xref: /openbmc/linux/fs/btrfs/ctree.c (revision c358f538)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "ctree.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "print-tree.h"
15 #include "locking.h"
16 #include "volumes.h"
17 #include "qgroup.h"
18 #include "tree-mod-log.h"
19 #include "tree-checker.h"
20 
21 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
22 		      *root, struct btrfs_path *path, int level);
23 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
24 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
25 		      int data_size, int extend);
26 static int push_node_left(struct btrfs_trans_handle *trans,
27 			  struct extent_buffer *dst,
28 			  struct extent_buffer *src, int empty);
29 static int balance_node_right(struct btrfs_trans_handle *trans,
30 			      struct extent_buffer *dst_buf,
31 			      struct extent_buffer *src_buf);
32 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
33 		    int level, int slot);
34 
35 static const struct btrfs_csums {
36 	u16		size;
37 	const char	name[10];
38 	const char	driver[12];
39 } btrfs_csums[] = {
40 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
41 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
42 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
43 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
44 				     .driver = "blake2b-256" },
45 };
46 
47 int btrfs_super_csum_size(const struct btrfs_super_block *s)
48 {
49 	u16 t = btrfs_super_csum_type(s);
50 	/*
51 	 * csum type is validated at mount time
52 	 */
53 	return btrfs_csums[t].size;
54 }
55 
56 const char *btrfs_super_csum_name(u16 csum_type)
57 {
58 	/* csum type is validated at mount time */
59 	return btrfs_csums[csum_type].name;
60 }
61 
62 /*
63  * Return driver name if defined, otherwise the name that's also a valid driver
64  * name
65  */
66 const char *btrfs_super_csum_driver(u16 csum_type)
67 {
68 	/* csum type is validated at mount time */
69 	return btrfs_csums[csum_type].driver[0] ?
70 		btrfs_csums[csum_type].driver :
71 		btrfs_csums[csum_type].name;
72 }
73 
74 size_t __attribute_const__ btrfs_get_num_csums(void)
75 {
76 	return ARRAY_SIZE(btrfs_csums);
77 }
78 
79 struct btrfs_path *btrfs_alloc_path(void)
80 {
81 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
82 }
83 
84 /* this also releases the path */
85 void btrfs_free_path(struct btrfs_path *p)
86 {
87 	if (!p)
88 		return;
89 	btrfs_release_path(p);
90 	kmem_cache_free(btrfs_path_cachep, p);
91 }
92 
93 /*
94  * path release drops references on the extent buffers in the path
95  * and it drops any locks held by this path
96  *
97  * It is safe to call this on paths that no locks or extent buffers held.
98  */
99 noinline void btrfs_release_path(struct btrfs_path *p)
100 {
101 	int i;
102 
103 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
104 		p->slots[i] = 0;
105 		if (!p->nodes[i])
106 			continue;
107 		if (p->locks[i]) {
108 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
109 			p->locks[i] = 0;
110 		}
111 		free_extent_buffer(p->nodes[i]);
112 		p->nodes[i] = NULL;
113 	}
114 }
115 
116 /*
117  * safely gets a reference on the root node of a tree.  A lock
118  * is not taken, so a concurrent writer may put a different node
119  * at the root of the tree.  See btrfs_lock_root_node for the
120  * looping required.
121  *
122  * The extent buffer returned by this has a reference taken, so
123  * it won't disappear.  It may stop being the root of the tree
124  * at any time because there are no locks held.
125  */
126 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
127 {
128 	struct extent_buffer *eb;
129 
130 	while (1) {
131 		rcu_read_lock();
132 		eb = rcu_dereference(root->node);
133 
134 		/*
135 		 * RCU really hurts here, we could free up the root node because
136 		 * it was COWed but we may not get the new root node yet so do
137 		 * the inc_not_zero dance and if it doesn't work then
138 		 * synchronize_rcu and try again.
139 		 */
140 		if (atomic_inc_not_zero(&eb->refs)) {
141 			rcu_read_unlock();
142 			break;
143 		}
144 		rcu_read_unlock();
145 		synchronize_rcu();
146 	}
147 	return eb;
148 }
149 
150 /*
151  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
152  * just get put onto a simple dirty list.  Transaction walks this list to make
153  * sure they get properly updated on disk.
154  */
155 static void add_root_to_dirty_list(struct btrfs_root *root)
156 {
157 	struct btrfs_fs_info *fs_info = root->fs_info;
158 
159 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
160 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
161 		return;
162 
163 	spin_lock(&fs_info->trans_lock);
164 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
165 		/* Want the extent tree to be the last on the list */
166 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
167 			list_move_tail(&root->dirty_list,
168 				       &fs_info->dirty_cowonly_roots);
169 		else
170 			list_move(&root->dirty_list,
171 				  &fs_info->dirty_cowonly_roots);
172 	}
173 	spin_unlock(&fs_info->trans_lock);
174 }
175 
176 /*
177  * used by snapshot creation to make a copy of a root for a tree with
178  * a given objectid.  The buffer with the new root node is returned in
179  * cow_ret, and this func returns zero on success or a negative error code.
180  */
181 int btrfs_copy_root(struct btrfs_trans_handle *trans,
182 		      struct btrfs_root *root,
183 		      struct extent_buffer *buf,
184 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
185 {
186 	struct btrfs_fs_info *fs_info = root->fs_info;
187 	struct extent_buffer *cow;
188 	int ret = 0;
189 	int level;
190 	struct btrfs_disk_key disk_key;
191 
192 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
193 		trans->transid != fs_info->running_transaction->transid);
194 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
195 		trans->transid != root->last_trans);
196 
197 	level = btrfs_header_level(buf);
198 	if (level == 0)
199 		btrfs_item_key(buf, &disk_key, 0);
200 	else
201 		btrfs_node_key(buf, &disk_key, 0);
202 
203 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
204 				     &disk_key, level, buf->start, 0,
205 				     BTRFS_NESTING_NEW_ROOT);
206 	if (IS_ERR(cow))
207 		return PTR_ERR(cow);
208 
209 	copy_extent_buffer_full(cow, buf);
210 	btrfs_set_header_bytenr(cow, cow->start);
211 	btrfs_set_header_generation(cow, trans->transid);
212 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
213 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
214 				     BTRFS_HEADER_FLAG_RELOC);
215 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
216 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
217 	else
218 		btrfs_set_header_owner(cow, new_root_objectid);
219 
220 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
221 
222 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
223 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
224 		ret = btrfs_inc_ref(trans, root, cow, 1);
225 	else
226 		ret = btrfs_inc_ref(trans, root, cow, 0);
227 	if (ret) {
228 		btrfs_tree_unlock(cow);
229 		free_extent_buffer(cow);
230 		btrfs_abort_transaction(trans, ret);
231 		return ret;
232 	}
233 
234 	btrfs_mark_buffer_dirty(cow);
235 	*cow_ret = cow;
236 	return 0;
237 }
238 
239 /*
240  * check if the tree block can be shared by multiple trees
241  */
242 int btrfs_block_can_be_shared(struct btrfs_root *root,
243 			      struct extent_buffer *buf)
244 {
245 	/*
246 	 * Tree blocks not in shareable trees and tree roots are never shared.
247 	 * If a block was allocated after the last snapshot and the block was
248 	 * not allocated by tree relocation, we know the block is not shared.
249 	 */
250 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
251 	    buf != root->node && buf != root->commit_root &&
252 	    (btrfs_header_generation(buf) <=
253 	     btrfs_root_last_snapshot(&root->root_item) ||
254 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
255 		return 1;
256 
257 	return 0;
258 }
259 
260 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
261 				       struct btrfs_root *root,
262 				       struct extent_buffer *buf,
263 				       struct extent_buffer *cow,
264 				       int *last_ref)
265 {
266 	struct btrfs_fs_info *fs_info = root->fs_info;
267 	u64 refs;
268 	u64 owner;
269 	u64 flags;
270 	u64 new_flags = 0;
271 	int ret;
272 
273 	/*
274 	 * Backrefs update rules:
275 	 *
276 	 * Always use full backrefs for extent pointers in tree block
277 	 * allocated by tree relocation.
278 	 *
279 	 * If a shared tree block is no longer referenced by its owner
280 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
281 	 * use full backrefs for extent pointers in tree block.
282 	 *
283 	 * If a tree block is been relocating
284 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
285 	 * use full backrefs for extent pointers in tree block.
286 	 * The reason for this is some operations (such as drop tree)
287 	 * are only allowed for blocks use full backrefs.
288 	 */
289 
290 	if (btrfs_block_can_be_shared(root, buf)) {
291 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
292 					       btrfs_header_level(buf), 1,
293 					       &refs, &flags);
294 		if (ret)
295 			return ret;
296 		if (refs == 0) {
297 			ret = -EROFS;
298 			btrfs_handle_fs_error(fs_info, ret, NULL);
299 			return ret;
300 		}
301 	} else {
302 		refs = 1;
303 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
304 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
305 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
306 		else
307 			flags = 0;
308 	}
309 
310 	owner = btrfs_header_owner(buf);
311 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
312 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
313 
314 	if (refs > 1) {
315 		if ((owner == root->root_key.objectid ||
316 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
317 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
318 			ret = btrfs_inc_ref(trans, root, buf, 1);
319 			if (ret)
320 				return ret;
321 
322 			if (root->root_key.objectid ==
323 			    BTRFS_TREE_RELOC_OBJECTID) {
324 				ret = btrfs_dec_ref(trans, root, buf, 0);
325 				if (ret)
326 					return ret;
327 				ret = btrfs_inc_ref(trans, root, cow, 1);
328 				if (ret)
329 					return ret;
330 			}
331 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
332 		} else {
333 
334 			if (root->root_key.objectid ==
335 			    BTRFS_TREE_RELOC_OBJECTID)
336 				ret = btrfs_inc_ref(trans, root, cow, 1);
337 			else
338 				ret = btrfs_inc_ref(trans, root, cow, 0);
339 			if (ret)
340 				return ret;
341 		}
342 		if (new_flags != 0) {
343 			int level = btrfs_header_level(buf);
344 
345 			ret = btrfs_set_disk_extent_flags(trans, buf,
346 							  new_flags, level);
347 			if (ret)
348 				return ret;
349 		}
350 	} else {
351 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
352 			if (root->root_key.objectid ==
353 			    BTRFS_TREE_RELOC_OBJECTID)
354 				ret = btrfs_inc_ref(trans, root, cow, 1);
355 			else
356 				ret = btrfs_inc_ref(trans, root, cow, 0);
357 			if (ret)
358 				return ret;
359 			ret = btrfs_dec_ref(trans, root, buf, 1);
360 			if (ret)
361 				return ret;
362 		}
363 		btrfs_clean_tree_block(buf);
364 		*last_ref = 1;
365 	}
366 	return 0;
367 }
368 
369 /*
370  * does the dirty work in cow of a single block.  The parent block (if
371  * supplied) is updated to point to the new cow copy.  The new buffer is marked
372  * dirty and returned locked.  If you modify the block it needs to be marked
373  * dirty again.
374  *
375  * search_start -- an allocation hint for the new block
376  *
377  * empty_size -- a hint that you plan on doing more cow.  This is the size in
378  * bytes the allocator should try to find free next to the block it returns.
379  * This is just a hint and may be ignored by the allocator.
380  */
381 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
382 			     struct btrfs_root *root,
383 			     struct extent_buffer *buf,
384 			     struct extent_buffer *parent, int parent_slot,
385 			     struct extent_buffer **cow_ret,
386 			     u64 search_start, u64 empty_size,
387 			     enum btrfs_lock_nesting nest)
388 {
389 	struct btrfs_fs_info *fs_info = root->fs_info;
390 	struct btrfs_disk_key disk_key;
391 	struct extent_buffer *cow;
392 	int level, ret;
393 	int last_ref = 0;
394 	int unlock_orig = 0;
395 	u64 parent_start = 0;
396 
397 	if (*cow_ret == buf)
398 		unlock_orig = 1;
399 
400 	btrfs_assert_tree_write_locked(buf);
401 
402 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
403 		trans->transid != fs_info->running_transaction->transid);
404 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
405 		trans->transid != root->last_trans);
406 
407 	level = btrfs_header_level(buf);
408 
409 	if (level == 0)
410 		btrfs_item_key(buf, &disk_key, 0);
411 	else
412 		btrfs_node_key(buf, &disk_key, 0);
413 
414 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
415 		parent_start = parent->start;
416 
417 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
418 				     root->root_key.objectid, &disk_key, level,
419 				     search_start, empty_size, nest);
420 	if (IS_ERR(cow))
421 		return PTR_ERR(cow);
422 
423 	/* cow is set to blocking by btrfs_init_new_buffer */
424 
425 	copy_extent_buffer_full(cow, buf);
426 	btrfs_set_header_bytenr(cow, cow->start);
427 	btrfs_set_header_generation(cow, trans->transid);
428 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
429 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
430 				     BTRFS_HEADER_FLAG_RELOC);
431 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
432 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
433 	else
434 		btrfs_set_header_owner(cow, root->root_key.objectid);
435 
436 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
437 
438 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
439 	if (ret) {
440 		btrfs_tree_unlock(cow);
441 		free_extent_buffer(cow);
442 		btrfs_abort_transaction(trans, ret);
443 		return ret;
444 	}
445 
446 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
447 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
448 		if (ret) {
449 			btrfs_tree_unlock(cow);
450 			free_extent_buffer(cow);
451 			btrfs_abort_transaction(trans, ret);
452 			return ret;
453 		}
454 	}
455 
456 	if (buf == root->node) {
457 		WARN_ON(parent && parent != buf);
458 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
459 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
460 			parent_start = buf->start;
461 
462 		atomic_inc(&cow->refs);
463 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
464 		BUG_ON(ret < 0);
465 		rcu_assign_pointer(root->node, cow);
466 
467 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
468 				      parent_start, last_ref);
469 		free_extent_buffer(buf);
470 		add_root_to_dirty_list(root);
471 	} else {
472 		WARN_ON(trans->transid != btrfs_header_generation(parent));
473 		btrfs_tree_mod_log_insert_key(parent, parent_slot,
474 					      BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
475 		btrfs_set_node_blockptr(parent, parent_slot,
476 					cow->start);
477 		btrfs_set_node_ptr_generation(parent, parent_slot,
478 					      trans->transid);
479 		btrfs_mark_buffer_dirty(parent);
480 		if (last_ref) {
481 			ret = btrfs_tree_mod_log_free_eb(buf);
482 			if (ret) {
483 				btrfs_tree_unlock(cow);
484 				free_extent_buffer(cow);
485 				btrfs_abort_transaction(trans, ret);
486 				return ret;
487 			}
488 		}
489 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
490 				      parent_start, last_ref);
491 	}
492 	if (unlock_orig)
493 		btrfs_tree_unlock(buf);
494 	free_extent_buffer_stale(buf);
495 	btrfs_mark_buffer_dirty(cow);
496 	*cow_ret = cow;
497 	return 0;
498 }
499 
500 static inline int should_cow_block(struct btrfs_trans_handle *trans,
501 				   struct btrfs_root *root,
502 				   struct extent_buffer *buf)
503 {
504 	if (btrfs_is_testing(root->fs_info))
505 		return 0;
506 
507 	/* Ensure we can see the FORCE_COW bit */
508 	smp_mb__before_atomic();
509 
510 	/*
511 	 * We do not need to cow a block if
512 	 * 1) this block is not created or changed in this transaction;
513 	 * 2) this block does not belong to TREE_RELOC tree;
514 	 * 3) the root is not forced COW.
515 	 *
516 	 * What is forced COW:
517 	 *    when we create snapshot during committing the transaction,
518 	 *    after we've finished copying src root, we must COW the shared
519 	 *    block to ensure the metadata consistency.
520 	 */
521 	if (btrfs_header_generation(buf) == trans->transid &&
522 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
523 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
524 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
525 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
526 		return 0;
527 	return 1;
528 }
529 
530 /*
531  * cows a single block, see __btrfs_cow_block for the real work.
532  * This version of it has extra checks so that a block isn't COWed more than
533  * once per transaction, as long as it hasn't been written yet
534  */
535 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
536 		    struct btrfs_root *root, struct extent_buffer *buf,
537 		    struct extent_buffer *parent, int parent_slot,
538 		    struct extent_buffer **cow_ret,
539 		    enum btrfs_lock_nesting nest)
540 {
541 	struct btrfs_fs_info *fs_info = root->fs_info;
542 	u64 search_start;
543 	int ret;
544 
545 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
546 		btrfs_err(fs_info,
547 			"COW'ing blocks on a fs root that's being dropped");
548 
549 	if (trans->transaction != fs_info->running_transaction)
550 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
551 		       trans->transid,
552 		       fs_info->running_transaction->transid);
553 
554 	if (trans->transid != fs_info->generation)
555 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
556 		       trans->transid, fs_info->generation);
557 
558 	if (!should_cow_block(trans, root, buf)) {
559 		*cow_ret = buf;
560 		return 0;
561 	}
562 
563 	search_start = buf->start & ~((u64)SZ_1G - 1);
564 
565 	/*
566 	 * Before CoWing this block for later modification, check if it's
567 	 * the subtree root and do the delayed subtree trace if needed.
568 	 *
569 	 * Also We don't care about the error, as it's handled internally.
570 	 */
571 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
572 	ret = __btrfs_cow_block(trans, root, buf, parent,
573 				 parent_slot, cow_ret, search_start, 0, nest);
574 
575 	trace_btrfs_cow_block(root, buf, *cow_ret);
576 
577 	return ret;
578 }
579 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
580 
581 /*
582  * helper function for defrag to decide if two blocks pointed to by a
583  * node are actually close by
584  */
585 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
586 {
587 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
588 		return 1;
589 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
590 		return 1;
591 	return 0;
592 }
593 
594 #ifdef __LITTLE_ENDIAN
595 
596 /*
597  * Compare two keys, on little-endian the disk order is same as CPU order and
598  * we can avoid the conversion.
