xref: /openbmc/linux/fs/btrfs/ctree.c (revision de167752a889d19b9bb018f8eecbc1ebbfe07b2f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 
16 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
17 		      *root, struct btrfs_path *path, int level);
18 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
19 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
20 		      int data_size, int extend);
21 static int push_node_left(struct btrfs_trans_handle *trans,
22 			  struct btrfs_fs_info *fs_info,
23 			  struct extent_buffer *dst,
24 			  struct extent_buffer *src, int empty);
25 static int balance_node_right(struct btrfs_trans_handle *trans,
26 			      struct btrfs_fs_info *fs_info,
27 			      struct extent_buffer *dst_buf,
28 			      struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 		    int level, int slot);
31 
32 struct btrfs_path *btrfs_alloc_path(void)
33 {
34 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
35 }
36 
37 /*
38  * set all locked nodes in the path to blocking locks.  This should
39  * be done before scheduling
40  */
41 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
42 {
43 	int i;
44 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 		if (!p->nodes[i] || !p->locks[i])
46 			continue;
47 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
48 		if (p->locks[i] == BTRFS_READ_LOCK)
49 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
50 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
51 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
52 	}
53 }
54 
55 /*
56  * reset all the locked nodes in the patch to spinning locks.
57  *
58  * held is used to keep lockdep happy, when lockdep is enabled
59  * we set held to a blocking lock before we go around and
60  * retake all the spinlocks in the path.  You can safely use NULL
61  * for held
62  */
63 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
64 					struct extent_buffer *held, int held_rw)
65 {
66 	int i;
67 
68 	if (held) {
69 		btrfs_set_lock_blocking_rw(held, held_rw);
70 		if (held_rw == BTRFS_WRITE_LOCK)
71 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
72 		else if (held_rw == BTRFS_READ_LOCK)
73 			held_rw = BTRFS_READ_LOCK_BLOCKING;
74 	}
75 	btrfs_set_path_blocking(p);
76 
77 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
78 		if (p->nodes[i] && p->locks[i]) {
79 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
80 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
81 				p->locks[i] = BTRFS_WRITE_LOCK;
82 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
83 				p->locks[i] = BTRFS_READ_LOCK;
84 		}
85 	}
86 
87 	if (held)
88 		btrfs_clear_lock_blocking_rw(held, held_rw);
89 }
90 
91 /* this also releases the path */
92 void btrfs_free_path(struct btrfs_path *p)
93 {
94 	if (!p)
95 		return;
96 	btrfs_release_path(p);
97 	kmem_cache_free(btrfs_path_cachep, p);
98 }
99 
100 /*
101  * path release drops references on the extent buffers in the path
102  * and it drops any locks held by this path
103  *
104  * It is safe to call this on paths that no locks or extent buffers held.
105  */
106 noinline void btrfs_release_path(struct btrfs_path *p)
107 {
108 	int i;
109 
110 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
111 		p->slots[i] = 0;
112 		if (!p->nodes[i])
113 			continue;
114 		if (p->locks[i]) {
115 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
116 			p->locks[i] = 0;
117 		}
118 		free_extent_buffer(p->nodes[i]);
119 		p->nodes[i] = NULL;
120 	}
121 }
122 
123 /*
124  * safely gets a reference on the root node of a tree.  A lock
125  * is not taken, so a concurrent writer may put a different node
126  * at the root of the tree.  See btrfs_lock_root_node for the
127  * looping required.
128  *
129  * The extent buffer returned by this has a reference taken, so
130  * it won't disappear.  It may stop being the root of the tree
131  * at any time because there are no locks held.
132  */
133 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
134 {
135 	struct extent_buffer *eb;
136 
137 	while (1) {
138 		rcu_read_lock();
139 		eb = rcu_dereference(root->node);
140 
141 		/*
142 		 * RCU really hurts here, we could free up the root node because
143 		 * it was COWed but we may not get the new root node yet so do
144 		 * the inc_not_zero dance and if it doesn't work then
145 		 * synchronize_rcu and try again.
146 		 */
147 		if (atomic_inc_not_zero(&eb->refs)) {
148 			rcu_read_unlock();
149 			break;
150 		}
151 		rcu_read_unlock();
152 		synchronize_rcu();
153 	}
154 	return eb;
155 }
156 
157 /* loop around taking references on and locking the root node of the
158  * tree until you end up with a lock on the root.  A locked buffer
159  * is returned, with a reference held.
160  */
161 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
162 {
163 	struct extent_buffer *eb;
164 
165 	while (1) {
166 		eb = btrfs_root_node(root);
167 		btrfs_tree_lock(eb);
168 		if (eb == root->node)
169 			break;
170 		btrfs_tree_unlock(eb);
171 		free_extent_buffer(eb);
172 	}
173 	return eb;
174 }
175 
176 /* loop around taking references on and locking the root node of the
177  * tree until you end up with a lock on the root.  A locked buffer
178  * is returned, with a reference held.
179  */
180 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
181 {
182 	struct extent_buffer *eb;
183 
184 	while (1) {
185 		eb = btrfs_root_node(root);
186 		btrfs_tree_read_lock(eb);
187 		if (eb == root->node)
188 			break;
189 		btrfs_tree_read_unlock(eb);
190 		free_extent_buffer(eb);
191 	}
192 	return eb;
193 }
194 
195 /* cowonly root (everything not a reference counted cow subvolume), just get
196  * put onto a simple dirty list.  transaction.c walks this to make sure they
197  * get properly updated on disk.
198  */
199 static void add_root_to_dirty_list(struct btrfs_root *root)
200 {
201 	struct btrfs_fs_info *fs_info = root->fs_info;
202 
203 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
204 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
205 		return;
206 
207 	spin_lock(&fs_info->trans_lock);
208 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
209 		/* Want the extent tree to be the last on the list */
210 		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
211 			list_move_tail(&root->dirty_list,
212 				       &fs_info->dirty_cowonly_roots);
213 		else
214 			list_move(&root->dirty_list,
215 				  &fs_info->dirty_cowonly_roots);
216 	}
217 	spin_unlock(&fs_info->trans_lock);
218 }
219 
220 /*
221  * used by snapshot creation to make a copy of a root for a tree with
222  * a given objectid.  The buffer with the new root node is returned in
223  * cow_ret, and this func returns zero on success or a negative error code.
224  */
225 int btrfs_copy_root(struct btrfs_trans_handle *trans,
226 		      struct btrfs_root *root,
227 		      struct extent_buffer *buf,
228 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
229 {
230 	struct btrfs_fs_info *fs_info = root->fs_info;
231 	struct extent_buffer *cow;
232 	int ret = 0;
233 	int level;
234 	struct btrfs_disk_key disk_key;
235 
236 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
237 		trans->transid != fs_info->running_transaction->transid);
238 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
239 		trans->transid != root->last_trans);
240 
241 	level = btrfs_header_level(buf);
242 	if (level == 0)
243 		btrfs_item_key(buf, &disk_key, 0);
244 	else
245 		btrfs_node_key(buf, &disk_key, 0);
246 
247 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
248 			&disk_key, level, buf->start, 0);
249 	if (IS_ERR(cow))
250 		return PTR_ERR(cow);
251 
252 	copy_extent_buffer_full(cow, buf);
253 	btrfs_set_header_bytenr(cow, cow->start);
254 	btrfs_set_header_generation(cow, trans->transid);
255 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
256 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
257 				     BTRFS_HEADER_FLAG_RELOC);
258 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
259 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
260 	else
261 		btrfs_set_header_owner(cow, new_root_objectid);
262 
263 	write_extent_buffer_fsid(cow, fs_info->fsid);
264 
265 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
266 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267 		ret = btrfs_inc_ref(trans, root, cow, 1);
268 	else
269 		ret = btrfs_inc_ref(trans, root, cow, 0);
270 
271 	if (ret)
272 		return ret;
273 
274 	btrfs_mark_buffer_dirty(cow);
275 	*cow_ret = cow;
276 	return 0;
277 }
278 
279 enum mod_log_op {
280 	MOD_LOG_KEY_REPLACE,
281 	MOD_LOG_KEY_ADD,
282 	MOD_LOG_KEY_REMOVE,
283 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
284 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
285 	MOD_LOG_MOVE_KEYS,
286 	MOD_LOG_ROOT_REPLACE,
287 };
288 
289 struct tree_mod_root {
290 	u64 logical;
291 	u8 level;
292 };
293 
294 struct tree_mod_elem {
295 	struct rb_node node;
296 	u64 logical;
297 	u64 seq;
298 	enum mod_log_op op;
299 
300 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
301 	int slot;
302 
303 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
304 	u64 generation;
305 
306 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
307 	struct btrfs_disk_key key;
308 	u64 blockptr;
309 
310 	/* this is used for op == MOD_LOG_MOVE_KEYS */
311 	struct {
312 		int dst_slot;
313 		int nr_items;
314 	} move;
315 
316 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
317 	struct tree_mod_root old_root;
318 };
319 
320 /*
321  * Pull a new tree mod seq number for our operation.
322  */
323 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
324 {
325 	return atomic64_inc_return(&fs_info->tree_mod_seq);
326 }
327 
328 /*
329  * This adds a new blocker to the tree mod log's blocker list if the @elem
330  * passed does not already have a sequence number set. So when a caller expects
331  * to record tree modifications, it should ensure to set elem->seq to zero
332  * before calling btrfs_get_tree_mod_seq.
333  * Returns a fresh, unused tree log modification sequence number, even if no new
334  * blocker was added.
335  */
336 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
337 			   struct seq_list *elem)
338 {
339 	write_lock(&fs_info->tree_mod_log_lock);
340 	spin_lock(&fs_info->tree_mod_seq_lock);
341 	if (!elem->seq) {
342 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
343 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
344 	}
345 	spin_unlock(&fs_info->tree_mod_seq_lock);
346 	write_unlock(&fs_info->tree_mod_log_lock);
347 
348 	return elem->seq;
349 }
350 
351 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
352 			    struct seq_list *elem)
353 {
354 	struct rb_root *tm_root;
355 	struct rb_node *node;
356 	struct rb_node *next;
357 	struct seq_list *cur_elem;
358 	struct tree_mod_elem *tm;
359 	u64 min_seq = (u64)-1;
360 	u64 seq_putting = elem->seq;
361 
362 	if (!seq_putting)
363 		return;
364 
365 	spin_lock(&fs_info->tree_mod_seq_lock);
366 	list_del(&elem->list);
367 	elem->seq = 0;
368 
369 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
370 		if (cur_elem->seq < min_seq) {
371 			if (seq_putting > cur_elem->seq) {
372 				/*
373 				 * blocker with lower sequence number exists, we
374 				 * cannot remove anything from the log
375 				 */
376 				spin_unlock(&fs_info->tree_mod_seq_lock);
377 				return;
378 			}
379 			min_seq = cur_elem->seq;
380 		}
381 	}
382 	spin_unlock(&fs_info->tree_mod_seq_lock);
383 
384 	/*
385 	 * anything that's lower than the lowest existing (read: blocked)
386 	 * sequence number can be removed from the tree.
387 	 */
388 	write_lock(&fs_info->tree_mod_log_lock);
389 	tm_root = &fs_info->tree_mod_log;
390 	for (node = rb_first(tm_root); node; node = next) {
391 		next = rb_next(node);
392 		tm = rb_entry(node, struct tree_mod_elem, node);
393 		if (tm->seq > min_seq)
394 			continue;
395 		rb_erase(node, tm_root);
396 		kfree(tm);
397 	}
398 	write_unlock(&fs_info->tree_mod_log_lock);
399 }
400 
401 /*
402  * key order of the log:
403  *       node/leaf start address -> sequence
404  *
405  * The 'start address' is the logical address of the *new* root node
406  * for root replace operations, or the logical address of the affected
407  * block for all other operations.
408  *
409  * Note: must be called with write lock for fs_info::tree_mod_log_lock.
410  */
411 static noinline int
412 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
413 {
414 	struct rb_root *tm_root;
415 	struct rb_node **new;
416 	struct rb_node *parent = NULL;
417 	struct tree_mod_elem *cur;
418 
419 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
420 
421 	tm_root = &fs_info->tree_mod_log;
422 	new = &tm_root->rb_node;
423 	while (*new) {
424 		cur = rb_entry(*new, struct tree_mod_elem, node);
425 		parent = *new;
426 		if (cur->logical < tm->logical)
427 			new = &((*new)->rb_left);
428 		else if (cur->logical > tm->logical)
429 			new = &((*new)->rb_right);
430 		else if (cur->seq < tm->seq)
431 			new = &((*new)->rb_left);
432 		else if (cur->seq > tm->seq)
433 			new = &((*new)->rb_right);
434 		else
435 			return -EEXIST;
436 	}
437 
438 	rb_link_node(&tm->node, parent, new);
439 	rb_insert_color(&tm->node, tm_root);
440 	return 0;
441 }
442 
443 /*
444  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
445  * returns zero with the tree_mod_log_lock acquired. The caller must hold
446  * this until all tree mod log insertions are recorded in the rb tree and then
447  * write unlock fs_info::tree_mod_log_lock.
448  */
449 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
450 				    struct extent_buffer *eb) {
451 	smp_mb();
452 	if (list_empty(&(fs_info)->tree_mod_seq_list))
453 		return 1;
454 	if (eb && btrfs_header_level(eb) == 0)
455 		return 1;
456 
457 	write_lock(&fs_info->tree_mod_log_lock);
458 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
459 		write_unlock(&fs_info->tree_mod_log_lock);
460 		return 1;
461 	}
462 
463 	return 0;
464 }
465 
466 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
467 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
468 				    struct extent_buffer *eb)
469 {
470 	smp_mb();
471 	if (list_empty(&(fs_info)->tree_mod_seq_list))
472 		return 0;
473 	if (eb && btrfs_header_level(eb) == 0)
474 		return 0;
475 
476 	return 1;
477 }
478 
479 static struct tree_mod_elem *
480 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
481 		    enum mod_log_op op, gfp_t flags)
482 {
483 	struct tree_mod_elem *tm;
484 
485 	tm = kzalloc(sizeof(*tm), flags);
486 	if (!tm)
487 		return NULL;
488 
489 	tm->logical = eb->start;
490 	if (op != MOD_LOG_KEY_ADD) {
491 		btrfs_node_key(eb, &tm->key, slot);
492 		tm->blockptr = btrfs_node_blockptr(eb, slot);
493 	}
494 	tm->op = op;
495 	tm->slot = slot;
496 	tm->generation = btrfs_node_ptr_generation(eb, slot);
497 	RB_CLEAR_NODE(&tm->node);
498 
499 	return tm;
500 }
501 
502 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
503 		enum mod_log_op op, gfp_t flags)
504 {
505 	struct tree_mod_elem *tm;
506 	int ret;
507 
508 	if (!tree_mod_need_log(eb->fs_info, eb))
509 		return 0;
510 
511 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
512 	if (!tm)
513 		return -ENOMEM;
514 
515 	if (tree_mod_dont_log(eb->fs_info, eb)) {
516 		kfree(tm);
517 		return 0;
518 	}
519 
520 	ret = __tree_mod_log_insert(eb->fs_info, tm);
521 	write_unlock(&eb->fs_info->tree_mod_log_lock);
522 	if (ret)
523 		kfree(tm);
524 
525 	return ret;
526 }
527 
528 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
529 		int dst_slot, int src_slot, int nr_items)
530 {
531 	struct tree_mod_elem *tm = NULL;
532 	struct tree_mod_elem **tm_list = NULL;
533 	int ret = 0;
534 	int i;
535 	int locked = 0;
536 
537 	if (!tree_mod_need_log(eb->fs_info, eb))
538 		return 0;
539 
540 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
541 	if (!tm_list)
542 		return -ENOMEM;
543 
544 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
545 	if (!tm) {
546 		ret = -ENOMEM;
547 		goto free_tms;
548 	}
549 
550 	tm->logical = eb->start;
551 	tm->slot = src_slot;
552 	tm->move.dst_slot = dst_slot;
553 	tm->move.nr_items = nr_items;
554 	tm->op = MOD_LOG_MOVE_KEYS;
555 
556 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
557 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
558 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
559 		if (!tm_list[i]) {
560 			ret = -ENOMEM;
561 			goto free_tms;
562 		}
563 	}
564 
565 	if (tree_mod_dont_log(eb->fs_info, eb))
566 		goto free_tms;
567 	locked = 1;
568 
569 	/*
570 	 * When we override something during the move, we log these removals.
571 	 * This can only happen when we move towards the beginning of the
572 	 * buffer, i.e. dst_slot < src_slot.
573 	 */
574 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
575 		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
576 		if (ret)
577 			goto free_tms;
578 	}
579 
580 	ret = __tree_mod_log_insert(eb->fs_info, tm);
581 	if (ret)
582 		goto free_tms;
583 	write_unlock(&eb->fs_info->tree_mod_log_lock);
584 	kfree(tm_list);
585 
586 	return 0;
587 free_tms:
588 	for (i = 0; i < nr_items; i++) {
589 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
590 			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
591 		kfree(tm_list[i]);
592 	}
593 	if (locked)
594 		write_unlock(&eb->fs_info->tree_mod_log_lock);
595 	kfree(tm_list);
596 	kfree(tm);
597 
598 	return ret;
599 }
600 
601 static inline int
602 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
603 		       struct tree_mod_elem **tm_list,
604 		       int nritems)
605 {
606 	int i, j;
607 	int ret;
608 
609 	for (i = nritems - 1; i >= 0; i--) {
610 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
611 		if (ret) {
612 			for (j = nritems - 1; j > i; j--)
613 				rb_erase(&tm_list[j]->node,
614 					 &fs_info->tree_mod_log);
615 			return ret;
616 		}
617 	}
618 
619 	return 0;
620 }
621 
622 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
623 			 struct extent_buffer *new_root, int log_removal)
624 {
625 	struct btrfs_fs_info *fs_info = old_root->fs_info;
626 	struct tree_mod_elem *tm = NULL;
627 	struct tree_mod_elem **tm_list = NULL;
628 	int nritems = 0;
629 	int ret = 0;
630 	int i;
631 
632 	if (!tree_mod_need_log(fs_info, NULL))
633 		return 0;
634 
635 	if (log_removal && btrfs_header_level(old_root) > 0) {
636 		nritems = btrfs_header_nritems(old_root);
637 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
638 				  GFP_NOFS);
639 		if (!tm_list) {
640 			ret = -ENOMEM;
641 			goto free_tms;
642 		}
643 		for (i = 0; i < nritems; i++) {
644 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
645 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
646 			if (!tm_list[i]) {
647 				ret = -ENOMEM;
648 				goto free_tms;
649 			}
650 		}
651 	}
652 
653 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
654 	if (!tm) {
655 		ret = -ENOMEM;
656 		goto free_tms;
657 	}
658 
659 	tm->logical = new_root->start;
660 	tm->old_root.logical = old_root->start;
661 	tm->old_root.level = btrfs_header_level(old_root);
662 	tm->generation = btrfs_header_generation(old_root);
663 	tm->op = MOD_LOG_ROOT_REPLACE;
664 
665 	if (tree_mod_dont_log(fs_info, NULL))
666 		goto free_tms;
667 
668 	if (tm_list)
669 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
670 	if (!ret)
671 		ret = __tree_mod_log_insert(fs_info, tm);
672 
673 	write_unlock(&fs_info->tree_mod_log_lock);
674 	if (ret)
675 		goto free_tms;
676 	kfree(tm_list);
677 
678 	return ret;
679 
680 free_tms:
681 	if (tm_list) {
682 		for (i = 0; i < nritems; i++)
683 			kfree(tm_list[i]);
684 		kfree(tm_list);
685 	}
686 	kfree(tm);
687 
688 	return ret;
689 }
690 
691 static struct tree_mod_elem *
692 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
693 		      int smallest)
694 {
695 	struct rb_root *tm_root;
696 	struct rb_node *node;
697 	struct tree_mod_elem *cur = NULL;
698 	struct tree_mod_elem *found = NULL;
699 
700 	read_lock(&fs_info->tree_mod_log_lock);
701 	tm_root = &fs_info->tree_mod_log;
702 	node = tm_root->rb_node;
703 	while (node) {
704 		cur = rb_entry(node, struct tree_mod_elem, node);
705 		if (cur->logical < start) {
706 			node = node->rb_left;
707 		} else if (cur->logical > start) {
708 			node = node->rb_right;
709 		} else if (cur->seq < min_seq) {
710 			node = node->rb_left;
711 		} else if (!smallest) {
712 			/* we want the node with the highest seq */
713 			if (found)
714 				BUG_ON(found->seq > cur->seq);
715 			found = cur;
716 			node = node->rb_left;
717 		} else if (cur->seq > min_seq) {
718 			/* we want the node with the smallest seq */
719 			if (found)
720 				BUG_ON(found->seq < cur->seq);
721 			found = cur;
722 			node = node->rb_right;
723 		} else {
724 			found = cur;
725 			break;
726 		}
727 	}
728 	read_unlock(&fs_info->tree_mod_log_lock);
729 
730 	return found;
731 }
732 
733 /*
734  * this returns the element from the log with the smallest time sequence
735  * value that's in the log (the oldest log item). any element with a time
736  * sequence lower than min_seq will be ignored.
737  */
738 static struct tree_mod_elem *
739 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
740 			   u64 min_seq)
741 {
742 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
743 }
744 
745 /*
746  * this returns the element from the log with the largest time sequence
747  * value that's in the log (the most recent log item). any element with
748  * a time sequence lower than min_seq will be ignored.
749  */
750 static struct tree_mod_elem *
751 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
752 {
753 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
754 }
755 
756 static noinline int
757 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
758 		     struct extent_buffer *src, unsigned long dst_offset,
759 		     unsigned long src_offset, int nr_items)
760 {
761 	int ret = 0;
762 	struct tree_mod_elem **tm_list = NULL;
763 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
764 	int i;
765 	int locked = 0;
766 
767 	if (!tree_mod_need_log(fs_info, NULL))
768 		return 0;
769 
770 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
771 		return 0;
772 
773 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
774 			  GFP_NOFS);
775 	if (!tm_list)
776 		return -ENOMEM;
777 
778 	tm_list_add = tm_list;
779 	tm_list_rem = tm_list + nr_items;
780 	for (i = 0; i < nr_items; i++) {
781 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
782 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
783 		if (!tm_list_rem[i]) {
784 			ret = -ENOMEM;
785 			goto free_tms;
786 		}
787 
788 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
789 		    MOD_LOG_KEY_ADD, GFP_NOFS);
790 		if (!tm_list_add[i]) {
791 			ret = -ENOMEM;
792 			goto free_tms;
793 		}
794 	}
795 
796 	if (tree_mod_dont_log(fs_info, NULL))
797 		goto free_tms;
798 	locked = 1;
799 
800 	for (i = 0; i < nr_items; i++) {
801 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
802 		if (ret)
803 			goto free_tms;
804 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
805 		if (ret)
806 			goto free_tms;
807 	}
808 
809 	write_unlock(&fs_info->tree_mod_log_lock);
810 	kfree(tm_list);
811 
812 	return 0;
813 
814 free_tms:
815 	for (i = 0; i < nr_items * 2; i++) {
816 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
817 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
818 		kfree(tm_list[i]);
819 	}
820 	if (locked)
821 		write_unlock(&fs_info->tree_mod_log_lock);
822 	kfree(tm_list);
823 
824 	return ret;
825 }
826 
827 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
828 {
829 	struct tree_mod_elem **tm_list = NULL;
830 	int nritems = 0;
831 	int i;
832 	int ret = 0;
833 
834 	if (btrfs_header_level(eb) == 0)
835 		return 0;
836 
837 	if (!tree_mod_need_log(eb->fs_info, NULL))
838 		return 0;
839 
840 	nritems = btrfs_header_nritems(eb);
841 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
842 	if (!tm_list)
843 		return -ENOMEM;
844 
845 	for (i = 0; i < nritems; i++) {
846 		tm_list[i] = alloc_tree_mod_elem(eb, i,
847 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
848 		if (!tm_list[i]) {
849 			ret = -ENOMEM;
850 			goto free_tms;
851 		}
852 	}
853 
854 	if (tree_mod_dont_log(eb->fs_info, eb))
855 		goto free_tms;
856 
857 	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
858 	write_unlock(&eb->fs_info->tree_mod_log_lock);
859 	if (ret)
860 		goto free_tms;
861 	kfree(tm_list);
862 
863 	return 0;
864 
865 free_tms:
866 	for (i = 0; i < nritems; i++)
867 		kfree(tm_list[i]);
868 	kfree(tm_list);
869 
870 	return ret;
871 }
872 
873 /*
874  * check if the tree block can be shared by multiple trees
875  */
876 int btrfs_block_can_be_shared(struct btrfs_root *root,
877 			      struct extent_buffer *buf)
878 {
879 	/*
880 	 * Tree blocks not in reference counted trees and tree roots
881 	 * are never shared. If a block was allocated after the last
882 	 * snapshot and the block was not allocated by tree relocation,
883 	 * we know the block is not shared.
