1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 45 46 struct btrfs_path *btrfs_alloc_path(void) 47 { 48 struct btrfs_path *path; 49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 50 return path; 51 } 52 53 /* 54 * set all locked nodes in the path to blocking locks. This should 55 * be done before scheduling 56 */ 57 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 58 { 59 int i; 60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 61 if (!p->nodes[i] || !p->locks[i]) 62 continue; 63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 64 if (p->locks[i] == BTRFS_READ_LOCK) 65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 66 else if (p->locks[i] == BTRFS_WRITE_LOCK) 67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 68 } 69 } 70 71 /* 72 * reset all the locked nodes in the patch to spinning locks. 73 * 74 * held is used to keep lockdep happy, when lockdep is enabled 75 * we set held to a blocking lock before we go around and 76 * retake all the spinlocks in the path. You can safely use NULL 77 * for held 78 */ 79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 80 struct extent_buffer *held, int held_rw) 81 { 82 int i; 83 84 #ifdef CONFIG_DEBUG_LOCK_ALLOC 85 /* lockdep really cares that we take all of these spinlocks 86 * in the right order. If any of the locks in the path are not 87 * currently blocking, it is going to complain. So, make really 88 * really sure by forcing the path to blocking before we clear 89 * the path blocking. 90 */ 91 if (held) { 92 btrfs_set_lock_blocking_rw(held, held_rw); 93 if (held_rw == BTRFS_WRITE_LOCK) 94 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 95 else if (held_rw == BTRFS_READ_LOCK) 96 held_rw = BTRFS_READ_LOCK_BLOCKING; 97 } 98 btrfs_set_path_blocking(p); 99 #endif 100 101 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 102 if (p->nodes[i] && p->locks[i]) { 103 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 104 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 105 p->locks[i] = BTRFS_WRITE_LOCK; 106 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 107 p->locks[i] = BTRFS_READ_LOCK; 108 } 109 } 110 111 #ifdef CONFIG_DEBUG_LOCK_ALLOC 112 if (held) 113 btrfs_clear_lock_blocking_rw(held, held_rw); 114 #endif 115 } 116 117 /* this also releases the path */ 118 void btrfs_free_path(struct btrfs_path *p) 119 { 120 if (!p) 121 return; 122 btrfs_release_path(p); 123 kmem_cache_free(btrfs_path_cachep, p); 124 } 125 126 /* 127 * path release drops references on the extent buffers in the path 128 * and it drops any locks held by this path 129 * 130 * It is safe to call this on paths that no locks or extent buffers held. 131 */ 132 noinline void btrfs_release_path(struct btrfs_path *p) 133 { 134 int i; 135 136 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 137 p->slots[i] = 0; 138 if (!p->nodes[i]) 139 continue; 140 if (p->locks[i]) { 141 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 142 p->locks[i] = 0; 143 } 144 free_extent_buffer(p->nodes[i]); 145 p->nodes[i] = NULL; 146 } 147 } 148 149 /* 150 * safely gets a reference on the root node of a tree. A lock 151 * is not taken, so a concurrent writer may put a different node 152 * at the root of the tree. See btrfs_lock_root_node for the 153 * looping required. 154 * 155 * The extent buffer returned by this has a reference taken, so 156 * it won't disappear. It may stop being the root of the tree 157 * at any time because there are no locks held. 158 */ 159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 160 { 161 struct extent_buffer *eb; 162 163 while (1) { 164 rcu_read_lock(); 165 eb = rcu_dereference(root->node); 166 167 /* 168 * RCU really hurts here, we could free up the root node because 169 * it was cow'ed but we may not get the new root node yet so do 170 * the inc_not_zero dance and if it doesn't work then 171 * synchronize_rcu and try again. 172 */ 173 if (atomic_inc_not_zero(&eb->refs)) { 174 rcu_read_unlock(); 175 break; 176 } 177 rcu_read_unlock(); 178 synchronize_rcu(); 179 } 180 return eb; 181 } 182 183 /* loop around taking references on and locking the root node of the 184 * tree until you end up with a lock on the root. A locked buffer 185 * is returned, with a reference held. 186 */ 187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 188 { 189 struct extent_buffer *eb; 190 191 while (1) { 192 eb = btrfs_root_node(root); 193 btrfs_tree_lock(eb); 194 if (eb == root->node) 195 break; 196 btrfs_tree_unlock(eb); 197 free_extent_buffer(eb); 198 } 199 return eb; 200 } 201 202 /* loop around taking references on and locking the root node of the 203 * tree until you end up with a lock on the root. A locked buffer 204 * is returned, with a reference held. 205 */ 206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 207 { 208 struct extent_buffer *eb; 209 210 while (1) { 211 eb = btrfs_root_node(root); 212 btrfs_tree_read_lock(eb); 213 if (eb == root->node) 214 break; 215 btrfs_tree_read_unlock(eb); 216 free_extent_buffer(eb); 217 } 218 return eb; 219 } 220 221 /* cowonly root (everything not a reference counted cow subvolume), just get 222 * put onto a simple dirty list. transaction.c walks this to make sure they 223 * get properly updated on disk. 224 */ 225 static void add_root_to_dirty_list(struct btrfs_root *root) 226 { 227 spin_lock(&root->fs_info->trans_lock); 228 if (root->track_dirty && list_empty(&root->dirty_list)) { 229 list_add(&root->dirty_list, 230 &root->fs_info->dirty_cowonly_roots); 231 } 232 spin_unlock(&root->fs_info->trans_lock); 233 } 234 235 /* 236 * used by snapshot creation to make a copy of a root for a tree with 237 * a given objectid. The buffer with the new root node is returned in 238 * cow_ret, and this func returns zero on success or a negative error code. 239 */ 240 int btrfs_copy_root(struct btrfs_trans_handle *trans, 241 struct btrfs_root *root, 242 struct extent_buffer *buf, 243 struct extent_buffer **cow_ret, u64 new_root_objectid) 244 { 245 struct extent_buffer *cow; 246 int ret = 0; 247 int level; 248 struct btrfs_disk_key disk_key; 249 250 WARN_ON(root->ref_cows && trans->transid != 251 root->fs_info->running_transaction->transid); 252 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 253 254 level = btrfs_header_level(buf); 255 if (level == 0) 256 btrfs_item_key(buf, &disk_key, 0); 257 else 258 btrfs_node_key(buf, &disk_key, 0); 259 260 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 261 new_root_objectid, &disk_key, level, 262 buf->start, 0); 263 if (IS_ERR(cow)) 264 return PTR_ERR(cow); 265 266 copy_extent_buffer(cow, buf, 0, 0, cow->len); 267 btrfs_set_header_bytenr(cow, cow->start); 268 btrfs_set_header_generation(cow, trans->transid); 269 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 270 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 271 BTRFS_HEADER_FLAG_RELOC); 272 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 273 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 274 else 275 btrfs_set_header_owner(cow, new_root_objectid); 276 277 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(cow), 278 BTRFS_FSID_SIZE); 279 280 WARN_ON(btrfs_header_generation(buf) > trans->transid); 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 282 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 283 else 284 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 285 286 if (ret) 287 return ret; 288 289 btrfs_mark_buffer_dirty(cow); 290 *cow_ret = cow; 291 return 0; 292 } 293 294 enum mod_log_op { 295 MOD_LOG_KEY_REPLACE, 296 MOD_LOG_KEY_ADD, 297 MOD_LOG_KEY_REMOVE, 298 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 299 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 300 MOD_LOG_MOVE_KEYS, 301 MOD_LOG_ROOT_REPLACE, 302 }; 303 304 struct tree_mod_move { 305 int dst_slot; 306 int nr_items; 307 }; 308 309 struct tree_mod_root { 310 u64 logical; 311 u8 level; 312 }; 313 314 struct tree_mod_elem { 315 struct rb_node node; 316 u64 index; /* shifted logical */ 317 u64 seq; 318 enum mod_log_op op; 319 320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 321 int slot; 322 323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 324 u64 generation; 325 326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 327 struct btrfs_disk_key key; 328 u64 blockptr; 329 330 /* this is used for op == MOD_LOG_MOVE_KEYS */ 331 struct tree_mod_move move; 332 333 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 334 struct tree_mod_root old_root; 335 }; 336 337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 338 { 339 read_lock(&fs_info->tree_mod_log_lock); 340 } 341 342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 343 { 344 read_unlock(&fs_info->tree_mod_log_lock); 345 } 346 347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 348 { 349 write_lock(&fs_info->tree_mod_log_lock); 350 } 351 352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 353 { 354 write_unlock(&fs_info->tree_mod_log_lock); 355 } 356 357 /* 358 * Increment the upper half of tree_mod_seq, set lower half zero. 359 * 360 * Must be called with fs_info->tree_mod_seq_lock held. 361 */ 362 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info) 363 { 364 u64 seq = atomic64_read(&fs_info->tree_mod_seq); 365 seq &= 0xffffffff00000000ull; 366 seq += 1ull << 32; 367 atomic64_set(&fs_info->tree_mod_seq, seq); 368 return seq; 369 } 370 371 /* 372 * Increment the lower half of tree_mod_seq. 373 * 374 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers 375 * are generated should not technically require a spin lock here. (Rationale: 376 * incrementing the minor while incrementing the major seq number is between its 377 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it 378 * just returns a unique sequence number as usual.) We have decided to leave 379 * that requirement in here and rethink it once we notice it really imposes a 380 * problem on some workload. 381 */ 382 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info) 383 { 384 return atomic64_inc_return(&fs_info->tree_mod_seq); 385 } 386 387 /* 388 * return the last minor in the previous major tree_mod_seq number 389 */ 390 u64 btrfs_tree_mod_seq_prev(u64 seq) 391 { 392 return (seq & 0xffffffff00000000ull) - 1ull; 393 } 394 395 /* 396 * This adds a new blocker to the tree mod log's blocker list if the @elem 397 * passed does not already have a sequence number set. So when a caller expects 398 * to record tree modifications, it should ensure to set elem->seq to zero 399 * before calling btrfs_get_tree_mod_seq. 400 * Returns a fresh, unused tree log modification sequence number, even if no new 401 * blocker was added. 402 */ 403 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 404 struct seq_list *elem) 405 { 406 u64 seq; 407 408 tree_mod_log_write_lock(fs_info); 409 spin_lock(&fs_info->tree_mod_seq_lock); 410 if (!elem->seq) { 411 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info); 412 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 413 } 414 seq = btrfs_inc_tree_mod_seq_minor(fs_info); 415 spin_unlock(&fs_info->tree_mod_seq_lock); 416 tree_mod_log_write_unlock(fs_info); 417 418 return seq; 419 } 420 421 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 422 struct seq_list *elem) 423 { 424 struct rb_root *tm_root; 425 struct rb_node *node; 426 struct rb_node *next; 427 struct seq_list *cur_elem; 428 struct tree_mod_elem *tm; 429 u64 min_seq = (u64)-1; 430 u64 seq_putting = elem->seq; 431 432 if (!seq_putting) 433 return; 434 435 spin_lock(&fs_info->tree_mod_seq_lock); 436 list_del(&elem->list); 437 elem->seq = 0; 438 439 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 440 if (cur_elem->seq < min_seq) { 441 if (seq_putting > cur_elem->seq) { 442 /* 443 * blocker with lower sequence number exists, we 444 * cannot remove anything from the log 445 */ 446 spin_unlock(&fs_info->tree_mod_seq_lock); 447 return; 448 } 449 min_seq = cur_elem->seq; 450 } 451 } 452 spin_unlock(&fs_info->tree_mod_seq_lock); 453 454 /* 455 * anything that's lower than the lowest existing (read: blocked) 456 * sequence number can be removed from the tree. 457 */ 458 tree_mod_log_write_lock(fs_info); 459 tm_root = &fs_info->tree_mod_log; 460 for (node = rb_first(tm_root); node; node = next) { 461 next = rb_next(node); 462 tm = container_of(node, struct tree_mod_elem, node); 463 if (tm->seq > min_seq) 464 continue; 465 rb_erase(node, tm_root); 466 kfree(tm); 467 } 468 tree_mod_log_write_unlock(fs_info); 469 } 470 471 /* 472 * key order of the log: 473 * index -> sequence 474 * 475 * the index is the shifted logical of the *new* root node for root replace 476 * operations, or the shifted logical of the affected block for all other 477 * operations. 478 */ 479 static noinline int 480 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 481 { 482 struct rb_root *tm_root; 483 struct rb_node **new; 484 struct rb_node *parent = NULL; 485 struct tree_mod_elem *cur; 486 int ret = 0; 487 488 BUG_ON(!tm); 489 490 tree_mod_log_write_lock(fs_info); 491 if (list_empty(&fs_info->tree_mod_seq_list)) { 492 tree_mod_log_write_unlock(fs_info); 493 /* 494 * Ok we no longer care about logging modifications, free up tm 495 * and return 0. Any callers shouldn't be using tm after 496 * calling tree_mod_log_insert, but if they do we can just 497 * change this to return a special error code to let the callers 498 * do their own thing. 499 */ 500 kfree(tm); 501 return 0; 502 } 503 504 spin_lock(&fs_info->tree_mod_seq_lock); 505 tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info); 506 spin_unlock(&fs_info->tree_mod_seq_lock); 507 508 tm_root = &fs_info->tree_mod_log; 509 new = &tm_root->rb_node; 510 while (*new) { 511 cur = container_of(*new, struct tree_mod_elem, node); 512 parent = *new; 513 if (cur->index < tm->index) 514 new = &((*new)->rb_left); 515 else if (cur->index > tm->index) 516 new = &((*new)->rb_right); 517 else if (cur->seq < tm->seq) 518 new = &((*new)->rb_left); 519 else if (cur->seq > tm->seq) 520 new = &((*new)->rb_right); 521 else { 522 ret = -EEXIST; 523 kfree(tm); 524 goto out; 525 } 526 } 527 528 rb_link_node(&tm->node, parent, new); 529 rb_insert_color(&tm->node, tm_root); 530 out: 531 tree_mod_log_write_unlock(fs_info); 532 return ret; 533 } 534 535 /* 536 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 537 * returns zero with the tree_mod_log_lock acquired. The caller must hold 538 * this until all tree mod log insertions are recorded in the rb tree and then 539 * call tree_mod_log_write_unlock() to release. 540 */ 541 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 542 struct extent_buffer *eb) { 543 smp_mb(); 544 if (list_empty(&(fs_info)->tree_mod_seq_list)) 545 return 1; 546 if (eb && btrfs_header_level(eb) == 0) 547 return 1; 548 return 0; 549 } 550 551 static inline int 552 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 553 struct extent_buffer *eb, int slot, 554 enum mod_log_op op, gfp_t flags) 555 { 556 struct tree_mod_elem *tm; 557 558 tm = kzalloc(sizeof(*tm), flags); 559 if (!tm) 560 return -ENOMEM; 561 562 tm->index = eb->start >> PAGE_CACHE_SHIFT; 563 if (op != MOD_LOG_KEY_ADD) { 564 btrfs_node_key(eb, &tm->key, slot); 565 tm->blockptr = btrfs_node_blockptr(eb, slot); 566 } 567 tm->op = op; 568 tm->slot = slot; 569 tm->generation = btrfs_node_ptr_generation(eb, slot); 570 571 return __tree_mod_log_insert(fs_info, tm); 572 } 573 574 static noinline int 575 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 576 struct extent_buffer *eb, int slot, 577 enum mod_log_op op, gfp_t flags) 578 { 579 if (tree_mod_dont_log(fs_info, eb)) 580 return 0; 581 582 return __tree_mod_log_insert_key(fs_info, eb, slot, op, flags); 583 } 584 585 static noinline int 586 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 587 struct extent_buffer *eb, int dst_slot, int src_slot, 588 int nr_items, gfp_t flags) 589 { 590 struct tree_mod_elem *tm; 591 int ret; 592 int i; 593 594 if (tree_mod_dont_log(fs_info, eb)) 595 return 0; 596 597 /* 598 * When we override something during the move, we log these removals. 599 * This can only happen when we move towards the beginning of the 600 * buffer, i.e. dst_slot < src_slot. 601 */ 602 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 603 ret = __tree_mod_log_insert_key(fs_info, eb, i + dst_slot, 604 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 605 BUG_ON(ret < 0); 606 } 607 608 tm = kzalloc(sizeof(*tm), flags); 609 if (!tm) 610 return -ENOMEM; 611 612 tm->index = eb->start >> PAGE_CACHE_SHIFT; 613 tm->slot = src_slot; 614 tm->move.dst_slot = dst_slot; 615 tm->move.nr_items = nr_items; 616 tm->op = MOD_LOG_MOVE_KEYS; 617 618 return __tree_mod_log_insert(fs_info, tm); 619 } 620 621 static inline void 622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 623 { 624 int i; 625 u32 nritems; 626 int ret; 627 628 if (btrfs_header_level(eb) == 0) 629 return; 630 631 nritems = btrfs_header_nritems(eb); 632 for (i = nritems - 1; i >= 0; i--) { 633 ret = __tree_mod_log_insert_key(fs_info, eb, i, 634 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 635 BUG_ON(ret < 0); 636 } 637 } 638 639 static noinline int 640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 641 struct extent_buffer *old_root, 642 struct extent_buffer *new_root, gfp_t flags, 643 int log_removal) 644 { 645 struct tree_mod_elem *tm; 646 647 if (tree_mod_dont_log(fs_info, NULL)) 648 return 0; 649 650 if (log_removal) 651 __tree_mod_log_free_eb(fs_info, old_root); 652 653 tm = kzalloc(sizeof(*tm), flags); 654 if (!tm) 655 return -ENOMEM; 656 657 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 658 tm->old_root.logical = old_root->start; 659 tm->old_root.level = btrfs_header_level(old_root); 660 tm->generation = btrfs_header_generation(old_root); 661 tm->op = MOD_LOG_ROOT_REPLACE; 662 663 return __tree_mod_log_insert(fs_info, tm); 664 } 665 666 static struct tree_mod_elem * 667 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 668 int smallest) 669 { 670 struct rb_root *tm_root; 671 struct rb_node *node; 672 struct tree_mod_elem *cur = NULL; 673 struct tree_mod_elem *found = NULL; 674 u64 index = start >> PAGE_CACHE_SHIFT; 675 676 tree_mod_log_read_lock(fs_info); 677 tm_root = &fs_info->tree_mod_log; 678 node = tm_root->rb_node; 679 while (node) { 680 cur = container_of(node, struct tree_mod_elem, node); 681 if (cur->index < index) { 682 node = node->rb_left; 683 } else if (cur->index > index) { 684 node = node->rb_right; 685 } else if (cur->seq < min_seq) { 686 node = node->rb_left; 687 } else if (!smallest) { 688 /* we want the node with the highest seq */ 689 if (found) 690 BUG_ON(found->seq > cur->seq); 691 found = cur; 692 node = node->rb_left; 693 } else if (cur->seq > min_seq) { 694 /* we want the node with the smallest seq */ 695 if (found) 696 BUG_ON(found->seq < cur->seq); 697 found = cur; 698 node = node->rb_right; 699 } else { 700 found = cur; 701 break; 702 } 703 } 704 tree_mod_log_read_unlock(fs_info); 705 706 return found; 707 } 708 709 /* 710 * this returns the element from the log with the smallest time sequence 711 * value that's in the log (the oldest log item). any element with a time 712 * sequence lower than min_seq will be ignored. 713 */ 714 static struct tree_mod_elem * 715 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 716 u64 min_seq) 717 { 718 return __tree_mod_log_search(fs_info, start, min_seq, 1); 719 } 720 721 /* 722 * this returns the element from the log with the largest time sequence 723 * value that's in the log (the most recent log item). any element with 724 * a time sequence lower than min_seq will be ignored. 