599  */
600 static int comp_keys(const struct btrfs_disk_key *disk_key,
601 		     const struct btrfs_key *k2)
602 {
603 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
604 
605 	return btrfs_comp_cpu_keys(k1, k2);
606 }
607 
608 #else
609 
610 /*
611  * compare two keys in a memcmp fashion
612  */
613 static int comp_keys(const struct btrfs_disk_key *disk,
614 		     const struct btrfs_key *k2)
615 {
616 	struct btrfs_key k1;
617 
618 	btrfs_disk_key_to_cpu(&k1, disk);
619 
620 	return btrfs_comp_cpu_keys(&k1, k2);
621 }
622 #endif
623 
624 /*
625  * same as comp_keys only with two btrfs_key's
626  */
627 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
628 {
629 	if (k1->objectid > k2->objectid)
630 		return 1;
631 	if (k1->objectid < k2->objectid)
632 		return -1;
633 	if (k1->type > k2->type)
634 		return 1;
635 	if (k1->type < k2->type)
636 		return -1;
637 	if (k1->offset > k2->offset)
638 		return 1;
639 	if (k1->offset < k2->offset)
640 		return -1;
641 	return 0;
642 }
643 
644 /*
645  * this is used by the defrag code to go through all the
646  * leaves pointed to by a node and reallocate them so that
647  * disk order is close to key order
648  */
649 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
650 		       struct btrfs_root *root, struct extent_buffer *parent,
651 		       int start_slot, u64 *last_ret,
652 		       struct btrfs_key *progress)
653 {
654 	struct btrfs_fs_info *fs_info = root->fs_info;
655 	struct extent_buffer *cur;
656 	u64 blocknr;
657 	u64 search_start = *last_ret;
658 	u64 last_block = 0;
659 	u64 other;
660 	u32 parent_nritems;
661 	int end_slot;
662 	int i;
663 	int err = 0;
664 	u32 blocksize;
665 	int progress_passed = 0;
666 	struct btrfs_disk_key disk_key;
667 
668 	WARN_ON(trans->transaction != fs_info->running_transaction);
669 	WARN_ON(trans->transid != fs_info->generation);
670 
671 	parent_nritems = btrfs_header_nritems(parent);
672 	blocksize = fs_info->nodesize;
673 	end_slot = parent_nritems - 1;
674 
675 	if (parent_nritems <= 1)
676 		return 0;
677 
678 	for (i = start_slot; i <= end_slot; i++) {
679 		int close = 1;
680 
681 		btrfs_node_key(parent, &disk_key, i);
682 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
683 			continue;
684 
685 		progress_passed = 1;
686 		blocknr = btrfs_node_blockptr(parent, i);
687 		if (last_block == 0)
688 			last_block = blocknr;
689 
690 		if (i > 0) {
691 			other = btrfs_node_blockptr(parent, i - 1);
692 			close = close_blocks(blocknr, other, blocksize);
693 		}
694 		if (!close && i < end_slot) {
695 			other = btrfs_node_blockptr(parent, i + 1);
696 			close = close_blocks(blocknr, other, blocksize);
697 		}
698 		if (close) {
699 			last_block = blocknr;
700 			continue;
701 		}
702 
703 		cur = btrfs_read_node_slot(parent, i);
704 		if (IS_ERR(cur))
705 			return PTR_ERR(cur);
706 		if (search_start == 0)
707 			search_start = last_block;
708 
709 		btrfs_tree_lock(cur);
710 		err = __btrfs_cow_block(trans, root, cur, parent, i,
711 					&cur, search_start,
712 					min(16 * blocksize,
713 					    (end_slot - i) * blocksize),
714 					BTRFS_NESTING_COW);
715 		if (err) {
716 			btrfs_tree_unlock(cur);
717 			free_extent_buffer(cur);
718 			break;
719 		}
720 		search_start = cur->start;
721 		last_block = cur->start;
722 		*last_ret = search_start;
723 		btrfs_tree_unlock(cur);
724 		free_extent_buffer(cur);
725 	}
726 	return err;
727 }
728 
729 /*
730  * Search for a key in the given extent_buffer.
731  *
732  * The lower boundary for the search is specified by the slot number @low. Use a
733  * value of 0 to search over the whole extent buffer.
734  *
735  * The slot in the extent buffer is returned via @slot. If the key exists in the
736  * extent buffer, then @slot will point to the slot where the key is, otherwise
737  * it points to the slot where you would insert the key.
738  *
739  * Slot may point to the total number of items (i.e. one position beyond the last
740  * key) if the key is bigger than the last key in the extent buffer.
741  */
742 static noinline int generic_bin_search(struct extent_buffer *eb, int low,
743 				       const struct btrfs_key *key, int *slot)
744 {
745 	unsigned long p;
746 	int item_size;
747 	int high = btrfs_header_nritems(eb);
748 	int ret;
749 	const int key_size = sizeof(struct btrfs_disk_key);
750 
751 	if (low > high) {
752 		btrfs_err(eb->fs_info,
753 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
754 			  __func__, low, high, eb->start,
755 			  btrfs_header_owner(eb), btrfs_header_level(eb));
756 		return -EINVAL;
757 	}
758 
759 	if (btrfs_header_level(eb) == 0) {
760 		p = offsetof(struct btrfs_leaf, items);
761 		item_size = sizeof(struct btrfs_item);
762 	} else {
763 		p = offsetof(struct btrfs_node, ptrs);
764 		item_size = sizeof(struct btrfs_key_ptr);
765 	}
766 
767 	while (low < high) {
768 		unsigned long oip;
769 		unsigned long offset;
770 		struct btrfs_disk_key *tmp;
771 		struct btrfs_disk_key unaligned;
772 		int mid;
773 
774 		mid = (low + high) / 2;
775 		offset = p + mid * item_size;
776 		oip = offset_in_page(offset);
777 
778 		if (oip + key_size <= PAGE_SIZE) {
779 			const unsigned long idx = get_eb_page_index(offset);
780 			char *kaddr = page_address(eb->pages[idx]);
781 
782 			oip = get_eb_offset_in_page(eb, offset);
783 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
784 		} else {
785 			read_extent_buffer(eb, &unaligned, offset, key_size);
786 			tmp = &unaligned;
787 		}
788 
789 		ret = comp_keys(tmp, key);
790 
791 		if (ret < 0)
792 			low = mid + 1;
793 		else if (ret > 0)
794 			high = mid;
795 		else {
796 			*slot = mid;
797 			return 0;
798 		}
799 	}
800 	*slot = low;
801 	return 1;
802 }
803 
804 /*
805  * Simple binary search on an extent buffer. Works for both leaves and nodes, and
806  * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
807  */
808 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
809 		     int *slot)
810 {
811 	return generic_bin_search(eb, 0, key, slot);
812 }
813 
814 static void root_add_used(struct btrfs_root *root, u32 size)
815 {
816 	spin_lock(&root->accounting_lock);
817 	btrfs_set_root_used(&root->root_item,
818 			    btrfs_root_used(&root->root_item) + size);
819 	spin_unlock(&root->accounting_lock);
820 }
821 
822 static void root_sub_used(struct btrfs_root *root, u32 size)
823 {
824 	spin_lock(&root->accounting_lock);
825 	btrfs_set_root_used(&root->root_item,
826 			    btrfs_root_used(&root->root_item) - size);
827 	spin_unlock(&root->accounting_lock);
828 }
829 
830 /* given a node and slot number, this reads the blocks it points to.  The
831  * extent buffer is returned with a reference taken (but unlocked).
832  */
833 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
834 					   int slot)
835 {
836 	int level = btrfs_header_level(parent);
837 	struct extent_buffer *eb;
838 	struct btrfs_key first_key;
839 
840 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
841 		return ERR_PTR(-ENOENT);
842 
843 	BUG_ON(level == 0);
844 
845 	btrfs_node_key_to_cpu(parent, &first_key, slot);
846 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
847 			     btrfs_header_owner(parent),
848 			     btrfs_node_ptr_generation(parent, slot),
849 			     level - 1, &first_key);
850 	if (IS_ERR(eb))
851 		return eb;
852 	if (!extent_buffer_uptodate(eb)) {
853 		free_extent_buffer(eb);
854 		return ERR_PTR(-EIO);
855 	}
856 
857 	return eb;
858 }
859 
860 /*
861  * node level balancing, used to make sure nodes are in proper order for
862  * item deletion.  We balance from the top down, so we have to make sure
863  * that a deletion won't leave an node completely empty later on.
864  */
865 static noinline int balance_level(struct btrfs_trans_handle *trans,
866 			 struct btrfs_root *root,
867 			 struct btrfs_path *path, int level)
868 {
869 	struct btrfs_fs_info *fs_info = root->fs_info;
870 	struct extent_buffer *right = NULL;
871 	struct extent_buffer *mid;
872 	struct extent_buffer *left = NULL;
873 	struct extent_buffer *parent = NULL;
874 	int ret = 0;
875 	int wret;
876 	int pslot;
877 	int orig_slot = path->slots[level];
878 	u64 orig_ptr;
879 
880 	ASSERT(level > 0);
881 
882 	mid = path->nodes[level];
883 
884 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
885 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
886 
887 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
888 
889 	if (level < BTRFS_MAX_LEVEL - 1) {
890 		parent = path->nodes[level + 1];
891 		pslot = path->slots[level + 1];
892 	}
893 
894 	/*
895 	 * deal with the case where there is only one pointer in the root
896 	 * by promoting the node below to a root
897 	 */
898 	if (!parent) {
899 		struct extent_buffer *child;
900 
901 		if (btrfs_header_nritems(mid) != 1)
902 			return 0;
903 
904 		/* promote the child to a root */
905 		child = btrfs_read_node_slot(mid, 0);
906 		if (IS_ERR(child)) {
907 			ret = PTR_ERR(child);
908 			btrfs_handle_fs_error(fs_info, ret, NULL);
909 			goto enospc;
910 		}
911 
912 		btrfs_tree_lock(child);
913 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
914 				      BTRFS_NESTING_COW);
915 		if (ret) {
916 			btrfs_tree_unlock(child);
917 			free_extent_buffer(child);
918 			goto enospc;
919 		}
920 
921 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
922 		BUG_ON(ret < 0);
923 		rcu_assign_pointer(root->node, child);
924 
925 		add_root_to_dirty_list(root);
926 		btrfs_tree_unlock(child);
927 
928 		path->locks[level] = 0;
929 		path->nodes[level] = NULL;
930 		btrfs_clean_tree_block(mid);
931 		btrfs_tree_unlock(mid);
932 		/* once for the path */
933 		free_extent_buffer(mid);
934 
935 		root_sub_used(root, mid->len);
936 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
937 		/* once for the root ptr */
938 		free_extent_buffer_stale(mid);
939 		return 0;
940 	}
941 	if (btrfs_header_nritems(mid) >
942 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
943 		return 0;
944 
945 	left = btrfs_read_node_slot(parent, pslot - 1);
946 	if (IS_ERR(left))
947 		left = NULL;
948 
949 	if (left) {
950 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
951 		wret = btrfs_cow_block(trans, root, left,
952 				       parent, pslot - 1, &left,
953 				       BTRFS_NESTING_LEFT_COW);
954 		if (wret) {
955 			ret = wret;
956 			goto enospc;
957 		}
958 	}
959 
960 	right = btrfs_read_node_slot(parent, pslot + 1);
961 	if (IS_ERR(right))
962 		right = NULL;
963 
964 	if (right) {
965 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
966 		wret = btrfs_cow_block(trans, root, right,
967 				       parent, pslot + 1, &right,
968 				       BTRFS_NESTING_RIGHT_COW);
969 		if (wret) {
970 			ret = wret;
971 			goto enospc;
972 		}
973 	}
974 
975 	/* first, try to make some room in the middle buffer */
976 	if (left) {
977 		orig_slot += btrfs_header_nritems(left);
978 		wret = push_node_left(trans, left, mid, 1);
979 		if (wret < 0)
980 			ret = wret;
981 	}
982 
983 	/*
984 	 * then try to empty the right most buffer into the middle
985 	 */
986 	if (right) {
987 		wret = push_node_left(trans, mid, right, 1);
988 		if (wret < 0 && wret != -ENOSPC)
989 			ret = wret;
990 		if (btrfs_header_nritems(right) == 0) {
991 			btrfs_clean_tree_block(right);
992 			btrfs_tree_unlock(right);
993 			del_ptr(root, path, level + 1, pslot + 1);
994 			root_sub_used(root, right->len);
995 			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
996 					      0, 1);
997 			free_extent_buffer_stale(right);
998 			right = NULL;
999 		} else {
1000 			struct btrfs_disk_key right_key;
1001 			btrfs_node_key(right, &right_key, 0);
1002 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1003 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1004 			BUG_ON(ret < 0);
1005 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1006 			btrfs_mark_buffer_dirty(parent);
1007 		}
1008 	}
1009 	if (btrfs_header_nritems(mid) == 1) {
1010 		/*
1011 		 * we're not allowed to leave a node with one item in the
1012 		 * tree during a delete.  A deletion from lower in the tree
1013 		 * could try to delete the only pointer in this node.
1014 		 * So, pull some keys from the left.
1015 		 * There has to be a left pointer at this point because
1016 		 * otherwise we would have pulled some pointers from the
1017 		 * right
1018 		 */
1019 		if (!left) {
1020 			ret = -EROFS;
1021 			btrfs_handle_fs_error(fs_info, ret, NULL);
1022 			goto enospc;
1023 		}
1024 		wret = balance_node_right(trans, mid, left);
1025 		if (wret < 0) {
1026 			ret = wret;
1027 			goto enospc;
1028 		}
1029 		if (wret == 1) {
1030 			wret = push_node_left(trans, left, mid, 1);
1031 			if (wret < 0)
1032 				ret = wret;
1033 		}
1034 		BUG_ON(wret == 1);
1035 	}
1036 	if (btrfs_header_nritems(mid) == 0) {
1037 		btrfs_clean_tree_block(mid);
1038 		btrfs_tree_unlock(mid);
1039 		del_ptr(root, path, level + 1, pslot);
1040 		root_sub_used(root, mid->len);
1041 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1042 		free_extent_buffer_stale(mid);
1043 		mid = NULL;
1044 	} else {
1045 		/* update the parent key to reflect our changes */
1046 		struct btrfs_disk_key mid_key;
1047 		btrfs_node_key(mid, &mid_key, 0);
1048 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1049 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1050 		BUG_ON(ret < 0);
1051 		btrfs_set_node_key(parent, &mid_key, pslot);
1052 		btrfs_mark_buffer_dirty(parent);
1053 	}
1054 
1055 	/* update the path */
1056 	if (left) {
1057 		if (btrfs_header_nritems(left) > orig_slot) {
1058 			atomic_inc(&left->refs);
1059 			/* left was locked after cow */
1060 			path->nodes[level] = left;
1061 			path->slots[level + 1] -= 1;
1062 			path->slots[level] = orig_slot;
1063 			if (mid) {
1064 				btrfs_tree_unlock(mid);
1065 				free_extent_buffer(mid);
1066 			}
1067 		} else {
1068 			orig_slot -= btrfs_header_nritems(left);
1069 			path->slots[level] = orig_slot;
1070 		}
1071 	}
1072 	/* double check we haven't messed things up */
1073 	if (orig_ptr !=
1074 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1075 		BUG();
1076 enospc:
1077 	if (right) {
1078 		btrfs_tree_unlock(right);
1079 		free_extent_buffer(right);
1080 	}
1081 	if (left) {
1082 		if (path->nodes[level] != left)
1083 			btrfs_tree_unlock(left);
1084 		free_extent_buffer(left);
1085 	}
1086 	return ret;
1087 }
1088 
1089 /* Node balancing for insertion.  Here we only split or push nodes around
1090  * when they are completely full.  This is also done top down, so we
1091  * have to be pessimistic.
1092  */
1093 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1094 					  struct btrfs_root *root,
1095 					  struct btrfs_path *path, int level)
1096 {
1097 	struct btrfs_fs_info *fs_info = root->fs_info;
1098 	struct extent_buffer *right = NULL;
1099 	struct extent_buffer *mid;
1100 	struct extent_buffer *left = NULL;
1101 	struct extent_buffer *parent = NULL;
1102 	int ret = 0;
1103 	int wret;
1104 	int pslot;
1105 	int orig_slot = path->slots[level];
1106 
1107 	if (level == 0)
1108 		return 1;
1109 
1110 	mid = path->nodes[level];
1111 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1112 
1113 	if (level < BTRFS_MAX_LEVEL - 1) {
1114 		parent = path->nodes[level + 1];
1115 		pslot = path->slots[level + 1];
1116 	}
1117 
1118 	if (!parent)
1119 		return 1;
1120 
1121 	left = btrfs_read_node_slot(parent, pslot - 1);
1122 	if (IS_ERR(left))
1123 		left = NULL;
1124 
1125 	/* first, try to make some room in the middle buffer */
1126 	if (left) {
1127 		u32 left_nr;
1128 
1129 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1130 
1131 		left_nr = btrfs_header_nritems(left);
1132 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1133 			wret = 1;
1134 		} else {
1135 			ret = btrfs_cow_block(trans, root, left, parent,
1136 					      pslot - 1, &left,
1137 					      BTRFS_NESTING_LEFT_COW);
1138 			if (ret)
1139 				wret = 1;
1140 			else {
1141 				wret = push_node_left(trans, left, mid, 0);
1142 			}
1143 		}
1144 		if (wret < 0)
1145 			ret = wret;
1146 		if (wret == 0) {
1147 			struct btrfs_disk_key disk_key;
1148 			orig_slot += left_nr;
1149 			btrfs_node_key(mid, &disk_key, 0);
1150 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1151 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1152 			BUG_ON(ret < 0);
1153 			btrfs_set_node_key(parent, &disk_key, pslot);
1154 			btrfs_mark_buffer_dirty(parent);
1155 			if (btrfs_header_nritems(left) > orig_slot) {
1156 				path->nodes[level] = left;
1157 				path->slots[level + 1] -= 1;
1158 				path->slots[level] = orig_slot;
1159 				btrfs_tree_unlock(mid);
1160 				free_extent_buffer(mid);
1161 			} else {
1162 				orig_slot -=
1163 					btrfs_header_nritems(left);
1164 				path->slots[level] = orig_slot;
1165 				btrfs_tree_unlock(left);
1166 				free_extent_buffer(left);
1167 			}
1168 			return 0;
1169 		}
1170 		btrfs_tree_unlock(left);
1171 		free_extent_buffer(left);
1172 	}
1173 	right = btrfs_read_node_slot(parent, pslot + 1);
1174 	if (IS_ERR(right))
1175 		right = NULL;
1176 
1177 	/*
1178 	 * then try to empty the right most buffer into the middle
1179 	 */
1180 	if (right) {
1181 		u32 right_nr;
1182 
1183 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1184 
1185 		right_nr = btrfs_header_nritems(right);
1186 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1187 			wret = 1;
1188 		} else {
1189 			ret = btrfs_cow_block(trans, root, right,
1190 					      parent, pslot + 1,
1191 					      &right, BTRFS_NESTING_RIGHT_COW);
1192 			if (ret)
1193 				wret = 1;
1194 			else {
1195 				wret = balance_node_right(trans, right, mid);
1196 			}
1197 		}
1198 		if (wret < 0)
1199 			ret = wret;
1200 		if (wret == 0) {
1201 			struct btrfs_disk_key disk_key;
1202 
1203 			btrfs_node_key(right, &disk_key, 0);
1204 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1205 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1206 			BUG_ON(ret < 0);
1207 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1208 			btrfs_mark_buffer_dirty(parent);
1209 
1210 			if (btrfs_header_nritems(mid) <= orig_slot) {
1211 				path->nodes[level] = right;
1212 				path->slots[level + 1] += 1;
1213 				path->slots[level] = orig_slot -
1214 					btrfs_header_nritems(mid);
1215 				btrfs_tree_unlock(mid);
1216 				free_extent_buffer(mid);
1217 			} else {
1218 				btrfs_tree_unlock(right);
1219 				free_extent_buffer(right);
1220 			}
1221 			return 0;
1222 		}
1223 		btrfs_tree_unlock(right);
1224 		free_extent_buffer(right);
1225 	}
1226 	return 1;
1227 }
1228 
1229 /*
1230  * readahead one full node of leaves, finding things that are close
1231  * to the block in 'slot', and triggering ra on them.
1232  */
1233 static void reada_for_search(struct btrfs_fs_info *fs_info,
1234 			     struct btrfs_path *path,
1235 			     int level, int slot, u64 objectid)
1236 {
1237 	struct extent_buffer *node;
1238 	struct btrfs_disk_key disk_key;
1239 	u32 nritems;
1240 	u64 search;
1241 	u64 target;
1242 	u64 nread = 0;
1243 	u64 nread_max;
1244 	u32 nr;
1245 	u32 blocksize;
1246 	u32 nscan = 0;
1247 
1248 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1249 		return;
1250 
1251 	if (!path->nodes[level])
1252 		return;
1253 
1254 	node = path->nodes[level];
1255 
1256 	/*
1257 	 * Since the time between visiting leaves is much shorter than the time
1258 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1259 	 * much IO at once (possibly random).
