945 */ 2946 btrfs_unlock_up_safe(p, level + 1); 2947 2948 ret = btrfs_bin_search(b, key, &slot); 2949 if (ret < 0) 2950 goto done; 2951 2952 if (level == 0) { 2953 p->slots[level] = slot; 2954 unlock_up(p, level, lowest_unlock, 0, NULL); 2955 goto done; 2956 } 2957 2958 if (ret && slot > 0) { 2959 dec = 1; 2960 slot--; 2961 } 2962 p->slots[level] = slot; 2963 unlock_up(p, level, lowest_unlock, 0, NULL); 2964 2965 if (level == lowest_level) { 2966 if (dec) 2967 p->slots[level]++; 2968 goto done; 2969 } 2970 2971 err = read_block_for_search(root, p, &b, level, slot, key); 2972 if (err == -EAGAIN) 2973 goto again; 2974 if (err) { 2975 ret = err; 2976 goto done; 2977 } 2978 2979 level = btrfs_header_level(b); 2980 if (!btrfs_tree_read_lock_atomic(b)) { 2981 btrfs_set_path_blocking(p); 2982 btrfs_tree_read_lock(b); 2983 } 2984 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 2985 if (!b) { 2986 ret = -ENOMEM; 2987 goto done; 2988 } 2989 p->locks[level] = BTRFS_READ_LOCK; 2990 p->nodes[level] = b; 2991 } 2992 ret = 1; 2993 done: 2994 if (!p->leave_spinning) 2995 btrfs_set_path_blocking(p); 2996 if (ret < 0) 2997 btrfs_release_path(p); 2998 2999 return ret; 3000 } 3001 3002 /* 3003 * helper to use instead of search slot if no exact match is needed but 3004 * instead the next or previous item should be returned. 3005 * When find_higher is true, the next higher item is returned, the next lower 3006 * otherwise. 3007 * When return_any and find_higher are both true, and no higher item is found, 3008 * return the next lower instead. 3009 * When return_any is true and find_higher is false, and no lower item is found, 3010 * return the next higher instead. 3011 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3012 * < 0 on error 3013 */ 3014 int btrfs_search_slot_for_read(struct btrfs_root *root, 3015 const struct btrfs_key *key, 3016 struct btrfs_path *p, int find_higher, 3017 int return_any) 3018 { 3019 int ret; 3020 struct extent_buffer *leaf; 3021 3022 again: 3023 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3024 if (ret <= 0) 3025 return ret; 3026 /* 3027 * a return value of 1 means the path is at the position where the 3028 * item should be inserted. Normally this is the next bigger item, 3029 * but in case the previous item is the last in a leaf, path points 3030 * to the first free slot in the previous leaf, i.e. at an invalid 3031 * item. 3032 */ 3033 leaf = p->nodes[0]; 3034 3035 if (find_higher) { 3036 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3037 ret = btrfs_next_leaf(root, p); 3038 if (ret <= 0) 3039 return ret; 3040 if (!return_any) 3041 return 1; 3042 /* 3043 * no higher item found, return the next 3044 * lower instead 3045 */ 3046 return_any = 0; 3047 find_higher = 0; 3048 btrfs_release_path(p); 3049 goto again; 3050 } 3051 } else { 3052 if (p->slots[0] == 0) { 3053 ret = btrfs_prev_leaf(root, p); 3054 if (ret < 0) 3055 return ret; 3056 if (!ret) { 3057 leaf = p->nodes[0]; 3058 if (p->slots[0] == btrfs_header_nritems(leaf)) 3059 p->slots[0]--; 3060 return 0; 3061 } 3062 if (!return_any) 3063 return 1; 3064 /* 3065 * no lower item found, return the next 3066 * higher instead 3067 */ 3068 return_any = 0; 3069 find_higher = 1; 3070 btrfs_release_path(p); 3071 goto again; 3072 } else { 3073 --p->slots[0]; 3074 } 3075 } 3076 return 0; 3077 } 3078 3079 /* 3080 * adjust the pointers going up the tree, starting at level 3081 * making sure the right key of each node is points to 'key'. 3082 * This is used after shifting pointers to the left, so it stops 3083 * fixing up pointers when a given leaf/node is not in slot 0 of the 3084 * higher levels 3085 * 3086 */ 3087 static void fixup_low_keys(struct btrfs_path *path, 3088 struct btrfs_disk_key *key, int level) 3089 { 3090 int i; 3091 struct extent_buffer *t; 3092 int ret; 3093 3094 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3095 int tslot = path->slots[i]; 3096 3097 if (!path->nodes[i]) 3098 break; 3099 t = path->nodes[i]; 3100 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3101 GFP_ATOMIC); 3102 BUG_ON(ret < 0); 3103 btrfs_set_node_key(t, key, tslot); 3104 btrfs_mark_buffer_dirty(path->nodes[i]); 3105 if (tslot != 0) 3106 break; 3107 } 3108 } 3109 3110 /* 3111 * update item key. 3112 * 3113 * This function isn't completely safe. It's the caller's responsibility 3114 * that the new key won't break the order 3115 */ 3116 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3117 struct btrfs_path *path, 3118 const struct btrfs_key *new_key) 3119 { 3120 struct btrfs_disk_key disk_key; 3121 struct extent_buffer *eb; 3122 int slot; 3123 3124 eb = path->nodes[0]; 3125 slot = path->slots[0]; 3126 if (slot > 0) { 3127 btrfs_item_key(eb, &disk_key, slot - 1); 3128 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 3129 btrfs_crit(fs_info, 3130 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3131 slot, btrfs_disk_key_objectid(&disk_key), 3132 btrfs_disk_key_type(&disk_key), 3133 btrfs_disk_key_offset(&disk_key), 3134 new_key->objectid, new_key->type, 3135 new_key->offset); 3136 btrfs_print_leaf(eb); 3137 BUG(); 3138 } 3139 } 3140 if (slot < btrfs_header_nritems(eb) - 1) { 3141 btrfs_item_key(eb, &disk_key, slot + 1); 3142 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 3143 btrfs_crit(fs_info, 3144 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3145 slot, btrfs_disk_key_objectid(&disk_key), 3146 btrfs_disk_key_type(&disk_key), 3147 btrfs_disk_key_offset(&disk_key), 3148 new_key->objectid, new_key->type, 3149 new_key->offset); 3150 btrfs_print_leaf(eb); 3151 BUG(); 3152 } 3153 } 3154 3155 btrfs_cpu_key_to_disk(&disk_key, new_key); 3156 btrfs_set_item_key(eb, &disk_key, slot); 3157 btrfs_mark_buffer_dirty(eb); 3158 if (slot == 0) 3159 fixup_low_keys(path, &disk_key, 1); 3160 } 3161 3162 /* 3163 * try to push data from one node into the next node left in the 3164 * tree. 3165 * 3166 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3167 * error, and > 0 if there was no room in the left hand block. 3168 */ 3169 static int push_node_left(struct btrfs_trans_handle *trans, 3170 struct extent_buffer *dst, 3171 struct extent_buffer *src, int empty) 3172 { 3173 struct btrfs_fs_info *fs_info = trans->fs_info; 3174 int push_items = 0; 3175 int src_nritems; 3176 int dst_nritems; 3177 int ret = 0; 3178 3179 src_nritems = btrfs_header_nritems(src); 3180 dst_nritems = btrfs_header_nritems(dst); 3181 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3182 WARN_ON(btrfs_header_generation(src) != trans->transid); 3183 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3184 3185 if (!empty && src_nritems <= 8) 3186 return 1; 3187 3188 if (push_items <= 0) 3189 return 1; 3190 3191 if (empty) { 3192 push_items = min(src_nritems, push_items); 3193 if (push_items < src_nritems) { 3194 /* leave at least 8 pointers in the node if 3195 * we aren't going to empty it 3196 */ 3197 if (src_nritems - push_items < 8) { 3198 if (push_items <= 8) 3199 return 1; 3200 push_items -= 8; 3201 } 3202 } 3203 } else 3204 push_items = min(src_nritems - 8, push_items); 3205 3206 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 3207 if (ret) { 3208 btrfs_abort_transaction(trans, ret); 3209 return ret; 3210 } 3211 copy_extent_buffer(dst, src, 3212 btrfs_node_key_ptr_offset(dst_nritems), 3213 btrfs_node_key_ptr_offset(0), 3214 push_items * sizeof(struct btrfs_key_ptr)); 3215 3216 if (push_items < src_nritems) { 3217 /* 3218 * Don't call tree_mod_log_insert_move here, key removal was 3219 * already fully logged by tree_mod_log_eb_copy above. 3220 */ 3221 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3222 btrfs_node_key_ptr_offset(push_items), 3223 (src_nritems - push_items) * 3224 sizeof(struct btrfs_key_ptr)); 3225 } 3226 btrfs_set_header_nritems(src, src_nritems - push_items); 3227 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3228 btrfs_mark_buffer_dirty(src); 3229 btrfs_mark_buffer_dirty(dst); 3230 3231 return ret; 3232 } 3233 3234 /* 3235 * try to push data from one node into the next node right in the 3236 * tree. 3237 * 3238 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3239 * error, and > 0 if there was no room in the right hand block. 3240 * 3241 * this will only push up to 1/2 the contents of the left node over 3242 */ 3243 static int balance_node_right(struct btrfs_trans_handle *trans, 3244 struct extent_buffer *dst, 3245 struct extent_buffer *src) 3246 { 3247 struct btrfs_fs_info *fs_info = trans->fs_info; 3248 int push_items = 0; 3249 int max_push; 3250 int src_nritems; 3251 int dst_nritems; 3252 int ret = 0; 3253 3254 WARN_ON(btrfs_header_generation(src) != trans->transid); 3255 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3256 3257 src_nritems = btrfs_header_nritems(src); 3258 dst_nritems = btrfs_header_nritems(dst); 3259 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3260 if (push_items <= 0) 3261 return 1; 3262 3263 if (src_nritems < 4) 3264 return 1; 3265 3266 max_push = src_nritems / 2 + 1; 3267 /* don't try to empty the node */ 3268 if (max_push >= src_nritems) 3269 return 1; 3270 3271 if (max_push < push_items) 3272 push_items = max_push; 3273 3274 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3275 BUG_ON(ret < 0); 3276 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3277 btrfs_node_key_ptr_offset(0), 3278 (dst_nritems) * 3279 sizeof(struct btrfs_key_ptr)); 3280 3281 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 3282 push_items); 3283 if (ret) { 3284 btrfs_abort_transaction(trans, ret); 3285 return ret; 3286 } 3287 copy_extent_buffer(dst, src, 3288 btrfs_node_key_ptr_offset(0), 3289 btrfs_node_key_ptr_offset(src_nritems - push_items), 3290 push_items * sizeof(struct btrfs_key_ptr)); 3291 3292 btrfs_set_header_nritems(src, src_nritems - push_items); 3293 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3294 3295 btrfs_mark_buffer_dirty(src); 3296 btrfs_mark_buffer_dirty(dst); 3297 3298 return ret; 3299 } 3300 3301 /* 3302 * helper function to insert a new root level in the tree. 3303 * A new node is allocated, and a single item is inserted to 3304 * point to the existing root 3305 * 3306 * returns zero on success or < 0 on failure. 