1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "print-tree.h" 24 #include "locking.h" 25 26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 27 *root, struct btrfs_path *path, int level); 28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_key *ins_key, 30 struct btrfs_path *path, int data_size, int extend); 31 static int push_node_left(struct btrfs_trans_handle *trans, 32 struct btrfs_root *root, struct extent_buffer *dst, 33 struct extent_buffer *src, int empty); 34 static int balance_node_right(struct btrfs_trans_handle *trans, 35 struct btrfs_root *root, 36 struct extent_buffer *dst_buf, 37 struct extent_buffer *src_buf); 38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 39 struct btrfs_path *path, int level, int slot); 40 41 struct btrfs_path *btrfs_alloc_path(void) 42 { 43 struct btrfs_path *path; 44 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 45 if (path) 46 path->reada = 1; 47 return path; 48 } 49 50 /* 51 * set all locked nodes in the path to blocking locks. This should 52 * be done before scheduling 53 */ 54 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 55 { 56 int i; 57 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 58 if (p->nodes[i] && p->locks[i]) 59 btrfs_set_lock_blocking(p->nodes[i]); 60 } 61 } 62 63 /* 64 * reset all the locked nodes in the patch to spinning locks. 65 * 66 * held is used to keep lockdep happy, when lockdep is enabled 67 * we set held to a blocking lock before we go around and 68 * retake all the spinlocks in the path. You can safely use NULL 69 * for held 70 */ 71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 72 struct extent_buffer *held) 73 { 74 int i; 75 76 #ifdef CONFIG_DEBUG_LOCK_ALLOC 77 /* lockdep really cares that we take all of these spinlocks 78 * in the right order. If any of the locks in the path are not 79 * currently blocking, it is going to complain. So, make really 80 * really sure by forcing the path to blocking before we clear 81 * the path blocking. 82 */ 83 if (held) 84 btrfs_set_lock_blocking(held); 85 btrfs_set_path_blocking(p); 86 #endif 87 88 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 89 if (p->nodes[i] && p->locks[i]) 90 btrfs_clear_lock_blocking(p->nodes[i]); 91 } 92 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 if (held) 95 btrfs_clear_lock_blocking(held); 96 #endif 97 } 98 99 /* this also releases the path */ 100 void btrfs_free_path(struct btrfs_path *p) 101 { 102 btrfs_release_path(NULL, p); 103 kmem_cache_free(btrfs_path_cachep, p); 104 } 105 106 /* 107 * path release drops references on the extent buffers in the path 108 * and it drops any locks held by this path 109 * 110 * It is safe to call this on paths that no locks or extent buffers held. 111 */ 112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) 113 { 114 int i; 115 116 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 117 p->slots[i] = 0; 118 if (!p->nodes[i]) 119 continue; 120 if (p->locks[i]) { 121 btrfs_tree_unlock(p->nodes[i]); 122 p->locks[i] = 0; 123 } 124 free_extent_buffer(p->nodes[i]); 125 p->nodes[i] = NULL; 126 } 127 } 128 129 /* 130 * safely gets a reference on the root node of a tree. A lock 131 * is not taken, so a concurrent writer may put a different node 132 * at the root of the tree. See btrfs_lock_root_node for the 133 * looping required. 134 * 135 * The extent buffer returned by this has a reference taken, so 136 * it won't disappear. It may stop being the root of the tree 137 * at any time because there are no locks held. 138 */ 139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 140 { 141 struct extent_buffer *eb; 142 spin_lock(&root->node_lock); 143 eb = root->node; 144 extent_buffer_get(eb); 145 spin_unlock(&root->node_lock); 146 return eb; 147 } 148 149 /* loop around taking references on and locking the root node of the 150 * tree until you end up with a lock on the root. A locked buffer 151 * is returned, with a reference held. 152 */ 153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 154 { 155 struct extent_buffer *eb; 156 157 while (1) { 158 eb = btrfs_root_node(root); 159 btrfs_tree_lock(eb); 160 161 spin_lock(&root->node_lock); 162 if (eb == root->node) { 163 spin_unlock(&root->node_lock); 164 break; 165 } 166 spin_unlock(&root->node_lock); 167 168 btrfs_tree_unlock(eb); 169 free_extent_buffer(eb); 170 } 171 return eb; 172 } 173 174 /* cowonly root (everything not a reference counted cow subvolume), just get 175 * put onto a simple dirty list. transaction.c walks this to make sure they 176 * get properly updated on disk. 177 */ 178 static void add_root_to_dirty_list(struct btrfs_root *root) 179 { 180 if (root->track_dirty && list_empty(&root->dirty_list)) { 181 list_add(&root->dirty_list, 182 &root->fs_info->dirty_cowonly_roots); 183 } 184 } 185 186 /* 187 * used by snapshot creation to make a copy of a root for a tree with 188 * a given objectid. The buffer with the new root node is returned in 189 * cow_ret, and this func returns zero on success or a negative error code. 190 */ 191 int btrfs_copy_root(struct btrfs_trans_handle *trans, 192 struct btrfs_root *root, 193 struct extent_buffer *buf, 194 struct extent_buffer **cow_ret, u64 new_root_objectid) 195 { 196 struct extent_buffer *cow; 197 u32 nritems; 198 int ret = 0; 199 int level; 200 struct btrfs_root *new_root; 201 202 new_root = kmalloc(sizeof(*new_root), GFP_NOFS); 203 if (!new_root) 204 return -ENOMEM; 205 206 memcpy(new_root, root, sizeof(*new_root)); 207 new_root->root_key.objectid = new_root_objectid; 208 209 WARN_ON(root->ref_cows && trans->transid != 210 root->fs_info->running_transaction->transid); 211 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 212 213 level = btrfs_header_level(buf); 214 nritems = btrfs_header_nritems(buf); 215 216 cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0, 217 new_root_objectid, trans->transid, 218 level, buf->start, 0); 219 if (IS_ERR(cow)) { 220 kfree(new_root); 221 return PTR_ERR(cow); 222 } 223 224 copy_extent_buffer(cow, buf, 0, 0, cow->len); 225 btrfs_set_header_bytenr(cow, cow->start); 226 btrfs_set_header_generation(cow, trans->transid); 227 btrfs_set_header_owner(cow, new_root_objectid); 228 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); 229 230 write_extent_buffer(cow, root->fs_info->fsid, 231 (unsigned long)btrfs_header_fsid(cow), 232 BTRFS_FSID_SIZE); 233 234 WARN_ON(btrfs_header_generation(buf) > trans->transid); 235 ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL); 236 kfree(new_root); 237 238 if (ret) 239 return ret; 240 241 btrfs_mark_buffer_dirty(cow); 242 *cow_ret = cow; 243 return 0; 244 } 245 246 /* 247 * does the dirty work in cow of a single block. The parent block (if 248 * supplied) is updated to point to the new cow copy. The new buffer is marked 249 * dirty and returned locked. If you modify the block it needs to be marked 250 * dirty again. 251 * 252 * search_start -- an allocation hint for the new block 253 * 254 * empty_size -- a hint that you plan on doing more cow. This is the size in 255 * bytes the allocator should try to find free next to the block it returns. 256 * This is just a hint and may be ignored by the allocator. 257 */ 258 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 259 struct btrfs_root *root, 260 struct extent_buffer *buf, 261 struct extent_buffer *parent, int parent_slot, 262 struct extent_buffer **cow_ret, 263 u64 search_start, u64 empty_size) 264 { 265 u64 parent_start; 266 struct extent_buffer *cow; 267 u32 nritems; 268 int ret = 0; 269 int level; 270 int unlock_orig = 0; 271 272 if (*cow_ret == buf) 273 unlock_orig = 1; 274 275 btrfs_assert_tree_locked(buf); 276 277 if (parent) 278 parent_start = parent->start; 279 else 280 parent_start = 0; 281 282 WARN_ON(root->ref_cows && trans->transid != 283 root->fs_info->running_transaction->transid); 284 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 285 286 level = btrfs_header_level(buf); 287 nritems = btrfs_header_nritems(buf); 288 289 cow = btrfs_alloc_free_block(trans, root, buf->len, 290 parent_start, root->root_key.objectid, 291 trans->transid, level, 292 search_start, empty_size); 293 if (IS_ERR(cow)) 294 return PTR_ERR(cow); 295 296 /* cow is set to blocking by btrfs_init_new_buffer */ 297 298 copy_extent_buffer(cow, buf, 0, 0, cow->len); 299 btrfs_set_header_bytenr(cow, cow->start); 300 btrfs_set_header_generation(cow, trans->transid); 301 btrfs_set_header_owner(cow, root->root_key.objectid); 302 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); 303 304 write_extent_buffer(cow, root->fs_info->fsid, 305 (unsigned long)btrfs_header_fsid(cow), 306 BTRFS_FSID_SIZE); 307 308 WARN_ON(btrfs_header_generation(buf) > trans->transid); 309 if (btrfs_header_generation(buf) != trans->transid) { 310 u32 nr_extents; 311 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents); 312 if (ret) 313 return ret; 314 315 ret = btrfs_cache_ref(trans, root, buf, nr_extents); 316 WARN_ON(ret); 317 } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) { 318 /* 319 * There are only two places that can drop reference to 320 * tree blocks owned by living reloc trees, one is here, 321 * the other place is btrfs_drop_subtree. In both places, 322 * we check reference count while tree block is locked. 323 * Furthermore, if reference count is one, it won't get 324 * increased by someone else. 325 */ 326 u32 refs; 327 ret = btrfs_lookup_extent_ref(trans, root, buf->start, 328 buf->len, &refs); 329 BUG_ON(ret); 330 if (refs == 1) { 331 ret = btrfs_update_ref(trans, root, buf, cow, 332 0, nritems); 333 clean_tree_block(trans, root, buf); 334 } else { 335 ret = btrfs_inc_ref(trans, root, buf, cow, NULL); 336 } 337 BUG_ON(ret); 338 } else { 339 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems); 340 if (ret) 341 return ret; 342 clean_tree_block(trans, root, buf); 343 } 344 345 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 346 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start); 347 WARN_ON(ret); 348 } 349 350 if (buf == root->node) { 351 WARN_ON(parent && parent != buf); 352 353 spin_lock(&root->node_lock); 354 root->node = cow; 355 extent_buffer_get(cow); 356 spin_unlock(&root->node_lock); 357 358 if (buf != root->commit_root) { 359 btrfs_free_extent(trans, root, buf->start, 360 buf->len, buf->start, 361 root->root_key.objectid, 362 btrfs_header_generation(buf), 363 level, 1); 364 } 365 free_extent_buffer(buf); 366 add_root_to_dirty_list(root); 367 } else { 368 btrfs_set_node_blockptr(parent, parent_slot, 369 cow->start); 370 WARN_ON(trans->transid == 0); 371 btrfs_set_node_ptr_generation(parent, parent_slot, 372 trans->transid); 373 btrfs_mark_buffer_dirty(parent); 374 WARN_ON(btrfs_header_generation(parent) != trans->transid); 375 btrfs_free_extent(trans, root, buf->start, buf->len, 376 parent_start, btrfs_header_owner(parent), 377 btrfs_header_generation(parent), level, 1); 378 } 379 if (unlock_orig) 380 btrfs_tree_unlock(buf); 381 free_extent_buffer(buf); 382 btrfs_mark_buffer_dirty(cow); 383 *cow_ret = cow; 384 return 0; 385 } 386 387 /* 388 * cows a single block, see __btrfs_cow_block for the real work. 389 * This version of it has extra checks so that a block isn't cow'd more than 390 * once per transaction, as long as it hasn't been written yet 391 */ 392 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 393 struct btrfs_root *root, struct extent_buffer *buf, 394 struct extent_buffer *parent, int parent_slot, 395 struct extent_buffer **cow_ret) 396 { 397 u64 search_start; 398 int ret; 399 400 if (trans->transaction != root->fs_info->running_transaction) { 401 printk(KERN_CRIT "trans %llu running %llu\n", 402 (unsigned long long)trans->transid, 403 (unsigned long long) 404 root->fs_info->running_transaction->transid); 405 WARN_ON(1); 406 } 407 if (trans->transid != root->fs_info->generation) { 408 printk(KERN_CRIT "trans %llu running %llu\n", 409 (unsigned long long)trans->transid, 410 (unsigned long long)root->fs_info->generation); 411 WARN_ON(1); 412 } 413 414 if (btrfs_header_generation(buf) == trans->transid && 415 btrfs_header_owner(buf) == root->root_key.objectid && 416 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 417 *cow_ret = buf; 418 return 0; 419 } 420 421 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 422 423 if (parent) 424 btrfs_set_lock_blocking(parent); 425 btrfs_set_lock_blocking(buf); 426 427 ret = __btrfs_cow_block(trans, root, buf, parent, 428 parent_slot, cow_ret, search_start, 0); 429 return ret; 430 } 431 432 /* 433 * helper function for defrag to decide if two blocks pointed to by a 434 * node are actually close by 435 */ 436 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 437 { 438 if (blocknr < other && other - (blocknr + blocksize) < 32768) 439 return 1; 440 if (blocknr > other && blocknr - (other + blocksize) < 32768) 441 return 1; 442 return 0; 443 } 444 445 /* 446 * compare two keys in a memcmp fashion 447 */ 448 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 449 { 450 struct btrfs_key k1; 451 452 btrfs_disk_key_to_cpu(&k1, disk); 453 454 if (k1.objectid > k2->objectid) 455 return 1; 456 if (k1.objectid < k2->objectid) 457 return -1; 458 if (k1.type > k2->type) 459 return 1; 460 if (k1.type < k2->type) 461 return -1; 462 if (k1.offset > k2->offset) 463 return 1; 464 if (k1.offset < k2->offset) 465 return -1; 466 return 0; 467 } 468 469 /* 470 * same as comp_keys only with two btrfs_key's 471 */ 472 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 473 { 474 if (k1->objectid > k2->objectid) 475 return 1; 476 if (k1->objectid < k2->objectid) 477 return -1; 478 if (k1->type > k2->type) 479 return 1; 480 if (k1->type < k2->type) 481 return -1; 482 if (k1->offset > k2->offset) 483 return 1; 484 if (k1->offset < k2->offset) 485 return -1; 486 return 0; 487 } 488 489 /* 490 * this is used by the defrag code to go through all the 491 * leaves pointed to by a node and reallocate them so that 492 * disk order is close to key order 493 */ 494 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 495 struct btrfs_root *root, struct extent_buffer *parent, 496 int start_slot, int cache_only, u64 *last_ret, 497 struct btrfs_key *progress) 498 { 499 struct extent_buffer *cur; 500 u64 blocknr; 501 u64 gen; 502 u64 search_start = *last_ret; 503 u64 last_block = 0; 504 u64 other; 505 u32 parent_nritems; 506 int end_slot; 507 int i; 508 int err = 0; 509 int parent_level; 510 int uptodate; 511 u32 blocksize; 512 int progress_passed = 0; 513 struct btrfs_disk_key disk_key; 514 515 parent_level = btrfs_header_level(parent); 516 if (cache_only && parent_level != 1) 517 return 0; 518 519 if (trans->transaction != root->fs_info->running_transaction) 520 WARN_ON(1); 521 if (trans->transid != root->fs_info->generation) 522 WARN_ON(1); 523 524 parent_nritems = btrfs_header_nritems(parent); 525 blocksize = btrfs_level_size(root, parent_level - 1); 526 end_slot = parent_nritems; 527 528 if (parent_nritems == 1) 529 return 0; 530 531 