884 	 */
885 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
886 	    buf != root->node && buf != root->commit_root &&
887 	    (btrfs_header_generation(buf) <=
888 	     btrfs_root_last_snapshot(&root->root_item) ||
889 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
890 		return 1;
891 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
892 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
893 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
894 		return 1;
895 #endif
896 	return 0;
897 }
898 
899 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
900 				       struct btrfs_root *root,
901 				       struct extent_buffer *buf,
902 				       struct extent_buffer *cow,
903 				       int *last_ref)
904 {
905 	struct btrfs_fs_info *fs_info = root->fs_info;
906 	u64 refs;
907 	u64 owner;
908 	u64 flags;
909 	u64 new_flags = 0;
910 	int ret;
911 
912 	/*
913 	 * Backrefs update rules:
914 	 *
915 	 * Always use full backrefs for extent pointers in tree block
916 	 * allocated by tree relocation.
917 	 *
918 	 * If a shared tree block is no longer referenced by its owner
919 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
920 	 * use full backrefs for extent pointers in tree block.
921 	 *
922 	 * If a tree block is been relocating
923 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
924 	 * use full backrefs for extent pointers in tree block.
925 	 * The reason for this is some operations (such as drop tree)
926 	 * are only allowed for blocks use full backrefs.
927 	 */
928 
929 	if (btrfs_block_can_be_shared(root, buf)) {
930 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
931 					       btrfs_header_level(buf), 1,
932 					       &refs, &flags);
933 		if (ret)
934 			return ret;
935 		if (refs == 0) {
936 			ret = -EROFS;
937 			btrfs_handle_fs_error(fs_info, ret, NULL);
938 			return ret;
939 		}
940 	} else {
941 		refs = 1;
942 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
943 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
944 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
945 		else
946 			flags = 0;
947 	}
948 
949 	owner = btrfs_header_owner(buf);
950 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
951 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
952 
953 	if (refs > 1) {
954 		if ((owner == root->root_key.objectid ||
955 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
956 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
957 			ret = btrfs_inc_ref(trans, root, buf, 1);
958 			if (ret)
959 				return ret;
960 
961 			if (root->root_key.objectid ==
962 			    BTRFS_TREE_RELOC_OBJECTID) {
963 				ret = btrfs_dec_ref(trans, root, buf, 0);
964 				if (ret)
965 					return ret;
966 				ret = btrfs_inc_ref(trans, root, cow, 1);
967 				if (ret)
968 					return ret;
969 			}
970 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
971 		} else {
972 
973 			if (root->root_key.objectid ==
974 			    BTRFS_TREE_RELOC_OBJECTID)
975 				ret = btrfs_inc_ref(trans, root, cow, 1);
976 			else
977 				ret = btrfs_inc_ref(trans, root, cow, 0);
978 			if (ret)
979 				return ret;
980 		}
981 		if (new_flags != 0) {
982 			int level = btrfs_header_level(buf);
983 
984 			ret = btrfs_set_disk_extent_flags(trans, fs_info,
985 							  buf->start,
986 							  buf->len,
987 							  new_flags, level, 0);
988 			if (ret)
989 				return ret;
990 		}
991 	} else {
992 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
993 			if (root->root_key.objectid ==
994 			    BTRFS_TREE_RELOC_OBJECTID)
995 				ret = btrfs_inc_ref(trans, root, cow, 1);
996 			else
997 				ret = btrfs_inc_ref(trans, root, cow, 0);
998 			if (ret)
999 				return ret;
1000 			ret = btrfs_dec_ref(trans, root, buf, 1);
1001 			if (ret)
1002 				return ret;
1003 		}
1004 		clean_tree_block(fs_info, buf);
1005 		*last_ref = 1;
1006 	}
1007 	return 0;
1008 }
1009 
1010 /*
1011  * does the dirty work in cow of a single block.  The parent block (if
1012  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1013  * dirty and returned locked.  If you modify the block it needs to be marked
1014  * dirty again.
1015  *
1016  * search_start -- an allocation hint for the new block
1017  *
1018  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1019  * bytes the allocator should try to find free next to the block it returns.
1020  * This is just a hint and may be ignored by the allocator.
1021  */
1022 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1023 			     struct btrfs_root *root,
1024 			     struct extent_buffer *buf,
1025 			     struct extent_buffer *parent, int parent_slot,
1026 			     struct extent_buffer **cow_ret,
1027 			     u64 search_start, u64 empty_size)
1028 {
1029 	struct btrfs_fs_info *fs_info = root->fs_info;
1030 	struct btrfs_disk_key disk_key;
1031 	struct extent_buffer *cow;
1032 	int level, ret;
1033 	int last_ref = 0;
1034 	int unlock_orig = 0;
1035 	u64 parent_start = 0;
1036 
1037 	if (*cow_ret == buf)
1038 		unlock_orig = 1;
1039 
1040 	btrfs_assert_tree_locked(buf);
1041 
1042 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1043 		trans->transid != fs_info->running_transaction->transid);
1044 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1045 		trans->transid != root->last_trans);
1046 
1047 	level = btrfs_header_level(buf);
1048 
1049 	if (level == 0)
1050 		btrfs_item_key(buf, &disk_key, 0);
1051 	else
1052 		btrfs_node_key(buf, &disk_key, 0);
1053 
1054 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1055 		parent_start = parent->start;
1056 
1057 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1058 			root->root_key.objectid, &disk_key, level,
1059 			search_start, empty_size);
1060 	if (IS_ERR(cow))
1061 		return PTR_ERR(cow);
1062 
1063 	/* cow is set to blocking by btrfs_init_new_buffer */
1064 
1065 	copy_extent_buffer_full(cow, buf);
1066 	btrfs_set_header_bytenr(cow, cow->start);
1067 	btrfs_set_header_generation(cow, trans->transid);
1068 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1069 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1070 				     BTRFS_HEADER_FLAG_RELOC);
1071 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1072 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1073 	else
1074 		btrfs_set_header_owner(cow, root->root_key.objectid);
1075 
1076 	write_extent_buffer_fsid(cow, fs_info->fsid);
1077 
1078 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1079 	if (ret) {
1080 		btrfs_abort_transaction(trans, ret);
1081 		return ret;
1082 	}
1083 
1084 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1085 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1086 		if (ret) {
1087 			btrfs_abort_transaction(trans, ret);
1088 			return ret;
1089 		}
1090 	}
1091 
1092 	if (buf == root->node) {
1093 		WARN_ON(parent && parent != buf);
1094 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1095 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1096 			parent_start = buf->start;
1097 
1098 		extent_buffer_get(cow);
1099 		ret = tree_mod_log_insert_root(root->node, cow, 1);
1100 		BUG_ON(ret < 0);
1101 		rcu_assign_pointer(root->node, cow);
1102 
1103 		btrfs_free_tree_block(trans, root, buf, parent_start,
1104 				      last_ref);
1105 		free_extent_buffer(buf);
1106 		add_root_to_dirty_list(root);
1107 	} else {
1108 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1109 		tree_mod_log_insert_key(parent, parent_slot,
1110 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1111 		btrfs_set_node_blockptr(parent, parent_slot,
1112 					cow->start);
1113 		btrfs_set_node_ptr_generation(parent, parent_slot,
1114 					      trans->transid);
1115 		btrfs_mark_buffer_dirty(parent);
1116 		if (last_ref) {
1117 			ret = tree_mod_log_free_eb(buf);
1118 			if (ret) {
1119 				btrfs_abort_transaction(trans, ret);
1120 				return ret;
1121 			}
1122 		}
1123 		btrfs_free_tree_block(trans, root, buf, parent_start,
1124 				      last_ref);
1125 	}
1126 	if (unlock_orig)
1127 		btrfs_tree_unlock(buf);
1128 	free_extent_buffer_stale(buf);
1129 	btrfs_mark_buffer_dirty(cow);
1130 	*cow_ret = cow;
1131 	return 0;
1132 }
1133 
1134 /*
1135  * returns the logical address of the oldest predecessor of the given root.
1136  * entries older than time_seq are ignored.
1137  */
1138 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1139 		struct extent_buffer *eb_root, u64 time_seq)
1140 {
1141 	struct tree_mod_elem *tm;
1142 	struct tree_mod_elem *found = NULL;
1143 	u64 root_logical = eb_root->start;
1144 	int looped = 0;
1145 
1146 	if (!time_seq)
1147 		return NULL;
1148 
1149 	/*
1150 	 * the very last operation that's logged for a root is the
1151 	 * replacement operation (if it is replaced at all). this has
1152 	 * the logical address of the *new* root, making it the very
1153 	 * first operation that's logged for this root.
1154 	 */
1155 	while (1) {
1156 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1157 						time_seq);
1158 		if (!looped && !tm)
1159 			return NULL;
1160 		/*
1161 		 * if there are no tree operation for the oldest root, we simply
1162 		 * return it. this should only happen if that (old) root is at
1163 		 * level 0.
1164 		 */
1165 		if (!tm)
1166 			break;
1167 
1168 		/*
1169 		 * if there's an operation that's not a root replacement, we
1170 		 * found the oldest version of our root. normally, we'll find a
1171 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1172 		 */
1173 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1174 			break;
1175 
1176 		found = tm;
1177 		root_logical = tm->old_root.logical;
1178 		looped = 1;
1179 	}
1180 
1181 	/* if there's no old root to return, return what we found instead */
1182 	if (!found)
1183 		found = tm;
1184 
1185 	return found;
1186 }
1187 
1188 /*
1189  * tm is a pointer to the first operation to rewind within eb. then, all
1190  * previous operations will be rewound (until we reach something older than
1191  * time_seq).
1192  */
1193 static void
1194 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1195 		      u64 time_seq, struct tree_mod_elem *first_tm)
1196 {
1197 	u32 n;
1198 	struct rb_node *next;
1199 	struct tree_mod_elem *tm = first_tm;
1200 	unsigned long o_dst;
1201 	unsigned long o_src;
1202 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1203 
1204 	n = btrfs_header_nritems(eb);
1205 	read_lock(&fs_info->tree_mod_log_lock);
1206 	while (tm && tm->seq >= time_seq) {
1207 		/*
1208 		 * all the operations are recorded with the operator used for
1209 		 * the modification. as we're going backwards, we do the
1210 		 * opposite of each operation here.
1211 		 */
1212 		switch (tm->op) {
1213 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1214 			BUG_ON(tm->slot < n);
1215 			/* Fallthrough */
1216 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1217 		case MOD_LOG_KEY_REMOVE:
1218 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1219 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1220 			btrfs_set_node_ptr_generation(eb, tm->slot,
1221 						      tm->generation);
1222 			n++;
1223 			break;
1224 		case MOD_LOG_KEY_REPLACE:
1225 			BUG_ON(tm->slot >= n);
1226 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1227 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1228 			btrfs_set_node_ptr_generation(eb, tm->slot,
1229 						      tm->generation);
1230 			break;
1231 		case MOD_LOG_KEY_ADD:
1232 			/* if a move operation is needed it's in the log */
1233 			n--;
1234 			break;
1235 		case MOD_LOG_MOVE_KEYS:
1236 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1237 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1238 			memmove_extent_buffer(eb, o_dst, o_src,
1239 					      tm->move.nr_items * p_size);
1240 			break;
1241 		case MOD_LOG_ROOT_REPLACE:
1242 			/*
1243 			 * this operation is special. for roots, this must be
1244 			 * handled explicitly before rewinding.
1245 			 * for non-roots, this operation may exist if the node
1246 			 * was a root: root A -> child B; then A gets empty and
1247 			 * B is promoted to the new root. in the mod log, we'll
1248 			 * have a root-replace operation for B, a tree block
1249 			 * that is no root. we simply ignore that operation.
1250 			 */
1251 			break;
1252 		}
1253 		next = rb_next(&tm->node);
1254 		if (!next)
1255 			break;
1256 		tm = rb_entry(next, struct tree_mod_elem, node);
1257 		if (tm->logical != first_tm->logical)
1258 			break;
1259 	}
1260 	read_unlock(&fs_info->tree_mod_log_lock);
1261 	btrfs_set_header_nritems(eb, n);
1262 }
1263 
1264 /*
1265  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1266  * is returned. If rewind operations happen, a fresh buffer is returned. The
1267  * returned buffer is always read-locked. If the returned buffer is not the
1268  * input buffer, the lock on the input buffer is released and the input buffer
1269  * is freed (its refcount is decremented).
1270  */
1271 static struct extent_buffer *
1272 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1273 		    struct extent_buffer *eb, u64 time_seq)
1274 {
1275 	struct extent_buffer *eb_rewin;
1276 	struct tree_mod_elem *tm;
1277 
1278 	if (!time_seq)
1279 		return eb;
1280 
1281 	if (btrfs_header_level(eb) == 0)
1282 		return eb;
1283 
1284 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1285 	if (!tm)
1286 		return eb;
1287 
1288 	btrfs_set_path_blocking(path);
1289 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1290 
1291 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1292 		BUG_ON(tm->slot != 0);
1293 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1294 		if (!eb_rewin) {
1295 			btrfs_tree_read_unlock_blocking(eb);
1296 			free_extent_buffer(eb);
1297 			return NULL;
1298 		}
1299 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1300 		btrfs_set_header_backref_rev(eb_rewin,
1301 					     btrfs_header_backref_rev(eb));
1302 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1303 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1304 	} else {
1305 		eb_rewin = btrfs_clone_extent_buffer(eb);
1306 		if (!eb_rewin) {
1307 			btrfs_tree_read_unlock_blocking(eb);
1308 			free_extent_buffer(eb);
1309 			return NULL;
1310 		}
1311 	}
1312 
1313 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1314 	btrfs_tree_read_unlock_blocking(eb);
1315 	free_extent_buffer(eb);
1316 
1317 	extent_buffer_get(eb_rewin);
1318 	btrfs_tree_read_lock(eb_rewin);
1319 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1320 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1321 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1322 
1323 	return eb_rewin;
1324 }
1325 
1326 /*
1327  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1328  * value. If there are no changes, the current root->root_node is returned. If
1329  * anything changed in between, there's a fresh buffer allocated on which the
1330  * rewind operations are done. In any case, the returned buffer is read locked.
1331  * Returns NULL on error (with no locks held).
1332  */
1333 static inline struct extent_buffer *
1334 get_old_root(struct btrfs_root *root, u64 time_seq)
1335 {
1336 	struct btrfs_fs_info *fs_info = root->fs_info;
1337 	struct tree_mod_elem *tm;
1338 	struct extent_buffer *eb = NULL;
1339 	struct extent_buffer *eb_root;
1340 	struct extent_buffer *old;
1341 	struct tree_mod_root *old_root = NULL;
1342 	u64 old_generation = 0;
1343 	u64 logical;
1344 	int level;
1345 
1346 	eb_root = btrfs_read_lock_root_node(root);
1347 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1348 	if (!tm)
1349 		return eb_root;
1350 
1351 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1352 		old_root = &tm->old_root;
1353 		old_generation = tm->generation;
1354 		logical = old_root->logical;
1355 		level = old_root->level;
1356 	} else {
1357 		logical = eb_root->start;
1358 		level = btrfs_header_level(eb_root);
1359 	}
1360 
1361 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1362 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1363 		btrfs_tree_read_unlock(eb_root);
1364 		free_extent_buffer(eb_root);
1365 		old = read_tree_block(fs_info, logical, 0, level, NULL);
1366 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1367 			if (!IS_ERR(old))
1368 				free_extent_buffer(old);
1369 			btrfs_warn(fs_info,
1370 				   "failed to read tree block %llu from get_old_root",
1371 				   logical);
1372 		} else {
1373 			eb = btrfs_clone_extent_buffer(old);
1374 			free_extent_buffer(old);
1375 		}
1376 	} else if (old_root) {
1377 		btrfs_tree_read_unlock(eb_root);
1378 		free_extent_buffer(eb_root);
1379 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1380 	} else {
1381 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1382 		eb = btrfs_clone_extent_buffer(eb_root);
1383 		btrfs_tree_read_unlock_blocking(eb_root);
1384 		free_extent_buffer(eb_root);
1385 	}
1386 
1387 	if (!eb)
1388 		return NULL;
1389 	extent_buffer_get(eb);
1390 	btrfs_tree_read_lock(eb);
1391 	if (old_root) {
1392 		btrfs_set_header_bytenr(eb, eb->start);
1393 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1394 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1395 		btrfs_set_header_level(eb, old_root->level);
1396 		btrfs_set_header_generation(eb, old_generation);
1397 	}
1398 	if (tm)
1399 		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1400 	else
1401 		WARN_ON(btrfs_header_level(eb) != 0);
1402 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1403 
1404 	return eb;
1405 }
1406 
1407 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1408 {
1409 	struct tree_mod_elem *tm;
1410 	int level;
1411 	struct extent_buffer *eb_root = btrfs_root_node(root);
1412 
1413 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1414 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1415 		level = tm->old_root.level;
1416 	} else {
1417 		level = btrfs_header_level(eb_root);
1418 	}
1419 	free_extent_buffer(eb_root);
1420 
1421 	return level;
1422 }
1423 
1424 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1425 				   struct btrfs_root *root,
1426 				   struct extent_buffer *buf)
1427 {
1428 	if (btrfs_is_testing(root->fs_info))
1429 		return 0;
1430 
1431 	/* Ensure we can see the FORCE_COW bit */
1432 	smp_mb__before_atomic();
1433 
1434 	/*
1435 	 * We do not need to cow a block if
1436 	 * 1) this block is not created or changed in this transaction;
1437 	 * 2) this block does not belong to TREE_RELOC tree;
1438 	 * 3) the root is not forced COW.
1439 	 *
1440 	 * What is forced COW:
1441 	 *    when we create snapshot during committing the transaction,
1442 	 *    after we've finished coping src root, we must COW the shared
1443 	 *    block to ensure the metadata consistency.
1444 	 */
1445 	if (btrfs_header_generation(buf) == trans->transid &&
1446 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1447 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1448 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1449 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1450 		return 0;
1451 	return 1;
1452 }
1453 
1454 /*
1455  * cows a single block, see __btrfs_cow_block for the real work.
1456  * This version of it has extra checks so that a block isn't COWed more than
1457  * once per transaction, as long as it hasn't been written yet
1458  */
1459 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1460 		    struct btrfs_root *root, struct extent_buffer *buf,
1461 		    struct extent_buffer *parent, int parent_slot,
1462 		    struct extent_buffer **cow_ret)
1463 {
1464 	struct btrfs_fs_info *fs_info = root->fs_info;
1465 	u64 search_start;
1466 	int ret;
1467 
1468 	if (trans->transaction != fs_info->running_transaction)
1469 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1470 		       trans->transid,
1471 		       fs_info->running_transaction->transid);
1472 
1473 	if (trans->transid != fs_info->generation)
1474 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1475 		       trans->transid, fs_info->generation);
1476 
1477 	if (!should_cow_block(trans, root, buf)) {
1478 		trans->dirty = true;
1479 		*cow_ret = buf;
1480 		return 0;
1481 	}
1482 
1483 	search_start = buf->start & ~((u64)SZ_1G - 1);
1484 
1485 	if (parent)
1486 		btrfs_set_lock_blocking(parent);
1487 	btrfs_set_lock_blocking(buf);
1488 
1489 	ret = __btrfs_cow_block(trans, root, buf, parent,
1490 				 parent_slot, cow_ret, search_start, 0);
1491 
1492 	trace_btrfs_cow_block(root, buf, *cow_ret);
1493 
1494 	return ret;
1495 }
1496 
1497 /*
1498  * helper function for defrag to decide if two blocks pointed to by a
1499  * node are actually close by
1500  */
1501 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1502 {
1503 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1504 		return 1;
1505 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1506 		return 1;
1507 	return 0;
1508 }
1509 
1510 /*
1511  * compare two keys in a memcmp fashion
1512  */
1513 static int comp_keys(const struct btrfs_disk_key *disk,
1514 		     const struct btrfs_key *k2)
1515 {
1516 	struct btrfs_key k1;
1517 
1518 	btrfs_disk_key_to_cpu(&k1, disk);
1519 
1520 	return btrfs_comp_cpu_keys(&k1, k2);
1521 }
1522 
1523 /*
1524  * same as comp_keys only with two btrfs_key's
1525  */
1526 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1527 {
1528 	if (k1->objectid > k2->objectid)
1529 		return 1;
1530 	if (k1->objectid < k2->objectid)
1531 		return -1;
1532 	if (k1->type > k2->type)
1533 		return 1;
1534 	if (k1->type < k2->type)
1535 		return -1;
1536 	if (k1->offset > k2->offset)
1537 		return 1;
1538 	if (k1->offset < k2->offset)
1539 		return -1;
1540 	return 0;
1541 }
1542 
1543 /*
1544  * this is used by the defrag code to go through all the
1545  * leaves pointed to by a node and reallocate them so that
1546  * disk order is close to key order
1547  */
1548 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1549 		       struct btrfs_root *root, struct extent_buffer *parent,
1550 		       int start_slot, u64 *last_ret,
1551 		       struct btrfs_key *progress)
1552 {
1553 	struct btrfs_fs_info *fs_info = root->fs_info;
1554 	struct extent_buffer *cur;
1555 	u64 blocknr;
1556 	u64 gen;
1557 	u64 search_start = *last_ret;
1558 	u64 last_block = 0;
1559 	u64 other;
1560 	u32 parent_nritems;
1561 	int end_slot;
1562 	int i;
1563 	int err = 0;
1564 	int parent_level;
1565 	int uptodate;
1566 	u32 blocksize;
1567 	int progress_passed = 0;
1568 	struct btrfs_disk_key disk_key;
1569 
1570 	parent_level = btrfs_header_level(parent);
1571 
1572 	WARN_ON(trans->transaction != fs_info->running_transaction);
1573 	WARN_ON(trans->transid != fs_info->generation);
1574 
1575 	parent_nritems = btrfs_header_nritems(parent);
1576 	blocksize = fs_info->nodesize;
1577 	end_slot = parent_nritems - 1;
1578 
1579 	if (parent_nritems <= 1)
1580 		return 0;
1581 
1582 	btrfs_set_lock_blocking(parent);
1583 
1584 	for (i = start_slot; i <= end_slot; i++) {
1585 		struct btrfs_key first_key;
1586 		int close = 1;
1587 
1588 		btrfs_node_key(parent, &disk_key, i);
1589 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1590 			continue;
1591 
1592 		progress_passed = 1;
1593 		blocknr = btrfs_node_blockptr(parent, i);
1594 		gen = btrfs_node_ptr_generation(parent, i);
1595 		btrfs_node_key_to_cpu(parent, &first_key, i);
1596 		if (last_block == 0)
1597 			last_block = blocknr;
1598 
1599 		if (i > 0) {
1600 			other = btrfs_node_blockptr(parent, i - 1);
1601 			close = close_blocks(blocknr, other, blocksize);
1602 		}
1603 		if (!close && i < end_slot) {
1604 			other = btrfs_node_blockptr(parent, i + 1);
1605 			close = close_blocks(blocknr, other, blocksize);
1606 		}
1607 		if (close) {
1608 			last_block = blocknr;
1609 			continue;
1610 		}
1611 
1612 		cur = find_extent_buffer(fs_info, blocknr);
1613 		if (cur)
1614 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1615 		else
1616 			uptodate = 0;
1617 		if (!cur || !uptodate) {
1618 			if (!cur) {
1619 				cur = read_tree_block(fs_info, blocknr, gen,
1620 						      parent_level - 1,
1621 						      &first_key);
1622 				if (IS_ERR(cur)) {
1623 					return PTR_ERR(cur);
1624 				} else if (!extent_buffer_uptodate(cur)) {
1625 					free_extent_buffer(cur);
1626 					return -EIO;
1627 				}
1628 			} else if (!uptodate) {
1629 				err = btrfs_read_buffer(cur, gen,
1630 						parent_level - 1,&first_key);
1631 				if (err) {
1632 					free_extent_buffer(cur);
1633 					return err;
1634 				}
1635 			}
1636 		}
1637 		if (search_start == 0)
1638 			search_start = last_block;
1639 
1640 		btrfs_tree_lock(cur);
1641 		btrfs_set_lock_blocking(cur);
1642 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1643 					&cur, search_start,
1644 					min(16 * blocksize,
1645 					    (end_slot - i) * blocksize));
1646 		if (err) {
1647 			btrfs_tree_unlock(cur);
1648 			free_extent_buffer(cur);
1649 			break;
1650 		}
1651 		search_start = cur->start;
1652 		last_block = cur->start;
1653 		*last_ret = search_start;
1654 		btrfs_tree_unlock(cur);
1655 		free_extent_buffer(cur);
1656 	}
1657 	return err;
1658 }
1659 
1660 /*
1661  * search for key in the extent_buffer.  The items start at offset p,
1662  * and they are item_size apart.  There are 'max' items in p.