725 */ 726 static struct tree_mod_elem * 727 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 728 { 729 return __tree_mod_log_search(fs_info, start, min_seq, 0); 730 } 731 732 static noinline void 733 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 734 struct extent_buffer *src, unsigned long dst_offset, 735 unsigned long src_offset, int nr_items) 736 { 737 int ret; 738 int i; 739 740 if (tree_mod_dont_log(fs_info, NULL)) 741 return; 742 743 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 744 return; 745 746 for (i = 0; i < nr_items; i++) { 747 ret = __tree_mod_log_insert_key(fs_info, src, 748 i + src_offset, 749 MOD_LOG_KEY_REMOVE, GFP_NOFS); 750 BUG_ON(ret < 0); 751 ret = __tree_mod_log_insert_key(fs_info, dst, 752 i + dst_offset, 753 MOD_LOG_KEY_ADD, 754 GFP_NOFS); 755 BUG_ON(ret < 0); 756 } 757 } 758 759 static inline void 760 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 761 int dst_offset, int src_offset, int nr_items) 762 { 763 int ret; 764 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 765 nr_items, GFP_NOFS); 766 BUG_ON(ret < 0); 767 } 768 769 static noinline void 770 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 771 struct extent_buffer *eb, int slot, int atomic) 772 { 773 int ret; 774 775 ret = __tree_mod_log_insert_key(fs_info, eb, slot, 776 MOD_LOG_KEY_REPLACE, 777 atomic ? GFP_ATOMIC : GFP_NOFS); 778 BUG_ON(ret < 0); 779 } 780 781 static noinline void 782 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 783 { 784 if (tree_mod_dont_log(fs_info, eb)) 785 return; 786 __tree_mod_log_free_eb(fs_info, eb); 787 } 788 789 static noinline void 790 tree_mod_log_set_root_pointer(struct btrfs_root *root, 791 struct extent_buffer *new_root_node, 792 int log_removal) 793 { 794 int ret; 795 ret = tree_mod_log_insert_root(root->fs_info, root->node, 796 new_root_node, GFP_NOFS, log_removal); 797 BUG_ON(ret < 0); 798 } 799 800 /* 801 * check if the tree block can be shared by multiple trees 802 */ 803 int btrfs_block_can_be_shared(struct btrfs_root *root, 804 struct extent_buffer *buf) 805 { 806 /* 807 * Tree blocks not in refernece counted trees and tree roots 808 * are never shared. If a block was allocated after the last 809 * snapshot and the block was not allocated by tree relocation, 810 * we know the block is not shared. 811 */ 812 if (root->ref_cows && 813 buf != root->node && buf != root->commit_root && 814 (btrfs_header_generation(buf) <= 815 btrfs_root_last_snapshot(&root->root_item) || 816 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 817 return 1; 818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 819 if (root->ref_cows && 820 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 821 return 1; 822 #endif 823 return 0; 824 } 825 826 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 827 struct btrfs_root *root, 828 struct extent_buffer *buf, 829 struct extent_buffer *cow, 830 int *last_ref) 831 { 832 u64 refs; 833 u64 owner; 834 u64 flags; 835 u64 new_flags = 0; 836 int ret; 837 838 /* 839 * Backrefs update rules: 840 * 841 * Always use full backrefs for extent pointers in tree block 842 * allocated by tree relocation. 843 * 844 * If a shared tree block is no longer referenced by its owner 845 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 846 * use full backrefs for extent pointers in tree block. 847 * 848 * If a tree block is been relocating 849 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 850 * use full backrefs for extent pointers in tree block. 851 * The reason for this is some operations (such as drop tree) 852 * are only allowed for blocks use full backrefs. 853 */ 854 855 if (btrfs_block_can_be_shared(root, buf)) { 856 ret = btrfs_lookup_extent_info(trans, root, buf->start, 857 btrfs_header_level(buf), 1, 858 &refs, &flags); 859 if (ret) 860 return ret; 861 if (refs == 0) { 862 ret = -EROFS; 863 btrfs_std_error(root->fs_info, ret); 864 return ret; 865 } 866 } else { 867 refs = 1; 868 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 869 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 870 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 871 else 872 flags = 0; 873 } 874 875 owner = btrfs_header_owner(buf); 876 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 877 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 878 879 if (refs > 1) { 880 if ((owner == root->root_key.objectid || 881 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 882 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 883 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 884 BUG_ON(ret); /* -ENOMEM */ 885 886 if (root->root_key.objectid == 887 BTRFS_TREE_RELOC_OBJECTID) { 888 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 889 BUG_ON(ret); /* -ENOMEM */ 890 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 891 BUG_ON(ret); /* -ENOMEM */ 892 } 893 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 894 } else { 895 896 if (root->root_key.objectid == 897 BTRFS_TREE_RELOC_OBJECTID) 898 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 899 else 900 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 901 BUG_ON(ret); /* -ENOMEM */ 902 } 903 if (new_flags != 0) { 904 int level = btrfs_header_level(buf); 905 906 ret = btrfs_set_disk_extent_flags(trans, root, 907 buf->start, 908 buf->len, 909 new_flags, level, 0); 910 if (ret) 911 return ret; 912 } 913 } else { 914 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 915 if (root->root_key.objectid == 916 BTRFS_TREE_RELOC_OBJECTID) 917 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 918 else 919 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 920 BUG_ON(ret); /* -ENOMEM */ 921 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 922 BUG_ON(ret); /* -ENOMEM */ 923 } 924 clean_tree_block(trans, root, buf); 925 *last_ref = 1; 926 } 927 return 0; 928 } 929 930 /* 931 * does the dirty work in cow of a single block. The parent block (if 932 * supplied) is updated to point to the new cow copy. The new buffer is marked 933 * dirty and returned locked. If you modify the block it needs to be marked 934 * dirty again. 935 * 936 * search_start -- an allocation hint for the new block 937 * 938 * empty_size -- a hint that you plan on doing more cow. This is the size in 939 * bytes the allocator should try to find free next to the block it returns. 940 * This is just a hint and may be ignored by the allocator. 941 */ 942 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 943 struct btrfs_root *root, 944 struct extent_buffer *buf, 945 struct extent_buffer *parent, int parent_slot, 946 struct extent_buffer **cow_ret, 947 u64 search_start, u64 empty_size) 948 { 949 struct btrfs_disk_key disk_key; 950 struct extent_buffer *cow; 951 int level, ret; 952 int last_ref = 0; 953 int unlock_orig = 0; 954 u64 parent_start; 955 956 if (*cow_ret == buf) 957 unlock_orig = 1; 958 959 btrfs_assert_tree_locked(buf); 960 961 WARN_ON(root->ref_cows && trans->transid != 962 root->fs_info->running_transaction->transid); 963 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 964 965 level = btrfs_header_level(buf); 966 967 if (level == 0) 968 btrfs_item_key(buf, &disk_key, 0); 969 else 970 btrfs_node_key(buf, &disk_key, 0); 971 972 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 973 if (parent) 974 parent_start = parent->start; 975 else 976 parent_start = 0; 977 } else 978 parent_start = 0; 979 980 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 981 root->root_key.objectid, &disk_key, 982 level, search_start, empty_size); 983 if (IS_ERR(cow)) 984 return PTR_ERR(cow); 985 986 /* cow is set to blocking by btrfs_init_new_buffer */ 987 988 copy_extent_buffer(cow, buf, 0, 0, cow->len); 989 btrfs_set_header_bytenr(cow, cow->start); 990 btrfs_set_header_generation(cow, trans->transid); 991 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 992 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 993 BTRFS_HEADER_FLAG_RELOC); 994 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 995 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 996 else 997 btrfs_set_header_owner(cow, root->root_key.objectid); 998 999 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(cow), 1000 BTRFS_FSID_SIZE); 1001 1002 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1003 if (ret) { 1004 btrfs_abort_transaction(trans, root, ret); 1005 return ret; 1006 } 1007 1008 if (root->ref_cows) { 1009 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1010 if (ret) 1011 return ret; 1012 } 1013 1014 if (buf == root->node) { 1015 WARN_ON(parent && parent != buf); 1016 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1017 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1018 parent_start = buf->start; 1019 else 1020 parent_start = 0; 1021 1022 extent_buffer_get(cow); 1023 tree_mod_log_set_root_pointer(root, cow, 1); 1024 rcu_assign_pointer(root->node, cow); 1025 1026 btrfs_free_tree_block(trans, root, buf, parent_start, 1027 last_ref); 1028 free_extent_buffer(buf); 1029 add_root_to_dirty_list(root); 1030 } else { 1031 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1032 parent_start = parent->start; 1033 else 1034 parent_start = 0; 1035 1036 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1037 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1038 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1039 btrfs_set_node_blockptr(parent, parent_slot, 1040 cow->start); 1041 btrfs_set_node_ptr_generation(parent, parent_slot, 1042 trans->transid); 1043 btrfs_mark_buffer_dirty(parent); 1044 if (last_ref) 1045 tree_mod_log_free_eb(root->fs_info, buf); 1046 btrfs_free_tree_block(trans, root, buf, parent_start, 1047 last_ref); 1048 } 1049 if (unlock_orig) 1050 btrfs_tree_unlock(buf); 1051 free_extent_buffer_stale(buf); 1052 btrfs_mark_buffer_dirty(cow); 1053 *cow_ret = cow; 1054 return 0; 1055 } 1056 1057 /* 1058 * returns the logical address of the oldest predecessor of the given root. 1059 * entries older than time_seq are ignored. 1060 */ 1061 static struct tree_mod_elem * 1062 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1063 struct extent_buffer *eb_root, u64 time_seq) 1064 { 1065 struct tree_mod_elem *tm; 1066 struct tree_mod_elem *found = NULL; 1067 u64 root_logical = eb_root->start; 1068 int looped = 0; 1069 1070 if (!time_seq) 1071 return NULL; 1072 1073 /* 1074 * the very last operation that's logged for a root is the replacement 1075 * operation (if it is replaced at all). this has the index of the *new* 1076 * root, making it the very first operation that's logged for this root. 1077 */ 1078 while (1) { 1079 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1080 time_seq); 1081 if (!looped && !tm) 1082 return NULL; 1083 /* 1084 * if there are no tree operation for the oldest root, we simply 1085 * return it. this should only happen if that (old) root is at 1086 * level 0. 1087 */ 1088 if (!tm) 1089 break; 1090 1091 /* 1092 * if there's an operation that's not a root replacement, we 1093 * found the oldest version of our root. normally, we'll find a 1094 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1095 */ 1096 if (tm->op != MOD_LOG_ROOT_REPLACE) 1097 break; 1098 1099 found = tm; 1100 root_logical = tm->old_root.logical; 1101 looped = 1; 1102 } 1103 1104 /* if there's no old root to return, return what we found instead */ 1105 if (!found) 1106 found = tm; 1107 1108 return found; 1109 } 1110 1111 /* 1112 * tm is a pointer to the first operation to rewind within eb. then, all 1113 * previous operations will be rewinded (until we reach something older than 1114 * time_seq). 1115 */ 1116 static void 1117 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1118 u64 time_seq, struct tree_mod_elem *first_tm) 1119 { 1120 u32 n; 1121 struct rb_node *next; 1122 struct tree_mod_elem *tm = first_tm; 1123 unsigned long o_dst; 1124 unsigned long o_src; 1125 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1126 1127 n = btrfs_header_nritems(eb); 1128 tree_mod_log_read_lock(fs_info); 1129 while (tm && tm->seq >= time_seq) { 1130 /* 1131 * all the operations are recorded with the operator used for 1132 * the modification. as we're going backwards, we do the 1133 * opposite of each operation here. 1134 */ 1135 switch (tm->op) { 1136 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1137 BUG_ON(tm->slot < n); 1138 /* Fallthrough */ 1139 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1140 case MOD_LOG_KEY_REMOVE: 1141 btrfs_set_node_key(eb, &tm->key, tm->slot); 1142 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1143 btrfs_set_node_ptr_generation(eb, tm->slot, 1144 tm->generation); 1145 n++; 1146 break; 1147 case MOD_LOG_KEY_REPLACE: 1148 BUG_ON(tm->slot >= n); 1149 btrfs_set_node_key(eb, &tm->key, tm->slot); 1150 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1151 btrfs_set_node_ptr_generation(eb, tm->slot, 1152 tm->generation); 1153 break; 1154 case MOD_LOG_KEY_ADD: 1155 /* if a move operation is needed it's in the log */ 1156 n--; 1157 break; 1158 case MOD_LOG_MOVE_KEYS: 1159 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1160 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1161 memmove_extent_buffer(eb, o_dst, o_src, 1162 tm->move.nr_items * p_size); 1163 break; 1164 case MOD_LOG_ROOT_REPLACE: 1165 /* 1166 * this operation is special. for roots, this must be 1167 * handled explicitly before rewinding. 1168 * for non-roots, this operation may exist if the node 1169 * was a root: root A -> child B; then A gets empty and 1170 * B is promoted to the new root. in the mod log, we'll 1171 * have a root-replace operation for B, a tree block 1172 * that is no root. we simply ignore that operation. 1173 */ 1174 break; 1175 } 1176 next = rb_next(&tm->node); 1177 if (!next) 1178 break; 1179 tm = container_of(next, struct tree_mod_elem, node); 1180 if (tm->index != first_tm->index) 1181 break; 1182 } 1183 tree_mod_log_read_unlock(fs_info); 1184 btrfs_set_header_nritems(eb, n); 1185 } 1186 1187 /* 1188 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1189 * is returned. If rewind operations happen, a fresh buffer is returned. The 1190 * returned buffer is always read-locked. If the returned buffer is not the 1191 * input buffer, the lock on the input buffer is released and the input buffer 1192 * is freed (its refcount is decremented). 1193 */ 1194 static struct extent_buffer * 1195 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1196 struct extent_buffer *eb, u64 time_seq) 1197 { 1198 struct extent_buffer *eb_rewin; 1199 struct tree_mod_elem *tm; 1200 1201 if (!time_seq) 1202 return eb; 1203 1204 if (btrfs_header_level(eb) == 0) 1205 return eb; 1206 1207 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1208 if (!tm) 1209 return eb; 1210 1211 btrfs_set_path_blocking(path); 1212 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1213 1214 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1215 BUG_ON(tm->slot != 0); 1216 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1217 fs_info->tree_root->nodesize); 1218 if (!eb_rewin) { 1219 btrfs_tree_read_unlock_blocking(eb); 1220 free_extent_buffer(eb); 1221 return NULL; 1222 } 1223 btrfs_set_header_bytenr(eb_rewin, eb->start); 1224 btrfs_set_header_backref_rev(eb_rewin, 1225 btrfs_header_backref_rev(eb)); 1226 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1227 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1228 } else { 1229 eb_rewin = btrfs_clone_extent_buffer(eb); 1230 if (!eb_rewin) { 1231 btrfs_tree_read_unlock_blocking(eb); 1232 free_extent_buffer(eb); 1233 return NULL; 1234 } 1235 } 1236 1237 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1238 btrfs_tree_read_unlock_blocking(eb); 1239 free_extent_buffer(eb); 1240 1241 extent_buffer_get(eb_rewin); 1242 btrfs_tree_read_lock(eb_rewin); 1243 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1244 WARN_ON(btrfs_header_nritems(eb_rewin) > 1245 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1246 1247 return eb_rewin; 1248 } 1249 1250 /* 1251 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1252 * value. If there are no changes, the current root->root_node is returned. If 1253 * anything changed in between, there's a fresh buffer allocated on which the 1254 * rewind operations are done. In any case, the returned buffer is read locked. 1255 * Returns NULL on error (with no locks held). 1256 */ 1257 static inline struct extent_buffer * 1258 get_old_root(struct btrfs_root *root, u64 time_seq) 1259 { 1260 struct tree_mod_elem *tm; 1261 struct extent_buffer *eb = NULL; 1262 struct extent_buffer *eb_root; 1263 struct extent_buffer *old; 1264 struct tree_mod_root *old_root = NULL; 1265 u64 old_generation = 0; 1266 u64 logical; 1267 u32 blocksize; 1268 1269 eb_root = btrfs_read_lock_root_node(root); 1270 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1271 if (!tm) 1272 return eb_root; 1273 1274 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1275 old_root = &tm->old_root; 1276 old_generation = tm->generation; 1277 logical = old_root->logical; 1278 } else { 1279 logical = eb_root->start; 1280 } 1281 1282 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1283 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1284 btrfs_tree_read_unlock(eb_root); 1285 free_extent_buffer(eb_root); 1286 blocksize = btrfs_level_size(root, old_root->level); 1287 old = read_tree_block(root, logical, blocksize, 0); 1288 if (!old || !extent_buffer_uptodate(old)) { 1289 free_extent_buffer(old); 1290 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n", 1291 logical); 1292 WARN_ON(1); 1293 } else { 1294 eb = btrfs_clone_extent_buffer(old); 1295 free_extent_buffer(old); 1296 } 1297 } else if (old_root) { 1298 btrfs_tree_read_unlock(eb_root); 1299 free_extent_buffer(eb_root); 1300 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1301 } else { 1302 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1303 eb = btrfs_clone_extent_buffer(eb_root); 1304 btrfs_tree_read_unlock_blocking(eb_root); 1305 free_extent_buffer(eb_root); 1306 } 1307 1308 if (!eb) 1309 return NULL; 1310 extent_buffer_get(eb); 1311 btrfs_tree_read_lock(eb); 1312 if (old_root) { 1313 btrfs_set_header_bytenr(eb, eb->start); 1314 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1315 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1316 btrfs_set_header_level(eb, old_root->level); 1317 btrfs_set_header_generation(eb, old_generation); 1318 } 1319 if (tm) 1320 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1321 else 1322 WARN_ON(btrfs_header_level(eb) != 0); 1323 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1324 1325 return eb; 1326 } 1327 1328 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1329 { 1330 struct tree_mod_elem *tm; 1331 int level; 1332 struct extent_buffer *eb_root = btrfs_root_node(root); 1333 1334 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1335 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1336 level = tm->old_root.level; 1337 } else { 1338 level = btrfs_header_level(eb_root); 1339 } 1340 free_extent_buffer(eb_root); 1341 1342 return level; 1343 } 1344 1345 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1346 struct btrfs_root *root, 1347 struct extent_buffer *buf) 1348 { 1349 /* ensure we can see the force_cow */ 1350 smp_rmb(); 1351 1352 /* 1353 * We do not need to cow a block if 1354 * 1) this block is not created or changed in this transaction; 1355 * 2) this block does not belong to TREE_RELOC tree; 1356 * 3) the root is not forced COW. 1357 * 1358 * What is forced COW: 1359 * when we create snapshot during commiting the transaction, 1360 * after we've finished coping src root, we must COW the shared 1361 * block to ensure the metadata consistency. 