btrfs_set_lock_blocking(parent); 532 533 for (i = start_slot; i < end_slot; i++) { 534 int close = 1; 535 536 if (!parent->map_token) { 537 map_extent_buffer(parent, 538 btrfs_node_key_ptr_offset(i), 539 sizeof(struct btrfs_key_ptr), 540 &parent->map_token, &parent->kaddr, 541 &parent->map_start, &parent->map_len, 542 KM_USER1); 543 } 544 btrfs_node_key(parent, &disk_key, i); 545 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 546 continue; 547 548 progress_passed = 1; 549 blocknr = btrfs_node_blockptr(parent, i); 550 gen = btrfs_node_ptr_generation(parent, i); 551 if (last_block == 0) 552 last_block = blocknr; 553 554 if (i > 0) { 555 other = btrfs_node_blockptr(parent, i - 1); 556 close = close_blocks(blocknr, other, blocksize); 557 } 558 if (!close && i < end_slot - 2) { 559 other = btrfs_node_blockptr(parent, i + 1); 560 close = close_blocks(blocknr, other, blocksize); 561 } 562 if (close) { 563 last_block = blocknr; 564 continue; 565 } 566 if (parent->map_token) { 567 unmap_extent_buffer(parent, parent->map_token, 568 KM_USER1); 569 parent->map_token = NULL; 570 } 571 572 cur = btrfs_find_tree_block(root, blocknr, blocksize); 573 if (cur) 574 uptodate = btrfs_buffer_uptodate(cur, gen); 575 else 576 uptodate = 0; 577 if (!cur || !uptodate) { 578 if (cache_only) { 579 free_extent_buffer(cur); 580 continue; 581 } 582 if (!cur) { 583 cur = read_tree_block(root, blocknr, 584 blocksize, gen); 585 } else if (!uptodate) { 586 btrfs_read_buffer(cur, gen); 587 } 588 } 589 if (search_start == 0) 590 search_start = last_block; 591 592 btrfs_tree_lock(cur); 593 btrfs_set_lock_blocking(cur); 594 err = __btrfs_cow_block(trans, root, cur, parent, i, 595 &cur, search_start, 596 min(16 * blocksize, 597 (end_slot - i) * blocksize)); 598 if (err) { 599 btrfs_tree_unlock(cur); 600 free_extent_buffer(cur); 601 break; 602 } 603 search_start = cur->start; 604 last_block = cur->start; 605 *last_ret = search_start; 606 btrfs_tree_unlock(cur); 607 free_extent_buffer(cur); 608 } 609 if (parent->map_token) { 610 unmap_extent_buffer(parent, parent->map_token, 611 KM_USER1); 612 parent->map_token = NULL; 613 } 614 return err; 615 } 616 617 /* 618 * The leaf data grows from end-to-front in the node. 619 * this returns the address of the start of the last item, 620 * which is the stop of the leaf data stack 621 */ 622 static inline unsigned int leaf_data_end(struct btrfs_root *root, 623 struct extent_buffer *leaf) 624 { 625 u32 nr = btrfs_header_nritems(leaf); 626 if (nr == 0) 627 return BTRFS_LEAF_DATA_SIZE(root); 628 return btrfs_item_offset_nr(leaf, nr - 1); 629 } 630 631 /* 632 * extra debugging checks to make sure all the items in a key are 633 * well formed and in the proper order 634 */ 635 static int check_node(struct btrfs_root *root, struct btrfs_path *path, 636 int level) 637 { 638 struct extent_buffer *parent = NULL; 639 struct extent_buffer *node = path->nodes[level]; 640 struct btrfs_disk_key parent_key; 641 struct btrfs_disk_key node_key; 642 int parent_slot; 643 int slot; 644 struct btrfs_key cpukey; 645 u32 nritems = btrfs_header_nritems(node); 646 647 if (path->nodes[level + 1]) 648 parent = path->nodes[level + 1]; 649 650 slot = path->slots[level]; 651 BUG_ON(nritems == 0); 652 if (parent) { 653 parent_slot = path->slots[level + 1]; 654 btrfs_node_key(parent, &parent_key, parent_slot); 655 btrfs_node_key(node, &node_key, 0); 656 BUG_ON(memcmp(&parent_key, &node_key, 657 sizeof(struct btrfs_disk_key))); 658 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 659 btrfs_header_bytenr(node)); 660 } 661 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); 662 if (slot != 0) { 663 btrfs_node_key_to_cpu(node, &cpukey, slot - 1); 664 btrfs_node_key(node, &node_key, slot); 665 BUG_ON(comp_keys(&node_key, &cpukey) <= 0); 666 } 667 if (slot < nritems - 1) { 668 btrfs_node_key_to_cpu(node, &cpukey, slot + 1); 669 btrfs_node_key(node, &node_key, slot); 670 BUG_ON(comp_keys(&node_key, &cpukey) >= 0); 671 } 672 return 0; 673 } 674 675 /* 676 * extra checking to make sure all the items in a leaf are 677 * well formed and in the proper order 678 */ 679 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, 680 int level) 681 { 682 struct extent_buffer *leaf = path->nodes[level]; 683 struct extent_buffer *parent = NULL; 684 int parent_slot; 685 struct btrfs_key cpukey; 686 struct btrfs_disk_key parent_key; 687 struct btrfs_disk_key leaf_key; 688 int slot = path->slots[0]; 689 690 u32 nritems = btrfs_header_nritems(leaf); 691 692 if (path->nodes[level + 1]) 693 parent = path->nodes[level + 1]; 694 695 if (nritems == 0) 696 return 0; 697 698 if (parent) { 699 parent_slot = path->slots[level + 1]; 700 btrfs_node_key(parent, &parent_key, parent_slot); 701 btrfs_item_key(leaf, &leaf_key, 0); 702 703 BUG_ON(memcmp(&parent_key, &leaf_key, 704 sizeof(struct btrfs_disk_key))); 705 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 706 btrfs_header_bytenr(leaf)); 707 } 708 if (slot != 0 && slot < nritems - 1) { 709 btrfs_item_key(leaf, &leaf_key, slot); 710 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); 711 if (comp_keys(&leaf_key, &cpukey) <= 0) { 712 btrfs_print_leaf(root, leaf); 713 printk(KERN_CRIT "slot %d offset bad key\n", slot); 714 BUG_ON(1); 715 } 716 if (btrfs_item_offset_nr(leaf, slot - 1) != 717 btrfs_item_end_nr(leaf, slot)) { 718 btrfs_print_leaf(root, leaf); 719 printk(KERN_CRIT "slot %d offset bad\n", slot); 720 BUG_ON(1); 721 } 722 } 723 if (slot < nritems - 1) { 724 btrfs_item_key(leaf, &leaf_key, slot); 725 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); 726 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); 727 if (btrfs_item_offset_nr(leaf, slot) != 728 btrfs_item_end_nr(leaf, slot + 1)) { 729 btrfs_print_leaf(root, leaf); 730 printk(KERN_CRIT "slot %d offset bad\n", slot); 731 BUG_ON(1); 732 } 733 } 734 BUG_ON(btrfs_item_offset_nr(leaf, 0) + 735 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); 736 return 0; 737 } 738 739 static noinline int check_block(struct btrfs_root *root, 740 struct btrfs_path *path, int level) 741 { 742 return 0; 743 if (level == 0) 744 return check_leaf(root, path, level); 745 return check_node(root, path, level); 746 } 747 748 /* 749 * search for key in the extent_buffer. The items start at offset p, 750 * and they are item_size apart. There are 'max' items in p. 751 * 752 * the slot in the array is returned via slot, and it points to 753 * the place where you would insert key if it is not found in 754 * the array. 755 * 756 * slot may point to max if the key is bigger than all of the keys 757 */ 758 static noinline int generic_bin_search(struct extent_buffer *eb, 759 unsigned long p, 760 int item_size, struct btrfs_key *key, 761 int max, int *slot) 762 { 763 int low = 0; 764 int high = max; 765 int mid; 766 int ret; 767 struct btrfs_disk_key *tmp = NULL; 768 struct btrfs_disk_key unaligned; 769 unsigned long offset; 770 char *map_token = NULL; 771 char *kaddr = NULL; 772 unsigned long map_start = 0; 773 unsigned long map_len = 0; 774 int err; 775 776 while (low < high) { 777 mid = (low + high) / 2; 778 offset = p + mid * item_size; 779 780 if (!map_token || offset < map_start || 781 (offset + sizeof(struct btrfs_disk_key)) > 782 map_start + map_len) { 783 if (map_token) { 784 unmap_extent_buffer(eb, map_token, KM_USER0); 785 map_token = NULL; 786 } 787 788 err = map_private_extent_buffer(eb, offset, 789 sizeof(struct btrfs_disk_key), 790 &map_token, &kaddr, 791 &map_start, &map_len, KM_USER0); 792 793 if (!err) { 794 tmp = (struct btrfs_disk_key *)(kaddr + offset - 795 map_start); 796 } else { 797 read_extent_buffer(eb, &unaligned, 798 offset, sizeof(unaligned)); 799 tmp = &unaligned; 800 } 801 802 } else { 803 tmp = (struct btrfs_disk_key *)(kaddr + offset - 804 map_start); 805 } 806 ret = comp_keys(tmp, key); 807 808 if (ret < 0) 809 low = mid + 1; 810 else if (ret > 0) 811 high = mid; 812 else { 813 *slot = mid; 814 if (map_token) 815 unmap_extent_buffer(eb, map_token, KM_USER0); 816 return 0; 817 } 818 } 819 *slot = low; 820 if (map_token) 821 unmap_extent_buffer(eb, map_token, KM_USER0); 822 return 1; 823 } 824 825 /* 826 * simple bin_search frontend that does the right thing for 827 * leaves vs nodes 828 */ 829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 830 int level, int *slot) 831 { 832 if (level == 0) { 833 return generic_bin_search(eb, 834 offsetof(struct btrfs_leaf, items), 835 sizeof(struct btrfs_item), 836 key, btrfs_header_nritems(eb), 837 slot); 838 } else { 839 return generic_bin_search(eb, 840 offsetof(struct btrfs_node, ptrs), 841 sizeof(struct btrfs_key_ptr), 842 key, btrfs_header_nritems(eb), 843 slot); 844 } 845 return -1; 846 } 847 848 /* given a node and slot number, this reads the blocks it points to. The 849 * extent buffer is returned with a reference taken (but unlocked). 850 * NULL is returned on error. 851 */ 852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 853 struct extent_buffer *parent, int slot) 854 { 855 int level = btrfs_header_level(parent); 856 if (slot < 0) 857 return NULL; 858 if (slot >= btrfs_header_nritems(parent)) 859 return NULL; 860 861 BUG_ON(level == 0); 862 863 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 864 btrfs_level_size(root, level - 1), 865 btrfs_node_ptr_generation(parent, slot)); 866 } 867 868 /* 869 * node level balancing, used to make sure nodes are in proper order for 870 * item deletion. We balance from the top down, so we have to make sure 871 * that a deletion won't leave an node completely empty later on. 872 */ 873 static noinline int balance_level(struct btrfs_trans_handle *trans, 874 struct btrfs_root *root, 875 struct btrfs_path *path, int level) 876 { 877 struct extent_buffer *right = NULL; 878 struct extent_buffer *mid; 879 struct extent_buffer *left = NULL; 880 struct extent_buffer *parent = NULL; 881 int ret = 0; 882 int wret; 883 int pslot; 884 int orig_slot = path->slots[level]; 885 int err_on_enospc = 0; 886 u64 orig_ptr; 887 888 if (level == 0) 889 return 0; 890 891 mid = path->nodes[level]; 892 893 WARN_ON(!path->locks[level]); 894 WARN_ON(btrfs_header_generation(mid) != trans->transid); 895 896 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 897 898 if (level < BTRFS_MAX_LEVEL - 1) 899 parent = path->nodes[level + 1]; 900 pslot = path->slots[level + 1]; 901 902 /* 903 * deal with the case where there is only one pointer in the root 904 * by promoting the node below to a root 905 */ 906 if (!parent) { 907 struct extent_buffer *child; 908 909 if (btrfs_header_nritems(mid) != 1) 910 return 0; 911 912 /* promote the child to a root */ 913 child = read_node_slot(root, mid, 0); 914 BUG_ON(!child); 915 btrfs_tree_lock(child); 916 btrfs_set_lock_blocking(child); 917 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 918 BUG_ON(ret); 919 920 spin_lock(&root->node_lock); 921 root->node = child; 922 spin_unlock(&root->node_lock); 923 924 ret = btrfs_update_extent_ref(trans, root, child->start, 925 child->len, 926 mid->start, child->start, 927 root->root_key.objectid, 928 trans->transid, level - 1); 929 BUG_ON(ret); 930 931 add_root_to_dirty_list(root); 932 btrfs_tree_unlock(child); 933 934 path->locks[level] = 0; 935 path->nodes[level] = NULL; 936 clean_tree_block(trans, root, mid); 937 btrfs_tree_unlock(mid); 938 /* once for the path */ 939 free_extent_buffer(mid); 940 ret = btrfs_free_extent(trans, root, mid->start, mid->len, 941 mid->start, root->root_key.objectid, 942 btrfs_header_generation(mid), 943 level, 1); 944 /* once for the root ptr */ 945 free_extent_buffer(mid); 946 return ret; 947 } 948 if (btrfs_header_nritems(mid) > 949 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 950 return 0; 951 952 if (trans->transaction->delayed_refs.flushing && 953 btrfs_header_nritems(mid) > 2) 954 return 0; 955 956 if (btrfs_header_nritems(mid) < 2) 957 err_on_enospc = 1; 958 959 left = read_node_slot(root, parent, pslot - 1); 960 if (left) { 961 btrfs_tree_lock(left); 962 btrfs_set_lock_blocking(left); 963 wret = btrfs_cow_block(trans, root, left, 964 parent, pslot - 1, &left); 965 if (wret) { 966 ret = wret; 967 goto enospc; 968 } 969 } 970 right = read_node_slot(root, parent, pslot + 1); 971 if (right) { 972 btrfs_tree_lock(right); 973 btrfs_set_lock_blocking(right); 974 wret = btrfs_cow_block(trans, root, right, 975 parent, pslot + 1, &right); 976 if (wret) { 977 ret = wret; 978 goto enospc; 979 } 980 } 981 982 /* first, try to make some room in the middle buffer */ 983 if (left) { 984 orig_slot += btrfs_header_nritems(left); 985 wret = push_node_left(trans, root, left, mid, 1); 986 if (wret < 0) 987 ret = wret; 988 if (btrfs_header_nritems(mid) < 2) 989 err_on_enospc = 1; 990 } 991 992 /* 993 * then try to empty the right most buffer into the middle 994 */ 995 if (right) { 996 wret = push_node_left(trans, root, mid, right, 1); 997 if (wret < 0 && wret != -ENOSPC) 998 ret = wret; 999 if (btrfs_header_nritems(right) == 0) { 1000 u64 bytenr = right->start; 1001 u64 generation = btrfs_header_generation(parent); 1002 u32 blocksize = right->len; 1003 1004 clean_tree_block(trans, root, right); 1005 btrfs_tree_unlock(right); 1006 free_extent_buffer(right); 1007 right = NULL; 1008 wret = del_ptr(trans, root, path, level + 1, pslot + 1009 1); 1010 if (wret) 1011 ret = wret; 1012 wret = btrfs_free_extent(trans, root, bytenr, 1013 blocksize, parent->start, 1014 btrfs_header_owner(parent), 1015 generation, level, 1); 1016 if (wret) 1017 ret = wret; 1018 } else { 1019 struct btrfs_disk_key right_key; 1020 btrfs_node_key(right, &right_key, 0); 1021 btrfs_set_node_key(parent, &right_key, pslot + 1); 1022 btrfs_mark_buffer_dirty(parent); 1023 } 1024 } 1025 if (btrfs_header_nritems(mid) == 1) { 1026 /* 1027 * we're not allowed to leave a node with one item in the 1028 * tree during a delete. A deletion from lower in the tree 1029 * could try to delete the only pointer in this node. 1030 * So, pull some keys from the left. 1031 * There has to be a left pointer at this point because 1032 * otherwise we would have pulled some pointers from the 1033 * right 1034 */ 1035 BUG_ON(!left); 1036 wret = balance_node_right(trans, root, mid, left); 1037 if (wret < 0) { 1038 ret = wret; 1039 goto enospc; 1040 } 1041 if (wret == 1) { 1042 wret = push_node_left(trans, root, left, mid, 1); 1043 if (wret < 0) 1044 ret = wret; 1045 } 1046 BUG_ON(wret == 1); 1047 } 1048 if (btrfs_header_nritems(mid) == 0) { 1049 /* we've managed to empty the middle node, drop it */ 1050 u64 root_gen = btrfs_header_generation(parent); 1051 u64 bytenr = mid->start; 1052 u32 blocksize = mid->len; 1053 1054 clean_tree_block(trans, root, mid); 1055 btrfs_tree_unlock(mid); 1056 free_extent_buffer(mid); 1057 mid = NULL; 1058 wret = del_ptr(trans, root, path, level + 1, pslot); 1059 if (wret) 1060 ret = wret; 1061 wret = btrfs_free_extent(trans, root, bytenr, blocksize, 1062 parent->start, 1063 btrfs_header_owner(parent), 1064 root_gen, level, 1); 1065 if (wret) 1066 ret = wret; 1067 } else { 1068 /* update the parent key to reflect our changes */ 1069 struct btrfs_disk_key mid_key; 1070 btrfs_node_key(mid, &mid_key, 0); 1071 btrfs_set_node_key(parent, &mid_key, pslot); 1072 btrfs_mark_buffer_dirty(parent); 1073 } 1074 1075 /* update the path */ 1076 if (left) { 1077 if (btrfs_header_nritems(left) > orig_slot) { 1078 extent_buffer_get(left); 1079 /* left was locked after cow */ 1080 path->nodes[level] = left; 1081 path->slots[level + 1] -= 1; 1082 path->slots[level] = orig_slot; 1083 if (mid) { 1084 btrfs_tree_unlock(mid); 1085 free_extent_buffer(mid); 1086 } 1087 } else { 1088 orig_slot -= btrfs_header_nritems(left); 1089 path->slots[level] = orig_slot; 1090 } 1091 } 1092 /* double check we haven't messed things up */ 1093 check_block(root, path, level); 1094 if (orig_ptr != 1095 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1096 BUG(); 1097 enospc: 1098 if (right) { 1099 btrfs_tree_unlock(right); 1100 free_extent_buffer(right); 1101 } 1102 if (left) { 1103 if (path->nodes[level] != left) 1104 btrfs_tree_unlock(left); 1105 free_extent_buffer(left); 1106 } 1107 return ret; 1108 } 1109 1110 /* Node balancing for insertion. Here we only split or push nodes around 1111 * when they are completely full. This is also done top down, so we 1112 * have to be pessimistic. 