xref: /openbmc/linux/fs/btrfs/ctree.c (revision ca79522c)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 		    int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 				 struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45 
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 	struct btrfs_path *path;
49 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 	return path;
51 }
52 
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59 	int i;
60 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 		if (!p->nodes[i] || !p->locks[i])
62 			continue;
63 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 		if (p->locks[i] == BTRFS_READ_LOCK)
65 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 	}
69 }
70 
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 					struct extent_buffer *held, int held_rw)
81 {
82 	int i;
83 
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85 	/* lockdep really cares that we take all of these spinlocks
86 	 * in the right order.  If any of the locks in the path are not
87 	 * currently blocking, it is going to complain.  So, make really
88 	 * really sure by forcing the path to blocking before we clear
89 	 * the path blocking.
90 	 */
91 	if (held) {
92 		btrfs_set_lock_blocking_rw(held, held_rw);
93 		if (held_rw == BTRFS_WRITE_LOCK)
94 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95 		else if (held_rw == BTRFS_READ_LOCK)
96 			held_rw = BTRFS_READ_LOCK_BLOCKING;
97 	}
98 	btrfs_set_path_blocking(p);
99 #endif
100 
101 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102 		if (p->nodes[i] && p->locks[i]) {
103 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105 				p->locks[i] = BTRFS_WRITE_LOCK;
106 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107 				p->locks[i] = BTRFS_READ_LOCK;
108 		}
109 	}
110 
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112 	if (held)
113 		btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116 
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
119 {
120 	if (!p)
121 		return;
122 	btrfs_release_path(p);
123 	kmem_cache_free(btrfs_path_cachep, p);
124 }
125 
126 /*
127  * path release drops references on the extent buffers in the path
128  * and it drops any locks held by this path
129  *
130  * It is safe to call this on paths that no locks or extent buffers held.
131  */
132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134 	int i;
135 
136 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137 		p->slots[i] = 0;
138 		if (!p->nodes[i])
139 			continue;
140 		if (p->locks[i]) {
141 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142 			p->locks[i] = 0;
143 		}
144 		free_extent_buffer(p->nodes[i]);
145 		p->nodes[i] = NULL;
146 	}
147 }
148 
149 /*
150  * safely gets a reference on the root node of a tree.  A lock
151  * is not taken, so a concurrent writer may put a different node
152  * at the root of the tree.  See btrfs_lock_root_node for the
153  * looping required.
154  *
155  * The extent buffer returned by this has a reference taken, so
156  * it won't disappear.  It may stop being the root of the tree
157  * at any time because there are no locks held.
158  */
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161 	struct extent_buffer *eb;
162 
163 	while (1) {
164 		rcu_read_lock();
165 		eb = rcu_dereference(root->node);
166 
167 		/*
168 		 * RCU really hurts here, we could free up the root node because
169 		 * it was cow'ed but we may not get the new root node yet so do
170 		 * the inc_not_zero dance and if it doesn't work then
171 		 * synchronize_rcu and try again.
172 		 */
173 		if (atomic_inc_not_zero(&eb->refs)) {
174 			rcu_read_unlock();
175 			break;
176 		}
177 		rcu_read_unlock();
178 		synchronize_rcu();
179 	}
180 	return eb;
181 }
182 
183 /* loop around taking references on and locking the root node of the
184  * tree until you end up with a lock on the root.  A locked buffer
185  * is returned, with a reference held.
186  */
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189 	struct extent_buffer *eb;
190 
191 	while (1) {
192 		eb = btrfs_root_node(root);
193 		btrfs_tree_lock(eb);
194 		if (eb == root->node)
195 			break;
196 		btrfs_tree_unlock(eb);
197 		free_extent_buffer(eb);
198 	}
199 	return eb;
200 }
201 
202 /* loop around taking references on and locking the root node of the
203  * tree until you end up with a lock on the root.  A locked buffer
204  * is returned, with a reference held.
205  */
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208 	struct extent_buffer *eb;
209 
210 	while (1) {
211 		eb = btrfs_root_node(root);
212 		btrfs_tree_read_lock(eb);
213 		if (eb == root->node)
214 			break;
215 		btrfs_tree_read_unlock(eb);
216 		free_extent_buffer(eb);
217 	}
218 	return eb;
219 }
220 
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222  * put onto a simple dirty list.  transaction.c walks this to make sure they
223  * get properly updated on disk.
224  */
225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227 	spin_lock(&root->fs_info->trans_lock);
228 	if (root->track_dirty && list_empty(&root->dirty_list)) {
229 		list_add(&root->dirty_list,
230 			 &root->fs_info->dirty_cowonly_roots);
231 	}
232 	spin_unlock(&root->fs_info->trans_lock);
233 }
234 
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 		      struct btrfs_root *root,
242 		      struct extent_buffer *buf,
243 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245 	struct extent_buffer *cow;
246 	int ret = 0;
247 	int level;
248 	struct btrfs_disk_key disk_key;
249 
250 	WARN_ON(root->ref_cows && trans->transid !=
251 		root->fs_info->running_transaction->transid);
252 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253 
254 	level = btrfs_header_level(buf);
255 	if (level == 0)
256 		btrfs_item_key(buf, &disk_key, 0);
257 	else
258 		btrfs_node_key(buf, &disk_key, 0);
259 
260 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261 				     new_root_objectid, &disk_key, level,
262 				     buf->start, 0);
263 	if (IS_ERR(cow))
264 		return PTR_ERR(cow);
265 
266 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
267 	btrfs_set_header_bytenr(cow, cow->start);
268 	btrfs_set_header_generation(cow, trans->transid);
269 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271 				     BTRFS_HEADER_FLAG_RELOC);
272 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274 	else
275 		btrfs_set_header_owner(cow, new_root_objectid);
276 
277 	write_extent_buffer(cow, root->fs_info->fsid,
278 			    (unsigned long)btrfs_header_fsid(cow),
279 			    BTRFS_FSID_SIZE);
280 
281 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
282 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
283 		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
284 	else
285 		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
286 
287 	if (ret)
288 		return ret;
289 
290 	btrfs_mark_buffer_dirty(cow);
291 	*cow_ret = cow;
292 	return 0;
293 }
294 
295 enum mod_log_op {
296 	MOD_LOG_KEY_REPLACE,
297 	MOD_LOG_KEY_ADD,
298 	MOD_LOG_KEY_REMOVE,
299 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
300 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
301 	MOD_LOG_MOVE_KEYS,
302 	MOD_LOG_ROOT_REPLACE,
303 };
304 
305 struct tree_mod_move {
306 	int dst_slot;
307 	int nr_items;
308 };
309 
310 struct tree_mod_root {
311 	u64 logical;
312 	u8 level;
313 };
314 
315 struct tree_mod_elem {
316 	struct rb_node node;
317 	u64 index;		/* shifted logical */
318 	u64 seq;
319 	enum mod_log_op op;
320 
321 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322 	int slot;
323 
324 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325 	u64 generation;
326 
327 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
328 	struct btrfs_disk_key key;
329 	u64 blockptr;
330 
331 	/* this is used for op == MOD_LOG_MOVE_KEYS */
332 	struct tree_mod_move move;
333 
334 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
335 	struct tree_mod_root old_root;
336 };
337 
338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
339 {
340 	read_lock(&fs_info->tree_mod_log_lock);
341 }
342 
343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
344 {
345 	read_unlock(&fs_info->tree_mod_log_lock);
346 }
347 
348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
349 {
350 	write_lock(&fs_info->tree_mod_log_lock);
351 }
352 
353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
354 {
355 	write_unlock(&fs_info->tree_mod_log_lock);
356 }
357 
358 /*
359  * Increment the upper half of tree_mod_seq, set lower half zero.
360  *
361  * Must be called with fs_info->tree_mod_seq_lock held.
362  */
363 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
364 {
365 	u64 seq = atomic64_read(&fs_info->tree_mod_seq);
366 	seq &= 0xffffffff00000000ull;
367 	seq += 1ull << 32;
368 	atomic64_set(&fs_info->tree_mod_seq, seq);
369 	return seq;
370 }
371 
372 /*
373  * Increment the lower half of tree_mod_seq.
374  *
375  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
376  * are generated should not technically require a spin lock here. (Rationale:
377  * incrementing the minor while incrementing the major seq number is between its
378  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
379  * just returns a unique sequence number as usual.) We have decided to leave
380  * that requirement in here and rethink it once we notice it really imposes a
381  * problem on some workload.
382  */
383 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
384 {
385 	return atomic64_inc_return(&fs_info->tree_mod_seq);
386 }
387 
388 /*
389  * return the last minor in the previous major tree_mod_seq number
390  */
391 u64 btrfs_tree_mod_seq_prev(u64 seq)
392 {
393 	return (seq & 0xffffffff00000000ull) - 1ull;
394 }
395 
396 /*
397  * This adds a new blocker to the tree mod log's blocker list if the @elem
398  * passed does not already have a sequence number set. So when a caller expects
399  * to record tree modifications, it should ensure to set elem->seq to zero
400  * before calling btrfs_get_tree_mod_seq.
401  * Returns a fresh, unused tree log modification sequence number, even if no new
402  * blocker was added.
403  */
404 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
405 			   struct seq_list *elem)
406 {
407 	u64 seq;
408 
409 	tree_mod_log_write_lock(fs_info);
410 	spin_lock(&fs_info->tree_mod_seq_lock);
411 	if (!elem->seq) {
412 		elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
413 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
414 	}
415 	seq = btrfs_inc_tree_mod_seq_minor(fs_info);
416 	spin_unlock(&fs_info->tree_mod_seq_lock);
417 	tree_mod_log_write_unlock(fs_info);
418 
419 	return seq;
420 }
421 
422 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
423 			    struct seq_list *elem)
424 {
425 	struct rb_root *tm_root;
426 	struct rb_node *node;
427 	struct rb_node *next;
428 	struct seq_list *cur_elem;
429 	struct tree_mod_elem *tm;
430 	u64 min_seq = (u64)-1;
431 	u64 seq_putting = elem->seq;
432 
433 	if (!seq_putting)
434 		return;
435 
436 	spin_lock(&fs_info->tree_mod_seq_lock);
437 	list_del(&elem->list);
438 	elem->seq = 0;
439 
440 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
441 		if (cur_elem->seq < min_seq) {
442 			if (seq_putting > cur_elem->seq) {
443 				/*
444 				 * blocker with lower sequence number exists, we
445 				 * cannot remove anything from the log
446 				 */
447 				spin_unlock(&fs_info->tree_mod_seq_lock);
448 				return;
449 			}
450 			min_seq = cur_elem->seq;
451 		}
452 	}
453 	spin_unlock(&fs_info->tree_mod_seq_lock);
454 
455 	/*
456 	 * anything that's lower than the lowest existing (read: blocked)
457 	 * sequence number can be removed from the tree.
458 	 */
459 	tree_mod_log_write_lock(fs_info);
460 	tm_root = &fs_info->tree_mod_log;
461 	for (node = rb_first(tm_root); node; node = next) {
462 		next = rb_next(node);
463 		tm = container_of(node, struct tree_mod_elem, node);
464 		if (tm->seq > min_seq)
465 			continue;
466 		rb_erase(node, tm_root);
467 		kfree(tm);
468 	}
469 	tree_mod_log_write_unlock(fs_info);
470 }
471 
472 /*
473  * key order of the log:
474  *       index -> sequence
475  *
476  * the index is the shifted logical of the *new* root node for root replace
477  * operations, or the shifted logical of the affected block for all other
478  * operations.
479  */
480 static noinline int
481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
482 {
483 	struct rb_root *tm_root;
484 	struct rb_node **new;
485 	struct rb_node *parent = NULL;
486 	struct tree_mod_elem *cur;
487 
488 	BUG_ON(!tm || !tm->seq);
489 
490 	tm_root = &fs_info->tree_mod_log;
491 	new = &tm_root->rb_node;
492 	while (*new) {
493 		cur = container_of(*new, struct tree_mod_elem, node);
494 		parent = *new;
495 		if (cur->index < tm->index)
496 			new = &((*new)->rb_left);
497 		else if (cur->index > tm->index)
498 			new = &((*new)->rb_right);
499 		else if (cur->seq < tm->seq)
500 			new = &((*new)->rb_left);
501 		else if (cur->seq > tm->seq)
502 			new = &((*new)->rb_right);
503 		else {
504 			kfree(tm);
505 			return -EEXIST;
506 		}
507 	}
508 
509 	rb_link_node(&tm->node, parent, new);
510 	rb_insert_color(&tm->node, tm_root);
511 	return 0;
512 }
513 
514 /*
515  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
516  * returns zero with the tree_mod_log_lock acquired. The caller must hold
517  * this until all tree mod log insertions are recorded in the rb tree and then
518  * call tree_mod_log_write_unlock() to release.
519  */
520 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
521 				    struct extent_buffer *eb) {
522 	smp_mb();
523 	if (list_empty(&(fs_info)->tree_mod_seq_list))
524 		return 1;
525 	if (eb && btrfs_header_level(eb) == 0)
526 		return 1;
527 
528 	tree_mod_log_write_lock(fs_info);
529 	if (list_empty(&fs_info->tree_mod_seq_list)) {
530 		/*
531 		 * someone emptied the list while we were waiting for the lock.
532 		 * we must not add to the list when no blocker exists.
533 		 */
534 		tree_mod_log_write_unlock(fs_info);
535 		return 1;
536 	}
537 
538 	return 0;
539 }
540 
541 /*
542  * This allocates memory and gets a tree modification sequence number.
543  *
544  * Returns <0 on error.
545  * Returns >0 (the added sequence number) on success.
546  */
547 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
548 				 struct tree_mod_elem **tm_ret)
549 {
550 	struct tree_mod_elem *tm;
551 
552 	/*
553 	 * once we switch from spin locks to something different, we should
554 	 * honor the flags parameter here.
555 	 */
556 	tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
557 	if (!tm)
558 		return -ENOMEM;
559 
560 	spin_lock(&fs_info->tree_mod_seq_lock);
561 	tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
562 	spin_unlock(&fs_info->tree_mod_seq_lock);
563 
564 	return tm->seq;
565 }
566 
567 static inline int
568 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
569 			  struct extent_buffer *eb, int slot,
570 			  enum mod_log_op op, gfp_t flags)
571 {
572 	int ret;
573 	struct tree_mod_elem *tm;
574 
575 	ret = tree_mod_alloc(fs_info, flags, &tm);
576 	if (ret < 0)
577 		return ret;
578 
579 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
580 	if (op != MOD_LOG_KEY_ADD) {
581 		btrfs_node_key(eb, &tm->key, slot);
582 		tm->blockptr = btrfs_node_blockptr(eb, slot);
583 	}
584 	tm->op = op;
585 	tm->slot = slot;
586 	tm->generation = btrfs_node_ptr_generation(eb, slot);
587 
588 	return __tree_mod_log_insert(fs_info, tm);
589 }
590 
591 static noinline int
592 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
593 			     struct extent_buffer *eb, int slot,
594 			     enum mod_log_op op, gfp_t flags)
595 {
596 	int ret;
597 
598 	if (tree_mod_dont_log(fs_info, eb))
599 		return 0;
600 
601 	ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
602 
603 	tree_mod_log_write_unlock(fs_info);
604 	return ret;
605 }
606 
607 static noinline int
608 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
609 			int slot, enum mod_log_op op)
610 {
611 	return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
612 }
613 
614 static noinline int
615 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
616 			     struct extent_buffer *eb, int slot,
617 			     enum mod_log_op op)
618 {
619 	return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
620 }
621 
622 static noinline int
623 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
624 			 struct extent_buffer *eb, int dst_slot, int src_slot,
625 			 int nr_items, gfp_t flags)
626 {
627 	struct tree_mod_elem *tm;
628 	int ret;
629 	int i;
630 
631 	if (tree_mod_dont_log(fs_info, eb))
632 		return 0;
633 
634 	/*
635 	 * When we override something during the move, we log these removals.
636 	 * This can only happen when we move towards the beginning of the
637 	 * buffer, i.e. dst_slot < src_slot.
638 	 */
639 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
640 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
641 					      MOD_LOG_KEY_REMOVE_WHILE_MOVING);
642 		BUG_ON(ret < 0);
643 	}
644 
645 	ret = tree_mod_alloc(fs_info, flags, &tm);
646 	if (ret < 0)
647 		goto out;
648 
649 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
650 	tm->slot = src_slot;
651 	tm->move.dst_slot = dst_slot;
652 	tm->move.nr_items = nr_items;
653 	tm->op = MOD_LOG_MOVE_KEYS;
654 
655 	ret = __tree_mod_log_insert(fs_info, tm);
656 out:
657 	tree_mod_log_write_unlock(fs_info);
658 	return ret;
659 }
660 
661 static inline void
662 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
663 {
664 	int i;
665 	u32 nritems;
666 	int ret;
667 
668 	if (btrfs_header_level(eb) == 0)
669 		return;
670 
671 	nritems = btrfs_header_nritems(eb);
672 	for (i = nritems - 1; i >= 0; i--) {
673 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
674 					      MOD_LOG_KEY_REMOVE_WHILE_FREEING);
675 		BUG_ON(ret < 0);
676 	}
677 }
678 
679 static noinline int
680 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
681 			 struct extent_buffer *old_root,
682 			 struct extent_buffer *new_root, gfp_t flags,
683 			 int log_removal)
684 {
685 	struct tree_mod_elem *tm;
686 	int ret;
687 
688 	if (tree_mod_dont_log(fs_info, NULL))
689 		return 0;
690 
691 	if (log_removal)
692 		__tree_mod_log_free_eb(fs_info, old_root);
693 
694 	ret = tree_mod_alloc(fs_info, flags, &tm);
695 	if (ret < 0)
696 		goto out;
697 
698 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
699 	tm->old_root.logical = old_root->start;
700 	tm->old_root.level = btrfs_header_level(old_root);
701 	tm->generation = btrfs_header_generation(old_root);
702 	tm->op = MOD_LOG_ROOT_REPLACE;
703 
704 	ret = __tree_mod_log_insert(fs_info, tm);
705 out:
706 	tree_mod_log_write_unlock(fs_info);
707 	return ret;
708 }
709 
710 static struct tree_mod_elem *
711 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
712 		      int smallest)
713 {
714 	struct rb_root *tm_root;
715 	struct rb_node *node;
716 	struct tree_mod_elem *cur = NULL;
717 	struct tree_mod_elem *found = NULL;
718 	u64 index = start >> PAGE_CACHE_SHIFT;
719 
720 	tree_mod_log_read_lock(fs_info);
721 	tm_root = &fs_info->tree_mod_log;
722 	node = tm_root->rb_node;
723 	while (node) {
724 		cur = container_of(node, struct tree_mod_elem, node);
725 		if (cur->index < index) {
726 			node = node->rb_left;
727 		} else if (cur->index > index) {
728 			node = node->rb_right;
729 		} else if (cur->seq < min_seq) {
730 			node = node->rb_left;
731 		} else if (!smallest) {
732 			/* we want the node with the highest seq */
733 			if (found)
734 				BUG_ON(found->seq > cur->seq);
735 			found = cur;
736 			node = node->rb_left;
737 		} else if (cur->seq > min_seq) {
738 			/* we want the node with the smallest seq */
739 			if (found)
740 				BUG_ON(found->seq < cur->seq);
741 			found = cur;
742 			node = node->rb_right;
743 		} else {
744 			found = cur;
745 			break;
746 		}
747 	}
748 	tree_mod_log_read_unlock(fs_info);
749 
750 	return found;
751 }
752 
753 /*
754  * this returns the element from the log with the smallest time sequence
755  * value that's in the log (the oldest log item). any element with a time
756  * sequence lower than min_seq will be ignored.
757  */
758 static struct tree_mod_elem *
759 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
760 			   u64 min_seq)
761 {
762 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
763 }
764 
765 /*
766  * this returns the element from the log with the largest time sequence
767  * value that's in the log (the most recent log item). any element with
768  * a time sequence lower than min_seq will be ignored.
769  */
770 static struct tree_mod_elem *
771 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
772 {
773 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
774 }
775 
776 static noinline void
777 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
778 		     struct extent_buffer *src, unsigned long dst_offset,
779 		     unsigned long src_offset, int nr_items)
780 {
781 	int ret;
782 	int i;
783 
784 	if (tree_mod_dont_log(fs_info, NULL))
785 		return;
786 
787 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
788 		tree_mod_log_write_unlock(fs_info);
789 		return;
790 	}
791 
792 	for (i = 0; i < nr_items; i++) {
793 		ret = tree_mod_log_insert_key_locked(fs_info, src,
794 						i + src_offset,
795 						MOD_LOG_KEY_REMOVE);
796 		BUG_ON(ret < 0);
797 		ret = tree_mod_log_insert_key_locked(fs_info, dst,
798 						     i + dst_offset,
799 						     MOD_LOG_KEY_ADD);
800 		BUG_ON(ret < 0);
801 	}
802 
803 	tree_mod_log_write_unlock(fs_info);
804 }
805 
806 static inline void
807 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
808 		     int dst_offset, int src_offset, int nr_items)
809 {
810 	int ret;
811 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
812 				       nr_items, GFP_NOFS);
813 	BUG_ON(ret < 0);
814 }
815 
816 static noinline void
817 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
818 			  struct extent_buffer *eb, int slot, int atomic)
819 {
820 	int ret;
821 
822 	ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
823 					   MOD_LOG_KEY_REPLACE,
824 					   atomic ? GFP_ATOMIC : GFP_NOFS);
825 	BUG_ON(ret < 0);
826 }
827 
828 static noinline void
829 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
830 {
831 	if (tree_mod_dont_log(fs_info, eb))
832 		return;
833 
834 	__tree_mod_log_free_eb(fs_info, eb);
835 
836 	tree_mod_log_write_unlock(fs_info);
837 }
838 
839 static noinline void
840 tree_mod_log_set_root_pointer(struct btrfs_root *root,
841 			      struct extent_buffer *new_root_node,
842 			      int log_removal)
843 {
844 	int ret;
845 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
846 				       new_root_node, GFP_NOFS, log_removal);
847 	BUG_ON(ret < 0);
848 }
849 
850 /*
851  * check if the tree block can be shared by multiple trees
852  */
853 int btrfs_block_can_be_shared(struct btrfs_root *root,
854 			      struct extent_buffer *buf)
855 {
856 	/*
857 	 * Tree blocks not in refernece counted trees and tree roots
858 	 * are never shared. If a block was allocated after the last
859 	 * snapshot and the block was not allocated by tree relocation,
860 	 * we know the block is not shared.