1362 */ 1363 if (btrfs_header_generation(buf) == trans->transid && 1364 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1365 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1366 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1367 !root->force_cow) 1368 return 0; 1369 return 1; 1370 } 1371 1372 /* 1373 * cows a single block, see __btrfs_cow_block for the real work. 1374 * This version of it has extra checks so that a block isn't cow'd more than 1375 * once per transaction, as long as it hasn't been written yet 1376 */ 1377 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1378 struct btrfs_root *root, struct extent_buffer *buf, 1379 struct extent_buffer *parent, int parent_slot, 1380 struct extent_buffer **cow_ret) 1381 { 1382 u64 search_start; 1383 int ret; 1384 1385 if (trans->transaction != root->fs_info->running_transaction) 1386 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1387 trans->transid, 1388 root->fs_info->running_transaction->transid); 1389 1390 if (trans->transid != root->fs_info->generation) 1391 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1392 trans->transid, root->fs_info->generation); 1393 1394 if (!should_cow_block(trans, root, buf)) { 1395 *cow_ret = buf; 1396 return 0; 1397 } 1398 1399 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1400 1401 if (parent) 1402 btrfs_set_lock_blocking(parent); 1403 btrfs_set_lock_blocking(buf); 1404 1405 ret = __btrfs_cow_block(trans, root, buf, parent, 1406 parent_slot, cow_ret, search_start, 0); 1407 1408 trace_btrfs_cow_block(root, buf, *cow_ret); 1409 1410 return ret; 1411 } 1412 1413 /* 1414 * helper function for defrag to decide if two blocks pointed to by a 1415 * node are actually close by 1416 */ 1417 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1418 { 1419 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1420 return 1; 1421 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1422 return 1; 1423 return 0; 1424 } 1425 1426 /* 1427 * compare two keys in a memcmp fashion 1428 */ 1429 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1430 { 1431 struct btrfs_key k1; 1432 1433 btrfs_disk_key_to_cpu(&k1, disk); 1434 1435 return btrfs_comp_cpu_keys(&k1, k2); 1436 } 1437 1438 /* 1439 * same as comp_keys only with two btrfs_key's 1440 */ 1441 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1442 { 1443 if (k1->objectid > k2->objectid) 1444 return 1; 1445 if (k1->objectid < k2->objectid) 1446 return -1; 1447 if (k1->type > k2->type) 1448 return 1; 1449 if (k1->type < k2->type) 1450 return -1; 1451 if (k1->offset > k2->offset) 1452 return 1; 1453 if (k1->offset < k2->offset) 1454 return -1; 1455 return 0; 1456 } 1457 1458 /* 1459 * this is used by the defrag code to go through all the 1460 * leaves pointed to by a node and reallocate them so that 1461 * disk order is close to key order 1462 */ 1463 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1464 struct btrfs_root *root, struct extent_buffer *parent, 1465 int start_slot, u64 *last_ret, 1466 struct btrfs_key *progress) 1467 { 1468 struct extent_buffer *cur; 1469 u64 blocknr; 1470 u64 gen; 1471 u64 search_start = *last_ret; 1472 u64 last_block = 0; 1473 u64 other; 1474 u32 parent_nritems; 1475 int end_slot; 1476 int i; 1477 int err = 0; 1478 int parent_level; 1479 int uptodate; 1480 u32 blocksize; 1481 int progress_passed = 0; 1482 struct btrfs_disk_key disk_key; 1483 1484 parent_level = btrfs_header_level(parent); 1485 1486 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1487 WARN_ON(trans->transid != root->fs_info->generation); 1488 1489 parent_nritems = btrfs_header_nritems(parent); 1490 blocksize = btrfs_level_size(root, parent_level - 1); 1491 end_slot = parent_nritems; 1492 1493 if (parent_nritems == 1) 1494 return 0; 1495 1496 btrfs_set_lock_blocking(parent); 1497 1498 for (i = start_slot; i < end_slot; i++) { 1499 int close = 1; 1500 1501 btrfs_node_key(parent, &disk_key, i); 1502 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1503 continue; 1504 1505 progress_passed = 1; 1506 blocknr = btrfs_node_blockptr(parent, i); 1507 gen = btrfs_node_ptr_generation(parent, i); 1508 if (last_block == 0) 1509 last_block = blocknr; 1510 1511 if (i > 0) { 1512 other = btrfs_node_blockptr(parent, i - 1); 1513 close = close_blocks(blocknr, other, blocksize); 1514 } 1515 if (!close && i < end_slot - 2) { 1516 other = btrfs_node_blockptr(parent, i + 1); 1517 close = close_blocks(blocknr, other, blocksize); 1518 } 1519 if (close) { 1520 last_block = blocknr; 1521 continue; 1522 } 1523 1524 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1525 if (cur) 1526 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1527 else 1528 uptodate = 0; 1529 if (!cur || !uptodate) { 1530 if (!cur) { 1531 cur = read_tree_block(root, blocknr, 1532 blocksize, gen); 1533 if (!cur || !extent_buffer_uptodate(cur)) { 1534 free_extent_buffer(cur); 1535 return -EIO; 1536 } 1537 } else if (!uptodate) { 1538 err = btrfs_read_buffer(cur, gen); 1539 if (err) { 1540 free_extent_buffer(cur); 1541 return err; 1542 } 1543 } 1544 } 1545 if (search_start == 0) 1546 search_start = last_block; 1547 1548 btrfs_tree_lock(cur); 1549 btrfs_set_lock_blocking(cur); 1550 err = __btrfs_cow_block(trans, root, cur, parent, i, 1551 &cur, search_start, 1552 min(16 * blocksize, 1553 (end_slot - i) * blocksize)); 1554 if (err) { 1555 btrfs_tree_unlock(cur); 1556 free_extent_buffer(cur); 1557 break; 1558 } 1559 search_start = cur->start; 1560 last_block = cur->start; 1561 *last_ret = search_start; 1562 btrfs_tree_unlock(cur); 1563 free_extent_buffer(cur); 1564 } 1565 return err; 1566 } 1567 1568 /* 1569 * The leaf data grows from end-to-front in the node. 1570 * this returns the address of the start of the last item, 1571 * which is the stop of the leaf data stack 1572 */ 1573 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1574 struct extent_buffer *leaf) 1575 { 1576 u32 nr = btrfs_header_nritems(leaf); 1577 if (nr == 0) 1578 return BTRFS_LEAF_DATA_SIZE(root); 1579 return btrfs_item_offset_nr(leaf, nr - 1); 1580 } 1581 1582 1583 /* 1584 * search for key in the extent_buffer. The items start at offset p, 1585 * and they are item_size apart. There are 'max' items in p. 1586 * 1587 * the slot in the array is returned via slot, and it points to 1588 * the place where you would insert key if it is not found in 1589 * the array. 1590 * 1591 * slot may point to max if the key is bigger than all of the keys 1592 */ 1593 static noinline int generic_bin_search(struct extent_buffer *eb, 1594 unsigned long p, 1595 int item_size, struct btrfs_key *key, 1596 int max, int *slot) 1597 { 1598 int low = 0; 1599 int high = max; 1600 int mid; 1601 int ret; 1602 struct btrfs_disk_key *tmp = NULL; 1603 struct btrfs_disk_key unaligned; 1604 unsigned long offset; 1605 char *kaddr = NULL; 1606 unsigned long map_start = 0; 1607 unsigned long map_len = 0; 1608 int err; 1609 1610 while (low < high) { 1611 mid = (low + high) / 2; 1612 offset = p + mid * item_size; 1613 1614 if (!kaddr || offset < map_start || 1615 (offset + sizeof(struct btrfs_disk_key)) > 1616 map_start + map_len) { 1617 1618 err = map_private_extent_buffer(eb, offset, 1619 sizeof(struct btrfs_disk_key), 1620 &kaddr, &map_start, &map_len); 1621 1622 if (!err) { 1623 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1624 map_start); 1625 } else { 1626 read_extent_buffer(eb, &unaligned, 1627 offset, sizeof(unaligned)); 1628 tmp = &unaligned; 1629 } 1630 1631 } else { 1632 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1633 map_start); 1634 } 1635 ret = comp_keys(tmp, key); 1636 1637 if (ret < 0) 1638 low = mid + 1; 1639 else if (ret > 0) 1640 high = mid; 1641 else { 1642 *slot = mid; 1643 return 0; 1644 } 1645 } 1646 *slot = low; 1647 return 1; 1648 } 1649 1650 /* 1651 * simple bin_search frontend that does the right thing for 1652 * leaves vs nodes 1653 */ 1654 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1655 int level, int *slot) 1656 { 1657 if (level == 0) 1658 return generic_bin_search(eb, 1659 offsetof(struct btrfs_leaf, items), 1660 sizeof(struct btrfs_item), 1661 key, btrfs_header_nritems(eb), 1662 slot); 1663 else 1664 return generic_bin_search(eb, 1665 offsetof(struct btrfs_node, ptrs), 1666 sizeof(struct btrfs_key_ptr), 1667 key, btrfs_header_nritems(eb), 1668 slot); 1669 } 1670 1671 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1672 int level, int *slot) 1673 { 1674 return bin_search(eb, key, level, slot); 1675 } 1676 1677 static void root_add_used(struct btrfs_root *root, u32 size) 1678 { 1679 spin_lock(&root->accounting_lock); 1680 btrfs_set_root_used(&root->root_item, 1681 btrfs_root_used(&root->root_item) + size); 1682 spin_unlock(&root->accounting_lock); 1683 } 1684 1685 static void root_sub_used(struct btrfs_root *root, u32 size) 1686 { 1687 spin_lock(&root->accounting_lock); 1688 btrfs_set_root_used(&root->root_item, 1689 btrfs_root_used(&root->root_item) - size); 1690 spin_unlock(&root->accounting_lock); 1691 } 1692 1693 /* given a node and slot number, this reads the blocks it points to. The 1694 * extent buffer is returned with a reference taken (but unlocked). 1695 * NULL is returned on error. 1696 */ 1697 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1698 struct extent_buffer *parent, int slot) 1699 { 1700 int level = btrfs_header_level(parent); 1701 struct extent_buffer *eb; 1702 1703 if (slot < 0) 1704 return NULL; 1705 if (slot >= btrfs_header_nritems(parent)) 1706 return NULL; 1707 1708 BUG_ON(level == 0); 1709 1710 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1711 btrfs_level_size(root, level - 1), 1712 btrfs_node_ptr_generation(parent, slot)); 1713 if (eb && !extent_buffer_uptodate(eb)) { 1714 free_extent_buffer(eb); 1715 eb = NULL; 1716 } 1717 1718 return eb; 1719 } 1720 1721 /* 1722 * node level balancing, used to make sure nodes are in proper order for 1723 * item deletion. We balance from the top down, so we have to make sure 1724 * that a deletion won't leave an node completely empty later on. 1725 */ 1726 static noinline int balance_level(struct btrfs_trans_handle *trans, 1727 struct btrfs_root *root, 1728 struct btrfs_path *path, int level) 1729 { 1730 struct extent_buffer *right = NULL; 1731 struct extent_buffer *mid; 1732 struct extent_buffer *left = NULL; 1733 struct extent_buffer *parent = NULL; 1734 int ret = 0; 1735 int wret; 1736 int pslot; 1737 int orig_slot = path->slots[level]; 1738 u64 orig_ptr; 1739 1740 if (level == 0) 1741 return 0; 1742 1743 mid = path->nodes[level]; 1744 1745 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1746 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1747 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1748 1749 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1750 1751 if (level < BTRFS_MAX_LEVEL - 1) { 1752 parent = path->nodes[level + 1]; 1753 pslot = path->slots[level + 1]; 1754 } 1755 1756 /* 1757 * deal with the case where there is only one pointer in the root 1758 * by promoting the node below to a root 1759 */ 1760 if (!parent) { 1761 struct extent_buffer *child; 1762 1763 if (btrfs_header_nritems(mid) != 1) 1764 return 0; 1765 1766 /* promote the child to a root */ 1767 child = read_node_slot(root, mid, 0); 1768 if (!child) { 1769 ret = -EROFS; 1770 btrfs_std_error(root->fs_info, ret); 1771 goto enospc; 1772 } 1773 1774 btrfs_tree_lock(child); 1775 btrfs_set_lock_blocking(child); 1776 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1777 if (ret) { 1778 btrfs_tree_unlock(child); 1779 free_extent_buffer(child); 1780 goto enospc; 1781 } 1782 1783 tree_mod_log_set_root_pointer(root, child, 1); 1784 rcu_assign_pointer(root->node, child); 1785 1786 add_root_to_dirty_list(root); 1787 btrfs_tree_unlock(child); 1788 1789 path->locks[level] = 0; 1790 path->nodes[level] = NULL; 1791 clean_tree_block(trans, root, mid); 1792 btrfs_tree_unlock(mid); 1793 /* once for the path */ 1794 free_extent_buffer(mid); 1795 1796 root_sub_used(root, mid->len); 1797 btrfs_free_tree_block(trans, root, mid, 0, 1); 1798 /* once for the root ptr */ 1799 free_extent_buffer_stale(mid); 1800 return 0; 1801 } 1802 if (btrfs_header_nritems(mid) > 1803 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1804 return 0; 1805 1806 left = read_node_slot(root, parent, pslot - 1); 1807 if (left) { 1808 btrfs_tree_lock(left); 1809 btrfs_set_lock_blocking(left); 1810 wret = btrfs_cow_block(trans, root, left, 1811 parent, pslot - 1, &left); 1812 if (wret) { 1813 ret = wret; 1814 goto enospc; 1815 } 1816 } 1817 right = read_node_slot(root, parent, pslot + 1); 1818 if (right) { 1819 btrfs_tree_lock(right); 1820 btrfs_set_lock_blocking(right); 1821 wret = btrfs_cow_block(trans, root, right, 1822 parent, pslot + 1, &right); 1823 if (wret) { 1824 ret = wret; 1825 goto enospc; 1826 } 1827 } 1828 1829 /* first, try to make some room in the middle buffer */ 1830 if (left) { 1831 orig_slot += btrfs_header_nritems(left); 1832 wret = push_node_left(trans, root, left, mid, 1); 1833 if (wret < 0) 1834 ret = wret; 1835 } 1836 1837 /* 1838 * then try to empty the right most buffer into the middle 1839 */ 1840 if (right) { 1841 wret = push_node_left(trans, root, mid, right, 1); 1842 if (wret < 0 && wret != -ENOSPC) 1843 ret = wret; 1844 if (btrfs_header_nritems(right) == 0) { 1845 clean_tree_block(trans, root, right); 1846 btrfs_tree_unlock(right); 1847 del_ptr(root, path, level + 1, pslot + 1); 1848 root_sub_used(root, right->len); 1849 btrfs_free_tree_block(trans, root, right, 0, 1); 1850 free_extent_buffer_stale(right); 1851 right = NULL; 1852 } else { 1853 struct btrfs_disk_key right_key; 1854 btrfs_node_key(right, &right_key, 0); 1855 tree_mod_log_set_node_key(root->fs_info, parent, 1856 pslot + 1, 0); 1857 btrfs_set_node_key(parent, &right_key, pslot + 1); 1858 btrfs_mark_buffer_dirty(parent); 1859 } 1860 } 1861 if (btrfs_header_nritems(mid) == 1) { 1862 /* 1863 * we're not allowed to leave a node with one item in the 1864 * tree during a delete. A deletion from lower in the tree 1865 * could try to delete the only pointer in this node. 1866 * So, pull some keys from the left. 1867 * There has to be a left pointer at this point because 1868 * otherwise we would have pulled some pointers from the 1869 * right 1870 */ 1871 if (!left) { 1872 ret = -EROFS; 1873 btrfs_std_error(root->fs_info, ret); 1874 goto enospc; 1875 } 1876 wret = balance_node_right(trans, root, mid, left); 1877 if (wret < 0) { 1878 ret = wret; 1879 goto enospc; 1880 } 1881 if (wret == 1) { 1882 wret = push_node_left(trans, root, left, mid, 1); 1883 if (wret < 0) 1884 ret = wret; 1885 } 1886 BUG_ON(wret == 1); 1887 } 1888 if (btrfs_header_nritems(mid) == 0) { 1889 clean_tree_block(trans, root, mid); 1890 btrfs_tree_unlock(mid); 1891 del_ptr(root, path, level + 1, pslot); 1892 root_sub_used(root, mid->len); 1893 btrfs_free_tree_block(trans, root, mid, 0, 1); 1894 free_extent_buffer_stale(mid); 1895 mid = NULL; 1896 } else { 1897 /* update the parent key to reflect our changes */ 1898 struct btrfs_disk_key mid_key; 1899 btrfs_node_key(mid, &mid_key, 0); 1900 tree_mod_log_set_node_key(root->fs_info, parent, 1901 pslot, 0); 1902 btrfs_set_node_key(parent, &mid_key, pslot); 1903 btrfs_mark_buffer_dirty(parent); 1904 } 1905 1906 /* update the path */ 1907 if (left) { 1908 if (btrfs_header_nritems(left) > orig_slot) { 1909 extent_buffer_get(left); 1910 /* left was locked after cow */ 1911 path->nodes[level] = left; 1912 path->slots[level + 1] -= 1; 1913 path->slots[level] = orig_slot; 1914 if (mid) { 1915 btrfs_tree_unlock(mid); 1916 free_extent_buffer(mid); 1917 } 1918 } else { 1919 orig_slot -= btrfs_header_nritems(left); 1920 path->slots[level] = orig_slot; 1921 } 1922 } 1923 /* double check we haven't messed things up */ 1924 if (orig_ptr != 1925 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1926 BUG(); 1927 enospc: 1928 if (right) { 1929 btrfs_tree_unlock(right); 1930 free_extent_buffer(right); 1931 } 1932 if (left) { 1933 if (path->nodes[level] != left) 1934 btrfs_tree_unlock(left); 1935 free_extent_buffer(left); 1936 } 1937 return ret; 1938 } 1939 1940 /* Node balancing for insertion. Here we only split or push nodes around 1941 * when they are completely full. This is also done top down, so we 1942 * have to be pessimistic. 1943 */ 1944 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1945 struct btrfs_root *root, 1946 struct btrfs_path *path, int level) 1947 { 1948 struct extent_buffer *right = NULL; 1949 struct extent_buffer *mid; 1950 struct extent_buffer *left = NULL; 1951 struct extent_buffer *parent = NULL; 1952 int ret = 0; 1953 int wret; 1954 int pslot; 1955 int orig_slot = path->slots[level]; 1956 1957 if (level == 0) 1958 return 1; 1959 1960 mid = path->nodes[level]; 1961 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1962 1963 if (level < BTRFS_MAX_LEVEL - 1) { 1964 parent = path->nodes[level + 1]; 1965 pslot = path->slots[level + 1]; 1966 } 1967 1968 if (!parent) 1969 return 1; 1970 1971 left = read_node_slot(root, parent, pslot - 1); 1972 1973 /* first, try to make some room in the middle buffer */ 1974 if (left) { 1975 u32 left_nr; 1976 1977 btrfs_tree_lock(left); 1978 btrfs_set_lock_blocking(left); 1979 1980 left_nr = btrfs_header_nritems(left); 1981 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1982 wret = 1; 1983 } else { 1984 ret = btrfs_cow_block(trans, root, left, parent, 1985 pslot - 1, &left); 1986 if (ret) 1987 wret = 1; 1988 else { 1989 wret = push_node_left(trans, root, 1990 left, mid, 0); 1991 } 1992 } 1993 if (wret < 0) 1994 ret = wret; 1995 if (wret == 0) { 1996 struct btrfs_disk_key disk_key; 1997 orig_slot += left_nr; 1998 btrfs_node_key(mid, &disk_key, 0); 1999 tree_mod_log_set_node_key(root->fs_info, parent, 2000 pslot, 0); 2001 btrfs_set_node_key(parent, &disk_key, pslot); 2002 btrfs_mark_buffer_dirty(parent); 2003 if (btrfs_header_nritems(left) > orig_slot) { 2004 path->nodes[level] = left; 2005 path->slots[level + 1] -= 1; 2006 path->slots[level] = orig_slot; 2007 btrfs_tree_unlock(mid); 2008 free_extent_buffer(mid); 2009 } else { 2010 orig_slot -= 2011 btrfs_header_nritems(left); 2012 path->slots[level] = orig_slot; 2013 btrfs_tree_unlock(left); 2014 free_extent_buffer(left); 2015 } 2016 return 0; 2017 } 2018 btrfs_tree_unlock(left); 2019 free_extent_buffer(left); 2020 } 2021 right = read_node_slot(root, parent, pslot + 1); 2022 2023 /* 2024 * then try to empty the right most buffer into the middle 2025 */ 2026 if (right) { 2027 u32 right_nr; 2028 2029 btrfs_tree_lock(right); 2030 btrfs_set_lock_blocking(right); 2031 2032 right_nr = btrfs_header_nritems(right); 2033 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2034 wret = 1; 2035 } else { 2036 ret = btrfs_cow_block(trans, root, right, 2037 parent, pslot + 1, 2038 &right); 2039 if (ret) 2040 wret = 1; 2041 else { 2042 wret = balance_node_right(trans, root, 2043 right, mid); 2044 } 2045 } 2046 if (wret < 0) 2047 ret = wret; 2048 if (wret == 0) { 2049 struct btrfs_disk_key disk_key; 2050 2051 btrfs_node_key(right, &disk_key, 0); 2052 tree_mod_log_set_node_key(root->fs_info, parent, 2053 pslot + 1, 0); 2054 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2055 btrfs_mark_buffer_dirty(parent); 2056 2057 if (btrfs_header_nritems(mid) <= orig_slot) { 2058 path->nodes[level] = right; 2059 path->slots[level + 1] += 1; 2060 path->slots[level] = orig_slot - 2061 btrfs_header_nritems(mid); 2062 btrfs_tree_unlock(mid); 2063 free_extent_buffer(mid); 2064 } else { 2065 btrfs_tree_unlock(right); 2066 free_extent_buffer(right); 2067 } 2068 return 0; 2069 } 2070 btrfs_tree_unlock(right); 2071 free_extent_buffer(right); 2072 } 2073 return 1; 2074 } 2075 2076 /* 2077 * readahead one full node of leaves, finding things that are close 2078 * to the block in 'slot', and triggering ra on them. 2079 */ 2080 static void reada_for_search(struct btrfs_root *root, 2081 struct btrfs_path *path, 2082 int level, int slot, u64 objectid) 2083 { 2084 struct extent_buffer *node; 2085 struct btrfs_disk_key disk_key; 2086 u32 nritems; 2087 u64 search; 2088 u64 target; 2089 u64 nread = 0; 2090 u64 gen; 2091 int direction = path->reada; 2092 struct extent_buffer *eb; 2093 u32 nr; 2094 u32 blocksize; 2095 u32 nscan = 0; 2096 2097 if (level != 1) 2098 return; 2099 2100 if (!path->nodes[level]) 2101 return; 2102 2103 node = path->nodes[level]; 2104 2105 search = btrfs_node_blockptr(node, slot); 2106 blocksize = btrfs_level_size(root, level - 1); 2107 eb = btrfs_find_tree_block(root, search, blocksize); 2108 if (eb) { 2109 free_extent_buffer(eb); 2110 return; 2111 } 2112 2113 target = search; 2114 2115 nritems = btrfs_header_nritems(node); 2116 nr = slot; 2117 2118 while (1) { 2119 if (direction < 0) { 2120 if (nr == 0) 2121 break; 2122 nr--; 2123 } else if (direction > 0) { 2124 nr++; 2125 if (nr >= nritems) 2126 break; 2127 } 2128 if (path->reada < 0 && objectid) { 2129 btrfs_node_key(node, &disk_key, nr); 2130 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2131 break; 2132 } 2133 search = btrfs_node_blockptr(node, nr); 2134 if ((search <= target && target - search <= 65536) || 2135 (search > target && search - target <= 65536)) { 2136 gen = btrfs_node_ptr_generation(node, nr); 2137 readahead_tree_block(root, search, blocksize, gen); 2138 nread += blocksize; 2139 } 2140 nscan++; 2141 if ((nread > 65536 || nscan > 32)) 2142 break; 2143 } 2144 } 2145 2146 static noinline void reada_for_balance(struct btrfs_root *root, 2147 struct btrfs_path *path, int level) 2148 { 2149 int slot; 2150 int nritems; 2151 struct extent_buffer *parent; 2152 struct extent_buffer *eb; 2153 u64 gen; 2154 u64 block1 = 0; 2155 u64 block2 = 0; 2156 int blocksize; 2157 2158 parent = path->nodes[level + 1]; 2159 if (!parent) 2160 return; 2161 2162 nritems = btrfs_header_nritems(parent); 2163 slot = path->slots[level + 1]; 2164 blocksize = btrfs_level_size(root, level); 2165 2166 if (slot > 0) { 2167 block1 = btrfs_node_blockptr(parent, slot - 1); 2168 gen = btrfs_node_ptr_generation(parent, slot - 1); 2169 eb = btrfs_find_tree_block(root, block1, blocksize); 2170 /* 2171 * if we get -eagain from btrfs_buffer_uptodate, we 2172 * don't want to return eagain here. That will loop 2173 * forever 2174 */ 2175 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2176 block1 = 0; 2177 free_extent_buffer(eb); 2178 } 2179 if (slot + 1 < nritems) { 2180 block2 = btrfs_node_blockptr(parent, slot + 1); 2181 gen = btrfs_node_ptr_generation(parent, slot + 1); 2182 eb = btrfs_find_tree_block(root, block2, blocksize); 2183 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2184 block2 = 0; 2185 free_extent_buffer(eb); 2186 } 2187 2188 if (block1) 2189 readahead_tree_block(root, block1, blocksize, 0); 2190 if (block2) 2191 readahead_tree_block(root, block2, blocksize, 0); 2192 } 2193 2194 2195 /* 2196 * when we walk down the tree, it is usually safe to unlock the higher layers 2197 * in the tree. The exceptions are when our path goes through slot 0, because 2198 * operations on the tree might require changing key pointers higher up in the 2199 * tree. 2200 * 2201 * callers might also have set path->keep_locks, which tells this code to keep 2202 * the lock if the path points to the last slot in the block. This is part of 2203 * walking through the tree, and selecting the next slot in the higher block. 