1113 */ 1114 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1115 struct btrfs_root *root, 1116 struct btrfs_path *path, int level) 1117 { 1118 struct extent_buffer *right = NULL; 1119 struct extent_buffer *mid; 1120 struct extent_buffer *left = NULL; 1121 struct extent_buffer *parent = NULL; 1122 int ret = 0; 1123 int wret; 1124 int pslot; 1125 int orig_slot = path->slots[level]; 1126 u64 orig_ptr; 1127 1128 if (level == 0) 1129 return 1; 1130 1131 mid = path->nodes[level]; 1132 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1133 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1134 1135 if (level < BTRFS_MAX_LEVEL - 1) 1136 parent = path->nodes[level + 1]; 1137 pslot = path->slots[level + 1]; 1138 1139 if (!parent) 1140 return 1; 1141 1142 left = read_node_slot(root, parent, pslot - 1); 1143 1144 /* first, try to make some room in the middle buffer */ 1145 if (left) { 1146 u32 left_nr; 1147 1148 btrfs_tree_lock(left); 1149 btrfs_set_lock_blocking(left); 1150 1151 left_nr = btrfs_header_nritems(left); 1152 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1153 wret = 1; 1154 } else { 1155 ret = btrfs_cow_block(trans, root, left, parent, 1156 pslot - 1, &left); 1157 if (ret) 1158 wret = 1; 1159 else { 1160 wret = push_node_left(trans, root, 1161 left, mid, 0); 1162 } 1163 } 1164 if (wret < 0) 1165 ret = wret; 1166 if (wret == 0) { 1167 struct btrfs_disk_key disk_key; 1168 orig_slot += left_nr; 1169 btrfs_node_key(mid, &disk_key, 0); 1170 btrfs_set_node_key(parent, &disk_key, pslot); 1171 btrfs_mark_buffer_dirty(parent); 1172 if (btrfs_header_nritems(left) > orig_slot) { 1173 path->nodes[level] = left; 1174 path->slots[level + 1] -= 1; 1175 path->slots[level] = orig_slot; 1176 btrfs_tree_unlock(mid); 1177 free_extent_buffer(mid); 1178 } else { 1179 orig_slot -= 1180 btrfs_header_nritems(left); 1181 path->slots[level] = orig_slot; 1182 btrfs_tree_unlock(left); 1183 free_extent_buffer(left); 1184 } 1185 return 0; 1186 } 1187 btrfs_tree_unlock(left); 1188 free_extent_buffer(left); 1189 } 1190 right = read_node_slot(root, parent, pslot + 1); 1191 1192 /* 1193 * then try to empty the right most buffer into the middle 1194 */ 1195 if (right) { 1196 u32 right_nr; 1197 1198 btrfs_tree_lock(right); 1199 btrfs_set_lock_blocking(right); 1200 1201 right_nr = btrfs_header_nritems(right); 1202 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1203 wret = 1; 1204 } else { 1205 ret = btrfs_cow_block(trans, root, right, 1206 parent, pslot + 1, 1207 &right); 1208 if (ret) 1209 wret = 1; 1210 else { 1211 wret = balance_node_right(trans, root, 1212 right, mid); 1213 } 1214 } 1215 if (wret < 0) 1216 ret = wret; 1217 if (wret == 0) { 1218 struct btrfs_disk_key disk_key; 1219 1220 btrfs_node_key(right, &disk_key, 0); 1221 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1222 btrfs_mark_buffer_dirty(parent); 1223 1224 if (btrfs_header_nritems(mid) <= orig_slot) { 1225 path->nodes[level] = right; 1226 path->slots[level + 1] += 1; 1227 path->slots[level] = orig_slot - 1228 btrfs_header_nritems(mid); 1229 btrfs_tree_unlock(mid); 1230 free_extent_buffer(mid); 1231 } else { 1232 btrfs_tree_unlock(right); 1233 free_extent_buffer(right); 1234 } 1235 return 0; 1236 } 1237 btrfs_tree_unlock(right); 1238 free_extent_buffer(right); 1239 } 1240 return 1; 1241 } 1242 1243 /* 1244 * readahead one full node of leaves, finding things that are close 1245 * to the block in 'slot', and triggering ra on them. 1246 */ 1247 static noinline void reada_for_search(struct btrfs_root *root, 1248 struct btrfs_path *path, 1249 int level, int slot, u64 objectid) 1250 { 1251 struct extent_buffer *node; 1252 struct btrfs_disk_key disk_key; 1253 u32 nritems; 1254 u64 search; 1255 u64 target; 1256 u64 nread = 0; 1257 int direction = path->reada; 1258 struct extent_buffer *eb; 1259 u32 nr; 1260 u32 blocksize; 1261 u32 nscan = 0; 1262 1263 if (level != 1) 1264 return; 1265 1266 if (!path->nodes[level]) 1267 return; 1268 1269 node = path->nodes[level]; 1270 1271 search = btrfs_node_blockptr(node, slot); 1272 blocksize = btrfs_level_size(root, level - 1); 1273 eb = btrfs_find_tree_block(root, search, blocksize); 1274 if (eb) { 1275 free_extent_buffer(eb); 1276 return; 1277 } 1278 1279 target = search; 1280 1281 nritems = btrfs_header_nritems(node); 1282 nr = slot; 1283 while (1) { 1284 if (direction < 0) { 1285 if (nr == 0) 1286 break; 1287 nr--; 1288 } else if (direction > 0) { 1289 nr++; 1290 if (nr >= nritems) 1291 break; 1292 } 1293 if (path->reada < 0 && objectid) { 1294 btrfs_node_key(node, &disk_key, nr); 1295 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1296 break; 1297 } 1298 search = btrfs_node_blockptr(node, nr); 1299 if ((search <= target && target - search <= 65536) || 1300 (search > target && search - target <= 65536)) { 1301 readahead_tree_block(root, search, blocksize, 1302 btrfs_node_ptr_generation(node, nr)); 1303 nread += blocksize; 1304 } 1305 nscan++; 1306 if ((nread > 65536 || nscan > 32)) 1307 break; 1308 } 1309 } 1310 1311 /* 1312 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1313 * cache 1314 */ 1315 static noinline int reada_for_balance(struct btrfs_root *root, 1316 struct btrfs_path *path, int level) 1317 { 1318 int slot; 1319 int nritems; 1320 struct extent_buffer *parent; 1321 struct extent_buffer *eb; 1322 u64 gen; 1323 u64 block1 = 0; 1324 u64 block2 = 0; 1325 int ret = 0; 1326 int blocksize; 1327 1328 parent = path->nodes[level - 1]; 1329 if (!parent) 1330 return 0; 1331 1332 nritems = btrfs_header_nritems(parent); 1333 slot = path->slots[level]; 1334 blocksize = btrfs_level_size(root, level); 1335 1336 if (slot > 0) { 1337 block1 = btrfs_node_blockptr(parent, slot - 1); 1338 gen = btrfs_node_ptr_generation(parent, slot - 1); 1339 eb = btrfs_find_tree_block(root, block1, blocksize); 1340 if (eb && btrfs_buffer_uptodate(eb, gen)) 1341 block1 = 0; 1342 free_extent_buffer(eb); 1343 } 1344 if (slot < nritems) { 1345 block2 = btrfs_node_blockptr(parent, slot + 1); 1346 gen = btrfs_node_ptr_generation(parent, slot + 1); 1347 eb = btrfs_find_tree_block(root, block2, blocksize); 1348 if (eb && btrfs_buffer_uptodate(eb, gen)) 1349 block2 = 0; 1350 free_extent_buffer(eb); 1351 } 1352 if (block1 || block2) { 1353 ret = -EAGAIN; 1354 btrfs_release_path(root, path); 1355 if (block1) 1356 readahead_tree_block(root, block1, blocksize, 0); 1357 if (block2) 1358 readahead_tree_block(root, block2, blocksize, 0); 1359 1360 if (block1) { 1361 eb = read_tree_block(root, block1, blocksize, 0); 1362 free_extent_buffer(eb); 1363 } 1364 if (block1) { 1365 eb = read_tree_block(root, block2, blocksize, 0); 1366 free_extent_buffer(eb); 1367 } 1368 } 1369 return ret; 1370 } 1371 1372 1373 /* 1374 * when we walk down the tree, it is usually safe to unlock the higher layers 1375 * in the tree. The exceptions are when our path goes through slot 0, because 1376 * operations on the tree might require changing key pointers higher up in the 1377 * tree. 1378 * 1379 * callers might also have set path->keep_locks, which tells this code to keep 1380 * the lock if the path points to the last slot in the block. This is part of 1381 * walking through the tree, and selecting the next slot in the higher block. 1382 * 1383 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1384 * if lowest_unlock is 1, level 0 won't be unlocked 1385 */ 1386 static noinline void unlock_up(struct btrfs_path *path, int level, 1387 int lowest_unlock) 1388 { 1389 int i; 1390 int skip_level = level; 1391 int no_skips = 0; 1392 struct extent_buffer *t; 1393 1394 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1395 if (!path->nodes[i]) 1396 break; 1397 if (!path->locks[i]) 1398 break; 1399 if (!no_skips && path->slots[i] == 0) { 1400 skip_level = i + 1; 1401 continue; 1402 } 1403 if (!no_skips && path->keep_locks) { 1404 u32 nritems; 1405 t = path->nodes[i]; 1406 nritems = btrfs_header_nritems(t); 1407 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1408 skip_level = i + 1; 1409 continue; 1410 } 1411 } 1412 if (skip_level < i && i >= lowest_unlock) 1413 no_skips = 1; 1414 1415 t = path->nodes[i]; 1416 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1417 btrfs_tree_unlock(t); 1418 path->locks[i] = 0; 1419 } 1420 } 1421 } 1422 1423 /* 1424 * This releases any locks held in the path starting at level and 1425 * going all the way up to the root. 1426 * 1427 * btrfs_search_slot will keep the lock held on higher nodes in a few 1428 * corner cases, such as COW of the block at slot zero in the node. This 1429 * ignores those rules, and it should only be called when there are no 1430 * more updates to be done higher up in the tree. 1431 */ 1432 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1433 { 1434 int i; 1435 1436 if (path->keep_locks || path->lowest_level) 1437 return; 1438 1439 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1440 if (!path->nodes[i]) 1441 continue; 1442 if (!path->locks[i]) 1443 continue; 1444 btrfs_tree_unlock(path->nodes[i]); 1445 path->locks[i] = 0; 1446 } 1447 } 1448 1449 /* 1450 * look for key in the tree. path is filled in with nodes along the way 1451 * if key is found, we return zero and you can find the item in the leaf 1452 * level of the path (level 0) 1453 * 1454 * If the key isn't found, the path points to the slot where it should 1455 * be inserted, and 1 is returned. If there are other errors during the 1456 * search a negative error number is returned. 1457 * 1458 * if ins_len > 0, nodes and leaves will be split as we walk down the 1459 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1460 * possible) 1461 */ 1462 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1463 *root, struct btrfs_key *key, struct btrfs_path *p, int 1464 ins_len, int cow) 1465 { 1466 struct extent_buffer *b; 1467 struct extent_buffer *tmp; 1468 int slot; 1469 int ret; 1470 int level; 1471 int should_reada = p->reada; 1472 int lowest_unlock = 1; 1473 int blocksize; 1474 u8 lowest_level = 0; 1475 u64 blocknr; 1476 u64 gen; 1477 1478 lowest_level = p->lowest_level; 1479 WARN_ON(lowest_level && ins_len > 0); 1480 WARN_ON(p->nodes[0] != NULL); 1481 1482 if (ins_len < 0) 1483 lowest_unlock = 2; 1484 1485 again: 1486 if (p->skip_locking) 1487 b = btrfs_root_node(root); 1488 else 1489 b = btrfs_lock_root_node(root); 1490 1491 while (b) { 1492 level = btrfs_header_level(b); 1493 1494 /* 1495 * setup the path here so we can release it under lock 1496 * contention with the cow code 1497 */ 1498 p->nodes[level] = b; 1499 if (!p->skip_locking) 1500 p->locks[level] = 1; 1501 1502 if (cow) { 1503 int wret; 1504 1505 /* is a cow on this block not required */ 1506 if (btrfs_header_generation(b) == trans->transid && 1507 btrfs_header_owner(b) == root->root_key.objectid && 1508 !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) { 1509 goto cow_done; 1510 } 1511 btrfs_set_path_blocking(p); 1512 1513 wret = btrfs_cow_block(trans, root, b, 1514 p->nodes[level + 1], 1515 p->slots[level + 1], &b); 1516 if (wret) { 1517 free_extent_buffer(b); 1518 ret = wret; 1519 goto done; 1520 } 1521 } 1522 cow_done: 1523 BUG_ON(!cow && ins_len); 1524 if (level != btrfs_header_level(b)) 1525 WARN_ON(1); 1526 level = btrfs_header_level(b); 1527 1528 p->nodes[level] = b; 1529 if (!p->skip_locking) 1530 p->locks[level] = 1; 1531 1532 btrfs_clear_path_blocking(p, NULL); 1533 1534 /* 1535 * we have a lock on b and as long as we aren't changing 1536 * the tree, there is no way to for the items in b to change. 