1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "print-tree.h" 24 #include "locking.h" 25 26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 27 *root, struct btrfs_path *path, int level); 28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_key *ins_key, 30 struct btrfs_path *path, int data_size, int extend); 31 static int push_node_left(struct btrfs_trans_handle *trans, 32 struct btrfs_root *root, struct extent_buffer *dst, 33 struct extent_buffer *src, int empty); 34 static int balance_node_right(struct btrfs_trans_handle *trans, 35 struct btrfs_root *root, 36 struct extent_buffer *dst_buf, 37 struct extent_buffer *src_buf); 38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 39 struct btrfs_path *path, int level, int slot); 40 static int setup_items_for_insert(struct btrfs_trans_handle *trans, 41 struct btrfs_root *root, struct btrfs_path *path, 42 struct btrfs_key *cpu_key, u32 *data_size, 43 u32 total_data, u32 total_size, int nr); 44 45 46 struct btrfs_path *btrfs_alloc_path(void) 47 { 48 struct btrfs_path *path; 49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 50 if (path) 51 path->reada = 1; 52 return path; 53 } 54 55 /* 56 * set all locked nodes in the path to blocking locks. This should 57 * be done before scheduling 58 */ 59 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 60 { 61 int i; 62 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 63 if (p->nodes[i] && p->locks[i]) 64 btrfs_set_lock_blocking(p->nodes[i]); 65 } 66 } 67 68 /* 69 * reset all the locked nodes in the patch to spinning locks. 70 * 71 * held is used to keep lockdep happy, when lockdep is enabled 72 * we set held to a blocking lock before we go around and 73 * retake all the spinlocks in the path. You can safely use NULL 74 * for held 75 */ 76 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 77 struct extent_buffer *held) 78 { 79 int i; 80 81 #ifdef CONFIG_DEBUG_LOCK_ALLOC 82 /* lockdep really cares that we take all of these spinlocks 83 * in the right order. If any of the locks in the path are not 84 * currently blocking, it is going to complain. So, make really 85 * really sure by forcing the path to blocking before we clear 86 * the path blocking. 87 */ 88 if (held) 89 btrfs_set_lock_blocking(held); 90 btrfs_set_path_blocking(p); 91 #endif 92 93 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 94 if (p->nodes[i] && p->locks[i]) 95 btrfs_clear_lock_blocking(p->nodes[i]); 96 } 97 98 #ifdef CONFIG_DEBUG_LOCK_ALLOC 99 if (held) 100 btrfs_clear_lock_blocking(held); 101 #endif 102 } 103 104 /* this also releases the path */ 105 void btrfs_free_path(struct btrfs_path *p) 106 { 107 btrfs_release_path(NULL, p); 108 kmem_cache_free(btrfs_path_cachep, p); 109 } 110 111 /* 112 * path release drops references on the extent buffers in the path 113 * and it drops any locks held by this path 114 * 115 * It is safe to call this on paths that no locks or extent buffers held. 116 */ 117 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) 118 { 119 int i; 120 121 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 122 p->slots[i] = 0; 123 if (!p->nodes[i]) 124 continue; 125 if (p->locks[i]) { 126 btrfs_tree_unlock(p->nodes[i]); 127 p->locks[i] = 0; 128 } 129 free_extent_buffer(p->nodes[i]); 130 p->nodes[i] = NULL; 131 } 132 } 133 134 /* 135 * safely gets a reference on the root node of a tree. A lock 136 * is not taken, so a concurrent writer may put a different node 137 * at the root of the tree. See btrfs_lock_root_node for the 138 * looping required. 139 * 140 * The extent buffer returned by this has a reference taken, so 141 * it won't disappear. It may stop being the root of the tree 142 * at any time because there are no locks held. 143 */ 144 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 145 { 146 struct extent_buffer *eb; 147 spin_lock(&root->node_lock); 148 eb = root->node; 149 extent_buffer_get(eb); 150 spin_unlock(&root->node_lock); 151 return eb; 152 } 153 154 /* loop around taking references on and locking the root node of the 155 * tree until you end up with a lock on the root. A locked buffer 156 * is returned, with a reference held. 157 */ 158 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 159 { 160 struct extent_buffer *eb; 161 162 while (1) { 163 eb = btrfs_root_node(root); 164 btrfs_tree_lock(eb); 165 166 spin_lock(&root->node_lock); 167 if (eb == root->node) { 168 spin_unlock(&root->node_lock); 169 break; 170 } 171 spin_unlock(&root->node_lock); 172 173 btrfs_tree_unlock(eb); 174 free_extent_buffer(eb); 175 } 176 return eb; 177 } 178 179 /* cowonly root (everything not a reference counted cow subvolume), just get 180 * put onto a simple dirty list. transaction.c walks this to make sure they 181 * get properly updated on disk. 182 */ 183 static void add_root_to_dirty_list(struct btrfs_root *root) 184 { 185 if (root->track_dirty && list_empty(&root->dirty_list)) { 186 list_add(&root->dirty_list, 187 &root->fs_info->dirty_cowonly_roots); 188 } 189 } 190 191 /* 192 * used by snapshot creation to make a copy of a root for a tree with 193 * a given objectid. The buffer with the new root node is returned in 194 * cow_ret, and this func returns zero on success or a negative error code. 195 */ 196 int btrfs_copy_root(struct btrfs_trans_handle *trans, 197 struct btrfs_root *root, 198 struct extent_buffer *buf, 199 struct extent_buffer **cow_ret, u64 new_root_objectid) 200 { 201 struct extent_buffer *cow; 202 u32 nritems; 203 int ret = 0; 204 int level; 205 struct btrfs_disk_key disk_key; 206 207 WARN_ON(root->ref_cows && trans->transid != 208 root->fs_info->running_transaction->transid); 209 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 210 211 level = btrfs_header_level(buf); 212 nritems = btrfs_header_nritems(buf); 213 if (level == 0) 214 btrfs_item_key(buf, &disk_key, 0); 215 else 216 btrfs_node_key(buf, &disk_key, 0); 217 218 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 219 new_root_objectid, &disk_key, level, 220 buf->start, 0); 221 if (IS_ERR(cow)) 222 return PTR_ERR(cow); 223 224 copy_extent_buffer(cow, buf, 0, 0, cow->len); 225 btrfs_set_header_bytenr(cow, cow->start); 226 btrfs_set_header_generation(cow, trans->transid); 227 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 228 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 229 BTRFS_HEADER_FLAG_RELOC); 230 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 231 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 232 else 233 btrfs_set_header_owner(cow, new_root_objectid); 234 235 write_extent_buffer(cow, root->fs_info->fsid, 236 (unsigned long)btrfs_header_fsid(cow), 237 BTRFS_FSID_SIZE); 238 239 WARN_ON(btrfs_header_generation(buf) > trans->transid); 240 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 241 ret = btrfs_inc_ref(trans, root, cow, 1); 242 else 243 ret = btrfs_inc_ref(trans, root, cow, 0); 244 245 if (ret) 246 return ret; 247 248 btrfs_mark_buffer_dirty(cow); 249 *cow_ret = cow; 250 return 0; 251 } 252 253 /* 254 * check if the tree block can be shared by multiple trees 255 */ 256 int btrfs_block_can_be_shared(struct btrfs_root *root, 257 struct extent_buffer *buf) 258 { 259 /* 260 * Tree blocks not in refernece counted trees and tree roots 261 * are never shared. If a block was allocated after the last 262 * snapshot and the block was not allocated by tree relocation, 263 * we know the block is not shared. 264 */ 265 if (root->ref_cows && 266 buf != root->node && buf != root->commit_root && 267 (btrfs_header_generation(buf) <= 268 btrfs_root_last_snapshot(&root->root_item) || 269 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 270 return 1; 271 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 272 if (root->ref_cows && 273 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 274 return 1; 275 #endif 276 return 0; 277 } 278 279 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 280 struct btrfs_root *root, 281 struct extent_buffer *buf, 282 struct extent_buffer *cow) 283 { 284 u64 refs; 285 u64 owner; 286 u64 flags; 287 u64 new_flags = 0; 288 int ret; 289 290 /* 291 * Backrefs update rules: 292 * 293 * Always use full backrefs for extent pointers in tree block 294 * allocated by tree relocation. 295 * 296 * If a shared tree block is no longer referenced by its owner 297 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 298 * use full backrefs for extent pointers in tree block. 299 * 300 * If a tree block is been relocating 301 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 302 * use full backrefs for extent pointers in tree block. 303 * The reason for this is some operations (such as drop tree) 304 * are only allowed for blocks use full backrefs. 305 */ 306 307 if (btrfs_block_can_be_shared(root, buf)) { 308 ret = btrfs_lookup_extent_info(trans, root, buf->start, 309 buf->len, &refs, &flags); 310 BUG_ON(ret); 311 BUG_ON(refs == 0); 312 } else { 313 refs = 1; 314 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 315 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 316 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 317 else 318 flags = 0; 319 } 320 321 owner = btrfs_header_owner(buf); 322 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 323 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 324 325 if (refs > 1) { 326 if ((owner == root->root_key.objectid || 327 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 328 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 329 ret = btrfs_inc_ref(trans, root, buf, 1); 330 BUG_ON(ret); 331 332 if (root->root_key.objectid == 333 BTRFS_TREE_RELOC_OBJECTID) { 334 ret = btrfs_dec_ref(trans, root, buf, 0); 335 BUG_ON(ret); 336 ret = btrfs_inc_ref(trans, root, cow, 1); 337 BUG_ON(ret); 338 } 339 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 340 } else { 341 342 if (root->root_key.objectid == 343 BTRFS_TREE_RELOC_OBJECTID) 344 ret = btrfs_inc_ref(trans, root, cow, 1); 345 else 346 ret = btrfs_inc_ref(trans, root, cow, 0); 347 BUG_ON(ret); 348 } 349 if (new_flags != 0) { 350 ret = btrfs_set_disk_extent_flags(trans, root, 351 buf->start, 352 buf->len, 353 new_flags, 0); 354 BUG_ON(ret); 355 } 356 } else { 357 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 358 if (root->root_key.objectid == 359 BTRFS_TREE_RELOC_OBJECTID) 360 ret = btrfs_inc_ref(trans, root, cow, 1); 361 else 362 ret = btrfs_inc_ref(trans, root, cow, 0); 363 BUG_ON(ret); 364 ret = btrfs_dec_ref(trans, root, buf, 1); 365 BUG_ON(ret); 366 } 367 clean_tree_block(trans, root, buf); 368 } 369 return 0; 370 } 371 372 /* 373 * does the dirty work in cow of a single block. The parent block (if 374 * supplied) is updated to point to the new cow copy. The new buffer is marked 375 * dirty and returned locked. If you modify the block it needs to be marked 376 * dirty again. 377 * 378 * search_start -- an allocation hint for the new block 379 * 380 * empty_size -- a hint that you plan on doing more cow. This is the size in 381 * bytes the allocator should try to find free next to the block it returns. 382 * This is just a hint and may be ignored by the allocator. 383 */ 384 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 385 struct btrfs_root *root, 386 struct extent_buffer *buf, 387 struct extent_buffer *parent, int parent_slot, 388 struct extent_buffer **cow_ret, 389 u64 search_start, u64 empty_size) 390 { 391 struct btrfs_disk_key disk_key; 392 struct extent_buffer *cow; 393 int level; 394 int unlock_orig = 0; 395 u64 parent_start; 396 397 if (*cow_ret == buf) 398 unlock_orig = 1; 399 400 btrfs_assert_tree_locked(buf); 401 402 WARN_ON(root->ref_cows && trans->transid != 403 root->fs_info->running_transaction->transid); 404 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 405 406 level = btrfs_header_level(buf); 407 408 if (level == 0) 409 btrfs_item_key(buf, &disk_key, 0); 410 else 411 btrfs_node_key(buf, &disk_key, 0); 412 413 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 414 if (parent) 415 parent_start = parent->start; 416 else 417 parent_start = 0; 418 } else 419 parent_start = 0; 420 421 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 422 root->root_key.objectid, &disk_key, 423 level, search_start, empty_size); 424 if (IS_ERR(cow)) 425 return PTR_ERR(cow); 426 427 /* cow is set to blocking by btrfs_init_new_buffer */ 428 429 copy_extent_buffer(cow, buf, 0, 0, cow->len); 430 btrfs_set_header_bytenr(cow, cow->start); 431 btrfs_set_header_generation(cow, trans->transid); 432 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 433 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 434 BTRFS_HEADER_FLAG_RELOC); 435 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 436 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 437 else 438 btrfs_set_header_owner(cow, root->root_key.objectid); 439 440 write_extent_buffer(cow, root->fs_info->fsid, 441 (unsigned long)btrfs_header_fsid(cow), 442 BTRFS_FSID_SIZE); 443 444 update_ref_for_cow(trans, root, buf, cow); 445 446 if (buf == root->node) { 447 WARN_ON(parent && parent != buf); 448 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 449 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 450 parent_start = buf->start; 451 else 452 parent_start = 0; 453 454 spin_lock(&root->node_lock); 455 root->node = cow; 456 extent_buffer_get(cow); 457 spin_unlock(&root->node_lock); 458 459 btrfs_free_tree_block(trans, root, buf->start, buf->len, 460 parent_start, root->root_key.objectid, level); 461 free_extent_buffer(buf); 462 add_root_to_dirty_list(root); 463 } else { 464 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 465 parent_start = parent->start; 466 else 467 parent_start = 0; 468 469 WARN_ON(trans->transid != btrfs_header_generation(parent)); 470 btrfs_set_node_blockptr(parent, parent_slot, 471 cow->start); 472 btrfs_set_node_ptr_generation(parent, parent_slot, 473 trans->transid); 474 btrfs_mark_buffer_dirty(parent); 475 btrfs_free_tree_block(trans, root, buf->start, buf->len, 476 parent_start, root->root_key.objectid, level); 477 } 478 if (unlock_orig) 479 btrfs_tree_unlock(buf); 480 free_extent_buffer(buf); 481 btrfs_mark_buffer_dirty(cow); 482 *cow_ret = cow; 483 return 0; 484 } 485 486 static inline int should_cow_block(struct btrfs_trans_handle *trans, 487 struct btrfs_root *root, 488 struct extent_buffer *buf) 489 { 490 if (btrfs_header_generation(buf) == trans->transid && 491 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 492 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 493 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 494 return 0; 495 return 1; 496 } 497 498 /* 499 * cows a single block, see __btrfs_cow_block for the real work. 500 * This version of it has extra checks so that a block isn't cow'd more than 501 * once per transaction, as long as it hasn't been written yet 502 */ 503 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 504 struct btrfs_root *root, struct extent_buffer *buf, 505 struct extent_buffer *parent, int parent_slot, 506 struct extent_buffer **cow_ret) 507 { 508 u64 search_start; 509 int ret; 510 511 if (trans->transaction != root->fs_info->running_transaction) { 512 printk(KERN_CRIT "trans %llu running %llu\n", 513 (unsigned long long)trans->transid, 514 (unsigned long long) 515 root->fs_info->running_transaction->transid); 516 WARN_ON(1); 517 } 518 if (trans->transid != root->fs_info->generation) { 519 printk(KERN_CRIT "trans %llu running %llu\n", 520 (unsigned long long)trans->transid, 521 (unsigned long long)root->fs_info->generation); 522 