2204 * 2205 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2206 * if lowest_unlock is 1, level 0 won't be unlocked 2207 */ 2208 static noinline void unlock_up(struct btrfs_path *path, int level, 2209 int lowest_unlock, int min_write_lock_level, 2210 int *write_lock_level) 2211 { 2212 int i; 2213 int skip_level = level; 2214 int no_skips = 0; 2215 struct extent_buffer *t; 2216 2217 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2218 if (!path->nodes[i]) 2219 break; 2220 if (!path->locks[i]) 2221 break; 2222 if (!no_skips && path->slots[i] == 0) { 2223 skip_level = i + 1; 2224 continue; 2225 } 2226 if (!no_skips && path->keep_locks) { 2227 u32 nritems; 2228 t = path->nodes[i]; 2229 nritems = btrfs_header_nritems(t); 2230 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2231 skip_level = i + 1; 2232 continue; 2233 } 2234 } 2235 if (skip_level < i && i >= lowest_unlock) 2236 no_skips = 1; 2237 2238 t = path->nodes[i]; 2239 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2240 btrfs_tree_unlock_rw(t, path->locks[i]); 2241 path->locks[i] = 0; 2242 if (write_lock_level && 2243 i > min_write_lock_level && 2244 i <= *write_lock_level) { 2245 *write_lock_level = i - 1; 2246 } 2247 } 2248 } 2249 } 2250 2251 /* 2252 * This releases any locks held in the path starting at level and 2253 * going all the way up to the root. 2254 * 2255 * btrfs_search_slot will keep the lock held on higher nodes in a few 2256 * corner cases, such as COW of the block at slot zero in the node. This 2257 * ignores those rules, and it should only be called when there are no 2258 * more updates to be done higher up in the tree. 2259 */ 2260 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2261 { 2262 int i; 2263 2264 if (path->keep_locks) 2265 return; 2266 2267 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2268 if (!path->nodes[i]) 2269 continue; 2270 if (!path->locks[i]) 2271 continue; 2272 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2273 path->locks[i] = 0; 2274 } 2275 } 2276 2277 /* 2278 * helper function for btrfs_search_slot. The goal is to find a block 2279 * in cache without setting the path to blocking. If we find the block 2280 * we return zero and the path is unchanged. 2281 * 2282 * If we can't find the block, we set the path blocking and do some 2283 * reada. -EAGAIN is returned and the search must be repeated. 2284 */ 2285 static int 2286 read_block_for_search(struct btrfs_trans_handle *trans, 2287 struct btrfs_root *root, struct btrfs_path *p, 2288 struct extent_buffer **eb_ret, int level, int slot, 2289 struct btrfs_key *key, u64 time_seq) 2290 { 2291 u64 blocknr; 2292 u64 gen; 2293 u32 blocksize; 2294 struct extent_buffer *b = *eb_ret; 2295 struct extent_buffer *tmp; 2296 int ret; 2297 2298 blocknr = btrfs_node_blockptr(b, slot); 2299 gen = btrfs_node_ptr_generation(b, slot); 2300 blocksize = btrfs_level_size(root, level - 1); 2301 2302 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2303 if (tmp) { 2304 /* first we do an atomic uptodate check */ 2305 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2306 *eb_ret = tmp; 2307 return 0; 2308 } 2309 2310 /* the pages were up to date, but we failed 2311 * the generation number check. Do a full 2312 * read for the generation number that is correct. 2313 * We must do this without dropping locks so 2314 * we can trust our generation number 2315 */ 2316 btrfs_set_path_blocking(p); 2317 2318 /* now we're allowed to do a blocking uptodate check */ 2319 ret = btrfs_read_buffer(tmp, gen); 2320 if (!ret) { 2321 *eb_ret = tmp; 2322 return 0; 2323 } 2324 free_extent_buffer(tmp); 2325 btrfs_release_path(p); 2326 return -EIO; 2327 } 2328 2329 /* 2330 * reduce lock contention at high levels 2331 * of the btree by dropping locks before 2332 * we read. Don't release the lock on the current 2333 * level because we need to walk this node to figure 2334 * out which blocks to read. 2335 */ 2336 btrfs_unlock_up_safe(p, level + 1); 2337 btrfs_set_path_blocking(p); 2338 2339 free_extent_buffer(tmp); 2340 if (p->reada) 2341 reada_for_search(root, p, level, slot, key->objectid); 2342 2343 btrfs_release_path(p); 2344 2345 ret = -EAGAIN; 2346 tmp = read_tree_block(root, blocknr, blocksize, 0); 2347 if (tmp) { 2348 /* 2349 * If the read above didn't mark this buffer up to date, 2350 * it will never end up being up to date. Set ret to EIO now 2351 * and give up so that our caller doesn't loop forever 2352 * on our EAGAINs. 2353 */ 2354 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2355 ret = -EIO; 2356 free_extent_buffer(tmp); 2357 } 2358 return ret; 2359 } 2360 2361 /* 2362 * helper function for btrfs_search_slot. This does all of the checks 2363 * for node-level blocks and does any balancing required based on 2364 * the ins_len. 2365 * 2366 * If no extra work was required, zero is returned. If we had to 2367 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2368 * start over 2369 */ 2370 static int 2371 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2372 struct btrfs_root *root, struct btrfs_path *p, 2373 struct extent_buffer *b, int level, int ins_len, 2374 int *write_lock_level) 2375 { 2376 int ret; 2377 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2378 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2379 int sret; 2380 2381 if (*write_lock_level < level + 1) { 2382 *write_lock_level = level + 1; 2383 btrfs_release_path(p); 2384 goto again; 2385 } 2386 2387 btrfs_set_path_blocking(p); 2388 reada_for_balance(root, p, level); 2389 sret = split_node(trans, root, p, level); 2390 btrfs_clear_path_blocking(p, NULL, 0); 2391 2392 BUG_ON(sret > 0); 2393 if (sret) { 2394 ret = sret; 2395 goto done; 2396 } 2397 b = p->nodes[level]; 2398 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2399 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2400 int sret; 2401 2402 if (*write_lock_level < level + 1) { 2403 *write_lock_level = level + 1; 2404 btrfs_release_path(p); 2405 goto again; 2406 } 2407 2408 btrfs_set_path_blocking(p); 2409 reada_for_balance(root, p, level); 2410 sret = balance_level(trans, root, p, level); 2411 btrfs_clear_path_blocking(p, NULL, 0); 2412 2413 if (sret) { 2414 ret = sret; 2415 goto done; 2416 } 2417 b = p->nodes[level]; 2418 if (!b) { 2419 btrfs_release_path(p); 2420 goto again; 2421 } 2422 BUG_ON(btrfs_header_nritems(b) == 1); 2423 } 2424 return 0; 2425 2426 again: 2427 ret = -EAGAIN; 2428 done: 2429 return ret; 2430 } 2431 2432 static void key_search_validate(struct extent_buffer *b, 2433 struct btrfs_key *key, 2434 int level) 2435 { 2436 #ifdef CONFIG_BTRFS_ASSERT 2437 struct btrfs_disk_key disk_key; 2438 2439 btrfs_cpu_key_to_disk(&disk_key, key); 2440 2441 if (level == 0) 2442 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2443 offsetof(struct btrfs_leaf, items[0].key), 2444 sizeof(disk_key))); 2445 else 2446 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2447 offsetof(struct btrfs_node, ptrs[0].key), 2448 sizeof(disk_key))); 2449 #endif 2450 } 2451 2452 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2453 int level, int *prev_cmp, int *slot) 2454 { 2455 if (*prev_cmp != 0) { 2456 *prev_cmp = bin_search(b, key, level, slot); 2457 return *prev_cmp; 2458 } 2459 2460 key_search_validate(b, key, level); 2461 *slot = 0; 2462 2463 return 0; 2464 } 2465 2466 /* 2467 * look for key in the tree. path is filled in with nodes along the way 2468 * if key is found, we return zero and you can find the item in the leaf 2469 * level of the path (level 0) 2470 * 2471 * If the key isn't found, the path points to the slot where it should 2472 * be inserted, and 1 is returned. If there are other errors during the 2473 * search a negative error number is returned. 2474 * 2475 * if ins_len > 0, nodes and leaves will be split as we walk down the 2476 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2477 * possible) 2478 */ 2479 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2480 *root, struct btrfs_key *key, struct btrfs_path *p, int 2481 ins_len, int cow) 2482 { 2483 struct extent_buffer *b; 2484 int slot; 2485 int ret; 2486 int err; 2487 int level; 2488 int lowest_unlock = 1; 2489 int root_lock; 2490 /* everything at write_lock_level or lower must be write locked */ 2491 int write_lock_level = 0; 2492 u8 lowest_level = 0; 2493 int min_write_lock_level; 2494 int prev_cmp; 2495 2496 lowest_level = p->lowest_level; 2497 WARN_ON(lowest_level && ins_len > 0); 2498 WARN_ON(p->nodes[0] != NULL); 2499 2500 if (ins_len < 0) { 2501 lowest_unlock = 2; 2502 2503 /* when we are removing items, we might have to go up to level 2504 * two as we update tree pointers Make sure we keep write 2505 * for those levels as well 2506 */ 2507 write_lock_level = 2; 2508 } else if (ins_len > 0) { 2509 /* 2510 * for inserting items, make sure we have a write lock on 2511 * level 1 so we can update keys 2512 */ 2513 write_lock_level = 1; 2514 } 2515 2516 if (!cow) 2517 write_lock_level = -1; 2518 2519 if (cow && (p->keep_locks || p->lowest_level)) 2520 write_lock_level = BTRFS_MAX_LEVEL; 2521 2522 min_write_lock_level = write_lock_level; 2523 2524 again: 2525 prev_cmp = -1; 2526 /* 2527 * we try very hard to do read locks on the root 2528 */ 2529 root_lock = BTRFS_READ_LOCK; 2530 level = 0; 2531 if (p->search_commit_root) { 2532 /* 2533 * the commit roots are read only 2534 * so we always do read locks 2535 */ 2536 b = root->commit_root; 2537 extent_buffer_get(b); 2538 level = btrfs_header_level(b); 2539 if (!p->skip_locking) 2540 btrfs_tree_read_lock(b); 2541 } else { 2542 if (p->skip_locking) { 2543 b = btrfs_root_node(root); 2544 level = btrfs_header_level(b); 2545 } else { 2546 /* we don't know the level of the root node 2547 * until we actually have it read locked 2548 */ 2549 b = btrfs_read_lock_root_node(root); 2550 level = btrfs_header_level(b); 2551 if (level <= write_lock_level) { 2552 /* whoops, must trade for write lock */ 2553 btrfs_tree_read_unlock(b); 2554 free_extent_buffer(b); 2555 b = btrfs_lock_root_node(root); 2556 root_lock = BTRFS_WRITE_LOCK; 2557 2558 /* the level might have changed, check again */ 2559 level = btrfs_header_level(b); 2560 } 2561 } 2562 } 2563 p->nodes[level] = b; 2564 if (!p->skip_locking) 2565 p->locks[level] = root_lock; 2566 2567 while (b) { 2568 level = btrfs_header_level(b); 2569 2570 /* 2571 * setup the path here so we can release it under lock 2572 * contention with the cow code 2573 */ 2574 if (cow) { 2575 /* 2576 * if we don't really need to cow this block 2577 * then we don't want to set the path blocking, 2578 * so we test it here 2579 */ 2580 if (!should_cow_block(trans, root, b)) 2581 goto cow_done; 2582 2583 btrfs_set_path_blocking(p); 2584 2585 /* 2586 * must have write locks on this node and the 2587 * parent 2588 */ 2589 if (level > write_lock_level || 2590 (level + 1 > write_lock_level && 2591 level + 1 < BTRFS_MAX_LEVEL && 2592 p->nodes[level + 1])) { 2593 write_lock_level = level + 1; 2594 btrfs_release_path(p); 2595 goto again; 2596 } 2597 2598 err = btrfs_cow_block(trans, root, b, 2599 p->nodes[level + 1], 2600 p->slots[level + 1], &b); 2601 if (err) { 2602 ret = err; 2603 goto done; 2604 } 2605 } 2606 cow_done: 2607 BUG_ON(!cow && ins_len); 2608 2609 p->nodes[level] = b; 2610 btrfs_clear_path_blocking(p, NULL, 0); 2611 2612 /* 2613 * we have a lock on b and as long as we aren't changing 2614 * the tree, there is no way to for the items in b to change. 2615 * It is safe to drop the lock on our parent before we 2616 * go through the expensive btree search on b. 2617 * 2618 * If cow is true, then we might be changing slot zero, 2619 * which may require changing the parent. So, we can't 2620 * drop the lock until after we know which slot we're 2621 * operating on. 2622 */ 2623 if (!cow) 2624 btrfs_unlock_up_safe(p, level + 1); 2625 2626 ret = key_search(b, key, level, &prev_cmp, &slot); 2627 2628 if (level != 0) { 2629 int dec = 0; 2630 if (ret && slot > 0) { 2631 dec = 1; 2632 slot -= 1; 2633 } 2634 p->slots[level] = slot; 2635 err = setup_nodes_for_search(trans, root, p, b, level, 2636 ins_len, &write_lock_level); 2637 if (err == -EAGAIN) 2638 goto again; 2639 if (err) { 2640 ret = err; 2641 goto done; 2642 } 2643 b = p->nodes[level]; 2644 slot = p->slots[level]; 2645 2646 /* 2647 * slot 0 is special, if we change the key 2648 * we have to update the parent pointer 2649 * which means we must have a write lock 2650 * on the parent 2651 */ 2652 if (slot == 0 && cow && 2653 write_lock_level < level + 1) { 2654 write_lock_level = level + 1; 2655 btrfs_release_path(p); 2656 goto again; 2657 } 2658 2659 unlock_up(p, level, lowest_unlock, 2660 min_write_lock_level, &write_lock_level); 2661 2662 if (level == lowest_level) { 2663 if (dec) 2664 p->slots[level]++; 2665 goto done; 2666 } 2667 2668 err = read_block_for_search(trans, root, p, 2669 &b, level, slot, key, 0); 2670 if (err == -EAGAIN) 2671 goto again; 2672 if (err) { 2673 ret = err; 2674 goto done; 2675 } 2676 2677 if (!p->skip_locking) { 2678 level = btrfs_header_level(b); 2679 if (level <= write_lock_level) { 2680 err = btrfs_try_tree_write_lock(b); 2681 if (!err) { 2682 btrfs_set_path_blocking(p); 2683 btrfs_tree_lock(b); 2684 btrfs_clear_path_blocking(p, b, 2685 BTRFS_WRITE_LOCK); 2686 } 2687 p->locks[level] = BTRFS_WRITE_LOCK; 2688 } else { 2689 err = btrfs_try_tree_read_lock(b); 2690 if (!err) { 2691 btrfs_set_path_blocking(p); 2692 btrfs_tree_read_lock(b); 2693 btrfs_clear_path_blocking(p, b, 2694 BTRFS_READ_LOCK); 2695 } 2696 p->locks[level] = BTRFS_READ_LOCK; 2697 } 2698 p->nodes[level] = b; 2699 } 2700 } else { 2701 p->slots[level] = slot; 2702 if (ins_len > 0 && 2703 btrfs_leaf_free_space(root, b) < ins_len) { 2704 if (write_lock_level < 1) { 2705 write_lock_level = 1; 2706 btrfs_release_path(p); 2707 goto again; 2708 } 2709 2710 btrfs_set_path_blocking(p); 2711 err = split_leaf(trans, root, key, 2712 p, ins_len, ret == 0); 2713 btrfs_clear_path_blocking(p, NULL, 0); 2714 2715 BUG_ON(err > 0); 2716 if (err) { 2717 ret = err; 2718 goto done; 2719 } 2720 } 2721 if (!p->search_for_split) 2722 unlock_up(p, level, lowest_unlock, 2723 min_write_lock_level, &write_lock_level); 2724 goto done; 2725 } 2726 } 2727 ret = 1; 2728 done: 2729 /* 2730 * we don't really know what they plan on doing with the path 2731 * from here on, so for now just mark it as blocking 2732 */ 2733 if (!p->leave_spinning) 2734 btrfs_set_path_blocking(p); 2735 if (ret < 0) 2736 btrfs_release_path(p); 2737 return ret; 2738 } 2739 2740 /* 2741 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2742 * current state of the tree together with the operations recorded in the tree 2743 * modification log to search for the key in a previous version of this tree, as 2744 * denoted by the time_seq parameter. 2745 * 2746 * Naturally, there is no support for insert, delete or cow operations. 2747 * 2748 * The resulting path and return value will be set up as if we called 2749 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2750 */ 2751 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2752 struct btrfs_path *p, u64 time_seq) 2753 { 2754 struct extent_buffer *b; 2755 int slot; 2756 int ret; 2757 int err; 2758 int level; 2759 int lowest_unlock = 1; 2760 u8 lowest_level = 0; 2761 int prev_cmp; 2762 2763 lowest_level = p->lowest_level; 2764 WARN_ON(p->nodes[0] != NULL); 2765 2766 if (p->search_commit_root) { 2767 BUG_ON(time_seq); 2768 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2769 } 2770 2771 again: 2772 prev_cmp = -1; 2773 b = get_old_root(root, time_seq); 2774 level = btrfs_header_level(b); 2775 p->locks[level] = BTRFS_READ_LOCK; 2776 2777 while (b) { 2778 level = btrfs_header_level(b); 2779 p->nodes[level] = b; 2780 btrfs_clear_path_blocking(p, NULL, 0); 2781 2782 /* 2783 * we have a lock on b and as long as we aren't changing 2784 * the tree, there is no way to for the items in b to change. 2785 * It is safe to drop the lock on our parent before we 2786 * go through the expensive btree search on b. 2787 */ 2788 btrfs_unlock_up_safe(p, level + 1); 2789 2790 ret = key_search(b, key, level, &prev_cmp, &slot); 2791 2792 if (level != 0) { 2793 int dec = 0; 2794 if (ret && slot > 0) { 2795 dec = 1; 2796 slot -= 1; 2797 } 2798 p->slots[level] = slot; 2799 unlock_up(p, level, lowest_unlock, 0, NULL); 2800 2801 if (level == lowest_level) { 2802 if (dec) 2803 p->slots[level]++; 2804 goto done; 2805 } 2806 2807 err = read_block_for_search(NULL, root, p, &b, level, 2808 slot, key, time_seq); 2809 if (err == -EAGAIN) 2810 goto again; 2811 if (err) { 2812 ret = err; 2813 goto done; 2814 } 2815 2816 level = btrfs_header_level(b); 2817 err = btrfs_try_tree_read_lock(b); 2818 if (!err) { 2819 btrfs_set_path_blocking(p); 2820 btrfs_tree_read_lock(b); 2821 btrfs_clear_path_blocking(p, b, 2822 BTRFS_READ_LOCK); 2823 } 2824 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 2825 if (!b) { 2826 ret = -ENOMEM; 2827 goto done; 2828 } 2829 p->locks[level] = BTRFS_READ_LOCK; 2830 p->nodes[level] = b; 2831 } else { 2832 p->slots[level] = slot; 2833 unlock_up(p, level, lowest_unlock, 0, NULL); 2834 goto done; 2835 } 2836 } 2837 ret = 1; 2838 done: 2839 if (!p->leave_spinning) 2840 btrfs_set_path_blocking(p); 2841 if (ret < 0) 2842 btrfs_release_path(p); 2843 2844 return ret; 2845 } 2846 2847 /* 2848 * helper to use instead of search slot if no exact match is needed but 2849 * instead the next or previous item should be returned. 2850 * When find_higher is true, the next higher item is returned, the next lower 2851 * otherwise. 2852 * When return_any and find_higher are both true, and no higher item is found, 2853 * return the next lower instead. 2854 * When return_any is true and find_higher is false, and no lower item is found, 2855 * return the next higher instead. 