1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 17 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 18 *root, struct btrfs_path *path, int level); 19 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 20 const struct btrfs_key *ins_key, struct btrfs_path *path, 21 int data_size, int extend); 22 static int push_node_left(struct btrfs_trans_handle *trans, 23 struct btrfs_fs_info *fs_info, 24 struct extent_buffer *dst, 25 struct extent_buffer *src, int empty); 26 static int balance_node_right(struct btrfs_trans_handle *trans, 27 struct btrfs_fs_info *fs_info, 28 struct extent_buffer *dst_buf, 29 struct extent_buffer *src_buf); 30 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 31 int level, int slot); 32 33 struct btrfs_path *btrfs_alloc_path(void) 34 { 35 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 36 } 37 38 /* 39 * set all locked nodes in the path to blocking locks. This should 40 * be done before scheduling 41 */ 42 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 43 { 44 int i; 45 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 46 if (!p->nodes[i] || !p->locks[i]) 47 continue; 48 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 49 if (p->locks[i] == BTRFS_READ_LOCK) 50 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 51 else if (p->locks[i] == BTRFS_WRITE_LOCK) 52 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 53 } 54 } 55 56 /* this also releases the path */ 57 void btrfs_free_path(struct btrfs_path *p) 58 { 59 if (!p) 60 return; 61 btrfs_release_path(p); 62 kmem_cache_free(btrfs_path_cachep, p); 63 } 64 65 /* 66 * path release drops references on the extent buffers in the path 67 * and it drops any locks held by this path 68 * 69 * It is safe to call this on paths that no locks or extent buffers held. 70 */ 71 noinline void btrfs_release_path(struct btrfs_path *p) 72 { 73 int i; 74 75 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 76 p->slots[i] = 0; 77 if (!p->nodes[i]) 78 continue; 79 if (p->locks[i]) { 80 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 81 p->locks[i] = 0; 82 } 83 free_extent_buffer(p->nodes[i]); 84 p->nodes[i] = NULL; 85 } 86 } 87 88 /* 89 * safely gets a reference on the root node of a tree. A lock 90 * is not taken, so a concurrent writer may put a different node 91 * at the root of the tree. See btrfs_lock_root_node for the 92 * looping required. 93 * 94 * The extent buffer returned by this has a reference taken, so 95 * it won't disappear. It may stop being the root of the tree 96 * at any time because there are no locks held. 97 */ 98 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 99 { 100 struct extent_buffer *eb; 101 102 while (1) { 103 rcu_read_lock(); 104 eb = rcu_dereference(root->node); 105 106 /* 107 * RCU really hurts here, we could free up the root node because 108 * it was COWed but we may not get the new root node yet so do 109 * the inc_not_zero dance and if it doesn't work then 110 * synchronize_rcu and try again. 111 */ 112 if (atomic_inc_not_zero(&eb->refs)) { 113 rcu_read_unlock(); 114 break; 115 } 116 rcu_read_unlock(); 117 synchronize_rcu(); 118 } 119 return eb; 120 } 121 122 /* loop around taking references on and locking the root node of the 123 * tree until you end up with a lock on the root. A locked buffer 124 * is returned, with a reference held. 125 */ 126 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 127 { 128 struct extent_buffer *eb; 129 130 while (1) { 131 eb = btrfs_root_node(root); 132 btrfs_tree_lock(eb); 133 if (eb == root->node) 134 break; 135 btrfs_tree_unlock(eb); 136 free_extent_buffer(eb); 137 } 138 return eb; 139 } 140 141 /* loop around taking references on and locking the root node of the 142 * tree until you end up with a lock on the root. A locked buffer 143 * is returned, with a reference held. 144 */ 145 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 146 { 147 struct extent_buffer *eb; 148 149 while (1) { 150 eb = btrfs_root_node(root); 151 btrfs_tree_read_lock(eb); 152 if (eb == root->node) 153 break; 154 btrfs_tree_read_unlock(eb); 155 free_extent_buffer(eb); 156 } 157 return eb; 158 } 159 160 /* cowonly root (everything not a reference counted cow subvolume), just get 161 * put onto a simple dirty list. transaction.c walks this to make sure they 162 * get properly updated on disk. 163 */ 164 static void add_root_to_dirty_list(struct btrfs_root *root) 165 { 166 struct btrfs_fs_info *fs_info = root->fs_info; 167 168 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 169 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 170 return; 171 172 spin_lock(&fs_info->trans_lock); 173 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 174 /* Want the extent tree to be the last on the list */ 175 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 176 list_move_tail(&root->dirty_list, 177 &fs_info->dirty_cowonly_roots); 178 else 179 list_move(&root->dirty_list, 180 &fs_info->dirty_cowonly_roots); 181 } 182 spin_unlock(&fs_info->trans_lock); 183 } 184 185 /* 186 * used by snapshot creation to make a copy of a root for a tree with 187 * a given objectid. The buffer with the new root node is returned in 188 * cow_ret, and this func returns zero on success or a negative error code. 189 */ 190 int btrfs_copy_root(struct btrfs_trans_handle *trans, 191 struct btrfs_root *root, 192 struct extent_buffer *buf, 193 struct extent_buffer **cow_ret, u64 new_root_objectid) 194 { 195 struct btrfs_fs_info *fs_info = root->fs_info; 196 struct extent_buffer *cow; 197 int ret = 0; 198 int level; 199 struct btrfs_disk_key disk_key; 200 201 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 202 trans->transid != fs_info->running_transaction->transid); 203 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 204 trans->transid != root->last_trans); 205 206 level = btrfs_header_level(buf); 207 if (level == 0) 208 btrfs_item_key(buf, &disk_key, 0); 209 else 210 btrfs_node_key(buf, &disk_key, 0); 211 212 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 213 &disk_key, level, buf->start, 0); 214 if (IS_ERR(cow)) 215 return PTR_ERR(cow); 216 217 copy_extent_buffer_full(cow, buf); 218 btrfs_set_header_bytenr(cow, cow->start); 219 btrfs_set_header_generation(cow, trans->transid); 220 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 221 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 222 BTRFS_HEADER_FLAG_RELOC); 223 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 224 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 225 else 226 btrfs_set_header_owner(cow, new_root_objectid); 227 228 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 229 230 WARN_ON(btrfs_header_generation(buf) > trans->transid); 231 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 232 ret = btrfs_inc_ref(trans, root, cow, 1); 233 else 234 ret = btrfs_inc_ref(trans, root, cow, 0); 235 236 if (ret) 237 return ret; 238 239 btrfs_mark_buffer_dirty(cow); 240 *cow_ret = cow; 241 return 0; 242 } 243 244 enum mod_log_op { 245 MOD_LOG_KEY_REPLACE, 246 MOD_LOG_KEY_ADD, 247 MOD_LOG_KEY_REMOVE, 248 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 249 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 250 MOD_LOG_MOVE_KEYS, 251 MOD_LOG_ROOT_REPLACE, 252 }; 253 254 struct tree_mod_root { 255 u64 logical; 256 u8 level; 257 }; 258 259 struct tree_mod_elem { 260 struct rb_node node; 261 u64 logical; 262 u64 seq; 263 enum mod_log_op op; 264 265 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 266 int slot; 267 268 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 269 u64 generation; 270 271 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 272 struct btrfs_disk_key key; 273 u64 blockptr; 274 275 /* this is used for op == MOD_LOG_MOVE_KEYS */ 276 struct { 277 int dst_slot; 278 int nr_items; 279 } move; 280 281 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 282 struct tree_mod_root old_root; 283 }; 284 285 /* 286 * Pull a new tree mod seq number for our operation. 287 */ 288 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 289 { 290 return atomic64_inc_return(&fs_info->tree_mod_seq); 291 } 292 293 /* 294 * This adds a new blocker to the tree mod log's blocker list if the @elem 295 * passed does not already have a sequence number set. So when a caller expects 296 * to record tree modifications, it should ensure to set elem->seq to zero 297 * before calling btrfs_get_tree_mod_seq. 298 * Returns a fresh, unused tree log modification sequence number, even if no new 299 * blocker was added. 300 */ 301 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 302 struct seq_list *elem) 303 { 304 write_lock(&fs_info->tree_mod_log_lock); 305 spin_lock(&fs_info->tree_mod_seq_lock); 306 if (!elem->seq) { 307 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 308 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 309 } 310 spin_unlock(&fs_info->tree_mod_seq_lock); 311 write_unlock(&fs_info->tree_mod_log_lock); 312 313 return elem->seq; 314 } 315 316 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 317 struct seq_list *elem) 318 { 319 struct rb_root *tm_root; 320 struct rb_node *node; 321 struct rb_node *next; 322 struct seq_list *cur_elem; 323 struct tree_mod_elem *tm; 324 u64 min_seq = (u64)-1; 325 u64 seq_putting = elem->seq; 326 327 if (!seq_putting) 328 return; 329 330 spin_lock(&fs_info->tree_mod_seq_lock); 331 list_del(&elem->list); 332 elem->seq = 0; 333 334 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 335 if (cur_elem->seq < min_seq) { 336 if (seq_putting > cur_elem->seq) { 337 /* 338 * blocker with lower sequence number exists, we 339 * cannot remove anything from the log 340 */ 341 spin_unlock(&fs_info->tree_mod_seq_lock); 342 return; 343 } 344 min_seq = cur_elem->seq; 345 } 346 } 347 spin_unlock(&fs_info->tree_mod_seq_lock); 348 349 /* 350 * anything that's lower than the lowest existing (read: blocked) 351 * sequence number can be removed from the tree. 352 */ 353 write_lock(&fs_info->tree_mod_log_lock); 354 tm_root = &fs_info->tree_mod_log; 355 for (node = rb_first(tm_root); node; node = next) { 356 next = rb_next(node); 357 tm = rb_entry(node, struct tree_mod_elem, node); 358 if (tm->seq > min_seq) 359 continue; 360 rb_erase(node, tm_root); 361 kfree(tm); 362 } 363 write_unlock(&fs_info->tree_mod_log_lock); 364 } 365 366 /* 367 * key order of the log: 368 * node/leaf start address -> sequence 369 * 370 * The 'start address' is the logical address of the *new* root node 371 * for root replace operations, or the logical address of the affected 372 * block for all other operations. 373 * 374 * Note: must be called with write lock for fs_info::tree_mod_log_lock. 375 */ 376 static noinline int 377 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 378 { 379 struct rb_root *tm_root; 380 struct rb_node **new; 381 struct rb_node *parent = NULL; 382 struct tree_mod_elem *cur; 383 384 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 385 386 tm_root = &fs_info->tree_mod_log; 387 new = &tm_root->rb_node; 388 while (*new) { 389 cur = rb_entry(*new, struct tree_mod_elem, node); 390 parent = *new; 391 if (cur->logical < tm->logical) 392 new = &((*new)->rb_left); 393 else if (cur->logical > tm->logical) 394 new = &((*new)->rb_right); 395 else if (cur->seq < tm->seq) 396 new = &((*new)->rb_left); 397 else if (cur->seq > tm->seq) 398 new = &((*new)->rb_right); 399 else 400 return -EEXIST; 401 } 402 403 rb_link_node(&tm->node, parent, new); 404 rb_insert_color(&tm->node, tm_root); 405 return 0; 406 } 407 408 /* 409 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 410 * returns zero with the tree_mod_log_lock acquired. The caller must hold 411 * this until all tree mod log insertions are recorded in the rb tree and then 412 * write unlock fs_info::tree_mod_log_lock. 413 */ 414 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 415 struct extent_buffer *eb) { 416 smp_mb(); 417 if (list_empty(&(fs_info)->tree_mod_seq_list)) 418 return 1; 419 if (eb && btrfs_header_level(eb) == 0) 420 return 1; 421 422 write_lock(&fs_info->tree_mod_log_lock); 423 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 424 write_unlock(&fs_info->tree_mod_log_lock); 425 return 1; 426 } 427 428 return 0; 429 } 430 431 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 432 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 433 struct extent_buffer *eb) 434 { 435 smp_mb(); 436 if (list_empty(&(fs_info)->tree_mod_seq_list)) 437 return 0; 438 if (eb && btrfs_header_level(eb) == 0) 439 return 0; 440 441 return 1; 442 } 443 444 static struct tree_mod_elem * 445 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 446 enum mod_log_op op, gfp_t flags) 447 { 448 struct tree_mod_elem *tm; 449 450 tm = kzalloc(sizeof(*tm), flags); 451 if (!tm) 452 return NULL; 453 454 tm->logical = eb->start; 455 if (op != MOD_LOG_KEY_ADD) { 456 btrfs_node_key(eb, &tm->key, slot); 457 tm->blockptr = btrfs_node_blockptr(eb, slot); 458 } 459 tm->op = op; 460 tm->slot = slot; 461 tm->generation = btrfs_node_ptr_generation(eb, slot); 462 RB_CLEAR_NODE(&tm->node); 463 464 return tm; 465 } 466 467 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 468 enum mod_log_op op, gfp_t flags) 469 { 470 struct tree_mod_elem *tm; 471 int ret; 472 473 if (!tree_mod_need_log(eb->fs_info, eb)) 474 return 0; 475 476 tm = alloc_tree_mod_elem(eb, slot, op, flags); 477 if (!tm) 478 return -ENOMEM; 479 480 if (tree_mod_dont_log(eb->fs_info, eb)) { 481 kfree(tm); 482 return 0; 483 } 484 485 ret = __tree_mod_log_insert(eb->fs_info, tm); 486 write_unlock(&eb->fs_info->tree_mod_log_lock); 487 if (ret) 488 kfree(tm); 489 490 return ret; 491 } 492 493 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 494 int dst_slot, int src_slot, int nr_items) 495 { 496 struct tree_mod_elem *tm = NULL; 497 struct tree_mod_elem **tm_list = NULL; 498 int ret = 0; 499 int i; 500 int locked = 0; 501 502 if (!tree_mod_need_log(eb->fs_info, eb)) 503 return 0; 504 505 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 506 if (!tm_list) 507 return -ENOMEM; 508 509 tm = kzalloc(sizeof(*tm), GFP_NOFS); 510 if (!tm) { 511 ret = -ENOMEM; 512 goto free_tms; 513 } 514 515 tm->logical = eb->start; 516 tm->slot = src_slot; 517 tm->move.dst_slot = dst_slot; 518 tm->move.nr_items = nr_items; 519 tm->op = MOD_LOG_MOVE_KEYS; 520 521 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 522 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 523 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 524 if (!tm_list[i]) { 525 ret = -ENOMEM; 526 goto free_tms; 527 } 528 } 529 530 if (tree_mod_dont_log(eb->fs_info, eb)) 531 goto free_tms; 532 locked = 1; 533 534 /* 535 * When we override something during the move, we log these removals. 536 * This can only happen when we move towards the beginning of the 537 * buffer, i.e. dst_slot < src_slot. 538 */ 539 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 540 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 541 if (ret) 542 goto free_tms; 543 } 544 545 ret = __tree_mod_log_insert(eb->fs_info, tm); 546 if (ret) 547 goto free_tms; 548 write_unlock(&eb->fs_info->tree_mod_log_lock); 549 kfree(tm_list); 550 551 return 0; 552 free_tms: 553 for (i = 0; i < nr_items; i++) { 554 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 555 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 556 kfree(tm_list[i]); 557 } 558 if (locked) 559 write_unlock(&eb->fs_info->tree_mod_log_lock); 560 kfree(tm_list); 561 kfree(tm); 562 563 return ret; 564 } 565 566 static inline int 567 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 568 struct tree_mod_elem **tm_list, 569 int nritems) 570 { 571 int i, j; 572 int ret; 573 574 for (i = nritems - 1; i >= 0; i--) { 575 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 576 if (ret) { 577 for (j = nritems - 1; j > i; j--) 578 rb_erase(&tm_list[j]->node, 579 &fs_info->tree_mod_log); 580 return ret; 581 } 582 } 583 584 return 0; 585 } 586 587 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 588 struct extent_buffer *new_root, int log_removal) 589 { 590 struct btrfs_fs_info *fs_info = old_root->fs_info; 591 struct tree_mod_elem *tm = NULL; 592 struct tree_mod_elem **tm_list = NULL; 593 int nritems = 0; 594 int ret = 0; 595 int i; 596 597 if (!tree_mod_need_log(fs_info, NULL)) 598 return 0; 599 600 if (log_removal && btrfs_header_level(old_root) > 0) { 601 nritems = btrfs_header_nritems(old_root); 602 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 603 GFP_NOFS); 604 if (!tm_list) { 605 ret = -ENOMEM; 606 goto free_tms; 607 } 608 for (i = 0; i < nritems; i++) { 609 tm_list[i] = alloc_tree_mod_elem(old_root, i, 610 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 611 if (!tm_list[i]) { 612 ret = -ENOMEM; 613 goto free_tms; 614 } 615 } 616 } 617 618 tm = kzalloc(sizeof(*tm), GFP_NOFS); 619 if (!tm) { 620 ret = -ENOMEM; 621 goto free_tms; 622 } 623 624 tm->logical = new_root->start; 625 tm->old_root.logical = old_root->start; 626 tm->old_root.level = btrfs_header_level(old_root); 627 tm->generation = btrfs_header_generation(old_root); 628 tm->op = MOD_LOG_ROOT_REPLACE; 629 630 if (tree_mod_dont_log(fs_info, NULL)) 631 goto free_tms; 632 633 if (tm_list) 634 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 635 if (!ret) 636 ret = __tree_mod_log_insert(fs_info, tm); 637 638 write_unlock(&fs_info->tree_mod_log_lock); 639 if (ret) 640 goto free_tms; 641 kfree(tm_list); 642 643 return ret; 644 645 free_tms: 646 if (tm_list) { 647 for (i = 0; i < nritems; i++) 648 kfree(tm_list[i]); 649 kfree(tm_list); 650 } 651 kfree(tm); 652 653 return ret; 654 } 655 656 static struct tree_mod_elem * 657 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 658 int smallest) 659 { 660 struct rb_root *tm_root; 661 struct rb_node *node; 662 struct tree_mod_elem *cur = NULL; 663 struct tree_mod_elem *found = NULL; 664 665 read_lock(&fs_info->tree_mod_log_lock); 666 tm_root = &fs_info->tree_mod_log; 667 node = tm_root->rb_node; 668 while (node) { 669 cur = rb_entry(node, struct tree_mod_elem, node); 670 if (cur->logical < start) { 671 node = node->rb_left; 672 } else if (cur->logical > start) { 673 node = node->rb_right; 674 } else if (cur->seq < min_seq) { 675 node = node->rb_left; 676 } else if (!smallest) { 677 /* we want the node with the highest seq */ 678 if (found) 679 BUG_ON(found->seq > cur->seq); 680 found = cur; 681 node = node->rb_left; 682 } else if (cur->seq > min_seq) { 683 /* we want the node with the smallest seq */ 684 if (found) 685 BUG_ON(found->seq < cur->seq); 686 found = cur; 687 node = node->rb_right; 688 } else { 689 found = cur; 690 break; 691 } 692 } 693 read_unlock(&fs_info->tree_mod_log_lock); 694 695 return found; 696 } 697 698 /* 699 * this returns the element from the log with the smallest time sequence 700 * value that's in the log (the oldest log item). any element with a time 701 * sequence lower than min_seq will be ignored. 702 */ 703 static struct tree_mod_elem * 704 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 705 u64 min_seq) 706 { 707 return __tree_mod_log_search(fs_info, start, min_seq, 1); 708 } 709 710 /* 711 * this returns the element from the log with the largest time sequence 712 * value that's in the log (the most recent log item). any element with 713 * a time sequence lower than min_seq will be ignored. 714 */ 715 static struct tree_mod_elem * 716 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 717 { 718 return __tree_mod_log_search(fs_info, start, min_seq, 0); 719 } 720 721 static noinline int 722 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 723 struct extent_buffer *src, unsigned long dst_offset, 724 unsigned long src_offset, int nr_items) 725 { 726 int ret = 0; 727 struct tree_mod_elem **tm_list = NULL; 728 struct tree_mod_elem **tm_list_add, **tm_list_rem; 729 int i; 730 int locked = 0; 731 732 if (!tree_mod_need_log(fs_info, NULL)) 733 return 0; 734 735 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 736 return 0; 737 738 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 739 GFP_NOFS); 740 if (!tm_list) 741 return -ENOMEM; 742 743 tm_list_add = tm_list; 744 tm_list_rem = tm_list + nr_items; 745 for (i = 0; i < nr_items; i++) { 746 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 747 MOD_LOG_KEY_REMOVE, GFP_NOFS); 748 if (!tm_list_rem[i]) { 749 ret = -ENOMEM; 750 goto free_tms; 751 } 752 753 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 754 MOD_LOG_KEY_ADD, GFP_NOFS); 755 if (!tm_list_add[i]) { 756 ret = -ENOMEM; 757 goto free_tms; 758 } 759 } 760 761 if (tree_mod_dont_log(fs_info, NULL)) 762 goto free_tms; 763 locked = 1; 764 765 for (i = 0; i < nr_items; i++) { 766 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 767 if (ret) 768 goto free_tms; 769 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 770 if (ret) 771 goto free_tms; 772 } 773 774 write_unlock(&fs_info->tree_mod_log_lock); 775 kfree(tm_list); 776 777 return 0; 778 779 free_tms: 780 for (i = 0; i < nr_items * 2; i++) { 781 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 782 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 783 kfree(tm_list[i]); 784 } 785 if (locked) 786 write_unlock(&fs_info->tree_mod_log_lock); 787 kfree(tm_list); 788 789 return ret; 790 } 791 792 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 793 { 794 struct tree_mod_elem **tm_list = NULL; 795 int nritems = 0; 796 int i; 797 int ret = 0; 798 799 if (btrfs_header_level(eb) == 0) 800 return 0; 801 802 if (!tree_mod_need_log(eb->fs_info, NULL)) 803 return 0; 804 805 nritems = btrfs_header_nritems(eb); 806 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 807 if (!tm_list) 808 return -ENOMEM; 809 810 for (i = 0; i < nritems; i++) { 811 tm_list[i] = alloc_tree_mod_elem(eb, i, 812 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 813 if (!tm_list[i]) { 814 ret = -ENOMEM; 815 goto free_tms; 816 } 817 } 818 819 if (tree_mod_dont_log(eb->fs_info, eb)) 820 goto free_tms; 821 822 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 823 write_unlock(&eb->fs_info->tree_mod_log_lock); 824 if (ret) 825 goto free_tms; 826 kfree(tm_list); 827 828 return 0; 829 830 free_tms: 831 for (i = 0; i < nritems; i++) 832 kfree(tm_list[i]); 833 kfree(tm_list); 834 835 return ret; 836 } 837 838 /* 839 * check if the tree block can be shared by multiple trees 840 */ 841 int btrfs_block_can_be_shared(struct btrfs_root *root, 842 struct extent_buffer *buf) 843 { 844 /* 845 * Tree blocks not in reference counted trees and tree roots 846 * are never shared. If a block was allocated after the last 847 * snapshot and the block was not allocated by tree relocation, 848 * we know the block is not shared. 