3307 */ 3308 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3309 struct btrfs_root *root, 3310 struct btrfs_path *path, int level) 3311 { 3312 struct btrfs_fs_info *fs_info = root->fs_info; 3313 u64 lower_gen; 3314 struct extent_buffer *lower; 3315 struct extent_buffer *c; 3316 struct extent_buffer *old; 3317 struct btrfs_disk_key lower_key; 3318 int ret; 3319 3320 BUG_ON(path->nodes[level]); 3321 BUG_ON(path->nodes[level-1] != root->node); 3322 3323 lower = path->nodes[level-1]; 3324 if (level == 1) 3325 btrfs_item_key(lower, &lower_key, 0); 3326 else 3327 btrfs_node_key(lower, &lower_key, 0); 3328 3329 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level, 3330 root->node->start, 0); 3331 if (IS_ERR(c)) 3332 return PTR_ERR(c); 3333 3334 root_add_used(root, fs_info->nodesize); 3335 3336 btrfs_set_header_nritems(c, 1); 3337 btrfs_set_node_key(c, &lower_key, 0); 3338 btrfs_set_node_blockptr(c, 0, lower->start); 3339 lower_gen = btrfs_header_generation(lower); 3340 WARN_ON(lower_gen != trans->transid); 3341 3342 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3343 3344 btrfs_mark_buffer_dirty(c); 3345 3346 old = root->node; 3347 ret = tree_mod_log_insert_root(root->node, c, 0); 3348 BUG_ON(ret < 0); 3349 rcu_assign_pointer(root->node, c); 3350 3351 /* the super has an extra ref to root->node */ 3352 free_extent_buffer(old); 3353 3354 add_root_to_dirty_list(root); 3355 atomic_inc(&c->refs); 3356 path->nodes[level] = c; 3357 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3358 path->slots[level] = 0; 3359 return 0; 3360 } 3361 3362 /* 3363 * worker function to insert a single pointer in a node. 3364 * the node should have enough room for the pointer already 3365 * 3366 * slot and level indicate where you want the key to go, and 3367 * blocknr is the block the key points to. 3368 */ 3369 static void insert_ptr(struct btrfs_trans_handle *trans, 3370 struct btrfs_path *path, 3371 struct btrfs_disk_key *key, u64 bytenr, 3372 int slot, int level) 3373 { 3374 struct extent_buffer *lower; 3375 int nritems; 3376 int ret; 3377 3378 BUG_ON(!path->nodes[level]); 3379 btrfs_assert_tree_locked(path->nodes[level]); 3380 lower = path->nodes[level]; 3381 nritems = btrfs_header_nritems(lower); 3382 BUG_ON(slot > nritems); 3383 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 3384 if (slot != nritems) { 3385 if (level) { 3386 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3387 nritems - slot); 3388 BUG_ON(ret < 0); 3389 } 3390 memmove_extent_buffer(lower, 3391 btrfs_node_key_ptr_offset(slot + 1), 3392 btrfs_node_key_ptr_offset(slot), 3393 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3394 } 3395 if (level) { 3396 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3397 GFP_NOFS); 3398 BUG_ON(ret < 0); 3399 } 3400 btrfs_set_node_key(lower, key, slot); 3401 btrfs_set_node_blockptr(lower, slot, bytenr); 3402 WARN_ON(trans->transid == 0); 3403 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3404 btrfs_set_header_nritems(lower, nritems + 1); 3405 btrfs_mark_buffer_dirty(lower); 3406 } 3407 3408 /* 3409 * split the node at the specified level in path in two. 3410 * The path is corrected to point to the appropriate node after the split 3411 * 3412 * Before splitting this tries to make some room in the node by pushing 3413 * left and right, if either one works, it returns right away. 3414 * 3415 * returns 0 on success and < 0 on failure 3416 */ 3417 static noinline int split_node(struct btrfs_trans_handle *trans, 3418 struct btrfs_root *root, 3419 struct btrfs_path *path, int level) 3420 { 3421 struct btrfs_fs_info *fs_info = root->fs_info; 3422 struct extent_buffer *c; 3423 struct extent_buffer *split; 3424 struct btrfs_disk_key disk_key; 3425 int mid; 3426 int ret; 3427 u32 c_nritems; 3428 3429 c = path->nodes[level]; 3430 WARN_ON(btrfs_header_generation(c) != trans->transid); 3431 if (c == root->node) { 3432 /* 3433 * trying to split the root, lets make a new one 3434 * 3435 * tree mod log: We don't log_removal old root in 3436 * insert_new_root, because that root buffer will be kept as a 3437 * normal node. We are going to log removal of half of the 3438 * elements below with tree_mod_log_eb_copy. We're holding a 3439 * tree lock on the buffer, which is why we cannot race with 3440 * other tree_mod_log users. 3441 */ 3442 ret = insert_new_root(trans, root, path, level + 1); 3443 if (ret) 3444 return ret; 3445 } else { 3446 ret = push_nodes_for_insert(trans, root, path, level); 3447 c = path->nodes[level]; 3448 if (!ret && btrfs_header_nritems(c) < 3449 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3450 return 0; 3451 if (ret < 0) 3452 return ret; 3453 } 3454 3455 c_nritems = btrfs_header_nritems(c); 3456 mid = (c_nritems + 1) / 2; 3457 btrfs_node_key(c, &disk_key, mid); 3458 3459 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level, 3460 c->start, 0); 3461 if (IS_ERR(split)) 3462 return PTR_ERR(split); 3463 3464 root_add_used(root, fs_info->nodesize); 3465 ASSERT(btrfs_header_level(c) == level); 3466 3467 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3468 if (ret) { 3469 btrfs_abort_transaction(trans, ret); 3470 return ret; 3471 } 3472 copy_extent_buffer(split, c, 3473 btrfs_node_key_ptr_offset(0), 3474 btrfs_node_key_ptr_offset(mid), 3475 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3476 btrfs_set_header_nritems(split, c_nritems - mid); 3477 btrfs_set_header_nritems(c, mid); 3478 ret = 0; 3479 3480 btrfs_mark_buffer_dirty(c); 3481 btrfs_mark_buffer_dirty(split); 3482 3483 insert_ptr(trans, path, &disk_key, split->start, 3484 path->slots[level + 1] + 1, level + 1); 3485 3486 if (path->slots[level] >= mid) { 3487 path->slots[level] -= mid; 3488 btrfs_tree_unlock(c); 3489 free_extent_buffer(c); 3490 path->nodes[level] = split; 3491 path->slots[level + 1] += 1; 3492 } else { 3493 btrfs_tree_unlock(split); 3494 free_extent_buffer(split); 3495 } 3496 return ret; 3497 } 3498 3499 /* 3500 * how many bytes are required to store the items in a leaf. start 3501 * and nr indicate which items in the leaf to check. This totals up the 3502 * space used both by the item structs and the item data 3503 */ 3504 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3505 { 3506 struct btrfs_item *start_item; 3507 struct btrfs_item *end_item; 3508 int data_len; 3509 int nritems = btrfs_header_nritems(l); 3510 int end = min(nritems, start + nr) - 1; 3511 3512 if (!nr) 3513 return 0; 3514 start_item = btrfs_item_nr(start); 3515 end_item = btrfs_item_nr(end); 3516 data_len = btrfs_item_offset(l, start_item) + 3517 btrfs_item_size(l, start_item); 3518 data_len = data_len - btrfs_item_offset(l, end_item); 3519 data_len += sizeof(struct btrfs_item) * nr; 3520 WARN_ON(data_len < 0); 3521 return data_len; 3522 } 3523 3524 /* 3525 * The space between the end of the leaf items and 3526 * the start of the leaf data. IOW, how much room 3527 * the leaf has left for both items and data 3528 */ 3529 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 3530 { 3531 struct btrfs_fs_info *fs_info = leaf->fs_info; 3532 int nritems = btrfs_header_nritems(leaf); 3533 int ret; 3534 3535 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3536 if (ret < 0) { 3537 btrfs_crit(fs_info, 3538 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3539 ret, 3540 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3541 leaf_space_used(leaf, 0, nritems), nritems); 3542 } 3543 return ret; 3544 } 3545 3546 /* 3547 * min slot controls the lowest index we're willing to push to the 3548 * right. We'll push up to and including min_slot, but no lower 3549 */ 3550 static noinline int __push_leaf_right(struct btrfs_path *path, 3551 int data_size, int empty, 3552 struct extent_buffer *right, 3553 int free_space, u32 left_nritems, 3554 u32 min_slot) 3555 { 3556 struct btrfs_fs_info *fs_info = right->fs_info; 3557 struct extent_buffer *left = path->nodes[0]; 3558 struct extent_buffer *upper = path->nodes[1]; 3559 struct btrfs_map_token token; 3560 struct btrfs_disk_key disk_key; 3561 int slot; 3562 u32 i; 3563 int push_space = 0; 3564 int push_items = 0; 3565 struct btrfs_item *item; 3566 u32 nr; 3567 u32 right_nritems; 3568 u32 data_end; 3569 u32 this_item_size; 3570 3571 if (empty) 3572 nr = 0; 3573 else 3574 nr = max_t(u32, 1, min_slot); 3575 