1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 45 46 struct btrfs_path *btrfs_alloc_path(void) 47 { 48 struct btrfs_path *path; 49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 50 return path; 51 } 52 53 /* 54 * set all locked nodes in the path to blocking locks. This should 55 * be done before scheduling 56 */ 57 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 58 { 59 int i; 60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 61 if (!p->nodes[i] || !p->locks[i]) 62 continue; 63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 64 if (p->locks[i] == BTRFS_READ_LOCK) 65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 66 else if (p->locks[i] == BTRFS_WRITE_LOCK) 67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 68 } 69 } 70 71 /* 72 * reset all the locked nodes in the patch to spinning locks. 73 * 74 * held is used to keep lockdep happy, when lockdep is enabled 75 * we set held to a blocking lock before we go around and 76 * retake all the spinlocks in the path. You can safely use NULL 77 * for held 78 */ 79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 80 struct extent_buffer *held, int held_rw) 81 { 82 int i; 83 84 #ifdef CONFIG_DEBUG_LOCK_ALLOC 85 /* lockdep really cares that we take all of these spinlocks 86 * in the right order. If any of the locks in the path are not 87 * currently blocking, it is going to complain. So, make really 88 * really sure by forcing the path to blocking before we clear 89 * the path blocking. 90 */ 91 if (held) { 92 btrfs_set_lock_blocking_rw(held, held_rw); 93 if (held_rw == BTRFS_WRITE_LOCK) 94 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 95 else if (held_rw == BTRFS_READ_LOCK) 96 held_rw = BTRFS_READ_LOCK_BLOCKING; 97 } 98 btrfs_set_path_blocking(p); 99 #endif 100 101 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 102 if (p->nodes[i] && p->locks[i]) { 103 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 104 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 105 p->locks[i] = BTRFS_WRITE_LOCK; 106 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 107 p->locks[i] = BTRFS_READ_LOCK; 108 } 109 } 110 111 #ifdef CONFIG_DEBUG_LOCK_ALLOC 112 if (held) 113 btrfs_clear_lock_blocking_rw(held, held_rw); 114 #endif 115 } 116 117 /* this also releases the path */ 118 void btrfs_free_path(struct btrfs_path *p) 119 { 120 if (!p) 121 return; 122 btrfs_release_path(p); 123 kmem_cache_free(btrfs_path_cachep, p); 124 } 125 126 /* 127 * path release drops references on the extent buffers in the path 128 * and it drops any locks held by this path 129 * 130 * It is safe to call this on paths that no locks or extent buffers held. 131 */ 132 noinline void btrfs_release_path(struct btrfs_path *p) 133 { 134 int i; 135 136 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 137 p->slots[i] = 0; 138 if (!p->nodes[i]) 139 continue; 140 if (p->locks[i]) { 141 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 142 p->locks[i] = 0; 143 } 144 free_extent_buffer(p->nodes[i]); 145 p->nodes[i] = NULL; 146 } 147 } 148 149 /* 150 * safely gets a reference on the root node of a tree. A lock 151 * is not taken, so a concurrent writer may put a different node 152 * at the root of the tree. See btrfs_lock_root_node for the 153 * looping required. 154 * 155 * The extent buffer returned by this has a reference taken, so 156 * it won't disappear. It may stop being the root of the tree 157 * at any time because there are no locks held. 158 */ 159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 160 { 161 struct extent_buffer *eb; 162 163 while (1) { 164 rcu_read_lock(); 165 eb = rcu_dereference(root->node); 166 167 /* 168 * RCU really hurts here, we could free up the root node because 169 * it was cow'ed but we may not get the new root node yet so do 170 * the inc_not_zero dance and if it doesn't work then 171 * synchronize_rcu and try again. 172 */ 173 if (atomic_inc_not_zero(&eb->refs)) { 174 rcu_read_unlock(); 175 break; 176 } 177 rcu_read_unlock(); 178 synchronize_rcu(); 179 } 180 return eb; 181 } 182 183 /* loop around taking references on and locking the root node of the 184 * tree until you end up with a lock on the root. A locked buffer 185 * is returned, with a reference held. 186 */ 187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 188 { 189 struct extent_buffer *eb; 190 191 while (1) { 192 eb = btrfs_root_node(root); 193 btrfs_tree_lock(eb); 194 if (eb == root->node) 195 break; 196 btrfs_tree_unlock(eb); 197 free_extent_buffer(eb); 198 } 199 return eb; 200 } 201 202 /* loop around taking references on and locking the root node of the 203 * tree until you end up with a lock on the root. A locked buffer 204 * is returned, with a reference held. 205 */ 206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 207 { 208 struct extent_buffer *eb; 209 210 while (1) { 211 eb = btrfs_root_node(root); 212 btrfs_tree_read_lock(eb); 213 if (eb == root->node) 214 break; 215 btrfs_tree_read_unlock(eb); 216 free_extent_buffer(eb); 217 } 218 return eb; 219 } 220 221 /* cowonly root (everything not a reference counted cow subvolume), just get 222 * put onto a simple dirty list. transaction.c walks this to make sure they 223 * get properly updated on disk. 224 */ 225 static void add_root_to_dirty_list(struct btrfs_root *root) 226 { 227 spin_lock(&root->fs_info->trans_lock); 228 if (root->track_dirty && list_empty(&root->dirty_list)) { 229 list_add(&root->dirty_list, 230 &root->fs_info->dirty_cowonly_roots); 231 } 232 spin_unlock(&root->fs_info->trans_lock); 233 } 234 235 /* 236 * used by snapshot creation to make a copy of a root for a tree with 237 * a given objectid. The buffer with the new root node is returned in 238 * cow_ret, and this func returns zero on success or a negative error code. 239 */ 240 int btrfs_copy_root(struct btrfs_trans_handle *trans, 241 struct btrfs_root *root, 242 struct extent_buffer *buf, 243 struct extent_buffer **cow_ret, u64 new_root_objectid) 244 { 245 struct extent_buffer *cow; 246 int ret = 0; 247 int level; 248 struct btrfs_disk_key disk_key; 249 250 WARN_ON(root->ref_cows && trans->transid != 251 root->fs_info->running_transaction->transid); 252 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 253 254 level = btrfs_header_level(buf); 255 if (level == 0) 256 btrfs_item_key(buf, &disk_key, 0); 257 else 258 btrfs_node_key(buf, &disk_key, 0); 259 260 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 261 new_root_objectid, &disk_key, level, 262 buf->start, 0); 263 if (IS_ERR(cow)) 264 return PTR_ERR(cow); 265 266 copy_extent_buffer(cow, buf, 0, 0, cow->len); 267 btrfs_set_header_bytenr(cow, cow->start); 268 btrfs_set_header_generation(cow, trans->transid); 269 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 270 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 271 BTRFS_HEADER_FLAG_RELOC); 272 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 273 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 274 else 275 btrfs_set_header_owner(cow, new_root_objectid); 276 277 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 278 BTRFS_FSID_SIZE); 279 280 WARN_ON(btrfs_header_generation(buf) > trans->transid); 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 282 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 283 else 284 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 285 286 if (ret) 287 return ret; 288 289 btrfs_mark_buffer_dirty(cow); 290 *cow_ret = cow; 291 return 0; 292 } 293 294 enum mod_log_op { 295 MOD_LOG_KEY_REPLACE, 296 MOD_LOG_KEY_ADD, 297 MOD_LOG_KEY_REMOVE, 298 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 299 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 300 MOD_LOG_MOVE_KEYS, 301 MOD_LOG_ROOT_REPLACE, 302 }; 303 304 struct tree_mod_move { 305 int dst_slot; 306 int nr_items; 307 }; 308 309 struct tree_mod_root { 310 u64 logical; 311 u8 level; 312 }; 313 314 struct tree_mod_elem { 315 struct rb_node node; 316 u64 index; /* shifted logical */ 317 u64 seq; 318 enum mod_log_op op; 319 320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 321 int slot; 322 323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 324 u64 generation; 325 326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 327 struct btrfs_disk_key key; 328 u64 blockptr; 329 330 /* this is used for op == MOD_LOG_MOVE_KEYS */ 331 struct tree_mod_move move; 332 333 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 334 struct tree_mod_root old_root; 335 }; 336 337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 338 { 339 read_lock(&fs_info->tree_mod_log_lock); 340 } 341 342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 343 { 344 read_unlock(&fs_info->tree_mod_log_lock); 345 } 346 347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 348 { 349 write_lock(&fs_info->tree_mod_log_lock); 350 } 351 352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 353 { 354 write_unlock(&fs_info->tree_mod_log_lock); 355 } 356 357 /* 358 * Increment the upper half of tree_mod_seq, set lower half zero. 359 * 360 * Must be called with fs_info->tree_mod_seq_lock held. 361 */ 362 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info) 363 { 364 u64 seq = atomic64_read(&fs_info->tree_mod_seq); 365 seq &= 0xffffffff00000000ull; 366 seq += 1ull << 32; 367 atomic64_set(&fs_info->tree_mod_seq, seq); 368 return seq; 369 } 370 371 /* 372 * Increment the lower half of tree_mod_seq. 373 * 374 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers 375 * are generated should not technically require a spin lock here. (Rationale: 376 * incrementing the minor while incrementing the major seq number is between its 377 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it 378 * just returns a unique sequence number as usual.) We have decided to leave 379 * that requirement in here and rethink it once we notice it really imposes a 380 * problem on some workload. 381 */ 382 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info) 383 { 384 return atomic64_inc_return(&fs_info->tree_mod_seq); 385 } 386 387 /* 388 * return the last minor in the previous major tree_mod_seq number 389 */ 390 u64 btrfs_tree_mod_seq_prev(u64 seq) 391 { 392 return (seq & 0xffffffff00000000ull) - 1ull; 393 } 394 395 /* 396 * This adds a new blocker to the tree mod log's blocker list if the @elem 397 * passed does not already have a sequence number set. So when a caller expects 398 * to record tree modifications, it should ensure to set elem->seq to zero 399 * before calling btrfs_get_tree_mod_seq. 400 * Returns a fresh, unused tree log modification sequence number, even if no new 401 * blocker was added. 402 */ 403 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 404 struct seq_list *elem) 405 { 406 u64 seq; 407 408 tree_mod_log_write_lock(fs_info); 409 spin_lock(&fs_info->tree_mod_seq_lock); 410 if (!elem->seq) { 411 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info); 412 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 413 } 414 seq = btrfs_inc_tree_mod_seq_minor(fs_info); 415 spin_unlock(&fs_info->tree_mod_seq_lock); 416 tree_mod_log_write_unlock(fs_info); 417 418 return seq; 419 } 420 421 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 422 struct seq_list *elem) 423 { 424 struct rb_root *tm_root; 425 struct rb_node *node; 426 struct rb_node *next; 427 struct seq_list *cur_elem; 428 struct tree_mod_elem *tm; 429 u64 min_seq = (u64)-1; 430 u64 seq_putting = elem->seq; 431 432 if (!seq_putting) 433 return; 434 435 spin_lock(&fs_info->tree_mod_seq_lock); 436 list_del(&elem->list); 437 elem->seq = 0; 438 439 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 440 if (cur_elem->seq < min_seq) { 441 if (seq_putting > cur_elem->seq) { 442 /* 443 * blocker with lower sequence number exists, we 444 * cannot remove anything from the log 445 */ 446 spin_unlock(&fs_info->tree_mod_seq_lock); 447 return; 448 } 449 min_seq = cur_elem->seq; 450 } 451 } 452 spin_unlock(&fs_info->tree_mod_seq_lock); 453 454 /* 455 * anything that's lower than the lowest existing (read: blocked) 456 * sequence number can be removed from the tree. 457 */ 458 tree_mod_log_write_lock(fs_info); 459 tm_root = &fs_info->tree_mod_log; 460 for (node = rb_first(tm_root); node; node = next) { 461 next = rb_next(node); 462 tm = container_of(node, struct tree_mod_elem, node); 463 if (tm->seq > min_seq) 464 continue; 465 rb_erase(node, tm_root); 466 kfree(tm); 467 } 468 tree_mod_log_write_unlock(fs_info); 469 } 470 471 /* 472 * key order of the log: 473 * index -> sequence 474 * 475 * the index is the shifted logical of the *new* root node for root replace 476 * operations, or the shifted logical of the affected block for all other 477 * operations. 478 */ 479 static noinline int 480 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 481 { 482 struct rb_root *tm_root; 483 struct rb_node **new; 484 struct rb_node *parent = NULL; 485 struct tree_mod_elem *cur; 486 int ret = 0; 487 488 BUG_ON(!tm); 489 490 tree_mod_log_write_lock(fs_info); 491 if (list_empty(&fs_info->tree_mod_seq_list)) { 492 tree_mod_log_write_unlock(fs_info); 493 /* 494 * Ok we no longer care about logging modifications, free up tm 495 * and return 0. Any callers shouldn't be using tm after 496 * calling tree_mod_log_insert, but if they do we can just 497 * change this to return a special error code to let the callers 498 * do their own thing. 499 */ 500 kfree(tm); 501 return 0; 502 } 503 504 spin_lock(&fs_info->tree_mod_seq_lock); 505 tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info); 506 spin_unlock(&fs_info->tree_mod_seq_lock); 507 508 tm_root = &fs_info->tree_mod_log; 509 new = &tm_root->rb_node; 510 while (*new) { 511 cur = container_of(*new, struct tree_mod_elem, node); 512 parent = *new; 513 if (cur->index < tm->index) 514 new = &((*new)->rb_left); 515 else if (cur->index > tm->index) 516 new = &((*new)->rb_right); 517 else if (cur->seq < tm->seq) 518 new = &((*new)->rb_left); 519 else if (cur->seq > tm->seq) 520 new = &((*new)->rb_right); 521 else { 522 ret = -EEXIST; 523 kfree(tm); 524 goto out; 525 } 526 } 527 528 rb_link_node(&tm->node, parent, new); 529 rb_insert_color(&tm->node, tm_root); 530 out: 531 tree_mod_log_write_unlock(fs_info); 532 return ret; 533 } 534 535 /* 536 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 537 * returns zero with the tree_mod_log_lock acquired. The caller must hold 538 * this until all tree mod log insertions are recorded in the rb tree and then 539 * call tree_mod_log_write_unlock() to release. 540 */ 541 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 542 struct extent_buffer *eb) { 543 smp_mb(); 544 if (list_empty(&(fs_info)->tree_mod_seq_list)) 545 return 1; 546 if (eb && btrfs_header_level(eb) == 0) 547 return 1; 548 return 0; 549 } 550 551 static inline int 552 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 553 struct extent_buffer *eb, int slot, 554 enum mod_log_op op, gfp_t flags) 555 { 556 struct tree_mod_elem *tm; 557 558 tm = kzalloc(sizeof(*tm), flags); 559 if (!tm) 560 return -ENOMEM; 561 562 tm->index = eb->start >> PAGE_CACHE_SHIFT; 563 if (op != MOD_LOG_KEY_ADD) { 564 btrfs_node_key(eb, &tm->key, slot); 565 tm->blockptr = btrfs_node_blockptr(eb, slot); 566 } 567 tm->op = op; 568 tm->slot = slot; 569 tm->generation = btrfs_node_ptr_generation(eb, slot); 570 571 return __tree_mod_log_insert(fs_info, tm); 572 } 573 574 static noinline int 575 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 576 struct extent_buffer *eb, int slot, 577 enum mod_log_op op, gfp_t flags) 578 { 579 if (tree_mod_dont_log(fs_info, eb)) 580 return 0; 581 582 return __tree_mod_log_insert_key(fs_info, eb, slot, op, flags); 583 } 584 585 static noinline int 586 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 587 struct extent_buffer *eb, int dst_slot, int src_slot, 588 int nr_items, gfp_t flags) 589 { 590 struct tree_mod_elem *tm; 591 int ret; 592 int i; 593 594 if (tree_mod_dont_log(fs_info, eb)) 595 return 0; 596 597 /* 598 * When we override something during the move, we log these removals. 599 * This can only happen when we move towards the beginning of the 600 * buffer, i.e. dst_slot < src_slot. 601 */ 602 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 603 ret = __tree_mod_log_insert_key(fs_info, eb, i + dst_slot, 604 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 605 BUG_ON(ret < 0); 606 } 607 608 tm = kzalloc(sizeof(*tm), flags); 609 if (!tm) 610 return -ENOMEM; 611 612 tm->index = eb->start >> PAGE_CACHE_SHIFT; 613 tm->slot = src_slot; 614 tm->move.dst_slot = dst_slot; 615 tm->move.nr_items = nr_items; 616 tm->op = MOD_LOG_MOVE_KEYS; 617 618 return __tree_mod_log_insert(fs_info, tm); 619 } 620 621 static inline void 622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 623 { 624 int i; 625 u32 nritems; 626 int ret; 627 628 if (btrfs_header_level(eb) == 0) 629 return; 630 631 nritems = btrfs_header_nritems(eb); 632 for (i = nritems - 1; i >= 0; i--) { 633 ret = __tree_mod_log_insert_key(fs_info, eb, i, 634 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 635 BUG_ON(ret < 0); 636 } 637 } 638 639 static noinline int 640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 641 struct extent_buffer *old_root, 642 struct extent_buffer *new_root, gfp_t flags, 643 int log_removal) 644 { 645 struct tree_mod_elem *tm; 646 647 if (tree_mod_dont_log(fs_info, NULL)) 648 return 0; 649 650 if (log_removal) 651 __tree_mod_log_free_eb(fs_info, old_root); 652 653 tm = kzalloc(sizeof(*tm), flags); 654 if (!tm) 655 return -ENOMEM; 656 657 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 658 tm->old_root.logical = old_root->start; 659 tm->old_root.level = btrfs_header_level(old_root); 660 tm->generation = btrfs_header_generation(old_root); 661 tm->op = MOD_LOG_ROOT_REPLACE; 662 663 return __tree_mod_log_insert(fs_info, tm); 664 } 665 666 static struct tree_mod_elem * 667 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 668 int smallest) 669 { 670 struct rb_root *tm_root; 671 struct rb_node *node; 672 struct tree_mod_elem *cur = NULL; 673 struct tree_mod_elem *found = NULL; 674 u64 index = start >> PAGE_CACHE_SHIFT; 675 676 tree_mod_log_read_lock(fs_info); 677 tm_root = &fs_info->tree_mod_log; 678 node = tm_root->rb_node; 679 while (node) { 680 cur = container_of(node, struct tree_mod_elem, node); 681 if (cur->index < index) { 682 node = node->rb_left; 683 } else if (cur->index > index) { 684 node = node->rb_right; 685 } else if (cur->seq < min_seq) { 686 node = node->rb_left; 687 } else if (!smallest) { 688 /* we want the node with the highest seq */ 689 if (found) 690 BUG_ON(found->seq > cur->seq); 691 found = cur; 692 node = node->rb_left; 693 } else if (cur->seq > min_seq) { 694 /* we want the node with the smallest seq */ 695 if (found) 696 BUG_ON(found->seq < cur->seq); 697 found = cur; 698 node = node->rb_right; 699 } else { 700 found = cur; 701 break; 702 } 703 } 704 tree_mod_log_read_unlock(fs_info); 705 706 return found; 707 } 708 709 /* 710 * this returns the element from the log with the smallest time sequence 711 * value that's in the log (the oldest log item). any element with a time 712 * sequence lower than min_seq will be ignored. 713 */ 714 static struct tree_mod_elem * 715 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 716 u64 min_seq) 717 { 718 return __tree_mod_log_search(fs_info, start, min_seq, 1); 719 } 720 721 /* 722 * this returns the element from the log with the largest time sequence 723 * value that's in the log (the most recent log item). any element with 724 * a time sequence lower than min_seq will be ignored. 