xref: /openbmc/linux/fs/btrfs/ctree.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25 
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 		      *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_key *ins_key,
30 		      struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 			  struct btrfs_root *root, struct extent_buffer *dst,
33 			  struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 			      struct btrfs_root *root,
36 			      struct extent_buffer *dst_buf,
37 			      struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 		   struct btrfs_path *path, int level, int slot);
40 
41 struct btrfs_path *btrfs_alloc_path(void)
42 {
43 	struct btrfs_path *path;
44 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
45 	if (path)
46 		path->reada = 1;
47 	return path;
48 }
49 
50 /*
51  * set all locked nodes in the path to blocking locks.  This should
52  * be done before scheduling
53  */
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
55 {
56 	int i;
57 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58 		if (p->nodes[i] && p->locks[i])
59 			btrfs_set_lock_blocking(p->nodes[i]);
60 	}
61 }
62 
63 /*
64  * reset all the locked nodes in the patch to spinning locks.
65  *
66  * held is used to keep lockdep happy, when lockdep is enabled
67  * we set held to a blocking lock before we go around and
68  * retake all the spinlocks in the path.  You can safely use NULL
69  * for held
70  */
71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
72 					struct extent_buffer *held)
73 {
74 	int i;
75 
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77 	/* lockdep really cares that we take all of these spinlocks
78 	 * in the right order.  If any of the locks in the path are not
79 	 * currently blocking, it is going to complain.  So, make really
80 	 * really sure by forcing the path to blocking before we clear
81 	 * the path blocking.
82 	 */
83 	if (held)
84 		btrfs_set_lock_blocking(held);
85 	btrfs_set_path_blocking(p);
86 #endif
87 
88 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
89 		if (p->nodes[i] && p->locks[i])
90 			btrfs_clear_lock_blocking(p->nodes[i]);
91 	}
92 
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 	if (held)
95 		btrfs_clear_lock_blocking(held);
96 #endif
97 }
98 
99 /* this also releases the path */
100 void btrfs_free_path(struct btrfs_path *p)
101 {
102 	btrfs_release_path(NULL, p);
103 	kmem_cache_free(btrfs_path_cachep, p);
104 }
105 
106 /*
107  * path release drops references on the extent buffers in the path
108  * and it drops any locks held by this path
109  *
110  * It is safe to call this on paths that no locks or extent buffers held.
111  */
112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
113 {
114 	int i;
115 
116 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
117 		p->slots[i] = 0;
118 		if (!p->nodes[i])
119 			continue;
120 		if (p->locks[i]) {
121 			btrfs_tree_unlock(p->nodes[i]);
122 			p->locks[i] = 0;
123 		}
124 		free_extent_buffer(p->nodes[i]);
125 		p->nodes[i] = NULL;
126 	}
127 }
128 
129 /*
130  * safely gets a reference on the root node of a tree.  A lock
131  * is not taken, so a concurrent writer may put a different node
132  * at the root of the tree.  See btrfs_lock_root_node for the
133  * looping required.
134  *
135  * The extent buffer returned by this has a reference taken, so
136  * it won't disappear.  It may stop being the root of the tree
137  * at any time because there are no locks held.
138  */
139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
140 {
141 	struct extent_buffer *eb;
142 	spin_lock(&root->node_lock);
143 	eb = root->node;
144 	extent_buffer_get(eb);
145 	spin_unlock(&root->node_lock);
146 	return eb;
147 }
148 
149 /* loop around taking references on and locking the root node of the
150  * tree until you end up with a lock on the root.  A locked buffer
151  * is returned, with a reference held.
152  */
153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
154 {
155 	struct extent_buffer *eb;
156 
157 	while (1) {
158 		eb = btrfs_root_node(root);
159 		btrfs_tree_lock(eb);
160 
161 		spin_lock(&root->node_lock);
162 		if (eb == root->node) {
163 			spin_unlock(&root->node_lock);
164 			break;
165 		}
166 		spin_unlock(&root->node_lock);
167 
168 		btrfs_tree_unlock(eb);
169 		free_extent_buffer(eb);
170 	}
171 	return eb;
172 }
173 
174 /* cowonly root (everything not a reference counted cow subvolume), just get
175  * put onto a simple dirty list.  transaction.c walks this to make sure they
176  * get properly updated on disk.
177  */
178 static void add_root_to_dirty_list(struct btrfs_root *root)
179 {
180 	if (root->track_dirty && list_empty(&root->dirty_list)) {
181 		list_add(&root->dirty_list,
182 			 &root->fs_info->dirty_cowonly_roots);
183 	}
184 }
185 
186 /*
187  * used by snapshot creation to make a copy of a root for a tree with
188  * a given objectid.  The buffer with the new root node is returned in
189  * cow_ret, and this func returns zero on success or a negative error code.
190  */
191 int btrfs_copy_root(struct btrfs_trans_handle *trans,
192 		      struct btrfs_root *root,
193 		      struct extent_buffer *buf,
194 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
195 {
196 	struct extent_buffer *cow;
197 	u32 nritems;
198 	int ret = 0;
199 	int level;
200 	struct btrfs_root *new_root;
201 
202 	new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
203 	if (!new_root)
204 		return -ENOMEM;
205 
206 	memcpy(new_root, root, sizeof(*new_root));
207 	new_root->root_key.objectid = new_root_objectid;
208 
209 	WARN_ON(root->ref_cows && trans->transid !=
210 		root->fs_info->running_transaction->transid);
211 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
212 
213 	level = btrfs_header_level(buf);
214 	nritems = btrfs_header_nritems(buf);
215 
216 	cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
217 				     new_root_objectid, trans->transid,
218 				     level, buf->start, 0);
219 	if (IS_ERR(cow)) {
220 		kfree(new_root);
221 		return PTR_ERR(cow);
222 	}
223 
224 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
225 	btrfs_set_header_bytenr(cow, cow->start);
226 	btrfs_set_header_generation(cow, trans->transid);
227 	btrfs_set_header_owner(cow, new_root_objectid);
228 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
229 
230 	write_extent_buffer(cow, root->fs_info->fsid,
231 			    (unsigned long)btrfs_header_fsid(cow),
232 			    BTRFS_FSID_SIZE);
233 
234 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
235 	ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
236 	kfree(new_root);
237 
238 	if (ret)
239 		return ret;
240 
241 	btrfs_mark_buffer_dirty(cow);
242 	*cow_ret = cow;
243 	return 0;
244 }
245 
246 /*
247  * does the dirty work in cow of a single block.  The parent block (if
248  * supplied) is updated to point to the new cow copy.  The new buffer is marked
249  * dirty and returned locked.  If you modify the block it needs to be marked
250  * dirty again.
251  *
252  * search_start -- an allocation hint for the new block
253  *
254  * empty_size -- a hint that you plan on doing more cow.  This is the size in
255  * bytes the allocator should try to find free next to the block it returns.
256  * This is just a hint and may be ignored by the allocator.
257  */
258 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
259 			     struct btrfs_root *root,
260 			     struct extent_buffer *buf,
261 			     struct extent_buffer *parent, int parent_slot,
262 			     struct extent_buffer **cow_ret,
263 			     u64 search_start, u64 empty_size)
264 {
265 	u64 parent_start;
266 	struct extent_buffer *cow;
267 	u32 nritems;
268 	int ret = 0;
269 	int level;
270 	int unlock_orig = 0;
271 
272 	if (*cow_ret == buf)
273 		unlock_orig = 1;
274 
275 	btrfs_assert_tree_locked(buf);
276 
277 	if (parent)
278 		parent_start = parent->start;
279 	else
280 		parent_start = 0;
281 
282 	WARN_ON(root->ref_cows && trans->transid !=
283 		root->fs_info->running_transaction->transid);
284 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
285 
286 	level = btrfs_header_level(buf);
287 	nritems = btrfs_header_nritems(buf);
288 
289 	cow = btrfs_alloc_free_block(trans, root, buf->len,
290 				     parent_start, root->root_key.objectid,
291 				     trans->transid, level,
292 				     search_start, empty_size);
293 	if (IS_ERR(cow))
294 		return PTR_ERR(cow);
295 
296 	/* cow is set to blocking by btrfs_init_new_buffer */
297 
298 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
299 	btrfs_set_header_bytenr(cow, cow->start);
300 	btrfs_set_header_generation(cow, trans->transid);
301 	btrfs_set_header_owner(cow, root->root_key.objectid);
302 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
303 
304 	write_extent_buffer(cow, root->fs_info->fsid,
305 			    (unsigned long)btrfs_header_fsid(cow),
306 			    BTRFS_FSID_SIZE);
307 
308 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
309 	if (btrfs_header_generation(buf) != trans->transid) {
310 		u32 nr_extents;
311 		ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
312 		if (ret)
313 			return ret;
314 
315 		ret = btrfs_cache_ref(trans, root, buf, nr_extents);
316 		WARN_ON(ret);
317 	} else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
318 		/*
319 		 * There are only two places that can drop reference to
320 		 * tree blocks owned by living reloc trees, one is here,
321 		 * the other place is btrfs_drop_subtree. In both places,
322 		 * we check reference count while tree block is locked.
323 		 * Furthermore, if reference count is one, it won't get
324 		 * increased by someone else.
325 		 */
326 		u32 refs;
327 		ret = btrfs_lookup_extent_ref(trans, root, buf->start,
328 					      buf->len, &refs);
329 		BUG_ON(ret);
330 		if (refs == 1) {
331 			ret = btrfs_update_ref(trans, root, buf, cow,
332 					       0, nritems);
333 			clean_tree_block(trans, root, buf);
334 		} else {
335 			ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
336 		}
337 		BUG_ON(ret);
338 	} else {
339 		ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
340 		if (ret)
341 			return ret;
342 		clean_tree_block(trans, root, buf);
343 	}
344 
345 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
346 		ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
347 		WARN_ON(ret);
348 	}
349 
350 	if (buf == root->node) {
351 		WARN_ON(parent && parent != buf);
352 
353 		spin_lock(&root->node_lock);
354 		root->node = cow;
355 		extent_buffer_get(cow);
356 		spin_unlock(&root->node_lock);
357 
358 		if (buf != root->commit_root) {
359 			btrfs_free_extent(trans, root, buf->start,
360 					  buf->len, buf->start,
361 					  root->root_key.objectid,
362 					  btrfs_header_generation(buf),
363 					  level, 1);
364 		}
365 		free_extent_buffer(buf);
366 		add_root_to_dirty_list(root);
367 	} else {
368 		btrfs_set_node_blockptr(parent, parent_slot,
369 					cow->start);
370 		WARN_ON(trans->transid == 0);
371 		btrfs_set_node_ptr_generation(parent, parent_slot,
372 					      trans->transid);
373 		btrfs_mark_buffer_dirty(parent);
374 		WARN_ON(btrfs_header_generation(parent) != trans->transid);
375 		btrfs_free_extent(trans, root, buf->start, buf->len,
376 				  parent_start, btrfs_header_owner(parent),
377 				  btrfs_header_generation(parent), level, 1);
378 	}
379 	if (unlock_orig)
380 		btrfs_tree_unlock(buf);
381 	free_extent_buffer(buf);
382 	btrfs_mark_buffer_dirty(cow);
383 	*cow_ret = cow;
384 	return 0;
385 }
386 
387 /*
388  * cows a single block, see __btrfs_cow_block for the real work.
389  * This version of it has extra checks so that a block isn't cow'd more than
390  * once per transaction, as long as it hasn't been written yet
391  */
392 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
393 		    struct btrfs_root *root, struct extent_buffer *buf,
394 		    struct extent_buffer *parent, int parent_slot,
395 		    struct extent_buffer **cow_ret)
396 {
397 	u64 search_start;
398 	int ret;
399 
400 	if (trans->transaction != root->fs_info->running_transaction) {
401 		printk(KERN_CRIT "trans %llu running %llu\n",
402 		       (unsigned long long)trans->transid,
403 		       (unsigned long long)
404 		       root->fs_info->running_transaction->transid);
405 		WARN_ON(1);
406 	}
407 	if (trans->transid != root->fs_info->generation) {
408 		printk(KERN_CRIT "trans %llu running %llu\n",
409 		       (unsigned long long)trans->transid,
410 		       (unsigned long long)root->fs_info->generation);
411 		WARN_ON(1);
412 	}
413 
414 	if (btrfs_header_generation(buf) == trans->transid &&
415 	    btrfs_header_owner(buf) == root->root_key.objectid &&
416 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
417 		*cow_ret = buf;
418 		return 0;
419 	}
420 
421 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
422 
423 	if (parent)
424 		btrfs_set_lock_blocking(parent);
425 	btrfs_set_lock_blocking(buf);
426 
427 	ret = __btrfs_cow_block(trans, root, buf, parent,
428 				 parent_slot, cow_ret, search_start, 0);
429 	return ret;
430 }
431 
432 /*
433  * helper function for defrag to decide if two blocks pointed to by a
434  * node are actually close by
435  */
436 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
437 {
438 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
439 		return 1;
440 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
441 		return 1;
442 	return 0;
443 }
444 
445 /*
446  * compare two keys in a memcmp fashion
447  */
448 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
449 {
450 	struct btrfs_key k1;
451 
452 	btrfs_disk_key_to_cpu(&k1, disk);
453 
454 	if (k1.objectid > k2->objectid)
455 		return 1;
456 	if (k1.objectid < k2->objectid)
457 		return -1;
458 	if (k1.type > k2->type)
459 		return 1;
460 	if (k1.type < k2->type)
461 		return -1;
462 	if (k1.offset > k2->offset)
463 		return 1;
464 	if (k1.offset < k2->offset)
465 		return -1;
466 	return 0;
467 }
468 
469 /*
470  * same as comp_keys only with two btrfs_key's
471  */
472 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
473 {
474 	if (k1->objectid > k2->objectid)
475 		return 1;
476 	if (k1->objectid < k2->objectid)
477 		return -1;
478 	if (k1->type > k2->type)
479 		return 1;
480 	if (k1->type < k2->type)
481 		return -1;
482 	if (k1->offset > k2->offset)
483 		return 1;
484 	if (k1->offset < k2->offset)
485 		return -1;
486 	return 0;
487 }
488 
489 /*
490  * this is used by the defrag code to go through all the
491  * leaves pointed to by a node and reallocate them so that
492  * disk order is close to key order
493  */
494 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
495 		       struct btrfs_root *root, struct extent_buffer *parent,
496 		       int start_slot, int cache_only, u64 *last_ret,
497 		       struct btrfs_key *progress)
498 {
499 	struct extent_buffer *cur;
500 	u64 blocknr;
501 	u64 gen;
502 	u64 search_start = *last_ret;
503 	u64 last_block = 0;
504 	u64 other;
505 	u32 parent_nritems;
506 	int end_slot;
507 	int i;
508 	int err = 0;
509 	int parent_level;
510 	int uptodate;
511 	u32 blocksize;
512 	int progress_passed = 0;
513 	struct btrfs_disk_key disk_key;
514 
515 	parent_level = btrfs_header_level(parent);
516 	if (cache_only && parent_level != 1)
517 		return 0;
518 
519 	if (trans->transaction != root->fs_info->running_transaction)
520 		WARN_ON(1);
521 	if (trans->transid != root->fs_info->generation)
522 		WARN_ON(1);
523 
524 	parent_nritems = btrfs_header_nritems(parent);
525 	blocksize = btrfs_level_size(root, parent_level - 1);
526 	end_slot = parent_nritems;
527 
528 	if (parent_nritems == 1)
529 		return 0;
530 
531 	btrfs_set_lock_blocking(parent);
532 
533 	for (i = start_slot; i < end_slot; i++) {
534 		int close = 1;
535 
536 		if (!parent->map_token) {
537 			map_extent_buffer(parent,
538 					btrfs_node_key_ptr_offset(i),
539 					sizeof(struct btrfs_key_ptr),
540 					&parent->map_token, &parent->kaddr,
541 					&parent->map_start, &parent->map_len,
542 					KM_USER1);
543 		}
544 		btrfs_node_key(parent, &disk_key, i);
545 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
546 			continue;
547 
548 		progress_passed = 1;
549 		blocknr = btrfs_node_blockptr(parent, i);
550 		gen = btrfs_node_ptr_generation(parent, i);
551 		if (last_block == 0)
552 			last_block = blocknr;
553 
554 		if (i > 0) {
555 			other = btrfs_node_blockptr(parent, i - 1);
556 			close = close_blocks(blocknr, other, blocksize);
557 		}
558 		if (!close && i < end_slot - 2) {
559 			other = btrfs_node_blockptr(parent, i + 1);
560 			close = close_blocks(blocknr, other, blocksize);
561 		}
562 		if (close) {
563 			last_block = blocknr;
564 			continue;
565 		}
566 		if (parent->map_token) {
567 			unmap_extent_buffer(parent, parent->map_token,
568 					    KM_USER1);
569 			parent->map_token = NULL;
570 		}
571 
572 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
573 		if (cur)
574 			uptodate = btrfs_buffer_uptodate(cur, gen);
575 		else
576 			uptodate = 0;
577 		if (!cur || !uptodate) {
578 			if (cache_only) {
579 				free_extent_buffer(cur);
580 				continue;
581 			}
582 			if (!cur) {
583 				cur = read_tree_block(root, blocknr,
584 							 blocksize, gen);
585 			} else if (!uptodate) {
586 				btrfs_read_buffer(cur, gen);
587 			}
588 		}
589 		if (search_start == 0)
590 			search_start = last_block;
591 
592 		btrfs_tree_lock(cur);
593 		btrfs_set_lock_blocking(cur);
594 		err = __btrfs_cow_block(trans, root, cur, parent, i,
595 					&cur, search_start,
596 					min(16 * blocksize,
597 					    (end_slot - i) * blocksize));
598 		if (err) {
599 			btrfs_tree_unlock(cur);
600 			free_extent_buffer(cur);
601 			break;
602 		}
603 		search_start = cur->start;
604 		last_block = cur->start;
605 		*last_ret = search_start;
606 		btrfs_tree_unlock(cur);
607 		free_extent_buffer(cur);
608 	}
609 	if (parent->map_token) {
610 		unmap_extent_buffer(parent, parent->map_token,
611 				    KM_USER1);
612 		parent->map_token = NULL;
613 	}
614 	return err;
615 }
616 
617 /*
618  * The leaf data grows from end-to-front in the node.
