xref: /openbmc/linux/fs/btrfs/ctree.c (revision bc000245)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 		    int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 				 struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45 
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 	struct btrfs_path *path;
49 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 	return path;
51 }
52 
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59 	int i;
60 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 		if (!p->nodes[i] || !p->locks[i])
62 			continue;
63 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 		if (p->locks[i] == BTRFS_READ_LOCK)
65 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 	}
69 }
70 
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 					struct extent_buffer *held, int held_rw)
81 {
82 	int i;
83 
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85 	/* lockdep really cares that we take all of these spinlocks
86 	 * in the right order.  If any of the locks in the path are not
87 	 * currently blocking, it is going to complain.  So, make really
88 	 * really sure by forcing the path to blocking before we clear
89 	 * the path blocking.
90 	 */
91 	if (held) {
92 		btrfs_set_lock_blocking_rw(held, held_rw);
93 		if (held_rw == BTRFS_WRITE_LOCK)
94 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95 		else if (held_rw == BTRFS_READ_LOCK)
96 			held_rw = BTRFS_READ_LOCK_BLOCKING;
97 	}
98 	btrfs_set_path_blocking(p);
99 #endif
100 
101 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102 		if (p->nodes[i] && p->locks[i]) {
103 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105 				p->locks[i] = BTRFS_WRITE_LOCK;
106 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107 				p->locks[i] = BTRFS_READ_LOCK;
108 		}
109 	}
110 
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112 	if (held)
113 		btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116 
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
119 {
120 	if (!p)
121 		return;
122 	btrfs_release_path(p);
123 	kmem_cache_free(btrfs_path_cachep, p);
124 }
125 
126 /*
127  * path release drops references on the extent buffers in the path
128  * and it drops any locks held by this path
129  *
130  * It is safe to call this on paths that no locks or extent buffers held.
131  */
132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134 	int i;
135 
136 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137 		p->slots[i] = 0;
138 		if (!p->nodes[i])
139 			continue;
140 		if (p->locks[i]) {
141 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142 			p->locks[i] = 0;
143 		}
144 		free_extent_buffer(p->nodes[i]);
145 		p->nodes[i] = NULL;
146 	}
147 }
148 
149 /*
150  * safely gets a reference on the root node of a tree.  A lock
151  * is not taken, so a concurrent writer may put a different node
152  * at the root of the tree.  See btrfs_lock_root_node for the
153  * looping required.
154  *
155  * The extent buffer returned by this has a reference taken, so
156  * it won't disappear.  It may stop being the root of the tree
157  * at any time because there are no locks held.
158  */
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161 	struct extent_buffer *eb;
162 
163 	while (1) {
164 		rcu_read_lock();
165 		eb = rcu_dereference(root->node);
166 
167 		/*
168 		 * RCU really hurts here, we could free up the root node because
169 		 * it was cow'ed but we may not get the new root node yet so do
170 		 * the inc_not_zero dance and if it doesn't work then
171 		 * synchronize_rcu and try again.
172 		 */
173 		if (atomic_inc_not_zero(&eb->refs)) {
174 			rcu_read_unlock();
175 			break;
176 		}
177 		rcu_read_unlock();
178 		synchronize_rcu();
179 	}
180 	return eb;
181 }
182 
183 /* loop around taking references on and locking the root node of the
184  * tree until you end up with a lock on the root.  A locked buffer
185  * is returned, with a reference held.
186  */
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189 	struct extent_buffer *eb;
190 
191 	while (1) {
192 		eb = btrfs_root_node(root);
193 		btrfs_tree_lock(eb);
194 		if (eb == root->node)
195 			break;
196 		btrfs_tree_unlock(eb);
197 		free_extent_buffer(eb);
198 	}
199 	return eb;
200 }
201 
202 /* loop around taking references on and locking the root node of the
203  * tree until you end up with a lock on the root.  A locked buffer
204  * is returned, with a reference held.
205  */
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208 	struct extent_buffer *eb;
209 
210 	while (1) {
211 		eb = btrfs_root_node(root);
212 		btrfs_tree_read_lock(eb);
213 		if (eb == root->node)
214 			break;
215 		btrfs_tree_read_unlock(eb);
216 		free_extent_buffer(eb);
217 	}
218 	return eb;
219 }
220 
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222  * put onto a simple dirty list.  transaction.c walks this to make sure they
223  * get properly updated on disk.
224  */
225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227 	spin_lock(&root->fs_info->trans_lock);
228 	if (root->track_dirty && list_empty(&root->dirty_list)) {
229 		list_add(&root->dirty_list,
230 			 &root->fs_info->dirty_cowonly_roots);
231 	}
232 	spin_unlock(&root->fs_info->trans_lock);
233 }
234 
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 		      struct btrfs_root *root,
242 		      struct extent_buffer *buf,
243 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245 	struct extent_buffer *cow;
246 	int ret = 0;
247 	int level;
248 	struct btrfs_disk_key disk_key;
249 
250 	WARN_ON(root->ref_cows && trans->transid !=
251 		root->fs_info->running_transaction->transid);
252 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253 
254 	level = btrfs_header_level(buf);
255 	if (level == 0)
256 		btrfs_item_key(buf, &disk_key, 0);
257 	else
258 		btrfs_node_key(buf, &disk_key, 0);
259 
260 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261 				     new_root_objectid, &disk_key, level,
262 				     buf->start, 0);
263 	if (IS_ERR(cow))
264 		return PTR_ERR(cow);
265 
266 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
267 	btrfs_set_header_bytenr(cow, cow->start);
268 	btrfs_set_header_generation(cow, trans->transid);
269 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271 				     BTRFS_HEADER_FLAG_RELOC);
272 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274 	else
275 		btrfs_set_header_owner(cow, new_root_objectid);
276 
277 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
278 			    BTRFS_FSID_SIZE);
279 
280 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
281 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282 		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
283 	else
284 		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
285 
286 	if (ret)
287 		return ret;
288 
289 	btrfs_mark_buffer_dirty(cow);
290 	*cow_ret = cow;
291 	return 0;
292 }
293 
294 enum mod_log_op {
295 	MOD_LOG_KEY_REPLACE,
296 	MOD_LOG_KEY_ADD,
297 	MOD_LOG_KEY_REMOVE,
298 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 	MOD_LOG_MOVE_KEYS,
301 	MOD_LOG_ROOT_REPLACE,
302 };
303 
304 struct tree_mod_move {
305 	int dst_slot;
306 	int nr_items;
307 };
308 
309 struct tree_mod_root {
310 	u64 logical;
311 	u8 level;
312 };
313 
314 struct tree_mod_elem {
315 	struct rb_node node;
316 	u64 index;		/* shifted logical */
317 	u64 seq;
318 	enum mod_log_op op;
319 
320 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 	int slot;
322 
323 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 	u64 generation;
325 
326 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 	struct btrfs_disk_key key;
328 	u64 blockptr;
329 
330 	/* this is used for op == MOD_LOG_MOVE_KEYS */
331 	struct tree_mod_move move;
332 
333 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
334 	struct tree_mod_root old_root;
335 };
336 
337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338 {
339 	read_lock(&fs_info->tree_mod_log_lock);
340 }
341 
342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343 {
344 	read_unlock(&fs_info->tree_mod_log_lock);
345 }
346 
347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348 {
349 	write_lock(&fs_info->tree_mod_log_lock);
350 }
351 
352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353 {
354 	write_unlock(&fs_info->tree_mod_log_lock);
355 }
356 
357 /*
358  * Increment the upper half of tree_mod_seq, set lower half zero.
359  *
360  * Must be called with fs_info->tree_mod_seq_lock held.
361  */
362 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
363 {
364 	u64 seq = atomic64_read(&fs_info->tree_mod_seq);
365 	seq &= 0xffffffff00000000ull;
366 	seq += 1ull << 32;
367 	atomic64_set(&fs_info->tree_mod_seq, seq);
368 	return seq;
369 }
370 
371 /*
372  * Increment the lower half of tree_mod_seq.
373  *
374  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
375  * are generated should not technically require a spin lock here. (Rationale:
376  * incrementing the minor while incrementing the major seq number is between its
377  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
378  * just returns a unique sequence number as usual.) We have decided to leave
379  * that requirement in here and rethink it once we notice it really imposes a
380  * problem on some workload.
381  */
382 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
383 {
384 	return atomic64_inc_return(&fs_info->tree_mod_seq);
385 }
386 
387 /*
388  * return the last minor in the previous major tree_mod_seq number
389  */
390 u64 btrfs_tree_mod_seq_prev(u64 seq)
391 {
392 	return (seq & 0xffffffff00000000ull) - 1ull;
393 }
394 
395 /*
396  * This adds a new blocker to the tree mod log's blocker list if the @elem
397  * passed does not already have a sequence number set. So when a caller expects
398  * to record tree modifications, it should ensure to set elem->seq to zero
399  * before calling btrfs_get_tree_mod_seq.
400  * Returns a fresh, unused tree log modification sequence number, even if no new
401  * blocker was added.
402  */
403 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
404 			   struct seq_list *elem)
405 {
406 	u64 seq;
407 
408 	tree_mod_log_write_lock(fs_info);
409 	spin_lock(&fs_info->tree_mod_seq_lock);
410 	if (!elem->seq) {
411 		elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
412 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
413 	}
414 	seq = btrfs_inc_tree_mod_seq_minor(fs_info);
415 	spin_unlock(&fs_info->tree_mod_seq_lock);
416 	tree_mod_log_write_unlock(fs_info);
417 
418 	return seq;
419 }
420 
421 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
422 			    struct seq_list *elem)
423 {
424 	struct rb_root *tm_root;
425 	struct rb_node *node;
426 	struct rb_node *next;
427 	struct seq_list *cur_elem;
428 	struct tree_mod_elem *tm;
429 	u64 min_seq = (u64)-1;
430 	u64 seq_putting = elem->seq;
431 
432 	if (!seq_putting)
433 		return;
434 
435 	spin_lock(&fs_info->tree_mod_seq_lock);
436 	list_del(&elem->list);
437 	elem->seq = 0;
438 
439 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
440 		if (cur_elem->seq < min_seq) {
441 			if (seq_putting > cur_elem->seq) {
442 				/*
443 				 * blocker with lower sequence number exists, we
444 				 * cannot remove anything from the log
445 				 */
446 				spin_unlock(&fs_info->tree_mod_seq_lock);
447 				return;
448 			}
449 			min_seq = cur_elem->seq;
450 		}
451 	}
452 	spin_unlock(&fs_info->tree_mod_seq_lock);
453 
454 	/*
455 	 * anything that's lower than the lowest existing (read: blocked)
456 	 * sequence number can be removed from the tree.
457 	 */
458 	tree_mod_log_write_lock(fs_info);
459 	tm_root = &fs_info->tree_mod_log;
460 	for (node = rb_first(tm_root); node; node = next) {
461 		next = rb_next(node);
462 		tm = container_of(node, struct tree_mod_elem, node);
463 		if (tm->seq > min_seq)
464 			continue;
465 		rb_erase(node, tm_root);
466 		kfree(tm);
467 	}
468 	tree_mod_log_write_unlock(fs_info);
469 }
470 
471 /*
472  * key order of the log:
473  *       index -> sequence
474  *
475  * the index is the shifted logical of the *new* root node for root replace
476  * operations, or the shifted logical of the affected block for all other
477  * operations.
478  */
479 static noinline int
480 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
481 {
482 	struct rb_root *tm_root;
483 	struct rb_node **new;
484 	struct rb_node *parent = NULL;
485 	struct tree_mod_elem *cur;
486 	int ret = 0;
487 
488 	BUG_ON(!tm);
489 
490 	tree_mod_log_write_lock(fs_info);
491 	if (list_empty(&fs_info->tree_mod_seq_list)) {
492 		tree_mod_log_write_unlock(fs_info);
493 		/*
494 		 * Ok we no longer care about logging modifications, free up tm
495 		 * and return 0.  Any callers shouldn't be using tm after
496 		 * calling tree_mod_log_insert, but if they do we can just
497 		 * change this to return a special error code to let the callers
498 		 * do their own thing.
499 		 */
500 		kfree(tm);
501 		return 0;
502 	}
503 
504 	spin_lock(&fs_info->tree_mod_seq_lock);
505 	tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
506 	spin_unlock(&fs_info->tree_mod_seq_lock);
507 
508 	tm_root = &fs_info->tree_mod_log;
509 	new = &tm_root->rb_node;
510 	while (*new) {
511 		cur = container_of(*new, struct tree_mod_elem, node);
512 		parent = *new;
513 		if (cur->index < tm->index)
514 			new = &((*new)->rb_left);
515 		else if (cur->index > tm->index)
516 			new = &((*new)->rb_right);
517 		else if (cur->seq < tm->seq)
518 			new = &((*new)->rb_left);
519 		else if (cur->seq > tm->seq)
520 			new = &((*new)->rb_right);
521 		else {
522 			ret = -EEXIST;
523 			kfree(tm);
524 			goto out;
525 		}
526 	}
527 
528 	rb_link_node(&tm->node, parent, new);
529 	rb_insert_color(&tm->node, tm_root);
530 out:
531 	tree_mod_log_write_unlock(fs_info);
532 	return ret;
533 }
534 
535 /*
536  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
537  * returns zero with the tree_mod_log_lock acquired. The caller must hold
538  * this until all tree mod log insertions are recorded in the rb tree and then
539  * call tree_mod_log_write_unlock() to release.
540  */
541 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
542 				    struct extent_buffer *eb) {
543 	smp_mb();
544 	if (list_empty(&(fs_info)->tree_mod_seq_list))
545 		return 1;
546 	if (eb && btrfs_header_level(eb) == 0)
547 		return 1;
548 	return 0;
549 }
550 
551 static inline int
552 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
553 			  struct extent_buffer *eb, int slot,
554 			  enum mod_log_op op, gfp_t flags)
555 {
556 	struct tree_mod_elem *tm;
557 
558 	tm = kzalloc(sizeof(*tm), flags);
559 	if (!tm)
560 		return -ENOMEM;
561 
562 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
563 	if (op != MOD_LOG_KEY_ADD) {
564 		btrfs_node_key(eb, &tm->key, slot);
565 		tm->blockptr = btrfs_node_blockptr(eb, slot);
566 	}
567 	tm->op = op;
568 	tm->slot = slot;
569 	tm->generation = btrfs_node_ptr_generation(eb, slot);
570 
571 	return __tree_mod_log_insert(fs_info, tm);
572 }
573 
574 static noinline int
575 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
576 			struct extent_buffer *eb, int slot,
577 			enum mod_log_op op, gfp_t flags)
578 {
579 	if (tree_mod_dont_log(fs_info, eb))
580 		return 0;
581 
582 	return __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
583 }
584 
585 static noinline int
586 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
587 			 struct extent_buffer *eb, int dst_slot, int src_slot,
588 			 int nr_items, gfp_t flags)
589 {
590 	struct tree_mod_elem *tm;
591 	int ret;
592 	int i;
593 
594 	if (tree_mod_dont_log(fs_info, eb))
595 		return 0;
596 
597 	/*
598 	 * When we override something during the move, we log these removals.
599 	 * This can only happen when we move towards the beginning of the
600 	 * buffer, i.e. dst_slot < src_slot.
601 	 */
602 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
603 		ret = __tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
604 				MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
605 		BUG_ON(ret < 0);
606 	}
607 
608 	tm = kzalloc(sizeof(*tm), flags);
609 	if (!tm)
610 		return -ENOMEM;
611 
612 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
613 	tm->slot = src_slot;
614 	tm->move.dst_slot = dst_slot;
615 	tm->move.nr_items = nr_items;
616 	tm->op = MOD_LOG_MOVE_KEYS;
617 
618 	return __tree_mod_log_insert(fs_info, tm);
619 }
620 
621 static inline void
622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
623 {
624 	int i;
625 	u32 nritems;
626 	int ret;
627 
628 	if (btrfs_header_level(eb) == 0)
629 		return;
630 
631 	nritems = btrfs_header_nritems(eb);
632 	for (i = nritems - 1; i >= 0; i--) {
633 		ret = __tree_mod_log_insert_key(fs_info, eb, i,
634 				MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
635 		BUG_ON(ret < 0);
636 	}
637 }
638 
639 static noinline int
640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
641 			 struct extent_buffer *old_root,
642 			 struct extent_buffer *new_root, gfp_t flags,
643 			 int log_removal)
644 {
645 	struct tree_mod_elem *tm;
646 
647 	if (tree_mod_dont_log(fs_info, NULL))
648 		return 0;
649 
650 	if (log_removal)
651 		__tree_mod_log_free_eb(fs_info, old_root);
652 
653 	tm = kzalloc(sizeof(*tm), flags);
654 	if (!tm)
655 		return -ENOMEM;
656 
657 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
658 	tm->old_root.logical = old_root->start;
659 	tm->old_root.level = btrfs_header_level(old_root);
660 	tm->generation = btrfs_header_generation(old_root);
661 	tm->op = MOD_LOG_ROOT_REPLACE;
662 
663 	return __tree_mod_log_insert(fs_info, tm);
664 }
665 
666 static struct tree_mod_elem *
667 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
668 		      int smallest)
669 {
670 	struct rb_root *tm_root;
671 	struct rb_node *node;
672 	struct tree_mod_elem *cur = NULL;
673 	struct tree_mod_elem *found = NULL;
674 	u64 index = start >> PAGE_CACHE_SHIFT;
675 
676 	tree_mod_log_read_lock(fs_info);
677 	tm_root = &fs_info->tree_mod_log;
678 	node = tm_root->rb_node;
679 	while (node) {
680 		cur = container_of(node, struct tree_mod_elem, node);
681 		if (cur->index < index) {
682 			node = node->rb_left;
683 		} else if (cur->index > index) {
684 			node = node->rb_right;
685 		} else if (cur->seq < min_seq) {
686 			node = node->rb_left;
687 		} else if (!smallest) {
688 			/* we want the node with the highest seq */
689 			if (found)
690 				BUG_ON(found->seq > cur->seq);
691 			found = cur;
692 			node = node->rb_left;
693 		} else if (cur->seq > min_seq) {
694 			/* we want the node with the smallest seq */
695 			if (found)
696 				BUG_ON(found->seq < cur->seq);
697 			found = cur;
698 			node = node->rb_right;
699 		} else {
700 			found = cur;
701 			break;
702 		}
703 	}
704 	tree_mod_log_read_unlock(fs_info);
705 
706 	return found;
707 }
708 
709 /*
710  * this returns the element from the log with the smallest time sequence
711  * value that's in the log (the oldest log item). any element with a time
712  * sequence lower than min_seq will be ignored.
713  */
714 static struct tree_mod_elem *
715 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
716 			   u64 min_seq)
717 {
718 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
719 }
720 
721 /*
722  * this returns the element from the log with the largest time sequence
723  * value that's in the log (the most recent log item). any element with
724  * a time sequence lower than min_seq will be ignored.
725  */
726 static struct tree_mod_elem *
727 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
728 {
729 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
730 }
731 
732 static noinline void
733 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
734 		     struct extent_buffer *src, unsigned long dst_offset,
735 		     unsigned long src_offset, int nr_items)
736 {
737 	int ret;
738 	int i;
739 
740 	if (tree_mod_dont_log(fs_info, NULL))
741 		return;
742 
743 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
744 		return;
745 
746 	for (i = 0; i < nr_items; i++) {
747 		ret = __tree_mod_log_insert_key(fs_info, src,
748 						i + src_offset,
749 						MOD_LOG_KEY_REMOVE, GFP_NOFS);
750 		BUG_ON(ret < 0);
751 		ret = __tree_mod_log_insert_key(fs_info, dst,
752 						     i + dst_offset,
753 						     MOD_LOG_KEY_ADD,
754 						     GFP_NOFS);
755 		BUG_ON(ret < 0);
756 	}
757 }
758 
759 static inline void
760 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
761 		     int dst_offset, int src_offset, int nr_items)
762 {
763 	int ret;
764 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
765 				       nr_items, GFP_NOFS);
766 	BUG_ON(ret < 0);
767 }
768 
769 static noinline void
770 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
771 			  struct extent_buffer *eb, int slot, int atomic)
772 {
773 	int ret;
774 
775 	ret = __tree_mod_log_insert_key(fs_info, eb, slot,
776 					MOD_LOG_KEY_REPLACE,
777 					atomic ? GFP_ATOMIC : GFP_NOFS);
778 	BUG_ON(ret < 0);
779 }
780 
781 static noinline void
782 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
783 {
784 	if (tree_mod_dont_log(fs_info, eb))
785 		return;
786 	__tree_mod_log_free_eb(fs_info, eb);
787 }
788 
789 static noinline void
790 tree_mod_log_set_root_pointer(struct btrfs_root *root,
791 			      struct extent_buffer *new_root_node,
792 			      int log_removal)
793 {
794 	int ret;
795 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
796 				       new_root_node, GFP_NOFS, log_removal);
797 	BUG_ON(ret < 0);
798 }
799 
800 /*
801  * check if the tree block can be shared by multiple trees
802  */
803 int btrfs_block_can_be_shared(struct btrfs_root *root,
804 			      struct extent_buffer *buf)
805 {
806 	/*
807 	 * Tree blocks not in refernece counted trees and tree roots
808 	 * are never shared. If a block was allocated after the last
809 	 * snapshot and the block was not allocated by tree relocation,
810 	 * we know the block is not shared.
811 	 */
812 	if (root->ref_cows &&
813 	    buf != root->node && buf != root->commit_root &&
814 	    (btrfs_header_generation(buf) <=
815 	     btrfs_root_last_snapshot(&root->root_item) ||
816 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
817 		return 1;
818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
819 	if (root->ref_cows &&
820 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
821 		return 1;
822 #endif
823 	return 0;
824 }
825 
826 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
827 				       struct btrfs_root *root,
828 				       struct extent_buffer *buf,
829 				       struct extent_buffer *cow,
830 				       int *last_ref)
831 {
832 	u64 refs;
833 	u64 owner;
834 	u64 flags;
835 	u64 new_flags = 0;
836 	int ret;
837 
838 	/*
839 	 * Backrefs update rules:
840 	 *
841 	 * Always use full backrefs for extent pointers in tree block
842 	 * allocated by tree relocation.
843 	 *
844 	 * If a shared tree block is no longer referenced by its owner
845 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
846 	 * use full backrefs for extent pointers in tree block.
847 	 *
848 	 * If a tree block is been relocating
849 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
850 	 * use full backrefs for extent pointers in tree block.