725 */ 726 static struct tree_mod_elem * 727 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 728 { 729 return __tree_mod_log_search(fs_info, start, min_seq, 0); 730 } 731 732 static noinline void 733 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 734 struct extent_buffer *src, unsigned long dst_offset, 735 unsigned long src_offset, int nr_items) 736 { 737 int ret; 738 int i; 739 740 if (tree_mod_dont_log(fs_info, NULL)) 741 return; 742 743 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 744 return; 745 746 for (i = 0; i < nr_items; i++) { 747 ret = __tree_mod_log_insert_key(fs_info, src, 748 i + src_offset, 749 MOD_LOG_KEY_REMOVE, GFP_NOFS); 750 BUG_ON(ret < 0); 751 ret = __tree_mod_log_insert_key(fs_info, dst, 752 i + dst_offset, 753 MOD_LOG_KEY_ADD, 754 GFP_NOFS); 755 BUG_ON(ret < 0); 756 } 757 } 758 759 static inline void 760 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 761 int dst_offset, int src_offset, int nr_items) 762 { 763 int ret; 764 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 765 nr_items, GFP_NOFS); 766 BUG_ON(ret < 0); 767 } 768 769 static noinline void 770 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 771 struct extent_buffer *eb, int slot, int atomic) 772 { 773 int ret; 774 775 ret = __tree_mod_log_insert_key(fs_info, eb, slot, 776 MOD_LOG_KEY_REPLACE, 777 atomic ? GFP_ATOMIC : GFP_NOFS); 778 BUG_ON(ret < 0); 779 } 780 781 static noinline void 782 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 783 { 784 if (tree_mod_dont_log(fs_info, eb)) 785 return; 786 __tree_mod_log_free_eb(fs_info, eb); 787 } 788 789 static noinline void 790 tree_mod_log_set_root_pointer(struct btrfs_root *root, 791 struct extent_buffer *new_root_node, 792 int log_removal) 793 { 794 int ret; 795 ret = tree_mod_log_insert_root(root->fs_info, root->node, 796 new_root_node, GFP_NOFS, log_removal); 797 BUG_ON(ret < 0); 798 } 799 800 /* 801 * check if the tree block can be shared by multiple trees 802 */ 803 int btrfs_block_can_be_shared(struct btrfs_root *root, 804 struct extent_buffer *buf) 805 { 806 /* 807 * Tree blocks not in refernece counted trees and tree roots 808 * are never shared. If a block was allocated after the last 809 * snapshot and the block was not allocated by tree relocation, 810 * we know the block is not shared. 811 */ 812 if (root->ref_cows && 813 buf != root->node && buf != root->commit_root && 814 (btrfs_header_generation(buf) <= 815 btrfs_root_last_snapshot(&root->root_item) || 816 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 817 return 1; 818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 819 if (root->ref_cows && 820 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 821 return 1; 822 #endif 823 return 0; 824 } 825 826 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 827 struct btrfs_root *root, 828 struct extent_buffer *buf, 829 struct extent_buffer *cow, 830 int *last_ref) 831 { 832 u64 refs; 833 u64 owner; 834 u64 flags; 835 u64 new_flags = 0; 836 int ret; 837 838 /* 839 * Backrefs update rules: 840 * 841 * Always use full backrefs for extent pointers in tree block 842 * allocated by tree relocation. 843 * 844 * If a shared tree block is no longer referenced by its owner 845 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 846 * use full backrefs for extent pointers in tree block. 847 * 848 * If a tree block is been relocating 849 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 850 * use full backrefs for extent pointers in tree block. 851 * The reason for this is some operations (such as drop tree) 852 * are only allowed for blocks use full backrefs. 853 */ 854 855 if (btrfs_block_can_be_shared(root, buf)) { 856 ret = btrfs_lookup_extent_info(trans, root, buf->start, 857 btrfs_header_level(buf), 1, 858 &refs, &flags); 859 if (ret) 860 return ret; 861 if (refs == 0) { 862 ret = -EROFS; 863 btrfs_std_error(root->fs_info, ret); 864 return ret; 865 } 866 } else { 867 refs = 1; 868 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 869 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 870 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 871 else 872 flags = 0; 873 } 874 875 owner = btrfs_header_owner(buf); 876 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 877 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 878 879 if (refs > 1) { 880 if ((owner == root->root_key.objectid || 881 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 882 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 883 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 884 BUG_ON(ret); /* -ENOMEM */ 885 886 if (root->root_key.objectid == 887 BTRFS_TREE_RELOC_OBJECTID) { 888 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 889 BUG_ON(ret); /* -ENOMEM */ 890 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 891 BUG_ON(ret); /* -ENOMEM */ 892 } 893 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 894 } else { 895 896 if (root->root_key.objectid == 897 BTRFS_TREE_RELOC_OBJECTID) 898 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 899 else 900 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 901 BUG_ON(ret); /* -ENOMEM */ 902 } 903 if (new_flags != 0) { 904 int level = btrfs_header_level(buf); 905 906 ret = btrfs_set_disk_extent_flags(trans, root, 907 buf->start, 908 buf->len, 909 new_flags, level, 0); 910 if (ret) 911 return ret; 912 } 913 } else { 914 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 915 if (root->root_key.objectid == 916 BTRFS_TREE_RELOC_OBJECTID) 917 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 918 else 919 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 920 BUG_ON(ret); /* -ENOMEM */ 921 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 922 BUG_ON(ret); /* -ENOMEM */ 923 } 924 clean_tree_block(trans, root, buf); 925 *last_ref = 1; 926 } 927 return 0; 928 } 929 930 /* 931 * does the dirty work in cow of a single block. The parent block (if 932 * supplied) is updated to point to the new cow copy. The new buffer is marked 933 * dirty and returned locked. If you modify the block it needs to be marked 934 * dirty again. 935 * 936 * search_start -- an allocation hint for the new block 937 * 938 * empty_size -- a hint that you plan on doing more cow. This is the size in 939 * bytes the allocator should try to find free next to the block it returns. 940 * This is just a hint and may be ignored by the allocator. 941 */ 942 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 943 struct btrfs_root *root, 944 struct extent_buffer *buf, 945 struct extent_buffer *parent, int parent_slot, 946 struct extent_buffer **cow_ret, 947 u64 search_start, u64 empty_size) 948 { 949 struct btrfs_disk_key disk_key; 950 struct extent_buffer *cow; 951 int level, ret; 952 int last_ref = 0; 953 int unlock_orig = 0; 954 u64 parent_start; 955 956 if (*cow_ret == buf) 957 unlock_orig = 1; 958 959 btrfs_assert_tree_locked(buf); 960 961 WARN_ON(root->ref_cows && trans->transid != 962 root->fs_info->running_transaction->transid); 963 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 964 965 level = btrfs_header_level(buf); 966 967 if (level == 0) 968 btrfs_item_key(buf, &disk_key, 0); 969 else 970 btrfs_node_key(buf, &disk_key, 0); 971 972 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 973 if (parent) 974 parent_start = parent->start; 975 else 976 parent_start = 0; 977 } else 978 parent_start = 0; 979 980 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 981 root->root_key.objectid, &disk_key, 982 level, search_start, empty_size); 983 if (IS_ERR(cow)) 984 return PTR_ERR(cow); 985 986 /* cow is set to blocking by btrfs_init_new_buffer */ 987 988 copy_extent_buffer(cow, buf, 0, 0, cow->len); 989 btrfs_set_header_bytenr(cow, cow->start); 990 btrfs_set_header_generation(cow, trans->transid); 991 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 992 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 993 BTRFS_HEADER_FLAG_RELOC); 994 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 995 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 996 else 997 btrfs_set_header_owner(cow, root->root_key.objectid); 998 999 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1000 BTRFS_FSID_SIZE); 1001 1002 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1003 if (ret) { 1004 btrfs_abort_transaction(trans, root, ret); 1005 return ret; 1006 } 1007 1008 if (root->ref_cows) { 1009 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1010 if (ret) 1011 return ret; 1012 } 1013 1014 if (buf == root->node) { 1015 WARN_ON(parent && parent != buf); 1016 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1017 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1018 parent_start = buf->start; 1019 else 1020 parent_start = 0; 1021 1022 extent_buffer_get(cow); 1023 tree_mod_log_set_root_pointer(root, cow, 1); 1024 rcu_assign_pointer(root->node, cow); 1025 1026 btrfs_free_tree_block(trans, root, buf, parent_start, 1027 last_ref); 1028 free_extent_buffer(buf); 1029 add_root_to_dirty_list(root); 1030 } else { 1031 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1032 parent_start = parent->start; 1033 else 1034 parent_start = 0; 1035 1036 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1037 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1038 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1039 btrfs_set_node_blockptr(parent, parent_slot, 1040 cow->start); 1041 btrfs_set_node_ptr_generation(parent, parent_slot, 1042 trans->transid); 1043 btrfs_mark_buffer_dirty(parent); 1044 if (last_ref) 1045 tree_mod_log_free_eb(root->fs_info, buf); 1046 btrfs_free_tree_block(trans, root, buf, parent_start, 1047 last_ref); 1048 } 1049 if (unlock_orig) 1050 btrfs_tree_unlock(buf); 1051 free_extent_buffer_stale(buf); 1052 btrfs_mark_buffer_dirty(cow); 1053 *cow_ret = cow; 1054 return 0; 1055 } 1056 1057 /* 1058 * returns the logical address of the oldest predecessor of the given root. 1059 * entries older than time_seq are ignored. 1060 */ 1061 static struct tree_mod_elem * 1062 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1063 struct extent_buffer *eb_root, u64 time_seq) 1064 { 1065 struct tree_mod_elem *tm; 1066 struct tree_mod_elem *found = NULL; 1067 u64 root_logical = eb_root->start; 1068 int looped = 0; 1069 1070 if (!time_seq) 1071 return NULL; 1072 1073 /* 1074 * the very last operation that's logged for a root is the replacement 1075 * operation (if it is replaced at all). this has the index of the *new* 1076 * root, making it the very first operation that's logged for this root. 1077 */ 1078 while (1) { 1079 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1080 time_seq); 1081 if (!looped && !tm) 1082 return NULL; 1083 /* 1084 * if there are no tree operation for the oldest root, we simply 1085 * return it. this should only happen if that (old) root is at 1086 * level 0. 1087 */ 1088 if (!tm) 1089 break; 1090 1091 /* 1092 * if there's an operation that's not a root replacement, we 1093 * found the oldest version of our root. normally, we'll find a 1094 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1095 */ 1096 if (tm->op != MOD_LOG_ROOT_REPLACE) 1097 break; 1098 1099 found = tm; 1100 root_logical = tm->old_root.logical; 1101 looped = 1; 1102 } 1103 1104 /* if there's no old root to return, return what we found instead */ 1105 if (!found) 1106 found = tm; 1107 1108 return found; 1109 } 1110 1111 /* 1112 * tm is a pointer to the first operation to rewind within eb. then, all 1113 * previous operations will be rewinded (until we reach something older than 1114 * time_seq). 1115 */ 1116 static void 1117 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1118 u64 time_seq, struct tree_mod_elem *first_tm) 1119 { 1120 u32 n; 1121 struct rb_node *next; 1122 struct tree_mod_elem *tm = first_tm; 1123 unsigned long o_dst; 1124 unsigned long o_src; 1125 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1126 1127 n = btrfs_header_nritems(eb); 1128 tree_mod_log_read_lock(fs_info); 1129 while (tm && tm->seq >= time_seq) { 1130 /* 1131 * all the operations are recorded with the operator used for 1132 * the modification. as we're going backwards, we do the 1133 * opposite of each operation here. 1134 */ 1135 switch (tm->op) { 1136 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1137 BUG_ON(tm->slot < n); 1138 /* Fallthrough */ 1139 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1140 case MOD_LOG_KEY_REMOVE: 1141 btrfs_set_node_key(eb, &tm->key, tm->slot); 1142 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1143 btrfs_set_node_ptr_generation(eb, tm->slot, 1144 tm->generation); 1145 n++; 1146 break; 1147 case MOD_LOG_KEY_REPLACE: 1148 BUG_ON(tm->slot >= n); 1149 btrfs_set_node_key(eb, &tm->key, tm->slot); 1150 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1151 btrfs_set_node_ptr_generation(eb, tm->slot, 1152 tm->generation); 1153 break; 1154 case MOD_LOG_KEY_ADD: 1155 /* if a move operation is needed it's in the log */ 1156 n--; 1157 break; 1158 case MOD_LOG_MOVE_KEYS: 1159 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1160 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1161 memmove_extent_buffer(eb, o_dst, o_src, 1162 tm->move.nr_items * p_size); 1163 break; 1164 case MOD_LOG_ROOT_REPLACE: 1165 /* 1166 * this operation is special. for roots, this must be 1167 * handled explicitly before rewinding. 1168 * for non-roots, this operation may exist if the node 1169 * was a root: root A -> child B; then A gets empty and 1170 * B is promoted to the new root. in the mod log, we'll 1171 * have a root-replace operation for B, a tree block 1172 * that is no root. we simply ignore that operation. 1173 */ 1174 break; 1175 } 1176 next = rb_next(&tm->node); 1177 if (!next) 1178 break; 1179 tm = container_of(next, struct tree_mod_elem, node); 1180 if (tm->index != first_tm->index) 1181 break; 1182 } 1183 tree_mod_log_read_unlock(fs_info); 1184 btrfs_set_header_nritems(eb, n); 1185 } 1186 1187 /* 1188 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1189 * is returned. If rewind operations happen, a fresh buffer is returned. The 1190 * returned buffer is always read-locked. If the returned buffer is not the 1191 * input buffer, the lock on the input buffer is released and the input buffer 1192 * is freed (its refcount is decremented). 1193 */ 1194 static struct extent_buffer * 1195 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1196 struct extent_buffer *eb, u64 time_seq) 1197 { 1198 struct extent_buffer *eb_rewin; 1199 struct tree_mod_elem *tm; 1200 1201 if (!time_seq) 1202 return eb; 1203 1204 if (btrfs_header_level(eb) == 0) 1205 return eb; 1206 1207 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1208 if (!tm) 1209 return eb; 1210 1211 btrfs_set_path_blocking(path); 1212 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1213 1214 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1215 BUG_ON(tm->slot != 0); 1216 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1217 fs_info->tree_root->nodesize); 1218 if (!eb_rewin) { 1219 btrfs_tree_read_unlock_blocking(eb); 1220 free_extent_buffer(eb); 1221 return NULL; 1222 } 1223 btrfs_set_header_bytenr(eb_rewin, eb->start); 1224 btrfs_set_header_backref_rev(eb_rewin, 1225 btrfs_header_backref_rev(eb)); 1226 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1227 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1228 } else { 1229 eb_rewin = btrfs_clone_extent_buffer(eb); 1230 if (!eb_rewin) { 1231 btrfs_tree_read_unlock_blocking(eb); 1232 free_extent_buffer(eb); 1233 return NULL; 1234 } 1235 } 1236 1237 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1238 btrfs_tree_read_unlock_blocking(eb); 1239 free_extent_buffer(eb); 1240 1241 extent_buffer_get(eb_rewin); 1242 btrfs_tree_read_lock(eb_rewin); 1243 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1244 WARN_ON(btrfs_header_nritems(eb_rewin) > 1245 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1246 1247 return eb_rewin; 1248 } 1249 1250 /* 1251 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1252 * value. If there are no changes, the current root->root_node is returned. If 1253 * anything changed in between, there's a fresh buffer allocated on which the 1254 * rewind operations are done. In any case, the returned buffer is read locked. 1255 * Returns NULL on error (with no locks held). 1256 */ 1257 static inline struct extent_buffer * 1258 get_old_root(struct btrfs_root *root, u64 time_seq) 1259 { 1260 struct tree_mod_elem *tm; 1261 struct extent_buffer *eb = NULL; 1262 struct extent_buffer *eb_root; 1263 struct extent_buffer *old; 1264 struct tree_mod_root *old_root = NULL; 1265 u64 old_generation = 0; 1266 u64 logical; 1267 u32 blocksize; 1268 1269 eb_root = btrfs_read_lock_root_node(root); 1270 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1271 if (!tm) 1272 return eb_root; 1273 1274 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1275 old_root = &tm->old_root; 1276 old_generation = tm->generation; 1277 logical = old_root->logical; 1278 } else { 1279 logical = eb_root->start; 1280 } 1281 1282 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1283 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1284 btrfs_tree_read_unlock(eb_root); 1285 free_extent_buffer(eb_root); 1286 blocksize = btrfs_level_size(root, old_root->level); 1287 old = read_tree_block(root, logical, blocksize, 0); 1288 if (WARN_ON(!old || !extent_buffer_uptodate(old))) { 1289 free_extent_buffer(old); 1290 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n", 1291 logical); 1292 } else { 1293 eb = btrfs_clone_extent_buffer(old); 1294 free_extent_buffer(old); 1295 } 1296 } else if (old_root) { 1297 btrfs_tree_read_unlock(eb_root); 1298 free_extent_buffer(eb_root); 1299 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1300 } else { 1301 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1302 eb = btrfs_clone_extent_buffer(eb_root); 1303 btrfs_tree_read_unlock_blocking(eb_root); 1304 free_extent_buffer(eb_root); 1305 } 1306 1307 if (!eb) 1308 return NULL; 1309 extent_buffer_get(eb); 1310 btrfs_tree_read_lock(eb); 1311 if (old_root) { 1312 btrfs_set_header_bytenr(eb, eb->start); 1313 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1314 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1315 btrfs_set_header_level(eb, old_root->level); 1316 btrfs_set_header_generation(eb, old_generation); 1317 } 1318 if (tm) 1319 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1320 else 1321 WARN_ON(btrfs_header_level(eb) != 0); 1322 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1323 1324 return eb; 1325 } 1326 1327 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1328 { 1329 struct tree_mod_elem *tm; 1330 int level; 1331 struct extent_buffer *eb_root = btrfs_root_node(root); 1332 1333 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1334 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1335 level = tm->old_root.level; 1336 } else { 1337 level = btrfs_header_level(eb_root); 1338 } 1339 free_extent_buffer(eb_root); 1340 1341 return level; 1342 } 1343 1344 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1345 struct btrfs_root *root, 1346 struct extent_buffer *buf) 1347 { 1348 /* ensure we can see the force_cow */ 1349 smp_rmb(); 1350 1351 /* 1352 * We do not need to cow a block if 1353 * 1) this block is not created or changed in this transaction; 1354 * 2) this block does not belong to TREE_RELOC tree; 1355 * 3) the root is not forced COW. 1356 * 1357 * What is forced COW: 1358 * when we create snapshot during commiting the transaction, 1359 * after we've finished coping src root, we must COW the shared 1360 * block to ensure the metadata consistency. 