849 */ 850 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 851 buf != root->node && buf != root->commit_root && 852 (btrfs_header_generation(buf) <= 853 btrfs_root_last_snapshot(&root->root_item) || 854 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 855 return 1; 856 857 return 0; 858 } 859 860 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 861 struct btrfs_root *root, 862 struct extent_buffer *buf, 863 struct extent_buffer *cow, 864 int *last_ref) 865 { 866 struct btrfs_fs_info *fs_info = root->fs_info; 867 u64 refs; 868 u64 owner; 869 u64 flags; 870 u64 new_flags = 0; 871 int ret; 872 873 /* 874 * Backrefs update rules: 875 * 876 * Always use full backrefs for extent pointers in tree block 877 * allocated by tree relocation. 878 * 879 * If a shared tree block is no longer referenced by its owner 880 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 881 * use full backrefs for extent pointers in tree block. 882 * 883 * If a tree block is been relocating 884 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 885 * use full backrefs for extent pointers in tree block. 886 * The reason for this is some operations (such as drop tree) 887 * are only allowed for blocks use full backrefs. 888 */ 889 890 if (btrfs_block_can_be_shared(root, buf)) { 891 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 892 btrfs_header_level(buf), 1, 893 &refs, &flags); 894 if (ret) 895 return ret; 896 if (refs == 0) { 897 ret = -EROFS; 898 btrfs_handle_fs_error(fs_info, ret, NULL); 899 return ret; 900 } 901 } else { 902 refs = 1; 903 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 904 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 905 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 906 else 907 flags = 0; 908 } 909 910 owner = btrfs_header_owner(buf); 911 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 912 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 913 914 if (refs > 1) { 915 if ((owner == root->root_key.objectid || 916 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 917 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 918 ret = btrfs_inc_ref(trans, root, buf, 1); 919 if (ret) 920 return ret; 921 922 if (root->root_key.objectid == 923 BTRFS_TREE_RELOC_OBJECTID) { 924 ret = btrfs_dec_ref(trans, root, buf, 0); 925 if (ret) 926 return ret; 927 ret = btrfs_inc_ref(trans, root, cow, 1); 928 if (ret) 929 return ret; 930 } 931 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 932 } else { 933 934 if (root->root_key.objectid == 935 BTRFS_TREE_RELOC_OBJECTID) 936 ret = btrfs_inc_ref(trans, root, cow, 1); 937 else 938 ret = btrfs_inc_ref(trans, root, cow, 0); 939 if (ret) 940 return ret; 941 } 942 if (new_flags != 0) { 943 int level = btrfs_header_level(buf); 944 945 ret = btrfs_set_disk_extent_flags(trans, fs_info, 946 buf->start, 947 buf->len, 948 new_flags, level, 0); 949 if (ret) 950 return ret; 951 } 952 } else { 953 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 954 if (root->root_key.objectid == 955 BTRFS_TREE_RELOC_OBJECTID) 956 ret = btrfs_inc_ref(trans, root, cow, 1); 957 else 958 ret = btrfs_inc_ref(trans, root, cow, 0); 959 if (ret) 960 return ret; 961 ret = btrfs_dec_ref(trans, root, buf, 1); 962 if (ret) 963 return ret; 964 } 965 clean_tree_block(fs_info, buf); 966 *last_ref = 1; 967 } 968 return 0; 969 } 970 971 /* 972 * does the dirty work in cow of a single block. The parent block (if 973 * supplied) is updated to point to the new cow copy. The new buffer is marked 974 * dirty and returned locked. If you modify the block it needs to be marked 975 * dirty again. 976 * 977 * search_start -- an allocation hint for the new block 978 * 979 * empty_size -- a hint that you plan on doing more cow. This is the size in 980 * bytes the allocator should try to find free next to the block it returns. 981 * This is just a hint and may be ignored by the allocator. 982 */ 983 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 984 struct btrfs_root *root, 985 struct extent_buffer *buf, 986 struct extent_buffer *parent, int parent_slot, 987 struct extent_buffer **cow_ret, 988 u64 search_start, u64 empty_size) 989 { 990 struct btrfs_fs_info *fs_info = root->fs_info; 991 struct btrfs_disk_key disk_key; 992 struct extent_buffer *cow; 993 int level, ret; 994 int last_ref = 0; 995 int unlock_orig = 0; 996 u64 parent_start = 0; 997 998 if (*cow_ret == buf) 999 unlock_orig = 1; 1000 1001 btrfs_assert_tree_locked(buf); 1002 1003 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1004 trans->transid != fs_info->running_transaction->transid); 1005 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1006 trans->transid != root->last_trans); 1007 1008 level = btrfs_header_level(buf); 1009 1010 if (level == 0) 1011 btrfs_item_key(buf, &disk_key, 0); 1012 else 1013 btrfs_node_key(buf, &disk_key, 0); 1014 1015 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1016 parent_start = parent->start; 1017 1018 /* 1019 * If we are COWing a node/leaf from the extent, chunk or device trees, 1020 * make sure that we do not finish block group creation of pending block 1021 * groups. We do this to avoid a deadlock. 1022 * COWing can result in allocation of a new chunk, and flushing pending 1023 * block groups (btrfs_create_pending_block_groups()) can be triggered 1024 * when finishing allocation of a new chunk. Creation of a pending block 1025 * group modifies the extent, chunk and device trees, therefore we could 1026 * deadlock with ourselves since we are holding a lock on an extent 1027 * buffer that btrfs_create_pending_block_groups() may try to COW later. 1028 */ 1029 if (root == fs_info->extent_root || 1030 root == fs_info->chunk_root || 1031 root == fs_info->dev_root) 1032 trans->can_flush_pending_bgs = false; 1033 1034 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1035 root->root_key.objectid, &disk_key, level, 1036 search_start, empty_size); 1037 trans->can_flush_pending_bgs = true; 1038 if (IS_ERR(cow)) 1039 return PTR_ERR(cow); 1040 1041 /* cow is set to blocking by btrfs_init_new_buffer */ 1042 1043 copy_extent_buffer_full(cow, buf); 1044 btrfs_set_header_bytenr(cow, cow->start); 1045 btrfs_set_header_generation(cow, trans->transid); 1046 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1047 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1048 BTRFS_HEADER_FLAG_RELOC); 1049 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1050 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1051 else 1052 btrfs_set_header_owner(cow, root->root_key.objectid); 1053 1054 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1055 1056 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1057 if (ret) { 1058 btrfs_abort_transaction(trans, ret); 1059 return ret; 1060 } 1061 1062 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1063 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1064 if (ret) { 1065 btrfs_abort_transaction(trans, ret); 1066 return ret; 1067 } 1068 } 1069 1070 if (buf == root->node) { 1071 WARN_ON(parent && parent != buf); 1072 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1073 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1074 parent_start = buf->start; 1075 1076 extent_buffer_get(cow); 1077 ret = tree_mod_log_insert_root(root->node, cow, 1); 1078 BUG_ON(ret < 0); 1079 rcu_assign_pointer(root->node, cow); 1080 1081 btrfs_free_tree_block(trans, root, buf, parent_start, 1082 last_ref); 1083 free_extent_buffer(buf); 1084 add_root_to_dirty_list(root); 1085 } else { 1086 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1087 tree_mod_log_insert_key(parent, parent_slot, 1088 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1089 btrfs_set_node_blockptr(parent, parent_slot, 1090 cow->start); 1091 btrfs_set_node_ptr_generation(parent, parent_slot, 1092 trans->transid); 1093 btrfs_mark_buffer_dirty(parent); 1094 if (last_ref) { 1095 ret = tree_mod_log_free_eb(buf); 1096 if (ret) { 1097 btrfs_abort_transaction(trans, ret); 1098 return ret; 1099 } 1100 } 1101 btrfs_free_tree_block(trans, root, buf, parent_start, 1102 last_ref); 1103 } 1104 if (unlock_orig) 1105 btrfs_tree_unlock(buf); 1106 free_extent_buffer_stale(buf); 1107 btrfs_mark_buffer_dirty(cow); 1108 *cow_ret = cow; 1109 return 0; 1110 } 1111 1112 /* 1113 * returns the logical address of the oldest predecessor of the given root. 1114 * entries older than time_seq are ignored. 1115 */ 1116 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1117 struct extent_buffer *eb_root, u64 time_seq) 1118 { 1119 struct tree_mod_elem *tm; 1120 struct tree_mod_elem *found = NULL; 1121 u64 root_logical = eb_root->start; 1122 int looped = 0; 1123 1124 if (!time_seq) 1125 return NULL; 1126 1127 /* 1128 * the very last operation that's logged for a root is the 1129 * replacement operation (if it is replaced at all). this has 1130 * the logical address of the *new* root, making it the very 1131 * first operation that's logged for this root. 1132 */ 1133 while (1) { 1134 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1135 time_seq); 1136 if (!looped && !tm) 1137 return NULL; 1138 /* 1139 * if there are no tree operation for the oldest root, we simply 1140 * return it. this should only happen if that (old) root is at 1141 * level 0. 1142 */ 1143 if (!tm) 1144 break; 1145 1146 /* 1147 * if there's an operation that's not a root replacement, we 1148 * found the oldest version of our root. normally, we'll find a 1149 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1150 */ 1151 if (tm->op != MOD_LOG_ROOT_REPLACE) 1152 break; 1153 1154 found = tm; 1155 root_logical = tm->old_root.logical; 1156 looped = 1; 1157 } 1158 1159 /* if there's no old root to return, return what we found instead */ 1160 if (!found) 1161 found = tm; 1162 1163 return found; 1164 } 1165 1166 /* 1167 * tm is a pointer to the first operation to rewind within eb. then, all 1168 * previous operations will be rewound (until we reach something older than 1169 * time_seq). 1170 */ 1171 static void 1172 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1173 u64 time_seq, struct tree_mod_elem *first_tm) 1174 { 1175 u32 n; 1176 struct rb_node *next; 1177 struct tree_mod_elem *tm = first_tm; 1178 unsigned long o_dst; 1179 unsigned long o_src; 1180 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1181 1182 n = btrfs_header_nritems(eb); 1183 read_lock(&fs_info->tree_mod_log_lock); 1184 while (tm && tm->seq >= time_seq) { 1185 /* 1186 * all the operations are recorded with the operator used for 1187 * the modification. as we're going backwards, we do the 1188 * opposite of each operation here. 1189 */ 1190 switch (tm->op) { 1191 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1192 BUG_ON(tm->slot < n); 1193 /* Fallthrough */ 1194 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1195 case MOD_LOG_KEY_REMOVE: 1196 btrfs_set_node_key(eb, &tm->key, tm->slot); 1197 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1198 btrfs_set_node_ptr_generation(eb, tm->slot, 1199 tm->generation); 1200 n++; 1201 break; 1202 case MOD_LOG_KEY_REPLACE: 1203 BUG_ON(tm->slot >= n); 1204 btrfs_set_node_key(eb, &tm->key, tm->slot); 1205 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1206 btrfs_set_node_ptr_generation(eb, tm->slot, 1207 tm->generation); 1208 break; 1209 case MOD_LOG_KEY_ADD: 1210 /* if a move operation is needed it's in the log */ 1211 n--; 1212 break; 1213 case MOD_LOG_MOVE_KEYS: 1214 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1215 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1216 memmove_extent_buffer(eb, o_dst, o_src, 1217 tm->move.nr_items * p_size); 1218 break; 1219 case MOD_LOG_ROOT_REPLACE: 1220 /* 1221 * this operation is special. for roots, this must be 1222 * handled explicitly before rewinding. 1223 * for non-roots, this operation may exist if the node 1224 * was a root: root A -> child B; then A gets empty and 1225 * B is promoted to the new root. in the mod log, we'll 1226 * have a root-replace operation for B, a tree block 1227 * that is no root. we simply ignore that operation. 1228 */ 1229 break; 1230 } 1231 next = rb_next(&tm->node); 1232 if (!next) 1233 break; 1234 tm = rb_entry(next, struct tree_mod_elem, node); 1235 if (tm->logical != first_tm->logical) 1236 break; 1237 } 1238 read_unlock(&fs_info->tree_mod_log_lock); 1239 btrfs_set_header_nritems(eb, n); 1240 } 1241 1242 /* 1243 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1244 * is returned. If rewind operations happen, a fresh buffer is returned. The 1245 * returned buffer is always read-locked. If the returned buffer is not the 1246 * input buffer, the lock on the input buffer is released and the input buffer 1247 * is freed (its refcount is decremented). 1248 */ 1249 static struct extent_buffer * 1250 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1251 struct extent_buffer *eb, u64 time_seq) 1252 { 1253 struct extent_buffer *eb_rewin; 1254 struct tree_mod_elem *tm; 1255 1256 if (!time_seq) 1257 return eb; 1258 1259 if (btrfs_header_level(eb) == 0) 1260 return eb; 1261 1262 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1263 if (!tm) 1264 return eb; 1265 1266 btrfs_set_path_blocking(path); 1267 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1268 1269 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1270 BUG_ON(tm->slot != 0); 1271 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1272 if (!eb_rewin) { 1273 btrfs_tree_read_unlock_blocking(eb); 1274 free_extent_buffer(eb); 1275 return NULL; 1276 } 1277 btrfs_set_header_bytenr(eb_rewin, eb->start); 1278 btrfs_set_header_backref_rev(eb_rewin, 1279 btrfs_header_backref_rev(eb)); 1280 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1281 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1282 } else { 1283 eb_rewin = btrfs_clone_extent_buffer(eb); 1284 if (!eb_rewin) { 1285 btrfs_tree_read_unlock_blocking(eb); 1286 free_extent_buffer(eb); 1287 return NULL; 1288 } 1289 } 1290 1291 btrfs_tree_read_unlock_blocking(eb); 1292 free_extent_buffer(eb); 1293 1294 btrfs_tree_read_lock(eb_rewin); 1295 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1296 WARN_ON(btrfs_header_nritems(eb_rewin) > 1297 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1298 1299 return eb_rewin; 1300 } 1301 1302 /* 1303 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1304 * value. If there are no changes, the current root->root_node is returned. If 1305 * anything changed in between, there's a fresh buffer allocated on which the 1306 * rewind operations are done. In any case, the returned buffer is read locked. 1307 * Returns NULL on error (with no locks held). 1308 */ 1309 static inline struct extent_buffer * 1310 get_old_root(struct btrfs_root *root, u64 time_seq) 1311 { 1312 struct btrfs_fs_info *fs_info = root->fs_info; 1313 struct tree_mod_elem *tm; 1314 struct extent_buffer *eb = NULL; 1315 struct extent_buffer *eb_root; 1316 struct extent_buffer *old; 1317 struct tree_mod_root *old_root = NULL; 1318 u64 old_generation = 0; 1319 u64 logical; 1320 int level; 1321 1322 eb_root = btrfs_read_lock_root_node(root); 1323 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1324 if (!tm) 1325 return eb_root; 1326 1327 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1328 old_root = &tm->old_root; 1329 old_generation = tm->generation; 1330 logical = old_root->logical; 1331 level = old_root->level; 1332 } else { 1333 logical = eb_root->start; 1334 level = btrfs_header_level(eb_root); 1335 } 1336 1337 tm = tree_mod_log_search(fs_info, logical, time_seq); 1338 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1339 btrfs_tree_read_unlock(eb_root); 1340 free_extent_buffer(eb_root); 1341 old = read_tree_block(fs_info, logical, 0, level, NULL); 1342 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1343 if (!IS_ERR(old)) 1344 free_extent_buffer(old); 1345 btrfs_warn(fs_info, 1346 "failed to read tree block %llu from get_old_root", 1347 logical); 1348 } else { 1349 eb = btrfs_clone_extent_buffer(old); 1350 free_extent_buffer(old); 1351 } 1352 } else if (old_root) { 1353 btrfs_tree_read_unlock(eb_root); 1354 free_extent_buffer(eb_root); 1355 eb = alloc_dummy_extent_buffer(fs_info, logical); 1356 } else { 1357 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1358 eb = btrfs_clone_extent_buffer(eb_root); 1359 btrfs_tree_read_unlock_blocking(eb_root); 1360 free_extent_buffer(eb_root); 1361 } 1362 1363 if (!eb) 1364 return NULL; 1365 btrfs_tree_read_lock(eb); 1366 if (old_root) { 1367 btrfs_set_header_bytenr(eb, eb->start); 1368 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1369 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1370 btrfs_set_header_level(eb, old_root->level); 1371 btrfs_set_header_generation(eb, old_generation); 1372 } 1373 if (tm) 1374 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1375 else 1376 WARN_ON(btrfs_header_level(eb) != 0); 1377 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1378 1379 return eb; 1380 } 1381 1382 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1383 { 1384 struct tree_mod_elem *tm; 1385 int level; 1386 struct extent_buffer *eb_root = btrfs_root_node(root); 1387 1388 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1389 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1390 level = tm->old_root.level; 1391 } else { 1392 level = btrfs_header_level(eb_root); 1393 } 1394 free_extent_buffer(eb_root); 1395 1396 return level; 1397 } 1398 1399 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1400 struct btrfs_root *root, 1401 struct extent_buffer *buf) 1402 { 1403 if (btrfs_is_testing(root->fs_info)) 1404 return 0; 1405 1406 /* Ensure we can see the FORCE_COW bit */ 1407 smp_mb__before_atomic(); 1408 1409 /* 1410 * We do not need to cow a block if 1411 * 1) this block is not created or changed in this transaction; 1412 * 2) this block does not belong to TREE_RELOC tree; 1413 * 3) the root is not forced COW. 1414 * 1415 * What is forced COW: 1416 * when we create snapshot during committing the transaction, 1417 * after we've finished copying src root, we must COW the shared 1418 * block to ensure the metadata consistency. 