851 	 * The reason for this is some operations (such as drop tree)
852 	 * are only allowed for blocks use full backrefs.
853 	 */
854 
855 	if (btrfs_block_can_be_shared(root, buf)) {
856 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
857 					       btrfs_header_level(buf), 1,
858 					       &refs, &flags);
859 		if (ret)
860 			return ret;
861 		if (refs == 0) {
862 			ret = -EROFS;
863 			btrfs_std_error(root->fs_info, ret);
864 			return ret;
865 		}
866 	} else {
867 		refs = 1;
868 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
869 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
870 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
871 		else
872 			flags = 0;
873 	}
874 
875 	owner = btrfs_header_owner(buf);
876 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
877 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
878 
879 	if (refs > 1) {
880 		if ((owner == root->root_key.objectid ||
881 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
882 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
883 			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
884 			BUG_ON(ret); /* -ENOMEM */
885 
886 			if (root->root_key.objectid ==
887 			    BTRFS_TREE_RELOC_OBJECTID) {
888 				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
889 				BUG_ON(ret); /* -ENOMEM */
890 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
891 				BUG_ON(ret); /* -ENOMEM */
892 			}
893 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
894 		} else {
895 
896 			if (root->root_key.objectid ==
897 			    BTRFS_TREE_RELOC_OBJECTID)
898 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
899 			else
900 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
901 			BUG_ON(ret); /* -ENOMEM */
902 		}
903 		if (new_flags != 0) {
904 			int level = btrfs_header_level(buf);
905 
906 			ret = btrfs_set_disk_extent_flags(trans, root,
907 							  buf->start,
908 							  buf->len,
909 							  new_flags, level, 0);
910 			if (ret)
911 				return ret;
912 		}
913 	} else {
914 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
915 			if (root->root_key.objectid ==
916 			    BTRFS_TREE_RELOC_OBJECTID)
917 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
918 			else
919 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
920 			BUG_ON(ret); /* -ENOMEM */
921 			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
922 			BUG_ON(ret); /* -ENOMEM */
923 		}
924 		clean_tree_block(trans, root, buf);
925 		*last_ref = 1;
926 	}
927 	return 0;
928 }
929 
930 /*
931  * does the dirty work in cow of a single block.  The parent block (if
932  * supplied) is updated to point to the new cow copy.  The new buffer is marked
933  * dirty and returned locked.  If you modify the block it needs to be marked
934  * dirty again.
935  *
936  * search_start -- an allocation hint for the new block
937  *
938  * empty_size -- a hint that you plan on doing more cow.  This is the size in
939  * bytes the allocator should try to find free next to the block it returns.
940  * This is just a hint and may be ignored by the allocator.
941  */
942 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
943 			     struct btrfs_root *root,
944 			     struct extent_buffer *buf,
945 			     struct extent_buffer *parent, int parent_slot,
946 			     struct extent_buffer **cow_ret,
947 			     u64 search_start, u64 empty_size)
948 {
949 	struct btrfs_disk_key disk_key;
950 	struct extent_buffer *cow;
951 	int level, ret;
952 	int last_ref = 0;
953 	int unlock_orig = 0;
954 	u64 parent_start;
955 
956 	if (*cow_ret == buf)
957 		unlock_orig = 1;
958 
959 	btrfs_assert_tree_locked(buf);
960 
961 	WARN_ON(root->ref_cows && trans->transid !=
962 		root->fs_info->running_transaction->transid);
963 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
964 
965 	level = btrfs_header_level(buf);
966 
967 	if (level == 0)
968 		btrfs_item_key(buf, &disk_key, 0);
969 	else
970 		btrfs_node_key(buf, &disk_key, 0);
971 
972 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
973 		if (parent)
974 			parent_start = parent->start;
975 		else
976 			parent_start = 0;
977 	} else
978 		parent_start = 0;
979 
980 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
981 				     root->root_key.objectid, &disk_key,
982 				     level, search_start, empty_size);
983 	if (IS_ERR(cow))
984 		return PTR_ERR(cow);
985 
986 	/* cow is set to blocking by btrfs_init_new_buffer */
987 
988 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
989 	btrfs_set_header_bytenr(cow, cow->start);
990 	btrfs_set_header_generation(cow, trans->transid);
991 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
992 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
993 				     BTRFS_HEADER_FLAG_RELOC);
994 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
995 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
996 	else
997 		btrfs_set_header_owner(cow, root->root_key.objectid);
998 
999 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1000 			    BTRFS_FSID_SIZE);
1001 
1002 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1003 	if (ret) {
1004 		btrfs_abort_transaction(trans, root, ret);
1005 		return ret;
1006 	}
1007 
1008 	if (root->ref_cows) {
1009 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1010 		if (ret)
1011 			return ret;
1012 	}
1013 
1014 	if (buf == root->node) {
1015 		WARN_ON(parent && parent != buf);
1016 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1017 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1018 			parent_start = buf->start;
1019 		else
1020 			parent_start = 0;
1021 
1022 		extent_buffer_get(cow);
1023 		tree_mod_log_set_root_pointer(root, cow, 1);
1024 		rcu_assign_pointer(root->node, cow);
1025 
1026 		btrfs_free_tree_block(trans, root, buf, parent_start,
1027 				      last_ref);
1028 		free_extent_buffer(buf);
1029 		add_root_to_dirty_list(root);
1030 	} else {
1031 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1032 			parent_start = parent->start;
1033 		else
1034 			parent_start = 0;
1035 
1036 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1037 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1038 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1039 		btrfs_set_node_blockptr(parent, parent_slot,
1040 					cow->start);
1041 		btrfs_set_node_ptr_generation(parent, parent_slot,
1042 					      trans->transid);
1043 		btrfs_mark_buffer_dirty(parent);
1044 		if (last_ref)
1045 			tree_mod_log_free_eb(root->fs_info, buf);
1046 		btrfs_free_tree_block(trans, root, buf, parent_start,
1047 				      last_ref);
1048 	}
1049 	if (unlock_orig)
1050 		btrfs_tree_unlock(buf);
1051 	free_extent_buffer_stale(buf);
1052 	btrfs_mark_buffer_dirty(cow);
1053 	*cow_ret = cow;
1054 	return 0;
1055 }
1056 
1057 /*
1058  * returns the logical address of the oldest predecessor of the given root.
1059  * entries older than time_seq are ignored.
1060  */
1061 static struct tree_mod_elem *
1062 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1063 			   struct extent_buffer *eb_root, u64 time_seq)
1064 {
1065 	struct tree_mod_elem *tm;
1066 	struct tree_mod_elem *found = NULL;
1067 	u64 root_logical = eb_root->start;
1068 	int looped = 0;
1069 
1070 	if (!time_seq)
1071 		return NULL;
1072 
1073 	/*
1074 	 * the very last operation that's logged for a root is the replacement
1075 	 * operation (if it is replaced at all). this has the index of the *new*
1076 	 * root, making it the very first operation that's logged for this root.
1077 	 */
1078 	while (1) {
1079 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1080 						time_seq);
1081 		if (!looped && !tm)
1082 			return NULL;
1083 		/*
1084 		 * if there are no tree operation for the oldest root, we simply
1085 		 * return it. this should only happen if that (old) root is at
1086 		 * level 0.
1087 		 */
1088 		if (!tm)
1089 			break;
1090 
1091 		/*
1092 		 * if there's an operation that's not a root replacement, we
1093 		 * found the oldest version of our root. normally, we'll find a
1094 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1095 		 */
1096 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1097 			break;
1098 
1099 		found = tm;
1100 		root_logical = tm->old_root.logical;
1101 		looped = 1;
1102 	}
1103 
1104 	/* if there's no old root to return, return what we found instead */
1105 	if (!found)
1106 		found = tm;
1107 
1108 	return found;
1109 }
1110 
1111 /*
1112  * tm is a pointer to the first operation to rewind within eb. then, all
1113  * previous operations will be rewinded (until we reach something older than
1114  * time_seq).
1115  */
1116 static void
1117 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1118 		      u64 time_seq, struct tree_mod_elem *first_tm)
1119 {
1120 	u32 n;
1121 	struct rb_node *next;
1122 	struct tree_mod_elem *tm = first_tm;
1123 	unsigned long o_dst;
1124 	unsigned long o_src;
1125 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1126 
1127 	n = btrfs_header_nritems(eb);
1128 	tree_mod_log_read_lock(fs_info);
1129 	while (tm && tm->seq >= time_seq) {
1130 		/*
1131 		 * all the operations are recorded with the operator used for
1132 		 * the modification. as we're going backwards, we do the
1133 		 * opposite of each operation here.
1134 		 */
1135 		switch (tm->op) {
1136 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1137 			BUG_ON(tm->slot < n);
1138 			/* Fallthrough */
1139 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1140 		case MOD_LOG_KEY_REMOVE:
1141 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1142 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1143 			btrfs_set_node_ptr_generation(eb, tm->slot,
1144 						      tm->generation);
1145 			n++;
1146 			break;
1147 		case MOD_LOG_KEY_REPLACE:
1148 			BUG_ON(tm->slot >= n);
1149 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1150 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1151 			btrfs_set_node_ptr_generation(eb, tm->slot,
1152 						      tm->generation);
1153 			break;
1154 		case MOD_LOG_KEY_ADD:
1155 			/* if a move operation is needed it's in the log */
1156 			n--;
1157 			break;
1158 		case MOD_LOG_MOVE_KEYS:
1159 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1160 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1161 			memmove_extent_buffer(eb, o_dst, o_src,
1162 					      tm->move.nr_items * p_size);
1163 			break;
1164 		case MOD_LOG_ROOT_REPLACE:
1165 			/*
1166 			 * this operation is special. for roots, this must be
1167 			 * handled explicitly before rewinding.
1168 			 * for non-roots, this operation may exist if the node
1169 			 * was a root: root A -> child B; then A gets empty and
1170 			 * B is promoted to the new root. in the mod log, we'll
1171 			 * have a root-replace operation for B, a tree block
1172 			 * that is no root. we simply ignore that operation.
1173 			 */
1174 			break;
1175 		}
1176 		next = rb_next(&tm->node);
1177 		if (!next)
1178 			break;
1179 		tm = container_of(next, struct tree_mod_elem, node);
1180 		if (tm->index != first_tm->index)
1181 			break;
1182 	}
1183 	tree_mod_log_read_unlock(fs_info);
1184 	btrfs_set_header_nritems(eb, n);
1185 }
1186 
1187 /*
1188  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1189  * is returned. If rewind operations happen, a fresh buffer is returned. The
1190  * returned buffer is always read-locked. If the returned buffer is not the
1191  * input buffer, the lock on the input buffer is released and the input buffer
1192  * is freed (its refcount is decremented).
1193  */
1194 static struct extent_buffer *
1195 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1196 		    struct extent_buffer *eb, u64 time_seq)
1197 {
1198 	struct extent_buffer *eb_rewin;
1199 	struct tree_mod_elem *tm;
1200 
1201 	if (!time_seq)
1202 		return eb;
1203 
1204 	if (btrfs_header_level(eb) == 0)
1205 		return eb;
1206 
1207 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1208 	if (!tm)
1209 		return eb;
1210 
1211 	btrfs_set_path_blocking(path);
1212 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1213 
1214 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1215 		BUG_ON(tm->slot != 0);
1216 		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1217 						fs_info->tree_root->nodesize);
1218 		if (!eb_rewin) {
1219 			btrfs_tree_read_unlock_blocking(eb);
1220 			free_extent_buffer(eb);
1221 			return NULL;
1222 		}
1223 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1224 		btrfs_set_header_backref_rev(eb_rewin,
1225 					     btrfs_header_backref_rev(eb));
1226 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1227 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1228 	} else {
1229 		eb_rewin = btrfs_clone_extent_buffer(eb);
1230 		if (!eb_rewin) {
1231 			btrfs_tree_read_unlock_blocking(eb);
1232 			free_extent_buffer(eb);
1233 			return NULL;
1234 		}
1235 	}
1236 
1237 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1238 	btrfs_tree_read_unlock_blocking(eb);
1239 	free_extent_buffer(eb);
1240 
1241 	extent_buffer_get(eb_rewin);
1242 	btrfs_tree_read_lock(eb_rewin);
1243 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1244 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1245 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1246 
1247 	return eb_rewin;
1248 }
1249 
1250 /*
1251  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1252  * value. If there are no changes, the current root->root_node is returned. If
1253  * anything changed in between, there's a fresh buffer allocated on which the
1254  * rewind operations are done. In any case, the returned buffer is read locked.
1255  * Returns NULL on error (with no locks held).
1256  */
1257 static inline struct extent_buffer *
1258 get_old_root(struct btrfs_root *root, u64 time_seq)
1259 {
1260 	struct tree_mod_elem *tm;
1261 	struct extent_buffer *eb = NULL;
1262 	struct extent_buffer *eb_root;
1263 	struct extent_buffer *old;
1264 	struct tree_mod_root *old_root = NULL;
1265 	u64 old_generation = 0;
1266 	u64 logical;
1267 	u32 blocksize;
1268 
1269 	eb_root = btrfs_read_lock_root_node(root);
1270 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1271 	if (!tm)
1272 		return eb_root;
1273 
1274 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1275 		old_root = &tm->old_root;
1276 		old_generation = tm->generation;
1277 		logical = old_root->logical;
1278 	} else {
1279 		logical = eb_root->start;
1280 	}
1281 
1282 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1283 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1284 		btrfs_tree_read_unlock(eb_root);
1285 		free_extent_buffer(eb_root);
1286 		blocksize = btrfs_level_size(root, old_root->level);
1287 		old = read_tree_block(root, logical, blocksize, 0);
1288 		if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1289 			free_extent_buffer(old);
1290 			pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1291 				logical);
1292 		} else {
1293 			eb = btrfs_clone_extent_buffer(old);
1294 			free_extent_buffer(old);
1295 		}
1296 	} else if (old_root) {
1297 		btrfs_tree_read_unlock(eb_root);
1298 		free_extent_buffer(eb_root);
1299 		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1300 	} else {
1301 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1302 		eb = btrfs_clone_extent_buffer(eb_root);
1303 		btrfs_tree_read_unlock_blocking(eb_root);
1304 		free_extent_buffer(eb_root);
1305 	}
1306 
1307 	if (!eb)
1308 		return NULL;
1309 	extent_buffer_get(eb);
1310 	btrfs_tree_read_lock(eb);
1311 	if (old_root) {
1312 		btrfs_set_header_bytenr(eb, eb->start);
1313 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1314 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1315 		btrfs_set_header_level(eb, old_root->level);
1316 		btrfs_set_header_generation(eb, old_generation);
1317 	}
1318 	if (tm)
1319 		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1320 	else
1321 		WARN_ON(btrfs_header_level(eb) != 0);
1322 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1323 
1324 	return eb;
1325 }
1326 
1327 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1328 {
1329 	struct tree_mod_elem *tm;
1330 	int level;
1331 	struct extent_buffer *eb_root = btrfs_root_node(root);
1332 
1333 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1334 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1335 		level = tm->old_root.level;
1336 	} else {
1337 		level = btrfs_header_level(eb_root);
1338 	}
1339 	free_extent_buffer(eb_root);
1340 
1341 	return level;
1342 }
1343 
1344 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1345 				   struct btrfs_root *root,
1346 				   struct extent_buffer *buf)
1347 {
1348 	/* ensure we can see the force_cow */
1349 	smp_rmb();
1350 
1351 	/*
1352 	 * We do not need to cow a block if
1353 	 * 1) this block is not created or changed in this transaction;
1354 	 * 2) this block does not belong to TREE_RELOC tree;
1355 	 * 3) the root is not forced COW.
1356 	 *
1357 	 * What is forced COW:
1358 	 *    when we create snapshot during commiting the transaction,
1359 	 *    after we've finished coping src root, we must COW the shared
1360 	 *    block to ensure the metadata consistency.
1361 	 */
1362 	if (btrfs_header_generation(buf) == trans->transid &&
1363 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1364 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1365 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1366 	    !root->force_cow)
1367 		return 0;
1368 	return 1;
1369 }
1370 
1371 /*
1372  * cows a single block, see __btrfs_cow_block for the real work.
1373  * This version of it has extra checks so that a block isn't cow'd more than
1374  * once per transaction, as long as it hasn't been written yet
1375  */
1376 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1377 		    struct btrfs_root *root, struct extent_buffer *buf,
1378 		    struct extent_buffer *parent, int parent_slot,
1379 		    struct extent_buffer **cow_ret)
1380 {
1381 	u64 search_start;
1382 	int ret;
1383 
1384 	if (trans->transaction != root->fs_info->running_transaction)
1385 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1386 		       trans->transid,
1387 		       root->fs_info->running_transaction->transid);
1388 
1389 	if (trans->transid != root->fs_info->generation)
1390 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1391 		       trans->transid, root->fs_info->generation);
1392 
1393 	if (!should_cow_block(trans, root, buf)) {
1394 		*cow_ret = buf;
1395 		return 0;
1396 	}
1397 
1398 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1399 
1400 	if (parent)
1401 		btrfs_set_lock_blocking(parent);
1402 	btrfs_set_lock_blocking(buf);
1403 
1404 	ret = __btrfs_cow_block(trans, root, buf, parent,
1405 				 parent_slot, cow_ret, search_start, 0);
1406 
1407 	trace_btrfs_cow_block(root, buf, *cow_ret);
1408 
1409 	return ret;
1410 }
1411 
1412 /*
1413  * helper function for defrag to decide if two blocks pointed to by a
1414  * node are actually close by
1415  */
1416 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1417 {
1418 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1419 		return 1;
1420 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1421 		return 1;
1422 	return 0;
1423 }
1424 
1425 /*
1426  * compare two keys in a memcmp fashion
1427  */
1428 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1429 {
1430 	struct btrfs_key k1;
1431 
1432 	btrfs_disk_key_to_cpu(&k1, disk);
1433 
1434 	return btrfs_comp_cpu_keys(&k1, k2);
1435 }
1436 
1437 /*
1438  * same as comp_keys only with two btrfs_key's
1439  */
1440 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1441 {
1442 	if (k1->objectid > k2->objectid)
1443 		return 1;
1444 	if (k1->objectid < k2->objectid)
1445 		return -1;
1446 	if (k1->type > k2->type)
1447 		return 1;
1448 	if (k1->type < k2->type)
1449 		return -1;
1450 	if (k1->offset > k2->offset)
1451 		return 1;
1452 	if (k1->offset < k2->offset)
1453 		return -1;
1454 	return 0;
1455 }
1456 
1457 /*
1458  * this is used by the defrag code to go through all the
1459  * leaves pointed to by a node and reallocate them so that
1460  * disk order is close to key order
1461  */
1462 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1463 		       struct btrfs_root *root, struct extent_buffer *parent,
1464 		       int start_slot, u64 *last_ret,
1465 		       struct btrfs_key *progress)
1466 {
1467 	struct extent_buffer *cur;
1468 	u64 blocknr;
1469 	u64 gen;
1470 	u64 search_start = *last_ret;
1471 	u64 last_block = 0;
1472 	u64 other;
1473 	u32 parent_nritems;
1474 	int end_slot;
1475 	int i;
1476 	int err = 0;
1477 	int parent_level;
1478 	int uptodate;
1479 	u32 blocksize;
1480 	int progress_passed = 0;
1481 	struct btrfs_disk_key disk_key;
1482 
1483 	parent_level = btrfs_header_level(parent);
1484 
1485 	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1486 	WARN_ON(trans->transid != root->fs_info->generation);
1487 
1488 	parent_nritems = btrfs_header_nritems(parent);
1489 	blocksize = btrfs_level_size(root, parent_level - 1);
1490 	end_slot = parent_nritems;
1491 
1492 	if (parent_nritems == 1)
1493 		return 0;
1494 
1495 	btrfs_set_lock_blocking(parent);
1496 
1497 	for (i = start_slot; i < end_slot; i++) {
1498 		int close = 1;
1499 
1500 		btrfs_node_key(parent, &disk_key, i);
1501 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1502 			continue;
1503 
1504 		progress_passed = 1;
1505 		blocknr = btrfs_node_blockptr(parent, i);
1506 		gen = btrfs_node_ptr_generation(parent, i);
1507 		if (last_block == 0)
1508 			last_block = blocknr;
1509 
1510 		if (i > 0) {
1511 			other = btrfs_node_blockptr(parent, i - 1);
1512 			close = close_blocks(blocknr, other, blocksize);
1513 		}
1514 		if (!close && i < end_slot - 2) {
1515 			other = btrfs_node_blockptr(parent, i + 1);
1516 			close = close_blocks(blocknr, other, blocksize);
1517 		}
1518 		if (close) {
1519 			last_block = blocknr;
1520 			continue;
1521 		}
1522 
1523 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
1524 		if (cur)
1525 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1526 		else
1527 			uptodate = 0;
1528 		if (!cur || !uptodate) {
1529 			if (!cur) {
1530 				cur = read_tree_block(root, blocknr,
1531 							 blocksize, gen);
1532 				if (!cur || !extent_buffer_uptodate(cur)) {
1533 					free_extent_buffer(cur);
1534 					return -EIO;
1535 				}
1536 			} else if (!uptodate) {
1537 				err = btrfs_read_buffer(cur, gen);
1538 				if (err) {
1539 					free_extent_buffer(cur);
1540 					return err;
1541 				}
1542 			}
1543 		}
1544 		if (search_start == 0)
1545 			search_start = last_block;
1546 
1547 		btrfs_tree_lock(cur);
1548 		btrfs_set_lock_blocking(cur);
1549 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1550 					&cur, search_start,
1551 					min(16 * blocksize,
1552 					    (end_slot - i) * blocksize));
1553 		if (err) {
1554 			btrfs_tree_unlock(cur);
1555 			free_extent_buffer(cur);
1556 			break;
1557 		}
1558 		search_start = cur->start;
1559 		last_block = cur->start;
1560 		*last_ret = search_start;
1561 		btrfs_tree_unlock(cur);
1562 		free_extent_buffer(cur);
1563 	}
1564 	return err;
1565 }
1566 
1567 /*
1568  * The leaf data grows from end-to-front in the node.
1569  * this returns the address of the start of the last item,
1570  * which is the stop of the leaf data stack
1571  */
1572 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1573 					 struct extent_buffer *leaf)
1574 {
1575 	u32 nr = btrfs_header_nritems(leaf);
1576 	if (nr == 0)
1577 		return BTRFS_LEAF_DATA_SIZE(root);
1578 	return btrfs_item_offset_nr(leaf, nr - 1);
1579 }
1580 
1581 
1582 /*
1583  * search for key in the extent_buffer.  The items start at offset p,
1584  * and they are item_size apart.  There are 'max' items in p.