1663  *
1664  * the slot in the array is returned via slot, and it points to
1665  * the place where you would insert key if it is not found in
1666  * the array.
1667  *
1668  * slot may point to max if the key is bigger than all of the keys
1669  */
1670 static noinline int generic_bin_search(struct extent_buffer *eb,
1671 				       unsigned long p, int item_size,
1672 				       const struct btrfs_key *key,
1673 				       int max, int *slot)
1674 {
1675 	int low = 0;
1676 	int high = max;
1677 	int mid;
1678 	int ret;
1679 	struct btrfs_disk_key *tmp = NULL;
1680 	struct btrfs_disk_key unaligned;
1681 	unsigned long offset;
1682 	char *kaddr = NULL;
1683 	unsigned long map_start = 0;
1684 	unsigned long map_len = 0;
1685 	int err;
1686 
1687 	if (low > high) {
1688 		btrfs_err(eb->fs_info,
1689 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1690 			  __func__, low, high, eb->start,
1691 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1692 		return -EINVAL;
1693 	}
1694 
1695 	while (low < high) {
1696 		mid = (low + high) / 2;
1697 		offset = p + mid * item_size;
1698 
1699 		if (!kaddr || offset < map_start ||
1700 		    (offset + sizeof(struct btrfs_disk_key)) >
1701 		    map_start + map_len) {
1702 
1703 			err = map_private_extent_buffer(eb, offset,
1704 						sizeof(struct btrfs_disk_key),
1705 						&kaddr, &map_start, &map_len);
1706 
1707 			if (!err) {
1708 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1709 							map_start);
1710 			} else if (err == 1) {
1711 				read_extent_buffer(eb, &unaligned,
1712 						   offset, sizeof(unaligned));
1713 				tmp = &unaligned;
1714 			} else {
1715 				return err;
1716 			}
1717 
1718 		} else {
1719 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1720 							map_start);
1721 		}
1722 		ret = comp_keys(tmp, key);
1723 
1724 		if (ret < 0)
1725 			low = mid + 1;
1726 		else if (ret > 0)
1727 			high = mid;
1728 		else {
1729 			*slot = mid;
1730 			return 0;
1731 		}
1732 	}
1733 	*slot = low;
1734 	return 1;
1735 }
1736 
1737 /*
1738  * simple bin_search frontend that does the right thing for
1739  * leaves vs nodes
1740  */
1741 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1742 		     int level, int *slot)
1743 {
1744 	if (level == 0)
1745 		return generic_bin_search(eb,
1746 					  offsetof(struct btrfs_leaf, items),
1747 					  sizeof(struct btrfs_item),
1748 					  key, btrfs_header_nritems(eb),
1749 					  slot);
1750 	else
1751 		return generic_bin_search(eb,
1752 					  offsetof(struct btrfs_node, ptrs),
1753 					  sizeof(struct btrfs_key_ptr),
1754 					  key, btrfs_header_nritems(eb),
1755 					  slot);
1756 }
1757 
1758 static void root_add_used(struct btrfs_root *root, u32 size)
1759 {
1760 	spin_lock(&root->accounting_lock);
1761 	btrfs_set_root_used(&root->root_item,
1762 			    btrfs_root_used(&root->root_item) + size);
1763 	spin_unlock(&root->accounting_lock);
1764 }
1765 
1766 static void root_sub_used(struct btrfs_root *root, u32 size)
1767 {
1768 	spin_lock(&root->accounting_lock);
1769 	btrfs_set_root_used(&root->root_item,
1770 			    btrfs_root_used(&root->root_item) - size);
1771 	spin_unlock(&root->accounting_lock);
1772 }
1773 
1774 /* given a node and slot number, this reads the blocks it points to.  The
1775  * extent buffer is returned with a reference taken (but unlocked).
1776  */
1777 static noinline struct extent_buffer *
1778 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1779 	       int slot)
1780 {
1781 	int level = btrfs_header_level(parent);
1782 	struct extent_buffer *eb;
1783 	struct btrfs_key first_key;
1784 
1785 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1786 		return ERR_PTR(-ENOENT);
1787 
1788 	BUG_ON(level == 0);
1789 
1790 	btrfs_node_key_to_cpu(parent, &first_key, slot);
1791 	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1792 			     btrfs_node_ptr_generation(parent, slot),
1793 			     level - 1, &first_key);
1794 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1795 		free_extent_buffer(eb);
1796 		eb = ERR_PTR(-EIO);
1797 	}
1798 
1799 	return eb;
1800 }
1801 
1802 /*
1803  * node level balancing, used to make sure nodes are in proper order for
1804  * item deletion.  We balance from the top down, so we have to make sure
1805  * that a deletion won't leave an node completely empty later on.
1806  */
1807 static noinline int balance_level(struct btrfs_trans_handle *trans,
1808 			 struct btrfs_root *root,
1809 			 struct btrfs_path *path, int level)
1810 {
1811 	struct btrfs_fs_info *fs_info = root->fs_info;
1812 	struct extent_buffer *right = NULL;
1813 	struct extent_buffer *mid;
1814 	struct extent_buffer *left = NULL;
1815 	struct extent_buffer *parent = NULL;
1816 	int ret = 0;
1817 	int wret;
1818 	int pslot;
1819 	int orig_slot = path->slots[level];
1820 	u64 orig_ptr;
1821 
1822 	if (level == 0)
1823 		return 0;
1824 
1825 	mid = path->nodes[level];
1826 
1827 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1828 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1829 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1830 
1831 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1832 
1833 	if (level < BTRFS_MAX_LEVEL - 1) {
1834 		parent = path->nodes[level + 1];
1835 		pslot = path->slots[level + 1];
1836 	}
1837 
1838 	/*
1839 	 * deal with the case where there is only one pointer in the root
1840 	 * by promoting the node below to a root
1841 	 */
1842 	if (!parent) {
1843 		struct extent_buffer *child;
1844 
1845 		if (btrfs_header_nritems(mid) != 1)
1846 			return 0;
1847 
1848 		/* promote the child to a root */
1849 		child = read_node_slot(fs_info, mid, 0);
1850 		if (IS_ERR(child)) {
1851 			ret = PTR_ERR(child);
1852 			btrfs_handle_fs_error(fs_info, ret, NULL);
1853 			goto enospc;
1854 		}
1855 
1856 		btrfs_tree_lock(child);
1857 		btrfs_set_lock_blocking(child);
1858 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1859 		if (ret) {
1860 			btrfs_tree_unlock(child);
1861 			free_extent_buffer(child);
1862 			goto enospc;
1863 		}
1864 
1865 		ret = tree_mod_log_insert_root(root->node, child, 1);
1866 		BUG_ON(ret < 0);
1867 		rcu_assign_pointer(root->node, child);
1868 
1869 		add_root_to_dirty_list(root);
1870 		btrfs_tree_unlock(child);
1871 
1872 		path->locks[level] = 0;
1873 		path->nodes[level] = NULL;
1874 		clean_tree_block(fs_info, mid);
1875 		btrfs_tree_unlock(mid);
1876 		/* once for the path */
1877 		free_extent_buffer(mid);
1878 
1879 		root_sub_used(root, mid->len);
1880 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1881 		/* once for the root ptr */
1882 		free_extent_buffer_stale(mid);
1883 		return 0;
1884 	}
1885 	if (btrfs_header_nritems(mid) >
1886 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1887 		return 0;
1888 
1889 	left = read_node_slot(fs_info, parent, pslot - 1);
1890 	if (IS_ERR(left))
1891 		left = NULL;
1892 
1893 	if (left) {
1894 		btrfs_tree_lock(left);
1895 		btrfs_set_lock_blocking(left);
1896 		wret = btrfs_cow_block(trans, root, left,
1897 				       parent, pslot - 1, &left);
1898 		if (wret) {
1899 			ret = wret;
1900 			goto enospc;
1901 		}
1902 	}
1903 
1904 	right = read_node_slot(fs_info, parent, pslot + 1);
1905 	if (IS_ERR(right))
1906 		right = NULL;
1907 
1908 	if (right) {
1909 		btrfs_tree_lock(right);
1910 		btrfs_set_lock_blocking(right);
1911 		wret = btrfs_cow_block(trans, root, right,
1912 				       parent, pslot + 1, &right);
1913 		if (wret) {
1914 			ret = wret;
1915 			goto enospc;
1916 		}
1917 	}
1918 
1919 	/* first, try to make some room in the middle buffer */
1920 	if (left) {
1921 		orig_slot += btrfs_header_nritems(left);
1922 		wret = push_node_left(trans, fs_info, left, mid, 1);
1923 		if (wret < 0)
1924 			ret = wret;
1925 	}
1926 
1927 	/*
1928 	 * then try to empty the right most buffer into the middle
1929 	 */
1930 	if (right) {
1931 		wret = push_node_left(trans, fs_info, mid, right, 1);
1932 		if (wret < 0 && wret != -ENOSPC)
1933 			ret = wret;
1934 		if (btrfs_header_nritems(right) == 0) {
1935 			clean_tree_block(fs_info, right);
1936 			btrfs_tree_unlock(right);
1937 			del_ptr(root, path, level + 1, pslot + 1);
1938 			root_sub_used(root, right->len);
1939 			btrfs_free_tree_block(trans, root, right, 0, 1);
1940 			free_extent_buffer_stale(right);
1941 			right = NULL;
1942 		} else {
1943 			struct btrfs_disk_key right_key;
1944 			btrfs_node_key(right, &right_key, 0);
1945 			ret = tree_mod_log_insert_key(parent, pslot + 1,
1946 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1947 			BUG_ON(ret < 0);
1948 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1949 			btrfs_mark_buffer_dirty(parent);
1950 		}
1951 	}
1952 	if (btrfs_header_nritems(mid) == 1) {
1953 		/*
1954 		 * we're not allowed to leave a node with one item in the
1955 		 * tree during a delete.  A deletion from lower in the tree
1956 		 * could try to delete the only pointer in this node.
1957 		 * So, pull some keys from the left.
1958 		 * There has to be a left pointer at this point because
1959 		 * otherwise we would have pulled some pointers from the
1960 		 * right
1961 		 */
1962 		if (!left) {
1963 			ret = -EROFS;
1964 			btrfs_handle_fs_error(fs_info, ret, NULL);
1965 			goto enospc;
1966 		}
1967 		wret = balance_node_right(trans, fs_info, mid, left);
1968 		if (wret < 0) {
1969 			ret = wret;
1970 			goto enospc;
1971 		}
1972 		if (wret == 1) {
1973 			wret = push_node_left(trans, fs_info, left, mid, 1);
1974 			if (wret < 0)
1975 				ret = wret;
1976 		}
1977 		BUG_ON(wret == 1);
1978 	}
1979 	if (btrfs_header_nritems(mid) == 0) {
1980 		clean_tree_block(fs_info, mid);
1981 		btrfs_tree_unlock(mid);
1982 		del_ptr(root, path, level + 1, pslot);
1983 		root_sub_used(root, mid->len);
1984 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1985 		free_extent_buffer_stale(mid);
1986 		mid = NULL;
1987 	} else {
1988 		/* update the parent key to reflect our changes */
1989 		struct btrfs_disk_key mid_key;
1990 		btrfs_node_key(mid, &mid_key, 0);
1991 		ret = tree_mod_log_insert_key(parent, pslot,
1992 				MOD_LOG_KEY_REPLACE, GFP_NOFS);
1993 		BUG_ON(ret < 0);
1994 		btrfs_set_node_key(parent, &mid_key, pslot);
1995 		btrfs_mark_buffer_dirty(parent);
1996 	}
1997 
1998 	/* update the path */
1999 	if (left) {
2000 		if (btrfs_header_nritems(left) > orig_slot) {
2001 			extent_buffer_get(left);
2002 			/* left was locked after cow */
2003 			path->nodes[level] = left;
2004 			path->slots[level + 1] -= 1;
2005 			path->slots[level] = orig_slot;
2006 			if (mid) {
2007 				btrfs_tree_unlock(mid);
2008 				free_extent_buffer(mid);
2009 			}
2010 		} else {
2011 			orig_slot -= btrfs_header_nritems(left);
2012 			path->slots[level] = orig_slot;
2013 		}
2014 	}
2015 	/* double check we haven't messed things up */
2016 	if (orig_ptr !=
2017 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2018 		BUG();
2019 enospc:
2020 	if (right) {
2021 		btrfs_tree_unlock(right);
2022 		free_extent_buffer(right);
2023 	}
2024 	if (left) {
2025 		if (path->nodes[level] != left)
2026 			btrfs_tree_unlock(left);
2027 		free_extent_buffer(left);
2028 	}
2029 	return ret;
2030 }
2031 
2032 /* Node balancing for insertion.  Here we only split or push nodes around
2033  * when they are completely full.  This is also done top down, so we
2034  * have to be pessimistic.
2035  */
2036 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2037 					  struct btrfs_root *root,
2038 					  struct btrfs_path *path, int level)
2039 {
2040 	struct btrfs_fs_info *fs_info = root->fs_info;
2041 	struct extent_buffer *right = NULL;
2042 	struct extent_buffer *mid;
2043 	struct extent_buffer *left = NULL;
2044 	struct extent_buffer *parent = NULL;
2045 	int ret = 0;
2046 	int wret;
2047 	int pslot;
2048 	int orig_slot = path->slots[level];
2049 
2050 	if (level == 0)
2051 		return 1;
2052 
2053 	mid = path->nodes[level];
2054 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2055 
2056 	if (level < BTRFS_MAX_LEVEL - 1) {
2057 		parent = path->nodes[level + 1];
2058 		pslot = path->slots[level + 1];
2059 	}
2060 
2061 	if (!parent)
2062 		return 1;
2063 
2064 	left = read_node_slot(fs_info, parent, pslot - 1);
2065 	if (IS_ERR(left))
2066 		left = NULL;
2067 
2068 	/* first, try to make some room in the middle buffer */
2069 	if (left) {
2070 		u32 left_nr;
2071 
2072 		btrfs_tree_lock(left);
2073 		btrfs_set_lock_blocking(left);
2074 
2075 		left_nr = btrfs_header_nritems(left);
2076 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2077 			wret = 1;
2078 		} else {
2079 			ret = btrfs_cow_block(trans, root, left, parent,
2080 					      pslot - 1, &left);
2081 			if (ret)
2082 				wret = 1;
2083 			else {
2084 				wret = push_node_left(trans, fs_info,
2085 						      left, mid, 0);
2086 			}
2087 		}
2088 		if (wret < 0)
2089 			ret = wret;
2090 		if (wret == 0) {
2091 			struct btrfs_disk_key disk_key;
2092 			orig_slot += left_nr;
2093 			btrfs_node_key(mid, &disk_key, 0);
2094 			ret = tree_mod_log_insert_key(parent, pslot,
2095 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2096 			BUG_ON(ret < 0);
2097 			btrfs_set_node_key(parent, &disk_key, pslot);
2098 			btrfs_mark_buffer_dirty(parent);
2099 			if (btrfs_header_nritems(left) > orig_slot) {
2100 				path->nodes[level] = left;
2101 				path->slots[level + 1] -= 1;
2102 				path->slots[level] = orig_slot;
2103 				btrfs_tree_unlock(mid);
2104 				free_extent_buffer(mid);
2105 			} else {
2106 				orig_slot -=
2107 					btrfs_header_nritems(left);
2108 				path->slots[level] = orig_slot;
2109 				btrfs_tree_unlock(left);
2110 				free_extent_buffer(left);
2111 			}
2112 			return 0;
2113 		}
2114 		btrfs_tree_unlock(left);
2115 		free_extent_buffer(left);
2116 	}
2117 	right = read_node_slot(fs_info, parent, pslot + 1);
2118 	if (IS_ERR(right))
2119 		right = NULL;
2120 
2121 	/*
2122 	 * then try to empty the right most buffer into the middle
2123 	 */
2124 	if (right) {
2125 		u32 right_nr;
2126 
2127 		btrfs_tree_lock(right);
2128 		btrfs_set_lock_blocking(right);
2129 
2130 		right_nr = btrfs_header_nritems(right);
2131 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2132 			wret = 1;
2133 		} else {
2134 			ret = btrfs_cow_block(trans, root, right,
2135 					      parent, pslot + 1,
2136 					      &right);
2137 			if (ret)
2138 				wret = 1;
2139 			else {
2140 				wret = balance_node_right(trans, fs_info,
2141 							  right, mid);
2142 			}
2143 		}
2144 		if (wret < 0)
2145 			ret = wret;
2146 		if (wret == 0) {
2147 			struct btrfs_disk_key disk_key;
2148 
2149 			btrfs_node_key(right, &disk_key, 0);
2150 			ret = tree_mod_log_insert_key(parent, pslot + 1,
2151 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2152 			BUG_ON(ret < 0);
2153 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2154 			btrfs_mark_buffer_dirty(parent);
2155 
2156 			if (btrfs_header_nritems(mid) <= orig_slot) {
2157 				path->nodes[level] = right;
2158 				path->slots[level + 1] += 1;
2159 				path->slots[level] = orig_slot -
2160 					btrfs_header_nritems(mid);
2161 				btrfs_tree_unlock(mid);
2162 				free_extent_buffer(mid);
2163 			} else {
2164 				btrfs_tree_unlock(right);
2165 				free_extent_buffer(right);
2166 			}
2167 			return 0;
2168 		}
2169 		btrfs_tree_unlock(right);
2170 		free_extent_buffer(right);
2171 	}
2172 	return 1;
2173 }
2174 
2175 /*
2176  * readahead one full node of leaves, finding things that are close
2177  * to the block in 'slot', and triggering ra on them.
2178  */
2179 static void reada_for_search(struct btrfs_fs_info *fs_info,
2180 			     struct btrfs_path *path,
2181 			     int level, int slot, u64 objectid)
2182 {
2183 	struct extent_buffer *node;
2184 	struct btrfs_disk_key disk_key;
2185 	u32 nritems;
2186 	u64 search;
2187 	u64 target;
2188 	u64 nread = 0;
2189 	struct extent_buffer *eb;
2190 	u32 nr;
2191 	u32 blocksize;
2192 	u32 nscan = 0;
2193 
2194 	if (level != 1)
2195 		return;
2196 
2197 	if (!path->nodes[level])
2198 		return;
2199 
2200 	node = path->nodes[level];
2201 
2202 	search = btrfs_node_blockptr(node, slot);
2203 	blocksize = fs_info->nodesize;
2204 	eb = find_extent_buffer(fs_info, search);
2205 	if (eb) {
2206 		free_extent_buffer(eb);
2207 		return;
2208 	}
2209 
2210 	target = search;
2211 
2212 	nritems = btrfs_header_nritems(node);
2213 	nr = slot;
2214 
2215 	while (1) {
2216 		if (path->reada == READA_BACK) {
2217 			if (nr == 0)
2218 				break;
2219 			nr--;
2220 		} else if (path->reada == READA_FORWARD) {
2221 			nr++;
2222 			if (nr >= nritems)
2223 				break;
2224 		}
2225 		if (path->reada == READA_BACK && objectid) {
2226 			btrfs_node_key(node, &disk_key, nr);
2227 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2228 				break;
2229 		}
2230 		search = btrfs_node_blockptr(node, nr);
2231 		if ((search <= target && target - search <= 65536) ||
2232 		    (search > target && search - target <= 65536)) {
2233 			readahead_tree_block(fs_info, search);
2234 			nread += blocksize;
2235 		}
2236 		nscan++;
2237 		if ((nread > 65536 || nscan > 32))
2238 			break;
2239 	}
2240 }
2241 
2242 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2243 				       struct btrfs_path *path, int level)
2244 {
2245 	int slot;
2246 	int nritems;
2247 	struct extent_buffer *parent;
2248 	struct extent_buffer *eb;
2249 	u64 gen;
2250 	u64 block1 = 0;
2251 	u64 block2 = 0;
2252 
2253 	parent = path->nodes[level + 1];
2254 	if (!parent)
2255 		return;
2256 
2257 	nritems = btrfs_header_nritems(parent);
2258 	slot = path->slots[level + 1];
2259 
2260 	if (slot > 0) {
2261 		block1 = btrfs_node_blockptr(parent, slot - 1);
2262 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2263 		eb = find_extent_buffer(fs_info, block1);
2264 		/*
2265 		 * if we get -eagain from btrfs_buffer_uptodate, we
2266 		 * don't want to return eagain here.  That will loop
2267 		 * forever
2268 		 */
2269 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2270 			block1 = 0;
2271 		free_extent_buffer(eb);
2272 	}
2273 	if (slot + 1 < nritems) {
2274 		block2 = btrfs_node_blockptr(parent, slot + 1);
2275 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2276 		eb = find_extent_buffer(fs_info, block2);
2277 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2278 			block2 = 0;
2279 		free_extent_buffer(eb);
2280 	}
2281 
2282 	if (block1)
2283 		readahead_tree_block(fs_info, block1);
2284 	if (block2)
2285 		readahead_tree_block(fs_info, block2);
2286 }
2287 
2288 
2289 /*
2290  * when we walk down the tree, it is usually safe to unlock the higher layers
2291  * in the tree.  The exceptions are when our path goes through slot 0, because
2292  * operations on the tree might require changing key pointers higher up in the
2293  * tree.
2294  *
2295  * callers might also have set path->keep_locks, which tells this code to keep
2296  * the lock if the path points to the last slot in the block.  This is part of
2297  * walking through the tree, and selecting the next slot in the higher block.