1419 */ 1420 if (btrfs_header_generation(buf) == trans->transid && 1421 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1422 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1423 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1424 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1425 return 0; 1426 return 1; 1427 } 1428 1429 /* 1430 * cows a single block, see __btrfs_cow_block for the real work. 1431 * This version of it has extra checks so that a block isn't COWed more than 1432 * once per transaction, as long as it hasn't been written yet 1433 */ 1434 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1435 struct btrfs_root *root, struct extent_buffer *buf, 1436 struct extent_buffer *parent, int parent_slot, 1437 struct extent_buffer **cow_ret) 1438 { 1439 struct btrfs_fs_info *fs_info = root->fs_info; 1440 u64 search_start; 1441 int ret; 1442 1443 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1444 btrfs_err(fs_info, 1445 "COW'ing blocks on a fs root that's being dropped"); 1446 1447 if (trans->transaction != fs_info->running_transaction) 1448 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1449 trans->transid, 1450 fs_info->running_transaction->transid); 1451 1452 if (trans->transid != fs_info->generation) 1453 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1454 trans->transid, fs_info->generation); 1455 1456 if (!should_cow_block(trans, root, buf)) { 1457 trans->dirty = true; 1458 *cow_ret = buf; 1459 return 0; 1460 } 1461 1462 search_start = buf->start & ~((u64)SZ_1G - 1); 1463 1464 if (parent) 1465 btrfs_set_lock_blocking(parent); 1466 btrfs_set_lock_blocking(buf); 1467 1468 ret = __btrfs_cow_block(trans, root, buf, parent, 1469 parent_slot, cow_ret, search_start, 0); 1470 1471 trace_btrfs_cow_block(root, buf, *cow_ret); 1472 1473 return ret; 1474 } 1475 1476 /* 1477 * helper function for defrag to decide if two blocks pointed to by a 1478 * node are actually close by 1479 */ 1480 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1481 { 1482 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1483 return 1; 1484 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1485 return 1; 1486 return 0; 1487 } 1488 1489 /* 1490 * compare two keys in a memcmp fashion 1491 */ 1492 static int comp_keys(const struct btrfs_disk_key *disk, 1493 const struct btrfs_key *k2) 1494 { 1495 struct btrfs_key k1; 1496 1497 btrfs_disk_key_to_cpu(&k1, disk); 1498 1499 return btrfs_comp_cpu_keys(&k1, k2); 1500 } 1501 1502 /* 1503 * same as comp_keys only with two btrfs_key's 1504 */ 1505 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1506 { 1507 if (k1->objectid > k2->objectid) 1508 return 1; 1509 if (k1->objectid < k2->objectid) 1510 return -1; 1511 if (k1->type > k2->type) 1512 return 1; 1513 if (k1->type < k2->type) 1514 return -1; 1515 if (k1->offset > k2->offset) 1516 return 1; 1517 if (k1->offset < k2->offset) 1518 return -1; 1519 return 0; 1520 } 1521 1522 /* 1523 * this is used by the defrag code to go through all the 1524 * leaves pointed to by a node and reallocate them so that 1525 * disk order is close to key order 1526 */ 1527 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1528 struct btrfs_root *root, struct extent_buffer *parent, 1529 int start_slot, u64 *last_ret, 1530 struct btrfs_key *progress) 1531 { 1532 struct btrfs_fs_info *fs_info = root->fs_info; 1533 struct extent_buffer *cur; 1534 u64 blocknr; 1535 u64 gen; 1536 u64 search_start = *last_ret; 1537 u64 last_block = 0; 1538 u64 other; 1539 u32 parent_nritems; 1540 int end_slot; 1541 int i; 1542 int err = 0; 1543 int parent_level; 1544 int uptodate; 1545 u32 blocksize; 1546 int progress_passed = 0; 1547 struct btrfs_disk_key disk_key; 1548 1549 parent_level = btrfs_header_level(parent); 1550 1551 WARN_ON(trans->transaction != fs_info->running_transaction); 1552 WARN_ON(trans->transid != fs_info->generation); 1553 1554 parent_nritems = btrfs_header_nritems(parent); 1555 blocksize = fs_info->nodesize; 1556 end_slot = parent_nritems - 1; 1557 1558 if (parent_nritems <= 1) 1559 return 0; 1560 1561 btrfs_set_lock_blocking(parent); 1562 1563 for (i = start_slot; i <= end_slot; i++) { 1564 struct btrfs_key first_key; 1565 int close = 1; 1566 1567 btrfs_node_key(parent, &disk_key, i); 1568 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1569 continue; 1570 1571 progress_passed = 1; 1572 blocknr = btrfs_node_blockptr(parent, i); 1573 gen = btrfs_node_ptr_generation(parent, i); 1574 btrfs_node_key_to_cpu(parent, &first_key, i); 1575 if (last_block == 0) 1576 last_block = blocknr; 1577 1578 if (i > 0) { 1579 other = btrfs_node_blockptr(parent, i - 1); 1580 close = close_blocks(blocknr, other, blocksize); 1581 } 1582 if (!close && i < end_slot) { 1583 other = btrfs_node_blockptr(parent, i + 1); 1584 close = close_blocks(blocknr, other, blocksize); 1585 } 1586 if (close) { 1587 last_block = blocknr; 1588 continue; 1589 } 1590 1591 cur = find_extent_buffer(fs_info, blocknr); 1592 if (cur) 1593 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1594 else 1595 uptodate = 0; 1596 if (!cur || !uptodate) { 1597 if (!cur) { 1598 cur = read_tree_block(fs_info, blocknr, gen, 1599 parent_level - 1, 1600 &first_key); 1601 if (IS_ERR(cur)) { 1602 return PTR_ERR(cur); 1603 } else if (!extent_buffer_uptodate(cur)) { 1604 free_extent_buffer(cur); 1605 return -EIO; 1606 } 1607 } else if (!uptodate) { 1608 err = btrfs_read_buffer(cur, gen, 1609 parent_level - 1,&first_key); 1610 if (err) { 1611 free_extent_buffer(cur); 1612 return err; 1613 } 1614 } 1615 } 1616 if (search_start == 0) 1617 search_start = last_block; 1618 1619 btrfs_tree_lock(cur); 1620 btrfs_set_lock_blocking(cur); 1621 err = __btrfs_cow_block(trans, root, cur, parent, i, 1622 &cur, search_start, 1623 min(16 * blocksize, 1624 (end_slot - i) * blocksize)); 1625 if (err) { 1626 btrfs_tree_unlock(cur); 1627 free_extent_buffer(cur); 1628 break; 1629 } 1630 search_start = cur->start; 1631 last_block = cur->start; 1632 *last_ret = search_start; 1633 btrfs_tree_unlock(cur); 1634 free_extent_buffer(cur); 1635 } 1636 return err; 1637 } 1638 1639 /* 1640 * search for key in the extent_buffer. The items start at offset p, 1641 * and they are item_size apart. There are 'max' items in p. 1642 * 1643 * the slot in the array is returned via slot, and it points to 1644 * the place where you would insert key if it is not found in 1645 * the array. 1646 * 1647 * slot may point to max if the key is bigger than all of the keys 1648 */ 1649 static noinline int generic_bin_search(struct extent_buffer *eb, 1650 unsigned long p, int item_size, 1651 const struct btrfs_key *key, 1652 int max, int *slot) 1653 { 1654 int low = 0; 1655 int high = max; 1656 int mid; 1657 int ret; 1658 struct btrfs_disk_key *tmp = NULL; 1659 struct btrfs_disk_key unaligned; 1660 unsigned long offset; 1661 char *kaddr = NULL; 1662 unsigned long map_start = 0; 1663 unsigned long map_len = 0; 1664 int err; 1665 1666 if (low > high) { 1667 btrfs_err(eb->fs_info, 1668 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1669 __func__, low, high, eb->start, 1670 btrfs_header_owner(eb), btrfs_header_level(eb)); 1671 return -EINVAL; 1672 } 1673 1674 while (low < high) { 1675 mid = (low + high) / 2; 1676 offset = p + mid * item_size; 1677 1678 if (!kaddr || offset < map_start || 1679 (offset + sizeof(struct btrfs_disk_key)) > 1680 map_start + map_len) { 1681 1682 err = map_private_extent_buffer(eb, offset, 1683 sizeof(struct btrfs_disk_key), 1684 &kaddr, &map_start, &map_len); 1685 1686 if (!err) { 1687 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1688 map_start); 1689 } else if (err == 1) { 1690 read_extent_buffer(eb, &unaligned, 1691 offset, sizeof(unaligned)); 1692 tmp = &unaligned; 1693 } else { 1694 return err; 1695 } 1696 1697 } else { 1698 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1699 map_start); 1700 } 1701 ret = comp_keys(tmp, key); 1702 1703 if (ret < 0) 1704 low = mid + 1; 1705 else if (ret > 0) 1706 high = mid; 1707 else { 1708 *slot = mid; 1709 return 0; 1710 } 1711 } 1712 *slot = low; 1713 return 1; 1714 } 1715 1716 /* 1717 * simple bin_search frontend that does the right thing for 1718 * leaves vs nodes 1719 */ 1720 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1721 int level, int *slot) 1722 { 1723 if (level == 0) 1724 return generic_bin_search(eb, 1725 offsetof(struct btrfs_leaf, items), 1726 sizeof(struct btrfs_item), 1727 key, btrfs_header_nritems(eb), 1728 slot); 1729 else 1730 return generic_bin_search(eb, 1731 offsetof(struct btrfs_node, ptrs), 1732 sizeof(struct btrfs_key_ptr), 1733 key, btrfs_header_nritems(eb), 1734 slot); 1735 } 1736 1737 static void root_add_used(struct btrfs_root *root, u32 size) 1738 { 1739 spin_lock(&root->accounting_lock); 1740 btrfs_set_root_used(&root->root_item, 1741 btrfs_root_used(&root->root_item) + size); 1742 spin_unlock(&root->accounting_lock); 1743 } 1744 1745 static void root_sub_used(struct btrfs_root *root, u32 size) 1746 { 1747 spin_lock(&root->accounting_lock); 1748 btrfs_set_root_used(&root->root_item, 1749 btrfs_root_used(&root->root_item) - size); 1750 spin_unlock(&root->accounting_lock); 1751 } 1752 1753 /* given a node and slot number, this reads the blocks it points to. The 1754 * extent buffer is returned with a reference taken (but unlocked). 1755 */ 1756 static noinline struct extent_buffer * 1757 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent, 1758 int slot) 1759 { 1760 int level = btrfs_header_level(parent); 1761 struct extent_buffer *eb; 1762 struct btrfs_key first_key; 1763 1764 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1765 return ERR_PTR(-ENOENT); 1766 1767 BUG_ON(level == 0); 1768 1769 btrfs_node_key_to_cpu(parent, &first_key, slot); 1770 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot), 1771 btrfs_node_ptr_generation(parent, slot), 1772 level - 1, &first_key); 1773 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1774 free_extent_buffer(eb); 1775 eb = ERR_PTR(-EIO); 1776 } 1777 1778 return eb; 1779 } 1780 1781 /* 1782 * node level balancing, used to make sure nodes are in proper order for 1783 * item deletion. We balance from the top down, so we have to make sure 1784 * that a deletion won't leave an node completely empty later on. 1785 */ 1786 static noinline int balance_level(struct btrfs_trans_handle *trans, 1787 struct btrfs_root *root, 1788 struct btrfs_path *path, int level) 1789 { 1790 struct btrfs_fs_info *fs_info = root->fs_info; 1791 struct extent_buffer *right = NULL; 1792 struct extent_buffer *mid; 1793 struct extent_buffer *left = NULL; 1794 struct extent_buffer *parent = NULL; 1795 int ret = 0; 1796 int wret; 1797 int pslot; 1798 int orig_slot = path->slots[level]; 1799 u64 orig_ptr; 1800 1801 ASSERT(level > 0); 1802 1803 mid = path->nodes[level]; 1804 1805 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1806 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1807 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1808 1809 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1810 1811 if (level < BTRFS_MAX_LEVEL - 1) { 1812 parent = path->nodes[level + 1]; 1813 pslot = path->slots[level + 1]; 1814 } 1815 1816 /* 1817 * deal with the case where there is only one pointer in the root 1818 * by promoting the node below to a root 1819 */ 1820 if (!parent) { 1821 struct extent_buffer *child; 1822 1823 if (btrfs_header_nritems(mid) != 1) 1824 return 0; 1825 1826 /* promote the child to a root */ 1827 child = read_node_slot(fs_info, mid, 0); 1828 if (IS_ERR(child)) { 1829 ret = PTR_ERR(child); 1830 btrfs_handle_fs_error(fs_info, ret, NULL); 1831 goto enospc; 1832 } 1833 1834 btrfs_tree_lock(child); 1835 btrfs_set_lock_blocking(child); 1836 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1837 if (ret) { 1838 btrfs_tree_unlock(child); 1839 free_extent_buffer(child); 1840 goto enospc; 1841 } 1842 1843 ret = tree_mod_log_insert_root(root->node, child, 1); 1844 BUG_ON(ret < 0); 1845 rcu_assign_pointer(root->node, child); 1846 1847 add_root_to_dirty_list(root); 1848 btrfs_tree_unlock(child); 1849 1850 path->locks[level] = 0; 1851 path->nodes[level] = NULL; 1852 clean_tree_block(fs_info, mid); 1853 btrfs_tree_unlock(mid); 1854 /* once for the path */ 1855 free_extent_buffer(mid); 1856 1857 root_sub_used(root, mid->len); 1858 btrfs_free_tree_block(trans, root, mid, 0, 1); 1859 /* once for the root ptr */ 1860 free_extent_buffer_stale(mid); 1861 return 0; 1862 } 1863 if (btrfs_header_nritems(mid) > 1864 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1865 return 0; 1866 1867 left = read_node_slot(fs_info, parent, pslot - 1); 1868 if (IS_ERR(left)) 1869 left = NULL; 1870 1871 if (left) { 1872 btrfs_tree_lock(left); 1873 btrfs_set_lock_blocking(left); 1874 wret = btrfs_cow_block(trans, root, left, 1875 parent, pslot - 1, &left); 1876 if (wret) { 1877 ret = wret; 1878 goto enospc; 1879 } 1880 } 1881 1882 right = read_node_slot(fs_info, parent, pslot + 1); 1883 if (IS_ERR(right)) 1884 right = NULL; 1885 1886 if (right) { 1887 btrfs_tree_lock(right); 1888 btrfs_set_lock_blocking(right); 1889 wret = btrfs_cow_block(trans, root, right, 1890 parent, pslot + 1, &right); 1891 if (wret) { 1892 ret = wret; 1893 goto enospc; 1894 } 1895 } 1896 1897 /* first, try to make some room in the middle buffer */ 1898 if (left) { 1899 orig_slot += btrfs_header_nritems(left); 1900 wret = push_node_left(trans, fs_info, left, mid, 1); 1901 if (wret < 0) 1902 ret = wret; 1903 } 1904 1905 /* 1906 * then try to empty the right most buffer into the middle 1907 */ 1908 if (right) { 1909 wret = push_node_left(trans, fs_info, mid, right, 1); 1910 if (wret < 0 && wret != -ENOSPC) 1911 ret = wret; 1912 if (btrfs_header_nritems(right) == 0) { 1913 clean_tree_block(fs_info, right); 1914 btrfs_tree_unlock(right); 1915 del_ptr(root, path, level + 1, pslot + 1); 1916 root_sub_used(root, right->len); 1917 btrfs_free_tree_block(trans, root, right, 0, 1); 1918 free_extent_buffer_stale(right); 1919 right = NULL; 1920 } else { 1921 struct btrfs_disk_key right_key; 1922 btrfs_node_key(right, &right_key, 0); 1923 ret = tree_mod_log_insert_key(parent, pslot + 1, 1924 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1925 BUG_ON(ret < 0); 1926 btrfs_set_node_key(parent, &right_key, pslot + 1); 1927 btrfs_mark_buffer_dirty(parent); 1928 } 1929 } 1930 if (btrfs_header_nritems(mid) == 1) { 1931 /* 1932 * we're not allowed to leave a node with one item in the 1933 * tree during a delete. A deletion from lower in the tree 1934 * could try to delete the only pointer in this node. 1935 * So, pull some keys from the left. 1936 * There has to be a left pointer at this point because 1937 * otherwise we would have pulled some pointers from the 1938 * right 1939 */ 1940 if (!left) { 1941 ret = -EROFS; 1942 btrfs_handle_fs_error(fs_info, ret, NULL); 1943 goto enospc; 1944 } 1945 wret = balance_node_right(trans, fs_info, mid, left); 1946 if (wret < 0) { 1947 ret = wret; 1948 goto enospc; 1949 } 1950 if (wret == 1) { 1951 wret = push_node_left(trans, fs_info, left, mid, 1); 1952 if (wret < 0) 1953 ret = wret; 1954 } 1955 BUG_ON(wret == 1); 1956 } 1957 if (btrfs_header_nritems(mid) == 0) { 1958 clean_tree_block(fs_info, mid); 1959 btrfs_tree_unlock(mid); 1960 del_ptr(root, path, level + 1, pslot); 1961 root_sub_used(root, mid->len); 1962 btrfs_free_tree_block(trans, root, mid, 0, 1); 1963 free_extent_buffer_stale(mid); 1964 mid = NULL; 1965 } else { 1966 /* update the parent key to reflect our changes */ 1967 struct btrfs_disk_key mid_key; 1968 btrfs_node_key(mid, &mid_key, 0); 1969 ret = tree_mod_log_insert_key(parent, pslot, 1970 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1971 BUG_ON(ret < 0); 1972 btrfs_set_node_key(parent, &mid_key, pslot); 1973 btrfs_mark_buffer_dirty(parent); 1974 } 1975 1976 /* update the path */ 1977 if (left) { 1978 if (btrfs_header_nritems(left) > orig_slot) { 1979 extent_buffer_get(left); 1980 /* left was locked after cow */ 1981 path->nodes[level] = left; 1982 path->slots[level + 1] -= 1; 1983 path->slots[level] = orig_slot; 1984 if (mid) { 1985 btrfs_tree_unlock(mid); 1986 free_extent_buffer(mid); 1987 } 1988 } else { 1989 orig_slot -= btrfs_header_nritems(left); 1990 path->slots[level] = orig_slot; 1991 } 1992 } 1993 /* double check we haven't messed things up */ 1994 if (orig_ptr != 1995 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1996 BUG(); 1997 enospc: 1998 if (right) { 1999 btrfs_tree_unlock(right); 2000 free_extent_buffer(right); 2001 } 2002 if (left) { 2003 if (path->nodes[level] != left) 2004 btrfs_tree_unlock(left); 2005 free_extent_buffer(left); 2006 } 2007 return ret; 2008 } 2009 2010 /* Node balancing for insertion. Here we only split or push nodes around 2011 * when they are completely full. This is also done top down, so we 2012 * have to be pessimistic. 2013 */ 2014 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2015 struct btrfs_root *root, 2016 struct btrfs_path *path, int level) 2017 { 2018 struct btrfs_fs_info *fs_info = root->fs_info; 2019 struct extent_buffer *right = NULL; 2020 struct extent_buffer *mid; 2021 struct extent_buffer *left = NULL; 2022 struct extent_buffer *parent = NULL; 2023 int ret = 0; 2024 int wret; 2025 int pslot; 2026 int orig_slot = path->slots[level]; 2027 2028 if (level == 0) 2029 return 1; 2030 2031 mid = path->nodes[level]; 2032 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2033 2034 if (level < BTRFS_MAX_LEVEL - 1) { 2035 parent = path->nodes[level + 1]; 2036 pslot = path->slots[level + 1]; 2037 } 2038 2039 if (!parent) 2040 return 1; 2041 2042 left = read_node_slot(fs_info, parent, pslot - 1); 2043 if (IS_ERR(left)) 2044 left = NULL; 2045 2046 /* first, try to make some room in the middle buffer */ 2047 if (left) { 2048 u32 left_nr; 2049 2050 btrfs_tree_lock(left); 2051 btrfs_set_lock_blocking(left); 2052 2053 left_nr = btrfs_header_nritems(left); 2054 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2055 wret = 1; 2056 } else { 2057 ret = btrfs_cow_block(trans, root, left, parent, 2058 pslot - 1, &left); 2059 if (ret) 2060 wret = 1; 2061 else { 2062 wret = push_node_left(trans, fs_info, 2063 left, mid, 0); 2064 } 2065 } 2066 if (wret < 0) 2067 ret = wret; 2068 if (wret == 0) { 2069 struct btrfs_disk_key disk_key; 2070 orig_slot += left_nr; 2071 btrfs_node_key(mid, &disk_key, 0); 2072 ret = tree_mod_log_insert_key(parent, pslot, 2073 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2074 BUG_ON(ret < 0); 2075 btrfs_set_node_key(parent, &disk_key, pslot); 2076 btrfs_mark_buffer_dirty(parent); 2077 if (btrfs_header_nritems(left) > orig_slot) { 2078 path->nodes[level] = left; 2079 path->slots[level + 1] -= 1; 2080 path->slots[level] = orig_slot; 2081 btrfs_tree_unlock(mid); 2082 free_extent_buffer(mid); 2083 } else { 2084 orig_slot -= 2085 btrfs_header_nritems(left); 2086 path->slots[level] = orig_slot; 2087 btrfs_tree_unlock(left); 2088 free_extent_buffer(left); 2089 } 2090 return 0; 2091 } 2092 btrfs_tree_unlock(left); 2093 free_extent_buffer(left); 2094 } 2095 right = read_node_slot(fs_info, parent, pslot + 1); 2096 if (IS_ERR(right)) 2097 right = NULL; 2098 2099 /* 2100 * then try to empty the right most buffer into the middle 2101 */ 2102 if (right) { 2103 u32 right_nr; 2104 2105 btrfs_tree_lock(right); 2106 btrfs_set_lock_blocking(right); 2107 2108 right_nr = btrfs_header_nritems(right); 2109 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2110 wret = 1; 2111 } else { 2112 ret = btrfs_cow_block(trans, root, right, 2113 parent, pslot + 1, 2114 &right); 2115 if (ret) 2116 wret = 1; 2117 else { 2118 wret = balance_node_right(trans, fs_info, 2119 right, mid); 2120 } 2121 } 2122 if (wret < 0) 2123 ret = wret; 2124 if (wret == 0) { 2125 struct btrfs_disk_key disk_key; 2126 2127 btrfs_node_key(right, &disk_key, 0); 2128 ret = tree_mod_log_insert_key(parent, pslot + 1, 2129 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2130 BUG_ON(ret < 0); 2131 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2132 btrfs_mark_buffer_dirty(parent); 2133 2134 if (btrfs_header_nritems(mid) <= orig_slot) { 2135 path->nodes[level] = right; 2136 path->slots[level + 1] += 1; 2137 path->slots[level] = orig_slot - 2138 btrfs_header_nritems(mid); 2139 btrfs_tree_unlock(mid); 2140 free_extent_buffer(mid); 2141 } else { 2142 btrfs_tree_unlock(right); 2143 free_extent_buffer(right); 2144 } 2145 return 0; 2146 } 2147 btrfs_tree_unlock(right); 2148 free_extent_buffer(right); 2149 } 2150 return 1; 2151 } 2152 2153 /* 2154 * readahead one full node of leaves, finding things that are close 2155 * to the block in 'slot', and triggering ra on them. 2156 */ 2157 static void reada_for_search(struct btrfs_fs_info *fs_info, 2158 struct btrfs_path *path, 2159 int level, int slot, u64 objectid) 2160 { 2161 struct extent_buffer *node; 2162 struct btrfs_disk_key disk_key; 2163 u32 nritems; 2164 u64 search; 2165 u64 target; 2166 u64 nread = 0; 2167 struct extent_buffer *eb; 2168 u32 nr; 2169 u32 blocksize; 2170 u32 nscan = 0; 2171 2172 if (level != 1) 2173 return; 2174 2175 if (!path->nodes[level]) 2176 return; 2177 2178 node = path->nodes[level]; 2179 2180 search = btrfs_node_blockptr(node, slot); 2181 blocksize = fs_info->nodesize; 2182 eb = find_extent_buffer(fs_info, search); 2183 if (eb) { 2184 free_extent_buffer(eb); 2185 return; 2186 } 2187 2188 target = search; 2189 2190 nritems = btrfs_header_nritems(node); 2191 nr = slot; 2192 2193 while (1) { 2194 if (path->reada == READA_BACK) { 2195 if (nr == 0) 2196 break; 2197 nr--; 2198 } else if (path->reada == READA_FORWARD) { 2199 nr++; 2200 if (nr >= nritems) 2201 break; 2202 } 2203 if (path->reada == READA_BACK && objectid) { 2204 btrfs_node_key(node, &disk_key, nr); 2205 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2206 break; 2207 } 2208 search = btrfs_node_blockptr(node, nr); 2209 if ((search <= target && target - search <= 65536) || 2210 (search > target && search - target <= 65536)) { 2211 readahead_tree_block(fs_info, search); 2212 nread += blocksize; 2213 } 2214 nscan++; 2215 if ((nread > 65536 || nscan > 32)) 2216 break; 2217 } 2218 } 2219 2220 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2221 struct btrfs_path *path, int level) 2222 { 2223 int slot; 2224 int nritems; 2225 struct extent_buffer *parent; 2226 struct extent_buffer *eb; 2227 u64 gen; 2228 u64 block1 = 0; 2229 u64 block2 = 0; 2230 2231 parent = path->nodes[level + 1]; 2232 if (!parent) 2233 return; 2234 2235 nritems = btrfs_header_nritems(parent); 2236 slot = path->slots[level + 1]; 2237 2238 if (slot > 0) { 2239 block1 = btrfs_node_blockptr(parent, slot - 1); 2240 gen = btrfs_node_ptr_generation(parent, slot - 1); 2241 eb = find_extent_buffer(fs_info, block1); 2242 /* 2243 * if we get -eagain from btrfs_buffer_uptodate, we 2244 * don't want to return eagain here. That will loop 2245 * forever 2246 */ 2247 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2248 block1 = 0; 2249 free_extent_buffer(eb); 2250 } 2251 if (slot + 1 < nritems) { 2252 block2 = btrfs_node_blockptr(parent, slot + 1); 2253 gen = btrfs_node_ptr_generation(parent, slot + 1); 2254 eb = find_extent_buffer(fs_info, block2); 2255 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2256 block2 = 0; 2257 free_extent_buffer(eb); 2258 } 2259 2260 if (block1) 2261 readahead_tree_block(fs_info, block1); 2262 if (block2) 2263 readahead_tree_block(fs_info, block2); 2264 } 2265 2266 2267 /* 2268 * when we walk down the tree, it is usually safe to unlock the higher layers 2269 * in the tree. The exceptions are when our path goes through slot 0, because 2270 * operations on the tree might require changing key pointers higher up in the 2271 * tree. 2272 * 2273 * callers might also have set path->keep_locks, which tells this code to keep 2274 * the lock if the path points to the last slot in the block. This is part of 2275 * walking through the tree, and selecting the next slot in the higher block. 