3576 if (path->slots[0] >= left_nritems) 3577 push_space += data_size; 3578 3579 slot = path->slots[1]; 3580 i = left_nritems - 1; 3581 while (i >= nr) { 3582 item = btrfs_item_nr(i); 3583 3584 if (!empty && push_items > 0) { 3585 if (path->slots[0] > i) 3586 break; 3587 if (path->slots[0] == i) { 3588 int space = btrfs_leaf_free_space(left); 3589 3590 if (space + push_space * 2 > free_space) 3591 break; 3592 } 3593 } 3594 3595 if (path->slots[0] == i) 3596 push_space += data_size; 3597 3598 this_item_size = btrfs_item_size(left, item); 3599 if (this_item_size + sizeof(*item) + push_space > free_space) 3600 break; 3601 3602 push_items++; 3603 push_space += this_item_size + sizeof(*item); 3604 if (i == 0) 3605 break; 3606 i--; 3607 } 3608 3609 if (push_items == 0) 3610 goto out_unlock; 3611 3612 WARN_ON(!empty && push_items == left_nritems); 3613 3614 /* push left to right */ 3615 right_nritems = btrfs_header_nritems(right); 3616 3617 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3618 push_space -= leaf_data_end(left); 3619 3620 /* make room in the right data area */ 3621 data_end = leaf_data_end(right); 3622 memmove_extent_buffer(right, 3623 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3624 BTRFS_LEAF_DATA_OFFSET + data_end, 3625 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3626 3627 /* copy from the left data area */ 3628 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3629 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3630 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 3631 push_space); 3632 3633 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3634 btrfs_item_nr_offset(0), 3635 right_nritems * sizeof(struct btrfs_item)); 3636 3637 /* copy the items from left to right */ 3638 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3639 btrfs_item_nr_offset(left_nritems - push_items), 3640 push_items * sizeof(struct btrfs_item)); 3641 3642 /* update the item pointers */ 3643 btrfs_init_map_token(&token, right); 3644 right_nritems += push_items; 3645 btrfs_set_header_nritems(right, right_nritems); 3646 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3647 for (i = 0; i < right_nritems; i++) { 3648 item = btrfs_item_nr(i); 3649 push_space -= btrfs_token_item_size(&token, item); 3650 btrfs_set_token_item_offset(&token, item, push_space); 3651 } 3652 3653 left_nritems -= push_items; 3654 btrfs_set_header_nritems(left, left_nritems); 3655 3656 if (left_nritems) 3657 btrfs_mark_buffer_dirty(left); 3658 else 3659 btrfs_clean_tree_block(left); 3660 3661 btrfs_mark_buffer_dirty(right); 3662 3663 btrfs_item_key(right, &disk_key, 0); 3664 btrfs_set_node_key(upper, &disk_key, slot + 1); 3665 btrfs_mark_buffer_dirty(upper); 3666 3667 /* then fixup the leaf pointer in the path */ 3668 if (path->slots[0] >= left_nritems) { 3669 path->slots[0] -= left_nritems; 3670 if (btrfs_header_nritems(path->nodes[0]) == 0) 3671 btrfs_clean_tree_block(path->nodes[0]); 3672 btrfs_tree_unlock(path->nodes[0]); 3673 free_extent_buffer(path->nodes[0]); 3674 path->nodes[0] = right; 3675 path->slots[1] += 1; 3676 } else { 3677 btrfs_tree_unlock(right); 3678 free_extent_buffer(right); 3679 } 3680 return 0; 3681 3682 out_unlock: 3683 btrfs_tree_unlock(right); 3684 free_extent_buffer(right); 3685 return 1; 3686 } 3687 3688 /* 3689 * push some data in the path leaf to the right, trying to free up at 3690 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3691 * 3692 * returns 1 if the push failed because the other node didn't have enough 3693 * room, 0 if everything worked out and < 0 if there were major errors. 3694 * 3695 * this will push starting from min_slot to the end of the leaf. It won't 3696 * push any slot lower than min_slot 3697 */ 3698 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3699 *root, struct btrfs_path *path, 3700 int min_data_size, int data_size, 3701 int empty, u32 min_slot) 3702 { 3703 struct extent_buffer *left = path->nodes[0]; 3704 struct extent_buffer *right; 3705 struct extent_buffer *upper; 3706 int slot; 3707 int free_space; 3708 u32 left_nritems; 3709 int ret; 3710 3711 if (!path->nodes[1]) 3712 return 1; 3713 3714 slot = path->slots[1]; 3715 upper = path->nodes[1]; 3716 if (slot >= btrfs_header_nritems(upper) - 1) 3717 return 1; 3718 3719 btrfs_assert_tree_locked(path->nodes[1]); 3720 3721 right = btrfs_read_node_slot(upper, slot + 1); 3722 /* 3723 * slot + 1 is not valid or we fail to read the right node, 3724 * no big deal, just return. 3725 */ 3726 if (IS_ERR(right)) 3727 return 1; 3728 3729 btrfs_tree_lock(right); 3730 btrfs_set_lock_blocking_write(right); 3731 3732 free_space = btrfs_leaf_free_space(right); 3733 if (free_space < data_size) 3734 goto out_unlock; 3735 3736 /* cow and double check */ 3737 ret = btrfs_cow_block(trans, root, right, upper, 3738 slot + 1, &right); 3739 if (ret) 3740 goto out_unlock; 3741 3742 free_space = btrfs_leaf_free_space(right); 3743 if (free_space < data_size) 3744 goto out_unlock; 3745 3746 left_nritems = btrfs_header_nritems(left); 3747 if (left_nritems == 0) 3748 goto out_unlock; 3749 3750 if (path->slots[0] == left_nritems && !empty) { 3751 /* Key greater than all keys in the leaf, right neighbor has 3752 * enough room for it and we're not emptying our leaf to delete 3753 * it, therefore use right neighbor to insert the new item and 3754 * no need to touch/dirty our left leaf. */ 3755 btrfs_tree_unlock(left); 3756 free_extent_buffer(left); 3757 path->nodes[0] = right; 3758 path->slots[0] = 0; 3759 path->slots[1]++; 3760 return 0; 3761 } 3762 3763 return __push_leaf_right(path, min_data_size, empty, 3764 right, free_space, left_nritems, min_slot); 3765 out_unlock: 3766 btrfs_tree_unlock(right); 3767 free_extent_buffer(right); 3768 return 1; 3769 } 3770 3771 /* 3772 * push some data in the path leaf to the left, trying to free up at 3773 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3774 * 3775 * max_slot can put a limit on how far into the leaf we'll push items. The 3776 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3777 * items 3778 */ 3779 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 3780 int empty, struct extent_buffer *left, 3781 int free_space, u32 right_nritems, 3782 u32 max_slot) 3783 { 3784 struct btrfs_fs_info *fs_info = left->fs_info; 3785 struct btrfs_disk_key disk_key; 3786 struct extent_buffer *right = path->nodes[0]; 3787 int i; 3788 int push_space = 0; 3789 int push_items = 0; 3790 struct btrfs_item *item; 3791 u32 old_left_nritems; 3792 u32 nr; 3793 int ret = 0; 3794 u32 this_item_size; 3795 u32 old_left_item_size; 3796 struct btrfs_map_token token; 3797 3798 if (empty) 3799 nr = min(right_nritems, max_slot); 3800 else 3801 nr = min(right_nritems - 1, max_slot); 3802 3803 for (i = 0; i < nr; i++) { 3804 item = btrfs_item_nr(i); 3805 3806 if (!empty && push_items > 0) { 3807 if (path->slots[0] < i) 3808 break; 3809 if (path->slots[0] == i) { 3810 int space = btrfs_leaf_free_space(right); 3811 3812 if (space + push_space * 2 > free_space) 3813 break; 3814 } 3815 } 3816 3817 if (path->slots[0] == i) 3818 push_space += data_size; 3819 3820 this_item_size = btrfs_item_size(right, item); 3821 if (this_item_size + sizeof(*item) + push_space > free_space) 3822 break; 3823 3824 push_items++; 3825 push_space += this_item_size + sizeof(*item); 3826 } 3827 3828 if (push_items == 0) { 3829 ret = 1; 3830 goto out; 3831 } 3832 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3833 3834 /* push data from right to left */ 3835 copy_extent_buffer(left, right, 3836 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3837 btrfs_item_nr_offset(0), 3838 push_items * sizeof(struct btrfs_item)); 3839 3840 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3841 btrfs_item_offset_nr(right, push_items - 1); 3842 3843 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3844 leaf_data_end(left) - push_space, 3845 BTRFS_LEAF_DATA_OFFSET + 3846 btrfs_item_offset_nr(right, push_items - 1), 3847 push_space); 3848 old_left_nritems = btrfs_header_nritems(left); 3849 BUG_ON(old_left_nritems <= 0); 3850 3851 btrfs_init_map_token(&token, left); 3852 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3853 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3854 u32 ioff; 3855 3856 item = btrfs_item_nr(i); 3857 3858 ioff = btrfs_token_item_offset(&token, item); 3859 btrfs_set_token_item_offset(&token, item, 3860 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 3861 } 3862 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3863 3864 /* fixup right node */ 3865 if (push_items > right_nritems) 3866 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3867 right_nritems); 3868 3869 if (push_items < right_nritems) { 3870 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3871 leaf_data_end(right); 3872 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3873 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3874 BTRFS_LEAF_DATA_OFFSET + 3875 leaf_data_end(right), push_space); 3876 3877 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3878 btrfs_item_nr_offset(push_items), 3879 (btrfs_header_nritems(right) - push_items) * 3880 sizeof(struct btrfs_item)); 3881 } 3882 3883 btrfs_init_map_token(&token, right); 3884 right_nritems -= push_items; 