1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 41 struct btrfs_path *path, int level, int slot); 42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr, 45 u32 blocksize, u64 parent_transid, 46 u64 time_seq); 47 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root, 48 u64 bytenr, u32 blocksize, 49 u64 time_seq); 50 51 struct btrfs_path *btrfs_alloc_path(void) 52 { 53 struct btrfs_path *path; 54 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 55 return path; 56 } 57 58 /* 59 * set all locked nodes in the path to blocking locks. This should 60 * be done before scheduling 61 */ 62 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 63 { 64 int i; 65 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 66 if (!p->nodes[i] || !p->locks[i]) 67 continue; 68 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 69 if (p->locks[i] == BTRFS_READ_LOCK) 70 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 71 else if (p->locks[i] == BTRFS_WRITE_LOCK) 72 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 73 } 74 } 75 76 /* 77 * reset all the locked nodes in the patch to spinning locks. 78 * 79 * held is used to keep lockdep happy, when lockdep is enabled 80 * we set held to a blocking lock before we go around and 81 * retake all the spinlocks in the path. You can safely use NULL 82 * for held 83 */ 84 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 85 struct extent_buffer *held, int held_rw) 86 { 87 int i; 88 89 #ifdef CONFIG_DEBUG_LOCK_ALLOC 90 /* lockdep really cares that we take all of these spinlocks 91 * in the right order. If any of the locks in the path are not 92 * currently blocking, it is going to complain. So, make really 93 * really sure by forcing the path to blocking before we clear 94 * the path blocking. 95 */ 96 if (held) { 97 btrfs_set_lock_blocking_rw(held, held_rw); 98 if (held_rw == BTRFS_WRITE_LOCK) 99 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 100 else if (held_rw == BTRFS_READ_LOCK) 101 held_rw = BTRFS_READ_LOCK_BLOCKING; 102 } 103 btrfs_set_path_blocking(p); 104 #endif 105 106 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 107 if (p->nodes[i] && p->locks[i]) { 108 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 109 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 110 p->locks[i] = BTRFS_WRITE_LOCK; 111 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 112 p->locks[i] = BTRFS_READ_LOCK; 113 } 114 } 115 116 #ifdef CONFIG_DEBUG_LOCK_ALLOC 117 if (held) 118 btrfs_clear_lock_blocking_rw(held, held_rw); 119 #endif 120 } 121 122 /* this also releases the path */ 123 void btrfs_free_path(struct btrfs_path *p) 124 { 125 if (!p) 126 return; 127 btrfs_release_path(p); 128 kmem_cache_free(btrfs_path_cachep, p); 129 } 130 131 /* 132 * path release drops references on the extent buffers in the path 133 * and it drops any locks held by this path 134 * 135 * It is safe to call this on paths that no locks or extent buffers held. 136 */ 137 noinline void btrfs_release_path(struct btrfs_path *p) 138 { 139 int i; 140 141 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 142 p->slots[i] = 0; 143 if (!p->nodes[i]) 144 continue; 145 if (p->locks[i]) { 146 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 147 p->locks[i] = 0; 148 } 149 free_extent_buffer(p->nodes[i]); 150 p->nodes[i] = NULL; 151 } 152 } 153 154 /* 155 * safely gets a reference on the root node of a tree. A lock 156 * is not taken, so a concurrent writer may put a different node 157 * at the root of the tree. See btrfs_lock_root_node for the 158 * looping required. 