2856 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2857 * < 0 on error 2858 */ 2859 int btrfs_search_slot_for_read(struct btrfs_root *root, 2860 struct btrfs_key *key, struct btrfs_path *p, 2861 int find_higher, int return_any) 2862 { 2863 int ret; 2864 struct extent_buffer *leaf; 2865 2866 again: 2867 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2868 if (ret <= 0) 2869 return ret; 2870 /* 2871 * a return value of 1 means the path is at the position where the 2872 * item should be inserted. Normally this is the next bigger item, 2873 * but in case the previous item is the last in a leaf, path points 2874 * to the first free slot in the previous leaf, i.e. at an invalid 2875 * item. 2876 */ 2877 leaf = p->nodes[0]; 2878 2879 if (find_higher) { 2880 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2881 ret = btrfs_next_leaf(root, p); 2882 if (ret <= 0) 2883 return ret; 2884 if (!return_any) 2885 return 1; 2886 /* 2887 * no higher item found, return the next 2888 * lower instead 2889 */ 2890 return_any = 0; 2891 find_higher = 0; 2892 btrfs_release_path(p); 2893 goto again; 2894 } 2895 } else { 2896 if (p->slots[0] == 0) { 2897 ret = btrfs_prev_leaf(root, p); 2898 if (ret < 0) 2899 return ret; 2900 if (!ret) { 2901 p->slots[0] = btrfs_header_nritems(leaf) - 1; 2902 return 0; 2903 } 2904 if (!return_any) 2905 return 1; 2906 /* 2907 * no lower item found, return the next 2908 * higher instead 2909 */ 2910 return_any = 0; 2911 find_higher = 1; 2912 btrfs_release_path(p); 2913 goto again; 2914 } else { 2915 --p->slots[0]; 2916 } 2917 } 2918 return 0; 2919 } 2920 2921 /* 2922 * adjust the pointers going up the tree, starting at level 2923 * making sure the right key of each node is points to 'key'. 2924 * This is used after shifting pointers to the left, so it stops 2925 * fixing up pointers when a given leaf/node is not in slot 0 of the 2926 * higher levels 2927 * 2928 */ 2929 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path, 2930 struct btrfs_disk_key *key, int level) 2931 { 2932 int i; 2933 struct extent_buffer *t; 2934 2935 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2936 int tslot = path->slots[i]; 2937 if (!path->nodes[i]) 2938 break; 2939 t = path->nodes[i]; 2940 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1); 2941 btrfs_set_node_key(t, key, tslot); 2942 btrfs_mark_buffer_dirty(path->nodes[i]); 2943 if (tslot != 0) 2944 break; 2945 } 2946 } 2947 2948 /* 2949 * update item key. 2950 * 2951 * This function isn't completely safe. It's the caller's responsibility 2952 * that the new key won't break the order 2953 */ 2954 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path, 2955 struct btrfs_key *new_key) 2956 { 2957 struct btrfs_disk_key disk_key; 2958 struct extent_buffer *eb; 2959 int slot; 2960 2961 eb = path->nodes[0]; 2962 slot = path->slots[0]; 2963 if (slot > 0) { 2964 btrfs_item_key(eb, &disk_key, slot - 1); 2965 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 2966 } 2967 if (slot < btrfs_header_nritems(eb) - 1) { 2968 btrfs_item_key(eb, &disk_key, slot + 1); 2969 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 2970 } 2971 2972 btrfs_cpu_key_to_disk(&disk_key, new_key); 2973 btrfs_set_item_key(eb, &disk_key, slot); 2974 btrfs_mark_buffer_dirty(eb); 2975 if (slot == 0) 2976 fixup_low_keys(root, path, &disk_key, 1); 2977 } 2978 2979 /* 2980 * try to push data from one node into the next node left in the 2981 * tree. 2982 * 2983 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2984 * error, and > 0 if there was no room in the left hand block. 2985 */ 2986 static int push_node_left(struct btrfs_trans_handle *trans, 2987 struct btrfs_root *root, struct extent_buffer *dst, 2988 struct extent_buffer *src, int empty) 2989 { 2990 int push_items = 0; 2991 int src_nritems; 2992 int dst_nritems; 2993 int ret = 0; 2994 2995 src_nritems = btrfs_header_nritems(src); 2996 dst_nritems = btrfs_header_nritems(dst); 2997 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2998 WARN_ON(btrfs_header_generation(src) != trans->transid); 2999 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3000 3001 if (!empty && src_nritems <= 8) 3002 return 1; 3003 3004 if (push_items <= 0) 3005 return 1; 3006 3007 if (empty) { 3008 push_items = min(src_nritems, push_items); 3009 if (push_items < src_nritems) { 3010 /* leave at least 8 pointers in the node if 3011 * we aren't going to empty it 3012 */ 3013 if (src_nritems - push_items < 8) { 3014 if (push_items <= 8) 3015 return 1; 3016 push_items -= 8; 3017 } 3018 } 3019 } else 3020 push_items = min(src_nritems - 8, push_items); 3021 3022 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3023 push_items); 3024 copy_extent_buffer(dst, src, 3025 btrfs_node_key_ptr_offset(dst_nritems), 3026 btrfs_node_key_ptr_offset(0), 3027 push_items * sizeof(struct btrfs_key_ptr)); 3028 3029 if (push_items < src_nritems) { 3030 /* 3031 * don't call tree_mod_log_eb_move here, key removal was already 3032 * fully logged by tree_mod_log_eb_copy above. 3033 */ 3034 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3035 btrfs_node_key_ptr_offset(push_items), 3036 (src_nritems - push_items) * 3037 sizeof(struct btrfs_key_ptr)); 3038 } 3039 btrfs_set_header_nritems(src, src_nritems - push_items); 3040 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3041 btrfs_mark_buffer_dirty(src); 3042 btrfs_mark_buffer_dirty(dst); 3043 3044 return ret; 3045 } 3046 3047 /* 3048 * try to push data from one node into the next node right in the 3049 * tree. 3050 * 3051 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3052 * error, and > 0 if there was no room in the right hand block. 3053 * 3054 * this will only push up to 1/2 the contents of the left node over 3055 */ 3056 static int balance_node_right(struct btrfs_trans_handle *trans, 3057 struct btrfs_root *root, 3058 struct extent_buffer *dst, 3059 struct extent_buffer *src) 3060 { 3061 int push_items = 0; 3062 int max_push; 3063 int src_nritems; 3064 int dst_nritems; 3065 int ret = 0; 3066 3067 WARN_ON(btrfs_header_generation(src) != trans->transid); 3068 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3069 3070 src_nritems = btrfs_header_nritems(src); 3071 dst_nritems = btrfs_header_nritems(dst); 3072 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3073 if (push_items <= 0) 3074 return 1; 3075 3076 if (src_nritems < 4) 3077 return 1; 3078 3079 max_push = src_nritems / 2 + 1; 3080 /* don't try to empty the node */ 3081 if (max_push >= src_nritems) 3082 return 1; 3083 3084 if (max_push < push_items) 3085 push_items = max_push; 3086 3087 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3088 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3089 btrfs_node_key_ptr_offset(0), 3090 (dst_nritems) * 3091 sizeof(struct btrfs_key_ptr)); 3092 3093 tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3094 src_nritems - push_items, push_items); 3095 copy_extent_buffer(dst, src, 3096 btrfs_node_key_ptr_offset(0), 3097 btrfs_node_key_ptr_offset(src_nritems - push_items), 3098 push_items * sizeof(struct btrfs_key_ptr)); 3099 3100 btrfs_set_header_nritems(src, src_nritems - push_items); 3101 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3102 3103 btrfs_mark_buffer_dirty(src); 3104 btrfs_mark_buffer_dirty(dst); 3105 3106 return ret; 3107 } 3108 3109 /* 3110 * helper function to insert a new root level in the tree. 3111 * A new node is allocated, and a single item is inserted to 3112 * point to the existing root 3113 * 3114 * returns zero on success or < 0 on failure. 3115 */ 3116 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3117 struct btrfs_root *root, 3118 struct btrfs_path *path, int level) 3119 { 3120 u64 lower_gen; 3121 struct extent_buffer *lower; 3122 struct extent_buffer *c; 3123 struct extent_buffer *old; 3124 struct btrfs_disk_key lower_key; 3125 3126 BUG_ON(path->nodes[level]); 3127 BUG_ON(path->nodes[level-1] != root->node); 3128 3129 lower = path->nodes[level-1]; 3130 if (level == 1) 3131 btrfs_item_key(lower, &lower_key, 0); 3132 else 3133 btrfs_node_key(lower, &lower_key, 0); 3134 3135 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3136 root->root_key.objectid, &lower_key, 3137 level, root->node->start, 0); 3138 if (IS_ERR(c)) 3139 return PTR_ERR(c); 3140 3141 root_add_used(root, root->nodesize); 3142 3143 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3144 btrfs_set_header_nritems(c, 1); 3145 btrfs_set_header_level(c, level); 3146 btrfs_set_header_bytenr(c, c->start); 3147 btrfs_set_header_generation(c, trans->transid); 3148 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3149 btrfs_set_header_owner(c, root->root_key.objectid); 3150 3151 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(c), 3152 BTRFS_FSID_SIZE); 3153 3154 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3155 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3156 3157 btrfs_set_node_key(c, &lower_key, 0); 3158 btrfs_set_node_blockptr(c, 0, lower->start); 3159 lower_gen = btrfs_header_generation(lower); 3160 WARN_ON(lower_gen != trans->transid); 3161 3162 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3163 3164 btrfs_mark_buffer_dirty(c); 3165 3166 old = root->node; 3167 tree_mod_log_set_root_pointer(root, c, 0); 3168 rcu_assign_pointer(root->node, c); 3169 3170 /* the super has an extra ref to root->node */ 3171 free_extent_buffer(old); 3172 3173 add_root_to_dirty_list(root); 3174 extent_buffer_get(c); 3175 path->nodes[level] = c; 3176 path->locks[level] = BTRFS_WRITE_LOCK; 3177 path->slots[level] = 0; 3178 return 0; 3179 } 3180 3181 /* 3182 * worker function to insert a single pointer in a node. 3183 * the node should have enough room for the pointer already 3184 * 3185 * slot and level indicate where you want the key to go, and 3186 * blocknr is the block the key points to. 3187 */ 3188 static void insert_ptr(struct btrfs_trans_handle *trans, 3189 struct btrfs_root *root, struct btrfs_path *path, 3190 struct btrfs_disk_key *key, u64 bytenr, 3191 int slot, int level) 3192 { 3193 struct extent_buffer *lower; 3194 int nritems; 3195 int ret; 3196 3197 BUG_ON(!path->nodes[level]); 3198 btrfs_assert_tree_locked(path->nodes[level]); 3199 lower = path->nodes[level]; 3200 nritems = btrfs_header_nritems(lower); 3201 BUG_ON(slot > nritems); 3202 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3203 if (slot != nritems) { 3204 if (level) 3205 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3206 slot, nritems - slot); 3207 memmove_extent_buffer(lower, 3208 btrfs_node_key_ptr_offset(slot + 1), 3209 btrfs_node_key_ptr_offset(slot), 3210 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3211 } 3212 if (level) { 3213 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3214 MOD_LOG_KEY_ADD, GFP_NOFS); 3215 BUG_ON(ret < 0); 3216 } 3217 btrfs_set_node_key(lower, key, slot); 3218 btrfs_set_node_blockptr(lower, slot, bytenr); 3219 WARN_ON(trans->transid == 0); 3220 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3221 btrfs_set_header_nritems(lower, nritems + 1); 3222 btrfs_mark_buffer_dirty(lower); 3223 } 3224 3225 /* 3226 * split the node at the specified level in path in two. 3227 * The path is corrected to point to the appropriate node after the split 3228 * 3229 * Before splitting this tries to make some room in the node by pushing 3230 * left and right, if either one works, it returns right away. 3231 * 3232 * returns 0 on success and < 0 on failure 3233 */ 3234 static noinline int split_node(struct btrfs_trans_handle *trans, 3235 struct btrfs_root *root, 3236 struct btrfs_path *path, int level) 3237 { 3238 struct extent_buffer *c; 3239 struct extent_buffer *split; 3240 struct btrfs_disk_key disk_key; 3241 int mid; 3242 int ret; 3243 u32 c_nritems; 3244 3245 c = path->nodes[level]; 3246 WARN_ON(btrfs_header_generation(c) != trans->transid); 3247 if (c == root->node) { 3248 /* 3249 * trying to split the root, lets make a new one 3250 * 3251 * tree mod log: We don't log_removal old root in 3252 * insert_new_root, because that root buffer will be kept as a 3253 * normal node. We are going to log removal of half of the 3254 * elements below with tree_mod_log_eb_copy. We're holding a 3255 * tree lock on the buffer, which is why we cannot race with 3256 * other tree_mod_log users. 3257 */ 3258 ret = insert_new_root(trans, root, path, level + 1); 3259 if (ret) 3260 return ret; 3261 } else { 3262 ret = push_nodes_for_insert(trans, root, path, level); 3263 c = path->nodes[level]; 3264 if (!ret && btrfs_header_nritems(c) < 3265 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3266 return 0; 3267 if (ret < 0) 3268 return ret; 3269 } 3270 3271 c_nritems = btrfs_header_nritems(c); 3272 mid = (c_nritems + 1) / 2; 3273 btrfs_node_key(c, &disk_key, mid); 3274 3275 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3276 root->root_key.objectid, 3277 &disk_key, level, c->start, 0); 3278 if (IS_ERR(split)) 3279 return PTR_ERR(split); 3280 3281 root_add_used(root, root->nodesize); 3282 3283 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3284 btrfs_set_header_level(split, btrfs_header_level(c)); 3285 btrfs_set_header_bytenr(split, split->start); 3286 btrfs_set_header_generation(split, trans->transid); 3287 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3288 btrfs_set_header_owner(split, root->root_key.objectid); 3289 write_extent_buffer(split, root->fs_info->fsid, 3290 btrfs_header_fsid(split), BTRFS_FSID_SIZE); 3291 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3292 btrfs_header_chunk_tree_uuid(split), 3293 BTRFS_UUID_SIZE); 3294 3295 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid); 3296 copy_extent_buffer(split, c, 3297 btrfs_node_key_ptr_offset(0), 3298 btrfs_node_key_ptr_offset(mid), 3299 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3300 btrfs_set_header_nritems(split, c_nritems - mid); 3301 btrfs_set_header_nritems(c, mid); 3302 ret = 0; 3303 3304 btrfs_mark_buffer_dirty(c); 3305 btrfs_mark_buffer_dirty(split); 3306 3307 insert_ptr(trans, root, path, &disk_key, split->start, 3308 path->slots[level + 1] + 1, level + 1); 3309 3310 if (path->slots[level] >= mid) { 3311 path->slots[level] -= mid; 3312 btrfs_tree_unlock(c); 3313 free_extent_buffer(c); 3314 path->nodes[level] = split; 3315 path->slots[level + 1] += 1; 3316 } else { 3317 btrfs_tree_unlock(split); 3318 free_extent_buffer(split); 3319 } 3320 return ret; 3321 } 3322 3323 /* 3324 * how many bytes are required to store the items in a leaf. start 3325 * and nr indicate which items in the leaf to check. This totals up the 3326 * space used both by the item structs and the item data 3327 */ 3328 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3329 { 3330 struct btrfs_item *start_item; 3331 struct btrfs_item *end_item; 3332 struct btrfs_map_token token; 3333 int data_len; 3334 int nritems = btrfs_header_nritems(l); 3335 int end = min(nritems, start + nr) - 1; 3336 3337 if (!nr) 3338 return 0; 3339 btrfs_init_map_token(&token); 3340 start_item = btrfs_item_nr(l, start); 3341 end_item = btrfs_item_nr(l, end); 3342 data_len = btrfs_token_item_offset(l, start_item, &token) + 3343 btrfs_token_item_size(l, start_item, &token); 3344 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3345 data_len += sizeof(struct btrfs_item) * nr; 3346 WARN_ON(data_len < 0); 3347 return data_len; 3348 } 3349 3350 /* 3351 * The space between the end of the leaf items and 3352 * the start of the leaf data. IOW, how much room 3353 * the leaf has left for both items and data 3354 */ 3355 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3356 struct extent_buffer *leaf) 3357 { 3358 int nritems = btrfs_header_nritems(leaf); 3359 int ret; 3360 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3361 if (ret < 0) { 3362 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 3363 "used %d nritems %d\n", 3364 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3365 leaf_space_used(leaf, 0, nritems), nritems); 3366 } 3367 return ret; 3368 } 3369 3370 /* 3371 * min slot controls the lowest index we're willing to push to the 3372 * right. We'll push up to and including min_slot, but no lower 3373 */ 3374 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3375 struct btrfs_root *root, 3376 struct btrfs_path *path, 3377 int data_size, int empty, 3378 struct extent_buffer *right, 3379 int free_space, u32 left_nritems, 3380 u32 min_slot) 3381 { 3382 struct extent_buffer *left = path->nodes[0]; 3383 struct extent_buffer *upper = path->nodes[1]; 3384 struct btrfs_map_token token; 3385 struct btrfs_disk_key disk_key; 3386 int slot; 3387 u32 i; 3388 int push_space = 0; 3389 int push_items = 0; 3390 struct btrfs_item *item; 3391 u32 nr; 3392 u32 right_nritems; 3393 u32 data_end; 3394 u32 this_item_size; 3395 3396 btrfs_init_map_token(&token); 3397 3398 if (empty) 3399 nr = 0; 3400 else 3401 nr = max_t(u32, 1, min_slot); 3402 3403 if (path->slots[0] >= left_nritems) 3404 push_space += data_size; 3405 3406 slot = path->slots[1]; 3407 i = left_nritems - 1; 3408 while (i >= nr) { 3409 item = btrfs_item_nr(left, i); 3410 3411 if (!empty && push_items > 0) { 3412 if (path->slots[0] > i) 3413 break; 3414 if (path->slots[0] == i) { 3415 int space = btrfs_leaf_free_space(root, left); 3416 if (space + push_space * 2 > free_space) 3417 break; 3418 } 3419 } 3420 3421 if (path->slots[0] == i) 3422 push_space += data_size; 3423 3424 this_item_size = btrfs_item_size(left, item); 3425 if (this_item_size + sizeof(*item) + push_space > free_space) 3426 break; 3427 3428 push_items++; 3429 push_space += this_item_size + sizeof(*item); 3430 if (i == 0) 3431 break; 3432 i--; 3433 } 3434 3435 if (push_items == 0) 3436 goto out_unlock; 3437 3438 WARN_ON(!empty && push_items == left_nritems); 3439 3440 /* push left to right */ 3441 right_nritems = btrfs_header_nritems(right); 3442 3443 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3444 push_space -= leaf_data_end(root, left); 3445 3446 /* make room in the right data area */ 3447 data_end = leaf_data_end(root, right); 3448 memmove_extent_buffer(right, 3449 btrfs_leaf_data(right) + data_end - push_space, 3450 btrfs_leaf_data(right) + data_end, 3451 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3452 3453 /* copy from the left data area */ 3454 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3455 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3456 btrfs_leaf_data(left) + leaf_data_end(root, left), 3457 push_space); 3458 3459 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3460 btrfs_item_nr_offset(0), 3461 right_nritems * sizeof(struct btrfs_item)); 3462 3463 /* copy the items from left to right */ 3464 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3465 btrfs_item_nr_offset(left_nritems - push_items), 3466 push_items * sizeof(struct btrfs_item)); 3467 3468 /* update the item pointers */ 3469 right_nritems += push_items; 3470 btrfs_set_header_nritems(right, right_nritems); 3471 push_space = BTRFS_LEAF_DATA_SIZE(root); 3472 for (i = 0; i < right_nritems; i++) { 3473 item = btrfs_item_nr(right, i); 3474 push_space -= btrfs_token_item_size(right, item, &token); 3475 btrfs_set_token_item_offset(right, item, push_space, &token); 3476 } 3477 3478 left_nritems -= push_items; 3479 btrfs_set_header_nritems(left, left_nritems); 3480 3481 if (left_nritems) 3482 btrfs_mark_buffer_dirty(left); 3483 else 3484 clean_tree_block(trans, root, left); 3485 3486 btrfs_mark_buffer_dirty(right); 3487 3488 btrfs_item_key(right, &disk_key, 0); 3489 btrfs_set_node_key(upper, &disk_key, slot + 1); 3490 btrfs_mark_buffer_dirty(upper); 3491 3492 /* then fixup the leaf pointer in the path */ 3493 if (path->slots[0] >= left_nritems) { 3494 path->slots[0] -= left_nritems; 3495 if (btrfs_header_nritems(path->nodes[0]) == 0) 3496 clean_tree_block(trans, root, path->nodes[0]); 3497 btrfs_tree_unlock(path->nodes[0]); 3498 free_extent_buffer(path->nodes[0]); 3499 path->nodes[0] = right; 3500 path->slots[1] += 1; 3501 } else { 3502 btrfs_tree_unlock(right); 3503 free_extent_buffer(right); 3504 } 3505 return 0; 3506 3507 out_unlock: 3508 btrfs_tree_unlock(right); 3509 free_extent_buffer(right); 3510 return 1; 3511 } 3512 3513 /* 3514 * push some data in the path leaf to the right, trying to free up at 3515 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3516 * 3517 * returns 1 if the push failed because the other node didn't have enough 3518 * room, 0 if everything worked out and < 0 if there were major errors. 