619  * this returns the address of the start of the last item,
620  * which is the stop of the leaf data stack
621  */
622 static inline unsigned int leaf_data_end(struct btrfs_root *root,
623 					 struct extent_buffer *leaf)
624 {
625 	u32 nr = btrfs_header_nritems(leaf);
626 	if (nr == 0)
627 		return BTRFS_LEAF_DATA_SIZE(root);
628 	return btrfs_item_offset_nr(leaf, nr - 1);
629 }
630 
631 /*
632  * extra debugging checks to make sure all the items in a key are
633  * well formed and in the proper order
634  */
635 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
636 		      int level)
637 {
638 	struct extent_buffer *parent = NULL;
639 	struct extent_buffer *node = path->nodes[level];
640 	struct btrfs_disk_key parent_key;
641 	struct btrfs_disk_key node_key;
642 	int parent_slot;
643 	int slot;
644 	struct btrfs_key cpukey;
645 	u32 nritems = btrfs_header_nritems(node);
646 
647 	if (path->nodes[level + 1])
648 		parent = path->nodes[level + 1];
649 
650 	slot = path->slots[level];
651 	BUG_ON(nritems == 0);
652 	if (parent) {
653 		parent_slot = path->slots[level + 1];
654 		btrfs_node_key(parent, &parent_key, parent_slot);
655 		btrfs_node_key(node, &node_key, 0);
656 		BUG_ON(memcmp(&parent_key, &node_key,
657 			      sizeof(struct btrfs_disk_key)));
658 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
659 		       btrfs_header_bytenr(node));
660 	}
661 	BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
662 	if (slot != 0) {
663 		btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
664 		btrfs_node_key(node, &node_key, slot);
665 		BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
666 	}
667 	if (slot < nritems - 1) {
668 		btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
669 		btrfs_node_key(node, &node_key, slot);
670 		BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
671 	}
672 	return 0;
673 }
674 
675 /*
676  * extra checking to make sure all the items in a leaf are
677  * well formed and in the proper order
678  */
679 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
680 		      int level)
681 {
682 	struct extent_buffer *leaf = path->nodes[level];
683 	struct extent_buffer *parent = NULL;
684 	int parent_slot;
685 	struct btrfs_key cpukey;
686 	struct btrfs_disk_key parent_key;
687 	struct btrfs_disk_key leaf_key;
688 	int slot = path->slots[0];
689 
690 	u32 nritems = btrfs_header_nritems(leaf);
691 
692 	if (path->nodes[level + 1])
693 		parent = path->nodes[level + 1];
694 
695 	if (nritems == 0)
696 		return 0;
697 
698 	if (parent) {
699 		parent_slot = path->slots[level + 1];
700 		btrfs_node_key(parent, &parent_key, parent_slot);
701 		btrfs_item_key(leaf, &leaf_key, 0);
702 
703 		BUG_ON(memcmp(&parent_key, &leaf_key,
704 		       sizeof(struct btrfs_disk_key)));
705 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
706 		       btrfs_header_bytenr(leaf));
707 	}
708 	if (slot != 0 && slot < nritems - 1) {
709 		btrfs_item_key(leaf, &leaf_key, slot);
710 		btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
711 		if (comp_keys(&leaf_key, &cpukey) <= 0) {
712 			btrfs_print_leaf(root, leaf);
713 			printk(KERN_CRIT "slot %d offset bad key\n", slot);
714 			BUG_ON(1);
715 		}
716 		if (btrfs_item_offset_nr(leaf, slot - 1) !=
717 		       btrfs_item_end_nr(leaf, slot)) {
718 			btrfs_print_leaf(root, leaf);
719 			printk(KERN_CRIT "slot %d offset bad\n", slot);
720 			BUG_ON(1);
721 		}
722 	}
723 	if (slot < nritems - 1) {
724 		btrfs_item_key(leaf, &leaf_key, slot);
725 		btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
726 		BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
727 		if (btrfs_item_offset_nr(leaf, slot) !=
728 			btrfs_item_end_nr(leaf, slot + 1)) {
729 			btrfs_print_leaf(root, leaf);
730 			printk(KERN_CRIT "slot %d offset bad\n", slot);
731 			BUG_ON(1);
732 		}
733 	}
734 	BUG_ON(btrfs_item_offset_nr(leaf, 0) +
735 	       btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
736 	return 0;
737 }
738 
739 static noinline int check_block(struct btrfs_root *root,
740 				struct btrfs_path *path, int level)
741 {
742 	return 0;
743 	if (level == 0)
744 		return check_leaf(root, path, level);
745 	return check_node(root, path, level);
746 }
747 
748 /*
749  * search for key in the extent_buffer.  The items start at offset p,
750  * and they are item_size apart.  There are 'max' items in p.
751  *
752  * the slot in the array is returned via slot, and it points to
753  * the place where you would insert key if it is not found in
754  * the array.
755  *
756  * slot may point to max if the key is bigger than all of the keys
757  */
758 static noinline int generic_bin_search(struct extent_buffer *eb,
759 				       unsigned long p,
760 				       int item_size, struct btrfs_key *key,
761 				       int max, int *slot)
762 {
763 	int low = 0;
764 	int high = max;
765 	int mid;
766 	int ret;
767 	struct btrfs_disk_key *tmp = NULL;
768 	struct btrfs_disk_key unaligned;
769 	unsigned long offset;
770 	char *map_token = NULL;
771 	char *kaddr = NULL;
772 	unsigned long map_start = 0;
773 	unsigned long map_len = 0;
774 	int err;
775 
776 	while (low < high) {
777 		mid = (low + high) / 2;
778 		offset = p + mid * item_size;
779 
780 		if (!map_token || offset < map_start ||
781 		    (offset + sizeof(struct btrfs_disk_key)) >
782 		    map_start + map_len) {
783 			if (map_token) {
784 				unmap_extent_buffer(eb, map_token, KM_USER0);
785 				map_token = NULL;
786 			}
787 
788 			err = map_private_extent_buffer(eb, offset,
789 						sizeof(struct btrfs_disk_key),
790 						&map_token, &kaddr,
791 						&map_start, &map_len, KM_USER0);
792 
793 			if (!err) {
794 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
795 							map_start);
796 			} else {
797 				read_extent_buffer(eb, &unaligned,
798 						   offset, sizeof(unaligned));
799 				tmp = &unaligned;
800 			}
801 
802 		} else {
803 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
804 							map_start);
805 		}
806 		ret = comp_keys(tmp, key);
807 
808 		if (ret < 0)
809 			low = mid + 1;
810 		else if (ret > 0)
811 			high = mid;
812 		else {
813 			*slot = mid;
814 			if (map_token)
815 				unmap_extent_buffer(eb, map_token, KM_USER0);
816 			return 0;
817 		}
818 	}
819 	*slot = low;
820 	if (map_token)
821 		unmap_extent_buffer(eb, map_token, KM_USER0);
822 	return 1;
823 }
824 
825 /*
826  * simple bin_search frontend that does the right thing for
827  * leaves vs nodes
828  */
829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
830 		      int level, int *slot)
831 {
832 	if (level == 0) {
833 		return generic_bin_search(eb,
834 					  offsetof(struct btrfs_leaf, items),
835 					  sizeof(struct btrfs_item),
836 					  key, btrfs_header_nritems(eb),
837 					  slot);
838 	} else {
839 		return generic_bin_search(eb,
840 					  offsetof(struct btrfs_node, ptrs),
841 					  sizeof(struct btrfs_key_ptr),
842 					  key, btrfs_header_nritems(eb),
843 					  slot);
844 	}
845 	return -1;
846 }
847 
848 /* given a node and slot number, this reads the blocks it points to.  The
849  * extent buffer is returned with a reference taken (but unlocked).
850  * NULL is returned on error.
851  */
852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
853 				   struct extent_buffer *parent, int slot)
854 {
855 	int level = btrfs_header_level(parent);
856 	if (slot < 0)
857 		return NULL;
858 	if (slot >= btrfs_header_nritems(parent))
859 		return NULL;
860 
861 	BUG_ON(level == 0);
862 
863 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
864 		       btrfs_level_size(root, level - 1),
865 		       btrfs_node_ptr_generation(parent, slot));
866 }
867 
868 /*
869  * node level balancing, used to make sure nodes are in proper order for
870  * item deletion.  We balance from the top down, so we have to make sure
871  * that a deletion won't leave an node completely empty later on.
872  */
873 static noinline int balance_level(struct btrfs_trans_handle *trans,
874 			 struct btrfs_root *root,
875 			 struct btrfs_path *path, int level)
876 {
877 	struct extent_buffer *right = NULL;
878 	struct extent_buffer *mid;
879 	struct extent_buffer *left = NULL;
880 	struct extent_buffer *parent = NULL;
881 	int ret = 0;
882 	int wret;
883 	int pslot;
884 	int orig_slot = path->slots[level];
885 	int err_on_enospc = 0;
886 	u64 orig_ptr;
887 
888 	if (level == 0)
889 		return 0;
890 
891 	mid = path->nodes[level];
892 
893 	WARN_ON(!path->locks[level]);
894 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
895 
896 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
897 
898 	if (level < BTRFS_MAX_LEVEL - 1)
899 		parent = path->nodes[level + 1];
900 	pslot = path->slots[level + 1];
901 
902 	/*
903 	 * deal with the case where there is only one pointer in the root
904 	 * by promoting the node below to a root
905 	 */
906 	if (!parent) {
907 		struct extent_buffer *child;
908 
909 		if (btrfs_header_nritems(mid) != 1)
910 			return 0;
911 
912 		/* promote the child to a root */
913 		child = read_node_slot(root, mid, 0);
914 		BUG_ON(!child);
915 		btrfs_tree_lock(child);
916 		btrfs_set_lock_blocking(child);
917 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
918 		BUG_ON(ret);
919 
920 		spin_lock(&root->node_lock);
921 		root->node = child;
922 		spin_unlock(&root->node_lock);
923 
924 		ret = btrfs_update_extent_ref(trans, root, child->start,
925 					      child->len,
926 					      mid->start, child->start,
927 					      root->root_key.objectid,
928 					      trans->transid, level - 1);
929 		BUG_ON(ret);
930 
931 		add_root_to_dirty_list(root);
932 		btrfs_tree_unlock(child);
933 
934 		path->locks[level] = 0;
935 		path->nodes[level] = NULL;
936 		clean_tree_block(trans, root, mid);
937 		btrfs_tree_unlock(mid);
938 		/* once for the path */
939 		free_extent_buffer(mid);
940 		ret = btrfs_free_extent(trans, root, mid->start, mid->len,
941 					mid->start, root->root_key.objectid,
942 					btrfs_header_generation(mid),
943 					level, 1);
944 		/* once for the root ptr */
945 		free_extent_buffer(mid);
946 		return ret;
947 	}
948 	if (btrfs_header_nritems(mid) >
949 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
950 		return 0;
951 
952 	if (trans->transaction->delayed_refs.flushing &&
953 	    btrfs_header_nritems(mid) > 2)
954 		return 0;
955 
956 	if (btrfs_header_nritems(mid) < 2)
957 		err_on_enospc = 1;
958 
959 	left = read_node_slot(root, parent, pslot - 1);
960 	if (left) {
961 		btrfs_tree_lock(left);
962 		btrfs_set_lock_blocking(left);
963 		wret = btrfs_cow_block(trans, root, left,
964 				       parent, pslot - 1, &left);
965 		if (wret) {
966 			ret = wret;
967 			goto enospc;
968 		}
969 	}
970 	right = read_node_slot(root, parent, pslot + 1);
971 	if (right) {
972 		btrfs_tree_lock(right);
973 		btrfs_set_lock_blocking(right);
974 		wret = btrfs_cow_block(trans, root, right,
975 				       parent, pslot + 1, &right);
976 		if (wret) {
977 			ret = wret;
978 			goto enospc;
979 		}
980 	}
981 
982 	/* first, try to make some room in the middle buffer */
983 	if (left) {
984 		orig_slot += btrfs_header_nritems(left);
985 		wret = push_node_left(trans, root, left, mid, 1);
986 		if (wret < 0)
987 			ret = wret;
988 		if (btrfs_header_nritems(mid) < 2)
989 			err_on_enospc = 1;
990 	}
991 
992 	/*
993 	 * then try to empty the right most buffer into the middle
994 	 */
995 	if (right) {
996 		wret = push_node_left(trans, root, mid, right, 1);
997 		if (wret < 0 && wret != -ENOSPC)
998 			ret = wret;
999 		if (btrfs_header_nritems(right) == 0) {
1000 			u64 bytenr = right->start;
1001 			u64 generation = btrfs_header_generation(parent);
1002 			u32 blocksize = right->len;
1003 
1004 			clean_tree_block(trans, root, right);
1005 			btrfs_tree_unlock(right);
1006 			free_extent_buffer(right);
1007 			right = NULL;
1008 			wret = del_ptr(trans, root, path, level + 1, pslot +
1009 				       1);
1010 			if (wret)
1011 				ret = wret;
1012 			wret = btrfs_free_extent(trans, root, bytenr,
1013 						 blocksize, parent->start,
1014 						 btrfs_header_owner(parent),
1015 						 generation, level, 1);
1016 			if (wret)
1017 				ret = wret;
1018 		} else {
1019 			struct btrfs_disk_key right_key;
1020 			btrfs_node_key(right, &right_key, 0);
1021 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1022 			btrfs_mark_buffer_dirty(parent);
1023 		}
1024 	}
1025 	if (btrfs_header_nritems(mid) == 1) {
1026 		/*
1027 		 * we're not allowed to leave a node with one item in the
1028 		 * tree during a delete.  A deletion from lower in the tree
1029 		 * could try to delete the only pointer in this node.
1030 		 * So, pull some keys from the left.
1031 		 * There has to be a left pointer at this point because
1032 		 * otherwise we would have pulled some pointers from the
1033 		 * right
1034 		 */
1035 		BUG_ON(!left);
1036 		wret = balance_node_right(trans, root, mid, left);
1037 		if (wret < 0) {
1038 			ret = wret;
1039 			goto enospc;
1040 		}
1041 		if (wret == 1) {
1042 			wret = push_node_left(trans, root, left, mid, 1);
1043 			if (wret < 0)
1044 				ret = wret;
1045 		}
1046 		BUG_ON(wret == 1);
1047 	}
1048 	if (btrfs_header_nritems(mid) == 0) {
1049 		/* we've managed to empty the middle node, drop it */
1050 		u64 root_gen = btrfs_header_generation(parent);
1051 		u64 bytenr = mid->start;
1052 		u32 blocksize = mid->len;
1053 
1054 		clean_tree_block(trans, root, mid);
1055 		btrfs_tree_unlock(mid);
1056 		free_extent_buffer(mid);
1057 		mid = NULL;
1058 		wret = del_ptr(trans, root, path, level + 1, pslot);
1059 		if (wret)
1060 			ret = wret;
1061 		wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1062 					 parent->start,
1063 					 btrfs_header_owner(parent),
1064 					 root_gen, level, 1);
1065 		if (wret)
1066 			ret = wret;
1067 	} else {
1068 		/* update the parent key to reflect our changes */
1069 		struct btrfs_disk_key mid_key;
1070 		btrfs_node_key(mid, &mid_key, 0);
1071 		btrfs_set_node_key(parent, &mid_key, pslot);
1072 		btrfs_mark_buffer_dirty(parent);
1073 	}
1074 
1075 	/* update the path */
1076 	if (left) {
1077 		if (btrfs_header_nritems(left) > orig_slot) {
1078 			extent_buffer_get(left);
1079 			/* left was locked after cow */
1080 			path->nodes[level] = left;
1081 			path->slots[level + 1] -= 1;
1082 			path->slots[level] = orig_slot;
1083 			if (mid) {
1084 				btrfs_tree_unlock(mid);
1085 				free_extent_buffer(mid);
1086 			}
1087 		} else {
1088 			orig_slot -= btrfs_header_nritems(left);
1089 			path->slots[level] = orig_slot;
1090 		}
1091 	}
1092 	/* double check we haven't messed things up */
1093 	check_block(root, path, level);
1094 	if (orig_ptr !=
1095 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1096 		BUG();
1097 enospc:
1098 	if (right) {
1099 		btrfs_tree_unlock(right);
1100 		free_extent_buffer(right);
1101 	}
1102 	if (left) {
1103 		if (path->nodes[level] != left)
1104 			btrfs_tree_unlock(left);
1105 		free_extent_buffer(left);
1106 	}
1107 	return ret;
1108 }
1109 
1110 /* Node balancing for insertion.  Here we only split or push nodes around
1111  * when they are completely full.  This is also done top down, so we
1112  * have to be pessimistic.