159 * 160 * The extent buffer returned by this has a reference taken, so 161 * it won't disappear. It may stop being the root of the tree 162 * at any time because there are no locks held. 163 */ 164 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 165 { 166 struct extent_buffer *eb; 167 168 while (1) { 169 rcu_read_lock(); 170 eb = rcu_dereference(root->node); 171 172 /* 173 * RCU really hurts here, we could free up the root node because 174 * it was cow'ed but we may not get the new root node yet so do 175 * the inc_not_zero dance and if it doesn't work then 176 * synchronize_rcu and try again. 177 */ 178 if (atomic_inc_not_zero(&eb->refs)) { 179 rcu_read_unlock(); 180 break; 181 } 182 rcu_read_unlock(); 183 synchronize_rcu(); 184 } 185 return eb; 186 } 187 188 /* loop around taking references on and locking the root node of the 189 * tree until you end up with a lock on the root. A locked buffer 190 * is returned, with a reference held. 191 */ 192 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 193 { 194 struct extent_buffer *eb; 195 196 while (1) { 197 eb = btrfs_root_node(root); 198 btrfs_tree_lock(eb); 199 if (eb == root->node) 200 break; 201 btrfs_tree_unlock(eb); 202 free_extent_buffer(eb); 203 } 204 return eb; 205 } 206 207 /* loop around taking references on and locking the root node of the 208 * tree until you end up with a lock on the root. A locked buffer 209 * is returned, with a reference held. 210 */ 211 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 212 { 213 struct extent_buffer *eb; 214 215 while (1) { 216 eb = btrfs_root_node(root); 217 btrfs_tree_read_lock(eb); 218 if (eb == root->node) 219 break; 220 btrfs_tree_read_unlock(eb); 221 free_extent_buffer(eb); 222 } 223 return eb; 224 } 225 226 /* cowonly root (everything not a reference counted cow subvolume), just get 227 * put onto a simple dirty list. transaction.c walks this to make sure they 228 * get properly updated on disk. 229 */ 230 static void add_root_to_dirty_list(struct btrfs_root *root) 231 { 232 spin_lock(&root->fs_info->trans_lock); 233 if (root->track_dirty && list_empty(&root->dirty_list)) { 234 list_add(&root->dirty_list, 235 &root->fs_info->dirty_cowonly_roots); 236 } 237 spin_unlock(&root->fs_info->trans_lock); 238 } 239 240 /* 241 * used by snapshot creation to make a copy of a root for a tree with 242 * a given objectid. The buffer with the new root node is returned in 243 * cow_ret, and this func returns zero on success or a negative error code. 244 */ 245 int btrfs_copy_root(struct btrfs_trans_handle *trans, 246 struct btrfs_root *root, 247 struct extent_buffer *buf, 248 struct extent_buffer **cow_ret, u64 new_root_objectid) 249 { 250 struct extent_buffer *cow; 251 int ret = 0; 252 int level; 253 struct btrfs_disk_key disk_key; 254 255 WARN_ON(root->ref_cows && trans->transid != 256 root->fs_info->running_transaction->transid); 257 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 258 259 level = btrfs_header_level(buf); 260 if (level == 0) 261 btrfs_item_key(buf, &disk_key, 0); 262 else 263 btrfs_node_key(buf, &disk_key, 0); 264 265 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 266 new_root_objectid, &disk_key, level, 267 buf->start, 0); 268 if (IS_ERR(cow)) 269 return PTR_ERR(cow); 270 271 copy_extent_buffer(cow, buf, 0, 0, cow->len); 272 btrfs_set_header_bytenr(cow, cow->start); 273 btrfs_set_header_generation(cow, trans->transid); 274 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 275 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 276 BTRFS_HEADER_FLAG_RELOC); 277 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 278 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 279 else 280 btrfs_set_header_owner(cow, new_root_objectid); 281 282 write_extent_buffer(cow, root->fs_info->fsid, 283 (unsigned long)btrfs_header_fsid(cow), 284 BTRFS_FSID_SIZE); 285 286 WARN_ON(btrfs_header_generation(buf) > trans->transid); 287 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 288 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 289 else 290 