1585  *
1586  * the slot in the array is returned via slot, and it points to
1587  * the place where you would insert key if it is not found in
1588  * the array.
1589  *
1590  * slot may point to max if the key is bigger than all of the keys
1591  */
1592 static noinline int generic_bin_search(struct extent_buffer *eb,
1593 				       unsigned long p,
1594 				       int item_size, struct btrfs_key *key,
1595 				       int max, int *slot)
1596 {
1597 	int low = 0;
1598 	int high = max;
1599 	int mid;
1600 	int ret;
1601 	struct btrfs_disk_key *tmp = NULL;
1602 	struct btrfs_disk_key unaligned;
1603 	unsigned long offset;
1604 	char *kaddr = NULL;
1605 	unsigned long map_start = 0;
1606 	unsigned long map_len = 0;
1607 	int err;
1608 
1609 	while (low < high) {
1610 		mid = (low + high) / 2;
1611 		offset = p + mid * item_size;
1612 
1613 		if (!kaddr || offset < map_start ||
1614 		    (offset + sizeof(struct btrfs_disk_key)) >
1615 		    map_start + map_len) {
1616 
1617 			err = map_private_extent_buffer(eb, offset,
1618 						sizeof(struct btrfs_disk_key),
1619 						&kaddr, &map_start, &map_len);
1620 
1621 			if (!err) {
1622 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1623 							map_start);
1624 			} else {
1625 				read_extent_buffer(eb, &unaligned,
1626 						   offset, sizeof(unaligned));
1627 				tmp = &unaligned;
1628 			}
1629 
1630 		} else {
1631 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1632 							map_start);
1633 		}
1634 		ret = comp_keys(tmp, key);
1635 
1636 		if (ret < 0)
1637 			low = mid + 1;
1638 		else if (ret > 0)
1639 			high = mid;
1640 		else {
1641 			*slot = mid;
1642 			return 0;
1643 		}
1644 	}
1645 	*slot = low;
1646 	return 1;
1647 }
1648 
1649 /*
1650  * simple bin_search frontend that does the right thing for
1651  * leaves vs nodes
1652  */
1653 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1654 		      int level, int *slot)
1655 {
1656 	if (level == 0)
1657 		return generic_bin_search(eb,
1658 					  offsetof(struct btrfs_leaf, items),
1659 					  sizeof(struct btrfs_item),
1660 					  key, btrfs_header_nritems(eb),
1661 					  slot);
1662 	else
1663 		return generic_bin_search(eb,
1664 					  offsetof(struct btrfs_node, ptrs),
1665 					  sizeof(struct btrfs_key_ptr),
1666 					  key, btrfs_header_nritems(eb),
1667 					  slot);
1668 }
1669 
1670 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1671 		     int level, int *slot)
1672 {
1673 	return bin_search(eb, key, level, slot);
1674 }
1675 
1676 static void root_add_used(struct btrfs_root *root, u32 size)
1677 {
1678 	spin_lock(&root->accounting_lock);
1679 	btrfs_set_root_used(&root->root_item,
1680 			    btrfs_root_used(&root->root_item) + size);
1681 	spin_unlock(&root->accounting_lock);
1682 }
1683 
1684 static void root_sub_used(struct btrfs_root *root, u32 size)
1685 {
1686 	spin_lock(&root->accounting_lock);
1687 	btrfs_set_root_used(&root->root_item,
1688 			    btrfs_root_used(&root->root_item) - size);
1689 	spin_unlock(&root->accounting_lock);
1690 }
1691 
1692 /* given a node and slot number, this reads the blocks it points to.  The
1693  * extent buffer is returned with a reference taken (but unlocked).
1694  * NULL is returned on error.
1695  */
1696 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1697 				   struct extent_buffer *parent, int slot)
1698 {
1699 	int level = btrfs_header_level(parent);
1700 	struct extent_buffer *eb;
1701 
1702 	if (slot < 0)
1703 		return NULL;
1704 	if (slot >= btrfs_header_nritems(parent))
1705 		return NULL;
1706 
1707 	BUG_ON(level == 0);
1708 
1709 	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1710 			     btrfs_level_size(root, level - 1),
1711 			     btrfs_node_ptr_generation(parent, slot));
1712 	if (eb && !extent_buffer_uptodate(eb)) {
1713 		free_extent_buffer(eb);
1714 		eb = NULL;
1715 	}
1716 
1717 	return eb;
1718 }
1719 
1720 /*
1721  * node level balancing, used to make sure nodes are in proper order for
1722  * item deletion.  We balance from the top down, so we have to make sure
1723  * that a deletion won't leave an node completely empty later on.
1724  */
1725 static noinline int balance_level(struct btrfs_trans_handle *trans,
1726 			 struct btrfs_root *root,
1727 			 struct btrfs_path *path, int level)
1728 {
1729 	struct extent_buffer *right = NULL;
1730 	struct extent_buffer *mid;
1731 	struct extent_buffer *left = NULL;
1732 	struct extent_buffer *parent = NULL;
1733 	int ret = 0;
1734 	int wret;
1735 	int pslot;
1736 	int orig_slot = path->slots[level];
1737 	u64 orig_ptr;
1738 
1739 	if (level == 0)
1740 		return 0;
1741 
1742 	mid = path->nodes[level];
1743 
1744 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1745 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1746 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1747 
1748 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1749 
1750 	if (level < BTRFS_MAX_LEVEL - 1) {
1751 		parent = path->nodes[level + 1];
1752 		pslot = path->slots[level + 1];
1753 	}
1754 
1755 	/*
1756 	 * deal with the case where there is only one pointer in the root
1757 	 * by promoting the node below to a root
1758 	 */
1759 	if (!parent) {
1760 		struct extent_buffer *child;
1761 
1762 		if (btrfs_header_nritems(mid) != 1)
1763 			return 0;
1764 
1765 		/* promote the child to a root */
1766 		child = read_node_slot(root, mid, 0);
1767 		if (!child) {
1768 			ret = -EROFS;
1769 			btrfs_std_error(root->fs_info, ret);
1770 			goto enospc;
1771 		}
1772 
1773 		btrfs_tree_lock(child);
1774 		btrfs_set_lock_blocking(child);
1775 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1776 		if (ret) {
1777 			btrfs_tree_unlock(child);
1778 			free_extent_buffer(child);
1779 			goto enospc;
1780 		}
1781 
1782 		tree_mod_log_set_root_pointer(root, child, 1);
1783 		rcu_assign_pointer(root->node, child);
1784 
1785 		add_root_to_dirty_list(root);
1786 		btrfs_tree_unlock(child);
1787 
1788 		path->locks[level] = 0;
1789 		path->nodes[level] = NULL;
1790 		clean_tree_block(trans, root, mid);
1791 		btrfs_tree_unlock(mid);
1792 		/* once for the path */
1793 		free_extent_buffer(mid);
1794 
1795 		root_sub_used(root, mid->len);
1796 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1797 		/* once for the root ptr */
1798 		free_extent_buffer_stale(mid);
1799 		return 0;
1800 	}
1801 	if (btrfs_header_nritems(mid) >
1802 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1803 		return 0;
1804 
1805 	left = read_node_slot(root, parent, pslot - 1);
1806 	if (left) {
1807 		btrfs_tree_lock(left);
1808 		btrfs_set_lock_blocking(left);
1809 		wret = btrfs_cow_block(trans, root, left,
1810 				       parent, pslot - 1, &left);
1811 		if (wret) {
1812 			ret = wret;
1813 			goto enospc;
1814 		}
1815 	}
1816 	right = read_node_slot(root, parent, pslot + 1);
1817 	if (right) {
1818 		btrfs_tree_lock(right);
1819 		btrfs_set_lock_blocking(right);
1820 		wret = btrfs_cow_block(trans, root, right,
1821 				       parent, pslot + 1, &right);
1822 		if (wret) {
1823 			ret = wret;
1824 			goto enospc;
1825 		}
1826 	}
1827 
1828 	/* first, try to make some room in the middle buffer */
1829 	if (left) {
1830 		orig_slot += btrfs_header_nritems(left);
1831 		wret = push_node_left(trans, root, left, mid, 1);
1832 		if (wret < 0)
1833 			ret = wret;
1834 	}
1835 
1836 	/*
1837 	 * then try to empty the right most buffer into the middle
1838 	 */
1839 	if (right) {
1840 		wret = push_node_left(trans, root, mid, right, 1);
1841 		if (wret < 0 && wret != -ENOSPC)
1842 			ret = wret;
1843 		if (btrfs_header_nritems(right) == 0) {
1844 			clean_tree_block(trans, root, right);
1845 			btrfs_tree_unlock(right);
1846 			del_ptr(root, path, level + 1, pslot + 1);
1847 			root_sub_used(root, right->len);
1848 			btrfs_free_tree_block(trans, root, right, 0, 1);
1849 			free_extent_buffer_stale(right);
1850 			right = NULL;
1851 		} else {
1852 			struct btrfs_disk_key right_key;
1853 			btrfs_node_key(right, &right_key, 0);
1854 			tree_mod_log_set_node_key(root->fs_info, parent,
1855 						  pslot + 1, 0);
1856 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1857 			btrfs_mark_buffer_dirty(parent);
1858 		}
1859 	}
1860 	if (btrfs_header_nritems(mid) == 1) {
1861 		/*
1862 		 * we're not allowed to leave a node with one item in the
1863 		 * tree during a delete.  A deletion from lower in the tree
1864 		 * could try to delete the only pointer in this node.
1865 		 * So, pull some keys from the left.
1866 		 * There has to be a left pointer at this point because
1867 		 * otherwise we would have pulled some pointers from the
1868 		 * right
1869 		 */
1870 		if (!left) {
1871 			ret = -EROFS;
1872 			btrfs_std_error(root->fs_info, ret);
1873 			goto enospc;
1874 		}
1875 		wret = balance_node_right(trans, root, mid, left);
1876 		if (wret < 0) {
1877 			ret = wret;
1878 			goto enospc;
1879 		}
1880 		if (wret == 1) {
1881 			wret = push_node_left(trans, root, left, mid, 1);
1882 			if (wret < 0)
1883 				ret = wret;
1884 		}
1885 		BUG_ON(wret == 1);
1886 	}
1887 	if (btrfs_header_nritems(mid) == 0) {
1888 		clean_tree_block(trans, root, mid);
1889 		btrfs_tree_unlock(mid);
1890 		del_ptr(root, path, level + 1, pslot);
1891 		root_sub_used(root, mid->len);
1892 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1893 		free_extent_buffer_stale(mid);
1894 		mid = NULL;
1895 	} else {
1896 		/* update the parent key to reflect our changes */
1897 		struct btrfs_disk_key mid_key;
1898 		btrfs_node_key(mid, &mid_key, 0);
1899 		tree_mod_log_set_node_key(root->fs_info, parent,
1900 					  pslot, 0);
1901 		btrfs_set_node_key(parent, &mid_key, pslot);
1902 		btrfs_mark_buffer_dirty(parent);
1903 	}
1904 
1905 	/* update the path */
1906 	if (left) {
1907 		if (btrfs_header_nritems(left) > orig_slot) {
1908 			extent_buffer_get(left);
1909 			/* left was locked after cow */
1910 			path->nodes[level] = left;
1911 			path->slots[level + 1] -= 1;
1912 			path->slots[level] = orig_slot;
1913 			if (mid) {
1914 				btrfs_tree_unlock(mid);
1915 				free_extent_buffer(mid);
1916 			}
1917 		} else {
1918 			orig_slot -= btrfs_header_nritems(left);
1919 			path->slots[level] = orig_slot;
1920 		}
1921 	}
1922 	/* double check we haven't messed things up */
1923 	if (orig_ptr !=
1924 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1925 		BUG();
1926 enospc:
1927 	if (right) {
1928 		btrfs_tree_unlock(right);
1929 		free_extent_buffer(right);
1930 	}
1931 	if (left) {
1932 		if (path->nodes[level] != left)
1933 			btrfs_tree_unlock(left);
1934 		free_extent_buffer(left);
1935 	}
1936 	return ret;
1937 }
1938 
1939 /* Node balancing for insertion.  Here we only split or push nodes around
1940  * when they are completely full.  This is also done top down, so we
1941  * have to be pessimistic.
1942  */
1943 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1944 					  struct btrfs_root *root,
1945 					  struct btrfs_path *path, int level)
1946 {
1947 	struct extent_buffer *right = NULL;
1948 	struct extent_buffer *mid;
1949 	struct extent_buffer *left = NULL;
1950 	struct extent_buffer *parent = NULL;
1951 	int ret = 0;
1952 	int wret;
1953 	int pslot;
1954 	int orig_slot = path->slots[level];
1955 
1956 	if (level == 0)
1957 		return 1;
1958 
1959 	mid = path->nodes[level];
1960 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1961 
1962 	if (level < BTRFS_MAX_LEVEL - 1) {
1963 		parent = path->nodes[level + 1];
1964 		pslot = path->slots[level + 1];
1965 	}
1966 
1967 	if (!parent)
1968 		return 1;
1969 
1970 	left = read_node_slot(root, parent, pslot - 1);
1971 
1972 	/* first, try to make some room in the middle buffer */
1973 	if (left) {
1974 		u32 left_nr;
1975 
1976 		btrfs_tree_lock(left);
1977 		btrfs_set_lock_blocking(left);
1978 
1979 		left_nr = btrfs_header_nritems(left);
1980 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1981 			wret = 1;
1982 		} else {
1983 			ret = btrfs_cow_block(trans, root, left, parent,
1984 					      pslot - 1, &left);
1985 			if (ret)
1986 				wret = 1;
1987 			else {
1988 				wret = push_node_left(trans, root,
1989 						      left, mid, 0);
1990 			}
1991 		}
1992 		if (wret < 0)
1993 			ret = wret;
1994 		if (wret == 0) {
1995 			struct btrfs_disk_key disk_key;
1996 			orig_slot += left_nr;
1997 			btrfs_node_key(mid, &disk_key, 0);
1998 			tree_mod_log_set_node_key(root->fs_info, parent,
1999 						  pslot, 0);
2000 			btrfs_set_node_key(parent, &disk_key, pslot);
2001 			btrfs_mark_buffer_dirty(parent);
2002 			if (btrfs_header_nritems(left) > orig_slot) {
2003 				path->nodes[level] = left;
2004 				path->slots[level + 1] -= 1;
2005 				path->slots[level] = orig_slot;
2006 				btrfs_tree_unlock(mid);
2007 				free_extent_buffer(mid);
2008 			} else {
2009 				orig_slot -=
2010 					btrfs_header_nritems(left);
2011 				path->slots[level] = orig_slot;
2012 				btrfs_tree_unlock(left);
2013 				free_extent_buffer(left);
2014 			}
2015 			return 0;
2016 		}
2017 		btrfs_tree_unlock(left);
2018 		free_extent_buffer(left);
2019 	}
2020 	right = read_node_slot(root, parent, pslot + 1);
2021 
2022 	/*
2023 	 * then try to empty the right most buffer into the middle
2024 	 */
2025 	if (right) {
2026 		u32 right_nr;
2027 
2028 		btrfs_tree_lock(right);
2029 		btrfs_set_lock_blocking(right);
2030 
2031 		right_nr = btrfs_header_nritems(right);
2032 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2033 			wret = 1;
2034 		} else {
2035 			ret = btrfs_cow_block(trans, root, right,
2036 					      parent, pslot + 1,
2037 					      &right);
2038 			if (ret)
2039 				wret = 1;
2040 			else {
2041 				wret = balance_node_right(trans, root,
2042 							  right, mid);
2043 			}
2044 		}
2045 		if (wret < 0)
2046 			ret = wret;
2047 		if (wret == 0) {
2048 			struct btrfs_disk_key disk_key;
2049 
2050 			btrfs_node_key(right, &disk_key, 0);
2051 			tree_mod_log_set_node_key(root->fs_info, parent,
2052 						  pslot + 1, 0);
2053 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2054 			btrfs_mark_buffer_dirty(parent);
2055 
2056 			if (btrfs_header_nritems(mid) <= orig_slot) {
2057 				path->nodes[level] = right;
2058 				path->slots[level + 1] += 1;
2059 				path->slots[level] = orig_slot -
2060 					btrfs_header_nritems(mid);
2061 				btrfs_tree_unlock(mid);
2062 				free_extent_buffer(mid);
2063 			} else {
2064 				btrfs_tree_unlock(right);
2065 				free_extent_buffer(right);
2066 			}
2067 			return 0;
2068 		}
2069 		btrfs_tree_unlock(right);
2070 		free_extent_buffer(right);
2071 	}
2072 	return 1;
2073 }
2074 
2075 /*
2076  * readahead one full node of leaves, finding things that are close
2077  * to the block in 'slot', and triggering ra on them.
2078  */
2079 static void reada_for_search(struct btrfs_root *root,
2080 			     struct btrfs_path *path,
2081 			     int level, int slot, u64 objectid)
2082 {
2083 	struct extent_buffer *node;
2084 	struct btrfs_disk_key disk_key;
2085 	u32 nritems;
2086 	u64 search;
2087 	u64 target;
2088 	u64 nread = 0;
2089 	u64 gen;
2090 	int direction = path->reada;
2091 	struct extent_buffer *eb;
2092 	u32 nr;
2093 	u32 blocksize;
2094 	u32 nscan = 0;
2095 
2096 	if (level != 1)
2097 		return;
2098 
2099 	if (!path->nodes[level])
2100 		return;
2101 
2102 	node = path->nodes[level];
2103 
2104 	search = btrfs_node_blockptr(node, slot);
2105 	blocksize = btrfs_level_size(root, level - 1);
2106 	eb = btrfs_find_tree_block(root, search, blocksize);
2107 	if (eb) {
2108 		free_extent_buffer(eb);
2109 		return;
2110 	}
2111 
2112 	target = search;
2113 
2114 	nritems = btrfs_header_nritems(node);
2115 	nr = slot;
2116 
2117 	while (1) {
2118 		if (direction < 0) {
2119 			if (nr == 0)
2120 				break;
2121 			nr--;
2122 		} else if (direction > 0) {
2123 			nr++;
2124 			if (nr >= nritems)
2125 				break;
2126 		}
2127 		if (path->reada < 0 && objectid) {
2128 			btrfs_node_key(node, &disk_key, nr);
2129 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2130 				break;
2131 		}
2132 		search = btrfs_node_blockptr(node, nr);
2133 		if ((search <= target && target - search <= 65536) ||
2134 		    (search > target && search - target <= 65536)) {
2135 			gen = btrfs_node_ptr_generation(node, nr);
2136 			readahead_tree_block(root, search, blocksize, gen);
2137 			nread += blocksize;
2138 		}
2139 		nscan++;
2140 		if ((nread > 65536 || nscan > 32))
2141 			break;
2142 	}
2143 }
2144 
2145 static noinline void reada_for_balance(struct btrfs_root *root,
2146 				       struct btrfs_path *path, int level)
2147 {
2148 	int slot;
2149 	int nritems;
2150 	struct extent_buffer *parent;
2151 	struct extent_buffer *eb;
2152 	u64 gen;
2153 	u64 block1 = 0;
2154 	u64 block2 = 0;
2155 	int blocksize;
2156 
2157 	parent = path->nodes[level + 1];
2158 	if (!parent)
2159 		return;
2160 
2161 	nritems = btrfs_header_nritems(parent);
2162 	slot = path->slots[level + 1];
2163 	blocksize = btrfs_level_size(root, level);
2164 
2165 	if (slot > 0) {
2166 		block1 = btrfs_node_blockptr(parent, slot - 1);
2167 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2168 		eb = btrfs_find_tree_block(root, block1, blocksize);
2169 		/*
2170 		 * if we get -eagain from btrfs_buffer_uptodate, we
2171 		 * don't want to return eagain here.  That will loop
2172 		 * forever
2173 		 */
2174 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2175 			block1 = 0;
2176 		free_extent_buffer(eb);
2177 	}
2178 	if (slot + 1 < nritems) {
2179 		block2 = btrfs_node_blockptr(parent, slot + 1);
2180 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2181 		eb = btrfs_find_tree_block(root, block2, blocksize);
2182 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2183 			block2 = 0;
2184 		free_extent_buffer(eb);
2185 	}
2186 
2187 	if (block1)
2188 		readahead_tree_block(root, block1, blocksize, 0);
2189 	if (block2)
2190 		readahead_tree_block(root, block2, blocksize, 0);
2191 }
2192 
2193 
2194 /*
2195  * when we walk down the tree, it is usually safe to unlock the higher layers
2196  * in the tree.  The exceptions are when our path goes through slot 0, because
2197  * operations on the tree might require changing key pointers higher up in the
2198  * tree.
2199  *
2200  * callers might also have set path->keep_locks, which tells this code to keep
2201  * the lock if the path points to the last slot in the block.  This is part of
2202  * walking through the tree, and selecting the next slot in the higher block.
2203  *
2204  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2205  * if lowest_unlock is 1, level 0 won't be unlocked
2206  */
2207 static noinline void unlock_up(struct btrfs_path *path, int level,
2208 			       int lowest_unlock, int min_write_lock_level,
2209 			       int *write_lock_level)
2210 {
2211 	int i;
2212 	int skip_level = level;
2213 	int no_skips = 0;
2214 	struct extent_buffer *t;
2215 
2216 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2217 		if (!path->nodes[i])
2218 			break;
2219 		if (!path->locks[i])
2220 			break;
2221 		if (!no_skips && path->slots[i] == 0) {
2222 			skip_level = i + 1;
2223 			continue;
2224 		}
2225 		if (!no_skips && path->keep_locks) {
2226 			u32 nritems;
2227 			t = path->nodes[i];
2228 			nritems = btrfs_header_nritems(t);
2229 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2230 				skip_level = i + 1;
2231 				continue;
2232 			}
2233 		}
2234 		if (skip_level < i && i >= lowest_unlock)
2235 			no_skips = 1;
2236 
2237 		t = path->nodes[i];
2238 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2239 			btrfs_tree_unlock_rw(t, path->locks[i]);
2240 			path->locks[i] = 0;
2241 			if (write_lock_level &&
2242 			    i > min_write_lock_level &&
2243 			    i <= *write_lock_level) {
2244 				*write_lock_level = i - 1;
2245 			}
2246 		}
2247 	}
2248 }
2249 
2250 /*
2251  * This releases any locks held in the path starting at level and
2252  * going all the way up to the root.