3885 btrfs_set_header_nritems(right, right_nritems); 3886 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3887 for (i = 0; i < right_nritems; i++) { 3888 item = btrfs_item_nr(i); 3889 3890 push_space = push_space - btrfs_token_item_size(&token, item); 3891 btrfs_set_token_item_offset(&token, item, push_space); 3892 } 3893 3894 btrfs_mark_buffer_dirty(left); 3895 if (right_nritems) 3896 btrfs_mark_buffer_dirty(right); 3897 else 3898 btrfs_clean_tree_block(right); 3899 3900 btrfs_item_key(right, &disk_key, 0); 3901 fixup_low_keys(path, &disk_key, 1); 3902 3903 /* then fixup the leaf pointer in the path */ 3904 if (path->slots[0] < push_items) { 3905 path->slots[0] += old_left_nritems; 3906 btrfs_tree_unlock(path->nodes[0]); 3907 free_extent_buffer(path->nodes[0]); 3908 path->nodes[0] = left; 3909 path->slots[1] -= 1; 3910 } else { 3911 btrfs_tree_unlock(left); 3912 free_extent_buffer(left); 3913 path->slots[0] -= push_items; 3914 } 3915 BUG_ON(path->slots[0] < 0); 3916 return ret; 3917 out: 3918 btrfs_tree_unlock(left); 3919 free_extent_buffer(left); 3920 return ret; 3921 } 3922 3923 /* 3924 * push some data in the path leaf to the left, trying to free up at 3925 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3926 * 3927 * max_slot can put a limit on how far into the leaf we'll push items. The 3928 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3929 * items 3930 */ 3931 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3932 *root, struct btrfs_path *path, int min_data_size, 3933 int data_size, int empty, u32 max_slot) 3934 { 3935 struct extent_buffer *right = path->nodes[0]; 3936 struct extent_buffer *left; 3937 int slot; 3938 int free_space; 3939 u32 right_nritems; 3940 int ret = 0; 3941 3942 slot = path->slots[1]; 3943 if (slot == 0) 3944 return 1; 3945 if (!path->nodes[1]) 3946 return 1; 3947 3948 right_nritems = btrfs_header_nritems(right); 3949 if (right_nritems == 0) 3950 return 1; 3951 3952 btrfs_assert_tree_locked(path->nodes[1]); 3953 3954 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3955 /* 3956 * slot - 1 is not valid or we fail to read the left node, 3957 * no big deal, just return. 3958 */ 3959 if (IS_ERR(left)) 3960 return 1; 3961 3962 btrfs_tree_lock(left); 3963 btrfs_set_lock_blocking_write(left); 3964 3965 free_space = btrfs_leaf_free_space(left); 3966 if (free_space < data_size) { 3967 ret = 1; 3968 goto out; 3969 } 3970 3971 /* cow and double check */ 3972 ret = btrfs_cow_block(trans, root, left, 3973 path->nodes[1], slot - 1, &left); 3974 if (ret) { 3975 /* we hit -ENOSPC, but it isn't fatal here */ 3976 if (ret == -ENOSPC) 3977 ret = 1; 3978 goto out; 3979 } 3980 3981 free_space = btrfs_leaf_free_space(left); 3982 if (free_space < data_size) { 3983 ret = 1; 3984 goto out; 3985 } 3986 3987 return __push_leaf_left(path, min_data_size, 3988 empty, left, free_space, right_nritems, 3989 max_slot); 3990 out: 3991 btrfs_tree_unlock(left); 3992 free_extent_buffer(left); 3993 return ret; 3994 } 3995 3996 /* 3997 * split the path's leaf in two, making sure there is at least data_size 3998 * available for the resulting leaf level of the path. 3999 */ 4000 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4001 struct btrfs_path *path, 4002 struct extent_buffer *l, 4003 struct extent_buffer *right, 4004 int slot, int mid, int nritems) 4005 { 4006 struct btrfs_fs_info *fs_info = trans->fs_info; 4007 int data_copy_size; 4008 int rt_data_off; 4009 int i; 4010 struct btrfs_disk_key disk_key; 4011 struct btrfs_map_token token; 4012 4013 nritems = nritems - mid; 4014 btrfs_set_header_nritems(right, nritems); 4015 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 4016 4017 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4018 btrfs_item_nr_offset(mid), 4019 nritems * sizeof(struct btrfs_item)); 4020 4021 copy_extent_buffer(right, l, 4022 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4023 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4024 leaf_data_end(l), data_copy_size); 4025 4026 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4027 4028 btrfs_init_map_token(&token, right); 4029 for (i = 0; i < nritems; i++) { 4030 struct btrfs_item *item = btrfs_item_nr(i); 4031 u32 ioff; 4032 4033 ioff = btrfs_token_item_offset(&token, item); 4034 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off); 4035 } 4036 4037 btrfs_set_header_nritems(l, mid); 4038 btrfs_item_key(right, &disk_key, 0); 4039 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 4040 4041 btrfs_mark_buffer_dirty(right); 4042 btrfs_mark_buffer_dirty(l); 4043 BUG_ON(path->slots[0] != slot); 4044 4045 if (mid <= slot) { 4046 btrfs_tree_unlock(path->nodes[0]); 4047 free_extent_buffer(path->nodes[0]); 4048 path->nodes[0] = right; 4049 path->slots[0] -= mid; 4050 path->slots[1] += 1; 4051 } else { 4052 btrfs_tree_unlock(right); 4053 free_extent_buffer(right); 4054 } 4055 4056 BUG_ON(path->slots[0] < 0); 4057 } 4058 4059 /* 4060 * double splits happen when we need to insert a big item in the middle 4061 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4062 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4063 * A B C 4064 * 4065 * We avoid this by trying to push the items on either side of our target 4066 * into the adjacent leaves. If all goes well we can avoid the double split 4067 * completely. 4068 */ 4069 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4070 struct btrfs_root *root, 4071 struct btrfs_path *path, 4072 int data_size) 4073 { 4074 int ret; 4075 int progress = 0; 4076 int slot; 4077 u32 nritems; 4078 int space_needed = data_size; 4079 4080 slot = path->slots[0]; 4081 if (slot < btrfs_header_nritems(path->nodes[0])) 4082 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4083 4084 /* 4085 * try to push all the items after our slot into the 4086 * right leaf 4087 */ 4088 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4089 if (ret < 0) 4090 return ret; 4091 4092 if (ret == 0) 4093 progress++; 4094 4095 nritems = btrfs_header_nritems(path->nodes[0]); 4096 /* 4097 * our goal is to get our slot at the start or end of a leaf. If 4098 * we've done so we're done 4099 */ 4100 if (path->slots[0] == 0 || path->slots[0] == nritems) 4101 return 0; 4102 4103 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4104 return 0; 4105 4106 /* try to push all the items before our slot into the next leaf */ 4107 slot = path->slots[0]; 4108 space_needed = data_size; 4109 if (slot > 0) 4110 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4111 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4112 if (ret < 0) 4113 return ret; 4114 4115 if (ret == 0) 4116 progress++; 4117 4118 if (progress) 4119 return 0; 4120 return 1; 4121 } 4122 4123 /* 4124 * split the path's leaf in two, making sure there is at least data_size 4125 * available for the resulting leaf level of the path. 4126 * 4127 * returns 0 if all went well and < 0 on failure. 4128 */ 4129 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4130 struct btrfs_root *root, 4131 const struct btrfs_key *ins_key, 4132 struct btrfs_path *path, int data_size, 4133 int extend) 4134 { 4135 struct btrfs_disk_key disk_key; 4136 struct extent_buffer *l; 4137 u32 nritems; 4138 int mid; 4139 int slot; 4140 struct extent_buffer *right; 4141 struct btrfs_fs_info *fs_info = root->fs_info; 4142 int ret = 0; 4143 int wret; 4144 int split; 4145 int num_doubles = 0; 4146 int tried_avoid_double = 0; 4147 4148 l = path->nodes[0]; 4149 slot = path->slots[0]; 4150 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4151 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4152 return -EOVERFLOW; 4153 4154 /* first try to make some room by pushing left and right */ 4155 if (data_size && path->nodes[1]) { 4156 int space_needed = data_size; 4157 4158 if (slot < btrfs_header_nritems(l)) 4159 space_needed -= btrfs_leaf_free_space(l); 4160 4161 wret = push_leaf_right(trans, root, path, space_needed, 4162 space_needed, 0, 0); 4163 if (wret < 0) 4164 return wret; 4165 if (wret) { 4166 space_needed = data_size; 4167 if (slot > 0) 4168 space_needed -= btrfs_leaf_free_space(l); 4169 wret = push_leaf_left(trans, root, path, space_needed, 4170 space_needed, 0, (u32)-1); 4171 if (wret < 0) 4172 return wret; 4173 } 4174 l = path->nodes[0]; 4175 4176 /* did the pushes work? */ 4177 if (btrfs_leaf_free_space(l) >= data_size) 4178 return 0; 4179 } 4180 4181 if (!path->nodes[1]) { 4182 ret = insert_new_root(trans, root, path, 1); 4183 if (ret) 4184 return ret; 4185 } 4186 again: 4187 split = 1; 4188 l = path->nodes[0]; 4189 slot = path->slots[0]; 4190 nritems = btrfs_header_nritems(l); 4191 mid = (nritems + 1) / 2; 4192 4193 if (mid <= slot) { 4194 if (nritems == 1 || 4195 leaf_space_used(l, mid, nritems - mid) + data_size > 4196 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4197 if (slot >= nritems) { 4198 split = 0; 4199 } else { 4200 mid = slot; 4201 if (mid != nritems && 4202 leaf_space_used(l, mid, nritems - mid) + 4203 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4204 if (data_size && !tried_avoid_double) 4205 goto push_for_double; 4206 split = 2; 4207 } 4208 } 4209 } 4210 } else { 4211 if (leaf_space_used(l, 0, mid) + data_size > 4212 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4213 