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 291 292 if (ret) 293 return ret; 294 295 btrfs_mark_buffer_dirty(cow); 296 *cow_ret = cow; 297 return 0; 298 } 299 300 enum mod_log_op { 301 MOD_LOG_KEY_REPLACE, 302 MOD_LOG_KEY_ADD, 303 MOD_LOG_KEY_REMOVE, 304 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 305 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 306 MOD_LOG_MOVE_KEYS, 307 MOD_LOG_ROOT_REPLACE, 308 }; 309 310 struct tree_mod_move { 311 int dst_slot; 312 int nr_items; 313 }; 314 315 struct tree_mod_root { 316 u64 logical; 317 u8 level; 318 }; 319 320 struct tree_mod_elem { 321 struct rb_node node; 322 u64 index; /* shifted logical */ 323 u64 seq; 324 enum mod_log_op op; 325 326 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 327 int slot; 328 329 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 330 u64 generation; 331 332 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 333 struct btrfs_disk_key key; 334 u64 blockptr; 335 336 /* this is used for op == MOD_LOG_MOVE_KEYS */ 337 struct tree_mod_move move; 338 339 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 340 struct tree_mod_root old_root; 341 }; 342 343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 344 { 345 read_lock(&fs_info->tree_mod_log_lock); 346 } 347 348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 349 { 350 read_unlock(&fs_info->tree_mod_log_lock); 351 } 352 353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 354 { 355 write_lock(&fs_info->tree_mod_log_lock); 356 } 357 358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 359 { 360 write_unlock(&fs_info->tree_mod_log_lock); 361 } 362 363 /* 364 * This adds a new blocker to the tree mod log's blocker list if the @elem 365 * passed does not already have a sequence number set. So when a caller expects 366 * to record tree modifications, it should ensure to set elem->seq to zero 367 * before calling btrfs_get_tree_mod_seq. 368 * Returns a fresh, unused tree log modification sequence number, even if no new 369 * blocker was added. 370 */ 371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 372 struct seq_list *elem) 373 { 374 u64 seq; 375 376 tree_mod_log_write_lock(fs_info); 377 spin_lock(&fs_info->tree_mod_seq_lock); 378 if (!elem->seq) { 379 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 381 } 382 seq = btrfs_inc_tree_mod_seq(fs_info); 383 spin_unlock(&fs_info->tree_mod_seq_lock); 384 tree_mod_log_write_unlock(fs_info); 385 386 return seq; 387 } 388 389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 390 struct seq_list *elem) 391 { 392 struct rb_root *tm_root; 393 struct rb_node *node; 394 struct rb_node *next; 395 struct seq_list *cur_elem; 396 struct tree_mod_elem *tm; 397 u64 min_seq = (u64)-1; 398 u64 seq_putting = elem->seq; 399 400 if (!seq_putting) 401 return; 402 403 spin_lock(&fs_info->tree_mod_seq_lock); 404 list_del(&elem->list); 405 elem->seq = 0; 406 407 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 408 if (cur_elem->seq < min_seq) { 409 if (seq_putting > cur_elem->seq) { 410 /* 411 * blocker with lower sequence number exists, we 412 * cannot remove anything from the log 413 */ 414 spin_unlock(&fs_info->tree_mod_seq_lock); 415 return; 416 } 417 min_seq = cur_elem->seq; 418 } 419 } 420 spin_unlock(&fs_info->tree_mod_seq_lock); 421 422 /* 423 * anything that's lower than the lowest existing (read: blocked) 424 * sequence number can be removed from the tree. 425 */ 426 tree_mod_log_write_lock(fs_info); 427 tm_root = &fs_info->tree_mod_log; 428 for (node = rb_first(tm_root); node; node = next) { 429 next = rb_next(node); 430 tm = container_of(node, struct tree_mod_elem, node); 431 if (tm->seq > min_seq) 432 continue; 433 rb_erase(node, tm_root); 434 kfree(tm); 435 } 436 tree_mod_log_write_unlock(fs_info); 437 } 438 439 /* 440 * key order of the log: 441 * index -> sequence 442 * 443 * the index is the shifted logical of the *new* root node for root replace 444 * operations, or the shifted logical of the affected block for all other 445 * operations. 