861 	 */
862 	if (root->ref_cows &&
863 	    buf != root->node && buf != root->commit_root &&
864 	    (btrfs_header_generation(buf) <=
865 	     btrfs_root_last_snapshot(&root->root_item) ||
866 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
867 		return 1;
868 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
869 	if (root->ref_cows &&
870 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
871 		return 1;
872 #endif
873 	return 0;
874 }
875 
876 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
877 				       struct btrfs_root *root,
878 				       struct extent_buffer *buf,
879 				       struct extent_buffer *cow,
880 				       int *last_ref)
881 {
882 	u64 refs;
883 	u64 owner;
884 	u64 flags;
885 	u64 new_flags = 0;
886 	int ret;
887 
888 	/*
889 	 * Backrefs update rules:
890 	 *
891 	 * Always use full backrefs for extent pointers in tree block
892 	 * allocated by tree relocation.
893 	 *
894 	 * If a shared tree block is no longer referenced by its owner
895 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
896 	 * use full backrefs for extent pointers in tree block.
897 	 *
898 	 * If a tree block is been relocating
899 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
900 	 * use full backrefs for extent pointers in tree block.
901 	 * The reason for this is some operations (such as drop tree)
902 	 * are only allowed for blocks use full backrefs.
903 	 */
904 
905 	if (btrfs_block_can_be_shared(root, buf)) {
906 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
907 					       btrfs_header_level(buf), 1,
908 					       &refs, &flags);
909 		if (ret)
910 			return ret;
911 		if (refs == 0) {
912 			ret = -EROFS;
913 			btrfs_std_error(root->fs_info, ret);
914 			return ret;
915 		}
916 	} else {
917 		refs = 1;
918 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
919 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
920 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
921 		else
922 			flags = 0;
923 	}
924 
925 	owner = btrfs_header_owner(buf);
926 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
927 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
928 
929 	if (refs > 1) {
930 		if ((owner == root->root_key.objectid ||
931 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
932 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
933 			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
934 			BUG_ON(ret); /* -ENOMEM */
935 
936 			if (root->root_key.objectid ==
937 			    BTRFS_TREE_RELOC_OBJECTID) {
938 				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
939 				BUG_ON(ret); /* -ENOMEM */
940 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
941 				BUG_ON(ret); /* -ENOMEM */
942 			}
943 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
944 		} else {
945 
946 			if (root->root_key.objectid ==
947 			    BTRFS_TREE_RELOC_OBJECTID)
948 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
949 			else
950 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
951 			BUG_ON(ret); /* -ENOMEM */
952 		}
953 		if (new_flags != 0) {
954 			ret = btrfs_set_disk_extent_flags(trans, root,
955 							  buf->start,
956 							  buf->len,
957 							  new_flags, 0);
958 			if (ret)
959 				return ret;
960 		}
961 	} else {
962 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
963 			if (root->root_key.objectid ==
964 			    BTRFS_TREE_RELOC_OBJECTID)
965 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
966 			else
967 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
968 			BUG_ON(ret); /* -ENOMEM */
969 			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
970 			BUG_ON(ret); /* -ENOMEM */
971 		}
972 		clean_tree_block(trans, root, buf);
973 		*last_ref = 1;
974 	}
975 	return 0;
976 }
977 
978 /*
979  * does the dirty work in cow of a single block.  The parent block (if
980  * supplied) is updated to point to the new cow copy.  The new buffer is marked
981  * dirty and returned locked.  If you modify the block it needs to be marked
982  * dirty again.
983  *
984  * search_start -- an allocation hint for the new block
985  *
986  * empty_size -- a hint that you plan on doing more cow.  This is the size in
987  * bytes the allocator should try to find free next to the block it returns.
988  * This is just a hint and may be ignored by the allocator.
989  */
990 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
991 			     struct btrfs_root *root,
992 			     struct extent_buffer *buf,
993 			     struct extent_buffer *parent, int parent_slot,
994 			     struct extent_buffer **cow_ret,
995 			     u64 search_start, u64 empty_size)
996 {
997 	struct btrfs_disk_key disk_key;
998 	struct extent_buffer *cow;
999 	int level, ret;
1000 	int last_ref = 0;
1001 	int unlock_orig = 0;
1002 	u64 parent_start;
1003 
1004 	if (*cow_ret == buf)
1005 		unlock_orig = 1;
1006 
1007 	btrfs_assert_tree_locked(buf);
1008 
1009 	WARN_ON(root->ref_cows && trans->transid !=
1010 		root->fs_info->running_transaction->transid);
1011 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1012 
1013 	level = btrfs_header_level(buf);
1014 
1015 	if (level == 0)
1016 		btrfs_item_key(buf, &disk_key, 0);
1017 	else
1018 		btrfs_node_key(buf, &disk_key, 0);
1019 
1020 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1021 		if (parent)
1022 			parent_start = parent->start;
1023 		else
1024 			parent_start = 0;
1025 	} else
1026 		parent_start = 0;
1027 
1028 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1029 				     root->root_key.objectid, &disk_key,
1030 				     level, search_start, empty_size);
1031 	if (IS_ERR(cow))
1032 		return PTR_ERR(cow);
1033 
1034 	/* cow is set to blocking by btrfs_init_new_buffer */
1035 
1036 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1037 	btrfs_set_header_bytenr(cow, cow->start);
1038 	btrfs_set_header_generation(cow, trans->transid);
1039 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1040 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1041 				     BTRFS_HEADER_FLAG_RELOC);
1042 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1043 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1044 	else
1045 		btrfs_set_header_owner(cow, root->root_key.objectid);
1046 
1047 	write_extent_buffer(cow, root->fs_info->fsid,
1048 			    (unsigned long)btrfs_header_fsid(cow),
1049 			    BTRFS_FSID_SIZE);
1050 
1051 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1052 	if (ret) {
1053 		btrfs_abort_transaction(trans, root, ret);
1054 		return ret;
1055 	}
1056 
1057 	if (root->ref_cows)
1058 		btrfs_reloc_cow_block(trans, root, buf, cow);
1059 
1060 	if (buf == root->node) {
1061 		WARN_ON(parent && parent != buf);
1062 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1063 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1064 			parent_start = buf->start;
1065 		else
1066 			parent_start = 0;
1067 
1068 		extent_buffer_get(cow);
1069 		tree_mod_log_set_root_pointer(root, cow, 1);
1070 		rcu_assign_pointer(root->node, cow);
1071 
1072 		btrfs_free_tree_block(trans, root, buf, parent_start,
1073 				      last_ref);
1074 		free_extent_buffer(buf);
1075 		add_root_to_dirty_list(root);
1076 	} else {
1077 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1078 			parent_start = parent->start;
1079 		else
1080 			parent_start = 0;
1081 
1082 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1083 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1084 					MOD_LOG_KEY_REPLACE);
1085 		btrfs_set_node_blockptr(parent, parent_slot,
1086 					cow->start);
1087 		btrfs_set_node_ptr_generation(parent, parent_slot,
1088 					      trans->transid);
1089 		btrfs_mark_buffer_dirty(parent);
1090 		tree_mod_log_free_eb(root->fs_info, buf);
1091 		btrfs_free_tree_block(trans, root, buf, parent_start,
1092 				      last_ref);
1093 	}
1094 	if (unlock_orig)
1095 		btrfs_tree_unlock(buf);
1096 	free_extent_buffer_stale(buf);
1097 	btrfs_mark_buffer_dirty(cow);
1098 	*cow_ret = cow;
1099 	return 0;
1100 }
1101 
1102 /*
1103  * returns the logical address of the oldest predecessor of the given root.
1104  * entries older than time_seq are ignored.
1105  */
1106 static struct tree_mod_elem *
1107 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1108 			   struct extent_buffer *eb_root, u64 time_seq)
1109 {
1110 	struct tree_mod_elem *tm;
1111 	struct tree_mod_elem *found = NULL;
1112 	u64 root_logical = eb_root->start;
1113 	int looped = 0;
1114 
1115 	if (!time_seq)
1116 		return 0;
1117 
1118 	/*
1119 	 * the very last operation that's logged for a root is the replacement
1120 	 * operation (if it is replaced at all). this has the index of the *new*
1121 	 * root, making it the very first operation that's logged for this root.
1122 	 */
1123 	while (1) {
1124 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1125 						time_seq);
1126 		if (!looped && !tm)
1127 			return 0;
1128 		/*
1129 		 * if there are no tree operation for the oldest root, we simply
1130 		 * return it. this should only happen if that (old) root is at
1131 		 * level 0.
1132 		 */
1133 		if (!tm)
1134 			break;
1135 
1136 		/*
1137 		 * if there's an operation that's not a root replacement, we
1138 		 * found the oldest version of our root. normally, we'll find a
1139 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1140 		 */
1141 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1142 			break;
1143 
1144 		found = tm;
1145 		root_logical = tm->old_root.logical;
1146 		looped = 1;
1147 	}
1148 
1149 	/* if there's no old root to return, return what we found instead */
1150 	if (!found)
1151 		found = tm;
1152 
1153 	return found;
1154 }
1155 
1156 /*
1157  * tm is a pointer to the first operation to rewind within eb. then, all
1158  * previous operations will be rewinded (until we reach something older than
1159  * time_seq).
1160  */
1161 static void
1162 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1163 		      struct tree_mod_elem *first_tm)
1164 {
1165 	u32 n;
1166 	struct rb_node *next;
1167 	struct tree_mod_elem *tm = first_tm;
1168 	unsigned long o_dst;
1169 	unsigned long o_src;
1170 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1171 
1172 	n = btrfs_header_nritems(eb);
1173 	while (tm && tm->seq >= time_seq) {
1174 		/*
1175 		 * all the operations are recorded with the operator used for
1176 		 * the modification. as we're going backwards, we do the
1177 		 * opposite of each operation here.
1178 		 */
1179 		switch (tm->op) {
1180 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1181 			BUG_ON(tm->slot < n);
1182 			/* Fallthrough */
1183 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1184 		case MOD_LOG_KEY_REMOVE:
1185 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1186 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1187 			btrfs_set_node_ptr_generation(eb, tm->slot,
1188 						      tm->generation);
1189 			n++;
1190 			break;
1191 		case MOD_LOG_KEY_REPLACE:
1192 			BUG_ON(tm->slot >= n);
1193 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1194 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1195 			btrfs_set_node_ptr_generation(eb, tm->slot,
1196 						      tm->generation);
1197 			break;
1198 		case MOD_LOG_KEY_ADD:
1199 			/* if a move operation is needed it's in the log */
1200 			n--;
1201 			break;
1202 		case MOD_LOG_MOVE_KEYS:
1203 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1204 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1205 			memmove_extent_buffer(eb, o_dst, o_src,
1206 					      tm->move.nr_items * p_size);
1207 			break;
1208 		case MOD_LOG_ROOT_REPLACE:
1209 			/*
1210 			 * this operation is special. for roots, this must be
1211 			 * handled explicitly before rewinding.
1212 			 * for non-roots, this operation may exist if the node
1213 			 * was a root: root A -> child B; then A gets empty and
1214 			 * B is promoted to the new root. in the mod log, we'll
1215 			 * have a root-replace operation for B, a tree block
1216 			 * that is no root. we simply ignore that operation.
1217 			 */
1218 			break;
1219 		}
1220 		next = rb_next(&tm->node);
1221 		if (!next)
1222 			break;
1223 		tm = container_of(next, struct tree_mod_elem, node);
1224 		if (tm->index != first_tm->index)
1225 			break;
1226 	}
1227 	btrfs_set_header_nritems(eb, n);
1228 }
1229 
1230 /*
1231  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1232  * is returned. If rewind operations happen, a fresh buffer is returned. The
1233  * returned buffer is always read-locked. If the returned buffer is not the
1234  * input buffer, the lock on the input buffer is released and the input buffer
1235  * is freed (its refcount is decremented).
1236  */
1237 static struct extent_buffer *
1238 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1239 		    u64 time_seq)
1240 {
1241 	struct extent_buffer *eb_rewin;
1242 	struct tree_mod_elem *tm;
1243 
1244 	if (!time_seq)
1245 		return eb;
1246 
1247 	if (btrfs_header_level(eb) == 0)
1248 		return eb;
1249 
1250 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1251 	if (!tm)
1252 		return eb;
1253 
1254 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1255 		BUG_ON(tm->slot != 0);
1256 		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1257 						fs_info->tree_root->nodesize);
1258 		BUG_ON(!eb_rewin);
1259 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1260 		btrfs_set_header_backref_rev(eb_rewin,
1261 					     btrfs_header_backref_rev(eb));
1262 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1263 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1264 	} else {
1265 		eb_rewin = btrfs_clone_extent_buffer(eb);
1266 		BUG_ON(!eb_rewin);
1267 	}
1268 
1269 	extent_buffer_get(eb_rewin);
1270 	btrfs_tree_read_unlock(eb);
1271 	free_extent_buffer(eb);
1272 
1273 	extent_buffer_get(eb_rewin);
1274 	btrfs_tree_read_lock(eb_rewin);
1275 	__tree_mod_log_rewind(eb_rewin, time_seq, tm);
1276 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1277 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1278 
1279 	return eb_rewin;
1280 }
1281 
1282 /*
1283  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1284  * value. If there are no changes, the current root->root_node is returned. If
1285  * anything changed in between, there's a fresh buffer allocated on which the
1286  * rewind operations are done. In any case, the returned buffer is read locked.
1287  * Returns NULL on error (with no locks held).
1288  */
1289 static inline struct extent_buffer *
1290 get_old_root(struct btrfs_root *root, u64 time_seq)
1291 {
1292 	struct tree_mod_elem *tm;
1293 	struct extent_buffer *eb = NULL;
1294 	struct extent_buffer *eb_root;
1295 	struct extent_buffer *old;
1296 	struct tree_mod_root *old_root = NULL;
1297 	u64 old_generation = 0;
1298 	u64 logical;
1299 	u32 blocksize;
1300 
1301 	eb_root = btrfs_read_lock_root_node(root);
1302 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1303 	if (!tm)
1304 		return eb_root;
1305 
1306 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1307 		old_root = &tm->old_root;
1308 		old_generation = tm->generation;
1309 		logical = old_root->logical;
1310 	} else {
1311 		logical = eb_root->start;
1312 	}
1313 
1314 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1315 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1316 		btrfs_tree_read_unlock(eb_root);
1317 		free_extent_buffer(eb_root);
1318 		blocksize = btrfs_level_size(root, old_root->level);
1319 		old = read_tree_block(root, logical, blocksize, 0);
1320 		if (!old || !extent_buffer_uptodate(old)) {
1321 			free_extent_buffer(old);
1322 			pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1323 				logical);
1324 			WARN_ON(1);
1325 		} else {
1326 			eb = btrfs_clone_extent_buffer(old);
1327 			free_extent_buffer(old);
1328 		}
1329 	} else if (old_root) {
1330 		btrfs_tree_read_unlock(eb_root);
1331 		free_extent_buffer(eb_root);
1332 		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1333 	} else {
1334 		eb = btrfs_clone_extent_buffer(eb_root);
1335 		btrfs_tree_read_unlock(eb_root);
1336 		free_extent_buffer(eb_root);
1337 	}
1338 
1339 	if (!eb)
1340 		return NULL;
1341 	extent_buffer_get(eb);
1342 	btrfs_tree_read_lock(eb);
1343 	if (old_root) {
1344 		btrfs_set_header_bytenr(eb, eb->start);
1345 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1346 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1347 		btrfs_set_header_level(eb, old_root->level);
1348 		btrfs_set_header_generation(eb, old_generation);
1349 	}
1350 	if (tm)
1351 		__tree_mod_log_rewind(eb, time_seq, tm);
1352 	else
1353 		WARN_ON(btrfs_header_level(eb) != 0);
1354 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1355 
1356 	return eb;
1357 }
1358 
1359 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1360 {
1361 	struct tree_mod_elem *tm;
1362 	int level;
1363 	struct extent_buffer *eb_root = btrfs_root_node(root);
1364 
1365 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1366 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1367 		level = tm->old_root.level;
1368 	} else {
1369 		level = btrfs_header_level(eb_root);
1370 	}
1371 	free_extent_buffer(eb_root);
1372 
1373 	return level;
1374 }
1375 
1376 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1377 				   struct btrfs_root *root,
1378 				   struct extent_buffer *buf)
1379 {
1380 	/* ensure we can see the force_cow */
1381 	smp_rmb();
1382 
1383 	/*
1384 	 * We do not need to cow a block if
1385 	 * 1) this block is not created or changed in this transaction;
1386 	 * 2) this block does not belong to TREE_RELOC tree;
1387 	 * 3) the root is not forced COW.
1388 	 *
1389 	 * What is forced COW:
1390 	 *    when we create snapshot during commiting the transaction,
1391 	 *    after we've finished coping src root, we must COW the shared
1392 	 *    block to ensure the metadata consistency.
1393 	 */
1394 	if (btrfs_header_generation(buf) == trans->transid &&
1395 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1396 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1397 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1398 	    !root->force_cow)
1399 		return 0;
1400 	return 1;
1401 }
1402 
1403 /*
1404  * cows a single block, see __btrfs_cow_block for the real work.
1405  * This version of it has extra checks so that a block isn't cow'd more than
1406  * once per transaction, as long as it hasn't been written yet
1407  */
1408 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1409 		    struct btrfs_root *root, struct extent_buffer *buf,
1410 		    struct extent_buffer *parent, int parent_slot,
1411 		    struct extent_buffer **cow_ret)
1412 {
1413 	u64 search_start;
1414 	int ret;
1415 
1416 	if (trans->transaction != root->fs_info->running_transaction)
1417 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1418 		       (unsigned long long)trans->transid,
1419 		       (unsigned long long)
1420 		       root->fs_info->running_transaction->transid);
1421 
1422 	if (trans->transid != root->fs_info->generation)
1423 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1424 		       (unsigned long long)trans->transid,
1425 		       (unsigned long long)root->fs_info->generation);
1426 
1427 	if (!should_cow_block(trans, root, buf)) {
1428 		*cow_ret = buf;
1429 		return 0;
1430 	}
1431 
1432 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1433 
1434 	if (parent)
1435 		btrfs_set_lock_blocking(parent);
1436 	btrfs_set_lock_blocking(buf);
1437 
1438 	ret = __btrfs_cow_block(trans, root, buf, parent,
1439 				 parent_slot, cow_ret, search_start, 0);
1440 
1441 	trace_btrfs_cow_block(root, buf, *cow_ret);
1442 
1443 	return ret;
1444 }
1445 
1446 /*
1447  * helper function for defrag to decide if two blocks pointed to by a
1448  * node are actually close by
1449  */
1450 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1451 {
1452 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1453 		return 1;
1454 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1455 		return 1;
1456 	return 0;
1457 }
1458 
1459 /*
1460  * compare two keys in a memcmp fashion
1461  */
1462 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1463 {
1464 	struct btrfs_key k1;
1465 
1466 	btrfs_disk_key_to_cpu(&k1, disk);
1467 
1468 	return btrfs_comp_cpu_keys(&k1, k2);
1469 }
1470 
1471 /*
1472  * same as comp_keys only with two btrfs_key's
1473  */
1474 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1475 {
1476 	if (k1->objectid > k2->objectid)
1477 		return 1;
1478 	if (k1->objectid < k2->objectid)
1479 		return -1;
1480 	if (k1->type > k2->type)
1481 		return 1;
1482 	if (k1->type < k2->type)
1483 		return -1;
1484 	if (k1->offset > k2->offset)
1485 		return 1;
1486 	if (k1->offset < k2->offset)
1487 		return -1;
1488 	return 0;
1489 }
1490 
1491 /*
1492  * this is used by the defrag code to go through all the
1493  * leaves pointed to by a node and reallocate them so that
1494  * disk order is close to key order
1495  */
1496 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1497 		       struct btrfs_root *root, struct extent_buffer *parent,
1498 		       int start_slot, u64 *last_ret,
1499 		       struct btrfs_key *progress)
1500 {
1501 	struct extent_buffer *cur;
1502 	u64 blocknr;
1503 	u64 gen;
1504 	u64 search_start = *last_ret;
1505 	u64 last_block = 0;
1506 	u64 other;
1507 	u32 parent_nritems;
1508 	int end_slot;
1509 	int i;
1510 	int err = 0;
1511 	int parent_level;
1512 	int uptodate;
1513 	u32 blocksize;
1514 	int progress_passed = 0;
1515 	struct btrfs_disk_key disk_key;
1516 
1517 	parent_level = btrfs_header_level(parent);
1518 
1519 	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1520 	WARN_ON(trans->transid != root->fs_info->generation);
1521 
1522 	parent_nritems = btrfs_header_nritems(parent);
1523 	blocksize = btrfs_level_size(root, parent_level - 1);
1524 	end_slot = parent_nritems;
1525 
1526 	if (parent_nritems == 1)
1527 		return 0;
1528 
1529 	btrfs_set_lock_blocking(parent);
1530 
1531 	for (i = start_slot; i < end_slot; i++) {
1532 		int close = 1;
1533 
1534 		btrfs_node_key(parent, &disk_key, i);
1535 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1536 			continue;
1537 
1538 		progress_passed = 1;
1539 		blocknr = btrfs_node_blockptr(parent, i);
1540 		gen = btrfs_node_ptr_generation(parent, i);
1541 		if (last_block == 0)
1542 			last_block = blocknr;
1543 
1544 		if (i > 0) {
1545 			other = btrfs_node_blockptr(parent, i - 1);
1546 			close = close_blocks(blocknr, other, blocksize);
1547 		}
1548 		if (!close && i < end_slot - 2) {
1549 			other = btrfs_node_blockptr(parent, i + 1);
1550 			close = close_blocks(blocknr, other, blocksize);
1551 		}
1552 		if (close) {
1553 			last_block = blocknr;
1554 			continue;
1555 		}
1556 
1557 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
1558 		if (cur)
1559 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1560 		else
1561 			uptodate = 0;
1562 		if (!cur || !uptodate) {
1563 			if (!cur) {
1564 				cur = read_tree_block(root, blocknr,
1565 							 blocksize, gen);
1566 				if (!cur || !extent_buffer_uptodate(cur)) {
1567 					free_extent_buffer(cur);
1568 					return -EIO;
1569 				}
1570 			} else if (!uptodate) {
1571 				err = btrfs_read_buffer(cur, gen);
1572 				if (err) {
1573 					free_extent_buffer(cur);
1574 					return err;
1575 				}
1576 			}
1577 		}
1578 		if (search_start == 0)
1579 			search_start = last_block;
1580 
1581 		btrfs_tree_lock(cur);
1582 		btrfs_set_lock_blocking(cur);
1583 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1584 					&cur, search_start,
1585 					min(16 * blocksize,
1586 					    (end_slot - i) * blocksize));
1587 		if (err) {
1588 			btrfs_tree_unlock(cur);
1589 			free_extent_buffer(cur);
1590 			break;
1591 		}
1592 		search_start = cur->start;
1593 		last_block = cur->start;
1594 		*last_ret = search_start;
1595 		btrfs_tree_unlock(cur);
1596 		free_extent_buffer(cur);
1597 	}
1598 	return err;
1599 }
1600 
1601 /*
1602  * The leaf data grows from end-to-front in the node.