2253  *
2254  * btrfs_search_slot will keep the lock held on higher nodes in a few
2255  * corner cases, such as COW of the block at slot zero in the node.  This
2256  * ignores those rules, and it should only be called when there are no
2257  * more updates to be done higher up in the tree.
2258  */
2259 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2260 {
2261 	int i;
2262 
2263 	if (path->keep_locks)
2264 		return;
2265 
2266 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2267 		if (!path->nodes[i])
2268 			continue;
2269 		if (!path->locks[i])
2270 			continue;
2271 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2272 		path->locks[i] = 0;
2273 	}
2274 }
2275 
2276 /*
2277  * helper function for btrfs_search_slot.  The goal is to find a block
2278  * in cache without setting the path to blocking.  If we find the block
2279  * we return zero and the path is unchanged.
2280  *
2281  * If we can't find the block, we set the path blocking and do some
2282  * reada.  -EAGAIN is returned and the search must be repeated.
2283  */
2284 static int
2285 read_block_for_search(struct btrfs_trans_handle *trans,
2286 		       struct btrfs_root *root, struct btrfs_path *p,
2287 		       struct extent_buffer **eb_ret, int level, int slot,
2288 		       struct btrfs_key *key, u64 time_seq)
2289 {
2290 	u64 blocknr;
2291 	u64 gen;
2292 	u32 blocksize;
2293 	struct extent_buffer *b = *eb_ret;
2294 	struct extent_buffer *tmp;
2295 	int ret;
2296 
2297 	blocknr = btrfs_node_blockptr(b, slot);
2298 	gen = btrfs_node_ptr_generation(b, slot);
2299 	blocksize = btrfs_level_size(root, level - 1);
2300 
2301 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2302 	if (tmp) {
2303 		/* first we do an atomic uptodate check */
2304 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2305 			*eb_ret = tmp;
2306 			return 0;
2307 		}
2308 
2309 		/* the pages were up to date, but we failed
2310 		 * the generation number check.  Do a full
2311 		 * read for the generation number that is correct.
2312 		 * We must do this without dropping locks so
2313 		 * we can trust our generation number
2314 		 */
2315 		btrfs_set_path_blocking(p);
2316 
2317 		/* now we're allowed to do a blocking uptodate check */
2318 		ret = btrfs_read_buffer(tmp, gen);
2319 		if (!ret) {
2320 			*eb_ret = tmp;
2321 			return 0;
2322 		}
2323 		free_extent_buffer(tmp);
2324 		btrfs_release_path(p);
2325 		return -EIO;
2326 	}
2327 
2328 	/*
2329 	 * reduce lock contention at high levels
2330 	 * of the btree by dropping locks before
2331 	 * we read.  Don't release the lock on the current
2332 	 * level because we need to walk this node to figure
2333 	 * out which blocks to read.
2334 	 */
2335 	btrfs_unlock_up_safe(p, level + 1);
2336 	btrfs_set_path_blocking(p);
2337 
2338 	free_extent_buffer(tmp);
2339 	if (p->reada)
2340 		reada_for_search(root, p, level, slot, key->objectid);
2341 
2342 	btrfs_release_path(p);
2343 
2344 	ret = -EAGAIN;
2345 	tmp = read_tree_block(root, blocknr, blocksize, 0);
2346 	if (tmp) {
2347 		/*
2348 		 * If the read above didn't mark this buffer up to date,
2349 		 * it will never end up being up to date.  Set ret to EIO now
2350 		 * and give up so that our caller doesn't loop forever
2351 		 * on our EAGAINs.
2352 		 */
2353 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2354 			ret = -EIO;
2355 		free_extent_buffer(tmp);
2356 	}
2357 	return ret;
2358 }
2359 
2360 /*
2361  * helper function for btrfs_search_slot.  This does all of the checks
2362  * for node-level blocks and does any balancing required based on
2363  * the ins_len.
2364  *
2365  * If no extra work was required, zero is returned.  If we had to
2366  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2367  * start over
2368  */
2369 static int
2370 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2371 		       struct btrfs_root *root, struct btrfs_path *p,
2372 		       struct extent_buffer *b, int level, int ins_len,
2373 		       int *write_lock_level)
2374 {
2375 	int ret;
2376 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2377 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2378 		int sret;
2379 
2380 		if (*write_lock_level < level + 1) {
2381 			*write_lock_level = level + 1;
2382 			btrfs_release_path(p);
2383 			goto again;
2384 		}
2385 
2386 		btrfs_set_path_blocking(p);
2387 		reada_for_balance(root, p, level);
2388 		sret = split_node(trans, root, p, level);
2389 		btrfs_clear_path_blocking(p, NULL, 0);
2390 
2391 		BUG_ON(sret > 0);
2392 		if (sret) {
2393 			ret = sret;
2394 			goto done;
2395 		}
2396 		b = p->nodes[level];
2397 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2398 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2399 		int sret;
2400 
2401 		if (*write_lock_level < level + 1) {
2402 			*write_lock_level = level + 1;
2403 			btrfs_release_path(p);
2404 			goto again;
2405 		}
2406 
2407 		btrfs_set_path_blocking(p);
2408 		reada_for_balance(root, p, level);
2409 		sret = balance_level(trans, root, p, level);
2410 		btrfs_clear_path_blocking(p, NULL, 0);
2411 
2412 		if (sret) {
2413 			ret = sret;
2414 			goto done;
2415 		}
2416 		b = p->nodes[level];
2417 		if (!b) {
2418 			btrfs_release_path(p);
2419 			goto again;
2420 		}
2421 		BUG_ON(btrfs_header_nritems(b) == 1);
2422 	}
2423 	return 0;
2424 
2425 again:
2426 	ret = -EAGAIN;
2427 done:
2428 	return ret;
2429 }
2430 
2431 static void key_search_validate(struct extent_buffer *b,
2432 				struct btrfs_key *key,
2433 				int level)
2434 {
2435 #ifdef CONFIG_BTRFS_ASSERT
2436 	struct btrfs_disk_key disk_key;
2437 
2438 	btrfs_cpu_key_to_disk(&disk_key, key);
2439 
2440 	if (level == 0)
2441 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2442 		    offsetof(struct btrfs_leaf, items[0].key),
2443 		    sizeof(disk_key)));
2444 	else
2445 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2446 		    offsetof(struct btrfs_node, ptrs[0].key),
2447 		    sizeof(disk_key)));
2448 #endif
2449 }
2450 
2451 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2452 		      int level, int *prev_cmp, int *slot)
2453 {
2454 	if (*prev_cmp != 0) {
2455 		*prev_cmp = bin_search(b, key, level, slot);
2456 		return *prev_cmp;
2457 	}
2458 
2459 	key_search_validate(b, key, level);
2460 	*slot = 0;
2461 
2462 	return 0;
2463 }
2464 
2465 /*
2466  * look for key in the tree.  path is filled in with nodes along the way
2467  * if key is found, we return zero and you can find the item in the leaf
2468  * level of the path (level 0)
2469  *
2470  * If the key isn't found, the path points to the slot where it should
2471  * be inserted, and 1 is returned.  If there are other errors during the
2472  * search a negative error number is returned.
2473  *
2474  * if ins_len > 0, nodes and leaves will be split as we walk down the
2475  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2476  * possible)
2477  */
2478 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2479 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2480 		      ins_len, int cow)
2481 {
2482 	struct extent_buffer *b;
2483 	int slot;
2484 	int ret;
2485 	int err;
2486 	int level;
2487 	int lowest_unlock = 1;
2488 	int root_lock;
2489 	/* everything at write_lock_level or lower must be write locked */
2490 	int write_lock_level = 0;
2491 	u8 lowest_level = 0;
2492 	int min_write_lock_level;
2493 	int prev_cmp;
2494 
2495 	lowest_level = p->lowest_level;
2496 	WARN_ON(lowest_level && ins_len > 0);
2497 	WARN_ON(p->nodes[0] != NULL);
2498 
2499 	if (ins_len < 0) {
2500 		lowest_unlock = 2;
2501 
2502 		/* when we are removing items, we might have to go up to level
2503 		 * two as we update tree pointers  Make sure we keep write
2504 		 * for those levels as well
2505 		 */
2506 		write_lock_level = 2;
2507 	} else if (ins_len > 0) {
2508 		/*
2509 		 * for inserting items, make sure we have a write lock on
2510 		 * level 1 so we can update keys
2511 		 */
2512 		write_lock_level = 1;
2513 	}
2514 
2515 	if (!cow)
2516 		write_lock_level = -1;
2517 
2518 	if (cow && (p->keep_locks || p->lowest_level))
2519 		write_lock_level = BTRFS_MAX_LEVEL;
2520 
2521 	min_write_lock_level = write_lock_level;
2522 
2523 again:
2524 	prev_cmp = -1;
2525 	/*
2526 	 * we try very hard to do read locks on the root
2527 	 */
2528 	root_lock = BTRFS_READ_LOCK;
2529 	level = 0;
2530 	if (p->search_commit_root) {
2531 		/*
2532 		 * the commit roots are read only
2533 		 * so we always do read locks
2534 		 */
2535 		b = root->commit_root;
2536 		extent_buffer_get(b);
2537 		level = btrfs_header_level(b);
2538 		if (!p->skip_locking)
2539 			btrfs_tree_read_lock(b);
2540 	} else {
2541 		if (p->skip_locking) {
2542 			b = btrfs_root_node(root);
2543 			level = btrfs_header_level(b);
2544 		} else {
2545 			/* we don't know the level of the root node
2546 			 * until we actually have it read locked
2547 			 */
2548 			b = btrfs_read_lock_root_node(root);
2549 			level = btrfs_header_level(b);
2550 			if (level <= write_lock_level) {
2551 				/* whoops, must trade for write lock */
2552 				btrfs_tree_read_unlock(b);
2553 				free_extent_buffer(b);
2554 				b = btrfs_lock_root_node(root);
2555 				root_lock = BTRFS_WRITE_LOCK;
2556 
2557 				/* the level might have changed, check again */
2558 				level = btrfs_header_level(b);
2559 			}
2560 		}
2561 	}
2562 	p->nodes[level] = b;
2563 	if (!p->skip_locking)
2564 		p->locks[level] = root_lock;
2565 
2566 	while (b) {
2567 		level = btrfs_header_level(b);
2568 
2569 		/*
2570 		 * setup the path here so we can release it under lock
2571 		 * contention with the cow code
2572 		 */
2573 		if (cow) {
2574 			/*
2575 			 * if we don't really need to cow this block
2576 			 * then we don't want to set the path blocking,
2577 			 * so we test it here
2578 			 */
2579 			if (!should_cow_block(trans, root, b))
2580 				goto cow_done;
2581 
2582 			btrfs_set_path_blocking(p);
2583 
2584 			/*
2585 			 * must have write locks on this node and the
2586 			 * parent
2587 			 */
2588 			if (level > write_lock_level ||
2589 			    (level + 1 > write_lock_level &&
2590 			    level + 1 < BTRFS_MAX_LEVEL &&
2591 			    p->nodes[level + 1])) {
2592 				write_lock_level = level + 1;
2593 				btrfs_release_path(p);
2594 				goto again;
2595 			}
2596 
2597 			err = btrfs_cow_block(trans, root, b,
2598 					      p->nodes[level + 1],
2599 					      p->slots[level + 1], &b);
2600 			if (err) {
2601 				ret = err;
2602 				goto done;
2603 			}
2604 		}
2605 cow_done:
2606 		BUG_ON(!cow && ins_len);
2607 
2608 		p->nodes[level] = b;
2609 		btrfs_clear_path_blocking(p, NULL, 0);
2610 
2611 		/*
2612 		 * we have a lock on b and as long as we aren't changing
2613 		 * the tree, there is no way to for the items in b to change.
2614 		 * It is safe to drop the lock on our parent before we
2615 		 * go through the expensive btree search on b.
2616 		 *
2617 		 * If cow is true, then we might be changing slot zero,
2618 		 * which may require changing the parent.  So, we can't
2619 		 * drop the lock until after we know which slot we're
2620 		 * operating on.
2621 		 */
2622 		if (!cow)
2623 			btrfs_unlock_up_safe(p, level + 1);
2624 
2625 		ret = key_search(b, key, level, &prev_cmp, &slot);
2626 
2627 		if (level != 0) {
2628 			int dec = 0;
2629 			if (ret && slot > 0) {
2630 				dec = 1;
2631 				slot -= 1;
2632 			}
2633 			p->slots[level] = slot;
2634 			err = setup_nodes_for_search(trans, root, p, b, level,
2635 					     ins_len, &write_lock_level);
2636 			if (err == -EAGAIN)
2637 				goto again;
2638 			if (err) {
2639 				ret = err;
2640 				goto done;
2641 			}
2642 			b = p->nodes[level];
2643 			slot = p->slots[level];
2644 
2645 			/*
2646 			 * slot 0 is special, if we change the key
2647 			 * we have to update the parent pointer
2648 			 * which means we must have a write lock
2649 			 * on the parent
2650 			 */
2651 			if (slot == 0 && cow &&
2652 			    write_lock_level < level + 1) {
2653 				write_lock_level = level + 1;
2654 				btrfs_release_path(p);
2655 				goto again;
2656 			}
2657 
2658 			unlock_up(p, level, lowest_unlock,
2659 				  min_write_lock_level, &write_lock_level);
2660 
2661 			if (level == lowest_level) {
2662 				if (dec)
2663 					p->slots[level]++;
2664 				goto done;
2665 			}
2666 
2667 			err = read_block_for_search(trans, root, p,
2668 						    &b, level, slot, key, 0);
2669 			if (err == -EAGAIN)
2670 				goto again;
2671 			if (err) {
2672 				ret = err;
2673 				goto done;
2674 			}
2675 
2676 			if (!p->skip_locking) {
2677 				level = btrfs_header_level(b);
2678 				if (level <= write_lock_level) {
2679 					err = btrfs_try_tree_write_lock(b);
2680 					if (!err) {
2681 						btrfs_set_path_blocking(p);
2682 						btrfs_tree_lock(b);
2683 						btrfs_clear_path_blocking(p, b,
2684 								  BTRFS_WRITE_LOCK);
2685 					}
2686 					p->locks[level] = BTRFS_WRITE_LOCK;
2687 				} else {
2688 					err = btrfs_try_tree_read_lock(b);
2689 					if (!err) {
2690 						btrfs_set_path_blocking(p);
2691 						btrfs_tree_read_lock(b);
2692 						btrfs_clear_path_blocking(p, b,
2693 								  BTRFS_READ_LOCK);
2694 					}
2695 					p->locks[level] = BTRFS_READ_LOCK;
2696 				}
2697 				p->nodes[level] = b;
2698 			}
2699 		} else {
2700 			p->slots[level] = slot;
2701 			if (ins_len > 0 &&
2702 			    btrfs_leaf_free_space(root, b) < ins_len) {
2703 				if (write_lock_level < 1) {
2704 					write_lock_level = 1;
2705 					btrfs_release_path(p);
2706 					goto again;
2707 				}
2708 
2709 				btrfs_set_path_blocking(p);
2710 				err = split_leaf(trans, root, key,
2711 						 p, ins_len, ret == 0);
2712 				btrfs_clear_path_blocking(p, NULL, 0);
2713 
2714 				BUG_ON(err > 0);
2715 				if (err) {
2716 					ret = err;
2717 					goto done;
2718 				}
2719 			}
2720 			if (!p->search_for_split)
2721 				unlock_up(p, level, lowest_unlock,
2722 					  min_write_lock_level, &write_lock_level);
2723 			goto done;
2724 		}
2725 	}
2726 	ret = 1;
2727 done:
2728 	/*
2729 	 * we don't really know what they plan on doing with the path
2730 	 * from here on, so for now just mark it as blocking
2731 	 */
2732 	if (!p->leave_spinning)
2733 		btrfs_set_path_blocking(p);
2734 	if (ret < 0)
2735 		btrfs_release_path(p);
2736 	return ret;
2737 }
2738 
2739 /*
2740  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2741  * current state of the tree together with the operations recorded in the tree
2742  * modification log to search for the key in a previous version of this tree, as
2743  * denoted by the time_seq parameter.
2744  *
2745  * Naturally, there is no support for insert, delete or cow operations.
2746  *
2747  * The resulting path and return value will be set up as if we called
2748  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2749  */
2750 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2751 			  struct btrfs_path *p, u64 time_seq)
2752 {
2753 	struct extent_buffer *b;
2754 	int slot;
2755 	int ret;
2756 	int err;
2757 	int level;
2758 	int lowest_unlock = 1;
2759 	u8 lowest_level = 0;
2760 	int prev_cmp = -1;
2761 
2762 	lowest_level = p->lowest_level;
2763 	WARN_ON(p->nodes[0] != NULL);
2764 
2765 	if (p->search_commit_root) {
2766 		BUG_ON(time_seq);
2767 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2768 	}
2769 
2770 again:
2771 	b = get_old_root(root, time_seq);
2772 	level = btrfs_header_level(b);
2773 	p->locks[level] = BTRFS_READ_LOCK;
2774 
2775 	while (b) {
2776 		level = btrfs_header_level(b);
2777 		p->nodes[level] = b;
2778 		btrfs_clear_path_blocking(p, NULL, 0);
2779 
2780 		/*
2781 		 * we have a lock on b and as long as we aren't changing
2782 		 * the tree, there is no way to for the items in b to change.
2783 		 * It is safe to drop the lock on our parent before we
2784 		 * go through the expensive btree search on b.
2785 		 */
2786 		btrfs_unlock_up_safe(p, level + 1);
2787 
2788 		/*
2789 		 * Since we can unwind eb's we want to do a real search every
2790 		 * time.
2791 		 */
2792 		prev_cmp = -1;
2793 		ret = key_search(b, key, level, &prev_cmp, &slot);
2794 
2795 		if (level != 0) {
2796 			int dec = 0;
2797 			if (ret && slot > 0) {
2798 				dec = 1;
2799 				slot -= 1;
2800 			}
2801 			p->slots[level] = slot;
2802 			unlock_up(p, level, lowest_unlock, 0, NULL);
2803 
2804 			if (level == lowest_level) {
2805 				if (dec)
2806 					p->slots[level]++;
2807 				goto done;
2808 			}
2809 
2810 			err = read_block_for_search(NULL, root, p, &b, level,
2811 						    slot, key, time_seq);
2812 			if (err == -EAGAIN)
2813 				goto again;
2814 			if (err) {
2815 				ret = err;
2816 				goto done;
2817 			}
2818 
2819 			level = btrfs_header_level(b);
2820 			err = btrfs_try_tree_read_lock(b);
2821 			if (!err) {
2822 				btrfs_set_path_blocking(p);
2823 				btrfs_tree_read_lock(b);
2824 				btrfs_clear_path_blocking(p, b,
2825 							  BTRFS_READ_LOCK);
2826 			}
2827 			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
2828 			if (!b) {
2829 				ret = -ENOMEM;
2830 				goto done;
2831 			}
2832 			p->locks[level] = BTRFS_READ_LOCK;
2833 			p->nodes[level] = b;
2834 		} else {
2835 			p->slots[level] = slot;
2836 			unlock_up(p, level, lowest_unlock, 0, NULL);
2837 			goto done;
2838 		}
2839 	}
2840 	ret = 1;
2841 done:
2842 	if (!p->leave_spinning)
2843 		btrfs_set_path_blocking(p);
2844 	if (ret < 0)
2845 		btrfs_release_path(p);
2846 
2847 	return ret;
2848 }
2849 
2850 /*
2851  * helper to use instead of search slot if no exact match is needed but
2852  * instead the next or previous item should be returned.
2853  * When find_higher is true, the next higher item is returned, the next lower
2854  * otherwise.
2855  * When return_any and find_higher are both true, and no higher item is found,
2856  * return the next lower instead.
2857  * When return_any is true and find_higher is false, and no lower item is found,
2858  * return the next higher instead.
2859  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2860  * < 0 on error
2861  */
2862 int btrfs_search_slot_for_read(struct btrfs_root *root,
2863 			       struct btrfs_key *key, struct btrfs_path *p,
2864 			       int find_higher, int return_any)
2865 {
2866 	int ret;
2867 	struct extent_buffer *leaf;
2868 
2869 again:
2870 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2871 	if (ret <= 0)
2872 		return ret;
2873 	/*
2874 	 * a return value of 1 means the path is at the position where the
2875 	 * item should be inserted. Normally this is the next bigger item,
2876 	 * but in case the previous item is the last in a leaf, path points
2877 	 * to the first free slot in the previous leaf, i.e. at an invalid
2878 	 * item.
2879 	 */
2880 	leaf = p->nodes[0];
2881 
2882 	if (find_higher) {
2883 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2884 			ret = btrfs_next_leaf(root, p);
2885 			if (ret <= 0)
2886 				return ret;
2887 			if (!return_any)
2888 				return 1;
2889 			/*
2890 			 * no higher item found, return the next
2891 			 * lower instead
2892 			 */
2893 			return_any = 0;
2894 			find_higher = 0;
2895 			btrfs_release_path(p);
2896 			goto again;
2897 		}
2898 	} else {
2899 		if (p->slots[0] == 0) {
2900 			ret = btrfs_prev_leaf(root, p);
2901 			if (ret < 0)
2902 				return ret;
2903 			if (!ret) {
2904 				p->slots[0] = btrfs_header_nritems(leaf) - 1;
2905 				return 0;
2906 			}
2907 			if (!return_any)
2908 				return 1;
2909 			/*
2910 			 * no lower item found, return the next
2911 			 * higher instead
2912 			 */
2913 			return_any = 0;
2914 			find_higher = 1;
2915 			btrfs_release_path(p);
2916 			goto again;
2917 		} else {
2918 			--p->slots[0];
2919 		}
2920 	}
2921 	return 0;
2922 }
2923 
2924 /*
2925  * adjust the pointers going up the tree, starting at level
2926  * making sure the right key of each node is points to 'key'.
2927  * This is used after shifting pointers to the left, so it stops
2928  * fixing up pointers when a given leaf/node is not in slot 0 of the
2929  * higher levels
2930  *
2931  */
2932 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2933 			   struct btrfs_disk_key *key, int level)
2934 {
2935 	int i;
2936 	struct extent_buffer *t;
2937 
2938 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2939 		int tslot = path->slots[i];
2940 		if (!path->nodes[i])
2941 			break;
2942 		t = path->nodes[i];
2943 		tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2944 		btrfs_set_node_key(t, key, tslot);
2945 		btrfs_mark_buffer_dirty(path->nodes[i]);
2946 		if (tslot != 0)
2947 			break;
2948 	}
2949 }
2950 
2951 /*
2952  * update item key.