2276 * 2277 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2278 * if lowest_unlock is 1, level 0 won't be unlocked 2279 */ 2280 static noinline void unlock_up(struct btrfs_path *path, int level, 2281 int lowest_unlock, int min_write_lock_level, 2282 int *write_lock_level) 2283 { 2284 int i; 2285 int skip_level = level; 2286 int no_skips = 0; 2287 struct extent_buffer *t; 2288 2289 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2290 if (!path->nodes[i]) 2291 break; 2292 if (!path->locks[i]) 2293 break; 2294 if (!no_skips && path->slots[i] == 0) { 2295 skip_level = i + 1; 2296 continue; 2297 } 2298 if (!no_skips && path->keep_locks) { 2299 u32 nritems; 2300 t = path->nodes[i]; 2301 nritems = btrfs_header_nritems(t); 2302 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2303 skip_level = i + 1; 2304 continue; 2305 } 2306 } 2307 if (skip_level < i && i >= lowest_unlock) 2308 no_skips = 1; 2309 2310 t = path->nodes[i]; 2311 if (i >= lowest_unlock && i > skip_level) { 2312 btrfs_tree_unlock_rw(t, path->locks[i]); 2313 path->locks[i] = 0; 2314 if (write_lock_level && 2315 i > min_write_lock_level && 2316 i <= *write_lock_level) { 2317 *write_lock_level = i - 1; 2318 } 2319 } 2320 } 2321 } 2322 2323 /* 2324 * This releases any locks held in the path starting at level and 2325 * going all the way up to the root. 2326 * 2327 * btrfs_search_slot will keep the lock held on higher nodes in a few 2328 * corner cases, such as COW of the block at slot zero in the node. This 2329 * ignores those rules, and it should only be called when there are no 2330 * more updates to be done higher up in the tree. 2331 */ 2332 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2333 { 2334 int i; 2335 2336 if (path->keep_locks) 2337 return; 2338 2339 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2340 if (!path->nodes[i]) 2341 continue; 2342 if (!path->locks[i]) 2343 continue; 2344 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2345 path->locks[i] = 0; 2346 } 2347 } 2348 2349 /* 2350 * helper function for btrfs_search_slot. The goal is to find a block 2351 * in cache without setting the path to blocking. If we find the block 2352 * we return zero and the path is unchanged. 2353 * 2354 * If we can't find the block, we set the path blocking and do some 2355 * reada. -EAGAIN is returned and the search must be repeated. 2356 */ 2357 static int 2358 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2359 struct extent_buffer **eb_ret, int level, int slot, 2360 const struct btrfs_key *key) 2361 { 2362 struct btrfs_fs_info *fs_info = root->fs_info; 2363 u64 blocknr; 2364 u64 gen; 2365 struct extent_buffer *b = *eb_ret; 2366 struct extent_buffer *tmp; 2367 struct btrfs_key first_key; 2368 int ret; 2369 int parent_level; 2370 2371 blocknr = btrfs_node_blockptr(b, slot); 2372 gen = btrfs_node_ptr_generation(b, slot); 2373 parent_level = btrfs_header_level(b); 2374 btrfs_node_key_to_cpu(b, &first_key, slot); 2375 2376 tmp = find_extent_buffer(fs_info, blocknr); 2377 if (tmp) { 2378 /* first we do an atomic uptodate check */ 2379 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2380 *eb_ret = tmp; 2381 return 0; 2382 } 2383 2384 /* the pages were up to date, but we failed 2385 * the generation number check. Do a full 2386 * read for the generation number that is correct. 2387 * We must do this without dropping locks so 2388 * we can trust our generation number 2389 */ 2390 btrfs_set_path_blocking(p); 2391 2392 /* now we're allowed to do a blocking uptodate check */ 2393 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2394 if (!ret) { 2395 *eb_ret = tmp; 2396 return 0; 2397 } 2398 free_extent_buffer(tmp); 2399 btrfs_release_path(p); 2400 return -EIO; 2401 } 2402 2403 /* 2404 * reduce lock contention at high levels 2405 * of the btree by dropping locks before 2406 * we read. Don't release the lock on the current 2407 * level because we need to walk this node to figure 2408 * out which blocks to read. 2409 */ 2410 btrfs_unlock_up_safe(p, level + 1); 2411 btrfs_set_path_blocking(p); 2412 2413 if (p->reada != READA_NONE) 2414 reada_for_search(fs_info, p, level, slot, key->objectid); 2415 2416 ret = -EAGAIN; 2417 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2418 &first_key); 2419 if (!IS_ERR(tmp)) { 2420 /* 2421 * If the read above didn't mark this buffer up to date, 2422 * it will never end up being up to date. Set ret to EIO now 2423 * and give up so that our caller doesn't loop forever 2424 * on our EAGAINs. 2425 */ 2426 if (!extent_buffer_uptodate(tmp)) 2427 ret = -EIO; 2428 free_extent_buffer(tmp); 2429 } else { 2430 ret = PTR_ERR(tmp); 2431 } 2432 2433 btrfs_release_path(p); 2434 return ret; 2435 } 2436 2437 /* 2438 * helper function for btrfs_search_slot. This does all of the checks 2439 * for node-level blocks and does any balancing required based on 2440 * the ins_len. 2441 * 2442 * If no extra work was required, zero is returned. If we had to 2443 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2444 * start over 2445 */ 2446 static int 2447 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2448 struct btrfs_root *root, struct btrfs_path *p, 2449 struct extent_buffer *b, int level, int ins_len, 2450 int *write_lock_level) 2451 { 2452 struct btrfs_fs_info *fs_info = root->fs_info; 2453 int ret; 2454 2455 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2456 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2457 int sret; 2458 2459 if (*write_lock_level < level + 1) { 2460 *write_lock_level = level + 1; 2461 btrfs_release_path(p); 2462 goto again; 2463 } 2464 2465 btrfs_set_path_blocking(p); 2466 reada_for_balance(fs_info, p, level); 2467 sret = split_node(trans, root, p, level); 2468 2469 BUG_ON(sret > 0); 2470 if (sret) { 2471 ret = sret; 2472 goto done; 2473 } 2474 b = p->nodes[level]; 2475 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2476 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2477 int sret; 2478 2479 if (*write_lock_level < level + 1) { 2480 *write_lock_level = level + 1; 2481 btrfs_release_path(p); 2482 goto again; 2483 } 2484 2485 btrfs_set_path_blocking(p); 2486 reada_for_balance(fs_info, p, level); 2487 sret = balance_level(trans, root, p, level); 2488 2489 if (sret) { 2490 ret = sret; 2491 goto done; 2492 } 2493 b = p->nodes[level]; 2494 if (!b) { 2495 btrfs_release_path(p); 2496 goto again; 2497 } 2498 BUG_ON(btrfs_header_nritems(b) == 1); 2499 } 2500 return 0; 2501 2502 again: 2503 ret = -EAGAIN; 2504 done: 2505 return ret; 2506 } 2507 2508 static void key_search_validate(struct extent_buffer *b, 2509 const struct btrfs_key *key, 2510 int level) 2511 { 2512 #ifdef CONFIG_BTRFS_ASSERT 2513 struct btrfs_disk_key disk_key; 2514 2515 btrfs_cpu_key_to_disk(&disk_key, key); 2516 2517 if (level == 0) 2518 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2519 offsetof(struct btrfs_leaf, items[0].key), 2520 sizeof(disk_key))); 2521 else 2522 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2523 offsetof(struct btrfs_node, ptrs[0].key), 2524 sizeof(disk_key))); 2525 #endif 2526 } 2527 2528 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2529 int level, int *prev_cmp, int *slot) 2530 { 2531 if (*prev_cmp != 0) { 2532 *prev_cmp = btrfs_bin_search(b, key, level, slot); 2533 return *prev_cmp; 2534 } 2535 2536 key_search_validate(b, key, level); 2537 *slot = 0; 2538 2539 return 0; 2540 } 2541 2542 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2543 u64 iobjectid, u64 ioff, u8 key_type, 2544 struct btrfs_key *found_key) 2545 { 2546 int ret; 2547 struct btrfs_key key; 2548 struct extent_buffer *eb; 2549 2550 ASSERT(path); 2551 ASSERT(found_key); 2552 2553 key.type = key_type; 2554 key.objectid = iobjectid; 2555 key.offset = ioff; 2556 2557 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2558 if (ret < 0) 2559 return ret; 2560 2561 eb = path->nodes[0]; 2562 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2563 ret = btrfs_next_leaf(fs_root, path); 2564 if (ret) 2565 return ret; 2566 eb = path->nodes[0]; 2567 } 2568 2569 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2570 if (found_key->type != key.type || 2571 found_key->objectid != key.objectid) 2572 return 1; 2573 2574 return 0; 2575 } 2576 2577 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2578 struct btrfs_path *p, 2579 int write_lock_level) 2580 { 2581 struct btrfs_fs_info *fs_info = root->fs_info; 2582 struct extent_buffer *b; 2583 int root_lock; 2584 int level = 0; 2585 2586 /* We try very hard to do read locks on the root */ 2587 root_lock = BTRFS_READ_LOCK; 2588 2589 if (p->search_commit_root) { 2590 /* 2591 * The commit roots are read only so we always do read locks, 2592 * and we always must hold the commit_root_sem when doing 2593 * searches on them, the only exception is send where we don't 2594 * want to block transaction commits for a long time, so 2595 * we need to clone the commit root in order to avoid races 2596 * with transaction commits that create a snapshot of one of 2597 * the roots used by a send operation. 2598 */ 2599 if (p->need_commit_sem) { 2600 down_read(&fs_info->commit_root_sem); 2601 b = btrfs_clone_extent_buffer(root->commit_root); 2602 up_read(&fs_info->commit_root_sem); 2603 if (!b) 2604 return ERR_PTR(-ENOMEM); 2605 2606 } else { 2607 b = root->commit_root; 2608 extent_buffer_get(b); 2609 } 2610 level = btrfs_header_level(b); 2611 /* 2612 * Ensure that all callers have set skip_locking when 2613 * p->search_commit_root = 1. 2614 */ 2615 ASSERT(p->skip_locking == 1); 2616 2617 goto out; 2618 } 2619 2620 if (p->skip_locking) { 2621 b = btrfs_root_node(root); 2622 level = btrfs_header_level(b); 2623 goto out; 2624 } 2625 2626 /* 2627 * If the level is set to maximum, we can skip trying to get the read 2628 * lock. 2629 */ 2630 if (write_lock_level < BTRFS_MAX_LEVEL) { 2631 /* 2632 * We don't know the level of the root node until we actually 2633 * have it read locked 2634 */ 2635 b = btrfs_read_lock_root_node(root); 2636 level = btrfs_header_level(b); 2637 if (level > write_lock_level) 2638 goto out; 2639 2640 /* Whoops, must trade for write lock */ 2641 btrfs_tree_read_unlock(b); 2642 free_extent_buffer(b); 2643 } 2644 2645 b = btrfs_lock_root_node(root); 2646 root_lock = BTRFS_WRITE_LOCK; 2647 2648 /* The level might have changed, check again */ 2649 level = btrfs_header_level(b); 2650 2651 out: 2652 p->nodes[level] = b; 2653 if (!p->skip_locking) 2654 p->locks[level] = root_lock; 2655 /* 2656 * Callers are responsible for dropping b's references. 2657 */ 2658 return b; 2659 } 2660 2661 2662 /* 2663 * btrfs_search_slot - look for a key in a tree and perform necessary 2664 * modifications to preserve tree invariants. 2665 * 2666 * @trans: Handle of transaction, used when modifying the tree 2667 * @p: Holds all btree nodes along the search path 2668 * @root: The root node of the tree 2669 * @key: The key we are looking for 2670 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2671 * deletions it's -1. 0 for plain searches 2672 * @cow: boolean should CoW operations be performed. Must always be 1 2673 * when modifying the tree. 2674 * 2675 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2676 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2677 * 2678 * If @key is found, 0 is returned and you can find the item in the leaf level 2679 * of the path (level 0) 2680 * 2681 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2682 * points to the slot where it should be inserted 2683 * 2684 * If an error is encountered while searching the tree a negative error number 2685 * is returned 2686 */ 2687 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2688 const struct btrfs_key *key, struct btrfs_path *p, 2689 int ins_len, int cow) 2690 { 2691 struct btrfs_fs_info *fs_info = root->fs_info; 2692 struct extent_buffer *b; 2693 int slot; 2694 int ret; 2695 int err; 2696 int level; 2697 int lowest_unlock = 1; 2698 /* everything at write_lock_level or lower must be write locked */ 2699 int write_lock_level = 0; 2700 u8 lowest_level = 0; 2701 int min_write_lock_level; 2702 int prev_cmp; 2703 2704 lowest_level = p->lowest_level; 2705 WARN_ON(lowest_level && ins_len > 0); 2706 WARN_ON(p->nodes[0] != NULL); 2707 BUG_ON(!cow && ins_len); 2708 2709 if (ins_len < 0) { 2710 lowest_unlock = 2; 2711 2712 /* when we are removing items, we might have to go up to level 2713 * two as we update tree pointers Make sure we keep write 2714 * for those levels as well 2715 */ 2716 write_lock_level = 2; 2717 } else if (ins_len > 0) { 2718 /* 2719 * for inserting items, make sure we have a write lock on 2720 * level 1 so we can update keys 2721 */ 2722 write_lock_level = 1; 2723 } 2724 2725 if (!cow) 2726 write_lock_level = -1; 2727 2728 if (cow && (p->keep_locks || p->lowest_level)) 2729 write_lock_level = BTRFS_MAX_LEVEL; 2730 2731 min_write_lock_level = write_lock_level; 2732 2733 again: 2734 prev_cmp = -1; 2735 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2736 if (IS_ERR(b)) { 2737 ret = PTR_ERR(b); 2738 goto done; 2739 } 2740 2741 while (b) { 2742 level = btrfs_header_level(b); 2743 2744 /* 2745 * setup the path here so we can release it under lock 2746 * contention with the cow code 2747 */ 2748 if (cow) { 2749 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2750 2751 /* 2752 * if we don't really need to cow this block 2753 * then we don't want to set the path blocking, 2754 * so we test it here 2755 */ 2756 if (!should_cow_block(trans, root, b)) { 2757 trans->dirty = true; 2758 goto cow_done; 2759 } 2760 2761 /* 2762 * must have write locks on this node and the 2763 * parent 2764 */ 2765 if (level > write_lock_level || 2766 (level + 1 > write_lock_level && 2767 level + 1 < BTRFS_MAX_LEVEL && 2768 p->nodes[level + 1])) { 2769 write_lock_level = level + 1; 2770 btrfs_release_path(p); 2771 goto again; 2772 } 2773 2774 btrfs_set_path_blocking(p); 2775 if (last_level) 2776 err = btrfs_cow_block(trans, root, b, NULL, 0, 2777 &b); 2778 else 2779 err = btrfs_cow_block(trans, root, b, 2780 p->nodes[level + 1], 2781 p->slots[level + 1], &b); 2782 if (err) { 2783 ret = err; 2784 goto done; 2785 } 2786 } 2787 cow_done: 2788 p->nodes[level] = b; 2789 /* 2790 * Leave path with blocking locks to avoid massive 2791 * lock context switch, this is made on purpose. 2792 */ 2793 2794 /* 2795 * we have a lock on b and as long as we aren't changing 2796 * the tree, there is no way to for the items in b to change. 2797 * It is safe to drop the lock on our parent before we 2798 * go through the expensive btree search on b. 2799 * 2800 * If we're inserting or deleting (ins_len != 0), then we might 2801 * be changing slot zero, which may require changing the parent. 2802 * So, we can't drop the lock until after we know which slot 2803 * we're operating on. 2804 */ 2805 if (!ins_len && !p->keep_locks) { 2806 int u = level + 1; 2807 2808 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2809 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2810 p->locks[u] = 0; 2811 } 2812 } 2813 2814 ret = key_search(b, key, level, &prev_cmp, &slot); 2815 if (ret < 0) 2816 goto done; 2817 2818 if (level != 0) { 2819 int dec = 0; 2820 if (ret && slot > 0) { 2821 dec = 1; 2822 slot -= 1; 2823 } 2824 p->slots[level] = slot; 2825 err = setup_nodes_for_search(trans, root, p, b, level, 2826 ins_len, &write_lock_level); 2827 if (err == -EAGAIN) 2828 goto again; 2829 if (err) { 2830 ret = err; 2831 goto done; 2832 } 2833 b = p->nodes[level]; 2834 slot = p->slots[level]; 2835 2836 /* 2837 * slot 0 is special, if we change the key 2838 * we have to update the parent pointer 2839 * which means we must have a write lock 2840 * on the parent 2841 */ 2842 if (slot == 0 && ins_len && 2843 write_lock_level < level + 1) { 2844 write_lock_level = level + 1; 2845 btrfs_release_path(p); 2846 goto again; 2847 } 2848 2849 unlock_up(p, level, lowest_unlock, 2850 min_write_lock_level, &write_lock_level); 2851 2852 if (level == lowest_level) { 2853 if (dec) 2854 p->slots[level]++; 2855 goto done; 2856 } 2857 2858 err = read_block_for_search(root, p, &b, level, 2859 slot, key); 2860 if (err == -EAGAIN) 2861 goto again; 2862 if (err) { 2863 ret = err; 2864 goto done; 2865 } 2866 2867 if (!p->skip_locking) { 2868 level = btrfs_header_level(b); 2869 if (level <= write_lock_level) { 2870 err = btrfs_try_tree_write_lock(b); 2871 if (!err) { 2872 btrfs_set_path_blocking(p); 2873 btrfs_tree_lock(b); 2874 } 2875 p->locks[level] = BTRFS_WRITE_LOCK; 2876 } else { 2877 err = btrfs_tree_read_lock_atomic(b); 2878 if (!err) { 2879 btrfs_set_path_blocking(p); 2880 btrfs_tree_read_lock(b); 2881 } 2882 p->locks[level] = BTRFS_READ_LOCK; 2883 } 2884 p->nodes[level] = b; 2885 } 2886 } else { 2887 p->slots[level] = slot; 2888 if (ins_len > 0 && 2889 btrfs_leaf_free_space(fs_info, b) < ins_len) { 2890 if (write_lock_level < 1) { 2891 write_lock_level = 1; 2892 btrfs_release_path(p); 2893 goto again; 2894 } 2895 2896 btrfs_set_path_blocking(p); 2897 err = split_leaf(trans, root, key, 2898 p, ins_len, ret == 0); 2899 2900 BUG_ON(err > 0); 2901 if (err) { 2902 ret = err; 2903 goto done; 2904 } 2905 } 2906 if (!p->search_for_split) 2907 unlock_up(p, level, lowest_unlock, 2908 min_write_lock_level, NULL); 2909 goto done; 2910 } 2911 } 2912 ret = 1; 2913 done: 2914 /* 2915 * we don't really know what they plan on doing with the path 2916 * from here on, so for now just mark it as blocking 2917 */ 2918 if (!p->leave_spinning) 2919 btrfs_set_path_blocking(p); 2920 if (ret < 0 && !p->skip_release_on_error) 2921 btrfs_release_path(p); 2922 return ret; 2923 } 2924 2925 /* 2926 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2927 * current state of the tree together with the operations recorded in the tree 2928 * modification log to search for the key in a previous version of this tree, as 2929 * denoted by the time_seq parameter. 2930 * 2931 * Naturally, there is no support for insert, delete or cow operations. 2932 * 2933 * The resulting path and return value will be set up as if we called 2934 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2935 */ 2936 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2937 struct btrfs_path *p, u64 time_seq) 2938 { 2939 struct btrfs_fs_info *fs_info = root->fs_info; 2940 struct extent_buffer *b; 2941 int slot; 2942 int ret; 2943 int err; 2944 int level; 2945 int lowest_unlock = 1; 2946 u8 lowest_level = 0; 2947 int prev_cmp = -1; 2948 2949 lowest_level = p->lowest_level; 2950 WARN_ON(p->nodes[0] != NULL); 2951 2952 if (p->search_commit_root) { 2953 BUG_ON(time_seq); 2954 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2955 } 2956 2957 again: 2958 b = get_old_root(root, time_seq); 2959 if (!b) { 2960 ret = -EIO; 2961 goto done; 2962 } 2963 level = btrfs_header_level(b); 2964 p->locks[level] = BTRFS_READ_LOCK; 2965 2966 while (b) { 2967 level = btrfs_header_level(b); 2968 p->nodes[level] = b; 2969 2970 /* 2971 * we have a lock on b and as long as we aren't changing 2972 * the tree, there is no way to for the items in b to change. 