if (!extend && data_size && slot == 0) { 4214 split = 0; 4215 } else if ((extend || !data_size) && slot == 0) { 4216 mid = 1; 4217 } else { 4218 mid = slot; 4219 if (mid != nritems && 4220 leaf_space_used(l, mid, nritems - mid) + 4221 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4222 if (data_size && !tried_avoid_double) 4223 goto push_for_double; 4224 split = 2; 4225 } 4226 } 4227 } 4228 } 4229 4230 if (split == 0) 4231 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4232 else 4233 btrfs_item_key(l, &disk_key, mid); 4234 4235 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0, 4236 l->start, 0); 4237 if (IS_ERR(right)) 4238 return PTR_ERR(right); 4239 4240 root_add_used(root, fs_info->nodesize); 4241 4242 if (split == 0) { 4243 if (mid <= slot) { 4244 btrfs_set_header_nritems(right, 0); 4245 insert_ptr(trans, path, &disk_key, 4246 right->start, path->slots[1] + 1, 1); 4247 btrfs_tree_unlock(path->nodes[0]); 4248 free_extent_buffer(path->nodes[0]); 4249 path->nodes[0] = right; 4250 path->slots[0] = 0; 4251 path->slots[1] += 1; 4252 } else { 4253 btrfs_set_header_nritems(right, 0); 4254 insert_ptr(trans, path, &disk_key, 4255 right->start, path->slots[1], 1); 4256 btrfs_tree_unlock(path->nodes[0]); 4257 free_extent_buffer(path->nodes[0]); 4258 path->nodes[0] = right; 4259 path->slots[0] = 0; 4260 if (path->slots[1] == 0) 4261 fixup_low_keys(path, &disk_key, 1); 4262 } 4263 /* 4264 * We create a new leaf 'right' for the required ins_len and 4265 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4266 * the content of ins_len to 'right'. 4267 */ 4268 return ret; 4269 } 4270 4271 copy_for_split(trans, path, l, right, slot, mid, nritems); 4272 4273 if (split == 2) { 4274 BUG_ON(num_doubles != 0); 4275 num_doubles++; 4276 goto again; 4277 } 4278 4279 return 0; 4280 4281 push_for_double: 4282 push_for_double_split(trans, root, path, data_size); 4283 tried_avoid_double = 1; 4284 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4285 return 0; 4286 goto again; 4287 } 4288 4289 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4290 struct btrfs_root *root, 4291 struct btrfs_path *path, int ins_len) 4292 { 4293 struct btrfs_key key; 4294 struct extent_buffer *leaf; 4295 struct btrfs_file_extent_item *fi; 4296 u64 extent_len = 0; 4297 u32 item_size; 4298 int ret; 4299 4300 leaf = path->nodes[0]; 4301 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4302 4303 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4304 key.type != BTRFS_EXTENT_CSUM_KEY); 4305 4306 if (btrfs_leaf_free_space(leaf) >= ins_len) 4307 return 0; 4308 4309 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4310 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4311 fi = btrfs_item_ptr(leaf, path->slots[0], 4312 struct btrfs_file_extent_item); 4313 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4314 } 4315 btrfs_release_path(path); 4316 4317 path->keep_locks = 1; 4318 path->search_for_split = 1; 4319 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4320 path->search_for_split = 0; 4321 if (ret > 0) 4322 ret = -EAGAIN; 4323 if (ret < 0) 4324 goto err; 4325 4326 ret = -EAGAIN; 4327 leaf = path->nodes[0]; 4328 /* if our item isn't there, return now */ 4329 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4330 goto err; 4331 4332 /* the leaf has changed, it now has room. return now */ 4333 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 4334 goto err; 4335 4336 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4337 fi = btrfs_item_ptr(leaf, path->slots[0], 4338 struct btrfs_file_extent_item); 4339 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4340 goto err; 4341 } 4342 4343 btrfs_set_path_blocking(path); 4344 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4345 if (ret) 4346 goto err; 4347 4348 path->keep_locks = 0; 4349 btrfs_unlock_up_safe(path, 1); 4350 return 0; 4351 err: 4352 path->keep_locks = 0; 4353 return ret; 4354 } 4355 4356 static noinline int split_item(struct btrfs_path *path, 4357 const struct btrfs_key *new_key, 4358 unsigned long split_offset) 4359 { 4360 struct extent_buffer *leaf; 4361 struct btrfs_item *item; 4362 struct btrfs_item *new_item; 4363 int slot; 4364 char *buf; 4365 u32 nritems; 4366 u32 item_size; 4367 u32 orig_offset; 4368 struct btrfs_disk_key disk_key; 4369 4370 leaf = path->nodes[0]; 4371 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 4372 4373 btrfs_set_path_blocking(path); 4374 4375 item = btrfs_item_nr(path->slots[0]); 4376 orig_offset = btrfs_item_offset(leaf, item); 4377 item_size = btrfs_item_size(leaf, item); 4378 4379 buf = kmalloc(item_size, GFP_NOFS); 4380 if (!buf) 4381 return -ENOMEM; 4382 4383 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4384 path->slots[0]), item_size); 4385 4386 slot = path->slots[0] + 1; 4387 nritems = btrfs_header_nritems(leaf); 4388 if (slot != nritems) { 4389 /* shift the items */ 4390 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4391 btrfs_item_nr_offset(slot), 4392 (nritems - slot) * sizeof(struct btrfs_item)); 4393 } 4394 4395 btrfs_cpu_key_to_disk(&disk_key, new_key); 4396 btrfs_set_item_key(leaf, &disk_key, slot); 4397 4398 new_item = btrfs_item_nr(slot); 4399 4400 btrfs_set_item_offset(leaf, new_item, orig_offset); 4401 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4402 4403 btrfs_set_item_offset(leaf, item, 4404 orig_offset + item_size - split_offset); 4405 btrfs_set_item_size(leaf, item, split_offset); 4406 4407 btrfs_set_header_nritems(leaf, nritems + 1); 4408 4409 /* write the data for the start of the original item */ 4410 write_extent_buffer(leaf, buf, 4411 btrfs_item_ptr_offset(leaf, path->slots[0]), 4412 split_offset); 4413 4414 /* write the data for the new item */ 4415 write_extent_buffer(leaf, buf + split_offset, 4416 btrfs_item_ptr_offset(leaf, slot), 4417 item_size - split_offset); 4418 btrfs_mark_buffer_dirty(leaf); 4419 4420 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 4421 kfree(buf); 4422 return 0; 4423 } 4424 4425 /* 4426 * This function splits a single item into two items, 4427 * giving 'new_key' to the new item and splitting the 4428 * old one at split_offset (from the start of the item). 4429 * 4430 * The path may be released by this operation. After 4431 * the split, the path is pointing to the old item. The 4432 * new item is going to be in the same node as the old one. 4433 * 4434 * Note, the item being split must be smaller enough to live alone on 4435 * a tree block with room for one extra struct btrfs_item 4436 * 4437 * This allows us to split the item in place, keeping a lock on the 4438 * leaf the entire time. 4439 */ 4440 int btrfs_split_item(struct btrfs_trans_handle *trans, 4441 struct btrfs_root *root, 4442 struct btrfs_path *path, 4443 const struct btrfs_key *new_key, 4444 unsigned long split_offset) 4445 { 4446 int ret; 4447 ret = setup_leaf_for_split(trans, root, path, 4448 sizeof(struct btrfs_item)); 4449 if (ret) 4450 return ret; 4451 4452 ret = split_item(path, new_key, split_offset); 4453 return ret; 4454 } 4455 4456 /* 4457 * This function duplicate a item, giving 'new_key' to the new item. 4458 * It guarantees both items live in the same tree leaf and the new item 4459 * is contiguous with the original item. 4460 * 4461 * This allows us to split file extent in place, keeping a lock on the 4462 * leaf the entire time. 4463 */ 4464 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4465 struct btrfs_root *root, 4466 struct btrfs_path *path, 4467 const struct btrfs_key *new_key) 4468 { 4469 struct extent_buffer *leaf; 4470 int ret; 4471 u32 item_size; 4472 4473 leaf = path->nodes[0]; 4474 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4475 ret = setup_leaf_for_split(trans, root, path, 4476 item_size + sizeof(struct btrfs_item)); 4477 if (ret) 4478 return ret; 4479 4480 path->slots[0]++; 4481 setup_items_for_insert(root, path, new_key, &item_size, 4482 item_size, item_size + 4483 sizeof(struct btrfs_item), 1); 4484 leaf = path->nodes[0]; 4485 memcpy_extent_buffer(leaf, 4486 btrfs_item_ptr_offset(leaf, path->slots[0]), 4487 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4488 item_size); 4489 return 0; 4490 } 4491 4492 /* 4493 * make the item pointed to by the path smaller. new_size indicates 4494 * how small to make it, and from_end tells us if we just chop bytes 4495 * off the end of the item or if we shift the item to chop bytes off 4496 * the front. 