2953  *
2954  * This function isn't completely safe. It's the caller's responsibility
2955  * that the new key won't break the order
2956  */
2957 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2958 			     struct btrfs_key *new_key)
2959 {
2960 	struct btrfs_disk_key disk_key;
2961 	struct extent_buffer *eb;
2962 	int slot;
2963 
2964 	eb = path->nodes[0];
2965 	slot = path->slots[0];
2966 	if (slot > 0) {
2967 		btrfs_item_key(eb, &disk_key, slot - 1);
2968 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2969 	}
2970 	if (slot < btrfs_header_nritems(eb) - 1) {
2971 		btrfs_item_key(eb, &disk_key, slot + 1);
2972 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2973 	}
2974 
2975 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2976 	btrfs_set_item_key(eb, &disk_key, slot);
2977 	btrfs_mark_buffer_dirty(eb);
2978 	if (slot == 0)
2979 		fixup_low_keys(root, path, &disk_key, 1);
2980 }
2981 
2982 /*
2983  * try to push data from one node into the next node left in the
2984  * tree.
2985  *
2986  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2987  * error, and > 0 if there was no room in the left hand block.
2988  */
2989 static int push_node_left(struct btrfs_trans_handle *trans,
2990 			  struct btrfs_root *root, struct extent_buffer *dst,
2991 			  struct extent_buffer *src, int empty)
2992 {
2993 	int push_items = 0;
2994 	int src_nritems;
2995 	int dst_nritems;
2996 	int ret = 0;
2997 
2998 	src_nritems = btrfs_header_nritems(src);
2999 	dst_nritems = btrfs_header_nritems(dst);
3000 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3001 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3002 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3003 
3004 	if (!empty && src_nritems <= 8)
3005 		return 1;
3006 
3007 	if (push_items <= 0)
3008 		return 1;
3009 
3010 	if (empty) {
3011 		push_items = min(src_nritems, push_items);
3012 		if (push_items < src_nritems) {
3013 			/* leave at least 8 pointers in the node if
3014 			 * we aren't going to empty it
3015 			 */
3016 			if (src_nritems - push_items < 8) {
3017 				if (push_items <= 8)
3018 					return 1;
3019 				push_items -= 8;
3020 			}
3021 		}
3022 	} else
3023 		push_items = min(src_nritems - 8, push_items);
3024 
3025 	tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3026 			     push_items);
3027 	copy_extent_buffer(dst, src,
3028 			   btrfs_node_key_ptr_offset(dst_nritems),
3029 			   btrfs_node_key_ptr_offset(0),
3030 			   push_items * sizeof(struct btrfs_key_ptr));
3031 
3032 	if (push_items < src_nritems) {
3033 		/*
3034 		 * don't call tree_mod_log_eb_move here, key removal was already
3035 		 * fully logged by tree_mod_log_eb_copy above.
3036 		 */
3037 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3038 				      btrfs_node_key_ptr_offset(push_items),
3039 				      (src_nritems - push_items) *
3040 				      sizeof(struct btrfs_key_ptr));
3041 	}
3042 	btrfs_set_header_nritems(src, src_nritems - push_items);
3043 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3044 	btrfs_mark_buffer_dirty(src);
3045 	btrfs_mark_buffer_dirty(dst);
3046 
3047 	return ret;
3048 }
3049 
3050 /*
3051  * try to push data from one node into the next node right in the
3052  * tree.
3053  *
3054  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3055  * error, and > 0 if there was no room in the right hand block.
3056  *
3057  * this will  only push up to 1/2 the contents of the left node over
3058  */
3059 static int balance_node_right(struct btrfs_trans_handle *trans,
3060 			      struct btrfs_root *root,
3061 			      struct extent_buffer *dst,
3062 			      struct extent_buffer *src)
3063 {
3064 	int push_items = 0;
3065 	int max_push;
3066 	int src_nritems;
3067 	int dst_nritems;
3068 	int ret = 0;
3069 
3070 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3071 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3072 
3073 	src_nritems = btrfs_header_nritems(src);
3074 	dst_nritems = btrfs_header_nritems(dst);
3075 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3076 	if (push_items <= 0)
3077 		return 1;
3078 
3079 	if (src_nritems < 4)
3080 		return 1;
3081 
3082 	max_push = src_nritems / 2 + 1;
3083 	/* don't try to empty the node */
3084 	if (max_push >= src_nritems)
3085 		return 1;
3086 
3087 	if (max_push < push_items)
3088 		push_items = max_push;
3089 
3090 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3091 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3092 				      btrfs_node_key_ptr_offset(0),
3093 				      (dst_nritems) *
3094 				      sizeof(struct btrfs_key_ptr));
3095 
3096 	tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3097 			     src_nritems - push_items, push_items);
3098 	copy_extent_buffer(dst, src,
3099 			   btrfs_node_key_ptr_offset(0),
3100 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3101 			   push_items * sizeof(struct btrfs_key_ptr));
3102 
3103 	btrfs_set_header_nritems(src, src_nritems - push_items);
3104 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3105 
3106 	btrfs_mark_buffer_dirty(src);
3107 	btrfs_mark_buffer_dirty(dst);
3108 
3109 	return ret;
3110 }
3111 
3112 /*
3113  * helper function to insert a new root level in the tree.
3114  * A new node is allocated, and a single item is inserted to
3115  * point to the existing root
3116  *
3117  * returns zero on success or < 0 on failure.
3118  */
3119 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3120 			   struct btrfs_root *root,
3121 			   struct btrfs_path *path, int level)
3122 {
3123 	u64 lower_gen;
3124 	struct extent_buffer *lower;
3125 	struct extent_buffer *c;
3126 	struct extent_buffer *old;
3127 	struct btrfs_disk_key lower_key;
3128 
3129 	BUG_ON(path->nodes[level]);
3130 	BUG_ON(path->nodes[level-1] != root->node);
3131 
3132 	lower = path->nodes[level-1];
3133 	if (level == 1)
3134 		btrfs_item_key(lower, &lower_key, 0);
3135 	else
3136 		btrfs_node_key(lower, &lower_key, 0);
3137 
3138 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3139 				   root->root_key.objectid, &lower_key,
3140 				   level, root->node->start, 0);
3141 	if (IS_ERR(c))
3142 		return PTR_ERR(c);
3143 
3144 	root_add_used(root, root->nodesize);
3145 
3146 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3147 	btrfs_set_header_nritems(c, 1);
3148 	btrfs_set_header_level(c, level);
3149 	btrfs_set_header_bytenr(c, c->start);
3150 	btrfs_set_header_generation(c, trans->transid);
3151 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3152 	btrfs_set_header_owner(c, root->root_key.objectid);
3153 
3154 	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3155 			    BTRFS_FSID_SIZE);
3156 
3157 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3158 			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3159 
3160 	btrfs_set_node_key(c, &lower_key, 0);
3161 	btrfs_set_node_blockptr(c, 0, lower->start);
3162 	lower_gen = btrfs_header_generation(lower);
3163 	WARN_ON(lower_gen != trans->transid);
3164 
3165 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3166 
3167 	btrfs_mark_buffer_dirty(c);
3168 
3169 	old = root->node;
3170 	tree_mod_log_set_root_pointer(root, c, 0);
3171 	rcu_assign_pointer(root->node, c);
3172 
3173 	/* the super has an extra ref to root->node */
3174 	free_extent_buffer(old);
3175 
3176 	add_root_to_dirty_list(root);
3177 	extent_buffer_get(c);
3178 	path->nodes[level] = c;
3179 	path->locks[level] = BTRFS_WRITE_LOCK;
3180 	path->slots[level] = 0;
3181 	return 0;
3182 }
3183 
3184 /*
3185  * worker function to insert a single pointer in a node.
3186  * the node should have enough room for the pointer already
3187  *
3188  * slot and level indicate where you want the key to go, and
3189  * blocknr is the block the key points to.
3190  */
3191 static void insert_ptr(struct btrfs_trans_handle *trans,
3192 		       struct btrfs_root *root, struct btrfs_path *path,
3193 		       struct btrfs_disk_key *key, u64 bytenr,
3194 		       int slot, int level)
3195 {
3196 	struct extent_buffer *lower;
3197 	int nritems;
3198 	int ret;
3199 
3200 	BUG_ON(!path->nodes[level]);
3201 	btrfs_assert_tree_locked(path->nodes[level]);
3202 	lower = path->nodes[level];
3203 	nritems = btrfs_header_nritems(lower);
3204 	BUG_ON(slot > nritems);
3205 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3206 	if (slot != nritems) {
3207 		if (level)
3208 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3209 					     slot, nritems - slot);
3210 		memmove_extent_buffer(lower,
3211 			      btrfs_node_key_ptr_offset(slot + 1),
3212 			      btrfs_node_key_ptr_offset(slot),
3213 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3214 	}
3215 	if (level) {
3216 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3217 					      MOD_LOG_KEY_ADD, GFP_NOFS);
3218 		BUG_ON(ret < 0);
3219 	}
3220 	btrfs_set_node_key(lower, key, slot);
3221 	btrfs_set_node_blockptr(lower, slot, bytenr);
3222 	WARN_ON(trans->transid == 0);
3223 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3224 	btrfs_set_header_nritems(lower, nritems + 1);
3225 	btrfs_mark_buffer_dirty(lower);
3226 }
3227 
3228 /*
3229  * split the node at the specified level in path in two.
3230  * The path is corrected to point to the appropriate node after the split
3231  *
3232  * Before splitting this tries to make some room in the node by pushing
3233  * left and right, if either one works, it returns right away.
3234  *
3235  * returns 0 on success and < 0 on failure
3236  */
3237 static noinline int split_node(struct btrfs_trans_handle *trans,
3238 			       struct btrfs_root *root,
3239 			       struct btrfs_path *path, int level)
3240 {
3241 	struct extent_buffer *c;
3242 	struct extent_buffer *split;
3243 	struct btrfs_disk_key disk_key;
3244 	int mid;
3245 	int ret;
3246 	u32 c_nritems;
3247 
3248 	c = path->nodes[level];
3249 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3250 	if (c == root->node) {
3251 		/*
3252 		 * trying to split the root, lets make a new one
3253 		 *
3254 		 * tree mod log: We don't log_removal old root in
3255 		 * insert_new_root, because that root buffer will be kept as a
3256 		 * normal node. We are going to log removal of half of the
3257 		 * elements below with tree_mod_log_eb_copy. We're holding a
3258 		 * tree lock on the buffer, which is why we cannot race with
3259 		 * other tree_mod_log users.
3260 		 */
3261 		ret = insert_new_root(trans, root, path, level + 1);
3262 		if (ret)
3263 			return ret;
3264 	} else {
3265 		ret = push_nodes_for_insert(trans, root, path, level);
3266 		c = path->nodes[level];
3267 		if (!ret && btrfs_header_nritems(c) <
3268 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3269 			return 0;
3270 		if (ret < 0)
3271 			return ret;
3272 	}
3273 
3274 	c_nritems = btrfs_header_nritems(c);
3275 	mid = (c_nritems + 1) / 2;
3276 	btrfs_node_key(c, &disk_key, mid);
3277 
3278 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3279 					root->root_key.objectid,
3280 					&disk_key, level, c->start, 0);
3281 	if (IS_ERR(split))
3282 		return PTR_ERR(split);
3283 
3284 	root_add_used(root, root->nodesize);
3285 
3286 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3287 	btrfs_set_header_level(split, btrfs_header_level(c));
3288 	btrfs_set_header_bytenr(split, split->start);
3289 	btrfs_set_header_generation(split, trans->transid);
3290 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3291 	btrfs_set_header_owner(split, root->root_key.objectid);
3292 	write_extent_buffer(split, root->fs_info->fsid,
3293 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3294 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3295 			    btrfs_header_chunk_tree_uuid(split),
3296 			    BTRFS_UUID_SIZE);
3297 
3298 	tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3299 	copy_extent_buffer(split, c,
3300 			   btrfs_node_key_ptr_offset(0),
3301 			   btrfs_node_key_ptr_offset(mid),
3302 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3303 	btrfs_set_header_nritems(split, c_nritems - mid);
3304 	btrfs_set_header_nritems(c, mid);
3305 	ret = 0;
3306 
3307 	btrfs_mark_buffer_dirty(c);
3308 	btrfs_mark_buffer_dirty(split);
3309 
3310 	insert_ptr(trans, root, path, &disk_key, split->start,
3311 		   path->slots[level + 1] + 1, level + 1);
3312 
3313 	if (path->slots[level] >= mid) {
3314 		path->slots[level] -= mid;
3315 		btrfs_tree_unlock(c);
3316 		free_extent_buffer(c);
3317 		path->nodes[level] = split;
3318 		path->slots[level + 1] += 1;
3319 	} else {
3320 		btrfs_tree_unlock(split);
3321 		free_extent_buffer(split);
3322 	}
3323 	return ret;
3324 }
3325 
3326 /*
3327  * how many bytes are required to store the items in a leaf.  start
3328  * and nr indicate which items in the leaf to check.  This totals up the
3329  * space used both by the item structs and the item data
3330  */
3331 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3332 {
3333 	struct btrfs_item *start_item;
3334 	struct btrfs_item *end_item;
3335 	struct btrfs_map_token token;
3336 	int data_len;
3337 	int nritems = btrfs_header_nritems(l);
3338 	int end = min(nritems, start + nr) - 1;
3339 
3340 	if (!nr)
3341 		return 0;
3342 	btrfs_init_map_token(&token);
3343 	start_item = btrfs_item_nr(start);
3344 	end_item = btrfs_item_nr(end);
3345 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3346 		btrfs_token_item_size(l, start_item, &token);
3347 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3348 	data_len += sizeof(struct btrfs_item) * nr;
3349 	WARN_ON(data_len < 0);
3350 	return data_len;
3351 }
3352 
3353 /*
3354  * The space between the end of the leaf items and
3355  * the start of the leaf data.  IOW, how much room
3356  * the leaf has left for both items and data
3357  */
3358 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3359 				   struct extent_buffer *leaf)
3360 {
3361 	int nritems = btrfs_header_nritems(leaf);
3362 	int ret;
3363 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3364 	if (ret < 0) {
3365 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3366 		       "used %d nritems %d\n",
3367 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3368 		       leaf_space_used(leaf, 0, nritems), nritems);
3369 	}
3370 	return ret;
3371 }
3372 
3373 /*
3374  * min slot controls the lowest index we're willing to push to the
3375  * right.  We'll push up to and including min_slot, but no lower
3376  */
3377 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3378 				      struct btrfs_root *root,
3379 				      struct btrfs_path *path,
3380 				      int data_size, int empty,
3381 				      struct extent_buffer *right,
3382 				      int free_space, u32 left_nritems,
3383 				      u32 min_slot)
3384 {
3385 	struct extent_buffer *left = path->nodes[0];
3386 	struct extent_buffer *upper = path->nodes[1];
3387 	struct btrfs_map_token token;
3388 	struct btrfs_disk_key disk_key;
3389 	int slot;
3390 	u32 i;
3391 	int push_space = 0;
3392 	int push_items = 0;
3393 	struct btrfs_item *item;
3394 	u32 nr;
3395 	u32 right_nritems;
3396 	u32 data_end;
3397 	u32 this_item_size;
3398 
3399 	btrfs_init_map_token(&token);
3400 
3401 	if (empty)
3402 		nr = 0;
3403 	else
3404 		nr = max_t(u32, 1, min_slot);
3405 
3406 	if (path->slots[0] >= left_nritems)
3407 		push_space += data_size;
3408 
3409 	slot = path->slots[1];
3410 	i = left_nritems - 1;
3411 	while (i >= nr) {
3412 		item = btrfs_item_nr(i);
3413 
3414 		if (!empty && push_items > 0) {
3415 			if (path->slots[0] > i)
3416 				break;
3417 			if (path->slots[0] == i) {
3418 				int space = btrfs_leaf_free_space(root, left);
3419 				if (space + push_space * 2 > free_space)
3420 					break;
3421 			}
3422 		}
3423 
3424 		if (path->slots[0] == i)
3425 			push_space += data_size;
3426 
3427 		this_item_size = btrfs_item_size(left, item);
3428 		if (this_item_size + sizeof(*item) + push_space > free_space)
3429 			break;
3430 
3431 		push_items++;
3432 		push_space += this_item_size + sizeof(*item);
3433 		if (i == 0)
3434 			break;
3435 		i--;
3436 	}
3437 
3438 	if (push_items == 0)
3439 		goto out_unlock;
3440 
3441 	WARN_ON(!empty && push_items == left_nritems);
3442 
3443 	/* push left to right */
3444 	right_nritems = btrfs_header_nritems(right);
3445 
3446 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3447 	push_space -= leaf_data_end(root, left);
3448 
3449 	/* make room in the right data area */
3450 	data_end = leaf_data_end(root, right);
3451 	memmove_extent_buffer(right,
3452 			      btrfs_leaf_data(right) + data_end - push_space,
3453 			      btrfs_leaf_data(right) + data_end,
3454 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3455 
3456 	/* copy from the left data area */
3457 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3458 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3459 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3460 		     push_space);
3461 
3462 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3463 			      btrfs_item_nr_offset(0),
3464 			      right_nritems * sizeof(struct btrfs_item));
3465 
3466 	/* copy the items from left to right */
3467 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3468 		   btrfs_item_nr_offset(left_nritems - push_items),
3469 		   push_items * sizeof(struct btrfs_item));
3470 
3471 	/* update the item pointers */
3472 	right_nritems += push_items;
3473 	btrfs_set_header_nritems(right, right_nritems);
3474 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3475 	for (i = 0; i < right_nritems; i++) {
3476 		item = btrfs_item_nr(i);
3477 		push_space -= btrfs_token_item_size(right, item, &token);
3478 		btrfs_set_token_item_offset(right, item, push_space, &token);
3479 	}
3480 
3481 	left_nritems -= push_items;
3482 	btrfs_set_header_nritems(left, left_nritems);
3483 
3484 	if (left_nritems)
3485 		btrfs_mark_buffer_dirty(left);
3486 	else
3487 		clean_tree_block(trans, root, left);
3488 
3489 	btrfs_mark_buffer_dirty(right);
3490 
3491 	btrfs_item_key(right, &disk_key, 0);
3492 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3493 	btrfs_mark_buffer_dirty(upper);
3494 
3495 	/* then fixup the leaf pointer in the path */
3496 	if (path->slots[0] >= left_nritems) {
3497 		path->slots[0] -= left_nritems;
3498 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3499 			clean_tree_block(trans, root, path->nodes[0]);
3500 		btrfs_tree_unlock(path->nodes[0]);
3501 		free_extent_buffer(path->nodes[0]);
3502 		path->nodes[0] = right;
3503 		path->slots[1] += 1;
3504 	} else {
3505 		btrfs_tree_unlock(right);
3506 		free_extent_buffer(right);
3507 	}
3508 	return 0;
3509 
3510 out_unlock:
3511 	btrfs_tree_unlock(right);
3512 	free_extent_buffer(right);
3513 	return 1;
3514 }
3515 
3516 /*
3517  * push some data in the path leaf to the right, trying to free up at
3518  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3519  *
3520  * returns 1 if the push failed because the other node didn't have enough
3521  * room, 0 if everything worked out and < 0 if there were major errors.