1603  * this returns the address of the start of the last item,
1604  * which is the stop of the leaf data stack
1605  */
1606 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1607 					 struct extent_buffer *leaf)
1608 {
1609 	u32 nr = btrfs_header_nritems(leaf);
1610 	if (nr == 0)
1611 		return BTRFS_LEAF_DATA_SIZE(root);
1612 	return btrfs_item_offset_nr(leaf, nr - 1);
1613 }
1614 
1615 
1616 /*
1617  * search for key in the extent_buffer.  The items start at offset p,
1618  * and they are item_size apart.  There are 'max' items in p.
1619  *
1620  * the slot in the array is returned via slot, and it points to
1621  * the place where you would insert key if it is not found in
1622  * the array.
1623  *
1624  * slot may point to max if the key is bigger than all of the keys
1625  */
1626 static noinline int generic_bin_search(struct extent_buffer *eb,
1627 				       unsigned long p,
1628 				       int item_size, struct btrfs_key *key,
1629 				       int max, int *slot)
1630 {
1631 	int low = 0;
1632 	int high = max;
1633 	int mid;
1634 	int ret;
1635 	struct btrfs_disk_key *tmp = NULL;
1636 	struct btrfs_disk_key unaligned;
1637 	unsigned long offset;
1638 	char *kaddr = NULL;
1639 	unsigned long map_start = 0;
1640 	unsigned long map_len = 0;
1641 	int err;
1642 
1643 	while (low < high) {
1644 		mid = (low + high) / 2;
1645 		offset = p + mid * item_size;
1646 
1647 		if (!kaddr || offset < map_start ||
1648 		    (offset + sizeof(struct btrfs_disk_key)) >
1649 		    map_start + map_len) {
1650 
1651 			err = map_private_extent_buffer(eb, offset,
1652 						sizeof(struct btrfs_disk_key),
1653 						&kaddr, &map_start, &map_len);
1654 
1655 			if (!err) {
1656 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1657 							map_start);
1658 			} else {
1659 				read_extent_buffer(eb, &unaligned,
1660 						   offset, sizeof(unaligned));
1661 				tmp = &unaligned;
1662 			}
1663 
1664 		} else {
1665 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1666 							map_start);
1667 		}
1668 		ret = comp_keys(tmp, key);
1669 
1670 		if (ret < 0)
1671 			low = mid + 1;
1672 		else if (ret > 0)
1673 			high = mid;
1674 		else {
1675 			*slot = mid;
1676 			return 0;
1677 		}
1678 	}
1679 	*slot = low;
1680 	return 1;
1681 }
1682 
1683 /*
1684  * simple bin_search frontend that does the right thing for
1685  * leaves vs nodes
1686  */
1687 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1688 		      int level, int *slot)
1689 {
1690 	if (level == 0)
1691 		return generic_bin_search(eb,
1692 					  offsetof(struct btrfs_leaf, items),
1693 					  sizeof(struct btrfs_item),
1694 					  key, btrfs_header_nritems(eb),
1695 					  slot);
1696 	else
1697 		return generic_bin_search(eb,
1698 					  offsetof(struct btrfs_node, ptrs),
1699 					  sizeof(struct btrfs_key_ptr),
1700 					  key, btrfs_header_nritems(eb),
1701 					  slot);
1702 }
1703 
1704 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1705 		     int level, int *slot)
1706 {
1707 	return bin_search(eb, key, level, slot);
1708 }
1709 
1710 static void root_add_used(struct btrfs_root *root, u32 size)
1711 {
1712 	spin_lock(&root->accounting_lock);
1713 	btrfs_set_root_used(&root->root_item,
1714 			    btrfs_root_used(&root->root_item) + size);
1715 	spin_unlock(&root->accounting_lock);
1716 }
1717 
1718 static void root_sub_used(struct btrfs_root *root, u32 size)
1719 {
1720 	spin_lock(&root->accounting_lock);
1721 	btrfs_set_root_used(&root->root_item,
1722 			    btrfs_root_used(&root->root_item) - size);
1723 	spin_unlock(&root->accounting_lock);
1724 }
1725 
1726 /* given a node and slot number, this reads the blocks it points to.  The
1727  * extent buffer is returned with a reference taken (but unlocked).
1728  * NULL is returned on error.
1729  */
1730 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1731 				   struct extent_buffer *parent, int slot)
1732 {
1733 	int level = btrfs_header_level(parent);
1734 	struct extent_buffer *eb;
1735 
1736 	if (slot < 0)
1737 		return NULL;
1738 	if (slot >= btrfs_header_nritems(parent))
1739 		return NULL;
1740 
1741 	BUG_ON(level == 0);
1742 
1743 	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1744 			     btrfs_level_size(root, level - 1),
1745 			     btrfs_node_ptr_generation(parent, slot));
1746 	if (eb && !extent_buffer_uptodate(eb)) {
1747 		free_extent_buffer(eb);
1748 		eb = NULL;
1749 	}
1750 
1751 	return eb;
1752 }
1753 
1754 /*
1755  * node level balancing, used to make sure nodes are in proper order for
1756  * item deletion.  We balance from the top down, so we have to make sure
1757  * that a deletion won't leave an node completely empty later on.
1758  */
1759 static noinline int balance_level(struct btrfs_trans_handle *trans,
1760 			 struct btrfs_root *root,
1761 			 struct btrfs_path *path, int level)
1762 {
1763 	struct extent_buffer *right = NULL;
1764 	struct extent_buffer *mid;
1765 	struct extent_buffer *left = NULL;
1766 	struct extent_buffer *parent = NULL;
1767 	int ret = 0;
1768 	int wret;
1769 	int pslot;
1770 	int orig_slot = path->slots[level];
1771 	u64 orig_ptr;
1772 
1773 	if (level == 0)
1774 		return 0;
1775 
1776 	mid = path->nodes[level];
1777 
1778 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1779 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1780 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1781 
1782 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1783 
1784 	if (level < BTRFS_MAX_LEVEL - 1) {
1785 		parent = path->nodes[level + 1];
1786 		pslot = path->slots[level + 1];
1787 	}
1788 
1789 	/*
1790 	 * deal with the case where there is only one pointer in the root
1791 	 * by promoting the node below to a root
1792 	 */
1793 	if (!parent) {
1794 		struct extent_buffer *child;
1795 
1796 		if (btrfs_header_nritems(mid) != 1)
1797 			return 0;
1798 
1799 		/* promote the child to a root */
1800 		child = read_node_slot(root, mid, 0);
1801 		if (!child) {
1802 			ret = -EROFS;
1803 			btrfs_std_error(root->fs_info, ret);
1804 			goto enospc;
1805 		}
1806 
1807 		btrfs_tree_lock(child);
1808 		btrfs_set_lock_blocking(child);
1809 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1810 		if (ret) {
1811 			btrfs_tree_unlock(child);
1812 			free_extent_buffer(child);
1813 			goto enospc;
1814 		}
1815 
1816 		tree_mod_log_set_root_pointer(root, child, 1);
1817 		rcu_assign_pointer(root->node, child);
1818 
1819 		add_root_to_dirty_list(root);
1820 		btrfs_tree_unlock(child);
1821 
1822 		path->locks[level] = 0;
1823 		path->nodes[level] = NULL;
1824 		clean_tree_block(trans, root, mid);
1825 		btrfs_tree_unlock(mid);
1826 		/* once for the path */
1827 		free_extent_buffer(mid);
1828 
1829 		root_sub_used(root, mid->len);
1830 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1831 		/* once for the root ptr */
1832 		free_extent_buffer_stale(mid);
1833 		return 0;
1834 	}
1835 	if (btrfs_header_nritems(mid) >
1836 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1837 		return 0;
1838 
1839 	left = read_node_slot(root, parent, pslot - 1);
1840 	if (left) {
1841 		btrfs_tree_lock(left);
1842 		btrfs_set_lock_blocking(left);
1843 		wret = btrfs_cow_block(trans, root, left,
1844 				       parent, pslot - 1, &left);
1845 		if (wret) {
1846 			ret = wret;
1847 			goto enospc;
1848 		}
1849 	}
1850 	right = read_node_slot(root, parent, pslot + 1);
1851 	if (right) {
1852 		btrfs_tree_lock(right);
1853 		btrfs_set_lock_blocking(right);
1854 		wret = btrfs_cow_block(trans, root, right,
1855 				       parent, pslot + 1, &right);
1856 		if (wret) {
1857 			ret = wret;
1858 			goto enospc;
1859 		}
1860 	}
1861 
1862 	/* first, try to make some room in the middle buffer */
1863 	if (left) {
1864 		orig_slot += btrfs_header_nritems(left);
1865 		wret = push_node_left(trans, root, left, mid, 1);
1866 		if (wret < 0)
1867 			ret = wret;
1868 	}
1869 
1870 	/*
1871 	 * then try to empty the right most buffer into the middle
1872 	 */
1873 	if (right) {
1874 		wret = push_node_left(trans, root, mid, right, 1);
1875 		if (wret < 0 && wret != -ENOSPC)
1876 			ret = wret;
1877 		if (btrfs_header_nritems(right) == 0) {
1878 			clean_tree_block(trans, root, right);
1879 			btrfs_tree_unlock(right);
1880 			del_ptr(root, path, level + 1, pslot + 1);
1881 			root_sub_used(root, right->len);
1882 			btrfs_free_tree_block(trans, root, right, 0, 1);
1883 			free_extent_buffer_stale(right);
1884 			right = NULL;
1885 		} else {
1886 			struct btrfs_disk_key right_key;
1887 			btrfs_node_key(right, &right_key, 0);
1888 			tree_mod_log_set_node_key(root->fs_info, parent,
1889 						  pslot + 1, 0);
1890 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1891 			btrfs_mark_buffer_dirty(parent);
1892 		}
1893 	}
1894 	if (btrfs_header_nritems(mid) == 1) {
1895 		/*
1896 		 * we're not allowed to leave a node with one item in the
1897 		 * tree during a delete.  A deletion from lower in the tree
1898 		 * could try to delete the only pointer in this node.
1899 		 * So, pull some keys from the left.
1900 		 * There has to be a left pointer at this point because
1901 		 * otherwise we would have pulled some pointers from the
1902 		 * right
1903 		 */
1904 		if (!left) {
1905 			ret = -EROFS;
1906 			btrfs_std_error(root->fs_info, ret);
1907 			goto enospc;
1908 		}
1909 		wret = balance_node_right(trans, root, mid, left);
1910 		if (wret < 0) {
1911 			ret = wret;
1912 			goto enospc;
1913 		}
1914 		if (wret == 1) {
1915 			wret = push_node_left(trans, root, left, mid, 1);
1916 			if (wret < 0)
1917 				ret = wret;
1918 		}
1919 		BUG_ON(wret == 1);
1920 	}
1921 	if (btrfs_header_nritems(mid) == 0) {
1922 		clean_tree_block(trans, root, mid);
1923 		btrfs_tree_unlock(mid);
1924 		del_ptr(root, path, level + 1, pslot);
1925 		root_sub_used(root, mid->len);
1926 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1927 		free_extent_buffer_stale(mid);
1928 		mid = NULL;
1929 	} else {
1930 		/* update the parent key to reflect our changes */
1931 		struct btrfs_disk_key mid_key;
1932 		btrfs_node_key(mid, &mid_key, 0);
1933 		tree_mod_log_set_node_key(root->fs_info, parent,
1934 					  pslot, 0);
1935 		btrfs_set_node_key(parent, &mid_key, pslot);
1936 		btrfs_mark_buffer_dirty(parent);
1937 	}
1938 
1939 	/* update the path */
1940 	if (left) {
1941 		if (btrfs_header_nritems(left) > orig_slot) {
1942 			extent_buffer_get(left);
1943 			/* left was locked after cow */
1944 			path->nodes[level] = left;
1945 			path->slots[level + 1] -= 1;
1946 			path->slots[level] = orig_slot;
1947 			if (mid) {
1948 				btrfs_tree_unlock(mid);
1949 				free_extent_buffer(mid);
1950 			}
1951 		} else {
1952 			orig_slot -= btrfs_header_nritems(left);
1953 			path->slots[level] = orig_slot;
1954 		}
1955 	}
1956 	/* double check we haven't messed things up */
1957 	if (orig_ptr !=
1958 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1959 		BUG();
1960 enospc:
1961 	if (right) {
1962 		btrfs_tree_unlock(right);
1963 		free_extent_buffer(right);
1964 	}
1965 	if (left) {
1966 		if (path->nodes[level] != left)
1967 			btrfs_tree_unlock(left);
1968 		free_extent_buffer(left);
1969 	}
1970 	return ret;
1971 }
1972 
1973 /* Node balancing for insertion.  Here we only split or push nodes around
1974  * when they are completely full.  This is also done top down, so we
1975  * have to be pessimistic.
1976  */
1977 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1978 					  struct btrfs_root *root,
1979 					  struct btrfs_path *path, int level)
1980 {
1981 	struct extent_buffer *right = NULL;
1982 	struct extent_buffer *mid;
1983 	struct extent_buffer *left = NULL;
1984 	struct extent_buffer *parent = NULL;
1985 	int ret = 0;
1986 	int wret;
1987 	int pslot;
1988 	int orig_slot = path->slots[level];
1989 
1990 	if (level == 0)
1991 		return 1;
1992 
1993 	mid = path->nodes[level];
1994 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1995 
1996 	if (level < BTRFS_MAX_LEVEL - 1) {
1997 		parent = path->nodes[level + 1];
1998 		pslot = path->slots[level + 1];
1999 	}
2000 
2001 	if (!parent)
2002 		return 1;
2003 
2004 	left = read_node_slot(root, parent, pslot - 1);
2005 
2006 	/* first, try to make some room in the middle buffer */
2007 	if (left) {
2008 		u32 left_nr;
2009 
2010 		btrfs_tree_lock(left);
2011 		btrfs_set_lock_blocking(left);
2012 
2013 		left_nr = btrfs_header_nritems(left);
2014 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2015 			wret = 1;
2016 		} else {
2017 			ret = btrfs_cow_block(trans, root, left, parent,
2018 					      pslot - 1, &left);
2019 			if (ret)
2020 				wret = 1;
2021 			else {
2022 				wret = push_node_left(trans, root,
2023 						      left, mid, 0);
2024 			}
2025 		}
2026 		if (wret < 0)
2027 			ret = wret;
2028 		if (wret == 0) {
2029 			struct btrfs_disk_key disk_key;
2030 			orig_slot += left_nr;
2031 			btrfs_node_key(mid, &disk_key, 0);
2032 			tree_mod_log_set_node_key(root->fs_info, parent,
2033 						  pslot, 0);
2034 			btrfs_set_node_key(parent, &disk_key, pslot);
2035 			btrfs_mark_buffer_dirty(parent);
2036 			if (btrfs_header_nritems(left) > orig_slot) {
2037 				path->nodes[level] = left;
2038 				path->slots[level + 1] -= 1;
2039 				path->slots[level] = orig_slot;
2040 				btrfs_tree_unlock(mid);
2041 				free_extent_buffer(mid);
2042 			} else {
2043 				orig_slot -=
2044 					btrfs_header_nritems(left);
2045 				path->slots[level] = orig_slot;
2046 				btrfs_tree_unlock(left);
2047 				free_extent_buffer(left);
2048 			}
2049 			return 0;
2050 		}
2051 		btrfs_tree_unlock(left);
2052 		free_extent_buffer(left);
2053 	}
2054 	right = read_node_slot(root, parent, pslot + 1);
2055 
2056 	/*
2057 	 * then try to empty the right most buffer into the middle
2058 	 */
2059 	if (right) {
2060 		u32 right_nr;
2061 
2062 		btrfs_tree_lock(right);
2063 		btrfs_set_lock_blocking(right);
2064 
2065 		right_nr = btrfs_header_nritems(right);
2066 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2067 			wret = 1;
2068 		} else {
2069 			ret = btrfs_cow_block(trans, root, right,
2070 					      parent, pslot + 1,
2071 					      &right);
2072 			if (ret)
2073 				wret = 1;
2074 			else {
2075 				wret = balance_node_right(trans, root,
2076 							  right, mid);
2077 			}
2078 		}
2079 		if (wret < 0)
2080 			ret = wret;
2081 		if (wret == 0) {
2082 			struct btrfs_disk_key disk_key;
2083 
2084 			btrfs_node_key(right, &disk_key, 0);
2085 			tree_mod_log_set_node_key(root->fs_info, parent,
2086 						  pslot + 1, 0);
2087 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2088 			btrfs_mark_buffer_dirty(parent);
2089 
2090 			if (btrfs_header_nritems(mid) <= orig_slot) {
2091 				path->nodes[level] = right;
2092 				path->slots[level + 1] += 1;
2093 				path->slots[level] = orig_slot -
2094 					btrfs_header_nritems(mid);
2095 				btrfs_tree_unlock(mid);
2096 				free_extent_buffer(mid);
2097 			} else {
2098 				btrfs_tree_unlock(right);
2099 				free_extent_buffer(right);
2100 			}
2101 			return 0;
2102 		}
2103 		btrfs_tree_unlock(right);
2104 		free_extent_buffer(right);
2105 	}
2106 	return 1;
2107 }
2108 
2109 /*
2110  * readahead one full node of leaves, finding things that are close
2111  * to the block in 'slot', and triggering ra on them.
2112  */
2113 static void reada_for_search(struct btrfs_root *root,
2114 			     struct btrfs_path *path,
2115 			     int level, int slot, u64 objectid)
2116 {
2117 	struct extent_buffer *node;
2118 	struct btrfs_disk_key disk_key;
2119 	u32 nritems;
2120 	u64 search;
2121 	u64 target;
2122 	u64 nread = 0;
2123 	u64 gen;
2124 	int direction = path->reada;
2125 	struct extent_buffer *eb;
2126 	u32 nr;
2127 	u32 blocksize;
2128 	u32 nscan = 0;
2129 
2130 	if (level != 1)
2131 		return;
2132 
2133 	if (!path->nodes[level])
2134 		return;
2135 
2136 	node = path->nodes[level];
2137 
2138 	search = btrfs_node_blockptr(node, slot);
2139 	blocksize = btrfs_level_size(root, level - 1);
2140 	eb = btrfs_find_tree_block(root, search, blocksize);
2141 	if (eb) {
2142 		free_extent_buffer(eb);
2143 		return;
2144 	}
2145 
2146 	target = search;
2147 
2148 	nritems = btrfs_header_nritems(node);
2149 	nr = slot;
2150 
2151 	while (1) {
2152 		if (direction < 0) {
2153 			if (nr == 0)
2154 				break;
2155 			nr--;
2156 		} else if (direction > 0) {
2157 			nr++;
2158 			if (nr >= nritems)
2159 				break;
2160 		}
2161 		if (path->reada < 0 && objectid) {
2162 			btrfs_node_key(node, &disk_key, nr);
2163 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2164 				break;
2165 		}
2166 		search = btrfs_node_blockptr(node, nr);
2167 		if ((search <= target && target - search <= 65536) ||
2168 		    (search > target && search - target <= 65536)) {
2169 			gen = btrfs_node_ptr_generation(node, nr);
2170 			readahead_tree_block(root, search, blocksize, gen);
2171 			nread += blocksize;
2172 		}
2173 		nscan++;
2174 		if ((nread > 65536 || nscan > 32))
2175 			break;
2176 	}
2177 }
2178 
2179 /*
2180  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2181  * cache
2182  */
2183 static noinline int reada_for_balance(struct btrfs_root *root,
2184 				      struct btrfs_path *path, int level)
2185 {
2186 	int slot;
2187 	int nritems;
2188 	struct extent_buffer *parent;
2189 	struct extent_buffer *eb;
2190 	u64 gen;
2191 	u64 block1 = 0;
2192 	u64 block2 = 0;
2193 	int ret = 0;
2194 	int blocksize;
2195 
2196 	parent = path->nodes[level + 1];
2197 	if (!parent)
2198 		return 0;
2199 
2200 	nritems = btrfs_header_nritems(parent);
2201 	slot = path->slots[level + 1];
2202 	blocksize = btrfs_level_size(root, level);
2203 
2204 	if (slot > 0) {
2205 		block1 = btrfs_node_blockptr(parent, slot - 1);
2206 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2207 		eb = btrfs_find_tree_block(root, block1, blocksize);
2208 		/*
2209 		 * if we get -eagain from btrfs_buffer_uptodate, we
2210 		 * don't want to return eagain here.  That will loop
2211 		 * forever
2212 		 */
2213 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2214 			block1 = 0;
2215 		free_extent_buffer(eb);
2216 	}
2217 	if (slot + 1 < nritems) {
2218 		block2 = btrfs_node_blockptr(parent, slot + 1);
2219 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2220 		eb = btrfs_find_tree_block(root, block2, blocksize);
2221 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2222 			block2 = 0;
2223 		free_extent_buffer(eb);
2224 	}
2225 	if (block1 || block2) {
2226 		ret = -EAGAIN;
2227 
2228 		/* release the whole path */
2229 		btrfs_release_path(path);
2230 
2231 		/* read the blocks */
2232 		if (block1)
2233 			readahead_tree_block(root, block1, blocksize, 0);
2234 		if (block2)
2235 			readahead_tree_block(root, block2, blocksize, 0);
2236 
2237 		if (block1) {
2238 			eb = read_tree_block(root, block1, blocksize, 0);
2239 			free_extent_buffer(eb);
2240 		}
2241 		if (block2) {
2242 			eb = read_tree_block(root, block2, blocksize, 0);
2243 			free_extent_buffer(eb);
2244 		}
2245 	}
2246 	return ret;
2247 }
2248 
2249 
2250 /*
2251  * when we walk down the tree, it is usually safe to unlock the higher layers
2252  * in the tree.  The exceptions are when our path goes through slot 0, because
2253  * operations on the tree might require changing key pointers higher up in the
2254  * tree.
2255  *
2256  * callers might also have set path->keep_locks, which tells this code to keep
2257  * the lock if the path points to the last slot in the block.  This is part of
2258  * walking through the tree, and selecting the next slot in the higher block.