4497 */ 4498 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 4499 { 4500 int slot; 4501 struct extent_buffer *leaf; 4502 struct btrfs_item *item; 4503 u32 nritems; 4504 unsigned int data_end; 4505 unsigned int old_data_start; 4506 unsigned int old_size; 4507 unsigned int size_diff; 4508 int i; 4509 struct btrfs_map_token token; 4510 4511 leaf = path->nodes[0]; 4512 slot = path->slots[0]; 4513 4514 old_size = btrfs_item_size_nr(leaf, slot); 4515 if (old_size == new_size) 4516 return; 4517 4518 nritems = btrfs_header_nritems(leaf); 4519 data_end = leaf_data_end(leaf); 4520 4521 old_data_start = btrfs_item_offset_nr(leaf, slot); 4522 4523 size_diff = old_size - new_size; 4524 4525 BUG_ON(slot < 0); 4526 BUG_ON(slot >= nritems); 4527 4528 /* 4529 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4530 */ 4531 /* first correct the data pointers */ 4532 btrfs_init_map_token(&token, leaf); 4533 for (i = slot; i < nritems; i++) { 4534 u32 ioff; 4535 item = btrfs_item_nr(i); 4536 4537 ioff = btrfs_token_item_offset(&token, item); 4538 btrfs_set_token_item_offset(&token, item, ioff + size_diff); 4539 } 4540 4541 /* shift the data */ 4542 if (from_end) { 4543 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4544 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4545 data_end, old_data_start + new_size - data_end); 4546 } else { 4547 struct btrfs_disk_key disk_key; 4548 u64 offset; 4549 4550 btrfs_item_key(leaf, &disk_key, slot); 4551 4552 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4553 unsigned long ptr; 4554 struct btrfs_file_extent_item *fi; 4555 4556 fi = btrfs_item_ptr(leaf, slot, 4557 struct btrfs_file_extent_item); 4558 fi = (struct btrfs_file_extent_item *)( 4559 (unsigned long)fi - size_diff); 4560 4561 if (btrfs_file_extent_type(leaf, fi) == 4562 BTRFS_FILE_EXTENT_INLINE) { 4563 ptr = btrfs_item_ptr_offset(leaf, slot); 4564 memmove_extent_buffer(leaf, ptr, 4565 (unsigned long)fi, 4566 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4567 } 4568 } 4569 4570 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4571 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4572 data_end, old_data_start - data_end); 4573 4574 offset = btrfs_disk_key_offset(&disk_key); 4575 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4576 btrfs_set_item_key(leaf, &disk_key, slot); 4577 if (slot == 0) 4578 fixup_low_keys(path, &disk_key, 1); 4579 } 4580 4581 item = btrfs_item_nr(slot); 4582 btrfs_set_item_size(leaf, item, new_size); 4583 btrfs_mark_buffer_dirty(leaf); 4584 4585 if (btrfs_leaf_free_space(leaf) < 0) { 4586 btrfs_print_leaf(leaf); 4587 BUG(); 4588 } 4589 } 4590 4591 /* 4592 * make the item pointed to by the path bigger, data_size is the added size. 4593 */ 4594 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 4595 { 4596 int slot; 4597 struct extent_buffer *leaf; 4598 struct btrfs_item *item; 4599 u32 nritems; 4600 unsigned int data_end; 4601 unsigned int old_data; 4602 unsigned int old_size; 4603 int i; 4604 struct btrfs_map_token token; 4605 4606 leaf = path->nodes[0]; 4607 4608 nritems = btrfs_header_nritems(leaf); 4609 data_end = leaf_data_end(leaf); 4610 4611 if (btrfs_leaf_free_space(leaf) < data_size) { 4612 btrfs_print_leaf(leaf); 4613 BUG(); 4614 } 4615 slot = path->slots[0]; 4616 old_data = btrfs_item_end_nr(leaf, slot); 4617 4618 BUG_ON(slot < 0); 4619 if (slot >= nritems) { 4620 btrfs_print_leaf(leaf); 4621 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4622 slot, nritems); 4623 BUG(); 4624 } 4625 4626 /* 4627 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4628 */ 4629 /* first correct the data pointers */ 4630 btrfs_init_map_token(&token, leaf); 4631 for (i = slot; i < nritems; i++) { 4632 u32 ioff; 4633 item = btrfs_item_nr(i); 4634 4635 ioff = btrfs_token_item_offset(&token, item); 4636 btrfs_set_token_item_offset(&token, item, ioff - data_size); 4637 } 4638 4639 /* shift the data */ 4640 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4641 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4642 data_end, old_data - data_end); 4643 4644 data_end = old_data; 4645 old_size = btrfs_item_size_nr(leaf, slot); 4646 item = btrfs_item_nr(slot); 4647 btrfs_set_item_size(leaf, item, old_size + data_size); 4648 btrfs_mark_buffer_dirty(leaf); 4649 4650 if (btrfs_leaf_free_space(leaf) < 0) { 4651 btrfs_print_leaf(leaf); 4652 BUG(); 4653 } 4654 } 4655 4656 /* 4657 * this is a helper for btrfs_insert_empty_items, the main goal here is 4658 * to save stack depth by doing the bulk of the work in a function 4659 * that doesn't call btrfs_search_slot 4660 */ 4661 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4662 const struct btrfs_key *cpu_key, u32 *data_size, 4663 u32 total_data, u32 total_size, int nr) 4664 { 4665 struct btrfs_fs_info *fs_info = root->fs_info; 4666 struct btrfs_item *item; 4667 int i; 4668 u32 nritems; 4669 unsigned int data_end; 4670 struct btrfs_disk_key disk_key; 4671 struct extent_buffer *leaf; 4672 int slot; 4673 struct btrfs_map_token token; 4674 4675 if (path->slots[0] == 0) { 4676 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4677 fixup_low_keys(path, &disk_key, 1); 4678 } 4679 btrfs_unlock_up_safe(path, 1); 4680 4681 leaf = path->nodes[0]; 4682 slot = path->slots[0]; 4683 4684 nritems = btrfs_header_nritems(leaf); 4685 data_end = leaf_data_end(leaf); 4686 4687 if (btrfs_leaf_free_space(leaf) < total_size) { 4688 btrfs_print_leaf(leaf); 4689 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4690 total_size, btrfs_leaf_free_space(leaf)); 4691 BUG(); 4692 } 4693 4694 btrfs_init_map_token(&token, leaf); 4695 if (slot != nritems) { 4696 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4697 4698 if (old_data < data_end) { 4699 btrfs_print_leaf(leaf); 4700 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4701 slot, old_data, data_end); 4702 BUG(); 4703 } 4704 /* 4705 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4706 */ 4707 /* first correct the data pointers */ 4708 for (i = slot; i < nritems; i++) { 4709 u32 ioff; 4710 4711 item = btrfs_item_nr(i); 4712 ioff = btrfs_token_item_offset(&token, item); 4713 btrfs_set_token_item_offset(&token, item, 4714 ioff - total_data); 4715 } 4716 /* shift the items */ 4717 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4718 btrfs_item_nr_offset(slot), 4719 (nritems - slot) * sizeof(struct btrfs_item)); 4720 4721 /* shift the data */ 4722 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4723 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4724 data_end, old_data - data_end); 4725 data_end = old_data; 4726 } 4727 4728 /* setup the item for the new data */ 4729 for (i = 0; i < nr; i++) { 4730 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4731 btrfs_set_item_key(leaf, &disk_key, slot + i); 4732 item = btrfs_item_nr(slot + i); 4733 btrfs_set_token_item_offset(&token, item, data_end - data_size[i]); 4734 data_end -= data_size[i]; 4735 btrfs_set_token_item_size(&token, item, data_size[i]); 4736 } 4737 4738 btrfs_set_header_nritems(leaf, nritems + nr); 4739 btrfs_mark_buffer_dirty(leaf); 4740 4741 if (btrfs_leaf_free_space(leaf) < 0) { 4742 btrfs_print_leaf(leaf); 4743 BUG(); 4744 } 4745 } 4746 4747 /* 4748 * Given a key and some data, insert items into the tree. 4749 * This does all the path init required, making room in the tree if needed. 4750 */ 4751 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4752 struct btrfs_root *root, 4753 struct btrfs_path *path, 4754 const struct btrfs_key *cpu_key, u32 *data_size, 4755 int nr) 4756 { 4757 int ret = 0; 4758 int slot; 4759 int i; 4760 u32 total_size = 0; 4761 u32 total_data = 0; 4762 4763 for (i = 0; i < nr; i++) 4764 total_data += data_size[i]; 4765 4766 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4767 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4768 if (ret == 0) 4769 return -EEXIST; 4770 if (ret < 0) 4771 return ret; 4772 4773 slot = path->slots[0]; 4774 BUG_ON(slot < 0); 4775 4776 setup_items_for_insert(root, path, cpu_key, data_size, 4777 total_data, total_size, nr); 4778 return 0; 4779 } 4780 4781 /* 4782 * Given a key and some data, insert an item into the tree. 4783 * This does all the path init required, making room in the tree if needed. 4784 */ 4785 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4786 const struct btrfs_key *cpu_key, void *data, 4787 u32 data_size) 4788 { 4789 int ret = 0; 4790 struct btrfs_path *path; 4791 struct extent_buffer *leaf; 4792 unsigned long ptr; 4793 4794 path = btrfs_alloc_path(); 4795 if (!path) 4796 return -ENOMEM; 4797 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4798 if (!ret) { 4799 leaf = path->nodes[0]; 4800 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4801 write_extent_buffer(leaf, data, ptr, data_size); 4802 btrfs_mark_buffer_dirty(leaf); 4803 } 4804 btrfs_free_path(path); 4805 return ret; 4806 } 4807 4808 /* 4809 * delete the pointer from a given node. 4810 * 4811 * the tree should have been previously balanced so the deletion does not 4812 * empty a node. 4813 */ 4814 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4815 int level, int slot) 4816 { 4817 struct extent_buffer *parent = path->nodes[level]; 4818 u32 nritems; 4819 int ret; 4820 4821 nritems = btrfs_header_nritems(parent); 4822 if (slot != nritems - 1) { 4823 if (level) { 4824 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4825 nritems - slot - 1); 4826 BUG_ON(ret < 0); 4827 } 4828 memmove_extent_buffer(parent, 4829 btrfs_node_key_ptr_offset(slot), 4830 btrfs_node_key_ptr_offset(slot + 1), 4831 sizeof(struct btrfs_key_ptr) * 4832 (nritems - slot - 1)); 4833 } else if (level) { 4834 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4835 GFP_NOFS); 4836 BUG_ON(ret < 0); 4837 } 4838 4839 nritems--; 4840 btrfs_set_header_nritems(parent, nritems); 4841 if (nritems == 0 && parent == root->node) { 4842 BUG_ON(btrfs_header_level(root->node) != 1); 4843 /* just turn the root into a leaf and break */ 4844 btrfs_set_header_level(root->node, 0); 4845 } else if (slot == 0) { 4846 struct btrfs_disk_key disk_key; 4847 4848 btrfs_node_key(parent, &disk_key, 0); 4849 fixup_low_keys(path, &disk_key, level + 1); 4850 } 4851 btrfs_mark_buffer_dirty(parent); 4852 } 4853 4854 /* 4855 * a helper function to delete the leaf pointed to by path->slots[1] and 4856 * path->nodes[1]. 