2298  *
2299  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2300  * if lowest_unlock is 1, level 0 won't be unlocked
2301  */
2302 static noinline void unlock_up(struct btrfs_path *path, int level,
2303 			       int lowest_unlock, int min_write_lock_level,
2304 			       int *write_lock_level)
2305 {
2306 	int i;
2307 	int skip_level = level;
2308 	int no_skips = 0;
2309 	struct extent_buffer *t;
2310 
2311 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2312 		if (!path->nodes[i])
2313 			break;
2314 		if (!path->locks[i])
2315 			break;
2316 		if (!no_skips && path->slots[i] == 0) {
2317 			skip_level = i + 1;
2318 			continue;
2319 		}
2320 		if (!no_skips && path->keep_locks) {
2321 			u32 nritems;
2322 			t = path->nodes[i];
2323 			nritems = btrfs_header_nritems(t);
2324 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2325 				skip_level = i + 1;
2326 				continue;
2327 			}
2328 		}
2329 		if (skip_level < i && i >= lowest_unlock)
2330 			no_skips = 1;
2331 
2332 		t = path->nodes[i];
2333 		if (i >= lowest_unlock && i > skip_level) {
2334 			btrfs_tree_unlock_rw(t, path->locks[i]);
2335 			path->locks[i] = 0;
2336 			if (write_lock_level &&
2337 			    i > min_write_lock_level &&
2338 			    i <= *write_lock_level) {
2339 				*write_lock_level = i - 1;
2340 			}
2341 		}
2342 	}
2343 }
2344 
2345 /*
2346  * This releases any locks held in the path starting at level and
2347  * going all the way up to the root.
2348  *
2349  * btrfs_search_slot will keep the lock held on higher nodes in a few
2350  * corner cases, such as COW of the block at slot zero in the node.  This
2351  * ignores those rules, and it should only be called when there are no
2352  * more updates to be done higher up in the tree.
2353  */
2354 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2355 {
2356 	int i;
2357 
2358 	if (path->keep_locks)
2359 		return;
2360 
2361 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2362 		if (!path->nodes[i])
2363 			continue;
2364 		if (!path->locks[i])
2365 			continue;
2366 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2367 		path->locks[i] = 0;
2368 	}
2369 }
2370 
2371 /*
2372  * helper function for btrfs_search_slot.  The goal is to find a block
2373  * in cache without setting the path to blocking.  If we find the block
2374  * we return zero and the path is unchanged.
2375  *
2376  * If we can't find the block, we set the path blocking and do some
2377  * reada.  -EAGAIN is returned and the search must be repeated.
2378  */
2379 static int
2380 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2381 		      struct extent_buffer **eb_ret, int level, int slot,
2382 		      const struct btrfs_key *key)
2383 {
2384 	struct btrfs_fs_info *fs_info = root->fs_info;
2385 	u64 blocknr;
2386 	u64 gen;
2387 	struct extent_buffer *b = *eb_ret;
2388 	struct extent_buffer *tmp;
2389 	struct btrfs_key first_key;
2390 	int ret;
2391 	int parent_level;
2392 
2393 	blocknr = btrfs_node_blockptr(b, slot);
2394 	gen = btrfs_node_ptr_generation(b, slot);
2395 	parent_level = btrfs_header_level(b);
2396 	btrfs_node_key_to_cpu(b, &first_key, slot);
2397 
2398 	tmp = find_extent_buffer(fs_info, blocknr);
2399 	if (tmp) {
2400 		/* first we do an atomic uptodate check */
2401 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2402 			*eb_ret = tmp;
2403 			return 0;
2404 		}
2405 
2406 		/* the pages were up to date, but we failed
2407 		 * the generation number check.  Do a full
2408 		 * read for the generation number that is correct.
2409 		 * We must do this without dropping locks so
2410 		 * we can trust our generation number
2411 		 */
2412 		btrfs_set_path_blocking(p);
2413 
2414 		/* now we're allowed to do a blocking uptodate check */
2415 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2416 		if (!ret) {
2417 			*eb_ret = tmp;
2418 			return 0;
2419 		}
2420 		free_extent_buffer(tmp);
2421 		btrfs_release_path(p);
2422 		return -EIO;
2423 	}
2424 
2425 	/*
2426 	 * reduce lock contention at high levels
2427 	 * of the btree by dropping locks before
2428 	 * we read.  Don't release the lock on the current
2429 	 * level because we need to walk this node to figure
2430 	 * out which blocks to read.
2431 	 */
2432 	btrfs_unlock_up_safe(p, level + 1);
2433 	btrfs_set_path_blocking(p);
2434 
2435 	if (p->reada != READA_NONE)
2436 		reada_for_search(fs_info, p, level, slot, key->objectid);
2437 
2438 	ret = -EAGAIN;
2439 	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2440 			      &first_key);
2441 	if (!IS_ERR(tmp)) {
2442 		/*
2443 		 * If the read above didn't mark this buffer up to date,
2444 		 * it will never end up being up to date.  Set ret to EIO now
2445 		 * and give up so that our caller doesn't loop forever
2446 		 * on our EAGAINs.
2447 		 */
2448 		if (!extent_buffer_uptodate(tmp))
2449 			ret = -EIO;
2450 		free_extent_buffer(tmp);
2451 	} else {
2452 		ret = PTR_ERR(tmp);
2453 	}
2454 
2455 	btrfs_release_path(p);
2456 	return ret;
2457 }
2458 
2459 /*
2460  * helper function for btrfs_search_slot.  This does all of the checks
2461  * for node-level blocks and does any balancing required based on
2462  * the ins_len.
2463  *
2464  * If no extra work was required, zero is returned.  If we had to
2465  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2466  * start over
2467  */
2468 static int
2469 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2470 		       struct btrfs_root *root, struct btrfs_path *p,
2471 		       struct extent_buffer *b, int level, int ins_len,
2472 		       int *write_lock_level)
2473 {
2474 	struct btrfs_fs_info *fs_info = root->fs_info;
2475 	int ret;
2476 
2477 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2478 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2479 		int sret;
2480 
2481 		if (*write_lock_level < level + 1) {
2482 			*write_lock_level = level + 1;
2483 			btrfs_release_path(p);
2484 			goto again;
2485 		}
2486 
2487 		btrfs_set_path_blocking(p);
2488 		reada_for_balance(fs_info, p, level);
2489 		sret = split_node(trans, root, p, level);
2490 		btrfs_clear_path_blocking(p, NULL, 0);
2491 
2492 		BUG_ON(sret > 0);
2493 		if (sret) {
2494 			ret = sret;
2495 			goto done;
2496 		}
2497 		b = p->nodes[level];
2498 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2499 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2500 		int sret;
2501 
2502 		if (*write_lock_level < level + 1) {
2503 			*write_lock_level = level + 1;
2504 			btrfs_release_path(p);
2505 			goto again;
2506 		}
2507 
2508 		btrfs_set_path_blocking(p);
2509 		reada_for_balance(fs_info, p, level);
2510 		sret = balance_level(trans, root, p, level);
2511 		btrfs_clear_path_blocking(p, NULL, 0);
2512 
2513 		if (sret) {
2514 			ret = sret;
2515 			goto done;
2516 		}
2517 		b = p->nodes[level];
2518 		if (!b) {
2519 			btrfs_release_path(p);
2520 			goto again;
2521 		}
2522 		BUG_ON(btrfs_header_nritems(b) == 1);
2523 	}
2524 	return 0;
2525 
2526 again:
2527 	ret = -EAGAIN;
2528 done:
2529 	return ret;
2530 }
2531 
2532 static void key_search_validate(struct extent_buffer *b,
2533 				const struct btrfs_key *key,
2534 				int level)
2535 {
2536 #ifdef CONFIG_BTRFS_ASSERT
2537 	struct btrfs_disk_key disk_key;
2538 
2539 	btrfs_cpu_key_to_disk(&disk_key, key);
2540 
2541 	if (level == 0)
2542 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2543 		    offsetof(struct btrfs_leaf, items[0].key),
2544 		    sizeof(disk_key)));
2545 	else
2546 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2547 		    offsetof(struct btrfs_node, ptrs[0].key),
2548 		    sizeof(disk_key)));
2549 #endif
2550 }
2551 
2552 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2553 		      int level, int *prev_cmp, int *slot)
2554 {
2555 	if (*prev_cmp != 0) {
2556 		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2557 		return *prev_cmp;
2558 	}
2559 
2560 	key_search_validate(b, key, level);
2561 	*slot = 0;
2562 
2563 	return 0;
2564 }
2565 
2566 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2567 		u64 iobjectid, u64 ioff, u8 key_type,
2568 		struct btrfs_key *found_key)
2569 {
2570 	int ret;
2571 	struct btrfs_key key;
2572 	struct extent_buffer *eb;
2573 
2574 	ASSERT(path);
2575 	ASSERT(found_key);
2576 
2577 	key.type = key_type;
2578 	key.objectid = iobjectid;
2579 	key.offset = ioff;
2580 
2581 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2582 	if (ret < 0)
2583 		return ret;
2584 
2585 	eb = path->nodes[0];
2586 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2587 		ret = btrfs_next_leaf(fs_root, path);
2588 		if (ret)
2589 			return ret;
2590 		eb = path->nodes[0];
2591 	}
2592 
2593 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2594 	if (found_key->type != key.type ||
2595 			found_key->objectid != key.objectid)
2596 		return 1;
2597 
2598 	return 0;
2599 }
2600 
2601 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2602 							struct btrfs_path *p,
2603 							int write_lock_level)
2604 {
2605 	struct btrfs_fs_info *fs_info = root->fs_info;
2606 	struct extent_buffer *b;
2607 	int root_lock;
2608 	int level = 0;
2609 
2610 	/* We try very hard to do read locks on the root */
2611 	root_lock = BTRFS_READ_LOCK;
2612 
2613 	if (p->search_commit_root) {
2614 		/* The commit roots are read only so we always do read locks */
2615 		if (p->need_commit_sem)
2616 			down_read(&fs_info->commit_root_sem);
2617 		b = root->commit_root;
2618 		extent_buffer_get(b);
2619 		level = btrfs_header_level(b);
2620 		if (p->need_commit_sem)
2621 			up_read(&fs_info->commit_root_sem);
2622 		/*
2623 		 * Ensure that all callers have set skip_locking when
2624 		 * p->search_commit_root = 1.
2625 		 */
2626 		ASSERT(p->skip_locking == 1);
2627 
2628 		goto out;
2629 	}
2630 
2631 	if (p->skip_locking) {
2632 		b = btrfs_root_node(root);
2633 		level = btrfs_header_level(b);
2634 		goto out;
2635 	}
2636 
2637 	/*
2638 	 * If the level is set to maximum, we can skip trying to get the read
2639 	 * lock.
2640 	 */
2641 	if (write_lock_level < BTRFS_MAX_LEVEL) {
2642 		/*
2643 		 * We don't know the level of the root node until we actually
2644 		 * have it read locked
2645 		 */
2646 		b = btrfs_read_lock_root_node(root);
2647 		level = btrfs_header_level(b);
2648 		if (level > write_lock_level)
2649 			goto out;
2650 
2651 		/* Whoops, must trade for write lock */
2652 		btrfs_tree_read_unlock(b);
2653 		free_extent_buffer(b);
2654 	}
2655 
2656 	b = btrfs_lock_root_node(root);
2657 	root_lock = BTRFS_WRITE_LOCK;
2658 
2659 	/* The level might have changed, check again */
2660 	level = btrfs_header_level(b);
2661 
2662 out:
2663 	p->nodes[level] = b;
2664 	if (!p->skip_locking)
2665 		p->locks[level] = root_lock;
2666 	/*
2667 	 * Callers are responsible for dropping b's references.
2668 	 */
2669 	return b;
2670 }
2671 
2672 
2673 /*
2674  * btrfs_search_slot - look for a key in a tree and perform necessary
2675  * modifications to preserve tree invariants.
2676  *
2677  * @trans:	Handle of transaction, used when modifying the tree
2678  * @p:		Holds all btree nodes along the search path
2679  * @root:	The root node of the tree
2680  * @key:	The key we are looking for
2681  * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2682  *		deletions it's -1. 0 for plain searches
2683  * @cow:	boolean should CoW operations be performed. Must always be 1
2684  *		when modifying the tree.
2685  *
2686  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2687  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2688  *
2689  * If @key is found, 0 is returned and you can find the item in the leaf level
2690  * of the path (level 0)
2691  *
2692  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2693  * points to the slot where it should be inserted
2694  *
2695  * If an error is encountered while searching the tree a negative error number
2696  * is returned
2697  */
2698 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2699 		      const struct btrfs_key *key, struct btrfs_path *p,
2700 		      int ins_len, int cow)
2701 {
2702 	struct btrfs_fs_info *fs_info = root->fs_info;
2703 	struct extent_buffer *b;
2704 	int slot;
2705 	int ret;
2706 	int err;
2707 	int level;
2708 	int lowest_unlock = 1;
2709 	/* everything at write_lock_level or lower must be write locked */
2710 	int write_lock_level = 0;
2711 	u8 lowest_level = 0;
2712 	int min_write_lock_level;
2713 	int prev_cmp;
2714 
2715 	lowest_level = p->lowest_level;
2716 	WARN_ON(lowest_level && ins_len > 0);
2717 	WARN_ON(p->nodes[0] != NULL);
2718 	BUG_ON(!cow && ins_len);
2719 
2720 	if (ins_len < 0) {
2721 		lowest_unlock = 2;
2722 
2723 		/* when we are removing items, we might have to go up to level
2724 		 * two as we update tree pointers  Make sure we keep write
2725 		 * for those levels as well
2726 		 */
2727 		write_lock_level = 2;
2728 	} else if (ins_len > 0) {
2729 		/*
2730 		 * for inserting items, make sure we have a write lock on
2731 		 * level 1 so we can update keys
2732 		 */
2733 		write_lock_level = 1;
2734 	}
2735 
2736 	if (!cow)
2737 		write_lock_level = -1;
2738 
2739 	if (cow && (p->keep_locks || p->lowest_level))
2740 		write_lock_level = BTRFS_MAX_LEVEL;
2741 
2742 	min_write_lock_level = write_lock_level;
2743 
2744 again:
2745 	prev_cmp = -1;
2746 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2747 
2748 	while (b) {
2749 		level = btrfs_header_level(b);
2750 
2751 		/*
2752 		 * setup the path here so we can release it under lock
2753 		 * contention with the cow code
2754 		 */
2755 		if (cow) {
2756 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2757 
2758 			/*
2759 			 * if we don't really need to cow this block
2760 			 * then we don't want to set the path blocking,
2761 			 * so we test it here
2762 			 */
2763 			if (!should_cow_block(trans, root, b)) {
2764 				trans->dirty = true;
2765 				goto cow_done;
2766 			}
2767 
2768 			/*
2769 			 * must have write locks on this node and the
2770 			 * parent
2771 			 */
2772 			if (level > write_lock_level ||
2773 			    (level + 1 > write_lock_level &&
2774 			    level + 1 < BTRFS_MAX_LEVEL &&
2775 			    p->nodes[level + 1])) {
2776 				write_lock_level = level + 1;
2777 				btrfs_release_path(p);
2778 				goto again;
2779 			}
2780 
2781 			btrfs_set_path_blocking(p);
2782 			if (last_level)
2783 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2784 						      &b);
2785 			else
2786 				err = btrfs_cow_block(trans, root, b,
2787 						      p->nodes[level + 1],
2788 						      p->slots[level + 1], &b);
2789 			if (err) {
2790 				ret = err;
2791 				goto done;
2792 			}
2793 		}
2794 cow_done:
2795 		p->nodes[level] = b;
2796 		btrfs_clear_path_blocking(p, NULL, 0);
2797 
2798 		/*
2799 		 * we have a lock on b and as long as we aren't changing
2800 		 * the tree, there is no way to for the items in b to change.
2801 		 * It is safe to drop the lock on our parent before we
2802 		 * go through the expensive btree search on b.
2803 		 *
2804 		 * If we're inserting or deleting (ins_len != 0), then we might
2805 		 * be changing slot zero, which may require changing the parent.
2806 		 * So, we can't drop the lock until after we know which slot
2807 		 * we're operating on.
2808 		 */
2809 		if (!ins_len && !p->keep_locks) {
2810 			int u = level + 1;
2811 
2812 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2813 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2814 				p->locks[u] = 0;
2815 			}
2816 		}
2817 
2818 		ret = key_search(b, key, level, &prev_cmp, &slot);
2819 		if (ret < 0)
2820 			goto done;
2821 
2822 		if (level != 0) {
2823 			int dec = 0;
2824 			if (ret && slot > 0) {
2825 				dec = 1;
2826 				slot -= 1;
2827 			}
2828 			p->slots[level] = slot;
2829 			err = setup_nodes_for_search(trans, root, p, b, level,
2830 					     ins_len, &write_lock_level);
2831 			if (err == -EAGAIN)
2832 				goto again;
2833 			if (err) {
2834 				ret = err;
2835 				goto done;
2836 			}
2837 			b = p->nodes[level];
2838 			slot = p->slots[level];
2839 
2840 			/*
2841 			 * slot 0 is special, if we change the key
2842 			 * we have to update the parent pointer
2843 			 * which means we must have a write lock
2844 			 * on the parent
2845 			 */
2846 			if (slot == 0 && ins_len &&
2847 			    write_lock_level < level + 1) {
2848 				write_lock_level = level + 1;
2849 				btrfs_release_path(p);
2850 				goto again;
2851 			}
2852 
2853 			unlock_up(p, level, lowest_unlock,
2854 				  min_write_lock_level, &write_lock_level);
2855 
2856 			if (level == lowest_level) {
2857 				if (dec)
2858 					p->slots[level]++;
2859 				goto done;
2860 			}
2861 
2862 			err = read_block_for_search(root, p, &b, level,
2863 						    slot, key);
2864 			if (err == -EAGAIN)
2865 				goto again;
2866 			if (err) {
2867 				ret = err;
2868 				goto done;
2869 			}
2870 
2871 			if (!p->skip_locking) {
2872 				level = btrfs_header_level(b);
2873 				if (level <= write_lock_level) {
2874 					err = btrfs_try_tree_write_lock(b);
2875 					if (!err) {
2876 						btrfs_set_path_blocking(p);
2877 						btrfs_tree_lock(b);
2878 						btrfs_clear_path_blocking(p, b,
2879 								  BTRFS_WRITE_LOCK);
2880 					}
2881 					p->locks[level] = BTRFS_WRITE_LOCK;
2882 				} else {
2883 					err = btrfs_tree_read_lock_atomic(b);
2884 					if (!err) {
2885 						btrfs_set_path_blocking(p);
2886 						btrfs_tree_read_lock(b);
2887 						btrfs_clear_path_blocking(p, b,
2888 								  BTRFS_READ_LOCK);
2889 					}
2890 					p->locks[level] = BTRFS_READ_LOCK;
2891 				}
2892 				p->nodes[level] = b;
2893 			}
2894 		} else {
2895 			p->slots[level] = slot;
2896 			if (ins_len > 0 &&
2897 			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2898 				if (write_lock_level < 1) {
2899 					write_lock_level = 1;
2900 					btrfs_release_path(p);
2901 					goto again;
2902 				}
2903 
2904 				btrfs_set_path_blocking(p);
2905 				err = split_leaf(trans, root, key,
2906 						 p, ins_len, ret == 0);
2907 				btrfs_clear_path_blocking(p, NULL, 0);
2908 
2909 				BUG_ON(err > 0);
2910 				if (err) {
2911 					ret = err;
2912 					goto done;
2913 				}
2914 			}
2915 			if (!p->search_for_split)
2916 				unlock_up(p, level, lowest_unlock,
2917 					  min_write_lock_level, &write_lock_level);
2918 			goto done;
2919 		}
2920 	}
2921 	ret = 1;
2922 done:
2923 	/*
2924 	 * we don't really know what they plan on doing with the path
2925 	 * from here on, so for now just mark it as blocking
2926 	 */
2927 	if (!p->leave_spinning)
2928 		btrfs_set_path_blocking(p);
2929 	if (ret < 0 && !p->skip_release_on_error)
2930 		btrfs_release_path(p);
2931 	return ret;
2932 }
2933 
2934 /*
2935  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2936  * current state of the tree together with the operations recorded in the tree
2937  * modification log to search for the key in a previous version of this tree, as
2938  * denoted by the time_seq parameter.
2939  *
2940  * Naturally, there is no support for insert, delete or cow operations.
2941  *
2942  * The resulting path and return value will be set up as if we called
2943  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2944  */
2945 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2946 			  struct btrfs_path *p, u64 time_seq)
2947 {
2948 	struct btrfs_fs_info *fs_info = root->fs_info;
2949 	struct extent_buffer *b;
2950 	int slot;
2951 	int ret;
2952 	int err;
2953 	int level;
2954 	int lowest_unlock = 1;
2955 	u8 lowest_level = 0;
2956 	int prev_cmp = -1;
2957 
2958 	lowest_level = p->lowest_level;
2959 	WARN_ON(p->nodes[0] != NULL);
2960 
2961 	if (p->search_commit_root) {
2962 		BUG_ON(time_seq);
2963 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2964 	}
2965 
2966 again:
2967 	b = get_old_root(root, time_seq);
2968 	level = btrfs_header_level(b);
2969 	p->locks[level] = BTRFS_READ_LOCK;
2970 
2971 	while (b) {
2972 		level = btrfs_header_level(b);
2973 		p->nodes[level] = b;
2974 		btrfs_clear_path_blocking(p, NULL, 0);
2975 
2976 		/*
2977 		 * we have a lock on b and as long as we aren't changing
2978 		 * the tree, there is no way to for the items in b to change.
2979 		 * It is safe to drop the lock on our parent before we
2980 		 * go through the expensive btree search on b.
2981 		 */
2982 		btrfs_unlock_up_safe(p, level + 1);
2983 
2984 		/*
2985 		 * Since we can unwind ebs we want to do a real search every
2986 		 * time.
2987 		 */
2988 		prev_cmp = -1;
2989 		ret = key_search(b, key, level, &prev_cmp, &slot);
2990 
2991 		if (level != 0) {
2992 			int dec = 0;
2993 			if (ret && slot > 0) {
2994 				dec = 1;
2995 				slot -= 1;
2996 			}
2997 			p->slots[level] = slot;
2998 			unlock_up(p, level, lowest_unlock, 0, NULL);
2999 
3000 			if (level == lowest_level) {
3001 				if (dec)
3002 					p->slots[level]++;
3003 				goto done;
3004 			}
3005 
3006 			err = read_block_for_search(root, p, &b, level,
3007 						    slot, key);
3008 			if (err == -EAGAIN)
3009 				goto again;
3010 			if (err) {
3011 				ret = err;
3012 				goto done;
3013 			}
3014 
3015 			level = btrfs_header_level(b);
3016 			err = btrfs_tree_read_lock_atomic(b);
3017 			if (!err) {
3018 				btrfs_set_path_blocking(p);
3019 				btrfs_tree_read_lock(b);
3020 				btrfs_clear_path_blocking(p, b,
3021 							  BTRFS_READ_LOCK);
3022 			}
3023 			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3024 			if (!b) {
3025 				ret = -ENOMEM;
3026 				goto done;
3027 			}
3028 			p->locks[level] = BTRFS_READ_LOCK;
3029 			p->nodes[level] = b;
3030 		} else {
3031 			p->slots[level] = slot;
3032 			unlock_up(p, level, lowest_unlock, 0, NULL);
3033 			goto done;
3034 		}
3035 	}
3036 	ret = 1;
3037 done:
3038 	if (!p->leave_spinning)
3039 		btrfs_set_path_blocking(p);
3040 	if (ret < 0)
3041 		btrfs_release_path(p);
3042 
3043 	return ret;
3044 }
3045 
3046 /*
3047  * helper to use instead of search slot if no exact match is needed but
3048  * instead the next or previous item should be returned.