3519 * 3520 * this will push starting from min_slot to the end of the leaf. It won't 3521 * push any slot lower than min_slot 3522 */ 3523 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3524 *root, struct btrfs_path *path, 3525 int min_data_size, int data_size, 3526 int empty, u32 min_slot) 3527 { 3528 struct extent_buffer *left = path->nodes[0]; 3529 struct extent_buffer *right; 3530 struct extent_buffer *upper; 3531 int slot; 3532 int free_space; 3533 u32 left_nritems; 3534 int ret; 3535 3536 if (!path->nodes[1]) 3537 return 1; 3538 3539 slot = path->slots[1]; 3540 upper = path->nodes[1]; 3541 if (slot >= btrfs_header_nritems(upper) - 1) 3542 return 1; 3543 3544 btrfs_assert_tree_locked(path->nodes[1]); 3545 3546 right = read_node_slot(root, upper, slot + 1); 3547 if (right == NULL) 3548 return 1; 3549 3550 btrfs_tree_lock(right); 3551 btrfs_set_lock_blocking(right); 3552 3553 free_space = btrfs_leaf_free_space(root, right); 3554 if (free_space < data_size) 3555 goto out_unlock; 3556 3557 /* cow and double check */ 3558 ret = btrfs_cow_block(trans, root, right, upper, 3559 slot + 1, &right); 3560 if (ret) 3561 goto out_unlock; 3562 3563 free_space = btrfs_leaf_free_space(root, right); 3564 if (free_space < data_size) 3565 goto out_unlock; 3566 3567 left_nritems = btrfs_header_nritems(left); 3568 if (left_nritems == 0) 3569 goto out_unlock; 3570 3571 return __push_leaf_right(trans, root, path, min_data_size, empty, 3572 right, free_space, left_nritems, min_slot); 3573 out_unlock: 3574 btrfs_tree_unlock(right); 3575 free_extent_buffer(right); 3576 return 1; 3577 } 3578 3579 /* 3580 * push some data in the path leaf to the left, trying to free up at 3581 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3582 * 3583 * max_slot can put a limit on how far into the leaf we'll push items. The 3584 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3585 * items 3586 */ 3587 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3588 struct btrfs_root *root, 3589 struct btrfs_path *path, int data_size, 3590 int empty, struct extent_buffer *left, 3591 int free_space, u32 right_nritems, 3592 u32 max_slot) 3593 { 3594 struct btrfs_disk_key disk_key; 3595 struct extent_buffer *right = path->nodes[0]; 3596 int i; 3597 int push_space = 0; 3598 int push_items = 0; 3599 struct btrfs_item *item; 3600 u32 old_left_nritems; 3601 u32 nr; 3602 int ret = 0; 3603 u32 this_item_size; 3604 u32 old_left_item_size; 3605 struct btrfs_map_token token; 3606 3607 btrfs_init_map_token(&token); 3608 3609 if (empty) 3610 nr = min(right_nritems, max_slot); 3611 else 3612 nr = min(right_nritems - 1, max_slot); 3613 3614 for (i = 0; i < nr; i++) { 3615 item = btrfs_item_nr(right, i); 3616 3617 if (!empty && push_items > 0) { 3618 if (path->slots[0] < i) 3619 break; 3620 if (path->slots[0] == i) { 3621 int space = btrfs_leaf_free_space(root, right); 3622 if (space + push_space * 2 > free_space) 3623 break; 3624 } 3625 } 3626 3627 if (path->slots[0] == i) 3628 push_space += data_size; 3629 3630 this_item_size = btrfs_item_size(right, item); 3631 if (this_item_size + sizeof(*item) + push_space > free_space) 3632 break; 3633 3634 push_items++; 3635 push_space += this_item_size + sizeof(*item); 3636 } 3637 3638 if (push_items == 0) { 3639 ret = 1; 3640 goto out; 3641 } 3642 if (!empty && push_items == btrfs_header_nritems(right)) 3643 WARN_ON(1); 3644 3645 /* push data from right to left */ 3646 copy_extent_buffer(left, right, 3647 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3648 btrfs_item_nr_offset(0), 3649 push_items * sizeof(struct btrfs_item)); 3650 3651 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3652 btrfs_item_offset_nr(right, push_items - 1); 3653 3654 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3655 leaf_data_end(root, left) - push_space, 3656 btrfs_leaf_data(right) + 3657 btrfs_item_offset_nr(right, push_items - 1), 3658 push_space); 3659 old_left_nritems = btrfs_header_nritems(left); 3660 BUG_ON(old_left_nritems <= 0); 3661 3662 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3663 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3664 u32 ioff; 3665 3666 item = btrfs_item_nr(left, i); 3667 3668 ioff = btrfs_token_item_offset(left, item, &token); 3669 btrfs_set_token_item_offset(left, item, 3670 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3671 &token); 3672 } 3673 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3674 3675 /* fixup right node */ 3676 if (push_items > right_nritems) 3677 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3678 right_nritems); 3679 3680 if (push_items < right_nritems) { 3681 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3682 leaf_data_end(root, right); 3683 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3684 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3685 btrfs_leaf_data(right) + 3686 leaf_data_end(root, right), push_space); 3687 3688 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3689 btrfs_item_nr_offset(push_items), 3690 (btrfs_header_nritems(right) - push_items) * 3691 sizeof(struct btrfs_item)); 3692 } 3693 right_nritems -= push_items; 3694 btrfs_set_header_nritems(right, right_nritems); 3695 push_space = BTRFS_LEAF_DATA_SIZE(root); 3696 for (i = 0; i < right_nritems; i++) { 3697 item = btrfs_item_nr(right, i); 3698 3699 push_space = push_space - btrfs_token_item_size(right, 3700 item, &token); 3701 btrfs_set_token_item_offset(right, item, push_space, &token); 3702 } 3703 3704 btrfs_mark_buffer_dirty(left); 3705 if (right_nritems) 3706 btrfs_mark_buffer_dirty(right); 3707 else 3708 clean_tree_block(trans, root, right); 3709 3710 btrfs_item_key(right, &disk_key, 0); 3711 fixup_low_keys(root, path, &disk_key, 1); 3712 3713 /* then fixup the leaf pointer in the path */ 3714 if (path->slots[0] < push_items) { 3715 path->slots[0] += old_left_nritems; 3716 btrfs_tree_unlock(path->nodes[0]); 3717 free_extent_buffer(path->nodes[0]); 3718 path->nodes[0] = left; 3719 path->slots[1] -= 1; 3720 } else { 3721 btrfs_tree_unlock(left); 3722 free_extent_buffer(left); 3723 path->slots[0] -= push_items; 3724 } 3725 BUG_ON(path->slots[0] < 0); 3726 return ret; 3727 out: 3728 btrfs_tree_unlock(left); 3729 free_extent_buffer(left); 3730 return ret; 3731 } 3732 3733 /* 3734 * push some data in the path leaf to the left, trying to free up at 3735 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3736 * 3737 * max_slot can put a limit on how far into the leaf we'll push items. The 3738 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3739 * items 3740 */ 3741 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3742 *root, struct btrfs_path *path, int min_data_size, 3743 int data_size, int empty, u32 max_slot) 3744 { 3745 struct extent_buffer *right = path->nodes[0]; 3746 struct extent_buffer *left; 3747 int slot; 3748 int free_space; 3749 u32 right_nritems; 3750 int ret = 0; 3751 3752 slot = path->slots[1]; 3753 if (slot == 0) 3754 return 1; 3755 if (!path->nodes[1]) 3756 return 1; 3757 3758 right_nritems = btrfs_header_nritems(right); 3759 if (right_nritems == 0) 3760 return 1; 3761 3762 btrfs_assert_tree_locked(path->nodes[1]); 3763 3764 left = read_node_slot(root, path->nodes[1], slot - 1); 3765 if (left == NULL) 3766 return 1; 3767 3768 btrfs_tree_lock(left); 3769 btrfs_set_lock_blocking(left); 3770 3771 free_space = btrfs_leaf_free_space(root, left); 3772 if (free_space < data_size) { 3773 ret = 1; 3774 goto out; 3775 } 3776 3777 /* cow and double check */ 3778 ret = btrfs_cow_block(trans, root, left, 3779 path->nodes[1], slot - 1, &left); 3780 if (ret) { 3781 /* we hit -ENOSPC, but it isn't fatal here */ 3782 if (ret == -ENOSPC) 3783 ret = 1; 3784 goto out; 3785 } 3786 3787 free_space = btrfs_leaf_free_space(root, left); 3788 if (free_space < data_size) { 3789 ret = 1; 3790 goto out; 3791 } 3792 3793 return __push_leaf_left(trans, root, path, min_data_size, 3794 empty, left, free_space, right_nritems, 3795 max_slot); 3796 out: 3797 btrfs_tree_unlock(left); 3798 free_extent_buffer(left); 3799 return ret; 3800 } 3801 3802 /* 3803 * split the path's leaf in two, making sure there is at least data_size 3804 * available for the resulting leaf level of the path. 3805 */ 3806 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3807 struct btrfs_root *root, 3808 struct btrfs_path *path, 3809 struct extent_buffer *l, 3810 struct extent_buffer *right, 3811 int slot, int mid, int nritems) 3812 { 3813 int data_copy_size; 3814 int rt_data_off; 3815 int i; 3816 struct btrfs_disk_key disk_key; 3817 struct btrfs_map_token token; 3818 3819 btrfs_init_map_token(&token); 3820 3821 nritems = nritems - mid; 3822 btrfs_set_header_nritems(right, nritems); 3823 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 3824 3825 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3826 btrfs_item_nr_offset(mid), 3827 nritems * sizeof(struct btrfs_item)); 3828 3829 copy_extent_buffer(right, l, 3830 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 3831 data_copy_size, btrfs_leaf_data(l) + 3832 leaf_data_end(root, l), data_copy_size); 3833 3834 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 3835 btrfs_item_end_nr(l, mid); 3836 3837 for (i = 0; i < nritems; i++) { 3838 struct btrfs_item *item = btrfs_item_nr(right, i); 3839 u32 ioff; 3840 3841 ioff = btrfs_token_item_offset(right, item, &token); 3842 btrfs_set_token_item_offset(right, item, 3843 ioff + rt_data_off, &token); 3844 } 3845 3846 btrfs_set_header_nritems(l, mid); 3847 btrfs_item_key(right, &disk_key, 0); 3848 insert_ptr(trans, root, path, &disk_key, right->start, 3849 path->slots[1] + 1, 1); 3850 3851 btrfs_mark_buffer_dirty(right); 3852 btrfs_mark_buffer_dirty(l); 3853 BUG_ON(path->slots[0] != slot); 3854 3855 if (mid <= slot) { 3856 btrfs_tree_unlock(path->nodes[0]); 3857 free_extent_buffer(path->nodes[0]); 3858 path->nodes[0] = right; 3859 path->slots[0] -= mid; 3860 path->slots[1] += 1; 3861 } else { 3862 btrfs_tree_unlock(right); 3863 free_extent_buffer(right); 3864 } 3865 3866 BUG_ON(path->slots[0] < 0); 3867 } 3868 3869 /* 3870 * double splits happen when we need to insert a big item in the middle 3871 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3872 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3873 * A B C 3874 * 3875 * We avoid this by trying to push the items on either side of our target 3876 * into the adjacent leaves. If all goes well we can avoid the double split 3877 * completely. 3878 */ 3879 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3880 struct btrfs_root *root, 3881 struct btrfs_path *path, 3882 int data_size) 3883 { 3884 int ret; 3885 int progress = 0; 3886 int slot; 3887 u32 nritems; 3888 3889 slot = path->slots[0]; 3890 3891 /* 3892 * try to push all the items after our slot into the 3893 * right leaf 3894 */ 3895 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 3896 if (ret < 0) 3897 return ret; 3898 3899 if (ret == 0) 3900 progress++; 3901 3902 nritems = btrfs_header_nritems(path->nodes[0]); 3903 /* 3904 * our goal is to get our slot at the start or end of a leaf. If 3905 * we've done so we're done 3906 */ 3907 if (path->slots[0] == 0 || path->slots[0] == nritems) 3908 return 0; 3909 3910 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3911 return 0; 3912 3913 /* try to push all the items before our slot into the next leaf */ 3914 slot = path->slots[0]; 3915 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 3916 if (ret < 0) 3917 return ret; 3918 3919 if (ret == 0) 3920 progress++; 3921 3922 if (progress) 3923 return 0; 3924 return 1; 3925 } 3926 3927 /* 3928 * split the path's leaf in two, making sure there is at least data_size 3929 * available for the resulting leaf level of the path. 3930 * 3931 * returns 0 if all went well and < 0 on failure. 3932 */ 3933 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3934 struct btrfs_root *root, 3935 struct btrfs_key *ins_key, 3936 struct btrfs_path *path, int data_size, 3937 int extend) 3938 { 3939 struct btrfs_disk_key disk_key; 3940 struct extent_buffer *l; 3941 u32 nritems; 3942 int mid; 3943 int slot; 3944 struct extent_buffer *right; 3945 int ret = 0; 3946 int wret; 3947 int split; 3948 int num_doubles = 0; 3949 int tried_avoid_double = 0; 3950 3951 l = path->nodes[0]; 3952 slot = path->slots[0]; 3953 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3954 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 3955 return -EOVERFLOW; 3956 3957 /* first try to make some room by pushing left and right */ 3958 if (data_size && path->nodes[1]) { 3959 wret = push_leaf_right(trans, root, path, data_size, 3960 data_size, 0, 0); 3961 if (wret < 0) 3962 return wret; 3963 if (wret) { 3964 wret = push_leaf_left(trans, root, path, data_size, 3965 data_size, 0, (u32)-1); 3966 if (wret < 0) 3967 return wret; 3968 } 3969 l = path->nodes[0]; 3970 3971 /* did the pushes work? */ 3972 if (btrfs_leaf_free_space(root, l) >= data_size) 3973 return 0; 3974 } 3975 3976 if (!path->nodes[1]) { 3977 ret = insert_new_root(trans, root, path, 1); 3978 if (ret) 3979 return ret; 3980 } 3981 again: 3982 split = 1; 3983 l = path->nodes[0]; 3984 slot = path->slots[0]; 3985 nritems = btrfs_header_nritems(l); 3986 mid = (nritems + 1) / 2; 3987 3988 if (mid <= slot) { 3989 if (nritems == 1 || 3990 leaf_space_used(l, mid, nritems - mid) + data_size > 3991 BTRFS_LEAF_DATA_SIZE(root)) { 3992 if (slot >= nritems) { 3993 split = 0; 3994 } else { 3995 mid = slot; 3996 if (mid != nritems && 3997 leaf_space_used(l, mid, nritems - mid) + 3998 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3999 if (data_size && !tried_avoid_double) 4000 goto push_for_double; 4001 split = 2; 4002 } 4003 } 4004 } 4005 } else { 4006 if (leaf_space_used(l, 0, mid) + data_size > 4007 BTRFS_LEAF_DATA_SIZE(root)) { 4008 if (!extend && data_size && slot == 0) { 4009 split = 0; 4010 } else if ((extend || !data_size) && slot == 0) { 4011 mid = 1; 4012 } else { 4013 mid = slot; 4014 if (mid != nritems && 4015 leaf_space_used(l, mid, nritems - mid) + 4016 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4017 if (data_size && !tried_avoid_double) 4018 goto push_for_double; 4019 split = 2 ; 4020 } 4021 } 4022 } 4023 } 4024 4025 if (split == 0) 4026 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4027 else 4028 btrfs_item_key(l, &disk_key, mid); 4029 4030 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 4031 root->root_key.objectid, 4032 &disk_key, 0, l->start, 0); 4033 if (IS_ERR(right)) 4034 return PTR_ERR(right); 4035 4036 root_add_used(root, root->leafsize); 4037 4038 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4039 btrfs_set_header_bytenr(right, right->start); 4040 btrfs_set_header_generation(right, trans->transid); 4041 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4042 btrfs_set_header_owner(right, root->root_key.objectid); 4043 btrfs_set_header_level(right, 0); 4044 write_extent_buffer(right, root->fs_info->fsid, 4045 btrfs_header_fsid(right), BTRFS_FSID_SIZE); 4046 4047 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 4048 btrfs_header_chunk_tree_uuid(right), 4049 BTRFS_UUID_SIZE); 4050 4051 if (split == 0) { 4052 if (mid <= slot) { 4053 btrfs_set_header_nritems(right, 0); 4054 insert_ptr(trans, root, path, &disk_key, right->start, 4055 path->slots[1] + 1, 1); 4056 btrfs_tree_unlock(path->nodes[0]); 4057 free_extent_buffer(path->nodes[0]); 4058 path->nodes[0] = right; 4059 path->slots[0] = 0; 4060 path->slots[1] += 1; 4061 } else { 4062 btrfs_set_header_nritems(right, 0); 4063 insert_ptr(trans, root, path, &disk_key, right->start, 4064 path->slots[1], 1); 4065 btrfs_tree_unlock(path->nodes[0]); 4066 free_extent_buffer(path->nodes[0]); 4067 path->nodes[0] = right; 4068 path->slots[0] = 0; 4069 if (path->slots[1] == 0) 4070 fixup_low_keys(root, path, &disk_key, 1); 4071 } 4072 btrfs_mark_buffer_dirty(right); 4073 return ret; 4074 } 4075 4076 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4077 4078 if (split == 2) { 4079 BUG_ON(num_doubles != 0); 4080 num_doubles++; 4081 goto again; 4082 } 4083 4084 return 0; 4085 4086 push_for_double: 4087 push_for_double_split(trans, root, path, data_size); 4088 tried_avoid_double = 1; 4089 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4090 return 0; 4091 goto again; 4092 } 4093 4094 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4095 struct btrfs_root *root, 4096 struct btrfs_path *path, int ins_len) 4097 { 4098 struct btrfs_key key; 4099 struct extent_buffer *leaf; 4100 struct btrfs_file_extent_item *fi; 4101 u64 extent_len = 0; 4102 u32 item_size; 4103 int ret; 4104 4105 leaf = path->nodes[0]; 4106 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4107 4108 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4109 key.type != BTRFS_EXTENT_CSUM_KEY); 4110 4111 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4112 return 0; 4113 4114 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4115 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4116 fi = btrfs_item_ptr(leaf, path->slots[0], 4117 struct btrfs_file_extent_item); 4118 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4119 } 4120 btrfs_release_path(path); 4121 4122 path->keep_locks = 1; 4123 path->search_for_split = 1; 4124 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4125 path->search_for_split = 0; 4126 if (ret < 0) 4127 goto err; 4128 4129 ret = -EAGAIN; 4130 leaf = path->nodes[0]; 4131 /* if our item isn't there or got smaller, return now */ 4132 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4133 goto err; 4134 4135 /* the leaf has changed, it now has room. return now */ 4136 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4137 goto err; 4138 4139 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4140 fi = btrfs_item_ptr(leaf, path->slots[0], 4141 struct btrfs_file_extent_item); 4142 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4143 goto err; 4144 } 4145 4146 btrfs_set_path_blocking(path); 4147 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4148 if (ret) 4149 goto err; 4150 4151 path->keep_locks = 0; 4152 btrfs_unlock_up_safe(path, 1); 4153 return 0; 4154 err: 4155 path->keep_locks = 0; 4156 return ret; 4157 } 4158 4159 static noinline int split_item(struct btrfs_trans_handle *trans, 4160 struct btrfs_root *root, 4161 struct btrfs_path *path, 4162 struct btrfs_key *new_key, 4163 unsigned long split_offset) 4164 { 4165 struct extent_buffer *leaf; 4166 struct btrfs_item *item; 4167 struct btrfs_item *new_item; 4168 int slot; 4169 char *buf; 4170 u32 nritems; 4171 u32 item_size; 4172 u32 orig_offset; 4173 struct btrfs_disk_key disk_key; 4174 4175 leaf = path->nodes[0]; 4176 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4177 4178 btrfs_set_path_blocking(path); 4179 4180 item = btrfs_item_nr(leaf, path->slots[0]); 4181 orig_offset = btrfs_item_offset(leaf, item); 4182 item_size = btrfs_item_size(leaf, item); 4183 4184 buf = kmalloc(item_size, GFP_NOFS); 4185 if (!buf) 4186 return -ENOMEM; 4187 4188 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4189 path->slots[0]), item_size); 4190 4191 slot = path->slots[0] + 1; 4192 nritems = btrfs_header_nritems(leaf); 4193 if (slot != nritems) { 4194 /* shift the items */ 4195 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4196 btrfs_item_nr_offset(slot), 4197 (nritems - slot) * sizeof(struct btrfs_item)); 4198 } 4199 4200 btrfs_cpu_key_to_disk(&disk_key, new_key); 4201 btrfs_set_item_key(leaf, &disk_key, slot); 4202 4203 new_item = btrfs_item_nr(leaf, slot); 4204 4205 btrfs_set_item_offset(leaf, new_item, orig_offset); 4206 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4207 4208 btrfs_set_item_offset(leaf, item, 4209 orig_offset + item_size - split_offset); 4210 btrfs_set_item_size(leaf, item, split_offset); 4211 4212 btrfs_set_header_nritems(leaf, nritems + 1); 4213 4214 /* write the data for the start of the original item */ 4215 write_extent_buffer(leaf, buf, 4216 btrfs_item_ptr_offset(leaf, path->slots[0]), 4217 split_offset); 4218 4219 /* write the data for the new item */ 4220 write_extent_buffer(leaf, buf + split_offset, 4221 btrfs_item_ptr_offset(leaf, slot), 4222 item_size - split_offset); 4223 btrfs_mark_buffer_dirty(leaf); 4224 4225 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4226 kfree(buf); 4227 return 0; 4228 } 4229 4230 /* 4231 * This function splits a single item into two items, 4232 * giving 'new_key' to the new item and splitting the 4233 * old one at split_offset (from the start of the item). 