3522  *
3523  * this will push starting from min_slot to the end of the leaf.  It won't
3524  * push any slot lower than min_slot
3525  */
3526 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3527 			   *root, struct btrfs_path *path,
3528 			   int min_data_size, int data_size,
3529 			   int empty, u32 min_slot)
3530 {
3531 	struct extent_buffer *left = path->nodes[0];
3532 	struct extent_buffer *right;
3533 	struct extent_buffer *upper;
3534 	int slot;
3535 	int free_space;
3536 	u32 left_nritems;
3537 	int ret;
3538 
3539 	if (!path->nodes[1])
3540 		return 1;
3541 
3542 	slot = path->slots[1];
3543 	upper = path->nodes[1];
3544 	if (slot >= btrfs_header_nritems(upper) - 1)
3545 		return 1;
3546 
3547 	btrfs_assert_tree_locked(path->nodes[1]);
3548 
3549 	right = read_node_slot(root, upper, slot + 1);
3550 	if (right == NULL)
3551 		return 1;
3552 
3553 	btrfs_tree_lock(right);
3554 	btrfs_set_lock_blocking(right);
3555 
3556 	free_space = btrfs_leaf_free_space(root, right);
3557 	if (free_space < data_size)
3558 		goto out_unlock;
3559 
3560 	/* cow and double check */
3561 	ret = btrfs_cow_block(trans, root, right, upper,
3562 			      slot + 1, &right);
3563 	if (ret)
3564 		goto out_unlock;
3565 
3566 	free_space = btrfs_leaf_free_space(root, right);
3567 	if (free_space < data_size)
3568 		goto out_unlock;
3569 
3570 	left_nritems = btrfs_header_nritems(left);
3571 	if (left_nritems == 0)
3572 		goto out_unlock;
3573 
3574 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3575 				right, free_space, left_nritems, min_slot);
3576 out_unlock:
3577 	btrfs_tree_unlock(right);
3578 	free_extent_buffer(right);
3579 	return 1;
3580 }
3581 
3582 /*
3583  * push some data in the path leaf to the left, trying to free up at
3584  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3585  *
3586  * max_slot can put a limit on how far into the leaf we'll push items.  The
3587  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3588  * items
3589  */
3590 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3591 				     struct btrfs_root *root,
3592 				     struct btrfs_path *path, int data_size,
3593 				     int empty, struct extent_buffer *left,
3594 				     int free_space, u32 right_nritems,
3595 				     u32 max_slot)
3596 {
3597 	struct btrfs_disk_key disk_key;
3598 	struct extent_buffer *right = path->nodes[0];
3599 	int i;
3600 	int push_space = 0;
3601 	int push_items = 0;
3602 	struct btrfs_item *item;
3603 	u32 old_left_nritems;
3604 	u32 nr;
3605 	int ret = 0;
3606 	u32 this_item_size;
3607 	u32 old_left_item_size;
3608 	struct btrfs_map_token token;
3609 
3610 	btrfs_init_map_token(&token);
3611 
3612 	if (empty)
3613 		nr = min(right_nritems, max_slot);
3614 	else
3615 		nr = min(right_nritems - 1, max_slot);
3616 
3617 	for (i = 0; i < nr; i++) {
3618 		item = btrfs_item_nr(i);
3619 
3620 		if (!empty && push_items > 0) {
3621 			if (path->slots[0] < i)
3622 				break;
3623 			if (path->slots[0] == i) {
3624 				int space = btrfs_leaf_free_space(root, right);
3625 				if (space + push_space * 2 > free_space)
3626 					break;
3627 			}
3628 		}
3629 
3630 		if (path->slots[0] == i)
3631 			push_space += data_size;
3632 
3633 		this_item_size = btrfs_item_size(right, item);
3634 		if (this_item_size + sizeof(*item) + push_space > free_space)
3635 			break;
3636 
3637 		push_items++;
3638 		push_space += this_item_size + sizeof(*item);
3639 	}
3640 
3641 	if (push_items == 0) {
3642 		ret = 1;
3643 		goto out;
3644 	}
3645 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3646 
3647 	/* push data from right to left */
3648 	copy_extent_buffer(left, right,
3649 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3650 			   btrfs_item_nr_offset(0),
3651 			   push_items * sizeof(struct btrfs_item));
3652 
3653 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3654 		     btrfs_item_offset_nr(right, push_items - 1);
3655 
3656 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3657 		     leaf_data_end(root, left) - push_space,
3658 		     btrfs_leaf_data(right) +
3659 		     btrfs_item_offset_nr(right, push_items - 1),
3660 		     push_space);
3661 	old_left_nritems = btrfs_header_nritems(left);
3662 	BUG_ON(old_left_nritems <= 0);
3663 
3664 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3665 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3666 		u32 ioff;
3667 
3668 		item = btrfs_item_nr(i);
3669 
3670 		ioff = btrfs_token_item_offset(left, item, &token);
3671 		btrfs_set_token_item_offset(left, item,
3672 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3673 		      &token);
3674 	}
3675 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3676 
3677 	/* fixup right node */
3678 	if (push_items > right_nritems)
3679 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3680 		       right_nritems);
3681 
3682 	if (push_items < right_nritems) {
3683 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3684 						  leaf_data_end(root, right);
3685 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3686 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3687 				      btrfs_leaf_data(right) +
3688 				      leaf_data_end(root, right), push_space);
3689 
3690 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3691 			      btrfs_item_nr_offset(push_items),
3692 			     (btrfs_header_nritems(right) - push_items) *
3693 			     sizeof(struct btrfs_item));
3694 	}
3695 	right_nritems -= push_items;
3696 	btrfs_set_header_nritems(right, right_nritems);
3697 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3698 	for (i = 0; i < right_nritems; i++) {
3699 		item = btrfs_item_nr(i);
3700 
3701 		push_space = push_space - btrfs_token_item_size(right,
3702 								item, &token);
3703 		btrfs_set_token_item_offset(right, item, push_space, &token);
3704 	}
3705 
3706 	btrfs_mark_buffer_dirty(left);
3707 	if (right_nritems)
3708 		btrfs_mark_buffer_dirty(right);
3709 	else
3710 		clean_tree_block(trans, root, right);
3711 
3712 	btrfs_item_key(right, &disk_key, 0);
3713 	fixup_low_keys(root, path, &disk_key, 1);
3714 
3715 	/* then fixup the leaf pointer in the path */
3716 	if (path->slots[0] < push_items) {
3717 		path->slots[0] += old_left_nritems;
3718 		btrfs_tree_unlock(path->nodes[0]);
3719 		free_extent_buffer(path->nodes[0]);
3720 		path->nodes[0] = left;
3721 		path->slots[1] -= 1;
3722 	} else {
3723 		btrfs_tree_unlock(left);
3724 		free_extent_buffer(left);
3725 		path->slots[0] -= push_items;
3726 	}
3727 	BUG_ON(path->slots[0] < 0);
3728 	return ret;
3729 out:
3730 	btrfs_tree_unlock(left);
3731 	free_extent_buffer(left);
3732 	return ret;
3733 }
3734 
3735 /*
3736  * push some data in the path leaf to the left, trying to free up at
3737  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3738  *
3739  * max_slot can put a limit on how far into the leaf we'll push items.  The
3740  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3741  * items
3742  */
3743 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3744 			  *root, struct btrfs_path *path, int min_data_size,
3745 			  int data_size, int empty, u32 max_slot)
3746 {
3747 	struct extent_buffer *right = path->nodes[0];
3748 	struct extent_buffer *left;
3749 	int slot;
3750 	int free_space;
3751 	u32 right_nritems;
3752 	int ret = 0;
3753 
3754 	slot = path->slots[1];
3755 	if (slot == 0)
3756 		return 1;
3757 	if (!path->nodes[1])
3758 		return 1;
3759 
3760 	right_nritems = btrfs_header_nritems(right);
3761 	if (right_nritems == 0)
3762 		return 1;
3763 
3764 	btrfs_assert_tree_locked(path->nodes[1]);
3765 
3766 	left = read_node_slot(root, path->nodes[1], slot - 1);
3767 	if (left == NULL)
3768 		return 1;
3769 
3770 	btrfs_tree_lock(left);
3771 	btrfs_set_lock_blocking(left);
3772 
3773 	free_space = btrfs_leaf_free_space(root, left);
3774 	if (free_space < data_size) {
3775 		ret = 1;
3776 		goto out;
3777 	}
3778 
3779 	/* cow and double check */
3780 	ret = btrfs_cow_block(trans, root, left,
3781 			      path->nodes[1], slot - 1, &left);
3782 	if (ret) {
3783 		/* we hit -ENOSPC, but it isn't fatal here */
3784 		if (ret == -ENOSPC)
3785 			ret = 1;
3786 		goto out;
3787 	}
3788 
3789 	free_space = btrfs_leaf_free_space(root, left);
3790 	if (free_space < data_size) {
3791 		ret = 1;
3792 		goto out;
3793 	}
3794 
3795 	return __push_leaf_left(trans, root, path, min_data_size,
3796 			       empty, left, free_space, right_nritems,
3797 			       max_slot);
3798 out:
3799 	btrfs_tree_unlock(left);
3800 	free_extent_buffer(left);
3801 	return ret;
3802 }
3803 
3804 /*
3805  * split the path's leaf in two, making sure there is at least data_size
3806  * available for the resulting leaf level of the path.
3807  */
3808 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3809 				    struct btrfs_root *root,
3810 				    struct btrfs_path *path,
3811 				    struct extent_buffer *l,
3812 				    struct extent_buffer *right,
3813 				    int slot, int mid, int nritems)
3814 {
3815 	int data_copy_size;
3816 	int rt_data_off;
3817 	int i;
3818 	struct btrfs_disk_key disk_key;
3819 	struct btrfs_map_token token;
3820 
3821 	btrfs_init_map_token(&token);
3822 
3823 	nritems = nritems - mid;
3824 	btrfs_set_header_nritems(right, nritems);
3825 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3826 
3827 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3828 			   btrfs_item_nr_offset(mid),
3829 			   nritems * sizeof(struct btrfs_item));
3830 
3831 	copy_extent_buffer(right, l,
3832 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3833 		     data_copy_size, btrfs_leaf_data(l) +
3834 		     leaf_data_end(root, l), data_copy_size);
3835 
3836 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3837 		      btrfs_item_end_nr(l, mid);
3838 
3839 	for (i = 0; i < nritems; i++) {
3840 		struct btrfs_item *item = btrfs_item_nr(i);
3841 		u32 ioff;
3842 
3843 		ioff = btrfs_token_item_offset(right, item, &token);
3844 		btrfs_set_token_item_offset(right, item,
3845 					    ioff + rt_data_off, &token);
3846 	}
3847 
3848 	btrfs_set_header_nritems(l, mid);
3849 	btrfs_item_key(right, &disk_key, 0);
3850 	insert_ptr(trans, root, path, &disk_key, right->start,
3851 		   path->slots[1] + 1, 1);
3852 
3853 	btrfs_mark_buffer_dirty(right);
3854 	btrfs_mark_buffer_dirty(l);
3855 	BUG_ON(path->slots[0] != slot);
3856 
3857 	if (mid <= slot) {
3858 		btrfs_tree_unlock(path->nodes[0]);
3859 		free_extent_buffer(path->nodes[0]);
3860 		path->nodes[0] = right;
3861 		path->slots[0] -= mid;
3862 		path->slots[1] += 1;
3863 	} else {
3864 		btrfs_tree_unlock(right);
3865 		free_extent_buffer(right);
3866 	}
3867 
3868 	BUG_ON(path->slots[0] < 0);
3869 }
3870 
3871 /*
3872  * double splits happen when we need to insert a big item in the middle
3873  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3874  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3875  *          A                 B                 C
3876  *
3877  * We avoid this by trying to push the items on either side of our target
3878  * into the adjacent leaves.  If all goes well we can avoid the double split
3879  * completely.
3880  */
3881 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3882 					  struct btrfs_root *root,
3883 					  struct btrfs_path *path,
3884 					  int data_size)
3885 {
3886 	int ret;
3887 	int progress = 0;
3888 	int slot;
3889 	u32 nritems;
3890 
3891 	slot = path->slots[0];
3892 
3893 	/*
3894 	 * try to push all the items after our slot into the
3895 	 * right leaf
3896 	 */
3897 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3898 	if (ret < 0)
3899 		return ret;
3900 
3901 	if (ret == 0)
3902 		progress++;
3903 
3904 	nritems = btrfs_header_nritems(path->nodes[0]);
3905 	/*
3906 	 * our goal is to get our slot at the start or end of a leaf.  If
3907 	 * we've done so we're done
3908 	 */
3909 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3910 		return 0;
3911 
3912 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3913 		return 0;
3914 
3915 	/* try to push all the items before our slot into the next leaf */
3916 	slot = path->slots[0];
3917 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3918 	if (ret < 0)
3919 		return ret;
3920 
3921 	if (ret == 0)
3922 		progress++;
3923 
3924 	if (progress)
3925 		return 0;
3926 	return 1;
3927 }
3928 
3929 /*
3930  * split the path's leaf in two, making sure there is at least data_size
3931  * available for the resulting leaf level of the path.
3932  *
3933  * returns 0 if all went well and < 0 on failure.
3934  */
3935 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3936 			       struct btrfs_root *root,
3937 			       struct btrfs_key *ins_key,
3938 			       struct btrfs_path *path, int data_size,
3939 			       int extend)
3940 {
3941 	struct btrfs_disk_key disk_key;
3942 	struct extent_buffer *l;
3943 	u32 nritems;
3944 	int mid;
3945 	int slot;
3946 	struct extent_buffer *right;
3947 	int ret = 0;
3948 	int wret;
3949 	int split;
3950 	int num_doubles = 0;
3951 	int tried_avoid_double = 0;
3952 
3953 	l = path->nodes[0];
3954 	slot = path->slots[0];
3955 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3956 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3957 		return -EOVERFLOW;
3958 
3959 	/* first try to make some room by pushing left and right */
3960 	if (data_size && path->nodes[1]) {
3961 		wret = push_leaf_right(trans, root, path, data_size,
3962 				       data_size, 0, 0);
3963 		if (wret < 0)
3964 			return wret;
3965 		if (wret) {
3966 			wret = push_leaf_left(trans, root, path, data_size,
3967 					      data_size, 0, (u32)-1);
3968 			if (wret < 0)
3969 				return wret;
3970 		}
3971 		l = path->nodes[0];
3972 
3973 		/* did the pushes work? */
3974 		if (btrfs_leaf_free_space(root, l) >= data_size)
3975 			return 0;
3976 	}
3977 
3978 	if (!path->nodes[1]) {
3979 		ret = insert_new_root(trans, root, path, 1);
3980 		if (ret)
3981 			return ret;
3982 	}
3983 again:
3984 	split = 1;
3985 	l = path->nodes[0];
3986 	slot = path->slots[0];
3987 	nritems = btrfs_header_nritems(l);
3988 	mid = (nritems + 1) / 2;
3989 
3990 	if (mid <= slot) {
3991 		if (nritems == 1 ||
3992 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3993 			BTRFS_LEAF_DATA_SIZE(root)) {
3994 			if (slot >= nritems) {
3995 				split = 0;
3996 			} else {
3997 				mid = slot;
3998 				if (mid != nritems &&
3999 				    leaf_space_used(l, mid, nritems - mid) +
4000 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4001 					if (data_size && !tried_avoid_double)
4002 						goto push_for_double;
4003 					split = 2;
4004 				}
4005 			}
4006 		}
4007 	} else {
4008 		if (leaf_space_used(l, 0, mid) + data_size >
4009 			BTRFS_LEAF_DATA_SIZE(root)) {
4010 			if (!extend && data_size && slot == 0) {
4011 				split = 0;
4012 			} else if ((extend || !data_size) && slot == 0) {
4013 				mid = 1;
4014 			} else {
4015 				mid = slot;
4016 				if (mid != nritems &&
4017 				    leaf_space_used(l, mid, nritems - mid) +
4018 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4019 					if (data_size && !tried_avoid_double)
4020 						goto push_for_double;
4021 					split = 2;
4022 				}
4023 			}
4024 		}
4025 	}
4026 
4027 	if (split == 0)
4028 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4029 	else
4030 		btrfs_item_key(l, &disk_key, mid);
4031 
4032 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4033 					root->root_key.objectid,
4034 					&disk_key, 0, l->start, 0);
4035 	if (IS_ERR(right))
4036 		return PTR_ERR(right);
4037 
4038 	root_add_used(root, root->leafsize);
4039 
4040 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4041 	btrfs_set_header_bytenr(right, right->start);
4042 	btrfs_set_header_generation(right, trans->transid);
4043 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4044 	btrfs_set_header_owner(right, root->root_key.objectid);
4045 	btrfs_set_header_level(right, 0);
4046 	write_extent_buffer(right, root->fs_info->fsid,
4047 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4048 
4049 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4050 			    btrfs_header_chunk_tree_uuid(right),
4051 			    BTRFS_UUID_SIZE);
4052 
4053 	if (split == 0) {
4054 		if (mid <= slot) {
4055 			btrfs_set_header_nritems(right, 0);
4056 			insert_ptr(trans, root, path, &disk_key, right->start,
4057 				   path->slots[1] + 1, 1);
4058 			btrfs_tree_unlock(path->nodes[0]);
4059 			free_extent_buffer(path->nodes[0]);
4060 			path->nodes[0] = right;
4061 			path->slots[0] = 0;
4062 			path->slots[1] += 1;
4063 		} else {
4064 			btrfs_set_header_nritems(right, 0);
4065 			insert_ptr(trans, root, path, &disk_key, right->start,
4066 					  path->slots[1], 1);
4067 			btrfs_tree_unlock(path->nodes[0]);
4068 			free_extent_buffer(path->nodes[0]);
4069 			path->nodes[0] = right;
4070 			path->slots[0] = 0;
4071 			if (path->slots[1] == 0)
4072 				fixup_low_keys(root, path, &disk_key, 1);
4073 		}
4074 		btrfs_mark_buffer_dirty(right);
4075 		return ret;
4076 	}
4077 
4078 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4079 
4080 	if (split == 2) {
4081 		BUG_ON(num_doubles != 0);
4082 		num_doubles++;
4083 		goto again;
4084 	}
4085 
4086 	return 0;
4087 
4088 push_for_double:
4089 	push_for_double_split(trans, root, path, data_size);
4090 	tried_avoid_double = 1;
4091 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4092 		return 0;
4093 	goto again;
4094 }
4095 
4096 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4097 					 struct btrfs_root *root,
4098 					 struct btrfs_path *path, int ins_len)
4099 {
4100 	struct btrfs_key key;
4101 	struct extent_buffer *leaf;
4102 	struct btrfs_file_extent_item *fi;
4103 	u64 extent_len = 0;
4104 	u32 item_size;
4105 	int ret;
4106 
4107 	leaf = path->nodes[0];
4108 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4109 
4110 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4111 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4112 
4113 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4114 		return 0;
4115 
4116 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4117 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4118 		fi = btrfs_item_ptr(leaf, path->slots[0],
4119 				    struct btrfs_file_extent_item);
4120 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4121 	}
4122 	btrfs_release_path(path);
4123 
4124 	path->keep_locks = 1;
4125 	path->search_for_split = 1;
4126 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4127 	path->search_for_split = 0;
4128 	if (ret < 0)
4129 		goto err;
4130 
4131 	ret = -EAGAIN;
4132 	leaf = path->nodes[0];
4133 	/* if our item isn't there or got smaller, return now */
4134 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4135 		goto err;
4136 
4137 	/* the leaf has  changed, it now has room.  return now */
4138 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4139 		goto err;
4140 
4141 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4142 		fi = btrfs_item_ptr(leaf, path->slots[0],
4143 				    struct btrfs_file_extent_item);
4144 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4145 			goto err;
4146 	}
4147 
4148 	btrfs_set_path_blocking(path);
4149 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4150 	if (ret)
4151 		goto err;
4152 
4153 	path->keep_locks = 0;
4154 	btrfs_unlock_up_safe(path, 1);
4155 	return 0;
4156 err:
4157 	path->keep_locks = 0;
4158 	return ret;
4159 }
4160 
4161 static noinline int split_item(struct btrfs_trans_handle *trans,
4162 			       struct btrfs_root *root,
4163 			       struct btrfs_path *path,
4164 			       struct btrfs_key *new_key,
4165 			       unsigned long split_offset)
4166 {
4167 	struct extent_buffer *leaf;
4168 	struct btrfs_item *item;
4169 	struct btrfs_item *new_item;
4170 	int slot;
4171 	char *buf;
4172 	u32 nritems;
4173 	u32 item_size;
4174 	u32 orig_offset;
4175 	struct btrfs_disk_key disk_key;
4176 
4177 	leaf = path->nodes[0];
4178 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4179 
4180 	btrfs_set_path_blocking(path);
4181 
4182 	item = btrfs_item_nr(path->slots[0]);
4183 	orig_offset = btrfs_item_offset(leaf, item);
4184 	item_size = btrfs_item_size(leaf, item);
4185 
4186 	buf = kmalloc(item_size, GFP_NOFS);
4187 	if (!buf)
4188 		return -ENOMEM;
4189 
4190 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4191 			    path->slots[0]), item_size);
4192 
4193 	slot = path->slots[0] + 1;
4194 	nritems = btrfs_header_nritems(leaf);
4195 	if (slot != nritems) {
4196 		/* shift the items */
4197 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4198 				btrfs_item_nr_offset(slot),
4199 				(nritems - slot) * sizeof(struct btrfs_item));
4200 	}
4201 
4202 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4203 	btrfs_set_item_key(leaf, &disk_key, slot);
4204 
4205 	new_item = btrfs_item_nr(slot);
4206 
4207 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4208 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4209 
4210 	btrfs_set_item_offset(leaf, item,
4211 			      orig_offset + item_size - split_offset);
4212 	btrfs_set_item_size(leaf, item, split_offset);
4213 
4214 	btrfs_set_header_nritems(leaf, nritems + 1);
4215 
4216 	/* write the data for the start of the original item */
4217 	write_extent_buffer(leaf, buf,
4218 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4219 			    split_offset);
4220 
4221 	/* write the data for the new item */
4222 	write_extent_buffer(leaf, buf + split_offset,
4223 			    btrfs_item_ptr_offset(leaf, slot),
4224 			    item_size - split_offset);
4225 	btrfs_mark_buffer_dirty(leaf);
4226 
4227 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4228 	kfree(buf);
4229 	return 0;
4230 }
4231 
4232 /*
4233  * This function splits a single item into two items,
4234  * giving 'new_key' to the new item and splitting the
4235  * old one at split_offset (from the start of the item).
4236  *
4237  * The path may be released by this operation.  After
4238  * the split, the path is pointing to the old item.  The
4239  * new item is going to be in the same node as the old one.
4240  *
4241  * Note, the item being split must be smaller enough to live alone on
4242  * a tree block with room for one extra struct btrfs_item
4243  *
4244  * This allows us to split the item in place, keeping a lock on the
4245  * leaf the entire time.
4246  */
4247 int btrfs_split_item(struct btrfs_trans_handle *trans,
4248 		     struct btrfs_root *root,
4249 		     struct btrfs_path *path,
4250 		     struct btrfs_key *new_key,
4251 		     unsigned long split_offset)
4252 {
4253 	int ret;
4254 	ret = setup_leaf_for_split(trans, root, path,
4255 				   sizeof(struct btrfs_item));
4256 	if (ret)
4257 		return ret;
4258 
4259 	ret = split_item(trans, root, path, new_key, split_offset);
4260 	return ret;
4261 }
4262 
4263 /*
4264  * This function duplicate a item, giving 'new_key' to the new item.
4265  * It guarantees both items live in the same tree leaf and the new item
4266  * is contiguous with the original item.
4267  *
4268  * This allows us to split file extent in place, keeping a lock on the
4269  * leaf the entire time.
4270  */
4271 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4272 			 struct btrfs_root *root,
4273 			 struct btrfs_path *path,
4274 			 struct btrfs_key *new_key)
4275 {
4276 	struct extent_buffer *leaf;
4277 	int ret;
4278 	u32 item_size;
4279 
4280 	leaf = path->nodes[0];
4281 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4282 	ret = setup_leaf_for_split(trans, root, path,
4283 				   item_size + sizeof(struct btrfs_item));
4284 	if (ret)
4285 		return ret;
4286 
4287 	path->slots[0]++;
4288 	setup_items_for_insert(root, path, new_key, &item_size,
4289 			       item_size, item_size +
4290 			       sizeof(struct btrfs_item), 1);
4291 	leaf = path->nodes[0];
4292 	memcpy_extent_buffer(leaf,
4293 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4294 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4295 			     item_size);
4296 	return 0;
4297 }
4298 
4299 /*
4300  * make the item pointed to by the path smaller.  new_size indicates
4301  * how small to make it, and from_end tells us if we just chop bytes
4302  * off the end of the item or if we shift the item to chop bytes off
4303  * the front.