3049  * When find_higher is true, the next higher item is returned, the next lower
3050  * otherwise.
3051  * When return_any and find_higher are both true, and no higher item is found,
3052  * return the next lower instead.
3053  * When return_any is true and find_higher is false, and no lower item is found,
3054  * return the next higher instead.
3055  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3056  * < 0 on error
3057  */
3058 int btrfs_search_slot_for_read(struct btrfs_root *root,
3059 			       const struct btrfs_key *key,
3060 			       struct btrfs_path *p, int find_higher,
3061 			       int return_any)
3062 {
3063 	int ret;
3064 	struct extent_buffer *leaf;
3065 
3066 again:
3067 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3068 	if (ret <= 0)
3069 		return ret;
3070 	/*
3071 	 * a return value of 1 means the path is at the position where the
3072 	 * item should be inserted. Normally this is the next bigger item,
3073 	 * but in case the previous item is the last in a leaf, path points
3074 	 * to the first free slot in the previous leaf, i.e. at an invalid
3075 	 * item.
3076 	 */
3077 	leaf = p->nodes[0];
3078 
3079 	if (find_higher) {
3080 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3081 			ret = btrfs_next_leaf(root, p);
3082 			if (ret <= 0)
3083 				return ret;
3084 			if (!return_any)
3085 				return 1;
3086 			/*
3087 			 * no higher item found, return the next
3088 			 * lower instead
3089 			 */
3090 			return_any = 0;
3091 			find_higher = 0;
3092 			btrfs_release_path(p);
3093 			goto again;
3094 		}
3095 	} else {
3096 		if (p->slots[0] == 0) {
3097 			ret = btrfs_prev_leaf(root, p);
3098 			if (ret < 0)
3099 				return ret;
3100 			if (!ret) {
3101 				leaf = p->nodes[0];
3102 				if (p->slots[0] == btrfs_header_nritems(leaf))
3103 					p->slots[0]--;
3104 				return 0;
3105 			}
3106 			if (!return_any)
3107 				return 1;
3108 			/*
3109 			 * no lower item found, return the next
3110 			 * higher instead
3111 			 */
3112 			return_any = 0;
3113 			find_higher = 1;
3114 			btrfs_release_path(p);
3115 			goto again;
3116 		} else {
3117 			--p->slots[0];
3118 		}
3119 	}
3120 	return 0;
3121 }
3122 
3123 /*
3124  * adjust the pointers going up the tree, starting at level
3125  * making sure the right key of each node is points to 'key'.
3126  * This is used after shifting pointers to the left, so it stops
3127  * fixing up pointers when a given leaf/node is not in slot 0 of the
3128  * higher levels
3129  *
3130  */
3131 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3132 			   struct btrfs_path *path,
3133 			   struct btrfs_disk_key *key, int level)
3134 {
3135 	int i;
3136 	struct extent_buffer *t;
3137 	int ret;
3138 
3139 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3140 		int tslot = path->slots[i];
3141 
3142 		if (!path->nodes[i])
3143 			break;
3144 		t = path->nodes[i];
3145 		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3146 				GFP_ATOMIC);
3147 		BUG_ON(ret < 0);
3148 		btrfs_set_node_key(t, key, tslot);
3149 		btrfs_mark_buffer_dirty(path->nodes[i]);
3150 		if (tslot != 0)
3151 			break;
3152 	}
3153 }
3154 
3155 /*
3156  * update item key.
3157  *
3158  * This function isn't completely safe. It's the caller's responsibility
3159  * that the new key won't break the order
3160  */
3161 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3162 			     struct btrfs_path *path,
3163 			     const struct btrfs_key *new_key)
3164 {
3165 	struct btrfs_disk_key disk_key;
3166 	struct extent_buffer *eb;
3167 	int slot;
3168 
3169 	eb = path->nodes[0];
3170 	slot = path->slots[0];
3171 	if (slot > 0) {
3172 		btrfs_item_key(eb, &disk_key, slot - 1);
3173 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3174 	}
3175 	if (slot < btrfs_header_nritems(eb) - 1) {
3176 		btrfs_item_key(eb, &disk_key, slot + 1);
3177 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3178 	}
3179 
3180 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3181 	btrfs_set_item_key(eb, &disk_key, slot);
3182 	btrfs_mark_buffer_dirty(eb);
3183 	if (slot == 0)
3184 		fixup_low_keys(fs_info, path, &disk_key, 1);
3185 }
3186 
3187 /*
3188  * try to push data from one node into the next node left in the
3189  * tree.
3190  *
3191  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3192  * error, and > 0 if there was no room in the left hand block.
3193  */
3194 static int push_node_left(struct btrfs_trans_handle *trans,
3195 			  struct btrfs_fs_info *fs_info,
3196 			  struct extent_buffer *dst,
3197 			  struct extent_buffer *src, int empty)
3198 {
3199 	int push_items = 0;
3200 	int src_nritems;
3201 	int dst_nritems;
3202 	int ret = 0;
3203 
3204 	src_nritems = btrfs_header_nritems(src);
3205 	dst_nritems = btrfs_header_nritems(dst);
3206 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3207 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3208 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3209 
3210 	if (!empty && src_nritems <= 8)
3211 		return 1;
3212 
3213 	if (push_items <= 0)
3214 		return 1;
3215 
3216 	if (empty) {
3217 		push_items = min(src_nritems, push_items);
3218 		if (push_items < src_nritems) {
3219 			/* leave at least 8 pointers in the node if
3220 			 * we aren't going to empty it
3221 			 */
3222 			if (src_nritems - push_items < 8) {
3223 				if (push_items <= 8)
3224 					return 1;
3225 				push_items -= 8;
3226 			}
3227 		}
3228 	} else
3229 		push_items = min(src_nritems - 8, push_items);
3230 
3231 	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3232 				   push_items);
3233 	if (ret) {
3234 		btrfs_abort_transaction(trans, ret);
3235 		return ret;
3236 	}
3237 	copy_extent_buffer(dst, src,
3238 			   btrfs_node_key_ptr_offset(dst_nritems),
3239 			   btrfs_node_key_ptr_offset(0),
3240 			   push_items * sizeof(struct btrfs_key_ptr));
3241 
3242 	if (push_items < src_nritems) {
3243 		/*
3244 		 * Don't call tree_mod_log_insert_move here, key removal was
3245 		 * already fully logged by tree_mod_log_eb_copy above.
3246 		 */
3247 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3248 				      btrfs_node_key_ptr_offset(push_items),
3249 				      (src_nritems - push_items) *
3250 				      sizeof(struct btrfs_key_ptr));
3251 	}
3252 	btrfs_set_header_nritems(src, src_nritems - push_items);
3253 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3254 	btrfs_mark_buffer_dirty(src);
3255 	btrfs_mark_buffer_dirty(dst);
3256 
3257 	return ret;
3258 }
3259 
3260 /*
3261  * try to push data from one node into the next node right in the
3262  * tree.
3263  *
3264  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3265  * error, and > 0 if there was no room in the right hand block.
3266  *
3267  * this will  only push up to 1/2 the contents of the left node over
3268  */
3269 static int balance_node_right(struct btrfs_trans_handle *trans,
3270 			      struct btrfs_fs_info *fs_info,
3271 			      struct extent_buffer *dst,
3272 			      struct extent_buffer *src)
3273 {
3274 	int push_items = 0;
3275 	int max_push;
3276 	int src_nritems;
3277 	int dst_nritems;
3278 	int ret = 0;
3279 
3280 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3281 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3282 
3283 	src_nritems = btrfs_header_nritems(src);
3284 	dst_nritems = btrfs_header_nritems(dst);
3285 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3286 	if (push_items <= 0)
3287 		return 1;
3288 
3289 	if (src_nritems < 4)
3290 		return 1;
3291 
3292 	max_push = src_nritems / 2 + 1;
3293 	/* don't try to empty the node */
3294 	if (max_push >= src_nritems)
3295 		return 1;
3296 
3297 	if (max_push < push_items)
3298 		push_items = max_push;
3299 
3300 	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3301 	BUG_ON(ret < 0);
3302 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3303 				      btrfs_node_key_ptr_offset(0),
3304 				      (dst_nritems) *
3305 				      sizeof(struct btrfs_key_ptr));
3306 
3307 	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3308 				   src_nritems - push_items, push_items);
3309 	if (ret) {
3310 		btrfs_abort_transaction(trans, ret);
3311 		return ret;
3312 	}
3313 	copy_extent_buffer(dst, src,
3314 			   btrfs_node_key_ptr_offset(0),
3315 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3316 			   push_items * sizeof(struct btrfs_key_ptr));
3317 
3318 	btrfs_set_header_nritems(src, src_nritems - push_items);
3319 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3320 
3321 	btrfs_mark_buffer_dirty(src);
3322 	btrfs_mark_buffer_dirty(dst);
3323 
3324 	return ret;
3325 }
3326 
3327 /*
3328  * helper function to insert a new root level in the tree.
3329  * A new node is allocated, and a single item is inserted to
3330  * point to the existing root
3331  *
3332  * returns zero on success or < 0 on failure.
3333  */
3334 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3335 			   struct btrfs_root *root,
3336 			   struct btrfs_path *path, int level)
3337 {
3338 	struct btrfs_fs_info *fs_info = root->fs_info;
3339 	u64 lower_gen;
3340 	struct extent_buffer *lower;
3341 	struct extent_buffer *c;
3342 	struct extent_buffer *old;
3343 	struct btrfs_disk_key lower_key;
3344 	int ret;
3345 
3346 	BUG_ON(path->nodes[level]);
3347 	BUG_ON(path->nodes[level-1] != root->node);
3348 
3349 	lower = path->nodes[level-1];
3350 	if (level == 1)
3351 		btrfs_item_key(lower, &lower_key, 0);
3352 	else
3353 		btrfs_node_key(lower, &lower_key, 0);
3354 
3355 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3356 				   &lower_key, level, root->node->start, 0);
3357 	if (IS_ERR(c))
3358 		return PTR_ERR(c);
3359 
3360 	root_add_used(root, fs_info->nodesize);
3361 
3362 	memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3363 	btrfs_set_header_nritems(c, 1);
3364 	btrfs_set_header_level(c, level);
3365 	btrfs_set_header_bytenr(c, c->start);
3366 	btrfs_set_header_generation(c, trans->transid);
3367 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3368 	btrfs_set_header_owner(c, root->root_key.objectid);
3369 
3370 	write_extent_buffer_fsid(c, fs_info->fsid);
3371 	write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3372 
3373 	btrfs_set_node_key(c, &lower_key, 0);
3374 	btrfs_set_node_blockptr(c, 0, lower->start);
3375 	lower_gen = btrfs_header_generation(lower);
3376 	WARN_ON(lower_gen != trans->transid);
3377 
3378 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3379 
3380 	btrfs_mark_buffer_dirty(c);
3381 
3382 	old = root->node;
3383 	ret = tree_mod_log_insert_root(root->node, c, 0);
3384 	BUG_ON(ret < 0);
3385 	rcu_assign_pointer(root->node, c);
3386 
3387 	/* the super has an extra ref to root->node */
3388 	free_extent_buffer(old);
3389 
3390 	add_root_to_dirty_list(root);
3391 	extent_buffer_get(c);
3392 	path->nodes[level] = c;
3393 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3394 	path->slots[level] = 0;
3395 	return 0;
3396 }
3397 
3398 /*
3399  * worker function to insert a single pointer in a node.
3400  * the node should have enough room for the pointer already
3401  *
3402  * slot and level indicate where you want the key to go, and
3403  * blocknr is the block the key points to.
3404  */
3405 static void insert_ptr(struct btrfs_trans_handle *trans,
3406 		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3407 		       struct btrfs_disk_key *key, u64 bytenr,
3408 		       int slot, int level)
3409 {
3410 	struct extent_buffer *lower;
3411 	int nritems;
3412 	int ret;
3413 
3414 	BUG_ON(!path->nodes[level]);
3415 	btrfs_assert_tree_locked(path->nodes[level]);
3416 	lower = path->nodes[level];
3417 	nritems = btrfs_header_nritems(lower);
3418 	BUG_ON(slot > nritems);
3419 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3420 	if (slot != nritems) {
3421 		if (level) {
3422 			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3423 					nritems - slot);
3424 			BUG_ON(ret < 0);
3425 		}
3426 		memmove_extent_buffer(lower,
3427 			      btrfs_node_key_ptr_offset(slot + 1),
3428 			      btrfs_node_key_ptr_offset(slot),
3429 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3430 	}
3431 	if (level) {
3432 		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3433 				GFP_NOFS);
3434 		BUG_ON(ret < 0);
3435 	}
3436 	btrfs_set_node_key(lower, key, slot);
3437 	btrfs_set_node_blockptr(lower, slot, bytenr);
3438 	WARN_ON(trans->transid == 0);
3439 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3440 	btrfs_set_header_nritems(lower, nritems + 1);
3441 	btrfs_mark_buffer_dirty(lower);
3442 }
3443 
3444 /*
3445  * split the node at the specified level in path in two.
3446  * The path is corrected to point to the appropriate node after the split
3447  *
3448  * Before splitting this tries to make some room in the node by pushing
3449  * left and right, if either one works, it returns right away.
3450  *
3451  * returns 0 on success and < 0 on failure
3452  */
3453 static noinline int split_node(struct btrfs_trans_handle *trans,
3454 			       struct btrfs_root *root,
3455 			       struct btrfs_path *path, int level)
3456 {
3457 	struct btrfs_fs_info *fs_info = root->fs_info;
3458 	struct extent_buffer *c;
3459 	struct extent_buffer *split;
3460 	struct btrfs_disk_key disk_key;
3461 	int mid;
3462 	int ret;
3463 	u32 c_nritems;
3464 
3465 	c = path->nodes[level];
3466 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3467 	if (c == root->node) {
3468 		/*
3469 		 * trying to split the root, lets make a new one
3470 		 *
3471 		 * tree mod log: We don't log_removal old root in
3472 		 * insert_new_root, because that root buffer will be kept as a
3473 		 * normal node. We are going to log removal of half of the
3474 		 * elements below with tree_mod_log_eb_copy. We're holding a
3475 		 * tree lock on the buffer, which is why we cannot race with
3476 		 * other tree_mod_log users.
3477 		 */
3478 		ret = insert_new_root(trans, root, path, level + 1);
3479 		if (ret)
3480 			return ret;
3481 	} else {
3482 		ret = push_nodes_for_insert(trans, root, path, level);
3483 		c = path->nodes[level];
3484 		if (!ret && btrfs_header_nritems(c) <
3485 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3486 			return 0;
3487 		if (ret < 0)
3488 			return ret;
3489 	}
3490 
3491 	c_nritems = btrfs_header_nritems(c);
3492 	mid = (c_nritems + 1) / 2;
3493 	btrfs_node_key(c, &disk_key, mid);
3494 
3495 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3496 			&disk_key, level, c->start, 0);
3497 	if (IS_ERR(split))
3498 		return PTR_ERR(split);
3499 
3500 	root_add_used(root, fs_info->nodesize);
3501 
3502 	memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3503 	btrfs_set_header_level(split, btrfs_header_level(c));
3504 	btrfs_set_header_bytenr(split, split->start);
3505 	btrfs_set_header_generation(split, trans->transid);
3506 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3507 	btrfs_set_header_owner(split, root->root_key.objectid);
3508 	write_extent_buffer_fsid(split, fs_info->fsid);
3509 	write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3510 
3511 	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3512 	if (ret) {
3513 		btrfs_abort_transaction(trans, ret);
3514 		return ret;
3515 	}
3516 	copy_extent_buffer(split, c,
3517 			   btrfs_node_key_ptr_offset(0),
3518 			   btrfs_node_key_ptr_offset(mid),
3519 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3520 	btrfs_set_header_nritems(split, c_nritems - mid);
3521 	btrfs_set_header_nritems(c, mid);
3522 	ret = 0;
3523 
3524 	btrfs_mark_buffer_dirty(c);
3525 	btrfs_mark_buffer_dirty(split);
3526 
3527 	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3528 		   path->slots[level + 1] + 1, level + 1);
3529 
3530 	if (path->slots[level] >= mid) {
3531 		path->slots[level] -= mid;
3532 		btrfs_tree_unlock(c);
3533 		free_extent_buffer(c);
3534 		path->nodes[level] = split;
3535 		path->slots[level + 1] += 1;
3536 	} else {
3537 		btrfs_tree_unlock(split);
3538 		free_extent_buffer(split);
3539 	}
3540 	return ret;
3541 }
3542 
3543 /*
3544  * how many bytes are required to store the items in a leaf.  start
3545  * and nr indicate which items in the leaf to check.  This totals up the
3546  * space used both by the item structs and the item data
3547  */
3548 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3549 {
3550 	struct btrfs_item *start_item;
3551 	struct btrfs_item *end_item;
3552 	struct btrfs_map_token token;
3553 	int data_len;
3554 	int nritems = btrfs_header_nritems(l);
3555 	int end = min(nritems, start + nr) - 1;
3556 
3557 	if (!nr)
3558 		return 0;
3559 	btrfs_init_map_token(&token);
3560 	start_item = btrfs_item_nr(start);
3561 	end_item = btrfs_item_nr(end);
3562 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3563 		btrfs_token_item_size(l, start_item, &token);
3564 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3565 	data_len += sizeof(struct btrfs_item) * nr;
3566 	WARN_ON(data_len < 0);
3567 	return data_len;
3568 }
3569 
3570 /*
3571  * The space between the end of the leaf items and
3572  * the start of the leaf data.  IOW, how much room
3573  * the leaf has left for both items and data
3574  */
3575 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3576 				   struct extent_buffer *leaf)
3577 {
3578 	int nritems = btrfs_header_nritems(leaf);
3579 	int ret;
3580 
3581 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3582 	if (ret < 0) {
3583 		btrfs_crit(fs_info,
3584 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3585 			   ret,
3586 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3587 			   leaf_space_used(leaf, 0, nritems), nritems);
3588 	}
3589 	return ret;
3590 }
3591 
3592 /*
3593  * min slot controls the lowest index we're willing to push to the
3594  * right.  We'll push up to and including min_slot, but no lower
3595  */
3596 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3597 				      struct btrfs_path *path,
3598 				      int data_size, int empty,
3599 				      struct extent_buffer *right,
3600 				      int free_space, u32 left_nritems,
3601 				      u32 min_slot)
3602 {
3603 	struct extent_buffer *left = path->nodes[0];
3604 	struct extent_buffer *upper = path->nodes[1];
3605 	struct btrfs_map_token token;
3606 	struct btrfs_disk_key disk_key;
3607 	int slot;
3608 	u32 i;
3609 	int push_space = 0;
3610 	int push_items = 0;
3611 	struct btrfs_item *item;
3612 	u32 nr;
3613 	u32 right_nritems;
3614 	u32 data_end;
3615 	u32 this_item_size;
3616 
3617 	btrfs_init_map_token(&token);
3618 
3619 	if (empty)
3620 		nr = 0;
3621 	else
3622 		nr = max_t(u32, 1, min_slot);
3623 
3624 	if (path->slots[0] >= left_nritems)
3625 		push_space += data_size;
3626 
3627 	slot = path->slots[1];
3628 	i = left_nritems - 1;
3629 	while (i >= nr) {
3630 		item = btrfs_item_nr(i);
3631 
3632 		if (!empty && push_items > 0) {
3633 			if (path->slots[0] > i)
3634 				break;
3635 			if (path->slots[0] == i) {
3636 				int space = btrfs_leaf_free_space(fs_info, left);
3637 				if (space + push_space * 2 > free_space)
3638 					break;
3639 			}
3640 		}
3641 
3642 		if (path->slots[0] == i)
3643 			push_space += data_size;
3644 
3645 		this_item_size = btrfs_item_size(left, item);
3646 		if (this_item_size + sizeof(*item) + push_space > free_space)
3647 			break;
3648 
3649 		push_items++;
3650 		push_space += this_item_size + sizeof(*item);
3651 		if (i == 0)
3652 			break;
3653 		i--;
3654 	}
3655 
3656 	if (push_items == 0)
3657 		goto out_unlock;
3658 
3659 	WARN_ON(!empty && push_items == left_nritems);
3660 
3661 	/* push left to right */
3662 	right_nritems = btrfs_header_nritems(right);
3663 
3664 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3665 	push_space -= leaf_data_end(fs_info, left);
3666 
3667 	/* make room in the right data area */
3668 	data_end = leaf_data_end(fs_info, right);
3669 	memmove_extent_buffer(right,
3670 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3671 			      BTRFS_LEAF_DATA_OFFSET + data_end,
3672 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3673 
3674 	/* copy from the left data area */
3675 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3676 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3677 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3678 		     push_space);
3679 
3680 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3681 			      btrfs_item_nr_offset(0),
3682 			      right_nritems * sizeof(struct btrfs_item));
3683 
3684 	/* copy the items from left to right */
3685 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3686 		   btrfs_item_nr_offset(left_nritems - push_items),
3687 		   push_items * sizeof(struct btrfs_item));
3688 
3689 	/* update the item pointers */
3690 	right_nritems += push_items;
3691 	btrfs_set_header_nritems(right, right_nritems);
3692 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3693 	for (i = 0; i < right_nritems; i++) {
3694 		item = btrfs_item_nr(i);
3695 		push_space -= btrfs_token_item_size(right, item, &token);
3696 		btrfs_set_token_item_offset(right, item, push_space, &token);
3697 	}
3698 
3699 	left_nritems -= push_items;
3700 	btrfs_set_header_nritems(left, left_nritems);
3701 
3702 	if (left_nritems)
3703 		btrfs_mark_buffer_dirty(left);
3704 	else
3705 		clean_tree_block(fs_info, left);
3706 
3707 	btrfs_mark_buffer_dirty(right);
3708 
3709 	btrfs_item_key(right, &disk_key, 0);
3710 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3711 	btrfs_mark_buffer_dirty(upper);
3712 
3713 	/* then fixup the leaf pointer in the path */
3714 	if (path->slots[0] >= left_nritems) {
3715 		path->slots[0] -= left_nritems;
3716 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3717 			clean_tree_block(fs_info, path->nodes[0]);
3718 		btrfs_tree_unlock(path->nodes[0]);
3719 		free_extent_buffer(path->nodes[0]);
3720 		path->nodes[0] = right;
3721 		path->slots[1] += 1;
3722 	} else {
3723 		btrfs_tree_unlock(right);
3724 		free_extent_buffer(right);
3725 	}
3726 	return 0;
3727 
3728 out_unlock:
3729 	btrfs_tree_unlock(right);
3730 	free_extent_buffer(right);
3731 	return 1;
3732 }
3733 
3734 /*
3735  * push some data in the path leaf to the right, trying to free up at
3736  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3737  *
3738  * returns 1 if the push failed because the other node didn't have enough
3739  * room, 0 if everything worked out and < 0 if there were major errors.
3740  *
3741  * this will push starting from min_slot to the end of the leaf.  It won't
3742  * push any slot lower than min_slot
3743  */
3744 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3745 			   *root, struct btrfs_path *path,
3746 			   int min_data_size, int data_size,
3747 			   int empty, u32 min_slot)
3748 {
3749 	struct btrfs_fs_info *fs_info = root->fs_info;
3750 	struct extent_buffer *left = path->nodes[0];
3751 	struct extent_buffer *right;
3752 	struct extent_buffer *upper;
3753 	int slot;
3754 	int free_space;
3755 	u32 left_nritems;
3756 	int ret;
3757 
3758 	if (!path->nodes[1])
3759 		return 1;
3760 
3761 	slot = path->slots[1];
3762 	upper = path->nodes[1];
3763 	if (slot >= btrfs_header_nritems(upper) - 1)
3764 		return 1;
3765 
3766 	btrfs_assert_tree_locked(path->nodes[1]);
3767 
3768 	right = read_node_slot(fs_info, upper, slot + 1);
3769 	/*
3770 	 * slot + 1 is not valid or we fail to read the right node,
3771 	 * no big deal, just return.