1260 	 */
1261 	if (path->reada == READA_FORWARD_ALWAYS) {
1262 		if (level > 1)
1263 			nread_max = node->fs_info->nodesize;
1264 		else
1265 			nread_max = SZ_128K;
1266 	} else {
1267 		nread_max = SZ_64K;
1268 	}
1269 
1270 	search = btrfs_node_blockptr(node, slot);
1271 	blocksize = fs_info->nodesize;
1272 	if (path->reada != READA_FORWARD_ALWAYS) {
1273 		struct extent_buffer *eb;
1274 
1275 		eb = find_extent_buffer(fs_info, search);
1276 		if (eb) {
1277 			free_extent_buffer(eb);
1278 			return;
1279 		}
1280 	}
1281 
1282 	target = search;
1283 
1284 	nritems = btrfs_header_nritems(node);
1285 	nr = slot;
1286 
1287 	while (1) {
1288 		if (path->reada == READA_BACK) {
1289 			if (nr == 0)
1290 				break;
1291 			nr--;
1292 		} else if (path->reada == READA_FORWARD ||
1293 			   path->reada == READA_FORWARD_ALWAYS) {
1294 			nr++;
1295 			if (nr >= nritems)
1296 				break;
1297 		}
1298 		if (path->reada == READA_BACK && objectid) {
1299 			btrfs_node_key(node, &disk_key, nr);
1300 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1301 				break;
1302 		}
1303 		search = btrfs_node_blockptr(node, nr);
1304 		if (path->reada == READA_FORWARD_ALWAYS ||
1305 		    (search <= target && target - search <= 65536) ||
1306 		    (search > target && search - target <= 65536)) {
1307 			btrfs_readahead_node_child(node, nr);
1308 			nread += blocksize;
1309 		}
1310 		nscan++;
1311 		if (nread > nread_max || nscan > 32)
1312 			break;
1313 	}
1314 }
1315 
1316 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1317 {
1318 	struct extent_buffer *parent;
1319 	int slot;
1320 	int nritems;
1321 
1322 	parent = path->nodes[level + 1];
1323 	if (!parent)
1324 		return;
1325 
1326 	nritems = btrfs_header_nritems(parent);
1327 	slot = path->slots[level + 1];
1328 
1329 	if (slot > 0)
1330 		btrfs_readahead_node_child(parent, slot - 1);
1331 	if (slot + 1 < nritems)
1332 		btrfs_readahead_node_child(parent, slot + 1);
1333 }
1334 
1335 
1336 /*
1337  * when we walk down the tree, it is usually safe to unlock the higher layers
1338  * in the tree.  The exceptions are when our path goes through slot 0, because
1339  * operations on the tree might require changing key pointers higher up in the
1340  * tree.
1341  *
1342  * callers might also have set path->keep_locks, which tells this code to keep
1343  * the lock if the path points to the last slot in the block.  This is part of
1344  * walking through the tree, and selecting the next slot in the higher block.
1345  *
1346  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1347  * if lowest_unlock is 1, level 0 won't be unlocked
1348  */
1349 static noinline void unlock_up(struct btrfs_path *path, int level,
1350 			       int lowest_unlock, int min_write_lock_level,
1351 			       int *write_lock_level)
1352 {
1353 	int i;
1354 	int skip_level = level;
1355 	bool check_skip = true;
1356 
1357 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1358 		if (!path->nodes[i])
1359 			break;
1360 		if (!path->locks[i])
1361 			break;
1362 
1363 		if (check_skip) {
1364 			if (path->slots[i] == 0) {
1365 				skip_level = i + 1;
1366 				continue;
1367 			}
1368 
1369 			if (path->keep_locks) {
1370 				u32 nritems;
1371 
1372 				nritems = btrfs_header_nritems(path->nodes[i]);
1373 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1374 					skip_level = i + 1;
1375 					continue;
1376 				}
1377 			}
1378 		}
1379 
1380 		if (i >= lowest_unlock && i > skip_level) {
1381 			check_skip = false;
1382 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1383 			path->locks[i] = 0;
1384 			if (write_lock_level &&
1385 			    i > min_write_lock_level &&
1386 			    i <= *write_lock_level) {
1387 				*write_lock_level = i - 1;
1388 			}
1389 		}
1390 	}
1391 }
1392 
1393 /*
1394  * Helper function for btrfs_search_slot() and other functions that do a search
1395  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1396  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1397  * its pages from disk.
1398  *
1399  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1400  * whole btree search, starting again from the current root node.
1401  */
1402 static int
1403 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1404 		      struct extent_buffer **eb_ret, int level, int slot,
1405 		      const struct btrfs_key *key)
1406 {
1407 	struct btrfs_fs_info *fs_info = root->fs_info;
1408 	u64 blocknr;
1409 	u64 gen;
1410 	struct extent_buffer *tmp;
1411 	struct btrfs_key first_key;
1412 	int ret;
1413 	int parent_level;
1414 	bool unlock_up;
1415 
1416 	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1417 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1418 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1419 	parent_level = btrfs_header_level(*eb_ret);
1420 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1421 
1422 	/*
1423 	 * If we need to read an extent buffer from disk and we are holding locks
1424 	 * on upper level nodes, we unlock all the upper nodes before reading the
1425 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1426 	 * restart the search. We don't release the lock on the current level
1427 	 * because we need to walk this node to figure out which blocks to read.
1428 	 */
1429 	tmp = find_extent_buffer(fs_info, blocknr);
1430 	if (tmp) {
1431 		if (p->reada == READA_FORWARD_ALWAYS)
1432 			reada_for_search(fs_info, p, level, slot, key->objectid);
1433 
1434 		/* first we do an atomic uptodate check */
1435 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1436 			/*
1437 			 * Do extra check for first_key, eb can be stale due to
1438 			 * being cached, read from scrub, or have multiple
1439 			 * parents (shared tree blocks).
1440 			 */
1441 			if (btrfs_verify_level_key(tmp,
1442 					parent_level - 1, &first_key, gen)) {
1443 				free_extent_buffer(tmp);
1444 				return -EUCLEAN;
1445 			}
1446 			*eb_ret = tmp;
1447 			return 0;
1448 		}
1449 
1450 		if (p->nowait) {
1451 			free_extent_buffer(tmp);
1452 			return -EAGAIN;
1453 		}
1454 
1455 		if (unlock_up)
1456 			btrfs_unlock_up_safe(p, level + 1);
1457 
1458 		/* now we're allowed to do a blocking uptodate check */
1459 		ret = btrfs_read_extent_buffer(tmp, gen, parent_level - 1, &first_key);
1460 		if (ret) {
1461 			free_extent_buffer(tmp);
1462 			btrfs_release_path(p);
1463 			return -EIO;
1464 		}
1465 		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1466 			free_extent_buffer(tmp);
1467 			btrfs_release_path(p);
1468 			return -EUCLEAN;
1469 		}
1470 
1471 		if (unlock_up)
1472 			ret = -EAGAIN;
1473 
1474 		goto out;
1475 	} else if (p->nowait) {
1476 		return -EAGAIN;
1477 	}
1478 
1479 	if (unlock_up) {
1480 		btrfs_unlock_up_safe(p, level + 1);
1481 		ret = -EAGAIN;
1482 	} else {
1483 		ret = 0;
1484 	}
1485 
1486 	if (p->reada != READA_NONE)
1487 		reada_for_search(fs_info, p, level, slot, key->objectid);
1488 
1489 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1490 			      gen, parent_level - 1, &first_key);
1491 	if (IS_ERR(tmp)) {
1492 		btrfs_release_path(p);
1493 		return PTR_ERR(tmp);
1494 	}
1495 	/*
1496 	 * If the read above didn't mark this buffer up to date,
1497 	 * it will never end up being up to date.  Set ret to EIO now
1498 	 * and give up so that our caller doesn't loop forever
1499 	 * on our EAGAINs.
1500 	 */
1501 	if (!extent_buffer_uptodate(tmp))
1502 		ret = -EIO;
1503 
1504 out:
1505 	if (ret == 0) {
1506 		*eb_ret = tmp;
1507 	} else {
1508 		free_extent_buffer(tmp);
1509 		btrfs_release_path(p);
1510 	}
1511 
1512 	return ret;
1513 }
1514 
1515 /*
1516  * helper function for btrfs_search_slot.  This does all of the checks
1517  * for node-level blocks and does any balancing required based on
1518  * the ins_len.
1519  *
1520  * If no extra work was required, zero is returned.  If we had to
1521  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1522  * start over
1523  */
1524 static int
1525 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1526 		       struct btrfs_root *root, struct btrfs_path *p,
1527 		       struct extent_buffer *b, int level, int ins_len,
1528 		       int *write_lock_level)
1529 {
1530 	struct btrfs_fs_info *fs_info = root->fs_info;
1531 	int ret = 0;
1532 
1533 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1534 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1535 
1536 		if (*write_lock_level < level + 1) {
1537 			*write_lock_level = level + 1;
1538 			btrfs_release_path(p);
1539 			return -EAGAIN;
1540 		}
1541 
1542 		reada_for_balance(p, level);
1543 		ret = split_node(trans, root, p, level);
1544 
1545 		b = p->nodes[level];
1546 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1547 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1548 
1549 		if (*write_lock_level < level + 1) {
1550 			*write_lock_level = level + 1;
1551 			btrfs_release_path(p);
1552 			return -EAGAIN;
1553 		}
1554 
1555 		reada_for_balance(p, level);
1556 		ret = balance_level(trans, root, p, level);
1557 		if (ret)
1558 			return ret;
1559 
1560 		b = p->nodes[level];
1561 		if (!b) {
1562 			btrfs_release_path(p);
1563 			return -EAGAIN;
1564 		}
1565 		BUG_ON(btrfs_header_nritems(b) == 1);
1566 	}
1567 	return ret;
1568 }
1569 
1570 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1571 		u64 iobjectid, u64 ioff, u8 key_type,
1572 		struct btrfs_key *found_key)
1573 {
1574 	int ret;
1575 	struct btrfs_key key;
1576 	struct extent_buffer *eb;
1577 
1578 	ASSERT(path);
1579 	ASSERT(found_key);
1580 
1581 	key.type = key_type;
1582 	key.objectid = iobjectid;
1583 	key.offset = ioff;
1584 
1585 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1586 	if (ret < 0)
1587 		return ret;
1588 
1589 	eb = path->nodes[0];
1590 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1591 		ret = btrfs_next_leaf(fs_root, path);
1592 		if (ret)
1593 			return ret;
1594 		eb = path->nodes[0];
1595 	}
1596 
1597 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1598 	if (found_key->type != key.type ||
1599 			found_key->objectid != key.objectid)
1600 		return 1;
1601 
1602 	return 0;
1603 }
1604 
1605 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1606 							struct btrfs_path *p,
1607 							int write_lock_level)
1608 {
1609 	struct extent_buffer *b;
1610 	int root_lock = 0;
1611 	int level = 0;
1612 
1613 	if (p->search_commit_root) {
1614 		b = root->commit_root;
1615 		atomic_inc(&b->refs);
1616 		level = btrfs_header_level(b);
1617 		/*
1618 		 * Ensure that all callers have set skip_locking when
1619 		 * p->search_commit_root = 1.
1620 		 */
1621 		ASSERT(p->skip_locking == 1);
1622 
1623 		goto out;
1624 	}
1625 
1626 	if (p->skip_locking) {
1627 		b = btrfs_root_node(root);
1628 		level = btrfs_header_level(b);
1629 		goto out;
1630 	}
1631 
1632 	/* We try very hard to do read locks on the root */
1633 	root_lock = BTRFS_READ_LOCK;
1634 
1635 	/*
1636 	 * If the level is set to maximum, we can skip trying to get the read
1637 	 * lock.
1638 	 */
1639 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1640 		/*
1641 		 * We don't know the level of the root node until we actually
1642 		 * have it read locked
1643 		 */
1644 		if (p->nowait) {
1645 			b = btrfs_try_read_lock_root_node(root);
1646 			if (IS_ERR(b))
1647 				return b;
1648 		} else {
1649 			b = btrfs_read_lock_root_node(root);
1650 		}
1651 		level = btrfs_header_level(b);
1652 		if (level > write_lock_level)
1653 			goto out;
1654 
1655 		/* Whoops, must trade for write lock */
1656 		btrfs_tree_read_unlock(b);
1657 		free_extent_buffer(b);
1658 	}
1659 
1660 	b = btrfs_lock_root_node(root);
1661 	root_lock = BTRFS_WRITE_LOCK;
1662 
1663 	/* The level might have changed, check again */
1664 	level = btrfs_header_level(b);
1665 
1666 out:
1667 	/*
1668 	 * The root may have failed to write out at some point, and thus is no
1669 	 * longer valid, return an error in this case.
1670 	 */
1671 	if (!extent_buffer_uptodate(b)) {
1672 		if (root_lock)
1673 			btrfs_tree_unlock_rw(b, root_lock);
1674 		free_extent_buffer(b);
1675 		return ERR_PTR(-EIO);
1676 	}
1677 
1678 	p->nodes[level] = b;
1679 	if (!p->skip_locking)
1680 		p->locks[level] = root_lock;
1681 	/*
1682 	 * Callers are responsible for dropping b's references.
1683 	 */
1684 	return b;
1685 }
1686 
1687 /*
1688  * Replace the extent buffer at the lowest level of the path with a cloned
1689  * version. The purpose is to be able to use it safely, after releasing the
1690  * commit root semaphore, even if relocation is happening in parallel, the
1691  * transaction used for relocation is committed and the extent buffer is
1692  * reallocated in the next transaction.
1693  *
1694  * This is used in a context where the caller does not prevent transaction
1695  * commits from happening, either by holding a transaction handle or holding
1696  * some lock, while it's doing searches through a commit root.
1697  * At the moment it's only used for send operations.
1698  */
1699 static int finish_need_commit_sem_search(struct btrfs_path *path)
1700 {
1701 	const int i = path->lowest_level;
1702 	const int slot = path->slots[i];
1703 	struct extent_buffer *lowest = path->nodes[i];
1704 	struct extent_buffer *clone;
1705 
1706 	ASSERT(path->need_commit_sem);
1707 
1708 	if (!lowest)
1709 		return 0;
1710 
1711 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1712 
1713 	clone = btrfs_clone_extent_buffer(lowest);
1714 	if (!clone)
1715 		return -ENOMEM;
1716 
1717 	btrfs_release_path(path);
1718 	path->nodes[i] = clone;
1719 	path->slots[i] = slot;
1720 
1721 	return 0;
1722 }
1723 
1724 static inline int search_for_key_slot(struct extent_buffer *eb,
1725 				      int search_low_slot,
1726 				      const struct btrfs_key *key,
1727 				      int prev_cmp,
1728 				      int *slot)
1729 {
1730 	/*
1731 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1732 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1733 	 * always be at slot 0 on lower levels, since each key pointer
1734 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1735 	 * subtree it points to. Thus we can skip searching lower levels.
1736 	 */
1737 	if (prev_cmp == 0) {
1738 		*slot = 0;
1739 		return 0;
1740 	}
1741 
1742 	return generic_bin_search(eb, search_low_slot, key, slot);
1743 }
1744 
1745 static int search_leaf(struct btrfs_trans_handle *trans,
1746 		       struct btrfs_root *root,
1747 		       const struct btrfs_key *key,
1748 		       struct btrfs_path *path,
1749 		       int ins_len,
1750 		       int prev_cmp)
1751 {
1752 	struct extent_buffer *leaf = path->nodes[0];
1753 	int leaf_free_space = -1;
1754 	int search_low_slot = 0;
1755 	int ret;
1756 	bool do_bin_search = true;
1757 
1758 	/*
1759 	 * If we are doing an insertion, the leaf has enough free space and the
1760 	 * destination slot for the key is not slot 0, then we can unlock our
1761 	 * write lock on the parent, and any other upper nodes, before doing the
1762 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1763 	 * tasks to lock the parent and any other upper nodes.
1764 	 */
1765 	if (ins_len > 0) {
1766 		/*
1767 		 * Cache the leaf free space, since we will need it later and it
1768 		 * will not change until then.
1769 		 */
1770 		leaf_free_space = btrfs_leaf_free_space(leaf);
1771 
1772 		/*
1773 		 * !path->locks[1] means we have a single node tree, the leaf is
1774 		 * the root of the tree.
1775 		 */
1776 		if (path->locks[1] && leaf_free_space >= ins_len) {
1777 			struct btrfs_disk_key first_key;
1778 
1779 			ASSERT(btrfs_header_nritems(leaf) > 0);
1780 			btrfs_item_key(leaf, &first_key, 0);
1781 
1782 			/*
1783 			 * Doing the extra comparison with the first key is cheap,
1784 			 * taking into account that the first key is very likely
1785 			 * already in a cache line because it immediately follows
1786 			 * the extent buffer's header and we have recently accessed
1787 			 * the header's level field.
1788 			 */
1789 			ret = comp_keys(&first_key, key);
1790 			if (ret < 0) {
1791 				/*
1792 				 * The first key is smaller than the key we want
1793 				 * to insert, so we are safe to unlock all upper
1794 				 * nodes and we have to do the binary search.
1795 				 *
1796 				 * We do use btrfs_unlock_up_safe() and not
1797 				 * unlock_up() because the later does not unlock
1798 				 * nodes with a slot of 0 - we can safely unlock
1799 				 * any node even if its slot is 0 since in this
1800 				 * case the key does not end up at slot 0 of the
1801 				 * leaf and there's no need to split the leaf.
1802 				 */
1803 				btrfs_unlock_up_safe(path, 1);
1804 				search_low_slot = 1;
1805 			} else {
1806 				/*
1807 				 * The first key is >= then the key we want to
1808 				 * insert, so we can skip the binary search as
1809 				 * the target key will be at slot 0.
1810 				 *
1811 				 * We can not unlock upper nodes when the key is
1812 				 * less than the first key, because we will need
1813 				 * to update the key at slot 0 of the parent node
1814 				 * and possibly of other upper nodes too.
1815 				 * If the key matches the first key, then we can
1816 				 * unlock all the upper nodes, using
1817 				 * btrfs_unlock_up_safe() instead of unlock_up()
1818 				 * as stated above.
1819 				 */
1820 				if (ret == 0)
1821 					btrfs_unlock_up_safe(path, 1);
1822 				/*
1823 				 * ret is already 0 or 1, matching the result of
1824 				 * a btrfs_bin_search() call, so there is no need
1825 				 * to adjust it.
1826 				 */
1827 				do_bin_search = false;
1828 				path->slots[0] = 0;
1829 			}
1830 		}
1831 	}
1832 
1833 	if (do_bin_search) {
1834 		ret = search_for_key_slot(leaf, search_low_slot, key,
1835 					  prev_cmp, &path->slots[0]);
1836 		if (ret < 0)
1837 			return ret;
1838 	}
1839 
1840 	if (ins_len > 0) {
1841 		/*
1842 		 * Item key already exists. In this case, if we are allowed to
1843 		 * insert the item (for example, in dir_item case, item key
1844 		 * collision is allowed), it will be merged with the original
1845 		 * item. Only the item size grows, no new btrfs item will be
1846 		 * added. If search_for_extension is not set, ins_len already
1847 		 * accounts the size btrfs_item, deduct it here so leaf space
1848 		 * check will be correct.