2973 * It is safe to drop the lock on our parent before we 2974 * go through the expensive btree search on b. 2975 */ 2976 btrfs_unlock_up_safe(p, level + 1); 2977 2978 /* 2979 * Since we can unwind ebs we want to do a real search every 2980 * time. 2981 */ 2982 prev_cmp = -1; 2983 ret = key_search(b, key, level, &prev_cmp, &slot); 2984 2985 if (level != 0) { 2986 int dec = 0; 2987 if (ret && slot > 0) { 2988 dec = 1; 2989 slot -= 1; 2990 } 2991 p->slots[level] = slot; 2992 unlock_up(p, level, lowest_unlock, 0, NULL); 2993 2994 if (level == lowest_level) { 2995 if (dec) 2996 p->slots[level]++; 2997 goto done; 2998 } 2999 3000 err = read_block_for_search(root, p, &b, level, 3001 slot, key); 3002 if (err == -EAGAIN) 3003 goto again; 3004 if (err) { 3005 ret = err; 3006 goto done; 3007 } 3008 3009 level = btrfs_header_level(b); 3010 err = btrfs_tree_read_lock_atomic(b); 3011 if (!err) { 3012 btrfs_set_path_blocking(p); 3013 btrfs_tree_read_lock(b); 3014 } 3015 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3016 if (!b) { 3017 ret = -ENOMEM; 3018 goto done; 3019 } 3020 p->locks[level] = BTRFS_READ_LOCK; 3021 p->nodes[level] = b; 3022 } else { 3023 p->slots[level] = slot; 3024 unlock_up(p, level, lowest_unlock, 0, NULL); 3025 goto done; 3026 } 3027 } 3028 ret = 1; 3029 done: 3030 if (!p->leave_spinning) 3031 btrfs_set_path_blocking(p); 3032 if (ret < 0) 3033 btrfs_release_path(p); 3034 3035 return ret; 3036 } 3037 3038 /* 3039 * helper to use instead of search slot if no exact match is needed but 3040 * instead the next or previous item should be returned. 3041 * When find_higher is true, the next higher item is returned, the next lower 3042 * otherwise. 3043 * When return_any and find_higher are both true, and no higher item is found, 3044 * return the next lower instead. 3045 * When return_any is true and find_higher is false, and no lower item is found, 3046 * return the next higher instead. 3047 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3048 * < 0 on error 3049 */ 3050 int btrfs_search_slot_for_read(struct btrfs_root *root, 3051 const struct btrfs_key *key, 3052 struct btrfs_path *p, int find_higher, 3053 int return_any) 3054 { 3055 int ret; 3056 struct extent_buffer *leaf; 3057 3058 again: 3059 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3060 if (ret <= 0) 3061 return ret; 3062 /* 3063 * a return value of 1 means the path is at the position where the 3064 * item should be inserted. Normally this is the next bigger item, 3065 * but in case the previous item is the last in a leaf, path points 3066 * to the first free slot in the previous leaf, i.e. at an invalid 3067 * item. 3068 */ 3069 leaf = p->nodes[0]; 3070 3071 if (find_higher) { 3072 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3073 ret = btrfs_next_leaf(root, p); 3074 if (ret <= 0) 3075 return ret; 3076 if (!return_any) 3077 return 1; 3078 /* 3079 * no higher item found, return the next 3080 * lower instead 3081 */ 3082 return_any = 0; 3083 find_higher = 0; 3084 btrfs_release_path(p); 3085 goto again; 3086 } 3087 } else { 3088 if (p->slots[0] == 0) { 3089 ret = btrfs_prev_leaf(root, p); 3090 if (ret < 0) 3091 return ret; 3092 if (!ret) { 3093 leaf = p->nodes[0]; 3094 if (p->slots[0] == btrfs_header_nritems(leaf)) 3095 p->slots[0]--; 3096 return 0; 3097 } 3098 if (!return_any) 3099 return 1; 3100 /* 3101 * no lower item found, return the next 3102 * higher instead 3103 */ 3104 return_any = 0; 3105 find_higher = 1; 3106 btrfs_release_path(p); 3107 goto again; 3108 } else { 3109 --p->slots[0]; 3110 } 3111 } 3112 return 0; 3113 } 3114 3115 /* 3116 * adjust the pointers going up the tree, starting at level 3117 * making sure the right key of each node is points to 'key'. 3118 * This is used after shifting pointers to the left, so it stops 3119 * fixing up pointers when a given leaf/node is not in slot 0 of the 3120 * higher levels 3121 * 3122 */ 3123 static void fixup_low_keys(struct btrfs_path *path, 3124 struct btrfs_disk_key *key, int level) 3125 { 3126 int i; 3127 struct extent_buffer *t; 3128 int ret; 3129 3130 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3131 int tslot = path->slots[i]; 3132 3133 if (!path->nodes[i]) 3134 break; 3135 t = path->nodes[i]; 3136 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3137 GFP_ATOMIC); 3138 BUG_ON(ret < 0); 3139 btrfs_set_node_key(t, key, tslot); 3140 btrfs_mark_buffer_dirty(path->nodes[i]); 3141 if (tslot != 0) 3142 break; 3143 } 3144 } 3145 3146 /* 3147 * update item key. 3148 * 3149 * This function isn't completely safe. It's the caller's responsibility 3150 * that the new key won't break the order 3151 */ 3152 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3153 struct btrfs_path *path, 3154 const struct btrfs_key *new_key) 3155 { 3156 struct btrfs_disk_key disk_key; 3157 struct extent_buffer *eb; 3158 int slot; 3159 3160 eb = path->nodes[0]; 3161 slot = path->slots[0]; 3162 if (slot > 0) { 3163 btrfs_item_key(eb, &disk_key, slot - 1); 3164 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3165 } 3166 if (slot < btrfs_header_nritems(eb) - 1) { 3167 btrfs_item_key(eb, &disk_key, slot + 1); 3168 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3169 } 3170 3171 btrfs_cpu_key_to_disk(&disk_key, new_key); 3172 btrfs_set_item_key(eb, &disk_key, slot); 3173 btrfs_mark_buffer_dirty(eb); 3174 if (slot == 0) 3175 fixup_low_keys(path, &disk_key, 1); 3176 } 3177 3178 /* 3179 * try to push data from one node into the next node left in the 3180 * tree. 3181 * 3182 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3183 * error, and > 0 if there was no room in the left hand block. 3184 */ 3185 static int push_node_left(struct btrfs_trans_handle *trans, 3186 struct btrfs_fs_info *fs_info, 3187 struct extent_buffer *dst, 3188 struct extent_buffer *src, int empty) 3189 { 3190 int push_items = 0; 3191 int src_nritems; 3192 int dst_nritems; 3193 int ret = 0; 3194 3195 src_nritems = btrfs_header_nritems(src); 3196 dst_nritems = btrfs_header_nritems(dst); 3197 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3198 WARN_ON(btrfs_header_generation(src) != trans->transid); 3199 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3200 3201 if (!empty && src_nritems <= 8) 3202 return 1; 3203 3204 if (push_items <= 0) 3205 return 1; 3206 3207 if (empty) { 3208 push_items = min(src_nritems, push_items); 3209 if (push_items < src_nritems) { 3210 /* leave at least 8 pointers in the node if 3211 * we aren't going to empty it 3212 */ 3213 if (src_nritems - push_items < 8) { 3214 if (push_items <= 8) 3215 return 1; 3216 push_items -= 8; 3217 } 3218 } 3219 } else 3220 push_items = min(src_nritems - 8, push_items); 3221 3222 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0, 3223 push_items); 3224 if (ret) { 3225 btrfs_abort_transaction(trans, ret); 3226 return ret; 3227 } 3228 copy_extent_buffer(dst, src, 3229 btrfs_node_key_ptr_offset(dst_nritems), 3230 btrfs_node_key_ptr_offset(0), 3231 push_items * sizeof(struct btrfs_key_ptr)); 3232 3233 if (push_items < src_nritems) { 3234 /* 3235 * Don't call tree_mod_log_insert_move here, key removal was 3236 * already fully logged by tree_mod_log_eb_copy above. 3237 */ 3238 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3239 btrfs_node_key_ptr_offset(push_items), 3240 (src_nritems - push_items) * 3241 sizeof(struct btrfs_key_ptr)); 3242 } 3243 btrfs_set_header_nritems(src, src_nritems - push_items); 3244 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3245 btrfs_mark_buffer_dirty(src); 3246 btrfs_mark_buffer_dirty(dst); 3247 3248 return ret; 3249 } 3250 3251 /* 3252 * try to push data from one node into the next node right in the 3253 * tree. 3254 * 3255 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3256 * error, and > 0 if there was no room in the right hand block. 3257 * 3258 * this will only push up to 1/2 the contents of the left node over 3259 */ 3260 static int balance_node_right(struct btrfs_trans_handle *trans, 3261 struct btrfs_fs_info *fs_info, 3262 struct extent_buffer *dst, 3263 struct extent_buffer *src) 3264 { 3265 int push_items = 0; 3266 int max_push; 3267 int src_nritems; 3268 int dst_nritems; 3269 int ret = 0; 3270 3271 WARN_ON(btrfs_header_generation(src) != trans->transid); 3272 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3273 3274 src_nritems = btrfs_header_nritems(src); 3275 dst_nritems = btrfs_header_nritems(dst); 3276 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3277 if (push_items <= 0) 3278 return 1; 3279 3280 if (src_nritems < 4) 3281 return 1; 3282 3283 max_push = src_nritems / 2 + 1; 3284 /* don't try to empty the node */ 3285 if (max_push >= src_nritems) 3286 return 1; 3287 3288 if (max_push < push_items) 3289 push_items = max_push; 3290 3291 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3292 BUG_ON(ret < 0); 3293 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3294 btrfs_node_key_ptr_offset(0), 3295 (dst_nritems) * 3296 sizeof(struct btrfs_key_ptr)); 3297 3298 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0, 3299 src_nritems - push_items, push_items); 3300 if (ret) { 3301 btrfs_abort_transaction(trans, ret); 3302 return ret; 3303 } 3304 copy_extent_buffer(dst, src, 3305 btrfs_node_key_ptr_offset(0), 3306 btrfs_node_key_ptr_offset(src_nritems - push_items), 3307 push_items * sizeof(struct btrfs_key_ptr)); 3308 3309 btrfs_set_header_nritems(src, src_nritems - push_items); 3310 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3311 3312 btrfs_mark_buffer_dirty(src); 3313 btrfs_mark_buffer_dirty(dst); 3314 3315 return ret; 3316 } 3317 3318 /* 3319 * helper function to insert a new root level in the tree. 3320 * A new node is allocated, and a single item is inserted to 3321 * point to the existing root 3322 * 3323 * returns zero on success or < 0 on failure. 3324 */ 3325 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3326 struct btrfs_root *root, 3327 struct btrfs_path *path, int level) 3328 { 3329 struct btrfs_fs_info *fs_info = root->fs_info; 3330 u64 lower_gen; 3331 struct extent_buffer *lower; 3332 struct extent_buffer *c; 3333 struct extent_buffer *old; 3334 struct btrfs_disk_key lower_key; 3335 int ret; 3336 3337 BUG_ON(path->nodes[level]); 3338 BUG_ON(path->nodes[level-1] != root->node); 3339 3340 lower = path->nodes[level-1]; 3341 if (level == 1) 3342 btrfs_item_key(lower, &lower_key, 0); 3343 else 3344 btrfs_node_key(lower, &lower_key, 0); 3345 3346 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3347 &lower_key, level, root->node->start, 0); 3348 if (IS_ERR(c)) 3349 return PTR_ERR(c); 3350 3351 root_add_used(root, fs_info->nodesize); 3352 3353 btrfs_set_header_nritems(c, 1); 3354 btrfs_set_node_key(c, &lower_key, 0); 3355 btrfs_set_node_blockptr(c, 0, lower->start); 3356 lower_gen = btrfs_header_generation(lower); 3357 WARN_ON(lower_gen != trans->transid); 3358 3359 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3360 3361 btrfs_mark_buffer_dirty(c); 3362 3363 old = root->node; 3364 ret = tree_mod_log_insert_root(root->node, c, 0); 3365 BUG_ON(ret < 0); 3366 rcu_assign_pointer(root->node, c); 3367 3368 /* the super has an extra ref to root->node */ 3369 free_extent_buffer(old); 3370 3371 add_root_to_dirty_list(root); 3372 extent_buffer_get(c); 3373 path->nodes[level] = c; 3374 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3375 path->slots[level] = 0; 3376 return 0; 3377 } 3378 3379 /* 3380 * worker function to insert a single pointer in a node. 3381 * the node should have enough room for the pointer already 3382 * 3383 * slot and level indicate where you want the key to go, and 3384 * blocknr is the block the key points to. 3385 */ 3386 static void insert_ptr(struct btrfs_trans_handle *trans, 3387 struct btrfs_fs_info *fs_info, struct btrfs_path *path, 3388 struct btrfs_disk_key *key, u64 bytenr, 3389 int slot, int level) 3390 { 3391 struct extent_buffer *lower; 3392 int nritems; 3393 int ret; 3394 3395 BUG_ON(!path->nodes[level]); 3396 btrfs_assert_tree_locked(path->nodes[level]); 3397 lower = path->nodes[level]; 3398 nritems = btrfs_header_nritems(lower); 3399 BUG_ON(slot > nritems); 3400 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 3401 if (slot != nritems) { 3402 if (level) { 3403 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3404 nritems - slot); 3405 BUG_ON(ret < 0); 3406 } 3407 memmove_extent_buffer(lower, 3408 btrfs_node_key_ptr_offset(slot + 1), 3409 btrfs_node_key_ptr_offset(slot), 3410 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3411 } 3412 if (level) { 3413 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3414 GFP_NOFS); 3415 BUG_ON(ret < 0); 3416 } 3417 btrfs_set_node_key(lower, key, slot); 3418 btrfs_set_node_blockptr(lower, slot, bytenr); 3419 WARN_ON(trans->transid == 0); 3420 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3421 btrfs_set_header_nritems(lower, nritems + 1); 3422 btrfs_mark_buffer_dirty(lower); 3423 } 3424 3425 /* 3426 * split the node at the specified level in path in two. 3427 * The path is corrected to point to the appropriate node after the split 3428 * 3429 * Before splitting this tries to make some room in the node by pushing 3430 * left and right, if either one works, it returns right away. 3431 * 3432 * returns 0 on success and < 0 on failure 3433 */ 3434 static noinline int split_node(struct btrfs_trans_handle *trans, 3435 struct btrfs_root *root, 3436 struct btrfs_path *path, int level) 3437 { 3438 struct btrfs_fs_info *fs_info = root->fs_info; 3439 struct extent_buffer *c; 3440 struct extent_buffer *split; 3441 struct btrfs_disk_key disk_key; 3442 int mid; 3443 int ret; 3444 u32 c_nritems; 3445 3446 c = path->nodes[level]; 3447 WARN_ON(btrfs_header_generation(c) != trans->transid); 3448 if (c == root->node) { 3449 /* 3450 * trying to split the root, lets make a new one 3451 * 3452 * tree mod log: We don't log_removal old root in 3453 * insert_new_root, because that root buffer will be kept as a 3454 * normal node. We are going to log removal of half of the 3455 * elements below with tree_mod_log_eb_copy. We're holding a 3456 * tree lock on the buffer, which is why we cannot race with 3457 * other tree_mod_log users. 3458 */ 3459 ret = insert_new_root(trans, root, path, level + 1); 3460 if (ret) 3461 return ret; 3462 } else { 3463 ret = push_nodes_for_insert(trans, root, path, level); 3464 c = path->nodes[level]; 3465 if (!ret && btrfs_header_nritems(c) < 3466 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3467 return 0; 3468 if (ret < 0) 3469 return ret; 3470 } 3471 3472 c_nritems = btrfs_header_nritems(c); 3473 mid = (c_nritems + 1) / 2; 3474 btrfs_node_key(c, &disk_key, mid); 3475 3476 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3477 &disk_key, level, c->start, 0); 3478 if (IS_ERR(split)) 3479 return PTR_ERR(split); 3480 3481 root_add_used(root, fs_info->nodesize); 3482 ASSERT(btrfs_header_level(c) == level); 3483 3484 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid); 3485 if (ret) { 3486 btrfs_abort_transaction(trans, ret); 3487 return ret; 3488 } 3489 copy_extent_buffer(split, c, 3490 btrfs_node_key_ptr_offset(0), 3491 btrfs_node_key_ptr_offset(mid), 3492 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3493 btrfs_set_header_nritems(split, c_nritems - mid); 3494 btrfs_set_header_nritems(c, mid); 3495 ret = 0; 3496 3497 btrfs_mark_buffer_dirty(c); 3498 btrfs_mark_buffer_dirty(split); 3499 3500 insert_ptr(trans, fs_info, path, &disk_key, split->start, 3501 path->slots[level + 1] + 1, level + 1); 3502 3503 if (path->slots[level] >= mid) { 3504 path->slots[level] -= mid; 3505 btrfs_tree_unlock(c); 3506 free_extent_buffer(c); 3507 path->nodes[level] = split; 3508 path->slots[level + 1] += 1; 3509 } else { 3510 btrfs_tree_unlock(split); 3511 free_extent_buffer(split); 3512 } 3513 return ret; 3514 } 3515 3516 /* 3517 * how many bytes are required to store the items in a leaf. start 3518 * and nr indicate which items in the leaf to check. This totals up the 3519 * space used both by the item structs and the item data 3520 */ 3521 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3522 { 3523 struct btrfs_item *start_item; 3524 struct btrfs_item *end_item; 3525 struct btrfs_map_token token; 3526 int data_len; 3527 int nritems = btrfs_header_nritems(l); 3528 int end = min(nritems, start + nr) - 1; 3529 3530 if (!nr) 3531 return 0; 3532 btrfs_init_map_token(&token); 3533 start_item = btrfs_item_nr(start); 3534 end_item = btrfs_item_nr(end); 3535 data_len = btrfs_token_item_offset(l, start_item, &token) + 3536 btrfs_token_item_size(l, start_item, &token); 3537 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3538 data_len += sizeof(struct btrfs_item) * nr; 3539 WARN_ON(data_len < 0); 3540 return data_len; 3541 } 3542 3543 /* 3544 * The space between the end of the leaf items and 3545 * the start of the leaf data. IOW, how much room 3546 * the leaf has left for both items and data 3547 */ 3548 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info, 3549 struct extent_buffer *leaf) 3550 { 3551 int nritems = btrfs_header_nritems(leaf); 3552 int ret; 3553 3554 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3555 if (ret < 0) { 3556 btrfs_crit(fs_info, 3557 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3558 ret, 3559 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3560 leaf_space_used(leaf, 0, nritems), nritems); 3561 } 3562 return ret; 3563 } 3564 3565 /* 3566 * min slot controls the lowest index we're willing to push to the 3567 * right. We'll push up to and including min_slot, but no lower 3568 */ 3569 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info, 3570 struct btrfs_path *path, 3571 int data_size, int empty, 3572 struct extent_buffer *right, 3573 int free_space, u32 left_nritems, 3574 u32 min_slot) 3575 { 3576 struct extent_buffer *left = path->nodes[0]; 3577 struct extent_buffer *upper = path->nodes[1]; 3578 struct btrfs_map_token token; 3579 struct btrfs_disk_key disk_key; 3580 int slot; 3581 u32 i; 3582 int push_space = 0; 3583 int push_items = 0; 3584 struct btrfs_item *item; 3585 u32 nr; 3586 u32 right_nritems; 3587 u32 data_end; 3588 u32 this_item_size; 3589 3590 btrfs_init_map_token(&token); 3591 3592 if (empty) 3593 nr = 0; 3594 else 3595 nr = max_t(u32, 1, min_slot); 3596 3597 if (path->slots[0] >= left_nritems) 3598 push_space += data_size; 3599 3600 slot = path->slots[1]; 3601 i = left_nritems - 1; 3602 while (i >= nr) { 3603 item = btrfs_item_nr(i); 3604 3605 if (!empty && push_items > 0) { 3606 if (path->slots[0] > i) 3607 break; 3608 if (path->slots[0] == i) { 3609 int space = btrfs_leaf_free_space(fs_info, left); 3610 if (space + push_space * 2 > free_space) 3611 break; 3612 } 3613 } 3614 3615 if (path->slots[0] == i) 3616 push_space += data_size; 3617 3618 this_item_size = btrfs_item_size(left, item); 3619 if (this_item_size + sizeof(*item) + push_space > free_space) 3620 break; 3621 3622 push_items++; 3623 push_space += this_item_size + sizeof(*item); 3624 if (i == 0) 3625 break; 3626 i--; 3627 } 3628 3629 if (push_items == 0) 3630 goto out_unlock; 3631 3632 WARN_ON(!empty && push_items == left_nritems); 3633 3634 /* push left to right */ 3635 right_nritems = btrfs_header_nritems(right); 3636 3637 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3638 push_space -= leaf_data_end(fs_info, left); 3639 3640 /* make room in the right data area */ 3641 data_end = leaf_data_end(fs_info, right); 3642 memmove_extent_buffer(right, 3643 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3644 BTRFS_LEAF_DATA_OFFSET + data_end, 3645 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3646 3647 /* copy from the left data area */ 3648 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3649 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3650 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left), 3651 push_space); 3652 3653 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3654 btrfs_item_nr_offset(0), 3655 right_nritems * sizeof(struct btrfs_item)); 3656 3657 /* copy the items from left to right */ 3658 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3659 btrfs_item_nr_offset(left_nritems - push_items), 3660 push_items * sizeof(struct btrfs_item)); 3661 3662 /* update the item pointers */ 3663 right_nritems += push_items; 3664 btrfs_set_header_nritems(right, right_nritems); 3665 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3666 for (i = 0; i < right_nritems; i++) { 3667 item = btrfs_item_nr(i); 3668 push_space -= btrfs_token_item_size(right, item, &token); 3669 btrfs_set_token_item_offset(right, item, push_space, &token); 3670 } 3671 3672 left_nritems -= push_items; 3673 btrfs_set_header_nritems(left, left_nritems); 3674 3675 if (left_nritems) 3676 btrfs_mark_buffer_dirty(left); 3677 else 3678 clean_tree_block(fs_info, left); 3679 3680 btrfs_mark_buffer_dirty(right); 3681 3682 btrfs_item_key(right, &disk_key, 0); 3683 btrfs_set_node_key(upper, &disk_key, slot + 1); 3684 btrfs_mark_buffer_dirty(upper); 3685 3686 /* then fixup the leaf pointer in the path */ 3687 if (path->slots[0] >= left_nritems) { 3688 path->slots[0] -= left_nritems; 3689 if (btrfs_header_nritems(path->nodes[0]) == 0) 3690 clean_tree_block(fs_info, path->nodes[0]); 3691 btrfs_tree_unlock(path->nodes[0]); 3692 free_extent_buffer(path->nodes[0]); 3693 path->nodes[0] = right; 3694 path->slots[1] += 1; 3695 } else { 3696 btrfs_tree_unlock(right); 3697 free_extent_buffer(right); 3698 } 3699 return 0; 3700 3701 out_unlock: 3702 btrfs_tree_unlock(right); 3703 free_extent_buffer(right); 3704 return 1; 3705 } 3706 3707 /* 3708 * push some data in the path leaf to the right, trying to free up at 3709 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3710 * 3711 * returns 1 if the push failed because the other node didn't have enough 3712 * room, 0 if everything worked out and < 0 if there were major errors. 