1113  */
1114 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1115 					  struct btrfs_root *root,
1116 					  struct btrfs_path *path, int level)
1117 {
1118 	struct extent_buffer *right = NULL;
1119 	struct extent_buffer *mid;
1120 	struct extent_buffer *left = NULL;
1121 	struct extent_buffer *parent = NULL;
1122 	int ret = 0;
1123 	int wret;
1124 	int pslot;
1125 	int orig_slot = path->slots[level];
1126 	u64 orig_ptr;
1127 
1128 	if (level == 0)
1129 		return 1;
1130 
1131 	mid = path->nodes[level];
1132 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1133 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1134 
1135 	if (level < BTRFS_MAX_LEVEL - 1)
1136 		parent = path->nodes[level + 1];
1137 	pslot = path->slots[level + 1];
1138 
1139 	if (!parent)
1140 		return 1;
1141 
1142 	left = read_node_slot(root, parent, pslot - 1);
1143 
1144 	/* first, try to make some room in the middle buffer */
1145 	if (left) {
1146 		u32 left_nr;
1147 
1148 		btrfs_tree_lock(left);
1149 		btrfs_set_lock_blocking(left);
1150 
1151 		left_nr = btrfs_header_nritems(left);
1152 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1153 			wret = 1;
1154 		} else {
1155 			ret = btrfs_cow_block(trans, root, left, parent,
1156 					      pslot - 1, &left);
1157 			if (ret)
1158 				wret = 1;
1159 			else {
1160 				wret = push_node_left(trans, root,
1161 						      left, mid, 0);
1162 			}
1163 		}
1164 		if (wret < 0)
1165 			ret = wret;
1166 		if (wret == 0) {
1167 			struct btrfs_disk_key disk_key;
1168 			orig_slot += left_nr;
1169 			btrfs_node_key(mid, &disk_key, 0);
1170 			btrfs_set_node_key(parent, &disk_key, pslot);
1171 			btrfs_mark_buffer_dirty(parent);
1172 			if (btrfs_header_nritems(left) > orig_slot) {
1173 				path->nodes[level] = left;
1174 				path->slots[level + 1] -= 1;
1175 				path->slots[level] = orig_slot;
1176 				btrfs_tree_unlock(mid);
1177 				free_extent_buffer(mid);
1178 			} else {
1179 				orig_slot -=
1180 					btrfs_header_nritems(left);
1181 				path->slots[level] = orig_slot;
1182 				btrfs_tree_unlock(left);
1183 				free_extent_buffer(left);
1184 			}
1185 			return 0;
1186 		}
1187 		btrfs_tree_unlock(left);
1188 		free_extent_buffer(left);
1189 	}
1190 	right = read_node_slot(root, parent, pslot + 1);
1191 
1192 	/*
1193 	 * then try to empty the right most buffer into the middle
1194 	 */
1195 	if (right) {
1196 		u32 right_nr;
1197 
1198 		btrfs_tree_lock(right);
1199 		btrfs_set_lock_blocking(right);
1200 
1201 		right_nr = btrfs_header_nritems(right);
1202 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1203 			wret = 1;
1204 		} else {
1205 			ret = btrfs_cow_block(trans, root, right,
1206 					      parent, pslot + 1,
1207 					      &right);
1208 			if (ret)
1209 				wret = 1;
1210 			else {
1211 				wret = balance_node_right(trans, root,
1212 							  right, mid);
1213 			}
1214 		}
1215 		if (wret < 0)
1216 			ret = wret;
1217 		if (wret == 0) {
1218 			struct btrfs_disk_key disk_key;
1219 
1220 			btrfs_node_key(right, &disk_key, 0);
1221 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1222 			btrfs_mark_buffer_dirty(parent);
1223 
1224 			if (btrfs_header_nritems(mid) <= orig_slot) {
1225 				path->nodes[level] = right;
1226 				path->slots[level + 1] += 1;
1227 				path->slots[level] = orig_slot -
1228 					btrfs_header_nritems(mid);
1229 				btrfs_tree_unlock(mid);
1230 				free_extent_buffer(mid);
1231 			} else {
1232 				btrfs_tree_unlock(right);
1233 				free_extent_buffer(right);
1234 			}
1235 			return 0;
1236 		}
1237 		btrfs_tree_unlock(right);
1238 		free_extent_buffer(right);
1239 	}
1240 	return 1;
1241 }
1242 
1243 /*
1244  * readahead one full node of leaves, finding things that are close
1245  * to the block in 'slot', and triggering ra on them.
1246  */
1247 static noinline void reada_for_search(struct btrfs_root *root,
1248 				      struct btrfs_path *path,
1249 				      int level, int slot, u64 objectid)
1250 {
1251 	struct extent_buffer *node;
1252 	struct btrfs_disk_key disk_key;
1253 	u32 nritems;
1254 	u64 search;
1255 	u64 target;
1256 	u64 nread = 0;
1257 	int direction = path->reada;
1258 	struct extent_buffer *eb;
1259 	u32 nr;
1260 	u32 blocksize;
1261 	u32 nscan = 0;
1262 
1263 	if (level != 1)
1264 		return;
1265 
1266 	if (!path->nodes[level])
1267 		return;
1268 
1269 	node = path->nodes[level];
1270 
1271 	search = btrfs_node_blockptr(node, slot);
1272 	blocksize = btrfs_level_size(root, level - 1);
1273 	eb = btrfs_find_tree_block(root, search, blocksize);
1274 	if (eb) {
1275 		free_extent_buffer(eb);
1276 		return;
1277 	}
1278 
1279 	target = search;
1280 
1281 	nritems = btrfs_header_nritems(node);
1282 	nr = slot;
1283 	while (1) {
1284 		if (direction < 0) {
1285 			if (nr == 0)
1286 				break;
1287 			nr--;
1288 		} else if (direction > 0) {
1289 			nr++;
1290 			if (nr >= nritems)
1291 				break;
1292 		}
1293 		if (path->reada < 0 && objectid) {
1294 			btrfs_node_key(node, &disk_key, nr);
1295 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1296 				break;
1297 		}
1298 		search = btrfs_node_blockptr(node, nr);
1299 		if ((search <= target && target - search <= 65536) ||
1300 		    (search > target && search - target <= 65536)) {
1301 			readahead_tree_block(root, search, blocksize,
1302 				     btrfs_node_ptr_generation(node, nr));
1303 			nread += blocksize;
1304 		}
1305 		nscan++;
1306 		if ((nread > 65536 || nscan > 32))
1307 			break;
1308 	}
1309 }
1310 
1311 /*
1312  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1313  * cache
1314  */
1315 static noinline int reada_for_balance(struct btrfs_root *root,
1316 				      struct btrfs_path *path, int level)
1317 {
1318 	int slot;
1319 	int nritems;
1320 	struct extent_buffer *parent;
1321 	struct extent_buffer *eb;
1322 	u64 gen;
1323 	u64 block1 = 0;
1324 	u64 block2 = 0;
1325 	int ret = 0;
1326 	int blocksize;
1327 
1328 	parent = path->nodes[level - 1];
1329 	if (!parent)
1330 		return 0;
1331 
1332 	nritems = btrfs_header_nritems(parent);
1333 	slot = path->slots[level];
1334 	blocksize = btrfs_level_size(root, level);
1335 
1336 	if (slot > 0) {
1337 		block1 = btrfs_node_blockptr(parent, slot - 1);
1338 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1339 		eb = btrfs_find_tree_block(root, block1, blocksize);
1340 		if (eb && btrfs_buffer_uptodate(eb, gen))
1341 			block1 = 0;
1342 		free_extent_buffer(eb);
1343 	}
1344 	if (slot < nritems) {
1345 		block2 = btrfs_node_blockptr(parent, slot + 1);
1346 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1347 		eb = btrfs_find_tree_block(root, block2, blocksize);
1348 		if (eb && btrfs_buffer_uptodate(eb, gen))
1349 			block2 = 0;
1350 		free_extent_buffer(eb);
1351 	}
1352 	if (block1 || block2) {
1353 		ret = -EAGAIN;
1354 		btrfs_release_path(root, path);
1355 		if (block1)
1356 			readahead_tree_block(root, block1, blocksize, 0);
1357 		if (block2)
1358 			readahead_tree_block(root, block2, blocksize, 0);
1359 
1360 		if (block1) {
1361 			eb = read_tree_block(root, block1, blocksize, 0);
1362 			free_extent_buffer(eb);
1363 		}
1364 		if (block1) {
1365 			eb = read_tree_block(root, block2, blocksize, 0);
1366 			free_extent_buffer(eb);
1367 		}
1368 	}
1369 	return ret;
1370 }
1371 
1372 
1373 /*
1374  * when we walk down the tree, it is usually safe to unlock the higher layers
1375  * in the tree.  The exceptions are when our path goes through slot 0, because
1376  * operations on the tree might require changing key pointers higher up in the
1377  * tree.
1378  *
1379  * callers might also have set path->keep_locks, which tells this code to keep
1380  * the lock if the path points to the last slot in the block.  This is part of
1381  * walking through the tree, and selecting the next slot in the higher block.
1382  *
1383  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1384  * if lowest_unlock is 1, level 0 won't be unlocked
1385  */
1386 static noinline void unlock_up(struct btrfs_path *path, int level,
1387 			       int lowest_unlock)
1388 {
1389 	int i;
1390 	int skip_level = level;
1391 	int no_skips = 0;
1392 	struct extent_buffer *t;
1393 
1394 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1395 		if (!path->nodes[i])
1396 			break;
1397 		if (!path->locks[i])
1398 			break;
1399 		if (!no_skips && path->slots[i] == 0) {
1400 			skip_level = i + 1;
1401 			continue;
1402 		}
1403 		if (!no_skips && path->keep_locks) {
1404 			u32 nritems;
1405 			t = path->nodes[i];
1406 			nritems = btrfs_header_nritems(t);
1407 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1408 				skip_level = i + 1;
1409 				continue;
1410 			}
1411 		}
1412 		if (skip_level < i && i >= lowest_unlock)
1413 			no_skips = 1;
1414 
1415 		t = path->nodes[i];
1416 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1417 			btrfs_tree_unlock(t);
1418 			path->locks[i] = 0;
1419 		}
1420 	}
1421 }
1422 
1423 /*
1424  * This releases any locks held in the path starting at level and
1425  * going all the way up to the root.
1426  *
1427  * btrfs_search_slot will keep the lock held on higher nodes in a few
1428  * corner cases, such as COW of the block at slot zero in the node.  This
1429  * ignores those rules, and it should only be called when there are no
1430  * more updates to be done higher up in the tree.
1431  */
1432 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1433 {
1434 	int i;
1435 
1436 	if (path->keep_locks || path->lowest_level)
1437 		return;
1438 
1439 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1440 		if (!path->nodes[i])
1441 			continue;
1442 		if (!path->locks[i])
1443 			continue;
1444 		btrfs_tree_unlock(path->nodes[i]);
1445 		path->locks[i] = 0;
1446 	}
1447 }
1448 
1449 /*
1450  * look for key in the tree.  path is filled in with nodes along the way
1451  * if key is found, we return zero and you can find the item in the leaf
1452  * level of the path (level 0)
1453  *
1454  * If the key isn't found, the path points to the slot where it should
1455  * be inserted, and 1 is returned.  If there are other errors during the
1456  * search a negative error number is returned.
1457  *
1458  * if ins_len > 0, nodes and leaves will be split as we walk down the
1459  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1460  * possible)
1461  */
1462 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1463 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1464 		      ins_len, int cow)
1465 {
1466 	struct extent_buffer *b;
1467 	struct extent_buffer *tmp;
1468 	int slot;
1469 	int ret;
1470 	int level;
1471 	int should_reada = p->reada;
1472 	int lowest_unlock = 1;
1473 	int blocksize;
1474 	u8 lowest_level = 0;
1475 	u64 blocknr;
1476 	u64 gen;
1477 
1478 	lowest_level = p->lowest_level;
1479 	WARN_ON(lowest_level && ins_len > 0);
1480 	WARN_ON(p->nodes[0] != NULL);
1481 
1482 	if (ins_len < 0)
1483 		lowest_unlock = 2;
1484 
1485 again:
1486 	if (p->skip_locking)
1487 		b = btrfs_root_node(root);
1488 	else
1489 		b = btrfs_lock_root_node(root);
1490 
1491 	while (b) {
1492 		level = btrfs_header_level(b);
1493 
1494 		/*
1495 		 * setup the path here so we can release it under lock
1496 		 * contention with the cow code
1497 		 */
1498 		p->nodes[level] = b;
1499 		if (!p->skip_locking)
1500 			p->locks[level] = 1;
1501 
1502 		if (cow) {
1503 			int wret;
1504 
1505 			/* is a cow on this block not required */
1506 			if (btrfs_header_generation(b) == trans->transid &&
1507 			    btrfs_header_owner(b) == root->root_key.objectid &&
1508 			    !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1509 				goto cow_done;
1510 			}
1511 			btrfs_set_path_blocking(p);
1512 
1513 			wret = btrfs_cow_block(trans, root, b,
1514 					       p->nodes[level + 1],
1515 					       p->slots[level + 1], &b);
1516 			if (wret) {
1517 				free_extent_buffer(b);
1518 				ret = wret;
1519 				goto done;
1520 			}
1521 		}
1522 cow_done:
1523 		BUG_ON(!cow && ins_len);
1524 		if (level != btrfs_header_level(b))
1525 			WARN_ON(1);
1526 		level = btrfs_header_level(b);
1527 
1528 		p->nodes[level] = b;
1529 		if (!p->skip_locking)
1530 			p->locks[level] = 1;
1531 
1532 		btrfs_clear_path_blocking(p, NULL);
1533 
1534 		/*
1535 		 * we have a lock on b and as long as we aren't changing
1536 		 * the tree, there is no way to for the items in b to change.
1537 		 * It is safe to drop the lock on our parent before we
1538 		 * go through the expensive btree search on b.
1539 		 *
1540 		 * If cow is true, then we might be changing slot zero,
1541 		 * which may require changing the parent.  So, we can't
1542 		 * drop the lock until after we know which slot we're
1543 		 * operating on.
1544 		 */
1545 		if (!cow)
1546 			btrfs_unlock_up_safe(p, level + 1);
1547 
1548 		ret = check_block(root, p, level);
1549 		if (ret) {
1550 			ret = -1;
1551 			goto done;
1552 		}
1553 
1554 		ret = bin_search(b, key, level, &slot);
1555 
1556 		if (level != 0) {
1557 			if (ret && slot > 0)
1558 				slot -= 1;
1559 			p->slots[level] = slot;
1560 			if ((p->search_for_split || ins_len > 0) &&
1561 			    btrfs_header_nritems(b) >=
1562 			    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1563 				int sret;
1564 
1565 				sret = reada_for_balance(root, p, level);
1566 				if (sret)
1567 					goto again;
1568 
1569 				btrfs_set_path_blocking(p);
1570 				sret = split_node(trans, root, p, level);
1571 				btrfs_clear_path_blocking(p, NULL);
1572 
1573 				BUG_ON(sret > 0);
1574 				if (sret) {
1575 					ret = sret;
1576 					goto done;
1577 				}
1578 				b = p->nodes[level];
1579 				slot = p->slots[level];
1580 			} else if (ins_len < 0 &&
1581 				   btrfs_header_nritems(b) <
1582 				   BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
1583 				int sret;
1584 
1585 				sret = reada_for_balance(root, p, level);
1586 				if (sret)
1587 					goto again;
1588 
1589 				btrfs_set_path_blocking(p);
1590 				sret = balance_level(trans, root, p, level);
1591 				btrfs_clear_path_blocking(p, NULL);
1592 
1593 				if (sret) {
1594 					ret = sret;
1595 					goto done;
1596 				}
1597 				b = p->nodes[level];
1598 				if (!b) {
1599 					btrfs_release_path(NULL, p);
1600 					goto again;
1601 				}
1602 				slot = p->slots[level];
1603 				BUG_ON(btrfs_header_nritems(b) == 1);
1604 			}
1605 			unlock_up(p, level, lowest_unlock);
1606 
1607 			/* this is only true while dropping a snapshot */
1608 			if (level == lowest_level) {
1609 				ret = 0;
1610 				goto done;
1611 			}
1612 
1613 			blocknr = btrfs_node_blockptr(b, slot);
1614 			gen = btrfs_node_ptr_generation(b, slot);
1615 			blocksize = btrfs_level_size(root, level - 1);
1616 
1617 			tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1618 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1619 				b = tmp;
1620 			} else {
1621 				/*
1622 				 * reduce lock contention at high levels
1623 				 * of the btree by dropping locks before
1624 				 * we read.