1849 		 */
1850 		if (ret == 0 && !path->search_for_extension) {
1851 			ASSERT(ins_len >= sizeof(struct btrfs_item));
1852 			ins_len -= sizeof(struct btrfs_item);
1853 		}
1854 
1855 		ASSERT(leaf_free_space >= 0);
1856 
1857 		if (leaf_free_space < ins_len) {
1858 			int err;
1859 
1860 			err = split_leaf(trans, root, key, path, ins_len,
1861 					 (ret == 0));
1862 			ASSERT(err <= 0);
1863 			if (WARN_ON(err > 0))
1864 				err = -EUCLEAN;
1865 			if (err)
1866 				ret = err;
1867 		}
1868 	}
1869 
1870 	return ret;
1871 }
1872 
1873 /*
1874  * btrfs_search_slot - look for a key in a tree and perform necessary
1875  * modifications to preserve tree invariants.
1876  *
1877  * @trans:	Handle of transaction, used when modifying the tree
1878  * @p:		Holds all btree nodes along the search path
1879  * @root:	The root node of the tree
1880  * @key:	The key we are looking for
1881  * @ins_len:	Indicates purpose of search:
1882  *              >0  for inserts it's size of item inserted (*)
1883  *              <0  for deletions
1884  *               0  for plain searches, not modifying the tree
1885  *
1886  *              (*) If size of item inserted doesn't include
1887  *              sizeof(struct btrfs_item), then p->search_for_extension must
1888  *              be set.
1889  * @cow:	boolean should CoW operations be performed. Must always be 1
1890  *		when modifying the tree.
1891  *
1892  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1893  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1894  *
1895  * If @key is found, 0 is returned and you can find the item in the leaf level
1896  * of the path (level 0)
1897  *
1898  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1899  * points to the slot where it should be inserted
1900  *
1901  * If an error is encountered while searching the tree a negative error number
1902  * is returned
1903  */
1904 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1905 		      const struct btrfs_key *key, struct btrfs_path *p,
1906 		      int ins_len, int cow)
1907 {
1908 	struct btrfs_fs_info *fs_info = root->fs_info;
1909 	struct extent_buffer *b;
1910 	int slot;
1911 	int ret;
1912 	int err;
1913 	int level;
1914 	int lowest_unlock = 1;
1915 	/* everything at write_lock_level or lower must be write locked */
1916 	int write_lock_level = 0;
1917 	u8 lowest_level = 0;
1918 	int min_write_lock_level;
1919 	int prev_cmp;
1920 
1921 	lowest_level = p->lowest_level;
1922 	WARN_ON(lowest_level && ins_len > 0);
1923 	WARN_ON(p->nodes[0] != NULL);
1924 	BUG_ON(!cow && ins_len);
1925 
1926 	/*
1927 	 * For now only allow nowait for read only operations.  There's no
1928 	 * strict reason why we can't, we just only need it for reads so it's
1929 	 * only implemented for reads.
1930 	 */
1931 	ASSERT(!p->nowait || !cow);
1932 
1933 	if (ins_len < 0) {
1934 		lowest_unlock = 2;
1935 
1936 		/* when we are removing items, we might have to go up to level
1937 		 * two as we update tree pointers  Make sure we keep write
1938 		 * for those levels as well
1939 		 */
1940 		write_lock_level = 2;
1941 	} else if (ins_len > 0) {
1942 		/*
1943 		 * for inserting items, make sure we have a write lock on
1944 		 * level 1 so we can update keys
1945 		 */
1946 		write_lock_level = 1;
1947 	}
1948 
1949 	if (!cow)
1950 		write_lock_level = -1;
1951 
1952 	if (cow && (p->keep_locks || p->lowest_level))
1953 		write_lock_level = BTRFS_MAX_LEVEL;
1954 
1955 	min_write_lock_level = write_lock_level;
1956 
1957 	if (p->need_commit_sem) {
1958 		ASSERT(p->search_commit_root);
1959 		if (p->nowait) {
1960 			if (!down_read_trylock(&fs_info->commit_root_sem))
1961 				return -EAGAIN;
1962 		} else {
1963 			down_read(&fs_info->commit_root_sem);
1964 		}
1965 	}
1966 
1967 again:
1968 	prev_cmp = -1;
1969 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
1970 	if (IS_ERR(b)) {
1971 		ret = PTR_ERR(b);
1972 		goto done;
1973 	}
1974 
1975 	while (b) {
1976 		int dec = 0;
1977 
1978 		level = btrfs_header_level(b);
1979 
1980 		if (cow) {
1981 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1982 
1983 			/*
1984 			 * if we don't really need to cow this block
1985 			 * then we don't want to set the path blocking,
1986 			 * so we test it here
1987 			 */
1988 			if (!should_cow_block(trans, root, b))
1989 				goto cow_done;
1990 
1991 			/*
1992 			 * must have write locks on this node and the
1993 			 * parent
1994 			 */
1995 			if (level > write_lock_level ||
1996 			    (level + 1 > write_lock_level &&
1997 			    level + 1 < BTRFS_MAX_LEVEL &&
1998 			    p->nodes[level + 1])) {
1999 				write_lock_level = level + 1;
2000 				btrfs_release_path(p);
2001 				goto again;
2002 			}
2003 
2004 			if (last_level)
2005 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2006 						      &b,
2007 						      BTRFS_NESTING_COW);
2008 			else
2009 				err = btrfs_cow_block(trans, root, b,
2010 						      p->nodes[level + 1],
2011 						      p->slots[level + 1], &b,
2012 						      BTRFS_NESTING_COW);
2013 			if (err) {
2014 				ret = err;
2015 				goto done;
2016 			}
2017 		}
2018 cow_done:
2019 		p->nodes[level] = b;
2020 
2021 		/*
2022 		 * we have a lock on b and as long as we aren't changing
2023 		 * the tree, there is no way to for the items in b to change.
2024 		 * It is safe to drop the lock on our parent before we
2025 		 * go through the expensive btree search on b.
2026 		 *
2027 		 * If we're inserting or deleting (ins_len != 0), then we might
2028 		 * be changing slot zero, which may require changing the parent.
2029 		 * So, we can't drop the lock until after we know which slot
2030 		 * we're operating on.
2031 		 */
2032 		if (!ins_len && !p->keep_locks) {
2033 			int u = level + 1;
2034 
2035 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2036 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2037 				p->locks[u] = 0;
2038 			}
2039 		}
2040 
2041 		if (level == 0) {
2042 			if (ins_len > 0)
2043 				ASSERT(write_lock_level >= 1);
2044 
2045 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2046 			if (!p->search_for_split)
2047 				unlock_up(p, level, lowest_unlock,
2048 					  min_write_lock_level, NULL);
2049 			goto done;
2050 		}
2051 
2052 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2053 		if (ret < 0)
2054 			goto done;
2055 		prev_cmp = ret;
2056 
2057 		if (ret && slot > 0) {
2058 			dec = 1;
2059 			slot--;
2060 		}
2061 		p->slots[level] = slot;
2062 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2063 					     &write_lock_level);
2064 		if (err == -EAGAIN)
2065 			goto again;
2066 		if (err) {
2067 			ret = err;
2068 			goto done;
2069 		}
2070 		b = p->nodes[level];
2071 		slot = p->slots[level];
2072 
2073 		/*
2074 		 * Slot 0 is special, if we change the key we have to update
2075 		 * the parent pointer which means we must have a write lock on
2076 		 * the parent
2077 		 */
2078 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2079 			write_lock_level = level + 1;
2080 			btrfs_release_path(p);
2081 			goto again;
2082 		}
2083 
2084 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2085 			  &write_lock_level);
2086 
2087 		if (level == lowest_level) {
2088 			if (dec)
2089 				p->slots[level]++;
2090 			goto done;
2091 		}
2092 
2093 		err = read_block_for_search(root, p, &b, level, slot, key);
2094 		if (err == -EAGAIN)
2095 			goto again;
2096 		if (err) {
2097 			ret = err;
2098 			goto done;
2099 		}
2100 
2101 		if (!p->skip_locking) {
2102 			level = btrfs_header_level(b);
2103 
2104 			btrfs_maybe_reset_lockdep_class(root, b);
2105 
2106 			if (level <= write_lock_level) {
2107 				btrfs_tree_lock(b);
2108 				p->locks[level] = BTRFS_WRITE_LOCK;
2109 			} else {
2110 				if (p->nowait) {
2111 					if (!btrfs_try_tree_read_lock(b)) {
2112 						free_extent_buffer(b);
2113 						ret = -EAGAIN;
2114 						goto done;
2115 					}
2116 				} else {
2117 					btrfs_tree_read_lock(b);
2118 				}
2119 				p->locks[level] = BTRFS_READ_LOCK;
2120 			}
2121 			p->nodes[level] = b;
2122 		}
2123 	}
2124 	ret = 1;
2125 done:
2126 	if (ret < 0 && !p->skip_release_on_error)
2127 		btrfs_release_path(p);
2128 
2129 	if (p->need_commit_sem) {
2130 		int ret2;
2131 
2132 		ret2 = finish_need_commit_sem_search(p);
2133 		up_read(&fs_info->commit_root_sem);
2134 		if (ret2)
2135 			ret = ret2;
2136 	}
2137 
2138 	return ret;
2139 }
2140 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2141 
2142 /*
2143  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2144  * current state of the tree together with the operations recorded in the tree
2145  * modification log to search for the key in a previous version of this tree, as
2146  * denoted by the time_seq parameter.
2147  *
2148  * Naturally, there is no support for insert, delete or cow operations.
2149  *
2150  * The resulting path and return value will be set up as if we called
2151  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2152  */
2153 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2154 			  struct btrfs_path *p, u64 time_seq)
2155 {
2156 	struct btrfs_fs_info *fs_info = root->fs_info;
2157 	struct extent_buffer *b;
2158 	int slot;
2159 	int ret;
2160 	int err;
2161 	int level;
2162 	int lowest_unlock = 1;
2163 	u8 lowest_level = 0;
2164 
2165 	lowest_level = p->lowest_level;
2166 	WARN_ON(p->nodes[0] != NULL);
2167 	ASSERT(!p->nowait);
2168 
2169 	if (p->search_commit_root) {
2170 		BUG_ON(time_seq);
2171 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2172 	}
2173 
2174 again:
2175 	b = btrfs_get_old_root(root, time_seq);
2176 	if (!b) {
2177 		ret = -EIO;
2178 		goto done;
2179 	}
2180 	level = btrfs_header_level(b);
2181 	p->locks[level] = BTRFS_READ_LOCK;
2182 
2183 	while (b) {
2184 		int dec = 0;
2185 
2186 		level = btrfs_header_level(b);
2187 		p->nodes[level] = b;
2188 
2189 		/*
2190 		 * we have a lock on b and as long as we aren't changing
2191 		 * the tree, there is no way to for the items in b to change.
2192 		 * It is safe to drop the lock on our parent before we
2193 		 * go through the expensive btree search on b.
2194 		 */
2195 		btrfs_unlock_up_safe(p, level + 1);
2196 
2197 		ret = btrfs_bin_search(b, key, &slot);
2198 		if (ret < 0)
2199 			goto done;
2200 
2201 		if (level == 0) {
2202 			p->slots[level] = slot;
2203 			unlock_up(p, level, lowest_unlock, 0, NULL);
2204 			goto done;
2205 		}
2206 
2207 		if (ret && slot > 0) {
2208 			dec = 1;
2209 			slot--;
2210 		}
2211 		p->slots[level] = slot;
2212 		unlock_up(p, level, lowest_unlock, 0, NULL);
2213 
2214 		if (level == lowest_level) {
2215 			if (dec)
2216 				p->slots[level]++;
2217 			goto done;
2218 		}
2219 
2220 		err = read_block_for_search(root, p, &b, level, slot, key);
2221 		if (err == -EAGAIN)
2222 			goto again;
2223 		if (err) {
2224 			ret = err;
2225 			goto done;
2226 		}
2227 
2228 		level = btrfs_header_level(b);
2229 		btrfs_tree_read_lock(b);
2230 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2231 		if (!b) {
2232 			ret = -ENOMEM;
2233 			goto done;
2234 		}
2235 		p->locks[level] = BTRFS_READ_LOCK;
2236 		p->nodes[level] = b;
2237 	}
2238 	ret = 1;
2239 done:
2240 	if (ret < 0)
2241 		btrfs_release_path(p);
2242 
2243 	return ret;
2244 }
2245 
2246 /*
2247  * helper to use instead of search slot if no exact match is needed but
2248  * instead the next or previous item should be returned.
2249  * When find_higher is true, the next higher item is returned, the next lower
2250  * otherwise.
2251  * When return_any and find_higher are both true, and no higher item is found,
2252  * return the next lower instead.
2253  * When return_any is true and find_higher is false, and no lower item is found,
2254  * return the next higher instead.
2255  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2256  * < 0 on error
2257  */
2258 int btrfs_search_slot_for_read(struct btrfs_root *root,
2259 			       const struct btrfs_key *key,
2260 			       struct btrfs_path *p, int find_higher,
2261 			       int return_any)
2262 {
2263 	int ret;
2264 	struct extent_buffer *leaf;
2265 
2266 again:
2267 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2268 	if (ret <= 0)
2269 		return ret;
2270 	/*
2271 	 * a return value of 1 means the path is at the position where the
2272 	 * item should be inserted. Normally this is the next bigger item,
2273 	 * but in case the previous item is the last in a leaf, path points
2274 	 * to the first free slot in the previous leaf, i.e. at an invalid
2275 	 * item.
2276 	 */
2277 	leaf = p->nodes[0];
2278 
2279 	if (find_higher) {
2280 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2281 			ret = btrfs_next_leaf(root, p);
2282 			if (ret <= 0)
2283 				return ret;
2284 			if (!return_any)
2285 				return 1;
2286 			/*
2287 			 * no higher item found, return the next
2288 			 * lower instead
2289 			 */
2290 			return_any = 0;
2291 			find_higher = 0;
2292 			btrfs_release_path(p);
2293 			goto again;
2294 		}
2295 	} else {
2296 		if (p->slots[0] == 0) {
2297 			ret = btrfs_prev_leaf(root, p);
2298 			if (ret < 0)
2299 				return ret;
2300 			if (!ret) {
2301 				leaf = p->nodes[0];
2302 				if (p->slots[0] == btrfs_header_nritems(leaf))
2303 					p->slots[0]--;
2304 				return 0;
2305 			}
2306 			if (!return_any)
2307 				return 1;
2308 			/*
2309 			 * no lower item found, return the next
2310 			 * higher instead
2311 			 */
2312 			return_any = 0;
2313 			find_higher = 1;
2314 			btrfs_release_path(p);
2315 			goto again;
2316 		} else {
2317 			--p->slots[0];
2318 		}
2319 	}
2320 	return 0;
2321 }
2322 
2323 /*
2324  * Execute search and call btrfs_previous_item to traverse backwards if the item
2325  * was not found.
2326  *
2327  * Return 0 if found, 1 if not found and < 0 if error.
2328  */
2329 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2330 			   struct btrfs_path *path)
2331 {
2332 	int ret;
2333 
2334 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2335 	if (ret > 0)
2336 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2337 
2338 	if (ret == 0)
2339 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2340 
2341 	return ret;
2342 }
2343 
2344 /**
2345  * Search for a valid slot for the given path.
2346  *
2347  * @root:	The root node of the tree.
2348  * @key:	Will contain a valid item if found.
2349  * @path:	The starting point to validate the slot.
2350  *
2351  * Return: 0  if the item is valid
2352  *         1  if not found
2353  *         <0 if error.
2354  */
2355 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2356 			      struct btrfs_path *path)
2357 {
2358 	while (1) {
2359 		int ret;
2360 		const int slot = path->slots[0];
2361 		const struct extent_buffer *leaf = path->nodes[0];
2362 
2363 		/* This is where we start walking the path. */
2364 		if (slot >= btrfs_header_nritems(leaf)) {
2365 			/*
2366 			 * If we've reached the last slot in this leaf we need
2367 			 * to go to the next leaf and reset the path.
2368 			 */
2369 			ret = btrfs_next_leaf(root, path);
2370 			if (ret)
2371 				return ret;
2372 			continue;
2373 		}
2374 		/* Store the found, valid item in @key. */
2375 		btrfs_item_key_to_cpu(leaf, key, slot);
2376 		break;
2377 	}
2378 	return 0;
2379 }
2380 
2381 /*
2382  * adjust the pointers going up the tree, starting at level
2383  * making sure the right key of each node is points to 'key'.
2384  * This is used after shifting pointers to the left, so it stops
2385  * fixing up pointers when a given leaf/node is not in slot 0 of the
2386  * higher levels
2387  *
2388  */
2389 static void fixup_low_keys(struct btrfs_path *path,
2390 			   struct btrfs_disk_key *key, int level)
2391 {
2392 	int i;
2393 	struct extent_buffer *t;
2394 	int ret;
2395 
2396 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2397 		int tslot = path->slots[i];
2398 
2399 		if (!path->nodes[i])
2400 			break;
2401 		t = path->nodes[i];
2402 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2403 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2404 		BUG_ON(ret < 0);
2405 		btrfs_set_node_key(t, key, tslot);
2406 		btrfs_mark_buffer_dirty(path->nodes[i]);
2407 		if (tslot != 0)
2408 			break;
2409 	}
2410 }
2411 
2412 /*
2413  * update item key.
2414  *
2415  * This function isn't completely safe. It's the caller's responsibility
2416  * that the new key won't break the order
2417  */
2418 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2419 			     struct btrfs_path *path,
2420 			     const struct btrfs_key *new_key)
2421 {
2422 	struct btrfs_disk_key disk_key;
2423 	struct extent_buffer *eb;
2424 	int slot;
2425 
2426 	eb = path->nodes[0];
2427 	slot = path->slots[0];
2428 	if (slot > 0) {
2429 		btrfs_item_key(eb, &disk_key, slot - 1);
2430 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2431 			btrfs_crit(fs_info,
2432 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2433 				   slot, btrfs_disk_key_objectid(&disk_key),
2434 				   btrfs_disk_key_type(&disk_key),
2435 				   btrfs_disk_key_offset(&disk_key),
2436 				   new_key->objectid, new_key->type,
2437 				   new_key->offset);
2438 			btrfs_print_leaf(eb);
2439 			BUG();
2440 		}
2441 	}
2442 	if (slot < btrfs_header_nritems(eb) - 1) {
2443 		btrfs_item_key(eb, &disk_key, slot + 1);
2444 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2445 			btrfs_crit(fs_info,
2446 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2447 				   slot, btrfs_disk_key_objectid(&disk_key),
2448 				   btrfs_disk_key_type(&disk_key),
2449 				   btrfs_disk_key_offset(&disk_key),
2450 				   new_key->objectid, new_key->type,
2451 				   new_key->offset);
2452 			btrfs_print_leaf(eb);
2453 			BUG();
2454 		}
2455 	}
2456 
2457 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2458 	btrfs_set_item_key(eb, &disk_key, slot);
2459 	btrfs_mark_buffer_dirty(eb);
2460 	if (slot == 0)
2461 		fixup_low_keys(path, &disk_key, 1);
2462 }
2463 
2464 /*
2465  * Check key order of two sibling extent buffers.
2466  *
2467  * Return true if something is wrong.
2468  * Return false if everything is fine.
2469  *
2470  * Tree-checker only works inside one tree block, thus the following
2471  * corruption can not be detected by tree-checker:
2472  *
2473  * Leaf @left			| Leaf @right
2474  * --------------------------------------------------------------
2475  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2476  *
2477  * Key f6 in leaf @left itself is valid, but not valid when the next
2478  * key in leaf @right is 7.
2479  * This can only be checked at tree block merge time.
2480  * And since tree checker has ensured all key order in each tree block
2481  * is correct, we only need to bother the last key of @left and the first
2482  * key of @right.