3772 	 */
3773 	if (IS_ERR(right))
3774 		return 1;
3775 
3776 	btrfs_tree_lock(right);
3777 	btrfs_set_lock_blocking(right);
3778 
3779 	free_space = btrfs_leaf_free_space(fs_info, right);
3780 	if (free_space < data_size)
3781 		goto out_unlock;
3782 
3783 	/* cow and double check */
3784 	ret = btrfs_cow_block(trans, root, right, upper,
3785 			      slot + 1, &right);
3786 	if (ret)
3787 		goto out_unlock;
3788 
3789 	free_space = btrfs_leaf_free_space(fs_info, right);
3790 	if (free_space < data_size)
3791 		goto out_unlock;
3792 
3793 	left_nritems = btrfs_header_nritems(left);
3794 	if (left_nritems == 0)
3795 		goto out_unlock;
3796 
3797 	if (path->slots[0] == left_nritems && !empty) {
3798 		/* Key greater than all keys in the leaf, right neighbor has
3799 		 * enough room for it and we're not emptying our leaf to delete
3800 		 * it, therefore use right neighbor to insert the new item and
3801 		 * no need to touch/dirty our left leaft. */
3802 		btrfs_tree_unlock(left);
3803 		free_extent_buffer(left);
3804 		path->nodes[0] = right;
3805 		path->slots[0] = 0;
3806 		path->slots[1]++;
3807 		return 0;
3808 	}
3809 
3810 	return __push_leaf_right(fs_info, path, min_data_size, empty,
3811 				right, free_space, left_nritems, min_slot);
3812 out_unlock:
3813 	btrfs_tree_unlock(right);
3814 	free_extent_buffer(right);
3815 	return 1;
3816 }
3817 
3818 /*
3819  * push some data in the path leaf to the left, trying to free up at
3820  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3821  *
3822  * max_slot can put a limit on how far into the leaf we'll push items.  The
3823  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3824  * items
3825  */
3826 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3827 				     struct btrfs_path *path, int data_size,
3828 				     int empty, struct extent_buffer *left,
3829 				     int free_space, u32 right_nritems,
3830 				     u32 max_slot)
3831 {
3832 	struct btrfs_disk_key disk_key;
3833 	struct extent_buffer *right = path->nodes[0];
3834 	int i;
3835 	int push_space = 0;
3836 	int push_items = 0;
3837 	struct btrfs_item *item;
3838 	u32 old_left_nritems;
3839 	u32 nr;
3840 	int ret = 0;
3841 	u32 this_item_size;
3842 	u32 old_left_item_size;
3843 	struct btrfs_map_token token;
3844 
3845 	btrfs_init_map_token(&token);
3846 
3847 	if (empty)
3848 		nr = min(right_nritems, max_slot);
3849 	else
3850 		nr = min(right_nritems - 1, max_slot);
3851 
3852 	for (i = 0; i < nr; i++) {
3853 		item = btrfs_item_nr(i);
3854 
3855 		if (!empty && push_items > 0) {
3856 			if (path->slots[0] < i)
3857 				break;
3858 			if (path->slots[0] == i) {
3859 				int space = btrfs_leaf_free_space(fs_info, right);
3860 				if (space + push_space * 2 > free_space)
3861 					break;
3862 			}
3863 		}
3864 
3865 		if (path->slots[0] == i)
3866 			push_space += data_size;
3867 
3868 		this_item_size = btrfs_item_size(right, item);
3869 		if (this_item_size + sizeof(*item) + push_space > free_space)
3870 			break;
3871 
3872 		push_items++;
3873 		push_space += this_item_size + sizeof(*item);
3874 	}
3875 
3876 	if (push_items == 0) {
3877 		ret = 1;
3878 		goto out;
3879 	}
3880 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3881 
3882 	/* push data from right to left */
3883 	copy_extent_buffer(left, right,
3884 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3885 			   btrfs_item_nr_offset(0),
3886 			   push_items * sizeof(struct btrfs_item));
3887 
3888 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3889 		     btrfs_item_offset_nr(right, push_items - 1);
3890 
3891 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3892 		     leaf_data_end(fs_info, left) - push_space,
3893 		     BTRFS_LEAF_DATA_OFFSET +
3894 		     btrfs_item_offset_nr(right, push_items - 1),
3895 		     push_space);
3896 	old_left_nritems = btrfs_header_nritems(left);
3897 	BUG_ON(old_left_nritems <= 0);
3898 
3899 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3900 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3901 		u32 ioff;
3902 
3903 		item = btrfs_item_nr(i);
3904 
3905 		ioff = btrfs_token_item_offset(left, item, &token);
3906 		btrfs_set_token_item_offset(left, item,
3907 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3908 		      &token);
3909 	}
3910 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3911 
3912 	/* fixup right node */
3913 	if (push_items > right_nritems)
3914 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3915 		       right_nritems);
3916 
3917 	if (push_items < right_nritems) {
3918 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3919 						  leaf_data_end(fs_info, right);
3920 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3921 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3922 				      BTRFS_LEAF_DATA_OFFSET +
3923 				      leaf_data_end(fs_info, right), push_space);
3924 
3925 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3926 			      btrfs_item_nr_offset(push_items),
3927 			     (btrfs_header_nritems(right) - push_items) *
3928 			     sizeof(struct btrfs_item));
3929 	}
3930 	right_nritems -= push_items;
3931 	btrfs_set_header_nritems(right, right_nritems);
3932 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3933 	for (i = 0; i < right_nritems; i++) {
3934 		item = btrfs_item_nr(i);
3935 
3936 		push_space = push_space - btrfs_token_item_size(right,
3937 								item, &token);
3938 		btrfs_set_token_item_offset(right, item, push_space, &token);
3939 	}
3940 
3941 	btrfs_mark_buffer_dirty(left);
3942 	if (right_nritems)
3943 		btrfs_mark_buffer_dirty(right);
3944 	else
3945 		clean_tree_block(fs_info, right);
3946 
3947 	btrfs_item_key(right, &disk_key, 0);
3948 	fixup_low_keys(fs_info, path, &disk_key, 1);
3949 
3950 	/* then fixup the leaf pointer in the path */
3951 	if (path->slots[0] < push_items) {
3952 		path->slots[0] += old_left_nritems;
3953 		btrfs_tree_unlock(path->nodes[0]);
3954 		free_extent_buffer(path->nodes[0]);
3955 		path->nodes[0] = left;
3956 		path->slots[1] -= 1;
3957 	} else {
3958 		btrfs_tree_unlock(left);
3959 		free_extent_buffer(left);
3960 		path->slots[0] -= push_items;
3961 	}
3962 	BUG_ON(path->slots[0] < 0);
3963 	return ret;
3964 out:
3965 	btrfs_tree_unlock(left);
3966 	free_extent_buffer(left);
3967 	return ret;
3968 }
3969 
3970 /*
3971  * push some data in the path leaf to the left, trying to free up at
3972  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3973  *
3974  * max_slot can put a limit on how far into the leaf we'll push items.  The
3975  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3976  * items
3977  */
3978 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3979 			  *root, struct btrfs_path *path, int min_data_size,
3980 			  int data_size, int empty, u32 max_slot)
3981 {
3982 	struct btrfs_fs_info *fs_info = root->fs_info;
3983 	struct extent_buffer *right = path->nodes[0];
3984 	struct extent_buffer *left;
3985 	int slot;
3986 	int free_space;
3987 	u32 right_nritems;
3988 	int ret = 0;
3989 
3990 	slot = path->slots[1];
3991 	if (slot == 0)
3992 		return 1;
3993 	if (!path->nodes[1])
3994 		return 1;
3995 
3996 	right_nritems = btrfs_header_nritems(right);
3997 	if (right_nritems == 0)
3998 		return 1;
3999 
4000 	btrfs_assert_tree_locked(path->nodes[1]);
4001 
4002 	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4003 	/*
4004 	 * slot - 1 is not valid or we fail to read the left node,
4005 	 * no big deal, just return.
4006 	 */
4007 	if (IS_ERR(left))
4008 		return 1;
4009 
4010 	btrfs_tree_lock(left);
4011 	btrfs_set_lock_blocking(left);
4012 
4013 	free_space = btrfs_leaf_free_space(fs_info, left);
4014 	if (free_space < data_size) {
4015 		ret = 1;
4016 		goto out;
4017 	}
4018 
4019 	/* cow and double check */
4020 	ret = btrfs_cow_block(trans, root, left,
4021 			      path->nodes[1], slot - 1, &left);
4022 	if (ret) {
4023 		/* we hit -ENOSPC, but it isn't fatal here */
4024 		if (ret == -ENOSPC)
4025 			ret = 1;
4026 		goto out;
4027 	}
4028 
4029 	free_space = btrfs_leaf_free_space(fs_info, left);
4030 	if (free_space < data_size) {
4031 		ret = 1;
4032 		goto out;
4033 	}
4034 
4035 	return __push_leaf_left(fs_info, path, min_data_size,
4036 			       empty, left, free_space, right_nritems,
4037 			       max_slot);
4038 out:
4039 	btrfs_tree_unlock(left);
4040 	free_extent_buffer(left);
4041 	return ret;
4042 }
4043 
4044 /*
4045  * split the path's leaf in two, making sure there is at least data_size
4046  * available for the resulting leaf level of the path.
4047  */
4048 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4049 				    struct btrfs_fs_info *fs_info,
4050 				    struct btrfs_path *path,
4051 				    struct extent_buffer *l,
4052 				    struct extent_buffer *right,
4053 				    int slot, int mid, int nritems)
4054 {
4055 	int data_copy_size;
4056 	int rt_data_off;
4057 	int i;
4058 	struct btrfs_disk_key disk_key;
4059 	struct btrfs_map_token token;
4060 
4061 	btrfs_init_map_token(&token);
4062 
4063 	nritems = nritems - mid;
4064 	btrfs_set_header_nritems(right, nritems);
4065 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4066 
4067 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4068 			   btrfs_item_nr_offset(mid),
4069 			   nritems * sizeof(struct btrfs_item));
4070 
4071 	copy_extent_buffer(right, l,
4072 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4073 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4074 		     leaf_data_end(fs_info, l), data_copy_size);
4075 
4076 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4077 
4078 	for (i = 0; i < nritems; i++) {
4079 		struct btrfs_item *item = btrfs_item_nr(i);
4080 		u32 ioff;
4081 
4082 		ioff = btrfs_token_item_offset(right, item, &token);
4083 		btrfs_set_token_item_offset(right, item,
4084 					    ioff + rt_data_off, &token);
4085 	}
4086 
4087 	btrfs_set_header_nritems(l, mid);
4088 	btrfs_item_key(right, &disk_key, 0);
4089 	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4090 		   path->slots[1] + 1, 1);
4091 
4092 	btrfs_mark_buffer_dirty(right);
4093 	btrfs_mark_buffer_dirty(l);
4094 	BUG_ON(path->slots[0] != slot);
4095 
4096 	if (mid <= slot) {
4097 		btrfs_tree_unlock(path->nodes[0]);
4098 		free_extent_buffer(path->nodes[0]);
4099 		path->nodes[0] = right;
4100 		path->slots[0] -= mid;
4101 		path->slots[1] += 1;
4102 	} else {
4103 		btrfs_tree_unlock(right);
4104 		free_extent_buffer(right);
4105 	}
4106 
4107 	BUG_ON(path->slots[0] < 0);
4108 }
4109 
4110 /*
4111  * double splits happen when we need to insert a big item in the middle
4112  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4113  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4114  *          A                 B                 C
4115  *
4116  * We avoid this by trying to push the items on either side of our target
4117  * into the adjacent leaves.  If all goes well we can avoid the double split
4118  * completely.
4119  */
4120 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4121 					  struct btrfs_root *root,
4122 					  struct btrfs_path *path,
4123 					  int data_size)
4124 {
4125 	struct btrfs_fs_info *fs_info = root->fs_info;
4126 	int ret;
4127 	int progress = 0;
4128 	int slot;
4129 	u32 nritems;
4130 	int space_needed = data_size;
4131 
4132 	slot = path->slots[0];
4133 	if (slot < btrfs_header_nritems(path->nodes[0]))
4134 		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4135 
4136 	/*
4137 	 * try to push all the items after our slot into the
4138 	 * right leaf
4139 	 */
4140 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4141 	if (ret < 0)
4142 		return ret;
4143 
4144 	if (ret == 0)
4145 		progress++;
4146 
4147 	nritems = btrfs_header_nritems(path->nodes[0]);
4148 	/*
4149 	 * our goal is to get our slot at the start or end of a leaf.  If
4150 	 * we've done so we're done
4151 	 */
4152 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4153 		return 0;
4154 
4155 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4156 		return 0;
4157 
4158 	/* try to push all the items before our slot into the next leaf */
4159 	slot = path->slots[0];
4160 	space_needed = data_size;
4161 	if (slot > 0)
4162 		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4163 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4164 	if (ret < 0)
4165 		return ret;
4166 
4167 	if (ret == 0)
4168 		progress++;
4169 
4170 	if (progress)
4171 		return 0;
4172 	return 1;
4173 }
4174 
4175 /*
4176  * split the path's leaf in two, making sure there is at least data_size
4177  * available for the resulting leaf level of the path.
4178  *
4179  * returns 0 if all went well and < 0 on failure.
4180  */
4181 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4182 			       struct btrfs_root *root,
4183 			       const struct btrfs_key *ins_key,
4184 			       struct btrfs_path *path, int data_size,
4185 			       int extend)
4186 {
4187 	struct btrfs_disk_key disk_key;
4188 	struct extent_buffer *l;
4189 	u32 nritems;
4190 	int mid;
4191 	int slot;
4192 	struct extent_buffer *right;
4193 	struct btrfs_fs_info *fs_info = root->fs_info;
4194 	int ret = 0;
4195 	int wret;
4196 	int split;
4197 	int num_doubles = 0;
4198 	int tried_avoid_double = 0;
4199 
4200 	l = path->nodes[0];
4201 	slot = path->slots[0];
4202 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4203 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4204 		return -EOVERFLOW;
4205 
4206 	/* first try to make some room by pushing left and right */
4207 	if (data_size && path->nodes[1]) {
4208 		int space_needed = data_size;
4209 
4210 		if (slot < btrfs_header_nritems(l))
4211 			space_needed -= btrfs_leaf_free_space(fs_info, l);
4212 
4213 		wret = push_leaf_right(trans, root, path, space_needed,
4214 				       space_needed, 0, 0);
4215 		if (wret < 0)
4216 			return wret;
4217 		if (wret) {
4218 			space_needed = data_size;
4219 			if (slot > 0)
4220 				space_needed -= btrfs_leaf_free_space(fs_info,
4221 								      l);
4222 			wret = push_leaf_left(trans, root, path, space_needed,
4223 					      space_needed, 0, (u32)-1);
4224 			if (wret < 0)
4225 				return wret;
4226 		}
4227 		l = path->nodes[0];
4228 
4229 		/* did the pushes work? */
4230 		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4231 			return 0;
4232 	}
4233 
4234 	if (!path->nodes[1]) {
4235 		ret = insert_new_root(trans, root, path, 1);
4236 		if (ret)
4237 			return ret;
4238 	}
4239 again:
4240 	split = 1;
4241 	l = path->nodes[0];
4242 	slot = path->slots[0];
4243 	nritems = btrfs_header_nritems(l);
4244 	mid = (nritems + 1) / 2;
4245 
4246 	if (mid <= slot) {
4247 		if (nritems == 1 ||
4248 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4249 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4250 			if (slot >= nritems) {
4251 				split = 0;
4252 			} else {
4253 				mid = slot;
4254 				if (mid != nritems &&
4255 				    leaf_space_used(l, mid, nritems - mid) +
4256 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4257 					if (data_size && !tried_avoid_double)
4258 						goto push_for_double;
4259 					split = 2;
4260 				}
4261 			}
4262 		}
4263 	} else {
4264 		if (leaf_space_used(l, 0, mid) + data_size >
4265 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4266 			if (!extend && data_size && slot == 0) {
4267 				split = 0;
4268 			} else if ((extend || !data_size) && slot == 0) {
4269 				mid = 1;
4270 			} else {
4271 				mid = slot;
4272 				if (mid != nritems &&
4273 				    leaf_space_used(l, mid, nritems - mid) +
4274 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4275 					if (data_size && !tried_avoid_double)
4276 						goto push_for_double;
4277 					split = 2;
4278 				}
4279 			}
4280 		}
4281 	}
4282 
4283 	if (split == 0)
4284 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4285 	else
4286 		btrfs_item_key(l, &disk_key, mid);
4287 
4288 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4289 			&disk_key, 0, l->start, 0);
4290 	if (IS_ERR(right))
4291 		return PTR_ERR(right);
4292 
4293 	root_add_used(root, fs_info->nodesize);
4294 
4295 	memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4296 	btrfs_set_header_bytenr(right, right->start);
4297 	btrfs_set_header_generation(right, trans->transid);
4298 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4299 	btrfs_set_header_owner(right, root->root_key.objectid);
4300 	btrfs_set_header_level(right, 0);
4301 	write_extent_buffer_fsid(right, fs_info->fsid);
4302 	write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4303 
4304 	if (split == 0) {
4305 		if (mid <= slot) {
4306 			btrfs_set_header_nritems(right, 0);
4307 			insert_ptr(trans, fs_info, path, &disk_key,
4308 				   right->start, path->slots[1] + 1, 1);
4309 			btrfs_tree_unlock(path->nodes[0]);
4310 			free_extent_buffer(path->nodes[0]);
4311 			path->nodes[0] = right;
4312 			path->slots[0] = 0;
4313 			path->slots[1] += 1;
4314 		} else {
4315 			btrfs_set_header_nritems(right, 0);
4316 			insert_ptr(trans, fs_info, path, &disk_key,
4317 				   right->start, path->slots[1], 1);
4318 			btrfs_tree_unlock(path->nodes[0]);
4319 			free_extent_buffer(path->nodes[0]);
4320 			path->nodes[0] = right;
4321 			path->slots[0] = 0;
4322 			if (path->slots[1] == 0)
4323 				fixup_low_keys(fs_info, path, &disk_key, 1);
4324 		}
4325 		/*
4326 		 * We create a new leaf 'right' for the required ins_len and
4327 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4328 		 * the content of ins_len to 'right'.
4329 		 */
4330 		return ret;
4331 	}
4332 
4333 	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4334 
4335 	if (split == 2) {
4336 		BUG_ON(num_doubles != 0);
4337 		num_doubles++;
4338 		goto again;
4339 	}
4340 
4341 	return 0;
4342 
4343 push_for_double:
4344 	push_for_double_split(trans, root, path, data_size);
4345 	tried_avoid_double = 1;
4346 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4347 		return 0;
4348 	goto again;
4349 }
4350 
4351 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4352 					 struct btrfs_root *root,
4353 					 struct btrfs_path *path, int ins_len)
4354 {
4355 	struct btrfs_fs_info *fs_info = root->fs_info;
4356 	struct btrfs_key key;
4357 	struct extent_buffer *leaf;
4358 	struct btrfs_file_extent_item *fi;
4359 	u64 extent_len = 0;
4360 	u32 item_size;
4361 	int ret;
4362 
4363 	leaf = path->nodes[0];
4364 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4365 
4366 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4367 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4368 
4369 	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4370 		return 0;
4371 
4372 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4373 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4374 		fi = btrfs_item_ptr(leaf, path->slots[0],
4375 				    struct btrfs_file_extent_item);
4376 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4377 	}
4378 	btrfs_release_path(path);
4379 
4380 	path->keep_locks = 1;
4381 	path->search_for_split = 1;
4382 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4383 	path->search_for_split = 0;
4384 	if (ret > 0)
4385 		ret = -EAGAIN;
4386 	if (ret < 0)
4387 		goto err;
4388 
4389 	ret = -EAGAIN;
4390 	leaf = path->nodes[0];
4391 	/* if our item isn't there, return now */
4392 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4393 		goto err;
4394 
4395 	/* the leaf has  changed, it now has room.  return now */
4396 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4397 		goto err;
4398 
4399 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4400 		fi = btrfs_item_ptr(leaf, path->slots[0],
4401 				    struct btrfs_file_extent_item);
4402 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4403 			goto err;
4404 	}
4405 
4406 	btrfs_set_path_blocking(path);
4407 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4408 	if (ret)
4409 		goto err;
4410 
4411 	path->keep_locks = 0;
4412 	btrfs_unlock_up_safe(path, 1);
4413 	return 0;
4414 err:
4415 	path->keep_locks = 0;
4416 	return ret;
4417 }
4418 
4419 static noinline int split_item(struct btrfs_fs_info *fs_info,
4420 			       struct btrfs_path *path,
4421 			       const struct btrfs_key *new_key,
4422 			       unsigned long split_offset)
4423 {
4424 	struct extent_buffer *leaf;
4425 	struct btrfs_item *item;
4426 	struct btrfs_item *new_item;
4427 	int slot;
4428 	char *buf;
4429 	u32 nritems;
4430 	u32 item_size;
4431 	u32 orig_offset;
4432 	struct btrfs_disk_key disk_key;
4433 
4434 	leaf = path->nodes[0];
4435 	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4436 
4437 	btrfs_set_path_blocking(path);
4438 
4439 	item = btrfs_item_nr(path->slots[0]);
4440 	orig_offset = btrfs_item_offset(leaf, item);
4441 	item_size = btrfs_item_size(leaf, item);
4442 
4443 	buf = kmalloc(item_size, GFP_NOFS);
4444 	if (!buf)
4445 		return -ENOMEM;
4446 
4447 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4448 			    path->slots[0]), item_size);
4449 
4450 	slot = path->slots[0] + 1;
4451 	nritems = btrfs_header_nritems(leaf);
4452 	if (slot != nritems) {
4453 		/* shift the items */
4454 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4455 				btrfs_item_nr_offset(slot),
4456 				(nritems - slot) * sizeof(struct btrfs_item));
4457 	}
4458 
4459 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4460 	btrfs_set_item_key(leaf, &disk_key, slot);
4461 
4462 	new_item = btrfs_item_nr(slot);
4463 
4464 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4465 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4466 
4467 	btrfs_set_item_offset(leaf, item,
4468 			      orig_offset + item_size - split_offset);
4469 	btrfs_set_item_size(leaf, item, split_offset);
4470 
4471 	btrfs_set_header_nritems(leaf, nritems + 1);
4472 
4473 	/* write the data for the start of the original item */
4474 	write_extent_buffer(leaf, buf,
4475 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4476 			    split_offset);
4477 
4478 	/* write the data for the new item */
4479 	write_extent_buffer(leaf, buf + split_offset,
4480 			    btrfs_item_ptr_offset(leaf, slot),
4481 			    item_size - split_offset);
4482 	btrfs_mark_buffer_dirty(leaf);
4483 
4484 	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4485 	kfree(buf);
4486 	return 0;
4487 }
4488 
4489 /*
4490  * This function splits a single item into two items,
4491  * giving 'new_key' to the new item and splitting the
4492  * old one at split_offset (from the start of the item).
4493  *
4494  * The path may be released by this operation.  After
4495  * the split, the path is pointing to the old item.  The
4496  * new item is going to be in the same node as the old one.
4497  *
4498  * Note, the item being split must be smaller enough to live alone on
4499  * a tree block with room for one extra struct btrfs_item
4500  *
4501  * This allows us to split the item in place, keeping a lock on the
4502  * leaf the entire time.