4304  */
4305 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4306 			 u32 new_size, int from_end)
4307 {
4308 	int slot;
4309 	struct extent_buffer *leaf;
4310 	struct btrfs_item *item;
4311 	u32 nritems;
4312 	unsigned int data_end;
4313 	unsigned int old_data_start;
4314 	unsigned int old_size;
4315 	unsigned int size_diff;
4316 	int i;
4317 	struct btrfs_map_token token;
4318 
4319 	btrfs_init_map_token(&token);
4320 
4321 	leaf = path->nodes[0];
4322 	slot = path->slots[0];
4323 
4324 	old_size = btrfs_item_size_nr(leaf, slot);
4325 	if (old_size == new_size)
4326 		return;
4327 
4328 	nritems = btrfs_header_nritems(leaf);
4329 	data_end = leaf_data_end(root, leaf);
4330 
4331 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4332 
4333 	size_diff = old_size - new_size;
4334 
4335 	BUG_ON(slot < 0);
4336 	BUG_ON(slot >= nritems);
4337 
4338 	/*
4339 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4340 	 */
4341 	/* first correct the data pointers */
4342 	for (i = slot; i < nritems; i++) {
4343 		u32 ioff;
4344 		item = btrfs_item_nr(i);
4345 
4346 		ioff = btrfs_token_item_offset(leaf, item, &token);
4347 		btrfs_set_token_item_offset(leaf, item,
4348 					    ioff + size_diff, &token);
4349 	}
4350 
4351 	/* shift the data */
4352 	if (from_end) {
4353 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4354 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4355 			      data_end, old_data_start + new_size - data_end);
4356 	} else {
4357 		struct btrfs_disk_key disk_key;
4358 		u64 offset;
4359 
4360 		btrfs_item_key(leaf, &disk_key, slot);
4361 
4362 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4363 			unsigned long ptr;
4364 			struct btrfs_file_extent_item *fi;
4365 
4366 			fi = btrfs_item_ptr(leaf, slot,
4367 					    struct btrfs_file_extent_item);
4368 			fi = (struct btrfs_file_extent_item *)(
4369 			     (unsigned long)fi - size_diff);
4370 
4371 			if (btrfs_file_extent_type(leaf, fi) ==
4372 			    BTRFS_FILE_EXTENT_INLINE) {
4373 				ptr = btrfs_item_ptr_offset(leaf, slot);
4374 				memmove_extent_buffer(leaf, ptr,
4375 				      (unsigned long)fi,
4376 				      offsetof(struct btrfs_file_extent_item,
4377 						 disk_bytenr));
4378 			}
4379 		}
4380 
4381 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4382 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4383 			      data_end, old_data_start - data_end);
4384 
4385 		offset = btrfs_disk_key_offset(&disk_key);
4386 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4387 		btrfs_set_item_key(leaf, &disk_key, slot);
4388 		if (slot == 0)
4389 			fixup_low_keys(root, path, &disk_key, 1);
4390 	}
4391 
4392 	item = btrfs_item_nr(slot);
4393 	btrfs_set_item_size(leaf, item, new_size);
4394 	btrfs_mark_buffer_dirty(leaf);
4395 
4396 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4397 		btrfs_print_leaf(root, leaf);
4398 		BUG();
4399 	}
4400 }
4401 
4402 /*
4403  * make the item pointed to by the path bigger, data_size is the added size.
4404  */
4405 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4406 		       u32 data_size)
4407 {
4408 	int slot;
4409 	struct extent_buffer *leaf;
4410 	struct btrfs_item *item;
4411 	u32 nritems;
4412 	unsigned int data_end;
4413 	unsigned int old_data;
4414 	unsigned int old_size;
4415 	int i;
4416 	struct btrfs_map_token token;
4417 
4418 	btrfs_init_map_token(&token);
4419 
4420 	leaf = path->nodes[0];
4421 
4422 	nritems = btrfs_header_nritems(leaf);
4423 	data_end = leaf_data_end(root, leaf);
4424 
4425 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4426 		btrfs_print_leaf(root, leaf);
4427 		BUG();
4428 	}
4429 	slot = path->slots[0];
4430 	old_data = btrfs_item_end_nr(leaf, slot);
4431 
4432 	BUG_ON(slot < 0);
4433 	if (slot >= nritems) {
4434 		btrfs_print_leaf(root, leaf);
4435 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
4436 		       slot, nritems);
4437 		BUG_ON(1);
4438 	}
4439 
4440 	/*
4441 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4442 	 */
4443 	/* first correct the data pointers */
4444 	for (i = slot; i < nritems; i++) {
4445 		u32 ioff;
4446 		item = btrfs_item_nr(i);
4447 
4448 		ioff = btrfs_token_item_offset(leaf, item, &token);
4449 		btrfs_set_token_item_offset(leaf, item,
4450 					    ioff - data_size, &token);
4451 	}
4452 
4453 	/* shift the data */
4454 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4455 		      data_end - data_size, btrfs_leaf_data(leaf) +
4456 		      data_end, old_data - data_end);
4457 
4458 	data_end = old_data;
4459 	old_size = btrfs_item_size_nr(leaf, slot);
4460 	item = btrfs_item_nr(slot);
4461 	btrfs_set_item_size(leaf, item, old_size + data_size);
4462 	btrfs_mark_buffer_dirty(leaf);
4463 
4464 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4465 		btrfs_print_leaf(root, leaf);
4466 		BUG();
4467 	}
4468 }
4469 
4470 /*
4471  * this is a helper for btrfs_insert_empty_items, the main goal here is
4472  * to save stack depth by doing the bulk of the work in a function
4473  * that doesn't call btrfs_search_slot
4474  */
4475 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4476 			    struct btrfs_key *cpu_key, u32 *data_size,
4477 			    u32 total_data, u32 total_size, int nr)
4478 {
4479 	struct btrfs_item *item;
4480 	int i;
4481 	u32 nritems;
4482 	unsigned int data_end;
4483 	struct btrfs_disk_key disk_key;
4484 	struct extent_buffer *leaf;
4485 	int slot;
4486 	struct btrfs_map_token token;
4487 
4488 	btrfs_init_map_token(&token);
4489 
4490 	leaf = path->nodes[0];
4491 	slot = path->slots[0];
4492 
4493 	nritems = btrfs_header_nritems(leaf);
4494 	data_end = leaf_data_end(root, leaf);
4495 
4496 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4497 		btrfs_print_leaf(root, leaf);
4498 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
4499 		       total_size, btrfs_leaf_free_space(root, leaf));
4500 		BUG();
4501 	}
4502 
4503 	if (slot != nritems) {
4504 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4505 
4506 		if (old_data < data_end) {
4507 			btrfs_print_leaf(root, leaf);
4508 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4509 			       slot, old_data, data_end);
4510 			BUG_ON(1);
4511 		}
4512 		/*
4513 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4514 		 */
4515 		/* first correct the data pointers */
4516 		for (i = slot; i < nritems; i++) {
4517 			u32 ioff;
4518 
4519 			item = btrfs_item_nr( i);
4520 			ioff = btrfs_token_item_offset(leaf, item, &token);
4521 			btrfs_set_token_item_offset(leaf, item,
4522 						    ioff - total_data, &token);
4523 		}
4524 		/* shift the items */
4525 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4526 			      btrfs_item_nr_offset(slot),
4527 			      (nritems - slot) * sizeof(struct btrfs_item));
4528 
4529 		/* shift the data */
4530 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4531 			      data_end - total_data, btrfs_leaf_data(leaf) +
4532 			      data_end, old_data - data_end);
4533 		data_end = old_data;
4534 	}
4535 
4536 	/* setup the item for the new data */
4537 	for (i = 0; i < nr; i++) {
4538 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4539 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4540 		item = btrfs_item_nr(slot + i);
4541 		btrfs_set_token_item_offset(leaf, item,
4542 					    data_end - data_size[i], &token);
4543 		data_end -= data_size[i];
4544 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4545 	}
4546 
4547 	btrfs_set_header_nritems(leaf, nritems + nr);
4548 
4549 	if (slot == 0) {
4550 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4551 		fixup_low_keys(root, path, &disk_key, 1);
4552 	}
4553 	btrfs_unlock_up_safe(path, 1);
4554 	btrfs_mark_buffer_dirty(leaf);
4555 
4556 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4557 		btrfs_print_leaf(root, leaf);
4558 		BUG();
4559 	}
4560 }
4561 
4562 /*
4563  * Given a key and some data, insert items into the tree.
4564  * This does all the path init required, making room in the tree if needed.
4565  */
4566 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4567 			    struct btrfs_root *root,
4568 			    struct btrfs_path *path,
4569 			    struct btrfs_key *cpu_key, u32 *data_size,
4570 			    int nr)
4571 {
4572 	int ret = 0;
4573 	int slot;
4574 	int i;
4575 	u32 total_size = 0;
4576 	u32 total_data = 0;
4577 
4578 	for (i = 0; i < nr; i++)
4579 		total_data += data_size[i];
4580 
4581 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4582 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4583 	if (ret == 0)
4584 		return -EEXIST;
4585 	if (ret < 0)
4586 		return ret;
4587 
4588 	slot = path->slots[0];
4589 	BUG_ON(slot < 0);
4590 
4591 	setup_items_for_insert(root, path, cpu_key, data_size,
4592 			       total_data, total_size, nr);
4593 	return 0;
4594 }
4595 
4596 /*
4597  * Given a key and some data, insert an item into the tree.
4598  * This does all the path init required, making room in the tree if needed.
4599  */
4600 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4601 		      *root, struct btrfs_key *cpu_key, void *data, u32
4602 		      data_size)
4603 {
4604 	int ret = 0;
4605 	struct btrfs_path *path;
4606 	struct extent_buffer *leaf;
4607 	unsigned long ptr;
4608 
4609 	path = btrfs_alloc_path();
4610 	if (!path)
4611 		return -ENOMEM;
4612 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4613 	if (!ret) {
4614 		leaf = path->nodes[0];
4615 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4616 		write_extent_buffer(leaf, data, ptr, data_size);
4617 		btrfs_mark_buffer_dirty(leaf);
4618 	}
4619 	btrfs_free_path(path);
4620 	return ret;
4621 }
4622 
4623 /*
4624  * delete the pointer from a given node.
4625  *
4626  * the tree should have been previously balanced so the deletion does not
4627  * empty a node.
4628  */
4629 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4630 		    int level, int slot)
4631 {
4632 	struct extent_buffer *parent = path->nodes[level];
4633 	u32 nritems;
4634 	int ret;
4635 
4636 	nritems = btrfs_header_nritems(parent);
4637 	if (slot != nritems - 1) {
4638 		if (level)
4639 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4640 					     slot + 1, nritems - slot - 1);
4641 		memmove_extent_buffer(parent,
4642 			      btrfs_node_key_ptr_offset(slot),
4643 			      btrfs_node_key_ptr_offset(slot + 1),
4644 			      sizeof(struct btrfs_key_ptr) *
4645 			      (nritems - slot - 1));
4646 	} else if (level) {
4647 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4648 					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4649 		BUG_ON(ret < 0);
4650 	}
4651 
4652 	nritems--;
4653 	btrfs_set_header_nritems(parent, nritems);
4654 	if (nritems == 0 && parent == root->node) {
4655 		BUG_ON(btrfs_header_level(root->node) != 1);
4656 		/* just turn the root into a leaf and break */
4657 		btrfs_set_header_level(root->node, 0);
4658 	} else if (slot == 0) {
4659 		struct btrfs_disk_key disk_key;
4660 
4661 		btrfs_node_key(parent, &disk_key, 0);
4662 		fixup_low_keys(root, path, &disk_key, level + 1);
4663 	}
4664 	btrfs_mark_buffer_dirty(parent);
4665 }
4666 
4667 /*
4668  * a helper function to delete the leaf pointed to by path->slots[1] and
4669  * path->nodes[1].
4670  *
4671  * This deletes the pointer in path->nodes[1] and frees the leaf
4672  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4673  *
4674  * The path must have already been setup for deleting the leaf, including
4675  * all the proper balancing.  path->nodes[1] must be locked.
4676  */
4677 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4678 				    struct btrfs_root *root,
4679 				    struct btrfs_path *path,
4680 				    struct extent_buffer *leaf)
4681 {
4682 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4683 	del_ptr(root, path, 1, path->slots[1]);
4684 
4685 	/*
4686 	 * btrfs_free_extent is expensive, we want to make sure we
4687 	 * aren't holding any locks when we call it
4688 	 */
4689 	btrfs_unlock_up_safe(path, 0);
4690 
4691 	root_sub_used(root, leaf->len);
4692 
4693 	extent_buffer_get(leaf);
4694 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4695 	free_extent_buffer_stale(leaf);
4696 }
4697 /*
4698  * delete the item at the leaf level in path.  If that empties
4699  * the leaf, remove it from the tree
4700  */
4701 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4702 		    struct btrfs_path *path, int slot, int nr)
4703 {
4704 	struct extent_buffer *leaf;
4705 	struct btrfs_item *item;
4706 	int last_off;
4707 	int dsize = 0;
4708 	int ret = 0;
4709 	int wret;
4710 	int i;
4711 	u32 nritems;
4712 	struct btrfs_map_token token;
4713 
4714 	btrfs_init_map_token(&token);
4715 
4716 	leaf = path->nodes[0];
4717 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4718 
4719 	for (i = 0; i < nr; i++)
4720 		dsize += btrfs_item_size_nr(leaf, slot + i);
4721 
4722 	nritems = btrfs_header_nritems(leaf);
4723 
4724 	if (slot + nr != nritems) {
4725 		int data_end = leaf_data_end(root, leaf);
4726 
4727 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4728 			      data_end + dsize,
4729 			      btrfs_leaf_data(leaf) + data_end,
4730 			      last_off - data_end);
4731 
4732 		for (i = slot + nr; i < nritems; i++) {
4733 			u32 ioff;
4734 
4735 			item = btrfs_item_nr(i);
4736 			ioff = btrfs_token_item_offset(leaf, item, &token);
4737 			btrfs_set_token_item_offset(leaf, item,
4738 						    ioff + dsize, &token);
4739 		}
4740 
4741 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4742 			      btrfs_item_nr_offset(slot + nr),
4743 			      sizeof(struct btrfs_item) *
4744 			      (nritems - slot - nr));
4745 	}
4746 	btrfs_set_header_nritems(leaf, nritems - nr);
4747 	nritems -= nr;
4748 
4749 	/* delete the leaf if we've emptied it */
4750 	if (nritems == 0) {
4751 		if (leaf == root->node) {
4752 			btrfs_set_header_level(leaf, 0);
4753 		} else {
4754 			btrfs_set_path_blocking(path);
4755 			clean_tree_block(trans, root, leaf);
4756 			btrfs_del_leaf(trans, root, path, leaf);
4757 		}
4758 	} else {
4759 		int used = leaf_space_used(leaf, 0, nritems);
4760 		if (slot == 0) {
4761 			struct btrfs_disk_key disk_key;
4762 
4763 			btrfs_item_key(leaf, &disk_key, 0);
4764 			fixup_low_keys(root, path, &disk_key, 1);
4765 		}
4766 
4767 		/* delete the leaf if it is mostly empty */
4768 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4769 			/* push_leaf_left fixes the path.
4770 			 * make sure the path still points to our leaf
4771 			 * for possible call to del_ptr below
4772 			 */
4773 			slot = path->slots[1];
4774 			extent_buffer_get(leaf);
4775 
4776 			btrfs_set_path_blocking(path);
4777 			wret = push_leaf_left(trans, root, path, 1, 1,
4778 					      1, (u32)-1);
4779 			if (wret < 0 && wret != -ENOSPC)
4780 				ret = wret;
4781 
4782 			if (path->nodes[0] == leaf &&
4783 			    btrfs_header_nritems(leaf)) {
4784 				wret = push_leaf_right(trans, root, path, 1,
4785 						       1, 1, 0);
4786 				if (wret < 0 && wret != -ENOSPC)
4787 					ret = wret;
4788 			}
4789 
4790 			if (btrfs_header_nritems(leaf) == 0) {
4791 				path->slots[1] = slot;
4792 				btrfs_del_leaf(trans, root, path, leaf);
4793 				free_extent_buffer(leaf);
4794 				ret = 0;
4795 			} else {
4796 				/* if we're still in the path, make sure
4797 				 * we're dirty.  Otherwise, one of the
4798 				 * push_leaf functions must have already
4799 				 * dirtied this buffer
4800 				 */
4801 				if (path->nodes[0] == leaf)
4802 					btrfs_mark_buffer_dirty(leaf);
4803 				free_extent_buffer(leaf);
4804 			}
4805 		} else {
4806 			btrfs_mark_buffer_dirty(leaf);
4807 		}
4808 	}
4809 	return ret;
4810 }
4811 
4812 /*
4813  * search the tree again to find a leaf with lesser keys
4814  * returns 0 if it found something or 1 if there are no lesser leaves.
4815  * returns < 0 on io errors.
4816  *
4817  * This may release the path, and so you may lose any locks held at the
4818  * time you call it.
4819  */
4820 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4821 {
4822 	struct btrfs_key key;
4823 	struct btrfs_disk_key found_key;
4824 	int ret;
4825 
4826 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4827 
4828 	if (key.offset > 0) {
4829 		key.offset--;
4830 	} else if (key.type > 0) {
4831 		key.type--;
4832 		key.offset = (u64)-1;
4833 	} else if (key.objectid > 0) {
4834 		key.objectid--;
4835 		key.type = (u8)-1;
4836 		key.offset = (u64)-1;
4837 	} else {
4838 		return 1;
4839 	}
4840 
4841 	btrfs_release_path(path);
4842 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4843 	if (ret < 0)
4844 		return ret;
4845 	btrfs_item_key(path->nodes[0], &found_key, 0);
4846 	ret = comp_keys(&found_key, &key);
4847 	if (ret < 0)
4848 		return 0;
4849 	return 1;
4850 }
4851 
4852 /*
4853  * A helper function to walk down the tree starting at min_key, and looking
4854  * for nodes or leaves that are have a minimum transaction id.
4855  * This is used by the btree defrag code, and tree logging
4856  *
4857  * This does not cow, but it does stuff the starting key it finds back
4858  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4859  * key and get a writable path.
4860  *
4861  * This does lock as it descends, and path->keep_locks should be set
4862  * to 1 by the caller.
4863  *
4864  * This honors path->lowest_level to prevent descent past a given level
4865  * of the tree.
4866  *
4867  * min_trans indicates the oldest transaction that you are interested
4868  * in walking through.  Any nodes or leaves older than min_trans are
4869  * skipped over (without reading them).
4870  *
4871  * returns zero if something useful was found, < 0 on error and 1 if there
4872  * was nothing in the tree that matched the search criteria.
4873  */
4874 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4875 			 struct btrfs_path *path,
4876 			 u64 min_trans)
4877 {
4878 	struct extent_buffer *cur;
4879 	struct btrfs_key found_key;
4880 	int slot;
4881 	int sret;
4882 	u32 nritems;
4883 	int level;
4884 	int ret = 1;
4885 
4886 	WARN_ON(!path->keep_locks);
4887 again:
4888 	cur = btrfs_read_lock_root_node(root);
4889 	level = btrfs_header_level(cur);
4890 	WARN_ON(path->nodes[level]);
4891 	path->nodes[level] = cur;
4892 	path->locks[level] = BTRFS_READ_LOCK;
4893 
4894 	if (btrfs_header_generation(cur) < min_trans) {
4895 		ret = 1;
4896 		goto out;
4897 	}
4898 	while (1) {
4899 		nritems = btrfs_header_nritems(cur);
4900 		level = btrfs_header_level(cur);
4901 		sret = bin_search(cur, min_key, level, &slot);
4902 
4903 		/* at the lowest level, we're done, setup the path and exit */
4904 		if (level == path->lowest_level) {
4905 			if (slot >= nritems)
4906 				goto find_next_key;
4907 			ret = 0;
4908 			path->slots[level] = slot;
4909 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4910 			goto out;
4911 		}
4912 		if (sret && slot > 0)
4913 			slot--;
4914 		/*
4915 		 * check this node pointer against the min_trans parameters.
4916 		 * If it is too old, old, skip to the next one.
4917 		 */
4918 		while (slot < nritems) {
4919 			u64 gen;
4920 
4921 			gen = btrfs_node_ptr_generation(cur, slot);
4922 			if (gen < min_trans) {
4923 				slot++;
4924 				continue;
4925 			}
4926 			break;
4927 		}
4928 find_next_key:
4929 		/*
4930 		 * we didn't find a candidate key in this node, walk forward
4931 		 * and find another one
4932 		 */
4933 		if (slot >= nritems) {
4934 			path->slots[level] = slot;
4935 			btrfs_set_path_blocking(path);
4936 			sret = btrfs_find_next_key(root, path, min_key, level,
4937 						  min_trans);
4938 			if (sret == 0) {
4939 				btrfs_release_path(path);
4940 				goto again;
4941 			} else {
4942 				goto out;
4943 			}
4944 		}
4945 		/* save our key for returning back */
4946 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4947 		path->slots[level] = slot;
4948 		if (level == path->lowest_level) {
4949 			ret = 0;
4950 			unlock_up(path, level, 1, 0, NULL);
4951 			goto out;
4952 		}
4953 		btrfs_set_path_blocking(path);
4954 		cur = read_node_slot(root, cur, slot);
4955 		BUG_ON(!cur); /* -ENOMEM */
4956 
4957 		btrfs_tree_read_lock(cur);
4958 
4959 		path->locks[level - 1] = BTRFS_READ_LOCK;
4960 		path->nodes[level - 1] = cur;
4961 		unlock_up(path, level, 1, 0, NULL);
4962 		btrfs_clear_path_blocking(path, NULL, 0);
4963 	}
4964 out:
4965 	if (ret == 0)
4966 		memcpy(min_key, &found_key, sizeof(found_key));
4967 	btrfs_set_path_blocking(path);
4968 	return ret;
4969 }
4970 
4971 static void tree_move_down(struct btrfs_root *root,
4972 			   struct btrfs_path *path,
4973 			   int *level, int root_level)
4974 {
4975 	BUG_ON(*level == 0);
4976 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4977 					path->slots[*level]);
4978 	path->slots[*level - 1] = 0;
4979 	(*level)--;
4980 }
4981 
4982 static int tree_move_next_or_upnext(struct btrfs_root *root,
4983 				    struct btrfs_path *path,
4984 				    int *level, int root_level)
4985 {
4986 	int ret = 0;
4987 	int nritems;
4988 	nritems = btrfs_header_nritems(path->nodes[*level]);
4989 
4990 	path->slots[*level]++;
4991 
4992 	while (path->slots[*level] >= nritems) {
4993 		if (*level == root_level)
4994 			return -1;
4995 
4996 		/* move upnext */
4997 		path->slots[*level] = 0;
4998 		free_extent_buffer(path->nodes[*level]);
4999 		path->nodes[*level] = NULL;
5000 		(*level)++;
5001 		path->slots[*level]++;
5002 
5003 		nritems = btrfs_header_nritems(path->nodes[*level]);
5004 		ret = 1;
5005 	}
5006 	return ret;
5007 }
5008 
5009 /*
5010  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5011  * or down.