2483  */
2484 static bool check_sibling_keys(struct extent_buffer *left,
2485 			       struct extent_buffer *right)
2486 {
2487 	struct btrfs_key left_last;
2488 	struct btrfs_key right_first;
2489 	int level = btrfs_header_level(left);
2490 	int nr_left = btrfs_header_nritems(left);
2491 	int nr_right = btrfs_header_nritems(right);
2492 
2493 	/* No key to check in one of the tree blocks */
2494 	if (!nr_left || !nr_right)
2495 		return false;
2496 
2497 	if (level) {
2498 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2499 		btrfs_node_key_to_cpu(right, &right_first, 0);
2500 	} else {
2501 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2502 		btrfs_item_key_to_cpu(right, &right_first, 0);
2503 	}
2504 
2505 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2506 		btrfs_crit(left->fs_info,
2507 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2508 			   left_last.objectid, left_last.type,
2509 			   left_last.offset, right_first.objectid,
2510 			   right_first.type, right_first.offset);
2511 		return true;
2512 	}
2513 	return false;
2514 }
2515 
2516 /*
2517  * try to push data from one node into the next node left in the
2518  * tree.
2519  *
2520  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2521  * error, and > 0 if there was no room in the left hand block.
2522  */
2523 static int push_node_left(struct btrfs_trans_handle *trans,
2524 			  struct extent_buffer *dst,
2525 			  struct extent_buffer *src, int empty)
2526 {
2527 	struct btrfs_fs_info *fs_info = trans->fs_info;
2528 	int push_items = 0;
2529 	int src_nritems;
2530 	int dst_nritems;
2531 	int ret = 0;
2532 
2533 	src_nritems = btrfs_header_nritems(src);
2534 	dst_nritems = btrfs_header_nritems(dst);
2535 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2536 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2537 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2538 
2539 	if (!empty && src_nritems <= 8)
2540 		return 1;
2541 
2542 	if (push_items <= 0)
2543 		return 1;
2544 
2545 	if (empty) {
2546 		push_items = min(src_nritems, push_items);
2547 		if (push_items < src_nritems) {
2548 			/* leave at least 8 pointers in the node if
2549 			 * we aren't going to empty it
2550 			 */
2551 			if (src_nritems - push_items < 8) {
2552 				if (push_items <= 8)
2553 					return 1;
2554 				push_items -= 8;
2555 			}
2556 		}
2557 	} else
2558 		push_items = min(src_nritems - 8, push_items);
2559 
2560 	/* dst is the left eb, src is the middle eb */
2561 	if (check_sibling_keys(dst, src)) {
2562 		ret = -EUCLEAN;
2563 		btrfs_abort_transaction(trans, ret);
2564 		return ret;
2565 	}
2566 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2567 	if (ret) {
2568 		btrfs_abort_transaction(trans, ret);
2569 		return ret;
2570 	}
2571 	copy_extent_buffer(dst, src,
2572 			   btrfs_node_key_ptr_offset(dst_nritems),
2573 			   btrfs_node_key_ptr_offset(0),
2574 			   push_items * sizeof(struct btrfs_key_ptr));
2575 
2576 	if (push_items < src_nritems) {
2577 		/*
2578 		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2579 		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2580 		 */
2581 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2582 				      btrfs_node_key_ptr_offset(push_items),
2583 				      (src_nritems - push_items) *
2584 				      sizeof(struct btrfs_key_ptr));
2585 	}
2586 	btrfs_set_header_nritems(src, src_nritems - push_items);
2587 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2588 	btrfs_mark_buffer_dirty(src);
2589 	btrfs_mark_buffer_dirty(dst);
2590 
2591 	return ret;
2592 }
2593 
2594 /*
2595  * try to push data from one node into the next node right in the
2596  * tree.
2597  *
2598  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2599  * error, and > 0 if there was no room in the right hand block.
2600  *
2601  * this will  only push up to 1/2 the contents of the left node over
2602  */
2603 static int balance_node_right(struct btrfs_trans_handle *trans,
2604 			      struct extent_buffer *dst,
2605 			      struct extent_buffer *src)
2606 {
2607 	struct btrfs_fs_info *fs_info = trans->fs_info;
2608 	int push_items = 0;
2609 	int max_push;
2610 	int src_nritems;
2611 	int dst_nritems;
2612 	int ret = 0;
2613 
2614 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2615 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2616 
2617 	src_nritems = btrfs_header_nritems(src);
2618 	dst_nritems = btrfs_header_nritems(dst);
2619 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2620 	if (push_items <= 0)
2621 		return 1;
2622 
2623 	if (src_nritems < 4)
2624 		return 1;
2625 
2626 	max_push = src_nritems / 2 + 1;
2627 	/* don't try to empty the node */
2628 	if (max_push >= src_nritems)
2629 		return 1;
2630 
2631 	if (max_push < push_items)
2632 		push_items = max_push;
2633 
2634 	/* dst is the right eb, src is the middle eb */
2635 	if (check_sibling_keys(src, dst)) {
2636 		ret = -EUCLEAN;
2637 		btrfs_abort_transaction(trans, ret);
2638 		return ret;
2639 	}
2640 	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2641 	BUG_ON(ret < 0);
2642 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2643 				      btrfs_node_key_ptr_offset(0),
2644 				      (dst_nritems) *
2645 				      sizeof(struct btrfs_key_ptr));
2646 
2647 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2648 					 push_items);
2649 	if (ret) {
2650 		btrfs_abort_transaction(trans, ret);
2651 		return ret;
2652 	}
2653 	copy_extent_buffer(dst, src,
2654 			   btrfs_node_key_ptr_offset(0),
2655 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2656 			   push_items * sizeof(struct btrfs_key_ptr));
2657 
2658 	btrfs_set_header_nritems(src, src_nritems - push_items);
2659 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2660 
2661 	btrfs_mark_buffer_dirty(src);
2662 	btrfs_mark_buffer_dirty(dst);
2663 
2664 	return ret;
2665 }
2666 
2667 /*
2668  * helper function to insert a new root level in the tree.
2669  * A new node is allocated, and a single item is inserted to
2670  * point to the existing root
2671  *
2672  * returns zero on success or < 0 on failure.
2673  */
2674 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2675 			   struct btrfs_root *root,
2676 			   struct btrfs_path *path, int level)
2677 {
2678 	struct btrfs_fs_info *fs_info = root->fs_info;
2679 	u64 lower_gen;
2680 	struct extent_buffer *lower;
2681 	struct extent_buffer *c;
2682 	struct extent_buffer *old;
2683 	struct btrfs_disk_key lower_key;
2684 	int ret;
2685 
2686 	BUG_ON(path->nodes[level]);
2687 	BUG_ON(path->nodes[level-1] != root->node);
2688 
2689 	lower = path->nodes[level-1];
2690 	if (level == 1)
2691 		btrfs_item_key(lower, &lower_key, 0);
2692 	else
2693 		btrfs_node_key(lower, &lower_key, 0);
2694 
2695 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2696 				   &lower_key, level, root->node->start, 0,
2697 				   BTRFS_NESTING_NEW_ROOT);
2698 	if (IS_ERR(c))
2699 		return PTR_ERR(c);
2700 
2701 	root_add_used(root, fs_info->nodesize);
2702 
2703 	btrfs_set_header_nritems(c, 1);
2704 	btrfs_set_node_key(c, &lower_key, 0);
2705 	btrfs_set_node_blockptr(c, 0, lower->start);
2706 	lower_gen = btrfs_header_generation(lower);
2707 	WARN_ON(lower_gen != trans->transid);
2708 
2709 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2710 
2711 	btrfs_mark_buffer_dirty(c);
2712 
2713 	old = root->node;
2714 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2715 	BUG_ON(ret < 0);
2716 	rcu_assign_pointer(root->node, c);
2717 
2718 	/* the super has an extra ref to root->node */
2719 	free_extent_buffer(old);
2720 
2721 	add_root_to_dirty_list(root);
2722 	atomic_inc(&c->refs);
2723 	path->nodes[level] = c;
2724 	path->locks[level] = BTRFS_WRITE_LOCK;
2725 	path->slots[level] = 0;
2726 	return 0;
2727 }
2728 
2729 /*
2730  * worker function to insert a single pointer in a node.
2731  * the node should have enough room for the pointer already
2732  *
2733  * slot and level indicate where you want the key to go, and
2734  * blocknr is the block the key points to.
2735  */
2736 static void insert_ptr(struct btrfs_trans_handle *trans,
2737 		       struct btrfs_path *path,
2738 		       struct btrfs_disk_key *key, u64 bytenr,
2739 		       int slot, int level)
2740 {
2741 	struct extent_buffer *lower;
2742 	int nritems;
2743 	int ret;
2744 
2745 	BUG_ON(!path->nodes[level]);
2746 	btrfs_assert_tree_write_locked(path->nodes[level]);
2747 	lower = path->nodes[level];
2748 	nritems = btrfs_header_nritems(lower);
2749 	BUG_ON(slot > nritems);
2750 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2751 	if (slot != nritems) {
2752 		if (level) {
2753 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2754 					slot, nritems - slot);
2755 			BUG_ON(ret < 0);
2756 		}
2757 		memmove_extent_buffer(lower,
2758 			      btrfs_node_key_ptr_offset(slot + 1),
2759 			      btrfs_node_key_ptr_offset(slot),
2760 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2761 	}
2762 	if (level) {
2763 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2764 					    BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2765 		BUG_ON(ret < 0);
2766 	}
2767 	btrfs_set_node_key(lower, key, slot);
2768 	btrfs_set_node_blockptr(lower, slot, bytenr);
2769 	WARN_ON(trans->transid == 0);
2770 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2771 	btrfs_set_header_nritems(lower, nritems + 1);
2772 	btrfs_mark_buffer_dirty(lower);
2773 }
2774 
2775 /*
2776  * split the node at the specified level in path in two.
2777  * The path is corrected to point to the appropriate node after the split
2778  *
2779  * Before splitting this tries to make some room in the node by pushing
2780  * left and right, if either one works, it returns right away.
2781  *
2782  * returns 0 on success and < 0 on failure
2783  */
2784 static noinline int split_node(struct btrfs_trans_handle *trans,
2785 			       struct btrfs_root *root,
2786 			       struct btrfs_path *path, int level)
2787 {
2788 	struct btrfs_fs_info *fs_info = root->fs_info;
2789 	struct extent_buffer *c;
2790 	struct extent_buffer *split;
2791 	struct btrfs_disk_key disk_key;
2792 	int mid;
2793 	int ret;
2794 	u32 c_nritems;
2795 
2796 	c = path->nodes[level];
2797 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2798 	if (c == root->node) {
2799 		/*
2800 		 * trying to split the root, lets make a new one
2801 		 *
2802 		 * tree mod log: We don't log_removal old root in
2803 		 * insert_new_root, because that root buffer will be kept as a
2804 		 * normal node. We are going to log removal of half of the
2805 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2806 		 * holding a tree lock on the buffer, which is why we cannot
2807 		 * race with other tree_mod_log users.
2808 		 */
2809 		ret = insert_new_root(trans, root, path, level + 1);
2810 		if (ret)
2811 			return ret;
2812 	} else {
2813 		ret = push_nodes_for_insert(trans, root, path, level);
2814 		c = path->nodes[level];
2815 		if (!ret && btrfs_header_nritems(c) <
2816 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2817 			return 0;
2818 		if (ret < 0)
2819 			return ret;
2820 	}
2821 
2822 	c_nritems = btrfs_header_nritems(c);
2823 	mid = (c_nritems + 1) / 2;
2824 	btrfs_node_key(c, &disk_key, mid);
2825 
2826 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2827 				       &disk_key, level, c->start, 0,
2828 				       BTRFS_NESTING_SPLIT);
2829 	if (IS_ERR(split))
2830 		return PTR_ERR(split);
2831 
2832 	root_add_used(root, fs_info->nodesize);
2833 	ASSERT(btrfs_header_level(c) == level);
2834 
2835 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2836 	if (ret) {
2837 		btrfs_abort_transaction(trans, ret);
2838 		return ret;
2839 	}
2840 	copy_extent_buffer(split, c,
2841 			   btrfs_node_key_ptr_offset(0),
2842 			   btrfs_node_key_ptr_offset(mid),
2843 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2844 	btrfs_set_header_nritems(split, c_nritems - mid);
2845 	btrfs_set_header_nritems(c, mid);
2846 
2847 	btrfs_mark_buffer_dirty(c);
2848 	btrfs_mark_buffer_dirty(split);
2849 
2850 	insert_ptr(trans, path, &disk_key, split->start,
2851 		   path->slots[level + 1] + 1, level + 1);
2852 
2853 	if (path->slots[level] >= mid) {
2854 		path->slots[level] -= mid;
2855 		btrfs_tree_unlock(c);
2856 		free_extent_buffer(c);
2857 		path->nodes[level] = split;
2858 		path->slots[level + 1] += 1;
2859 	} else {
2860 		btrfs_tree_unlock(split);
2861 		free_extent_buffer(split);
2862 	}
2863 	return 0;
2864 }
2865 
2866 /*
2867  * how many bytes are required to store the items in a leaf.  start
2868  * and nr indicate which items in the leaf to check.  This totals up the
2869  * space used both by the item structs and the item data
2870  */
2871 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2872 {
2873 	int data_len;
2874 	int nritems = btrfs_header_nritems(l);
2875 	int end = min(nritems, start + nr) - 1;
2876 
2877 	if (!nr)
2878 		return 0;
2879 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
2880 	data_len = data_len - btrfs_item_offset(l, end);
2881 	data_len += sizeof(struct btrfs_item) * nr;
2882 	WARN_ON(data_len < 0);
2883 	return data_len;
2884 }
2885 
2886 /*
2887  * The space between the end of the leaf items and
2888  * the start of the leaf data.  IOW, how much room
2889  * the leaf has left for both items and data
2890  */
2891 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2892 {
2893 	struct btrfs_fs_info *fs_info = leaf->fs_info;
2894 	int nritems = btrfs_header_nritems(leaf);
2895 	int ret;
2896 
2897 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2898 	if (ret < 0) {
2899 		btrfs_crit(fs_info,
2900 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2901 			   ret,
2902 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2903 			   leaf_space_used(leaf, 0, nritems), nritems);
2904 	}
2905 	return ret;
2906 }
2907 
2908 /*
2909  * min slot controls the lowest index we're willing to push to the
2910  * right.  We'll push up to and including min_slot, but no lower
2911  */
2912 static noinline int __push_leaf_right(struct btrfs_path *path,
2913 				      int data_size, int empty,
2914 				      struct extent_buffer *right,
2915 				      int free_space, u32 left_nritems,
2916 				      u32 min_slot)
2917 {
2918 	struct btrfs_fs_info *fs_info = right->fs_info;
2919 	struct extent_buffer *left = path->nodes[0];
2920 	struct extent_buffer *upper = path->nodes[1];
2921 	struct btrfs_map_token token;
2922 	struct btrfs_disk_key disk_key;
2923 	int slot;
2924 	u32 i;
2925 	int push_space = 0;
2926 	int push_items = 0;
2927 	u32 nr;
2928 	u32 right_nritems;
2929 	u32 data_end;
2930 	u32 this_item_size;
2931 
2932 	if (empty)
2933 		nr = 0;
2934 	else
2935 		nr = max_t(u32, 1, min_slot);
2936 
2937 	if (path->slots[0] >= left_nritems)
2938 		push_space += data_size;
2939 
2940 	slot = path->slots[1];
2941 	i = left_nritems - 1;
2942 	while (i >= nr) {
2943 		if (!empty && push_items > 0) {
2944 			if (path->slots[0] > i)
2945 				break;
2946 			if (path->slots[0] == i) {
2947 				int space = btrfs_leaf_free_space(left);
2948 
2949 				if (space + push_space * 2 > free_space)
2950 					break;
2951 			}
2952 		}
2953 
2954 		if (path->slots[0] == i)
2955 			push_space += data_size;
2956 
2957 		this_item_size = btrfs_item_size(left, i);
2958 		if (this_item_size + sizeof(struct btrfs_item) +
2959 		    push_space > free_space)
2960 			break;
2961 
2962 		push_items++;
2963 		push_space += this_item_size + sizeof(struct btrfs_item);
2964 		if (i == 0)
2965 			break;
2966 		i--;
2967 	}
2968 
2969 	if (push_items == 0)
2970 		goto out_unlock;
2971 
2972 	WARN_ON(!empty && push_items == left_nritems);
2973 
2974 	/* push left to right */
2975 	right_nritems = btrfs_header_nritems(right);
2976 
2977 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
2978 	push_space -= leaf_data_end(left);
2979 
2980 	/* make room in the right data area */
2981 	data_end = leaf_data_end(right);
2982 	memmove_extent_buffer(right,
2983 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2984 			      BTRFS_LEAF_DATA_OFFSET + data_end,
2985 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2986 
2987 	/* copy from the left data area */
2988 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2989 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2990 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2991 		     push_space);
2992 
2993 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2994 			      btrfs_item_nr_offset(0),
2995 			      right_nritems * sizeof(struct btrfs_item));
2996 
2997 	/* copy the items from left to right */
2998 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2999 		   btrfs_item_nr_offset(left_nritems - push_items),
3000 		   push_items * sizeof(struct btrfs_item));
3001 
3002 	/* update the item pointers */
3003 	btrfs_init_map_token(&token, right);
3004 	right_nritems += push_items;
3005 	btrfs_set_header_nritems(right, right_nritems);
3006 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3007 	for (i = 0; i < right_nritems; i++) {
3008 		push_space -= btrfs_token_item_size(&token, i);
3009 		btrfs_set_token_item_offset(&token, i, push_space);
3010 	}
3011 
3012 	left_nritems -= push_items;
3013 	btrfs_set_header_nritems(left, left_nritems);
3014 
3015 	if (left_nritems)
3016 		btrfs_mark_buffer_dirty(left);
3017 	else
3018 		btrfs_clean_tree_block(left);
3019 
3020 	btrfs_mark_buffer_dirty(right);
3021 
3022 	btrfs_item_key(right, &disk_key, 0);
3023 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3024 	btrfs_mark_buffer_dirty(upper);
3025 
3026 	/* then fixup the leaf pointer in the path */
3027 	if (path->slots[0] >= left_nritems) {
3028 		path->slots[0] -= left_nritems;
3029 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3030 			btrfs_clean_tree_block(path->nodes[0]);
3031 		btrfs_tree_unlock(path->nodes[0]);
3032 		free_extent_buffer(path->nodes[0]);
3033 		path->nodes[0] = right;
3034 		path->slots[1] += 1;
3035 	} else {
3036 		btrfs_tree_unlock(right);
3037 		free_extent_buffer(right);
3038 	}
3039 	return 0;
3040 
3041 out_unlock:
3042 	btrfs_tree_unlock(right);
3043 	free_extent_buffer(right);
3044 	return 1;
3045 }
3046 
3047 /*
3048  * push some data in the path leaf to the right, trying to free up at
3049  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3050  *
3051  * returns 1 if the push failed because the other node didn't have enough
3052  * room, 0 if everything worked out and < 0 if there were major errors.
3053  *
3054  * this will push starting from min_slot to the end of the leaf.  It won't
3055  * push any slot lower than min_slot
3056  */
3057 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3058 			   *root, struct btrfs_path *path,
3059 			   int min_data_size, int data_size,
3060 			   int empty, u32 min_slot)
3061 {
3062 	struct extent_buffer *left = path->nodes[0];
3063 	struct extent_buffer *right;
3064 	struct extent_buffer *upper;
3065 	int slot;
3066 	int free_space;
3067 	u32 left_nritems;
3068 	int ret;
3069 
3070 	if (!path->nodes[1])
3071 		return 1;
3072 
3073 	slot = path->slots[1];
3074 	upper = path->nodes[1];
3075 	if (slot >= btrfs_header_nritems(upper) - 1)
3076 		return 1;
3077 
3078 	btrfs_assert_tree_write_locked(path->nodes[1]);
3079 
3080 	right = btrfs_read_node_slot(upper, slot + 1);
3081 	/*
3082 	 * slot + 1 is not valid or we fail to read the right node,
3083 	 * no big deal, just return.