1625 				 */
1626 				if (level > 0) {
1627 					btrfs_release_path(NULL, p);
1628 					if (tmp)
1629 						free_extent_buffer(tmp);
1630 					if (should_reada)
1631 						reada_for_search(root, p,
1632 								 level, slot,
1633 								 key->objectid);
1634 
1635 					tmp = read_tree_block(root, blocknr,
1636 							 blocksize, gen);
1637 					if (tmp)
1638 						free_extent_buffer(tmp);
1639 					goto again;
1640 				} else {
1641 					btrfs_set_path_blocking(p);
1642 					if (tmp)
1643 						free_extent_buffer(tmp);
1644 					if (should_reada)
1645 						reada_for_search(root, p,
1646 								 level, slot,
1647 								 key->objectid);
1648 					b = read_node_slot(root, b, slot);
1649 				}
1650 			}
1651 			if (!p->skip_locking) {
1652 				int lret;
1653 
1654 				btrfs_clear_path_blocking(p, NULL);
1655 				lret = btrfs_try_spin_lock(b);
1656 
1657 				if (!lret) {
1658 					btrfs_set_path_blocking(p);
1659 					btrfs_tree_lock(b);
1660 					btrfs_clear_path_blocking(p, b);
1661 				}
1662 			}
1663 		} else {
1664 			p->slots[level] = slot;
1665 			if (ins_len > 0 &&
1666 			    btrfs_leaf_free_space(root, b) < ins_len) {
1667 				int sret;
1668 
1669 				btrfs_set_path_blocking(p);
1670 				sret = split_leaf(trans, root, key,
1671 						      p, ins_len, ret == 0);
1672 				btrfs_clear_path_blocking(p, NULL);
1673 
1674 				BUG_ON(sret > 0);
1675 				if (sret) {
1676 					ret = sret;
1677 					goto done;
1678 				}
1679 			}
1680 			if (!p->search_for_split)
1681 				unlock_up(p, level, lowest_unlock);
1682 			goto done;
1683 		}
1684 	}
1685 	ret = 1;
1686 done:
1687 	/*
1688 	 * we don't really know what they plan on doing with the path
1689 	 * from here on, so for now just mark it as blocking
1690 	 */
1691 	if (!p->leave_spinning)
1692 		btrfs_set_path_blocking(p);
1693 	return ret;
1694 }
1695 
1696 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1697 		     struct btrfs_root *root,
1698 		     struct btrfs_key *node_keys,
1699 		     u64 *nodes, int lowest_level)
1700 {
1701 	struct extent_buffer *eb;
1702 	struct extent_buffer *parent;
1703 	struct btrfs_key key;
1704 	u64 bytenr;
1705 	u64 generation;
1706 	u32 blocksize;
1707 	int level;
1708 	int slot;
1709 	int key_match;
1710 	int ret;
1711 
1712 	eb = btrfs_lock_root_node(root);
1713 	ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb);
1714 	BUG_ON(ret);
1715 
1716 	btrfs_set_lock_blocking(eb);
1717 
1718 	parent = eb;
1719 	while (1) {
1720 		level = btrfs_header_level(parent);
1721 		if (level == 0 || level <= lowest_level)
1722 			break;
1723 
1724 		ret = bin_search(parent, &node_keys[lowest_level], level,
1725 				 &slot);
1726 		if (ret && slot > 0)
1727 			slot--;
1728 
1729 		bytenr = btrfs_node_blockptr(parent, slot);
1730 		if (nodes[level - 1] == bytenr)
1731 			break;
1732 
1733 		blocksize = btrfs_level_size(root, level - 1);
1734 		generation = btrfs_node_ptr_generation(parent, slot);
1735 		btrfs_node_key_to_cpu(eb, &key, slot);
1736 		key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1737 
1738 		if (generation == trans->transid) {
1739 			eb = read_tree_block(root, bytenr, blocksize,
1740 					     generation);
1741 			btrfs_tree_lock(eb);
1742 			btrfs_set_lock_blocking(eb);
1743 		}
1744 
1745 		/*
1746 		 * if node keys match and node pointer hasn't been modified
1747 		 * in the running transaction, we can merge the path. for
1748 		 * blocks owened by reloc trees, the node pointer check is
1749 		 * skipped, this is because these blocks are fully controlled
1750 		 * by the space balance code, no one else can modify them.
1751 		 */
1752 		if (!nodes[level - 1] || !key_match ||
1753 		    (generation == trans->transid &&
1754 		     btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1755 			if (level == 1 || level == lowest_level + 1) {
1756 				if (generation == trans->transid) {
1757 					btrfs_tree_unlock(eb);
1758 					free_extent_buffer(eb);
1759 				}
1760 				break;
1761 			}
1762 
1763 			if (generation != trans->transid) {
1764 				eb = read_tree_block(root, bytenr, blocksize,
1765 						generation);
1766 				btrfs_tree_lock(eb);
1767 				btrfs_set_lock_blocking(eb);
1768 			}
1769 
1770 			ret = btrfs_cow_block(trans, root, eb, parent, slot,
1771 					      &eb);
1772 			BUG_ON(ret);
1773 
1774 			if (root->root_key.objectid ==
1775 			    BTRFS_TREE_RELOC_OBJECTID) {
1776 				if (!nodes[level - 1]) {
1777 					nodes[level - 1] = eb->start;
1778 					memcpy(&node_keys[level - 1], &key,
1779 					       sizeof(node_keys[0]));
1780 				} else {
1781 					WARN_ON(1);
1782 				}
1783 			}
1784 
1785 			btrfs_tree_unlock(parent);
1786 			free_extent_buffer(parent);
1787 			parent = eb;
1788 			continue;
1789 		}
1790 
1791 		btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1792 		btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1793 		btrfs_mark_buffer_dirty(parent);
1794 
1795 		ret = btrfs_inc_extent_ref(trans, root,
1796 					nodes[level - 1],
1797 					blocksize, parent->start,
1798 					btrfs_header_owner(parent),
1799 					btrfs_header_generation(parent),
1800 					level - 1);
1801 		BUG_ON(ret);
1802 
1803 		/*
1804 		 * If the block was created in the running transaction,
1805 		 * it's possible this is the last reference to it, so we
1806 		 * should drop the subtree.
1807 		 */
1808 		if (generation == trans->transid) {
1809 			ret = btrfs_drop_subtree(trans, root, eb, parent);
1810 			BUG_ON(ret);
1811 			btrfs_tree_unlock(eb);
1812 			free_extent_buffer(eb);
1813 		} else {
1814 			ret = btrfs_free_extent(trans, root, bytenr,
1815 					blocksize, parent->start,
1816 					btrfs_header_owner(parent),
1817 					btrfs_header_generation(parent),
1818 					level - 1, 1);
1819 			BUG_ON(ret);
1820 		}
1821 		break;
1822 	}
1823 	btrfs_tree_unlock(parent);
1824 	free_extent_buffer(parent);
1825 	return 0;
1826 }
1827 
1828 /*
1829  * adjust the pointers going up the tree, starting at level
1830  * making sure the right key of each node is points to 'key'.
1831  * This is used after shifting pointers to the left, so it stops
1832  * fixing up pointers when a given leaf/node is not in slot 0 of the
1833  * higher levels
1834  *
1835  * If this fails to write a tree block, it returns -1, but continues
1836  * fixing up the blocks in ram so the tree is consistent.
1837  */
1838 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1839 			  struct btrfs_root *root, struct btrfs_path *path,
1840 			  struct btrfs_disk_key *key, int level)
1841 {
1842 	int i;
1843 	int ret = 0;
1844 	struct extent_buffer *t;
1845 
1846 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1847 		int tslot = path->slots[i];
1848 		if (!path->nodes[i])
1849 			break;
1850 		t = path->nodes[i];
1851 		btrfs_set_node_key(t, key, tslot);
1852 		btrfs_mark_buffer_dirty(path->nodes[i]);
1853 		if (tslot != 0)
1854 			break;
1855 	}
1856 	return ret;
1857 }
1858 
1859 /*
1860  * update item key.
1861  *
1862  * This function isn't completely safe. It's the caller's responsibility
1863  * that the new key won't break the order
1864  */
1865 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1866 			    struct btrfs_root *root, struct btrfs_path *path,
1867 			    struct btrfs_key *new_key)
1868 {
1869 	struct btrfs_disk_key disk_key;
1870 	struct extent_buffer *eb;
1871 	int slot;
1872 
1873 	eb = path->nodes[0];
1874 	slot = path->slots[0];
1875 	if (slot > 0) {
1876 		btrfs_item_key(eb, &disk_key, slot - 1);
1877 		if (comp_keys(&disk_key, new_key) >= 0)
1878 			return -1;
1879 	}
1880 	if (slot < btrfs_header_nritems(eb) - 1) {
1881 		btrfs_item_key(eb, &disk_key, slot + 1);
1882 		if (comp_keys(&disk_key, new_key) <= 0)
1883 			return -1;
1884 	}
1885 
1886 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1887 	btrfs_set_item_key(eb, &disk_key, slot);
1888 	btrfs_mark_buffer_dirty(eb);
1889 	if (slot == 0)
1890 		fixup_low_keys(trans, root, path, &disk_key, 1);
1891 	return 0;
1892 }
1893 
1894 /*
1895  * try to push data from one node into the next node left in the
1896  * tree.
1897  *
1898  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1899  * error, and > 0 if there was no room in the left hand block.
1900  */
1901 static int push_node_left(struct btrfs_trans_handle *trans,
1902 			  struct btrfs_root *root, struct extent_buffer *dst,
1903 			  struct extent_buffer *src, int empty)
1904 {
1905 	int push_items = 0;
1906 	int src_nritems;
1907 	int dst_nritems;
1908 	int ret = 0;
1909 
1910 	src_nritems = btrfs_header_nritems(src);
1911 	dst_nritems = btrfs_header_nritems(dst);
1912 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1913 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1914 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1915 
1916 	if (!empty && src_nritems <= 8)
1917 		return 1;
1918 
1919 	if (push_items <= 0)
1920 		return 1;
1921 
1922 	if (empty) {
1923 		push_items = min(src_nritems, push_items);
1924 		if (push_items < src_nritems) {
1925 			/* leave at least 8 pointers in the node if
1926 			 * we aren't going to empty it
1927 			 */
1928 			if (src_nritems - push_items < 8) {
1929 				if (push_items <= 8)
1930 					return 1;
1931 				push_items -= 8;
1932 			}
1933 		}
1934 	} else
1935 		push_items = min(src_nritems - 8, push_items);
1936 
1937 	copy_extent_buffer(dst, src,
1938 			   btrfs_node_key_ptr_offset(dst_nritems),
1939 			   btrfs_node_key_ptr_offset(0),
1940 			   push_items * sizeof(struct btrfs_key_ptr));
1941 
1942 	if (push_items < src_nritems) {
1943 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1944 				      btrfs_node_key_ptr_offset(push_items),
1945 				      (src_nritems - push_items) *
1946 				      sizeof(struct btrfs_key_ptr));
1947 	}
1948 	btrfs_set_header_nritems(src, src_nritems - push_items);
1949 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1950 	btrfs_mark_buffer_dirty(src);
1951 	btrfs_mark_buffer_dirty(dst);
1952 
1953 	ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
1954 	BUG_ON(ret);
1955 
1956 	return ret;
1957 }
1958 
1959 /*
1960  * try to push data from one node into the next node right in the
1961  * tree.
1962  *
1963  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1964  * error, and > 0 if there was no room in the right hand block.
1965  *
1966  * this will  only push up to 1/2 the contents of the left node over
1967  */
1968 static int balance_node_right(struct btrfs_trans_handle *trans,
1969 			      struct btrfs_root *root,
1970 			      struct extent_buffer *dst,
1971 			      struct extent_buffer *src)
1972 {
1973 	int push_items = 0;
1974 	int max_push;
1975 	int src_nritems;
1976 	int dst_nritems;
1977 	int ret = 0;
1978 
1979 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1980 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1981 
1982 	src_nritems = btrfs_header_nritems(src);
1983 	dst_nritems = btrfs_header_nritems(dst);
1984 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1985 	if (push_items <= 0)
1986 		return 1;
1987 
1988 	if (src_nritems < 4)
1989 		return 1;
1990 
1991 	max_push = src_nritems / 2 + 1;
1992 	/* don't try to empty the node */
1993 	if (max_push >= src_nritems)
1994 		return 1;
1995 
1996 	if (max_push < push_items)
1997 		push_items = max_push;
1998 
1999 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2000 				      btrfs_node_key_ptr_offset(0),
2001 				      (dst_nritems) *
2002 				      sizeof(struct btrfs_key_ptr));
2003 
2004 	copy_extent_buffer(dst, src,
2005 			   btrfs_node_key_ptr_offset(0),
2006 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2007 			   push_items * sizeof(struct btrfs_key_ptr));
2008 
2009 	btrfs_set_header_nritems(src, src_nritems - push_items);
2010 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2011 
2012 	btrfs_mark_buffer_dirty(src);
2013 	btrfs_mark_buffer_dirty(dst);
2014 
2015 	ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
2016 	BUG_ON(ret);
2017 
2018 	return ret;
2019 }
2020 
2021 /*
2022  * helper function to insert a new root level in the tree.
2023  * A new node is allocated, and a single item is inserted to
2024  * point to the existing root
2025  *
2026  * returns zero on success or < 0 on failure.
2027  */
2028 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2029 			   struct btrfs_root *root,
2030 			   struct btrfs_path *path, int level)
2031 {
2032 	u64 lower_gen;
2033 	struct extent_buffer *lower;
2034 	struct extent_buffer *c;
2035 	struct extent_buffer *old;
2036 	struct btrfs_disk_key lower_key;
2037 	int ret;
2038 
2039 	BUG_ON(path->nodes[level]);
2040 	BUG_ON(path->nodes[level-1] != root->node);
2041 
2042 	lower = path->nodes[level-1];
2043 	if (level == 1)
2044 		btrfs_item_key(lower, &lower_key, 0);
2045 	else
2046 		btrfs_node_key(lower, &lower_key, 0);
2047 
2048 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2049 				   root->root_key.objectid, trans->transid,
2050 				   level, root->node->start, 0);
2051 	if (IS_ERR(c))
2052 		return PTR_ERR(c);
2053 
2054 	memset_extent_buffer(c, 0, 0, root->nodesize);
2055 	btrfs_set_header_nritems(c, 1);
2056 	btrfs_set_header_level(c, level);
2057 	btrfs_set_header_bytenr(c, c->start);
2058 	btrfs_set_header_generation(c, trans->transid);
2059 	btrfs_set_header_owner(c, root->root_key.objectid);
2060 
2061 	write_extent_buffer(c, root->fs_info->fsid,
2062 			    (unsigned long)btrfs_header_fsid(c),
2063 			    BTRFS_FSID_SIZE);
2064 
2065 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2066 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2067 			    BTRFS_UUID_SIZE);
2068 
2069 	btrfs_set_node_key(c, &lower_key, 0);
2070 	btrfs_set_node_blockptr(c, 0, lower->start);
2071 	lower_gen = btrfs_header_generation(lower);
2072 	WARN_ON(lower_gen != trans->transid);
2073 
2074 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2075 
2076 	btrfs_mark_buffer_dirty(c);
2077 
2078 	spin_lock(&root->node_lock);
2079 	old = root->node;
2080 	root->node = c;
2081 	spin_unlock(&root->node_lock);
2082 
2083 	ret = btrfs_update_extent_ref(trans, root, lower->start,
2084 				      lower->len, lower->start, c->start,
2085 				      root->root_key.objectid,
2086 				      trans->transid, level - 1);
2087 	BUG_ON(ret);
2088 
2089 	/* the super has an extra ref to root->node */
2090 	free_extent_buffer(old);
2091 
2092 	add_root_to_dirty_list(root);
2093 	extent_buffer_get(c);
2094 	path->nodes[level] = c;
2095 	path->locks[level] = 1;
2096 	path->slots[level] = 0;
2097 	return 0;
2098 }
2099 
2100 /*
2101  * worker function to insert a single pointer in a node.
2102  * the node should have enough room for the pointer already
2103  *
2104  * slot and level indicate where you want the key to go, and
2105  * blocknr is the block the key points to.
2106  *
2107  * returns zero on success and < 0 on any error
2108  */
2109 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2110 		      *root, struct btrfs_path *path, struct btrfs_disk_key
2111 		      *key, u64 bytenr, int slot, int level)
2112 {
2113 	struct extent_buffer *lower;
2114 	int nritems;
2115 
2116 	BUG_ON(!path->nodes[level]);
2117 	lower = path->nodes[level];
2118 	nritems = btrfs_header_nritems(lower);
2119 	if (slot > nritems)
2120 		BUG();
2121 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2122 		BUG();
2123 	if (slot != nritems) {
2124 		memmove_extent_buffer(lower,
2125 			      btrfs_node_key_ptr_offset(slot + 1),
2126 			      btrfs_node_key_ptr_offset(slot),
2127 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2128 	}
2129 	btrfs_set_node_key(lower, key, slot);
2130 	btrfs_set_node_blockptr(lower, slot, bytenr);
2131 	WARN_ON(trans->transid == 0);
2132 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2133 	btrfs_set_header_nritems(lower, nritems + 1);
2134 	btrfs_mark_buffer_dirty(lower);
2135 	return 0;
2136 }
2137 
2138 /*
2139  * split the node at the specified level in path in two.