WARN_ON(1); 523 } 524 525 if (!should_cow_block(trans, root, buf)) { 526 *cow_ret = buf; 527 return 0; 528 } 529 530 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 531 532 if (parent) 533 btrfs_set_lock_blocking(parent); 534 btrfs_set_lock_blocking(buf); 535 536 ret = __btrfs_cow_block(trans, root, buf, parent, 537 parent_slot, cow_ret, search_start, 0); 538 return ret; 539 } 540 541 /* 542 * helper function for defrag to decide if two blocks pointed to by a 543 * node are actually close by 544 */ 545 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 546 { 547 if (blocknr < other && other - (blocknr + blocksize) < 32768) 548 return 1; 549 if (blocknr > other && blocknr - (other + blocksize) < 32768) 550 return 1; 551 return 0; 552 } 553 554 /* 555 * compare two keys in a memcmp fashion 556 */ 557 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 558 { 559 struct btrfs_key k1; 560 561 btrfs_disk_key_to_cpu(&k1, disk); 562 563 return btrfs_comp_cpu_keys(&k1, k2); 564 } 565 566 /* 567 * same as comp_keys only with two btrfs_key's 568 */ 569 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 570 { 571 if (k1->objectid > k2->objectid) 572 return 1; 573 if (k1->objectid < k2->objectid) 574 return -1; 575 if (k1->type > k2->type) 576 return 1; 577 if (k1->type < k2->type) 578 return -1; 579 if (k1->offset > k2->offset) 580 return 1; 581 if (k1->offset < k2->offset) 582 return -1; 583 return 0; 584 } 585 586 /* 587 * this is used by the defrag code to go through all the 588 * leaves pointed to by a node and reallocate them so that 589 * disk order is close to key order 590 */ 591 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 592 struct btrfs_root *root, struct extent_buffer *parent, 593 int start_slot, int cache_only, u64 *last_ret, 594 struct btrfs_key *progress) 595 { 596 struct extent_buffer *cur; 597 u64 blocknr; 598 u64 gen; 599 u64 search_start = *last_ret; 600 u64 last_block = 0; 601 u64 other; 602 u32 parent_nritems; 603 int end_slot; 604 int i; 605 int err = 0; 606 int parent_level; 607 int uptodate; 608 u32 blocksize; 609 int progress_passed = 0; 610 struct btrfs_disk_key disk_key; 611 612 parent_level = btrfs_header_level(parent); 613 if (cache_only && parent_level != 1) 614 return 0; 615 616 if (trans->transaction != root->fs_info->running_transaction) 617 WARN_ON(1); 618 if (trans->transid != root->fs_info->generation) 619 WARN_ON(1); 620 621 parent_nritems = btrfs_header_nritems(parent); 622 blocksize = btrfs_level_size(root, parent_level - 1); 623 end_slot = parent_nritems; 624 625 if (parent_nritems == 1) 626 return 0; 627 628 btrfs_set_lock_blocking(parent); 629 630 for (i = start_slot; i < end_slot; i++) { 631 int close = 1; 632 633 if (!parent->map_token) { 634 map_extent_buffer(parent, 635 btrfs_node_key_ptr_offset(i), 636 sizeof(struct btrfs_key_ptr), 637 &parent->map_token, &parent->kaddr, 638 &parent->map_start, &parent->map_len, 639 KM_USER1); 640 } 641 btrfs_node_key(parent, &disk_key, i); 642 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 643 continue; 644 645 progress_passed = 1; 646 blocknr = btrfs_node_blockptr(parent, i); 647 gen = btrfs_node_ptr_generation(parent, i); 648 if (last_block == 0) 649 last_block = blocknr; 650 651 if (i > 0) { 652 other = btrfs_node_blockptr(parent, i - 1); 653 close = close_blocks(blocknr, other, blocksize); 654 } 655 if (!close && i < end_slot - 2) { 656 other = btrfs_node_blockptr(parent, i + 1); 657 close = close_blocks(blocknr, other, blocksize); 658 } 659 if (close) { 660 last_block = blocknr; 661 continue; 662 } 663 if (parent->map_token) { 664 unmap_extent_buffer(parent, parent->map_token, 665 KM_USER1); 666 parent->map_token = NULL; 667 } 668 669 cur = btrfs_find_tree_block(root, blocknr, blocksize); 670 if (cur) 671 uptodate = btrfs_buffer_uptodate(cur, gen); 672 else 673 uptodate = 0; 674 if (!cur || !uptodate) { 675 if (cache_only) { 676 free_extent_buffer(cur); 677 continue; 678 } 679 if (!cur) { 680 cur = read_tree_block(root, blocknr, 681 blocksize, gen); 682 } else if (!uptodate) { 683 btrfs_read_buffer(cur, gen); 684 } 685 } 686 if (search_start == 0) 687 search_start = last_block; 688 689 btrfs_tree_lock(cur); 690 btrfs_set_lock_blocking(cur); 691 err = __btrfs_cow_block(trans, root, cur, parent, i, 692 &cur, search_start, 693 min(16 * blocksize, 694 (end_slot - i) * blocksize)); 695 if (err) { 696 btrfs_tree_unlock(cur); 697 free_extent_buffer(cur); 698 break; 699 } 700 search_start = cur->start; 701 last_block = cur->start; 702 *last_ret = search_start; 703 btrfs_tree_unlock(cur); 704 free_extent_buffer(cur); 705 } 706 if (parent->map_token) { 707 unmap_extent_buffer(parent, parent->map_token, 708 KM_USER1); 709 parent->map_token = NULL; 710 } 711 return err; 712 } 713 714 /* 715 * The leaf data grows from end-to-front in the node. 716 * this returns the address of the start of the last item, 717 * which is the stop of the leaf data stack 718 */ 719 static inline unsigned int leaf_data_end(struct btrfs_root *root, 720 struct extent_buffer *leaf) 721 { 722 u32 nr = btrfs_header_nritems(leaf); 723 if (nr == 0) 724 return BTRFS_LEAF_DATA_SIZE(root); 725 return btrfs_item_offset_nr(leaf, nr - 1); 726 } 727 728 /* 729 * extra debugging checks to make sure all the items in a key are 730 * well formed and in the proper order 731 */ 732 static int check_node(struct btrfs_root *root, struct btrfs_path *path, 733 int level) 734 { 735 struct extent_buffer *parent = NULL; 736 struct extent_buffer *node = path->nodes[level]; 737 struct btrfs_disk_key parent_key; 738 struct btrfs_disk_key node_key; 739 int parent_slot; 740 int slot; 741 struct btrfs_key cpukey; 742 u32 nritems = btrfs_header_nritems(node); 743 744 if (path->nodes[level + 1]) 745 parent = path->nodes[level + 1]; 746 747 slot = path->slots[level]; 748 BUG_ON(nritems == 0); 749 if (parent) { 750 parent_slot = path->slots[level + 1]; 751 btrfs_node_key(parent, &parent_key, parent_slot); 752 btrfs_node_key(node, &node_key, 0); 753 BUG_ON(memcmp(&parent_key, &node_key, 754 sizeof(struct btrfs_disk_key))); 755 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 756 btrfs_header_bytenr(node)); 757 } 758 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); 759 if (slot != 0) { 760 btrfs_node_key_to_cpu(node, &cpukey, slot - 1); 761 btrfs_node_key(node, &node_key, slot); 762 BUG_ON(comp_keys(&node_key, &cpukey) <= 0); 763 } 764 if (slot < nritems - 1) { 765 btrfs_node_key_to_cpu(node, &cpukey, slot + 1); 766 btrfs_node_key(node, &node_key, slot); 767 BUG_ON(comp_keys(&node_key, &cpukey) >= 0); 768 } 769 return 0; 770 } 771 772 /* 773 * extra checking to make sure all the items in a leaf are 774 * well formed and in the proper order 775 */ 776 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, 777 int level) 778 { 779 struct extent_buffer *leaf = path->nodes[level]; 780 struct extent_buffer *parent = NULL; 781 int parent_slot; 782 struct btrfs_key cpukey; 783 struct btrfs_disk_key parent_key; 784 struct btrfs_disk_key leaf_key; 785 int slot = path->slots[0]; 786 787 u32 nritems = btrfs_header_nritems(leaf); 788 789 if (path->nodes[level + 1]) 790 parent = path->nodes[level + 1]; 791 792 if (nritems == 0) 793 return 0; 794 795 if (parent) { 796 parent_slot = path->slots[level + 1]; 797 btrfs_node_key(parent, &parent_key, parent_slot); 798 btrfs_item_key(leaf, &leaf_key, 0); 799 800 BUG_ON(memcmp(&parent_key, &leaf_key, 801 sizeof(struct btrfs_disk_key))); 802 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 803 btrfs_header_bytenr(leaf)); 804 } 805 if (slot != 0 && slot < nritems - 1) { 806 btrfs_item_key(leaf, &leaf_key, slot); 807 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); 808 if (comp_keys(&leaf_key, &cpukey) <= 0) { 809 btrfs_print_leaf(root, leaf); 810 printk(KERN_CRIT "slot %d offset bad key\n", slot); 811 BUG_ON(1); 812 } 813 if (btrfs_item_offset_nr(leaf, slot - 1) != 814 btrfs_item_end_nr(leaf, slot)) { 815 btrfs_print_leaf(root, leaf); 816 printk(KERN_CRIT "slot %d offset bad\n", slot); 817 BUG_ON(1); 818 } 819 } 820 if (slot < nritems - 1) { 821 btrfs_item_key(leaf, &leaf_key, slot); 822 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); 823 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); 824 if (btrfs_item_offset_nr(leaf, slot) != 825 btrfs_item_end_nr(leaf, slot + 1)) { 826 btrfs_print_leaf(root, leaf); 827 printk(KERN_CRIT "slot %d offset bad\n", slot); 828 BUG_ON(1); 829 } 830 } 831 BUG_ON(btrfs_item_offset_nr(leaf, 0) + 832 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); 833 return 0; 834 } 835 836 static noinline int check_block(struct btrfs_root *root, 837 struct btrfs_path *path, int level) 838 { 839 return 0; 840 if (level == 0) 841 return check_leaf(root, path, level); 842 return check_node(root, path, level); 843 } 844 845 /* 846 * search for key in the extent_buffer. The items start at offset p, 847 * and they are item_size apart. There are 'max' items in p. 848 * 849 * the slot in the array is returned via slot, and it points to 850 * the place where you would insert key if it is not found in 851 * the array. 852 * 853 * slot may point to max if the key is bigger than all of the keys 854 */ 855 static noinline int generic_bin_search(struct extent_buffer *eb, 856 unsigned long p, 857 int item_size, struct btrfs_key *key, 858 int max, int *slot) 859 { 860 int low = 0; 861 int high = max; 862 int mid; 863 int ret; 864 struct btrfs_disk_key *tmp = NULL; 865 struct btrfs_disk_key unaligned; 866 unsigned long offset; 867 char *map_token = NULL; 868 char *kaddr = NULL; 869 unsigned long map_start = 0; 870 unsigned long map_len = 0; 871 int err; 872 873 while (low < high) { 874 mid = (low + high) / 2; 875 offset = p + mid * item_size; 876 877 if (!map_token || offset < map_start || 878 (offset + sizeof(struct btrfs_disk_key)) > 879 map_start + map_len) { 880 if (map_token) { 881 unmap_extent_buffer(eb, map_token, KM_USER0); 882 map_token = NULL; 883 } 884 885 err = map_private_extent_buffer(eb, offset, 886 sizeof(struct btrfs_disk_key), 887 &map_token, &kaddr, 888 &map_start, &map_len, KM_USER0); 889 890 if (!err) { 891 tmp = (struct btrfs_disk_key *)(kaddr + offset - 892 map_start); 893 } else { 894 read_extent_buffer(eb, &unaligned, 895 offset, sizeof(unaligned)); 896 tmp = &unaligned; 897 } 898 899 } else { 900 tmp = (struct btrfs_disk_key *)(kaddr + offset - 901 map_start); 902 } 903 ret = comp_keys(tmp, key); 904 905 if (ret < 0) 906 low = mid + 1; 907 else if (ret > 0) 908 high = mid; 909 else { 910 *slot = mid; 911 if (map_token) 912 unmap_extent_buffer(eb, map_token, KM_USER0); 913 return 0; 914 } 915 } 916 *slot = low; 917 if (map_token) 918 unmap_extent_buffer(eb, map_token, KM_USER0); 919 return 1; 920 } 921 922 /* 923 * simple bin_search frontend that does the right thing for 924 * leaves vs nodes 925 */ 926 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 927 int level, int *slot) 928 { 929 if (level == 0) { 930 return generic_bin_search(eb, 931 offsetof(struct btrfs_leaf, items), 932 sizeof(struct btrfs_item), 933 key, btrfs_header_nritems(eb), 934 slot); 935 } else { 936 return generic_bin_search(eb, 937 offsetof(struct btrfs_node, ptrs), 938 sizeof(struct btrfs_key_ptr), 939 key, btrfs_header_nritems(eb), 940 slot); 941 } 942 return -1; 943 } 944 945 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 946 int level, int *slot) 947 { 948 return bin_search(eb, key, level, slot); 949 } 950 951 /* given a node and slot number, this reads the blocks it points to. The 952 * extent buffer is returned with a reference taken (but unlocked). 953 * NULL is returned on error. 954 */ 955 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 956 struct extent_buffer *parent, int slot) 957 { 958 int level = btrfs_header_level(parent); 959 if (slot < 0) 960 return NULL; 961 if (slot >= btrfs_header_nritems(parent)) 962 return NULL; 963 964 BUG_ON(level == 0); 965 966 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 967 btrfs_level_size(root, level - 1), 968 btrfs_node_ptr_generation(parent, slot)); 969 } 970 971 /* 972 * node level balancing, used to make sure nodes are in proper order for 973 * item deletion. We balance from the top down, so we have to make sure 974 * that a deletion won't leave an node completely empty later on. 975 */ 976 static noinline int balance_level(struct btrfs_trans_handle *trans, 977 struct btrfs_root *root, 978 struct btrfs_path *path, int level) 979 { 980 struct extent_buffer *right = NULL; 981 struct extent_buffer *mid; 982 struct extent_buffer *left = NULL; 983 struct extent_buffer *parent = NULL; 984 int ret = 0; 985 int wret; 986 int pslot; 987 int orig_slot = path->slots[level]; 988 int err_on_enospc = 0; 989 u64 orig_ptr; 990 991 if (level == 0) 992 return 0; 993 994 mid = path->nodes[level]; 995 996 WARN_ON(!path->locks[level]); 997 WARN_ON(btrfs_header_generation(mid) != trans->transid); 998 999 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1000 1001 if (level < BTRFS_MAX_LEVEL - 1) 1002 parent = path->nodes[level + 1]; 1003 pslot = path->slots[level + 1]; 1004 1005 /* 1006 * deal with the case where there is only one pointer in the root 1007 * by promoting the node below to a root 1008 */ 1009 if (!parent) { 1010 struct extent_buffer *child; 1011 1012 if (btrfs_header_nritems(mid) != 1) 1013 return 0; 1014 1015 /* promote the child to a root */ 1016 child = read_node_slot(root, mid, 0); 1017 BUG_ON(!child); 1018 btrfs_tree_lock(child); 1019 btrfs_set_lock_blocking(child); 1020 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1021 BUG_ON(ret); 1022 1023 spin_lock(&root->node_lock); 1024 root->node = child; 1025 spin_unlock(&root->node_lock); 1026 1027 add_root_to_dirty_list(root); 1028 btrfs_tree_unlock(child); 1029 1030 path->locks[level] = 0; 1031 path->nodes[level] = NULL; 1032 clean_tree_block(trans, root, mid); 1033 btrfs_tree_unlock(mid); 1034 /* once for the path */ 1035 free_extent_buffer(mid); 1036 ret = btrfs_free_tree_block(trans, root, mid->start, mid->len, 1037 0, root->root_key.objectid, level); 1038 /* once for the root ptr */ 1039 free_extent_buffer(mid); 1040 return ret; 1041 } 1042 if (btrfs_header_nritems(mid) > 1043 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1044 return 0; 1045 1046 if (btrfs_header_nritems(mid) < 2) 1047 err_on_enospc = 1; 1048 1049 left = read_node_slot(root, parent, pslot - 1); 1050 if (left) { 1051 btrfs_tree_lock(left); 1052 btrfs_set_lock_blocking(left); 1053 wret = btrfs_cow_block(trans, root, left, 1054 parent, pslot - 1, &left); 1055 if (wret) { 1056 ret = wret; 1057 goto enospc; 1058 } 1059 } 1060 right = read_node_slot(root, parent, pslot + 1); 1061 if (right) { 1062 btrfs_tree_lock(right); 1063 btrfs_set_lock_blocking(right); 1064 wret = btrfs_cow_block(trans, root, right, 1065 parent, pslot + 1, &right); 1066 if (wret) { 1067 ret = wret; 1068 goto enospc; 1069 } 1070 } 1071 1072 /* first, try to make some room in the middle buffer */ 1073 if (left) { 1074 orig_slot += btrfs_header_nritems(left); 1075 wret = push_node_left(trans, root, left, mid, 1); 1076 if (wret < 0) 1077 ret = wret; 1078 if (btrfs_header_nritems(mid) < 2) 1079 err_on_enospc = 1; 1080 } 1081 1082 /* 1083 * then try to empty the right most buffer into the middle 1084 */ 1085 if (right) { 1086 wret = push_node_left(trans, root, mid, right, 1); 1087 if (wret < 0 && wret != -ENOSPC) 1088 ret = wret; 1089 if (btrfs_header_nritems(right) == 0) { 1090 u64 bytenr = right->start; 1091 u32 blocksize = right->len; 1092 1093 clean_tree_block(trans, root, right); 1094 btrfs_tree_unlock(right); 1095 free_extent_buffer(right); 1096 right = NULL; 1097 wret = del_ptr(trans, root, path, level + 1, pslot + 1098 1); 1099 if (wret) 1100 ret = wret; 1101 wret = btrfs_free_tree_block(trans, root, 1102 bytenr, blocksize, 0, 1103 root->root_key.objectid, 1104 level); 1105 if (wret) 1106 ret = wret; 1107 } else { 1108 struct btrfs_disk_key right_key; 1109 btrfs_node_key(right, &right_key, 0); 1110 btrfs_set_node_key(parent, &right_key, pslot + 1); 1111 btrfs_mark_buffer_dirty(parent); 1112 } 1113 } 1114 if (btrfs_header_nritems(mid) == 1) { 1115 /* 1116 * we're not allowed to leave a node with one item in the 1117 * tree during a delete. A deletion from lower in the tree 1118 * could try to delete the only pointer in this node. 1119 * So, pull some keys from the left. 1120 * There has to be a left pointer at this point because 1121 * otherwise we would have pulled some pointers from the 1122 * right 1123 */ 1124 BUG_ON(!left); 1125 wret = balance_node_right(trans, root, mid, left); 1126 if (wret < 0) { 1127 ret = wret; 1128 goto enospc; 1129 } 1130 if (wret == 1) { 1131 wret = push_node_left(trans, root, left, mid, 1); 1132 if (wret < 0) 1133 ret = wret; 1134 } 1135 BUG_ON(wret == 1); 1136 } 1137 if (btrfs_header_nritems(mid) == 0) { 1138 /* we've managed to empty the middle node, drop it */ 1139 u64 bytenr = mid->start; 1140 u32 blocksize = mid->len; 1141 1142 clean_tree_block(trans, root, mid); 1143 btrfs_tree_unlock(mid); 1144 free_extent_buffer(mid); 1145 mid = NULL; 1146 wret = del_ptr(trans, root, path, level + 1, pslot); 1147 if (wret) 1148 ret = wret; 1149 wret = btrfs_free_tree_block(trans, root, bytenr, blocksize, 1150 0, root->root_key.objectid, level); 1151 if (wret) 1152 ret = wret; 1153 } else { 1154 /* update the parent key to reflect our changes */ 1155 struct btrfs_disk_key mid_key; 1156 btrfs_node_key(mid, &mid_key, 0); 1157 btrfs_set_node_key(parent, &mid_key, pslot); 1158 btrfs_mark_buffer_dirty(parent); 1159 } 1160 1161 /* update the path */ 1162 if (left) { 1163 if (btrfs_header_nritems(left) > orig_slot) { 1164 extent_buffer_get(left); 1165 /* left was locked after cow */ 1166 path->nodes[level] = left; 1167 path->slots[level + 1] -= 1; 1168 path->slots[level] = orig_slot; 1169 if (mid) { 1170 btrfs_tree_unlock(mid); 1171 free_extent_buffer(mid); 1172 } 1173 } else { 1174 orig_slot -= btrfs_header_nritems(left); 1175 path->slots[level] = orig_slot; 1176 } 1177 } 1178 /* double check we haven't messed things up */ 1179 check_block(root, path, level); 1180 if (orig_ptr != 1181 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1182 BUG(); 1183 enospc: 1184 if (right) { 1185 btrfs_tree_unlock(right); 1186 free_extent_buffer(right); 1187 } 1188 if (left) { 1189 if (path->nodes[level] != left) 1190 btrfs_tree_unlock(left); 1191 free_extent_buffer(left); 1192 } 1193 return ret; 1194 } 1195 1196 /* Node balancing for insertion. Here we only split or push nodes around 1197 * when they are completely full. This is also done top down, so we 1198 * have to be pessimistic. 1199 */ 1200 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1201 struct btrfs_root *root, 1202 struct btrfs_path *path, int level) 1203 { 1204 struct extent_buffer *right = NULL; 1205 struct extent_buffer *mid; 1206 struct extent_buffer *left = NULL; 1207 struct extent_buffer *parent = NULL; 1208 int ret = 0; 1209 int wret; 1210 int pslot; 1211 int orig_slot = path->slots[level]; 1212 u64 orig_ptr; 1213 1214 if (level == 0) 1215 return 1; 1216 1217 mid = path->nodes[level]; 1218 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1219 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1220 1221 if (level < BTRFS_MAX_LEVEL - 1) 1222 parent = path->nodes[level + 1]; 1223 pslot = path->slots[level + 1]; 1224 1225 if (!parent) 1226 return 1; 1227 1228 left = read_node_slot(root, parent, pslot - 1); 1229 1230 /* first, try to make some room in the middle buffer */ 1231 if (left) { 1232 u32 left_nr; 1233 1234 btrfs_tree_lock(left); 1235 btrfs_set_lock_blocking(left); 1236 1237 left_nr = btrfs_header_nritems(left); 1238 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1239 wret = 1; 1240 } else { 1241 ret = btrfs_cow_block(trans, root, left, parent, 1242 pslot - 1, &left); 1243 if (ret) 1244 wret = 1; 1245 else { 1246 wret = push_node_left(trans, root, 1247 left, mid, 0); 1248 } 1249 } 1250 if (wret < 0) 1251 ret = wret; 1252 if (wret == 0) { 1253 struct btrfs_disk_key disk_key; 1254 orig_slot += left_nr; 1255 btrfs_node_key(mid, &disk_key, 0); 1256 btrfs_set_node_key(parent, &disk_key, pslot); 1257 btrfs_mark_buffer_dirty(parent); 1258 if (btrfs_header_nritems(left) > orig_slot) { 1259 path->nodes[level] = left; 1260 path->slots[level + 1] -= 1; 1261 path->slots[level] = orig_slot; 1262 btrfs_tree_unlock(mid); 1263 free_extent_buffer(mid); 1264 } else { 1265 orig_slot -= 1266 btrfs_header_nritems(left); 1267 path->slots[level] = orig_slot; 1268 btrfs_tree_unlock(left); 1269 free_extent_buffer(left); 1270 } 1271 return 0; 1272 } 1273 btrfs_tree_unlock(left); 1274 free_extent_buffer(left); 1275 } 1276 right = read_node_slot(root, parent, pslot + 1); 1277 1278 /* 1279 * then try to empty the right most buffer into the middle 1280 */ 1281 if (right) { 1282 u32 right_nr; 1283 1284 btrfs_tree_lock(right); 1285 btrfs_set_lock_blocking(right); 1286 1287 right_nr = btrfs_header_nritems(right); 1288 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1289 wret = 1; 1290 } else { 1291 ret = btrfs_cow_block(trans, root, right, 1292 parent, pslot + 1, 1293 &right); 1294 if (ret) 1295 wret = 1; 1296 else { 1297 wret = balance_node_right(trans, root, 1298 right, mid); 1299 } 1300 } 1301 if (wret < 0) 1302 ret = wret; 1303 if (wret == 0) { 1304 struct btrfs_disk_key disk_key; 1305 1306 btrfs_node_key(right, &disk_key, 0); 1307 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1308 btrfs_mark_buffer_dirty(parent); 1309 1310 if (btrfs_header_nritems(mid) <= orig_slot) { 1311 path->nodes[level] = right; 1312 path->slots[level + 1] += 1; 1313 path->slots[level] = orig_slot - 1314 btrfs_header_nritems(mid); 1315 btrfs_tree_unlock(mid); 1316 free_extent_buffer(mid); 1317 } else { 1318 btrfs_tree_unlock(right); 1319 free_extent_buffer(right); 1320 } 1321 return 0; 1322 } 1323 btrfs_tree_unlock(right); 1324 free_extent_buffer(right); 1325 } 1326 return 1; 1327 } 1328 1329 /* 1330 * readahead one full node of leaves, finding things that are close 1331 * to the block in 'slot', and triggering ra on them. 1332 */ 1333 static void reada_for_search(struct btrfs_root *root, 1334 struct btrfs_path *path, 1335 int level, int slot, u64 objectid) 1336 { 1337 struct extent_buffer *node; 1338 struct btrfs_disk_key disk_key; 1339 u32 nritems; 1340 u64 search; 1341 u64 target; 1342 u64 nread = 0; 1343 int direction = path->reada; 1344 struct extent_buffer *eb; 1345 u32 nr; 1346 u32 blocksize; 1347 u32 nscan = 0; 1348 1349 if (level != 1) 1350 return; 1351 1352 if (!path->nodes[level]) 1353 return; 1354 1355 node = path->nodes[level]; 1356 1357 search = btrfs_node_blockptr(node, slot); 1358 blocksize = btrfs_level_size(root, level - 1); 1359 eb = btrfs_find_tree_block(root, search, blocksize); 1360 if (eb) { 1361 free_extent_buffer(eb); 1362 return; 1363 } 1364 1365 target = search; 1366 1367 nritems = btrfs_header_nritems(node); 1368 nr = slot; 1369 while (1) { 1370 if (direction < 0) { 1371 if (nr == 0) 1372 break; 1373 nr--; 1374 } else if (direction > 0) { 1375 nr++; 1376 if (nr >= nritems) 1377 break; 1378 } 1379 if (path->reada < 0 && objectid) { 1380 btrfs_node_key(node, &disk_key, nr); 1381 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1382 break; 1383 } 1384 search = btrfs_node_blockptr(node, nr); 1385 if ((search <= target && target - search <= 65536) || 1386 (search > target && search - target <= 65536)) { 1387 readahead_tree_block(root, search, blocksize, 1388 btrfs_node_ptr_generation(node, nr)); 1389 nread += blocksize; 1390 } 1391 nscan++; 1392 if ((nread > 65536 || nscan > 32)) 1393 break; 1394 } 1395 } 1396 1397 /* 1398 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1399 * cache 1400 */ 1401 static noinline int reada_for_balance(struct btrfs_root *root, 1402 struct btrfs_path *path, int level) 1403 { 1404 int slot; 1405 int nritems; 1406 struct extent_buffer *parent; 1407 struct extent_buffer *eb; 1408 u64 gen; 1409 u64 block1 = 0; 1410 u64 block2 = 0; 1411 int ret = 0; 1412 int blocksize; 1413 1414 parent = path->nodes[level + 1]; 1415 if (!parent) 1416 return 0; 1417 1418 nritems = btrfs_header_nritems(parent); 1419 slot = path->slots[level + 1]; 1420 blocksize = btrfs_level_size(root, level); 1421 1422 if (slot > 0) { 1423 block1 = btrfs_node_blockptr(parent, slot - 1); 1424 gen = btrfs_node_ptr_generation(parent, slot - 1); 1425 eb = btrfs_find_tree_block(root, block1, blocksize); 1426 if (eb && btrfs_buffer_uptodate(eb, gen)) 1427 block1 = 0; 1428 free_extent_buffer(eb); 1429 } 1430 if (slot + 1 < nritems) { 1431 block2 = btrfs_node_blockptr(parent, slot + 1); 1432 gen = btrfs_node_ptr_generation(parent, slot + 1); 1433 eb = btrfs_find_tree_block(root, block2, blocksize); 1434 if (eb && btrfs_buffer_uptodate(eb, gen)) 1435 block2 = 0; 1436 free_extent_buffer(eb); 1437 } 1438 if (block1 || block2) { 1439 ret = -EAGAIN; 1440 1441 /* release the whole path */ 1442 btrfs_release_path(root, path); 1443 1444 /* read the blocks */ 1445 if (block1) 1446 readahead_tree_block(root, block1, blocksize, 0); 1447 if (block2) 1448 readahead_tree_block(root, block2, blocksize, 0); 1449 1450 if (block1) { 1451 eb = read_tree_block(root, block1, blocksize, 0); 1452 free_extent_buffer(eb); 1453 } 1454 if (block2) { 1455 eb = read_tree_block(root, block2, blocksize, 0); 1456 free_extent_buffer(eb); 1457 } 1458 } 1459 return ret; 1460 } 1461 1462 1463 /* 1464 * when we walk down the tree, it is usually safe to unlock the higher layers 1465 * in the tree. The exceptions are when our path goes through slot 0, because 1466 * operations on the tree might require changing key pointers higher up in the 1467 * tree. 1468 * 1469 * callers might also have set path->keep_locks, which tells this code to keep 1470 * the lock if the path points to the last slot in the block. This is part of 1471 * walking through the tree, and selecting the next slot in the higher block. 1472 * 1473 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1474 * if lowest_unlock is 1, level 0 won't be unlocked 1475 */ 1476 static noinline void unlock_up(struct btrfs_path *path, int level, 1477 int lowest_unlock) 1478 { 1479 int i; 1480 int skip_level = level; 1481 int no_skips = 0; 1482 struct extent_buffer *t; 1483 1484 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1485 if (!path->nodes[i]) 1486 break; 1487 if (!path->locks[i]) 1488 break; 1489 if (!no_skips && path->slots[i] == 0) { 1490 skip_level = i + 1; 1491 continue; 1492 } 1493 if (!no_skips && path->keep_locks) { 1494 u32 nritems; 1495 t = path->nodes[i]; 1496 nritems = btrfs_header_nritems(t); 1497 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1498 skip_level = i + 1; 1499 continue; 1500 } 1501 } 1502 if (skip_level < i && i >= lowest_unlock) 1503 no_skips = 1; 1504 1505 t = path->nodes[i]; 1506 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1507 btrfs_tree_unlock(t); 1508 path->locks[i] = 0; 1509 } 1510 } 1511 } 1512 1513 /* 1514 * This releases any locks held in the path starting at level and 1515 * going all the way up to the root. 1516 * 1517 * btrfs_search_slot will keep the lock held on higher nodes in a few 1518 * corner cases, such as COW of the block at slot zero in the node. This 1519 * ignores those rules, and it should only be called when there are no 1520 * more updates to be done higher up in the tree. 1521 */ 1522 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1523 { 1524 int i; 1525 1526 if (path->keep_locks) 1527 return; 1528 1529 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1530 if (!path->nodes[i]) 1531 continue; 1532 if (!path->locks[i]) 1533 continue; 1534 btrfs_tree_unlock(path->nodes[i]); 1535 path->locks[i] = 0; 1536 } 1537 } 1538 1539 /* 1540 * helper function for btrfs_search_slot. The goal is to find a block 1541 * in cache without setting the path to blocking. If we find the block 1542 * we return zero and the path is unchanged. 1543 * 1544 * If we can't find the block, we set the path blocking and do some 1545 * reada. -EAGAIN is returned and the search must be repeated. 1546 */ 1547 static int 1548 read_block_for_search(struct btrfs_trans_handle *trans, 1549 struct btrfs_root *root, struct btrfs_path *p, 1550 struct extent_buffer **eb_ret, int level, int slot, 1551 struct btrfs_key *key) 1552 { 1553 u64 blocknr; 1554 u64 gen; 1555 u32 blocksize; 1556 struct extent_buffer *b = *eb_ret; 1557 struct extent_buffer *tmp; 1558 int ret; 1559 1560 blocknr = btrfs_node_blockptr(b, slot); 1561 gen = btrfs_node_ptr_generation(b, slot); 1562 blocksize = btrfs_level_size(root, level - 1); 1563 1564 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1565 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 1566 /* 1567 * we found an up to date block without sleeping, return 1568 * right away 1569 */ 1570 *eb_ret = tmp; 1571 return 0; 1572 } 1573 1574 /* 1575 * reduce lock contention at high levels 1576 * of the btree by dropping locks before 1577 * we read. Don't release the lock on the current 1578 * level because we need to walk this node to figure 1579 * out which blocks to read. 1580 */ 1581 btrfs_unlock_up_safe(p, level + 1); 1582 btrfs_set_path_blocking(p); 1583 1584 if (tmp) 1585 free_extent_buffer(tmp); 1586 if (p->reada) 1587 reada_for_search(root, p, level, slot, key->objectid); 1588 1589 btrfs_release_path(NULL, p); 1590 1591 ret = -EAGAIN; 1592 tmp = read_tree_block(root, blocknr, blocksize, gen); 1593 if (tmp) { 1594 /* 1595 * If the read above didn't mark this buffer up to date, 1596 * it will never end up being up to date. Set ret to EIO now 1597 * and give up so that our caller doesn't loop forever 1598 * on our EAGAINs. 1599 */ 1600 if (!btrfs_buffer_uptodate(tmp, 0)) 1601 ret = -EIO; 1602 free_extent_buffer(tmp); 1603 } 1604 return ret; 1605 } 1606 1607 /* 1608 * helper function for btrfs_search_slot. This does all of the checks 1609 * for node-level blocks and does any balancing required based on 1610 * the ins_len. 1611 * 1612 * If no extra work was required, zero is returned. If we had to 1613 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1614 * start over 1615 */ 1616 static int 1617 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1618 struct btrfs_root *root, struct btrfs_path *p, 1619 struct extent_buffer *b, int level, int ins_len) 1620 { 1621 int ret; 1622 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1623 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1624 int sret; 1625 1626 sret = reada_for_balance(root, p, level); 1627 if (sret) 1628 goto again; 1629 1630 btrfs_set_path_blocking(p); 1631 sret = split_node(trans, root, p, level); 1632 btrfs_clear_path_blocking(p, NULL); 1633 1634 BUG_ON(sret > 0); 1635 if (sret) { 1636 ret = sret; 1637 goto done; 1638 } 1639 b = p->nodes[level]; 1640 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1641 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 1642 int sret; 1643 1644 sret = reada_for_balance(root, p, level); 1645 if (sret) 1646 goto again; 1647 1648 btrfs_set_path_blocking(p); 1649 sret = balance_level(trans, root, p, level); 1650 btrfs_clear_path_blocking(p, NULL); 1651 1652 if (sret) { 1653 ret = sret; 1654 goto done; 1655 } 1656 b = p->nodes[level]; 1657 if (!b) { 1658 btrfs_release_path(NULL, p); 1659 goto again; 1660 } 1661 BUG_ON(btrfs_header_nritems(b) == 1); 1662 } 1663 return 0; 1664 1665 again: 1666 ret = -EAGAIN; 1667 done: 1668 return ret; 1669 } 1670 1671 /* 1672 * look for key in the tree. path is filled in with nodes along the way 1673 * if key is found, we return zero and you can find the item in the leaf 1674 * level of the path (level 0) 1675 * 1676 * If the key isn't found, the path points to the slot where it should 1677 * be inserted, and 1 is returned. If there are other errors during the 1678 * search a negative error number is returned. 