3084 	 */
3085 	if (IS_ERR(right))
3086 		return 1;
3087 
3088 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3089 
3090 	free_space = btrfs_leaf_free_space(right);
3091 	if (free_space < data_size)
3092 		goto out_unlock;
3093 
3094 	ret = btrfs_cow_block(trans, root, right, upper,
3095 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3096 	if (ret)
3097 		goto out_unlock;
3098 
3099 	left_nritems = btrfs_header_nritems(left);
3100 	if (left_nritems == 0)
3101 		goto out_unlock;
3102 
3103 	if (check_sibling_keys(left, right)) {
3104 		ret = -EUCLEAN;
3105 		btrfs_tree_unlock(right);
3106 		free_extent_buffer(right);
3107 		return ret;
3108 	}
3109 	if (path->slots[0] == left_nritems && !empty) {
3110 		/* Key greater than all keys in the leaf, right neighbor has
3111 		 * enough room for it and we're not emptying our leaf to delete
3112 		 * it, therefore use right neighbor to insert the new item and
3113 		 * no need to touch/dirty our left leaf. */
3114 		btrfs_tree_unlock(left);
3115 		free_extent_buffer(left);
3116 		path->nodes[0] = right;
3117 		path->slots[0] = 0;
3118 		path->slots[1]++;
3119 		return 0;
3120 	}
3121 
3122 	return __push_leaf_right(path, min_data_size, empty,
3123 				right, free_space, left_nritems, min_slot);
3124 out_unlock:
3125 	btrfs_tree_unlock(right);
3126 	free_extent_buffer(right);
3127 	return 1;
3128 }
3129 
3130 /*
3131  * push some data in the path leaf to the left, trying to free up at
3132  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3133  *
3134  * max_slot can put a limit on how far into the leaf we'll push items.  The
3135  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3136  * items
3137  */
3138 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3139 				     int empty, struct extent_buffer *left,
3140 				     int free_space, u32 right_nritems,
3141 				     u32 max_slot)
3142 {
3143 	struct btrfs_fs_info *fs_info = left->fs_info;
3144 	struct btrfs_disk_key disk_key;
3145 	struct extent_buffer *right = path->nodes[0];
3146 	int i;
3147 	int push_space = 0;
3148 	int push_items = 0;
3149 	u32 old_left_nritems;
3150 	u32 nr;
3151 	int ret = 0;
3152 	u32 this_item_size;
3153 	u32 old_left_item_size;
3154 	struct btrfs_map_token token;
3155 
3156 	if (empty)
3157 		nr = min(right_nritems, max_slot);
3158 	else
3159 		nr = min(right_nritems - 1, max_slot);
3160 
3161 	for (i = 0; i < nr; i++) {
3162 		if (!empty && push_items > 0) {
3163 			if (path->slots[0] < i)
3164 				break;
3165 			if (path->slots[0] == i) {
3166 				int space = btrfs_leaf_free_space(right);
3167 
3168 				if (space + push_space * 2 > free_space)
3169 					break;
3170 			}
3171 		}
3172 
3173 		if (path->slots[0] == i)
3174 			push_space += data_size;
3175 
3176 		this_item_size = btrfs_item_size(right, i);
3177 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3178 		    free_space)
3179 			break;
3180 
3181 		push_items++;
3182 		push_space += this_item_size + sizeof(struct btrfs_item);
3183 	}
3184 
3185 	if (push_items == 0) {
3186 		ret = 1;
3187 		goto out;
3188 	}
3189 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3190 
3191 	/* push data from right to left */
3192 	copy_extent_buffer(left, right,
3193 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3194 			   btrfs_item_nr_offset(0),
3195 			   push_items * sizeof(struct btrfs_item));
3196 
3197 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3198 		     btrfs_item_offset(right, push_items - 1);
3199 
3200 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3201 		     leaf_data_end(left) - push_space,
3202 		     BTRFS_LEAF_DATA_OFFSET +
3203 		     btrfs_item_offset(right, push_items - 1),
3204 		     push_space);
3205 	old_left_nritems = btrfs_header_nritems(left);
3206 	BUG_ON(old_left_nritems <= 0);
3207 
3208 	btrfs_init_map_token(&token, left);
3209 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3210 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3211 		u32 ioff;
3212 
3213 		ioff = btrfs_token_item_offset(&token, i);
3214 		btrfs_set_token_item_offset(&token, i,
3215 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3216 	}
3217 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3218 
3219 	/* fixup right node */
3220 	if (push_items > right_nritems)
3221 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3222 		       right_nritems);
3223 
3224 	if (push_items < right_nritems) {
3225 		push_space = btrfs_item_offset(right, push_items - 1) -
3226 						  leaf_data_end(right);
3227 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3228 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3229 				      BTRFS_LEAF_DATA_OFFSET +
3230 				      leaf_data_end(right), push_space);
3231 
3232 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3233 			      btrfs_item_nr_offset(push_items),
3234 			     (btrfs_header_nritems(right) - push_items) *
3235 			     sizeof(struct btrfs_item));
3236 	}
3237 
3238 	btrfs_init_map_token(&token, right);
3239 	right_nritems -= push_items;
3240 	btrfs_set_header_nritems(right, right_nritems);
3241 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3242 	for (i = 0; i < right_nritems; i++) {
3243 		push_space = push_space - btrfs_token_item_size(&token, i);
3244 		btrfs_set_token_item_offset(&token, i, push_space);
3245 	}
3246 
3247 	btrfs_mark_buffer_dirty(left);
3248 	if (right_nritems)
3249 		btrfs_mark_buffer_dirty(right);
3250 	else
3251 		btrfs_clean_tree_block(right);
3252 
3253 	btrfs_item_key(right, &disk_key, 0);
3254 	fixup_low_keys(path, &disk_key, 1);
3255 
3256 	/* then fixup the leaf pointer in the path */
3257 	if (path->slots[0] < push_items) {
3258 		path->slots[0] += old_left_nritems;
3259 		btrfs_tree_unlock(path->nodes[0]);
3260 		free_extent_buffer(path->nodes[0]);
3261 		path->nodes[0] = left;
3262 		path->slots[1] -= 1;
3263 	} else {
3264 		btrfs_tree_unlock(left);
3265 		free_extent_buffer(left);
3266 		path->slots[0] -= push_items;
3267 	}
3268 	BUG_ON(path->slots[0] < 0);
3269 	return ret;
3270 out:
3271 	btrfs_tree_unlock(left);
3272 	free_extent_buffer(left);
3273 	return ret;
3274 }
3275 
3276 /*
3277  * push some data in the path leaf to the left, trying to free up at
3278  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3279  *
3280  * max_slot can put a limit on how far into the leaf we'll push items.  The
3281  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3282  * items
3283  */
3284 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3285 			  *root, struct btrfs_path *path, int min_data_size,
3286 			  int data_size, int empty, u32 max_slot)
3287 {
3288 	struct extent_buffer *right = path->nodes[0];
3289 	struct extent_buffer *left;
3290 	int slot;
3291 	int free_space;
3292 	u32 right_nritems;
3293 	int ret = 0;
3294 
3295 	slot = path->slots[1];
3296 	if (slot == 0)
3297 		return 1;
3298 	if (!path->nodes[1])
3299 		return 1;
3300 
3301 	right_nritems = btrfs_header_nritems(right);
3302 	if (right_nritems == 0)
3303 		return 1;
3304 
3305 	btrfs_assert_tree_write_locked(path->nodes[1]);
3306 
3307 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3308 	/*
3309 	 * slot - 1 is not valid or we fail to read the left node,
3310 	 * no big deal, just return.
3311 	 */
3312 	if (IS_ERR(left))
3313 		return 1;
3314 
3315 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3316 
3317 	free_space = btrfs_leaf_free_space(left);
3318 	if (free_space < data_size) {
3319 		ret = 1;
3320 		goto out;
3321 	}
3322 
3323 	ret = btrfs_cow_block(trans, root, left,
3324 			      path->nodes[1], slot - 1, &left,
3325 			      BTRFS_NESTING_LEFT_COW);
3326 	if (ret) {
3327 		/* we hit -ENOSPC, but it isn't fatal here */
3328 		if (ret == -ENOSPC)
3329 			ret = 1;
3330 		goto out;
3331 	}
3332 
3333 	if (check_sibling_keys(left, right)) {
3334 		ret = -EUCLEAN;
3335 		goto out;
3336 	}
3337 	return __push_leaf_left(path, min_data_size,
3338 			       empty, left, free_space, right_nritems,
3339 			       max_slot);
3340 out:
3341 	btrfs_tree_unlock(left);
3342 	free_extent_buffer(left);
3343 	return ret;
3344 }
3345 
3346 /*
3347  * split the path's leaf in two, making sure there is at least data_size
3348  * available for the resulting leaf level of the path.
3349  */
3350 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3351 				    struct btrfs_path *path,
3352 				    struct extent_buffer *l,
3353 				    struct extent_buffer *right,
3354 				    int slot, int mid, int nritems)
3355 {
3356 	struct btrfs_fs_info *fs_info = trans->fs_info;
3357 	int data_copy_size;
3358 	int rt_data_off;
3359 	int i;
3360 	struct btrfs_disk_key disk_key;
3361 	struct btrfs_map_token token;
3362 
3363 	nritems = nritems - mid;
3364 	btrfs_set_header_nritems(right, nritems);
3365 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3366 
3367 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3368 			   btrfs_item_nr_offset(mid),
3369 			   nritems * sizeof(struct btrfs_item));
3370 
3371 	copy_extent_buffer(right, l,
3372 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3373 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3374 		     leaf_data_end(l), data_copy_size);
3375 
3376 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3377 
3378 	btrfs_init_map_token(&token, right);
3379 	for (i = 0; i < nritems; i++) {
3380 		u32 ioff;
3381 
3382 		ioff = btrfs_token_item_offset(&token, i);
3383 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3384 	}
3385 
3386 	btrfs_set_header_nritems(l, mid);
3387 	btrfs_item_key(right, &disk_key, 0);
3388 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3389 
3390 	btrfs_mark_buffer_dirty(right);
3391 	btrfs_mark_buffer_dirty(l);
3392 	BUG_ON(path->slots[0] != slot);
3393 
3394 	if (mid <= slot) {
3395 		btrfs_tree_unlock(path->nodes[0]);
3396 		free_extent_buffer(path->nodes[0]);
3397 		path->nodes[0] = right;
3398 		path->slots[0] -= mid;
3399 		path->slots[1] += 1;
3400 	} else {
3401 		btrfs_tree_unlock(right);
3402 		free_extent_buffer(right);
3403 	}
3404 
3405 	BUG_ON(path->slots[0] < 0);
3406 }
3407 
3408 /*
3409  * double splits happen when we need to insert a big item in the middle
3410  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3411  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3412  *          A                 B                 C
3413  *
3414  * We avoid this by trying to push the items on either side of our target
3415  * into the adjacent leaves.  If all goes well we can avoid the double split
3416  * completely.
3417  */
3418 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3419 					  struct btrfs_root *root,
3420 					  struct btrfs_path *path,
3421 					  int data_size)
3422 {
3423 	int ret;
3424 	int progress = 0;
3425 	int slot;
3426 	u32 nritems;
3427 	int space_needed = data_size;
3428 
3429 	slot = path->slots[0];
3430 	if (slot < btrfs_header_nritems(path->nodes[0]))
3431 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3432 
3433 	/*
3434 	 * try to push all the items after our slot into the
3435 	 * right leaf
3436 	 */
3437 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3438 	if (ret < 0)
3439 		return ret;
3440 
3441 	if (ret == 0)
3442 		progress++;
3443 
3444 	nritems = btrfs_header_nritems(path->nodes[0]);
3445 	/*
3446 	 * our goal is to get our slot at the start or end of a leaf.  If
3447 	 * we've done so we're done
3448 	 */
3449 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3450 		return 0;
3451 
3452 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3453 		return 0;
3454 
3455 	/* try to push all the items before our slot into the next leaf */
3456 	slot = path->slots[0];
3457 	space_needed = data_size;
3458 	if (slot > 0)
3459 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3460 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3461 	if (ret < 0)
3462 		return ret;
3463 
3464 	if (ret == 0)
3465 		progress++;
3466 
3467 	if (progress)
3468 		return 0;
3469 	return 1;
3470 }
3471 
3472 /*
3473  * split the path's leaf in two, making sure there is at least data_size
3474  * available for the resulting leaf level of the path.
3475  *
3476  * returns 0 if all went well and < 0 on failure.
3477  */
3478 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3479 			       struct btrfs_root *root,
3480 			       const struct btrfs_key *ins_key,
3481 			       struct btrfs_path *path, int data_size,
3482 			       int extend)
3483 {
3484 	struct btrfs_disk_key disk_key;
3485 	struct extent_buffer *l;
3486 	u32 nritems;
3487 	int mid;
3488 	int slot;
3489 	struct extent_buffer *right;
3490 	struct btrfs_fs_info *fs_info = root->fs_info;
3491 	int ret = 0;
3492 	int wret;
3493 	int split;
3494 	int num_doubles = 0;
3495 	int tried_avoid_double = 0;
3496 
3497 	l = path->nodes[0];
3498 	slot = path->slots[0];
3499 	if (extend && data_size + btrfs_item_size(l, slot) +
3500 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3501 		return -EOVERFLOW;
3502 
3503 	/* first try to make some room by pushing left and right */
3504 	if (data_size && path->nodes[1]) {
3505 		int space_needed = data_size;
3506 
3507 		if (slot < btrfs_header_nritems(l))
3508 			space_needed -= btrfs_leaf_free_space(l);
3509 
3510 		wret = push_leaf_right(trans, root, path, space_needed,
3511 				       space_needed, 0, 0);
3512 		if (wret < 0)
3513 			return wret;
3514 		if (wret) {
3515 			space_needed = data_size;
3516 			if (slot > 0)
3517 				space_needed -= btrfs_leaf_free_space(l);
3518 			wret = push_leaf_left(trans, root, path, space_needed,
3519 					      space_needed, 0, (u32)-1);
3520 			if (wret < 0)
3521 				return wret;
3522 		}
3523 		l = path->nodes[0];
3524 
3525 		/* did the pushes work? */
3526 		if (btrfs_leaf_free_space(l) >= data_size)
3527 			return 0;
3528 	}
3529 
3530 	if (!path->nodes[1]) {
3531 		ret = insert_new_root(trans, root, path, 1);
3532 		if (ret)
3533 			return ret;
3534 	}
3535 again:
3536 	split = 1;
3537 	l = path->nodes[0];
3538 	slot = path->slots[0];
3539 	nritems = btrfs_header_nritems(l);
3540 	mid = (nritems + 1) / 2;
3541 
3542 	if (mid <= slot) {
3543 		if (nritems == 1 ||
3544 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3545 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3546 			if (slot >= nritems) {
3547 				split = 0;
3548 			} else {
3549 				mid = slot;
3550 				if (mid != nritems &&
3551 				    leaf_space_used(l, mid, nritems - mid) +
3552 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3553 					if (data_size && !tried_avoid_double)
3554 						goto push_for_double;
3555 					split = 2;
3556 				}
3557 			}
3558 		}
3559 	} else {
3560 		if (leaf_space_used(l, 0, mid) + data_size >
3561 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3562 			if (!extend && data_size && slot == 0) {
3563 				split = 0;
3564 			} else if ((extend || !data_size) && slot == 0) {
3565 				mid = 1;
3566 			} else {
3567 				mid = slot;
3568 				if (mid != nritems &&
3569 				    leaf_space_used(l, mid, nritems - mid) +
3570 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3571 					if (data_size && !tried_avoid_double)
3572 						goto push_for_double;
3573 					split = 2;
3574 				}
3575 			}
3576 		}
3577 	}
3578 
3579 	if (split == 0)
3580 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3581 	else
3582 		btrfs_item_key(l, &disk_key, mid);
3583 
3584 	/*
3585 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3586 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3587 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3588 	 * out.  In the future we could add a
3589 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3590 	 * use BTRFS_NESTING_NEW_ROOT.
3591 	 */
3592 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3593 				       &disk_key, 0, l->start, 0,
3594 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3595 				       BTRFS_NESTING_SPLIT);
3596 	if (IS_ERR(right))
3597 		return PTR_ERR(right);
3598 
3599 	root_add_used(root, fs_info->nodesize);
3600 
3601 	if (split == 0) {
3602 		if (mid <= slot) {
3603 			btrfs_set_header_nritems(right, 0);
3604 			insert_ptr(trans, path, &disk_key,
3605 				   right->start, path->slots[1] + 1, 1);
3606 			btrfs_tree_unlock(path->nodes[0]);
3607 			free_extent_buffer(path->nodes[0]);
3608 			path->nodes[0] = right;
3609 			path->slots[0] = 0;
3610 			path->slots[1] += 1;
3611 		} else {
3612 			btrfs_set_header_nritems(right, 0);
3613 			insert_ptr(trans, path, &disk_key,
3614 				   right->start, path->slots[1], 1);
3615 			btrfs_tree_unlock(path->nodes[0]);
3616 			free_extent_buffer(path->nodes[0]);
3617 			path->nodes[0] = right;
3618 			path->slots[0] = 0;
3619 			if (path->slots[1] == 0)
3620 				fixup_low_keys(path, &disk_key, 1);
3621 		}
3622 		/*
3623 		 * We create a new leaf 'right' for the required ins_len and
3624 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3625 		 * the content of ins_len to 'right'.