3713 * 3714 * this will push starting from min_slot to the end of the leaf. It won't 3715 * push any slot lower than min_slot 3716 */ 3717 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3718 *root, struct btrfs_path *path, 3719 int min_data_size, int data_size, 3720 int empty, u32 min_slot) 3721 { 3722 struct btrfs_fs_info *fs_info = root->fs_info; 3723 struct extent_buffer *left = path->nodes[0]; 3724 struct extent_buffer *right; 3725 struct extent_buffer *upper; 3726 int slot; 3727 int free_space; 3728 u32 left_nritems; 3729 int ret; 3730 3731 if (!path->nodes[1]) 3732 return 1; 3733 3734 slot = path->slots[1]; 3735 upper = path->nodes[1]; 3736 if (slot >= btrfs_header_nritems(upper) - 1) 3737 return 1; 3738 3739 btrfs_assert_tree_locked(path->nodes[1]); 3740 3741 right = read_node_slot(fs_info, upper, slot + 1); 3742 /* 3743 * slot + 1 is not valid or we fail to read the right node, 3744 * no big deal, just return. 3745 */ 3746 if (IS_ERR(right)) 3747 return 1; 3748 3749 btrfs_tree_lock(right); 3750 btrfs_set_lock_blocking(right); 3751 3752 free_space = btrfs_leaf_free_space(fs_info, right); 3753 if (free_space < data_size) 3754 goto out_unlock; 3755 3756 /* cow and double check */ 3757 ret = btrfs_cow_block(trans, root, right, upper, 3758 slot + 1, &right); 3759 if (ret) 3760 goto out_unlock; 3761 3762 free_space = btrfs_leaf_free_space(fs_info, right); 3763 if (free_space < data_size) 3764 goto out_unlock; 3765 3766 left_nritems = btrfs_header_nritems(left); 3767 if (left_nritems == 0) 3768 goto out_unlock; 3769 3770 if (path->slots[0] == left_nritems && !empty) { 3771 /* Key greater than all keys in the leaf, right neighbor has 3772 * enough room for it and we're not emptying our leaf to delete 3773 * it, therefore use right neighbor to insert the new item and 3774 * no need to touch/dirty our left leaf. */ 3775 btrfs_tree_unlock(left); 3776 free_extent_buffer(left); 3777 path->nodes[0] = right; 3778 path->slots[0] = 0; 3779 path->slots[1]++; 3780 return 0; 3781 } 3782 3783 return __push_leaf_right(fs_info, path, min_data_size, empty, 3784 right, free_space, left_nritems, min_slot); 3785 out_unlock: 3786 btrfs_tree_unlock(right); 3787 free_extent_buffer(right); 3788 return 1; 3789 } 3790 3791 /* 3792 * push some data in the path leaf to the left, trying to free up at 3793 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3794 * 3795 * max_slot can put a limit on how far into the leaf we'll push items. The 3796 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3797 * items 3798 */ 3799 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info, 3800 struct btrfs_path *path, int data_size, 3801 int empty, struct extent_buffer *left, 3802 int free_space, u32 right_nritems, 3803 u32 max_slot) 3804 { 3805 struct btrfs_disk_key disk_key; 3806 struct extent_buffer *right = path->nodes[0]; 3807 int i; 3808 int push_space = 0; 3809 int push_items = 0; 3810 struct btrfs_item *item; 3811 u32 old_left_nritems; 3812 u32 nr; 3813 int ret = 0; 3814 u32 this_item_size; 3815 u32 old_left_item_size; 3816 struct btrfs_map_token token; 3817 3818 btrfs_init_map_token(&token); 3819 3820 if (empty) 3821 nr = min(right_nritems, max_slot); 3822 else 3823 nr = min(right_nritems - 1, max_slot); 3824 3825 for (i = 0; i < nr; i++) { 3826 item = btrfs_item_nr(i); 3827 3828 if (!empty && push_items > 0) { 3829 if (path->slots[0] < i) 3830 break; 3831 if (path->slots[0] == i) { 3832 int space = btrfs_leaf_free_space(fs_info, right); 3833 if (space + push_space * 2 > free_space) 3834 break; 3835 } 3836 } 3837 3838 if (path->slots[0] == i) 3839 push_space += data_size; 3840 3841 this_item_size = btrfs_item_size(right, item); 3842 if (this_item_size + sizeof(*item) + push_space > free_space) 3843 break; 3844 3845 push_items++; 3846 push_space += this_item_size + sizeof(*item); 3847 } 3848 3849 if (push_items == 0) { 3850 ret = 1; 3851 goto out; 3852 } 3853 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3854 3855 /* push data from right to left */ 3856 copy_extent_buffer(left, right, 3857 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3858 btrfs_item_nr_offset(0), 3859 push_items * sizeof(struct btrfs_item)); 3860 3861 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3862 btrfs_item_offset_nr(right, push_items - 1); 3863 3864 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3865 leaf_data_end(fs_info, left) - push_space, 3866 BTRFS_LEAF_DATA_OFFSET + 3867 btrfs_item_offset_nr(right, push_items - 1), 3868 push_space); 3869 old_left_nritems = btrfs_header_nritems(left); 3870 BUG_ON(old_left_nritems <= 0); 3871 3872 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3873 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3874 u32 ioff; 3875 3876 item = btrfs_item_nr(i); 3877 3878 ioff = btrfs_token_item_offset(left, item, &token); 3879 btrfs_set_token_item_offset(left, item, 3880 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3881 &token); 3882 } 3883 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3884 3885 /* fixup right node */ 3886 if (push_items > right_nritems) 3887 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3888 right_nritems); 3889 3890 if (push_items < right_nritems) { 3891 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3892 leaf_data_end(fs_info, right); 3893 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3894 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3895 BTRFS_LEAF_DATA_OFFSET + 3896 leaf_data_end(fs_info, right), push_space); 3897 3898 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3899 btrfs_item_nr_offset(push_items), 3900 (btrfs_header_nritems(right) - push_items) * 3901 sizeof(struct btrfs_item)); 3902 } 3903 right_nritems -= push_items; 3904 btrfs_set_header_nritems(right, right_nritems); 3905 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3906 for (i = 0; i < right_nritems; i++) { 3907 item = btrfs_item_nr(i); 3908 3909 push_space = push_space - btrfs_token_item_size(right, 3910 item, &token); 3911 btrfs_set_token_item_offset(right, item, push_space, &token); 3912 } 3913 3914 btrfs_mark_buffer_dirty(left); 3915 if (right_nritems) 3916 btrfs_mark_buffer_dirty(right); 3917 else 3918 clean_tree_block(fs_info, right); 3919 3920 btrfs_item_key(right, &disk_key, 0); 3921 fixup_low_keys(path, &disk_key, 1); 3922 3923 /* then fixup the leaf pointer in the path */ 3924 if (path->slots[0] < push_items) { 3925 path->slots[0] += old_left_nritems; 3926 btrfs_tree_unlock(path->nodes[0]); 3927 free_extent_buffer(path->nodes[0]); 3928 path->nodes[0] = left; 3929 path->slots[1] -= 1; 3930 } else { 3931 btrfs_tree_unlock(left); 3932 free_extent_buffer(left); 3933 path->slots[0] -= push_items; 3934 } 3935 BUG_ON(path->slots[0] < 0); 3936 return ret; 3937 out: 3938 btrfs_tree_unlock(left); 3939 free_extent_buffer(left); 3940 return ret; 3941 } 3942 3943 /* 3944 * push some data in the path leaf to the left, trying to free up at 3945 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3946 * 3947 * max_slot can put a limit on how far into the leaf we'll push items. The 3948 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3949 * items 3950 */ 3951 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3952 *root, struct btrfs_path *path, int min_data_size, 3953 int data_size, int empty, u32 max_slot) 3954 { 3955 struct btrfs_fs_info *fs_info = root->fs_info; 3956 struct extent_buffer *right = path->nodes[0]; 3957 struct extent_buffer *left; 3958 int slot; 3959 int free_space; 3960 u32 right_nritems; 3961 int ret = 0; 3962 3963 slot = path->slots[1]; 3964 if (slot == 0) 3965 return 1; 3966 if (!path->nodes[1]) 3967 return 1; 3968 3969 right_nritems = btrfs_header_nritems(right); 3970 if (right_nritems == 0) 3971 return 1; 3972 3973 btrfs_assert_tree_locked(path->nodes[1]); 3974 3975 left = read_node_slot(fs_info, path->nodes[1], slot - 1); 3976 /* 3977 * slot - 1 is not valid or we fail to read the left node, 3978 * no big deal, just return. 3979 */ 3980 if (IS_ERR(left)) 3981 return 1; 3982 3983 btrfs_tree_lock(left); 3984 btrfs_set_lock_blocking(left); 3985 3986 free_space = btrfs_leaf_free_space(fs_info, left); 3987 if (free_space < data_size) { 3988 ret = 1; 3989 goto out; 3990 } 3991 3992 /* cow and double check */ 3993 ret = btrfs_cow_block(trans, root, left, 3994 path->nodes[1], slot - 1, &left); 3995 if (ret) { 3996 /* we hit -ENOSPC, but it isn't fatal here */ 3997 if (ret == -ENOSPC) 3998 ret = 1; 3999 goto out; 4000 } 4001 4002 free_space = btrfs_leaf_free_space(fs_info, left); 4003 if (free_space < data_size) { 4004 ret = 1; 4005 goto out; 4006 } 4007 4008 return __push_leaf_left(fs_info, path, min_data_size, 4009 empty, left, free_space, right_nritems, 4010 max_slot); 4011 out: 4012 btrfs_tree_unlock(left); 4013 free_extent_buffer(left); 4014 return ret; 4015 } 4016 4017 /* 4018 * split the path's leaf in two, making sure there is at least data_size 4019 * available for the resulting leaf level of the path. 4020 */ 4021 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4022 struct btrfs_fs_info *fs_info, 4023 struct btrfs_path *path, 4024 struct extent_buffer *l, 4025 struct extent_buffer *right, 4026 int slot, int mid, int nritems) 4027 { 4028 int data_copy_size; 4029 int rt_data_off; 4030 int i; 4031 struct btrfs_disk_key disk_key; 4032 struct btrfs_map_token token; 4033 4034 btrfs_init_map_token(&token); 4035 4036 nritems = nritems - mid; 4037 btrfs_set_header_nritems(right, nritems); 4038 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l); 4039 4040 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4041 btrfs_item_nr_offset(mid), 4042 nritems * sizeof(struct btrfs_item)); 4043 4044 copy_extent_buffer(right, l, 4045 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4046 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4047 leaf_data_end(fs_info, l), data_copy_size); 4048 4049 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4050 4051 for (i = 0; i < nritems; i++) { 4052 struct btrfs_item *item = btrfs_item_nr(i); 4053 u32 ioff; 4054 4055 ioff = btrfs_token_item_offset(right, item, &token); 4056 btrfs_set_token_item_offset(right, item, 4057 ioff + rt_data_off, &token); 4058 } 4059 4060 btrfs_set_header_nritems(l, mid); 4061 btrfs_item_key(right, &disk_key, 0); 4062 insert_ptr(trans, fs_info, path, &disk_key, right->start, 4063 path->slots[1] + 1, 1); 4064 4065 btrfs_mark_buffer_dirty(right); 4066 btrfs_mark_buffer_dirty(l); 4067 BUG_ON(path->slots[0] != slot); 4068 4069 if (mid <= slot) { 4070 btrfs_tree_unlock(path->nodes[0]); 4071 free_extent_buffer(path->nodes[0]); 4072 path->nodes[0] = right; 4073 path->slots[0] -= mid; 4074 path->slots[1] += 1; 4075 } else { 4076 btrfs_tree_unlock(right); 4077 free_extent_buffer(right); 4078 } 4079 4080 BUG_ON(path->slots[0] < 0); 4081 } 4082 4083 /* 4084 * double splits happen when we need to insert a big item in the middle 4085 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4086 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4087 * A B C 4088 * 4089 * We avoid this by trying to push the items on either side of our target 4090 * into the adjacent leaves. If all goes well we can avoid the double split 4091 * completely. 4092 */ 4093 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4094 struct btrfs_root *root, 4095 struct btrfs_path *path, 4096 int data_size) 4097 { 4098 struct btrfs_fs_info *fs_info = root->fs_info; 4099 int ret; 4100 int progress = 0; 4101 int slot; 4102 u32 nritems; 4103 int space_needed = data_size; 4104 4105 slot = path->slots[0]; 4106 if (slot < btrfs_header_nritems(path->nodes[0])) 4107 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4108 4109 /* 4110 * try to push all the items after our slot into the 4111 * right leaf 4112 */ 4113 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4114 if (ret < 0) 4115 return ret; 4116 4117 if (ret == 0) 4118 progress++; 4119 4120 nritems = btrfs_header_nritems(path->nodes[0]); 4121 /* 4122 * our goal is to get our slot at the start or end of a leaf. If 4123 * we've done so we're done 4124 */ 4125 if (path->slots[0] == 0 || path->slots[0] == nritems) 4126 return 0; 4127 4128 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4129 return 0; 4130 4131 /* try to push all the items before our slot into the next leaf */ 4132 slot = path->slots[0]; 4133 space_needed = data_size; 4134 if (slot > 0) 4135 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4136 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4137 if (ret < 0) 4138 return ret; 4139 4140 if (ret == 0) 4141 progress++; 4142 4143 if (progress) 4144 return 0; 4145 return 1; 4146 } 4147 4148 /* 4149 * split the path's leaf in two, making sure there is at least data_size 4150 * available for the resulting leaf level of the path. 4151 * 4152 * returns 0 if all went well and < 0 on failure. 4153 */ 4154 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4155 struct btrfs_root *root, 4156 const struct btrfs_key *ins_key, 4157 struct btrfs_path *path, int data_size, 4158 int extend) 4159 { 4160 struct btrfs_disk_key disk_key; 4161 struct extent_buffer *l; 4162 u32 nritems; 4163 int mid; 4164 int slot; 4165 struct extent_buffer *right; 4166 struct btrfs_fs_info *fs_info = root->fs_info; 4167 int ret = 0; 4168 int wret; 4169 int split; 4170 int num_doubles = 0; 4171 int tried_avoid_double = 0; 4172 4173 l = path->nodes[0]; 4174 slot = path->slots[0]; 4175 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4176 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4177 return -EOVERFLOW; 4178 4179 /* first try to make some room by pushing left and right */ 4180 if (data_size && path->nodes[1]) { 4181 int space_needed = data_size; 4182 4183 if (slot < btrfs_header_nritems(l)) 4184 space_needed -= btrfs_leaf_free_space(fs_info, l); 4185 4186 wret = push_leaf_right(trans, root, path, space_needed, 4187 space_needed, 0, 0); 4188 if (wret < 0) 4189 return wret; 4190 if (wret) { 4191 space_needed = data_size; 4192 if (slot > 0) 4193 space_needed -= btrfs_leaf_free_space(fs_info, 4194 l); 4195 wret = push_leaf_left(trans, root, path, space_needed, 4196 space_needed, 0, (u32)-1); 4197 if (wret < 0) 4198 return wret; 4199 } 4200 l = path->nodes[0]; 4201 4202 /* did the pushes work? */ 4203 if (btrfs_leaf_free_space(fs_info, l) >= data_size) 4204 return 0; 4205 } 4206 4207 if (!path->nodes[1]) { 4208 ret = insert_new_root(trans, root, path, 1); 4209 if (ret) 4210 return ret; 4211 } 4212 again: 4213 split = 1; 4214 l = path->nodes[0]; 4215 slot = path->slots[0]; 4216 nritems = btrfs_header_nritems(l); 4217 mid = (nritems + 1) / 2; 4218 4219 if (mid <= slot) { 4220 if (nritems == 1 || 4221 leaf_space_used(l, mid, nritems - mid) + data_size > 4222 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4223 if (slot >= nritems) { 4224 split = 0; 4225 } else { 4226 mid = slot; 4227 if (mid != nritems && 4228 leaf_space_used(l, mid, nritems - mid) + 4229 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4230 if (data_size && !tried_avoid_double) 4231 goto push_for_double; 4232 split = 2; 4233 } 4234 } 4235 } 4236 } else { 4237 if (leaf_space_used(l, 0, mid) + data_size > 4238 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4239 if (!extend && data_size && slot == 0) { 4240 split = 0; 4241 } else if ((extend || !data_size) && slot == 0) { 4242 mid = 1; 4243 } else { 4244 mid = slot; 4245 if (mid != nritems && 4246 leaf_space_used(l, mid, nritems - mid) + 4247 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4248 if (data_size && !tried_avoid_double) 4249 goto push_for_double; 4250 split = 2; 4251 } 4252 } 4253 } 4254 } 4255 4256 if (split == 0) 4257 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4258 else 4259 btrfs_item_key(l, &disk_key, mid); 4260 4261 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4262 &disk_key, 0, l->start, 0); 4263 if (IS_ERR(right)) 4264 return PTR_ERR(right); 4265 4266 root_add_used(root, fs_info->nodesize); 4267 4268 if (split == 0) { 4269 if (mid <= slot) { 4270 btrfs_set_header_nritems(right, 0); 4271 insert_ptr(trans, fs_info, path, &disk_key, 4272 right->start, path->slots[1] + 1, 1); 4273 btrfs_tree_unlock(path->nodes[0]); 4274 free_extent_buffer(path->nodes[0]); 4275 path->nodes[0] = right; 4276 path->slots[0] = 0; 4277 path->slots[1] += 1; 4278 } else { 4279 btrfs_set_header_nritems(right, 0); 4280 insert_ptr(trans, fs_info, path, &disk_key, 4281 right->start, path->slots[1], 1); 4282 btrfs_tree_unlock(path->nodes[0]); 4283 free_extent_buffer(path->nodes[0]); 4284 path->nodes[0] = right; 4285 path->slots[0] = 0; 4286 if (path->slots[1] == 0) 4287 fixup_low_keys(path, &disk_key, 1); 4288 } 4289 /* 4290 * We create a new leaf 'right' for the required ins_len and 4291 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4292 * the content of ins_len to 'right'. 4293 */ 4294 return ret; 4295 } 4296 4297 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems); 4298 4299 if (split == 2) { 4300 BUG_ON(num_doubles != 0); 4301 num_doubles++; 4302 goto again; 4303 } 4304 4305 return 0; 4306 4307 push_for_double: 4308 push_for_double_split(trans, root, path, data_size); 4309 tried_avoid_double = 1; 4310 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4311 return 0; 4312 goto again; 4313 } 4314 4315 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4316 struct btrfs_root *root, 4317 struct btrfs_path *path, int ins_len) 4318 { 4319 struct btrfs_fs_info *fs_info = root->fs_info; 4320 struct btrfs_key key; 4321 struct extent_buffer *leaf; 4322 struct btrfs_file_extent_item *fi; 4323 u64 extent_len = 0; 4324 u32 item_size; 4325 int ret; 4326 4327 leaf = path->nodes[0]; 4328 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4329 4330 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4331 key.type != BTRFS_EXTENT_CSUM_KEY); 4332 4333 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len) 4334 return 0; 4335 4336 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4337 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4338 fi = btrfs_item_ptr(leaf, path->slots[0], 4339 struct btrfs_file_extent_item); 4340 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4341 } 4342 btrfs_release_path(path); 4343 4344 path->keep_locks = 1; 4345 path->search_for_split = 1; 4346 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4347 path->search_for_split = 0; 4348 if (ret > 0) 4349 ret = -EAGAIN; 4350 if (ret < 0) 4351 goto err; 4352 4353 ret = -EAGAIN; 4354 leaf = path->nodes[0]; 4355 /* if our item isn't there, return now */ 4356 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4357 goto err; 4358 4359 /* the leaf has changed, it now has room. return now */ 4360 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len) 4361 goto err; 4362 4363 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4364 fi = btrfs_item_ptr(leaf, path->slots[0], 4365 struct btrfs_file_extent_item); 4366 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4367 goto err; 4368 } 4369 4370 btrfs_set_path_blocking(path); 4371 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4372 if (ret) 4373 goto err; 4374 4375 path->keep_locks = 0; 4376 btrfs_unlock_up_safe(path, 1); 4377 return 0; 4378 err: 4379 path->keep_locks = 0; 4380 return ret; 4381 } 4382 4383 static noinline int split_item(struct btrfs_fs_info *fs_info, 4384 struct btrfs_path *path, 4385 const struct btrfs_key *new_key, 4386 unsigned long split_offset) 4387 { 4388 struct extent_buffer *leaf; 4389 struct btrfs_item *item; 4390 struct btrfs_item *new_item; 4391 int slot; 4392 char *buf; 4393 u32 nritems; 4394 u32 item_size; 4395 u32 orig_offset; 4396 struct btrfs_disk_key disk_key; 4397 4398 leaf = path->nodes[0]; 4399 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item)); 4400 4401 btrfs_set_path_blocking(path); 4402 4403 item = btrfs_item_nr(path->slots[0]); 4404 orig_offset = btrfs_item_offset(leaf, item); 4405 item_size = btrfs_item_size(leaf, item); 4406 4407 buf = kmalloc(item_size, GFP_NOFS); 4408 if (!buf) 4409 return -ENOMEM; 4410 4411 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4412 path->slots[0]), item_size); 4413 4414 slot = path->slots[0] + 1; 4415 nritems = btrfs_header_nritems(leaf); 4416 if (slot != nritems) { 4417 /* shift the items */ 4418 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4419 btrfs_item_nr_offset(slot), 4420 (nritems - slot) * sizeof(struct btrfs_item)); 4421 } 4422 4423 btrfs_cpu_key_to_disk(&disk_key, new_key); 4424 btrfs_set_item_key(leaf, &disk_key, slot); 4425 4426 new_item = btrfs_item_nr(slot); 4427 4428 btrfs_set_item_offset(leaf, new_item, orig_offset); 4429 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4430 4431 btrfs_set_item_offset(leaf, item, 4432 orig_offset + item_size - split_offset); 4433 btrfs_set_item_size(leaf, item, split_offset); 4434 4435 btrfs_set_header_nritems(leaf, nritems + 1); 4436 4437 /* write the data for the start of the original item */ 4438 write_extent_buffer(leaf, buf, 4439 btrfs_item_ptr_offset(leaf, path->slots[0]), 4440 split_offset); 4441 4442 /* write the data for the new item */ 4443 write_extent_buffer(leaf, buf + split_offset, 4444 btrfs_item_ptr_offset(leaf, slot), 4445 item_size - split_offset); 4446 btrfs_mark_buffer_dirty(leaf); 4447 4448 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0); 4449 kfree(buf); 4450 return 0; 4451 } 4452 4453 /* 4454 * This function splits a single item into two items, 4455 * giving 'new_key' to the new item and splitting the 4456 * old one at split_offset (from the start of the item). 