1679 * 1680 * if ins_len > 0, nodes and leaves will be split as we walk down the 1681 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1682 * possible) 1683 */ 1684 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1685 *root, struct btrfs_key *key, struct btrfs_path *p, int 1686 ins_len, int cow) 1687 { 1688 struct extent_buffer *b; 1689 int slot; 1690 int ret; 1691 int err; 1692 int level; 1693 int lowest_unlock = 1; 1694 u8 lowest_level = 0; 1695 1696 lowest_level = p->lowest_level; 1697 WARN_ON(lowest_level && ins_len > 0); 1698 WARN_ON(p->nodes[0] != NULL); 1699 1700 if (ins_len < 0) 1701 lowest_unlock = 2; 1702 1703 again: 1704 if (p->search_commit_root) { 1705 b = root->commit_root; 1706 extent_buffer_get(b); 1707 if (!p->skip_locking) 1708 btrfs_tree_lock(b); 1709 } else { 1710 if (p->skip_locking) 1711 b = btrfs_root_node(root); 1712 else 1713 b = btrfs_lock_root_node(root); 1714 } 1715 1716 while (b) { 1717 level = btrfs_header_level(b); 1718 1719 /* 1720 * setup the path here so we can release it under lock 1721 * contention with the cow code 1722 */ 1723 p->nodes[level] = b; 1724 if (!p->skip_locking) 1725 p->locks[level] = 1; 1726 1727 if (cow) { 1728 /* 1729 * if we don't really need to cow this block 1730 * then we don't want to set the path blocking, 1731 * so we test it here 1732 */ 1733 if (!should_cow_block(trans, root, b)) 1734 goto cow_done; 1735 1736 btrfs_set_path_blocking(p); 1737 1738 err = btrfs_cow_block(trans, root, b, 1739 p->nodes[level + 1], 1740 p->slots[level + 1], &b); 1741 if (err) { 1742 free_extent_buffer(b); 1743 ret = err; 1744 goto done; 1745 } 1746 } 1747 cow_done: 1748 BUG_ON(!cow && ins_len); 1749 if (level != btrfs_header_level(b)) 1750 WARN_ON(1); 1751 level = btrfs_header_level(b); 1752 1753 p->nodes[level] = b; 1754 if (!p->skip_locking) 1755 p->locks[level] = 1; 1756 1757 btrfs_clear_path_blocking(p, NULL); 1758 1759 /* 1760 * we have a lock on b and as long as we aren't changing 1761 * the tree, there is no way to for the items in b to change. 1762 * It is safe to drop the lock on our parent before we 1763 * go through the expensive btree search on b. 1764 * 1765 * If cow is true, then we might be changing slot zero, 1766 * which may require changing the parent. So, we can't 1767 * drop the lock until after we know which slot we're 1768 * operating on. 1769 */ 1770 if (!cow) 1771 btrfs_unlock_up_safe(p, level + 1); 1772 1773 ret = check_block(root, p, level); 1774 if (ret) { 1775 ret = -1; 1776 goto done; 1777 } 1778 1779 ret = bin_search(b, key, level, &slot); 1780 1781 if (level != 0) { 1782 int dec = 0; 1783 if (ret && slot > 0) { 1784 dec = 1; 1785 slot -= 1; 1786 } 1787 p->slots[level] = slot; 1788 err = setup_nodes_for_search(trans, root, p, b, level, 1789 ins_len); 1790 if (err == -EAGAIN) 1791 goto again; 1792 if (err) { 1793 ret = err; 1794 goto done; 1795 } 1796 b = p->nodes[level]; 1797 slot = p->slots[level]; 1798 1799 unlock_up(p, level, lowest_unlock); 1800 1801 if (level == lowest_level) { 1802 if (dec) 1803 p->slots[level]++; 1804 goto done; 1805 } 1806 1807 err = read_block_for_search(trans, root, p, 1808 &b, level, slot, key); 1809 if (err == -EAGAIN) 1810 goto again; 1811 if (err) { 1812 ret = err; 1813 goto done; 1814 } 1815 1816 if (!p->skip_locking) { 1817 btrfs_clear_path_blocking(p, NULL); 1818 err = btrfs_try_spin_lock(b); 1819 1820 if (!err) { 1821 btrfs_set_path_blocking(p); 1822 btrfs_tree_lock(b); 1823 btrfs_clear_path_blocking(p, b); 1824 } 1825 } 1826 } else { 1827 p->slots[level] = slot; 1828 if (ins_len > 0 && 1829 btrfs_leaf_free_space(root, b) < ins_len) { 1830 btrfs_set_path_blocking(p); 1831 err = split_leaf(trans, root, key, 1832 p, ins_len, ret == 0); 1833 btrfs_clear_path_blocking(p, NULL); 1834 1835 BUG_ON(err > 0); 1836 if (err) { 1837 ret = err; 1838 goto done; 1839 } 1840 } 1841 if (!p->search_for_split) 1842 unlock_up(p, level, lowest_unlock); 1843 goto done; 1844 } 1845 } 1846 ret = 1; 1847 done: 1848 /* 1849 * we don't really know what they plan on doing with the path 1850 * from here on, so for now just mark it as blocking 1851 */ 1852 if (!p->leave_spinning) 1853 btrfs_set_path_blocking(p); 1854 if (ret < 0) 1855 btrfs_release_path(root, p); 1856 return ret; 1857 } 1858 1859 /* 1860 * adjust the pointers going up the tree, starting at level 1861 * making sure the right key of each node is points to 'key'. 1862 * This is used after shifting pointers to the left, so it stops 1863 * fixing up pointers when a given leaf/node is not in slot 0 of the 1864 * higher levels 1865 * 1866 * If this fails to write a tree block, it returns -1, but continues 1867 * fixing up the blocks in ram so the tree is consistent. 1868 */ 1869 static int fixup_low_keys(struct btrfs_trans_handle *trans, 1870 struct btrfs_root *root, struct btrfs_path *path, 1871 struct btrfs_disk_key *key, int level) 1872 { 1873 int i; 1874 int ret = 0; 1875 struct extent_buffer *t; 1876 1877 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1878 int tslot = path->slots[i]; 1879 if (!path->nodes[i]) 1880 break; 1881 t = path->nodes[i]; 1882 btrfs_set_node_key(t, key, tslot); 1883 btrfs_mark_buffer_dirty(path->nodes[i]); 1884 if (tslot != 0) 1885 break; 1886 } 1887 return ret; 1888 } 1889 1890 /* 1891 * update item key. 1892 * 1893 * This function isn't completely safe. It's the caller's responsibility 1894 * that the new key won't break the order 1895 */ 1896 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1897 struct btrfs_root *root, struct btrfs_path *path, 1898 struct btrfs_key *new_key) 1899 { 1900 struct btrfs_disk_key disk_key; 1901 struct extent_buffer *eb; 1902 int slot; 1903 1904 eb = path->nodes[0]; 1905 slot = path->slots[0]; 1906 if (slot > 0) { 1907 btrfs_item_key(eb, &disk_key, slot - 1); 1908 if (comp_keys(&disk_key, new_key) >= 0) 1909 return -1; 1910 } 1911 if (slot < btrfs_header_nritems(eb) - 1) { 1912 btrfs_item_key(eb, &disk_key, slot + 1); 1913 if (comp_keys(&disk_key, new_key) <= 0) 1914 return -1; 1915 } 1916 1917 btrfs_cpu_key_to_disk(&disk_key, new_key); 1918 btrfs_set_item_key(eb, &disk_key, slot); 1919 btrfs_mark_buffer_dirty(eb); 1920 if (slot == 0) 1921 fixup_low_keys(trans, root, path, &disk_key, 1); 1922 return 0; 1923 } 1924 1925 /* 1926 * try to push data from one node into the next node left in the 1927 * tree. 1928 * 1929 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1930 * error, and > 0 if there was no room in the left hand block. 1931 */ 1932 static int push_node_left(struct btrfs_trans_handle *trans, 1933 struct btrfs_root *root, struct extent_buffer *dst, 1934 struct extent_buffer *src, int empty) 1935 { 1936 int push_items = 0; 1937 int src_nritems; 1938 int dst_nritems; 1939 int ret = 0; 1940 1941 src_nritems = btrfs_header_nritems(src); 1942 dst_nritems = btrfs_header_nritems(dst); 1943 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1944 WARN_ON(btrfs_header_generation(src) != trans->transid); 1945 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1946 1947 if (!empty && src_nritems <= 8) 1948 return 1; 1949 1950 if (push_items <= 0) 1951 return 1; 1952 1953 if (empty) { 1954 push_items = min(src_nritems, push_items); 1955 if (push_items < src_nritems) { 1956 /* leave at least 8 pointers in the node if 1957 * we aren't going to empty it 1958 */ 1959 if (src_nritems - push_items < 8) { 1960 if (push_items <= 8) 1961 return 1; 1962 push_items -= 8; 1963 } 1964 } 1965 } else 1966 push_items = min(src_nritems - 8, push_items); 1967 1968 copy_extent_buffer(dst, src, 1969 btrfs_node_key_ptr_offset(dst_nritems), 1970 btrfs_node_key_ptr_offset(0), 1971 push_items * sizeof(struct btrfs_key_ptr)); 1972 1973 if (push_items < src_nritems) { 1974 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 1975 btrfs_node_key_ptr_offset(push_items), 1976 (src_nritems - push_items) * 1977 sizeof(struct btrfs_key_ptr)); 1978 } 1979 btrfs_set_header_nritems(src, src_nritems - push_items); 1980 btrfs_set_header_nritems(dst, dst_nritems + push_items); 1981 btrfs_mark_buffer_dirty(src); 1982 btrfs_mark_buffer_dirty(dst); 1983 1984 return ret; 1985 } 1986 1987 /* 1988 * try to push data from one node into the next node right in the 1989 * tree. 1990 * 1991 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 1992 * error, and > 0 if there was no room in the right hand block. 1993 * 1994 * this will only push up to 1/2 the contents of the left node over 1995 */ 1996 static int balance_node_right(struct btrfs_trans_handle *trans, 1997 struct btrfs_root *root, 1998 struct extent_buffer *dst, 1999 struct extent_buffer *src) 2000 { 2001 int push_items = 0; 2002 int max_push; 2003 int src_nritems; 2004 int dst_nritems; 2005 int ret = 0; 2006 2007 WARN_ON(btrfs_header_generation(src) != trans->transid); 2008 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2009 2010 src_nritems = btrfs_header_nritems(src); 2011 dst_nritems = btrfs_header_nritems(dst); 2012 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2013 if (push_items <= 0) 2014 return 1; 2015 2016 if (src_nritems < 4) 2017 return 1; 2018 2019 max_push = src_nritems / 2 + 1; 2020 /* don't try to empty the node */ 2021 if (max_push >= src_nritems) 2022 return 1; 2023 2024 if (max_push < push_items) 2025 push_items = max_push; 2026 2027 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2028 btrfs_node_key_ptr_offset(0), 2029 (dst_nritems) * 2030 sizeof(struct btrfs_key_ptr)); 2031 2032 copy_extent_buffer(dst, src, 2033 btrfs_node_key_ptr_offset(0), 2034 btrfs_node_key_ptr_offset(src_nritems - push_items), 2035 push_items * sizeof(struct btrfs_key_ptr)); 2036 2037 btrfs_set_header_nritems(src, src_nritems - push_items); 2038 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2039 2040 btrfs_mark_buffer_dirty(src); 2041 btrfs_mark_buffer_dirty(dst); 2042 2043 return ret; 2044 } 2045 2046 /* 2047 * helper function to insert a new root level in the tree. 2048 * A new node is allocated, and a single item is inserted to 2049 * point to the existing root 2050 * 2051 * returns zero on success or < 0 on failure. 2052 */ 2053 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2054 struct btrfs_root *root, 2055 struct btrfs_path *path, int level) 2056 { 2057 u64 lower_gen; 2058 struct extent_buffer *lower; 2059 struct extent_buffer *c; 2060 struct extent_buffer *old; 2061 struct btrfs_disk_key lower_key; 2062 2063 BUG_ON(path->nodes[level]); 2064 BUG_ON(path->nodes[level-1] != root->node); 2065 2066 lower = path->nodes[level-1]; 2067 if (level == 1) 2068 btrfs_item_key(lower, &lower_key, 0); 2069 else 2070 btrfs_node_key(lower, &lower_key, 0); 2071 2072 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2073 root->root_key.objectid, &lower_key, 2074 level, root->node->start, 0); 2075 if (IS_ERR(c)) 2076 return PTR_ERR(c); 2077 2078 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 2079 btrfs_set_header_nritems(c, 1); 2080 btrfs_set_header_level(c, level); 2081 btrfs_set_header_bytenr(c, c->start); 2082 btrfs_set_header_generation(c, trans->transid); 2083 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 2084 btrfs_set_header_owner(c, root->root_key.objectid); 2085 2086 write_extent_buffer(c, root->fs_info->fsid, 2087 (unsigned long)btrfs_header_fsid(c), 2088 BTRFS_FSID_SIZE); 2089 2090 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2091 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2092 BTRFS_UUID_SIZE); 2093 2094 btrfs_set_node_key(c, &lower_key, 0); 2095 btrfs_set_node_blockptr(c, 0, lower->start); 2096 lower_gen = btrfs_header_generation(lower); 2097 WARN_ON(lower_gen != trans->transid); 2098 2099 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2100 2101 btrfs_mark_buffer_dirty(c); 2102 2103 spin_lock(&root->node_lock); 2104 old = root->node; 2105 root->node = c; 2106 spin_unlock(&root->node_lock); 2107 2108 /* the super has an extra ref to root->node */ 2109 free_extent_buffer(old); 2110 2111 add_root_to_dirty_list(root); 2112 extent_buffer_get(c); 2113 path->nodes[level] = c; 2114 path->locks[level] = 1; 2115 path->slots[level] = 0; 2116 return 0; 2117 } 2118 2119 /* 2120 * worker function to insert a single pointer in a node. 2121 * the node should have enough room for the pointer already 2122 * 2123 * slot and level indicate where you want the key to go, and 2124 * blocknr is the block the key points to. 2125 * 2126 * returns zero on success and < 0 on any error 2127 */ 2128 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root 2129 *root, struct btrfs_path *path, struct btrfs_disk_key 2130 *key, u64 bytenr, int slot, int level) 2131 { 2132 struct extent_buffer *lower; 2133 int nritems; 2134 2135 BUG_ON(!path->nodes[level]); 2136 lower = path->nodes[level]; 2137 nritems = btrfs_header_nritems(lower); 2138 BUG_ON(slot > nritems); 2139 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) 2140 BUG(); 2141 if (slot != nritems) { 2142 memmove_extent_buffer(lower, 2143 btrfs_node_key_ptr_offset(slot + 1), 2144 btrfs_node_key_ptr_offset(slot), 2145 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2146 } 2147 btrfs_set_node_key(lower, key, slot); 2148 btrfs_set_node_blockptr(lower, slot, bytenr); 2149 WARN_ON(trans->transid == 0); 2150 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2151 btrfs_set_header_nritems(lower, nritems + 1); 2152 btrfs_mark_buffer_dirty(lower); 2153 return 0; 2154 } 2155 2156 /* 2157 * split the node at the specified level in path in two. 2158 * The path is corrected to point to the appropriate node after the split 2159 * 2160 * Before splitting this tries to make some room in the node by pushing 2161 * left and right, if either one works, it returns right away. 2162 * 2163 * returns 0 on success and < 0 on failure 2164 */ 2165 static noinline int split_node(struct btrfs_trans_handle *trans, 2166 struct btrfs_root *root, 2167 struct btrfs_path *path, int level) 2168 { 2169 struct extent_buffer *c; 2170 struct extent_buffer *split; 2171 struct btrfs_disk_key disk_key; 2172 int mid; 2173 int ret; 2174 int wret; 2175 u32 c_nritems; 2176 2177 c = path->nodes[level]; 2178 WARN_ON(btrfs_header_generation(c) != trans->transid); 2179 if (c == root->node) { 2180 /* trying to split the root, lets make a new one */ 2181 ret = insert_new_root(trans, root, path, level + 1); 2182 if (ret) 2183 return ret; 2184 } else { 2185 ret = push_nodes_for_insert(trans, root, path, level); 2186 c = path->nodes[level]; 2187 if (!ret && btrfs_header_nritems(c) < 2188 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2189 return 0; 2190 if (ret < 0) 2191 return ret; 2192 } 2193 2194 c_nritems = btrfs_header_nritems(c); 2195 mid = (c_nritems + 1) / 2; 2196 