2259  *
2260  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2261  * if lowest_unlock is 1, level 0 won't be unlocked
2262  */
2263 static noinline void unlock_up(struct btrfs_path *path, int level,
2264 			       int lowest_unlock, int min_write_lock_level,
2265 			       int *write_lock_level)
2266 {
2267 	int i;
2268 	int skip_level = level;
2269 	int no_skips = 0;
2270 	struct extent_buffer *t;
2271 
2272 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2273 		if (!path->nodes[i])
2274 			break;
2275 		if (!path->locks[i])
2276 			break;
2277 		if (!no_skips && path->slots[i] == 0) {
2278 			skip_level = i + 1;
2279 			continue;
2280 		}
2281 		if (!no_skips && path->keep_locks) {
2282 			u32 nritems;
2283 			t = path->nodes[i];
2284 			nritems = btrfs_header_nritems(t);
2285 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2286 				skip_level = i + 1;
2287 				continue;
2288 			}
2289 		}
2290 		if (skip_level < i && i >= lowest_unlock)
2291 			no_skips = 1;
2292 
2293 		t = path->nodes[i];
2294 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2295 			btrfs_tree_unlock_rw(t, path->locks[i]);
2296 			path->locks[i] = 0;
2297 			if (write_lock_level &&
2298 			    i > min_write_lock_level &&
2299 			    i <= *write_lock_level) {
2300 				*write_lock_level = i - 1;
2301 			}
2302 		}
2303 	}
2304 }
2305 
2306 /*
2307  * This releases any locks held in the path starting at level and
2308  * going all the way up to the root.
2309  *
2310  * btrfs_search_slot will keep the lock held on higher nodes in a few
2311  * corner cases, such as COW of the block at slot zero in the node.  This
2312  * ignores those rules, and it should only be called when there are no
2313  * more updates to be done higher up in the tree.
2314  */
2315 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2316 {
2317 	int i;
2318 
2319 	if (path->keep_locks)
2320 		return;
2321 
2322 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2323 		if (!path->nodes[i])
2324 			continue;
2325 		if (!path->locks[i])
2326 			continue;
2327 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2328 		path->locks[i] = 0;
2329 	}
2330 }
2331 
2332 /*
2333  * helper function for btrfs_search_slot.  The goal is to find a block
2334  * in cache without setting the path to blocking.  If we find the block
2335  * we return zero and the path is unchanged.
2336  *
2337  * If we can't find the block, we set the path blocking and do some
2338  * reada.  -EAGAIN is returned and the search must be repeated.
2339  */
2340 static int
2341 read_block_for_search(struct btrfs_trans_handle *trans,
2342 		       struct btrfs_root *root, struct btrfs_path *p,
2343 		       struct extent_buffer **eb_ret, int level, int slot,
2344 		       struct btrfs_key *key, u64 time_seq)
2345 {
2346 	u64 blocknr;
2347 	u64 gen;
2348 	u32 blocksize;
2349 	struct extent_buffer *b = *eb_ret;
2350 	struct extent_buffer *tmp;
2351 	int ret;
2352 
2353 	blocknr = btrfs_node_blockptr(b, slot);
2354 	gen = btrfs_node_ptr_generation(b, slot);
2355 	blocksize = btrfs_level_size(root, level - 1);
2356 
2357 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2358 	if (tmp) {
2359 		/* first we do an atomic uptodate check */
2360 		if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2361 			if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2362 				/*
2363 				 * we found an up to date block without
2364 				 * sleeping, return
2365 				 * right away
2366 				 */
2367 				*eb_ret = tmp;
2368 				return 0;
2369 			}
2370 			/* the pages were up to date, but we failed
2371 			 * the generation number check.  Do a full
2372 			 * read for the generation number that is correct.
2373 			 * We must do this without dropping locks so
2374 			 * we can trust our generation number
2375 			 */
2376 			free_extent_buffer(tmp);
2377 			btrfs_set_path_blocking(p);
2378 
2379 			/* now we're allowed to do a blocking uptodate check */
2380 			tmp = read_tree_block(root, blocknr, blocksize, gen);
2381 			if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2382 				*eb_ret = tmp;
2383 				return 0;
2384 			}
2385 			free_extent_buffer(tmp);
2386 			btrfs_release_path(p);
2387 			return -EIO;
2388 		}
2389 	}
2390 
2391 	/*
2392 	 * reduce lock contention at high levels
2393 	 * of the btree by dropping locks before
2394 	 * we read.  Don't release the lock on the current
2395 	 * level because we need to walk this node to figure
2396 	 * out which blocks to read.
2397 	 */
2398 	btrfs_unlock_up_safe(p, level + 1);
2399 	btrfs_set_path_blocking(p);
2400 
2401 	free_extent_buffer(tmp);
2402 	if (p->reada)
2403 		reada_for_search(root, p, level, slot, key->objectid);
2404 
2405 	btrfs_release_path(p);
2406 
2407 	ret = -EAGAIN;
2408 	tmp = read_tree_block(root, blocknr, blocksize, 0);
2409 	if (tmp) {
2410 		/*
2411 		 * If the read above didn't mark this buffer up to date,
2412 		 * it will never end up being up to date.  Set ret to EIO now
2413 		 * and give up so that our caller doesn't loop forever
2414 		 * on our EAGAINs.
2415 		 */
2416 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2417 			ret = -EIO;
2418 		free_extent_buffer(tmp);
2419 	}
2420 	return ret;
2421 }
2422 
2423 /*
2424  * helper function for btrfs_search_slot.  This does all of the checks
2425  * for node-level blocks and does any balancing required based on
2426  * the ins_len.
2427  *
2428  * If no extra work was required, zero is returned.  If we had to
2429  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2430  * start over
2431  */
2432 static int
2433 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2434 		       struct btrfs_root *root, struct btrfs_path *p,
2435 		       struct extent_buffer *b, int level, int ins_len,
2436 		       int *write_lock_level)
2437 {
2438 	int ret;
2439 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2440 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2441 		int sret;
2442 
2443 		if (*write_lock_level < level + 1) {
2444 			*write_lock_level = level + 1;
2445 			btrfs_release_path(p);
2446 			goto again;
2447 		}
2448 
2449 		sret = reada_for_balance(root, p, level);
2450 		if (sret)
2451 			goto again;
2452 
2453 		btrfs_set_path_blocking(p);
2454 		sret = split_node(trans, root, p, level);
2455 		btrfs_clear_path_blocking(p, NULL, 0);
2456 
2457 		BUG_ON(sret > 0);
2458 		if (sret) {
2459 			ret = sret;
2460 			goto done;
2461 		}
2462 		b = p->nodes[level];
2463 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2464 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2465 		int sret;
2466 
2467 		if (*write_lock_level < level + 1) {
2468 			*write_lock_level = level + 1;
2469 			btrfs_release_path(p);
2470 			goto again;
2471 		}
2472 
2473 		sret = reada_for_balance(root, p, level);
2474 		if (sret)
2475 			goto again;
2476 
2477 		btrfs_set_path_blocking(p);
2478 		sret = balance_level(trans, root, p, level);
2479 		btrfs_clear_path_blocking(p, NULL, 0);
2480 
2481 		if (sret) {
2482 			ret = sret;
2483 			goto done;
2484 		}
2485 		b = p->nodes[level];
2486 		if (!b) {
2487 			btrfs_release_path(p);
2488 			goto again;
2489 		}
2490 		BUG_ON(btrfs_header_nritems(b) == 1);
2491 	}
2492 	return 0;
2493 
2494 again:
2495 	ret = -EAGAIN;
2496 done:
2497 	return ret;
2498 }
2499 
2500 /*
2501  * look for key in the tree.  path is filled in with nodes along the way
2502  * if key is found, we return zero and you can find the item in the leaf
2503  * level of the path (level 0)
2504  *
2505  * If the key isn't found, the path points to the slot where it should
2506  * be inserted, and 1 is returned.  If there are other errors during the
2507  * search a negative error number is returned.
2508  *
2509  * if ins_len > 0, nodes and leaves will be split as we walk down the
2510  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2511  * possible)
2512  */
2513 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2514 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2515 		      ins_len, int cow)
2516 {
2517 	struct extent_buffer *b;
2518 	int slot;
2519 	int ret;
2520 	int err;
2521 	int level;
2522 	int lowest_unlock = 1;
2523 	int root_lock;
2524 	/* everything at write_lock_level or lower must be write locked */
2525 	int write_lock_level = 0;
2526 	u8 lowest_level = 0;
2527 	int min_write_lock_level;
2528 
2529 	lowest_level = p->lowest_level;
2530 	WARN_ON(lowest_level && ins_len > 0);
2531 	WARN_ON(p->nodes[0] != NULL);
2532 
2533 	if (ins_len < 0) {
2534 		lowest_unlock = 2;
2535 
2536 		/* when we are removing items, we might have to go up to level
2537 		 * two as we update tree pointers  Make sure we keep write
2538 		 * for those levels as well
2539 		 */
2540 		write_lock_level = 2;
2541 	} else if (ins_len > 0) {
2542 		/*
2543 		 * for inserting items, make sure we have a write lock on
2544 		 * level 1 so we can update keys
2545 		 */
2546 		write_lock_level = 1;
2547 	}
2548 
2549 	if (!cow)
2550 		write_lock_level = -1;
2551 
2552 	if (cow && (p->keep_locks || p->lowest_level))
2553 		write_lock_level = BTRFS_MAX_LEVEL;
2554 
2555 	min_write_lock_level = write_lock_level;
2556 
2557 again:
2558 	/*
2559 	 * we try very hard to do read locks on the root
2560 	 */
2561 	root_lock = BTRFS_READ_LOCK;
2562 	level = 0;
2563 	if (p->search_commit_root) {
2564 		/*
2565 		 * the commit roots are read only
2566 		 * so we always do read locks
2567 		 */
2568 		b = root->commit_root;
2569 		extent_buffer_get(b);
2570 		level = btrfs_header_level(b);
2571 		if (!p->skip_locking)
2572 			btrfs_tree_read_lock(b);
2573 	} else {
2574 		if (p->skip_locking) {
2575 			b = btrfs_root_node(root);
2576 			level = btrfs_header_level(b);
2577 		} else {
2578 			/* we don't know the level of the root node
2579 			 * until we actually have it read locked
2580 			 */
2581 			b = btrfs_read_lock_root_node(root);
2582 			level = btrfs_header_level(b);
2583 			if (level <= write_lock_level) {
2584 				/* whoops, must trade for write lock */
2585 				btrfs_tree_read_unlock(b);
2586 				free_extent_buffer(b);
2587 				b = btrfs_lock_root_node(root);
2588 				root_lock = BTRFS_WRITE_LOCK;
2589 
2590 				/* the level might have changed, check again */
2591 				level = btrfs_header_level(b);
2592 			}
2593 		}
2594 	}
2595 	p->nodes[level] = b;
2596 	if (!p->skip_locking)
2597 		p->locks[level] = root_lock;
2598 
2599 	while (b) {
2600 		level = btrfs_header_level(b);
2601 
2602 		/*
2603 		 * setup the path here so we can release it under lock
2604 		 * contention with the cow code
2605 		 */
2606 		if (cow) {
2607 			/*
2608 			 * if we don't really need to cow this block
2609 			 * then we don't want to set the path blocking,
2610 			 * so we test it here
2611 			 */
2612 			if (!should_cow_block(trans, root, b))
2613 				goto cow_done;
2614 
2615 			btrfs_set_path_blocking(p);
2616 
2617 			/*
2618 			 * must have write locks on this node and the
2619 			 * parent
2620 			 */
2621 			if (level > write_lock_level ||
2622 			    (level + 1 > write_lock_level &&
2623 			    level + 1 < BTRFS_MAX_LEVEL &&
2624 			    p->nodes[level + 1])) {
2625 				write_lock_level = level + 1;
2626 				btrfs_release_path(p);
2627 				goto again;
2628 			}
2629 
2630 			err = btrfs_cow_block(trans, root, b,
2631 					      p->nodes[level + 1],
2632 					      p->slots[level + 1], &b);
2633 			if (err) {
2634 				ret = err;
2635 				goto done;
2636 			}
2637 		}
2638 cow_done:
2639 		BUG_ON(!cow && ins_len);
2640 
2641 		p->nodes[level] = b;
2642 		btrfs_clear_path_blocking(p, NULL, 0);
2643 
2644 		/*
2645 		 * we have a lock on b and as long as we aren't changing
2646 		 * the tree, there is no way to for the items in b to change.
2647 		 * It is safe to drop the lock on our parent before we
2648 		 * go through the expensive btree search on b.
2649 		 *
2650 		 * If cow is true, then we might be changing slot zero,
2651 		 * which may require changing the parent.  So, we can't
2652 		 * drop the lock until after we know which slot we're
2653 		 * operating on.
2654 		 */
2655 		if (!cow)
2656 			btrfs_unlock_up_safe(p, level + 1);
2657 
2658 		ret = bin_search(b, key, level, &slot);
2659 
2660 		if (level != 0) {
2661 			int dec = 0;
2662 			if (ret && slot > 0) {
2663 				dec = 1;
2664 				slot -= 1;
2665 			}
2666 			p->slots[level] = slot;
2667 			err = setup_nodes_for_search(trans, root, p, b, level,
2668 					     ins_len, &write_lock_level);
2669 			if (err == -EAGAIN)
2670 				goto again;
2671 			if (err) {
2672 				ret = err;
2673 				goto done;
2674 			}
2675 			b = p->nodes[level];
2676 			slot = p->slots[level];
2677 
2678 			/*
2679 			 * slot 0 is special, if we change the key
2680 			 * we have to update the parent pointer
2681 			 * which means we must have a write lock
2682 			 * on the parent
2683 			 */
2684 			if (slot == 0 && cow &&
2685 			    write_lock_level < level + 1) {
2686 				write_lock_level = level + 1;
2687 				btrfs_release_path(p);
2688 				goto again;
2689 			}
2690 
2691 			unlock_up(p, level, lowest_unlock,
2692 				  min_write_lock_level, &write_lock_level);
2693 
2694 			if (level == lowest_level) {
2695 				if (dec)
2696 					p->slots[level]++;
2697 				goto done;
2698 			}
2699 
2700 			err = read_block_for_search(trans, root, p,
2701 						    &b, level, slot, key, 0);
2702 			if (err == -EAGAIN)
2703 				goto again;
2704 			if (err) {
2705 				ret = err;
2706 				goto done;
2707 			}
2708 
2709 			if (!p->skip_locking) {
2710 				level = btrfs_header_level(b);
2711 				if (level <= write_lock_level) {
2712 					err = btrfs_try_tree_write_lock(b);
2713 					if (!err) {
2714 						btrfs_set_path_blocking(p);
2715 						btrfs_tree_lock(b);
2716 						btrfs_clear_path_blocking(p, b,
2717 								  BTRFS_WRITE_LOCK);
2718 					}
2719 					p->locks[level] = BTRFS_WRITE_LOCK;
2720 				} else {
2721 					err = btrfs_try_tree_read_lock(b);
2722 					if (!err) {
2723 						btrfs_set_path_blocking(p);
2724 						btrfs_tree_read_lock(b);
2725 						btrfs_clear_path_blocking(p, b,
2726 								  BTRFS_READ_LOCK);
2727 					}
2728 					p->locks[level] = BTRFS_READ_LOCK;
2729 				}
2730 				p->nodes[level] = b;
2731 			}
2732 		} else {
2733 			p->slots[level] = slot;
2734 			if (ins_len > 0 &&
2735 			    btrfs_leaf_free_space(root, b) < ins_len) {
2736 				if (write_lock_level < 1) {
2737 					write_lock_level = 1;
2738 					btrfs_release_path(p);
2739 					goto again;
2740 				}
2741 
2742 				btrfs_set_path_blocking(p);
2743 				err = split_leaf(trans, root, key,
2744 						 p, ins_len, ret == 0);
2745 				btrfs_clear_path_blocking(p, NULL, 0);
2746 
2747 				BUG_ON(err > 0);
2748 				if (err) {
2749 					ret = err;
2750 					goto done;
2751 				}
2752 			}
2753 			if (!p->search_for_split)
2754 				unlock_up(p, level, lowest_unlock,
2755 					  min_write_lock_level, &write_lock_level);
2756 			goto done;
2757 		}
2758 	}
2759 	ret = 1;
2760 done:
2761 	/*
2762 	 * we don't really know what they plan on doing with the path
2763 	 * from here on, so for now just mark it as blocking
2764 	 */
2765 	if (!p->leave_spinning)
2766 		btrfs_set_path_blocking(p);
2767 	if (ret < 0)
2768 		btrfs_release_path(p);
2769 	return ret;
2770 }
2771 
2772 /*
2773  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2774  * current state of the tree together with the operations recorded in the tree
2775  * modification log to search for the key in a previous version of this tree, as
2776  * denoted by the time_seq parameter.
2777  *
2778  * Naturally, there is no support for insert, delete or cow operations.
2779  *
2780  * The resulting path and return value will be set up as if we called
2781  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2782  */
2783 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2784 			  struct btrfs_path *p, u64 time_seq)
2785 {
2786 	struct extent_buffer *b;
2787 	int slot;
2788 	int ret;
2789 	int err;
2790 	int level;
2791 	int lowest_unlock = 1;
2792 	u8 lowest_level = 0;
2793 
2794 	lowest_level = p->lowest_level;
2795 	WARN_ON(p->nodes[0] != NULL);
2796 
2797 	if (p->search_commit_root) {
2798 		BUG_ON(time_seq);
2799 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2800 	}
2801 
2802 again:
2803 	b = get_old_root(root, time_seq);
2804 	level = btrfs_header_level(b);
2805 	p->locks[level] = BTRFS_READ_LOCK;
2806 
2807 	while (b) {
2808 		level = btrfs_header_level(b);
2809 		p->nodes[level] = b;
2810 		btrfs_clear_path_blocking(p, NULL, 0);
2811 
2812 		/*
2813 		 * we have a lock on b and as long as we aren't changing
2814 		 * the tree, there is no way to for the items in b to change.
2815 		 * It is safe to drop the lock on our parent before we
2816 		 * go through the expensive btree search on b.
2817 		 */
2818 		btrfs_unlock_up_safe(p, level + 1);
2819 
2820 		ret = bin_search(b, key, level, &slot);
2821 
2822 		if (level != 0) {
2823 			int dec = 0;
2824 			if (ret && slot > 0) {
2825 				dec = 1;
2826 				slot -= 1;
2827 			}
2828 			p->slots[level] = slot;
2829 			unlock_up(p, level, lowest_unlock, 0, NULL);
2830 
2831 			if (level == lowest_level) {
2832 				if (dec)
2833 					p->slots[level]++;
2834 				goto done;
2835 			}
2836 
2837 			err = read_block_for_search(NULL, root, p, &b, level,
2838 						    slot, key, time_seq);
2839 			if (err == -EAGAIN)
2840 				goto again;
2841 			if (err) {
2842 				ret = err;
2843 				goto done;
2844 			}
2845 
2846 			level = btrfs_header_level(b);
2847 			err = btrfs_try_tree_read_lock(b);
2848 			if (!err) {
2849 				btrfs_set_path_blocking(p);
2850 				btrfs_tree_read_lock(b);
2851 				btrfs_clear_path_blocking(p, b,
2852 							  BTRFS_READ_LOCK);
2853 			}
2854 			b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2855 			p->locks[level] = BTRFS_READ_LOCK;
2856 			p->nodes[level] = b;
2857 		} else {
2858 			p->slots[level] = slot;
2859 			unlock_up(p, level, lowest_unlock, 0, NULL);
2860 			goto done;
2861 		}
2862 	}
2863 	ret = 1;
2864 done:
2865 	if (!p->leave_spinning)
2866 		btrfs_set_path_blocking(p);
2867 	if (ret < 0)
2868 		btrfs_release_path(p);
2869 
2870 	return ret;
2871 }
2872 
2873 /*
2874  * helper to use instead of search slot if no exact match is needed but
2875  * instead the next or previous item should be returned.
2876  * When find_higher is true, the next higher item is returned, the next lower
2877  * otherwise.
2878  * When return_any and find_higher are both true, and no higher item is found,
2879  * return the next lower instead.
2880  * When return_any is true and find_higher is false, and no lower item is found,
2881  * return the next higher instead.
2882  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2883  * < 0 on error
2884  */
2885 int btrfs_search_slot_for_read(struct btrfs_root *root,
2886 			       struct btrfs_key *key, struct btrfs_path *p,
2887 			       int find_higher, int return_any)
2888 {
2889 	int ret;
2890 	struct extent_buffer *leaf;
2891 
2892 again:
2893 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2894 	if (ret <= 0)
2895 		return ret;
2896 	/*
2897 	 * a return value of 1 means the path is at the position where the
2898 	 * item should be inserted. Normally this is the next bigger item,
2899 	 * but in case the previous item is the last in a leaf, path points
2900 	 * to the first free slot in the previous leaf, i.e. at an invalid
2901 	 * item.
2902 	 */
2903 	leaf = p->nodes[0];
2904 
2905 	if (find_higher) {
2906 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2907 			ret = btrfs_next_leaf(root, p);
2908 			if (ret <= 0)
2909 				return ret;
2910 			if (!return_any)
2911 				return 1;
2912 			/*
2913 			 * no higher item found, return the next
2914 			 * lower instead
2915 			 */
2916 			return_any = 0;
2917 			find_higher = 0;
2918 			btrfs_release_path(p);
2919 			goto again;
2920 		}
2921 	} else {
2922 		if (p->slots[0] == 0) {
2923 			ret = btrfs_prev_leaf(root, p);
2924 			if (ret < 0)
2925 				return ret;
2926 			if (!ret) {
2927 				p->slots[0] = btrfs_header_nritems(leaf) - 1;
2928 				return 0;
2929 			}
2930 			if (!return_any)
2931 				return 1;
2932 			/*
2933 			 * no lower item found, return the next
2934 			 * higher instead
2935 			 */
2936 			return_any = 0;
2937 			find_higher = 1;
2938 			btrfs_release_path(p);
2939 			goto again;
2940 		} else {
2941 			--p->slots[0];
2942 		}
2943 	}
2944 	return 0;
2945 }
2946 
2947 /*
2948  * adjust the pointers going up the tree, starting at level
2949  * making sure the right key of each node is points to 'key'.