1361 */ 1362 if (btrfs_header_generation(buf) == trans->transid && 1363 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1364 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1365 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1366 !root->force_cow) 1367 return 0; 1368 return 1; 1369 } 1370 1371 /* 1372 * cows a single block, see __btrfs_cow_block for the real work. 1373 * This version of it has extra checks so that a block isn't cow'd more than 1374 * once per transaction, as long as it hasn't been written yet 1375 */ 1376 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1377 struct btrfs_root *root, struct extent_buffer *buf, 1378 struct extent_buffer *parent, int parent_slot, 1379 struct extent_buffer **cow_ret) 1380 { 1381 u64 search_start; 1382 int ret; 1383 1384 if (trans->transaction != root->fs_info->running_transaction) 1385 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1386 trans->transid, 1387 root->fs_info->running_transaction->transid); 1388 1389 if (trans->transid != root->fs_info->generation) 1390 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1391 trans->transid, root->fs_info->generation); 1392 1393 if (!should_cow_block(trans, root, buf)) { 1394 *cow_ret = buf; 1395 return 0; 1396 } 1397 1398 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1399 1400 if (parent) 1401 btrfs_set_lock_blocking(parent); 1402 btrfs_set_lock_blocking(buf); 1403 1404 ret = __btrfs_cow_block(trans, root, buf, parent, 1405 parent_slot, cow_ret, search_start, 0); 1406 1407 trace_btrfs_cow_block(root, buf, *cow_ret); 1408 1409 return ret; 1410 } 1411 1412 /* 1413 * helper function for defrag to decide if two blocks pointed to by a 1414 * node are actually close by 1415 */ 1416 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1417 { 1418 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1419 return 1; 1420 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1421 return 1; 1422 return 0; 1423 } 1424 1425 /* 1426 * compare two keys in a memcmp fashion 1427 */ 1428 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1429 { 1430 struct btrfs_key k1; 1431 1432 btrfs_disk_key_to_cpu(&k1, disk); 1433 1434 return btrfs_comp_cpu_keys(&k1, k2); 1435 } 1436 1437 /* 1438 * same as comp_keys only with two btrfs_key's 1439 */ 1440 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1441 { 1442 if (k1->objectid > k2->objectid) 1443 return 1; 1444 if (k1->objectid < k2->objectid) 1445 return -1; 1446 if (k1->type > k2->type) 1447 return 1; 1448 if (k1->type < k2->type) 1449 return -1; 1450 if (k1->offset > k2->offset) 1451 return 1; 1452 if (k1->offset < k2->offset) 1453 return -1; 1454 return 0; 1455 } 1456 1457 /* 1458 * this is used by the defrag code to go through all the 1459 * leaves pointed to by a node and reallocate them so that 1460 * disk order is close to key order 1461 */ 1462 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1463 struct btrfs_root *root, struct extent_buffer *parent, 1464 int start_slot, u64 *last_ret, 1465 struct btrfs_key *progress) 1466 { 1467 struct extent_buffer *cur; 1468 u64 blocknr; 1469 u64 gen; 1470 u64 search_start = *last_ret; 1471 u64 last_block = 0; 1472 u64 other; 1473 u32 parent_nritems; 1474 int end_slot; 1475 int i; 1476 int err = 0; 1477 int parent_level; 1478 int uptodate; 1479 u32 blocksize; 1480 int progress_passed = 0; 1481 struct btrfs_disk_key disk_key; 1482 1483 parent_level = btrfs_header_level(parent); 1484 1485 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1486 WARN_ON(trans->transid != root->fs_info->generation); 1487 1488 parent_nritems = btrfs_header_nritems(parent); 1489 blocksize = btrfs_level_size(root, parent_level - 1); 1490 end_slot = parent_nritems; 1491 1492 if (parent_nritems == 1) 1493 return 0; 1494 1495 btrfs_set_lock_blocking(parent); 1496 1497 for (i = start_slot; i < end_slot; i++) { 1498 int close = 1; 1499 1500 btrfs_node_key(parent, &disk_key, i); 1501 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1502 continue; 1503 1504 progress_passed = 1; 1505 blocknr = btrfs_node_blockptr(parent, i); 1506 gen = btrfs_node_ptr_generation(parent, i); 1507 if (last_block == 0) 1508 last_block = blocknr; 1509 1510 if (i > 0) { 1511 other = btrfs_node_blockptr(parent, i - 1); 1512 close = close_blocks(blocknr, other, blocksize); 1513 } 1514 if (!close && i < end_slot - 2) { 1515 other = btrfs_node_blockptr(parent, i + 1); 1516 close = close_blocks(blocknr, other, blocksize); 1517 } 1518 if (close) { 1519 last_block = blocknr; 1520 continue; 1521 } 1522 1523 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1524 if (cur) 1525 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1526 else 1527 uptodate = 0; 1528 if (!cur || !uptodate) { 1529 if (!cur) { 1530 cur = read_tree_block(root, blocknr, 1531 blocksize, gen); 1532 if (!cur || !extent_buffer_uptodate(cur)) { 1533 free_extent_buffer(cur); 1534 return -EIO; 1535 } 1536 } else if (!uptodate) { 1537 err = btrfs_read_buffer(cur, gen); 1538 if (err) { 1539 free_extent_buffer(cur); 1540 return err; 1541 } 1542 } 1543 } 1544 if (search_start == 0) 1545 search_start = last_block; 1546 1547 btrfs_tree_lock(cur); 1548 btrfs_set_lock_blocking(cur); 1549 err = __btrfs_cow_block(trans, root, cur, parent, i, 1550 &cur, search_start, 1551 min(16 * blocksize, 1552 (end_slot - i) * blocksize)); 1553 if (err) { 1554 btrfs_tree_unlock(cur); 1555 free_extent_buffer(cur); 1556 break; 1557 } 1558 search_start = cur->start; 1559 last_block = cur->start; 1560 *last_ret = search_start; 1561 btrfs_tree_unlock(cur); 1562 free_extent_buffer(cur); 1563 } 1564 return err; 1565 } 1566 1567 /* 1568 * The leaf data grows from end-to-front in the node. 1569 * this returns the address of the start of the last item, 1570 * which is the stop of the leaf data stack 1571 */ 1572 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1573 struct extent_buffer *leaf) 1574 { 1575 u32 nr = btrfs_header_nritems(leaf); 1576 if (nr == 0) 1577 return BTRFS_LEAF_DATA_SIZE(root); 1578 return btrfs_item_offset_nr(leaf, nr - 1); 1579 } 1580 1581 1582 /* 1583 * search for key in the extent_buffer. The items start at offset p, 1584 * and they are item_size apart. There are 'max' items in p. 1585 * 1586 * the slot in the array is returned via slot, and it points to 1587 * the place where you would insert key if it is not found in 1588 * the array. 1589 * 1590 * slot may point to max if the key is bigger than all of the keys 1591 */ 1592 static noinline int generic_bin_search(struct extent_buffer *eb, 1593 unsigned long p, 1594 int item_size, struct btrfs_key *key, 1595 int max, int *slot) 1596 { 1597 int low = 0; 1598 int high = max; 1599 int mid; 1600 int ret; 1601 struct btrfs_disk_key *tmp = NULL; 1602 struct btrfs_disk_key unaligned; 1603 unsigned long offset; 1604 char *kaddr = NULL; 1605 unsigned long map_start = 0; 1606 unsigned long map_len = 0; 1607 int err; 1608 1609 while (low < high) { 1610 mid = (low + high) / 2; 1611 offset = p + mid * item_size; 1612 1613 if (!kaddr || offset < map_start || 1614 (offset + sizeof(struct btrfs_disk_key)) > 1615 map_start + map_len) { 1616 1617 err = map_private_extent_buffer(eb, offset, 1618 sizeof(struct btrfs_disk_key), 1619 &kaddr, &map_start, &map_len); 1620 1621 if (!err) { 1622 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1623 map_start); 1624 } else { 1625 read_extent_buffer(eb, &unaligned, 1626 offset, sizeof(unaligned)); 1627 tmp = &unaligned; 1628 } 1629 1630 } else { 1631 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1632 map_start); 1633 } 1634 ret = comp_keys(tmp, key); 1635 1636 if (ret < 0) 1637 low = mid + 1; 1638 else if (ret > 0) 1639 high = mid; 1640 else { 1641 *slot = mid; 1642 return 0; 1643 } 1644 } 1645 *slot = low; 1646 return 1; 1647 } 1648 1649 /* 1650 * simple bin_search frontend that does the right thing for 1651 * leaves vs nodes 1652 */ 1653 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1654 int level, int *slot) 1655 { 1656 if (level == 0) 1657 return generic_bin_search(eb, 1658 offsetof(struct btrfs_leaf, items), 1659 sizeof(struct btrfs_item), 1660 key, btrfs_header_nritems(eb), 1661 slot); 1662 else 1663 return generic_bin_search(eb, 1664 offsetof(struct btrfs_node, ptrs), 1665 sizeof(struct btrfs_key_ptr), 1666 key, btrfs_header_nritems(eb), 1667 slot); 1668 } 1669 1670 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1671 int level, int *slot) 1672 { 1673 return bin_search(eb, key, level, slot); 1674 } 1675 1676 static void root_add_used(struct btrfs_root *root, u32 size) 1677 { 1678 spin_lock(&root->accounting_lock); 1679 btrfs_set_root_used(&root->root_item, 1680 btrfs_root_used(&root->root_item) + size); 1681 spin_unlock(&root->accounting_lock); 1682 } 1683 1684 static void root_sub_used(struct btrfs_root *root, u32 size) 1685 { 1686 spin_lock(&root->accounting_lock); 1687 btrfs_set_root_used(&root->root_item, 1688 btrfs_root_used(&root->root_item) - size); 1689 spin_unlock(&root->accounting_lock); 1690 } 1691 1692 /* given a node and slot number, this reads the blocks it points to. The 1693 * extent buffer is returned with a reference taken (but unlocked). 1694 * NULL is returned on error. 1695 */ 1696 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1697 struct extent_buffer *parent, int slot) 1698 { 1699 int level = btrfs_header_level(parent); 1700 struct extent_buffer *eb; 1701 1702 if (slot < 0) 1703 return NULL; 1704 if (slot >= btrfs_header_nritems(parent)) 1705 return NULL; 1706 1707 BUG_ON(level == 0); 1708 1709 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1710 btrfs_level_size(root, level - 1), 1711 btrfs_node_ptr_generation(parent, slot)); 1712 if (eb && !extent_buffer_uptodate(eb)) { 1713 free_extent_buffer(eb); 1714 eb = NULL; 1715 } 1716 1717 return eb; 1718 } 1719 1720 /* 1721 * node level balancing, used to make sure nodes are in proper order for 1722 * item deletion. We balance from the top down, so we have to make sure 1723 * that a deletion won't leave an node completely empty later on. 1724 */ 1725 static noinline int balance_level(struct btrfs_trans_handle *trans, 1726 struct btrfs_root *root, 1727 struct btrfs_path *path, int level) 1728 { 1729 struct extent_buffer *right = NULL; 1730 struct extent_buffer *mid; 1731 struct extent_buffer *left = NULL; 1732 struct extent_buffer *parent = NULL; 1733 int ret = 0; 1734 int wret; 1735 int pslot; 1736 int orig_slot = path->slots[level]; 1737 u64 orig_ptr; 1738 1739 if (level == 0) 1740 return 0; 1741 1742 mid = path->nodes[level]; 1743 1744 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1745 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1746 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1747 1748 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1749 1750 if (level < BTRFS_MAX_LEVEL - 1) { 1751 parent = path->nodes[level + 1]; 1752 pslot = path->slots[level + 1]; 1753 } 1754 1755 /* 1756 * deal with the case where there is only one pointer in the root 1757 * by promoting the node below to a root 1758 */ 1759 if (!parent) { 1760 struct extent_buffer *child; 1761 1762 if (btrfs_header_nritems(mid) != 1) 1763 return 0; 1764 1765 /* promote the child to a root */ 1766 child = read_node_slot(root, mid, 0); 1767 if (!child) { 1768 ret = -EROFS; 1769 btrfs_std_error(root->fs_info, ret); 1770 goto enospc; 1771 } 1772 1773 btrfs_tree_lock(child); 1774 btrfs_set_lock_blocking(child); 1775 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1776 if (ret) { 1777 btrfs_tree_unlock(child); 1778 free_extent_buffer(child); 1779 goto enospc; 1780 } 1781 1782 tree_mod_log_set_root_pointer(root, child, 1); 1783 rcu_assign_pointer(root->node, child); 1784 1785 add_root_to_dirty_list(root); 1786 btrfs_tree_unlock(child); 1787 1788 path->locks[level] = 0; 1789 path->nodes[level] = NULL; 1790 clean_tree_block(trans, root, mid); 1791 btrfs_tree_unlock(mid); 1792 /* once for the path */ 1793 free_extent_buffer(mid); 1794 1795 root_sub_used(root, mid->len); 1796 btrfs_free_tree_block(trans, root, mid, 0, 1); 1797 /* once for the root ptr */ 1798 free_extent_buffer_stale(mid); 1799 return 0; 1800 } 1801 if (btrfs_header_nritems(mid) > 1802 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1803 return 0; 1804 1805 left = read_node_slot(root, parent, pslot - 1); 1806 if (left) { 1807 btrfs_tree_lock(left); 1808 btrfs_set_lock_blocking(left); 1809 wret = btrfs_cow_block(trans, root, left, 1810 parent, pslot - 1, &left); 1811 if (wret) { 1812 ret = wret; 1813 goto enospc; 1814 } 1815 } 1816 right = read_node_slot(root, parent, pslot + 1); 1817 if (right) { 1818 btrfs_tree_lock(right); 1819 btrfs_set_lock_blocking(right); 1820 wret = btrfs_cow_block(trans, root, right, 1821 parent, pslot + 1, &right); 1822 if (wret) { 1823 ret = wret; 1824 goto enospc; 1825 } 1826 } 1827 1828 /* first, try to make some room in the middle buffer */ 1829 if (left) { 1830 orig_slot += btrfs_header_nritems(left); 1831 wret = push_node_left(trans, root, left, mid, 1); 1832 if (wret < 0) 1833 ret = wret; 1834 } 1835 1836 /* 1837 * then try to empty the right most buffer into the middle 1838 */ 1839 if (right) { 1840 wret = push_node_left(trans, root, mid, right, 1); 1841 if (wret < 0 && wret != -ENOSPC) 1842 ret = wret; 1843 if (btrfs_header_nritems(right) == 0) { 1844 clean_tree_block(trans, root, right); 1845 btrfs_tree_unlock(right); 1846 del_ptr(root, path, level + 1, pslot + 1); 1847 root_sub_used(root, right->len); 1848 btrfs_free_tree_block(trans, root, right, 0, 1); 1849 free_extent_buffer_stale(right); 1850 right = NULL; 1851 } else { 1852 struct btrfs_disk_key right_key; 1853 btrfs_node_key(right, &right_key, 0); 1854 tree_mod_log_set_node_key(root->fs_info, parent, 1855 pslot + 1, 0); 1856 btrfs_set_node_key(parent, &right_key, pslot + 1); 1857 btrfs_mark_buffer_dirty(parent); 1858 } 1859 } 1860 if (btrfs_header_nritems(mid) == 1) { 1861 /* 1862 * we're not allowed to leave a node with one item in the 1863 * tree during a delete. A deletion from lower in the tree 1864 * could try to delete the only pointer in this node. 1865 * So, pull some keys from the left. 1866 * There has to be a left pointer at this point because 1867 * otherwise we would have pulled some pointers from the 1868 * right 1869 */ 1870 if (!left) { 1871 ret = -EROFS; 1872 btrfs_std_error(root->fs_info, ret); 1873 goto enospc; 1874 } 1875 wret = balance_node_right(trans, root, mid, left); 1876 if (wret < 0) { 1877 ret = wret; 1878 goto enospc; 1879 } 1880 if (wret == 1) { 1881 wret = push_node_left(trans, root, left, mid, 1); 1882 if (wret < 0) 1883 ret = wret; 1884 } 1885 BUG_ON(wret == 1); 1886 } 1887 if (btrfs_header_nritems(mid) == 0) { 1888 clean_tree_block(trans, root, mid); 1889 btrfs_tree_unlock(mid); 1890 del_ptr(root, path, level + 1, pslot); 1891 root_sub_used(root, mid->len); 1892 btrfs_free_tree_block(trans, root, mid, 0, 1); 1893 free_extent_buffer_stale(mid); 1894 mid = NULL; 1895 } else { 1896 /* update the parent key to reflect our changes */ 1897 struct btrfs_disk_key mid_key; 1898 btrfs_node_key(mid, &mid_key, 0); 1899 tree_mod_log_set_node_key(root->fs_info, parent, 1900 pslot, 0); 1901 btrfs_set_node_key(parent, &mid_key, pslot); 1902 btrfs_mark_buffer_dirty(parent); 1903 } 1904 1905 /* update the path */ 1906 if (left) { 1907 if (btrfs_header_nritems(left) > orig_slot) { 1908 extent_buffer_get(left); 1909 /* left was locked after cow */ 1910 path->nodes[level] = left; 1911 path->slots[level + 1] -= 1; 1912 path->slots[level] = orig_slot; 1913 if (mid) { 1914 btrfs_tree_unlock(mid); 1915 free_extent_buffer(mid); 1916 } 1917 } else { 1918 orig_slot -= btrfs_header_nritems(left); 1919 path->slots[level] = orig_slot; 1920 } 1921 } 1922 /* double check we haven't messed things up */ 1923 if (orig_ptr != 1924 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1925 BUG(); 1926 enospc: 1927 if (right) { 1928 btrfs_tree_unlock(right); 1929 free_extent_buffer(right); 1930 } 1931 if (left) { 1932 if (path->nodes[level] != left) 1933 btrfs_tree_unlock(left); 1934 free_extent_buffer(left); 1935 } 1936 return ret; 1937 } 1938 1939 /* Node balancing for insertion. Here we only split or push nodes around 1940 * when they are completely full. This is also done top down, so we 1941 * have to be pessimistic. 1942 */ 1943 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1944 struct btrfs_root *root, 1945 struct btrfs_path *path, int level) 1946 { 1947 struct extent_buffer *right = NULL; 1948 struct extent_buffer *mid; 1949 struct extent_buffer *left = NULL; 1950 struct extent_buffer *parent = NULL; 1951 int ret = 0; 1952 int wret; 1953 int pslot; 1954 int orig_slot = path->slots[level]; 1955 1956 if (level == 0) 1957 return 1; 1958 1959 mid = path->nodes[level]; 1960 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1961 1962 if (level < BTRFS_MAX_LEVEL - 1) { 1963 parent = path->nodes[level + 1]; 1964 pslot = path->slots[level + 1]; 1965 } 1966 1967 if (!parent) 1968 return 1; 1969 1970 left = read_node_slot(root, parent, pslot - 1); 1971 1972 /* first, try to make some room in the middle buffer */ 1973 if (left) { 1974 u32 left_nr; 1975 1976 btrfs_tree_lock(left); 1977 btrfs_set_lock_blocking(left); 1978 1979 left_nr = btrfs_header_nritems(left); 1980 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1981 wret = 1; 1982 } else { 1983 ret = btrfs_cow_block(trans, root, left, parent, 1984 pslot - 1, &left); 1985 if (ret) 1986 wret = 1; 1987 else { 1988 wret = push_node_left(trans, root, 1989 left, mid, 0); 1990 } 1991 } 1992 if (wret < 0) 1993 ret = wret; 1994 if (wret == 0) { 1995 struct btrfs_disk_key disk_key; 1996 orig_slot += left_nr; 1997 btrfs_node_key(mid, &disk_key, 0); 1998 tree_mod_log_set_node_key(root->fs_info, parent, 1999 pslot, 0); 2000 btrfs_set_node_key(parent, &disk_key, pslot); 2001 btrfs_mark_buffer_dirty(parent); 2002 if (btrfs_header_nritems(left) > orig_slot) { 2003 path->nodes[level] = left; 2004 path->slots[level + 1] -= 1; 2005 path->slots[level] = orig_slot; 2006 btrfs_tree_unlock(mid); 2007 free_extent_buffer(mid); 2008 } else { 2009 orig_slot -= 2010 btrfs_header_nritems(left); 2011 path->slots[level] = orig_slot; 2012 btrfs_tree_unlock(left); 2013 free_extent_buffer(left); 2014 } 2015 return 0; 2016 } 2017 btrfs_tree_unlock(left); 2018 free_extent_buffer(left); 2019 } 2020 right = read_node_slot(root, parent, pslot + 1); 2021 2022 /* 2023 * then try to empty the right most buffer into the middle 2024 */ 2025 if (right) { 2026 u32 right_nr; 2027 2028 btrfs_tree_lock(right); 2029 btrfs_set_lock_blocking(right); 2030 2031 right_nr = btrfs_header_nritems(right); 2032 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2033 wret = 1; 2034 } else { 2035 ret = btrfs_cow_block(trans, root, right, 2036 parent, pslot + 1, 2037 &right); 2038 if (ret) 2039 wret = 1; 2040 else { 2041 wret = balance_node_right(trans, root, 2042 right, mid); 2043 } 2044 } 2045 if (wret < 0) 2046 ret = wret; 2047 if (wret == 0) { 2048 struct btrfs_disk_key disk_key; 2049 2050 btrfs_node_key(right, &disk_key, 0); 2051 tree_mod_log_set_node_key(root->fs_info, parent, 2052 pslot + 1, 0); 2053 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2054 btrfs_mark_buffer_dirty(parent); 2055 2056 if (btrfs_header_nritems(mid) <= orig_slot) { 2057 path->nodes[level] = right; 2058 path->slots[level + 1] += 1; 2059 path->slots[level] = orig_slot - 2060 btrfs_header_nritems(mid); 2061 btrfs_tree_unlock(mid); 2062 free_extent_buffer(mid); 2063 } else { 2064 btrfs_tree_unlock(right); 2065 free_extent_buffer(right); 2066 } 2067 return 0; 2068 } 2069 btrfs_tree_unlock(right); 2070 free_extent_buffer(right); 2071 } 2072 return 1; 2073 } 2074 2075 /* 2076 * readahead one full node of leaves, finding things that are close 2077 * to the block in 'slot', and triggering ra on them. 2078 */ 2079 static void reada_for_search(struct btrfs_root *root, 2080 struct btrfs_path *path, 2081 int level, int slot, u64 objectid) 2082 { 2083 struct extent_buffer *node; 2084 struct btrfs_disk_key disk_key; 2085 u32 nritems; 2086 u64 search; 2087 u64 target; 2088 u64 nread = 0; 2089 u64 gen; 2090 int direction = path->reada; 2091 struct extent_buffer *eb; 2092 u32 nr; 2093 u32 blocksize; 2094 u32 nscan = 0; 2095 2096 if (level != 1) 2097 return; 2098 2099 if (!path->nodes[level]) 2100 return; 2101 2102 node = path->nodes[level]; 2103 2104 search = btrfs_node_blockptr(node, slot); 2105 blocksize = btrfs_level_size(root, level - 1); 2106 eb = btrfs_find_tree_block(root, search, blocksize); 2107 if (eb) { 2108 free_extent_buffer(eb); 2109 return; 2110 } 2111 2112 target = search; 2113 2114 nritems = btrfs_header_nritems(node); 2115 nr = slot; 2116 2117 while (1) { 2118 if (direction < 0) { 2119 if (nr == 0) 2120 break; 2121 nr--; 2122 } else if (direction > 0) { 2123 nr++; 2124 if (nr >= nritems) 2125 break; 2126 } 2127 if (path->reada < 0 && objectid) { 2128 btrfs_node_key(node, &disk_key, nr); 2129 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2130 break; 2131 } 2132 search = btrfs_node_blockptr(node, nr); 2133 if ((search <= target && target - search <= 65536) || 2134 (search > target && search - target <= 65536)) { 2135 gen = btrfs_node_ptr_generation(node, nr); 2136 readahead_tree_block(root, search, blocksize, gen); 2137 nread += blocksize; 2138 } 2139 nscan++; 2140 if ((nread > 65536 || nscan > 32)) 2141 break; 2142 } 2143 } 2144 2145 static noinline void reada_for_balance(struct btrfs_root *root, 2146 struct btrfs_path *path, int level) 2147 { 2148 int slot; 2149 int nritems; 2150 struct extent_buffer *parent; 2151 struct extent_buffer *eb; 2152 u64 gen; 2153 u64 block1 = 0; 2154 u64 block2 = 0; 2155 int blocksize; 2156 2157 parent = path->nodes[level + 1]; 2158 if (!parent) 2159 return; 2160 2161 nritems = btrfs_header_nritems(parent); 2162 slot = path->slots[level + 1]; 2163 blocksize = btrfs_level_size(root, level); 2164 2165 if (slot > 0) { 2166 block1 = btrfs_node_blockptr(parent, slot - 1); 2167 gen = btrfs_node_ptr_generation(parent, slot - 1); 2168 eb = btrfs_find_tree_block(root, block1, blocksize); 2169 /* 2170 * if we get -eagain from btrfs_buffer_uptodate, we 2171 * don't want to return eagain here. That will loop 2172 * forever 2173 */ 2174 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2175 block1 = 0; 2176 free_extent_buffer(eb); 2177 } 2178 if (slot + 1 < nritems) { 2179 block2 = btrfs_node_blockptr(parent, slot + 1); 2180 gen = btrfs_node_ptr_generation(parent, slot + 1); 2181 eb = btrfs_find_tree_block(root, block2, blocksize); 2182 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2183 block2 = 0; 2184 free_extent_buffer(eb); 2185 } 2186 2187 if (block1) 2188 readahead_tree_block(root, block1, blocksize, 0); 2189 if (block2) 2190 readahead_tree_block(root, block2, blocksize, 0); 2191 } 2192 2193 2194 /* 2195 * when we walk down the tree, it is usually safe to unlock the higher layers 2196 * in the tree. The exceptions are when our path goes through slot 0, because 2197 * operations on the tree might require changing key pointers higher up in the 2198 * tree. 2199 * 2200 * callers might also have set path->keep_locks, which tells this code to keep 2201 * the lock if the path points to the last slot in the block. This is part of 2202 * walking through the tree, and selecting the next slot in the higher block. 