btrfs_node_key(c, &disk_key, mid); 2197 2198 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2199 root->root_key.objectid, 2200 &disk_key, level, c->start, 0); 2201 if (IS_ERR(split)) 2202 return PTR_ERR(split); 2203 2204 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 2205 btrfs_set_header_level(split, btrfs_header_level(c)); 2206 btrfs_set_header_bytenr(split, split->start); 2207 btrfs_set_header_generation(split, trans->transid); 2208 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 2209 btrfs_set_header_owner(split, root->root_key.objectid); 2210 write_extent_buffer(split, root->fs_info->fsid, 2211 (unsigned long)btrfs_header_fsid(split), 2212 BTRFS_FSID_SIZE); 2213 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2214 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2215 BTRFS_UUID_SIZE); 2216 2217 2218 copy_extent_buffer(split, c, 2219 btrfs_node_key_ptr_offset(0), 2220 btrfs_node_key_ptr_offset(mid), 2221 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2222 btrfs_set_header_nritems(split, c_nritems - mid); 2223 btrfs_set_header_nritems(c, mid); 2224 ret = 0; 2225 2226 btrfs_mark_buffer_dirty(c); 2227 btrfs_mark_buffer_dirty(split); 2228 2229 wret = insert_ptr(trans, root, path, &disk_key, split->start, 2230 path->slots[level + 1] + 1, 2231 level + 1); 2232 if (wret) 2233 ret = wret; 2234 2235 if (path->slots[level] >= mid) { 2236 path->slots[level] -= mid; 2237 btrfs_tree_unlock(c); 2238 free_extent_buffer(c); 2239 path->nodes[level] = split; 2240 path->slots[level + 1] += 1; 2241 } else { 2242 btrfs_tree_unlock(split); 2243 free_extent_buffer(split); 2244 } 2245 return ret; 2246 } 2247 2248 /* 2249 * how many bytes are required to store the items in a leaf. start 2250 * and nr indicate which items in the leaf to check. This totals up the 2251 * space used both by the item structs and the item data 2252 */ 2253 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2254 { 2255 int data_len; 2256 int nritems = btrfs_header_nritems(l); 2257 int end = min(nritems, start + nr) - 1; 2258 2259 if (!nr) 2260 return 0; 2261 data_len = btrfs_item_end_nr(l, start); 2262 data_len = data_len - btrfs_item_offset_nr(l, end); 2263 data_len += sizeof(struct btrfs_item) * nr; 2264 WARN_ON(data_len < 0); 2265 return data_len; 2266 } 2267 2268 /* 2269 * The space between the end of the leaf items and 2270 * the start of the leaf data. IOW, how much room 2271 * the leaf has left for both items and data 2272 */ 2273 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2274 struct extent_buffer *leaf) 2275 { 2276 int nritems = btrfs_header_nritems(leaf); 2277 int ret; 2278 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2279 if (ret < 0) { 2280 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2281 "used %d nritems %d\n", 2282 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2283 leaf_space_used(leaf, 0, nritems), nritems); 2284 } 2285 return ret; 2286 } 2287 2288 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 2289 struct btrfs_root *root, 2290 struct btrfs_path *path, 2291 int data_size, int empty, 2292 struct extent_buffer *right, 2293 int free_space, u32 left_nritems) 2294 { 2295 struct extent_buffer *left = path->nodes[0]; 2296 struct extent_buffer *upper = path->nodes[1]; 2297 struct btrfs_disk_key disk_key; 2298 int slot; 2299 u32 i; 2300 int push_space = 0; 2301 int push_items = 0; 2302 struct btrfs_item *item; 2303 u32 nr; 2304 u32 right_nritems; 2305 u32 data_end; 2306 u32 this_item_size; 2307 2308 if (empty) 2309 nr = 0; 2310 else 2311 nr = 1; 2312 2313 if (path->slots[0] >= left_nritems) 2314 push_space += data_size; 2315 2316 slot = path->slots[1]; 2317 i = left_nritems - 1; 2318 while (i >= nr) { 2319 item = btrfs_item_nr(left, i); 2320 2321 if (!empty && push_items > 0) { 2322 if (path->slots[0] > i) 2323 break; 2324 if (path->slots[0] == i) { 2325 int space = btrfs_leaf_free_space(root, left); 2326 if (space + push_space * 2 > free_space) 2327 break; 2328 } 2329 } 2330 2331 if (path->slots[0] == i) 2332 push_space += data_size; 2333 2334 if (!left->map_token) { 2335 map_extent_buffer(left, (unsigned long)item, 2336 sizeof(struct btrfs_item), 2337 &left->map_token, &left->kaddr, 2338 &left->map_start, &left->map_len, 2339 KM_USER1); 2340 } 2341 2342 this_item_size = btrfs_item_size(left, item); 2343 if (this_item_size + sizeof(*item) + push_space > free_space) 2344 break; 2345 2346 push_items++; 2347 push_space += this_item_size + sizeof(*item); 2348 if (i == 0) 2349 break; 2350 i--; 2351 } 2352 if (left->map_token) { 2353 unmap_extent_buffer(left, left->map_token, KM_USER1); 2354 left->map_token = NULL; 2355 } 2356 2357 if (push_items == 0) 2358 goto out_unlock; 2359 2360 if (!empty && push_items == left_nritems) 2361 WARN_ON(1); 2362 2363 /* push left to right */ 2364 right_nritems = btrfs_header_nritems(right); 2365 2366 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2367 push_space -= leaf_data_end(root, left); 2368 2369 /* make room in the right data area */ 2370 data_end = leaf_data_end(root, right); 2371 memmove_extent_buffer(right, 2372 btrfs_leaf_data(right) + data_end - push_space, 2373 btrfs_leaf_data(right) + data_end, 2374 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2375 2376 /* copy from the left data area */ 2377 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2378 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2379 btrfs_leaf_data(left) + leaf_data_end(root, left), 2380 push_space); 2381 2382 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2383 btrfs_item_nr_offset(0), 2384 right_nritems * sizeof(struct btrfs_item)); 2385 2386 /* copy the items from left to right */ 2387 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2388 btrfs_item_nr_offset(left_nritems - push_items), 2389 push_items * sizeof(struct btrfs_item)); 2390 2391 /* update the item pointers */ 2392 right_nritems += push_items; 2393 btrfs_set_header_nritems(right, right_nritems); 2394 push_space = BTRFS_LEAF_DATA_SIZE(root); 2395 for (i = 0; i < right_nritems; i++) { 2396 item = btrfs_item_nr(right, i); 2397 if (!right->map_token) { 2398 map_extent_buffer(right, (unsigned long)item, 2399 sizeof(struct btrfs_item), 2400 &right->map_token, &right->kaddr, 2401 &right->map_start, &right->map_len, 2402 KM_USER1); 2403 } 2404 push_space -= btrfs_item_size(right, item); 2405 btrfs_set_item_offset(right, item, push_space); 2406 } 2407 2408 if (right->map_token) { 2409 unmap_extent_buffer(right, right->map_token, KM_USER1); 2410 right->map_token = NULL; 2411 } 2412 left_nritems -= push_items; 2413 btrfs_set_header_nritems(left, left_nritems); 2414 2415 if (left_nritems) 2416 btrfs_mark_buffer_dirty(left); 2417 btrfs_mark_buffer_dirty(right); 2418 2419 btrfs_item_key(right, &disk_key, 0); 2420 btrfs_set_node_key(upper, &disk_key, slot + 1); 2421 btrfs_mark_buffer_dirty(upper); 2422 2423 /* then fixup the leaf pointer in the path */ 2424 if (path->slots[0] >= left_nritems) { 2425 path->slots[0] -= left_nritems; 2426 if (btrfs_header_nritems(path->nodes[0]) == 0) 2427 clean_tree_block(trans, root, path->nodes[0]); 2428 btrfs_tree_unlock(path->nodes[0]); 2429 free_extent_buffer(path->nodes[0]); 2430 path->nodes[0] = right; 2431 path->slots[1] += 1; 2432 } else { 2433 btrfs_tree_unlock(right); 2434 free_extent_buffer(right); 2435 } 2436 return 0; 2437 2438 out_unlock: 2439 btrfs_tree_unlock(right); 2440 free_extent_buffer(right); 2441 return 1; 2442 } 2443 2444 /* 2445 * push some data in the path leaf to the right, trying to free up at 2446 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2447 * 2448 * returns 1 if the push failed because the other node didn't have enough 2449 * room, 0 if everything worked out and < 0 if there were major errors. 2450 */ 2451 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2452 *root, struct btrfs_path *path, int data_size, 2453 int empty) 2454 { 2455 struct extent_buffer *left = path->nodes[0]; 2456 struct extent_buffer *right; 2457 struct extent_buffer *upper; 2458 int slot; 2459 int free_space; 2460 u32 left_nritems; 2461 int ret; 2462 2463 if (!path->nodes[1]) 2464 return 1; 2465 2466 slot = path->slots[1]; 2467 upper = path->nodes[1]; 2468 if (slot >= btrfs_header_nritems(upper) - 1) 2469 return 1; 2470 2471 btrfs_assert_tree_locked(path->nodes[1]); 2472 2473 right = read_node_slot(root, upper, slot + 1); 2474 btrfs_tree_lock(right); 2475 btrfs_set_lock_blocking(right); 2476 2477 free_space = btrfs_leaf_free_space(root, right); 2478 if (free_space < data_size) 2479 goto out_unlock; 2480 2481 /* cow and double check */ 2482 ret = btrfs_cow_block(trans, root, right, upper, 2483 slot + 1, &right); 2484 if (ret) 2485 goto out_unlock; 2486 2487 free_space = btrfs_leaf_free_space(root, right); 2488 if (free_space < data_size) 2489 goto out_unlock; 2490 2491 left_nritems = btrfs_header_nritems(left); 2492 if (left_nritems == 0) 2493 goto out_unlock; 2494 2495 return __push_leaf_right(trans, root, path, data_size, empty, 2496 right, free_space, left_nritems); 2497 out_unlock: 2498 btrfs_tree_unlock(right); 2499 free_extent_buffer(right); 2500 return 1; 2501 } 2502 2503 /* 2504 * push some data in the path leaf to the left, trying to free up at 2505 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2506 */ 2507 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 2508 struct btrfs_root *root, 2509 struct btrfs_path *path, int data_size, 2510 int empty, struct extent_buffer *left, 2511 int free_space, int right_nritems) 2512 { 2513 struct btrfs_disk_key disk_key; 2514 struct extent_buffer *right = path->nodes[0]; 2515 int slot; 2516 int i; 2517 int push_space = 0; 2518 int push_items = 0; 2519 struct btrfs_item *item; 2520 u32 old_left_nritems; 2521 u32 nr; 2522 int ret = 0; 2523 int wret; 2524 u32 this_item_size; 2525 u32 old_left_item_size; 2526 2527 slot = path->slots[1]; 2528 2529 if (empty) 2530 nr = right_nritems; 2531 else 2532 nr = right_nritems - 1; 2533 2534 for (i = 0; i < nr; i++) { 2535 item = btrfs_item_nr(right, i); 2536 if (!right->map_token) { 2537 map_extent_buffer(right, (unsigned long)item, 2538 sizeof(struct btrfs_item), 2539 &right->map_token, &right->kaddr, 2540 &right->map_start, &right->map_len, 2541 KM_USER1); 2542 } 2543 2544 if (!empty && push_items > 0) { 2545 if (path->slots[0] < i) 2546 break; 2547 if (path->slots[0] == i) { 2548 int space = btrfs_leaf_free_space(root, right); 2549 if (space + push_space * 2 > free_space) 2550 break; 2551 } 2552 } 2553 2554 if (path->slots[0] == i) 2555 push_space += data_size; 2556 2557 this_item_size = btrfs_item_size(right, item); 2558 if (this_item_size + sizeof(*item) + push_space > free_space) 2559 break; 2560 2561 push_items++; 2562 push_space += this_item_size + sizeof(*item); 2563 } 2564 2565 if (right->map_token) { 2566 unmap_extent_buffer(right, right->map_token, KM_USER1); 2567 right->map_token = NULL; 2568 } 2569 2570 if (push_items == 0) { 2571 ret = 1; 2572 goto out; 2573 } 2574 if (!empty && push_items == btrfs_header_nritems(right)) 2575 WARN_ON(1); 2576 2577 /* push data from right to left */ 2578 copy_extent_buffer(left, right, 2579 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2580 btrfs_item_nr_offset(0), 2581 push_items * sizeof(struct btrfs_item)); 2582 2583 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2584 btrfs_item_offset_nr(right, push_items - 1); 2585 2586 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2587 leaf_data_end(root, left) - push_space, 2588 btrfs_leaf_data(right) + 2589 btrfs_item_offset_nr(right, push_items - 1), 2590 push_space); 2591 old_left_nritems = btrfs_header_nritems(left); 2592 BUG_ON(old_left_nritems <= 0); 2593 2594 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2595 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2596 u32 ioff; 2597 2598 item = btrfs_item_nr(left, i); 2599 if (!left->map_token) { 2600 map_extent_buffer(left, (unsigned long)item, 2601 sizeof(struct btrfs_item), 2602 &left->map_token, &left->kaddr, 2603 &left->map_start, &left->map_len, 2604 KM_USER1); 2605 } 2606 2607 ioff = btrfs_item_offset(left, item); 2608 btrfs_set_item_offset(left, item, 2609 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); 2610 } 2611 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2612 if (left->map_token) { 2613 unmap_extent_buffer(left, left->map_token, KM_USER1); 2614 left->map_token = NULL; 2615 } 2616 2617 /* fixup right node */ 2618 if (push_items > right_nritems) { 2619 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2620 right_nritems); 2621 WARN_ON(1); 2622 } 2623 2624 if (push_items < right_nritems) { 2625 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2626 leaf_data_end(root, right); 2627 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2628 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2629 btrfs_leaf_data(right) + 2630 leaf_data_end(root, right), push_space); 2631 2632 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2633 btrfs_item_nr_offset(push_items), 2634 (btrfs_header_nritems(right) - push_items) * 2635 sizeof(struct btrfs_item)); 2636 } 2637 right_nritems -= push_items; 2638 btrfs_set_header_nritems(right, right_nritems); 2639 push_space = BTRFS_LEAF_DATA_SIZE(root); 2640 for (i = 0; i < right_nritems; i++) { 2641 item = btrfs_item_nr(right, i); 2642 2643 if (!right->map_token) { 2644 map_extent_buffer(right, (unsigned long)item, 2645 sizeof(struct btrfs_item), 2646 &right->map_token, &right->kaddr, 2647 &right->map_start, &right->map_len, 2648 KM_USER1); 2649 } 2650 2651 push_space = push_space - btrfs_item_size(right, item); 2652 btrfs_set_item_offset(right, item, push_space); 2653 } 2654 if (right->map_token) { 2655 unmap_extent_buffer(right, right->map_token, KM_USER1); 2656 right->map_token = NULL; 2657 } 2658 2659 btrfs_mark_buffer_dirty(left); 2660 if (right_nritems) 2661 btrfs_mark_buffer_dirty(right); 2662 2663 btrfs_item_key(right, &disk_key, 0); 2664 wret = fixup_low_keys(trans, root, path, &disk_key, 1); 2665 if (wret) 2666 ret = wret; 2667 2668 /* then fixup the leaf pointer in the path */ 2669 if (path->slots[0] < push_items) { 2670 path->slots[0] += old_left_nritems; 2671 if (btrfs_header_nritems(path->nodes[0]) == 0) 2672 clean_tree_block(trans, root, path->nodes[0]); 2673 btrfs_tree_unlock(path->nodes[0]); 2674 free_extent_buffer(path->nodes[0]); 2675 path->nodes[0] = left; 2676 path->slots[1] -= 1; 2677 } else { 2678 btrfs_tree_unlock(left); 2679 free_extent_buffer(left); 2680 path->slots[0] -= push_items; 2681 } 2682 BUG_ON(path->slots[0] < 0); 2683 return ret; 2684 out: 2685 btrfs_tree_unlock(left); 2686 free_extent_buffer(left); 2687 return ret; 2688 } 2689 2690 /* 2691 * push some data in the path leaf to the left, trying to free up at 2692 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2693 */ 2694 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2695 *root, struct btrfs_path *path, int data_size, 2696 int empty) 2697 { 2698 struct extent_buffer *right = path->nodes[0]; 2699 struct extent_buffer *left; 2700 int slot; 2701 int free_space; 2702 u32 right_nritems; 2703 int ret = 0; 2704 2705 slot = path->slots[1]; 2706 if (slot == 0) 2707 return 1; 2708 if (!path->nodes[1]) 2709 return 1; 2710 2711 right_nritems = btrfs_header_nritems(right); 2712 if (right_nritems == 0) 2713 return 1; 2714 2715 btrfs_assert_tree_locked(path->nodes[1]); 2716 2717 left = read_node_slot(root, path->nodes[1], slot - 1); 2718 btrfs_tree_lock(left); 2719 btrfs_set_lock_blocking(left); 2720 2721 free_space = btrfs_leaf_free_space(root, left); 2722 if (free_space < data_size) { 2723 ret = 1; 2724 goto out; 2725 } 2726 2727 /* cow and double check */ 2728 ret = btrfs_cow_block(trans, root, left, 2729 path->nodes[1], slot - 1, &left); 2730 if (ret) { 2731 /* we hit -ENOSPC, but it isn't fatal here */ 2732 ret = 1; 2733 goto out; 2734 } 2735 2736 free_space = btrfs_leaf_free_space(root, left); 2737 if (free_space < data_size) { 2738 ret = 1; 2739 goto out; 2740 } 2741 2742 return __push_leaf_left(trans, root, path, data_size, 2743 empty, left, free_space, right_nritems); 2744 out: 2745 btrfs_tree_unlock(left); 2746 free_extent_buffer(left); 2747 return ret; 2748 } 2749 2750 /* 2751 * split the path's leaf in two, making sure there is at least data_size 2752 * available for the resulting leaf level of the path. 2753 * 2754 * returns 0 if all went well and < 0 on failure. 