4503  */
4504 int btrfs_split_item(struct btrfs_trans_handle *trans,
4505 		     struct btrfs_root *root,
4506 		     struct btrfs_path *path,
4507 		     const struct btrfs_key *new_key,
4508 		     unsigned long split_offset)
4509 {
4510 	int ret;
4511 	ret = setup_leaf_for_split(trans, root, path,
4512 				   sizeof(struct btrfs_item));
4513 	if (ret)
4514 		return ret;
4515 
4516 	ret = split_item(root->fs_info, path, new_key, split_offset);
4517 	return ret;
4518 }
4519 
4520 /*
4521  * This function duplicate a item, giving 'new_key' to the new item.
4522  * It guarantees both items live in the same tree leaf and the new item
4523  * is contiguous with the original item.
4524  *
4525  * This allows us to split file extent in place, keeping a lock on the
4526  * leaf the entire time.
4527  */
4528 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4529 			 struct btrfs_root *root,
4530 			 struct btrfs_path *path,
4531 			 const struct btrfs_key *new_key)
4532 {
4533 	struct extent_buffer *leaf;
4534 	int ret;
4535 	u32 item_size;
4536 
4537 	leaf = path->nodes[0];
4538 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4539 	ret = setup_leaf_for_split(trans, root, path,
4540 				   item_size + sizeof(struct btrfs_item));
4541 	if (ret)
4542 		return ret;
4543 
4544 	path->slots[0]++;
4545 	setup_items_for_insert(root, path, new_key, &item_size,
4546 			       item_size, item_size +
4547 			       sizeof(struct btrfs_item), 1);
4548 	leaf = path->nodes[0];
4549 	memcpy_extent_buffer(leaf,
4550 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4551 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4552 			     item_size);
4553 	return 0;
4554 }
4555 
4556 /*
4557  * make the item pointed to by the path smaller.  new_size indicates
4558  * how small to make it, and from_end tells us if we just chop bytes
4559  * off the end of the item or if we shift the item to chop bytes off
4560  * the front.
4561  */
4562 void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4563 			 struct btrfs_path *path, u32 new_size, int from_end)
4564 {
4565 	int slot;
4566 	struct extent_buffer *leaf;
4567 	struct btrfs_item *item;
4568 	u32 nritems;
4569 	unsigned int data_end;
4570 	unsigned int old_data_start;
4571 	unsigned int old_size;
4572 	unsigned int size_diff;
4573 	int i;
4574 	struct btrfs_map_token token;
4575 
4576 	btrfs_init_map_token(&token);
4577 
4578 	leaf = path->nodes[0];
4579 	slot = path->slots[0];
4580 
4581 	old_size = btrfs_item_size_nr(leaf, slot);
4582 	if (old_size == new_size)
4583 		return;
4584 
4585 	nritems = btrfs_header_nritems(leaf);
4586 	data_end = leaf_data_end(fs_info, leaf);
4587 
4588 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4589 
4590 	size_diff = old_size - new_size;
4591 
4592 	BUG_ON(slot < 0);
4593 	BUG_ON(slot >= nritems);
4594 
4595 	/*
4596 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4597 	 */
4598 	/* first correct the data pointers */
4599 	for (i = slot; i < nritems; i++) {
4600 		u32 ioff;
4601 		item = btrfs_item_nr(i);
4602 
4603 		ioff = btrfs_token_item_offset(leaf, item, &token);
4604 		btrfs_set_token_item_offset(leaf, item,
4605 					    ioff + size_diff, &token);
4606 	}
4607 
4608 	/* shift the data */
4609 	if (from_end) {
4610 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4611 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4612 			      data_end, old_data_start + new_size - data_end);
4613 	} else {
4614 		struct btrfs_disk_key disk_key;
4615 		u64 offset;
4616 
4617 		btrfs_item_key(leaf, &disk_key, slot);
4618 
4619 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4620 			unsigned long ptr;
4621 			struct btrfs_file_extent_item *fi;
4622 
4623 			fi = btrfs_item_ptr(leaf, slot,
4624 					    struct btrfs_file_extent_item);
4625 			fi = (struct btrfs_file_extent_item *)(
4626 			     (unsigned long)fi - size_diff);
4627 
4628 			if (btrfs_file_extent_type(leaf, fi) ==
4629 			    BTRFS_FILE_EXTENT_INLINE) {
4630 				ptr = btrfs_item_ptr_offset(leaf, slot);
4631 				memmove_extent_buffer(leaf, ptr,
4632 				      (unsigned long)fi,
4633 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4634 			}
4635 		}
4636 
4637 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4638 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4639 			      data_end, old_data_start - data_end);
4640 
4641 		offset = btrfs_disk_key_offset(&disk_key);
4642 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4643 		btrfs_set_item_key(leaf, &disk_key, slot);
4644 		if (slot == 0)
4645 			fixup_low_keys(fs_info, path, &disk_key, 1);
4646 	}
4647 
4648 	item = btrfs_item_nr(slot);
4649 	btrfs_set_item_size(leaf, item, new_size);
4650 	btrfs_mark_buffer_dirty(leaf);
4651 
4652 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4653 		btrfs_print_leaf(leaf);
4654 		BUG();
4655 	}
4656 }
4657 
4658 /*
4659  * make the item pointed to by the path bigger, data_size is the added size.
4660  */
4661 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4662 		       u32 data_size)
4663 {
4664 	int slot;
4665 	struct extent_buffer *leaf;
4666 	struct btrfs_item *item;
4667 	u32 nritems;
4668 	unsigned int data_end;
4669 	unsigned int old_data;
4670 	unsigned int old_size;
4671 	int i;
4672 	struct btrfs_map_token token;
4673 
4674 	btrfs_init_map_token(&token);
4675 
4676 	leaf = path->nodes[0];
4677 
4678 	nritems = btrfs_header_nritems(leaf);
4679 	data_end = leaf_data_end(fs_info, leaf);
4680 
4681 	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4682 		btrfs_print_leaf(leaf);
4683 		BUG();
4684 	}
4685 	slot = path->slots[0];
4686 	old_data = btrfs_item_end_nr(leaf, slot);
4687 
4688 	BUG_ON(slot < 0);
4689 	if (slot >= nritems) {
4690 		btrfs_print_leaf(leaf);
4691 		btrfs_crit(fs_info, "slot %d too large, nritems %d",
4692 			   slot, nritems);
4693 		BUG_ON(1);
4694 	}
4695 
4696 	/*
4697 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4698 	 */
4699 	/* first correct the data pointers */
4700 	for (i = slot; i < nritems; i++) {
4701 		u32 ioff;
4702 		item = btrfs_item_nr(i);
4703 
4704 		ioff = btrfs_token_item_offset(leaf, item, &token);
4705 		btrfs_set_token_item_offset(leaf, item,
4706 					    ioff - data_size, &token);
4707 	}
4708 
4709 	/* shift the data */
4710 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4711 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4712 		      data_end, old_data - data_end);
4713 
4714 	data_end = old_data;
4715 	old_size = btrfs_item_size_nr(leaf, slot);
4716 	item = btrfs_item_nr(slot);
4717 	btrfs_set_item_size(leaf, item, old_size + data_size);
4718 	btrfs_mark_buffer_dirty(leaf);
4719 
4720 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4721 		btrfs_print_leaf(leaf);
4722 		BUG();
4723 	}
4724 }
4725 
4726 /*
4727  * this is a helper for btrfs_insert_empty_items, the main goal here is
4728  * to save stack depth by doing the bulk of the work in a function
4729  * that doesn't call btrfs_search_slot
4730  */
4731 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4732 			    const struct btrfs_key *cpu_key, u32 *data_size,
4733 			    u32 total_data, u32 total_size, int nr)
4734 {
4735 	struct btrfs_fs_info *fs_info = root->fs_info;
4736 	struct btrfs_item *item;
4737 	int i;
4738 	u32 nritems;
4739 	unsigned int data_end;
4740 	struct btrfs_disk_key disk_key;
4741 	struct extent_buffer *leaf;
4742 	int slot;
4743 	struct btrfs_map_token token;
4744 
4745 	if (path->slots[0] == 0) {
4746 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4747 		fixup_low_keys(fs_info, path, &disk_key, 1);
4748 	}
4749 	btrfs_unlock_up_safe(path, 1);
4750 
4751 	btrfs_init_map_token(&token);
4752 
4753 	leaf = path->nodes[0];
4754 	slot = path->slots[0];
4755 
4756 	nritems = btrfs_header_nritems(leaf);
4757 	data_end = leaf_data_end(fs_info, leaf);
4758 
4759 	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4760 		btrfs_print_leaf(leaf);
4761 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4762 			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4763 		BUG();
4764 	}
4765 
4766 	if (slot != nritems) {
4767 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4768 
4769 		if (old_data < data_end) {
4770 			btrfs_print_leaf(leaf);
4771 			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4772 				   slot, old_data, data_end);
4773 			BUG_ON(1);
4774 		}
4775 		/*
4776 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4777 		 */
4778 		/* first correct the data pointers */
4779 		for (i = slot; i < nritems; i++) {
4780 			u32 ioff;
4781 
4782 			item = btrfs_item_nr(i);
4783 			ioff = btrfs_token_item_offset(leaf, item, &token);
4784 			btrfs_set_token_item_offset(leaf, item,
4785 						    ioff - total_data, &token);
4786 		}
4787 		/* shift the items */
4788 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4789 			      btrfs_item_nr_offset(slot),
4790 			      (nritems - slot) * sizeof(struct btrfs_item));
4791 
4792 		/* shift the data */
4793 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4794 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4795 			      data_end, old_data - data_end);
4796 		data_end = old_data;
4797 	}
4798 
4799 	/* setup the item for the new data */
4800 	for (i = 0; i < nr; i++) {
4801 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4802 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4803 		item = btrfs_item_nr(slot + i);
4804 		btrfs_set_token_item_offset(leaf, item,
4805 					    data_end - data_size[i], &token);
4806 		data_end -= data_size[i];
4807 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4808 	}
4809 
4810 	btrfs_set_header_nritems(leaf, nritems + nr);
4811 	btrfs_mark_buffer_dirty(leaf);
4812 
4813 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4814 		btrfs_print_leaf(leaf);
4815 		BUG();
4816 	}
4817 }
4818 
4819 /*
4820  * Given a key and some data, insert items into the tree.
4821  * This does all the path init required, making room in the tree if needed.
4822  */
4823 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4824 			    struct btrfs_root *root,
4825 			    struct btrfs_path *path,
4826 			    const struct btrfs_key *cpu_key, u32 *data_size,
4827 			    int nr)
4828 {
4829 	int ret = 0;
4830 	int slot;
4831 	int i;
4832 	u32 total_size = 0;
4833 	u32 total_data = 0;
4834 
4835 	for (i = 0; i < nr; i++)
4836 		total_data += data_size[i];
4837 
4838 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4839 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4840 	if (ret == 0)
4841 		return -EEXIST;
4842 	if (ret < 0)
4843 		return ret;
4844 
4845 	slot = path->slots[0];
4846 	BUG_ON(slot < 0);
4847 
4848 	setup_items_for_insert(root, path, cpu_key, data_size,
4849 			       total_data, total_size, nr);
4850 	return 0;
4851 }
4852 
4853 /*
4854  * Given a key and some data, insert an item into the tree.
4855  * This does all the path init required, making room in the tree if needed.
4856  */
4857 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4858 		      const struct btrfs_key *cpu_key, void *data,
4859 		      u32 data_size)
4860 {
4861 	int ret = 0;
4862 	struct btrfs_path *path;
4863 	struct extent_buffer *leaf;
4864 	unsigned long ptr;
4865 
4866 	path = btrfs_alloc_path();
4867 	if (!path)
4868 		return -ENOMEM;
4869 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4870 	if (!ret) {
4871 		leaf = path->nodes[0];
4872 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4873 		write_extent_buffer(leaf, data, ptr, data_size);
4874 		btrfs_mark_buffer_dirty(leaf);
4875 	}
4876 	btrfs_free_path(path);
4877 	return ret;
4878 }
4879 
4880 /*
4881  * delete the pointer from a given node.
4882  *
4883  * the tree should have been previously balanced so the deletion does not
4884  * empty a node.
4885  */
4886 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4887 		    int level, int slot)
4888 {
4889 	struct btrfs_fs_info *fs_info = root->fs_info;
4890 	struct extent_buffer *parent = path->nodes[level];
4891 	u32 nritems;
4892 	int ret;
4893 
4894 	nritems = btrfs_header_nritems(parent);
4895 	if (slot != nritems - 1) {
4896 		if (level) {
4897 			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4898 					nritems - slot - 1);
4899 			BUG_ON(ret < 0);
4900 		}
4901 		memmove_extent_buffer(parent,
4902 			      btrfs_node_key_ptr_offset(slot),
4903 			      btrfs_node_key_ptr_offset(slot + 1),
4904 			      sizeof(struct btrfs_key_ptr) *
4905 			      (nritems - slot - 1));
4906 	} else if (level) {
4907 		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4908 				GFP_NOFS);
4909 		BUG_ON(ret < 0);
4910 	}
4911 
4912 	nritems--;
4913 	btrfs_set_header_nritems(parent, nritems);
4914 	if (nritems == 0 && parent == root->node) {
4915 		BUG_ON(btrfs_header_level(root->node) != 1);
4916 		/* just turn the root into a leaf and break */
4917 		btrfs_set_header_level(root->node, 0);
4918 	} else if (slot == 0) {
4919 		struct btrfs_disk_key disk_key;
4920 
4921 		btrfs_node_key(parent, &disk_key, 0);
4922 		fixup_low_keys(fs_info, path, &disk_key, level + 1);
4923 	}
4924 	btrfs_mark_buffer_dirty(parent);
4925 }
4926 
4927 /*
4928  * a helper function to delete the leaf pointed to by path->slots[1] and
4929  * path->nodes[1].
4930  *
4931  * This deletes the pointer in path->nodes[1] and frees the leaf
4932  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4933  *
4934  * The path must have already been setup for deleting the leaf, including
4935  * all the proper balancing.  path->nodes[1] must be locked.
4936  */
4937 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4938 				    struct btrfs_root *root,
4939 				    struct btrfs_path *path,
4940 				    struct extent_buffer *leaf)
4941 {
4942 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4943 	del_ptr(root, path, 1, path->slots[1]);
4944 
4945 	/*
4946 	 * btrfs_free_extent is expensive, we want to make sure we
4947 	 * aren't holding any locks when we call it
4948 	 */
4949 	btrfs_unlock_up_safe(path, 0);
4950 
4951 	root_sub_used(root, leaf->len);
4952 
4953 	extent_buffer_get(leaf);
4954 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4955 	free_extent_buffer_stale(leaf);
4956 }
4957 /*
4958  * delete the item at the leaf level in path.  If that empties
4959  * the leaf, remove it from the tree
4960  */
4961 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4962 		    struct btrfs_path *path, int slot, int nr)
4963 {
4964 	struct btrfs_fs_info *fs_info = root->fs_info;
4965 	struct extent_buffer *leaf;
4966 	struct btrfs_item *item;
4967 	u32 last_off;
4968 	u32 dsize = 0;
4969 	int ret = 0;
4970 	int wret;
4971 	int i;
4972 	u32 nritems;
4973 	struct btrfs_map_token token;
4974 
4975 	btrfs_init_map_token(&token);
4976 
4977 	leaf = path->nodes[0];
4978 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4979 
4980 	for (i = 0; i < nr; i++)
4981 		dsize += btrfs_item_size_nr(leaf, slot + i);
4982 
4983 	nritems = btrfs_header_nritems(leaf);
4984 
4985 	if (slot + nr != nritems) {
4986 		int data_end = leaf_data_end(fs_info, leaf);
4987 
4988 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4989 			      data_end + dsize,
4990 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4991 			      last_off - data_end);
4992 
4993 		for (i = slot + nr; i < nritems; i++) {
4994 			u32 ioff;
4995 
4996 			item = btrfs_item_nr(i);
4997 			ioff = btrfs_token_item_offset(leaf, item, &token);
4998 			btrfs_set_token_item_offset(leaf, item,
4999 						    ioff + dsize, &token);
5000 		}
5001 
5002 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5003 			      btrfs_item_nr_offset(slot + nr),
5004 			      sizeof(struct btrfs_item) *
5005 			      (nritems - slot - nr));
5006 	}
5007 	btrfs_set_header_nritems(leaf, nritems - nr);
5008 	nritems -= nr;
5009 
5010 	/* delete the leaf if we've emptied it */
5011 	if (nritems == 0) {
5012 		if (leaf == root->node) {
5013 			btrfs_set_header_level(leaf, 0);
5014 		} else {
5015 			btrfs_set_path_blocking(path);
5016 			clean_tree_block(fs_info, leaf);
5017 			btrfs_del_leaf(trans, root, path, leaf);
5018 		}
5019 	} else {
5020 		int used = leaf_space_used(leaf, 0, nritems);
5021 		if (slot == 0) {
5022 			struct btrfs_disk_key disk_key;
5023 
5024 			btrfs_item_key(leaf, &disk_key, 0);
5025 			fixup_low_keys(fs_info, path, &disk_key, 1);
5026 		}
5027 
5028 		/* delete the leaf if it is mostly empty */
5029 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5030 			/* push_leaf_left fixes the path.
5031 			 * make sure the path still points to our leaf
5032 			 * for possible call to del_ptr below
5033 			 */
5034 			slot = path->slots[1];
5035 			extent_buffer_get(leaf);
5036 
5037 			btrfs_set_path_blocking(path);
5038 			wret = push_leaf_left(trans, root, path, 1, 1,
5039 					      1, (u32)-1);
5040 			if (wret < 0 && wret != -ENOSPC)
5041 				ret = wret;
5042 
5043 			if (path->nodes[0] == leaf &&
5044 			    btrfs_header_nritems(leaf)) {
5045 				wret = push_leaf_right(trans, root, path, 1,
5046 						       1, 1, 0);
5047 				if (wret < 0 && wret != -ENOSPC)
5048 					ret = wret;
5049 			}
5050 
5051 			if (btrfs_header_nritems(leaf) == 0) {
5052 				path->slots[1] = slot;
5053 				btrfs_del_leaf(trans, root, path, leaf);
5054 				free_extent_buffer(leaf);
5055 				ret = 0;
5056 			} else {
5057 				/* if we're still in the path, make sure
5058 				 * we're dirty.  Otherwise, one of the
5059 				 * push_leaf functions must have already
5060 				 * dirtied this buffer
5061 				 */
5062 				if (path->nodes[0] == leaf)
5063 					btrfs_mark_buffer_dirty(leaf);
5064 				free_extent_buffer(leaf);
5065 			}
5066 		} else {
5067 			btrfs_mark_buffer_dirty(leaf);
5068 		}
5069 	}
5070 	return ret;
5071 }
5072 
5073 /*
5074  * search the tree again to find a leaf with lesser keys
5075  * returns 0 if it found something or 1 if there are no lesser leaves.
5076  * returns < 0 on io errors.
5077  *
5078  * This may release the path, and so you may lose any locks held at the
5079  * time you call it.
5080  */
5081 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5082 {
5083 	struct btrfs_key key;
5084 	struct btrfs_disk_key found_key;
5085 	int ret;
5086 
5087 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5088 
5089 	if (key.offset > 0) {
5090 		key.offset--;
5091 	} else if (key.type > 0) {
5092 		key.type--;
5093 		key.offset = (u64)-1;
5094 	} else if (key.objectid > 0) {
5095 		key.objectid--;
5096 		key.type = (u8)-1;
5097 		key.offset = (u64)-1;
5098 	} else {
5099 		return 1;
5100 	}
5101 
5102 	btrfs_release_path(path);
5103 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5104 	if (ret < 0)
5105 		return ret;
5106 	btrfs_item_key(path->nodes[0], &found_key, 0);
5107 	ret = comp_keys(&found_key, &key);
5108 	/*
5109 	 * We might have had an item with the previous key in the tree right
5110 	 * before we released our path. And after we released our path, that
5111 	 * item might have been pushed to the first slot (0) of the leaf we
5112 	 * were holding due to a tree balance. Alternatively, an item with the
5113 	 * previous key can exist as the only element of a leaf (big fat item).
5114 	 * Therefore account for these 2 cases, so that our callers (like
5115 	 * btrfs_previous_item) don't miss an existing item with a key matching
5116 	 * the previous key we computed above.
5117 	 */
5118 	if (ret <= 0)
5119 		return 0;
5120 	return 1;
5121 }
5122 
5123 /*
5124  * A helper function to walk down the tree starting at min_key, and looking
5125  * for nodes or leaves that are have a minimum transaction id.
5126  * This is used by the btree defrag code, and tree logging
5127  *
5128  * This does not cow, but it does stuff the starting key it finds back
5129  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5130  * key and get a writable path.
5131  *
5132  * This honors path->lowest_level to prevent descent past a given level
5133  * of the tree.
5134  *
5135  * min_trans indicates the oldest transaction that you are interested
5136  * in walking through.  Any nodes or leaves older than min_trans are
5137  * skipped over (without reading them).
5138  *
5139  * returns zero if something useful was found, < 0 on error and 1 if there
5140  * was nothing in the tree that matched the search criteria.
5141  */
5142 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5143 			 struct btrfs_path *path,
5144 			 u64 min_trans)
5145 {
5146 	struct btrfs_fs_info *fs_info = root->fs_info;
5147 	struct extent_buffer *cur;
5148 	struct btrfs_key found_key;
5149 	int slot;
5150 	int sret;
5151 	u32 nritems;
5152 	int level;
5153 	int ret = 1;
5154 	int keep_locks = path->keep_locks;
5155 
5156 	path->keep_locks = 1;
5157 again:
5158 	cur = btrfs_read_lock_root_node(root);
5159 	level = btrfs_header_level(cur);
5160 	WARN_ON(path->nodes[level]);
5161 	path->nodes[level] = cur;
5162 	path->locks[level] = BTRFS_READ_LOCK;
5163 
5164 	if (btrfs_header_generation(cur) < min_trans) {
5165 		ret = 1;
5166 		goto out;
5167 	}
5168 	while (1) {
5169 		nritems = btrfs_header_nritems(cur);
5170 		level = btrfs_header_level(cur);
5171 		sret = btrfs_bin_search(cur, min_key, level, &slot);
5172 
5173 		/* at the lowest level, we're done, setup the path and exit */
5174 		if (level == path->lowest_level) {
5175 			if (slot >= nritems)
5176 				goto find_next_key;
5177 			ret = 0;
5178 			path->slots[level] = slot;
5179 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5180 			goto out;
5181 		}
5182 		if (sret && slot > 0)
5183 			slot--;
5184 		/*
5185 		 * check this node pointer against the min_trans parameters.
5186 		 * If it is too old, old, skip to the next one.