3626 		 */
3627 		return ret;
3628 	}
3629 
3630 	copy_for_split(trans, path, l, right, slot, mid, nritems);
3631 
3632 	if (split == 2) {
3633 		BUG_ON(num_doubles != 0);
3634 		num_doubles++;
3635 		goto again;
3636 	}
3637 
3638 	return 0;
3639 
3640 push_for_double:
3641 	push_for_double_split(trans, root, path, data_size);
3642 	tried_avoid_double = 1;
3643 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3644 		return 0;
3645 	goto again;
3646 }
3647 
3648 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3649 					 struct btrfs_root *root,
3650 					 struct btrfs_path *path, int ins_len)
3651 {
3652 	struct btrfs_key key;
3653 	struct extent_buffer *leaf;
3654 	struct btrfs_file_extent_item *fi;
3655 	u64 extent_len = 0;
3656 	u32 item_size;
3657 	int ret;
3658 
3659 	leaf = path->nodes[0];
3660 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3661 
3662 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3663 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3664 
3665 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3666 		return 0;
3667 
3668 	item_size = btrfs_item_size(leaf, path->slots[0]);
3669 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3670 		fi = btrfs_item_ptr(leaf, path->slots[0],
3671 				    struct btrfs_file_extent_item);
3672 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3673 	}
3674 	btrfs_release_path(path);
3675 
3676 	path->keep_locks = 1;
3677 	path->search_for_split = 1;
3678 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3679 	path->search_for_split = 0;
3680 	if (ret > 0)
3681 		ret = -EAGAIN;
3682 	if (ret < 0)
3683 		goto err;
3684 
3685 	ret = -EAGAIN;
3686 	leaf = path->nodes[0];
3687 	/* if our item isn't there, return now */
3688 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3689 		goto err;
3690 
3691 	/* the leaf has  changed, it now has room.  return now */
3692 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3693 		goto err;
3694 
3695 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3696 		fi = btrfs_item_ptr(leaf, path->slots[0],
3697 				    struct btrfs_file_extent_item);
3698 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3699 			goto err;
3700 	}
3701 
3702 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3703 	if (ret)
3704 		goto err;
3705 
3706 	path->keep_locks = 0;
3707 	btrfs_unlock_up_safe(path, 1);
3708 	return 0;
3709 err:
3710 	path->keep_locks = 0;
3711 	return ret;
3712 }
3713 
3714 static noinline int split_item(struct btrfs_path *path,
3715 			       const struct btrfs_key *new_key,
3716 			       unsigned long split_offset)
3717 {
3718 	struct extent_buffer *leaf;
3719 	int orig_slot, slot;
3720 	char *buf;
3721 	u32 nritems;
3722 	u32 item_size;
3723 	u32 orig_offset;
3724 	struct btrfs_disk_key disk_key;
3725 
3726 	leaf = path->nodes[0];
3727 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3728 
3729 	orig_slot = path->slots[0];
3730 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3731 	item_size = btrfs_item_size(leaf, path->slots[0]);
3732 
3733 	buf = kmalloc(item_size, GFP_NOFS);
3734 	if (!buf)
3735 		return -ENOMEM;
3736 
3737 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3738 			    path->slots[0]), item_size);
3739 
3740 	slot = path->slots[0] + 1;
3741 	nritems = btrfs_header_nritems(leaf);
3742 	if (slot != nritems) {
3743 		/* shift the items */
3744 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3745 				btrfs_item_nr_offset(slot),
3746 				(nritems - slot) * sizeof(struct btrfs_item));
3747 	}
3748 
3749 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3750 	btrfs_set_item_key(leaf, &disk_key, slot);
3751 
3752 	btrfs_set_item_offset(leaf, slot, orig_offset);
3753 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3754 
3755 	btrfs_set_item_offset(leaf, orig_slot,
3756 				 orig_offset + item_size - split_offset);
3757 	btrfs_set_item_size(leaf, orig_slot, split_offset);
3758 
3759 	btrfs_set_header_nritems(leaf, nritems + 1);
3760 
3761 	/* write the data for the start of the original item */
3762 	write_extent_buffer(leaf, buf,
3763 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3764 			    split_offset);
3765 
3766 	/* write the data for the new item */
3767 	write_extent_buffer(leaf, buf + split_offset,
3768 			    btrfs_item_ptr_offset(leaf, slot),
3769 			    item_size - split_offset);
3770 	btrfs_mark_buffer_dirty(leaf);
3771 
3772 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3773 	kfree(buf);
3774 	return 0;
3775 }
3776 
3777 /*
3778  * This function splits a single item into two items,
3779  * giving 'new_key' to the new item and splitting the
3780  * old one at split_offset (from the start of the item).
3781  *
3782  * The path may be released by this operation.  After
3783  * the split, the path is pointing to the old item.  The
3784  * new item is going to be in the same node as the old one.
3785  *
3786  * Note, the item being split must be smaller enough to live alone on
3787  * a tree block with room for one extra struct btrfs_item
3788  *
3789  * This allows us to split the item in place, keeping a lock on the
3790  * leaf the entire time.
3791  */
3792 int btrfs_split_item(struct btrfs_trans_handle *trans,
3793 		     struct btrfs_root *root,
3794 		     struct btrfs_path *path,
3795 		     const struct btrfs_key *new_key,
3796 		     unsigned long split_offset)
3797 {
3798 	int ret;
3799 	ret = setup_leaf_for_split(trans, root, path,
3800 				   sizeof(struct btrfs_item));
3801 	if (ret)
3802 		return ret;
3803 
3804 	ret = split_item(path, new_key, split_offset);
3805 	return ret;
3806 }
3807 
3808 /*
3809  * make the item pointed to by the path smaller.  new_size indicates
3810  * how small to make it, and from_end tells us if we just chop bytes
3811  * off the end of the item or if we shift the item to chop bytes off
3812  * the front.
3813  */
3814 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3815 {
3816 	int slot;
3817 	struct extent_buffer *leaf;
3818 	u32 nritems;
3819 	unsigned int data_end;
3820 	unsigned int old_data_start;
3821 	unsigned int old_size;
3822 	unsigned int size_diff;
3823 	int i;
3824 	struct btrfs_map_token token;
3825 
3826 	leaf = path->nodes[0];
3827 	slot = path->slots[0];
3828 
3829 	old_size = btrfs_item_size(leaf, slot);
3830 	if (old_size == new_size)
3831 		return;
3832 
3833 	nritems = btrfs_header_nritems(leaf);
3834 	data_end = leaf_data_end(leaf);
3835 
3836 	old_data_start = btrfs_item_offset(leaf, slot);
3837 
3838 	size_diff = old_size - new_size;
3839 
3840 	BUG_ON(slot < 0);
3841 	BUG_ON(slot >= nritems);
3842 
3843 	/*
3844 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3845 	 */
3846 	/* first correct the data pointers */
3847 	btrfs_init_map_token(&token, leaf);
3848 	for (i = slot; i < nritems; i++) {
3849 		u32 ioff;
3850 
3851 		ioff = btrfs_token_item_offset(&token, i);
3852 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3853 	}
3854 
3855 	/* shift the data */
3856 	if (from_end) {
3857 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3858 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3859 			      data_end, old_data_start + new_size - data_end);
3860 	} else {
3861 		struct btrfs_disk_key disk_key;
3862 		u64 offset;
3863 
3864 		btrfs_item_key(leaf, &disk_key, slot);
3865 
3866 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3867 			unsigned long ptr;
3868 			struct btrfs_file_extent_item *fi;
3869 
3870 			fi = btrfs_item_ptr(leaf, slot,
3871 					    struct btrfs_file_extent_item);
3872 			fi = (struct btrfs_file_extent_item *)(
3873 			     (unsigned long)fi - size_diff);
3874 
3875 			if (btrfs_file_extent_type(leaf, fi) ==
3876 			    BTRFS_FILE_EXTENT_INLINE) {
3877 				ptr = btrfs_item_ptr_offset(leaf, slot);
3878 				memmove_extent_buffer(leaf, ptr,
3879 				      (unsigned long)fi,
3880 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3881 			}
3882 		}
3883 
3884 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3885 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3886 			      data_end, old_data_start - data_end);
3887 
3888 		offset = btrfs_disk_key_offset(&disk_key);
3889 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3890 		btrfs_set_item_key(leaf, &disk_key, slot);
3891 		if (slot == 0)
3892 			fixup_low_keys(path, &disk_key, 1);
3893 	}
3894 
3895 	btrfs_set_item_size(leaf, slot, new_size);
3896 	btrfs_mark_buffer_dirty(leaf);
3897 
3898 	if (btrfs_leaf_free_space(leaf) < 0) {
3899 		btrfs_print_leaf(leaf);
3900 		BUG();
3901 	}
3902 }
3903 
3904 /*
3905  * make the item pointed to by the path bigger, data_size is the added size.
3906  */
3907 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3908 {
3909 	int slot;
3910 	struct extent_buffer *leaf;
3911 	u32 nritems;
3912 	unsigned int data_end;
3913 	unsigned int old_data;
3914 	unsigned int old_size;
3915 	int i;
3916 	struct btrfs_map_token token;
3917 
3918 	leaf = path->nodes[0];
3919 
3920 	nritems = btrfs_header_nritems(leaf);
3921 	data_end = leaf_data_end(leaf);
3922 
3923 	if (btrfs_leaf_free_space(leaf) < data_size) {
3924 		btrfs_print_leaf(leaf);
3925 		BUG();
3926 	}
3927 	slot = path->slots[0];
3928 	old_data = btrfs_item_data_end(leaf, slot);
3929 
3930 	BUG_ON(slot < 0);
3931 	if (slot >= nritems) {
3932 		btrfs_print_leaf(leaf);
3933 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3934 			   slot, nritems);
3935 		BUG();
3936 	}
3937 
3938 	/*
3939 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3940 	 */
3941 	/* first correct the data pointers */
3942 	btrfs_init_map_token(&token, leaf);
3943 	for (i = slot; i < nritems; i++) {
3944 		u32 ioff;
3945 
3946 		ioff = btrfs_token_item_offset(&token, i);
3947 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
3948 	}
3949 
3950 	/* shift the data */
3951 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3952 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3953 		      data_end, old_data - data_end);
3954 
3955 	data_end = old_data;
3956 	old_size = btrfs_item_size(leaf, slot);
3957 	btrfs_set_item_size(leaf, slot, old_size + data_size);
3958 	btrfs_mark_buffer_dirty(leaf);
3959 
3960 	if (btrfs_leaf_free_space(leaf) < 0) {
3961 		btrfs_print_leaf(leaf);
3962 		BUG();
3963 	}
3964 }
3965 
3966 /**
3967  * setup_items_for_insert - Helper called before inserting one or more items
3968  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3969  * in a function that doesn't call btrfs_search_slot
3970  *
3971  * @root:	root we are inserting items to
3972  * @path:	points to the leaf/slot where we are going to insert new items
3973  * @batch:      information about the batch of items to insert
3974  */
3975 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3976 				   const struct btrfs_item_batch *batch)
3977 {
3978 	struct btrfs_fs_info *fs_info = root->fs_info;
3979 	int i;
3980 	u32 nritems;
3981 	unsigned int data_end;
3982 	struct btrfs_disk_key disk_key;
3983 	struct extent_buffer *leaf;
3984 	int slot;
3985 	struct btrfs_map_token token;
3986 	u32 total_size;
3987 
3988 	/*
3989 	 * Before anything else, update keys in the parent and other ancestors
3990 	 * if needed, then release the write locks on them, so that other tasks
3991 	 * can use them while we modify the leaf.
3992 	 */
3993 	if (path->slots[0] == 0) {
3994 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
3995 		fixup_low_keys(path, &disk_key, 1);
3996 	}
3997 	btrfs_unlock_up_safe(path, 1);
3998 
3999 	leaf = path->nodes[0];
4000 	slot = path->slots[0];
4001 
4002 	nritems = btrfs_header_nritems(leaf);
4003 	data_end = leaf_data_end(leaf);
4004 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4005 
4006 	if (btrfs_leaf_free_space(leaf) < total_size) {
4007 		btrfs_print_leaf(leaf);
4008 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4009 			   total_size, btrfs_leaf_free_space(leaf));
4010 		BUG();
4011 	}
4012 
4013 	btrfs_init_map_token(&token, leaf);
4014 	if (slot != nritems) {
4015 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4016 
4017 		if (old_data < data_end) {
4018 			btrfs_print_leaf(leaf);
4019 			btrfs_crit(fs_info,
4020 		"item at slot %d with data offset %u beyond data end of leaf %u",
4021 				   slot, old_data, data_end);
4022 			BUG();
4023 		}
4024 		/*
4025 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4026 		 */
4027 		/* first correct the data pointers */
4028 		for (i = slot; i < nritems; i++) {
4029 			u32 ioff;
4030 
4031 			ioff = btrfs_token_item_offset(&token, i);
4032 			btrfs_set_token_item_offset(&token, i,
4033 						       ioff - batch->total_data_size);
4034 		}
4035 		/* shift the items */
4036 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
4037 			      btrfs_item_nr_offset(slot),
4038 			      (nritems - slot) * sizeof(struct btrfs_item));
4039 
4040 		/* shift the data */
4041 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4042 				      data_end - batch->total_data_size,
4043 				      BTRFS_LEAF_DATA_OFFSET + data_end,
4044 				      old_data - data_end);
4045 		data_end = old_data;
4046 	}
4047 
4048 	/* setup the item for the new data */
4049 	for (i = 0; i < batch->nr; i++) {
4050 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4051 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4052 		data_end -= batch->data_sizes[i];
4053 		btrfs_set_token_item_offset(&token, slot + i, data_end);
4054 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4055 	}
4056 
4057 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4058 	btrfs_mark_buffer_dirty(leaf);
4059 
4060 	if (btrfs_leaf_free_space(leaf) < 0) {
4061 		btrfs_print_leaf(leaf);
4062 		BUG();
4063 	}
4064 }
4065 
4066 /*
4067  * Insert a new item into a leaf.
4068  *
4069  * @root:      The root of the btree.
4070  * @path:      A path pointing to the target leaf and slot.
4071  * @key:       The key of the new item.
4072  * @data_size: The size of the data associated with the new key.
4073  */
4074 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4075 				 struct btrfs_path *path,
4076 				 const struct btrfs_key *key,
4077 				 u32 data_size)
4078 {
4079 	struct btrfs_item_batch batch;
4080 
4081 	batch.keys = key;
4082 	batch.data_sizes = &data_size;
4083 	batch.total_data_size = data_size;
4084 	batch.nr = 1;
4085 
4086 	setup_items_for_insert(root, path, &batch);
4087 }
4088 
4089 /*
4090  * Given a key and some data, insert items into the tree.
4091  * This does all the path init required, making room in the tree if needed.
4092  */
4093 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4094 			    struct btrfs_root *root,
4095 			    struct btrfs_path *path,
4096 			    const struct btrfs_item_batch *batch)
4097 {
4098 	int ret = 0;
4099 	int slot;
4100 	u32 total_size;
4101 
4102 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4103 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4104 	if (ret == 0)
4105 		return -EEXIST;
4106 	if (ret < 0)
4107 		return ret;
4108 
4109 	slot = path->slots[0];
4110 	BUG_ON(slot < 0);
4111 
4112 	setup_items_for_insert(root, path, batch);
4113 	return 0;
4114 }
4115 
4116 /*
4117  * Given a key and some data, insert an item into the tree.
4118  * This does all the path init required, making room in the tree if needed.
4119  */
4120 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4121 		      const struct btrfs_key *cpu_key, void *data,
4122 		      u32 data_size)
4123 {
4124 	int ret = 0;
4125 	struct btrfs_path *path;
4126 	struct extent_buffer *leaf;
4127 	unsigned long ptr;
4128 
4129 	path = btrfs_alloc_path();
4130 	if (!path)
4131 		return -ENOMEM;
4132 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4133 	if (!ret) {
4134 		leaf = path->nodes[0];
4135 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4136 		write_extent_buffer(leaf, data, ptr, data_size);
4137 		btrfs_mark_buffer_dirty(leaf);
4138 	}
4139 	btrfs_free_path(path);
4140 	return ret;
4141 }
4142 
4143 /*
4144  * This function duplicates an item, giving 'new_key' to the new item.
4145  * It guarantees both items live in the same tree leaf and the new item is
4146  * contiguous with the original item.
4147  *
4148  * This allows us to split a file extent in place, keeping a lock on the leaf
4149  * the entire time.
4150  */
4151 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4152 			 struct btrfs_root *root,
4153 			 struct btrfs_path *path,
4154 			 const struct btrfs_key *new_key)
4155 {
4156 	struct extent_buffer *leaf;
4157 	int ret;
4158 	u32 item_size;
4159 
4160 	leaf = path->nodes[0];
4161 	item_size = btrfs_item_size(leaf, path->slots[0]);
4162 	ret = setup_leaf_for_split(trans, root, path,
4163 				   item_size + sizeof(struct btrfs_item));
4164 	if (ret)
4165 		return ret;
4166 
4167 	path->slots[0]++;
4168 	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4169 	leaf = path->nodes[0];
4170 	memcpy_extent_buffer(leaf,
4171 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4172 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4173 			     item_size);
4174 	return 0;
4175 }
4176 
4177 /*
4178  * delete the pointer from a given node.
4179  *
4180  * the tree should have been previously balanced so the deletion does not
4181  * empty a node.
4182  */
4183 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4184 		    int level, int slot)
4185 {
4186 	struct extent_buffer *parent = path->nodes[level];
4187 	u32 nritems;
4188 	int ret;
4189 
4190 	nritems = btrfs_header_nritems(parent);
4191 	if (slot != nritems - 1) {
4192 		if (level) {
4193 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4194 					slot + 1, nritems - slot - 1);
4195 			BUG_ON(ret < 0);
4196 		}
4197 		memmove_extent_buffer(parent,
4198 			      btrfs_node_key_ptr_offset(slot),
4199 			      btrfs_node_key_ptr_offset(slot + 1),
4200 			      sizeof(struct btrfs_key_ptr) *
4201 			      (nritems - slot - 1));
4202 	} else if (level) {
4203 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4204 				BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
4205 		BUG_ON(ret < 0);
4206 	}
4207 
4208 	nritems--;
4209 	btrfs_set_header_nritems(parent, nritems);
4210 	if (nritems == 0 && parent == root->node) {
4211 		BUG_ON(btrfs_header_level(root->node) != 1);
4212 		/* just turn the root into a leaf and break */
4213 		btrfs_set_header_level(root->node, 0);
4214 	} else if (slot == 0) {
4215 		struct btrfs_disk_key disk_key;
4216 
4217 		btrfs_node_key(parent, &disk_key, 0);
4218 		fixup_low_keys(path, &disk_key, level + 1);
4219 	}
4220 	btrfs_mark_buffer_dirty(parent);
4221 }
4222 
4223 /*
4224  * a helper function to delete the leaf pointed to by path->slots[1] and
4225  * path->nodes[1].
4226  *
4227  * This deletes the pointer in path->nodes[1] and frees the leaf
4228  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4229  *
4230  * The path must have already been setup for deleting the leaf, including
4231  * all the proper balancing.  path->nodes[1] must be locked.
4232  */
4233 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4234 				    struct btrfs_root *root,
4235 				    struct btrfs_path *path,
4236 				    struct extent_buffer *leaf)
4237 {
4238 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4239 	del_ptr(root, path, 1, path->slots[1]);
4240 
4241 	/*
4242 	 * btrfs_free_extent is expensive, we want to make sure we
4243 	 * aren't holding any locks when we call it
4244 	 */
4245 	btrfs_unlock_up_safe(path, 0);
4246 
4247 	root_sub_used(root, leaf->len);
4248 
4249 	atomic_inc(&leaf->refs);
4250 	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4251 	free_extent_buffer_stale(leaf);
4252 }
4253 /*
4254  * delete the item at the leaf level in path.  If that empties
4255  * the leaf, remove it from the tree
4256  */
4257 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4258 		    struct btrfs_path *path, int slot, int nr)
4259 {
4260 	struct btrfs_fs_info *fs_info = root->fs_info;
4261 	struct extent_buffer *leaf;
4262 	int ret = 0;
4263 	int wret;
4264 	u32 nritems;
4265 
4266 	leaf = path->nodes[0];
4267 	nritems = btrfs_header_nritems(leaf);
4268 
4269 	if (slot + nr != nritems) {
4270 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4271 		const int data_end = leaf_data_end(leaf);
4272 		struct btrfs_map_token token;
4273 		u32 dsize = 0;
4274 		int i;
4275 
4276 		for (i = 0; i < nr; i++)
4277 			dsize += btrfs_item_size(leaf, slot + i);
4278 
4279 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4280 			      data_end + dsize,
4281 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4282 			      last_off - data_end);
4283 
4284 		btrfs_init_map_token(&token, leaf);
4285 		for (i = slot + nr; i < nritems; i++) {
4286 			u32 ioff;
4287 
4288 			ioff = btrfs_token_item_offset(&token, i);
4289 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4290 		}
4291 
4292 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4293 			      btrfs_item_nr_offset(slot + nr),
4294 			      sizeof(struct btrfs_item) *
4295 			      (nritems - slot - nr));
4296 	}
4297 	btrfs_set_header_nritems(leaf, nritems - nr);
4298 	nritems -= nr;
4299 
4300 	/* delete the leaf if we've emptied it */
4301 	if (nritems == 0) {
4302 		if (leaf == root->node) {
4303 			btrfs_set_header_level(leaf, 0);
4304 		} else {
4305 			btrfs_clean_tree_block(leaf);
4306 			btrfs_del_leaf(trans, root, path, leaf);
4307 		}
4308 	} else {
4309 		int used = leaf_space_used(leaf, 0, nritems);
4310 		if (slot == 0) {
4311 			struct btrfs_disk_key disk_key;
4312 
4313 			btrfs_item_key(leaf, &disk_key, 0);
4314 			fixup_low_keys(path, &disk_key, 1);
4315 		}
4316 
4317 		/*
4318 		 * Try to delete the leaf if it is mostly empty. We do this by
4319 		 * trying to move all its items into its left and right neighbours.