1537 * It is safe to drop the lock on our parent before we 1538 * go through the expensive btree search on b. 1539 * 1540 * If cow is true, then we might be changing slot zero, 1541 * which may require changing the parent. So, we can't 1542 * drop the lock until after we know which slot we're 1543 * operating on. 1544 */ 1545 if (!cow) 1546 btrfs_unlock_up_safe(p, level + 1); 1547 1548 ret = check_block(root, p, level); 1549 if (ret) { 1550 ret = -1; 1551 goto done; 1552 } 1553 1554 ret = bin_search(b, key, level, &slot); 1555 1556 if (level != 0) { 1557 if (ret && slot > 0) 1558 slot -= 1; 1559 p->slots[level] = slot; 1560 if ((p->search_for_split || ins_len > 0) && 1561 btrfs_header_nritems(b) >= 1562 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1563 int sret; 1564 1565 sret = reada_for_balance(root, p, level); 1566 if (sret) 1567 goto again; 1568 1569 btrfs_set_path_blocking(p); 1570 sret = split_node(trans, root, p, level); 1571 btrfs_clear_path_blocking(p, NULL); 1572 1573 BUG_ON(sret > 0); 1574 if (sret) { 1575 ret = sret; 1576 goto done; 1577 } 1578 b = p->nodes[level]; 1579 slot = p->slots[level]; 1580 } else if (ins_len < 0 && 1581 btrfs_header_nritems(b) < 1582 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) { 1583 int sret; 1584 1585 sret = reada_for_balance(root, p, level); 1586 if (sret) 1587 goto again; 1588 1589 btrfs_set_path_blocking(p); 1590 sret = balance_level(trans, root, p, level); 1591 btrfs_clear_path_blocking(p, NULL); 1592 1593 if (sret) { 1594 ret = sret; 1595 goto done; 1596 } 1597 b = p->nodes[level]; 1598 if (!b) { 1599 btrfs_release_path(NULL, p); 1600 goto again; 1601 } 1602 slot = p->slots[level]; 1603 BUG_ON(btrfs_header_nritems(b) == 1); 1604 } 1605 unlock_up(p, level, lowest_unlock); 1606 1607 /* this is only true while dropping a snapshot */ 1608 if (level == lowest_level) { 1609 ret = 0; 1610 goto done; 1611 } 1612 1613 blocknr = btrfs_node_blockptr(b, slot); 1614 gen = btrfs_node_ptr_generation(b, slot); 1615 blocksize = btrfs_level_size(root, level - 1); 1616 1617 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1618 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 1619 b = tmp; 1620 } else { 1621 /* 1622 * reduce lock contention at high levels 1623 * of the btree by dropping locks before 1624 * we read. 1625 */ 1626 if (level > 0) { 1627 btrfs_release_path(NULL, p); 1628 if (tmp) 1629 free_extent_buffer(tmp); 1630 if (should_reada) 1631 reada_for_search(root, p, 1632 level, slot, 1633 key->objectid); 1634 1635 tmp = read_tree_block(root, blocknr, 1636 blocksize, gen); 1637 if (tmp) 1638 free_extent_buffer(tmp); 1639 goto again; 1640 } else { 1641 btrfs_set_path_blocking(p); 1642 if (tmp) 1643 free_extent_buffer(tmp); 1644 if (should_reada) 1645 reada_for_search(root, p, 1646 level, slot, 1647 key->objectid); 1648 b = read_node_slot(root, b, slot); 1649 } 1650 } 1651 if (!p->skip_locking) { 1652 int lret; 1653 1654 btrfs_clear_path_blocking(p, NULL); 1655 lret = btrfs_try_spin_lock(b); 1656 1657 if (!lret) { 1658 btrfs_set_path_blocking(p); 1659 btrfs_tree_lock(b); 1660 btrfs_clear_path_blocking(p, b); 1661 } 1662 } 1663 } else { 1664 p->slots[level] = slot; 1665 if (ins_len > 0 && 1666 btrfs_leaf_free_space(root, b) < ins_len) { 1667 int sret; 1668 1669 btrfs_set_path_blocking(p); 1670 sret = split_leaf(trans, root, key, 1671 p, ins_len, ret == 0); 1672 btrfs_clear_path_blocking(p, NULL); 1673 1674 BUG_ON(sret > 0); 1675 if (sret) { 1676 ret = sret; 1677 goto done; 1678 } 1679 } 1680 if (!p->search_for_split) 1681 unlock_up(p, level, lowest_unlock); 1682 goto done; 1683 } 1684 } 1685 ret = 1; 1686 done: 1687 /* 1688 * we don't really know what they plan on doing with the path 1689 * from here on, so for now just mark it as blocking 1690 */ 1691 if (!p->leave_spinning) 1692 btrfs_set_path_blocking(p); 1693 return ret; 1694 } 1695 1696 int btrfs_merge_path(struct btrfs_trans_handle *trans, 1697 struct btrfs_root *root, 1698 struct btrfs_key *node_keys, 1699 u64 *nodes, int lowest_level) 1700 { 1701 struct extent_buffer *eb; 1702 struct extent_buffer *parent; 1703 struct btrfs_key key; 1704 u64 bytenr; 1705 u64 generation; 1706 u32 blocksize; 1707 int level; 1708 int slot; 1709 int key_match; 1710 int ret; 1711 1712 eb = btrfs_lock_root_node(root); 1713 ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb); 1714 BUG_ON(ret); 1715 1716 btrfs_set_lock_blocking(eb); 1717 1718 parent = eb; 1719 while (1) { 1720 level = btrfs_header_level(parent); 1721 if (level == 0 || level <= lowest_level) 1722 break; 1723 1724 ret = bin_search(parent, &node_keys[lowest_level], level, 1725 &slot); 1726 if (ret && slot > 0) 1727 slot--; 1728 1729 bytenr = btrfs_node_blockptr(parent, slot); 1730 if (nodes[level - 1] == bytenr) 1731 break; 1732 1733 blocksize = btrfs_level_size(root, level - 1); 1734 generation = btrfs_node_ptr_generation(parent, slot); 1735 btrfs_node_key_to_cpu(eb, &key, slot); 1736 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key)); 1737 1738 if (generation == trans->transid) { 1739 eb = read_tree_block(root, bytenr, blocksize, 1740 generation); 1741 btrfs_tree_lock(eb); 1742 btrfs_set_lock_blocking(eb); 1743 } 1744 1745 /* 1746 * if node keys match and node pointer hasn't been modified 1747 * in the running transaction, we can merge the path. for 1748 * blocks owened by reloc trees, the node pointer check is 1749 * skipped, this is because these blocks are fully controlled 1750 * by the space balance code, no one else can modify them. 1751 */ 1752 if (!nodes[level - 1] || !key_match || 1753 (generation == trans->transid && 1754 btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) { 1755 if (level == 1 || level == lowest_level + 1) { 1756 if (generation == trans->transid) { 1757 btrfs_tree_unlock(eb); 1758 free_extent_buffer(eb); 1759 } 1760 break; 1761 } 1762 1763 if (generation != trans->transid) { 1764 eb = read_tree_block(root, bytenr, blocksize, 1765 generation); 1766 btrfs_tree_lock(eb); 1767 btrfs_set_lock_blocking(eb); 1768 } 1769 1770 ret = btrfs_cow_block(trans, root, eb, parent, slot, 1771 &eb); 1772 BUG_ON(ret); 1773 1774 if (root->root_key.objectid == 1775 BTRFS_TREE_RELOC_OBJECTID) { 1776 if (!nodes[level - 1]) { 1777 nodes[level - 1] = eb->start; 1778 memcpy(&node_keys[level - 1], &key, 1779 sizeof(node_keys[0])); 1780 } else { 1781 WARN_ON(1); 1782 } 1783 } 1784 1785 btrfs_tree_unlock(parent); 1786 free_extent_buffer(parent); 1787 parent = eb; 1788 continue; 1789 } 1790 1791 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]); 1792 btrfs_set_node_ptr_generation(parent, slot, trans->transid); 1793 btrfs_mark_buffer_dirty(parent); 1794 1795 ret = btrfs_inc_extent_ref(trans, root, 1796 nodes[level - 1], 1797 blocksize, parent->start, 1798 btrfs_header_owner(parent), 1799 btrfs_header_generation(parent), 1800 level - 1); 1801 BUG_ON(ret); 1802 1803 /* 1804 * If the block was created in the running transaction, 1805 * it's possible this is the last reference to it, so we 1806 * should drop the subtree. 1807 */ 1808 if (generation == trans->transid) { 1809 ret = btrfs_drop_subtree(trans, root, eb, parent); 1810 BUG_ON(ret); 1811 btrfs_tree_unlock(eb); 1812 free_extent_buffer(eb); 1813 } else { 1814 ret = btrfs_free_extent(trans, root, bytenr, 1815 blocksize, parent->start, 1816 btrfs_header_owner(parent), 1817 btrfs_header_generation(parent), 1818 level - 1, 1); 1819 BUG_ON(ret); 1820 } 1821 break; 1822 } 1823 btrfs_tree_unlock(parent); 1824 free_extent_buffer(parent); 1825 return 0; 1826 } 1827 1828 /* 1829 * adjust the pointers going up the tree, starting at level 1830 * making sure the right key of each node is points to 'key'. 1831 * This is used after shifting pointers to the left, so it stops 1832 * fixing up pointers when a given leaf/node is not in slot 0 of the 1833 * higher levels 1834 * 1835 * If this fails to write a tree block, it returns -1, but continues 1836 * fixing up the blocks in ram so the tree is consistent. 1837 */ 1838 static int fixup_low_keys(struct btrfs_trans_handle *trans, 1839 struct btrfs_root *root, struct btrfs_path *path, 1840 struct btrfs_disk_key *key, int level) 1841 { 1842 int i; 1843 int ret = 0; 1844 struct extent_buffer *t; 1845 1846 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1847 int tslot = path->slots[i]; 1848 if (!path->nodes[i]) 1849 break; 1850 t = path->nodes[i]; 1851 btrfs_set_node_key(t, key, tslot); 1852 btrfs_mark_buffer_dirty(path->nodes[i]); 1853 if (tslot != 0) 1854 break; 1855 } 1856 return ret; 1857 } 1858 1859 /* 1860 * update item key. 1861 * 1862 * This function isn't completely safe. It's the caller's responsibility 1863 * that the new key won't break the order 1864 */ 1865 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1866 struct btrfs_root *root, struct btrfs_path *path, 1867 struct btrfs_key *new_key) 1868 { 1869 struct btrfs_disk_key disk_key; 1870 struct extent_buffer *eb; 1871 int slot; 1872 1873 eb = path->nodes[0]; 1874 slot = path->slots[0]; 1875 if (slot > 0) { 1876 btrfs_item_key(eb, &disk_key, slot - 1); 1877 if (comp_keys(&disk_key, new_key) >= 0) 1878 return -1; 1879 } 1880 if (slot < btrfs_header_nritems(eb) - 1) { 1881 btrfs_item_key(eb, &disk_key, slot + 1); 1882 if (comp_keys(&disk_key, new_key) <= 0) 1883 return -1; 1884 } 1885 1886 btrfs_cpu_key_to_disk(&disk_key, new_key); 1887 btrfs_set_item_key(eb, &disk_key, slot); 1888 btrfs_mark_buffer_dirty(eb); 1889 if (slot == 0) 1890 fixup_low_keys(trans, root, path, &disk_key, 1); 1891 return 0; 1892 } 1893 1894 /* 1895 * try to push data from one node into the next node left in the 1896 * tree. 1897 * 1898 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1899 * error, and > 0 if there was no room in the left hand block. 1900 */ 1901 static int push_node_left(struct btrfs_trans_handle *trans, 1902 struct btrfs_root *root, struct extent_buffer *dst, 1903 struct extent_buffer *src, int empty) 1904 { 1905 int push_items = 0; 1906 int src_nritems; 1907 int dst_nritems; 1908 int ret = 0; 1909 1910 src_nritems = btrfs_header_nritems(src); 1911 dst_nritems = btrfs_header_nritems(dst); 1912 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1913 WARN_ON(btrfs_header_generation(src) != trans->transid); 1914 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1915 1916 if (!empty && src_nritems <= 8) 1917 return 1; 1918 1919 if (push_items <= 0) 1920 return 1; 1921 1922 if (empty) { 1923 push_items = min(src_nritems, push_items); 1924 if (push_items < src_nritems) { 1925 /* leave at least 8 pointers in the node if 1926 * we aren't going to empty it 1927 */ 1928 if (src_nritems - push_items < 8) { 1929 if (push_items <= 8) 1930 return 1; 1931 push_items -= 8; 1932 } 1933 } 1934 } else 1935 push_items = min(src_nritems - 8, push_items); 1936 1937 copy_extent_buffer(dst, src, 1938 btrfs_node_key_ptr_offset(dst_nritems), 1939 btrfs_node_key_ptr_offset(0), 1940 push_items * sizeof(struct btrfs_key_ptr)); 1941 1942 if (push_items < src_nritems) { 1943 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 1944 btrfs_node_key_ptr_offset(push_items), 1945 (src_nritems - push_items) * 1946 sizeof(struct btrfs_key_ptr)); 1947 } 1948 btrfs_set_header_nritems(src, src_nritems - push_items); 1949 btrfs_set_header_nritems(dst, dst_nritems + push_items); 1950 btrfs_mark_buffer_dirty(src); 1951 btrfs_mark_buffer_dirty(dst); 1952 1953 ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items); 1954 BUG_ON(ret); 1955 1956 return ret; 1957 } 1958 1959 /* 1960 * try to push data from one node into the next node right in the 1961 * tree. 1962 * 1963 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 1964 * error, and > 0 if there was no room in the right hand block. 1965 * 1966 * this will only push up to 1/2 the contents of the left node over 1967 */ 1968 static int balance_node_right(struct btrfs_trans_handle *trans, 1969 struct btrfs_root *root, 1970 struct extent_buffer *dst, 1971 struct extent_buffer *src) 1972 { 1973 int push_items = 0; 1974 int max_push; 1975 int src_nritems; 1976 int dst_nritems; 1977 int ret = 0; 1978 1979 WARN_ON(btrfs_header_generation(src) != trans->transid); 1980 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1981 1982 src_nritems = btrfs_header_nritems(src); 1983 dst_nritems = btrfs_header_nritems(dst); 1984 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1985 if (push_items <= 0) 1986 return 1; 1987 1988 if (src_nritems < 4) 1989 return 1; 1990 1991 max_push = src_nritems / 2 + 1; 1992 /* don't try to empty the node */ 1993 if (max_push >= src_nritems) 1994 return 1; 1995 1996 if (max_push < push_items) 1997 push_items = max_push; 1998 1999 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2000 btrfs_node_key_ptr_offset(0), 2001 (dst_nritems) * 2002 sizeof(struct btrfs_key_ptr)); 2003 2004 copy_extent_buffer(dst, src, 2005 btrfs_node_key_ptr_offset(0), 2006 btrfs_node_key_ptr_offset(src_nritems - push_items), 2007 push_items * sizeof(struct btrfs_key_ptr)); 2008 2009 btrfs_set_header_nritems(src, src_nritems - push_items); 2010 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2011 2012 btrfs_mark_buffer_dirty(src); 2013 btrfs_mark_buffer_dirty(dst); 2014 2015 ret = btrfs_update_ref(trans, root, src, dst, 0, push_items); 2016 BUG_ON(ret); 2017 2018 return ret; 2019 } 2020 2021 /* 2022 * helper function to insert a new root level in the tree. 2023 * A new node is allocated, and a single item is inserted to 2024 * point to the existing root 2025 * 2026 * returns zero on success or < 0 on failure. 2027 */ 2028 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2029 struct btrfs_root *root, 2030 struct btrfs_path *path, int level) 2031 { 2032 u64 lower_gen; 2033 struct extent_buffer *lower; 2034 struct extent_buffer *c; 2035 struct extent_buffer *old; 2036 struct btrfs_disk_key lower_key; 2037 int ret; 2038 2039 BUG_ON(path->nodes[level]); 2040 BUG_ON(path->nodes[level-1] != root->node); 2041 2042 lower = path->nodes[level-1]; 2043 if (level == 1) 2044 btrfs_item_key(lower, &lower_key, 0); 2045 else 2046 btrfs_node_key(lower, &lower_key, 0); 2047 2048 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2049 root->root_key.objectid, trans->transid, 2050 level, root->node->start, 0); 2051 if (IS_ERR(c)) 2052 return PTR_ERR(c); 2053 2054 memset_extent_buffer(c, 0, 0, root->nodesize); 2055 btrfs_set_header_nritems(c, 1); 2056 btrfs_set_header_level(c, level); 2057 btrfs_set_header_bytenr(c, c->start); 2058 btrfs_set_header_generation(c, trans->transid); 2059 btrfs_set_header_owner(c, root->root_key.objectid); 2060 2061 write_extent_buffer(c, root->fs_info->fsid, 2062 (unsigned long)btrfs_header_fsid(c), 2063 BTRFS_FSID_SIZE); 2064 2065 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2066 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2067 BTRFS_UUID_SIZE); 2068 2069 btrfs_set_node_key(c, &lower_key, 0); 2070 btrfs_set_node_blockptr(c, 0, lower->start); 2071 lower_gen = btrfs_header_generation(lower); 2072 WARN_ON(lower_gen != trans->transid); 2073 2074 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2075 2076 btrfs_mark_buffer_dirty(c); 2077 2078 spin_lock(&root->node_lock); 2079 old = root->node; 2080 root->node = c; 2081 spin_unlock(&root->node_lock); 2082 2083 ret = btrfs_update_extent_ref(trans, root, lower->start, 2084 lower->len, lower->start, c->start, 2085 root->root_key.objectid, 2086 trans->transid, level - 1); 2087 BUG_ON(ret); 2088 2089 /* the super has an extra ref to root->node */ 2090 free_extent_buffer(old); 2091 2092 add_root_to_dirty_list(root); 2093 extent_buffer_get(c); 2094 path->nodes[level] = c; 2095 path->locks[level] = 1; 2096 path->slots[level] = 0; 2097 return 0; 2098 } 2099 2100 /* 2101 * worker function to insert a single pointer in a node. 2102 * the node should have enough room for the pointer already 2103 * 2104 * slot and level indicate where you want the key to go, and 2105 * blocknr is the block the key points to. 2106 * 2107 * returns zero on success and < 0 on any error 2108 */ 2109 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root 2110 *root, struct btrfs_path *path, struct btrfs_disk_key 2111 *key, u64 bytenr, int slot, int level) 2112 { 2113 struct extent_buffer *lower; 2114 int nritems; 2115 2116 BUG_ON(!path->nodes[level]); 2117 lower = path->nodes[level]; 2118 nritems = btrfs_header_nritems(lower); 2119 if (slot > nritems) 2120 BUG(); 2121 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) 2122 BUG(); 2123 if (slot != nritems) { 2124 memmove_extent_buffer(lower, 2125 btrfs_node_key_ptr_offset(slot + 1), 2126 btrfs_node_key_ptr_offset(slot), 2127 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2128 } 2129 btrfs_set_node_key(lower, key, slot); 2130 btrfs_set_node_blockptr(lower, slot, bytenr); 2131 WARN_ON(trans->transid == 0); 2132 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2133 btrfs_set_header_nritems(lower, nritems + 1); 2134 btrfs_mark_buffer_dirty(lower); 2135 return 0; 2136 } 2137 2138 /* 2139 * split the node at the specified level in path in two. 2140 * The path is corrected to point to the appropriate node after the split 2141 * 2142 * Before