4234 * 4235 * The path may be released by this operation. After 4236 * the split, the path is pointing to the old item. The 4237 * new item is going to be in the same node as the old one. 4238 * 4239 * Note, the item being split must be smaller enough to live alone on 4240 * a tree block with room for one extra struct btrfs_item 4241 * 4242 * This allows us to split the item in place, keeping a lock on the 4243 * leaf the entire time. 4244 */ 4245 int btrfs_split_item(struct btrfs_trans_handle *trans, 4246 struct btrfs_root *root, 4247 struct btrfs_path *path, 4248 struct btrfs_key *new_key, 4249 unsigned long split_offset) 4250 { 4251 int ret; 4252 ret = setup_leaf_for_split(trans, root, path, 4253 sizeof(struct btrfs_item)); 4254 if (ret) 4255 return ret; 4256 4257 ret = split_item(trans, root, path, new_key, split_offset); 4258 return ret; 4259 } 4260 4261 /* 4262 * This function duplicate a item, giving 'new_key' to the new item. 4263 * It guarantees both items live in the same tree leaf and the new item 4264 * is contiguous with the original item. 4265 * 4266 * This allows us to split file extent in place, keeping a lock on the 4267 * leaf the entire time. 4268 */ 4269 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4270 struct btrfs_root *root, 4271 struct btrfs_path *path, 4272 struct btrfs_key *new_key) 4273 { 4274 struct extent_buffer *leaf; 4275 int ret; 4276 u32 item_size; 4277 4278 leaf = path->nodes[0]; 4279 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4280 ret = setup_leaf_for_split(trans, root, path, 4281 item_size + sizeof(struct btrfs_item)); 4282 if (ret) 4283 return ret; 4284 4285 path->slots[0]++; 4286 setup_items_for_insert(root, path, new_key, &item_size, 4287 item_size, item_size + 4288 sizeof(struct btrfs_item), 1); 4289 leaf = path->nodes[0]; 4290 memcpy_extent_buffer(leaf, 4291 btrfs_item_ptr_offset(leaf, path->slots[0]), 4292 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4293 item_size); 4294 return 0; 4295 } 4296 4297 /* 4298 * make the item pointed to by the path smaller. new_size indicates 4299 * how small to make it, and from_end tells us if we just chop bytes 4300 * off the end of the item or if we shift the item to chop bytes off 4301 * the front. 4302 */ 4303 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4304 u32 new_size, int from_end) 4305 { 4306 int slot; 4307 struct extent_buffer *leaf; 4308 struct btrfs_item *item; 4309 u32 nritems; 4310 unsigned int data_end; 4311 unsigned int old_data_start; 4312 unsigned int old_size; 4313 unsigned int size_diff; 4314 int i; 4315 struct btrfs_map_token token; 4316 4317 btrfs_init_map_token(&token); 4318 4319 leaf = path->nodes[0]; 4320 slot = path->slots[0]; 4321 4322 old_size = btrfs_item_size_nr(leaf, slot); 4323 if (old_size == new_size) 4324 return; 4325 4326 nritems = btrfs_header_nritems(leaf); 4327 data_end = leaf_data_end(root, leaf); 4328 4329 old_data_start = btrfs_item_offset_nr(leaf, slot); 4330 4331 size_diff = old_size - new_size; 4332 4333 BUG_ON(slot < 0); 4334 BUG_ON(slot >= nritems); 4335 4336 /* 4337 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4338 */ 4339 /* first correct the data pointers */ 4340 for (i = slot; i < nritems; i++) { 4341 u32 ioff; 4342 item = btrfs_item_nr(leaf, i); 4343 4344 ioff = btrfs_token_item_offset(leaf, item, &token); 4345 btrfs_set_token_item_offset(leaf, item, 4346 ioff + size_diff, &token); 4347 } 4348 4349 /* shift the data */ 4350 if (from_end) { 4351 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4352 data_end + size_diff, btrfs_leaf_data(leaf) + 4353 data_end, old_data_start + new_size - data_end); 4354 } else { 4355 struct btrfs_disk_key disk_key; 4356 u64 offset; 4357 4358 btrfs_item_key(leaf, &disk_key, slot); 4359 4360 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4361 unsigned long ptr; 4362 struct btrfs_file_extent_item *fi; 4363 4364 fi = btrfs_item_ptr(leaf, slot, 4365 struct btrfs_file_extent_item); 4366 fi = (struct btrfs_file_extent_item *)( 4367 (unsigned long)fi - size_diff); 4368 4369 if (btrfs_file_extent_type(leaf, fi) == 4370 BTRFS_FILE_EXTENT_INLINE) { 4371 ptr = btrfs_item_ptr_offset(leaf, slot); 4372 memmove_extent_buffer(leaf, ptr, 4373 (unsigned long)fi, 4374 offsetof(struct btrfs_file_extent_item, 4375 disk_bytenr)); 4376 } 4377 } 4378 4379 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4380 data_end + size_diff, btrfs_leaf_data(leaf) + 4381 data_end, old_data_start - data_end); 4382 4383 offset = btrfs_disk_key_offset(&disk_key); 4384 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4385 btrfs_set_item_key(leaf, &disk_key, slot); 4386 if (slot == 0) 4387 fixup_low_keys(root, path, &disk_key, 1); 4388 } 4389 4390 item = btrfs_item_nr(leaf, slot); 4391 btrfs_set_item_size(leaf, item, new_size); 4392 btrfs_mark_buffer_dirty(leaf); 4393 4394 if (btrfs_leaf_free_space(root, leaf) < 0) { 4395 btrfs_print_leaf(root, leaf); 4396 BUG(); 4397 } 4398 } 4399 4400 /* 4401 * make the item pointed to by the path bigger, data_size is the added size. 4402 */ 4403 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4404 u32 data_size) 4405 { 4406 int slot; 4407 struct extent_buffer *leaf; 4408 struct btrfs_item *item; 4409 u32 nritems; 4410 unsigned int data_end; 4411 unsigned int old_data; 4412 unsigned int old_size; 4413 int i; 4414 struct btrfs_map_token token; 4415 4416 btrfs_init_map_token(&token); 4417 4418 leaf = path->nodes[0]; 4419 4420 nritems = btrfs_header_nritems(leaf); 4421 data_end = leaf_data_end(root, leaf); 4422 4423 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4424 btrfs_print_leaf(root, leaf); 4425 BUG(); 4426 } 4427 slot = path->slots[0]; 4428 old_data = btrfs_item_end_nr(leaf, slot); 4429 4430 BUG_ON(slot < 0); 4431 if (slot >= nritems) { 4432 btrfs_print_leaf(root, leaf); 4433 printk(KERN_CRIT "slot %d too large, nritems %d\n", 4434 slot, nritems); 4435 BUG_ON(1); 4436 } 4437 4438 /* 4439 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4440 */ 4441 /* first correct the data pointers */ 4442 for (i = slot; i < nritems; i++) { 4443 u32 ioff; 4444 item = btrfs_item_nr(leaf, i); 4445 4446 ioff = btrfs_token_item_offset(leaf, item, &token); 4447 btrfs_set_token_item_offset(leaf, item, 4448 ioff - data_size, &token); 4449 } 4450 4451 /* shift the data */ 4452 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4453 data_end - data_size, btrfs_leaf_data(leaf) + 4454 data_end, old_data - data_end); 4455 4456 data_end = old_data; 4457 old_size = btrfs_item_size_nr(leaf, slot); 4458 item = btrfs_item_nr(leaf, slot); 4459 btrfs_set_item_size(leaf, item, old_size + data_size); 4460 btrfs_mark_buffer_dirty(leaf); 4461 4462 if (btrfs_leaf_free_space(root, leaf) < 0) { 4463 btrfs_print_leaf(root, leaf); 4464 BUG(); 4465 } 4466 } 4467 4468 /* 4469 * this is a helper for btrfs_insert_empty_items, the main goal here is 4470 * to save stack depth by doing the bulk of the work in a function 4471 * that doesn't call btrfs_search_slot 4472 */ 4473 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4474 struct btrfs_key *cpu_key, u32 *data_size, 4475 u32 total_data, u32 total_size, int nr) 4476 { 4477 struct btrfs_item *item; 4478 int i; 4479 u32 nritems; 4480 unsigned int data_end; 4481 struct btrfs_disk_key disk_key; 4482 struct extent_buffer *leaf; 4483 int slot; 4484 struct btrfs_map_token token; 4485 4486 btrfs_init_map_token(&token); 4487 4488 leaf = path->nodes[0]; 4489 slot = path->slots[0]; 4490 4491 nritems = btrfs_header_nritems(leaf); 4492 data_end = leaf_data_end(root, leaf); 4493 4494 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4495 btrfs_print_leaf(root, leaf); 4496 printk(KERN_CRIT "not enough freespace need %u have %d\n", 4497 total_size, btrfs_leaf_free_space(root, leaf)); 4498 BUG(); 4499 } 4500 4501 if (slot != nritems) { 4502 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4503 4504 if (old_data < data_end) { 4505 btrfs_print_leaf(root, leaf); 4506 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4507 slot, old_data, data_end); 4508 BUG_ON(1); 4509 } 4510 /* 4511 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4512 */ 4513 /* first correct the data pointers */ 4514 for (i = slot; i < nritems; i++) { 4515 u32 ioff; 4516 4517 item = btrfs_item_nr(leaf, i); 4518 ioff = btrfs_token_item_offset(leaf, item, &token); 4519 btrfs_set_token_item_offset(leaf, item, 4520 ioff - total_data, &token); 4521 } 4522 /* shift the items */ 4523 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4524 btrfs_item_nr_offset(slot), 4525 (nritems - slot) * sizeof(struct btrfs_item)); 4526 4527 /* shift the data */ 4528 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4529 data_end - total_data, btrfs_leaf_data(leaf) + 4530 data_end, old_data - data_end); 4531 data_end = old_data; 4532 } 4533 4534 /* setup the item for the new data */ 4535 for (i = 0; i < nr; i++) { 4536 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4537 btrfs_set_item_key(leaf, &disk_key, slot + i); 4538 item = btrfs_item_nr(leaf, slot + i); 4539 btrfs_set_token_item_offset(leaf, item, 4540 data_end - data_size[i], &token); 4541 data_end -= data_size[i]; 4542 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4543 } 4544 4545 btrfs_set_header_nritems(leaf, nritems + nr); 4546 4547 if (slot == 0) { 4548 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4549 fixup_low_keys(root, path, &disk_key, 1); 4550 } 4551 btrfs_unlock_up_safe(path, 1); 4552 btrfs_mark_buffer_dirty(leaf); 4553 4554 if (btrfs_leaf_free_space(root, leaf) < 0) { 4555 btrfs_print_leaf(root, leaf); 4556 BUG(); 4557 } 4558 } 4559 4560 /* 4561 * Given a key and some data, insert items into the tree. 4562 * This does all the path init required, making room in the tree if needed. 4563 */ 4564 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4565 struct btrfs_root *root, 4566 struct btrfs_path *path, 4567 struct btrfs_key *cpu_key, u32 *data_size, 4568 int nr) 4569 { 4570 int ret = 0; 4571 int slot; 4572 int i; 4573 u32 total_size = 0; 4574 u32 total_data = 0; 4575 4576 for (i = 0; i < nr; i++) 4577 total_data += data_size[i]; 4578 4579 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4580 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4581 if (ret == 0) 4582 return -EEXIST; 4583 if (ret < 0) 4584 return ret; 4585 4586 slot = path->slots[0]; 4587 BUG_ON(slot < 0); 4588 4589 setup_items_for_insert(root, path, cpu_key, data_size, 4590 total_data, total_size, nr); 4591 return 0; 4592 } 4593 4594 /* 4595 * Given a key and some data, insert an item into the tree. 4596 * This does all the path init required, making room in the tree if needed. 4597 */ 4598 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4599 *root, struct btrfs_key *cpu_key, void *data, u32 4600 data_size) 4601 { 4602 int ret = 0; 4603 struct btrfs_path *path; 4604 struct extent_buffer *leaf; 4605 unsigned long ptr; 4606 4607 path = btrfs_alloc_path(); 4608 if (!path) 4609 return -ENOMEM; 4610 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4611 if (!ret) { 4612 leaf = path->nodes[0]; 4613 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4614 write_extent_buffer(leaf, data, ptr, data_size); 4615 btrfs_mark_buffer_dirty(leaf); 4616 } 4617 btrfs_free_path(path); 4618 return ret; 4619 } 4620 4621 /* 4622 * delete the pointer from a given node. 4623 * 4624 * the tree should have been previously balanced so the deletion does not 4625 * empty a node. 4626 */ 4627 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4628 int level, int slot) 4629 { 4630 struct extent_buffer *parent = path->nodes[level]; 4631 u32 nritems; 4632 int ret; 4633 4634 nritems = btrfs_header_nritems(parent); 4635 if (slot != nritems - 1) { 4636 if (level) 4637 tree_mod_log_eb_move(root->fs_info, parent, slot, 4638 slot + 1, nritems - slot - 1); 4639 memmove_extent_buffer(parent, 4640 btrfs_node_key_ptr_offset(slot), 4641 btrfs_node_key_ptr_offset(slot + 1), 4642 sizeof(struct btrfs_key_ptr) * 4643 (nritems - slot - 1)); 4644 } else if (level) { 4645 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4646 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4647 BUG_ON(ret < 0); 4648 } 4649 4650 nritems--; 4651 btrfs_set_header_nritems(parent, nritems); 4652 if (nritems == 0 && parent == root->node) { 4653 BUG_ON(btrfs_header_level(root->node) != 1); 4654 /* just turn the root into a leaf and break */ 4655 btrfs_set_header_level(root->node, 0); 4656 } else if (slot == 0) { 4657 struct btrfs_disk_key disk_key; 4658 4659 btrfs_node_key(parent, &disk_key, 0); 4660 fixup_low_keys(root, path, &disk_key, level + 1); 4661 } 4662 btrfs_mark_buffer_dirty(parent); 4663 } 4664 4665 /* 4666 * a helper function to delete the leaf pointed to by path->slots[1] and 4667 * path->nodes[1]. 4668 * 4669 * This deletes the pointer in path->nodes[1] and frees the leaf 4670 * block extent. zero is returned if it all worked out, < 0 otherwise. 4671 * 4672 * The path must have already been setup for deleting the leaf, including 4673 * all the proper balancing. path->nodes[1] must be locked. 4674 */ 4675 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4676 struct btrfs_root *root, 4677 struct btrfs_path *path, 4678 struct extent_buffer *leaf) 4679 { 4680 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4681 del_ptr(root, path, 1, path->slots[1]); 4682 4683 /* 4684 * btrfs_free_extent is expensive, we want to make sure we 4685 * aren't holding any locks when we call it 4686 */ 4687 btrfs_unlock_up_safe(path, 0); 4688 4689 root_sub_used(root, leaf->len); 4690 4691 extent_buffer_get(leaf); 4692 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4693 free_extent_buffer_stale(leaf); 4694 } 4695 /* 4696 * delete the item at the leaf level in path. If that empties 4697 * the leaf, remove it from the tree 4698 */ 4699 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4700 struct btrfs_path *path, int slot, int nr) 4701 { 4702 struct extent_buffer *leaf; 4703 struct btrfs_item *item; 4704 int last_off; 4705 int dsize = 0; 4706 int ret = 0; 4707 int wret; 4708 int i; 4709 u32 nritems; 4710 struct btrfs_map_token token; 4711 4712 btrfs_init_map_token(&token); 4713 4714 leaf = path->nodes[0]; 4715 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4716 4717 for (i = 0; i < nr; i++) 4718 dsize += btrfs_item_size_nr(leaf, slot + i); 4719 4720 nritems = btrfs_header_nritems(leaf); 4721 4722 if (slot + nr != nritems) { 4723 int data_end = leaf_data_end(root, leaf); 4724 4725 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4726 data_end + dsize, 4727 btrfs_leaf_data(leaf) + data_end, 4728 last_off - data_end); 4729 4730 for (i = slot + nr; i < nritems; i++) { 4731 u32 ioff; 4732 4733 item = btrfs_item_nr(leaf, i); 4734 ioff = btrfs_token_item_offset(leaf, item, &token); 4735 btrfs_set_token_item_offset(leaf, item, 4736 ioff + dsize, &token); 4737 } 4738 4739 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4740 btrfs_item_nr_offset(slot + nr), 4741 sizeof(struct btrfs_item) * 4742 (nritems - slot - nr)); 4743 } 4744 btrfs_set_header_nritems(leaf, nritems - nr); 4745 nritems -= nr; 4746 4747 /* delete the leaf if we've emptied it */ 4748 if (nritems == 0) { 4749 if (leaf == root->node) { 4750 btrfs_set_header_level(leaf, 0); 4751 } else { 4752 btrfs_set_path_blocking(path); 4753 clean_tree_block(trans, root, leaf); 4754 btrfs_del_leaf(trans, root, path, leaf); 4755 } 4756 } else { 4757 int used = leaf_space_used(leaf, 0, nritems); 4758 if (slot == 0) { 4759 struct btrfs_disk_key disk_key; 4760 4761 btrfs_item_key(leaf, &disk_key, 0); 4762 fixup_low_keys(root, path, &disk_key, 1); 4763 } 4764 4765 /* delete the leaf if it is mostly empty */ 4766 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4767 /* push_leaf_left fixes the path. 4768 * make sure the path still points to our leaf 4769 * for possible call to del_ptr below 4770 */ 4771 slot = path->slots[1]; 4772 extent_buffer_get(leaf); 4773 4774 btrfs_set_path_blocking(path); 4775 wret = push_leaf_left(trans, root, path, 1, 1, 4776 1, (u32)-1); 4777 if (wret < 0 && wret != -ENOSPC) 4778 ret = wret; 4779 4780 if (path->nodes[0] == leaf && 4781 btrfs_header_nritems(leaf)) { 4782 wret = push_leaf_right(trans, root, path, 1, 4783 1, 1, 0); 4784 if (wret < 0 && wret != -ENOSPC) 4785 ret = wret; 4786 } 4787 4788 if (btrfs_header_nritems(leaf) == 0) { 4789 path->slots[1] = slot; 4790 btrfs_del_leaf(trans, root, path, leaf); 4791 free_extent_buffer(leaf); 4792 ret = 0; 4793 } else { 4794 /* if we're still in the path, make sure 4795 * we're dirty. Otherwise, one of the 4796 * push_leaf functions must have already 4797 * dirtied this buffer 4798 */ 4799 if (path->nodes[0] == leaf) 4800 btrfs_mark_buffer_dirty(leaf); 4801 free_extent_buffer(leaf); 4802 } 4803 } else { 4804 btrfs_mark_buffer_dirty(leaf); 4805 } 4806 } 4807 return ret; 4808 } 4809 4810 /* 4811 * search the tree again to find a leaf with lesser keys 4812 * returns 0 if it found something or 1 if there are no lesser leaves. 4813 * returns < 0 on io errors. 4814 * 4815 * This may release the path, and so you may lose any locks held at the 4816 * time you call it. 4817 */ 4818 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4819 { 4820 struct btrfs_key key; 4821 struct btrfs_disk_key found_key; 4822 int ret; 4823 4824 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4825 4826 if (key.offset > 0) 4827 key.offset--; 4828 else if (key.type > 0) 4829 key.type--; 4830 else if (key.objectid > 0) 4831 key.objectid--; 4832 else 4833 return 1; 4834 4835 btrfs_release_path(path); 4836 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4837 if (ret < 0) 4838 return ret; 4839 btrfs_item_key(path->nodes[0], &found_key, 0); 4840 ret = comp_keys(&found_key, &key); 4841 if (ret < 0) 4842 return 0; 4843 return 1; 4844 } 4845 4846 /* 4847 * A helper function to walk down the tree starting at min_key, and looking 4848 * for nodes or leaves that are have a minimum transaction id. 4849 * This is used by the btree defrag code, and tree logging 4850 * 4851 * This does not cow, but it does stuff the starting key it finds back 4852 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4853 * key and get a writable path. 4854 * 4855 * This does lock as it descends, and path->keep_locks should be set 4856 * to 1 by the caller. 4857 * 4858 * This honors path->lowest_level to prevent descent past a given level 4859 * of the tree. 4860 * 4861 * min_trans indicates the oldest transaction that you are interested 4862 * in walking through. Any nodes or leaves older than min_trans are 4863 * skipped over (without reading them). 4864 * 4865 * returns zero if something useful was found, < 0 on error and 1 if there 4866 * was nothing in the tree that matched the search criteria. 4867 */ 4868 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4869 struct btrfs_key *max_key, 4870 struct btrfs_path *path, 4871 u64 min_trans) 4872 { 4873 struct extent_buffer *cur; 4874 struct btrfs_key found_key; 4875 int slot; 4876 int sret; 4877 u32 nritems; 4878 int level; 4879 int ret = 1; 4880 4881 WARN_ON(!path->keep_locks); 4882 again: 4883 cur = btrfs_read_lock_root_node(root); 4884 level = btrfs_header_level(cur); 4885 WARN_ON(path->nodes[level]); 4886 path->nodes[level] = cur; 4887 path->locks[level] = BTRFS_READ_LOCK; 4888 4889 if (btrfs_header_generation(cur) < min_trans) { 4890 ret = 1; 4891 goto out; 4892 } 4893 while (1) { 4894 nritems = btrfs_header_nritems(cur); 4895 level = btrfs_header_level(cur); 4896 sret = bin_search(cur, min_key, level, &slot); 4897 4898 /* at the lowest level, we're done, setup the path and exit */ 4899 if (level == path->lowest_level) { 4900 if (slot >= nritems) 4901 goto find_next_key; 4902 ret = 0; 4903 path->slots[level] = slot; 4904 btrfs_item_key_to_cpu(cur, &found_key, slot); 4905 goto out; 4906 } 4907 if (sret && slot > 0) 4908 slot--; 4909 /* 4910 * check this node pointer against the min_trans parameters. 