5187 		 */
5188 		while (slot < nritems) {
5189 			u64 gen;
5190 
5191 			gen = btrfs_node_ptr_generation(cur, slot);
5192 			if (gen < min_trans) {
5193 				slot++;
5194 				continue;
5195 			}
5196 			break;
5197 		}
5198 find_next_key:
5199 		/*
5200 		 * we didn't find a candidate key in this node, walk forward
5201 		 * and find another one
5202 		 */
5203 		if (slot >= nritems) {
5204 			path->slots[level] = slot;
5205 			btrfs_set_path_blocking(path);
5206 			sret = btrfs_find_next_key(root, path, min_key, level,
5207 						  min_trans);
5208 			if (sret == 0) {
5209 				btrfs_release_path(path);
5210 				goto again;
5211 			} else {
5212 				goto out;
5213 			}
5214 		}
5215 		/* save our key for returning back */
5216 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5217 		path->slots[level] = slot;
5218 		if (level == path->lowest_level) {
5219 			ret = 0;
5220 			goto out;
5221 		}
5222 		btrfs_set_path_blocking(path);
5223 		cur = read_node_slot(fs_info, cur, slot);
5224 		if (IS_ERR(cur)) {
5225 			ret = PTR_ERR(cur);
5226 			goto out;
5227 		}
5228 
5229 		btrfs_tree_read_lock(cur);
5230 
5231 		path->locks[level - 1] = BTRFS_READ_LOCK;
5232 		path->nodes[level - 1] = cur;
5233 		unlock_up(path, level, 1, 0, NULL);
5234 		btrfs_clear_path_blocking(path, NULL, 0);
5235 	}
5236 out:
5237 	path->keep_locks = keep_locks;
5238 	if (ret == 0) {
5239 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5240 		btrfs_set_path_blocking(path);
5241 		memcpy(min_key, &found_key, sizeof(found_key));
5242 	}
5243 	return ret;
5244 }
5245 
5246 static int tree_move_down(struct btrfs_fs_info *fs_info,
5247 			   struct btrfs_path *path,
5248 			   int *level)
5249 {
5250 	struct extent_buffer *eb;
5251 
5252 	BUG_ON(*level == 0);
5253 	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5254 	if (IS_ERR(eb))
5255 		return PTR_ERR(eb);
5256 
5257 	path->nodes[*level - 1] = eb;
5258 	path->slots[*level - 1] = 0;
5259 	(*level)--;
5260 	return 0;
5261 }
5262 
5263 static int tree_move_next_or_upnext(struct btrfs_path *path,
5264 				    int *level, int root_level)
5265 {
5266 	int ret = 0;
5267 	int nritems;
5268 	nritems = btrfs_header_nritems(path->nodes[*level]);
5269 
5270 	path->slots[*level]++;
5271 
5272 	while (path->slots[*level] >= nritems) {
5273 		if (*level == root_level)
5274 			return -1;
5275 
5276 		/* move upnext */
5277 		path->slots[*level] = 0;
5278 		free_extent_buffer(path->nodes[*level]);
5279 		path->nodes[*level] = NULL;
5280 		(*level)++;
5281 		path->slots[*level]++;
5282 
5283 		nritems = btrfs_header_nritems(path->nodes[*level]);
5284 		ret = 1;
5285 	}
5286 	return ret;
5287 }
5288 
5289 /*
5290  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5291  * or down.
5292  */
5293 static int tree_advance(struct btrfs_fs_info *fs_info,
5294 			struct btrfs_path *path,
5295 			int *level, int root_level,
5296 			int allow_down,
5297 			struct btrfs_key *key)
5298 {
5299 	int ret;
5300 
5301 	if (*level == 0 || !allow_down) {
5302 		ret = tree_move_next_or_upnext(path, level, root_level);
5303 	} else {
5304 		ret = tree_move_down(fs_info, path, level);
5305 	}
5306 	if (ret >= 0) {
5307 		if (*level == 0)
5308 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5309 					path->slots[*level]);
5310 		else
5311 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5312 					path->slots[*level]);
5313 	}
5314 	return ret;
5315 }
5316 
5317 static int tree_compare_item(struct btrfs_path *left_path,
5318 			     struct btrfs_path *right_path,
5319 			     char *tmp_buf)
5320 {
5321 	int cmp;
5322 	int len1, len2;
5323 	unsigned long off1, off2;
5324 
5325 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5326 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5327 	if (len1 != len2)
5328 		return 1;
5329 
5330 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5331 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5332 				right_path->slots[0]);
5333 
5334 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5335 
5336 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5337 	if (cmp)
5338 		return 1;
5339 	return 0;
5340 }
5341 
5342 #define ADVANCE 1
5343 #define ADVANCE_ONLY_NEXT -1
5344 
5345 /*
5346  * This function compares two trees and calls the provided callback for
5347  * every changed/new/deleted item it finds.
5348  * If shared tree blocks are encountered, whole subtrees are skipped, making
5349  * the compare pretty fast on snapshotted subvolumes.
5350  *
5351  * This currently works on commit roots only. As commit roots are read only,
5352  * we don't do any locking. The commit roots are protected with transactions.
5353  * Transactions are ended and rejoined when a commit is tried in between.
5354  *
5355  * This function checks for modifications done to the trees while comparing.
5356  * If it detects a change, it aborts immediately.
5357  */
5358 int btrfs_compare_trees(struct btrfs_root *left_root,
5359 			struct btrfs_root *right_root,
5360 			btrfs_changed_cb_t changed_cb, void *ctx)
5361 {
5362 	struct btrfs_fs_info *fs_info = left_root->fs_info;
5363 	int ret;
5364 	int cmp;
5365 	struct btrfs_path *left_path = NULL;
5366 	struct btrfs_path *right_path = NULL;
5367 	struct btrfs_key left_key;
5368 	struct btrfs_key right_key;
5369 	char *tmp_buf = NULL;
5370 	int left_root_level;
5371 	int right_root_level;
5372 	int left_level;
5373 	int right_level;
5374 	int left_end_reached;
5375 	int right_end_reached;
5376 	int advance_left;
5377 	int advance_right;
5378 	u64 left_blockptr;
5379 	u64 right_blockptr;
5380 	u64 left_gen;
5381 	u64 right_gen;
5382 
5383 	left_path = btrfs_alloc_path();
5384 	if (!left_path) {
5385 		ret = -ENOMEM;
5386 		goto out;
5387 	}
5388 	right_path = btrfs_alloc_path();
5389 	if (!right_path) {
5390 		ret = -ENOMEM;
5391 		goto out;
5392 	}
5393 
5394 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5395 	if (!tmp_buf) {
5396 		ret = -ENOMEM;
5397 		goto out;
5398 	}
5399 
5400 	left_path->search_commit_root = 1;
5401 	left_path->skip_locking = 1;
5402 	right_path->search_commit_root = 1;
5403 	right_path->skip_locking = 1;
5404 
5405 	/*
5406 	 * Strategy: Go to the first items of both trees. Then do
5407 	 *
5408 	 * If both trees are at level 0
5409 	 *   Compare keys of current items
5410 	 *     If left < right treat left item as new, advance left tree
5411 	 *       and repeat
5412 	 *     If left > right treat right item as deleted, advance right tree
5413 	 *       and repeat
5414 	 *     If left == right do deep compare of items, treat as changed if
5415 	 *       needed, advance both trees and repeat
5416 	 * If both trees are at the same level but not at level 0
5417 	 *   Compare keys of current nodes/leafs
5418 	 *     If left < right advance left tree and repeat
5419 	 *     If left > right advance right tree and repeat
5420 	 *     If left == right compare blockptrs of the next nodes/leafs
5421 	 *       If they match advance both trees but stay at the same level
5422 	 *         and repeat
5423 	 *       If they don't match advance both trees while allowing to go
5424 	 *         deeper and repeat
5425 	 * If tree levels are different
5426 	 *   Advance the tree that needs it and repeat
5427 	 *
5428 	 * Advancing a tree means:
5429 	 *   If we are at level 0, try to go to the next slot. If that's not
5430 	 *   possible, go one level up and repeat. Stop when we found a level
5431 	 *   where we could go to the next slot. We may at this point be on a
5432 	 *   node or a leaf.
5433 	 *
5434 	 *   If we are not at level 0 and not on shared tree blocks, go one
5435 	 *   level deeper.
5436 	 *
5437 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5438 	 *   the right if possible or go up and right.
5439 	 */
5440 
5441 	down_read(&fs_info->commit_root_sem);
5442 	left_level = btrfs_header_level(left_root->commit_root);
5443 	left_root_level = left_level;
5444 	left_path->nodes[left_level] =
5445 			btrfs_clone_extent_buffer(left_root->commit_root);
5446 	if (!left_path->nodes[left_level]) {
5447 		up_read(&fs_info->commit_root_sem);
5448 		ret = -ENOMEM;
5449 		goto out;
5450 	}
5451 	extent_buffer_get(left_path->nodes[left_level]);
5452 
5453 	right_level = btrfs_header_level(right_root->commit_root);
5454 	right_root_level = right_level;
5455 	right_path->nodes[right_level] =
5456 			btrfs_clone_extent_buffer(right_root->commit_root);
5457 	if (!right_path->nodes[right_level]) {
5458 		up_read(&fs_info->commit_root_sem);
5459 		ret = -ENOMEM;
5460 		goto out;
5461 	}
5462 	extent_buffer_get(right_path->nodes[right_level]);
5463 	up_read(&fs_info->commit_root_sem);
5464 
5465 	if (left_level == 0)
5466 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5467 				&left_key, left_path->slots[left_level]);
5468 	else
5469 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5470 				&left_key, left_path->slots[left_level]);
5471 	if (right_level == 0)
5472 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5473 				&right_key, right_path->slots[right_level]);
5474 	else
5475 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5476 				&right_key, right_path->slots[right_level]);
5477 
5478 	left_end_reached = right_end_reached = 0;
5479 	advance_left = advance_right = 0;
5480 
5481 	while (1) {
5482 		if (advance_left && !left_end_reached) {
5483 			ret = tree_advance(fs_info, left_path, &left_level,
5484 					left_root_level,
5485 					advance_left != ADVANCE_ONLY_NEXT,
5486 					&left_key);
5487 			if (ret == -1)
5488 				left_end_reached = ADVANCE;
5489 			else if (ret < 0)
5490 				goto out;
5491 			advance_left = 0;
5492 		}
5493 		if (advance_right && !right_end_reached) {
5494 			ret = tree_advance(fs_info, right_path, &right_level,
5495 					right_root_level,
5496 					advance_right != ADVANCE_ONLY_NEXT,
5497 					&right_key);
5498 			if (ret == -1)
5499 				right_end_reached = ADVANCE;
5500 			else if (ret < 0)
5501 				goto out;
5502 			advance_right = 0;
5503 		}
5504 
5505 		if (left_end_reached && right_end_reached) {
5506 			ret = 0;
5507 			goto out;
5508 		} else if (left_end_reached) {
5509 			if (right_level == 0) {
5510 				ret = changed_cb(left_path, right_path,
5511 						&right_key,
5512 						BTRFS_COMPARE_TREE_DELETED,
5513 						ctx);
5514 				if (ret < 0)
5515 					goto out;
5516 			}
5517 			advance_right = ADVANCE;
5518 			continue;
5519 		} else if (right_end_reached) {
5520 			if (left_level == 0) {
5521 				ret = changed_cb(left_path, right_path,
5522 						&left_key,
5523 						BTRFS_COMPARE_TREE_NEW,
5524 						ctx);
5525 				if (ret < 0)
5526 					goto out;
5527 			}
5528 			advance_left = ADVANCE;
5529 			continue;
5530 		}
5531 
5532 		if (left_level == 0 && right_level == 0) {
5533 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5534 			if (cmp < 0) {
5535 				ret = changed_cb(left_path, right_path,
5536 						&left_key,
5537 						BTRFS_COMPARE_TREE_NEW,
5538 						ctx);
5539 				if (ret < 0)
5540 					goto out;
5541 				advance_left = ADVANCE;
5542 			} else if (cmp > 0) {
5543 				ret = changed_cb(left_path, right_path,
5544 						&right_key,
5545 						BTRFS_COMPARE_TREE_DELETED,
5546 						ctx);
5547 				if (ret < 0)
5548 					goto out;
5549 				advance_right = ADVANCE;
5550 			} else {
5551 				enum btrfs_compare_tree_result result;
5552 
5553 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5554 				ret = tree_compare_item(left_path, right_path,
5555 							tmp_buf);
5556 				if (ret)
5557 					result = BTRFS_COMPARE_TREE_CHANGED;
5558 				else
5559 					result = BTRFS_COMPARE_TREE_SAME;
5560 				ret = changed_cb(left_path, right_path,
5561 						 &left_key, result, ctx);
5562 				if (ret < 0)
5563 					goto out;
5564 				advance_left = ADVANCE;
5565 				advance_right = ADVANCE;
5566 			}
5567 		} else if (left_level == right_level) {
5568 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5569 			if (cmp < 0) {
5570 				advance_left = ADVANCE;
5571 			} else if (cmp > 0) {
5572 				advance_right = ADVANCE;
5573 			} else {
5574 				left_blockptr = btrfs_node_blockptr(
5575 						left_path->nodes[left_level],
5576 						left_path->slots[left_level]);
5577 				right_blockptr = btrfs_node_blockptr(
5578 						right_path->nodes[right_level],
5579 						right_path->slots[right_level]);
5580 				left_gen = btrfs_node_ptr_generation(
5581 						left_path->nodes[left_level],
5582 						left_path->slots[left_level]);
5583 				right_gen = btrfs_node_ptr_generation(
5584 						right_path->nodes[right_level],
5585 						right_path->slots[right_level]);
5586 				if (left_blockptr == right_blockptr &&
5587 				    left_gen == right_gen) {
5588 					/*
5589 					 * As we're on a shared block, don't
5590 					 * allow to go deeper.
5591 					 */
5592 					advance_left = ADVANCE_ONLY_NEXT;
5593 					advance_right = ADVANCE_ONLY_NEXT;
5594 				} else {
5595 					advance_left = ADVANCE;
5596 					advance_right = ADVANCE;
5597 				}
5598 			}
5599 		} else if (left_level < right_level) {
5600 			advance_right = ADVANCE;
5601 		} else {
5602 			advance_left = ADVANCE;
5603 		}
5604 	}
5605 
5606 out:
5607 	btrfs_free_path(left_path);
5608 	btrfs_free_path(right_path);
5609 	kvfree(tmp_buf);
5610 	return ret;
5611 }
5612 
5613 /*
5614  * this is similar to btrfs_next_leaf, but does not try to preserve
5615  * and fixup the path.  It looks for and returns the next key in the
5616  * tree based on the current path and the min_trans parameters.
5617  *
5618  * 0 is returned if another key is found, < 0 if there are any errors
5619  * and 1 is returned if there are no higher keys in the tree
5620  *
5621  * path->keep_locks should be set to 1 on the search made before
5622  * calling this function.
5623  */
5624 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5625 			struct btrfs_key *key, int level, u64 min_trans)
5626 {
5627 	int slot;
5628 	struct extent_buffer *c;
5629 
5630 	WARN_ON(!path->keep_locks);
5631 	while (level < BTRFS_MAX_LEVEL) {
5632 		if (!path->nodes[level])
5633 			return 1;
5634 
5635 		slot = path->slots[level] + 1;
5636 		c = path->nodes[level];
5637 next:
5638 		if (slot >= btrfs_header_nritems(c)) {
5639 			int ret;
5640 			int orig_lowest;
5641 			struct btrfs_key cur_key;
5642 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5643 			    !path->nodes[level + 1])
5644 				return 1;
5645 
5646 			if (path->locks[level + 1]) {
5647 				level++;
5648 				continue;
5649 			}
5650 
5651 			slot = btrfs_header_nritems(c) - 1;
5652 			if (level == 0)
5653 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5654 			else
5655 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5656 
5657 			orig_lowest = path->lowest_level;
5658 			btrfs_release_path(path);
5659 			path->lowest_level = level;
5660 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5661 						0, 0);
5662 			path->lowest_level = orig_lowest;
5663 			if (ret < 0)
5664 				return ret;
5665 
5666 			c = path->nodes[level];
5667 			slot = path->slots[level];
5668 			if (ret == 0)
5669 				slot++;
5670 			goto next;
5671 		}
5672 
5673 		if (level == 0)
5674 			btrfs_item_key_to_cpu(c, key, slot);
5675 		else {
5676 			u64 gen = btrfs_node_ptr_generation(c, slot);
5677 
5678 			if (gen < min_trans) {
5679 				slot++;
5680 				goto next;
5681 			}
5682 			btrfs_node_key_to_cpu(c, key, slot);
5683 		}
5684 		return 0;
5685 	}
5686 	return 1;
5687 }
5688 
5689 /*
5690  * search the tree again to find a leaf with greater keys
5691  * returns 0 if it found something or 1 if there are no greater leaves.
5692  * returns < 0 on io errors.
5693  */
5694 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5695 {
5696 	return btrfs_next_old_leaf(root, path, 0);
5697 }
5698 
5699 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5700 			u64 time_seq)
5701 {
5702 	int slot;
5703 	int level;
5704 	struct extent_buffer *c;
5705 	struct extent_buffer *next;
5706 	struct btrfs_key key;
5707 	u32 nritems;
5708 	int ret;
5709 	int old_spinning = path->leave_spinning;
5710 	int next_rw_lock = 0;
5711 
5712 	nritems = btrfs_header_nritems(path->nodes[0]);
5713 	if (nritems == 0)
5714 		return 1;
5715 
5716 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5717 again:
5718 	level = 1;
5719 	next = NULL;
5720 	next_rw_lock = 0;
5721 	btrfs_release_path(path);
5722 
5723 	path->keep_locks = 1;
5724 	path->leave_spinning = 1;
5725 
5726 	if (time_seq)
5727 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5728 	else
5729 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5730 	path->keep_locks = 0;
5731 
5732 	if (ret < 0)
5733 		return ret;
5734 
5735 	nritems = btrfs_header_nritems(path->nodes[0]);
5736 	/*
5737 	 * by releasing the path above we dropped all our locks.  A balance
5738 	 * could have added more items next to the key that used to be
5739 	 * at the very end of the block.  So, check again here and
5740 	 * advance the path if there are now more items available.
5741 	 */
5742 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5743 		if (ret == 0)
5744 			path->slots[0]++;
5745 		ret = 0;
5746 		goto done;
5747 	}
5748 	/*
5749 	 * So the above check misses one case:
5750 	 * - after releasing the path above, someone has removed the item that
5751 	 *   used to be at the very end of the block, and balance between leafs
5752 	 *   gets another one with bigger key.offset to replace it.
5753 	 *
5754 	 * This one should be returned as well, or we can get leaf corruption
5755 	 * later(esp. in __btrfs_drop_extents()).
5756 	 *
5757 	 * And a bit more explanation about this check,
5758 	 * with ret > 0, the key isn't found, the path points to the slot
5759 	 * where it should be inserted, so the path->slots[0] item must be the
5760 	 * bigger one.
5761 	 */
5762 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5763 		ret = 0;
5764 		goto done;
5765 	}
5766 
5767 	while (level < BTRFS_MAX_LEVEL) {
5768 		if (!path->nodes[level]) {
5769 			ret = 1;
5770 			goto done;
5771 		}
5772 
5773 		slot = path->slots[level] + 1;
5774 		c = path->nodes[level];
5775 		if (slot >= btrfs_header_nritems(c)) {
5776 			level++;
5777 			if (level == BTRFS_MAX_LEVEL) {
5778 				ret = 1;
5779 				goto done;
5780 			}
5781 			continue;
5782 		}
5783 
5784 		if (next) {
5785 			btrfs_tree_unlock_rw(next, next_rw_lock);
5786 			free_extent_buffer(next);
5787 		}
5788 
5789 		next = c;
5790 		next_rw_lock = path->locks[level];
5791 		ret = read_block_for_search(root, path, &next, level,
5792 					    slot, &key);
5793 		if (ret == -EAGAIN)
5794 			goto again;
5795 
5796 		if (ret < 0) {
5797 			btrfs_release_path(path);
5798 			goto done;
5799 		}
5800 
5801 		if (!path->skip_locking) {
5802 			ret = btrfs_try_tree_read_lock(next);
5803 			if (!ret && time_seq) {
5804 				/*
5805 				 * If we don't get the lock, we may be racing
5806 				 * with push_leaf_left, holding that lock while
5807 				 * itself waiting for the leaf we've currently
5808 				 * locked. To solve this situation, we give up
5809 				 * on our lock and cycle.
5810 				 */
5811 				free_extent_buffer(next);
5812 				btrfs_release_path(path);
5813 				cond_resched();
5814 				goto again;
5815 			}
5816 			if (!ret) {
5817 				btrfs_set_path_blocking(path);
5818 				btrfs_tree_read_lock(next);
5819 				btrfs_clear_path_blocking(path, next,
5820 							  BTRFS_READ_LOCK);
5821 			}
5822 			next_rw_lock = BTRFS_READ_LOCK;
5823 		}
5824 		break;
5825 	}
5826 	path->slots[level] = slot;
5827 	while (1) {
5828 		level--;
5829 		c = path->nodes[level];
5830 		if (path->locks[level])
5831 			btrfs_tree_unlock_rw(c, path->locks[level]);
5832 
5833 		free_extent_buffer(c);
5834 		path->nodes[level] = next;
5835 		path->slots[level] = 0;
5836 		if (!path->skip_locking)
5837 			path->locks[level] = next_rw_lock;
5838 		if (!level)
5839 			break;
5840 
5841 		ret = read_block_for_search(root, path, &next, level,
5842 					    0, &key);
5843 		if (ret == -EAGAIN)
5844 			goto again;
5845 
5846 		if (ret < 0) {
5847 			btrfs_release_path(path);
5848 			goto done;
5849 		}
5850 
5851 		if (!path->skip_locking) {
5852 			ret = btrfs_try_tree_read_lock(next);
5853 			if (!ret) {
5854 				btrfs_set_path_blocking(path);
5855 				btrfs_tree_read_lock(next);
5856 				btrfs_clear_path_blocking(path, next,
5857 							  BTRFS_READ_LOCK);
5858 			}
5859 			next_rw_lock = BTRFS_READ_LOCK;
5860 		}
5861 	}
5862 	ret = 0;
5863 done:
5864 	unlock_up(path, 0, 1, 0, NULL);
5865 	path->leave_spinning = old_spinning;
5866 	if (!old_spinning)
5867 		btrfs_set_path_blocking(path);
5868 
5869 	return ret;
5870 }
5871 
5872 /*
5873  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5874  * searching until it gets past min_objectid or finds an item of 'type'
5875  *
5876  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5877  */
5878 int btrfs_previous_item(struct btrfs_root *root,
5879 			struct btrfs_path *path, u64 min_objectid,
5880 			int type)
5881 {
5882 	struct btrfs_key found_key;
5883 	struct extent_buffer *leaf;
5884 	u32 nritems;
5885 	int ret;
5886 
5887 	while (1) {
5888 		if (path->slots[0] == 0) {
5889 			btrfs_set_path_blocking(path);
5890 			ret = btrfs_prev_leaf(root, path);
5891 			if (ret != 0)
5892 				return ret;
5893 		} else {
5894 			path->slots[0]--;
5895 		}
5896 		leaf = path->nodes[0];
5897 		nritems = btrfs_header_nritems(leaf);
5898 		if (nritems == 0)
5899 			return 1;
5900 		if (path->slots[0] == nritems)
5901 			path->slots[0]--;
5902 
5903 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5904 		if (found_key.objectid < min_objectid)
5905 			break;
5906 		if (found_key.type == type)
5907 			return 0;
5908 		if (found_key.objectid == min_objectid &&
5909 		    found_key.type < type)
5910 			break;
5911 	}
5912 	return 1;
5913 }
5914 
5915 /*
5916  * search in extent tree to find a previous Metadata/Data extent item with
5917  * min objecitd.
5918  *
5919  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5920  */
5921 int btrfs_previous_extent_item(struct btrfs_root *root,
5922 			struct btrfs_path *path, u64 min_objectid)
5923 {
5924 	struct btrfs_key found_key;
5925 	struct extent_buffer *leaf;
5926 	u32 nritems;
5927 	int ret;
5928 
5929 	while (1) {
5930 		if (path->slots[0] == 0) {
5931 			btrfs_set_path_blocking(path);
5932 			ret = btrfs_prev_leaf(root, path);
5933 			if (ret != 0)
5934 				return ret;
5935 		} else {
5936 			path->slots[0]--;
5937 		}
5938 		leaf = path->nodes[0];
5939 		nritems = btrfs_header_nritems(leaf);
5940 		if (nritems == 0)
5941 			return 1;
5942 		if (path->slots[0] == nritems)
5943 			path->slots[0]--;
5944 
5945 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5946 		if (found_key.objectid < min_objectid)
5947 			break;
5948 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5949 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5950 			return 0;
5951 		if (found_key.objectid == min_objectid &&
5952 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5953 			break;
5954 	}
5955 	return 1;
5956 }
5957