2203 * 2204 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2205 * if lowest_unlock is 1, level 0 won't be unlocked 2206 */ 2207 static noinline void unlock_up(struct btrfs_path *path, int level, 2208 int lowest_unlock, int min_write_lock_level, 2209 int *write_lock_level) 2210 { 2211 int i; 2212 int skip_level = level; 2213 int no_skips = 0; 2214 struct extent_buffer *t; 2215 2216 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2217 if (!path->nodes[i]) 2218 break; 2219 if (!path->locks[i]) 2220 break; 2221 if (!no_skips && path->slots[i] == 0) { 2222 skip_level = i + 1; 2223 continue; 2224 } 2225 if (!no_skips && path->keep_locks) { 2226 u32 nritems; 2227 t = path->nodes[i]; 2228 nritems = btrfs_header_nritems(t); 2229 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2230 skip_level = i + 1; 2231 continue; 2232 } 2233 } 2234 if (skip_level < i && i >= lowest_unlock) 2235 no_skips = 1; 2236 2237 t = path->nodes[i]; 2238 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2239 btrfs_tree_unlock_rw(t, path->locks[i]); 2240 path->locks[i] = 0; 2241 if (write_lock_level && 2242 i > min_write_lock_level && 2243 i <= *write_lock_level) { 2244 *write_lock_level = i - 1; 2245 } 2246 } 2247 } 2248 } 2249 2250 /* 2251 * This releases any locks held in the path starting at level and 2252 * going all the way up to the root. 2253 * 2254 * btrfs_search_slot will keep the lock held on higher nodes in a few 2255 * corner cases, such as COW of the block at slot zero in the node. This 2256 * ignores those rules, and it should only be called when there are no 2257 * more updates to be done higher up in the tree. 2258 */ 2259 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2260 { 2261 int i; 2262 2263 if (path->keep_locks) 2264 return; 2265 2266 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2267 if (!path->nodes[i]) 2268 continue; 2269 if (!path->locks[i]) 2270 continue; 2271 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2272 path->locks[i] = 0; 2273 } 2274 } 2275 2276 /* 2277 * helper function for btrfs_search_slot. The goal is to find a block 2278 * in cache without setting the path to blocking. If we find the block 2279 * we return zero and the path is unchanged. 2280 * 2281 * If we can't find the block, we set the path blocking and do some 2282 * reada. -EAGAIN is returned and the search must be repeated. 2283 */ 2284 static int 2285 read_block_for_search(struct btrfs_trans_handle *trans, 2286 struct btrfs_root *root, struct btrfs_path *p, 2287 struct extent_buffer **eb_ret, int level, int slot, 2288 struct btrfs_key *key, u64 time_seq) 2289 { 2290 u64 blocknr; 2291 u64 gen; 2292 u32 blocksize; 2293 struct extent_buffer *b = *eb_ret; 2294 struct extent_buffer *tmp; 2295 int ret; 2296 2297 blocknr = btrfs_node_blockptr(b, slot); 2298 gen = btrfs_node_ptr_generation(b, slot); 2299 blocksize = btrfs_level_size(root, level - 1); 2300 2301 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2302 if (tmp) { 2303 /* first we do an atomic uptodate check */ 2304 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2305 *eb_ret = tmp; 2306 return 0; 2307 } 2308 2309 /* the pages were up to date, but we failed 2310 * the generation number check. Do a full 2311 * read for the generation number that is correct. 2312 * We must do this without dropping locks so 2313 * we can trust our generation number 2314 */ 2315 btrfs_set_path_blocking(p); 2316 2317 /* now we're allowed to do a blocking uptodate check */ 2318 ret = btrfs_read_buffer(tmp, gen); 2319 if (!ret) { 2320 *eb_ret = tmp; 2321 return 0; 2322 } 2323 free_extent_buffer(tmp); 2324 btrfs_release_path(p); 2325 return -EIO; 2326 } 2327 2328 /* 2329 * reduce lock contention at high levels 2330 * of the btree by dropping locks before 2331 * we read. Don't release the lock on the current 2332 * level because we need to walk this node to figure 2333 * out which blocks to read. 2334 */ 2335 btrfs_unlock_up_safe(p, level + 1); 2336 btrfs_set_path_blocking(p); 2337 2338 free_extent_buffer(tmp); 2339 if (p->reada) 2340 reada_for_search(root, p, level, slot, key->objectid); 2341 2342 btrfs_release_path(p); 2343 2344 ret = -EAGAIN; 2345 tmp = read_tree_block(root, blocknr, blocksize, 0); 2346 if (tmp) { 2347 /* 2348 * If the read above didn't mark this buffer up to date, 2349 * it will never end up being up to date. Set ret to EIO now 2350 * and give up so that our caller doesn't loop forever 2351 * on our EAGAINs. 2352 */ 2353 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2354 ret = -EIO; 2355 free_extent_buffer(tmp); 2356 } 2357 return ret; 2358 } 2359 2360 /* 2361 * helper function for btrfs_search_slot. This does all of the checks 2362 * for node-level blocks and does any balancing required based on 2363 * the ins_len. 2364 * 2365 * If no extra work was required, zero is returned. If we had to 2366 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2367 * start over 2368 */ 2369 static int 2370 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2371 struct btrfs_root *root, struct btrfs_path *p, 2372 struct extent_buffer *b, int level, int ins_len, 2373 int *write_lock_level) 2374 { 2375 int ret; 2376 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2377 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2378 int sret; 2379 2380 if (*write_lock_level < level + 1) { 2381 *write_lock_level = level + 1; 2382 btrfs_release_path(p); 2383 goto again; 2384 } 2385 2386 btrfs_set_path_blocking(p); 2387 reada_for_balance(root, p, level); 2388 sret = split_node(trans, root, p, level); 2389 btrfs_clear_path_blocking(p, NULL, 0); 2390 2391 BUG_ON(sret > 0); 2392 if (sret) { 2393 ret = sret; 2394 goto done; 2395 } 2396 b = p->nodes[level]; 2397 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2398 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2399 int sret; 2400 2401 if (*write_lock_level < level + 1) { 2402 *write_lock_level = level + 1; 2403 btrfs_release_path(p); 2404 goto again; 2405 } 2406 2407 btrfs_set_path_blocking(p); 2408 reada_for_balance(root, p, level); 2409 sret = balance_level(trans, root, p, level); 2410 btrfs_clear_path_blocking(p, NULL, 0); 2411 2412 if (sret) { 2413 ret = sret; 2414 goto done; 2415 } 2416 b = p->nodes[level]; 2417 if (!b) { 2418 btrfs_release_path(p); 2419 goto again; 2420 } 2421 BUG_ON(btrfs_header_nritems(b) == 1); 2422 } 2423 return 0; 2424 2425 again: 2426 ret = -EAGAIN; 2427 done: 2428 return ret; 2429 } 2430 2431 static void key_search_validate(struct extent_buffer *b, 2432 struct btrfs_key *key, 2433 int level) 2434 { 2435 #ifdef CONFIG_BTRFS_ASSERT 2436 struct btrfs_disk_key disk_key; 2437 2438 btrfs_cpu_key_to_disk(&disk_key, key); 2439 2440 if (level == 0) 2441 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2442 offsetof(struct btrfs_leaf, items[0].key), 2443 sizeof(disk_key))); 2444 else 2445 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2446 offsetof(struct btrfs_node, ptrs[0].key), 2447 sizeof(disk_key))); 2448 #endif 2449 } 2450 2451 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2452 int level, int *prev_cmp, int *slot) 2453 { 2454 if (*prev_cmp != 0) { 2455 *prev_cmp = bin_search(b, key, level, slot); 2456 return *prev_cmp; 2457 } 2458 2459 key_search_validate(b, key, level); 2460 *slot = 0; 2461 2462 return 0; 2463 } 2464 2465 /* 2466 * look for key in the tree. path is filled in with nodes along the way 2467 * if key is found, we return zero and you can find the item in the leaf 2468 * level of the path (level 0) 2469 * 2470 * If the key isn't found, the path points to the slot where it should 2471 * be inserted, and 1 is returned. If there are other errors during the 2472 * search a negative error number is returned. 2473 * 2474 * if ins_len > 0, nodes and leaves will be split as we walk down the 2475 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2476 * possible) 2477 */ 2478 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2479 *root, struct btrfs_key *key, struct btrfs_path *p, int 2480 ins_len, int cow) 2481 { 2482 struct extent_buffer *b; 2483 int slot; 2484 int ret; 2485 int err; 2486 int level; 2487 int lowest_unlock = 1; 2488 int root_lock; 2489 /* everything at write_lock_level or lower must be write locked */ 2490 int write_lock_level = 0; 2491 u8 lowest_level = 0; 2492 int min_write_lock_level; 2493 int prev_cmp; 2494 2495 lowest_level = p->lowest_level; 2496 WARN_ON(lowest_level && ins_len > 0); 2497 WARN_ON(p->nodes[0] != NULL); 2498 2499 if (ins_len < 0) { 2500 lowest_unlock = 2; 2501 2502 /* when we are removing items, we might have to go up to level 2503 * two as we update tree pointers Make sure we keep write 2504 * for those levels as well 2505 */ 2506 write_lock_level = 2; 2507 } else if (ins_len > 0) { 2508 /* 2509 * for inserting items, make sure we have a write lock on 2510 * level 1 so we can update keys 2511 */ 2512 write_lock_level = 1; 2513 } 2514 2515 if (!cow) 2516 write_lock_level = -1; 2517 2518 if (cow && (p->keep_locks || p->lowest_level)) 2519 write_lock_level = BTRFS_MAX_LEVEL; 2520 2521 min_write_lock_level = write_lock_level; 2522 2523 again: 2524 prev_cmp = -1; 2525 /* 2526 * we try very hard to do read locks on the root 2527 */ 2528 root_lock = BTRFS_READ_LOCK; 2529 level = 0; 2530 if (p->search_commit_root) { 2531 /* 2532 * the commit roots are read only 2533 * so we always do read locks 2534 */ 2535 b = root->commit_root; 2536 extent_buffer_get(b); 2537 level = btrfs_header_level(b); 2538 if (!p->skip_locking) 2539 btrfs_tree_read_lock(b); 2540 } else { 2541 if (p->skip_locking) { 2542 b = btrfs_root_node(root); 2543 level = btrfs_header_level(b); 2544 } else { 2545 /* we don't know the level of the root node 2546 * until we actually have it read locked 2547 */ 2548 b = btrfs_read_lock_root_node(root); 2549 level = btrfs_header_level(b); 2550 if (level <= write_lock_level) { 2551 /* whoops, must trade for write lock */ 2552 btrfs_tree_read_unlock(b); 2553 free_extent_buffer(b); 2554 b = btrfs_lock_root_node(root); 2555 root_lock = BTRFS_WRITE_LOCK; 2556 2557 /* the level might have changed, check again */ 2558 level = btrfs_header_level(b); 2559 } 2560 } 2561 } 2562 p->nodes[level] = b; 2563 if (!p->skip_locking) 2564 p->locks[level] = root_lock; 2565 2566 while (b) { 2567 level = btrfs_header_level(b); 2568 2569 /* 2570 * setup the path here so we can release it under lock 2571 * contention with the cow code 2572 */ 2573 if (cow) { 2574 /* 2575 * if we don't really need to cow this block 2576 * then we don't want to set the path blocking, 2577 * so we test it here 2578 */ 2579 if (!should_cow_block(trans, root, b)) 2580 goto cow_done; 2581 2582 btrfs_set_path_blocking(p); 2583 2584 /* 2585 * must have write locks on this node and the 2586 * parent 2587 */ 2588 if (level > write_lock_level || 2589 (level + 1 > write_lock_level && 2590 level + 1 < BTRFS_MAX_LEVEL && 2591 p->nodes[level + 1])) { 2592 write_lock_level = level + 1; 2593 btrfs_release_path(p); 2594 goto again; 2595 } 2596 2597 err = btrfs_cow_block(trans, root, b, 2598 p->nodes[level + 1], 2599 p->slots[level + 1], &b); 2600 if (err) { 2601 ret = err; 2602 goto done; 2603 } 2604 } 2605 cow_done: 2606 BUG_ON(!cow && ins_len); 2607 2608 p->nodes[level] = b; 2609 btrfs_clear_path_blocking(p, NULL, 0); 2610 2611 /* 2612 * we have a lock on b and as long as we aren't changing 2613 * the tree, there is no way to for the items in b to change. 2614 * It is safe to drop the lock on our parent before we 2615 * go through the expensive btree search on b. 2616 * 2617 * If cow is true, then we might be changing slot zero, 2618 * which may require changing the parent. So, we can't 2619 * drop the lock until after we know which slot we're 2620 * operating on. 2621 */ 2622 if (!cow) 2623 btrfs_unlock_up_safe(p, level + 1); 2624 2625 ret = key_search(b, key, level, &prev_cmp, &slot); 2626 2627 if (level != 0) { 2628 int dec = 0; 2629 if (ret && slot > 0) { 2630 dec = 1; 2631 slot -= 1; 2632 } 2633 p->slots[level] = slot; 2634 err = setup_nodes_for_search(trans, root, p, b, level, 2635 ins_len, &write_lock_level); 2636 if (err == -EAGAIN) 2637 goto again; 2638 if (err) { 2639 ret = err; 2640 goto done; 2641 } 2642 b = p->nodes[level]; 2643 slot = p->slots[level]; 2644 2645 /* 2646 * slot 0 is special, if we change the key 2647 * we have to update the parent pointer 2648 * which means we must have a write lock 2649 * on the parent 2650 */ 2651 if (slot == 0 && cow && 2652 write_lock_level < level + 1) { 2653 write_lock_level = level + 1; 2654 btrfs_release_path(p); 2655 goto again; 2656 } 2657 2658 unlock_up(p, level, lowest_unlock, 2659 min_write_lock_level, &write_lock_level); 2660 2661 if (level == lowest_level) { 2662 if (dec) 2663 p->slots[level]++; 2664 goto done; 2665 } 2666 2667 err = read_block_for_search(trans, root, p, 2668 &b, level, slot, key, 0); 2669 if (err == -EAGAIN) 2670 goto again; 2671 if (err) { 2672 ret = err; 2673 goto done; 2674 } 2675 2676 if (!p->skip_locking) { 2677 level = btrfs_header_level(b); 2678 if (level <= write_lock_level) { 2679 err = btrfs_try_tree_write_lock(b); 2680 if (!err) { 2681 btrfs_set_path_blocking(p); 2682 btrfs_tree_lock(b); 2683 btrfs_clear_path_blocking(p, b, 2684 BTRFS_WRITE_LOCK); 2685 } 2686 p->locks[level] = BTRFS_WRITE_LOCK; 2687 } else { 2688 err = btrfs_try_tree_read_lock(b); 2689 if (!err) { 2690 btrfs_set_path_blocking(p); 2691 btrfs_tree_read_lock(b); 2692 btrfs_clear_path_blocking(p, b, 2693 BTRFS_READ_LOCK); 2694 } 2695 p->locks[level] = BTRFS_READ_LOCK; 2696 } 2697 p->nodes[level] = b; 2698 } 2699 } else { 2700 p->slots[level] = slot; 2701 if (ins_len > 0 && 2702 btrfs_leaf_free_space(root, b) < ins_len) { 2703 if (write_lock_level < 1) { 2704 write_lock_level = 1; 2705 btrfs_release_path(p); 2706 goto again; 2707 } 2708 2709 btrfs_set_path_blocking(p); 2710 err = split_leaf(trans, root, key, 2711 p, ins_len, ret == 0); 2712 btrfs_clear_path_blocking(p, NULL, 0); 2713 2714 BUG_ON(err > 0); 2715 if (err) { 2716 ret = err; 2717 goto done; 2718 } 2719 } 2720 if (!p->search_for_split) 2721 unlock_up(p, level, lowest_unlock, 2722 min_write_lock_level, &write_lock_level); 2723 goto done; 2724 } 2725 } 2726 ret = 1; 2727 done: 2728 /* 2729 * we don't really know what they plan on doing with the path 2730 * from here on, so for now just mark it as blocking 2731 */ 2732 if (!p->leave_spinning) 2733 btrfs_set_path_blocking(p); 2734 if (ret < 0) 2735 btrfs_release_path(p); 2736 return ret; 2737 } 2738 2739 /* 2740 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2741 * current state of the tree together with the operations recorded in the tree 2742 * modification log to search for the key in a previous version of this tree, as 2743 * denoted by the time_seq parameter. 2744 * 2745 * Naturally, there is no support for insert, delete or cow operations. 2746 * 2747 * The resulting path and return value will be set up as if we called 2748 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2749 */ 2750 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2751 struct btrfs_path *p, u64 time_seq) 2752 { 2753 struct extent_buffer *b; 2754 int slot; 2755 int ret; 2756 int err; 2757 int level; 2758 int lowest_unlock = 1; 2759 u8 lowest_level = 0; 2760 int prev_cmp = -1; 2761 2762 lowest_level = p->lowest_level; 2763 WARN_ON(p->nodes[0] != NULL); 2764 2765 if (p->search_commit_root) { 2766 BUG_ON(time_seq); 2767 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2768 } 2769 2770 again: 2771 b = get_old_root(root, time_seq); 2772 level = btrfs_header_level(b); 2773 p->locks[level] = BTRFS_READ_LOCK; 2774 2775 while (b) { 2776 level = btrfs_header_level(b); 2777 p->nodes[level] = b; 2778 btrfs_clear_path_blocking(p, NULL, 0); 2779 2780 /* 2781 * we have a lock on b and as long as we aren't changing 2782 * the tree, there is no way to for the items in b to change. 2783 * It is safe to drop the lock on our parent before we 2784 * go through the expensive btree search on b. 2785 */ 2786 btrfs_unlock_up_safe(p, level + 1); 2787 2788 /* 2789 * Since we can unwind eb's we want to do a real search every 2790 * time. 2791 */ 2792 prev_cmp = -1; 2793 ret = key_search(b, key, level, &prev_cmp, &slot); 2794 2795 if (level != 0) { 2796 int dec = 0; 2797 if (ret && slot > 0) { 2798 dec = 1; 2799 slot -= 1; 2800 } 2801 p->slots[level] = slot; 2802 unlock_up(p, level, lowest_unlock, 0, NULL); 2803 2804 if (level == lowest_level) { 2805 if (dec) 2806 p->slots[level]++; 2807 goto done; 2808 } 2809 2810 err = read_block_for_search(NULL, root, p, &b, level, 2811 slot, key, time_seq); 2812 if (err == -EAGAIN) 2813 goto again; 2814 if (err) { 2815 ret = err; 2816 goto done; 2817 } 2818 2819 level = btrfs_header_level(b); 2820 err = btrfs_try_tree_read_lock(b); 2821 if (!err) { 2822 btrfs_set_path_blocking(p); 2823 btrfs_tree_read_lock(b); 2824 btrfs_clear_path_blocking(p, b, 2825 BTRFS_READ_LOCK); 2826 } 2827 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 2828 if (!b) { 2829 ret = -ENOMEM; 2830 goto done; 2831 } 2832 p->locks[level] = BTRFS_READ_LOCK; 2833 p->nodes[level] = b; 2834 } else { 2835 p->slots[level] = slot; 2836 unlock_up(p, level, lowest_unlock, 0, NULL); 2837 goto done; 2838 } 2839 } 2840 ret = 1; 2841 done: 2842 if (!p->leave_spinning) 2843 btrfs_set_path_blocking(p); 2844 if (ret < 0) 2845 btrfs_release_path(p); 2846 2847 return ret; 2848 } 2849 2850 /* 2851 * helper to use instead of search slot if no exact match is needed but 2852 * instead the next or previous item should be returned. 2853 * When find_higher is true, the next higher item is returned, the next lower 2854 * otherwise. 2855 * When return_any and find_higher are both true, and no higher item is found, 2856 * return the next lower instead. 2857 * When return_any is true and find_higher is false, and no lower item is found, 2858 * return the next higher instead. 