2950  * This is used after shifting pointers to the left, so it stops
2951  * fixing up pointers when a given leaf/node is not in slot 0 of the
2952  * higher levels
2953  *
2954  */
2955 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2956 			   struct btrfs_disk_key *key, int level)
2957 {
2958 	int i;
2959 	struct extent_buffer *t;
2960 
2961 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2962 		int tslot = path->slots[i];
2963 		if (!path->nodes[i])
2964 			break;
2965 		t = path->nodes[i];
2966 		tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2967 		btrfs_set_node_key(t, key, tslot);
2968 		btrfs_mark_buffer_dirty(path->nodes[i]);
2969 		if (tslot != 0)
2970 			break;
2971 	}
2972 }
2973 
2974 /*
2975  * update item key.
2976  *
2977  * This function isn't completely safe. It's the caller's responsibility
2978  * that the new key won't break the order
2979  */
2980 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2981 			     struct btrfs_key *new_key)
2982 {
2983 	struct btrfs_disk_key disk_key;
2984 	struct extent_buffer *eb;
2985 	int slot;
2986 
2987 	eb = path->nodes[0];
2988 	slot = path->slots[0];
2989 	if (slot > 0) {
2990 		btrfs_item_key(eb, &disk_key, slot - 1);
2991 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2992 	}
2993 	if (slot < btrfs_header_nritems(eb) - 1) {
2994 		btrfs_item_key(eb, &disk_key, slot + 1);
2995 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2996 	}
2997 
2998 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2999 	btrfs_set_item_key(eb, &disk_key, slot);
3000 	btrfs_mark_buffer_dirty(eb);
3001 	if (slot == 0)
3002 		fixup_low_keys(root, path, &disk_key, 1);
3003 }
3004 
3005 /*
3006  * try to push data from one node into the next node left in the
3007  * tree.
3008  *
3009  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3010  * error, and > 0 if there was no room in the left hand block.
3011  */
3012 static int push_node_left(struct btrfs_trans_handle *trans,
3013 			  struct btrfs_root *root, struct extent_buffer *dst,
3014 			  struct extent_buffer *src, int empty)
3015 {
3016 	int push_items = 0;
3017 	int src_nritems;
3018 	int dst_nritems;
3019 	int ret = 0;
3020 
3021 	src_nritems = btrfs_header_nritems(src);
3022 	dst_nritems = btrfs_header_nritems(dst);
3023 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3024 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3025 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3026 
3027 	if (!empty && src_nritems <= 8)
3028 		return 1;
3029 
3030 	if (push_items <= 0)
3031 		return 1;
3032 
3033 	if (empty) {
3034 		push_items = min(src_nritems, push_items);
3035 		if (push_items < src_nritems) {
3036 			/* leave at least 8 pointers in the node if
3037 			 * we aren't going to empty it
3038 			 */
3039 			if (src_nritems - push_items < 8) {
3040 				if (push_items <= 8)
3041 					return 1;
3042 				push_items -= 8;
3043 			}
3044 		}
3045 	} else
3046 		push_items = min(src_nritems - 8, push_items);
3047 
3048 	tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3049 			     push_items);
3050 	copy_extent_buffer(dst, src,
3051 			   btrfs_node_key_ptr_offset(dst_nritems),
3052 			   btrfs_node_key_ptr_offset(0),
3053 			   push_items * sizeof(struct btrfs_key_ptr));
3054 
3055 	if (push_items < src_nritems) {
3056 		/*
3057 		 * don't call tree_mod_log_eb_move here, key removal was already
3058 		 * fully logged by tree_mod_log_eb_copy above.
3059 		 */
3060 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3061 				      btrfs_node_key_ptr_offset(push_items),
3062 				      (src_nritems - push_items) *
3063 				      sizeof(struct btrfs_key_ptr));
3064 	}
3065 	btrfs_set_header_nritems(src, src_nritems - push_items);
3066 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3067 	btrfs_mark_buffer_dirty(src);
3068 	btrfs_mark_buffer_dirty(dst);
3069 
3070 	return ret;
3071 }
3072 
3073 /*
3074  * try to push data from one node into the next node right in the
3075  * tree.
3076  *
3077  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3078  * error, and > 0 if there was no room in the right hand block.
3079  *
3080  * this will  only push up to 1/2 the contents of the left node over
3081  */
3082 static int balance_node_right(struct btrfs_trans_handle *trans,
3083 			      struct btrfs_root *root,
3084 			      struct extent_buffer *dst,
3085 			      struct extent_buffer *src)
3086 {
3087 	int push_items = 0;
3088 	int max_push;
3089 	int src_nritems;
3090 	int dst_nritems;
3091 	int ret = 0;
3092 
3093 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3094 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3095 
3096 	src_nritems = btrfs_header_nritems(src);
3097 	dst_nritems = btrfs_header_nritems(dst);
3098 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3099 	if (push_items <= 0)
3100 		return 1;
3101 
3102 	if (src_nritems < 4)
3103 		return 1;
3104 
3105 	max_push = src_nritems / 2 + 1;
3106 	/* don't try to empty the node */
3107 	if (max_push >= src_nritems)
3108 		return 1;
3109 
3110 	if (max_push < push_items)
3111 		push_items = max_push;
3112 
3113 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3114 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3115 				      btrfs_node_key_ptr_offset(0),
3116 				      (dst_nritems) *
3117 				      sizeof(struct btrfs_key_ptr));
3118 
3119 	tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3120 			     src_nritems - push_items, push_items);
3121 	copy_extent_buffer(dst, src,
3122 			   btrfs_node_key_ptr_offset(0),
3123 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3124 			   push_items * sizeof(struct btrfs_key_ptr));
3125 
3126 	btrfs_set_header_nritems(src, src_nritems - push_items);
3127 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3128 
3129 	btrfs_mark_buffer_dirty(src);
3130 	btrfs_mark_buffer_dirty(dst);
3131 
3132 	return ret;
3133 }
3134 
3135 /*
3136  * helper function to insert a new root level in the tree.
3137  * A new node is allocated, and a single item is inserted to
3138  * point to the existing root
3139  *
3140  * returns zero on success or < 0 on failure.
3141  */
3142 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3143 			   struct btrfs_root *root,
3144 			   struct btrfs_path *path, int level, int log_removal)
3145 {
3146 	u64 lower_gen;
3147 	struct extent_buffer *lower;
3148 	struct extent_buffer *c;
3149 	struct extent_buffer *old;
3150 	struct btrfs_disk_key lower_key;
3151 
3152 	BUG_ON(path->nodes[level]);
3153 	BUG_ON(path->nodes[level-1] != root->node);
3154 
3155 	lower = path->nodes[level-1];
3156 	if (level == 1)
3157 		btrfs_item_key(lower, &lower_key, 0);
3158 	else
3159 		btrfs_node_key(lower, &lower_key, 0);
3160 
3161 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3162 				   root->root_key.objectid, &lower_key,
3163 				   level, root->node->start, 0);
3164 	if (IS_ERR(c))
3165 		return PTR_ERR(c);
3166 
3167 	root_add_used(root, root->nodesize);
3168 
3169 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3170 	btrfs_set_header_nritems(c, 1);
3171 	btrfs_set_header_level(c, level);
3172 	btrfs_set_header_bytenr(c, c->start);
3173 	btrfs_set_header_generation(c, trans->transid);
3174 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3175 	btrfs_set_header_owner(c, root->root_key.objectid);
3176 
3177 	write_extent_buffer(c, root->fs_info->fsid,
3178 			    (unsigned long)btrfs_header_fsid(c),
3179 			    BTRFS_FSID_SIZE);
3180 
3181 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3182 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
3183 			    BTRFS_UUID_SIZE);
3184 
3185 	btrfs_set_node_key(c, &lower_key, 0);
3186 	btrfs_set_node_blockptr(c, 0, lower->start);
3187 	lower_gen = btrfs_header_generation(lower);
3188 	WARN_ON(lower_gen != trans->transid);
3189 
3190 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3191 
3192 	btrfs_mark_buffer_dirty(c);
3193 
3194 	old = root->node;
3195 	tree_mod_log_set_root_pointer(root, c, log_removal);
3196 	rcu_assign_pointer(root->node, c);
3197 
3198 	/* the super has an extra ref to root->node */
3199 	free_extent_buffer(old);
3200 
3201 	add_root_to_dirty_list(root);
3202 	extent_buffer_get(c);
3203 	path->nodes[level] = c;
3204 	path->locks[level] = BTRFS_WRITE_LOCK;
3205 	path->slots[level] = 0;
3206 	return 0;
3207 }
3208 
3209 /*
3210  * worker function to insert a single pointer in a node.
3211  * the node should have enough room for the pointer already
3212  *
3213  * slot and level indicate where you want the key to go, and
3214  * blocknr is the block the key points to.
3215  */
3216 static void insert_ptr(struct btrfs_trans_handle *trans,
3217 		       struct btrfs_root *root, struct btrfs_path *path,
3218 		       struct btrfs_disk_key *key, u64 bytenr,
3219 		       int slot, int level)
3220 {
3221 	struct extent_buffer *lower;
3222 	int nritems;
3223 	int ret;
3224 
3225 	BUG_ON(!path->nodes[level]);
3226 	btrfs_assert_tree_locked(path->nodes[level]);
3227 	lower = path->nodes[level];
3228 	nritems = btrfs_header_nritems(lower);
3229 	BUG_ON(slot > nritems);
3230 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3231 	if (slot != nritems) {
3232 		if (level)
3233 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3234 					     slot, nritems - slot);
3235 		memmove_extent_buffer(lower,
3236 			      btrfs_node_key_ptr_offset(slot + 1),
3237 			      btrfs_node_key_ptr_offset(slot),
3238 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3239 	}
3240 	if (level) {
3241 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3242 					      MOD_LOG_KEY_ADD);
3243 		BUG_ON(ret < 0);
3244 	}
3245 	btrfs_set_node_key(lower, key, slot);
3246 	btrfs_set_node_blockptr(lower, slot, bytenr);
3247 	WARN_ON(trans->transid == 0);
3248 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3249 	btrfs_set_header_nritems(lower, nritems + 1);
3250 	btrfs_mark_buffer_dirty(lower);
3251 }
3252 
3253 /*
3254  * split the node at the specified level in path in two.
3255  * The path is corrected to point to the appropriate node after the split
3256  *
3257  * Before splitting this tries to make some room in the node by pushing
3258  * left and right, if either one works, it returns right away.
3259  *
3260  * returns 0 on success and < 0 on failure
3261  */
3262 static noinline int split_node(struct btrfs_trans_handle *trans,
3263 			       struct btrfs_root *root,
3264 			       struct btrfs_path *path, int level)
3265 {
3266 	struct extent_buffer *c;
3267 	struct extent_buffer *split;
3268 	struct btrfs_disk_key disk_key;
3269 	int mid;
3270 	int ret;
3271 	u32 c_nritems;
3272 
3273 	c = path->nodes[level];
3274 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3275 	if (c == root->node) {
3276 		/*
3277 		 * trying to split the root, lets make a new one
3278 		 *
3279 		 * tree mod log: We pass 0 as log_removal parameter to
3280 		 * insert_new_root, because that root buffer will be kept as a
3281 		 * normal node. We are going to log removal of half of the
3282 		 * elements below with tree_mod_log_eb_copy. We're holding a
3283 		 * tree lock on the buffer, which is why we cannot race with
3284 		 * other tree_mod_log users.
3285 		 */
3286 		ret = insert_new_root(trans, root, path, level + 1, 0);
3287 		if (ret)
3288 			return ret;
3289 	} else {
3290 		ret = push_nodes_for_insert(trans, root, path, level);
3291 		c = path->nodes[level];
3292 		if (!ret && btrfs_header_nritems(c) <
3293 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3294 			return 0;
3295 		if (ret < 0)
3296 			return ret;
3297 	}
3298 
3299 	c_nritems = btrfs_header_nritems(c);
3300 	mid = (c_nritems + 1) / 2;
3301 	btrfs_node_key(c, &disk_key, mid);
3302 
3303 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3304 					root->root_key.objectid,
3305 					&disk_key, level, c->start, 0);
3306 	if (IS_ERR(split))
3307 		return PTR_ERR(split);
3308 
3309 	root_add_used(root, root->nodesize);
3310 
3311 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3312 	btrfs_set_header_level(split, btrfs_header_level(c));
3313 	btrfs_set_header_bytenr(split, split->start);
3314 	btrfs_set_header_generation(split, trans->transid);
3315 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3316 	btrfs_set_header_owner(split, root->root_key.objectid);
3317 	write_extent_buffer(split, root->fs_info->fsid,
3318 			    (unsigned long)btrfs_header_fsid(split),
3319 			    BTRFS_FSID_SIZE);
3320 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3321 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
3322 			    BTRFS_UUID_SIZE);
3323 
3324 	tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3325 	copy_extent_buffer(split, c,
3326 			   btrfs_node_key_ptr_offset(0),
3327 			   btrfs_node_key_ptr_offset(mid),
3328 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3329 	btrfs_set_header_nritems(split, c_nritems - mid);
3330 	btrfs_set_header_nritems(c, mid);
3331 	ret = 0;
3332 
3333 	btrfs_mark_buffer_dirty(c);
3334 	btrfs_mark_buffer_dirty(split);
3335 
3336 	insert_ptr(trans, root, path, &disk_key, split->start,
3337 		   path->slots[level + 1] + 1, level + 1);
3338 
3339 	if (path->slots[level] >= mid) {
3340 		path->slots[level] -= mid;
3341 		btrfs_tree_unlock(c);
3342 		free_extent_buffer(c);
3343 		path->nodes[level] = split;
3344 		path->slots[level + 1] += 1;
3345 	} else {
3346 		btrfs_tree_unlock(split);
3347 		free_extent_buffer(split);
3348 	}
3349 	return ret;
3350 }
3351 
3352 /*
3353  * how many bytes are required to store the items in a leaf.  start
3354  * and nr indicate which items in the leaf to check.  This totals up the
3355  * space used both by the item structs and the item data
3356  */
3357 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3358 {
3359 	struct btrfs_item *start_item;
3360 	struct btrfs_item *end_item;
3361 	struct btrfs_map_token token;
3362 	int data_len;
3363 	int nritems = btrfs_header_nritems(l);
3364 	int end = min(nritems, start + nr) - 1;
3365 
3366 	if (!nr)
3367 		return 0;
3368 	btrfs_init_map_token(&token);
3369 	start_item = btrfs_item_nr(l, start);
3370 	end_item = btrfs_item_nr(l, end);
3371 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3372 		btrfs_token_item_size(l, start_item, &token);
3373 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3374 	data_len += sizeof(struct btrfs_item) * nr;
3375 	WARN_ON(data_len < 0);
3376 	return data_len;
3377 }
3378 
3379 /*
3380  * The space between the end of the leaf items and
3381  * the start of the leaf data.  IOW, how much room
3382  * the leaf has left for both items and data
3383  */
3384 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3385 				   struct extent_buffer *leaf)
3386 {
3387 	int nritems = btrfs_header_nritems(leaf);
3388 	int ret;
3389 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3390 	if (ret < 0) {
3391 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3392 		       "used %d nritems %d\n",
3393 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3394 		       leaf_space_used(leaf, 0, nritems), nritems);
3395 	}
3396 	return ret;
3397 }
3398 
3399 /*
3400  * min slot controls the lowest index we're willing to push to the
3401  * right.  We'll push up to and including min_slot, but no lower
3402  */
3403 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3404 				      struct btrfs_root *root,
3405 				      struct btrfs_path *path,
3406 				      int data_size, int empty,
3407 				      struct extent_buffer *right,
3408 				      int free_space, u32 left_nritems,
3409 				      u32 min_slot)
3410 {
3411 	struct extent_buffer *left = path->nodes[0];
3412 	struct extent_buffer *upper = path->nodes[1];
3413 	struct btrfs_map_token token;
3414 	struct btrfs_disk_key disk_key;
3415 	int slot;
3416 	u32 i;
3417 	int push_space = 0;
3418 	int push_items = 0;
3419 	struct btrfs_item *item;
3420 	u32 nr;
3421 	u32 right_nritems;
3422 	u32 data_end;
3423 	u32 this_item_size;
3424 
3425 	btrfs_init_map_token(&token);
3426 
3427 	if (empty)
3428 		nr = 0;
3429 	else
3430 		nr = max_t(u32, 1, min_slot);
3431 
3432 	if (path->slots[0] >= left_nritems)
3433 		push_space += data_size;
3434 
3435 	slot = path->slots[1];
3436 	i = left_nritems - 1;
3437 	while (i >= nr) {
3438 		item = btrfs_item_nr(left, i);
3439 
3440 		if (!empty && push_items > 0) {
3441 			if (path->slots[0] > i)
3442 				break;
3443 			if (path->slots[0] == i) {
3444 				int space = btrfs_leaf_free_space(root, left);
3445 				if (space + push_space * 2 > free_space)
3446 					break;
3447 			}
3448 		}
3449 
3450 		if (path->slots[0] == i)
3451 			push_space += data_size;
3452 
3453 		this_item_size = btrfs_item_size(left, item);
3454 		if (this_item_size + sizeof(*item) + push_space > free_space)
3455 			break;
3456 
3457 		push_items++;
3458 		push_space += this_item_size + sizeof(*item);
3459 		if (i == 0)
3460 			break;
3461 		i--;
3462 	}
3463 
3464 	if (push_items == 0)
3465 		goto out_unlock;
3466 
3467 	WARN_ON(!empty && push_items == left_nritems);
3468 
3469 	/* push left to right */
3470 	right_nritems = btrfs_header_nritems(right);
3471 
3472 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3473 	push_space -= leaf_data_end(root, left);
3474 
3475 	/* make room in the right data area */
3476 	data_end = leaf_data_end(root, right);
3477 	memmove_extent_buffer(right,
3478 			      btrfs_leaf_data(right) + data_end - push_space,
3479 			      btrfs_leaf_data(right) + data_end,
3480 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3481 
3482 	/* copy from the left data area */
3483 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3484 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3485 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3486 		     push_space);
3487 
3488 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3489 			      btrfs_item_nr_offset(0),
3490 			      right_nritems * sizeof(struct btrfs_item));
3491 
3492 	/* copy the items from left to right */
3493 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3494 		   btrfs_item_nr_offset(left_nritems - push_items),
3495 		   push_items * sizeof(struct btrfs_item));
3496 
3497 	/* update the item pointers */
3498 	right_nritems += push_items;
3499 	btrfs_set_header_nritems(right, right_nritems);
3500 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3501 	for (i = 0; i < right_nritems; i++) {
3502 		item = btrfs_item_nr(right, i);
3503 		push_space -= btrfs_token_item_size(right, item, &token);
3504 		btrfs_set_token_item_offset(right, item, push_space, &token);
3505 	}
3506 
3507 	left_nritems -= push_items;
3508 	btrfs_set_header_nritems(left, left_nritems);
3509 
3510 	if (left_nritems)
3511 		btrfs_mark_buffer_dirty(left);
3512 	else
3513 		clean_tree_block(trans, root, left);
3514 
3515 	btrfs_mark_buffer_dirty(right);
3516 
3517 	btrfs_item_key(right, &disk_key, 0);
3518 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3519 	btrfs_mark_buffer_dirty(upper);
3520 
3521 	/* then fixup the leaf pointer in the path */
3522 	if (path->slots[0] >= left_nritems) {
3523 		path->slots[0] -= left_nritems;
3524 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3525 			clean_tree_block(trans, root, path->nodes[0]);
3526 		btrfs_tree_unlock(path->nodes[0]);
3527 		free_extent_buffer(path->nodes[0]);
3528 		path->nodes[0] = right;
3529 		path->slots[1] += 1;
3530 	} else {
3531 		btrfs_tree_unlock(right);
3532 		free_extent_buffer(right);
3533 	}
3534 	return 0;
3535 
3536 out_unlock:
3537 	btrfs_tree_unlock(right);
3538 	free_extent_buffer(right);
3539 	return 1;
3540 }
3541 
3542 /*
3543  * push some data in the path leaf to the right, trying to free up at
3544  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3545  *
3546  * returns 1 if the push failed because the other node didn't have enough
3547  * room, 0 if everything worked out and < 0 if there were major errors.