5012  */
5013 static int tree_advance(struct btrfs_root *root,
5014 			struct btrfs_path *path,
5015 			int *level, int root_level,
5016 			int allow_down,
5017 			struct btrfs_key *key)
5018 {
5019 	int ret;
5020 
5021 	if (*level == 0 || !allow_down) {
5022 		ret = tree_move_next_or_upnext(root, path, level, root_level);
5023 	} else {
5024 		tree_move_down(root, path, level, root_level);
5025 		ret = 0;
5026 	}
5027 	if (ret >= 0) {
5028 		if (*level == 0)
5029 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5030 					path->slots[*level]);
5031 		else
5032 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5033 					path->slots[*level]);
5034 	}
5035 	return ret;
5036 }
5037 
5038 static int tree_compare_item(struct btrfs_root *left_root,
5039 			     struct btrfs_path *left_path,
5040 			     struct btrfs_path *right_path,
5041 			     char *tmp_buf)
5042 {
5043 	int cmp;
5044 	int len1, len2;
5045 	unsigned long off1, off2;
5046 
5047 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5048 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5049 	if (len1 != len2)
5050 		return 1;
5051 
5052 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5053 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5054 				right_path->slots[0]);
5055 
5056 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5057 
5058 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5059 	if (cmp)
5060 		return 1;
5061 	return 0;
5062 }
5063 
5064 #define ADVANCE 1
5065 #define ADVANCE_ONLY_NEXT -1
5066 
5067 /*
5068  * This function compares two trees and calls the provided callback for
5069  * every changed/new/deleted item it finds.
5070  * If shared tree blocks are encountered, whole subtrees are skipped, making
5071  * the compare pretty fast on snapshotted subvolumes.
5072  *
5073  * This currently works on commit roots only. As commit roots are read only,
5074  * we don't do any locking. The commit roots are protected with transactions.
5075  * Transactions are ended and rejoined when a commit is tried in between.
5076  *
5077  * This function checks for modifications done to the trees while comparing.
5078  * If it detects a change, it aborts immediately.
5079  */
5080 int btrfs_compare_trees(struct btrfs_root *left_root,
5081 			struct btrfs_root *right_root,
5082 			btrfs_changed_cb_t changed_cb, void *ctx)
5083 {
5084 	int ret;
5085 	int cmp;
5086 	struct btrfs_trans_handle *trans = NULL;
5087 	struct btrfs_path *left_path = NULL;
5088 	struct btrfs_path *right_path = NULL;
5089 	struct btrfs_key left_key;
5090 	struct btrfs_key right_key;
5091 	char *tmp_buf = NULL;
5092 	int left_root_level;
5093 	int right_root_level;
5094 	int left_level;
5095 	int right_level;
5096 	int left_end_reached;
5097 	int right_end_reached;
5098 	int advance_left;
5099 	int advance_right;
5100 	u64 left_blockptr;
5101 	u64 right_blockptr;
5102 	u64 left_start_ctransid;
5103 	u64 right_start_ctransid;
5104 	u64 ctransid;
5105 
5106 	left_path = btrfs_alloc_path();
5107 	if (!left_path) {
5108 		ret = -ENOMEM;
5109 		goto out;
5110 	}
5111 	right_path = btrfs_alloc_path();
5112 	if (!right_path) {
5113 		ret = -ENOMEM;
5114 		goto out;
5115 	}
5116 
5117 	tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5118 	if (!tmp_buf) {
5119 		ret = -ENOMEM;
5120 		goto out;
5121 	}
5122 
5123 	left_path->search_commit_root = 1;
5124 	left_path->skip_locking = 1;
5125 	right_path->search_commit_root = 1;
5126 	right_path->skip_locking = 1;
5127 
5128 	spin_lock(&left_root->root_item_lock);
5129 	left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5130 	spin_unlock(&left_root->root_item_lock);
5131 
5132 	spin_lock(&right_root->root_item_lock);
5133 	right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5134 	spin_unlock(&right_root->root_item_lock);
5135 
5136 	trans = btrfs_join_transaction(left_root);
5137 	if (IS_ERR(trans)) {
5138 		ret = PTR_ERR(trans);
5139 		trans = NULL;
5140 		goto out;
5141 	}
5142 
5143 	/*
5144 	 * Strategy: Go to the first items of both trees. Then do
5145 	 *
5146 	 * If both trees are at level 0
5147 	 *   Compare keys of current items
5148 	 *     If left < right treat left item as new, advance left tree
5149 	 *       and repeat
5150 	 *     If left > right treat right item as deleted, advance right tree
5151 	 *       and repeat
5152 	 *     If left == right do deep compare of items, treat as changed if
5153 	 *       needed, advance both trees and repeat
5154 	 * If both trees are at the same level but not at level 0
5155 	 *   Compare keys of current nodes/leafs
5156 	 *     If left < right advance left tree and repeat
5157 	 *     If left > right advance right tree and repeat
5158 	 *     If left == right compare blockptrs of the next nodes/leafs
5159 	 *       If they match advance both trees but stay at the same level
5160 	 *         and repeat
5161 	 *       If they don't match advance both trees while allowing to go
5162 	 *         deeper and repeat
5163 	 * If tree levels are different
5164 	 *   Advance the tree that needs it and repeat
5165 	 *
5166 	 * Advancing a tree means:
5167 	 *   If we are at level 0, try to go to the next slot. If that's not
5168 	 *   possible, go one level up and repeat. Stop when we found a level
5169 	 *   where we could go to the next slot. We may at this point be on a
5170 	 *   node or a leaf.
5171 	 *
5172 	 *   If we are not at level 0 and not on shared tree blocks, go one
5173 	 *   level deeper.
5174 	 *
5175 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5176 	 *   the right if possible or go up and right.
5177 	 */
5178 
5179 	left_level = btrfs_header_level(left_root->commit_root);
5180 	left_root_level = left_level;
5181 	left_path->nodes[left_level] = left_root->commit_root;
5182 	extent_buffer_get(left_path->nodes[left_level]);
5183 
5184 	right_level = btrfs_header_level(right_root->commit_root);
5185 	right_root_level = right_level;
5186 	right_path->nodes[right_level] = right_root->commit_root;
5187 	extent_buffer_get(right_path->nodes[right_level]);
5188 
5189 	if (left_level == 0)
5190 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5191 				&left_key, left_path->slots[left_level]);
5192 	else
5193 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5194 				&left_key, left_path->slots[left_level]);
5195 	if (right_level == 0)
5196 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5197 				&right_key, right_path->slots[right_level]);
5198 	else
5199 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5200 				&right_key, right_path->slots[right_level]);
5201 
5202 	left_end_reached = right_end_reached = 0;
5203 	advance_left = advance_right = 0;
5204 
5205 	while (1) {
5206 		/*
5207 		 * We need to make sure the transaction does not get committed
5208 		 * while we do anything on commit roots. This means, we need to
5209 		 * join and leave transactions for every item that we process.
5210 		 */
5211 		if (trans && btrfs_should_end_transaction(trans, left_root)) {
5212 			btrfs_release_path(left_path);
5213 			btrfs_release_path(right_path);
5214 
5215 			ret = btrfs_end_transaction(trans, left_root);
5216 			trans = NULL;
5217 			if (ret < 0)
5218 				goto out;
5219 		}
5220 		/* now rejoin the transaction */
5221 		if (!trans) {
5222 			trans = btrfs_join_transaction(left_root);
5223 			if (IS_ERR(trans)) {
5224 				ret = PTR_ERR(trans);
5225 				trans = NULL;
5226 				goto out;
5227 			}
5228 
5229 			spin_lock(&left_root->root_item_lock);
5230 			ctransid = btrfs_root_ctransid(&left_root->root_item);
5231 			spin_unlock(&left_root->root_item_lock);
5232 			if (ctransid != left_start_ctransid)
5233 				left_start_ctransid = 0;
5234 
5235 			spin_lock(&right_root->root_item_lock);
5236 			ctransid = btrfs_root_ctransid(&right_root->root_item);
5237 			spin_unlock(&right_root->root_item_lock);
5238 			if (ctransid != right_start_ctransid)
5239 				right_start_ctransid = 0;
5240 
5241 			if (!left_start_ctransid || !right_start_ctransid) {
5242 				WARN(1, KERN_WARNING
5243 					"btrfs: btrfs_compare_tree detected "
5244 					"a change in one of the trees while "
5245 					"iterating. This is probably a "
5246 					"bug.\n");
5247 				ret = -EIO;
5248 				goto out;
5249 			}
5250 
5251 			/*
5252 			 * the commit root may have changed, so start again
5253 			 * where we stopped
5254 			 */
5255 			left_path->lowest_level = left_level;
5256 			right_path->lowest_level = right_level;
5257 			ret = btrfs_search_slot(NULL, left_root,
5258 					&left_key, left_path, 0, 0);
5259 			if (ret < 0)
5260 				goto out;
5261 			ret = btrfs_search_slot(NULL, right_root,
5262 					&right_key, right_path, 0, 0);
5263 			if (ret < 0)
5264 				goto out;
5265 		}
5266 
5267 		if (advance_left && !left_end_reached) {
5268 			ret = tree_advance(left_root, left_path, &left_level,
5269 					left_root_level,
5270 					advance_left != ADVANCE_ONLY_NEXT,
5271 					&left_key);
5272 			if (ret < 0)
5273 				left_end_reached = ADVANCE;
5274 			advance_left = 0;
5275 		}
5276 		if (advance_right && !right_end_reached) {
5277 			ret = tree_advance(right_root, right_path, &right_level,
5278 					right_root_level,
5279 					advance_right != ADVANCE_ONLY_NEXT,
5280 					&right_key);
5281 			if (ret < 0)
5282 				right_end_reached = ADVANCE;
5283 			advance_right = 0;
5284 		}
5285 
5286 		if (left_end_reached && right_end_reached) {
5287 			ret = 0;
5288 			goto out;
5289 		} else if (left_end_reached) {
5290 			if (right_level == 0) {
5291 				ret = changed_cb(left_root, right_root,
5292 						left_path, right_path,
5293 						&right_key,
5294 						BTRFS_COMPARE_TREE_DELETED,
5295 						ctx);
5296 				if (ret < 0)
5297 					goto out;
5298 			}
5299 			advance_right = ADVANCE;
5300 			continue;
5301 		} else if (right_end_reached) {
5302 			if (left_level == 0) {
5303 				ret = changed_cb(left_root, right_root,
5304 						left_path, right_path,
5305 						&left_key,
5306 						BTRFS_COMPARE_TREE_NEW,
5307 						ctx);
5308 				if (ret < 0)
5309 					goto out;
5310 			}
5311 			advance_left = ADVANCE;
5312 			continue;
5313 		}
5314 
5315 		if (left_level == 0 && right_level == 0) {
5316 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5317 			if (cmp < 0) {
5318 				ret = changed_cb(left_root, right_root,
5319 						left_path, right_path,
5320 						&left_key,
5321 						BTRFS_COMPARE_TREE_NEW,
5322 						ctx);
5323 				if (ret < 0)
5324 					goto out;
5325 				advance_left = ADVANCE;
5326 			} else if (cmp > 0) {
5327 				ret = changed_cb(left_root, right_root,
5328 						left_path, right_path,
5329 						&right_key,
5330 						BTRFS_COMPARE_TREE_DELETED,
5331 						ctx);
5332 				if (ret < 0)
5333 					goto out;
5334 				advance_right = ADVANCE;
5335 			} else {
5336 				enum btrfs_compare_tree_result cmp;
5337 
5338 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5339 				ret = tree_compare_item(left_root, left_path,
5340 						right_path, tmp_buf);
5341 				if (ret)
5342 					cmp = BTRFS_COMPARE_TREE_CHANGED;
5343 				else
5344 					cmp = BTRFS_COMPARE_TREE_SAME;
5345 				ret = changed_cb(left_root, right_root,
5346 						 left_path, right_path,
5347 						 &left_key, cmp, ctx);
5348 				if (ret < 0)
5349 					goto out;
5350 				advance_left = ADVANCE;
5351 				advance_right = ADVANCE;
5352 			}
5353 		} else if (left_level == right_level) {
5354 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5355 			if (cmp < 0) {
5356 				advance_left = ADVANCE;
5357 			} else if (cmp > 0) {
5358 				advance_right = ADVANCE;
5359 			} else {
5360 				left_blockptr = btrfs_node_blockptr(
5361 						left_path->nodes[left_level],
5362 						left_path->slots[left_level]);
5363 				right_blockptr = btrfs_node_blockptr(
5364 						right_path->nodes[right_level],
5365 						right_path->slots[right_level]);
5366 				if (left_blockptr == right_blockptr) {
5367 					/*
5368 					 * As we're on a shared block, don't
5369 					 * allow to go deeper.
5370 					 */
5371 					advance_left = ADVANCE_ONLY_NEXT;
5372 					advance_right = ADVANCE_ONLY_NEXT;
5373 				} else {
5374 					advance_left = ADVANCE;
5375 					advance_right = ADVANCE;
5376 				}
5377 			}
5378 		} else if (left_level < right_level) {
5379 			advance_right = ADVANCE;
5380 		} else {
5381 			advance_left = ADVANCE;
5382 		}
5383 	}
5384 
5385 out:
5386 	btrfs_free_path(left_path);
5387 	btrfs_free_path(right_path);
5388 	kfree(tmp_buf);
5389 
5390 	if (trans) {
5391 		if (!ret)
5392 			ret = btrfs_end_transaction(trans, left_root);
5393 		else
5394 			btrfs_end_transaction(trans, left_root);
5395 	}
5396 
5397 	return ret;
5398 }
5399 
5400 /*
5401  * this is similar to btrfs_next_leaf, but does not try to preserve
5402  * and fixup the path.  It looks for and returns the next key in the
5403  * tree based on the current path and the min_trans parameters.
5404  *
5405  * 0 is returned if another key is found, < 0 if there are any errors
5406  * and 1 is returned if there are no higher keys in the tree
5407  *
5408  * path->keep_locks should be set to 1 on the search made before
5409  * calling this function.
5410  */
5411 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5412 			struct btrfs_key *key, int level, u64 min_trans)
5413 {
5414 	int slot;
5415 	struct extent_buffer *c;
5416 
5417 	WARN_ON(!path->keep_locks);
5418 	while (level < BTRFS_MAX_LEVEL) {
5419 		if (!path->nodes[level])
5420 			return 1;
5421 
5422 		slot = path->slots[level] + 1;
5423 		c = path->nodes[level];
5424 next:
5425 		if (slot >= btrfs_header_nritems(c)) {
5426 			int ret;
5427 			int orig_lowest;
5428 			struct btrfs_key cur_key;
5429 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5430 			    !path->nodes[level + 1])
5431 				return 1;
5432 
5433 			if (path->locks[level + 1]) {
5434 				level++;
5435 				continue;
5436 			}
5437 
5438 			slot = btrfs_header_nritems(c) - 1;
5439 			if (level == 0)
5440 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5441 			else
5442 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5443 
5444 			orig_lowest = path->lowest_level;
5445 			btrfs_release_path(path);
5446 			path->lowest_level = level;
5447 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5448 						0, 0);
5449 			path->lowest_level = orig_lowest;
5450 			if (ret < 0)
5451 				return ret;
5452 
5453 			c = path->nodes[level];
5454 			slot = path->slots[level];
5455 			if (ret == 0)
5456 				slot++;
5457 			goto next;
5458 		}
5459 
5460 		if (level == 0)
5461 			btrfs_item_key_to_cpu(c, key, slot);
5462 		else {
5463 			u64 gen = btrfs_node_ptr_generation(c, slot);
5464 
5465 			if (gen < min_trans) {
5466 				slot++;
5467 				goto next;
5468 			}
5469 			btrfs_node_key_to_cpu(c, key, slot);
5470 		}
5471 		return 0;
5472 	}
5473 	return 1;
5474 }
5475 
5476 /*
5477  * search the tree again to find a leaf with greater keys
5478  * returns 0 if it found something or 1 if there are no greater leaves.
5479  * returns < 0 on io errors.
5480  */
5481 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5482 {
5483 	return btrfs_next_old_leaf(root, path, 0);
5484 }
5485 
5486 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5487 			u64 time_seq)
5488 {
5489 	int slot;
5490 	int level;
5491 	struct extent_buffer *c;
5492 	struct extent_buffer *next;
5493 	struct btrfs_key key;
5494 	u32 nritems;
5495 	int ret;
5496 	int old_spinning = path->leave_spinning;
5497 	int next_rw_lock = 0;
5498 
5499 	nritems = btrfs_header_nritems(path->nodes[0]);
5500 	if (nritems == 0)
5501 		return 1;
5502 
5503 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5504 again:
5505 	level = 1;
5506 	next = NULL;
5507 	next_rw_lock = 0;
5508 	btrfs_release_path(path);
5509 
5510 	path->keep_locks = 1;
5511 	path->leave_spinning = 1;
5512 
5513 	if (time_seq)
5514 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5515 	else
5516 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5517 	path->keep_locks = 0;
5518 
5519 	if (ret < 0)
5520 		return ret;
5521 
5522 	nritems = btrfs_header_nritems(path->nodes[0]);
5523 	/*
5524 	 * by releasing the path above we dropped all our locks.  A balance
5525 	 * could have added more items next to the key that used to be
5526 	 * at the very end of the block.  So, check again here and
5527 	 * advance the path if there are now more items available.
5528 	 */
5529 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5530 		if (ret == 0)
5531 			path->slots[0]++;
5532 		ret = 0;
5533 		goto done;
5534 	}
5535 
5536 	while (level < BTRFS_MAX_LEVEL) {
5537 		if (!path->nodes[level]) {
5538 			ret = 1;
5539 			goto done;
5540 		}
5541 
5542 		slot = path->slots[level] + 1;
5543 		c = path->nodes[level];
5544 		if (slot >= btrfs_header_nritems(c)) {
5545 			level++;
5546 			if (level == BTRFS_MAX_LEVEL) {
5547 				ret = 1;
5548 				goto done;
5549 			}
5550 			continue;
5551 		}
5552 
5553 		if (next) {
5554 			btrfs_tree_unlock_rw(next, next_rw_lock);
5555 			free_extent_buffer(next);
5556 		}
5557 
5558 		next = c;
5559 		next_rw_lock = path->locks[level];
5560 		ret = read_block_for_search(NULL, root, path, &next, level,
5561 					    slot, &key, 0);
5562 		if (ret == -EAGAIN)
5563 			goto again;
5564 
5565 		if (ret < 0) {
5566 			btrfs_release_path(path);
5567 			goto done;
5568 		}
5569 
5570 		if (!path->skip_locking) {
5571 			ret = btrfs_try_tree_read_lock(next);
5572 			if (!ret && time_seq) {
5573 				/*
5574 				 * If we don't get the lock, we may be racing
5575 				 * with push_leaf_left, holding that lock while
5576 				 * itself waiting for the leaf we've currently
5577 				 * locked. To solve this situation, we give up
5578 				 * on our lock and cycle.
5579 				 */
5580 				free_extent_buffer(next);
5581 				btrfs_release_path(path);
5582 				cond_resched();
5583 				goto again;
5584 			}
5585 			if (!ret) {
5586 				btrfs_set_path_blocking(path);
5587 				btrfs_tree_read_lock(next);
5588 				btrfs_clear_path_blocking(path, next,
5589 							  BTRFS_READ_LOCK);
5590 			}
5591 			next_rw_lock = BTRFS_READ_LOCK;
5592 		}
5593 		break;
5594 	}
5595 	path->slots[level] = slot;
5596 	while (1) {
5597 		level--;
5598 		c = path->nodes[level];
5599 		if (path->locks[level])
5600 			btrfs_tree_unlock_rw(c, path->locks[level]);
5601 
5602 		free_extent_buffer(c);
5603 		path->nodes[level] = next;
5604 		path->slots[level] = 0;
5605 		if (!path->skip_locking)
5606 			path->locks[level] = next_rw_lock;
5607 		if (!level)
5608 			break;
5609 
5610 		ret = read_block_for_search(NULL, root, path, &next, level,
5611 					    0, &key, 0);
5612 		if (ret == -EAGAIN)
5613 			goto again;
5614 
5615 		if (ret < 0) {
5616 			btrfs_release_path(path);
5617 			goto done;
5618 		}
5619 
5620 		if (!path->skip_locking) {
5621 			ret = btrfs_try_tree_read_lock(next);
5622 			if (!ret) {
5623 				btrfs_set_path_blocking(path);
5624 				btrfs_tree_read_lock(next);
5625 				btrfs_clear_path_blocking(path, next,
5626 							  BTRFS_READ_LOCK);
5627 			}
5628 			next_rw_lock = BTRFS_READ_LOCK;
5629 		}
5630 	}
5631 	ret = 0;
5632 done:
5633 	unlock_up(path, 0, 1, 0, NULL);
5634 	path->leave_spinning = old_spinning;
5635 	if (!old_spinning)
5636 		btrfs_set_path_blocking(path);
5637 
5638 	return ret;
5639 }
5640 
5641 /*
5642  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5643  * searching until it gets past min_objectid or finds an item of 'type'
5644  *
5645  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5646  */
5647 int btrfs_previous_item(struct btrfs_root *root,
5648 			struct btrfs_path *path, u64 min_objectid,
5649 			int type)
5650 {
5651 	struct btrfs_key found_key;
5652 	struct extent_buffer *leaf;
5653 	u32 nritems;
5654 	int ret;
5655 
5656 	while (1) {
5657 		if (path->slots[0] == 0) {
5658 			btrfs_set_path_blocking(path);
5659 			ret = btrfs_prev_leaf(root, path);
5660 			if (ret != 0)
5661 				return ret;
5662 		} else {
5663 			path->slots[0]--;
5664 		}
5665 		leaf = path->nodes[0];
5666 		nritems = btrfs_header_nritems(leaf);
5667 		if (nritems == 0)
5668 			return 1;
5669 		if (path->slots[0] == nritems)
5670 			path->slots[0]--;
5671 
5672 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5673 		if (found_key.objectid < min_objectid)
5674 			break;
5675 		if (found_key.type == type)
5676 			return 0;
5677 		if (found_key.objectid == min_objectid &&
5678 		    found_key.type < type)
5679 			break;
5680 	}
5681 	return 1;
5682 }
5683