2859 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2860 * < 0 on error 2861 */ 2862 int btrfs_search_slot_for_read(struct btrfs_root *root, 2863 struct btrfs_key *key, struct btrfs_path *p, 2864 int find_higher, int return_any) 2865 { 2866 int ret; 2867 struct extent_buffer *leaf; 2868 2869 again: 2870 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2871 if (ret <= 0) 2872 return ret; 2873 /* 2874 * a return value of 1 means the path is at the position where the 2875 * item should be inserted. Normally this is the next bigger item, 2876 * but in case the previous item is the last in a leaf, path points 2877 * to the first free slot in the previous leaf, i.e. at an invalid 2878 * item. 2879 */ 2880 leaf = p->nodes[0]; 2881 2882 if (find_higher) { 2883 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2884 ret = btrfs_next_leaf(root, p); 2885 if (ret <= 0) 2886 return ret; 2887 if (!return_any) 2888 return 1; 2889 /* 2890 * no higher item found, return the next 2891 * lower instead 2892 */ 2893 return_any = 0; 2894 find_higher = 0; 2895 btrfs_release_path(p); 2896 goto again; 2897 } 2898 } else { 2899 if (p->slots[0] == 0) { 2900 ret = btrfs_prev_leaf(root, p); 2901 if (ret < 0) 2902 return ret; 2903 if (!ret) { 2904 p->slots[0] = btrfs_header_nritems(leaf) - 1; 2905 return 0; 2906 } 2907 if (!return_any) 2908 return 1; 2909 /* 2910 * no lower item found, return the next 2911 * higher instead 2912 */ 2913 return_any = 0; 2914 find_higher = 1; 2915 btrfs_release_path(p); 2916 goto again; 2917 } else { 2918 --p->slots[0]; 2919 } 2920 } 2921 return 0; 2922 } 2923 2924 /* 2925 * adjust the pointers going up the tree, starting at level 2926 * making sure the right key of each node is points to 'key'. 2927 * This is used after shifting pointers to the left, so it stops 2928 * fixing up pointers when a given leaf/node is not in slot 0 of the 2929 * higher levels 2930 * 2931 */ 2932 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path, 2933 struct btrfs_disk_key *key, int level) 2934 { 2935 int i; 2936 struct extent_buffer *t; 2937 2938 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2939 int tslot = path->slots[i]; 2940 if (!path->nodes[i]) 2941 break; 2942 t = path->nodes[i]; 2943 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1); 2944 btrfs_set_node_key(t, key, tslot); 2945 btrfs_mark_buffer_dirty(path->nodes[i]); 2946 if (tslot != 0) 2947 break; 2948 } 2949 } 2950 2951 /* 2952 * update item key. 2953 * 2954 * This function isn't completely safe. It's the caller's responsibility 2955 * that the new key won't break the order 2956 */ 2957 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path, 2958 struct btrfs_key *new_key) 2959 { 2960 struct btrfs_disk_key disk_key; 2961 struct extent_buffer *eb; 2962 int slot; 2963 2964 eb = path->nodes[0]; 2965 slot = path->slots[0]; 2966 if (slot > 0) { 2967 btrfs_item_key(eb, &disk_key, slot - 1); 2968 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 2969 } 2970 if (slot < btrfs_header_nritems(eb) - 1) { 2971 btrfs_item_key(eb, &disk_key, slot + 1); 2972 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 2973 } 2974 2975 btrfs_cpu_key_to_disk(&disk_key, new_key); 2976 btrfs_set_item_key(eb, &disk_key, slot); 2977 btrfs_mark_buffer_dirty(eb); 2978 if (slot == 0) 2979 fixup_low_keys(root, path, &disk_key, 1); 2980 } 2981 2982 /* 2983 * try to push data from one node into the next node left in the 2984 * tree. 2985 * 2986 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2987 * error, and > 0 if there was no room in the left hand block. 2988 */ 2989 static int push_node_left(struct btrfs_trans_handle *trans, 2990 struct btrfs_root *root, struct extent_buffer *dst, 2991 struct extent_buffer *src, int empty) 2992 { 2993 int push_items = 0; 2994 int src_nritems; 2995 int dst_nritems; 2996 int ret = 0; 2997 2998 src_nritems = btrfs_header_nritems(src); 2999 dst_nritems = btrfs_header_nritems(dst); 3000 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3001 WARN_ON(btrfs_header_generation(src) != trans->transid); 3002 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3003 3004 if (!empty && src_nritems <= 8) 3005 return 1; 3006 3007 if (push_items <= 0) 3008 return 1; 3009 3010 if (empty) { 3011 push_items = min(src_nritems, push_items); 3012 if (push_items < src_nritems) { 3013 /* leave at least 8 pointers in the node if 3014 * we aren't going to empty it 3015 */ 3016 if (src_nritems - push_items < 8) { 3017 if (push_items <= 8) 3018 return 1; 3019 push_items -= 8; 3020 } 3021 } 3022 } else 3023 push_items = min(src_nritems - 8, push_items); 3024 3025 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3026 push_items); 3027 copy_extent_buffer(dst, src, 3028 btrfs_node_key_ptr_offset(dst_nritems), 3029 btrfs_node_key_ptr_offset(0), 3030 push_items * sizeof(struct btrfs_key_ptr)); 3031 3032 if (push_items < src_nritems) { 3033 /* 3034 * don't call tree_mod_log_eb_move here, key removal was already 3035 * fully logged by tree_mod_log_eb_copy above. 3036 */ 3037 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3038 btrfs_node_key_ptr_offset(push_items), 3039 (src_nritems - push_items) * 3040 sizeof(struct btrfs_key_ptr)); 3041 } 3042 btrfs_set_header_nritems(src, src_nritems - push_items); 3043 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3044 btrfs_mark_buffer_dirty(src); 3045 btrfs_mark_buffer_dirty(dst); 3046 3047 return ret; 3048 } 3049 3050 /* 3051 * try to push data from one node into the next node right in the 3052 * tree. 3053 * 3054 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3055 * error, and > 0 if there was no room in the right hand block. 3056 * 3057 * this will only push up to 1/2 the contents of the left node over 3058 */ 3059 static int balance_node_right(struct btrfs_trans_handle *trans, 3060 struct btrfs_root *root, 3061 struct extent_buffer *dst, 3062 struct extent_buffer *src) 3063 { 3064 int push_items = 0; 3065 int max_push; 3066 int src_nritems; 3067 int dst_nritems; 3068 int ret = 0; 3069 3070 WARN_ON(btrfs_header_generation(src) != trans->transid); 3071 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3072 3073 src_nritems = btrfs_header_nritems(src); 3074 dst_nritems = btrfs_header_nritems(dst); 3075 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3076 if (push_items <= 0) 3077 return 1; 3078 3079 if (src_nritems < 4) 3080 return 1; 3081 3082 max_push = src_nritems / 2 + 1; 3083 /* don't try to empty the node */ 3084 if (max_push >= src_nritems) 3085 return 1; 3086 3087 if (max_push < push_items) 3088 push_items = max_push; 3089 3090 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3091 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3092 btrfs_node_key_ptr_offset(0), 3093 (dst_nritems) * 3094 sizeof(struct btrfs_key_ptr)); 3095 3096 tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3097 src_nritems - push_items, push_items); 3098 copy_extent_buffer(dst, src, 3099 btrfs_node_key_ptr_offset(0), 3100 btrfs_node_key_ptr_offset(src_nritems - push_items), 3101 push_items * sizeof(struct btrfs_key_ptr)); 3102 3103 btrfs_set_header_nritems(src, src_nritems - push_items); 3104 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3105 3106 btrfs_mark_buffer_dirty(src); 3107 btrfs_mark_buffer_dirty(dst); 3108 3109 return ret; 3110 } 3111 3112 /* 3113 * helper function to insert a new root level in the tree. 3114 * A new node is allocated, and a single item is inserted to 3115 * point to the existing root 3116 * 3117 * returns zero on success or < 0 on failure. 3118 */ 3119 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3120 struct btrfs_root *root, 3121 struct btrfs_path *path, int level) 3122 { 3123 u64 lower_gen; 3124 struct extent_buffer *lower; 3125 struct extent_buffer *c; 3126 struct extent_buffer *old; 3127 struct btrfs_disk_key lower_key; 3128 3129 BUG_ON(path->nodes[level]); 3130 BUG_ON(path->nodes[level-1] != root->node); 3131 3132 lower = path->nodes[level-1]; 3133 if (level == 1) 3134 btrfs_item_key(lower, &lower_key, 0); 3135 else 3136 btrfs_node_key(lower, &lower_key, 0); 3137 3138 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3139 root->root_key.objectid, &lower_key, 3140 level, root->node->start, 0); 3141 if (IS_ERR(c)) 3142 return PTR_ERR(c); 3143 3144 root_add_used(root, root->nodesize); 3145 3146 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3147 btrfs_set_header_nritems(c, 1); 3148 btrfs_set_header_level(c, level); 3149 btrfs_set_header_bytenr(c, c->start); 3150 btrfs_set_header_generation(c, trans->transid); 3151 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3152 btrfs_set_header_owner(c, root->root_key.objectid); 3153 3154 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3155 BTRFS_FSID_SIZE); 3156 3157 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3158 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3159 3160 btrfs_set_node_key(c, &lower_key, 0); 3161 btrfs_set_node_blockptr(c, 0, lower->start); 3162 lower_gen = btrfs_header_generation(lower); 3163 WARN_ON(lower_gen != trans->transid); 3164 3165 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3166 3167 btrfs_mark_buffer_dirty(c); 3168 3169 old = root->node; 3170 tree_mod_log_set_root_pointer(root, c, 0); 3171 rcu_assign_pointer(root->node, c); 3172 3173 /* the super has an extra ref to root->node */ 3174 free_extent_buffer(old); 3175 3176 add_root_to_dirty_list(root); 3177 extent_buffer_get(c); 3178 path->nodes[level] = c; 3179 path->locks[level] = BTRFS_WRITE_LOCK; 3180 path->slots[level] = 0; 3181 return 0; 3182 } 3183 3184 /* 3185 * worker function to insert a single pointer in a node. 3186 * the node should have enough room for the pointer already 3187 * 3188 * slot and level indicate where you want the key to go, and 3189 * blocknr is the block the key points to. 3190 */ 3191 static void insert_ptr(struct btrfs_trans_handle *trans, 3192 struct btrfs_root *root, struct btrfs_path *path, 3193 struct btrfs_disk_key *key, u64 bytenr, 3194 int slot, int level) 3195 { 3196 struct extent_buffer *lower; 3197 int nritems; 3198 int ret; 3199 3200 BUG_ON(!path->nodes[level]); 3201 btrfs_assert_tree_locked(path->nodes[level]); 3202 lower = path->nodes[level]; 3203 nritems = btrfs_header_nritems(lower); 3204 BUG_ON(slot > nritems); 3205 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3206 if (slot != nritems) { 3207 if (level) 3208 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3209 slot, nritems - slot); 3210 memmove_extent_buffer(lower, 3211 btrfs_node_key_ptr_offset(slot + 1), 3212 btrfs_node_key_ptr_offset(slot), 3213 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3214 } 3215 if (level) { 3216 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3217 MOD_LOG_KEY_ADD, GFP_NOFS); 3218 BUG_ON(ret < 0); 3219 } 3220 btrfs_set_node_key(lower, key, slot); 3221 btrfs_set_node_blockptr(lower, slot, bytenr); 3222 WARN_ON(trans->transid == 0); 3223 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3224 btrfs_set_header_nritems(lower, nritems + 1); 3225 btrfs_mark_buffer_dirty(lower); 3226 } 3227 3228 /* 3229 * split the node at the specified level in path in two. 3230 * The path is corrected to point to the appropriate node after the split 3231 * 3232 * Before splitting this tries to make some room in the node by pushing 3233 * left and right, if either one works, it returns right away. 3234 * 3235 * returns 0 on success and < 0 on failure 3236 */ 3237 static noinline int split_node(struct btrfs_trans_handle *trans, 3238 struct btrfs_root *root, 3239 struct btrfs_path *path, int level) 3240 { 3241 struct extent_buffer *c; 3242 struct extent_buffer *split; 3243 struct btrfs_disk_key disk_key; 3244 int mid; 3245 int ret; 3246 u32 c_nritems; 3247 3248 c = path->nodes[level]; 3249 WARN_ON(btrfs_header_generation(c) != trans->transid); 3250 if (c == root->node) { 3251 /* 3252 * trying to split the root, lets make a new one 3253 * 3254 * tree mod log: We don't log_removal old root in 3255 * insert_new_root, because that root buffer will be kept as a 3256 * normal node. We are going to log removal of half of the 3257 * elements below with tree_mod_log_eb_copy. We're holding a 3258 * tree lock on the buffer, which is why we cannot race with 3259 * other tree_mod_log users. 3260 */ 3261 ret = insert_new_root(trans, root, path, level + 1); 3262 if (ret) 3263 return ret; 3264 } else { 3265 ret = push_nodes_for_insert(trans, root, path, level); 3266 c = path->nodes[level]; 3267 if (!ret && btrfs_header_nritems(c) < 3268 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3269 return 0; 3270 if (ret < 0) 3271 return ret; 3272 } 3273 3274 c_nritems = btrfs_header_nritems(c); 3275 mid = (c_nritems + 1) / 2; 3276 btrfs_node_key(c, &disk_key, mid); 3277 3278 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3279 root->root_key.objectid, 3280 &disk_key, level, c->start, 0); 3281 if (IS_ERR(split)) 3282 return PTR_ERR(split); 3283 3284 root_add_used(root, root->nodesize); 3285 3286 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3287 btrfs_set_header_level(split, btrfs_header_level(c)); 3288 btrfs_set_header_bytenr(split, split->start); 3289 btrfs_set_header_generation(split, trans->transid); 3290 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3291 btrfs_set_header_owner(split, root->root_key.objectid); 3292 write_extent_buffer(split, root->fs_info->fsid, 3293 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3294 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3295 btrfs_header_chunk_tree_uuid(split), 3296 BTRFS_UUID_SIZE); 3297 3298 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid); 3299 copy_extent_buffer(split, c, 3300 btrfs_node_key_ptr_offset(0), 3301 btrfs_node_key_ptr_offset(mid), 3302 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3303 btrfs_set_header_nritems(split, c_nritems - mid); 3304 btrfs_set_header_nritems(c, mid); 3305 ret = 0; 3306 3307 btrfs_mark_buffer_dirty(c); 3308 btrfs_mark_buffer_dirty(split); 3309 3310 insert_ptr(trans, root, path, &disk_key, split->start, 3311 path->slots[level + 1] + 1, level + 1); 3312 3313 if (path->slots[level] >= mid) { 3314 path->slots[level] -= mid; 3315 btrfs_tree_unlock(c); 3316 free_extent_buffer(c); 3317 path->nodes[level] = split; 3318 path->slots[level + 1] += 1; 3319 } else { 3320 btrfs_tree_unlock(split); 3321 free_extent_buffer(split); 3322 } 3323 return ret; 3324 } 3325 3326 /* 3327 * how many bytes are required to store the items in a leaf. start 3328 * and nr indicate which items in the leaf to check. This totals up the 3329 * space used both by the item structs and the item data 3330 */ 3331 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3332 { 3333 struct btrfs_item *start_item; 3334 struct btrfs_item *end_item; 3335 struct btrfs_map_token token; 3336 int data_len; 3337 int nritems = btrfs_header_nritems(l); 3338 int end = min(nritems, start + nr) - 1; 3339 3340 if (!nr) 3341 return 0; 3342 btrfs_init_map_token(&token); 3343 start_item = btrfs_item_nr(start); 3344 end_item = btrfs_item_nr(end); 3345 data_len = btrfs_token_item_offset(l, start_item, &token) + 3346 btrfs_token_item_size(l, start_item, &token); 3347 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3348 data_len += sizeof(struct btrfs_item) * nr; 3349 WARN_ON(data_len < 0); 3350 return data_len; 3351 } 3352 3353 /* 3354 * The space between the end of the leaf items and 3355 * the start of the leaf data. IOW, how much room 3356 * the leaf has left for both items and data 3357 */ 3358 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3359 struct extent_buffer *leaf) 3360 { 3361 int nritems = btrfs_header_nritems(leaf); 3362 int ret; 3363 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3364 if (ret < 0) { 3365 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 3366 "used %d nritems %d\n", 3367 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3368 leaf_space_used(leaf, 0, nritems), nritems); 3369 } 3370 return ret; 3371 } 3372 3373 /* 3374 * min slot controls the lowest index we're willing to push to the 3375 * right. We'll push up to and including min_slot, but no lower 3376 */ 3377 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3378 struct btrfs_root *root, 3379 struct btrfs_path *path, 3380 int data_size, int empty, 3381 struct extent_buffer *right, 3382 int free_space, u32 left_nritems, 3383 u32 min_slot) 3384 { 3385 struct extent_buffer *left = path->nodes[0]; 3386 struct extent_buffer *upper = path->nodes[1]; 3387 struct btrfs_map_token token; 3388 struct btrfs_disk_key disk_key; 3389 int slot; 3390 u32 i; 3391 int push_space = 0; 3392 int push_items = 0; 3393 struct btrfs_item *item; 3394 u32 nr; 3395 u32 right_nritems; 3396 u32 data_end; 3397 u32 this_item_size; 3398 3399 btrfs_init_map_token(&token); 3400 3401 if (empty) 3402 nr = 0; 3403 else 3404 nr = max_t(u32, 1, min_slot); 3405 3406 if (path->slots[0] >= left_nritems) 3407 push_space += data_size; 3408 3409 slot = path->slots[1]; 3410 i = left_nritems - 1; 3411 while (i >= nr) { 3412 item = btrfs_item_nr(i); 3413 3414 if (!empty && push_items > 0) { 3415 if (path->slots[0] > i) 3416 break; 3417 if (path->slots[0] == i) { 3418 int space = btrfs_leaf_free_space(root, left); 3419 if (space + push_space * 2 > free_space) 3420 break; 3421 } 3422 } 3423 3424 if (path->slots[0] == i) 3425 push_space += data_size; 3426 3427 this_item_size = btrfs_item_size(left, item); 3428 if (this_item_size + sizeof(*item) + push_space > free_space) 3429 break; 3430 3431 push_items++; 3432 push_space += this_item_size + sizeof(*item); 3433 if (i == 0) 3434 break; 3435 i--; 3436 } 3437 3438 if (push_items == 0) 3439 goto out_unlock; 3440 3441 WARN_ON(!empty && push_items == left_nritems); 3442 3443 /* push left to right */ 3444 right_nritems = btrfs_header_nritems(right); 3445 3446 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3447 push_space -= leaf_data_end(root, left); 3448 3449 /* make room in the right data area */ 3450 data_end = leaf_data_end(root, right); 3451 memmove_extent_buffer(right, 3452 btrfs_leaf_data(right) + data_end - push_space, 3453 btrfs_leaf_data(right) + data_end, 3454 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3455 3456 /* copy from the left data area */ 3457 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3458 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3459 btrfs_leaf_data(left) + leaf_data_end(root, left), 3460 push_space); 3461 3462 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3463 btrfs_item_nr_offset(0), 3464 right_nritems * sizeof(struct btrfs_item)); 3465 3466 /* copy the items from left to right */ 3467 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3468 btrfs_item_nr_offset(left_nritems - push_items), 3469 push_items * sizeof(struct btrfs_item)); 3470 3471 /* update the item pointers */ 3472 right_nritems += push_items; 3473 btrfs_set_header_nritems(right, right_nritems); 3474 push_space = BTRFS_LEAF_DATA_SIZE(root); 3475 for (i = 0; i < right_nritems; i++) { 3476 item = btrfs_item_nr(i); 3477 push_space -= btrfs_token_item_size(right, item, &token); 3478 btrfs_set_token_item_offset(right, item, push_space, &token); 3479 } 3480 3481 left_nritems -= push_items; 3482 btrfs_set_header_nritems(left, left_nritems); 3483 3484 if (left_nritems) 3485 btrfs_mark_buffer_dirty(left); 3486 else 3487 clean_tree_block(trans, root, left); 3488 3489 btrfs_mark_buffer_dirty(right); 3490 3491 btrfs_item_key(right, &disk_key, 0); 3492 btrfs_set_node_key(upper, &disk_key, slot + 1); 3493 btrfs_mark_buffer_dirty(upper); 3494 3495 /* then fixup the leaf pointer in the path */ 3496 if (path->slots[0] >= left_nritems) { 3497 path->slots[0] -= left_nritems; 3498 if (btrfs_header_nritems(path->nodes[0]) == 0) 3499 clean_tree_block(trans, root, path->nodes[0]); 3500 btrfs_tree_unlock(path->nodes[0]); 3501 free_extent_buffer(path->nodes[0]); 3502 path->nodes[0] = right; 3503 path->slots[1] += 1; 3504 } else { 3505 btrfs_tree_unlock(right); 3506 free_extent_buffer(right); 3507 } 3508 return 0; 3509 3510 out_unlock: 3511 btrfs_tree_unlock(right); 3512 free_extent_buffer(right); 3513 return 1; 3514 } 3515 3516 /* 3517 * push some data in the path leaf to the right, trying to free up at 3518 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3519 * 3520 * returns 1 if the push failed because the other node didn't have enough 3521 * room, 0 if everything worked out and < 0 if there were major errors. 