4457 * 4458 * The path may be released by this operation. After 4459 * the split, the path is pointing to the old item. The 4460 * new item is going to be in the same node as the old one. 4461 * 4462 * Note, the item being split must be smaller enough to live alone on 4463 * a tree block with room for one extra struct btrfs_item 4464 * 4465 * This allows us to split the item in place, keeping a lock on the 4466 * leaf the entire time. 4467 */ 4468 int btrfs_split_item(struct btrfs_trans_handle *trans, 4469 struct btrfs_root *root, 4470 struct btrfs_path *path, 4471 const struct btrfs_key *new_key, 4472 unsigned long split_offset) 4473 { 4474 int ret; 4475 ret = setup_leaf_for_split(trans, root, path, 4476 sizeof(struct btrfs_item)); 4477 if (ret) 4478 return ret; 4479 4480 ret = split_item(root->fs_info, path, new_key, split_offset); 4481 return ret; 4482 } 4483 4484 /* 4485 * This function duplicate a item, giving 'new_key' to the new item. 4486 * It guarantees both items live in the same tree leaf and the new item 4487 * is contiguous with the original item. 4488 * 4489 * This allows us to split file extent in place, keeping a lock on the 4490 * leaf the entire time. 4491 */ 4492 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4493 struct btrfs_root *root, 4494 struct btrfs_path *path, 4495 const struct btrfs_key *new_key) 4496 { 4497 struct extent_buffer *leaf; 4498 int ret; 4499 u32 item_size; 4500 4501 leaf = path->nodes[0]; 4502 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4503 ret = setup_leaf_for_split(trans, root, path, 4504 item_size + sizeof(struct btrfs_item)); 4505 if (ret) 4506 return ret; 4507 4508 path->slots[0]++; 4509 setup_items_for_insert(root, path, new_key, &item_size, 4510 item_size, item_size + 4511 sizeof(struct btrfs_item), 1); 4512 leaf = path->nodes[0]; 4513 memcpy_extent_buffer(leaf, 4514 btrfs_item_ptr_offset(leaf, path->slots[0]), 4515 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4516 item_size); 4517 return 0; 4518 } 4519 4520 /* 4521 * make the item pointed to by the path smaller. new_size indicates 4522 * how small to make it, and from_end tells us if we just chop bytes 4523 * off the end of the item or if we shift the item to chop bytes off 4524 * the front. 4525 */ 4526 void btrfs_truncate_item(struct btrfs_fs_info *fs_info, 4527 struct btrfs_path *path, u32 new_size, int from_end) 4528 { 4529 int slot; 4530 struct extent_buffer *leaf; 4531 struct btrfs_item *item; 4532 u32 nritems; 4533 unsigned int data_end; 4534 unsigned int old_data_start; 4535 unsigned int old_size; 4536 unsigned int size_diff; 4537 int i; 4538 struct btrfs_map_token token; 4539 4540 btrfs_init_map_token(&token); 4541 4542 leaf = path->nodes[0]; 4543 slot = path->slots[0]; 4544 4545 old_size = btrfs_item_size_nr(leaf, slot); 4546 if (old_size == new_size) 4547 return; 4548 4549 nritems = btrfs_header_nritems(leaf); 4550 data_end = leaf_data_end(fs_info, leaf); 4551 4552 old_data_start = btrfs_item_offset_nr(leaf, slot); 4553 4554 size_diff = old_size - new_size; 4555 4556 BUG_ON(slot < 0); 4557 BUG_ON(slot >= nritems); 4558 4559 /* 4560 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4561 */ 4562 /* first correct the data pointers */ 4563 for (i = slot; i < nritems; i++) { 4564 u32 ioff; 4565 item = btrfs_item_nr(i); 4566 4567 ioff = btrfs_token_item_offset(leaf, item, &token); 4568 btrfs_set_token_item_offset(leaf, item, 4569 ioff + size_diff, &token); 4570 } 4571 4572 /* shift the data */ 4573 if (from_end) { 4574 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4575 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4576 data_end, old_data_start + new_size - data_end); 4577 } else { 4578 struct btrfs_disk_key disk_key; 4579 u64 offset; 4580 4581 btrfs_item_key(leaf, &disk_key, slot); 4582 4583 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4584 unsigned long ptr; 4585 struct btrfs_file_extent_item *fi; 4586 4587 fi = btrfs_item_ptr(leaf, slot, 4588 struct btrfs_file_extent_item); 4589 fi = (struct btrfs_file_extent_item *)( 4590 (unsigned long)fi - size_diff); 4591 4592 if (btrfs_file_extent_type(leaf, fi) == 4593 BTRFS_FILE_EXTENT_INLINE) { 4594 ptr = btrfs_item_ptr_offset(leaf, slot); 4595 memmove_extent_buffer(leaf, ptr, 4596 (unsigned long)fi, 4597 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4598 } 4599 } 4600 4601 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4602 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4603 data_end, old_data_start - data_end); 4604 4605 offset = btrfs_disk_key_offset(&disk_key); 4606 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4607 btrfs_set_item_key(leaf, &disk_key, slot); 4608 if (slot == 0) 4609 fixup_low_keys(path, &disk_key, 1); 4610 } 4611 4612 item = btrfs_item_nr(slot); 4613 btrfs_set_item_size(leaf, item, new_size); 4614 btrfs_mark_buffer_dirty(leaf); 4615 4616 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4617 btrfs_print_leaf(leaf); 4618 BUG(); 4619 } 4620 } 4621 4622 /* 4623 * make the item pointed to by the path bigger, data_size is the added size. 4624 */ 4625 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 4626 u32 data_size) 4627 { 4628 int slot; 4629 struct extent_buffer *leaf; 4630 struct btrfs_item *item; 4631 u32 nritems; 4632 unsigned int data_end; 4633 unsigned int old_data; 4634 unsigned int old_size; 4635 int i; 4636 struct btrfs_map_token token; 4637 4638 btrfs_init_map_token(&token); 4639 4640 leaf = path->nodes[0]; 4641 4642 nritems = btrfs_header_nritems(leaf); 4643 data_end = leaf_data_end(fs_info, leaf); 4644 4645 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) { 4646 btrfs_print_leaf(leaf); 4647 BUG(); 4648 } 4649 slot = path->slots[0]; 4650 old_data = btrfs_item_end_nr(leaf, slot); 4651 4652 BUG_ON(slot < 0); 4653 if (slot >= nritems) { 4654 btrfs_print_leaf(leaf); 4655 btrfs_crit(fs_info, "slot %d too large, nritems %d", 4656 slot, nritems); 4657 BUG_ON(1); 4658 } 4659 4660 /* 4661 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4662 */ 4663 /* first correct the data pointers */ 4664 for (i = slot; i < nritems; i++) { 4665 u32 ioff; 4666 item = btrfs_item_nr(i); 4667 4668 ioff = btrfs_token_item_offset(leaf, item, &token); 4669 btrfs_set_token_item_offset(leaf, item, 4670 ioff - data_size, &token); 4671 } 4672 4673 /* shift the data */ 4674 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4675 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4676 data_end, old_data - data_end); 4677 4678 data_end = old_data; 4679 old_size = btrfs_item_size_nr(leaf, slot); 4680 item = btrfs_item_nr(slot); 4681 btrfs_set_item_size(leaf, item, old_size + data_size); 4682 btrfs_mark_buffer_dirty(leaf); 4683 4684 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4685 btrfs_print_leaf(leaf); 4686 BUG(); 4687 } 4688 } 4689 4690 /* 4691 * this is a helper for btrfs_insert_empty_items, the main goal here is 4692 * to save stack depth by doing the bulk of the work in a function 4693 * that doesn't call btrfs_search_slot 4694 */ 4695 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4696 const struct btrfs_key *cpu_key, u32 *data_size, 4697 u32 total_data, u32 total_size, int nr) 4698 { 4699 struct btrfs_fs_info *fs_info = root->fs_info; 4700 struct btrfs_item *item; 4701 int i; 4702 u32 nritems; 4703 unsigned int data_end; 4704 struct btrfs_disk_key disk_key; 4705 struct extent_buffer *leaf; 4706 int slot; 4707 struct btrfs_map_token token; 4708 4709 if (path->slots[0] == 0) { 4710 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4711 fixup_low_keys(path, &disk_key, 1); 4712 } 4713 btrfs_unlock_up_safe(path, 1); 4714 4715 btrfs_init_map_token(&token); 4716 4717 leaf = path->nodes[0]; 4718 slot = path->slots[0]; 4719 4720 nritems = btrfs_header_nritems(leaf); 4721 data_end = leaf_data_end(fs_info, leaf); 4722 4723 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) { 4724 btrfs_print_leaf(leaf); 4725 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4726 total_size, btrfs_leaf_free_space(fs_info, leaf)); 4727 BUG(); 4728 } 4729 4730 if (slot != nritems) { 4731 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4732 4733 if (old_data < data_end) { 4734 btrfs_print_leaf(leaf); 4735 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4736 slot, old_data, data_end); 4737 BUG_ON(1); 4738 } 4739 /* 4740 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4741 */ 4742 /* first correct the data pointers */ 4743 for (i = slot; i < nritems; i++) { 4744 u32 ioff; 4745 4746 item = btrfs_item_nr(i); 4747 ioff = btrfs_token_item_offset(leaf, item, &token); 4748 btrfs_set_token_item_offset(leaf, item, 4749 ioff - total_data, &token); 4750 } 4751 /* shift the items */ 4752 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4753 btrfs_item_nr_offset(slot), 4754 (nritems - slot) * sizeof(struct btrfs_item)); 4755 4756 /* shift the data */ 4757 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4758 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4759 data_end, old_data - data_end); 4760 data_end = old_data; 4761 } 4762 4763 /* setup the item for the new data */ 4764 for (i = 0; i < nr; i++) { 4765 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4766 btrfs_set_item_key(leaf, &disk_key, slot + i); 4767 item = btrfs_item_nr(slot + i); 4768 btrfs_set_token_item_offset(leaf, item, 4769 data_end - data_size[i], &token); 4770 data_end -= data_size[i]; 4771 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4772 } 4773 4774 btrfs_set_header_nritems(leaf, nritems + nr); 4775 btrfs_mark_buffer_dirty(leaf); 4776 4777 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4778 btrfs_print_leaf(leaf); 4779 BUG(); 4780 } 4781 } 4782 4783 /* 4784 * Given a key and some data, insert items into the tree. 4785 * This does all the path init required, making room in the tree if needed. 4786 */ 4787 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4788 struct btrfs_root *root, 4789 struct btrfs_path *path, 4790 const struct btrfs_key *cpu_key, u32 *data_size, 4791 int nr) 4792 { 4793 int ret = 0; 4794 int slot; 4795 int i; 4796 u32 total_size = 0; 4797 u32 total_data = 0; 4798 4799 for (i = 0; i < nr; i++) 4800 total_data += data_size[i]; 4801 4802 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4803 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4804 if (ret == 0) 4805 return -EEXIST; 4806 if (ret < 0) 4807 return ret; 4808 4809 slot = path->slots[0]; 4810 BUG_ON(slot < 0); 4811 4812 setup_items_for_insert(root, path, cpu_key, data_size, 4813 total_data, total_size, nr); 4814 return 0; 4815 } 4816 4817 /* 4818 * Given a key and some data, insert an item into the tree. 4819 * This does all the path init required, making room in the tree if needed. 4820 */ 4821 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4822 const struct btrfs_key *cpu_key, void *data, 4823 u32 data_size) 4824 { 4825 int ret = 0; 4826 struct btrfs_path *path; 4827 struct extent_buffer *leaf; 4828 unsigned long ptr; 4829 4830 path = btrfs_alloc_path(); 4831 if (!path) 4832 return -ENOMEM; 4833 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4834 if (!ret) { 4835 leaf = path->nodes[0]; 4836 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4837 write_extent_buffer(leaf, data, ptr, data_size); 4838 btrfs_mark_buffer_dirty(leaf); 4839 } 4840 btrfs_free_path(path); 4841 return ret; 4842 } 4843 4844 /* 4845 * delete the pointer from a given node. 4846 * 4847 * the tree should have been previously balanced so the deletion does not 4848 * empty a node. 4849 */ 4850 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4851 int level, int slot) 4852 { 4853 struct extent_buffer *parent = path->nodes[level]; 4854 u32 nritems; 4855 int ret; 4856 4857 nritems = btrfs_header_nritems(parent); 4858 if (slot != nritems - 1) { 4859 if (level) { 4860 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4861 nritems - slot - 1); 4862 BUG_ON(ret < 0); 4863 } 4864 memmove_extent_buffer(parent, 4865 btrfs_node_key_ptr_offset(slot), 4866 btrfs_node_key_ptr_offset(slot + 1), 4867 sizeof(struct btrfs_key_ptr) * 4868 (nritems - slot - 1)); 4869 } else if (level) { 4870 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4871 GFP_NOFS); 4872 BUG_ON(ret < 0); 4873 } 4874 4875 nritems--; 4876 btrfs_set_header_nritems(parent, nritems); 4877 if (nritems == 0 && parent == root->node) { 4878 BUG_ON(btrfs_header_level(root->node) != 1); 4879 /* just turn the root into a leaf and break */ 4880 btrfs_set_header_level(root->node, 0); 4881 } else if (slot == 0) { 4882 struct btrfs_disk_key disk_key; 4883 4884 btrfs_node_key(parent, &disk_key, 0); 4885 fixup_low_keys(path, &disk_key, level + 1); 4886 } 4887 btrfs_mark_buffer_dirty(parent); 4888 } 4889 4890 /* 4891 * a helper function to delete the leaf pointed to by path->slots[1] and 4892 * path->nodes[1]. 4893 * 4894 * This deletes the pointer in path->nodes[1] and frees the leaf 4895 * block extent. zero is returned if it all worked out, < 0 otherwise. 4896 * 4897 * The path must have already been setup for deleting the leaf, including 4898 * all the proper balancing. path->nodes[1] must be locked. 4899 */ 4900 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4901 struct btrfs_root *root, 4902 struct btrfs_path *path, 4903 struct extent_buffer *leaf) 4904 { 4905 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4906 del_ptr(root, path, 1, path->slots[1]); 4907 4908 /* 4909 * btrfs_free_extent is expensive, we want to make sure we 4910 * aren't holding any locks when we call it 4911 */ 4912 btrfs_unlock_up_safe(path, 0); 4913 4914 root_sub_used(root, leaf->len); 4915 4916 extent_buffer_get(leaf); 4917 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4918 free_extent_buffer_stale(leaf); 4919 } 4920 /* 4921 * delete the item at the leaf level in path. If that empties 4922 * the leaf, remove it from the tree 4923 */ 4924 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4925 struct btrfs_path *path, int slot, int nr) 4926 { 4927 struct btrfs_fs_info *fs_info = root->fs_info; 4928 struct extent_buffer *leaf; 4929 struct btrfs_item *item; 4930 u32 last_off; 4931 u32 dsize = 0; 4932 int ret = 0; 4933 int wret; 4934 int i; 4935 u32 nritems; 4936 struct btrfs_map_token token; 4937 4938 btrfs_init_map_token(&token); 4939 4940 leaf = path->nodes[0]; 4941 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4942 4943 for (i = 0; i < nr; i++) 4944 dsize += btrfs_item_size_nr(leaf, slot + i); 4945 4946 nritems = btrfs_header_nritems(leaf); 4947 4948 if (slot + nr != nritems) { 4949 int data_end = leaf_data_end(fs_info, leaf); 4950 4951 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4952 data_end + dsize, 4953 BTRFS_LEAF_DATA_OFFSET + data_end, 4954 last_off - data_end); 4955 4956 for (i = slot + nr; i < nritems; i++) { 4957 u32 ioff; 4958 4959 item = btrfs_item_nr(i); 4960 ioff = btrfs_token_item_offset(leaf, item, &token); 4961 btrfs_set_token_item_offset(leaf, item, 4962 ioff + dsize, &token); 4963 } 4964 4965 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4966 btrfs_item_nr_offset(slot + nr), 4967 sizeof(struct btrfs_item) * 4968 (nritems - slot - nr)); 4969 } 4970 btrfs_set_header_nritems(leaf, nritems - nr); 4971 nritems -= nr; 4972 4973 /* delete the leaf if we've emptied it */ 4974 if (nritems == 0) { 4975 if (leaf == root->node) { 4976 btrfs_set_header_level(leaf, 0); 4977 } else { 4978 btrfs_set_path_blocking(path); 4979 clean_tree_block(fs_info, leaf); 4980 btrfs_del_leaf(trans, root, path, leaf); 4981 } 4982 } else { 4983 int used = leaf_space_used(leaf, 0, nritems); 4984 if (slot == 0) { 4985 struct btrfs_disk_key disk_key; 4986 4987 btrfs_item_key(leaf, &disk_key, 0); 4988 fixup_low_keys(path, &disk_key, 1); 4989 } 4990 4991 /* delete the leaf if it is mostly empty */ 4992 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4993 /* push_leaf_left fixes the path. 4994 * make sure the path still points to our leaf 4995 * for possible call to del_ptr below 4996 */ 4997 slot = path->slots[1]; 4998 extent_buffer_get(leaf); 4999 5000 btrfs_set_path_blocking(path); 5001 wret = push_leaf_left(trans, root, path, 1, 1, 5002 1, (u32)-1); 5003 if (wret < 0 && wret != -ENOSPC) 5004 ret = wret; 5005 5006 if (path->nodes[0] == leaf && 5007 btrfs_header_nritems(leaf)) { 5008 wret = push_leaf_right(trans, root, path, 1, 5009 1, 1, 0); 5010 if (wret < 0 && wret != -ENOSPC) 5011 ret = wret; 5012 } 5013 5014 if (btrfs_header_nritems(leaf) == 0) { 5015 path->slots[1] = slot; 5016 btrfs_del_leaf(trans, root, path, leaf); 5017 free_extent_buffer(leaf); 5018 ret = 0; 5019 } else { 5020 /* if we're still in the path, make sure 5021 * we're dirty. Otherwise, one of the 5022 * push_leaf functions must have already 5023 * dirtied this buffer 5024 */ 5025 if (path->nodes[0] == leaf) 5026 btrfs_mark_buffer_dirty(leaf); 5027 free_extent_buffer(leaf); 5028 } 5029 } else { 5030 btrfs_mark_buffer_dirty(leaf); 5031 } 5032 } 5033 return ret; 5034 } 5035 5036 /* 5037 * search the tree again to find a leaf with lesser keys 5038 * returns 0 if it found something or 1 if there are no lesser leaves. 5039 * returns < 0 on io errors. 5040 * 5041 * This may release the path, and so you may lose any locks held at the 5042 * time you call it. 5043 */ 5044 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5045 { 5046 struct btrfs_key key; 5047 struct btrfs_disk_key found_key; 5048 int ret; 5049 5050 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5051 5052 if (key.offset > 0) { 5053 key.offset--; 5054 } else if (key.type > 0) { 5055 key.type--; 5056 key.offset = (u64)-1; 5057 } else if (key.objectid > 0) { 5058 key.objectid--; 5059 key.type = (u8)-1; 5060 key.offset = (u64)-1; 5061 } else { 5062 return 1; 5063 } 5064 5065 btrfs_release_path(path); 5066 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5067 if (ret < 0) 5068 return ret; 5069 btrfs_item_key(path->nodes[0], &found_key, 0); 5070 ret = comp_keys(&found_key, &key); 5071 /* 5072 * We might have had an item with the previous key in the tree right 5073 * before we released our path. And after we released our path, that 5074 * item might have been pushed to the first slot (0) of the leaf we 5075 * were holding due to a tree balance. Alternatively, an item with the 5076 * previous key can exist as the only element of a leaf (big fat item). 5077 * Therefore account for these 2 cases, so that our callers (like 5078 * btrfs_previous_item) don't miss an existing item with a key matching 5079 * the previous key we computed above. 5080 */ 5081 if (ret <= 0) 5082 return 0; 5083 return 1; 5084 } 5085 5086 /* 5087 * A helper function to walk down the tree starting at min_key, and looking 5088 * for nodes or leaves that are have a minimum transaction id. 5089 * This is used by the btree defrag code, and tree logging 5090 * 5091 * This does not cow, but it does stuff the starting key it finds back 5092 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5093 * key and get a writable path. 5094 * 5095 * This honors path->lowest_level to prevent descent past a given level 5096 * of the tree. 5097 * 5098 * min_trans indicates the oldest transaction that you are interested 5099 * in walking through. Any nodes or leaves older than min_trans are 5100 * skipped over (without reading them). 5101 * 5102 * returns zero if something useful was found, < 0 on error and 1 if there 5103 * was nothing in the tree that matched the search criteria. 5104 */ 5105 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5106 struct btrfs_path *path, 5107 u64 min_trans) 5108 { 5109 struct btrfs_fs_info *fs_info = root->fs_info; 5110 struct extent_buffer *cur; 5111 struct btrfs_key found_key; 5112 int slot; 5113 int sret; 5114 u32 nritems; 5115 int level; 5116 int ret = 1; 5117 int keep_locks = path->keep_locks; 5118 5119 path->keep_locks = 1; 5120 again: 5121 cur = btrfs_read_lock_root_node(root); 5122 level = btrfs_header_level(cur); 5123 WARN_ON(path->nodes[level]); 5124 path->nodes[level] = cur; 5125 path->locks[level] = BTRFS_READ_LOCK; 5126 5127 if (btrfs_header_generation(cur) < min_trans) { 5128 ret = 1; 5129 goto out; 5130 } 5131 while (1) { 5132 nritems = btrfs_header_nritems(cur); 5133 level = btrfs_header_level(cur); 5134 sret = btrfs_bin_search(cur, min_key, level, &slot); 5135 5136 /* at the lowest level, we're done, setup the path and exit */ 5137 if (level == path->lowest_level) { 5138 if (slot >= nritems) 5139 goto find_next_key; 5140 ret = 0; 5141 path->slots[level] = slot; 5142 btrfs_item_key_to_cpu(cur, &found_key, slot); 5143 goto out; 5144 } 5145 if (sret && slot > 0) 5146 slot--; 5147 /* 5148 * check this node pointer against the min_trans parameters. 