2140  * The path is corrected to point to the appropriate node after the split
2141  *
2142  * Before splitting this tries to make some room in the node by pushing
2143  * left and right, if either one works, it returns right away.
2144  *
2145  * returns 0 on success and < 0 on failure
2146  */
2147 static noinline int split_node(struct btrfs_trans_handle *trans,
2148 			       struct btrfs_root *root,
2149 			       struct btrfs_path *path, int level)
2150 {
2151 	struct extent_buffer *c;
2152 	struct extent_buffer *split;
2153 	struct btrfs_disk_key disk_key;
2154 	int mid;
2155 	int ret;
2156 	int wret;
2157 	u32 c_nritems;
2158 
2159 	c = path->nodes[level];
2160 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2161 	if (c == root->node) {
2162 		/* trying to split the root, lets make a new one */
2163 		ret = insert_new_root(trans, root, path, level + 1);
2164 		if (ret)
2165 			return ret;
2166 	} else if (!trans->transaction->delayed_refs.flushing) {
2167 		ret = push_nodes_for_insert(trans, root, path, level);
2168 		c = path->nodes[level];
2169 		if (!ret && btrfs_header_nritems(c) <
2170 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2171 			return 0;
2172 		if (ret < 0)
2173 			return ret;
2174 	}
2175 
2176 	c_nritems = btrfs_header_nritems(c);
2177 
2178 	split = btrfs_alloc_free_block(trans, root, root->nodesize,
2179 					path->nodes[level + 1]->start,
2180 					root->root_key.objectid,
2181 					trans->transid, level, c->start, 0);
2182 	if (IS_ERR(split))
2183 		return PTR_ERR(split);
2184 
2185 	btrfs_set_header_flags(split, btrfs_header_flags(c));
2186 	btrfs_set_header_level(split, btrfs_header_level(c));
2187 	btrfs_set_header_bytenr(split, split->start);
2188 	btrfs_set_header_generation(split, trans->transid);
2189 	btrfs_set_header_owner(split, root->root_key.objectid);
2190 	btrfs_set_header_flags(split, 0);
2191 	write_extent_buffer(split, root->fs_info->fsid,
2192 			    (unsigned long)btrfs_header_fsid(split),
2193 			    BTRFS_FSID_SIZE);
2194 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2195 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2196 			    BTRFS_UUID_SIZE);
2197 
2198 	mid = (c_nritems + 1) / 2;
2199 
2200 	copy_extent_buffer(split, c,
2201 			   btrfs_node_key_ptr_offset(0),
2202 			   btrfs_node_key_ptr_offset(mid),
2203 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2204 	btrfs_set_header_nritems(split, c_nritems - mid);
2205 	btrfs_set_header_nritems(c, mid);
2206 	ret = 0;
2207 
2208 	btrfs_mark_buffer_dirty(c);
2209 	btrfs_mark_buffer_dirty(split);
2210 
2211 	btrfs_node_key(split, &disk_key, 0);
2212 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2213 			  path->slots[level + 1] + 1,
2214 			  level + 1);
2215 	if (wret)
2216 		ret = wret;
2217 
2218 	ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2219 	BUG_ON(ret);
2220 
2221 	if (path->slots[level] >= mid) {
2222 		path->slots[level] -= mid;
2223 		btrfs_tree_unlock(c);
2224 		free_extent_buffer(c);
2225 		path->nodes[level] = split;
2226 		path->slots[level + 1] += 1;
2227 	} else {
2228 		btrfs_tree_unlock(split);
2229 		free_extent_buffer(split);
2230 	}
2231 	return ret;
2232 }
2233 
2234 /*
2235  * how many bytes are required to store the items in a leaf.  start
2236  * and nr indicate which items in the leaf to check.  This totals up the
2237  * space used both by the item structs and the item data
2238  */
2239 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2240 {
2241 	int data_len;
2242 	int nritems = btrfs_header_nritems(l);
2243 	int end = min(nritems, start + nr) - 1;
2244 
2245 	if (!nr)
2246 		return 0;
2247 	data_len = btrfs_item_end_nr(l, start);
2248 	data_len = data_len - btrfs_item_offset_nr(l, end);
2249 	data_len += sizeof(struct btrfs_item) * nr;
2250 	WARN_ON(data_len < 0);
2251 	return data_len;
2252 }
2253 
2254 /*
2255  * The space between the end of the leaf items and
2256  * the start of the leaf data.  IOW, how much room
2257  * the leaf has left for both items and data
2258  */
2259 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2260 				   struct extent_buffer *leaf)
2261 {
2262 	int nritems = btrfs_header_nritems(leaf);
2263 	int ret;
2264 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2265 	if (ret < 0) {
2266 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2267 		       "used %d nritems %d\n",
2268 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2269 		       leaf_space_used(leaf, 0, nritems), nritems);
2270 	}
2271 	return ret;
2272 }
2273 
2274 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2275 				      struct btrfs_root *root,
2276 				      struct btrfs_path *path,
2277 				      int data_size, int empty,
2278 				      struct extent_buffer *right,
2279 				      int free_space, u32 left_nritems)
2280 {
2281 	struct extent_buffer *left = path->nodes[0];
2282 	struct extent_buffer *upper = path->nodes[1];
2283 	struct btrfs_disk_key disk_key;
2284 	int slot;
2285 	u32 i;
2286 	int push_space = 0;
2287 	int push_items = 0;
2288 	struct btrfs_item *item;
2289 	u32 nr;
2290 	u32 right_nritems;
2291 	u32 data_end;
2292 	u32 this_item_size;
2293 	int ret;
2294 
2295 	if (empty)
2296 		nr = 0;
2297 	else
2298 		nr = 1;
2299 
2300 	if (path->slots[0] >= left_nritems)
2301 		push_space += data_size;
2302 
2303 	slot = path->slots[1];
2304 	i = left_nritems - 1;
2305 	while (i >= nr) {
2306 		item = btrfs_item_nr(left, i);
2307 
2308 		if (!empty && push_items > 0) {
2309 			if (path->slots[0] > i)
2310 				break;
2311 			if (path->slots[0] == i) {
2312 				int space = btrfs_leaf_free_space(root, left);
2313 				if (space + push_space * 2 > free_space)
2314 					break;
2315 			}
2316 		}
2317 
2318 		if (path->slots[0] == i)
2319 			push_space += data_size;
2320 
2321 		if (!left->map_token) {
2322 			map_extent_buffer(left, (unsigned long)item,
2323 					sizeof(struct btrfs_item),
2324 					&left->map_token, &left->kaddr,
2325 					&left->map_start, &left->map_len,
2326 					KM_USER1);
2327 		}
2328 
2329 		this_item_size = btrfs_item_size(left, item);
2330 		if (this_item_size + sizeof(*item) + push_space > free_space)
2331 			break;
2332 
2333 		push_items++;
2334 		push_space += this_item_size + sizeof(*item);
2335 		if (i == 0)
2336 			break;
2337 		i--;
2338 	}
2339 	if (left->map_token) {
2340 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2341 		left->map_token = NULL;
2342 	}
2343 
2344 	if (push_items == 0)
2345 		goto out_unlock;
2346 
2347 	if (!empty && push_items == left_nritems)
2348 		WARN_ON(1);
2349 
2350 	/* push left to right */
2351 	right_nritems = btrfs_header_nritems(right);
2352 
2353 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2354 	push_space -= leaf_data_end(root, left);
2355 
2356 	/* make room in the right data area */
2357 	data_end = leaf_data_end(root, right);
2358 	memmove_extent_buffer(right,
2359 			      btrfs_leaf_data(right) + data_end - push_space,
2360 			      btrfs_leaf_data(right) + data_end,
2361 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2362 
2363 	/* copy from the left data area */
2364 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2365 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2366 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2367 		     push_space);
2368 
2369 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2370 			      btrfs_item_nr_offset(0),
2371 			      right_nritems * sizeof(struct btrfs_item));
2372 
2373 	/* copy the items from left to right */
2374 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2375 		   btrfs_item_nr_offset(left_nritems - push_items),
2376 		   push_items * sizeof(struct btrfs_item));
2377 
2378 	/* update the item pointers */
2379 	right_nritems += push_items;
2380 	btrfs_set_header_nritems(right, right_nritems);
2381 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2382 	for (i = 0; i < right_nritems; i++) {
2383 		item = btrfs_item_nr(right, i);
2384 		if (!right->map_token) {
2385 			map_extent_buffer(right, (unsigned long)item,
2386 					sizeof(struct btrfs_item),
2387 					&right->map_token, &right->kaddr,
2388 					&right->map_start, &right->map_len,
2389 					KM_USER1);
2390 		}
2391 		push_space -= btrfs_item_size(right, item);
2392 		btrfs_set_item_offset(right, item, push_space);
2393 	}
2394 
2395 	if (right->map_token) {
2396 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2397 		right->map_token = NULL;
2398 	}
2399 	left_nritems -= push_items;
2400 	btrfs_set_header_nritems(left, left_nritems);
2401 
2402 	if (left_nritems)
2403 		btrfs_mark_buffer_dirty(left);
2404 	btrfs_mark_buffer_dirty(right);
2405 
2406 	ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2407 	BUG_ON(ret);
2408 
2409 	btrfs_item_key(right, &disk_key, 0);
2410 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2411 	btrfs_mark_buffer_dirty(upper);
2412 
2413 	/* then fixup the leaf pointer in the path */
2414 	if (path->slots[0] >= left_nritems) {
2415 		path->slots[0] -= left_nritems;
2416 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2417 			clean_tree_block(trans, root, path->nodes[0]);
2418 		btrfs_tree_unlock(path->nodes[0]);
2419 		free_extent_buffer(path->nodes[0]);
2420 		path->nodes[0] = right;
2421 		path->slots[1] += 1;
2422 	} else {
2423 		btrfs_tree_unlock(right);
2424 		free_extent_buffer(right);
2425 	}
2426 	return 0;
2427 
2428 out_unlock:
2429 	btrfs_tree_unlock(right);
2430 	free_extent_buffer(right);
2431 	return 1;
2432 }
2433 
2434 /*
2435  * push some data in the path leaf to the right, trying to free up at
2436  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2437  *
2438  * returns 1 if the push failed because the other node didn't have enough
2439  * room, 0 if everything worked out and < 0 if there were major errors.
2440  */
2441 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2442 			   *root, struct btrfs_path *path, int data_size,
2443 			   int empty)
2444 {
2445 	struct extent_buffer *left = path->nodes[0];
2446 	struct extent_buffer *right;
2447 	struct extent_buffer *upper;
2448 	int slot;
2449 	int free_space;
2450 	u32 left_nritems;
2451 	int ret;
2452 
2453 	if (!path->nodes[1])
2454 		return 1;
2455 
2456 	slot = path->slots[1];
2457 	upper = path->nodes[1];
2458 	if (slot >= btrfs_header_nritems(upper) - 1)
2459 		return 1;
2460 
2461 	btrfs_assert_tree_locked(path->nodes[1]);
2462 
2463 	right = read_node_slot(root, upper, slot + 1);
2464 	btrfs_tree_lock(right);
2465 	btrfs_set_lock_blocking(right);
2466 
2467 	free_space = btrfs_leaf_free_space(root, right);
2468 	if (free_space < data_size)
2469 		goto out_unlock;
2470 
2471 	/* cow and double check */
2472 	ret = btrfs_cow_block(trans, root, right, upper,
2473 			      slot + 1, &right);
2474 	if (ret)
2475 		goto out_unlock;
2476 
2477 	free_space = btrfs_leaf_free_space(root, right);
2478 	if (free_space < data_size)
2479 		goto out_unlock;
2480 
2481 	left_nritems = btrfs_header_nritems(left);
2482 	if (left_nritems == 0)
2483 		goto out_unlock;
2484 
2485 	return __push_leaf_right(trans, root, path, data_size, empty,
2486 				right, free_space, left_nritems);
2487 out_unlock:
2488 	btrfs_tree_unlock(right);
2489 	free_extent_buffer(right);
2490 	return 1;
2491 }
2492 
2493 /*
2494  * push some data in the path leaf to the left, trying to free up at
2495  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2496  */
2497 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2498 				     struct btrfs_root *root,
2499 				     struct btrfs_path *path, int data_size,
2500 				     int empty, struct extent_buffer *left,
2501 				     int free_space, int right_nritems)
2502 {
2503 	struct btrfs_disk_key disk_key;
2504 	struct extent_buffer *right = path->nodes[0];
2505 	int slot;
2506 	int i;
2507 	int push_space = 0;
2508 	int push_items = 0;
2509 	struct btrfs_item *item;
2510 	u32 old_left_nritems;
2511 	u32 nr;
2512 	int ret = 0;
2513 	int wret;
2514 	u32 this_item_size;
2515 	u32 old_left_item_size;
2516 
2517 	slot = path->slots[1];
2518 
2519 	if (empty)
2520 		nr = right_nritems;
2521 	else
2522 		nr = right_nritems - 1;
2523 
2524 	for (i = 0; i < nr; i++) {
2525 		item = btrfs_item_nr(right, i);
2526 		if (!right->map_token) {
2527 			map_extent_buffer(right, (unsigned long)item,
2528 					sizeof(struct btrfs_item),
2529 					&right->map_token, &right->kaddr,
2530 					&right->map_start, &right->map_len,
2531 					KM_USER1);
2532 		}
2533 
2534 		if (!empty && push_items > 0) {
2535 			if (path->slots[0] < i)
2536 				break;
2537 			if (path->slots[0] == i) {
2538 				int space = btrfs_leaf_free_space(root, right);
2539 				if (space + push_space * 2 > free_space)
2540 					break;
2541 			}
2542 		}
2543 
2544 		if (path->slots[0] == i)
2545 			push_space += data_size;
2546 
2547 		this_item_size = btrfs_item_size(right, item);
2548 		if (this_item_size + sizeof(*item) + push_space > free_space)
2549 			break;
2550 
2551 		push_items++;
2552 		push_space += this_item_size + sizeof(*item);
2553 	}
2554 
2555 	if (right->map_token) {
2556 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2557 		right->map_token = NULL;
2558 	}
2559 
2560 	if (push_items == 0) {
2561 		ret = 1;
2562 		goto out;
2563 	}
2564 	if (!empty && push_items == btrfs_header_nritems(right))
2565 		WARN_ON(1);
2566 
2567 	/* push data from right to left */
2568 	copy_extent_buffer(left, right,
2569 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2570 			   btrfs_item_nr_offset(0),
2571 			   push_items * sizeof(struct btrfs_item));
2572 
2573 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2574 		     btrfs_item_offset_nr(right, push_items - 1);
2575 
2576 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2577 		     leaf_data_end(root, left) - push_space,
2578 		     btrfs_leaf_data(right) +
2579 		     btrfs_item_offset_nr(right, push_items - 1),
2580 		     push_space);
2581 	old_left_nritems = btrfs_header_nritems(left);
2582 	BUG_ON(old_left_nritems <= 0);
2583 
2584 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2585 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2586 		u32 ioff;
2587 
2588 		item = btrfs_item_nr(left, i);
2589 		if (!left->map_token) {
2590 			map_extent_buffer(left, (unsigned long)item,
2591 					sizeof(struct btrfs_item),
2592 					&left->map_token, &left->kaddr,
2593 					&left->map_start, &left->map_len,
2594 					KM_USER1);
2595 		}
2596 
2597 		ioff = btrfs_item_offset(left, item);
2598 		btrfs_set_item_offset(left, item,
2599 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2600 	}
2601 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2602 	if (left->map_token) {
2603 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2604 		left->map_token = NULL;
2605 	}
2606 
2607 	/* fixup right node */
2608 	if (push_items > right_nritems) {
2609 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2610 		       right_nritems);
2611 		WARN_ON(1);
2612 	}
2613 
2614 	if (push_items < right_nritems) {
2615 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2616 						  leaf_data_end(root, right);
2617 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2618 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2619 				      btrfs_leaf_data(right) +
2620 				      leaf_data_end(root, right), push_space);
2621 
2622 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2623 			      btrfs_item_nr_offset(push_items),
2624 			     (btrfs_header_nritems(right) - push_items) *
2625 			     sizeof(struct btrfs_item));
2626 	}
2627 	right_nritems -= push_items;
2628 	btrfs_set_header_nritems(right, right_nritems);
2629 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2630 	for (i = 0; i < right_nritems; i++) {
2631 		item = btrfs_item_nr(right, i);
2632 
2633 		if (!right->map_token) {
2634 			map_extent_buffer(right, (unsigned long)item,
2635 					sizeof(struct btrfs_item),
2636 					&right->map_token, &right->kaddr,
2637 					&right->map_start, &right->map_len,
2638 					KM_USER1);
2639 		}
2640 
2641 		push_space = push_space - btrfs_item_size(right, item);
2642 		btrfs_set_item_offset(right, item, push_space);
2643 	}
2644 	if (right->map_token) {
2645 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2646 		right->map_token = NULL;
2647 	}
2648 
2649 	btrfs_mark_buffer_dirty(left);
2650 	if (right_nritems)
2651 		btrfs_mark_buffer_dirty(right);
2652 
2653 	ret = btrfs_update_ref(trans, root, right, left,
2654 			       old_left_nritems, push_items);
2655 	BUG_ON(ret);
2656 
2657 	btrfs_item_key(right, &disk_key, 0);
2658 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2659 	if (wret)
2660 		ret = wret;
2661 
2662 	/* then fixup the leaf pointer in the path */
2663 	if (path->slots[0] < push_items) {
2664 		path->slots[0] += old_left_nritems;
2665 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2666 			clean_tree_block(trans, root, path->nodes[0]);
2667 		btrfs_tree_unlock(path->nodes[0]);
2668 		free_extent_buffer(path->nodes[0]);
2669 		path->nodes[0] = left;
2670 		path->slots[1] -= 1;
2671 	} else {
2672 		btrfs_tree_unlock(left);
2673 		free_extent_buffer(left);
2674 		path->slots[0] -= push_items;
2675 	}
2676 	BUG_ON(path->slots[0] < 0);
2677 	return ret;
2678 out:
2679 	btrfs_tree_unlock(left);
2680 	free_extent_buffer(left);
2681 	return ret;
2682 }
2683 
2684 /*
2685  * push some data in the path leaf to the left, trying to free up at
2686  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2687  */
2688 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2689 			  *root, struct btrfs_path *path, int data_size,
2690 			  int empty)
2691 {
2692 	struct extent_buffer *right = path->nodes[0];
2693 	struct extent_buffer *left;
2694 	int slot;
2695 	int free_space;
2696 	u32 right_nritems;
2697 	int ret = 0;
2698 
2699 	slot = path->slots[1];
2700 	if (slot == 0)
2701 		return 1;
2702 	if (!path->nodes[1])
2703 		return 1;
2704 
2705 	right_nritems = btrfs_header_nritems(right);
2706 	if (right_nritems == 0)
2707 		return 1;
2708 
2709 	btrfs_assert_tree_locked(path->nodes[1]);
2710 
2711 	left = read_node_slot(root, path->nodes[1], slot - 1);
2712 	btrfs_tree_lock(left);
2713 	btrfs_set_lock_blocking(left);
2714 
2715 	free_space = btrfs_leaf_free_space(root, left);
2716 	if (free_space < data_size) {
2717 		ret = 1;
2718 		goto out;
2719 	}
2720 
2721 	/* cow and double check */
2722 	ret = btrfs_cow_block(trans, root, left,
2723 			      path->nodes[1], slot - 1, &left);
2724 	if (ret) {
2725 		/* we hit -ENOSPC, but it isn't fatal here */
2726 		ret = 1;
2727 		goto out;
2728 	}
2729 
2730 	free_space = btrfs_leaf_free_space(root, left);
2731 	if (free_space < data_size) {
2732 		ret = 1;
2733 		goto out;
2734 	}
2735 
2736 	return __push_leaf_left(trans, root, path, data_size,
2737 			       empty, left, free_space, right_nritems);
2738 out:
2739 	btrfs_tree_unlock(left);
2740 	free_extent_buffer(left);
2741 	return ret;
2742 }
2743 
2744 /*
2745  * split the path's leaf in two, making sure there is at least data_size
2746  * available for the resulting leaf level of the path.