4857 * 4858 * This deletes the pointer in path->nodes[1] and frees the leaf 4859 * block extent. zero is returned if it all worked out, < 0 otherwise. 4860 * 4861 * The path must have already been setup for deleting the leaf, including 4862 * all the proper balancing. path->nodes[1] must be locked. 4863 */ 4864 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4865 struct btrfs_root *root, 4866 struct btrfs_path *path, 4867 struct extent_buffer *leaf) 4868 { 4869 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4870 del_ptr(root, path, 1, path->slots[1]); 4871 4872 /* 4873 * btrfs_free_extent is expensive, we want to make sure we 4874 * aren't holding any locks when we call it 4875 */ 4876 btrfs_unlock_up_safe(path, 0); 4877 4878 root_sub_used(root, leaf->len); 4879 4880 atomic_inc(&leaf->refs); 4881 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4882 free_extent_buffer_stale(leaf); 4883 } 4884 /* 4885 * delete the item at the leaf level in path. If that empties 4886 * the leaf, remove it from the tree 4887 */ 4888 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4889 struct btrfs_path *path, int slot, int nr) 4890 { 4891 struct btrfs_fs_info *fs_info = root->fs_info; 4892 struct extent_buffer *leaf; 4893 struct btrfs_item *item; 4894 u32 last_off; 4895 u32 dsize = 0; 4896 int ret = 0; 4897 int wret; 4898 int i; 4899 u32 nritems; 4900 4901 leaf = path->nodes[0]; 4902 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4903 4904 for (i = 0; i < nr; i++) 4905 dsize += btrfs_item_size_nr(leaf, slot + i); 4906 4907 nritems = btrfs_header_nritems(leaf); 4908 4909 if (slot + nr != nritems) { 4910 int data_end = leaf_data_end(leaf); 4911 struct btrfs_map_token token; 4912 4913 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4914 data_end + dsize, 4915 BTRFS_LEAF_DATA_OFFSET + data_end, 4916 last_off - data_end); 4917 4918 btrfs_init_map_token(&token, leaf); 4919 for (i = slot + nr; i < nritems; i++) { 4920 u32 ioff; 4921 4922 item = btrfs_item_nr(i); 4923 ioff = btrfs_token_item_offset(&token, item); 4924 btrfs_set_token_item_offset(&token, item, ioff + dsize); 4925 } 4926 4927 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4928 btrfs_item_nr_offset(slot + nr), 4929 sizeof(struct btrfs_item) * 4930 (nritems - slot - nr)); 4931 } 4932 btrfs_set_header_nritems(leaf, nritems - nr); 4933 nritems -= nr; 4934 4935 /* delete the leaf if we've emptied it */ 4936 if (nritems == 0) { 4937 if (leaf == root->node) { 4938 btrfs_set_header_level(leaf, 0); 4939 } else { 4940 btrfs_set_path_blocking(path); 4941 btrfs_clean_tree_block(leaf); 4942 btrfs_del_leaf(trans, root, path, leaf); 4943 } 4944 } else { 4945 int used = leaf_space_used(leaf, 0, nritems); 4946 if (slot == 0) { 4947 struct btrfs_disk_key disk_key; 4948 4949 btrfs_item_key(leaf, &disk_key, 0); 4950 fixup_low_keys(path, &disk_key, 1); 4951 } 4952 4953 /* delete the leaf if it is mostly empty */ 4954 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4955 /* push_leaf_left fixes the path. 4956 * make sure the path still points to our leaf 4957 * for possible call to del_ptr below 4958 */ 4959 slot = path->slots[1]; 4960 atomic_inc(&leaf->refs); 4961 4962 btrfs_set_path_blocking(path); 4963 wret = push_leaf_left(trans, root, path, 1, 1, 4964 1, (u32)-1); 4965 if (wret < 0 && wret != -ENOSPC) 4966 ret = wret; 4967 4968 if (path->nodes[0] == leaf && 4969 btrfs_header_nritems(leaf)) { 4970 wret = push_leaf_right(trans, root, path, 1, 4971 1, 1, 0); 4972 if (wret < 0 && wret != -ENOSPC) 4973 ret = wret; 4974 } 4975 4976 if (btrfs_header_nritems(leaf) == 0) { 4977 path->slots[1] = slot; 4978 btrfs_del_leaf(trans, root, path, leaf); 4979 free_extent_buffer(leaf); 4980 ret = 0; 4981 } else { 4982 /* if we're still in the path, make sure 4983 * we're dirty. Otherwise, one of the 4984 * push_leaf functions must have already 4985 * dirtied this buffer 4986 */ 4987 if (path->nodes[0] == leaf) 4988 btrfs_mark_buffer_dirty(leaf); 4989 free_extent_buffer(leaf); 4990 } 4991 } else { 4992 btrfs_mark_buffer_dirty(leaf); 4993 } 4994 } 4995 return ret; 4996 } 4997 4998 /* 4999 * search the tree again to find a leaf with lesser keys 5000 * returns 0 if it found something or 1 if there are no lesser leaves. 5001 * returns < 0 on io errors. 5002 * 5003 * This may release the path, and so you may lose any locks held at the 5004 * time you call it. 5005 */ 5006 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5007 { 5008 struct btrfs_key key; 5009 struct btrfs_disk_key found_key; 5010 int ret; 5011 5012 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5013 5014 if (key.offset > 0) { 5015 key.offset--; 5016 } else if (key.type > 0) { 5017 key.type--; 5018 key.offset = (u64)-1; 5019 } else if (key.objectid > 0) { 5020 key.objectid--; 5021 key.type = (u8)-1; 5022 key.offset = (u64)-1; 5023 } else { 5024 return 1; 5025 } 5026 5027 btrfs_release_path(path); 5028 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5029 if (ret < 0) 5030 return ret; 5031 btrfs_item_key(path->nodes[0], &found_key, 0); 5032 ret = comp_keys(&found_key, &key); 5033 /* 5034 * We might have had an item with the previous key in the tree right 5035 * before we released our path. And after we released our path, that 5036 * item might have been pushed to the first slot (0) of the leaf we 5037 * were holding due to a tree balance. Alternatively, an item with the 5038 * previous key can exist as the only element of a leaf (big fat item). 5039 * Therefore account for these 2 cases, so that our callers (like 5040 * btrfs_previous_item) don't miss an existing item with a key matching 5041 * the previous key we computed above. 5042 */ 5043 if (ret <= 0) 5044 return 0; 5045 return 1; 5046 } 5047 5048 /* 5049 * A helper function to walk down the tree starting at min_key, and looking 5050 * for nodes or leaves that are have a minimum transaction id. 5051 * This is used by the btree defrag code, and tree logging 5052 * 5053 * This does not cow, but it does stuff the starting key it finds back 5054 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5055 * key and get a writable path. 5056 * 5057 * This honors path->lowest_level to prevent descent past a given level 5058 * of the tree. 5059 * 5060 * min_trans indicates the oldest transaction that you are interested 5061 * in walking through. Any nodes or leaves older than min_trans are 5062 * skipped over (without reading them). 5063 * 5064 * returns zero if something useful was found, < 0 on error and 1 if there 5065 * was nothing in the tree that matched the search criteria. 5066 */ 5067 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5068 struct btrfs_path *path, 5069 u64 min_trans) 5070 { 5071 struct extent_buffer *cur; 5072 struct btrfs_key found_key; 5073 int slot; 5074 int sret; 5075 u32 nritems; 5076 int level; 5077 int ret = 1; 5078 int keep_locks = path->keep_locks; 5079 5080 path->keep_locks = 1; 5081 again: 5082 cur = btrfs_read_lock_root_node(root); 5083 level = btrfs_header_level(cur); 5084 WARN_ON(path->nodes[level]); 5085 path->nodes[level] = cur; 5086 path->locks[level] = BTRFS_READ_LOCK; 5087 5088 if (btrfs_header_generation(cur) < min_trans) { 5089 ret = 1; 5090 goto out; 5091 } 5092 while (1) { 5093 nritems = btrfs_header_nritems(cur); 5094 level = btrfs_header_level(cur); 5095 sret = btrfs_bin_search(cur, min_key, &slot); 5096 if (sret < 0) { 5097 ret = sret; 5098 goto out; 5099 } 5100 5101 /* at the lowest level, we're done, setup the path and exit */ 5102 if (level == path->lowest_level) { 5103 if (slot >= nritems) 5104 goto find_next_key; 5105 ret = 0; 5106 path->slots[level] = slot; 5107 btrfs_item_key_to_cpu(cur, &found_key, slot); 5108 goto out; 5109 } 5110 if (sret && slot > 0) 5111 slot--; 5112 /* 5113 * check this node pointer against the min_trans parameters. 5114 * If it is too old, old, skip to the next one. 5115 */ 5116 while (slot < nritems) { 5117 u64 gen; 5118 5119 gen = btrfs_node_ptr_generation(cur, slot); 5120 if (gen < min_trans) { 5121 slot++; 5122 continue; 5123 } 5124 break; 5125 } 5126 find_next_key: 5127 /* 5128 * we didn't find a candidate key in this node, walk forward 5129 * and find another one 5130 */ 5131 if (slot >= nritems) { 5132 path->slots[level] = slot; 5133 btrfs_set_path_blocking(path); 5134 sret = btrfs_find_next_key(root, path, min_key, level, 5135 min_trans); 5136 if (sret == 0) { 5137 btrfs_release_path(path); 5138 goto again; 5139 } else { 5140 goto out; 5141 } 5142 } 5143 /* save our key for returning back */ 5144 btrfs_node_key_to_cpu(cur, &found_key, slot); 5145 path->slots[level] = slot; 5146 if (level == path->lowest_level) { 5147 ret = 0; 5148 goto out; 5149 } 5150 btrfs_set_path_blocking(path); 5151 cur = btrfs_read_node_slot(cur, slot); 5152 if (IS_ERR(cur)) { 5153 ret = PTR_ERR(cur); 5154 goto out; 5155 } 5156 5157 btrfs_tree_read_lock(cur); 5158 5159 path->locks[level - 1] = BTRFS_READ_LOCK; 5160 path->nodes[level - 1] = cur; 5161 unlock_up(path, level, 1, 0, NULL); 5162 } 5163 out: 5164 path->keep_locks = keep_locks; 5165 if (ret == 0) { 5166 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5167 btrfs_set_path_blocking(path); 5168 memcpy(min_key, &found_key, sizeof(found_key)); 5169 } 5170 return ret; 5171 } 5172 5173 /* 5174 * this is similar to btrfs_next_leaf, but does not try to preserve 5175 * and fixup the path. It looks for and returns the next key in the 5176 * tree based on the current path and the min_trans parameters. 