2755 */ 2756 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 2757 struct btrfs_root *root, 2758 struct btrfs_path *path, 2759 struct extent_buffer *l, 2760 struct extent_buffer *right, 2761 int slot, int mid, int nritems) 2762 { 2763 int data_copy_size; 2764 int rt_data_off; 2765 int i; 2766 int ret = 0; 2767 int wret; 2768 struct btrfs_disk_key disk_key; 2769 2770 nritems = nritems - mid; 2771 btrfs_set_header_nritems(right, nritems); 2772 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2773 2774 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2775 btrfs_item_nr_offset(mid), 2776 nritems * sizeof(struct btrfs_item)); 2777 2778 copy_extent_buffer(right, l, 2779 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2780 data_copy_size, btrfs_leaf_data(l) + 2781 leaf_data_end(root, l), data_copy_size); 2782 2783 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2784 btrfs_item_end_nr(l, mid); 2785 2786 for (i = 0; i < nritems; i++) { 2787 struct btrfs_item *item = btrfs_item_nr(right, i); 2788 u32 ioff; 2789 2790 if (!right->map_token) { 2791 map_extent_buffer(right, (unsigned long)item, 2792 sizeof(struct btrfs_item), 2793 &right->map_token, &right->kaddr, 2794 &right->map_start, &right->map_len, 2795 KM_USER1); 2796 } 2797 2798 ioff = btrfs_item_offset(right, item); 2799 btrfs_set_item_offset(right, item, ioff + rt_data_off); 2800 } 2801 2802 if (right->map_token) { 2803 unmap_extent_buffer(right, right->map_token, KM_USER1); 2804 right->map_token = NULL; 2805 } 2806 2807 btrfs_set_header_nritems(l, mid); 2808 ret = 0; 2809 btrfs_item_key(right, &disk_key, 0); 2810 wret = insert_ptr(trans, root, path, &disk_key, right->start, 2811 path->slots[1] + 1, 1); 2812 if (wret) 2813 ret = wret; 2814 2815 btrfs_mark_buffer_dirty(right); 2816 btrfs_mark_buffer_dirty(l); 2817 BUG_ON(path->slots[0] != slot); 2818 2819 if (mid <= slot) { 2820 btrfs_tree_unlock(path->nodes[0]); 2821 free_extent_buffer(path->nodes[0]); 2822 path->nodes[0] = right; 2823 path->slots[0] -= mid; 2824 path->slots[1] += 1; 2825 } else { 2826 btrfs_tree_unlock(right); 2827 free_extent_buffer(right); 2828 } 2829 2830 BUG_ON(path->slots[0] < 0); 2831 2832 return ret; 2833 } 2834 2835 /* 2836 * split the path's leaf in two, making sure there is at least data_size 2837 * available for the resulting leaf level of the path. 2838 * 2839 * returns 0 if all went well and < 0 on failure. 2840 */ 2841 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2842 struct btrfs_root *root, 2843 struct btrfs_key *ins_key, 2844 struct btrfs_path *path, int data_size, 2845 int extend) 2846 { 2847 struct btrfs_disk_key disk_key; 2848 struct extent_buffer *l; 2849 u32 nritems; 2850 int mid; 2851 int slot; 2852 struct extent_buffer *right; 2853 int ret = 0; 2854 int wret; 2855 int split; 2856 int num_doubles = 0; 2857 2858 l = path->nodes[0]; 2859 slot = path->slots[0]; 2860 if (extend && data_size + btrfs_item_size_nr(l, slot) + 2861 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 2862 return -EOVERFLOW; 2863 2864 /* first try to make some room by pushing left and right */ 2865 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) { 2866 wret = push_leaf_right(trans, root, path, data_size, 0); 2867 if (wret < 0) 2868 return wret; 2869 if (wret) { 2870 wret = push_leaf_left(trans, root, path, data_size, 0); 2871 if (wret < 0) 2872 return wret; 2873 } 2874 l = path->nodes[0]; 2875 2876 /* did the pushes work? */ 2877 if (btrfs_leaf_free_space(root, l) >= data_size) 2878 return 0; 2879 } 2880 2881 if (!path->nodes[1]) { 2882 ret = insert_new_root(trans, root, path, 1); 2883 if (ret) 2884 return ret; 2885 } 2886 again: 2887 split = 1; 2888 l = path->nodes[0]; 2889 slot = path->slots[0]; 2890 nritems = btrfs_header_nritems(l); 2891 mid = (nritems + 1) / 2; 2892 2893 if (mid <= slot) { 2894 if (nritems == 1 || 2895 leaf_space_used(l, mid, nritems - mid) + data_size > 2896 BTRFS_LEAF_DATA_SIZE(root)) { 2897 if (slot >= nritems) { 2898 split = 0; 2899 } else { 2900 mid = slot; 2901 if (mid != nritems && 2902 leaf_space_used(l, mid, nritems - mid) + 2903 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2904 split = 2; 2905 } 2906 } 2907 } 2908 } else { 2909 if (leaf_space_used(l, 0, mid) + data_size > 2910 BTRFS_LEAF_DATA_SIZE(root)) { 2911 if (!extend && data_size && slot == 0) { 2912 split = 0; 2913 } else if ((extend || !data_size) && slot == 0) { 2914 mid = 1; 2915 } else { 2916 mid = slot; 2917 if (mid != nritems && 2918 leaf_space_used(l, mid, nritems - mid) + 2919 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2920 split = 2 ; 2921 } 2922 } 2923 } 2924 } 2925 2926 if (split == 0) 2927 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2928 else 2929 btrfs_item_key(l, &disk_key, mid); 2930 2931 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 2932 root->root_key.objectid, 2933 &disk_key, 0, l->start, 0); 2934 if (IS_ERR(right)) { 2935 BUG_ON(1); 2936 return PTR_ERR(right); 2937 } 2938 2939 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 2940 btrfs_set_header_bytenr(right, right->start); 2941 btrfs_set_header_generation(right, trans->transid); 2942 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 2943 btrfs_set_header_owner(right, root->root_key.objectid); 2944 btrfs_set_header_level(right, 0); 2945 write_extent_buffer(right, root->fs_info->fsid, 2946 (unsigned long)btrfs_header_fsid(right), 2947 BTRFS_FSID_SIZE); 2948 2949 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 2950 (unsigned long)btrfs_header_chunk_tree_uuid(right), 2951 BTRFS_UUID_SIZE); 2952 2953 if (split == 0) { 2954 if (mid <= slot) { 2955 btrfs_set_header_nritems(right, 0); 2956 wret = insert_ptr(trans, root, path, 2957 &disk_key, right->start, 2958 path->slots[1] + 1, 1); 2959 if (wret) 2960 ret = wret; 2961 2962 btrfs_tree_unlock(path->nodes[0]); 2963 free_extent_buffer(path->nodes[0]); 2964 path->nodes[0] = right; 2965 path->slots[0] = 0; 2966 path->slots[1] += 1; 2967 } else { 2968 btrfs_set_header_nritems(right, 0); 2969 wret = insert_ptr(trans, root, path, 2970 &disk_key, 2971 right->start, 2972 path->slots[1], 1); 2973 if (wret) 2974 ret = wret; 2975 btrfs_tree_unlock(path->nodes[0]); 2976 free_extent_buffer(path->nodes[0]); 2977 path->nodes[0] = right; 2978 path->slots[0] = 0; 2979 if (path->slots[1] == 0) { 2980 wret = fixup_low_keys(trans, root, 2981 path, &disk_key, 1); 2982 if (wret) 2983 ret = wret; 2984 } 2985 } 2986 btrfs_mark_buffer_dirty(right); 2987 return ret; 2988 } 2989 2990 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems); 2991 BUG_ON(ret); 2992 2993 if (split == 2) { 2994 BUG_ON(num_doubles != 0); 2995 num_doubles++; 2996 goto again; 2997 } 2998 2999 return ret; 3000 } 3001 3002 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3003 struct btrfs_root *root, 3004 struct btrfs_path *path, int ins_len) 3005 { 3006 struct btrfs_key key; 3007 struct extent_buffer *leaf; 3008 struct btrfs_file_extent_item *fi; 3009 u64 extent_len = 0; 3010 u32 item_size; 3011 int ret; 3012 3013 leaf = path->nodes[0]; 3014 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3015 3016 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3017 key.type != BTRFS_EXTENT_CSUM_KEY); 3018 3019 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 3020 return 0; 3021 3022 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3023 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3024 fi = btrfs_item_ptr(leaf, path->slots[0], 3025 struct btrfs_file_extent_item); 3026 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3027 } 3028 btrfs_release_path(root, path); 3029 3030 path->keep_locks = 1; 3031 path->search_for_split = 1; 3032 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3033 path->search_for_split = 0; 3034 if (ret < 0) 3035 goto err; 3036 3037 ret = -EAGAIN; 3038 leaf = path->nodes[0]; 3039 /* if our item isn't there or got smaller, return now */ 3040 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 3041 goto err; 3042 3043 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3044 fi = btrfs_item_ptr(leaf, path->slots[0], 3045 struct btrfs_file_extent_item); 3046 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3047 goto err; 3048 } 3049 3050 btrfs_set_path_blocking(path); 3051 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3052 BUG_ON(ret); 3053 3054 path->keep_locks = 0; 3055 btrfs_unlock_up_safe(path, 1); 3056 return 0; 3057 err: 3058 path->keep_locks = 0; 3059 return ret; 3060 } 3061 3062 static noinline int split_item(struct btrfs_trans_handle *trans, 3063 struct btrfs_root *root, 3064 struct btrfs_path *path, 3065 struct btrfs_key *new_key, 3066 unsigned long split_offset) 3067 { 3068 struct extent_buffer *leaf; 3069 struct btrfs_item *item; 3070 struct btrfs_item *new_item; 3071 int slot; 3072 char *buf; 3073 u32 nritems; 3074 u32 item_size; 3075 u32 orig_offset; 3076 struct btrfs_disk_key disk_key; 3077 3078 leaf = path->nodes[0]; 3079 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3080 3081 btrfs_set_path_blocking(path); 3082 3083 item = btrfs_item_nr(leaf, path->slots[0]); 3084 orig_offset = btrfs_item_offset(leaf, item); 3085 item_size = btrfs_item_size(leaf, item); 3086 3087 buf = kmalloc(item_size, GFP_NOFS); 3088 if (!buf) 3089 return -ENOMEM; 3090 3091 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3092 path->slots[0]), item_size); 3093 3094 slot = path->slots[0] + 1; 3095 nritems = btrfs_header_nritems(leaf); 3096 if (slot != nritems) { 3097 /* shift the items */ 3098 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3099 btrfs_item_nr_offset(slot), 3100 (nritems - slot) * sizeof(struct btrfs_item)); 3101 } 3102 3103 btrfs_cpu_key_to_disk(&disk_key, new_key); 3104 btrfs_set_item_key(leaf, &disk_key, slot); 3105 3106 new_item = btrfs_item_nr(leaf, slot); 3107 3108 btrfs_set_item_offset(leaf, new_item, orig_offset); 3109 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3110 3111 btrfs_set_item_offset(leaf, item, 3112 orig_offset + item_size - split_offset); 3113 btrfs_set_item_size(leaf, item, split_offset); 3114 3115 btrfs_set_header_nritems(leaf, nritems + 1); 3116 3117 /* write the data for the start of the original item */ 3118 write_extent_buffer(leaf, buf, 3119 btrfs_item_ptr_offset(leaf, path->slots[0]), 3120 split_offset); 3121 3122 /* write the data for the new item */ 3123 write_extent_buffer(leaf, buf + split_offset, 3124 btrfs_item_ptr_offset(leaf, slot), 3125 item_size - split_offset); 3126 btrfs_mark_buffer_dirty(leaf); 3127 3128 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 3129 kfree(buf); 3130 return 0; 3131 } 3132 3133 /* 3134 * This function splits a single item into two items, 3135 * giving 'new_key' to the new item and splitting the 3136 * old one at split_offset (from the start of the item). 3137 * 3138 * The path may be released by this operation. After 3139 * the split, the path is pointing to the old item. The 3140 * new item is going to be in the same node as the old one. 3141 * 3142 * Note, the item being split must be smaller enough to live alone on 3143 * a tree block with room for one extra struct btrfs_item 3144 * 3145 * This allows us to split the item in place, keeping a lock on the 3146 * leaf the entire time. 3147 */ 3148 int btrfs_split_item(struct btrfs_trans_handle *trans, 3149 struct btrfs_root *root, 3150 struct btrfs_path *path, 3151 struct btrfs_key *new_key, 3152 unsigned long split_offset) 3153 { 3154 int ret; 3155 ret = setup_leaf_for_split(trans, root, path, 3156 sizeof(struct btrfs_item)); 3157 if (ret) 3158 return ret; 3159 3160 ret = split_item(trans, root, path, new_key, split_offset); 3161 return ret; 3162 } 3163 3164 /* 3165 * This function duplicate a item, giving 'new_key' to the new item. 3166 * It guarantees both items live in the same tree leaf and the new item 3167 * is contiguous with the original item. 3168 * 3169 * This allows us to split file extent in place, keeping a lock on the 3170 * leaf the entire time. 3171 */ 3172 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3173 struct btrfs_root *root, 3174 struct btrfs_path *path, 3175 struct btrfs_key *new_key) 3176 { 3177 struct extent_buffer *leaf; 3178 int ret; 3179 u32 item_size; 3180 3181 leaf = path->nodes[0]; 3182 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3183 ret = setup_leaf_for_split(trans, root, path, 3184 item_size + sizeof(struct btrfs_item)); 3185 if (ret) 3186 return ret; 3187 3188 path->slots[0]++; 3189 ret = setup_items_for_insert(trans, root, path, new_key, &item_size, 3190 item_size, item_size + 3191 sizeof(struct btrfs_item), 1); 3192 BUG_ON(ret); 3193 3194 leaf = path->nodes[0]; 3195 memcpy_extent_buffer(leaf, 3196 btrfs_item_ptr_offset(leaf, path->slots[0]), 3197 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 3198 item_size); 3199 return 0; 3200 } 3201 3202 /* 3203 * make the item pointed to by the path smaller. new_size indicates 3204 * how small to make it, and from_end tells us if we just chop bytes 3205 * off the end of the item or if we shift the item to chop bytes off 3206 * the front. 