2747  *
2748  * returns 0 if all went well and < 0 on failure.
2749  */
2750 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2751 			       struct btrfs_root *root,
2752 			       struct btrfs_path *path,
2753 			       struct extent_buffer *l,
2754 			       struct extent_buffer *right,
2755 			       int slot, int mid, int nritems)
2756 {
2757 	int data_copy_size;
2758 	int rt_data_off;
2759 	int i;
2760 	int ret = 0;
2761 	int wret;
2762 	struct btrfs_disk_key disk_key;
2763 
2764 	nritems = nritems - mid;
2765 	btrfs_set_header_nritems(right, nritems);
2766 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2767 
2768 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2769 			   btrfs_item_nr_offset(mid),
2770 			   nritems * sizeof(struct btrfs_item));
2771 
2772 	copy_extent_buffer(right, l,
2773 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2774 		     data_copy_size, btrfs_leaf_data(l) +
2775 		     leaf_data_end(root, l), data_copy_size);
2776 
2777 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2778 		      btrfs_item_end_nr(l, mid);
2779 
2780 	for (i = 0; i < nritems; i++) {
2781 		struct btrfs_item *item = btrfs_item_nr(right, i);
2782 		u32 ioff;
2783 
2784 		if (!right->map_token) {
2785 			map_extent_buffer(right, (unsigned long)item,
2786 					sizeof(struct btrfs_item),
2787 					&right->map_token, &right->kaddr,
2788 					&right->map_start, &right->map_len,
2789 					KM_USER1);
2790 		}
2791 
2792 		ioff = btrfs_item_offset(right, item);
2793 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2794 	}
2795 
2796 	if (right->map_token) {
2797 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2798 		right->map_token = NULL;
2799 	}
2800 
2801 	btrfs_set_header_nritems(l, mid);
2802 	ret = 0;
2803 	btrfs_item_key(right, &disk_key, 0);
2804 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2805 			  path->slots[1] + 1, 1);
2806 	if (wret)
2807 		ret = wret;
2808 
2809 	btrfs_mark_buffer_dirty(right);
2810 	btrfs_mark_buffer_dirty(l);
2811 	BUG_ON(path->slots[0] != slot);
2812 
2813 	ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2814 	BUG_ON(ret);
2815 
2816 	if (mid <= slot) {
2817 		btrfs_tree_unlock(path->nodes[0]);
2818 		free_extent_buffer(path->nodes[0]);
2819 		path->nodes[0] = right;
2820 		path->slots[0] -= mid;
2821 		path->slots[1] += 1;
2822 	} else {
2823 		btrfs_tree_unlock(right);
2824 		free_extent_buffer(right);
2825 	}
2826 
2827 	BUG_ON(path->slots[0] < 0);
2828 
2829 	return ret;
2830 }
2831 
2832 /*
2833  * split the path's leaf in two, making sure there is at least data_size
2834  * available for the resulting leaf level of the path.
2835  *
2836  * returns 0 if all went well and < 0 on failure.
2837  */
2838 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2839 			       struct btrfs_root *root,
2840 			       struct btrfs_key *ins_key,
2841 			       struct btrfs_path *path, int data_size,
2842 			       int extend)
2843 {
2844 	struct extent_buffer *l;
2845 	u32 nritems;
2846 	int mid;
2847 	int slot;
2848 	struct extent_buffer *right;
2849 	int ret = 0;
2850 	int wret;
2851 	int double_split;
2852 	int num_doubles = 0;
2853 
2854 	/* first try to make some room by pushing left and right */
2855 	if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY &&
2856 	    !trans->transaction->delayed_refs.flushing) {
2857 		wret = push_leaf_right(trans, root, path, data_size, 0);
2858 		if (wret < 0)
2859 			return wret;
2860 		if (wret) {
2861 			wret = push_leaf_left(trans, root, path, data_size, 0);
2862 			if (wret < 0)
2863 				return wret;
2864 		}
2865 		l = path->nodes[0];
2866 
2867 		/* did the pushes work? */
2868 		if (btrfs_leaf_free_space(root, l) >= data_size)
2869 			return 0;
2870 	}
2871 
2872 	if (!path->nodes[1]) {
2873 		ret = insert_new_root(trans, root, path, 1);
2874 		if (ret)
2875 			return ret;
2876 	}
2877 again:
2878 	double_split = 0;
2879 	l = path->nodes[0];
2880 	slot = path->slots[0];
2881 	nritems = btrfs_header_nritems(l);
2882 	mid = (nritems + 1) / 2;
2883 
2884 	right = btrfs_alloc_free_block(trans, root, root->leafsize,
2885 					path->nodes[1]->start,
2886 					root->root_key.objectid,
2887 					trans->transid, 0, l->start, 0);
2888 	if (IS_ERR(right)) {
2889 		BUG_ON(1);
2890 		return PTR_ERR(right);
2891 	}
2892 
2893 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2894 	btrfs_set_header_bytenr(right, right->start);
2895 	btrfs_set_header_generation(right, trans->transid);
2896 	btrfs_set_header_owner(right, root->root_key.objectid);
2897 	btrfs_set_header_level(right, 0);
2898 	write_extent_buffer(right, root->fs_info->fsid,
2899 			    (unsigned long)btrfs_header_fsid(right),
2900 			    BTRFS_FSID_SIZE);
2901 
2902 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2903 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2904 			    BTRFS_UUID_SIZE);
2905 
2906 	if (mid <= slot) {
2907 		if (nritems == 1 ||
2908 		    leaf_space_used(l, mid, nritems - mid) + data_size >
2909 			BTRFS_LEAF_DATA_SIZE(root)) {
2910 			if (slot >= nritems) {
2911 				struct btrfs_disk_key disk_key;
2912 
2913 				btrfs_cpu_key_to_disk(&disk_key, ins_key);
2914 				btrfs_set_header_nritems(right, 0);
2915 				wret = insert_ptr(trans, root, path,
2916 						  &disk_key, right->start,
2917 						  path->slots[1] + 1, 1);
2918 				if (wret)
2919 					ret = wret;
2920 
2921 				btrfs_tree_unlock(path->nodes[0]);
2922 				free_extent_buffer(path->nodes[0]);
2923 				path->nodes[0] = right;
2924 				path->slots[0] = 0;
2925 				path->slots[1] += 1;
2926 				btrfs_mark_buffer_dirty(right);
2927 				return ret;
2928 			}
2929 			mid = slot;
2930 			if (mid != nritems &&
2931 			    leaf_space_used(l, mid, nritems - mid) +
2932 			    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2933 				double_split = 1;
2934 			}
2935 		}
2936 	} else {
2937 		if (leaf_space_used(l, 0, mid) + data_size >
2938 			BTRFS_LEAF_DATA_SIZE(root)) {
2939 			if (!extend && data_size && slot == 0) {
2940 				struct btrfs_disk_key disk_key;
2941 
2942 				btrfs_cpu_key_to_disk(&disk_key, ins_key);
2943 				btrfs_set_header_nritems(right, 0);
2944 				wret = insert_ptr(trans, root, path,
2945 						  &disk_key,
2946 						  right->start,
2947 						  path->slots[1], 1);
2948 				if (wret)
2949 					ret = wret;
2950 				btrfs_tree_unlock(path->nodes[0]);
2951 				free_extent_buffer(path->nodes[0]);
2952 				path->nodes[0] = right;
2953 				path->slots[0] = 0;
2954 				if (path->slots[1] == 0) {
2955 					wret = fixup_low_keys(trans, root,
2956 						      path, &disk_key, 1);
2957 					if (wret)
2958 						ret = wret;
2959 				}
2960 				btrfs_mark_buffer_dirty(right);
2961 				return ret;
2962 			} else if ((extend || !data_size) && slot == 0) {
2963 				mid = 1;
2964 			} else {
2965 				mid = slot;
2966 				if (mid != nritems &&
2967 				    leaf_space_used(l, mid, nritems - mid) +
2968 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2969 					double_split = 1;
2970 				}
2971 			}
2972 		}
2973 	}
2974 
2975 	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2976 	BUG_ON(ret);
2977 
2978 	if (double_split) {
2979 		BUG_ON(num_doubles != 0);
2980 		num_doubles++;
2981 		goto again;
2982 	}
2983 
2984 	return ret;
2985 }
2986 
2987 /*
2988  * This function splits a single item into two items,
2989  * giving 'new_key' to the new item and splitting the
2990  * old one at split_offset (from the start of the item).
2991  *
2992  * The path may be released by this operation.  After
2993  * the split, the path is pointing to the old item.  The
2994  * new item is going to be in the same node as the old one.
2995  *
2996  * Note, the item being split must be smaller enough to live alone on
2997  * a tree block with room for one extra struct btrfs_item
2998  *
2999  * This allows us to split the item in place, keeping a lock on the
3000  * leaf the entire time.
3001  */
3002 int btrfs_split_item(struct btrfs_trans_handle *trans,
3003 		     struct btrfs_root *root,
3004 		     struct btrfs_path *path,
3005 		     struct btrfs_key *new_key,
3006 		     unsigned long split_offset)
3007 {
3008 	u32 item_size;
3009 	struct extent_buffer *leaf;
3010 	struct btrfs_key orig_key;
3011 	struct btrfs_item *item;
3012 	struct btrfs_item *new_item;
3013 	int ret = 0;
3014 	int slot;
3015 	u32 nritems;
3016 	u32 orig_offset;
3017 	struct btrfs_disk_key disk_key;
3018 	char *buf;
3019 
3020 	leaf = path->nodes[0];
3021 	btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
3022 	if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
3023 		goto split;
3024 
3025 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3026 	btrfs_release_path(root, path);
3027 
3028 	path->search_for_split = 1;
3029 	path->keep_locks = 1;
3030 
3031 	ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
3032 	path->search_for_split = 0;
3033 
3034 	/* if our item isn't there or got smaller, return now */
3035 	if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3036 							path->slots[0])) {
3037 		path->keep_locks = 0;
3038 		return -EAGAIN;
3039 	}
3040 
3041 	btrfs_set_path_blocking(path);
3042 	ret = split_leaf(trans, root, &orig_key, path,
3043 			 sizeof(struct btrfs_item), 1);
3044 	path->keep_locks = 0;
3045 	BUG_ON(ret);
3046 
3047 	btrfs_unlock_up_safe(path, 1);
3048 	leaf = path->nodes[0];
3049 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3050 
3051 split:
3052 	/*
3053 	 * make sure any changes to the path from split_leaf leave it
3054 	 * in a blocking state
3055 	 */
3056 	btrfs_set_path_blocking(path);
3057 
3058 	item = btrfs_item_nr(leaf, path->slots[0]);
3059 	orig_offset = btrfs_item_offset(leaf, item);
3060 	item_size = btrfs_item_size(leaf, item);
3061 
3062 	buf = kmalloc(item_size, GFP_NOFS);
3063 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3064 			    path->slots[0]), item_size);
3065 	slot = path->slots[0] + 1;
3066 	leaf = path->nodes[0];
3067 
3068 	nritems = btrfs_header_nritems(leaf);
3069 
3070 	if (slot != nritems) {
3071 		/* shift the items */
3072 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3073 			      btrfs_item_nr_offset(slot),
3074 			      (nritems - slot) * sizeof(struct btrfs_item));
3075 
3076 	}
3077 
3078 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3079 	btrfs_set_item_key(leaf, &disk_key, slot);
3080 
3081 	new_item = btrfs_item_nr(leaf, slot);
3082 
3083 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3084 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3085 
3086 	btrfs_set_item_offset(leaf, item,
3087 			      orig_offset + item_size - split_offset);
3088 	btrfs_set_item_size(leaf, item, split_offset);
3089 
3090 	btrfs_set_header_nritems(leaf, nritems + 1);
3091 
3092 	/* write the data for the start of the original item */
3093 	write_extent_buffer(leaf, buf,
3094 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3095 			    split_offset);
3096 
3097 	/* write the data for the new item */
3098 	write_extent_buffer(leaf, buf + split_offset,
3099 			    btrfs_item_ptr_offset(leaf, slot),
3100 			    item_size - split_offset);
3101 	btrfs_mark_buffer_dirty(leaf);
3102 
3103 	ret = 0;
3104 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3105 		btrfs_print_leaf(root, leaf);
3106 		BUG();
3107 	}
3108 	kfree(buf);
3109 	return ret;
3110 }
3111 
3112 /*
3113  * make the item pointed to by the path smaller.  new_size indicates
3114  * how small to make it, and from_end tells us if we just chop bytes
3115  * off the end of the item or if we shift the item to chop bytes off
3116  * the front.