3548  *
3549  * this will push starting from min_slot to the end of the leaf.  It won't
3550  * push any slot lower than min_slot
3551  */
3552 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3553 			   *root, struct btrfs_path *path,
3554 			   int min_data_size, int data_size,
3555 			   int empty, u32 min_slot)
3556 {
3557 	struct extent_buffer *left = path->nodes[0];
3558 	struct extent_buffer *right;
3559 	struct extent_buffer *upper;
3560 	int slot;
3561 	int free_space;
3562 	u32 left_nritems;
3563 	int ret;
3564 
3565 	if (!path->nodes[1])
3566 		return 1;
3567 
3568 	slot = path->slots[1];
3569 	upper = path->nodes[1];
3570 	if (slot >= btrfs_header_nritems(upper) - 1)
3571 		return 1;
3572 
3573 	btrfs_assert_tree_locked(path->nodes[1]);
3574 
3575 	right = read_node_slot(root, upper, slot + 1);
3576 	if (right == NULL)
3577 		return 1;
3578 
3579 	btrfs_tree_lock(right);
3580 	btrfs_set_lock_blocking(right);
3581 
3582 	free_space = btrfs_leaf_free_space(root, right);
3583 	if (free_space < data_size)
3584 		goto out_unlock;
3585 
3586 	/* cow and double check */
3587 	ret = btrfs_cow_block(trans, root, right, upper,
3588 			      slot + 1, &right);
3589 	if (ret)
3590 		goto out_unlock;
3591 
3592 	free_space = btrfs_leaf_free_space(root, right);
3593 	if (free_space < data_size)
3594 		goto out_unlock;
3595 
3596 	left_nritems = btrfs_header_nritems(left);
3597 	if (left_nritems == 0)
3598 		goto out_unlock;
3599 
3600 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3601 				right, free_space, left_nritems, min_slot);
3602 out_unlock:
3603 	btrfs_tree_unlock(right);
3604 	free_extent_buffer(right);
3605 	return 1;
3606 }
3607 
3608 /*
3609  * push some data in the path leaf to the left, trying to free up at
3610  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3611  *
3612  * max_slot can put a limit on how far into the leaf we'll push items.  The
3613  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3614  * items
3615  */
3616 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3617 				     struct btrfs_root *root,
3618 				     struct btrfs_path *path, int data_size,
3619 				     int empty, struct extent_buffer *left,
3620 				     int free_space, u32 right_nritems,
3621 				     u32 max_slot)
3622 {
3623 	struct btrfs_disk_key disk_key;
3624 	struct extent_buffer *right = path->nodes[0];
3625 	int i;
3626 	int push_space = 0;
3627 	int push_items = 0;
3628 	struct btrfs_item *item;
3629 	u32 old_left_nritems;
3630 	u32 nr;
3631 	int ret = 0;
3632 	u32 this_item_size;
3633 	u32 old_left_item_size;
3634 	struct btrfs_map_token token;
3635 
3636 	btrfs_init_map_token(&token);
3637 
3638 	if (empty)
3639 		nr = min(right_nritems, max_slot);
3640 	else
3641 		nr = min(right_nritems - 1, max_slot);
3642 
3643 	for (i = 0; i < nr; i++) {
3644 		item = btrfs_item_nr(right, i);
3645 
3646 		if (!empty && push_items > 0) {
3647 			if (path->slots[0] < i)
3648 				break;
3649 			if (path->slots[0] == i) {
3650 				int space = btrfs_leaf_free_space(root, right);
3651 				if (space + push_space * 2 > free_space)
3652 					break;
3653 			}
3654 		}
3655 
3656 		if (path->slots[0] == i)
3657 			push_space += data_size;
3658 
3659 		this_item_size = btrfs_item_size(right, item);
3660 		if (this_item_size + sizeof(*item) + push_space > free_space)
3661 			break;
3662 
3663 		push_items++;
3664 		push_space += this_item_size + sizeof(*item);
3665 	}
3666 
3667 	if (push_items == 0) {
3668 		ret = 1;
3669 		goto out;
3670 	}
3671 	if (!empty && push_items == btrfs_header_nritems(right))
3672 		WARN_ON(1);
3673 
3674 	/* push data from right to left */
3675 	copy_extent_buffer(left, right,
3676 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3677 			   btrfs_item_nr_offset(0),
3678 			   push_items * sizeof(struct btrfs_item));
3679 
3680 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3681 		     btrfs_item_offset_nr(right, push_items - 1);
3682 
3683 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3684 		     leaf_data_end(root, left) - push_space,
3685 		     btrfs_leaf_data(right) +
3686 		     btrfs_item_offset_nr(right, push_items - 1),
3687 		     push_space);
3688 	old_left_nritems = btrfs_header_nritems(left);
3689 	BUG_ON(old_left_nritems <= 0);
3690 
3691 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3692 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3693 		u32 ioff;
3694 
3695 		item = btrfs_item_nr(left, i);
3696 
3697 		ioff = btrfs_token_item_offset(left, item, &token);
3698 		btrfs_set_token_item_offset(left, item,
3699 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3700 		      &token);
3701 	}
3702 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3703 
3704 	/* fixup right node */
3705 	if (push_items > right_nritems)
3706 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3707 		       right_nritems);
3708 
3709 	if (push_items < right_nritems) {
3710 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3711 						  leaf_data_end(root, right);
3712 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3713 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3714 				      btrfs_leaf_data(right) +
3715 				      leaf_data_end(root, right), push_space);
3716 
3717 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3718 			      btrfs_item_nr_offset(push_items),
3719 			     (btrfs_header_nritems(right) - push_items) *
3720 			     sizeof(struct btrfs_item));
3721 	}
3722 	right_nritems -= push_items;
3723 	btrfs_set_header_nritems(right, right_nritems);
3724 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3725 	for (i = 0; i < right_nritems; i++) {
3726 		item = btrfs_item_nr(right, i);
3727 
3728 		push_space = push_space - btrfs_token_item_size(right,
3729 								item, &token);
3730 		btrfs_set_token_item_offset(right, item, push_space, &token);
3731 	}
3732 
3733 	btrfs_mark_buffer_dirty(left);
3734 	if (right_nritems)
3735 		btrfs_mark_buffer_dirty(right);
3736 	else
3737 		clean_tree_block(trans, root, right);
3738 
3739 	btrfs_item_key(right, &disk_key, 0);
3740 	fixup_low_keys(root, path, &disk_key, 1);
3741 
3742 	/* then fixup the leaf pointer in the path */
3743 	if (path->slots[0] < push_items) {
3744 		path->slots[0] += old_left_nritems;
3745 		btrfs_tree_unlock(path->nodes[0]);
3746 		free_extent_buffer(path->nodes[0]);
3747 		path->nodes[0] = left;
3748 		path->slots[1] -= 1;
3749 	} else {
3750 		btrfs_tree_unlock(left);
3751 		free_extent_buffer(left);
3752 		path->slots[0] -= push_items;
3753 	}
3754 	BUG_ON(path->slots[0] < 0);
3755 	return ret;
3756 out:
3757 	btrfs_tree_unlock(left);
3758 	free_extent_buffer(left);
3759 	return ret;
3760 }
3761 
3762 /*
3763  * push some data in the path leaf to the left, trying to free up at
3764  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3765  *
3766  * max_slot can put a limit on how far into the leaf we'll push items.  The
3767  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3768  * items
3769  */
3770 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3771 			  *root, struct btrfs_path *path, int min_data_size,
3772 			  int data_size, int empty, u32 max_slot)
3773 {
3774 	struct extent_buffer *right = path->nodes[0];
3775 	struct extent_buffer *left;
3776 	int slot;
3777 	int free_space;
3778 	u32 right_nritems;
3779 	int ret = 0;
3780 
3781 	slot = path->slots[1];
3782 	if (slot == 0)
3783 		return 1;
3784 	if (!path->nodes[1])
3785 		return 1;
3786 
3787 	right_nritems = btrfs_header_nritems(right);
3788 	if (right_nritems == 0)
3789 		return 1;
3790 
3791 	btrfs_assert_tree_locked(path->nodes[1]);
3792 
3793 	left = read_node_slot(root, path->nodes[1], slot - 1);
3794 	if (left == NULL)
3795 		return 1;
3796 
3797 	btrfs_tree_lock(left);
3798 	btrfs_set_lock_blocking(left);
3799 
3800 	free_space = btrfs_leaf_free_space(root, left);
3801 	if (free_space < data_size) {
3802 		ret = 1;
3803 		goto out;
3804 	}
3805 
3806 	/* cow and double check */
3807 	ret = btrfs_cow_block(trans, root, left,
3808 			      path->nodes[1], slot - 1, &left);
3809 	if (ret) {
3810 		/* we hit -ENOSPC, but it isn't fatal here */
3811 		if (ret == -ENOSPC)
3812 			ret = 1;
3813 		goto out;
3814 	}
3815 
3816 	free_space = btrfs_leaf_free_space(root, left);
3817 	if (free_space < data_size) {
3818 		ret = 1;
3819 		goto out;
3820 	}
3821 
3822 	return __push_leaf_left(trans, root, path, min_data_size,
3823 			       empty, left, free_space, right_nritems,
3824 			       max_slot);
3825 out:
3826 	btrfs_tree_unlock(left);
3827 	free_extent_buffer(left);
3828 	return ret;
3829 }
3830 
3831 /*
3832  * split the path's leaf in two, making sure there is at least data_size
3833  * available for the resulting leaf level of the path.
3834  */
3835 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3836 				    struct btrfs_root *root,
3837 				    struct btrfs_path *path,
3838 				    struct extent_buffer *l,
3839 				    struct extent_buffer *right,
3840 				    int slot, int mid, int nritems)
3841 {
3842 	int data_copy_size;
3843 	int rt_data_off;
3844 	int i;
3845 	struct btrfs_disk_key disk_key;
3846 	struct btrfs_map_token token;
3847 
3848 	btrfs_init_map_token(&token);
3849 
3850 	nritems = nritems - mid;
3851 	btrfs_set_header_nritems(right, nritems);
3852 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3853 
3854 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3855 			   btrfs_item_nr_offset(mid),
3856 			   nritems * sizeof(struct btrfs_item));
3857 
3858 	copy_extent_buffer(right, l,
3859 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3860 		     data_copy_size, btrfs_leaf_data(l) +
3861 		     leaf_data_end(root, l), data_copy_size);
3862 
3863 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3864 		      btrfs_item_end_nr(l, mid);
3865 
3866 	for (i = 0; i < nritems; i++) {
3867 		struct btrfs_item *item = btrfs_item_nr(right, i);
3868 		u32 ioff;
3869 
3870 		ioff = btrfs_token_item_offset(right, item, &token);
3871 		btrfs_set_token_item_offset(right, item,
3872 					    ioff + rt_data_off, &token);
3873 	}
3874 
3875 	btrfs_set_header_nritems(l, mid);
3876 	btrfs_item_key(right, &disk_key, 0);
3877 	insert_ptr(trans, root, path, &disk_key, right->start,
3878 		   path->slots[1] + 1, 1);
3879 
3880 	btrfs_mark_buffer_dirty(right);
3881 	btrfs_mark_buffer_dirty(l);
3882 	BUG_ON(path->slots[0] != slot);
3883 
3884 	if (mid <= slot) {
3885 		btrfs_tree_unlock(path->nodes[0]);
3886 		free_extent_buffer(path->nodes[0]);
3887 		path->nodes[0] = right;
3888 		path->slots[0] -= mid;
3889 		path->slots[1] += 1;
3890 	} else {
3891 		btrfs_tree_unlock(right);
3892 		free_extent_buffer(right);
3893 	}
3894 
3895 	BUG_ON(path->slots[0] < 0);
3896 }
3897 
3898 /*
3899  * double splits happen when we need to insert a big item in the middle
3900  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3901  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3902  *          A                 B                 C
3903  *
3904  * We avoid this by trying to push the items on either side of our target
3905  * into the adjacent leaves.  If all goes well we can avoid the double split
3906  * completely.
3907  */
3908 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3909 					  struct btrfs_root *root,
3910 					  struct btrfs_path *path,
3911 					  int data_size)
3912 {
3913 	int ret;
3914 	int progress = 0;
3915 	int slot;
3916 	u32 nritems;
3917 
3918 	slot = path->slots[0];
3919 
3920 	/*
3921 	 * try to push all the items after our slot into the
3922 	 * right leaf
3923 	 */
3924 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3925 	if (ret < 0)
3926 		return ret;
3927 
3928 	if (ret == 0)
3929 		progress++;
3930 
3931 	nritems = btrfs_header_nritems(path->nodes[0]);
3932 	/*
3933 	 * our goal is to get our slot at the start or end of a leaf.  If
3934 	 * we've done so we're done
3935 	 */
3936 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3937 		return 0;
3938 
3939 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3940 		return 0;
3941 
3942 	/* try to push all the items before our slot into the next leaf */
3943 	slot = path->slots[0];
3944 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3945 	if (ret < 0)
3946 		return ret;
3947 
3948 	if (ret == 0)
3949 		progress++;
3950 
3951 	if (progress)
3952 		return 0;
3953 	return 1;
3954 }
3955 
3956 /*
3957  * split the path's leaf in two, making sure there is at least data_size
3958  * available for the resulting leaf level of the path.
3959  *
3960  * returns 0 if all went well and < 0 on failure.
3961  */
3962 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3963 			       struct btrfs_root *root,
3964 			       struct btrfs_key *ins_key,
3965 			       struct btrfs_path *path, int data_size,
3966 			       int extend)
3967 {
3968 	struct btrfs_disk_key disk_key;
3969 	struct extent_buffer *l;
3970 	u32 nritems;
3971 	int mid;
3972 	int slot;
3973 	struct extent_buffer *right;
3974 	int ret = 0;
3975 	int wret;
3976 	int split;
3977 	int num_doubles = 0;
3978 	int tried_avoid_double = 0;
3979 
3980 	l = path->nodes[0];
3981 	slot = path->slots[0];
3982 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3983 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3984 		return -EOVERFLOW;
3985 
3986 	/* first try to make some room by pushing left and right */
3987 	if (data_size) {
3988 		wret = push_leaf_right(trans, root, path, data_size,
3989 				       data_size, 0, 0);
3990 		if (wret < 0)
3991 			return wret;
3992 		if (wret) {
3993 			wret = push_leaf_left(trans, root, path, data_size,
3994 					      data_size, 0, (u32)-1);
3995 			if (wret < 0)
3996 				return wret;
3997 		}
3998 		l = path->nodes[0];
3999 
4000 		/* did the pushes work? */
4001 		if (btrfs_leaf_free_space(root, l) >= data_size)
4002 			return 0;
4003 	}
4004 
4005 	if (!path->nodes[1]) {
4006 		ret = insert_new_root(trans, root, path, 1, 1);
4007 		if (ret)
4008 			return ret;
4009 	}
4010 again:
4011 	split = 1;
4012 	l = path->nodes[0];
4013 	slot = path->slots[0];
4014 	nritems = btrfs_header_nritems(l);
4015 	mid = (nritems + 1) / 2;
4016 
4017 	if (mid <= slot) {
4018 		if (nritems == 1 ||
4019 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4020 			BTRFS_LEAF_DATA_SIZE(root)) {
4021 			if (slot >= nritems) {
4022 				split = 0;
4023 			} else {
4024 				mid = slot;
4025 				if (mid != nritems &&
4026 				    leaf_space_used(l, mid, nritems - mid) +
4027 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4028 					if (data_size && !tried_avoid_double)
4029 						goto push_for_double;
4030 					split = 2;
4031 				}
4032 			}
4033 		}
4034 	} else {
4035 		if (leaf_space_used(l, 0, mid) + data_size >
4036 			BTRFS_LEAF_DATA_SIZE(root)) {
4037 			if (!extend && data_size && slot == 0) {
4038 				split = 0;
4039 			} else if ((extend || !data_size) && slot == 0) {
4040 				mid = 1;
4041 			} else {
4042 				mid = slot;
4043 				if (mid != nritems &&
4044 				    leaf_space_used(l, mid, nritems - mid) +
4045 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4046 					if (data_size && !tried_avoid_double)
4047 						goto push_for_double;
4048 					split = 2 ;
4049 				}
4050 			}
4051 		}
4052 	}
4053 
4054 	if (split == 0)
4055 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4056 	else
4057 		btrfs_item_key(l, &disk_key, mid);
4058 
4059 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4060 					root->root_key.objectid,
4061 					&disk_key, 0, l->start, 0);
4062 	if (IS_ERR(right))
4063 		return PTR_ERR(right);
4064 
4065 	root_add_used(root, root->leafsize);
4066 
4067 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4068 	btrfs_set_header_bytenr(right, right->start);
4069 	btrfs_set_header_generation(right, trans->transid);
4070 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4071 	btrfs_set_header_owner(right, root->root_key.objectid);
4072 	btrfs_set_header_level(right, 0);
4073 	write_extent_buffer(right, root->fs_info->fsid,
4074 			    (unsigned long)btrfs_header_fsid(right),
4075 			    BTRFS_FSID_SIZE);
4076 
4077 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4078 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
4079 			    BTRFS_UUID_SIZE);
4080 
4081 	if (split == 0) {
4082 		if (mid <= slot) {
4083 			btrfs_set_header_nritems(right, 0);
4084 			insert_ptr(trans, root, path, &disk_key, right->start,
4085 				   path->slots[1] + 1, 1);
4086 			btrfs_tree_unlock(path->nodes[0]);
4087 			free_extent_buffer(path->nodes[0]);
4088 			path->nodes[0] = right;
4089 			path->slots[0] = 0;
4090 			path->slots[1] += 1;
4091 		} else {
4092 			btrfs_set_header_nritems(right, 0);
4093 			insert_ptr(trans, root, path, &disk_key, right->start,
4094 					  path->slots[1], 1);
4095 			btrfs_tree_unlock(path->nodes[0]);
4096 			free_extent_buffer(path->nodes[0]);
4097 			path->nodes[0] = right;
4098 			path->slots[0] = 0;
4099 			if (path->slots[1] == 0)
4100 				fixup_low_keys(root, path, &disk_key, 1);
4101 		}
4102 		btrfs_mark_buffer_dirty(right);
4103 		return ret;
4104 	}
4105 
4106 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4107 
4108 	if (split == 2) {
4109 		BUG_ON(num_doubles != 0);
4110 		num_doubles++;
4111 		goto again;
4112 	}
4113 
4114 	return 0;
4115 
4116 push_for_double:
4117 	push_for_double_split(trans, root, path, data_size);
4118 	tried_avoid_double = 1;
4119 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4120 		return 0;
4121 	goto again;
4122 }
4123 
4124 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4125 					 struct btrfs_root *root,
4126 					 struct btrfs_path *path, int ins_len)
4127 {
4128 	struct btrfs_key key;
4129 	struct extent_buffer *leaf;
4130 	struct btrfs_file_extent_item *fi;
4131 	u64 extent_len = 0;
4132 	u32 item_size;
4133 	int ret;
4134 
4135 	leaf = path->nodes[0];
4136 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4137 
4138 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4139 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4140 
4141 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4142 		return 0;
4143 
4144 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4145 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4146 		fi = btrfs_item_ptr(leaf, path->slots[0],
4147 				    struct btrfs_file_extent_item);
4148 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4149 	}
4150 	btrfs_release_path(path);
4151 
4152 	path->keep_locks = 1;
4153 	path->search_for_split = 1;
4154 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4155 	path->search_for_split = 0;
4156 	if (ret < 0)
4157 		goto err;
4158 
4159 	ret = -EAGAIN;
4160 	leaf = path->nodes[0];
4161 	/* if our item isn't there or got smaller, return now */
4162 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4163 		goto err;
4164 
4165 	/* the leaf has  changed, it now has room.  return now */
4166 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4167 		goto err;
4168 
4169 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4170 		fi = btrfs_item_ptr(leaf, path->slots[0],
4171 				    struct btrfs_file_extent_item);
4172 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4173 			goto err;
4174 	}
4175 
4176 	btrfs_set_path_blocking(path);
4177 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4178 	if (ret)
4179 		goto err;
4180 
4181 	path->keep_locks = 0;
4182 	btrfs_unlock_up_safe(path, 1);
4183 	return 0;
4184 err:
4185 	path->keep_locks = 0;
4186 	return ret;
4187 }
4188 
4189 static noinline int split_item(struct btrfs_trans_handle *trans,
4190 			       struct btrfs_root *root,
4191 			       struct btrfs_path *path,
4192 			       struct btrfs_key *new_key,
4193 			       unsigned long split_offset)
4194 {
4195 	struct extent_buffer *leaf;
4196 	struct btrfs_item *item;
4197 	struct btrfs_item *new_item;
4198 	int slot;
4199 	char *buf;
4200 	u32 nritems;
4201 	u32 item_size;
4202 	u32 orig_offset;
4203 	struct btrfs_disk_key disk_key;
4204 
4205 	leaf = path->nodes[0];
4206 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4207 
4208 	btrfs_set_path_blocking(path);
4209 
4210 	item = btrfs_item_nr(leaf, path->slots[0]);
4211 	orig_offset = btrfs_item_offset(leaf, item);
4212 	item_size = btrfs_item_size(leaf, item);
4213 
4214 	buf = kmalloc(item_size, GFP_NOFS);
4215 	if (!buf)
4216 		return -ENOMEM;
4217 
4218 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4219 			    path->slots[0]), item_size);
4220 
4221 	slot = path->slots[0] + 1;
4222 	nritems = btrfs_header_nritems(leaf);
4223 	if (slot != nritems) {
4224 		/* shift the items */
4225 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4226 				btrfs_item_nr_offset(slot),
4227 				(nritems - slot) * sizeof(struct btrfs_item));
4228 	}
4229 
4230 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4231 	btrfs_set_item_key(leaf, &disk_key, slot);
4232 
4233 	new_item = btrfs_item_nr(leaf, slot);
4234 
4235 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4236 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4237 
4238 	btrfs_set_item_offset(leaf, item,
4239 			      orig_offset + item_size - split_offset);
4240 	btrfs_set_item_size(leaf, item, split_offset);
4241 
4242 	btrfs_set_header_nritems(leaf, nritems + 1);
4243 
4244 	/* write the data for the start of the original item */
4245 	write_extent_buffer(leaf, buf,
4246 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4247 			    split_offset);
4248 
4249 	/* write the data for the new item */
4250 	write_extent_buffer(leaf, buf + split_offset,
4251 			    btrfs_item_ptr_offset(leaf, slot),
4252 			    item_size - split_offset);
4253 	btrfs_mark_buffer_dirty(leaf);
4254 
4255 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4256 	kfree(buf);
4257 	return 0;
4258 }
4259 
4260 /*
4261  * This function splits a single item into two items,
4262  * giving 'new_key' to the new item and splitting the
4263  * old one at split_offset (from the start of the item).
4264  *
4265  * The path may be released by this operation.  After
4266  * the split, the path is pointing to the old item.  The
4267  * new item is going to be in the same node as the old one.
4268  *
4269  * Note, the item being split must be smaller enough to live alone on
4270  * a tree block with room for one extra struct btrfs_item
4271  *
4272  * This allows us to split the item in place, keeping a lock on the
4273  * leaf the entire time.
4274  */
4275 int btrfs_split_item(struct btrfs_trans_handle *trans,
4276 		     struct btrfs_root *root,
4277 		     struct btrfs_path *path,
4278 		     struct btrfs_key *new_key,
4279 		     unsigned long split_offset)
4280 {
4281 	int ret;
4282 	ret = setup_leaf_for_split(trans, root, path,
4283 				   sizeof(struct btrfs_item));
4284 	if (ret)
4285 		return ret;
4286 
4287 	ret = split_item(trans, root, path, new_key, split_offset);
4288 	return ret;
4289 }
4290 
4291 /*
4292  * This function duplicate a item, giving 'new_key' to the new item.
4293  * It guarantees both items live in the same tree leaf and the new item
4294  * is contiguous with the original item.
4295  *
4296  * This allows us to split file extent in place, keeping a lock on the
4297  * leaf the entire time.
4298  */
4299 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4300 			 struct btrfs_root *root,
4301 			 struct btrfs_path *path,
4302 			 struct btrfs_key *new_key)
4303 {
4304 	struct extent_buffer *leaf;
4305 	int ret;
4306 	u32 item_size;
4307 
4308 	leaf = path->nodes[0];
4309 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4310 	ret = setup_leaf_for_split(trans, root, path,
4311 				   item_size + sizeof(struct btrfs_item));
4312 	if (ret)
4313 		return ret;
4314 
4315 	path->slots[0]++;
4316 	setup_items_for_insert(root, path, new_key, &item_size,
4317 			       item_size, item_size +
4318 			       sizeof(struct btrfs_item), 1);
4319 	leaf = path->nodes[0];
4320 	memcpy_extent_buffer(leaf,
4321 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4322 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4323 			     item_size);
4324 	return 0;
4325 }
4326 
4327 /*
4328  * make the item pointed to by the path smaller.  new_size indicates
4329  * how small to make it, and from_end tells us if we just chop bytes
4330  * off the end of the item or if we shift the item to chop bytes off
4331  * the front.