3207 */ 3208 int btrfs_truncate_item(struct btrfs_trans_handle *trans, 3209 struct btrfs_root *root, 3210 struct btrfs_path *path, 3211 u32 new_size, int from_end) 3212 { 3213 int ret = 0; 3214 int slot; 3215 int slot_orig; 3216 struct extent_buffer *leaf; 3217 struct btrfs_item *item; 3218 u32 nritems; 3219 unsigned int data_end; 3220 unsigned int old_data_start; 3221 unsigned int old_size; 3222 unsigned int size_diff; 3223 int i; 3224 3225 slot_orig = path->slots[0]; 3226 leaf = path->nodes[0]; 3227 slot = path->slots[0]; 3228 3229 old_size = btrfs_item_size_nr(leaf, slot); 3230 if (old_size == new_size) 3231 return 0; 3232 3233 nritems = btrfs_header_nritems(leaf); 3234 data_end = leaf_data_end(root, leaf); 3235 3236 old_data_start = btrfs_item_offset_nr(leaf, slot); 3237 3238 size_diff = old_size - new_size; 3239 3240 BUG_ON(slot < 0); 3241 BUG_ON(slot >= nritems); 3242 3243 /* 3244 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3245 */ 3246 /* first correct the data pointers */ 3247 for (i = slot; i < nritems; i++) { 3248 u32 ioff; 3249 item = btrfs_item_nr(leaf, i); 3250 3251 if (!leaf->map_token) { 3252 map_extent_buffer(leaf, (unsigned long)item, 3253 sizeof(struct btrfs_item), 3254 &leaf->map_token, &leaf->kaddr, 3255 &leaf->map_start, &leaf->map_len, 3256 KM_USER1); 3257 } 3258 3259 ioff = btrfs_item_offset(leaf, item); 3260 btrfs_set_item_offset(leaf, item, ioff + size_diff); 3261 } 3262 3263 if (leaf->map_token) { 3264 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3265 leaf->map_token = NULL; 3266 } 3267 3268 /* shift the data */ 3269 if (from_end) { 3270 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3271 data_end + size_diff, btrfs_leaf_data(leaf) + 3272 data_end, old_data_start + new_size - data_end); 3273 } else { 3274 struct btrfs_disk_key disk_key; 3275 u64 offset; 3276 3277 btrfs_item_key(leaf, &disk_key, slot); 3278 3279 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3280 unsigned long ptr; 3281 struct btrfs_file_extent_item *fi; 3282 3283 fi = btrfs_item_ptr(leaf, slot, 3284 struct btrfs_file_extent_item); 3285 fi = (struct btrfs_file_extent_item *)( 3286 (unsigned long)fi - size_diff); 3287 3288 if (btrfs_file_extent_type(leaf, fi) == 3289 BTRFS_FILE_EXTENT_INLINE) { 3290 ptr = btrfs_item_ptr_offset(leaf, slot); 3291 memmove_extent_buffer(leaf, ptr, 3292 (unsigned long)fi, 3293 offsetof(struct btrfs_file_extent_item, 3294 disk_bytenr)); 3295 } 3296 } 3297 3298 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3299 data_end + size_diff, btrfs_leaf_data(leaf) + 3300 data_end, old_data_start - data_end); 3301 3302 offset = btrfs_disk_key_offset(&disk_key); 3303 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3304 btrfs_set_item_key(leaf, &disk_key, slot); 3305 if (slot == 0) 3306 fixup_low_keys(trans, root, path, &disk_key, 1); 3307 } 3308 3309 item = btrfs_item_nr(leaf, slot); 3310 btrfs_set_item_size(leaf, item, new_size); 3311 btrfs_mark_buffer_dirty(leaf); 3312 3313 ret = 0; 3314 if (btrfs_leaf_free_space(root, leaf) < 0) { 3315 btrfs_print_leaf(root, leaf); 3316 BUG(); 3317 } 3318 return ret; 3319 } 3320 3321 /* 3322 * make the item pointed to by the path bigger, data_size is the new size. 3323 */ 3324 int btrfs_extend_item(struct btrfs_trans_handle *trans, 3325 struct btrfs_root *root, struct btrfs_path *path, 3326 u32 data_size) 3327 { 3328 int ret = 0; 3329 int slot; 3330 int slot_orig; 3331 struct extent_buffer *leaf; 3332 struct btrfs_item *item; 3333 u32 nritems; 3334 unsigned int data_end; 3335 unsigned int old_data; 3336 unsigned int old_size; 3337 int i; 3338 3339 slot_orig = path->slots[0]; 3340 leaf = path->nodes[0]; 3341 3342 nritems = btrfs_header_nritems(leaf); 3343 data_end = leaf_data_end(root, leaf); 3344 3345 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3346 btrfs_print_leaf(root, leaf); 3347 BUG(); 3348 } 3349 slot = path->slots[0]; 3350 old_data = btrfs_item_end_nr(leaf, slot); 3351 3352 BUG_ON(slot < 0); 3353 if (slot >= nritems) { 3354 btrfs_print_leaf(root, leaf); 3355 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3356 slot, nritems); 3357 BUG_ON(1); 3358 } 3359 3360 /* 3361 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3362 */ 3363 /* first correct the data pointers */ 3364 for (i = slot; i < nritems; i++) { 3365 u32 ioff; 3366 item = btrfs_item_nr(leaf, i); 3367 3368 if (!leaf->map_token) { 3369 map_extent_buffer(leaf, (unsigned long)item, 3370 sizeof(struct btrfs_item), 3371 &leaf->map_token, &leaf->kaddr, 3372 &leaf->map_start, &leaf->map_len, 3373 KM_USER1); 3374 } 3375 ioff = btrfs_item_offset(leaf, item); 3376 btrfs_set_item_offset(leaf, item, ioff - data_size); 3377 } 3378 3379 if (leaf->map_token) { 3380 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3381 leaf->map_token = NULL; 3382 } 3383 3384 /* shift the data */ 3385 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3386 data_end - data_size, btrfs_leaf_data(leaf) + 3387 data_end, old_data - data_end); 3388 3389 data_end = old_data; 3390 old_size = btrfs_item_size_nr(leaf, slot); 3391 item = btrfs_item_nr(leaf, slot); 3392 btrfs_set_item_size(leaf, item, old_size + data_size); 3393 btrfs_mark_buffer_dirty(leaf); 3394 3395 ret = 0; 3396 if (btrfs_leaf_free_space(root, leaf) < 0) { 3397 btrfs_print_leaf(root, leaf); 3398 BUG(); 3399 } 3400 return ret; 3401 } 3402 3403 /* 3404 * Given a key and some data, insert items into the tree. 3405 * This does all the path init required, making room in the tree if needed. 3406 * Returns the number of keys that were inserted. 3407 */ 3408 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3409 struct btrfs_root *root, 3410 struct btrfs_path *path, 3411 struct btrfs_key *cpu_key, u32 *data_size, 3412 int nr) 3413 { 3414 struct extent_buffer *leaf; 3415 struct btrfs_item *item; 3416 int ret = 0; 3417 int slot; 3418 int i; 3419 u32 nritems; 3420 u32 total_data = 0; 3421 u32 total_size = 0; 3422 unsigned int data_end; 3423 struct btrfs_disk_key disk_key; 3424 struct btrfs_key found_key; 3425 3426 for (i = 0; i < nr; i++) { 3427 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3428 BTRFS_LEAF_DATA_SIZE(root)) { 3429 break; 3430 nr = i; 3431 } 3432 total_data += data_size[i]; 3433 total_size += data_size[i] + sizeof(struct btrfs_item); 3434 } 3435 BUG_ON(nr == 0); 3436 3437 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3438 if (ret == 0) 3439 return -EEXIST; 3440 if (ret < 0) 3441 goto out; 3442 3443 leaf = path->nodes[0]; 3444 3445 nritems = btrfs_header_nritems(leaf); 3446 data_end = leaf_data_end(root, leaf); 3447 3448 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3449 for (i = nr; i >= 0; i--) { 3450 total_data -= data_size[i]; 3451 total_size -= data_size[i] + sizeof(struct btrfs_item); 3452 if (total_size < btrfs_leaf_free_space(root, leaf)) 3453 break; 3454 } 3455 nr = i; 3456 } 3457 3458 slot = path->slots[0]; 3459 BUG_ON(slot < 0); 3460 3461 if (slot != nritems) { 3462 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3463 3464 item = btrfs_item_nr(leaf, slot); 3465 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3466 3467 /* figure out how many keys we can insert in here */ 3468 total_data = data_size[0]; 3469 for (i = 1; i < nr; i++) { 3470 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3471 break; 3472 total_data += data_size[i]; 3473 } 3474 nr = i; 3475 3476 if (old_data < data_end) { 3477 btrfs_print_leaf(root, leaf); 3478 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3479 slot, old_data, data_end); 3480 BUG_ON(1); 3481 } 3482 /* 3483 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3484 */ 3485 /* first correct the data pointers */ 3486 WARN_ON(leaf->map_token); 3487 for (i = slot; i < nritems; i++) { 3488 u32 ioff; 3489 3490 item = btrfs_item_nr(leaf, i); 3491 if (!leaf->map_token) { 3492 map_extent_buffer(leaf, (unsigned long)item, 3493 sizeof(struct btrfs_item), 3494 &leaf->map_token, &leaf->kaddr, 3495 &leaf->map_start, &leaf->map_len, 3496 KM_USER1); 3497 } 3498 3499 ioff = btrfs_item_offset(leaf, item); 3500 btrfs_set_item_offset(leaf, item, ioff - total_data); 3501 } 3502 if (leaf->map_token) { 3503 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3504 leaf->map_token = NULL; 3505 } 3506 3507 /* shift the items */ 3508 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3509 btrfs_item_nr_offset(slot), 3510 (nritems - slot) * sizeof(struct btrfs_item)); 3511 3512 /* shift the data */ 3513 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3514 data_end - total_data, btrfs_leaf_data(leaf) + 3515 data_end, old_data - data_end); 3516 data_end = old_data; 3517 } else { 3518 /* 3519 * this sucks but it has to be done, if we are inserting at 3520 * the end of the leaf only insert 1 of the items, since we 3521 * have no way of knowing whats on the next leaf and we'd have 3522 * to drop our current locks to figure it out 3523 */ 3524 nr = 1; 3525 } 3526 3527 /* setup the item for the new data */ 3528 for (i = 0; i < nr; i++) { 3529 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3530 btrfs_set_item_key(leaf, &disk_key, slot + i); 3531 item = btrfs_item_nr(leaf, slot + i); 3532 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3533 data_end -= data_size[i]; 3534 btrfs_set_item_size(leaf, item, data_size[i]); 3535 } 3536 btrfs_set_header_nritems(leaf, nritems + nr); 3537 btrfs_mark_buffer_dirty(leaf); 3538 3539 ret = 0; 3540 if (slot == 0) { 3541 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3542 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3543 } 3544 3545 if (btrfs_leaf_free_space(root, leaf) < 0) { 3546 btrfs_print_leaf(root, leaf); 3547 BUG(); 3548 } 3549 out: 3550 if (!ret) 3551 ret = nr; 3552 return ret; 3553 } 3554 3555 /* 3556 * this is a helper for btrfs_insert_empty_items, the main goal here is 3557 * to save stack depth by doing the bulk of the work in a function 3558 * that doesn't call btrfs_search_slot 3559 */ 3560 static noinline_for_stack int 3561 setup_items_for_insert(struct btrfs_trans_handle *trans, 3562 struct btrfs_root *root, struct btrfs_path *path, 3563 struct btrfs_key *cpu_key, u32 *data_size, 3564 u32 total_data, u32 total_size, int nr) 3565 { 3566 struct btrfs_item *item; 3567 int i; 3568 u32 nritems; 3569 unsigned int data_end; 3570 struct btrfs_disk_key disk_key; 3571 int ret; 3572 struct extent_buffer *leaf; 3573 int slot; 3574 3575 leaf = path->nodes[0]; 3576 slot = path->slots[0]; 3577 3578 nritems = btrfs_header_nritems(leaf); 3579 data_end = leaf_data_end(root, leaf); 3580 3581 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3582 btrfs_print_leaf(root, leaf); 3583 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3584 total_size, btrfs_leaf_free_space(root, leaf)); 3585 BUG(); 3586 } 3587 3588 if (slot != nritems) { 3589 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3590 3591 if (old_data < data_end) { 3592 btrfs_print_leaf(root, leaf); 3593 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3594 slot, old_data, data_end); 3595 BUG_ON(1); 3596 } 3597 /* 3598 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3599 */ 3600 /* first correct the data pointers */ 3601 WARN_ON(leaf->map_token); 3602 for (i = slot; i < nritems; i++) { 3603 u32 ioff; 3604 3605 item = btrfs_item_nr(leaf, i); 3606 if (!leaf->map_token) { 3607 map_extent_buffer(leaf, (unsigned long)item, 3608 sizeof(struct btrfs_item), 3609 &leaf->map_token, &leaf->kaddr, 3610 &leaf->map_start, &leaf->map_len, 3611 KM_USER1); 3612 } 3613 3614 ioff = btrfs_item_offset(leaf, item); 3615 btrfs_set_item_offset(leaf, item, ioff - total_data); 3616 } 3617 if (leaf->map_token) { 3618 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3619 leaf->map_token = NULL; 3620 } 3621 3622 /* shift the items */ 3623 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3624 btrfs_item_nr_offset(slot), 3625 (nritems - slot) * sizeof(struct btrfs_item)); 3626 3627 /* shift the data */ 3628 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3629 data_end - total_data, btrfs_leaf_data(leaf) + 3630 data_end, old_data - data_end); 3631 data_end = old_data; 3632 } 3633 3634 /* setup the item for the new data */ 3635 for (i = 0; i < nr; i++) { 3636 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3637 btrfs_set_item_key(leaf, &disk_key, slot + i); 3638 item = btrfs_item_nr(leaf, slot + i); 3639 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3640 data_end -= data_size[i]; 3641 btrfs_set_item_size(leaf, item, data_size[i]); 3642 } 3643 3644 btrfs_set_header_nritems(leaf, nritems + nr); 3645 3646 ret = 0; 3647 if (slot == 0) { 3648 struct btrfs_disk_key disk_key; 3649 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3650 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3651 } 3652 btrfs_unlock_up_safe(path, 1); 3653 btrfs_mark_buffer_dirty(leaf); 3654 3655 if (btrfs_leaf_free_space(root, leaf) < 0) { 3656 btrfs_print_leaf(root, leaf); 3657 BUG(); 3658 } 3659 return ret; 3660 } 3661 3662 /* 3663 * Given a key and some data, insert items into the tree. 3664 * This does all the path init required, making room in the tree if needed. 3665 */ 3666 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3667 struct btrfs_root *root, 3668 struct btrfs_path *path, 3669 struct btrfs_key *cpu_key, u32 *data_size, 3670 int nr) 3671 { 3672 struct extent_buffer *leaf; 3673 int ret = 0; 3674 int slot; 3675 int i; 3676 u32 total_size = 0; 3677 u32 total_data = 0; 3678 3679 for (i = 0; i < nr; i++) 3680 total_data += data_size[i]; 3681 3682 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3683 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3684 if (ret == 0) 3685 return -EEXIST; 3686 if (ret < 0) 3687 goto out; 3688 3689 leaf = path->nodes[0]; 3690 slot = path->slots[0]; 3691 BUG_ON(slot < 0); 3692 3693 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size, 3694 total_data, total_size, nr); 3695 3696 out: 3697 return ret; 3698 } 3699 3700 /* 3701 * Given a key and some data, insert an item into the tree. 3702 * This does all the path init required, making room in the tree if needed. 3703 */ 3704 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3705 *root, struct btrfs_key *cpu_key, void *data, u32 3706 data_size) 3707 { 3708 int ret = 0; 3709 struct btrfs_path *path; 3710 struct extent_buffer *leaf; 3711 unsigned long ptr; 3712 3713 path = btrfs_alloc_path(); 3714 BUG_ON(!path); 3715 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3716 if (!ret) { 3717 leaf = path->nodes[0]; 3718 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3719 write_extent_buffer(leaf, data, ptr, data_size); 3720 btrfs_mark_buffer_dirty(leaf); 3721 } 3722 btrfs_free_path(path); 3723 return ret; 3724 } 3725 3726 /* 3727 * delete the pointer from a given node. 3728 * 3729 * the tree should have been previously balanced so the deletion does not 3730 * empty a node. 3731 */ 3732 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3733 struct btrfs_path *path, int level, int slot) 3734 { 3735 struct extent_buffer *parent = path->nodes[level]; 3736 u32 nritems; 3737 int ret = 0; 3738 int wret; 3739 3740 nritems = btrfs_header_nritems(parent); 3741 if (slot != nritems - 1) { 3742 memmove_extent_buffer(parent, 3743 btrfs_node_key_ptr_offset(slot), 3744 btrfs_node_key_ptr_offset(slot + 1), 3745 sizeof(struct btrfs_key_ptr) * 3746 (nritems - slot - 1)); 3747 } 3748 nritems--; 3749 btrfs_set_header_nritems(parent, nritems); 3750 if (nritems == 0 && parent == root->node) { 3751 BUG_ON(btrfs_header_level(root->node) != 1); 3752 /* just turn the root into a leaf and break */ 3753 btrfs_set_header_level(root->node, 0); 3754 } else if (slot == 0) { 3755 struct btrfs_disk_key disk_key; 3756 3757 btrfs_node_key(parent, &disk_key, 0); 3758 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); 3759 if (wret) 3760 ret = wret; 3761 } 3762 btrfs_mark_buffer_dirty(parent); 3763 return ret; 3764 } 3765 3766 /* 3767 * a helper function to delete the leaf pointed to by path->slots[1] and 3768 * path->nodes[1]. 3769 * 3770 * This deletes the pointer in path->nodes[1] and frees the leaf 3771 * block extent. zero is returned if it all worked out, < 0 otherwise. 3772 * 3773 * The path must have already been setup for deleting the leaf, including 3774 * all the proper balancing. path->nodes[1] must be locked. 