4911 * If it is too old, old, skip to the next one. 4912 */ 4913 while (slot < nritems) { 4914 u64 blockptr; 4915 u64 gen; 4916 4917 blockptr = btrfs_node_blockptr(cur, slot); 4918 gen = btrfs_node_ptr_generation(cur, slot); 4919 if (gen < min_trans) { 4920 slot++; 4921 continue; 4922 } 4923 break; 4924 } 4925 find_next_key: 4926 /* 4927 * we didn't find a candidate key in this node, walk forward 4928 * and find another one 4929 */ 4930 if (slot >= nritems) { 4931 path->slots[level] = slot; 4932 btrfs_set_path_blocking(path); 4933 sret = btrfs_find_next_key(root, path, min_key, level, 4934 min_trans); 4935 if (sret == 0) { 4936 btrfs_release_path(path); 4937 goto again; 4938 } else { 4939 goto out; 4940 } 4941 } 4942 /* save our key for returning back */ 4943 btrfs_node_key_to_cpu(cur, &found_key, slot); 4944 path->slots[level] = slot; 4945 if (level == path->lowest_level) { 4946 ret = 0; 4947 unlock_up(path, level, 1, 0, NULL); 4948 goto out; 4949 } 4950 btrfs_set_path_blocking(path); 4951 cur = read_node_slot(root, cur, slot); 4952 BUG_ON(!cur); /* -ENOMEM */ 4953 4954 btrfs_tree_read_lock(cur); 4955 4956 path->locks[level - 1] = BTRFS_READ_LOCK; 4957 path->nodes[level - 1] = cur; 4958 unlock_up(path, level, 1, 0, NULL); 4959 btrfs_clear_path_blocking(path, NULL, 0); 4960 } 4961 out: 4962 if (ret == 0) 4963 memcpy(min_key, &found_key, sizeof(found_key)); 4964 btrfs_set_path_blocking(path); 4965 return ret; 4966 } 4967 4968 static void tree_move_down(struct btrfs_root *root, 4969 struct btrfs_path *path, 4970 int *level, int root_level) 4971 { 4972 BUG_ON(*level == 0); 4973 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 4974 path->slots[*level]); 4975 path->slots[*level - 1] = 0; 4976 (*level)--; 4977 } 4978 4979 static int tree_move_next_or_upnext(struct btrfs_root *root, 4980 struct btrfs_path *path, 4981 int *level, int root_level) 4982 { 4983 int ret = 0; 4984 int nritems; 4985 nritems = btrfs_header_nritems(path->nodes[*level]); 4986 4987 path->slots[*level]++; 4988 4989 while (path->slots[*level] >= nritems) { 4990 if (*level == root_level) 4991 return -1; 4992 4993 /* move upnext */ 4994 path->slots[*level] = 0; 4995 free_extent_buffer(path->nodes[*level]); 4996 path->nodes[*level] = NULL; 4997 (*level)++; 4998 path->slots[*level]++; 4999 5000 nritems = btrfs_header_nritems(path->nodes[*level]); 5001 ret = 1; 5002 } 5003 return ret; 5004 } 5005 5006 /* 5007 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5008 * or down. 5009 */ 5010 static int tree_advance(struct btrfs_root *root, 5011 struct btrfs_path *path, 5012 int *level, int root_level, 5013 int allow_down, 5014 struct btrfs_key *key) 5015 { 5016 int ret; 5017 5018 if (*level == 0 || !allow_down) { 5019 ret = tree_move_next_or_upnext(root, path, level, root_level); 5020 } else { 5021 tree_move_down(root, path, level, root_level); 5022 ret = 0; 5023 } 5024 if (ret >= 0) { 5025 if (*level == 0) 5026 btrfs_item_key_to_cpu(path->nodes[*level], key, 5027 path->slots[*level]); 5028 else 5029 btrfs_node_key_to_cpu(path->nodes[*level], key, 5030 path->slots[*level]); 5031 } 5032 return ret; 5033 } 5034 5035 static int tree_compare_item(struct btrfs_root *left_root, 5036 struct btrfs_path *left_path, 5037 struct btrfs_path *right_path, 5038 char *tmp_buf) 5039 { 5040 int cmp; 5041 int len1, len2; 5042 unsigned long off1, off2; 5043 5044 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5045 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5046 if (len1 != len2) 5047 return 1; 5048 5049 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5050 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5051 right_path->slots[0]); 5052 5053 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5054 5055 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5056 if (cmp) 5057 return 1; 5058 return 0; 5059 } 5060 5061 #define ADVANCE 1 5062 #define ADVANCE_ONLY_NEXT -1 5063 5064 /* 5065 * This function compares two trees and calls the provided callback for 5066 * every changed/new/deleted item it finds. 5067 * If shared tree blocks are encountered, whole subtrees are skipped, making 5068 * the compare pretty fast on snapshotted subvolumes. 5069 * 5070 * This currently works on commit roots only. As commit roots are read only, 5071 * we don't do any locking. The commit roots are protected with transactions. 5072 * Transactions are ended and rejoined when a commit is tried in between. 5073 * 5074 * This function checks for modifications done to the trees while comparing. 5075 * If it detects a change, it aborts immediately. 5076 */ 5077 int btrfs_compare_trees(struct btrfs_root *left_root, 5078 struct btrfs_root *right_root, 5079 btrfs_changed_cb_t changed_cb, void *ctx) 5080 { 5081 int ret; 5082 int cmp; 5083 struct btrfs_trans_handle *trans = NULL; 5084 struct btrfs_path *left_path = NULL; 5085 struct btrfs_path *right_path = NULL; 5086 struct btrfs_key left_key; 5087 struct btrfs_key right_key; 5088 char *tmp_buf = NULL; 5089 int left_root_level; 5090 int right_root_level; 5091 int left_level; 5092 int right_level; 5093 int left_end_reached; 5094 int right_end_reached; 5095 int advance_left; 5096 int advance_right; 5097 u64 left_blockptr; 5098 u64 right_blockptr; 5099 u64 left_start_ctransid; 5100 u64 right_start_ctransid; 5101 u64 ctransid; 5102 5103 left_path = btrfs_alloc_path(); 5104 if (!left_path) { 5105 ret = -ENOMEM; 5106 goto out; 5107 } 5108 right_path = btrfs_alloc_path(); 5109 if (!right_path) { 5110 ret = -ENOMEM; 5111 goto out; 5112 } 5113 5114 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS); 5115 if (!tmp_buf) { 5116 ret = -ENOMEM; 5117 goto out; 5118 } 5119 5120 left_path->search_commit_root = 1; 5121 left_path->skip_locking = 1; 5122 right_path->search_commit_root = 1; 5123 right_path->skip_locking = 1; 5124 5125 spin_lock(&left_root->root_item_lock); 5126 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item); 5127 spin_unlock(&left_root->root_item_lock); 5128 5129 spin_lock(&right_root->root_item_lock); 5130 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item); 5131 spin_unlock(&right_root->root_item_lock); 5132 5133 trans = btrfs_join_transaction(left_root); 5134 if (IS_ERR(trans)) { 5135 ret = PTR_ERR(trans); 5136 trans = NULL; 5137 goto out; 5138 } 5139 5140 /* 5141 * Strategy: Go to the first items of both trees. Then do 5142 * 5143 * If both trees are at level 0 5144 * Compare keys of current items 5145 * If left < right treat left item as new, advance left tree 5146 * and repeat 5147 * If left > right treat right item as deleted, advance right tree 5148 * and repeat 5149 * If left == right do deep compare of items, treat as changed if 5150 * needed, advance both trees and repeat 5151 * If both trees are at the same level but not at level 0 5152 * Compare keys of current nodes/leafs 5153 * If left < right advance left tree and repeat 5154 * If left > right advance right tree and repeat 5155 * If left == right compare blockptrs of the next nodes/leafs 5156 * If they match advance both trees but stay at the same level 5157 * and repeat 5158 * If they don't match advance both trees while allowing to go 5159 * deeper and repeat 5160 * If tree levels are different 5161 * Advance the tree that needs it and repeat 5162 * 5163 * Advancing a tree means: 5164 * If we are at level 0, try to go to the next slot. If that's not 5165 * possible, go one level up and repeat. Stop when we found a level 5166 * where we could go to the next slot. We may at this point be on a 5167 * node or a leaf. 5168 * 5169 * If we are not at level 0 and not on shared tree blocks, go one 5170 * level deeper. 5171 * 5172 * If we are not at level 0 and on shared tree blocks, go one slot to 5173 * the right if possible or go up and right. 5174 */ 5175 5176 left_level = btrfs_header_level(left_root->commit_root); 5177 left_root_level = left_level; 5178 left_path->nodes[left_level] = left_root->commit_root; 5179 extent_buffer_get(left_path->nodes[left_level]); 5180 5181 right_level = btrfs_header_level(right_root->commit_root); 5182 right_root_level = right_level; 5183 right_path->nodes[right_level] = right_root->commit_root; 5184 extent_buffer_get(right_path->nodes[right_level]); 5185 5186 if (left_level == 0) 5187 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5188 &left_key, left_path->slots[left_level]); 5189 else 5190 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5191 &left_key, left_path->slots[left_level]); 5192 if (right_level == 0) 5193 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5194 &right_key, right_path->slots[right_level]); 5195 else 5196 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5197 &right_key, right_path->slots[right_level]); 5198 5199 left_end_reached = right_end_reached = 0; 5200 advance_left = advance_right = 0; 5201 5202 while (1) { 5203 /* 5204 * We need to make sure the transaction does not get committed 5205 * while we do anything on commit roots. This means, we need to 5206 * join and leave transactions for every item that we process. 5207 */ 5208 if (trans && btrfs_should_end_transaction(trans, left_root)) { 5209 btrfs_release_path(left_path); 5210 btrfs_release_path(right_path); 5211 5212 ret = btrfs_end_transaction(trans, left_root); 5213 trans = NULL; 5214 if (ret < 0) 5215 goto out; 5216 } 5217 /* now rejoin the transaction */ 5218 if (!trans) { 5219 trans = btrfs_join_transaction(left_root); 5220 if (IS_ERR(trans)) { 5221 ret = PTR_ERR(trans); 5222 trans = NULL; 5223 goto out; 5224 } 5225 5226 spin_lock(&left_root->root_item_lock); 5227 ctransid = btrfs_root_ctransid(&left_root->root_item); 5228 spin_unlock(&left_root->root_item_lock); 5229 if (ctransid != left_start_ctransid) 5230 left_start_ctransid = 0; 5231 5232 spin_lock(&right_root->root_item_lock); 5233 ctransid = btrfs_root_ctransid(&right_root->root_item); 5234 spin_unlock(&right_root->root_item_lock); 5235 if (ctransid != right_start_ctransid) 5236 right_start_ctransid = 0; 5237 5238 if (!left_start_ctransid || !right_start_ctransid) { 5239 WARN(1, KERN_WARNING 5240 "btrfs: btrfs_compare_tree detected " 5241 "a change in one of the trees while " 5242 "iterating. This is probably a " 5243 "bug.\n"); 5244 ret = -EIO; 5245 goto out; 5246 } 5247 5248 /* 5249 * the commit root may have changed, so start again 5250 * where we stopped 5251 */ 5252 left_path->lowest_level = left_level; 5253 right_path->lowest_level = right_level; 5254 ret = btrfs_search_slot(NULL, left_root, 5255 &left_key, left_path, 0, 0); 5256 if (ret < 0) 5257 goto out; 5258 ret = btrfs_search_slot(NULL, right_root, 5259 &right_key, right_path, 0, 0); 5260 if (ret < 0) 5261 goto out; 5262 } 5263 5264 if (advance_left && !left_end_reached) { 5265 ret = tree_advance(left_root, left_path, &left_level, 5266 left_root_level, 5267 advance_left != ADVANCE_ONLY_NEXT, 5268 &left_key); 5269 if (ret < 0) 5270 left_end_reached = ADVANCE; 5271 advance_left = 0; 5272 } 5273 if (advance_right && !right_end_reached) { 5274 ret = tree_advance(right_root, right_path, &right_level, 5275 right_root_level, 5276 advance_right != ADVANCE_ONLY_NEXT, 5277 &right_key); 5278 if (ret < 0) 5279 right_end_reached = ADVANCE; 5280 advance_right = 0; 5281 } 5282 5283 if (left_end_reached && right_end_reached) { 5284 ret = 0; 5285 goto out; 5286 } else if (left_end_reached) { 5287 if (right_level == 0) { 5288 ret = changed_cb(left_root, right_root, 5289 left_path, right_path, 5290 &right_key, 5291 BTRFS_COMPARE_TREE_DELETED, 5292 ctx); 5293 if (ret < 0) 5294 goto out; 5295 } 5296 advance_right = ADVANCE; 5297 continue; 5298 } else if (right_end_reached) { 5299 if (left_level == 0) { 5300 ret = changed_cb(left_root, right_root, 5301 left_path, right_path, 5302 &left_key, 5303 BTRFS_COMPARE_TREE_NEW, 5304 ctx); 5305 if (ret < 0) 5306 goto out; 5307 } 5308 advance_left = ADVANCE; 5309 continue; 5310 } 5311 5312 if (left_level == 0 && right_level == 0) { 5313 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5314 if (cmp < 0) { 5315 ret = changed_cb(left_root, right_root, 5316 left_path, right_path, 5317 &left_key, 5318 BTRFS_COMPARE_TREE_NEW, 5319 ctx); 5320 if (ret < 0) 5321 goto out; 5322 advance_left = ADVANCE; 5323 } else if (cmp > 0) { 5324 ret = changed_cb(left_root, right_root, 5325 left_path, right_path, 5326 &right_key, 5327 BTRFS_COMPARE_TREE_DELETED, 5328 ctx); 5329 if (ret < 0) 5330 goto out; 5331 advance_right = ADVANCE; 5332 } else { 5333 enum btrfs_compare_tree_result cmp; 5334 5335 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5336 ret = tree_compare_item(left_root, left_path, 5337 right_path, tmp_buf); 5338 if (ret) 5339 cmp = BTRFS_COMPARE_TREE_CHANGED; 5340 else 5341 cmp = BTRFS_COMPARE_TREE_SAME; 5342 ret = changed_cb(left_root, right_root, 5343 left_path, right_path, 5344 &left_key, cmp, ctx); 5345 if (ret < 0) 5346 goto out; 5347 advance_left = ADVANCE; 5348 advance_right = ADVANCE; 5349 } 5350 } else if (left_level == right_level) { 5351 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5352 if (cmp < 0) { 5353 advance_left = ADVANCE; 5354 } else if (cmp > 0) { 5355 advance_right = ADVANCE; 5356 } else { 5357 left_blockptr = btrfs_node_blockptr( 5358 left_path->nodes[left_level], 5359 left_path->slots[left_level]); 5360 right_blockptr = btrfs_node_blockptr( 5361 right_path->nodes[right_level], 5362 right_path->slots[right_level]); 5363 if (left_blockptr == right_blockptr) { 5364 /* 5365 * As we're on a shared block, don't 5366 * allow to go deeper. 5367 */ 5368 advance_left = ADVANCE_ONLY_NEXT; 5369 advance_right = ADVANCE_ONLY_NEXT; 5370 } else { 5371 advance_left = ADVANCE; 5372 advance_right = ADVANCE; 5373 } 5374 } 5375 } else if (left_level < right_level) { 5376 advance_right = ADVANCE; 5377 } else { 5378 advance_left = ADVANCE; 5379 } 5380 } 5381 5382 out: 5383 btrfs_free_path(left_path); 5384 btrfs_free_path(right_path); 5385 kfree(tmp_buf); 5386 5387 if (trans) { 5388 if (!ret) 5389 ret = btrfs_end_transaction(trans, left_root); 5390 else 5391 btrfs_end_transaction(trans, left_root); 5392 } 5393 5394 return ret; 5395 } 5396 5397 /* 5398 * this is similar to btrfs_next_leaf, but does not try to preserve 5399 * and fixup the path. It looks for and returns the next key in the 5400 * tree based on the current path and the min_trans parameters. 5401 * 5402 * 0 is returned if another key is found, < 0 if there are any errors 5403 * and 1 is returned if there are no higher keys in the tree 5404 * 5405 * path->keep_locks should be set to 1 on the search made before 5406 * calling this function. 5407 */ 5408 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5409 struct btrfs_key *key, int level, u64 min_trans) 5410 { 5411 int slot; 5412 struct extent_buffer *c; 5413 5414 WARN_ON(!path->keep_locks); 5415 while (level < BTRFS_MAX_LEVEL) { 5416 if (!path->nodes[level]) 5417 return 1; 5418 5419 slot = path->slots[level] + 1; 5420 c = path->nodes[level]; 5421 next: 5422 if (slot >= btrfs_header_nritems(c)) { 5423 int ret; 5424 int orig_lowest; 5425 struct btrfs_key cur_key; 5426 if (level + 1 >= BTRFS_MAX_LEVEL || 5427 !path->nodes[level + 1]) 5428 return 1; 5429 5430 if (path->locks[level + 1]) { 5431 level++; 5432 continue; 5433 } 5434 5435 slot = btrfs_header_nritems(c) - 1; 5436 if (level == 0) 5437 btrfs_item_key_to_cpu(c, &cur_key, slot); 5438 else 5439 btrfs_node_key_to_cpu(c, &cur_key, slot); 5440 5441 orig_lowest = path->lowest_level; 5442 btrfs_release_path(path); 5443 path->lowest_level = level; 5444 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5445 0, 0); 5446 path->lowest_level = orig_lowest; 5447 if (ret < 0) 5448 return ret; 5449 5450 c = path->nodes[level]; 5451 slot = path->slots[level]; 5452 if (ret == 0) 5453 slot++; 5454 goto next; 5455 } 5456 5457 if (level == 0) 5458 btrfs_item_key_to_cpu(c, key, slot); 5459 else { 5460 u64 gen = btrfs_node_ptr_generation(c, slot); 5461 5462 if (gen < min_trans) { 5463 slot++; 5464 goto next; 5465 } 5466 btrfs_node_key_to_cpu(c, key, slot); 5467 } 5468 return 0; 5469 } 5470 return 1; 5471 } 5472 5473 /* 5474 * search the tree again to find a leaf with greater keys 5475 * returns 0 if it found something or 1 if there are no greater leaves. 5476 * returns < 0 on io errors. 5477 */ 5478 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5479 { 5480 return btrfs_next_old_leaf(root, path, 0); 5481 } 5482 5483 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5484 u64 time_seq) 5485 { 5486 int slot; 5487 int level; 5488 struct extent_buffer *c; 5489 struct extent_buffer *next; 5490 struct btrfs_key key; 5491 u32 nritems; 5492 int ret; 5493 int old_spinning = path->leave_spinning; 5494 int next_rw_lock = 0; 5495 5496 nritems = btrfs_header_nritems(path->nodes[0]); 5497 if (nritems == 0) 5498 return 1; 5499 5500 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5501 again: 5502 level = 1; 5503 next = NULL; 5504 next_rw_lock = 0; 5505 btrfs_release_path(path); 5506 5507 path->keep_locks = 1; 5508 path->leave_spinning = 1; 5509 5510 if (time_seq) 5511 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5512 else 5513 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5514 path->keep_locks = 0; 5515 5516 if (ret < 0) 5517 return ret; 5518 5519 nritems = btrfs_header_nritems(path->nodes[0]); 5520 /* 5521 * by releasing the path above we dropped all our locks. A balance 5522 * could have added more items next to the key that used to be 5523 * at the very end of the block. So, check again here and 5524 * advance the path if there are now more items available. 5525 */ 5526 if (nritems > 0 && path->slots[0] < nritems - 1) { 5527 if (ret == 0) 5528 path->slots[0]++; 5529 ret = 0; 5530 goto done; 5531 } 5532 5533 while (level < BTRFS_MAX_LEVEL) { 5534 if (!path->nodes[level]) { 5535 ret = 1; 5536 goto done; 5537 } 5538 5539 slot = path->slots[level] + 1; 5540 c = path->nodes[level]; 5541 if (slot >= btrfs_header_nritems(c)) { 5542 level++; 5543 if (level == BTRFS_MAX_LEVEL) { 5544 ret = 1; 5545 goto done; 5546 } 5547 continue; 5548 } 5549 5550 if (next) { 5551 btrfs_tree_unlock_rw(next, next_rw_lock); 5552 free_extent_buffer(next); 5553 } 5554 5555 next = c; 5556 next_rw_lock = path->locks[level]; 5557 ret = read_block_for_search(NULL, root, path, &next, level, 5558 slot, &key, 0); 5559 if (ret == -EAGAIN) 5560 goto again; 5561 5562 if (ret < 0) { 5563 btrfs_release_path(path); 5564 goto done; 5565 } 5566 5567 if (!path->skip_locking) { 5568 ret = btrfs_try_tree_read_lock(next); 5569 if (!ret && time_seq) { 5570 /* 5571 * If we don't get the lock, we may be racing 5572 * with push_leaf_left, holding that lock while 5573 * itself waiting for the leaf we've currently 5574 * locked. To solve this situation, we give up 5575 * on our lock and cycle. 5576 */ 5577 free_extent_buffer(next); 5578 btrfs_release_path(path); 5579 cond_resched(); 5580 goto again; 5581 } 5582 if (!ret) { 5583 btrfs_set_path_blocking(path); 5584 btrfs_tree_read_lock(next); 5585 btrfs_clear_path_blocking(path, next, 5586 BTRFS_READ_LOCK); 5587 } 5588 next_rw_lock = BTRFS_READ_LOCK; 5589 } 5590 break; 5591 } 5592 path->slots[level] = slot; 5593 while (1) { 5594 level--; 5595 c = path->nodes[level]; 5596 if (path->locks[level]) 5597 btrfs_tree_unlock_rw(c, path->locks[level]); 5598 5599 free_extent_buffer(c); 5600 path->nodes[level] = next; 5601 path->slots[level] = 0; 5602 if (!path->skip_locking) 5603 path->locks[level] = next_rw_lock; 5604 if (!level) 5605 break; 5606 5607 ret = read_block_for_search(NULL, root, path, &next, level, 5608 0, &key, 0); 5609 if (ret == -EAGAIN) 5610 goto again; 5611 5612 if (ret < 0) { 5613 btrfs_release_path(path); 5614 goto done; 5615 } 5616 5617 if (!path->skip_locking) { 5618 ret = btrfs_try_tree_read_lock(next); 5619 if (!ret) { 5620 btrfs_set_path_blocking(path); 5621 btrfs_tree_read_lock(next); 5622 btrfs_clear_path_blocking(path, next, 5623 BTRFS_READ_LOCK); 5624 } 5625 next_rw_lock = BTRFS_READ_LOCK; 5626 } 5627 } 5628 ret = 0; 5629 done: 5630 unlock_up(path, 0, 1, 0, NULL); 5631 path->leave_spinning = old_spinning; 5632 if (!old_spinning) 5633 btrfs_set_path_blocking(path); 5634 5635 return ret; 5636 } 5637 5638 /* 5639 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5640 * searching until it gets past min_objectid or finds an item of 'type' 5641 * 5642 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5643 */ 5644 int btrfs_previous_item(struct btrfs_root *root, 5645 struct btrfs_path *path, u64 min_objectid, 5646 int type) 5647 { 5648 struct btrfs_key found_key; 5649 struct extent_buffer *leaf; 5650 u32 nritems; 5651 int ret; 5652 5653 while (1) { 5654 if (path->slots[0] == 0) { 5655 btrfs_set_path_blocking(path); 5656 ret = btrfs_prev_leaf(root, path); 5657 if (ret != 0) 5658 return ret; 5659 } else { 5660 path->slots[0]--; 5661 } 5662 leaf = path->nodes[0]; 5663 nritems = btrfs_header_nritems(leaf); 5664 if (nritems == 0) 5665 return 1; 5666 if (path->slots[0] == nritems) 5667 path->slots[0]--; 5668 5669 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5670 if (found_key.objectid < min_objectid) 5671 break; 5672 if (found_key.type == type) 5673 return 0; 5674 if (found_key.objectid == min_objectid && 5675 found_key.type < type) 5676 break; 5677 } 5678 return 1; 5679 } 5680