splitting this tries to make some room in the node by pushing 2143 * left and right, if either one works, it returns right away. 2144 * 2145 * returns 0 on success and < 0 on failure 2146 */ 2147 static noinline int split_node(struct btrfs_trans_handle *trans, 2148 struct btrfs_root *root, 2149 struct btrfs_path *path, int level) 2150 { 2151 struct extent_buffer *c; 2152 struct extent_buffer *split; 2153 struct btrfs_disk_key disk_key; 2154 int mid; 2155 int ret; 2156 int wret; 2157 u32 c_nritems; 2158 2159 c = path->nodes[level]; 2160 WARN_ON(btrfs_header_generation(c) != trans->transid); 2161 if (c == root->node) { 2162 /* trying to split the root, lets make a new one */ 2163 ret = insert_new_root(trans, root, path, level + 1); 2164 if (ret) 2165 return ret; 2166 } else if (!trans->transaction->delayed_refs.flushing) { 2167 ret = push_nodes_for_insert(trans, root, path, level); 2168 c = path->nodes[level]; 2169 if (!ret && btrfs_header_nritems(c) < 2170 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2171 return 0; 2172 if (ret < 0) 2173 return ret; 2174 } 2175 2176 c_nritems = btrfs_header_nritems(c); 2177 2178 split = btrfs_alloc_free_block(trans, root, root->nodesize, 2179 path->nodes[level + 1]->start, 2180 root->root_key.objectid, 2181 trans->transid, level, c->start, 0); 2182 if (IS_ERR(split)) 2183 return PTR_ERR(split); 2184 2185 btrfs_set_header_flags(split, btrfs_header_flags(c)); 2186 btrfs_set_header_level(split, btrfs_header_level(c)); 2187 btrfs_set_header_bytenr(split, split->start); 2188 btrfs_set_header_generation(split, trans->transid); 2189 btrfs_set_header_owner(split, root->root_key.objectid); 2190 btrfs_set_header_flags(split, 0); 2191 write_extent_buffer(split, root->fs_info->fsid, 2192 (unsigned long)btrfs_header_fsid(split), 2193 BTRFS_FSID_SIZE); 2194 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2195 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2196 BTRFS_UUID_SIZE); 2197 2198 mid = (c_nritems + 1) / 2; 2199 2200 copy_extent_buffer(split, c, 2201 btrfs_node_key_ptr_offset(0), 2202 btrfs_node_key_ptr_offset(mid), 2203 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2204 btrfs_set_header_nritems(split, c_nritems - mid); 2205 btrfs_set_header_nritems(c, mid); 2206 ret = 0; 2207 2208 btrfs_mark_buffer_dirty(c); 2209 btrfs_mark_buffer_dirty(split); 2210 2211 btrfs_node_key(split, &disk_key, 0); 2212 wret = insert_ptr(trans, root, path, &disk_key, split->start, 2213 path->slots[level + 1] + 1, 2214 level + 1); 2215 if (wret) 2216 ret = wret; 2217 2218 ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid); 2219 BUG_ON(ret); 2220 2221 if (path->slots[level] >= mid) { 2222 path->slots[level] -= mid; 2223 btrfs_tree_unlock(c); 2224 free_extent_buffer(c); 2225 path->nodes[level] = split; 2226 path->slots[level + 1] += 1; 2227 } else { 2228 btrfs_tree_unlock(split); 2229 free_extent_buffer(split); 2230 } 2231 return ret; 2232 } 2233 2234 /* 2235 * how many bytes are required to store the items in a leaf. start 2236 * and nr indicate which items in the leaf to check. This totals up the 2237 * space used both by the item structs and the item data 2238 */ 2239 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2240 { 2241 int data_len; 2242 int nritems = btrfs_header_nritems(l); 2243 int end = min(nritems, start + nr) - 1; 2244 2245 if (!nr) 2246 return 0; 2247 data_len = btrfs_item_end_nr(l, start); 2248 data_len = data_len - btrfs_item_offset_nr(l, end); 2249 data_len += sizeof(struct btrfs_item) * nr; 2250 WARN_ON(data_len < 0); 2251 return data_len; 2252 } 2253 2254 /* 2255 * The space between the end of the leaf items and 2256 * the start of the leaf data. IOW, how much room 2257 * the leaf has left for both items and data 2258 */ 2259 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2260 struct extent_buffer *leaf) 2261 { 2262 int nritems = btrfs_header_nritems(leaf); 2263 int ret; 2264 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2265 if (ret < 0) { 2266 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2267 "used %d nritems %d\n", 2268 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2269 leaf_space_used(leaf, 0, nritems), nritems); 2270 } 2271 return ret; 2272 } 2273 2274 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 2275 struct btrfs_root *root, 2276 struct btrfs_path *path, 2277 int data_size, int empty, 2278 struct extent_buffer *right, 2279 int free_space, u32 left_nritems) 2280 { 2281 struct extent_buffer *left = path->nodes[0]; 2282 struct extent_buffer *upper = path->nodes[1]; 2283 struct btrfs_disk_key disk_key; 2284 int slot; 2285 u32 i; 2286 int push_space = 0; 2287 int push_items = 0; 2288 struct btrfs_item *item; 2289 u32 nr; 2290 u32 right_nritems; 2291 u32 data_end; 2292 u32 this_item_size; 2293 int ret; 2294 2295 if (empty) 2296 nr = 0; 2297 else 2298 nr = 1; 2299 2300 if (path->slots[0] >= left_nritems) 2301 push_space += data_size; 2302 2303 slot = path->slots[1]; 2304 i = left_nritems - 1; 2305 while (i >= nr) { 2306 item = btrfs_item_nr(left, i); 2307 2308 if (!empty && push_items > 0) { 2309 if (path->slots[0] > i) 2310 break; 2311 if (path->slots[0] == i) { 2312 int space = btrfs_leaf_free_space(root, left); 2313 if (space + push_space * 2 > free_space) 2314 break; 2315 } 2316 } 2317 2318 if (path->slots[0] == i) 2319 push_space += data_size; 2320 2321 if (!left->map_token) { 2322 map_extent_buffer(left, (unsigned long)item, 2323 sizeof(struct btrfs_item), 2324 &left->map_token, &left->kaddr, 2325 &left->map_start, &left->map_len, 2326 KM_USER1); 2327 } 2328 2329 this_item_size = btrfs_item_size(left, item); 2330 if (this_item_size + sizeof(*item) + push_space > free_space) 2331 break; 2332 2333 push_items++; 2334 push_space += this_item_size + sizeof(*item); 2335 if (i == 0) 2336 break; 2337 i--; 2338 } 2339 if (left->map_token) { 2340 unmap_extent_buffer(left, left->map_token, KM_USER1); 2341 left->map_token = NULL; 2342 } 2343 2344 if (push_items == 0) 2345 goto out_unlock; 2346 2347 if (!empty && push_items == left_nritems) 2348 WARN_ON(1); 2349 2350 /* push left to right */ 2351 right_nritems = btrfs_header_nritems(right); 2352 2353 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2354 push_space -= leaf_data_end(root, left); 2355 2356 /* make room in the right data area */ 2357 data_end = leaf_data_end(root, right); 2358 memmove_extent_buffer(right, 2359 btrfs_leaf_data(right) + data_end - push_space, 2360 btrfs_leaf_data(right) + data_end, 2361 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2362 2363 /* copy from the left data area */ 2364 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2365 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2366 btrfs_leaf_data(left) + leaf_data_end(root, left), 2367 push_space); 2368 2369 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2370 btrfs_item_nr_offset(0), 2371 right_nritems * sizeof(struct btrfs_item)); 2372 2373 /* copy the items from left to right */ 2374 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2375 btrfs_item_nr_offset(left_nritems - push_items), 2376 push_items * sizeof(struct btrfs_item)); 2377 2378 /* update the item pointers */ 2379 right_nritems += push_items; 2380 btrfs_set_header_nritems(right, right_nritems); 2381 push_space = BTRFS_LEAF_DATA_SIZE(root); 2382 for (i = 0; i < right_nritems; i++) { 2383 item = btrfs_item_nr(right, i); 2384 if (!right->map_token) { 2385 map_extent_buffer(right, (unsigned long)item, 2386 sizeof(struct btrfs_item), 2387 &right->map_token, &right->kaddr, 2388 &right->map_start, &right->map_len, 2389 KM_USER1); 2390 } 2391 push_space -= btrfs_item_size(right, item); 2392 btrfs_set_item_offset(right, item, push_space); 2393 } 2394 2395 if (right->map_token) { 2396 unmap_extent_buffer(right, right->map_token, KM_USER1); 2397 right->map_token = NULL; 2398 } 2399 left_nritems -= push_items; 2400 btrfs_set_header_nritems(left, left_nritems); 2401 2402 if (left_nritems) 2403 btrfs_mark_buffer_dirty(left); 2404 btrfs_mark_buffer_dirty(right); 2405 2406 ret = btrfs_update_ref(trans, root, left, right, 0, push_items); 2407 BUG_ON(ret); 2408 2409 btrfs_item_key(right, &disk_key, 0); 2410 btrfs_set_node_key(upper, &disk_key, slot + 1); 2411 btrfs_mark_buffer_dirty(upper); 2412 2413 /* then fixup the leaf pointer in the path */ 2414 if (path->slots[0] >= left_nritems) { 2415 path->slots[0] -= left_nritems; 2416 if (btrfs_header_nritems(path->nodes[0]) == 0) 2417 clean_tree_block(trans, root, path->nodes[0]); 2418 btrfs_tree_unlock(path->nodes[0]); 2419 free_extent_buffer(path->nodes[0]); 2420 path->nodes[0] = right; 2421 path->slots[1] += 1; 2422 } else { 2423 btrfs_tree_unlock(right); 2424 free_extent_buffer(right); 2425 } 2426 return 0; 2427 2428 out_unlock: 2429 btrfs_tree_unlock(right); 2430 free_extent_buffer(right); 2431 return 1; 2432 } 2433 2434 /* 2435 * push some data in the path leaf to the right, trying to free up at 2436 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2437 * 2438 * returns 1 if the push failed because the other node didn't have enough 2439 * room, 0 if everything worked out and < 0 if there were major errors. 2440 */ 2441 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2442 *root, struct btrfs_path *path, int data_size, 2443 int empty) 2444 { 2445 struct extent_buffer *left = path->nodes[0]; 2446 struct extent_buffer *right; 2447 struct extent_buffer *upper; 2448 int slot; 2449 int free_space; 2450 u32 left_nritems; 2451 int ret; 2452 2453 if (!path->nodes[1]) 2454 return 1; 2455 2456 slot = path->slots[1]; 2457 upper = path->nodes[1]; 2458 if (slot >= btrfs_header_nritems(upper) - 1) 2459 return 1; 2460 2461 btrfs_assert_tree_locked(path->nodes[1]); 2462 2463 right = read_node_slot(root, upper, slot + 1); 2464 btrfs_tree_lock(right); 2465 btrfs_set_lock_blocking(right); 2466 2467 free_space = btrfs_leaf_free_space(root, right); 2468 if (free_space < data_size) 2469 goto out_unlock; 2470 2471 /* cow and double check */ 2472 ret = btrfs_cow_block(trans, root, right, upper, 2473 slot + 1, &right); 2474 if (ret) 2475 goto out_unlock; 2476 2477 free_space = btrfs_leaf_free_space(root, right); 2478 if (free_space < data_size) 2479 goto out_unlock; 2480 2481 left_nritems = btrfs_header_nritems(left); 2482 if (left_nritems == 0) 2483 goto out_unlock; 2484 2485 return __push_leaf_right(trans, root, path, data_size, empty, 2486 right, free_space, left_nritems); 2487 out_unlock: 2488 btrfs_tree_unlock(right); 2489 free_extent_buffer(right); 2490 return 1; 2491 } 2492 2493 /* 2494 * push some data in the path leaf to the left, trying to free up at 2495 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2496 */ 2497 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 2498 struct btrfs_root *root, 2499 struct btrfs_path *path, int data_size, 2500 int empty, struct extent_buffer *left, 2501 int free_space, int right_nritems) 2502 { 2503 struct btrfs_disk_key disk_key; 2504 struct extent_buffer *right = path->nodes[0]; 2505 int slot; 2506 int i; 2507 int push_space = 0; 2508 int push_items = 0; 2509 struct btrfs_item *item; 2510 u32 old_left_nritems; 2511 u32 nr; 2512 int ret = 0; 2513 int wret; 2514 u32 this_item_size; 2515 u32 old_left_item_size; 2516 2517 slot = path->slots[1]; 2518 2519 if (empty) 2520 nr = right_nritems; 2521 else 2522 nr = right_nritems - 1; 2523 2524 for (i = 0; i < nr; i++) { 2525 item = btrfs_item_nr(right, i); 2526 if (!right->map_token) { 2527 map_extent_buffer(right, (unsigned long)item, 2528 sizeof(struct btrfs_item), 2529 &right->map_token, &right->kaddr, 2530 &right->map_start, &right->map_len, 2531 KM_USER1); 2532 } 2533 2534 if (!empty && push_items > 0) { 2535 if (path->slots[0] < i) 2536 break; 2537 if (path->slots[0] == i) { 2538 int space = btrfs_leaf_free_space(root, right); 2539 if (space + push_space * 2 > free_space) 2540 break; 2541 } 2542 } 2543 2544 if (path->slots[0] == i) 2545 push_space += data_size; 2546 2547 this_item_size = btrfs_item_size(right, item); 2548 if (this_item_size + sizeof(*item) + push_space > free_space) 2549 break; 2550 2551 push_items++; 2552 push_space += this_item_size + sizeof(*item); 2553 } 2554 2555 if (right->map_token) { 2556 unmap_extent_buffer(right, right->map_token, KM_USER1); 2557 right->map_token = NULL; 2558 } 2559 2560 if (push_items == 0) { 2561 ret = 1; 2562 goto out; 2563 } 2564 if (!empty && push_items == btrfs_header_nritems(right)) 2565 WARN_ON(1); 2566 2567 /* push data from right to left */ 2568 copy_extent_buffer(left, right, 2569 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2570 btrfs_item_nr_offset(0), 2571 push_items * sizeof(struct btrfs_item)); 2572 2573 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2574 btrfs_item_offset_nr(right, push_items - 1); 2575 2576 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2577 leaf_data_end(root, left) - push_space, 2578 btrfs_leaf_data(right) + 2579 btrfs_item_offset_nr(right, push_items - 1), 2580 push_space); 2581 old_left_nritems = btrfs_header_nritems(left); 2582 BUG_ON(old_left_nritems <= 0); 2583 2584 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2585 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2586 u32 ioff; 2587 2588 item = btrfs_item_nr(left, i); 2589 if (!left->map_token) { 2590 map_extent_buffer(left, (unsigned long)item, 2591 sizeof(struct btrfs_item), 2592 &left->map_token, &left->kaddr, 2593 &left->map_start, &left->map_len, 2594 KM_USER1); 2595 } 2596 2597 ioff = btrfs_item_offset(left, item); 2598 btrfs_set_item_offset(left, item, 2599 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); 2600 } 2601 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2602 if (left->map_token) { 2603 unmap_extent_buffer(left, left->map_token, KM_USER1); 2604 left->map_token = NULL; 2605 } 2606 2607 /* fixup right node */ 2608 if (push_items > right_nritems) { 2609 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2610 right_nritems); 2611 WARN_ON(1); 2612 } 2613 2614 if (push_items < right_nritems) { 2615 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2616 leaf_data_end(root, right); 2617 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2618 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2619 btrfs_leaf_data(right) + 2620 leaf_data_end(root, right), push_space); 2621 2622 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2623 btrfs_item_nr_offset(push_items), 2624 (btrfs_header_nritems(right) - push_items) * 2625 sizeof(struct btrfs_item)); 2626 } 2627 right_nritems -= push_items; 2628 btrfs_set_header_nritems(right, right_nritems); 2629 push_space = BTRFS_LEAF_DATA_SIZE(root); 2630 for (i = 0; i < right_nritems; i++) { 2631 item = btrfs_item_nr(right, i); 2632 2633 if (!right->map_token) { 2634 map_extent_buffer(right, (unsigned long)item, 2635 sizeof(struct btrfs_item), 2636 &right->map_token, &right->kaddr, 2637 &right->map_start, &right->map_len, 2638 KM_USER1); 2639 } 2640 2641 push_space = push_space - btrfs_item_size(right, item); 