3522 * 3523 * this will push starting from min_slot to the end of the leaf. It won't 3524 * push any slot lower than min_slot 3525 */ 3526 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3527 *root, struct btrfs_path *path, 3528 int min_data_size, int data_size, 3529 int empty, u32 min_slot) 3530 { 3531 struct extent_buffer *left = path->nodes[0]; 3532 struct extent_buffer *right; 3533 struct extent_buffer *upper; 3534 int slot; 3535 int free_space; 3536 u32 left_nritems; 3537 int ret; 3538 3539 if (!path->nodes[1]) 3540 return 1; 3541 3542 slot = path->slots[1]; 3543 upper = path->nodes[1]; 3544 if (slot >= btrfs_header_nritems(upper) - 1) 3545 return 1; 3546 3547 btrfs_assert_tree_locked(path->nodes[1]); 3548 3549 right = read_node_slot(root, upper, slot + 1); 3550 if (right == NULL) 3551 return 1; 3552 3553 btrfs_tree_lock(right); 3554 btrfs_set_lock_blocking(right); 3555 3556 free_space = btrfs_leaf_free_space(root, right); 3557 if (free_space < data_size) 3558 goto out_unlock; 3559 3560 /* cow and double check */ 3561 ret = btrfs_cow_block(trans, root, right, upper, 3562 slot + 1, &right); 3563 if (ret) 3564 goto out_unlock; 3565 3566 free_space = btrfs_leaf_free_space(root, right); 3567 if (free_space < data_size) 3568 goto out_unlock; 3569 3570 left_nritems = btrfs_header_nritems(left); 3571 if (left_nritems == 0) 3572 goto out_unlock; 3573 3574 return __push_leaf_right(trans, root, path, min_data_size, empty, 3575 right, free_space, left_nritems, min_slot); 3576 out_unlock: 3577 btrfs_tree_unlock(right); 3578 free_extent_buffer(right); 3579 return 1; 3580 } 3581 3582 /* 3583 * push some data in the path leaf to the left, trying to free up at 3584 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3585 * 3586 * max_slot can put a limit on how far into the leaf we'll push items. The 3587 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3588 * items 3589 */ 3590 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3591 struct btrfs_root *root, 3592 struct btrfs_path *path, int data_size, 3593 int empty, struct extent_buffer *left, 3594 int free_space, u32 right_nritems, 3595 u32 max_slot) 3596 { 3597 struct btrfs_disk_key disk_key; 3598 struct extent_buffer *right = path->nodes[0]; 3599 int i; 3600 int push_space = 0; 3601 int push_items = 0; 3602 struct btrfs_item *item; 3603 u32 old_left_nritems; 3604 u32 nr; 3605 int ret = 0; 3606 u32 this_item_size; 3607 u32 old_left_item_size; 3608 struct btrfs_map_token token; 3609 3610 btrfs_init_map_token(&token); 3611 3612 if (empty) 3613 nr = min(right_nritems, max_slot); 3614 else 3615 nr = min(right_nritems - 1, max_slot); 3616 3617 for (i = 0; i < nr; i++) { 3618 item = btrfs_item_nr(i); 3619 3620 if (!empty && push_items > 0) { 3621 if (path->slots[0] < i) 3622 break; 3623 if (path->slots[0] == i) { 3624 int space = btrfs_leaf_free_space(root, right); 3625 if (space + push_space * 2 > free_space) 3626 break; 3627 } 3628 } 3629 3630 if (path->slots[0] == i) 3631 push_space += data_size; 3632 3633 this_item_size = btrfs_item_size(right, item); 3634 if (this_item_size + sizeof(*item) + push_space > free_space) 3635 break; 3636 3637 push_items++; 3638 push_space += this_item_size + sizeof(*item); 3639 } 3640 3641 if (push_items == 0) { 3642 ret = 1; 3643 goto out; 3644 } 3645 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3646 3647 /* push data from right to left */ 3648 copy_extent_buffer(left, right, 3649 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3650 btrfs_item_nr_offset(0), 3651 push_items * sizeof(struct btrfs_item)); 3652 3653 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3654 btrfs_item_offset_nr(right, push_items - 1); 3655 3656 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3657 leaf_data_end(root, left) - push_space, 3658 btrfs_leaf_data(right) + 3659 btrfs_item_offset_nr(right, push_items - 1), 3660 push_space); 3661 old_left_nritems = btrfs_header_nritems(left); 3662 BUG_ON(old_left_nritems <= 0); 3663 3664 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3665 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3666 u32 ioff; 3667 3668 item = btrfs_item_nr(i); 3669 3670 ioff = btrfs_token_item_offset(left, item, &token); 3671 btrfs_set_token_item_offset(left, item, 3672 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3673 &token); 3674 } 3675 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3676 3677 /* fixup right node */ 3678 if (push_items > right_nritems) 3679 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3680 right_nritems); 3681 3682 if (push_items < right_nritems) { 3683 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3684 leaf_data_end(root, right); 3685 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3686 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3687 btrfs_leaf_data(right) + 3688 leaf_data_end(root, right), push_space); 3689 3690 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3691 btrfs_item_nr_offset(push_items), 3692 (btrfs_header_nritems(right) - push_items) * 3693 sizeof(struct btrfs_item)); 3694 } 3695 right_nritems -= push_items; 3696 btrfs_set_header_nritems(right, right_nritems); 3697 push_space = BTRFS_LEAF_DATA_SIZE(root); 3698 for (i = 0; i < right_nritems; i++) { 3699 item = btrfs_item_nr(i); 3700 3701 push_space = push_space - btrfs_token_item_size(right, 3702 item, &token); 3703 btrfs_set_token_item_offset(right, item, push_space, &token); 3704 } 3705 3706 btrfs_mark_buffer_dirty(left); 3707 if (right_nritems) 3708 btrfs_mark_buffer_dirty(right); 3709 else 3710 clean_tree_block(trans, root, right); 3711 3712 btrfs_item_key(right, &disk_key, 0); 3713 fixup_low_keys(root, path, &disk_key, 1); 3714 3715 /* then fixup the leaf pointer in the path */ 3716 if (path->slots[0] < push_items) { 3717 path->slots[0] += old_left_nritems; 3718 btrfs_tree_unlock(path->nodes[0]); 3719 free_extent_buffer(path->nodes[0]); 3720 path->nodes[0] = left; 3721 path->slots[1] -= 1; 3722 } else { 3723 btrfs_tree_unlock(left); 3724 free_extent_buffer(left); 3725 path->slots[0] -= push_items; 3726 } 3727 BUG_ON(path->slots[0] < 0); 3728 return ret; 3729 out: 3730 btrfs_tree_unlock(left); 3731 free_extent_buffer(left); 3732 return ret; 3733 } 3734 3735 /* 3736 * push some data in the path leaf to the left, trying to free up at 3737 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3738 * 3739 * max_slot can put a limit on how far into the leaf we'll push items. The 3740 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3741 * items 3742 */ 3743 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3744 *root, struct btrfs_path *path, int min_data_size, 3745 int data_size, int empty, u32 max_slot) 3746 { 3747 struct extent_buffer *right = path->nodes[0]; 3748 struct extent_buffer *left; 3749 int slot; 3750 int free_space; 3751 u32 right_nritems; 3752 int ret = 0; 3753 3754 slot = path->slots[1]; 3755 if (slot == 0) 3756 return 1; 3757 if (!path->nodes[1]) 3758 return 1; 3759 3760 right_nritems = btrfs_header_nritems(right); 3761 if (right_nritems == 0) 3762 return 1; 3763 3764 btrfs_assert_tree_locked(path->nodes[1]); 3765 3766 left = read_node_slot(root, path->nodes[1], slot - 1); 3767 if (left == NULL) 3768 return 1; 3769 3770 btrfs_tree_lock(left); 3771 btrfs_set_lock_blocking(left); 3772 3773 free_space = btrfs_leaf_free_space(root, left); 3774 if (free_space < data_size) { 3775 ret = 1; 3776 goto out; 3777 } 3778 3779 /* cow and double check */ 3780 ret = btrfs_cow_block(trans, root, left, 3781 path->nodes[1], slot - 1, &left); 3782 if (ret) { 3783 /* we hit -ENOSPC, but it isn't fatal here */ 3784 if (ret == -ENOSPC) 3785 ret = 1; 3786 goto out; 3787 } 3788 3789 free_space = btrfs_leaf_free_space(root, left); 3790 if (free_space < data_size) { 3791 ret = 1; 3792 goto out; 3793 } 3794 3795 return __push_leaf_left(trans, root, path, min_data_size, 3796 empty, left, free_space, right_nritems, 3797 max_slot); 3798 out: 3799 btrfs_tree_unlock(left); 3800 free_extent_buffer(left); 3801 return ret; 3802 } 3803 3804 /* 3805 * split the path's leaf in two, making sure there is at least data_size 3806 * available for the resulting leaf level of the path. 3807 */ 3808 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3809 struct btrfs_root *root, 3810 struct btrfs_path *path, 3811 struct extent_buffer *l, 3812 struct extent_buffer *right, 3813 int slot, int mid, int nritems) 3814 { 3815 int data_copy_size; 3816 int rt_data_off; 3817 int i; 3818 struct btrfs_disk_key disk_key; 3819 struct btrfs_map_token token; 3820 3821 btrfs_init_map_token(&token); 3822 3823 nritems = nritems - mid; 3824 btrfs_set_header_nritems(right, nritems); 3825 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 3826 3827 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3828 btrfs_item_nr_offset(mid), 3829 nritems * sizeof(struct btrfs_item)); 3830 3831 copy_extent_buffer(right, l, 3832 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 3833 data_copy_size, btrfs_leaf_data(l) + 3834 leaf_data_end(root, l), data_copy_size); 3835 3836 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 3837 btrfs_item_end_nr(l, mid); 3838 3839 for (i = 0; i < nritems; i++) { 3840 struct btrfs_item *item = btrfs_item_nr(i); 3841 u32 ioff; 3842 3843 ioff = btrfs_token_item_offset(right, item, &token); 3844 btrfs_set_token_item_offset(right, item, 3845 ioff + rt_data_off, &token); 3846 } 3847 3848 btrfs_set_header_nritems(l, mid); 3849 btrfs_item_key(right, &disk_key, 0); 3850 insert_ptr(trans, root, path, &disk_key, right->start, 3851 path->slots[1] + 1, 1); 3852 3853 btrfs_mark_buffer_dirty(right); 3854 btrfs_mark_buffer_dirty(l); 3855 BUG_ON(path->slots[0] != slot); 3856 3857 if (mid <= slot) { 3858 btrfs_tree_unlock(path->nodes[0]); 3859 free_extent_buffer(path->nodes[0]); 3860 path->nodes[0] = right; 3861 path->slots[0] -= mid; 3862 path->slots[1] += 1; 3863 } else { 3864 btrfs_tree_unlock(right); 3865 free_extent_buffer(right); 3866 } 3867 3868 BUG_ON(path->slots[0] < 0); 3869 } 3870 3871 /* 3872 * double splits happen when we need to insert a big item in the middle 3873 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3874 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3875 * A B C 3876 * 3877 * We avoid this by trying to push the items on either side of our target 3878 * into the adjacent leaves. If all goes well we can avoid the double split 3879 * completely. 3880 */ 3881 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3882 struct btrfs_root *root, 3883 struct btrfs_path *path, 3884 int data_size) 3885 { 3886 int ret; 3887 int progress = 0; 3888 int slot; 3889 u32 nritems; 3890 3891 slot = path->slots[0]; 3892 3893 /* 3894 * try to push all the items after our slot into the 3895 * right leaf 3896 */ 3897 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 3898 if (ret < 0) 3899 return ret; 3900 3901 if (ret == 0) 3902 progress++; 3903 3904 nritems = btrfs_header_nritems(path->nodes[0]); 3905 /* 3906 * our goal is to get our slot at the start or end of a leaf. If 3907 * we've done so we're done 3908 */ 3909 if (path->slots[0] == 0 || path->slots[0] == nritems) 3910 return 0; 3911 3912 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3913 return 0; 3914 3915 /* try to push all the items before our slot into the next leaf */ 3916 slot = path->slots[0]; 3917 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 3918 if (ret < 0) 3919 return ret; 3920 3921 if (ret == 0) 3922 progress++; 3923 3924 if (progress) 3925 return 0; 3926 return 1; 3927 } 3928 3929 /* 3930 * split the path's leaf in two, making sure there is at least data_size 3931 * available for the resulting leaf level of the path. 3932 * 3933 * returns 0 if all went well and < 0 on failure. 3934 */ 3935 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3936 struct btrfs_root *root, 3937 struct btrfs_key *ins_key, 3938 struct btrfs_path *path, int data_size, 3939 int extend) 3940 { 3941 struct btrfs_disk_key disk_key; 3942 struct extent_buffer *l; 3943 u32 nritems; 3944 int mid; 3945 int slot; 3946 struct extent_buffer *right; 3947 int ret = 0; 3948 int wret; 3949 int split; 3950 int num_doubles = 0; 3951 int tried_avoid_double = 0; 3952 3953 l = path->nodes[0]; 3954 slot = path->slots[0]; 3955 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3956 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 3957 return -EOVERFLOW; 3958 3959 /* first try to make some room by pushing left and right */ 3960 if (data_size && path->nodes[1]) { 3961 wret = push_leaf_right(trans, root, path, data_size, 3962 data_size, 0, 0); 3963 if (wret < 0) 3964 return wret; 3965 if (wret) { 3966 wret = push_leaf_left(trans, root, path, data_size, 3967 data_size, 0, (u32)-1); 3968 if (wret < 0) 3969 return wret; 3970 } 3971 l = path->nodes[0]; 3972 3973 /* did the pushes work? */ 3974 if (btrfs_leaf_free_space(root, l) >= data_size) 3975 return 0; 3976 } 3977 3978 if (!path->nodes[1]) { 3979 ret = insert_new_root(trans, root, path, 1); 3980 if (ret) 3981 return ret; 3982 } 3983 again: 3984 split = 1; 3985 l = path->nodes[0]; 3986 slot = path->slots[0]; 3987 nritems = btrfs_header_nritems(l); 3988 mid = (nritems + 1) / 2; 3989 3990 if (mid <= slot) { 3991 if (nritems == 1 || 3992 leaf_space_used(l, mid, nritems - mid) + data_size > 3993 BTRFS_LEAF_DATA_SIZE(root)) { 3994 if (slot >= nritems) { 3995 split = 0; 3996 } else { 3997 mid = slot; 3998 if (mid != nritems && 3999 leaf_space_used(l, mid, nritems - mid) + 4000 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4001 if (data_size && !tried_avoid_double) 4002 goto push_for_double; 4003 split = 2; 4004 } 4005 } 4006 } 4007 } else { 4008 if (leaf_space_used(l, 0, mid) + data_size > 4009 BTRFS_LEAF_DATA_SIZE(root)) { 4010 if (!extend && data_size && slot == 0) { 4011 split = 0; 4012 } else if ((extend || !data_size) && slot == 0) { 4013 mid = 1; 4014 } else { 4015 mid = slot; 4016 if (mid != nritems && 4017 leaf_space_used(l, mid, nritems - mid) + 4018 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4019 if (data_size && !tried_avoid_double) 4020 goto push_for_double; 4021 split = 2; 4022 } 4023 } 4024 } 4025 } 4026 4027 if (split == 0) 4028 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4029 else 4030 btrfs_item_key(l, &disk_key, mid); 4031 4032 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 4033 root->root_key.objectid, 4034 &disk_key, 0, l->start, 0); 4035 if (IS_ERR(right)) 4036 return PTR_ERR(right); 4037 4038 root_add_used(root, root->leafsize); 4039 4040 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4041 btrfs_set_header_bytenr(right, right->start); 4042 btrfs_set_header_generation(right, trans->transid); 4043 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4044 btrfs_set_header_owner(right, root->root_key.objectid); 4045 btrfs_set_header_level(right, 0); 4046 write_extent_buffer(right, root->fs_info->fsid, 4047 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4048 4049 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 4050 btrfs_header_chunk_tree_uuid(right), 4051 BTRFS_UUID_SIZE); 4052 4053 if (split == 0) { 4054 if (mid <= slot) { 4055 btrfs_set_header_nritems(right, 0); 4056 insert_ptr(trans, root, path, &disk_key, right->start, 4057 path->slots[1] + 1, 1); 4058 btrfs_tree_unlock(path->nodes[0]); 4059 free_extent_buffer(path->nodes[0]); 4060 path->nodes[0] = right; 4061 path->slots[0] = 0; 4062 path->slots[1] += 1; 4063 } else { 4064 btrfs_set_header_nritems(right, 0); 4065 insert_ptr(trans, root, path, &disk_key, right->start, 4066 path->slots[1], 1); 4067 btrfs_tree_unlock(path->nodes[0]); 4068 free_extent_buffer(path->nodes[0]); 4069 path->nodes[0] = right; 4070 path->slots[0] = 0; 4071 if (path->slots[1] == 0) 4072 fixup_low_keys(root, path, &disk_key, 1); 4073 } 4074 btrfs_mark_buffer_dirty(right); 4075 return ret; 4076 } 4077 4078 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4079 4080 if (split == 2) { 4081 BUG_ON(num_doubles != 0); 4082 num_doubles++; 4083 goto again; 4084 } 4085 4086 return 0; 4087 4088 push_for_double: 4089 push_for_double_split(trans, root, path, data_size); 4090 tried_avoid_double = 1; 4091 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4092 return 0; 4093 goto again; 4094 } 4095 4096 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4097 struct btrfs_root *root, 4098 struct btrfs_path *path, int ins_len) 4099 { 4100 struct btrfs_key key; 4101 struct extent_buffer *leaf; 4102 struct btrfs_file_extent_item *fi; 4103 u64 extent_len = 0; 4104 u32 item_size; 4105 int ret; 4106 4107 leaf = path->nodes[0]; 4108 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4109 4110 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4111 key.type != BTRFS_EXTENT_CSUM_KEY); 4112 4113 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4114 return 0; 4115 4116 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4117 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4118 fi = btrfs_item_ptr(leaf, path->slots[0], 4119 struct btrfs_file_extent_item); 4120 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4121 } 4122 btrfs_release_path(path); 4123 4124 path->keep_locks = 1; 4125 path->search_for_split = 1; 4126 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4127 path->search_for_split = 0; 4128 if (ret < 0) 4129 goto err; 4130 4131 ret = -EAGAIN; 4132 leaf = path->nodes[0]; 4133 /* if our item isn't there or got smaller, return now */ 4134 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4135 goto err; 4136 4137 /* the leaf has changed, it now has room. return now */ 4138 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4139 goto err; 4140 4141 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4142 fi = btrfs_item_ptr(leaf, path->slots[0], 4143 struct btrfs_file_extent_item); 4144 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4145 goto err; 4146 } 4147 4148 btrfs_set_path_blocking(path); 4149 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4150 if (ret) 4151 goto err; 4152 4153 path->keep_locks = 0; 4154 btrfs_unlock_up_safe(path, 1); 4155 return 0; 4156 err: 4157 path->keep_locks = 0; 4158 return ret; 4159 } 4160 4161 static noinline int split_item(struct btrfs_trans_handle *trans, 4162 struct btrfs_root *root, 4163 struct btrfs_path *path, 4164 struct btrfs_key *new_key, 4165 unsigned long split_offset) 4166 { 4167 struct extent_buffer *leaf; 4168 struct btrfs_item *item; 4169 struct btrfs_item *new_item; 4170 int slot; 4171 char *buf; 4172 u32 nritems; 4173 u32 item_size; 4174 u32 orig_offset; 4175 struct btrfs_disk_key disk_key; 4176 4177 leaf = path->nodes[0]; 4178 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4179 4180 btrfs_set_path_blocking(path); 4181 4182 item = btrfs_item_nr(path->slots[0]); 4183 orig_offset = btrfs_item_offset(leaf, item); 4184 item_size = btrfs_item_size(leaf, item); 4185 4186 buf = kmalloc(item_size, GFP_NOFS); 4187 if (!buf) 4188 return -ENOMEM; 4189 4190 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4191 path->slots[0]), item_size); 4192 4193 slot = path->slots[0] + 1; 4194 nritems = btrfs_header_nritems(leaf); 4195 if (slot != nritems) { 4196 /* shift the items */ 4197 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4198 btrfs_item_nr_offset(slot), 4199 (nritems - slot) * sizeof(struct btrfs_item)); 4200 } 4201 4202 btrfs_cpu_key_to_disk(&disk_key, new_key); 4203 btrfs_set_item_key(leaf, &disk_key, slot); 4204 4205 new_item = btrfs_item_nr(slot); 4206 4207 btrfs_set_item_offset(leaf, new_item, orig_offset); 4208 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4209 4210 btrfs_set_item_offset(leaf, item, 4211 orig_offset + item_size - split_offset); 4212 btrfs_set_item_size(leaf, item, split_offset); 4213 4214 btrfs_set_header_nritems(leaf, nritems + 1); 4215 4216 /* write the data for the start of the original item */ 4217 write_extent_buffer(leaf, buf, 4218 btrfs_item_ptr_offset(leaf, path->slots[0]), 4219 split_offset); 4220 4221 /* write the data for the new item */ 4222 write_extent_buffer(leaf, buf + split_offset, 4223 btrfs_item_ptr_offset(leaf, slot), 4224 item_size - split_offset); 4225 btrfs_mark_buffer_dirty(leaf); 4226 4227 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4228 kfree(buf); 4229 return 0; 4230 } 4231 4232 /* 4233 * This function splits a single item into two items, 4234 * giving 'new_key' to the new item and splitting the 4235 * old one at split_offset (from the start of the item). 