3117  */
3118 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3119 			struct btrfs_root *root,
3120 			struct btrfs_path *path,
3121 			u32 new_size, int from_end)
3122 {
3123 	int ret = 0;
3124 	int slot;
3125 	int slot_orig;
3126 	struct extent_buffer *leaf;
3127 	struct btrfs_item *item;
3128 	u32 nritems;
3129 	unsigned int data_end;
3130 	unsigned int old_data_start;
3131 	unsigned int old_size;
3132 	unsigned int size_diff;
3133 	int i;
3134 
3135 	slot_orig = path->slots[0];
3136 	leaf = path->nodes[0];
3137 	slot = path->slots[0];
3138 
3139 	old_size = btrfs_item_size_nr(leaf, slot);
3140 	if (old_size == new_size)
3141 		return 0;
3142 
3143 	nritems = btrfs_header_nritems(leaf);
3144 	data_end = leaf_data_end(root, leaf);
3145 
3146 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3147 
3148 	size_diff = old_size - new_size;
3149 
3150 	BUG_ON(slot < 0);
3151 	BUG_ON(slot >= nritems);
3152 
3153 	/*
3154 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3155 	 */
3156 	/* first correct the data pointers */
3157 	for (i = slot; i < nritems; i++) {
3158 		u32 ioff;
3159 		item = btrfs_item_nr(leaf, i);
3160 
3161 		if (!leaf->map_token) {
3162 			map_extent_buffer(leaf, (unsigned long)item,
3163 					sizeof(struct btrfs_item),
3164 					&leaf->map_token, &leaf->kaddr,
3165 					&leaf->map_start, &leaf->map_len,
3166 					KM_USER1);
3167 		}
3168 
3169 		ioff = btrfs_item_offset(leaf, item);
3170 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3171 	}
3172 
3173 	if (leaf->map_token) {
3174 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3175 		leaf->map_token = NULL;
3176 	}
3177 
3178 	/* shift the data */
3179 	if (from_end) {
3180 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3181 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3182 			      data_end, old_data_start + new_size - data_end);
3183 	} else {
3184 		struct btrfs_disk_key disk_key;
3185 		u64 offset;
3186 
3187 		btrfs_item_key(leaf, &disk_key, slot);
3188 
3189 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3190 			unsigned long ptr;
3191 			struct btrfs_file_extent_item *fi;
3192 
3193 			fi = btrfs_item_ptr(leaf, slot,
3194 					    struct btrfs_file_extent_item);
3195 			fi = (struct btrfs_file_extent_item *)(
3196 			     (unsigned long)fi - size_diff);
3197 
3198 			if (btrfs_file_extent_type(leaf, fi) ==
3199 			    BTRFS_FILE_EXTENT_INLINE) {
3200 				ptr = btrfs_item_ptr_offset(leaf, slot);
3201 				memmove_extent_buffer(leaf, ptr,
3202 				      (unsigned long)fi,
3203 				      offsetof(struct btrfs_file_extent_item,
3204 						 disk_bytenr));
3205 			}
3206 		}
3207 
3208 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3209 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3210 			      data_end, old_data_start - data_end);
3211 
3212 		offset = btrfs_disk_key_offset(&disk_key);
3213 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3214 		btrfs_set_item_key(leaf, &disk_key, slot);
3215 		if (slot == 0)
3216 			fixup_low_keys(trans, root, path, &disk_key, 1);
3217 	}
3218 
3219 	item = btrfs_item_nr(leaf, slot);
3220 	btrfs_set_item_size(leaf, item, new_size);
3221 	btrfs_mark_buffer_dirty(leaf);
3222 
3223 	ret = 0;
3224 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3225 		btrfs_print_leaf(root, leaf);
3226 		BUG();
3227 	}
3228 	return ret;
3229 }
3230 
3231 /*
3232  * make the item pointed to by the path bigger, data_size is the new size.
3233  */
3234 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3235 		      struct btrfs_root *root, struct btrfs_path *path,
3236 		      u32 data_size)
3237 {
3238 	int ret = 0;
3239 	int slot;
3240 	int slot_orig;
3241 	struct extent_buffer *leaf;
3242 	struct btrfs_item *item;
3243 	u32 nritems;
3244 	unsigned int data_end;
3245 	unsigned int old_data;
3246 	unsigned int old_size;
3247 	int i;
3248 
3249 	slot_orig = path->slots[0];
3250 	leaf = path->nodes[0];
3251 
3252 	nritems = btrfs_header_nritems(leaf);
3253 	data_end = leaf_data_end(root, leaf);
3254 
3255 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3256 		btrfs_print_leaf(root, leaf);
3257 		BUG();
3258 	}
3259 	slot = path->slots[0];
3260 	old_data = btrfs_item_end_nr(leaf, slot);
3261 
3262 	BUG_ON(slot < 0);
3263 	if (slot >= nritems) {
3264 		btrfs_print_leaf(root, leaf);
3265 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3266 		       slot, nritems);
3267 		BUG_ON(1);
3268 	}
3269 
3270 	/*
3271 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3272 	 */
3273 	/* first correct the data pointers */
3274 	for (i = slot; i < nritems; i++) {
3275 		u32 ioff;
3276 		item = btrfs_item_nr(leaf, i);
3277 
3278 		if (!leaf->map_token) {
3279 			map_extent_buffer(leaf, (unsigned long)item,
3280 					sizeof(struct btrfs_item),
3281 					&leaf->map_token, &leaf->kaddr,
3282 					&leaf->map_start, &leaf->map_len,
3283 					KM_USER1);
3284 		}
3285 		ioff = btrfs_item_offset(leaf, item);
3286 		btrfs_set_item_offset(leaf, item, ioff - data_size);
3287 	}
3288 
3289 	if (leaf->map_token) {
3290 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3291 		leaf->map_token = NULL;
3292 	}
3293 
3294 	/* shift the data */
3295 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3296 		      data_end - data_size, btrfs_leaf_data(leaf) +
3297 		      data_end, old_data - data_end);
3298 
3299 	data_end = old_data;
3300 	old_size = btrfs_item_size_nr(leaf, slot);
3301 	item = btrfs_item_nr(leaf, slot);
3302 	btrfs_set_item_size(leaf, item, old_size + data_size);
3303 	btrfs_mark_buffer_dirty(leaf);
3304 
3305 	ret = 0;
3306 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3307 		btrfs_print_leaf(root, leaf);
3308 		BUG();
3309 	}
3310 	return ret;
3311 }
3312 
3313 /*
3314  * Given a key and some data, insert items into the tree.
3315  * This does all the path init required, making room in the tree if needed.
3316  * Returns the number of keys that were inserted.
3317  */
3318 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3319 			    struct btrfs_root *root,
3320 			    struct btrfs_path *path,
3321 			    struct btrfs_key *cpu_key, u32 *data_size,
3322 			    int nr)
3323 {
3324 	struct extent_buffer *leaf;
3325 	struct btrfs_item *item;
3326 	int ret = 0;
3327 	int slot;
3328 	int i;
3329 	u32 nritems;
3330 	u32 total_data = 0;
3331 	u32 total_size = 0;
3332 	unsigned int data_end;
3333 	struct btrfs_disk_key disk_key;
3334 	struct btrfs_key found_key;
3335 
3336 	for (i = 0; i < nr; i++) {
3337 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3338 		    BTRFS_LEAF_DATA_SIZE(root)) {
3339 			break;
3340 			nr = i;
3341 		}
3342 		total_data += data_size[i];
3343 		total_size += data_size[i] + sizeof(struct btrfs_item);
3344 	}
3345 	BUG_ON(nr == 0);
3346 
3347 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3348 	if (ret == 0)
3349 		return -EEXIST;
3350 	if (ret < 0)
3351 		goto out;
3352 
3353 	leaf = path->nodes[0];
3354 
3355 	nritems = btrfs_header_nritems(leaf);
3356 	data_end = leaf_data_end(root, leaf);
3357 
3358 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3359 		for (i = nr; i >= 0; i--) {
3360 			total_data -= data_size[i];
3361 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3362 			if (total_size < btrfs_leaf_free_space(root, leaf))
3363 				break;
3364 		}
3365 		nr = i;
3366 	}
3367 
3368 	slot = path->slots[0];
3369 	BUG_ON(slot < 0);
3370 
3371 	if (slot != nritems) {
3372 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3373 
3374 		item = btrfs_item_nr(leaf, slot);
3375 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3376 
3377 		/* figure out how many keys we can insert in here */
3378 		total_data = data_size[0];
3379 		for (i = 1; i < nr; i++) {
3380 			if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3381 				break;
3382 			total_data += data_size[i];
3383 		}
3384 		nr = i;
3385 
3386 		if (old_data < data_end) {
3387 			btrfs_print_leaf(root, leaf);
3388 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3389 			       slot, old_data, data_end);
3390 			BUG_ON(1);
3391 		}
3392 		/*
3393 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3394 		 */
3395 		/* first correct the data pointers */
3396 		WARN_ON(leaf->map_token);
3397 		for (i = slot; i < nritems; i++) {
3398 			u32 ioff;
3399 
3400 			item = btrfs_item_nr(leaf, i);
3401 			if (!leaf->map_token) {
3402 				map_extent_buffer(leaf, (unsigned long)item,
3403 					sizeof(struct btrfs_item),
3404 					&leaf->map_token, &leaf->kaddr,
3405 					&leaf->map_start, &leaf->map_len,
3406 					KM_USER1);
3407 			}
3408 
3409 			ioff = btrfs_item_offset(leaf, item);
3410 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3411 		}
3412 		if (leaf->map_token) {
3413 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3414 			leaf->map_token = NULL;
3415 		}
3416 
3417 		/* shift the items */
3418 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3419 			      btrfs_item_nr_offset(slot),
3420 			      (nritems - slot) * sizeof(struct btrfs_item));
3421 
3422 		/* shift the data */
3423 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3424 			      data_end - total_data, btrfs_leaf_data(leaf) +
3425 			      data_end, old_data - data_end);
3426 		data_end = old_data;
3427 	} else {
3428 		/*
3429 		 * this sucks but it has to be done, if we are inserting at
3430 		 * the end of the leaf only insert 1 of the items, since we
3431 		 * have no way of knowing whats on the next leaf and we'd have
3432 		 * to drop our current locks to figure it out
3433 		 */
3434 		nr = 1;
3435 	}
3436 
3437 	/* setup the item for the new data */
3438 	for (i = 0; i < nr; i++) {
3439 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3440 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3441 		item = btrfs_item_nr(leaf, slot + i);
3442 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3443 		data_end -= data_size[i];
3444 		btrfs_set_item_size(leaf, item, data_size[i]);
3445 	}
3446 	btrfs_set_header_nritems(leaf, nritems + nr);
3447 	btrfs_mark_buffer_dirty(leaf);
3448 
3449 	ret = 0;
3450 	if (slot == 0) {
3451 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3452 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3453 	}
3454 
3455 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3456 		btrfs_print_leaf(root, leaf);
3457 		BUG();
3458 	}
3459 out:
3460 	if (!ret)
3461 		ret = nr;
3462 	return ret;
3463 }
3464 
3465 /*
3466  * this is a helper for btrfs_insert_empty_items, the main goal here is
3467  * to save stack depth by doing the bulk of the work in a function
3468  * that doesn't call btrfs_search_slot
3469  */
3470 static noinline_for_stack int
3471 setup_items_for_insert(struct btrfs_trans_handle *trans,
3472 		      struct btrfs_root *root, struct btrfs_path *path,
3473 		      struct btrfs_key *cpu_key, u32 *data_size,
3474 		      u32 total_data, u32 total_size, int nr)
3475 {
3476 	struct btrfs_item *item;
3477 	int i;
3478 	u32 nritems;
3479 	unsigned int data_end;
3480 	struct btrfs_disk_key disk_key;
3481 	int ret;
3482 	struct extent_buffer *leaf;
3483 	int slot;
3484 
3485 	leaf = path->nodes[0];
3486 	slot = path->slots[0];
3487 
3488 	nritems = btrfs_header_nritems(leaf);
3489 	data_end = leaf_data_end(root, leaf);
3490 
3491 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3492 		btrfs_print_leaf(root, leaf);
3493 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3494 		       total_size, btrfs_leaf_free_space(root, leaf));
3495 		BUG();
3496 	}
3497 
3498 	if (slot != nritems) {
3499 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3500 
3501 		if (old_data < data_end) {
3502 			btrfs_print_leaf(root, leaf);
3503 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3504 			       slot, old_data, data_end);
3505 			BUG_ON(1);
3506 		}
3507 		/*
3508 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3509 		 */
3510 		/* first correct the data pointers */
3511 		WARN_ON(leaf->map_token);
3512 		for (i = slot; i < nritems; i++) {
3513 			u32 ioff;
3514 
3515 			item = btrfs_item_nr(leaf, i);
3516 			if (!leaf->map_token) {
3517 				map_extent_buffer(leaf, (unsigned long)item,
3518 					sizeof(struct btrfs_item),
3519 					&leaf->map_token, &leaf->kaddr,
3520 					&leaf->map_start, &leaf->map_len,
3521 					KM_USER1);
3522 			}
3523 
3524 			ioff = btrfs_item_offset(leaf, item);
3525 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3526 		}
3527 		if (leaf->map_token) {
3528 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3529 			leaf->map_token = NULL;
3530 		}
3531 
3532 		/* shift the items */
3533 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3534 			      btrfs_item_nr_offset(slot),
3535 			      (nritems - slot) * sizeof(struct btrfs_item));
3536 
3537 		/* shift the data */
3538 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3539 			      data_end - total_data, btrfs_leaf_data(leaf) +
3540 			      data_end, old_data - data_end);
3541 		data_end = old_data;
3542 	}
3543 
3544 	/* setup the item for the new data */
3545 	for (i = 0; i < nr; i++) {
3546 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3547 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3548 		item = btrfs_item_nr(leaf, slot + i);
3549 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3550 		data_end -= data_size[i];
3551 		btrfs_set_item_size(leaf, item, data_size[i]);
3552 	}
3553 
3554 	btrfs_set_header_nritems(leaf, nritems + nr);
3555 
3556 	ret = 0;
3557 	if (slot == 0) {
3558 		struct btrfs_disk_key disk_key;
3559 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3560 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3561 	}
3562 	btrfs_unlock_up_safe(path, 1);
3563 	btrfs_mark_buffer_dirty(leaf);
3564 
3565 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3566 		btrfs_print_leaf(root, leaf);
3567 		BUG();
3568 	}
3569 	return ret;
3570 }
3571 
3572 /*
3573  * Given a key and some data, insert items into the tree.
3574  * This does all the path init required, making room in the tree if needed.
3575  */
3576 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3577 			    struct btrfs_root *root,
3578 			    struct btrfs_path *path,
3579 			    struct btrfs_key *cpu_key, u32 *data_size,
3580 			    int nr)
3581 {
3582 	struct extent_buffer *leaf;
3583 	int ret = 0;
3584 	int slot;
3585 	int i;
3586 	u32 total_size = 0;
3587 	u32 total_data = 0;
3588 
3589 	for (i = 0; i < nr; i++)
3590 		total_data += data_size[i];
3591 
3592 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3593 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3594 	if (ret == 0)
3595 		return -EEXIST;
3596 	if (ret < 0)
3597 		goto out;
3598 
3599 	leaf = path->nodes[0];
3600 	slot = path->slots[0];
3601 	BUG_ON(slot < 0);
3602 
3603 	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3604 			       total_data, total_size, nr);
3605 
3606 out:
3607 	return ret;
3608 }
3609 
3610 /*
3611  * Given a key and some data, insert an item into the tree.
3612  * This does all the path init required, making room in the tree if needed.
3613  */
3614 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3615 		      *root, struct btrfs_key *cpu_key, void *data, u32
3616 		      data_size)
3617 {
3618 	int ret = 0;
3619 	struct btrfs_path *path;
3620 	struct extent_buffer *leaf;
3621 	unsigned long ptr;
3622 
3623 	path = btrfs_alloc_path();
3624 	BUG_ON(!path);
3625 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3626 	if (!ret) {
3627 		leaf = path->nodes[0];
3628 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3629 		write_extent_buffer(leaf, data, ptr, data_size);
3630 		btrfs_mark_buffer_dirty(leaf);
3631 	}
3632 	btrfs_free_path(path);
3633 	return ret;
3634 }
3635 
3636 /*
3637  * delete the pointer from a given node.
3638  *
3639  * the tree should have been previously balanced so the deletion does not
3640  * empty a node.
3641  */
3642 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3643 		   struct btrfs_path *path, int level, int slot)
3644 {
3645 	struct extent_buffer *parent = path->nodes[level];
3646 	u32 nritems;
3647 	int ret = 0;
3648 	int wret;
3649 
3650 	nritems = btrfs_header_nritems(parent);
3651 	if (slot != nritems - 1) {
3652 		memmove_extent_buffer(parent,
3653 			      btrfs_node_key_ptr_offset(slot),
3654 			      btrfs_node_key_ptr_offset(slot + 1),
3655 			      sizeof(struct btrfs_key_ptr) *
3656 			      (nritems - slot - 1));
3657 	}
3658 	nritems--;
3659 	btrfs_set_header_nritems(parent, nritems);
3660 	if (nritems == 0 && parent == root->node) {
3661 		BUG_ON(btrfs_header_level(root->node) != 1);
3662 		/* just turn the root into a leaf and break */
3663 		btrfs_set_header_level(root->node, 0);
3664 	} else if (slot == 0) {
3665 		struct btrfs_disk_key disk_key;
3666 
3667 		btrfs_node_key(parent, &disk_key, 0);
3668 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3669 		if (wret)
3670 			ret = wret;
3671 	}
3672 	btrfs_mark_buffer_dirty(parent);
3673 	return ret;
3674 }
3675 
3676 /*
3677  * a helper function to delete the leaf pointed to by path->slots[1] and
3678  * path->nodes[1].  bytenr is the node block pointer, but since the callers
3679  * already know it, it is faster to have them pass it down than to
3680  * read it out of the node again.
3681  *
3682  * This deletes the pointer in path->nodes[1] and frees the leaf
3683  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3684  *
3685  * The path must have already been setup for deleting the leaf, including
3686  * all the proper balancing.  path->nodes[1] must be locked.