4332  */
4333 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4334 			 u32 new_size, int from_end)
4335 {
4336 	int slot;
4337 	struct extent_buffer *leaf;
4338 	struct btrfs_item *item;
4339 	u32 nritems;
4340 	unsigned int data_end;
4341 	unsigned int old_data_start;
4342 	unsigned int old_size;
4343 	unsigned int size_diff;
4344 	int i;
4345 	struct btrfs_map_token token;
4346 
4347 	btrfs_init_map_token(&token);
4348 
4349 	leaf = path->nodes[0];
4350 	slot = path->slots[0];
4351 
4352 	old_size = btrfs_item_size_nr(leaf, slot);
4353 	if (old_size == new_size)
4354 		return;
4355 
4356 	nritems = btrfs_header_nritems(leaf);
4357 	data_end = leaf_data_end(root, leaf);
4358 
4359 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4360 
4361 	size_diff = old_size - new_size;
4362 
4363 	BUG_ON(slot < 0);
4364 	BUG_ON(slot >= nritems);
4365 
4366 	/*
4367 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4368 	 */
4369 	/* first correct the data pointers */
4370 	for (i = slot; i < nritems; i++) {
4371 		u32 ioff;
4372 		item = btrfs_item_nr(leaf, i);
4373 
4374 		ioff = btrfs_token_item_offset(leaf, item, &token);
4375 		btrfs_set_token_item_offset(leaf, item,
4376 					    ioff + size_diff, &token);
4377 	}
4378 
4379 	/* shift the data */
4380 	if (from_end) {
4381 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4382 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4383 			      data_end, old_data_start + new_size - data_end);
4384 	} else {
4385 		struct btrfs_disk_key disk_key;
4386 		u64 offset;
4387 
4388 		btrfs_item_key(leaf, &disk_key, slot);
4389 
4390 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4391 			unsigned long ptr;
4392 			struct btrfs_file_extent_item *fi;
4393 
4394 			fi = btrfs_item_ptr(leaf, slot,
4395 					    struct btrfs_file_extent_item);
4396 			fi = (struct btrfs_file_extent_item *)(
4397 			     (unsigned long)fi - size_diff);
4398 
4399 			if (btrfs_file_extent_type(leaf, fi) ==
4400 			    BTRFS_FILE_EXTENT_INLINE) {
4401 				ptr = btrfs_item_ptr_offset(leaf, slot);
4402 				memmove_extent_buffer(leaf, ptr,
4403 				      (unsigned long)fi,
4404 				      offsetof(struct btrfs_file_extent_item,
4405 						 disk_bytenr));
4406 			}
4407 		}
4408 
4409 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4410 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4411 			      data_end, old_data_start - data_end);
4412 
4413 		offset = btrfs_disk_key_offset(&disk_key);
4414 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4415 		btrfs_set_item_key(leaf, &disk_key, slot);
4416 		if (slot == 0)
4417 			fixup_low_keys(root, path, &disk_key, 1);
4418 	}
4419 
4420 	item = btrfs_item_nr(leaf, slot);
4421 	btrfs_set_item_size(leaf, item, new_size);
4422 	btrfs_mark_buffer_dirty(leaf);
4423 
4424 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4425 		btrfs_print_leaf(root, leaf);
4426 		BUG();
4427 	}
4428 }
4429 
4430 /*
4431  * make the item pointed to by the path bigger, data_size is the new size.
4432  */
4433 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4434 		       u32 data_size)
4435 {
4436 	int slot;
4437 	struct extent_buffer *leaf;
4438 	struct btrfs_item *item;
4439 	u32 nritems;
4440 	unsigned int data_end;
4441 	unsigned int old_data;
4442 	unsigned int old_size;
4443 	int i;
4444 	struct btrfs_map_token token;
4445 
4446 	btrfs_init_map_token(&token);
4447 
4448 	leaf = path->nodes[0];
4449 
4450 	nritems = btrfs_header_nritems(leaf);
4451 	data_end = leaf_data_end(root, leaf);
4452 
4453 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4454 		btrfs_print_leaf(root, leaf);
4455 		BUG();
4456 	}
4457 	slot = path->slots[0];
4458 	old_data = btrfs_item_end_nr(leaf, slot);
4459 
4460 	BUG_ON(slot < 0);
4461 	if (slot >= nritems) {
4462 		btrfs_print_leaf(root, leaf);
4463 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
4464 		       slot, nritems);
4465 		BUG_ON(1);
4466 	}
4467 
4468 	/*
4469 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4470 	 */
4471 	/* first correct the data pointers */
4472 	for (i = slot; i < nritems; i++) {
4473 		u32 ioff;
4474 		item = btrfs_item_nr(leaf, i);
4475 
4476 		ioff = btrfs_token_item_offset(leaf, item, &token);
4477 		btrfs_set_token_item_offset(leaf, item,
4478 					    ioff - data_size, &token);
4479 	}
4480 
4481 	/* shift the data */
4482 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4483 		      data_end - data_size, btrfs_leaf_data(leaf) +
4484 		      data_end, old_data - data_end);
4485 
4486 	data_end = old_data;
4487 	old_size = btrfs_item_size_nr(leaf, slot);
4488 	item = btrfs_item_nr(leaf, slot);
4489 	btrfs_set_item_size(leaf, item, old_size + data_size);
4490 	btrfs_mark_buffer_dirty(leaf);
4491 
4492 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4493 		btrfs_print_leaf(root, leaf);
4494 		BUG();
4495 	}
4496 }
4497 
4498 /*
4499  * this is a helper for btrfs_insert_empty_items, the main goal here is
4500  * to save stack depth by doing the bulk of the work in a function
4501  * that doesn't call btrfs_search_slot
4502  */
4503 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4504 			    struct btrfs_key *cpu_key, u32 *data_size,
4505 			    u32 total_data, u32 total_size, int nr)
4506 {
4507 	struct btrfs_item *item;
4508 	int i;
4509 	u32 nritems;
4510 	unsigned int data_end;
4511 	struct btrfs_disk_key disk_key;
4512 	struct extent_buffer *leaf;
4513 	int slot;
4514 	struct btrfs_map_token token;
4515 
4516 	btrfs_init_map_token(&token);
4517 
4518 	leaf = path->nodes[0];
4519 	slot = path->slots[0];
4520 
4521 	nritems = btrfs_header_nritems(leaf);
4522 	data_end = leaf_data_end(root, leaf);
4523 
4524 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4525 		btrfs_print_leaf(root, leaf);
4526 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
4527 		       total_size, btrfs_leaf_free_space(root, leaf));
4528 		BUG();
4529 	}
4530 
4531 	if (slot != nritems) {
4532 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4533 
4534 		if (old_data < data_end) {
4535 			btrfs_print_leaf(root, leaf);
4536 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4537 			       slot, old_data, data_end);
4538 			BUG_ON(1);
4539 		}
4540 		/*
4541 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4542 		 */
4543 		/* first correct the data pointers */
4544 		for (i = slot; i < nritems; i++) {
4545 			u32 ioff;
4546 
4547 			item = btrfs_item_nr(leaf, i);
4548 			ioff = btrfs_token_item_offset(leaf, item, &token);
4549 			btrfs_set_token_item_offset(leaf, item,
4550 						    ioff - total_data, &token);
4551 		}
4552 		/* shift the items */
4553 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4554 			      btrfs_item_nr_offset(slot),
4555 			      (nritems - slot) * sizeof(struct btrfs_item));
4556 
4557 		/* shift the data */
4558 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4559 			      data_end - total_data, btrfs_leaf_data(leaf) +
4560 			      data_end, old_data - data_end);
4561 		data_end = old_data;
4562 	}
4563 
4564 	/* setup the item for the new data */
4565 	for (i = 0; i < nr; i++) {
4566 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4567 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4568 		item = btrfs_item_nr(leaf, slot + i);
4569 		btrfs_set_token_item_offset(leaf, item,
4570 					    data_end - data_size[i], &token);
4571 		data_end -= data_size[i];
4572 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4573 	}
4574 
4575 	btrfs_set_header_nritems(leaf, nritems + nr);
4576 
4577 	if (slot == 0) {
4578 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4579 		fixup_low_keys(root, path, &disk_key, 1);
4580 	}
4581 	btrfs_unlock_up_safe(path, 1);
4582 	btrfs_mark_buffer_dirty(leaf);
4583 
4584 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4585 		btrfs_print_leaf(root, leaf);
4586 		BUG();
4587 	}
4588 }
4589 
4590 /*
4591  * Given a key and some data, insert items into the tree.
4592  * This does all the path init required, making room in the tree if needed.
4593  */
4594 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4595 			    struct btrfs_root *root,
4596 			    struct btrfs_path *path,
4597 			    struct btrfs_key *cpu_key, u32 *data_size,
4598 			    int nr)
4599 {
4600 	int ret = 0;
4601 	int slot;
4602 	int i;
4603 	u32 total_size = 0;
4604 	u32 total_data = 0;
4605 
4606 	for (i = 0; i < nr; i++)
4607 		total_data += data_size[i];
4608 
4609 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4610 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4611 	if (ret == 0)
4612 		return -EEXIST;
4613 	if (ret < 0)
4614 		return ret;
4615 
4616 	slot = path->slots[0];
4617 	BUG_ON(slot < 0);
4618 
4619 	setup_items_for_insert(root, path, cpu_key, data_size,
4620 			       total_data, total_size, nr);
4621 	return 0;
4622 }
4623 
4624 /*
4625  * Given a key and some data, insert an item into the tree.
4626  * This does all the path init required, making room in the tree if needed.
4627  */
4628 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4629 		      *root, struct btrfs_key *cpu_key, void *data, u32
4630 		      data_size)
4631 {
4632 	int ret = 0;
4633 	struct btrfs_path *path;
4634 	struct extent_buffer *leaf;
4635 	unsigned long ptr;
4636 
4637 	path = btrfs_alloc_path();
4638 	if (!path)
4639 		return -ENOMEM;
4640 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4641 	if (!ret) {
4642 		leaf = path->nodes[0];
4643 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4644 		write_extent_buffer(leaf, data, ptr, data_size);
4645 		btrfs_mark_buffer_dirty(leaf);
4646 	}
4647 	btrfs_free_path(path);
4648 	return ret;
4649 }
4650 
4651 /*
4652  * delete the pointer from a given node.
4653  *
4654  * the tree should have been previously balanced so the deletion does not
4655  * empty a node.
4656  */
4657 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4658 		    int level, int slot)
4659 {
4660 	struct extent_buffer *parent = path->nodes[level];
4661 	u32 nritems;
4662 	int ret;
4663 
4664 	nritems = btrfs_header_nritems(parent);
4665 	if (slot != nritems - 1) {
4666 		if (level)
4667 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4668 					     slot + 1, nritems - slot - 1);
4669 		memmove_extent_buffer(parent,
4670 			      btrfs_node_key_ptr_offset(slot),
4671 			      btrfs_node_key_ptr_offset(slot + 1),
4672 			      sizeof(struct btrfs_key_ptr) *
4673 			      (nritems - slot - 1));
4674 	} else if (level) {
4675 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4676 					      MOD_LOG_KEY_REMOVE);
4677 		BUG_ON(ret < 0);
4678 	}
4679 
4680 	nritems--;
4681 	btrfs_set_header_nritems(parent, nritems);
4682 	if (nritems == 0 && parent == root->node) {
4683 		BUG_ON(btrfs_header_level(root->node) != 1);
4684 		/* just turn the root into a leaf and break */
4685 		btrfs_set_header_level(root->node, 0);
4686 	} else if (slot == 0) {
4687 		struct btrfs_disk_key disk_key;
4688 
4689 		btrfs_node_key(parent, &disk_key, 0);
4690 		fixup_low_keys(root, path, &disk_key, level + 1);
4691 	}
4692 	btrfs_mark_buffer_dirty(parent);
4693 }
4694 
4695 /*
4696  * a helper function to delete the leaf pointed to by path->slots[1] and
4697  * path->nodes[1].
4698  *
4699  * This deletes the pointer in path->nodes[1] and frees the leaf
4700  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4701  *
4702  * The path must have already been setup for deleting the leaf, including
4703  * all the proper balancing.  path->nodes[1] must be locked.
4704  */
4705 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4706 				    struct btrfs_root *root,
4707 				    struct btrfs_path *path,
4708 				    struct extent_buffer *leaf)
4709 {
4710 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4711 	del_ptr(root, path, 1, path->slots[1]);
4712 
4713 	/*
4714 	 * btrfs_free_extent is expensive, we want to make sure we
4715 	 * aren't holding any locks when we call it
4716 	 */
4717 	btrfs_unlock_up_safe(path, 0);
4718 
4719 	root_sub_used(root, leaf->len);
4720 
4721 	extent_buffer_get(leaf);
4722 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4723 	free_extent_buffer_stale(leaf);
4724 }
4725 /*
4726  * delete the item at the leaf level in path.  If that empties
4727  * the leaf, remove it from the tree
4728  */
4729 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4730 		    struct btrfs_path *path, int slot, int nr)
4731 {
4732 	struct extent_buffer *leaf;
4733 	struct btrfs_item *item;
4734 	int last_off;
4735 	int dsize = 0;
4736 	int ret = 0;
4737 	int wret;
4738 	int i;
4739 	u32 nritems;
4740 	struct btrfs_map_token token;
4741 
4742 	btrfs_init_map_token(&token);
4743 
4744 	leaf = path->nodes[0];
4745 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4746 
4747 	for (i = 0; i < nr; i++)
4748 		dsize += btrfs_item_size_nr(leaf, slot + i);
4749 
4750 	nritems = btrfs_header_nritems(leaf);
4751 
4752 	if (slot + nr != nritems) {
4753 		int data_end = leaf_data_end(root, leaf);
4754 
4755 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4756 			      data_end + dsize,
4757 			      btrfs_leaf_data(leaf) + data_end,
4758 			      last_off - data_end);
4759 
4760 		for (i = slot + nr; i < nritems; i++) {
4761 			u32 ioff;
4762 
4763 			item = btrfs_item_nr(leaf, i);
4764 			ioff = btrfs_token_item_offset(leaf, item, &token);
4765 			btrfs_set_token_item_offset(leaf, item,
4766 						    ioff + dsize, &token);
4767 		}
4768 
4769 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4770 			      btrfs_item_nr_offset(slot + nr),
4771 			      sizeof(struct btrfs_item) *
4772 			      (nritems - slot - nr));
4773 	}
4774 	btrfs_set_header_nritems(leaf, nritems - nr);
4775 	nritems -= nr;
4776 
4777 	/* delete the leaf if we've emptied it */
4778 	if (nritems == 0) {
4779 		if (leaf == root->node) {
4780 			btrfs_set_header_level(leaf, 0);
4781 		} else {
4782 			btrfs_set_path_blocking(path);
4783 			clean_tree_block(trans, root, leaf);
4784 			btrfs_del_leaf(trans, root, path, leaf);
4785 		}
4786 	} else {
4787 		int used = leaf_space_used(leaf, 0, nritems);
4788 		if (slot == 0) {
4789 			struct btrfs_disk_key disk_key;
4790 
4791 			btrfs_item_key(leaf, &disk_key, 0);
4792 			fixup_low_keys(root, path, &disk_key, 1);
4793 		}
4794 
4795 		/* delete the leaf if it is mostly empty */
4796 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4797 			/* push_leaf_left fixes the path.
4798 			 * make sure the path still points to our leaf
4799 			 * for possible call to del_ptr below
4800 			 */
4801 			slot = path->slots[1];
4802 			extent_buffer_get(leaf);
4803 
4804 			btrfs_set_path_blocking(path);
4805 			wret = push_leaf_left(trans, root, path, 1, 1,
4806 					      1, (u32)-1);
4807 			if (wret < 0 && wret != -ENOSPC)
4808 				ret = wret;
4809 
4810 			if (path->nodes[0] == leaf &&
4811 			    btrfs_header_nritems(leaf)) {
4812 				wret = push_leaf_right(trans, root, path, 1,
4813 						       1, 1, 0);
4814 				if (wret < 0 && wret != -ENOSPC)
4815 					ret = wret;
4816 			}
4817 
4818 			if (btrfs_header_nritems(leaf) == 0) {
4819 				path->slots[1] = slot;
4820 				btrfs_del_leaf(trans, root, path, leaf);
4821 				free_extent_buffer(leaf);
4822 				ret = 0;
4823 			} else {
4824 				/* if we're still in the path, make sure
4825 				 * we're dirty.  Otherwise, one of the
4826 				 * push_leaf functions must have already
4827 				 * dirtied this buffer
4828 				 */
4829 				if (path->nodes[0] == leaf)
4830 					btrfs_mark_buffer_dirty(leaf);
4831 				free_extent_buffer(leaf);
4832 			}
4833 		} else {
4834 			btrfs_mark_buffer_dirty(leaf);
4835 		}
4836 	}
4837 	return ret;
4838 }
4839 
4840 /*
4841  * search the tree again to find a leaf with lesser keys
4842  * returns 0 if it found something or 1 if there are no lesser leaves.
4843  * returns < 0 on io errors.
4844  *
4845  * This may release the path, and so you may lose any locks held at the
4846  * time you call it.
4847  */
4848 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4849 {
4850 	struct btrfs_key key;
4851 	struct btrfs_disk_key found_key;
4852 	int ret;
4853 
4854 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4855 
4856 	if (key.offset > 0)
4857 		key.offset--;
4858 	else if (key.type > 0)
4859 		key.type--;
4860 	else if (key.objectid > 0)
4861 		key.objectid--;
4862 	else
4863 		return 1;
4864 
4865 	btrfs_release_path(path);
4866 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4867 	if (ret < 0)
4868 		return ret;
4869 	btrfs_item_key(path->nodes[0], &found_key, 0);
4870 	ret = comp_keys(&found_key, &key);
4871 	if (ret < 0)
4872 		return 0;
4873 	return 1;
4874 }
4875 
4876 /*
4877  * A helper function to walk down the tree starting at min_key, and looking
4878  * for nodes or leaves that are have a minimum transaction id.
4879  * This is used by the btree defrag code, and tree logging
4880  *
4881  * This does not cow, but it does stuff the starting key it finds back
4882  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4883  * key and get a writable path.
4884  *
4885  * This does lock as it descends, and path->keep_locks should be set
4886  * to 1 by the caller.
4887  *
4888  * This honors path->lowest_level to prevent descent past a given level
4889  * of the tree.
4890  *
4891  * min_trans indicates the oldest transaction that you are interested
4892  * in walking through.  Any nodes or leaves older than min_trans are
4893  * skipped over (without reading them).
4894  *
4895  * returns zero if something useful was found, < 0 on error and 1 if there
4896  * was nothing in the tree that matched the search criteria.
4897  */
4898 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4899 			 struct btrfs_key *max_key,
4900 			 struct btrfs_path *path,
4901 			 u64 min_trans)
4902 {
4903 	struct extent_buffer *cur;
4904 	struct btrfs_key found_key;
4905 	int slot;
4906 	int sret;
4907 	u32 nritems;
4908 	int level;
4909 	int ret = 1;
4910 
4911 	WARN_ON(!path->keep_locks);
4912 again:
4913 	cur = btrfs_read_lock_root_node(root);
4914 	level = btrfs_header_level(cur);
4915 	WARN_ON(path->nodes[level]);
4916 	path->nodes[level] = cur;
4917 	path->locks[level] = BTRFS_READ_LOCK;
4918 
4919 	if (btrfs_header_generation(cur) < min_trans) {
4920 		ret = 1;
4921 		goto out;
4922 	}
4923 	while (1) {
4924 		nritems = btrfs_header_nritems(cur);
4925 		level = btrfs_header_level(cur);
4926 		sret = bin_search(cur, min_key, level, &slot);
4927 
4928 		/* at the lowest level, we're done, setup the path and exit */
4929 		if (level == path->lowest_level) {
4930 			if (slot >= nritems)
4931 				goto find_next_key;
4932 			ret = 0;
4933 			path->slots[level] = slot;
4934 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4935 			goto out;
4936 		}
4937 		if (sret && slot > 0)
4938 			slot--;
4939 		/*
4940 		 * check this node pointer against the min_trans parameters.
4941 		 * If it is too old, old, skip to the next one.
4942 		 */
4943 		while (slot < nritems) {
4944 			u64 blockptr;
4945 			u64 gen;
4946 
4947 			blockptr = btrfs_node_blockptr(cur, slot);
4948 			gen = btrfs_node_ptr_generation(cur, slot);
4949 			if (gen < min_trans) {
4950 				slot++;
4951 				continue;
4952 			}
4953 			break;
4954 		}
4955 find_next_key:
4956 		/*
4957 		 * we didn't find a candidate key in this node, walk forward
4958 		 * and find another one
4959 		 */
4960 		if (slot >= nritems) {
4961 			path->slots[level] = slot;
4962 			btrfs_set_path_blocking(path);
4963 			sret = btrfs_find_next_key(root, path, min_key, level,
4964 						  min_trans);
4965 			if (sret == 0) {
4966 				btrfs_release_path(path);
4967 				goto again;
4968 			} else {
4969 				goto out;
4970 			}
4971 		}
4972 		/* save our key for returning back */
4973 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4974 		path->slots[level] = slot;
4975 		if (level == path->lowest_level) {
4976 			ret = 0;
4977 			unlock_up(path, level, 1, 0, NULL);
4978 			goto out;
4979 		}
4980 		btrfs_set_path_blocking(path);
4981 		cur = read_node_slot(root, cur, slot);
4982 		BUG_ON(!cur); /* -ENOMEM */
4983 
4984 		btrfs_tree_read_lock(cur);
4985 
4986 		path->locks[level - 1] = BTRFS_READ_LOCK;
4987 		path->nodes[level - 1] = cur;
4988 		unlock_up(path, level, 1, 0, NULL);
4989 		btrfs_clear_path_blocking(path, NULL, 0);
4990 	}
4991 out:
4992 	if (ret == 0)
4993 		memcpy(min_key, &found_key, sizeof(found_key));
4994 	btrfs_set_path_blocking(path);
4995 	return ret;
4996 }
4997 
4998 static void tree_move_down(struct btrfs_root *root,
4999 			   struct btrfs_path *path,
5000 			   int *level, int root_level)
5001 {
5002 	BUG_ON(*level == 0);
5003 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5004 					path->slots[*level]);
5005 	path->slots[*level - 1] = 0;
5006 	(*level)--;
5007 }
5008 
5009 static int tree_move_next_or_upnext(struct btrfs_root *root,
5010 				    struct btrfs_path *path,
5011 				    int *level, int root_level)
5012 {
5013 	int ret = 0;
5014 	int nritems;
5015 	nritems = btrfs_header_nritems(path->nodes[*level]);
5016 
5017 	path->slots[*level]++;
5018 
5019 	while (path->slots[*level] >= nritems) {
5020 		if (*level == root_level)
5021 			return -1;
5022 
5023 		/* move upnext */
5024 		path->slots[*level] = 0;
5025 		free_extent_buffer(path->nodes[*level]);
5026 		path->nodes[*level] = NULL;
5027 		(*level)++;
5028 		path->slots[*level]++;
5029 
5030 		nritems = btrfs_header_nritems(path->nodes[*level]);
5031 		ret = 1;
5032 	}
5033 	return ret;
5034 }
5035 
5036 /*
5037  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5038  * or down.