4236 * 4237 * The path may be released by this operation. After 4238 * the split, the path is pointing to the old item. The 4239 * new item is going to be in the same node as the old one. 4240 * 4241 * Note, the item being split must be smaller enough to live alone on 4242 * a tree block with room for one extra struct btrfs_item 4243 * 4244 * This allows us to split the item in place, keeping a lock on the 4245 * leaf the entire time. 4246 */ 4247 int btrfs_split_item(struct btrfs_trans_handle *trans, 4248 struct btrfs_root *root, 4249 struct btrfs_path *path, 4250 struct btrfs_key *new_key, 4251 unsigned long split_offset) 4252 { 4253 int ret; 4254 ret = setup_leaf_for_split(trans, root, path, 4255 sizeof(struct btrfs_item)); 4256 if (ret) 4257 return ret; 4258 4259 ret = split_item(trans, root, path, new_key, split_offset); 4260 return ret; 4261 } 4262 4263 /* 4264 * This function duplicate a item, giving 'new_key' to the new item. 4265 * It guarantees both items live in the same tree leaf and the new item 4266 * is contiguous with the original item. 4267 * 4268 * This allows us to split file extent in place, keeping a lock on the 4269 * leaf the entire time. 4270 */ 4271 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4272 struct btrfs_root *root, 4273 struct btrfs_path *path, 4274 struct btrfs_key *new_key) 4275 { 4276 struct extent_buffer *leaf; 4277 int ret; 4278 u32 item_size; 4279 4280 leaf = path->nodes[0]; 4281 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4282 ret = setup_leaf_for_split(trans, root, path, 4283 item_size + sizeof(struct btrfs_item)); 4284 if (ret) 4285 return ret; 4286 4287 path->slots[0]++; 4288 setup_items_for_insert(root, path, new_key, &item_size, 4289 item_size, item_size + 4290 sizeof(struct btrfs_item), 1); 4291 leaf = path->nodes[0]; 4292 memcpy_extent_buffer(leaf, 4293 btrfs_item_ptr_offset(leaf, path->slots[0]), 4294 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4295 item_size); 4296 return 0; 4297 } 4298 4299 /* 4300 * make the item pointed to by the path smaller. new_size indicates 4301 * how small to make it, and from_end tells us if we just chop bytes 4302 * off the end of the item or if we shift the item to chop bytes off 4303 * the front. 4304 */ 4305 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4306 u32 new_size, int from_end) 4307 { 4308 int slot; 4309 struct extent_buffer *leaf; 4310 struct btrfs_item *item; 4311 u32 nritems; 4312 unsigned int data_end; 4313 unsigned int old_data_start; 4314 unsigned int old_size; 4315 unsigned int size_diff; 4316 int i; 4317 struct btrfs_map_token token; 4318 4319 btrfs_init_map_token(&token); 4320 4321 leaf = path->nodes[0]; 4322 slot = path->slots[0]; 4323 4324 old_size = btrfs_item_size_nr(leaf, slot); 4325 if (old_size == new_size) 4326 return; 4327 4328 nritems = btrfs_header_nritems(leaf); 4329 data_end = leaf_data_end(root, leaf); 4330 4331 old_data_start = btrfs_item_offset_nr(leaf, slot); 4332 4333 size_diff = old_size - new_size; 4334 4335 BUG_ON(slot < 0); 4336 BUG_ON(slot >= nritems); 4337 4338 /* 4339 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4340 */ 4341 /* first correct the data pointers */ 4342 for (i = slot; i < nritems; i++) { 4343 u32 ioff; 4344 item = btrfs_item_nr(i); 4345 4346 ioff = btrfs_token_item_offset(leaf, item, &token); 4347 btrfs_set_token_item_offset(leaf, item, 4348 ioff + size_diff, &token); 4349 } 4350 4351 /* shift the data */ 4352 if (from_end) { 4353 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4354 data_end + size_diff, btrfs_leaf_data(leaf) + 4355 data_end, old_data_start + new_size - data_end); 4356 } else { 4357 struct btrfs_disk_key disk_key; 4358 u64 offset; 4359 4360 btrfs_item_key(leaf, &disk_key, slot); 4361 4362 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4363 unsigned long ptr; 4364 struct btrfs_file_extent_item *fi; 4365 4366 fi = btrfs_item_ptr(leaf, slot, 4367 struct btrfs_file_extent_item); 4368 fi = (struct btrfs_file_extent_item *)( 4369 (unsigned long)fi - size_diff); 4370 4371 if (btrfs_file_extent_type(leaf, fi) == 4372 BTRFS_FILE_EXTENT_INLINE) { 4373 ptr = btrfs_item_ptr_offset(leaf, slot); 4374 memmove_extent_buffer(leaf, ptr, 4375 (unsigned long)fi, 4376 offsetof(struct btrfs_file_extent_item, 4377 disk_bytenr)); 4378 } 4379 } 4380 4381 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4382 data_end + size_diff, btrfs_leaf_data(leaf) + 4383 data_end, old_data_start - data_end); 4384 4385 offset = btrfs_disk_key_offset(&disk_key); 4386 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4387 btrfs_set_item_key(leaf, &disk_key, slot); 4388 if (slot == 0) 4389 fixup_low_keys(root, path, &disk_key, 1); 4390 } 4391 4392 item = btrfs_item_nr(slot); 4393 btrfs_set_item_size(leaf, item, new_size); 4394 btrfs_mark_buffer_dirty(leaf); 4395 4396 if (btrfs_leaf_free_space(root, leaf) < 0) { 4397 btrfs_print_leaf(root, leaf); 4398 BUG(); 4399 } 4400 } 4401 4402 /* 4403 * make the item pointed to by the path bigger, data_size is the added size. 4404 */ 4405 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4406 u32 data_size) 4407 { 4408 int slot; 4409 struct extent_buffer *leaf; 4410 struct btrfs_item *item; 4411 u32 nritems; 4412 unsigned int data_end; 4413 unsigned int old_data; 4414 unsigned int old_size; 4415 int i; 4416 struct btrfs_map_token token; 4417 4418 btrfs_init_map_token(&token); 4419 4420 leaf = path->nodes[0]; 4421 4422 nritems = btrfs_header_nritems(leaf); 4423 data_end = leaf_data_end(root, leaf); 4424 4425 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4426 btrfs_print_leaf(root, leaf); 4427 BUG(); 4428 } 4429 slot = path->slots[0]; 4430 old_data = btrfs_item_end_nr(leaf, slot); 4431 4432 BUG_ON(slot < 0); 4433 if (slot >= nritems) { 4434 btrfs_print_leaf(root, leaf); 4435 printk(KERN_CRIT "slot %d too large, nritems %d\n", 4436 slot, nritems); 4437 BUG_ON(1); 4438 } 4439 4440 /* 4441 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4442 */ 4443 /* first correct the data pointers */ 4444 for (i = slot; i < nritems; i++) { 4445 u32 ioff; 4446 item = btrfs_item_nr(i); 4447 4448 ioff = btrfs_token_item_offset(leaf, item, &token); 4449 btrfs_set_token_item_offset(leaf, item, 4450 ioff - data_size, &token); 4451 } 4452 4453 /* shift the data */ 4454 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4455 data_end - data_size, btrfs_leaf_data(leaf) + 4456 data_end, old_data - data_end); 4457 4458 data_end = old_data; 4459 old_size = btrfs_item_size_nr(leaf, slot); 4460 item = btrfs_item_nr(slot); 4461 btrfs_set_item_size(leaf, item, old_size + data_size); 4462 btrfs_mark_buffer_dirty(leaf); 4463 4464 if (btrfs_leaf_free_space(root, leaf) < 0) { 4465 btrfs_print_leaf(root, leaf); 4466 BUG(); 4467 } 4468 } 4469 4470 /* 4471 * this is a helper for btrfs_insert_empty_items, the main goal here is 4472 * to save stack depth by doing the bulk of the work in a function 4473 * that doesn't call btrfs_search_slot 4474 */ 4475 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4476 struct btrfs_key *cpu_key, u32 *data_size, 4477 u32 total_data, u32 total_size, int nr) 4478 { 4479 struct btrfs_item *item; 4480 int i; 4481 u32 nritems; 4482 unsigned int data_end; 4483 struct btrfs_disk_key disk_key; 4484 struct extent_buffer *leaf; 4485 int slot; 4486 struct btrfs_map_token token; 4487 4488 btrfs_init_map_token(&token); 4489 4490 leaf = path->nodes[0]; 4491 slot = path->slots[0]; 4492 4493 nritems = btrfs_header_nritems(leaf); 4494 data_end = leaf_data_end(root, leaf); 4495 4496 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4497 btrfs_print_leaf(root, leaf); 4498 printk(KERN_CRIT "not enough freespace need %u have %d\n", 4499 total_size, btrfs_leaf_free_space(root, leaf)); 4500 BUG(); 4501 } 4502 4503 if (slot != nritems) { 4504 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4505 4506 if (old_data < data_end) { 4507 btrfs_print_leaf(root, leaf); 4508 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4509 slot, old_data, data_end); 4510 BUG_ON(1); 4511 } 4512 /* 4513 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4514 */ 4515 /* first correct the data pointers */ 4516 for (i = slot; i < nritems; i++) { 4517 u32 ioff; 4518 4519 item = btrfs_item_nr( i); 4520 ioff = btrfs_token_item_offset(leaf, item, &token); 4521 btrfs_set_token_item_offset(leaf, item, 4522 ioff - total_data, &token); 4523 } 4524 /* shift the items */ 4525 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4526 btrfs_item_nr_offset(slot), 4527 (nritems - slot) * sizeof(struct btrfs_item)); 4528 4529 /* shift the data */ 4530 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4531 data_end - total_data, btrfs_leaf_data(leaf) + 4532 data_end, old_data - data_end); 4533 data_end = old_data; 4534 } 4535 4536 /* setup the item for the new data */ 4537 for (i = 0; i < nr; i++) { 4538 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4539 btrfs_set_item_key(leaf, &disk_key, slot + i); 4540 item = btrfs_item_nr(slot + i); 4541 btrfs_set_token_item_offset(leaf, item, 4542 data_end - data_size[i], &token); 4543 data_end -= data_size[i]; 4544 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4545 } 4546 4547 btrfs_set_header_nritems(leaf, nritems + nr); 4548 4549 if (slot == 0) { 4550 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4551 fixup_low_keys(root, path, &disk_key, 1); 4552 } 4553 btrfs_unlock_up_safe(path, 1); 4554 btrfs_mark_buffer_dirty(leaf); 4555 4556 if (btrfs_leaf_free_space(root, leaf) < 0) { 4557 btrfs_print_leaf(root, leaf); 4558 BUG(); 4559 } 4560 } 4561 4562 /* 4563 * Given a key and some data, insert items into the tree. 4564 * This does all the path init required, making room in the tree if needed. 4565 */ 4566 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4567 struct btrfs_root *root, 4568 struct btrfs_path *path, 4569 struct btrfs_key *cpu_key, u32 *data_size, 4570 int nr) 4571 { 4572 int ret = 0; 4573 int slot; 4574 int i; 4575 u32 total_size = 0; 4576 u32 total_data = 0; 4577 4578 for (i = 0; i < nr; i++) 4579 total_data += data_size[i]; 4580 4581 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4582 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4583 if (ret == 0) 4584 return -EEXIST; 4585 if (ret < 0) 4586 return ret; 4587 4588 slot = path->slots[0]; 4589 BUG_ON(slot < 0); 4590 4591 setup_items_for_insert(root, path, cpu_key, data_size, 4592 total_data, total_size, nr); 4593 return 0; 4594 } 4595 4596 /* 4597 * Given a key and some data, insert an item into the tree. 4598 * This does all the path init required, making room in the tree if needed. 4599 */ 4600 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4601 *root, struct btrfs_key *cpu_key, void *data, u32 4602 data_size) 4603 { 4604 int ret = 0; 4605 struct btrfs_path *path; 4606 struct extent_buffer *leaf; 4607 unsigned long ptr; 4608 4609 path = btrfs_alloc_path(); 4610 if (!path) 4611 return -ENOMEM; 4612 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4613 if (!ret) { 4614 leaf = path->nodes[0]; 4615 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4616 write_extent_buffer(leaf, data, ptr, data_size); 4617 btrfs_mark_buffer_dirty(leaf); 4618 } 4619 btrfs_free_path(path); 4620 return ret; 4621 } 4622 4623 /* 4624 * delete the pointer from a given node. 4625 * 4626 * the tree should have been previously balanced so the deletion does not 4627 * empty a node. 4628 */ 4629 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4630 int level, int slot) 4631 { 4632 struct extent_buffer *parent = path->nodes[level]; 4633 u32 nritems; 4634 int ret; 4635 4636 nritems = btrfs_header_nritems(parent); 4637 if (slot != nritems - 1) { 4638 if (level) 4639 tree_mod_log_eb_move(root->fs_info, parent, slot, 4640 slot + 1, nritems - slot - 1); 4641 memmove_extent_buffer(parent, 4642 btrfs_node_key_ptr_offset(slot), 4643 btrfs_node_key_ptr_offset(slot + 1), 4644 sizeof(struct btrfs_key_ptr) * 4645 (nritems - slot - 1)); 4646 } else if (level) { 4647 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4648 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4649 BUG_ON(ret < 0); 4650 } 4651 4652 nritems--; 4653 btrfs_set_header_nritems(parent, nritems); 4654 if (nritems == 0 && parent == root->node) { 4655 BUG_ON(btrfs_header_level(root->node) != 1); 4656 /* just turn the root into a leaf and break */ 4657 btrfs_set_header_level(root->node, 0); 4658 } else if (slot == 0) { 4659 struct btrfs_disk_key disk_key; 4660 4661 btrfs_node_key(parent, &disk_key, 0); 4662 fixup_low_keys(root, path, &disk_key, level + 1); 4663 } 4664 btrfs_mark_buffer_dirty(parent); 4665 } 4666 4667 /* 4668 * a helper function to delete the leaf pointed to by path->slots[1] and 4669 * path->nodes[1]. 4670 * 4671 * This deletes the pointer in path->nodes[1] and frees the leaf 4672 * block extent. zero is returned if it all worked out, < 0 otherwise. 4673 * 4674 * The path must have already been setup for deleting the leaf, including 4675 * all the proper balancing. path->nodes[1] must be locked. 4676 */ 4677 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4678 struct btrfs_root *root, 4679 struct btrfs_path *path, 4680 struct extent_buffer *leaf) 4681 { 4682 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4683 del_ptr(root, path, 1, path->slots[1]); 4684 4685 /* 4686 * btrfs_free_extent is expensive, we want to make sure we 4687 * aren't holding any locks when we call it 4688 */ 4689 btrfs_unlock_up_safe(path, 0); 4690 4691 root_sub_used(root, leaf->len); 4692 4693 extent_buffer_get(leaf); 4694 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4695 free_extent_buffer_stale(leaf); 4696 } 4697 /* 4698 * delete the item at the leaf level in path. If that empties 4699 * the leaf, remove it from the tree 4700 */ 4701 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4702 struct btrfs_path *path, int slot, int nr) 4703 { 4704 struct extent_buffer *leaf; 4705 struct btrfs_item *item; 4706 int last_off; 4707 int dsize = 0; 4708 int ret = 0; 4709 int wret; 4710 int i; 4711 u32 nritems; 4712 struct btrfs_map_token token; 4713 4714 btrfs_init_map_token(&token); 4715 4716 leaf = path->nodes[0]; 4717 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4718 4719 for (i = 0; i < nr; i++) 4720 dsize += btrfs_item_size_nr(leaf, slot + i); 4721 4722 nritems = btrfs_header_nritems(leaf); 4723 4724 if (slot + nr != nritems) { 4725 int data_end = leaf_data_end(root, leaf); 4726 4727 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4728 data_end + dsize, 4729 btrfs_leaf_data(leaf) + data_end, 4730 last_off - data_end); 4731 4732 for (i = slot + nr; i < nritems; i++) { 4733 u32 ioff; 4734 4735 item = btrfs_item_nr(i); 4736 ioff = btrfs_token_item_offset(leaf, item, &token); 4737 btrfs_set_token_item_offset(leaf, item, 4738 ioff + dsize, &token); 4739 } 4740 4741 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4742 btrfs_item_nr_offset(slot + nr), 4743 sizeof(struct btrfs_item) * 4744 (nritems - slot - nr)); 4745 } 4746 btrfs_set_header_nritems(leaf, nritems - nr); 4747 nritems -= nr; 4748 4749 /* delete the leaf if we've emptied it */ 4750 if (nritems == 0) { 4751 if (leaf == root->node) { 4752 btrfs_set_header_level(leaf, 0); 4753 } else { 4754 btrfs_set_path_blocking(path); 4755 clean_tree_block(trans, root, leaf); 4756 btrfs_del_leaf(trans, root, path, leaf); 4757 } 4758 } else { 4759 int used = leaf_space_used(leaf, 0, nritems); 4760 if (slot == 0) { 4761 struct btrfs_disk_key disk_key; 4762 4763 btrfs_item_key(leaf, &disk_key, 0); 4764 fixup_low_keys(root, path, &disk_key, 1); 4765 } 4766 4767 /* delete the leaf if it is mostly empty */ 4768 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4769 /* push_leaf_left fixes the path. 4770 * make sure the path still points to our leaf 4771 * for possible call to del_ptr below 4772 */ 4773 slot = path->slots[1]; 4774 extent_buffer_get(leaf); 4775 4776 btrfs_set_path_blocking(path); 4777 wret = push_leaf_left(trans, root, path, 1, 1, 4778 1, (u32)-1); 4779 if (wret < 0 && wret != -ENOSPC) 4780 ret = wret; 4781 4782 if (path->nodes[0] == leaf && 4783 btrfs_header_nritems(leaf)) { 4784 wret = push_leaf_right(trans, root, path, 1, 4785 1, 1, 0); 4786 if (wret < 0 && wret != -ENOSPC) 4787 ret = wret; 4788 } 4789 4790 if (btrfs_header_nritems(leaf) == 0) { 4791 path->slots[1] = slot; 4792 btrfs_del_leaf(trans, root, path, leaf); 4793 free_extent_buffer(leaf); 4794 ret = 0; 4795 } else { 4796 /* if we're still in the path, make sure 4797 * we're dirty. Otherwise, one of the 4798 * push_leaf functions must have already 4799 * dirtied this buffer 4800 */ 4801 if (path->nodes[0] == leaf) 4802 btrfs_mark_buffer_dirty(leaf); 4803 free_extent_buffer(leaf); 4804 } 4805 } else { 4806 btrfs_mark_buffer_dirty(leaf); 4807 } 4808 } 4809 return ret; 4810 } 4811 4812 /* 4813 * search the tree again to find a leaf with lesser keys 4814 * returns 0 if it found something or 1 if there are no lesser leaves. 4815 * returns < 0 on io errors. 4816 * 4817 * This may release the path, and so you may lose any locks held at the 4818 * time you call it. 4819 */ 4820 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4821 { 4822 struct btrfs_key key; 4823 struct btrfs_disk_key found_key; 4824 int ret; 4825 4826 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4827 4828 if (key.offset > 0) { 4829 key.offset--; 4830 } else if (key.type > 0) { 4831 key.type--; 4832 key.offset = (u64)-1; 4833 } else if (key.objectid > 0) { 4834 key.objectid--; 4835 key.type = (u8)-1; 4836 key.offset = (u64)-1; 4837 } else { 4838 return 1; 4839 } 4840 4841 btrfs_release_path(path); 4842 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4843 if (ret < 0) 4844 return ret; 4845 btrfs_item_key(path->nodes[0], &found_key, 0); 4846 ret = comp_keys(&found_key, &key); 4847 if (ret < 0) 4848 return 0; 4849 return 1; 4850 } 4851 4852 /* 4853 * A helper function to walk down the tree starting at min_key, and looking 4854 * for nodes or leaves that are have a minimum transaction id. 4855 * This is used by the btree defrag code, and tree logging 4856 * 4857 * This does not cow, but it does stuff the starting key it finds back 4858 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4859 * key and get a writable path. 4860 * 4861 * This does lock as it descends, and path->keep_locks should be set 4862 * to 1 by the caller. 4863 * 4864 * This honors path->lowest_level to prevent descent past a given level 4865 * of the tree. 4866 * 4867 * min_trans indicates the oldest transaction that you are interested 4868 * in walking through. Any nodes or leaves older than min_trans are 4869 * skipped over (without reading them). 4870 * 4871 * returns zero if something useful was found, < 0 on error and 1 if there 4872 * was nothing in the tree that matched the search criteria. 4873 */ 4874 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4875 struct btrfs_path *path, 4876 u64 min_trans) 4877 { 4878 struct extent_buffer *cur; 4879 struct btrfs_key found_key; 4880 int slot; 4881 int sret; 4882 u32 nritems; 4883 int level; 4884 int ret = 1; 4885 4886 WARN_ON(!path->keep_locks); 4887 again: 4888 cur = btrfs_read_lock_root_node(root); 4889 level = btrfs_header_level(cur); 4890 WARN_ON(path->nodes[level]); 4891 path->nodes[level] = cur; 4892 path->locks[level] = BTRFS_READ_LOCK; 4893 4894 if (btrfs_header_generation(cur) < min_trans) { 4895 ret = 1; 4896 goto out; 4897 } 4898 while (1) { 4899 nritems = btrfs_header_nritems(cur); 4900 level = btrfs_header_level(cur); 4901 sret = bin_search(cur, min_key, level, &slot); 4902 4903 /* at the lowest level, we're done, setup the path and exit */ 4904 if (level == path->lowest_level) { 4905 if (slot >= nritems) 4906 goto find_next_key; 4907 ret = 0; 4908 path->slots[level] = slot; 4909 btrfs_item_key_to_cpu(cur, &found_key, slot); 4910 goto out; 4911 } 4912 if (sret && slot > 0) 4913 slot--; 4914 /* 4915 * check this node pointer against the min_trans parameters. 