2642 btrfs_set_item_offset(right, item, push_space); 2643 } 2644 if (right->map_token) { 2645 unmap_extent_buffer(right, right->map_token, KM_USER1); 2646 right->map_token = NULL; 2647 } 2648 2649 btrfs_mark_buffer_dirty(left); 2650 if (right_nritems) 2651 btrfs_mark_buffer_dirty(right); 2652 2653 ret = btrfs_update_ref(trans, root, right, left, 2654 old_left_nritems, push_items); 2655 BUG_ON(ret); 2656 2657 btrfs_item_key(right, &disk_key, 0); 2658 wret = fixup_low_keys(trans, root, path, &disk_key, 1); 2659 if (wret) 2660 ret = wret; 2661 2662 /* then fixup the leaf pointer in the path */ 2663 if (path->slots[0] < push_items) { 2664 path->slots[0] += old_left_nritems; 2665 if (btrfs_header_nritems(path->nodes[0]) == 0) 2666 clean_tree_block(trans, root, path->nodes[0]); 2667 btrfs_tree_unlock(path->nodes[0]); 2668 free_extent_buffer(path->nodes[0]); 2669 path->nodes[0] = left; 2670 path->slots[1] -= 1; 2671 } else { 2672 btrfs_tree_unlock(left); 2673 free_extent_buffer(left); 2674 path->slots[0] -= push_items; 2675 } 2676 BUG_ON(path->slots[0] < 0); 2677 return ret; 2678 out: 2679 btrfs_tree_unlock(left); 2680 free_extent_buffer(left); 2681 return ret; 2682 } 2683 2684 /* 2685 * push some data in the path leaf to the left, trying to free up at 2686 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2687 */ 2688 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2689 *root, struct btrfs_path *path, int data_size, 2690 int empty) 2691 { 2692 struct extent_buffer *right = path->nodes[0]; 2693 struct extent_buffer *left; 2694 int slot; 2695 int free_space; 2696 u32 right_nritems; 2697 int ret = 0; 2698 2699 slot = path->slots[1]; 2700 if (slot == 0) 2701 return 1; 2702 if (!path->nodes[1]) 2703 return 1; 2704 2705 right_nritems = btrfs_header_nritems(right); 2706 if (right_nritems == 0) 2707 return 1; 2708 2709 btrfs_assert_tree_locked(path->nodes[1]); 2710 2711 left = read_node_slot(root, path->nodes[1], slot - 1); 2712 btrfs_tree_lock(left); 2713 btrfs_set_lock_blocking(left); 2714 2715 free_space = btrfs_leaf_free_space(root, left); 2716 if (free_space < data_size) { 2717 ret = 1; 2718 goto out; 2719 } 2720 2721 /* cow and double check */ 2722 ret = btrfs_cow_block(trans, root, left, 2723 path->nodes[1], slot - 1, &left); 2724 if (ret) { 2725 /* we hit -ENOSPC, but it isn't fatal here */ 2726 ret = 1; 2727 goto out; 2728 } 2729 2730 free_space = btrfs_leaf_free_space(root, left); 2731 if (free_space < data_size) { 2732 ret = 1; 2733 goto out; 2734 } 2735 2736 return __push_leaf_left(trans, root, path, data_size, 2737 empty, left, free_space, right_nritems); 2738 out: 2739 btrfs_tree_unlock(left); 2740 free_extent_buffer(left); 2741 return ret; 2742 } 2743 2744 /* 2745 * split the path's leaf in two, making sure there is at least data_size 2746 * available for the resulting leaf level of the path. 2747 * 2748 * returns 0 if all went well and < 0 on failure. 2749 */ 2750 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 2751 struct btrfs_root *root, 2752 struct btrfs_path *path, 2753 struct extent_buffer *l, 2754 struct extent_buffer *right, 2755 int slot, int mid, int nritems) 2756 { 2757 int data_copy_size; 2758 int rt_data_off; 2759 int i; 2760 int ret = 0; 2761 int wret; 2762 struct btrfs_disk_key disk_key; 2763 2764 nritems = nritems - mid; 2765 btrfs_set_header_nritems(right, nritems); 2766 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2767 2768 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2769 btrfs_item_nr_offset(mid), 2770 nritems * sizeof(struct btrfs_item)); 2771 2772 copy_extent_buffer(right, l, 2773 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2774 data_copy_size, btrfs_leaf_data(l) + 2775 leaf_data_end(root, l), data_copy_size); 2776 2777 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2778 btrfs_item_end_nr(l, mid); 2779 2780 for (i = 0; i < nritems; i++) { 2781 struct btrfs_item *item = btrfs_item_nr(right, i); 2782 u32 ioff; 2783 2784 if (!right->map_token) { 2785 map_extent_buffer(right, (unsigned long)item, 2786 sizeof(struct btrfs_item), 2787 &right->map_token, &right->kaddr, 2788 &right->map_start, &right->map_len, 2789 KM_USER1); 2790 } 2791 2792 ioff = btrfs_item_offset(right, item); 2793 btrfs_set_item_offset(right, item, ioff + rt_data_off); 2794 } 2795 2796 if (right->map_token) { 2797 unmap_extent_buffer(right, right->map_token, KM_USER1); 2798 right->map_token = NULL; 2799 } 2800 2801 btrfs_set_header_nritems(l, mid); 2802 ret = 0; 2803 btrfs_item_key(right, &disk_key, 0); 2804 wret = insert_ptr(trans, root, path, &disk_key, right->start, 2805 path->slots[1] + 1, 1); 2806 if (wret) 2807 ret = wret; 2808 2809 btrfs_mark_buffer_dirty(right); 2810 btrfs_mark_buffer_dirty(l); 2811 BUG_ON(path->slots[0] != slot); 2812 2813 ret = btrfs_update_ref(trans, root, l, right, 0, nritems); 2814 BUG_ON(ret); 2815 2816 if (mid <= slot) { 2817 btrfs_tree_unlock(path->nodes[0]); 2818 free_extent_buffer(path->nodes[0]); 2819 path->nodes[0] = right; 2820 path->slots[0] -= mid; 2821 path->slots[1] += 1; 2822 } else { 2823 btrfs_tree_unlock(right); 2824 free_extent_buffer(right); 2825 } 2826 2827 BUG_ON(path->slots[0] < 0); 2828 2829 return ret; 2830 } 2831 2832 /* 2833 * split the path's leaf in two, making sure there is at least data_size 2834 * available for the resulting leaf level of the path. 2835 * 2836 * returns 0 if all went well and < 0 on failure. 2837 */ 2838 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2839 struct btrfs_root *root, 2840 struct btrfs_key *ins_key, 2841 struct btrfs_path *path, int data_size, 2842 int extend) 2843 { 2844 struct extent_buffer *l; 2845 u32 nritems; 2846 int mid; 2847 int slot; 2848 struct extent_buffer *right; 2849 int ret = 0; 2850 int wret; 2851 int double_split; 2852 int num_doubles = 0; 2853 2854 /* first try to make some room by pushing left and right */ 2855 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY && 2856 !trans->transaction->delayed_refs.flushing) { 2857 wret = push_leaf_right(trans, root, path, data_size, 0); 2858 if (wret < 0) 2859 return wret; 2860 if (wret) { 2861 wret = push_leaf_left(trans, root, path, data_size, 0); 2862 if (wret < 0) 2863 return wret; 2864 } 2865 l = path->nodes[0]; 2866 2867 /* did the pushes work? */ 2868 if (btrfs_leaf_free_space(root, l) >= data_size) 2869 return 0; 2870 } 2871 2872 if (!path->nodes[1]) { 2873 ret = insert_new_root(trans, root, path, 1); 2874 if (ret) 2875 return ret; 2876 } 2877 again: 2878 double_split = 0; 2879 l = path->nodes[0]; 2880 slot = path->slots[0]; 2881 nritems = btrfs_header_nritems(l); 2882 mid = (nritems + 1) / 2; 2883 2884 right = btrfs_alloc_free_block(trans, root, root->leafsize, 2885 path->nodes[1]->start, 2886 root->root_key.objectid, 2887 trans->transid, 0, l->start, 0); 2888 if (IS_ERR(right)) { 2889 BUG_ON(1); 2890 return PTR_ERR(right); 2891 } 2892 2893 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 2894 btrfs_set_header_bytenr(right, right->start); 2895 btrfs_set_header_generation(right, trans->transid); 2896 btrfs_set_header_owner(right, root->root_key.objectid); 2897 btrfs_set_header_level(right, 0); 2898 write_extent_buffer(right, root->fs_info->fsid, 2899 (unsigned long)btrfs_header_fsid(right), 2900 BTRFS_FSID_SIZE); 2901 2902 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 2903 (unsigned long)btrfs_header_chunk_tree_uuid(right), 2904 BTRFS_UUID_SIZE); 2905 2906 if (mid <= slot) { 2907 if (nritems == 1 || 2908 leaf_space_used(l, mid, nritems - mid) + data_size > 2909 BTRFS_LEAF_DATA_SIZE(root)) { 2910 if (slot >= nritems) { 2911 struct btrfs_disk_key disk_key; 2912 2913 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2914 btrfs_set_header_nritems(right, 0); 2915 wret = insert_ptr(trans, root, path, 2916 &disk_key, right->start, 2917 path->slots[1] + 1, 1); 2918 if (wret) 2919 ret = wret; 2920 2921 btrfs_tree_unlock(path->nodes[0]); 2922 free_extent_buffer(path->nodes[0]); 2923 path->nodes[0] = right; 2924 path->slots[0] = 0; 2925 path->slots[1] += 1; 2926 btrfs_mark_buffer_dirty(right); 2927 return ret; 2928 } 2929 mid = slot; 2930 if (mid != nritems && 2931 leaf_space_used(l, mid, nritems - mid) + 2932 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2933 double_split = 1; 2934 } 2935 } 2936 } else { 2937 if (leaf_space_used(l, 0, mid) + data_size > 2938 BTRFS_LEAF_DATA_SIZE(root)) { 2939 if (!extend && data_size && slot == 0) { 2940 struct btrfs_disk_key disk_key; 2941 2942 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2943 btrfs_set_header_nritems(right, 0); 2944 wret = insert_ptr(trans, root, path, 2945 &disk_key, 2946 right->start, 2947 path->slots[1], 1); 2948 if (wret) 2949 ret = wret; 2950 btrfs_tree_unlock(path->nodes[0]); 2951 free_extent_buffer(path->nodes[0]); 2952 path->nodes[0] = right; 2953 path->slots[0] = 0; 2954 if (path->slots[1] == 0) { 2955 wret = fixup_low_keys(trans, root, 2956 path, &disk_key, 1); 2957 if (wret) 2958 ret = wret; 2959 } 2960 btrfs_mark_buffer_dirty(right); 2961 return ret; 2962 } else if ((extend || !data_size) && slot == 0) { 2963 mid = 1; 2964 } else { 2965 mid = slot; 2966 if (mid != nritems && 2967 leaf_space_used(l, mid, nritems - mid) + 2968 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2969 double_split = 1; 2970 } 2971 } 2972 } 2973 } 2974 2975 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems); 2976 BUG_ON(ret); 2977 2978 if (double_split) { 2979 BUG_ON(num_doubles != 0); 2980 num_doubles++; 2981 goto again; 2982 } 2983 2984 return ret; 2985 } 2986 2987 /* 2988 * This function splits a single item into two items, 2989 * giving 'new_key' to the new item and splitting the 2990 * old one at split_offset (from the start of the item). 2991 * 2992 * The path may be released by this operation. After 2993 * the split, the path is pointing to the old item. The 2994 * new item is going to be in the same node as the old one. 2995 * 2996 * Note, the item being split must be smaller enough to live alone on 2997 * a tree block with room for one extra struct btrfs_item 2998 * 2999 * This allows us to split the item in place, keeping a lock on the 3000 * leaf the entire time. 3001 */ 3002 int btrfs_split_item(struct btrfs_trans_handle *trans, 3003 struct btrfs_root *root, 3004 struct btrfs_path *path, 3005 struct btrfs_key *new_key, 3006 unsigned long split_offset) 3007 { 3008 u32 item_size; 3009 struct extent_buffer *leaf; 3010 struct btrfs_key orig_key; 3011 struct btrfs_item *item; 3012 struct btrfs_item *new_item; 3013 int ret = 0; 3014 int slot; 3015 u32 nritems; 3016 u32 orig_offset; 3017 struct btrfs_disk_key disk_key; 3018 char *buf; 3019 3020 leaf = path->nodes[0]; 3021 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]); 3022 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item)) 3023 goto split; 3024 3025 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3026 btrfs_release_path(root, path); 3027 3028 path->search_for_split = 1; 3029 path->keep_locks = 1; 3030 3031 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1); 3032 path->search_for_split = 0; 3033 3034 /* if our item isn't there or got smaller, return now */ 3035 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0], 3036 path->slots[0])) { 3037 path->keep_locks = 0; 3038 return -EAGAIN; 3039 } 3040 3041 btrfs_set_path_blocking(path); 3042 ret = split_leaf(trans, root, &orig_key, path, 3043 sizeof(struct btrfs_item), 1); 3044 path->keep_locks = 0; 3045 BUG_ON(ret); 3046 3047 btrfs_unlock_up_safe(path, 1); 3048 leaf = path->nodes[0]; 3049 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3050 3051 split: 3052 /* 3053 * make sure any changes to the path from split_leaf leave it 3054 * in a blocking state 3055 */ 3056 btrfs_set_path_blocking(path); 3057 3058 item = btrfs_item_nr(leaf, path->slots[0]); 3059 orig_offset = btrfs_item_offset(leaf, item); 3060 item_size = btrfs_item_size(leaf, item); 3061 3062 buf = kmalloc(item_size, GFP_NOFS); 3063 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3064 path->slots[0]), item_size); 3065 slot = path->slots[0] + 1; 3066 leaf = path->nodes[0]; 3067 3068 nritems = btrfs_header_nritems(leaf); 3069 3070 if (slot != nritems) { 3071 /* shift the items */ 3072 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3073 btrfs_item_nr_offset(slot), 3074 (nritems - slot) * sizeof(struct btrfs_item)); 3075 3076 } 3077 3078 btrfs_cpu_key_to_disk(&disk_key, new_key); 3079 btrfs_set_item_key(leaf, &disk_key, slot); 3080 3081 new_item = btrfs_item_nr(leaf, slot); 3082 3083 btrfs_set_item_offset(leaf, new_item, orig_offset); 3084 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3085 3086 btrfs_set_item_offset(leaf, item, 3087 orig_offset + item_size - split_offset); 3088 btrfs_set_item_size(leaf, item, split_offset); 3089 3090 btrfs_set_header_nritems(leaf, nritems + 1); 3091 3092 /* write the data for the start of the original item */ 3093 write_extent_buffer(leaf, buf, 3094 btrfs_item_ptr_offset(leaf, path->slots[0]), 3095 split_offset); 3096 3097 /* write the data for the new item */ 3098 write_extent_buffer(leaf, buf + split_offset, 3099 btrfs_item_ptr_offset(leaf, slot), 3100 item_size - split_offset); 3101 btrfs_mark_buffer_dirty(leaf); 3102 3103 ret = 0; 3104 if (btrfs_leaf_free_space(root, leaf) < 0) { 3105 btrfs_print_leaf(root, leaf); 3106 BUG(); 3107 } 3108 kfree(buf); 3109 return ret; 3110 } 3111 3112 /* 3113 * make the item pointed to by the path smaller. new_size indicates 3114 * how small to make it, and from_end tells us if we just chop bytes 3115 * off the end of the item or if we shift the item to chop bytes off 3116 * the front. 