5149 * If it is too old, old, skip to the next one. 5150 */ 5151 while (slot < nritems) { 5152 u64 gen; 5153 5154 gen = btrfs_node_ptr_generation(cur, slot); 5155 if (gen < min_trans) { 5156 slot++; 5157 continue; 5158 } 5159 break; 5160 } 5161 find_next_key: 5162 /* 5163 * we didn't find a candidate key in this node, walk forward 5164 * and find another one 5165 */ 5166 if (slot >= nritems) { 5167 path->slots[level] = slot; 5168 btrfs_set_path_blocking(path); 5169 sret = btrfs_find_next_key(root, path, min_key, level, 5170 min_trans); 5171 if (sret == 0) { 5172 btrfs_release_path(path); 5173 goto again; 5174 } else { 5175 goto out; 5176 } 5177 } 5178 /* save our key for returning back */ 5179 btrfs_node_key_to_cpu(cur, &found_key, slot); 5180 path->slots[level] = slot; 5181 if (level == path->lowest_level) { 5182 ret = 0; 5183 goto out; 5184 } 5185 btrfs_set_path_blocking(path); 5186 cur = read_node_slot(fs_info, cur, slot); 5187 if (IS_ERR(cur)) { 5188 ret = PTR_ERR(cur); 5189 goto out; 5190 } 5191 5192 btrfs_tree_read_lock(cur); 5193 5194 path->locks[level - 1] = BTRFS_READ_LOCK; 5195 path->nodes[level - 1] = cur; 5196 unlock_up(path, level, 1, 0, NULL); 5197 } 5198 out: 5199 path->keep_locks = keep_locks; 5200 if (ret == 0) { 5201 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5202 btrfs_set_path_blocking(path); 5203 memcpy(min_key, &found_key, sizeof(found_key)); 5204 } 5205 return ret; 5206 } 5207 5208 static int tree_move_down(struct btrfs_fs_info *fs_info, 5209 struct btrfs_path *path, 5210 int *level) 5211 { 5212 struct extent_buffer *eb; 5213 5214 BUG_ON(*level == 0); 5215 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]); 5216 if (IS_ERR(eb)) 5217 return PTR_ERR(eb); 5218 5219 path->nodes[*level - 1] = eb; 5220 path->slots[*level - 1] = 0; 5221 (*level)--; 5222 return 0; 5223 } 5224 5225 static int tree_move_next_or_upnext(struct btrfs_path *path, 5226 int *level, int root_level) 5227 { 5228 int ret = 0; 5229 int nritems; 5230 nritems = btrfs_header_nritems(path->nodes[*level]); 5231 5232 path->slots[*level]++; 5233 5234 while (path->slots[*level] >= nritems) { 5235 if (*level == root_level) 5236 return -1; 5237 5238 /* move upnext */ 5239 path->slots[*level] = 0; 5240 free_extent_buffer(path->nodes[*level]); 5241 path->nodes[*level] = NULL; 5242 (*level)++; 5243 path->slots[*level]++; 5244 5245 nritems = btrfs_header_nritems(path->nodes[*level]); 5246 ret = 1; 5247 } 5248 return ret; 5249 } 5250 5251 /* 5252 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5253 * or down. 5254 */ 5255 static int tree_advance(struct btrfs_fs_info *fs_info, 5256 struct btrfs_path *path, 5257 int *level, int root_level, 5258 int allow_down, 5259 struct btrfs_key *key) 5260 { 5261 int ret; 5262 5263 if (*level == 0 || !allow_down) { 5264 ret = tree_move_next_or_upnext(path, level, root_level); 5265 } else { 5266 ret = tree_move_down(fs_info, path, level); 5267 } 5268 if (ret >= 0) { 5269 if (*level == 0) 5270 btrfs_item_key_to_cpu(path->nodes[*level], key, 5271 path->slots[*level]); 5272 else 5273 btrfs_node_key_to_cpu(path->nodes[*level], key, 5274 path->slots[*level]); 5275 } 5276 return ret; 5277 } 5278 5279 static int tree_compare_item(struct btrfs_path *left_path, 5280 struct btrfs_path *right_path, 5281 char *tmp_buf) 5282 { 5283 int cmp; 5284 int len1, len2; 5285 unsigned long off1, off2; 5286 5287 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5288 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5289 if (len1 != len2) 5290 return 1; 5291 5292 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5293 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5294 right_path->slots[0]); 5295 5296 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5297 5298 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5299 if (cmp) 5300 return 1; 5301 return 0; 5302 } 5303 5304 #define ADVANCE 1 5305 #define ADVANCE_ONLY_NEXT -1 5306 5307 /* 5308 * This function compares two trees and calls the provided callback for 5309 * every changed/new/deleted item it finds. 5310 * If shared tree blocks are encountered, whole subtrees are skipped, making 5311 * the compare pretty fast on snapshotted subvolumes. 5312 * 5313 * This currently works on commit roots only. As commit roots are read only, 5314 * we don't do any locking. The commit roots are protected with transactions. 5315 * Transactions are ended and rejoined when a commit is tried in between. 5316 * 5317 * This function checks for modifications done to the trees while comparing. 5318 * If it detects a change, it aborts immediately. 5319 */ 5320 int btrfs_compare_trees(struct btrfs_root *left_root, 5321 struct btrfs_root *right_root, 5322 btrfs_changed_cb_t changed_cb, void *ctx) 5323 { 5324 struct btrfs_fs_info *fs_info = left_root->fs_info; 5325 int ret; 5326 int cmp; 5327 struct btrfs_path *left_path = NULL; 5328 struct btrfs_path *right_path = NULL; 5329 struct btrfs_key left_key; 5330 struct btrfs_key right_key; 5331 char *tmp_buf = NULL; 5332 int left_root_level; 5333 int right_root_level; 5334 int left_level; 5335 int right_level; 5336 int left_end_reached; 5337 int right_end_reached; 5338 int advance_left; 5339 int advance_right; 5340 u64 left_blockptr; 5341 u64 right_blockptr; 5342 u64 left_gen; 5343 u64 right_gen; 5344 5345 left_path = btrfs_alloc_path(); 5346 if (!left_path) { 5347 ret = -ENOMEM; 5348 goto out; 5349 } 5350 right_path = btrfs_alloc_path(); 5351 if (!right_path) { 5352 ret = -ENOMEM; 5353 goto out; 5354 } 5355 5356 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 5357 if (!tmp_buf) { 5358 ret = -ENOMEM; 5359 goto out; 5360 } 5361 5362 left_path->search_commit_root = 1; 5363 left_path->skip_locking = 1; 5364 right_path->search_commit_root = 1; 5365 right_path->skip_locking = 1; 5366 5367 /* 5368 * Strategy: Go to the first items of both trees. Then do 5369 * 5370 * If both trees are at level 0 5371 * Compare keys of current items 5372 * If left < right treat left item as new, advance left tree 5373 * and repeat 5374 * If left > right treat right item as deleted, advance right tree 5375 * and repeat 5376 * If left == right do deep compare of items, treat as changed if 5377 * needed, advance both trees and repeat 5378 * If both trees are at the same level but not at level 0 5379 * Compare keys of current nodes/leafs 5380 * If left < right advance left tree and repeat 5381 * If left > right advance right tree and repeat 5382 * If left == right compare blockptrs of the next nodes/leafs 5383 * If they match advance both trees but stay at the same level 5384 * and repeat 5385 * If they don't match advance both trees while allowing to go 5386 * deeper and repeat 5387 * If tree levels are different 5388 * Advance the tree that needs it and repeat 5389 * 5390 * Advancing a tree means: 5391 * If we are at level 0, try to go to the next slot. If that's not 5392 * possible, go one level up and repeat. Stop when we found a level 5393 * where we could go to the next slot. We may at this point be on a 5394 * node or a leaf. 5395 * 5396 * If we are not at level 0 and not on shared tree blocks, go one 5397 * level deeper. 5398 * 5399 * If we are not at level 0 and on shared tree blocks, go one slot to 5400 * the right if possible or go up and right. 5401 */ 5402 5403 down_read(&fs_info->commit_root_sem); 5404 left_level = btrfs_header_level(left_root->commit_root); 5405 left_root_level = left_level; 5406 left_path->nodes[left_level] = 5407 btrfs_clone_extent_buffer(left_root->commit_root); 5408 if (!left_path->nodes[left_level]) { 5409 up_read(&fs_info->commit_root_sem); 5410 ret = -ENOMEM; 5411 goto out; 5412 } 5413 5414 right_level = btrfs_header_level(right_root->commit_root); 5415 right_root_level = right_level; 5416 right_path->nodes[right_level] = 5417 btrfs_clone_extent_buffer(right_root->commit_root); 5418 if (!right_path->nodes[right_level]) { 5419 up_read(&fs_info->commit_root_sem); 5420 ret = -ENOMEM; 5421 goto out; 5422 } 5423 up_read(&fs_info->commit_root_sem); 5424 5425 if (left_level == 0) 5426 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5427 &left_key, left_path->slots[left_level]); 5428 else 5429 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5430 &left_key, left_path->slots[left_level]); 5431 if (right_level == 0) 5432 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5433 &right_key, right_path->slots[right_level]); 5434 else 5435 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5436 &right_key, right_path->slots[right_level]); 5437 5438 left_end_reached = right_end_reached = 0; 5439 advance_left = advance_right = 0; 5440 5441 while (1) { 5442 if (advance_left && !left_end_reached) { 5443 ret = tree_advance(fs_info, left_path, &left_level, 5444 left_root_level, 5445 advance_left != ADVANCE_ONLY_NEXT, 5446 &left_key); 5447 if (ret == -1) 5448 left_end_reached = ADVANCE; 5449 else if (ret < 0) 5450 goto out; 5451 advance_left = 0; 5452 } 5453 if (advance_right && !right_end_reached) { 5454 ret = tree_advance(fs_info, right_path, &right_level, 5455 right_root_level, 5456 advance_right != ADVANCE_ONLY_NEXT, 5457 &right_key); 5458 if (ret == -1) 5459 right_end_reached = ADVANCE; 5460 else if (ret < 0) 5461 goto out; 5462 advance_right = 0; 5463 } 5464 5465 if (left_end_reached && right_end_reached) { 5466 ret = 0; 5467 goto out; 5468 } else if (left_end_reached) { 5469 if (right_level == 0) { 5470 ret = changed_cb(left_path, right_path, 5471 &right_key, 5472 BTRFS_COMPARE_TREE_DELETED, 5473 ctx); 5474 if (ret < 0) 5475 goto out; 5476 } 5477 advance_right = ADVANCE; 5478 continue; 5479 } else if (right_end_reached) { 5480 if (left_level == 0) { 5481 ret = changed_cb(left_path, right_path, 5482 &left_key, 5483 BTRFS_COMPARE_TREE_NEW, 5484 ctx); 5485 if (ret < 0) 5486 goto out; 5487 } 5488 advance_left = ADVANCE; 5489 continue; 5490 } 5491 5492 if (left_level == 0 && right_level == 0) { 5493 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5494 if (cmp < 0) { 5495 ret = changed_cb(left_path, right_path, 5496 &left_key, 5497 BTRFS_COMPARE_TREE_NEW, 5498 ctx); 5499 if (ret < 0) 5500 goto out; 5501 advance_left = ADVANCE; 5502 } else if (cmp > 0) { 5503 ret = changed_cb(left_path, right_path, 5504 &right_key, 5505 BTRFS_COMPARE_TREE_DELETED, 5506 ctx); 5507 if (ret < 0) 5508 goto out; 5509 advance_right = ADVANCE; 5510 } else { 5511 enum btrfs_compare_tree_result result; 5512 5513 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5514 ret = tree_compare_item(left_path, right_path, 5515 tmp_buf); 5516 if (ret) 5517 result = BTRFS_COMPARE_TREE_CHANGED; 5518 else 5519 result = BTRFS_COMPARE_TREE_SAME; 5520 ret = changed_cb(left_path, right_path, 5521 &left_key, result, ctx); 5522 if (ret < 0) 5523 goto out; 5524 advance_left = ADVANCE; 5525 advance_right = ADVANCE; 5526 } 5527 } else if (left_level == right_level) { 5528 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5529 if (cmp < 0) { 5530 advance_left = ADVANCE; 5531 } else if (cmp > 0) { 5532 advance_right = ADVANCE; 5533 } else { 5534 left_blockptr = btrfs_node_blockptr( 5535 left_path->nodes[left_level], 5536 left_path->slots[left_level]); 5537 right_blockptr = btrfs_node_blockptr( 5538 right_path->nodes[right_level], 5539 right_path->slots[right_level]); 5540 left_gen = btrfs_node_ptr_generation( 5541 left_path->nodes[left_level], 5542 left_path->slots[left_level]); 5543 right_gen = btrfs_node_ptr_generation( 5544 right_path->nodes[right_level], 5545 right_path->slots[right_level]); 5546 if (left_blockptr == right_blockptr && 5547 left_gen == right_gen) { 5548 /* 5549 * As we're on a shared block, don't 5550 * allow to go deeper. 5551 */ 5552 advance_left = ADVANCE_ONLY_NEXT; 5553 advance_right = ADVANCE_ONLY_NEXT; 5554 } else { 5555 advance_left = ADVANCE; 5556 advance_right = ADVANCE; 5557 } 5558 } 5559 } else if (left_level < right_level) { 5560 advance_right = ADVANCE; 5561 } else { 5562 advance_left = ADVANCE; 5563 } 5564 } 5565 5566 out: 5567 btrfs_free_path(left_path); 5568 btrfs_free_path(right_path); 5569 kvfree(tmp_buf); 5570 return ret; 5571 } 5572 5573 /* 5574 * this is similar to btrfs_next_leaf, but does not try to preserve 5575 * and fixup the path. It looks for and returns the next key in the 5576 * tree based on the current path and the min_trans parameters. 5577 * 5578 * 0 is returned if another key is found, < 0 if there are any errors 5579 * and 1 is returned if there are no higher keys in the tree 5580 * 5581 * path->keep_locks should be set to 1 on the search made before 5582 * calling this function. 5583 */ 5584 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5585 struct btrfs_key *key, int level, u64 min_trans) 5586 { 5587 int slot; 5588 struct extent_buffer *c; 5589 5590 WARN_ON(!path->keep_locks); 5591 while (level < BTRFS_MAX_LEVEL) { 5592 if (!path->nodes[level]) 5593 return 1; 5594 5595 slot = path->slots[level] + 1; 5596 c = path->nodes[level]; 5597 next: 5598 if (slot >= btrfs_header_nritems(c)) { 5599 int ret; 5600 int orig_lowest; 5601 struct btrfs_key cur_key; 5602 if (level + 1 >= BTRFS_MAX_LEVEL || 5603 !path->nodes[level + 1]) 5604 return 1; 5605 5606 if (path->locks[level + 1]) { 5607 level++; 5608 continue; 5609 } 5610 5611 slot = btrfs_header_nritems(c) - 1; 5612 if (level == 0) 5613 btrfs_item_key_to_cpu(c, &cur_key, slot); 5614 else 5615 btrfs_node_key_to_cpu(c, &cur_key, slot); 5616 5617 orig_lowest = path->lowest_level; 5618 btrfs_release_path(path); 5619 path->lowest_level = level; 5620 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5621 0, 0); 5622 path->lowest_level = orig_lowest; 5623 if (ret < 0) 5624 return ret; 5625 5626 c = path->nodes[level]; 5627 slot = path->slots[level]; 5628 if (ret == 0) 5629 slot++; 5630 goto next; 5631 } 5632 5633 if (level == 0) 5634 btrfs_item_key_to_cpu(c, key, slot); 5635 else { 5636 u64 gen = btrfs_node_ptr_generation(c, slot); 5637 5638 if (gen < min_trans) { 5639 slot++; 5640 goto next; 5641 } 5642 btrfs_node_key_to_cpu(c, key, slot); 5643 } 5644 return 0; 5645 } 5646 return 1; 5647 } 5648 5649 /* 5650 * search the tree again to find a leaf with greater keys 5651 * returns 0 if it found something or 1 if there are no greater leaves. 5652 * returns < 0 on io errors. 5653 */ 5654 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5655 { 5656 return btrfs_next_old_leaf(root, path, 0); 5657 } 5658 5659 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5660 u64 time_seq) 5661 { 5662 int slot; 5663 int level; 5664 struct extent_buffer *c; 5665 struct extent_buffer *next; 5666 struct btrfs_key key; 5667 u32 nritems; 5668 int ret; 5669 int old_spinning = path->leave_spinning; 5670 int next_rw_lock = 0; 5671 5672 nritems = btrfs_header_nritems(path->nodes[0]); 5673 if (nritems == 0) 5674 return 1; 5675 5676 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5677 again: 5678 level = 1; 5679 next = NULL; 5680 next_rw_lock = 0; 5681 btrfs_release_path(path); 5682 5683 path->keep_locks = 1; 5684 path->leave_spinning = 1; 5685 5686 if (time_seq) 5687 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5688 else 5689 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5690 path->keep_locks = 0; 5691 5692 if (ret < 0) 5693 return ret; 5694 5695 nritems = btrfs_header_nritems(path->nodes[0]); 5696 /* 5697 * by releasing the path above we dropped all our locks. A balance 5698 * could have added more items next to the key that used to be 5699 * at the very end of the block. So, check again here and 5700 * advance the path if there are now more items available. 5701 */ 5702 if (nritems > 0 && path->slots[0] < nritems - 1) { 5703 if (ret == 0) 5704 path->slots[0]++; 5705 ret = 0; 5706 goto done; 5707 } 5708 /* 5709 * So the above check misses one case: 5710 * - after releasing the path above, someone has removed the item that 5711 * used to be at the very end of the block, and balance between leafs 5712 * gets another one with bigger key.offset to replace it. 5713 * 5714 * This one should be returned as well, or we can get leaf corruption 5715 * later(esp. in __btrfs_drop_extents()). 5716 * 5717 * And a bit more explanation about this check, 5718 * with ret > 0, the key isn't found, the path points to the slot 5719 * where it should be inserted, so the path->slots[0] item must be the 5720 * bigger one. 5721 */ 5722 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5723 ret = 0; 5724 goto done; 5725 } 5726 5727 while (level < BTRFS_MAX_LEVEL) { 5728 if (!path->nodes[level]) { 5729 ret = 1; 5730 goto done; 5731 } 5732 5733 slot = path->slots[level] + 1; 5734 c = path->nodes[level]; 5735 if (slot >= btrfs_header_nritems(c)) { 5736 level++; 5737 if (level == BTRFS_MAX_LEVEL) { 5738 ret = 1; 5739 goto done; 5740 } 5741 continue; 5742 } 5743 5744 if (next) { 5745 btrfs_tree_unlock_rw(next, next_rw_lock); 5746 free_extent_buffer(next); 5747 } 5748 5749 next = c; 5750 next_rw_lock = path->locks[level]; 5751 ret = read_block_for_search(root, path, &next, level, 5752 slot, &key); 5753 if (ret == -EAGAIN) 5754 goto again; 5755 5756 if (ret < 0) { 5757 btrfs_release_path(path); 5758 goto done; 5759 } 5760 5761 if (!path->skip_locking) { 5762 ret = btrfs_try_tree_read_lock(next); 5763 if (!ret && time_seq) { 5764 /* 5765 * If we don't get the lock, we may be racing 5766 * with push_leaf_left, holding that lock while 5767 * itself waiting for the leaf we've currently 5768 * locked. To solve this situation, we give up 5769 * on our lock and cycle. 5770 */ 5771 free_extent_buffer(next); 5772 btrfs_release_path(path); 5773 cond_resched(); 5774 goto again; 5775 } 5776 if (!ret) { 5777 btrfs_set_path_blocking(path); 5778 btrfs_tree_read_lock(next); 5779 } 5780 next_rw_lock = BTRFS_READ_LOCK; 5781 } 5782 break; 5783 } 5784 path->slots[level] = slot; 5785 while (1) { 5786 level--; 5787 c = path->nodes[level]; 5788 if (path->locks[level]) 5789 btrfs_tree_unlock_rw(c, path->locks[level]); 5790 5791 free_extent_buffer(c); 5792 path->nodes[level] = next; 5793 path->slots[level] = 0; 5794 if (!path->skip_locking) 5795 path->locks[level] = next_rw_lock; 5796 if (!level) 5797 break; 5798 5799 ret = read_block_for_search(root, path, &next, level, 5800 0, &key); 5801 if (ret == -EAGAIN) 5802 goto again; 5803 5804 if (ret < 0) { 5805 btrfs_release_path(path); 5806 goto done; 5807 } 5808 5809 if (!path->skip_locking) { 5810 ret = btrfs_try_tree_read_lock(next); 5811 if (!ret) { 5812 btrfs_set_path_blocking(path); 5813 btrfs_tree_read_lock(next); 5814 } 5815 next_rw_lock = BTRFS_READ_LOCK; 5816 } 5817 } 5818 ret = 0; 5819 done: 5820 unlock_up(path, 0, 1, 0, NULL); 5821 path->leave_spinning = old_spinning; 5822 if (!old_spinning) 5823 btrfs_set_path_blocking(path); 5824 5825 return ret; 5826 } 5827 5828 /* 5829 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5830 * searching until it gets past min_objectid or finds an item of 'type' 5831 * 5832 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5833 */ 5834 int btrfs_previous_item(struct btrfs_root *root, 5835 struct btrfs_path *path, u64 min_objectid, 5836 int type) 5837 { 5838 struct btrfs_key found_key; 5839 struct extent_buffer *leaf; 5840 u32 nritems; 5841 int ret; 5842 5843 while (1) { 5844 if (path->slots[0] == 0) { 5845 btrfs_set_path_blocking(path); 5846 ret = btrfs_prev_leaf(root, path); 5847 if (ret != 0) 5848 return ret; 5849 } else { 5850 path->slots[0]--; 5851 } 5852 leaf = path->nodes[0]; 5853 nritems = btrfs_header_nritems(leaf); 5854 if (nritems == 0) 5855 return 1; 5856 if (path->slots[0] == nritems) 5857 path->slots[0]--; 5858 5859 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5860 if (found_key.objectid < min_objectid) 5861 break; 5862 if (found_key.type == type) 5863 return 0; 5864 if (found_key.objectid == min_objectid && 5865 found_key.type < type) 5866 break; 5867 } 5868 return 1; 5869 } 5870 5871 /* 5872 * search in extent tree to find a previous Metadata/Data extent item with 5873 * min objecitd. 5874 * 5875 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5876 */ 5877 int btrfs_previous_extent_item(struct btrfs_root *root, 5878 struct btrfs_path *path, u64 min_objectid) 5879 { 5880 struct btrfs_key found_key; 5881 struct extent_buffer *leaf; 5882 u32 nritems; 5883 int ret; 5884 5885 while (1) { 5886 if (path->slots[0] == 0) { 5887 btrfs_set_path_blocking(path); 5888 ret = btrfs_prev_leaf(root, path); 5889 if (ret != 0) 5890 return ret; 5891 } else { 5892 path->slots[0]--; 5893 } 5894 leaf = path->nodes[0]; 5895 nritems = btrfs_header_nritems(leaf); 5896 if (nritems == 0) 5897 return 1; 5898 if (path->slots[0] == nritems) 5899 path->slots[0]--; 5900 5901 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5902 if (found_key.objectid < min_objectid) 5903 break; 5904 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5905 found_key.type == BTRFS_METADATA_ITEM_KEY) 5906 return 0; 5907 if (found_key.objectid == min_objectid && 5908 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5909 break; 5910 } 5911 return 1; 5912 } 5913