4320 		 * If we can't move all the items, then we don't delete it - it's
4321 		 * not ideal, but future insertions might fill the leaf with more
4322 		 * items, or items from other leaves might be moved later into our
4323 		 * leaf due to deletions on those leaves.
4324 		 */
4325 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4326 			u32 min_push_space;
4327 
4328 			/* push_leaf_left fixes the path.
4329 			 * make sure the path still points to our leaf
4330 			 * for possible call to del_ptr below
4331 			 */
4332 			slot = path->slots[1];
4333 			atomic_inc(&leaf->refs);
4334 			/*
4335 			 * We want to be able to at least push one item to the
4336 			 * left neighbour leaf, and that's the first item.
4337 			 */
4338 			min_push_space = sizeof(struct btrfs_item) +
4339 				btrfs_item_size(leaf, 0);
4340 			wret = push_leaf_left(trans, root, path, 0,
4341 					      min_push_space, 1, (u32)-1);
4342 			if (wret < 0 && wret != -ENOSPC)
4343 				ret = wret;
4344 
4345 			if (path->nodes[0] == leaf &&
4346 			    btrfs_header_nritems(leaf)) {
4347 				/*
4348 				 * If we were not able to push all items from our
4349 				 * leaf to its left neighbour, then attempt to
4350 				 * either push all the remaining items to the
4351 				 * right neighbour or none. There's no advantage
4352 				 * in pushing only some items, instead of all, as
4353 				 * it's pointless to end up with a leaf having
4354 				 * too few items while the neighbours can be full
4355 				 * or nearly full.
4356 				 */
4357 				nritems = btrfs_header_nritems(leaf);
4358 				min_push_space = leaf_space_used(leaf, 0, nritems);
4359 				wret = push_leaf_right(trans, root, path, 0,
4360 						       min_push_space, 1, 0);
4361 				if (wret < 0 && wret != -ENOSPC)
4362 					ret = wret;
4363 			}
4364 
4365 			if (btrfs_header_nritems(leaf) == 0) {
4366 				path->slots[1] = slot;
4367 				btrfs_del_leaf(trans, root, path, leaf);
4368 				free_extent_buffer(leaf);
4369 				ret = 0;
4370 			} else {
4371 				/* if we're still in the path, make sure
4372 				 * we're dirty.  Otherwise, one of the
4373 				 * push_leaf functions must have already
4374 				 * dirtied this buffer
4375 				 */
4376 				if (path->nodes[0] == leaf)
4377 					btrfs_mark_buffer_dirty(leaf);
4378 				free_extent_buffer(leaf);
4379 			}
4380 		} else {
4381 			btrfs_mark_buffer_dirty(leaf);
4382 		}
4383 	}
4384 	return ret;
4385 }
4386 
4387 /*
4388  * search the tree again to find a leaf with lesser keys
4389  * returns 0 if it found something or 1 if there are no lesser leaves.
4390  * returns < 0 on io errors.
4391  *
4392  * This may release the path, and so you may lose any locks held at the
4393  * time you call it.
4394  */
4395 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4396 {
4397 	struct btrfs_key key;
4398 	struct btrfs_disk_key found_key;
4399 	int ret;
4400 
4401 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4402 
4403 	if (key.offset > 0) {
4404 		key.offset--;
4405 	} else if (key.type > 0) {
4406 		key.type--;
4407 		key.offset = (u64)-1;
4408 	} else if (key.objectid > 0) {
4409 		key.objectid--;
4410 		key.type = (u8)-1;
4411 		key.offset = (u64)-1;
4412 	} else {
4413 		return 1;
4414 	}
4415 
4416 	btrfs_release_path(path);
4417 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4418 	if (ret < 0)
4419 		return ret;
4420 	btrfs_item_key(path->nodes[0], &found_key, 0);
4421 	ret = comp_keys(&found_key, &key);
4422 	/*
4423 	 * We might have had an item with the previous key in the tree right
4424 	 * before we released our path. And after we released our path, that
4425 	 * item might have been pushed to the first slot (0) of the leaf we
4426 	 * were holding due to a tree balance. Alternatively, an item with the
4427 	 * previous key can exist as the only element of a leaf (big fat item).
4428 	 * Therefore account for these 2 cases, so that our callers (like
4429 	 * btrfs_previous_item) don't miss an existing item with a key matching
4430 	 * the previous key we computed above.
4431 	 */
4432 	if (ret <= 0)
4433 		return 0;
4434 	return 1;
4435 }
4436 
4437 /*
4438  * A helper function to walk down the tree starting at min_key, and looking
4439  * for nodes or leaves that are have a minimum transaction id.
4440  * This is used by the btree defrag code, and tree logging
4441  *
4442  * This does not cow, but it does stuff the starting key it finds back
4443  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4444  * key and get a writable path.
4445  *
4446  * This honors path->lowest_level to prevent descent past a given level
4447  * of the tree.
4448  *
4449  * min_trans indicates the oldest transaction that you are interested
4450  * in walking through.  Any nodes or leaves older than min_trans are
4451  * skipped over (without reading them).
4452  *
4453  * returns zero if something useful was found, < 0 on error and 1 if there
4454  * was nothing in the tree that matched the search criteria.
4455  */
4456 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4457 			 struct btrfs_path *path,
4458 			 u64 min_trans)
4459 {
4460 	struct extent_buffer *cur;
4461 	struct btrfs_key found_key;
4462 	int slot;
4463 	int sret;
4464 	u32 nritems;
4465 	int level;
4466 	int ret = 1;
4467 	int keep_locks = path->keep_locks;
4468 
4469 	ASSERT(!path->nowait);
4470 	path->keep_locks = 1;
4471 again:
4472 	cur = btrfs_read_lock_root_node(root);
4473 	level = btrfs_header_level(cur);
4474 	WARN_ON(path->nodes[level]);
4475 	path->nodes[level] = cur;
4476 	path->locks[level] = BTRFS_READ_LOCK;
4477 
4478 	if (btrfs_header_generation(cur) < min_trans) {
4479 		ret = 1;
4480 		goto out;
4481 	}
4482 	while (1) {
4483 		nritems = btrfs_header_nritems(cur);
4484 		level = btrfs_header_level(cur);
4485 		sret = btrfs_bin_search(cur, min_key, &slot);
4486 		if (sret < 0) {
4487 			ret = sret;
4488 			goto out;
4489 		}
4490 
4491 		/* at the lowest level, we're done, setup the path and exit */
4492 		if (level == path->lowest_level) {
4493 			if (slot >= nritems)
4494 				goto find_next_key;
4495 			ret = 0;
4496 			path->slots[level] = slot;
4497 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4498 			goto out;
4499 		}
4500 		if (sret && slot > 0)
4501 			slot--;
4502 		/*
4503 		 * check this node pointer against the min_trans parameters.
4504 		 * If it is too old, skip to the next one.
4505 		 */
4506 		while (slot < nritems) {
4507 			u64 gen;
4508 
4509 			gen = btrfs_node_ptr_generation(cur, slot);
4510 			if (gen < min_trans) {
4511 				slot++;
4512 				continue;
4513 			}
4514 			break;
4515 		}
4516 find_next_key:
4517 		/*
4518 		 * we didn't find a candidate key in this node, walk forward
4519 		 * and find another one
4520 		 */
4521 		if (slot >= nritems) {
4522 			path->slots[level] = slot;
4523 			sret = btrfs_find_next_key(root, path, min_key, level,
4524 						  min_trans);
4525 			if (sret == 0) {
4526 				btrfs_release_path(path);
4527 				goto again;
4528 			} else {
4529 				goto out;
4530 			}
4531 		}
4532 		/* save our key for returning back */
4533 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4534 		path->slots[level] = slot;
4535 		if (level == path->lowest_level) {
4536 			ret = 0;
4537 			goto out;
4538 		}
4539 		cur = btrfs_read_node_slot(cur, slot);
4540 		if (IS_ERR(cur)) {
4541 			ret = PTR_ERR(cur);
4542 			goto out;
4543 		}
4544 
4545 		btrfs_tree_read_lock(cur);
4546 
4547 		path->locks[level - 1] = BTRFS_READ_LOCK;
4548 		path->nodes[level - 1] = cur;
4549 		unlock_up(path, level, 1, 0, NULL);
4550 	}
4551 out:
4552 	path->keep_locks = keep_locks;
4553 	if (ret == 0) {
4554 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4555 		memcpy(min_key, &found_key, sizeof(found_key));
4556 	}
4557 	return ret;
4558 }
4559 
4560 /*
4561  * this is similar to btrfs_next_leaf, but does not try to preserve
4562  * and fixup the path.  It looks for and returns the next key in the
4563  * tree based on the current path and the min_trans parameters.
4564  *
4565  * 0 is returned if another key is found, < 0 if there are any errors
4566  * and 1 is returned if there are no higher keys in the tree
4567  *
4568  * path->keep_locks should be set to 1 on the search made before
4569  * calling this function.
4570  */
4571 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4572 			struct btrfs_key *key, int level, u64 min_trans)
4573 {
4574 	int slot;
4575 	struct extent_buffer *c;
4576 
4577 	WARN_ON(!path->keep_locks && !path->skip_locking);
4578 	while (level < BTRFS_MAX_LEVEL) {
4579 		if (!path->nodes[level])
4580 			return 1;
4581 
4582 		slot = path->slots[level] + 1;
4583 		c = path->nodes[level];
4584 next:
4585 		if (slot >= btrfs_header_nritems(c)) {
4586 			int ret;
4587 			int orig_lowest;
4588 			struct btrfs_key cur_key;
4589 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4590 			    !path->nodes[level + 1])
4591 				return 1;
4592 
4593 			if (path->locks[level + 1] || path->skip_locking) {
4594 				level++;
4595 				continue;
4596 			}
4597 
4598 			slot = btrfs_header_nritems(c) - 1;
4599 			if (level == 0)
4600 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4601 			else
4602 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4603 
4604 			orig_lowest = path->lowest_level;
4605 			btrfs_release_path(path);
4606 			path->lowest_level = level;
4607 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4608 						0, 0);
4609 			path->lowest_level = orig_lowest;
4610 			if (ret < 0)
4611 				return ret;
4612 
4613 			c = path->nodes[level];
4614 			slot = path->slots[level];
4615 			if (ret == 0)
4616 				slot++;
4617 			goto next;
4618 		}
4619 
4620 		if (level == 0)
4621 			btrfs_item_key_to_cpu(c, key, slot);
4622 		else {
4623 			u64 gen = btrfs_node_ptr_generation(c, slot);
4624 
4625 			if (gen < min_trans) {
4626 				slot++;
4627 				goto next;
4628 			}
4629 			btrfs_node_key_to_cpu(c, key, slot);
4630 		}
4631 		return 0;
4632 	}
4633 	return 1;
4634 }
4635 
4636 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4637 			u64 time_seq)
4638 {
4639 	int slot;
4640 	int level;
4641 	struct extent_buffer *c;
4642 	struct extent_buffer *next;
4643 	struct btrfs_fs_info *fs_info = root->fs_info;
4644 	struct btrfs_key key;
4645 	bool need_commit_sem = false;
4646 	u32 nritems;
4647 	int ret;
4648 	int i;
4649 
4650 	ASSERT(!path->nowait);
4651 
4652 	nritems = btrfs_header_nritems(path->nodes[0]);
4653 	if (nritems == 0)
4654 		return 1;
4655 
4656 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4657 again:
4658 	level = 1;
4659 	next = NULL;
4660 	btrfs_release_path(path);
4661 
4662 	path->keep_locks = 1;
4663 
4664 	if (time_seq) {
4665 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4666 	} else {
4667 		if (path->need_commit_sem) {
4668 			path->need_commit_sem = 0;
4669 			need_commit_sem = true;
4670 			down_read(&fs_info->commit_root_sem);
4671 		}
4672 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4673 	}
4674 	path->keep_locks = 0;
4675 
4676 	if (ret < 0)
4677 		goto done;
4678 
4679 	nritems = btrfs_header_nritems(path->nodes[0]);
4680 	/*
4681 	 * by releasing the path above we dropped all our locks.  A balance
4682 	 * could have added more items next to the key that used to be
4683 	 * at the very end of the block.  So, check again here and
4684 	 * advance the path if there are now more items available.
4685 	 */
4686 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4687 		if (ret == 0)
4688 			path->slots[0]++;
4689 		ret = 0;
4690 		goto done;
4691 	}
4692 	/*
4693 	 * So the above check misses one case:
4694 	 * - after releasing the path above, someone has removed the item that
4695 	 *   used to be at the very end of the block, and balance between leafs
4696 	 *   gets another one with bigger key.offset to replace it.
4697 	 *
4698 	 * This one should be returned as well, or we can get leaf corruption
4699 	 * later(esp. in __btrfs_drop_extents()).
4700 	 *
4701 	 * And a bit more explanation about this check,
4702 	 * with ret > 0, the key isn't found, the path points to the slot
4703 	 * where it should be inserted, so the path->slots[0] item must be the
4704 	 * bigger one.
4705 	 */
4706 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4707 		ret = 0;
4708 		goto done;
4709 	}
4710 
4711 	while (level < BTRFS_MAX_LEVEL) {
4712 		if (!path->nodes[level]) {
4713 			ret = 1;
4714 			goto done;
4715 		}
4716 
4717 		slot = path->slots[level] + 1;
4718 		c = path->nodes[level];
4719 		if (slot >= btrfs_header_nritems(c)) {
4720 			level++;
4721 			if (level == BTRFS_MAX_LEVEL) {
4722 				ret = 1;
4723 				goto done;
4724 			}
4725 			continue;
4726 		}
4727 
4728 
4729 		/*
4730 		 * Our current level is where we're going to start from, and to
4731 		 * make sure lockdep doesn't complain we need to drop our locks
4732 		 * and nodes from 0 to our current level.
4733 		 */
4734 		for (i = 0; i < level; i++) {
4735 			if (path->locks[level]) {
4736 				btrfs_tree_read_unlock(path->nodes[i]);
4737 				path->locks[i] = 0;
4738 			}
4739 			free_extent_buffer(path->nodes[i]);
4740 			path->nodes[i] = NULL;
4741 		}
4742 
4743 		next = c;
4744 		ret = read_block_for_search(root, path, &next, level,
4745 					    slot, &key);
4746 		if (ret == -EAGAIN)
4747 			goto again;
4748 
4749 		if (ret < 0) {
4750 			btrfs_release_path(path);
4751 			goto done;
4752 		}
4753 
4754 		if (!path->skip_locking) {
4755 			ret = btrfs_try_tree_read_lock(next);
4756 			if (!ret && time_seq) {
4757 				/*
4758 				 * If we don't get the lock, we may be racing
4759 				 * with push_leaf_left, holding that lock while
4760 				 * itself waiting for the leaf we've currently
4761 				 * locked. To solve this situation, we give up
4762 				 * on our lock and cycle.
4763 				 */
4764 				free_extent_buffer(next);
4765 				btrfs_release_path(path);
4766 				cond_resched();
4767 				goto again;
4768 			}
4769 			if (!ret)
4770 				btrfs_tree_read_lock(next);
4771 		}
4772 		break;
4773 	}
4774 	path->slots[level] = slot;
4775 	while (1) {
4776 		level--;
4777 		path->nodes[level] = next;
4778 		path->slots[level] = 0;
4779 		if (!path->skip_locking)
4780 			path->locks[level] = BTRFS_READ_LOCK;
4781 		if (!level)
4782 			break;
4783 
4784 		ret = read_block_for_search(root, path, &next, level,
4785 					    0, &key);
4786 		if (ret == -EAGAIN)
4787 			goto again;
4788 
4789 		if (ret < 0) {
4790 			btrfs_release_path(path);
4791 			goto done;
4792 		}
4793 
4794 		if (!path->skip_locking)
4795 			btrfs_tree_read_lock(next);
4796 	}
4797 	ret = 0;
4798 done:
4799 	unlock_up(path, 0, 1, 0, NULL);
4800 	if (need_commit_sem) {
4801 		int ret2;
4802 
4803 		path->need_commit_sem = 1;
4804 		ret2 = finish_need_commit_sem_search(path);
4805 		up_read(&fs_info->commit_root_sem);
4806 		if (ret2)
4807 			ret = ret2;
4808 	}
4809 
4810 	return ret;
4811 }
4812 
4813 /*
4814  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4815  * searching until it gets past min_objectid or finds an item of 'type'
4816  *
4817  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4818  */
4819 int btrfs_previous_item(struct btrfs_root *root,
4820 			struct btrfs_path *path, u64 min_objectid,
4821 			int type)
4822 {
4823 	struct btrfs_key found_key;
4824 	struct extent_buffer *leaf;
4825 	u32 nritems;
4826 	int ret;
4827 
4828 	while (1) {
4829 		if (path->slots[0] == 0) {
4830 			ret = btrfs_prev_leaf(root, path);
4831 			if (ret != 0)
4832 				return ret;
4833 		} else {
4834 			path->slots[0]--;
4835 		}
4836 		leaf = path->nodes[0];
4837 		nritems = btrfs_header_nritems(leaf);
4838 		if (nritems == 0)
4839 			return 1;
4840 		if (path->slots[0] == nritems)
4841 			path->slots[0]--;
4842 
4843 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4844 		if (found_key.objectid < min_objectid)
4845 			break;
4846 		if (found_key.type == type)
4847 			return 0;
4848 		if (found_key.objectid == min_objectid &&
4849 		    found_key.type < type)
4850 			break;
4851 	}
4852 	return 1;
4853 }
4854 
4855 /*
4856  * search in extent tree to find a previous Metadata/Data extent item with
4857  * min objecitd.
4858  *
4859  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4860  */
4861 int btrfs_previous_extent_item(struct btrfs_root *root,
4862 			struct btrfs_path *path, u64 min_objectid)
4863 {
4864 	struct btrfs_key found_key;
4865 	struct extent_buffer *leaf;
4866 	u32 nritems;
4867 	int ret;
4868 
4869 	while (1) {
4870 		if (path->slots[0] == 0) {
4871 			ret = btrfs_prev_leaf(root, path);
4872 			if (ret != 0)
4873 				return ret;
4874 		} else {
4875 			path->slots[0]--;
4876 		}
4877 		leaf = path->nodes[0];
4878 		nritems = btrfs_header_nritems(leaf);
4879 		if (nritems == 0)
4880 			return 1;
4881 		if (path->slots[0] == nritems)
4882 			path->slots[0]--;
4883 
4884 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4885 		if (found_key.objectid < min_objectid)
4886 			break;
4887 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4888 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
4889 			return 0;
4890 		if (found_key.objectid == min_objectid &&
4891 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
4892 			break;
4893 	}
4894 	return 1;
4895 }
4896