3117 */ 3118 int btrfs_truncate_item(struct btrfs_trans_handle *trans, 3119 struct btrfs_root *root, 3120 struct btrfs_path *path, 3121 u32 new_size, int from_end) 3122 { 3123 int ret = 0; 3124 int slot; 3125 int slot_orig; 3126 struct extent_buffer *leaf; 3127 struct btrfs_item *item; 3128 u32 nritems; 3129 unsigned int data_end; 3130 unsigned int old_data_start; 3131 unsigned int old_size; 3132 unsigned int size_diff; 3133 int i; 3134 3135 slot_orig = path->slots[0]; 3136 leaf = path->nodes[0]; 3137 slot = path->slots[0]; 3138 3139 old_size = btrfs_item_size_nr(leaf, slot); 3140 if (old_size == new_size) 3141 return 0; 3142 3143 nritems = btrfs_header_nritems(leaf); 3144 data_end = leaf_data_end(root, leaf); 3145 3146 old_data_start = btrfs_item_offset_nr(leaf, slot); 3147 3148 size_diff = old_size - new_size; 3149 3150 BUG_ON(slot < 0); 3151 BUG_ON(slot >= nritems); 3152 3153 /* 3154 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3155 */ 3156 /* first correct the data pointers */ 3157 for (i = slot; i < nritems; i++) { 3158 u32 ioff; 3159 item = btrfs_item_nr(leaf, i); 3160 3161 if (!leaf->map_token) { 3162 map_extent_buffer(leaf, (unsigned long)item, 3163 sizeof(struct btrfs_item), 3164 &leaf->map_token, &leaf->kaddr, 3165 &leaf->map_start, &leaf->map_len, 3166 KM_USER1); 3167 } 3168 3169 ioff = btrfs_item_offset(leaf, item); 3170 btrfs_set_item_offset(leaf, item, ioff + size_diff); 3171 } 3172 3173 if (leaf->map_token) { 3174 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3175 leaf->map_token = NULL; 3176 } 3177 3178 /* shift the data */ 3179 if (from_end) { 3180 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3181 data_end + size_diff, btrfs_leaf_data(leaf) + 3182 data_end, old_data_start + new_size - data_end); 3183 } else { 3184 struct btrfs_disk_key disk_key; 3185 u64 offset; 3186 3187 btrfs_item_key(leaf, &disk_key, slot); 3188 3189 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3190 unsigned long ptr; 3191 struct btrfs_file_extent_item *fi; 3192 3193 fi = btrfs_item_ptr(leaf, slot, 3194 struct btrfs_file_extent_item); 3195 fi = (struct btrfs_file_extent_item *)( 3196 (unsigned long)fi - size_diff); 3197 3198 if (btrfs_file_extent_type(leaf, fi) == 3199 BTRFS_FILE_EXTENT_INLINE) { 3200 ptr = btrfs_item_ptr_offset(leaf, slot); 3201 memmove_extent_buffer(leaf, ptr, 3202 (unsigned long)fi, 3203 offsetof(struct btrfs_file_extent_item, 3204 disk_bytenr)); 3205 } 3206 } 3207 3208 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3209 data_end + size_diff, btrfs_leaf_data(leaf) + 3210 data_end, old_data_start - data_end); 3211 3212 offset = btrfs_disk_key_offset(&disk_key); 3213 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3214 btrfs_set_item_key(leaf, &disk_key, slot); 3215 if (slot == 0) 3216 fixup_low_keys(trans, root, path, &disk_key, 1); 3217 } 3218 3219 item = btrfs_item_nr(leaf, slot); 3220 btrfs_set_item_size(leaf, item, new_size); 3221 btrfs_mark_buffer_dirty(leaf); 3222 3223 ret = 0; 3224 if (btrfs_leaf_free_space(root, leaf) < 0) { 3225 btrfs_print_leaf(root, leaf); 3226 BUG(); 3227 } 3228 return ret; 3229 } 3230 3231 /* 3232 * make the item pointed to by the path bigger, data_size is the new size. 3233 */ 3234 int btrfs_extend_item(struct btrfs_trans_handle *trans, 3235 struct btrfs_root *root, struct btrfs_path *path, 3236 u32 data_size) 3237 { 3238 int ret = 0; 3239 int slot; 3240 int slot_orig; 3241 struct extent_buffer *leaf; 3242 struct btrfs_item *item; 3243 u32 nritems; 3244 unsigned int data_end; 3245 unsigned int old_data; 3246 unsigned int old_size; 3247 int i; 3248 3249 slot_orig = path->slots[0]; 3250 leaf = path->nodes[0]; 3251 3252 nritems = btrfs_header_nritems(leaf); 3253 data_end = leaf_data_end(root, leaf); 3254 3255 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3256 btrfs_print_leaf(root, leaf); 3257 BUG(); 3258 } 3259 slot = path->slots[0]; 3260 old_data = btrfs_item_end_nr(leaf, slot); 3261 3262 BUG_ON(slot < 0); 3263 if (slot >= nritems) { 3264 btrfs_print_leaf(root, leaf); 3265 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3266 slot, nritems); 3267 BUG_ON(1); 3268 } 3269 3270 /* 3271 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3272 */ 3273 /* first correct the data pointers */ 3274 for (i = slot; i < nritems; i++) { 3275 u32 ioff; 3276 item = btrfs_item_nr(leaf, i); 3277 3278 if (!leaf->map_token) { 3279 map_extent_buffer(leaf, (unsigned long)item, 3280 sizeof(struct btrfs_item), 3281 &leaf->map_token, &leaf->kaddr, 3282 &leaf->map_start, &leaf->map_len, 3283 KM_USER1); 3284 } 3285 ioff = btrfs_item_offset(leaf, item); 3286 btrfs_set_item_offset(leaf, item, ioff - data_size); 3287 } 3288 3289 if (leaf->map_token) { 3290 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3291 leaf->map_token = NULL; 3292 } 3293 3294 /* shift the data */ 3295 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3296 data_end - data_size, btrfs_leaf_data(leaf) + 3297 data_end, old_data - data_end); 3298 3299 data_end = old_data; 3300 old_size = btrfs_item_size_nr(leaf, slot); 3301 item = btrfs_item_nr(leaf, slot); 3302 btrfs_set_item_size(leaf, item, old_size + data_size); 3303 btrfs_mark_buffer_dirty(leaf); 3304 3305 ret = 0; 3306 if (btrfs_leaf_free_space(root, leaf) < 0) { 3307 btrfs_print_leaf(root, leaf); 3308 BUG(); 3309 } 3310 return ret; 3311 } 3312 3313 /* 3314 * Given a key and some data, insert items into the tree. 3315 * This does all the path init required, making room in the tree if needed. 3316 * Returns the number of keys that were inserted. 3317 */ 3318 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3319 struct btrfs_root *root, 3320 struct btrfs_path *path, 3321 struct btrfs_key *cpu_key, u32 *data_size, 3322 int nr) 3323 { 3324 struct extent_buffer *leaf; 3325 struct btrfs_item *item; 3326 int ret = 0; 3327 int slot; 3328 int i; 3329 u32 nritems; 3330 u32 total_data = 0; 3331 u32 total_size = 0; 3332 unsigned int data_end; 3333 struct btrfs_disk_key disk_key; 3334 struct btrfs_key found_key; 3335 3336 for (i = 0; i < nr; i++) { 3337 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3338 BTRFS_LEAF_DATA_SIZE(root)) { 3339 break; 3340 nr = i; 3341 } 3342 total_data += data_size[i]; 3343 total_size += data_size[i] + sizeof(struct btrfs_item); 3344 } 3345 BUG_ON(nr == 0); 3346 3347 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3348 if (ret == 0) 3349 return -EEXIST; 3350 if (ret < 0) 3351 goto out; 3352 3353 leaf = path->nodes[0]; 3354 3355 nritems = btrfs_header_nritems(leaf); 3356 data_end = leaf_data_end(root, leaf); 3357 3358 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3359 for (i = nr; i >= 0; i--) { 3360 total_data -= data_size[i]; 3361 total_size -= data_size[i] + sizeof(struct btrfs_item); 3362 if (total_size < btrfs_leaf_free_space(root, leaf)) 3363 break; 3364 } 3365 nr = i; 3366 } 3367 3368 slot = path->slots[0]; 3369 BUG_ON(slot < 0); 3370 3371 if (slot != nritems) { 3372 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3373 3374 item = btrfs_item_nr(leaf, slot); 3375 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3376 3377 /* figure out how many keys we can insert in here */ 3378 total_data = data_size[0]; 3379 for (i = 1; i < nr; i++) { 3380 if (comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3381 break; 3382 total_data += data_size[i]; 3383 } 3384 nr = i; 3385 3386 if (old_data < data_end) { 3387 btrfs_print_leaf(root, leaf); 3388 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3389 slot, old_data, data_end); 3390 BUG_ON(1); 3391 } 3392 /* 3393 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3394 */ 3395 /* first correct the data pointers */ 3396 WARN_ON(leaf->map_token); 3397 for (i = slot; i < nritems; i++) { 3398 u32 ioff; 3399 3400 item = btrfs_item_nr(leaf, i); 3401 if (!leaf->map_token) { 3402 map_extent_buffer(leaf, (unsigned long)item, 3403 sizeof(struct btrfs_item), 3404 &leaf->map_token, &leaf->kaddr, 3405 &leaf->map_start, &leaf->map_len, 3406 KM_USER1); 3407 } 3408 3409 ioff = btrfs_item_offset(leaf, item); 3410 btrfs_set_item_offset(leaf, item, ioff - total_data); 3411 } 3412 if (leaf->map_token) { 3413 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3414 leaf->map_token = NULL; 3415 } 3416 3417 /* shift the items */ 3418 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3419 btrfs_item_nr_offset(slot), 3420 (nritems - slot) * sizeof(struct btrfs_item)); 3421 3422 /* shift the data */ 3423 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3424 data_end - total_data, btrfs_leaf_data(leaf) + 3425 data_end, old_data - data_end); 3426 data_end = old_data; 3427 } else { 3428 /* 3429 * this sucks but it has to be done, if we are inserting at 3430 * the end of the leaf only insert 1 of the items, since we 3431 * have no way of knowing whats on the next leaf and we'd have 3432 * to drop our current locks to figure it out 3433 */ 3434 nr = 1; 3435 } 3436 3437 /* setup the item for the new data */ 3438 for (i = 0; i < nr; i++) { 3439 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3440 btrfs_set_item_key(leaf, &disk_key, slot + i); 3441 item = btrfs_item_nr(leaf, slot + i); 3442 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3443 data_end -= data_size[i]; 3444 btrfs_set_item_size(leaf, item, data_size[i]); 3445 } 3446 btrfs_set_header_nritems(leaf, nritems + nr); 3447 btrfs_mark_buffer_dirty(leaf); 3448 3449 ret = 0; 3450 if (slot == 0) { 3451 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3452 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3453 } 3454 3455 if (btrfs_leaf_free_space(root, leaf) < 0) { 3456 btrfs_print_leaf(root, leaf); 3457 BUG(); 3458 } 3459 out: 3460 if (!ret) 3461 ret = nr; 3462 return ret; 3463 } 3464 3465 /* 3466 * this is a helper for btrfs_insert_empty_items, the main goal here is 3467 * to save stack depth by doing the bulk of the work in a function 3468 * that doesn't call btrfs_search_slot 3469 */ 3470 static noinline_for_stack int 3471 setup_items_for_insert(struct btrfs_trans_handle *trans, 3472 struct btrfs_root *root, struct btrfs_path *path, 3473 struct btrfs_key *cpu_key, u32 *data_size, 3474 u32 total_data, u32 total_size, int nr) 3475 { 3476 struct btrfs_item *item; 3477 int i; 3478 u32 nritems; 3479 unsigned int data_end; 3480 struct btrfs_disk_key disk_key; 3481 int ret; 3482 struct extent_buffer *leaf; 3483 int slot; 3484 3485 leaf = path->nodes[0]; 3486 slot = path->slots[0]; 3487 3488 nritems = btrfs_header_nritems(leaf); 3489 data_end = leaf_data_end(root, leaf); 3490 3491 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3492 btrfs_print_leaf(root, leaf); 3493 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3494 total_size, btrfs_leaf_free_space(root, leaf)); 3495 BUG(); 3496 } 3497 3498 if (slot != nritems) { 3499 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3500 3501 if (old_data < data_end) { 3502 btrfs_print_leaf(root, leaf); 3503 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3504 slot, old_data, data_end); 3505 BUG_ON(1); 3506 } 3507 /* 3508 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3509 */ 3510 /* first correct the data pointers */ 3511 WARN_ON(leaf->map_token); 3512 for (i = slot; i < nritems; i++) { 3513 u32 ioff; 3514 3515 item = btrfs_item_nr(leaf, i); 3516 if (!leaf->map_token) { 3517 map_extent_buffer(leaf, (unsigned long)item, 3518 sizeof(struct btrfs_item), 3519 &leaf->map_token, &leaf->kaddr, 3520 &leaf->map_start, &leaf->map_len, 3521 KM_USER1); 3522 } 3523 3524 ioff = btrfs_item_offset(leaf, item); 3525 btrfs_set_item_offset(leaf, item, ioff - total_data); 3526 } 3527 if (leaf->map_token) { 3528 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3529 leaf->map_token = NULL; 3530 } 3531 3532 /* shift the items */ 3533 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3534 btrfs_item_nr_offset(slot), 3535 (nritems - slot) * sizeof(struct btrfs_item)); 3536 3537 /* shift the data */ 3538 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3539 data_end - total_data, btrfs_leaf_data(leaf) + 3540 data_end, old_data - data_end); 3541 data_end = old_data; 3542 } 3543 3544 /* setup the item for the new data */ 3545 for (i = 0; i < nr; i++) { 3546 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3547 btrfs_set_item_key(leaf, &disk_key, slot + i); 3548 item = btrfs_item_nr(leaf, slot + i); 3549 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3550 data_end -= data_size[i]; 3551 btrfs_set_item_size(leaf, item, data_size[i]); 3552 } 3553 3554 btrfs_set_header_nritems(leaf, nritems + nr); 3555 3556 ret = 0; 3557 if (slot == 0) { 3558 struct btrfs_disk_key disk_key; 3559 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3560 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3561 } 3562 btrfs_unlock_up_safe(path, 1); 3563 btrfs_mark_buffer_dirty(leaf); 3564 3565 if (btrfs_leaf_free_space(root, leaf) < 0) { 3566 btrfs_print_leaf(root, leaf); 3567 BUG(); 3568 } 3569 return ret; 3570 } 3571 3572 /* 3573 * Given a key and some data, insert items into the tree. 3574 * This does all the path init required, making room in the tree if needed. 3575 */ 3576 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3577 struct btrfs_root *root, 3578 struct btrfs_path *path, 3579 struct btrfs_key *cpu_key, u32 *data_size, 3580 int nr) 3581 { 3582 struct extent_buffer *leaf; 3583 int ret = 0; 3584 int slot; 3585 int i; 3586 u32 total_size = 0; 3587 u32 total_data = 0; 3588 3589 for (i = 0; i < nr; i++) 3590 total_data += data_size[i]; 3591 3592 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3593 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3594 if (ret == 0) 3595 return -EEXIST; 3596 if (ret < 0) 3597 goto out; 3598 3599 leaf = path->nodes[0]; 3600 slot = path->slots[0]; 3601 BUG_ON(slot < 0); 3602 3603 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size, 3604 total_data, total_size, nr); 3605 3606 out: 3607 return ret; 3608 } 3609 3610 /* 3611 * Given a key and some data, insert an item into the tree. 3612 * This does all the path init required, making room in the tree if needed. 3613 */ 3614 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3615 *root, struct btrfs_key *cpu_key, void *data, u32 3616 data_size) 3617 { 3618 int ret = 0; 3619 struct btrfs_path *path; 3620 struct extent_buffer *leaf; 3621 unsigned long ptr; 3622 3623 path = btrfs_alloc_path(); 3624 BUG_ON(!path); 3625 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3626 if (!ret) { 3627 leaf = path->nodes[0]; 3628 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3629 write_extent_buffer(leaf, data, ptr, data_size); 3630 btrfs_mark_buffer_dirty(leaf); 3631 } 3632 btrfs_free_path(path); 3633 return ret; 3634 } 3635 3636 /* 3637 * delete the pointer from a given node. 3638 * 3639 * the tree should have been previously balanced so the deletion does not 3640 * empty a node. 3641 */ 3642 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3643 struct btrfs_path *path, int level, int slot) 3644 { 3645 struct extent_buffer *parent = path->nodes[level]; 3646 u32 nritems; 3647 int ret = 0; 3648 int wret; 3649 3650 nritems = btrfs_header_nritems(parent); 3651 if (slot != nritems - 1) { 3652 memmove_extent_buffer(parent, 3653 btrfs_node_key_ptr_offset(slot), 3654 btrfs_node_key_ptr_offset(slot + 1), 3655 sizeof(struct btrfs_key_ptr) * 3656 (nritems - slot - 1)); 3657 } 3658 nritems--; 3659 btrfs_set_header_nritems(parent, nritems); 3660 if (nritems == 0 && parent == root->node) { 3661 BUG_ON(btrfs_header_level(root->node) != 1); 3662 /* just turn the root into a leaf and break */ 3663 btrfs_set_header_level(root->node, 0); 3664 } else if (slot == 0) { 3665 struct btrfs_disk_key disk_key; 3666 3667 btrfs_node_key(parent, &disk_key, 0); 3668 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); 3669 if (wret) 3670 ret = wret; 3671 } 3672 btrfs_mark_buffer_dirty(parent); 3673 return ret; 3674 } 3675 3676 /* 3677 * a helper function to delete the leaf pointed to by path->slots[1] and 3678 * path->nodes[1]. bytenr is the node block pointer, but since the callers 3679 * already know it, it is faster to have them pass it down than to 3680 * read it out of the node again. 3681 * 3682 * This deletes the pointer in path->nodes[1] and frees the leaf 3683 * block extent. zero is returned if it all worked out, < 0 otherwise. 