4916 * If it is too old, old, skip to the next one. 4917 */ 4918 while (slot < nritems) { 4919 u64 gen; 4920 4921 gen = btrfs_node_ptr_generation(cur, slot); 4922 if (gen < min_trans) { 4923 slot++; 4924 continue; 4925 } 4926 break; 4927 } 4928 find_next_key: 4929 /* 4930 * we didn't find a candidate key in this node, walk forward 4931 * and find another one 4932 */ 4933 if (slot >= nritems) { 4934 path->slots[level] = slot; 4935 btrfs_set_path_blocking(path); 4936 sret = btrfs_find_next_key(root, path, min_key, level, 4937 min_trans); 4938 if (sret == 0) { 4939 btrfs_release_path(path); 4940 goto again; 4941 } else { 4942 goto out; 4943 } 4944 } 4945 /* save our key for returning back */ 4946 btrfs_node_key_to_cpu(cur, &found_key, slot); 4947 path->slots[level] = slot; 4948 if (level == path->lowest_level) { 4949 ret = 0; 4950 unlock_up(path, level, 1, 0, NULL); 4951 goto out; 4952 } 4953 btrfs_set_path_blocking(path); 4954 cur = read_node_slot(root, cur, slot); 4955 BUG_ON(!cur); /* -ENOMEM */ 4956 4957 btrfs_tree_read_lock(cur); 4958 4959 path->locks[level - 1] = BTRFS_READ_LOCK; 4960 path->nodes[level - 1] = cur; 4961 unlock_up(path, level, 1, 0, NULL); 4962 btrfs_clear_path_blocking(path, NULL, 0); 4963 } 4964 out: 4965 if (ret == 0) 4966 memcpy(min_key, &found_key, sizeof(found_key)); 4967 btrfs_set_path_blocking(path); 4968 return ret; 4969 } 4970 4971 static void tree_move_down(struct btrfs_root *root, 4972 struct btrfs_path *path, 4973 int *level, int root_level) 4974 { 4975 BUG_ON(*level == 0); 4976 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 4977 path->slots[*level]); 4978 path->slots[*level - 1] = 0; 4979 (*level)--; 4980 } 4981 4982 static int tree_move_next_or_upnext(struct btrfs_root *root, 4983 struct btrfs_path *path, 4984 int *level, int root_level) 4985 { 4986 int ret = 0; 4987 int nritems; 4988 nritems = btrfs_header_nritems(path->nodes[*level]); 4989 4990 path->slots[*level]++; 4991 4992 while (path->slots[*level] >= nritems) { 4993 if (*level == root_level) 4994 return -1; 4995 4996 /* move upnext */ 4997 path->slots[*level] = 0; 4998 free_extent_buffer(path->nodes[*level]); 4999 path->nodes[*level] = NULL; 5000 (*level)++; 5001 path->slots[*level]++; 5002 5003 nritems = btrfs_header_nritems(path->nodes[*level]); 5004 ret = 1; 5005 } 5006 return ret; 5007 } 5008 5009 /* 5010 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5011 * or down. 5012 */ 5013 static int tree_advance(struct btrfs_root *root, 5014 struct btrfs_path *path, 5015 int *level, int root_level, 5016 int allow_down, 5017 struct btrfs_key *key) 5018 { 5019 int ret; 5020 5021 if (*level == 0 || !allow_down) { 5022 ret = tree_move_next_or_upnext(root, path, level, root_level); 5023 } else { 5024 tree_move_down(root, path, level, root_level); 5025 ret = 0; 5026 } 5027 if (ret >= 0) { 5028 if (*level == 0) 5029 btrfs_item_key_to_cpu(path->nodes[*level], key, 5030 path->slots[*level]); 5031 else 5032 btrfs_node_key_to_cpu(path->nodes[*level], key, 5033 path->slots[*level]); 5034 } 5035 return ret; 5036 } 5037 5038 static int tree_compare_item(struct btrfs_root *left_root, 5039 struct btrfs_path *left_path, 5040 struct btrfs_path *right_path, 5041 char *tmp_buf) 5042 { 5043 int cmp; 5044 int len1, len2; 5045 unsigned long off1, off2; 5046 5047 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5048 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5049 if (len1 != len2) 5050 return 1; 5051 5052 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5053 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5054 right_path->slots[0]); 5055 5056 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5057 5058 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5059 if (cmp) 5060 return 1; 5061 return 0; 5062 } 5063 5064 #define ADVANCE 1 5065 #define ADVANCE_ONLY_NEXT -1 5066 5067 /* 5068 * This function compares two trees and calls the provided callback for 5069 * every changed/new/deleted item it finds. 5070 * If shared tree blocks are encountered, whole subtrees are skipped, making 5071 * the compare pretty fast on snapshotted subvolumes. 5072 * 5073 * This currently works on commit roots only. As commit roots are read only, 5074 * we don't do any locking. The commit roots are protected with transactions. 5075 * Transactions are ended and rejoined when a commit is tried in between. 5076 * 5077 * This function checks for modifications done to the trees while comparing. 5078 * If it detects a change, it aborts immediately. 5079 */ 5080 int btrfs_compare_trees(struct btrfs_root *left_root, 5081 struct btrfs_root *right_root, 5082 btrfs_changed_cb_t changed_cb, void *ctx) 5083 { 5084 int ret; 5085 int cmp; 5086 struct btrfs_trans_handle *trans = NULL; 5087 struct btrfs_path *left_path = NULL; 5088 struct btrfs_path *right_path = NULL; 5089 struct btrfs_key left_key; 5090 struct btrfs_key right_key; 5091 char *tmp_buf = NULL; 5092 int left_root_level; 5093 int right_root_level; 5094 int left_level; 5095 int right_level; 5096 int left_end_reached; 5097 int right_end_reached; 5098 int advance_left; 5099 int advance_right; 5100 u64 left_blockptr; 5101 u64 right_blockptr; 5102 u64 left_start_ctransid; 5103 u64 right_start_ctransid; 5104 u64 ctransid; 5105 5106 left_path = btrfs_alloc_path(); 5107 if (!left_path) { 5108 ret = -ENOMEM; 5109 goto out; 5110 } 5111 right_path = btrfs_alloc_path(); 5112 if (!right_path) { 5113 ret = -ENOMEM; 5114 goto out; 5115 } 5116 5117 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS); 5118 if (!tmp_buf) { 5119 ret = -ENOMEM; 5120 goto out; 5121 } 5122 5123 left_path->search_commit_root = 1; 5124 left_path->skip_locking = 1; 5125 right_path->search_commit_root = 1; 5126 right_path->skip_locking = 1; 5127 5128 spin_lock(&left_root->root_item_lock); 5129 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item); 5130 spin_unlock(&left_root->root_item_lock); 5131 5132 spin_lock(&right_root->root_item_lock); 5133 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item); 5134 spin_unlock(&right_root->root_item_lock); 5135 5136 trans = btrfs_join_transaction(left_root); 5137 if (IS_ERR(trans)) { 5138 ret = PTR_ERR(trans); 5139 trans = NULL; 5140 goto out; 5141 } 5142 5143 /* 5144 * Strategy: Go to the first items of both trees. Then do 5145 * 5146 * If both trees are at level 0 5147 * Compare keys of current items 5148 * If left < right treat left item as new, advance left tree 5149 * and repeat 5150 * If left > right treat right item as deleted, advance right tree 5151 * and repeat 5152 * If left == right do deep compare of items, treat as changed if 5153 * needed, advance both trees and repeat 5154 * If both trees are at the same level but not at level 0 5155 * Compare keys of current nodes/leafs 5156 * If left < right advance left tree and repeat 5157 * If left > right advance right tree and repeat 5158 * If left == right compare blockptrs of the next nodes/leafs 5159 * If they match advance both trees but stay at the same level 5160 * and repeat 5161 * If they don't match advance both trees while allowing to go 5162 * deeper and repeat 5163 * If tree levels are different 5164 * Advance the tree that needs it and repeat 5165 * 5166 * Advancing a tree means: 5167 * If we are at level 0, try to go to the next slot. If that's not 5168 * possible, go one level up and repeat. Stop when we found a level 5169 * where we could go to the next slot. We may at this point be on a 5170 * node or a leaf. 5171 * 5172 * If we are not at level 0 and not on shared tree blocks, go one 5173 * level deeper. 5174 * 5175 * If we are not at level 0 and on shared tree blocks, go one slot to 5176 * the right if possible or go up and right. 5177 */ 5178 5179 left_level = btrfs_header_level(left_root->commit_root); 5180 left_root_level = left_level; 5181 left_path->nodes[left_level] = left_root->commit_root; 5182 extent_buffer_get(left_path->nodes[left_level]); 5183 5184 right_level = btrfs_header_level(right_root->commit_root); 5185 right_root_level = right_level; 5186 right_path->nodes[right_level] = right_root->commit_root; 5187 extent_buffer_get(right_path->nodes[right_level]); 5188 5189 if (left_level == 0) 5190 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5191 &left_key, left_path->slots[left_level]); 5192 else 5193 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5194 &left_key, left_path->slots[left_level]); 5195 if (right_level == 0) 5196 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5197 &right_key, right_path->slots[right_level]); 5198 else 5199 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5200 &right_key, right_path->slots[right_level]); 5201 5202 left_end_reached = right_end_reached = 0; 5203 advance_left = advance_right = 0; 5204 5205 while (1) { 5206 /* 5207 * We need to make sure the transaction does not get committed 5208 * while we do anything on commit roots. This means, we need to 5209 * join and leave transactions for every item that we process. 5210 */ 5211 if (trans && btrfs_should_end_transaction(trans, left_root)) { 5212 btrfs_release_path(left_path); 5213 btrfs_release_path(right_path); 5214 5215 ret = btrfs_end_transaction(trans, left_root); 5216 trans = NULL; 5217 if (ret < 0) 5218 goto out; 5219 } 5220 /* now rejoin the transaction */ 5221 if (!trans) { 5222 trans = btrfs_join_transaction(left_root); 5223 if (IS_ERR(trans)) { 5224 ret = PTR_ERR(trans); 5225 trans = NULL; 5226 goto out; 5227 } 5228 5229 spin_lock(&left_root->root_item_lock); 5230 ctransid = btrfs_root_ctransid(&left_root->root_item); 5231 spin_unlock(&left_root->root_item_lock); 5232 if (ctransid != left_start_ctransid) 5233 left_start_ctransid = 0; 5234 5235 spin_lock(&right_root->root_item_lock); 5236 ctransid = btrfs_root_ctransid(&right_root->root_item); 5237 spin_unlock(&right_root->root_item_lock); 5238 if (ctransid != right_start_ctransid) 5239 right_start_ctransid = 0; 5240 5241 if (!left_start_ctransid || !right_start_ctransid) { 5242 WARN(1, KERN_WARNING 5243 "btrfs: btrfs_compare_tree detected " 5244 "a change in one of the trees while " 5245 "iterating. This is probably a " 5246 "bug.\n"); 5247 ret = -EIO; 5248 goto out; 5249 } 5250 5251 /* 5252 * the commit root may have changed, so start again 5253 * where we stopped 5254 */ 5255 left_path->lowest_level = left_level; 5256 right_path->lowest_level = right_level; 5257 ret = btrfs_search_slot(NULL, left_root, 5258 &left_key, left_path, 0, 0); 5259 if (ret < 0) 5260 goto out; 5261 ret = btrfs_search_slot(NULL, right_root, 5262 &right_key, right_path, 0, 0); 5263 if (ret < 0) 5264 goto out; 5265 } 5266 5267 if (advance_left && !left_end_reached) { 5268 ret = tree_advance(left_root, left_path, &left_level, 5269 left_root_level, 5270 advance_left != ADVANCE_ONLY_NEXT, 5271 &left_key); 5272 if (ret < 0) 5273 left_end_reached = ADVANCE; 5274 advance_left = 0; 5275 } 5276 if (advance_right && !right_end_reached) { 5277 ret = tree_advance(right_root, right_path, &right_level, 5278 right_root_level, 5279 advance_right != ADVANCE_ONLY_NEXT, 5280 &right_key); 5281 if (ret < 0) 5282 right_end_reached = ADVANCE; 5283 advance_right = 0; 5284 } 5285 5286 if (left_end_reached && right_end_reached) { 5287 ret = 0; 5288 goto out; 5289 } else if (left_end_reached) { 5290 if (right_level == 0) { 5291 ret = changed_cb(left_root, right_root, 5292 left_path, right_path, 5293 &right_key, 5294 BTRFS_COMPARE_TREE_DELETED, 5295 ctx); 5296 if (ret < 0) 5297 goto out; 5298 } 5299 advance_right = ADVANCE; 5300 continue; 5301 } else if (right_end_reached) { 5302 if (left_level == 0) { 5303 ret = changed_cb(left_root, right_root, 5304 left_path, right_path, 5305 &left_key, 5306 BTRFS_COMPARE_TREE_NEW, 5307 ctx); 5308 if (ret < 0) 5309 goto out; 5310 } 5311 advance_left = ADVANCE; 5312 continue; 5313 } 5314 5315 if (left_level == 0 && right_level == 0) { 5316 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5317 if (cmp < 0) { 5318 ret = changed_cb(left_root, right_root, 5319 left_path, right_path, 5320 &left_key, 5321 BTRFS_COMPARE_TREE_NEW, 5322 ctx); 5323 if (ret < 0) 5324 goto out; 5325 advance_left = ADVANCE; 5326 } else if (cmp > 0) { 5327 ret = changed_cb(left_root, right_root, 5328 left_path, right_path, 5329 &right_key, 5330 BTRFS_COMPARE_TREE_DELETED, 5331 ctx); 5332 if (ret < 0) 5333 goto out; 5334 advance_right = ADVANCE; 5335 } else { 5336 enum btrfs_compare_tree_result cmp; 5337 5338 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5339 ret = tree_compare_item(left_root, left_path, 5340 right_path, tmp_buf); 5341 if (ret) 5342 cmp = BTRFS_COMPARE_TREE_CHANGED; 5343 else 5344 cmp = BTRFS_COMPARE_TREE_SAME; 5345 ret = changed_cb(left_root, right_root, 5346 left_path, right_path, 5347 &left_key, cmp, ctx); 5348 if (ret < 0) 5349 goto out; 5350 advance_left = ADVANCE; 5351 advance_right = ADVANCE; 5352 } 5353 } else if (left_level == right_level) { 5354 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5355 if (cmp < 0) { 5356 advance_left = ADVANCE; 5357 } else if (cmp > 0) { 5358 advance_right = ADVANCE; 5359 } else { 5360 left_blockptr = btrfs_node_blockptr( 5361 left_path->nodes[left_level], 5362 left_path->slots[left_level]); 5363 right_blockptr = btrfs_node_blockptr( 5364 right_path->nodes[right_level], 5365 right_path->slots[right_level]); 5366 if (left_blockptr == right_blockptr) { 5367 /* 5368 * As we're on a shared block, don't 5369 * allow to go deeper. 5370 */ 5371 advance_left = ADVANCE_ONLY_NEXT; 5372 advance_right = ADVANCE_ONLY_NEXT; 5373 } else { 5374 advance_left = ADVANCE; 5375 advance_right = ADVANCE; 5376 } 5377 } 5378 } else if (left_level < right_level) { 5379 advance_right = ADVANCE; 5380 } else { 5381 advance_left = ADVANCE; 5382 } 5383 } 5384 5385 out: 5386 btrfs_free_path(left_path); 5387 btrfs_free_path(right_path); 5388 kfree(tmp_buf); 5389 5390 if (trans) { 5391 if (!ret) 5392 ret = btrfs_end_transaction(trans, left_root); 5393 else 5394 btrfs_end_transaction(trans, left_root); 5395 } 5396 5397 return ret; 5398 } 5399 5400 /* 5401 * this is similar to btrfs_next_leaf, but does not try to preserve 5402 * and fixup the path. It looks for and returns the next key in the 5403 * tree based on the current path and the min_trans parameters. 5404 * 5405 * 0 is returned if another key is found, < 0 if there are any errors 5406 * and 1 is returned if there are no higher keys in the tree 5407 * 5408 * path->keep_locks should be set to 1 on the search made before 5409 * calling this function. 5410 */ 5411 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5412 struct btrfs_key *key, int level, u64 min_trans) 5413 { 5414 int slot; 5415 struct extent_buffer *c; 5416 5417 WARN_ON(!path->keep_locks); 5418 while (level < BTRFS_MAX_LEVEL) { 5419 if (!path->nodes[level]) 5420 return 1; 5421 5422 slot = path->slots[level] + 1; 5423 c = path->nodes[level]; 5424 next: 5425 if (slot >= btrfs_header_nritems(c)) { 5426 int ret; 5427 int orig_lowest; 5428 struct btrfs_key cur_key; 5429 if (level + 1 >= BTRFS_MAX_LEVEL || 5430 !path->nodes[level + 1]) 5431 return 1; 5432 5433 if (path->locks[level + 1]) { 5434 level++; 5435 continue; 5436 } 5437 5438 slot = btrfs_header_nritems(c) - 1; 5439 if (level == 0) 5440 btrfs_item_key_to_cpu(c, &cur_key, slot); 5441 else 5442 btrfs_node_key_to_cpu(c, &cur_key, slot); 5443 5444 orig_lowest = path->lowest_level; 5445 btrfs_release_path(path); 5446 path->lowest_level = level; 5447 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5448 0, 0); 5449 path->lowest_level = orig_lowest; 5450 if (ret < 0) 5451 return ret; 5452 5453 c = path->nodes[level]; 5454 slot = path->slots[level]; 5455 if (ret == 0) 5456 slot++; 5457 goto next; 5458 } 5459 5460 if (level == 0) 5461 btrfs_item_key_to_cpu(c, key, slot); 5462 else { 5463 u64 gen = btrfs_node_ptr_generation(c, slot); 5464 5465 if (gen < min_trans) { 5466 slot++; 5467 goto next; 5468 } 5469 btrfs_node_key_to_cpu(c, key, slot); 5470 } 5471 return 0; 5472 } 5473 return 1; 5474 } 5475 5476 /* 5477 * search the tree again to find a leaf with greater keys 5478 * returns 0 if it found something or 1 if there are no greater leaves. 5479 * returns < 0 on io errors. 5480 */ 5481 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5482 { 5483 return btrfs_next_old_leaf(root, path, 0); 5484 } 5485 5486 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5487 u64 time_seq) 5488 { 5489 int slot; 5490 int level; 5491 struct extent_buffer *c; 5492 struct extent_buffer *next; 5493 struct btrfs_key key; 5494 u32 nritems; 5495 int ret; 5496 int old_spinning = path->leave_spinning; 5497 int next_rw_lock = 0; 5498 5499 nritems = btrfs_header_nritems(path->nodes[0]); 5500 if (nritems == 0) 5501 return 1; 5502 5503 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5504 again: 5505 level = 1; 5506 next = NULL; 5507 next_rw_lock = 0; 5508 btrfs_release_path(path); 5509 5510 path->keep_locks = 1; 5511 path->leave_spinning = 1; 5512 5513 if (time_seq) 5514 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5515 else 5516 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5517 path->keep_locks = 0; 5518 5519 if (ret < 0) 5520 return ret; 5521 5522 nritems = btrfs_header_nritems(path->nodes[0]); 5523 /* 5524 * by releasing the path above we dropped all our locks. A balance 5525 * could have added more items next to the key that used to be 5526 * at the very end of the block. So, check again here and 5527 * advance the path if there are now more items available. 5528 */ 5529 if (nritems > 0 && path->slots[0] < nritems - 1) { 5530 if (ret == 0) 5531 path->slots[0]++; 5532 ret = 0; 5533 goto done; 5534 } 5535 5536 while (level < BTRFS_MAX_LEVEL) { 5537 if (!path->nodes[level]) { 5538 ret = 1; 5539 goto done; 5540 } 5541 5542 slot = path->slots[level] + 1; 5543 c = path->nodes[level]; 5544 if (slot >= btrfs_header_nritems(c)) { 5545 level++; 5546 if (level == BTRFS_MAX_LEVEL) { 5547 ret = 1; 5548 goto done; 5549 } 5550 continue; 5551 } 5552 5553 if (next) { 5554 btrfs_tree_unlock_rw(next, next_rw_lock); 5555 free_extent_buffer(next); 5556 } 5557 5558 next = c; 5559 next_rw_lock = path->locks[level]; 5560 ret = read_block_for_search(NULL, root, path, &next, level, 5561 slot, &key, 0); 5562 if (ret == -EAGAIN) 5563 goto again; 5564 5565 if (ret < 0) { 5566 btrfs_release_path(path); 5567 goto done; 5568 } 5569 5570 if (!path->skip_locking) { 5571 ret = btrfs_try_tree_read_lock(next); 5572 if (!ret && time_seq) { 5573 /* 5574 * If we don't get the lock, we may be racing 5575 * with push_leaf_left, holding that lock while 5576 * itself waiting for the leaf we've currently 5577 * locked. To solve this situation, we give up 5578 * on our lock and cycle. 5579 */ 5580 free_extent_buffer(next); 5581 btrfs_release_path(path); 5582 cond_resched(); 5583 goto again; 5584 } 5585 if (!ret) { 5586 btrfs_set_path_blocking(path); 5587 btrfs_tree_read_lock(next); 5588 btrfs_clear_path_blocking(path, next, 5589 BTRFS_READ_LOCK); 5590 } 5591 next_rw_lock = BTRFS_READ_LOCK; 5592 } 5593 break; 5594 } 5595 path->slots[level] = slot; 5596 while (1) { 5597 level--; 5598 c = path->nodes[level]; 5599 if (path->locks[level]) 5600 btrfs_tree_unlock_rw(c, path->locks[level]); 5601 5602 free_extent_buffer(c); 5603 path->nodes[level] = next; 5604 path->slots[level] = 0; 5605 if (!path->skip_locking) 5606 path->locks[level] = next_rw_lock; 5607 if (!level) 5608 break; 5609 5610 ret = read_block_for_search(NULL, root, path, &next, level, 5611 0, &key, 0); 5612 if (ret == -EAGAIN) 5613 goto again; 5614 5615 if (ret < 0) { 5616 btrfs_release_path(path); 5617 goto done; 5618 } 5619 5620 if (!path->skip_locking) { 5621 ret = btrfs_try_tree_read_lock(next); 5622 if (!ret) { 5623 btrfs_set_path_blocking(path); 5624 btrfs_tree_read_lock(next); 5625 btrfs_clear_path_blocking(path, next, 5626 BTRFS_READ_LOCK); 5627 } 5628 next_rw_lock = BTRFS_READ_LOCK; 5629 } 5630 } 5631 ret = 0; 5632 done: 5633 unlock_up(path, 0, 1, 0, NULL); 5634 path->leave_spinning = old_spinning; 5635 if (!old_spinning) 5636 btrfs_set_path_blocking(path); 5637 5638 return ret; 5639 } 5640 5641 /* 5642 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5643 * searching until it gets past min_objectid or finds an item of 'type' 5644 * 5645 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5646 */ 5647 int btrfs_previous_item(struct btrfs_root *root, 5648 struct btrfs_path *path, u64 min_objectid, 5649 int type) 5650 { 5651 struct btrfs_key found_key; 5652 struct extent_buffer *leaf; 5653 u32 nritems; 5654 int ret; 5655 5656 while (1) { 5657 if (path->slots[0] == 0) { 5658 btrfs_set_path_blocking(path); 5659 ret = btrfs_prev_leaf(root, path); 5660 if (ret != 0) 5661 return ret; 5662 } else { 5663 path->slots[0]--; 5664 } 5665 leaf = path->nodes[0]; 5666 nritems = btrfs_header_nritems(leaf); 5667 if (nritems == 0) 5668 return 1; 5669 if (path->slots[0] == nritems) 5670 path->slots[0]--; 5671 5672 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5673 if (found_key.objectid < min_objectid) 5674 break; 5675 if (found_key.type == type) 5676 return 0; 5677 if (found_key.objectid == min_objectid && 5678 found_key.type < type) 5679 break; 5680 } 5681 return 1; 5682 } 5683