5177 * 5178 * 0 is returned if another key is found, < 0 if there are any errors 5179 * and 1 is returned if there are no higher keys in the tree 5180 * 5181 * path->keep_locks should be set to 1 on the search made before 5182 * calling this function. 5183 */ 5184 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5185 struct btrfs_key *key, int level, u64 min_trans) 5186 { 5187 int slot; 5188 struct extent_buffer *c; 5189 5190 WARN_ON(!path->keep_locks && !path->skip_locking); 5191 while (level < BTRFS_MAX_LEVEL) { 5192 if (!path->nodes[level]) 5193 return 1; 5194 5195 slot = path->slots[level] + 1; 5196 c = path->nodes[level]; 5197 next: 5198 if (slot >= btrfs_header_nritems(c)) { 5199 int ret; 5200 int orig_lowest; 5201 struct btrfs_key cur_key; 5202 if (level + 1 >= BTRFS_MAX_LEVEL || 5203 !path->nodes[level + 1]) 5204 return 1; 5205 5206 if (path->locks[level + 1] || path->skip_locking) { 5207 level++; 5208 continue; 5209 } 5210 5211 slot = btrfs_header_nritems(c) - 1; 5212 if (level == 0) 5213 btrfs_item_key_to_cpu(c, &cur_key, slot); 5214 else 5215 btrfs_node_key_to_cpu(c, &cur_key, slot); 5216 5217 orig_lowest = path->lowest_level; 5218 btrfs_release_path(path); 5219 path->lowest_level = level; 5220 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5221 0, 0); 5222 path->lowest_level = orig_lowest; 5223 if (ret < 0) 5224 return ret; 5225 5226 c = path->nodes[level]; 5227 slot = path->slots[level]; 5228 if (ret == 0) 5229 slot++; 5230 goto next; 5231 } 5232 5233 if (level == 0) 5234 btrfs_item_key_to_cpu(c, key, slot); 5235 else { 5236 u64 gen = btrfs_node_ptr_generation(c, slot); 5237 5238 if (gen < min_trans) { 5239 slot++; 5240 goto next; 5241 } 5242 btrfs_node_key_to_cpu(c, key, slot); 5243 } 5244 return 0; 5245 } 5246 return 1; 5247 } 5248 5249 /* 5250 * search the tree again to find a leaf with greater keys 5251 * returns 0 if it found something or 1 if there are no greater leaves. 5252 * returns < 0 on io errors. 5253 */ 5254 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5255 { 5256 return btrfs_next_old_leaf(root, path, 0); 5257 } 5258 5259 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5260 u64 time_seq) 5261 { 5262 int slot; 5263 int level; 5264 struct extent_buffer *c; 5265 struct extent_buffer *next; 5266 struct btrfs_key key; 5267 u32 nritems; 5268 int ret; 5269 int old_spinning = path->leave_spinning; 5270 int next_rw_lock = 0; 5271 5272 nritems = btrfs_header_nritems(path->nodes[0]); 5273 if (nritems == 0) 5274 return 1; 5275 5276 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5277 again: 5278 level = 1; 5279 next = NULL; 5280 next_rw_lock = 0; 5281 btrfs_release_path(path); 5282 5283 path->keep_locks = 1; 5284 path->leave_spinning = 1; 5285 5286 if (time_seq) 5287 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5288 else 5289 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5290 path->keep_locks = 0; 5291 5292 if (ret < 0) 5293 return ret; 5294 5295 nritems = btrfs_header_nritems(path->nodes[0]); 5296 /* 5297 * by releasing the path above we dropped all our locks. A balance 5298 * could have added more items next to the key that used to be 5299 * at the very end of the block. So, check again here and 5300 * advance the path if there are now more items available. 5301 */ 5302 if (nritems > 0 && path->slots[0] < nritems - 1) { 5303 if (ret == 0) 5304 path->slots[0]++; 5305 ret = 0; 5306 goto done; 5307 } 5308 /* 5309 * So the above check misses one case: 5310 * - after releasing the path above, someone has removed the item that 5311 * used to be at the very end of the block, and balance between leafs 5312 * gets another one with bigger key.offset to replace it. 5313 * 5314 * This one should be returned as well, or we can get leaf corruption 5315 * later(esp. in __btrfs_drop_extents()). 5316 * 5317 * And a bit more explanation about this check, 5318 * with ret > 0, the key isn't found, the path points to the slot 5319 * where it should be inserted, so the path->slots[0] item must be the 5320 * bigger one. 5321 */ 5322 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5323 ret = 0; 5324 goto done; 5325 } 5326 5327 while (level < BTRFS_MAX_LEVEL) { 5328 if (!path->nodes[level]) { 5329 ret = 1; 5330 goto done; 5331 } 5332 5333 slot = path->slots[level] + 1; 5334 c = path->nodes[level]; 5335 if (slot >= btrfs_header_nritems(c)) { 5336 level++; 5337 if (level == BTRFS_MAX_LEVEL) { 5338 ret = 1; 5339 goto done; 5340 } 5341 continue; 5342 } 5343 5344 if (next) { 5345 btrfs_tree_unlock_rw(next, next_rw_lock); 5346 free_extent_buffer(next); 5347 } 5348 5349 next = c; 5350 next_rw_lock = path->locks[level]; 5351 ret = read_block_for_search(root, path, &next, level, 5352 slot, &key); 5353 if (ret == -EAGAIN) 5354 goto again; 5355 5356 if (ret < 0) { 5357 btrfs_release_path(path); 5358 goto done; 5359 } 5360 5361 if (!path->skip_locking) { 5362 ret = btrfs_try_tree_read_lock(next); 5363 if (!ret && time_seq) { 5364 /* 5365 * If we don't get the lock, we may be racing 5366 * with push_leaf_left, holding that lock while 5367 * itself waiting for the leaf we've currently 5368 * locked. To solve this situation, we give up 5369 * on our lock and cycle. 5370 */ 5371 free_extent_buffer(next); 5372 btrfs_release_path(path); 5373 cond_resched(); 5374 goto again; 5375 } 5376 if (!ret) { 5377 btrfs_set_path_blocking(path); 5378 btrfs_tree_read_lock(next); 5379 } 5380 next_rw_lock = BTRFS_READ_LOCK; 5381 } 5382 break; 5383 } 5384 path->slots[level] = slot; 5385 while (1) { 5386 level--; 5387 c = path->nodes[level]; 5388 if (path->locks[level]) 5389 btrfs_tree_unlock_rw(c, path->locks[level]); 5390 5391 free_extent_buffer(c); 5392 path->nodes[level] = next; 5393 path->slots[level] = 0; 5394 if (!path->skip_locking) 5395 path->locks[level] = next_rw_lock; 5396 if (!level) 5397 break; 5398 5399 ret = read_block_for_search(root, path, &next, level, 5400 0, &key); 5401 if (ret == -EAGAIN) 5402 goto again; 5403 5404 if (ret < 0) { 5405 btrfs_release_path(path); 5406 goto done; 5407 } 5408 5409 if (!path->skip_locking) { 5410 ret = btrfs_try_tree_read_lock(next); 5411 if (!ret) { 5412 btrfs_set_path_blocking(path); 5413 btrfs_tree_read_lock(next); 5414 } 5415 next_rw_lock = BTRFS_READ_LOCK; 5416 } 5417 } 5418 ret = 0; 5419 done: 5420 unlock_up(path, 0, 1, 0, NULL); 5421 path->leave_spinning = old_spinning; 5422 if (!old_spinning) 5423 btrfs_set_path_blocking(path); 5424 5425 return ret; 5426 } 5427 5428 /* 5429 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5430 * searching until it gets past min_objectid or finds an item of 'type' 5431 * 5432 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5433 */ 5434 int btrfs_previous_item(struct btrfs_root *root, 5435 struct btrfs_path *path, u64 min_objectid, 5436 int type) 5437 { 5438 struct btrfs_key found_key; 5439 struct extent_buffer *leaf; 5440 u32 nritems; 5441 int ret; 5442 5443 while (1) { 5444 if (path->slots[0] == 0) { 5445 btrfs_set_path_blocking(path); 5446 ret = btrfs_prev_leaf(root, path); 5447 if (ret != 0) 5448 return ret; 5449 } else { 5450 path->slots[0]--; 5451 } 5452 leaf = path->nodes[0]; 5453 nritems = btrfs_header_nritems(leaf); 5454 if (nritems == 0) 5455 return 1; 5456 if (path->slots[0] == nritems) 5457 path->slots[0]--; 5458 5459 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5460 if (found_key.objectid < min_objectid) 5461 break; 5462 if (found_key.type == type) 5463 return 0; 5464 if (found_key.objectid == min_objectid && 5465 found_key.type < type) 5466 break; 5467 } 5468 return 1; 5469 } 5470 5471 /* 5472 * search in extent tree to find a previous Metadata/Data extent item with 5473 * min objecitd. 5474 * 5475 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5476 */ 5477 int btrfs_previous_extent_item(struct btrfs_root *root, 5478 struct btrfs_path *path, u64 min_objectid) 5479 { 5480 struct btrfs_key found_key; 5481 struct extent_buffer *leaf; 5482 u32 nritems; 5483 int ret; 5484 5485 while (1) { 5486 if (path->slots[0] == 0) { 5487 btrfs_set_path_blocking(path); 5488 ret = btrfs_prev_leaf(root, path); 5489 if (ret != 0) 5490 return ret; 5491 } else { 5492 path->slots[0]--; 5493 } 5494 leaf = path->nodes[0]; 5495 nritems = btrfs_header_nritems(leaf); 5496 if (nritems == 0) 5497 return 1; 5498 if (path->slots[0] == nritems) 5499 path->slots[0]--; 5500 5501 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5502 if (found_key.objectid < min_objectid) 5503 break; 5504 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5505 found_key.type == BTRFS_METADATA_ITEM_KEY) 5506 return 0; 5507 if (found_key.objectid == min_objectid && 5508 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5509 break; 5510 } 5511 return 1; 5512 } 5513