3775 */ 3776 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 3777 struct btrfs_root *root, 3778 struct btrfs_path *path, 3779 struct extent_buffer *leaf) 3780 { 3781 int ret; 3782 3783 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 3784 ret = del_ptr(trans, root, path, 1, path->slots[1]); 3785 if (ret) 3786 return ret; 3787 3788 /* 3789 * btrfs_free_extent is expensive, we want to make sure we 3790 * aren't holding any locks when we call it 3791 */ 3792 btrfs_unlock_up_safe(path, 0); 3793 3794 ret = btrfs_free_tree_block(trans, root, leaf->start, leaf->len, 3795 0, root->root_key.objectid, 0); 3796 return ret; 3797 } 3798 /* 3799 * delete the item at the leaf level in path. If that empties 3800 * the leaf, remove it from the tree 3801 */ 3802 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3803 struct btrfs_path *path, int slot, int nr) 3804 { 3805 struct extent_buffer *leaf; 3806 struct btrfs_item *item; 3807 int last_off; 3808 int dsize = 0; 3809 int ret = 0; 3810 int wret; 3811 int i; 3812 u32 nritems; 3813 3814 leaf = path->nodes[0]; 3815 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3816 3817 for (i = 0; i < nr; i++) 3818 dsize += btrfs_item_size_nr(leaf, slot + i); 3819 3820 nritems = btrfs_header_nritems(leaf); 3821 3822 if (slot + nr != nritems) { 3823 int data_end = leaf_data_end(root, leaf); 3824 3825 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3826 data_end + dsize, 3827 btrfs_leaf_data(leaf) + data_end, 3828 last_off - data_end); 3829 3830 for (i = slot + nr; i < nritems; i++) { 3831 u32 ioff; 3832 3833 item = btrfs_item_nr(leaf, i); 3834 if (!leaf->map_token) { 3835 map_extent_buffer(leaf, (unsigned long)item, 3836 sizeof(struct btrfs_item), 3837 &leaf->map_token, &leaf->kaddr, 3838 &leaf->map_start, &leaf->map_len, 3839 KM_USER1); 3840 } 3841 ioff = btrfs_item_offset(leaf, item); 3842 btrfs_set_item_offset(leaf, item, ioff + dsize); 3843 } 3844 3845 if (leaf->map_token) { 3846 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3847 leaf->map_token = NULL; 3848 } 3849 3850 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3851 btrfs_item_nr_offset(slot + nr), 3852 sizeof(struct btrfs_item) * 3853 (nritems - slot - nr)); 3854 } 3855 btrfs_set_header_nritems(leaf, nritems - nr); 3856 nritems -= nr; 3857 3858 /* delete the leaf if we've emptied it */ 3859 if (nritems == 0) { 3860 if (leaf == root->node) { 3861 btrfs_set_header_level(leaf, 0); 3862 } else { 3863 ret = btrfs_del_leaf(trans, root, path, leaf); 3864 BUG_ON(ret); 3865 } 3866 } else { 3867 int used = leaf_space_used(leaf, 0, nritems); 3868 if (slot == 0) { 3869 struct btrfs_disk_key disk_key; 3870 3871 btrfs_item_key(leaf, &disk_key, 0); 3872 wret = fixup_low_keys(trans, root, path, 3873 &disk_key, 1); 3874 if (wret) 3875 ret = wret; 3876 } 3877 3878 /* delete the leaf if it is mostly empty */ 3879 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 3880 /* push_leaf_left fixes the path. 3881 * make sure the path still points to our leaf 3882 * for possible call to del_ptr below 3883 */ 3884 slot = path->slots[1]; 3885 extent_buffer_get(leaf); 3886 3887 btrfs_set_path_blocking(path); 3888 wret = push_leaf_left(trans, root, path, 1, 1); 3889 if (wret < 0 && wret != -ENOSPC) 3890 ret = wret; 3891 3892 if (path->nodes[0] == leaf && 3893 btrfs_header_nritems(leaf)) { 3894 wret = push_leaf_right(trans, root, path, 1, 1); 3895 if (wret < 0 && wret != -ENOSPC) 3896 ret = wret; 3897 } 3898 3899 if (btrfs_header_nritems(leaf) == 0) { 3900 path->slots[1] = slot; 3901 ret = btrfs_del_leaf(trans, root, path, leaf); 3902 BUG_ON(ret); 3903 free_extent_buffer(leaf); 3904 } else { 3905 /* if we're still in the path, make sure 3906 * we're dirty. Otherwise, one of the 3907 * push_leaf functions must have already 3908 * dirtied this buffer 3909 */ 3910 if (path->nodes[0] == leaf) 3911 btrfs_mark_buffer_dirty(leaf); 3912 free_extent_buffer(leaf); 3913 } 3914 } else { 3915 btrfs_mark_buffer_dirty(leaf); 3916 } 3917 } 3918 return ret; 3919 } 3920 3921 /* 3922 * search the tree again to find a leaf with lesser keys 3923 * returns 0 if it found something or 1 if there are no lesser leaves. 3924 * returns < 0 on io errors. 3925 * 3926 * This may release the path, and so you may lose any locks held at the 3927 * time you call it. 3928 */ 3929 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 3930 { 3931 struct btrfs_key key; 3932 struct btrfs_disk_key found_key; 3933 int ret; 3934 3935 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 3936 3937 if (key.offset > 0) 3938 key.offset--; 3939 else if (key.type > 0) 3940 key.type--; 3941 else if (key.objectid > 0) 3942 key.objectid--; 3943 else 3944 return 1; 3945 3946 btrfs_release_path(root, path); 3947 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3948 if (ret < 0) 3949 return ret; 3950 btrfs_item_key(path->nodes[0], &found_key, 0); 3951 ret = comp_keys(&found_key, &key); 3952 if (ret < 0) 3953 return 0; 3954 return 1; 3955 } 3956 3957 /* 3958 * A helper function to walk down the tree starting at min_key, and looking 3959 * for nodes or leaves that are either in cache or have a minimum 3960 * transaction id. This is used by the btree defrag code, and tree logging 3961 * 3962 * This does not cow, but it does stuff the starting key it finds back 3963 * into min_key, so you can call btrfs_search_slot with cow=1 on the 3964 * key and get a writable path. 3965 * 3966 * This does lock as it descends, and path->keep_locks should be set 3967 * to 1 by the caller. 3968 * 3969 * This honors path->lowest_level to prevent descent past a given level 3970 * of the tree. 3971 * 3972 * min_trans indicates the oldest transaction that you are interested 3973 * in walking through. Any nodes or leaves older than min_trans are 3974 * skipped over (without reading them). 3975 * 3976 * returns zero if something useful was found, < 0 on error and 1 if there 3977 * was nothing in the tree that matched the search criteria. 3978 */ 3979 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3980 struct btrfs_key *max_key, 3981 struct btrfs_path *path, int cache_only, 3982 u64 min_trans) 3983 { 3984 struct extent_buffer *cur; 3985 struct btrfs_key found_key; 3986 int slot; 3987 int sret; 3988 u32 nritems; 3989 int level; 3990 int ret = 1; 3991 3992 WARN_ON(!path->keep_locks); 3993 again: 3994 cur = btrfs_lock_root_node(root); 3995 level = btrfs_header_level(cur); 3996 WARN_ON(path->nodes[level]); 3997 path->nodes[level] = cur; 3998 path->locks[level] = 1; 3999 4000 if (btrfs_header_generation(cur) < min_trans) { 4001 ret = 1; 4002 goto out; 4003 } 4004 while (1) { 4005 nritems = btrfs_header_nritems(cur); 4006 level = btrfs_header_level(cur); 4007 sret = bin_search(cur, min_key, level, &slot); 4008 4009 /* at the lowest level, we're done, setup the path and exit */ 4010 if (level == path->lowest_level) { 4011 if (slot >= nritems) 4012 goto find_next_key; 4013 ret = 0; 4014 path->slots[level] = slot; 4015 btrfs_item_key_to_cpu(cur, &found_key, slot); 4016 goto out; 4017 } 4018 if (sret && slot > 0) 4019 slot--; 4020 /* 4021 * check this node pointer against the cache_only and 4022 * min_trans parameters. If it isn't in cache or is too 4023 * old, skip to the next one. 4024 */ 4025 while (slot < nritems) { 4026 u64 blockptr; 4027 u64 gen; 4028 struct extent_buffer *tmp; 4029 struct btrfs_disk_key disk_key; 4030 4031 blockptr = btrfs_node_blockptr(cur, slot); 4032 gen = btrfs_node_ptr_generation(cur, slot); 4033 if (gen < min_trans) { 4034 slot++; 4035 continue; 4036 } 4037 if (!cache_only) 4038 break; 4039 4040 if (max_key) { 4041 btrfs_node_key(cur, &disk_key, slot); 4042 if (comp_keys(&disk_key, max_key) >= 0) { 4043 ret = 1; 4044 goto out; 4045 } 4046 } 4047 4048 tmp = btrfs_find_tree_block(root, blockptr, 4049 btrfs_level_size(root, level - 1)); 4050 4051 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 4052 free_extent_buffer(tmp); 4053 break; 4054 } 4055 if (tmp) 4056 free_extent_buffer(tmp); 4057 slot++; 4058 } 4059 find_next_key: 4060 /* 4061 * we didn't find a candidate key in this node, walk forward 4062 * and find another one 4063 */ 4064 if (slot >= nritems) { 4065 path->slots[level] = slot; 4066 btrfs_set_path_blocking(path); 4067 sret = btrfs_find_next_key(root, path, min_key, level, 4068 cache_only, min_trans); 4069 if (sret == 0) { 4070 btrfs_release_path(root, path); 4071 goto again; 4072 } else { 4073 goto out; 4074 } 4075 } 4076 /* save our key for returning back */ 4077 btrfs_node_key_to_cpu(cur, &found_key, slot); 4078 path->slots[level] = slot; 4079 if (level == path->lowest_level) { 4080 ret = 0; 4081 unlock_up(path, level, 1); 4082 goto out; 4083 } 4084 btrfs_set_path_blocking(path); 4085 cur = read_node_slot(root, cur, slot); 4086 4087 btrfs_tree_lock(cur); 4088 4089 path->locks[level - 1] = 1; 4090 path->nodes[level - 1] = cur; 4091 unlock_up(path, level, 1); 4092 btrfs_clear_path_blocking(path, NULL); 4093 } 4094 out: 4095 if (ret == 0) 4096 memcpy(min_key, &found_key, sizeof(found_key)); 4097 btrfs_set_path_blocking(path); 4098 return ret; 4099 } 4100 4101 /* 4102 * this is similar to btrfs_next_leaf, but does not try to preserve 4103 * and fixup the path. It looks for and returns the next key in the 4104 * tree based on the current path and the cache_only and min_trans 4105 * parameters. 4106 * 4107 * 0 is returned if another key is found, < 0 if there are any errors 4108 * and 1 is returned if there are no higher keys in the tree 4109 * 4110 * path->keep_locks should be set to 1 on the search made before 4111 * calling this function. 4112 */ 4113 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4114 struct btrfs_key *key, int level, 4115 int cache_only, u64 min_trans) 4116 { 4117 int slot; 4118 struct extent_buffer *c; 4119 4120 WARN_ON(!path->keep_locks); 4121 while (level < BTRFS_MAX_LEVEL) { 4122 if (!path->nodes[level]) 4123 return 1; 4124 4125 slot = path->slots[level] + 1; 4126 c = path->nodes[level]; 4127 next: 4128 if (slot >= btrfs_header_nritems(c)) { 4129 int ret; 4130 int orig_lowest; 4131 struct btrfs_key cur_key; 4132 if (level + 1 >= BTRFS_MAX_LEVEL || 4133 !path->nodes[level + 1]) 4134 return 1; 4135 4136 if (path->locks[level + 1]) { 4137 level++; 4138 continue; 4139 } 4140 4141 slot = btrfs_header_nritems(c) - 1; 4142 if (level == 0) 4143 btrfs_item_key_to_cpu(c, &cur_key, slot); 4144 else 4145 btrfs_node_key_to_cpu(c, &cur_key, slot); 4146 4147 orig_lowest = path->lowest_level; 4148 btrfs_release_path(root, path); 4149 path->lowest_level = level; 4150 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4151 0, 0); 4152 path->lowest_level = orig_lowest; 4153 if (ret < 0) 4154 return ret; 4155 4156 c = path->nodes[level]; 4157 slot = path->slots[level]; 4158 if (ret == 0) 4159 slot++; 4160 goto next; 4161 } 4162 4163 if (level == 0) 4164 btrfs_item_key_to_cpu(c, key, slot); 4165 else { 4166 u64 blockptr = btrfs_node_blockptr(c, slot); 4167 u64 gen = btrfs_node_ptr_generation(c, slot); 4168 4169 if (cache_only) { 4170 struct extent_buffer *cur; 4171 cur = btrfs_find_tree_block(root, blockptr, 4172 btrfs_level_size(root, level - 1)); 4173 if (!cur || !btrfs_buffer_uptodate(cur, gen)) { 4174 slot++; 4175 if (cur) 4176 free_extent_buffer(cur); 4177 goto next; 4178 } 4179 free_extent_buffer(cur); 4180 } 4181 if (gen < min_trans) { 4182 slot++; 4183 goto next; 4184 } 4185 btrfs_node_key_to_cpu(c, key, slot); 4186 } 4187 return 0; 4188 } 4189 return 1; 4190 } 4191 4192 /* 4193 * search the tree again to find a leaf with greater keys 4194 * returns 0 if it found something or 1 if there are no greater leaves. 4195 * returns < 0 on io errors. 4196 */ 4197 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4198 { 4199 int slot; 4200 int level; 4201 struct extent_buffer *c; 4202 struct extent_buffer *next; 4203 struct btrfs_key key; 4204 u32 nritems; 4205 int ret; 4206 int old_spinning = path->leave_spinning; 4207 int force_blocking = 0; 4208 4209 nritems = btrfs_header_nritems(path->nodes[0]); 4210 if (nritems == 0) 4211 return 1; 4212 4213 /* 4214 * we take the blocks in an order that upsets lockdep. Using 4215 * blocking mode is the only way around it. 4216 */ 4217 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4218 force_blocking = 1; 4219 #endif 4220 4221 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4222 again: 4223 level = 1; 4224 next = NULL; 4225 btrfs_release_path(root, path); 4226 4227 path->keep_locks = 1; 4228 4229 if (!force_blocking) 4230 path->leave_spinning = 1; 4231 4232 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4233 path->keep_locks = 0; 4234 4235 if (ret < 0) 4236 return ret; 4237 4238 nritems = btrfs_header_nritems(path->nodes[0]); 4239 /* 4240 * by releasing the path above we dropped all our locks. A balance 4241 * could have added more items next to the key that used to be 4242 * at the very end of the block. So, check again here and 4243 * advance the path if there are now more items available. 4244 */ 4245 if (nritems > 0 && path->slots[0] < nritems - 1) { 4246 if (ret == 0) 4247 path->slots[0]++; 4248 ret = 0; 4249 goto done; 4250 } 4251 4252 while (level < BTRFS_MAX_LEVEL) { 4253 if (!path->nodes[level]) { 4254 ret = 1; 4255 goto done; 4256 } 4257 4258 slot = path->slots[level] + 1; 4259 c = path->nodes[level]; 4260 if (slot >= btrfs_header_nritems(c)) { 4261 level++; 4262 if (level == BTRFS_MAX_LEVEL) { 4263 ret = 1; 4264 goto done; 4265 } 4266 continue; 4267 } 4268 4269 if (next) { 4270 btrfs_tree_unlock(next); 4271 free_extent_buffer(next); 4272 } 4273 4274 next = c; 4275 ret = read_block_for_search(NULL, root, path, &next, level, 4276 slot, &key); 4277 if (ret == -EAGAIN) 4278 goto again; 4279 4280 if (ret < 0) { 4281 btrfs_release_path(root, path); 4282 goto done; 4283 } 4284 4285 if (!path->skip_locking) { 4286 ret = btrfs_try_spin_lock(next); 4287 if (!ret) { 4288 btrfs_set_path_blocking(path); 4289 btrfs_tree_lock(next); 4290 if (!force_blocking) 4291 btrfs_clear_path_blocking(path, next); 4292 } 4293 if (force_blocking) 4294 btrfs_set_lock_blocking(next); 4295 } 4296 break; 4297 } 4298 path->slots[level] = slot; 4299 while (1) { 4300 level--; 4301 c = path->nodes[level]; 4302 if (path->locks[level]) 4303 btrfs_tree_unlock(c); 4304 4305 free_extent_buffer(c); 4306 path->nodes[level] = next; 4307 path->slots[level] = 0; 4308 if (!path->skip_locking) 4309 path->locks[level] = 1; 4310 4311 if (!level) 4312 break; 4313 4314 ret = read_block_for_search(NULL, root, path, &next, level, 4315 0, &key); 4316 if (ret == -EAGAIN) 4317 goto again; 4318 4319 if (ret < 0) { 4320 btrfs_release_path(root, path); 4321 goto done; 4322 } 4323 4324 if (!path->skip_locking) { 4325 btrfs_assert_tree_locked(path->nodes[level]); 4326 ret = btrfs_try_spin_lock(next); 4327 if (!ret) { 4328 btrfs_set_path_blocking(path); 4329 btrfs_tree_lock(next); 4330 if (!force_blocking) 4331 btrfs_clear_path_blocking(path, next); 4332 } 4333 if (force_blocking) 4334 btrfs_set_lock_blocking(next); 4335 } 4336 } 4337 ret = 0; 4338 done: 4339 unlock_up(path, 0, 1); 4340 path->leave_spinning = old_spinning; 4341 if (!old_spinning) 4342 btrfs_set_path_blocking(path); 4343 4344 return ret; 4345 } 4346 4347 /* 4348 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4349 * searching until it gets past min_objectid or finds an item of 'type' 4350 * 4351 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4352 */ 4353 int btrfs_previous_item(struct btrfs_root *root, 4354 struct btrfs_path *path, u64 min_objectid, 4355 int type) 4356 { 4357 struct btrfs_key found_key; 4358 struct extent_buffer *leaf; 4359 u32 nritems; 4360 int ret; 4361 4362 while (1) { 4363 if (path->slots[0] == 0) { 4364 btrfs_set_path_blocking(path); 4365 ret = btrfs_prev_leaf(root, path); 4366 if (ret != 0) 4367 return ret; 4368 } else { 4369 path->slots[0]--; 4370 } 4371 leaf = path->nodes[0]; 4372 nritems = btrfs_header_nritems(leaf); 4373 if (nritems == 0) 4374 return 1; 4375 if (path->slots[0] == nritems) 4376 path->slots[0]--; 4377 4378 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4379 if (found_key.objectid < min_objectid) 4380 break; 4381 if (found_key.type == type) 4382 return 0; 4383 if (found_key.objectid == min_objectid && 4384 found_key.type < type) 4385 break; 4386 } 4387 return 1; 4388 } 4389