3687  */
3688 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3689 			    struct btrfs_root *root,
3690 			    struct btrfs_path *path, u64 bytenr)
3691 {
3692 	int ret;
3693 	u64 root_gen = btrfs_header_generation(path->nodes[1]);
3694 	u64 parent_start = path->nodes[1]->start;
3695 	u64 parent_owner = btrfs_header_owner(path->nodes[1]);
3696 
3697 	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3698 	if (ret)
3699 		return ret;
3700 
3701 	/*
3702 	 * btrfs_free_extent is expensive, we want to make sure we
3703 	 * aren't holding any locks when we call it
3704 	 */
3705 	btrfs_unlock_up_safe(path, 0);
3706 
3707 	ret = btrfs_free_extent(trans, root, bytenr,
3708 				btrfs_level_size(root, 0),
3709 				parent_start, parent_owner,
3710 				root_gen, 0, 1);
3711 	return ret;
3712 }
3713 /*
3714  * delete the item at the leaf level in path.  If that empties
3715  * the leaf, remove it from the tree
3716  */
3717 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3718 		    struct btrfs_path *path, int slot, int nr)
3719 {
3720 	struct extent_buffer *leaf;
3721 	struct btrfs_item *item;
3722 	int last_off;
3723 	int dsize = 0;
3724 	int ret = 0;
3725 	int wret;
3726 	int i;
3727 	u32 nritems;
3728 
3729 	leaf = path->nodes[0];
3730 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3731 
3732 	for (i = 0; i < nr; i++)
3733 		dsize += btrfs_item_size_nr(leaf, slot + i);
3734 
3735 	nritems = btrfs_header_nritems(leaf);
3736 
3737 	if (slot + nr != nritems) {
3738 		int data_end = leaf_data_end(root, leaf);
3739 
3740 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3741 			      data_end + dsize,
3742 			      btrfs_leaf_data(leaf) + data_end,
3743 			      last_off - data_end);
3744 
3745 		for (i = slot + nr; i < nritems; i++) {
3746 			u32 ioff;
3747 
3748 			item = btrfs_item_nr(leaf, i);
3749 			if (!leaf->map_token) {
3750 				map_extent_buffer(leaf, (unsigned long)item,
3751 					sizeof(struct btrfs_item),
3752 					&leaf->map_token, &leaf->kaddr,
3753 					&leaf->map_start, &leaf->map_len,
3754 					KM_USER1);
3755 			}
3756 			ioff = btrfs_item_offset(leaf, item);
3757 			btrfs_set_item_offset(leaf, item, ioff + dsize);
3758 		}
3759 
3760 		if (leaf->map_token) {
3761 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3762 			leaf->map_token = NULL;
3763 		}
3764 
3765 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3766 			      btrfs_item_nr_offset(slot + nr),
3767 			      sizeof(struct btrfs_item) *
3768 			      (nritems - slot - nr));
3769 	}
3770 	btrfs_set_header_nritems(leaf, nritems - nr);
3771 	nritems -= nr;
3772 
3773 	/* delete the leaf if we've emptied it */
3774 	if (nritems == 0) {
3775 		if (leaf == root->node) {
3776 			btrfs_set_header_level(leaf, 0);
3777 		} else {
3778 			ret = btrfs_del_leaf(trans, root, path, leaf->start);
3779 			BUG_ON(ret);
3780 		}
3781 	} else {
3782 		int used = leaf_space_used(leaf, 0, nritems);
3783 		if (slot == 0) {
3784 			struct btrfs_disk_key disk_key;
3785 
3786 			btrfs_item_key(leaf, &disk_key, 0);
3787 			wret = fixup_low_keys(trans, root, path,
3788 					      &disk_key, 1);
3789 			if (wret)
3790 				ret = wret;
3791 		}
3792 
3793 		/* delete the leaf if it is mostly empty */
3794 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 &&
3795 		    !trans->transaction->delayed_refs.flushing) {
3796 			/* push_leaf_left fixes the path.
3797 			 * make sure the path still points to our leaf
3798 			 * for possible call to del_ptr below
3799 			 */
3800 			slot = path->slots[1];
3801 			extent_buffer_get(leaf);
3802 
3803 			btrfs_set_path_blocking(path);
3804 			wret = push_leaf_left(trans, root, path, 1, 1);
3805 			if (wret < 0 && wret != -ENOSPC)
3806 				ret = wret;
3807 
3808 			if (path->nodes[0] == leaf &&
3809 			    btrfs_header_nritems(leaf)) {
3810 				wret = push_leaf_right(trans, root, path, 1, 1);
3811 				if (wret < 0 && wret != -ENOSPC)
3812 					ret = wret;
3813 			}
3814 
3815 			if (btrfs_header_nritems(leaf) == 0) {
3816 				path->slots[1] = slot;
3817 				ret = btrfs_del_leaf(trans, root, path,
3818 						     leaf->start);
3819 				BUG_ON(ret);
3820 				free_extent_buffer(leaf);
3821 			} else {
3822 				/* if we're still in the path, make sure
3823 				 * we're dirty.  Otherwise, one of the
3824 				 * push_leaf functions must have already
3825 				 * dirtied this buffer
3826 				 */
3827 				if (path->nodes[0] == leaf)
3828 					btrfs_mark_buffer_dirty(leaf);
3829 				free_extent_buffer(leaf);
3830 			}
3831 		} else {
3832 			btrfs_mark_buffer_dirty(leaf);
3833 		}
3834 	}
3835 	return ret;
3836 }
3837 
3838 /*
3839  * search the tree again to find a leaf with lesser keys
3840  * returns 0 if it found something or 1 if there are no lesser leaves.
3841  * returns < 0 on io errors.
3842  *
3843  * This may release the path, and so you may lose any locks held at the
3844  * time you call it.
3845  */
3846 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3847 {
3848 	struct btrfs_key key;
3849 	struct btrfs_disk_key found_key;
3850 	int ret;
3851 
3852 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3853 
3854 	if (key.offset > 0)
3855 		key.offset--;
3856 	else if (key.type > 0)
3857 		key.type--;
3858 	else if (key.objectid > 0)
3859 		key.objectid--;
3860 	else
3861 		return 1;
3862 
3863 	btrfs_release_path(root, path);
3864 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3865 	if (ret < 0)
3866 		return ret;
3867 	btrfs_item_key(path->nodes[0], &found_key, 0);
3868 	ret = comp_keys(&found_key, &key);
3869 	if (ret < 0)
3870 		return 0;
3871 	return 1;
3872 }
3873 
3874 /*
3875  * A helper function to walk down the tree starting at min_key, and looking
3876  * for nodes or leaves that are either in cache or have a minimum
3877  * transaction id.  This is used by the btree defrag code, and tree logging
3878  *
3879  * This does not cow, but it does stuff the starting key it finds back
3880  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3881  * key and get a writable path.
3882  *
3883  * This does lock as it descends, and path->keep_locks should be set
3884  * to 1 by the caller.
3885  *
3886  * This honors path->lowest_level to prevent descent past a given level
3887  * of the tree.
3888  *
3889  * min_trans indicates the oldest transaction that you are interested
3890  * in walking through.  Any nodes or leaves older than min_trans are
3891  * skipped over (without reading them).
3892  *
3893  * returns zero if something useful was found, < 0 on error and 1 if there
3894  * was nothing in the tree that matched the search criteria.
3895  */
3896 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3897 			 struct btrfs_key *max_key,
3898 			 struct btrfs_path *path, int cache_only,
3899 			 u64 min_trans)
3900 {
3901 	struct extent_buffer *cur;
3902 	struct btrfs_key found_key;
3903 	int slot;
3904 	int sret;
3905 	u32 nritems;
3906 	int level;
3907 	int ret = 1;
3908 
3909 	WARN_ON(!path->keep_locks);
3910 again:
3911 	cur = btrfs_lock_root_node(root);
3912 	level = btrfs_header_level(cur);
3913 	WARN_ON(path->nodes[level]);
3914 	path->nodes[level] = cur;
3915 	path->locks[level] = 1;
3916 
3917 	if (btrfs_header_generation(cur) < min_trans) {
3918 		ret = 1;
3919 		goto out;
3920 	}
3921 	while (1) {
3922 		nritems = btrfs_header_nritems(cur);
3923 		level = btrfs_header_level(cur);
3924 		sret = bin_search(cur, min_key, level, &slot);
3925 
3926 		/* at the lowest level, we're done, setup the path and exit */
3927 		if (level == path->lowest_level) {
3928 			if (slot >= nritems)
3929 				goto find_next_key;
3930 			ret = 0;
3931 			path->slots[level] = slot;
3932 			btrfs_item_key_to_cpu(cur, &found_key, slot);
3933 			goto out;
3934 		}
3935 		if (sret && slot > 0)
3936 			slot--;
3937 		/*
3938 		 * check this node pointer against the cache_only and
3939 		 * min_trans parameters.  If it isn't in cache or is too
3940 		 * old, skip to the next one.
3941 		 */
3942 		while (slot < nritems) {
3943 			u64 blockptr;
3944 			u64 gen;
3945 			struct extent_buffer *tmp;
3946 			struct btrfs_disk_key disk_key;
3947 
3948 			blockptr = btrfs_node_blockptr(cur, slot);
3949 			gen = btrfs_node_ptr_generation(cur, slot);
3950 			if (gen < min_trans) {
3951 				slot++;
3952 				continue;
3953 			}
3954 			if (!cache_only)
3955 				break;
3956 
3957 			if (max_key) {
3958 				btrfs_node_key(cur, &disk_key, slot);
3959 				if (comp_keys(&disk_key, max_key) >= 0) {
3960 					ret = 1;
3961 					goto out;
3962 				}
3963 			}
3964 
3965 			tmp = btrfs_find_tree_block(root, blockptr,
3966 					    btrfs_level_size(root, level - 1));
3967 
3968 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3969 				free_extent_buffer(tmp);
3970 				break;
3971 			}
3972 			if (tmp)
3973 				free_extent_buffer(tmp);
3974 			slot++;
3975 		}
3976 find_next_key:
3977 		/*
3978 		 * we didn't find a candidate key in this node, walk forward
3979 		 * and find another one
3980 		 */
3981 		if (slot >= nritems) {
3982 			path->slots[level] = slot;
3983 			btrfs_set_path_blocking(path);
3984 			sret = btrfs_find_next_key(root, path, min_key, level,
3985 						  cache_only, min_trans);
3986 			if (sret == 0) {
3987 				btrfs_release_path(root, path);
3988 				goto again;
3989 			} else {
3990 				goto out;
3991 			}
3992 		}
3993 		/* save our key for returning back */
3994 		btrfs_node_key_to_cpu(cur, &found_key, slot);
3995 		path->slots[level] = slot;
3996 		if (level == path->lowest_level) {
3997 			ret = 0;
3998 			unlock_up(path, level, 1);
3999 			goto out;
4000 		}
4001 		btrfs_set_path_blocking(path);
4002 		cur = read_node_slot(root, cur, slot);
4003 
4004 		btrfs_tree_lock(cur);
4005 
4006 		path->locks[level - 1] = 1;
4007 		path->nodes[level - 1] = cur;
4008 		unlock_up(path, level, 1);
4009 		btrfs_clear_path_blocking(path, NULL);
4010 	}
4011 out:
4012 	if (ret == 0)
4013 		memcpy(min_key, &found_key, sizeof(found_key));
4014 	btrfs_set_path_blocking(path);
4015 	return ret;
4016 }
4017 
4018 /*
4019  * this is similar to btrfs_next_leaf, but does not try to preserve
4020  * and fixup the path.  It looks for and returns the next key in the
4021  * tree based on the current path and the cache_only and min_trans
4022  * parameters.
4023  *
4024  * 0 is returned if another key is found, < 0 if there are any errors
4025  * and 1 is returned if there are no higher keys in the tree
4026  *
4027  * path->keep_locks should be set to 1 on the search made before
4028  * calling this function.
4029  */
4030 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4031 			struct btrfs_key *key, int lowest_level,
4032 			int cache_only, u64 min_trans)
4033 {
4034 	int level = lowest_level;
4035 	int slot;
4036 	struct extent_buffer *c;
4037 
4038 	WARN_ON(!path->keep_locks);
4039 	while (level < BTRFS_MAX_LEVEL) {
4040 		if (!path->nodes[level])
4041 			return 1;
4042 
4043 		slot = path->slots[level] + 1;
4044 		c = path->nodes[level];
4045 next:
4046 		if (slot >= btrfs_header_nritems(c)) {
4047 			level++;
4048 			if (level == BTRFS_MAX_LEVEL)
4049 				return 1;
4050 			continue;
4051 		}
4052 		if (level == 0)
4053 			btrfs_item_key_to_cpu(c, key, slot);
4054 		else {
4055 			u64 blockptr = btrfs_node_blockptr(c, slot);
4056 			u64 gen = btrfs_node_ptr_generation(c, slot);
4057 
4058 			if (cache_only) {
4059 				struct extent_buffer *cur;
4060 				cur = btrfs_find_tree_block(root, blockptr,
4061 					    btrfs_level_size(root, level - 1));
4062 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4063 					slot++;
4064 					if (cur)
4065 						free_extent_buffer(cur);
4066 					goto next;
4067 				}
4068 				free_extent_buffer(cur);
4069 			}
4070 			if (gen < min_trans) {
4071 				slot++;
4072 				goto next;
4073 			}
4074 			btrfs_node_key_to_cpu(c, key, slot);
4075 		}
4076 		return 0;
4077 	}
4078 	return 1;
4079 }
4080 
4081 /*
4082  * search the tree again to find a leaf with greater keys
4083  * returns 0 if it found something or 1 if there are no greater leaves.
4084  * returns < 0 on io errors.
4085  */
4086 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4087 {
4088 	int slot;
4089 	int level = 1;
4090 	struct extent_buffer *c;
4091 	struct extent_buffer *next = NULL;
4092 	struct btrfs_key key;
4093 	u32 nritems;
4094 	int ret;
4095 
4096 	nritems = btrfs_header_nritems(path->nodes[0]);
4097 	if (nritems == 0)
4098 		return 1;
4099 
4100 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4101 
4102 	btrfs_release_path(root, path);
4103 	path->keep_locks = 1;
4104 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4105 	path->keep_locks = 0;
4106 
4107 	if (ret < 0)
4108 		return ret;
4109 
4110 	btrfs_set_path_blocking(path);
4111 	nritems = btrfs_header_nritems(path->nodes[0]);
4112 	/*
4113 	 * by releasing the path above we dropped all our locks.  A balance
4114 	 * could have added more items next to the key that used to be
4115 	 * at the very end of the block.  So, check again here and
4116 	 * advance the path if there are now more items available.
4117 	 */
4118 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4119 		path->slots[0]++;
4120 		goto done;
4121 	}
4122 
4123 	while (level < BTRFS_MAX_LEVEL) {
4124 		if (!path->nodes[level])
4125 			return 1;
4126 
4127 		slot = path->slots[level] + 1;
4128 		c = path->nodes[level];
4129 		if (slot >= btrfs_header_nritems(c)) {
4130 			level++;
4131 			if (level == BTRFS_MAX_LEVEL)
4132 				return 1;
4133 			continue;
4134 		}
4135 
4136 		if (next) {
4137 			btrfs_tree_unlock(next);
4138 			free_extent_buffer(next);
4139 		}
4140 
4141 		/* the path was set to blocking above */
4142 		if (level == 1 && (path->locks[1] || path->skip_locking) &&
4143 		    path->reada)
4144 			reada_for_search(root, path, level, slot, 0);
4145 
4146 		next = read_node_slot(root, c, slot);
4147 		if (!path->skip_locking) {
4148 			btrfs_assert_tree_locked(c);
4149 			btrfs_tree_lock(next);
4150 			btrfs_set_lock_blocking(next);
4151 		}
4152 		break;
4153 	}
4154 	path->slots[level] = slot;
4155 	while (1) {
4156 		level--;
4157 		c = path->nodes[level];
4158 		if (path->locks[level])
4159 			btrfs_tree_unlock(c);
4160 		free_extent_buffer(c);
4161 		path->nodes[level] = next;
4162 		path->slots[level] = 0;
4163 		if (!path->skip_locking)
4164 			path->locks[level] = 1;
4165 		if (!level)
4166 			break;
4167 
4168 		btrfs_set_path_blocking(path);
4169 		if (level == 1 && path->locks[1] && path->reada)
4170 			reada_for_search(root, path, level, slot, 0);
4171 		next = read_node_slot(root, next, 0);
4172 		if (!path->skip_locking) {
4173 			btrfs_assert_tree_locked(path->nodes[level]);
4174 			btrfs_tree_lock(next);
4175 			btrfs_set_lock_blocking(next);
4176 		}
4177 	}
4178 done:
4179 	unlock_up(path, 0, 1);
4180 	return 0;
4181 }
4182 
4183 /*
4184  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4185  * searching until it gets past min_objectid or finds an item of 'type'
4186  *
4187  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4188  */
4189 int btrfs_previous_item(struct btrfs_root *root,
4190 			struct btrfs_path *path, u64 min_objectid,
4191 			int type)
4192 {
4193 	struct btrfs_key found_key;
4194 	struct extent_buffer *leaf;
4195 	u32 nritems;
4196 	int ret;
4197 
4198 	while (1) {
4199 		if (path->slots[0] == 0) {
4200 			btrfs_set_path_blocking(path);
4201 			ret = btrfs_prev_leaf(root, path);
4202 			if (ret != 0)
4203 				return ret;
4204 		} else {
4205 			path->slots[0]--;
4206 		}
4207 		leaf = path->nodes[0];
4208 		nritems = btrfs_header_nritems(leaf);
4209 		if (nritems == 0)
4210 			return 1;
4211 		if (path->slots[0] == nritems)
4212 			path->slots[0]--;
4213 
4214 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4215 		if (found_key.type == type)
4216 			return 0;
4217 		if (found_key.objectid < min_objectid)
4218 			break;
4219 		if (found_key.objectid == min_objectid &&
4220 		    found_key.type < type)
4221 			break;
4222 	}
4223 	return 1;
4224 }
4225