5039  */
5040 static int tree_advance(struct btrfs_root *root,
5041 			struct btrfs_path *path,
5042 			int *level, int root_level,
5043 			int allow_down,
5044 			struct btrfs_key *key)
5045 {
5046 	int ret;
5047 
5048 	if (*level == 0 || !allow_down) {
5049 		ret = tree_move_next_or_upnext(root, path, level, root_level);
5050 	} else {
5051 		tree_move_down(root, path, level, root_level);
5052 		ret = 0;
5053 	}
5054 	if (ret >= 0) {
5055 		if (*level == 0)
5056 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5057 					path->slots[*level]);
5058 		else
5059 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5060 					path->slots[*level]);
5061 	}
5062 	return ret;
5063 }
5064 
5065 static int tree_compare_item(struct btrfs_root *left_root,
5066 			     struct btrfs_path *left_path,
5067 			     struct btrfs_path *right_path,
5068 			     char *tmp_buf)
5069 {
5070 	int cmp;
5071 	int len1, len2;
5072 	unsigned long off1, off2;
5073 
5074 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5075 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5076 	if (len1 != len2)
5077 		return 1;
5078 
5079 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5080 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5081 				right_path->slots[0]);
5082 
5083 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5084 
5085 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5086 	if (cmp)
5087 		return 1;
5088 	return 0;
5089 }
5090 
5091 #define ADVANCE 1
5092 #define ADVANCE_ONLY_NEXT -1
5093 
5094 /*
5095  * This function compares two trees and calls the provided callback for
5096  * every changed/new/deleted item it finds.
5097  * If shared tree blocks are encountered, whole subtrees are skipped, making
5098  * the compare pretty fast on snapshotted subvolumes.
5099  *
5100  * This currently works on commit roots only. As commit roots are read only,
5101  * we don't do any locking. The commit roots are protected with transactions.
5102  * Transactions are ended and rejoined when a commit is tried in between.
5103  *
5104  * This function checks for modifications done to the trees while comparing.
5105  * If it detects a change, it aborts immediately.
5106  */
5107 int btrfs_compare_trees(struct btrfs_root *left_root,
5108 			struct btrfs_root *right_root,
5109 			btrfs_changed_cb_t changed_cb, void *ctx)
5110 {
5111 	int ret;
5112 	int cmp;
5113 	struct btrfs_trans_handle *trans = NULL;
5114 	struct btrfs_path *left_path = NULL;
5115 	struct btrfs_path *right_path = NULL;
5116 	struct btrfs_key left_key;
5117 	struct btrfs_key right_key;
5118 	char *tmp_buf = NULL;
5119 	int left_root_level;
5120 	int right_root_level;
5121 	int left_level;
5122 	int right_level;
5123 	int left_end_reached;
5124 	int right_end_reached;
5125 	int advance_left;
5126 	int advance_right;
5127 	u64 left_blockptr;
5128 	u64 right_blockptr;
5129 	u64 left_start_ctransid;
5130 	u64 right_start_ctransid;
5131 	u64 ctransid;
5132 
5133 	left_path = btrfs_alloc_path();
5134 	if (!left_path) {
5135 		ret = -ENOMEM;
5136 		goto out;
5137 	}
5138 	right_path = btrfs_alloc_path();
5139 	if (!right_path) {
5140 		ret = -ENOMEM;
5141 		goto out;
5142 	}
5143 
5144 	tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5145 	if (!tmp_buf) {
5146 		ret = -ENOMEM;
5147 		goto out;
5148 	}
5149 
5150 	left_path->search_commit_root = 1;
5151 	left_path->skip_locking = 1;
5152 	right_path->search_commit_root = 1;
5153 	right_path->skip_locking = 1;
5154 
5155 	spin_lock(&left_root->root_item_lock);
5156 	left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5157 	spin_unlock(&left_root->root_item_lock);
5158 
5159 	spin_lock(&right_root->root_item_lock);
5160 	right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5161 	spin_unlock(&right_root->root_item_lock);
5162 
5163 	trans = btrfs_join_transaction(left_root);
5164 	if (IS_ERR(trans)) {
5165 		ret = PTR_ERR(trans);
5166 		trans = NULL;
5167 		goto out;
5168 	}
5169 
5170 	/*
5171 	 * Strategy: Go to the first items of both trees. Then do
5172 	 *
5173 	 * If both trees are at level 0
5174 	 *   Compare keys of current items
5175 	 *     If left < right treat left item as new, advance left tree
5176 	 *       and repeat
5177 	 *     If left > right treat right item as deleted, advance right tree
5178 	 *       and repeat
5179 	 *     If left == right do deep compare of items, treat as changed if
5180 	 *       needed, advance both trees and repeat
5181 	 * If both trees are at the same level but not at level 0
5182 	 *   Compare keys of current nodes/leafs
5183 	 *     If left < right advance left tree and repeat
5184 	 *     If left > right advance right tree and repeat
5185 	 *     If left == right compare blockptrs of the next nodes/leafs
5186 	 *       If they match advance both trees but stay at the same level
5187 	 *         and repeat
5188 	 *       If they don't match advance both trees while allowing to go
5189 	 *         deeper and repeat
5190 	 * If tree levels are different
5191 	 *   Advance the tree that needs it and repeat
5192 	 *
5193 	 * Advancing a tree means:
5194 	 *   If we are at level 0, try to go to the next slot. If that's not
5195 	 *   possible, go one level up and repeat. Stop when we found a level
5196 	 *   where we could go to the next slot. We may at this point be on a
5197 	 *   node or a leaf.
5198 	 *
5199 	 *   If we are not at level 0 and not on shared tree blocks, go one
5200 	 *   level deeper.
5201 	 *
5202 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5203 	 *   the right if possible or go up and right.
5204 	 */
5205 
5206 	left_level = btrfs_header_level(left_root->commit_root);
5207 	left_root_level = left_level;
5208 	left_path->nodes[left_level] = left_root->commit_root;
5209 	extent_buffer_get(left_path->nodes[left_level]);
5210 
5211 	right_level = btrfs_header_level(right_root->commit_root);
5212 	right_root_level = right_level;
5213 	right_path->nodes[right_level] = right_root->commit_root;
5214 	extent_buffer_get(right_path->nodes[right_level]);
5215 
5216 	if (left_level == 0)
5217 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5218 				&left_key, left_path->slots[left_level]);
5219 	else
5220 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5221 				&left_key, left_path->slots[left_level]);
5222 	if (right_level == 0)
5223 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5224 				&right_key, right_path->slots[right_level]);
5225 	else
5226 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5227 				&right_key, right_path->slots[right_level]);
5228 
5229 	left_end_reached = right_end_reached = 0;
5230 	advance_left = advance_right = 0;
5231 
5232 	while (1) {
5233 		/*
5234 		 * We need to make sure the transaction does not get committed
5235 		 * while we do anything on commit roots. This means, we need to
5236 		 * join and leave transactions for every item that we process.
5237 		 */
5238 		if (trans && btrfs_should_end_transaction(trans, left_root)) {
5239 			btrfs_release_path(left_path);
5240 			btrfs_release_path(right_path);
5241 
5242 			ret = btrfs_end_transaction(trans, left_root);
5243 			trans = NULL;
5244 			if (ret < 0)
5245 				goto out;
5246 		}
5247 		/* now rejoin the transaction */
5248 		if (!trans) {
5249 			trans = btrfs_join_transaction(left_root);
5250 			if (IS_ERR(trans)) {
5251 				ret = PTR_ERR(trans);
5252 				trans = NULL;
5253 				goto out;
5254 			}
5255 
5256 			spin_lock(&left_root->root_item_lock);
5257 			ctransid = btrfs_root_ctransid(&left_root->root_item);
5258 			spin_unlock(&left_root->root_item_lock);
5259 			if (ctransid != left_start_ctransid)
5260 				left_start_ctransid = 0;
5261 
5262 			spin_lock(&right_root->root_item_lock);
5263 			ctransid = btrfs_root_ctransid(&right_root->root_item);
5264 			spin_unlock(&right_root->root_item_lock);
5265 			if (ctransid != right_start_ctransid)
5266 				right_start_ctransid = 0;
5267 
5268 			if (!left_start_ctransid || !right_start_ctransid) {
5269 				WARN(1, KERN_WARNING
5270 					"btrfs: btrfs_compare_tree detected "
5271 					"a change in one of the trees while "
5272 					"iterating. This is probably a "
5273 					"bug.\n");
5274 				ret = -EIO;
5275 				goto out;
5276 			}
5277 
5278 			/*
5279 			 * the commit root may have changed, so start again
5280 			 * where we stopped
5281 			 */
5282 			left_path->lowest_level = left_level;
5283 			right_path->lowest_level = right_level;
5284 			ret = btrfs_search_slot(NULL, left_root,
5285 					&left_key, left_path, 0, 0);
5286 			if (ret < 0)
5287 				goto out;
5288 			ret = btrfs_search_slot(NULL, right_root,
5289 					&right_key, right_path, 0, 0);
5290 			if (ret < 0)
5291 				goto out;
5292 		}
5293 
5294 		if (advance_left && !left_end_reached) {
5295 			ret = tree_advance(left_root, left_path, &left_level,
5296 					left_root_level,
5297 					advance_left != ADVANCE_ONLY_NEXT,
5298 					&left_key);
5299 			if (ret < 0)
5300 				left_end_reached = ADVANCE;
5301 			advance_left = 0;
5302 		}
5303 		if (advance_right && !right_end_reached) {
5304 			ret = tree_advance(right_root, right_path, &right_level,
5305 					right_root_level,
5306 					advance_right != ADVANCE_ONLY_NEXT,
5307 					&right_key);
5308 			if (ret < 0)
5309 				right_end_reached = ADVANCE;
5310 			advance_right = 0;
5311 		}
5312 
5313 		if (left_end_reached && right_end_reached) {
5314 			ret = 0;
5315 			goto out;
5316 		} else if (left_end_reached) {
5317 			if (right_level == 0) {
5318 				ret = changed_cb(left_root, right_root,
5319 						left_path, right_path,
5320 						&right_key,
5321 						BTRFS_COMPARE_TREE_DELETED,
5322 						ctx);
5323 				if (ret < 0)
5324 					goto out;
5325 			}
5326 			advance_right = ADVANCE;
5327 			continue;
5328 		} else if (right_end_reached) {
5329 			if (left_level == 0) {
5330 				ret = changed_cb(left_root, right_root,
5331 						left_path, right_path,
5332 						&left_key,
5333 						BTRFS_COMPARE_TREE_NEW,
5334 						ctx);
5335 				if (ret < 0)
5336 					goto out;
5337 			}
5338 			advance_left = ADVANCE;
5339 			continue;
5340 		}
5341 
5342 		if (left_level == 0 && right_level == 0) {
5343 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5344 			if (cmp < 0) {
5345 				ret = changed_cb(left_root, right_root,
5346 						left_path, right_path,
5347 						&left_key,
5348 						BTRFS_COMPARE_TREE_NEW,
5349 						ctx);
5350 				if (ret < 0)
5351 					goto out;
5352 				advance_left = ADVANCE;
5353 			} else if (cmp > 0) {
5354 				ret = changed_cb(left_root, right_root,
5355 						left_path, right_path,
5356 						&right_key,
5357 						BTRFS_COMPARE_TREE_DELETED,
5358 						ctx);
5359 				if (ret < 0)
5360 					goto out;
5361 				advance_right = ADVANCE;
5362 			} else {
5363 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5364 				ret = tree_compare_item(left_root, left_path,
5365 						right_path, tmp_buf);
5366 				if (ret) {
5367 					WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5368 					ret = changed_cb(left_root, right_root,
5369 						left_path, right_path,
5370 						&left_key,
5371 						BTRFS_COMPARE_TREE_CHANGED,
5372 						ctx);
5373 					if (ret < 0)
5374 						goto out;
5375 				}
5376 				advance_left = ADVANCE;
5377 				advance_right = ADVANCE;
5378 			}
5379 		} else if (left_level == right_level) {
5380 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5381 			if (cmp < 0) {
5382 				advance_left = ADVANCE;
5383 			} else if (cmp > 0) {
5384 				advance_right = ADVANCE;
5385 			} else {
5386 				left_blockptr = btrfs_node_blockptr(
5387 						left_path->nodes[left_level],
5388 						left_path->slots[left_level]);
5389 				right_blockptr = btrfs_node_blockptr(
5390 						right_path->nodes[right_level],
5391 						right_path->slots[right_level]);
5392 				if (left_blockptr == right_blockptr) {
5393 					/*
5394 					 * As we're on a shared block, don't
5395 					 * allow to go deeper.
5396 					 */
5397 					advance_left = ADVANCE_ONLY_NEXT;
5398 					advance_right = ADVANCE_ONLY_NEXT;
5399 				} else {
5400 					advance_left = ADVANCE;
5401 					advance_right = ADVANCE;
5402 				}
5403 			}
5404 		} else if (left_level < right_level) {
5405 			advance_right = ADVANCE;
5406 		} else {
5407 			advance_left = ADVANCE;
5408 		}
5409 	}
5410 
5411 out:
5412 	btrfs_free_path(left_path);
5413 	btrfs_free_path(right_path);
5414 	kfree(tmp_buf);
5415 
5416 	if (trans) {
5417 		if (!ret)
5418 			ret = btrfs_end_transaction(trans, left_root);
5419 		else
5420 			btrfs_end_transaction(trans, left_root);
5421 	}
5422 
5423 	return ret;
5424 }
5425 
5426 /*
5427  * this is similar to btrfs_next_leaf, but does not try to preserve
5428  * and fixup the path.  It looks for and returns the next key in the
5429  * tree based on the current path and the min_trans parameters.
5430  *
5431  * 0 is returned if another key is found, < 0 if there are any errors
5432  * and 1 is returned if there are no higher keys in the tree
5433  *
5434  * path->keep_locks should be set to 1 on the search made before
5435  * calling this function.
5436  */
5437 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5438 			struct btrfs_key *key, int level, u64 min_trans)
5439 {
5440 	int slot;
5441 	struct extent_buffer *c;
5442 
5443 	WARN_ON(!path->keep_locks);
5444 	while (level < BTRFS_MAX_LEVEL) {
5445 		if (!path->nodes[level])
5446 			return 1;
5447 
5448 		slot = path->slots[level] + 1;
5449 		c = path->nodes[level];
5450 next:
5451 		if (slot >= btrfs_header_nritems(c)) {
5452 			int ret;
5453 			int orig_lowest;
5454 			struct btrfs_key cur_key;
5455 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5456 			    !path->nodes[level + 1])
5457 				return 1;
5458 
5459 			if (path->locks[level + 1]) {
5460 				level++;
5461 				continue;
5462 			}
5463 
5464 			slot = btrfs_header_nritems(c) - 1;
5465 			if (level == 0)
5466 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5467 			else
5468 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5469 
5470 			orig_lowest = path->lowest_level;
5471 			btrfs_release_path(path);
5472 			path->lowest_level = level;
5473 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5474 						0, 0);
5475 			path->lowest_level = orig_lowest;
5476 			if (ret < 0)
5477 				return ret;
5478 
5479 			c = path->nodes[level];
5480 			slot = path->slots[level];
5481 			if (ret == 0)
5482 				slot++;
5483 			goto next;
5484 		}
5485 
5486 		if (level == 0)
5487 			btrfs_item_key_to_cpu(c, key, slot);
5488 		else {
5489 			u64 gen = btrfs_node_ptr_generation(c, slot);
5490 
5491 			if (gen < min_trans) {
5492 				slot++;
5493 				goto next;
5494 			}
5495 			btrfs_node_key_to_cpu(c, key, slot);
5496 		}
5497 		return 0;
5498 	}
5499 	return 1;
5500 }
5501 
5502 /*
5503  * search the tree again to find a leaf with greater keys
5504  * returns 0 if it found something or 1 if there are no greater leaves.
5505  * returns < 0 on io errors.
5506  */
5507 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5508 {
5509 	return btrfs_next_old_leaf(root, path, 0);
5510 }
5511 
5512 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5513 			u64 time_seq)
5514 {
5515 	int slot;
5516 	int level;
5517 	struct extent_buffer *c;
5518 	struct extent_buffer *next;
5519 	struct btrfs_key key;
5520 	u32 nritems;
5521 	int ret;
5522 	int old_spinning = path->leave_spinning;
5523 	int next_rw_lock = 0;
5524 
5525 	nritems = btrfs_header_nritems(path->nodes[0]);
5526 	if (nritems == 0)
5527 		return 1;
5528 
5529 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5530 again:
5531 	level = 1;
5532 	next = NULL;
5533 	next_rw_lock = 0;
5534 	btrfs_release_path(path);
5535 
5536 	path->keep_locks = 1;
5537 	path->leave_spinning = 1;
5538 
5539 	if (time_seq)
5540 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5541 	else
5542 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5543 	path->keep_locks = 0;
5544 
5545 	if (ret < 0)
5546 		return ret;
5547 
5548 	nritems = btrfs_header_nritems(path->nodes[0]);
5549 	/*
5550 	 * by releasing the path above we dropped all our locks.  A balance
5551 	 * could have added more items next to the key that used to be
5552 	 * at the very end of the block.  So, check again here and
5553 	 * advance the path if there are now more items available.
5554 	 */
5555 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5556 		if (ret == 0)
5557 			path->slots[0]++;
5558 		ret = 0;
5559 		goto done;
5560 	}
5561 
5562 	while (level < BTRFS_MAX_LEVEL) {
5563 		if (!path->nodes[level]) {
5564 			ret = 1;
5565 			goto done;
5566 		}
5567 
5568 		slot = path->slots[level] + 1;
5569 		c = path->nodes[level];
5570 		if (slot >= btrfs_header_nritems(c)) {
5571 			level++;
5572 			if (level == BTRFS_MAX_LEVEL) {
5573 				ret = 1;
5574 				goto done;
5575 			}
5576 			continue;
5577 		}
5578 
5579 		if (next) {
5580 			btrfs_tree_unlock_rw(next, next_rw_lock);
5581 			free_extent_buffer(next);
5582 		}
5583 
5584 		next = c;
5585 		next_rw_lock = path->locks[level];
5586 		ret = read_block_for_search(NULL, root, path, &next, level,
5587 					    slot, &key, 0);
5588 		if (ret == -EAGAIN)
5589 			goto again;
5590 
5591 		if (ret < 0) {
5592 			btrfs_release_path(path);
5593 			goto done;
5594 		}
5595 
5596 		if (!path->skip_locking) {
5597 			ret = btrfs_try_tree_read_lock(next);
5598 			if (!ret && time_seq) {
5599 				/*
5600 				 * If we don't get the lock, we may be racing
5601 				 * with push_leaf_left, holding that lock while
5602 				 * itself waiting for the leaf we've currently
5603 				 * locked. To solve this situation, we give up
5604 				 * on our lock and cycle.
5605 				 */
5606 				free_extent_buffer(next);
5607 				btrfs_release_path(path);
5608 				cond_resched();
5609 				goto again;
5610 			}
5611 			if (!ret) {
5612 				btrfs_set_path_blocking(path);
5613 				btrfs_tree_read_lock(next);
5614 				btrfs_clear_path_blocking(path, next,
5615 							  BTRFS_READ_LOCK);
5616 			}
5617 			next_rw_lock = BTRFS_READ_LOCK;
5618 		}
5619 		break;
5620 	}
5621 	path->slots[level] = slot;
5622 	while (1) {
5623 		level--;
5624 		c = path->nodes[level];
5625 		if (path->locks[level])
5626 			btrfs_tree_unlock_rw(c, path->locks[level]);
5627 
5628 		free_extent_buffer(c);
5629 		path->nodes[level] = next;
5630 		path->slots[level] = 0;
5631 		if (!path->skip_locking)
5632 			path->locks[level] = next_rw_lock;
5633 		if (!level)
5634 			break;
5635 
5636 		ret = read_block_for_search(NULL, root, path, &next, level,
5637 					    0, &key, 0);
5638 		if (ret == -EAGAIN)
5639 			goto again;
5640 
5641 		if (ret < 0) {
5642 			btrfs_release_path(path);
5643 			goto done;
5644 		}
5645 
5646 		if (!path->skip_locking) {
5647 			ret = btrfs_try_tree_read_lock(next);
5648 			if (!ret) {
5649 				btrfs_set_path_blocking(path);
5650 				btrfs_tree_read_lock(next);
5651 				btrfs_clear_path_blocking(path, next,
5652 							  BTRFS_READ_LOCK);
5653 			}
5654 			next_rw_lock = BTRFS_READ_LOCK;
5655 		}
5656 	}
5657 	ret = 0;
5658 done:
5659 	unlock_up(path, 0, 1, 0, NULL);
5660 	path->leave_spinning = old_spinning;
5661 	if (!old_spinning)
5662 		btrfs_set_path_blocking(path);
5663 
5664 	return ret;
5665 }
5666 
5667 /*
5668  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5669  * searching until it gets past min_objectid or finds an item of 'type'
5670  *
5671  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5672  */
5673 int btrfs_previous_item(struct btrfs_root *root,
5674 			struct btrfs_path *path, u64 min_objectid,
5675 			int type)
5676 {
5677 	struct btrfs_key found_key;
5678 	struct extent_buffer *leaf;
5679 	u32 nritems;
5680 	int ret;
5681 
5682 	while (1) {
5683 		if (path->slots[0] == 0) {
5684 			btrfs_set_path_blocking(path);
5685 			ret = btrfs_prev_leaf(root, path);
5686 			if (ret != 0)
5687 				return ret;
5688 		} else {
5689 			path->slots[0]--;
5690 		}
5691 		leaf = path->nodes[0];
5692 		nritems = btrfs_header_nritems(leaf);
5693 		if (nritems == 0)
5694 			return 1;
5695 		if (path->slots[0] == nritems)
5696 			path->slots[0]--;
5697 
5698 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5699 		if (found_key.objectid < min_objectid)
5700 			break;
5701 		if (found_key.type == type)
5702 			return 0;
5703 		if (found_key.objectid == min_objectid &&
5704 		    found_key.type < type)
5705 			break;
5706 	}
5707 	return 1;
5708 }
5709