3684 * 3685 * The path must have already been setup for deleting the leaf, including 3686 * all the proper balancing. path->nodes[1] must be locked. 3687 */ 3688 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 3689 struct btrfs_root *root, 3690 struct btrfs_path *path, u64 bytenr) 3691 { 3692 int ret; 3693 u64 root_gen = btrfs_header_generation(path->nodes[1]); 3694 u64 parent_start = path->nodes[1]->start; 3695 u64 parent_owner = btrfs_header_owner(path->nodes[1]); 3696 3697 ret = del_ptr(trans, root, path, 1, path->slots[1]); 3698 if (ret) 3699 return ret; 3700 3701 /* 3702 * btrfs_free_extent is expensive, we want to make sure we 3703 * aren't holding any locks when we call it 3704 */ 3705 btrfs_unlock_up_safe(path, 0); 3706 3707 ret = btrfs_free_extent(trans, root, bytenr, 3708 btrfs_level_size(root, 0), 3709 parent_start, parent_owner, 3710 root_gen, 0, 1); 3711 return ret; 3712 } 3713 /* 3714 * delete the item at the leaf level in path. If that empties 3715 * the leaf, remove it from the tree 3716 */ 3717 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3718 struct btrfs_path *path, int slot, int nr) 3719 { 3720 struct extent_buffer *leaf; 3721 struct btrfs_item *item; 3722 int last_off; 3723 int dsize = 0; 3724 int ret = 0; 3725 int wret; 3726 int i; 3727 u32 nritems; 3728 3729 leaf = path->nodes[0]; 3730 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3731 3732 for (i = 0; i < nr; i++) 3733 dsize += btrfs_item_size_nr(leaf, slot + i); 3734 3735 nritems = btrfs_header_nritems(leaf); 3736 3737 if (slot + nr != nritems) { 3738 int data_end = leaf_data_end(root, leaf); 3739 3740 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3741 data_end + dsize, 3742 btrfs_leaf_data(leaf) + data_end, 3743 last_off - data_end); 3744 3745 for (i = slot + nr; i < nritems; i++) { 3746 u32 ioff; 3747 3748 item = btrfs_item_nr(leaf, i); 3749 if (!leaf->map_token) { 3750 map_extent_buffer(leaf, (unsigned long)item, 3751 sizeof(struct btrfs_item), 3752 &leaf->map_token, &leaf->kaddr, 3753 &leaf->map_start, &leaf->map_len, 3754 KM_USER1); 3755 } 3756 ioff = btrfs_item_offset(leaf, item); 3757 btrfs_set_item_offset(leaf, item, ioff + dsize); 3758 } 3759 3760 if (leaf->map_token) { 3761 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3762 leaf->map_token = NULL; 3763 } 3764 3765 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3766 btrfs_item_nr_offset(slot + nr), 3767 sizeof(struct btrfs_item) * 3768 (nritems - slot - nr)); 3769 } 3770 btrfs_set_header_nritems(leaf, nritems - nr); 3771 nritems -= nr; 3772 3773 /* delete the leaf if we've emptied it */ 3774 if (nritems == 0) { 3775 if (leaf == root->node) { 3776 btrfs_set_header_level(leaf, 0); 3777 } else { 3778 ret = btrfs_del_leaf(trans, root, path, leaf->start); 3779 BUG_ON(ret); 3780 } 3781 } else { 3782 int used = leaf_space_used(leaf, 0, nritems); 3783 if (slot == 0) { 3784 struct btrfs_disk_key disk_key; 3785 3786 btrfs_item_key(leaf, &disk_key, 0); 3787 wret = fixup_low_keys(trans, root, path, 3788 &disk_key, 1); 3789 if (wret) 3790 ret = wret; 3791 } 3792 3793 /* delete the leaf if it is mostly empty */ 3794 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 && 3795 !trans->transaction->delayed_refs.flushing) { 3796 /* push_leaf_left fixes the path. 3797 * make sure the path still points to our leaf 3798 * for possible call to del_ptr below 3799 */ 3800 slot = path->slots[1]; 3801 extent_buffer_get(leaf); 3802 3803 btrfs_set_path_blocking(path); 3804 wret = push_leaf_left(trans, root, path, 1, 1); 3805 if (wret < 0 && wret != -ENOSPC) 3806 ret = wret; 3807 3808 if (path->nodes[0] == leaf && 3809 btrfs_header_nritems(leaf)) { 3810 wret = push_leaf_right(trans, root, path, 1, 1); 3811 if (wret < 0 && wret != -ENOSPC) 3812 ret = wret; 3813 } 3814 3815 if (btrfs_header_nritems(leaf) == 0) { 3816 path->slots[1] = slot; 3817 ret = btrfs_del_leaf(trans, root, path, 3818 leaf->start); 3819 BUG_ON(ret); 3820 free_extent_buffer(leaf); 3821 } else { 3822 /* if we're still in the path, make sure 3823 * we're dirty. Otherwise, one of the 3824 * push_leaf functions must have already 3825 * dirtied this buffer 3826 */ 3827 if (path->nodes[0] == leaf) 3828 btrfs_mark_buffer_dirty(leaf); 3829 free_extent_buffer(leaf); 3830 } 3831 } else { 3832 btrfs_mark_buffer_dirty(leaf); 3833 } 3834 } 3835 return ret; 3836 } 3837 3838 /* 3839 * search the tree again to find a leaf with lesser keys 3840 * returns 0 if it found something or 1 if there are no lesser leaves. 3841 * returns < 0 on io errors. 3842 * 3843 * This may release the path, and so you may lose any locks held at the 3844 * time you call it. 3845 */ 3846 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 3847 { 3848 struct btrfs_key key; 3849 struct btrfs_disk_key found_key; 3850 int ret; 3851 3852 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 3853 3854 if (key.offset > 0) 3855 key.offset--; 3856 else if (key.type > 0) 3857 key.type--; 3858 else if (key.objectid > 0) 3859 key.objectid--; 3860 else 3861 return 1; 3862 3863 btrfs_release_path(root, path); 3864 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3865 if (ret < 0) 3866 return ret; 3867 btrfs_item_key(path->nodes[0], &found_key, 0); 3868 ret = comp_keys(&found_key, &key); 3869 if (ret < 0) 3870 return 0; 3871 return 1; 3872 } 3873 3874 /* 3875 * A helper function to walk down the tree starting at min_key, and looking 3876 * for nodes or leaves that are either in cache or have a minimum 3877 * transaction id. This is used by the btree defrag code, and tree logging 3878 * 3879 * This does not cow, but it does stuff the starting key it finds back 3880 * into min_key, so you can call btrfs_search_slot with cow=1 on the 3881 * key and get a writable path. 3882 * 3883 * This does lock as it descends, and path->keep_locks should be set 3884 * to 1 by the caller. 3885 * 3886 * This honors path->lowest_level to prevent descent past a given level 3887 * of the tree. 3888 * 3889 * min_trans indicates the oldest transaction that you are interested 3890 * in walking through. Any nodes or leaves older than min_trans are 3891 * skipped over (without reading them). 3892 * 3893 * returns zero if something useful was found, < 0 on error and 1 if there 3894 * was nothing in the tree that matched the search criteria. 3895 */ 3896 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3897 struct btrfs_key *max_key, 3898 struct btrfs_path *path, int cache_only, 3899 u64 min_trans) 3900 { 3901 struct extent_buffer *cur; 3902 struct btrfs_key found_key; 3903 int slot; 3904 int sret; 3905 u32 nritems; 3906 int level; 3907 int ret = 1; 3908 3909 WARN_ON(!path->keep_locks); 3910 again: 3911 cur = btrfs_lock_root_node(root); 3912 level = btrfs_header_level(cur); 3913 WARN_ON(path->nodes[level]); 3914 path->nodes[level] = cur; 3915 path->locks[level] = 1; 3916 3917 if (btrfs_header_generation(cur) < min_trans) { 3918 ret = 1; 3919 goto out; 3920 } 3921 while (1) { 3922 nritems = btrfs_header_nritems(cur); 3923 level = btrfs_header_level(cur); 3924 sret = bin_search(cur, min_key, level, &slot); 3925 3926 /* at the lowest level, we're done, setup the path and exit */ 3927 if (level == path->lowest_level) { 3928 if (slot >= nritems) 3929 goto find_next_key; 3930 ret = 0; 3931 path->slots[level] = slot; 3932 btrfs_item_key_to_cpu(cur, &found_key, slot); 3933 goto out; 3934 } 3935 if (sret && slot > 0) 3936 slot--; 3937 /* 3938 * check this node pointer against the cache_only and 3939 * min_trans parameters. If it isn't in cache or is too 3940 * old, skip to the next one. 3941 */ 3942 while (slot < nritems) { 3943 u64 blockptr; 3944 u64 gen; 3945 struct extent_buffer *tmp; 3946 struct btrfs_disk_key disk_key; 3947 3948 blockptr = btrfs_node_blockptr(cur, slot); 3949 gen = btrfs_node_ptr_generation(cur, slot); 3950 if (gen < min_trans) { 3951 slot++; 3952 continue; 3953 } 3954 if (!cache_only) 3955 break; 3956 3957 if (max_key) { 3958 btrfs_node_key(cur, &disk_key, slot); 3959 if (comp_keys(&disk_key, max_key) >= 0) { 3960 ret = 1; 3961 goto out; 3962 } 3963 } 3964 3965 tmp = btrfs_find_tree_block(root, blockptr, 3966 btrfs_level_size(root, level - 1)); 3967 3968 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 3969 free_extent_buffer(tmp); 3970 break; 3971 } 3972 if (tmp) 3973 free_extent_buffer(tmp); 3974 slot++; 3975 } 3976 find_next_key: 3977 /* 3978 * we didn't find a candidate key in this node, walk forward 3979 * and find another one 3980 */ 3981 if (slot >= nritems) { 3982 path->slots[level] = slot; 3983 btrfs_set_path_blocking(path); 3984 sret = btrfs_find_next_key(root, path, min_key, level, 3985 cache_only, min_trans); 3986 if (sret == 0) { 3987 btrfs_release_path(root, path); 3988 goto again; 3989 } else { 3990 goto out; 3991 } 3992 } 3993 /* save our key for returning back */ 3994 btrfs_node_key_to_cpu(cur, &found_key, slot); 3995 path->slots[level] = slot; 3996 if (level == path->lowest_level) { 3997 ret = 0; 3998 unlock_up(path, level, 1); 3999 goto out; 4000 } 4001 btrfs_set_path_blocking(path); 4002 cur = read_node_slot(root, cur, slot); 4003 4004 btrfs_tree_lock(cur); 4005 4006 path->locks[level - 1] = 1; 4007 path->nodes[level - 1] = cur; 4008 unlock_up(path, level, 1); 4009 btrfs_clear_path_blocking(path, NULL); 4010 } 4011 out: 4012 if (ret == 0) 4013 memcpy(min_key, &found_key, sizeof(found_key)); 4014 btrfs_set_path_blocking(path); 4015 return ret; 4016 } 4017 4018 /* 4019 * this is similar to btrfs_next_leaf, but does not try to preserve 4020 * and fixup the path. It looks for and returns the next key in the 4021 * tree based on the current path and the cache_only and min_trans 4022 * parameters. 4023 * 4024 * 0 is returned if another key is found, < 0 if there are any errors 4025 * and 1 is returned if there are no higher keys in the tree 4026 * 4027 * path->keep_locks should be set to 1 on the search made before 4028 * calling this function. 4029 */ 4030 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4031 struct btrfs_key *key, int lowest_level, 4032 int cache_only, u64 min_trans) 4033 { 4034 int level = lowest_level; 4035 int slot; 4036 struct extent_buffer *c; 4037 4038 WARN_ON(!path->keep_locks); 4039 while (level < BTRFS_MAX_LEVEL) { 4040 if (!path->nodes[level]) 4041 return 1; 4042 4043 slot = path->slots[level] + 1; 4044 c = path->nodes[level]; 4045 next: 4046 if (slot >= btrfs_header_nritems(c)) { 4047 level++; 4048 if (level == BTRFS_MAX_LEVEL) 4049 return 1; 4050 continue; 4051 } 4052 if (level == 0) 4053 btrfs_item_key_to_cpu(c, key, slot); 4054 else { 4055 u64 blockptr = btrfs_node_blockptr(c, slot); 4056 u64 gen = btrfs_node_ptr_generation(c, slot); 4057 4058 if (cache_only) { 4059 struct extent_buffer *cur; 4060 cur = btrfs_find_tree_block(root, blockptr, 4061 btrfs_level_size(root, level - 1)); 4062 if (!cur || !btrfs_buffer_uptodate(cur, gen)) { 4063 slot++; 4064 if (cur) 4065 free_extent_buffer(cur); 4066 goto next; 4067 } 4068 free_extent_buffer(cur); 4069 } 4070 if (gen < min_trans) { 4071 slot++; 4072 goto next; 4073 } 4074 btrfs_node_key_to_cpu(c, key, slot); 4075 } 4076 return 0; 4077 } 4078 return 1; 4079 } 4080 4081 /* 4082 * search the tree again to find a leaf with greater keys 4083 * returns 0 if it found something or 1 if there are no greater leaves. 4084 * returns < 0 on io errors. 4085 */ 4086 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4087 { 4088 int slot; 4089 int level = 1; 4090 struct extent_buffer *c; 4091 struct extent_buffer *next = NULL; 4092 struct btrfs_key key; 4093 u32 nritems; 4094 int ret; 4095 4096 nritems = btrfs_header_nritems(path->nodes[0]); 4097 if (nritems == 0) 4098 return 1; 4099 4100 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4101 4102 btrfs_release_path(root, path); 4103 path->keep_locks = 1; 4104 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4105 path->keep_locks = 0; 4106 4107 if (ret < 0) 4108 return ret; 4109 4110 btrfs_set_path_blocking(path); 4111 nritems = btrfs_header_nritems(path->nodes[0]); 4112 /* 4113 * by releasing the path above we dropped all our locks. A balance 4114 * could have added more items next to the key that used to be 4115 * at the very end of the block. So, check again here and 4116 * advance the path if there are now more items available. 4117 */ 4118 if (nritems > 0 && path->slots[0] < nritems - 1) { 4119 path->slots[0]++; 4120 goto done; 4121 } 4122 4123 while (level < BTRFS_MAX_LEVEL) { 4124 if (!path->nodes[level]) 4125 return 1; 4126 4127 slot = path->slots[level] + 1; 4128 c = path->nodes[level]; 4129 if (slot >= btrfs_header_nritems(c)) { 4130 level++; 4131 if (level == BTRFS_MAX_LEVEL) 4132 return 1; 4133 continue; 4134 } 4135 4136 if (next) { 4137 btrfs_tree_unlock(next); 4138 free_extent_buffer(next); 4139 } 4140 4141 /* the path was set to blocking above */ 4142 if (level == 1 && (path->locks[1] || path->skip_locking) && 4143 path->reada) 4144 reada_for_search(root, path, level, slot, 0); 4145 4146 next = read_node_slot(root, c, slot); 4147 if (!path->skip_locking) { 4148 btrfs_assert_tree_locked(c); 4149 btrfs_tree_lock(next); 4150 btrfs_set_lock_blocking(next); 4151 } 4152 break; 4153 } 4154 path->slots[level] = slot; 4155 while (1) { 4156 level--; 4157 c = path->nodes[level]; 4158 if (path->locks[level]) 4159 btrfs_tree_unlock(c); 4160 free_extent_buffer(c); 4161 path->nodes[level] = next; 4162 path->slots[level] = 0; 4163 if (!path->skip_locking) 4164 path->locks[level] = 1; 4165 if (!level) 4166 break; 4167 4168 btrfs_set_path_blocking(path); 4169 if (level == 1 && path->locks[1] && path->reada) 4170 reada_for_search(root, path, level, slot, 0); 4171 next = read_node_slot(root, next, 0); 4172 if (!path->skip_locking) { 4173 btrfs_assert_tree_locked(path->nodes[level]); 4174 btrfs_tree_lock(next); 4175 btrfs_set_lock_blocking(next); 4176 } 4177 } 4178 done: 4179 unlock_up(path, 0, 1); 4180 return 0; 4181 } 4182 4183 /* 4184 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4185 * searching until it gets past min_objectid or finds an item of 'type' 4186 * 4187 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4188 */ 4189 int btrfs_previous_item(struct btrfs_root *root, 4190 struct btrfs_path *path, u64 min_objectid, 4191 int type) 4192 { 4193 struct btrfs_key found_key; 4194 struct extent_buffer *leaf; 4195 u32 nritems; 4196 int ret; 4197 4198 while (1) { 4199 if (path->slots[0] == 0) { 4200 btrfs_set_path_blocking(path); 4201 ret = btrfs_prev_leaf(root, path); 4202 if (ret != 0) 4203 return ret; 4204 } else { 4205 path->slots[0]--; 4206 } 4207 leaf = path->nodes[0]; 4208 nritems = btrfs_header_nritems(leaf); 4209 if (nritems == 0) 4210 return 1; 4211 if (path->slots[0] == nritems) 4212 path->slots[0]--; 4213 4214 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4215 if (found_key.type == type) 4216 return 0; 4217 if (found_key.objectid < min_objectid) 4218 break; 4219 if (found_key.objectid == min_objectid && 4220 found_key.type < type) 4221 break; 4222 } 4223 return 1; 4224 } 4225