446 */ 447 static noinline int 448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 449 { 450 struct rb_root *tm_root; 451 struct rb_node **new; 452 struct rb_node *parent = NULL; 453 struct tree_mod_elem *cur; 454 455 BUG_ON(!tm || !tm->seq); 456 457 tm_root = &fs_info->tree_mod_log; 458 new = &tm_root->rb_node; 459 while (*new) { 460 cur = container_of(*new, struct tree_mod_elem, node); 461 parent = *new; 462 if (cur->index < tm->index) 463 new = &((*new)->rb_left); 464 else if (cur->index > tm->index) 465 new = &((*new)->rb_right); 466 else if (cur->seq < tm->seq) 467 new = &((*new)->rb_left); 468 else if (cur->seq > tm->seq) 469 new = &((*new)->rb_right); 470 else { 471 kfree(tm); 472 return -EEXIST; 473 } 474 } 475 476 rb_link_node(&tm->node, parent, new); 477 rb_insert_color(&tm->node, tm_root); 478 return 0; 479 } 480 481 /* 482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 483 * returns zero with the tree_mod_log_lock acquired. The caller must hold 484 * this until all tree mod log insertions are recorded in the rb tree and then 485 * call tree_mod_log_write_unlock() to release. 486 */ 487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 488 struct extent_buffer *eb) { 489 smp_mb(); 490 if (list_empty(&(fs_info)->tree_mod_seq_list)) 491 return 1; 492 if (eb && btrfs_header_level(eb) == 0) 493 return 1; 494 495 tree_mod_log_write_lock(fs_info); 496 if (list_empty(&fs_info->tree_mod_seq_list)) { 497 /* 498 * someone emptied the list while we were waiting for the lock. 499 * we must not add to the list when no blocker exists. 500 */ 501 tree_mod_log_write_unlock(fs_info); 502 return 1; 503 } 504 505 return 0; 506 } 507 508 /* 509 * This allocates memory and gets a tree modification sequence number. 510 * 511 * Returns <0 on error. 512 * Returns >0 (the added sequence number) on success. 513 */ 514 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags, 515 struct tree_mod_elem **tm_ret) 516 { 517 struct tree_mod_elem *tm; 518 519 /* 520 * once we switch from spin locks to something different, we should 521 * honor the flags parameter here. 522 */ 523 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC); 524 if (!tm) 525 return -ENOMEM; 526 527 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 528 return tm->seq; 529 } 530 531 static inline int 532 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 533 struct extent_buffer *eb, int slot, 534 enum mod_log_op op, gfp_t flags) 535 { 536 int ret; 537 struct tree_mod_elem *tm; 538 539 ret = tree_mod_alloc(fs_info, flags, &tm); 540 if (ret < 0) 541 return ret; 542 543 tm->index = eb->start >> PAGE_CACHE_SHIFT; 544 if (op != MOD_LOG_KEY_ADD) { 545 btrfs_node_key(eb, &tm->key, slot); 546 tm->blockptr = btrfs_node_blockptr(eb, slot); 547 } 548 tm->op = op; 549 tm->slot = slot; 550 tm->generation = btrfs_node_ptr_generation(eb, slot); 551 552 return __tree_mod_log_insert(fs_info, tm); 553 } 554 555 static noinline int 556 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info, 557 struct extent_buffer *eb, int slot, 558 enum mod_log_op op, gfp_t flags) 559 { 560 int ret; 561 562 if (tree_mod_dont_log(fs_info, eb)) 563 return 0; 564 565 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags); 566 567 tree_mod_log_write_unlock(fs_info); 568 return ret; 569 } 570 571 static noinline int 572 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 573 int slot, enum mod_log_op op) 574 { 575 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS); 576 } 577 578 static noinline int 579 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info, 580 struct extent_buffer *eb, int slot, 581 enum mod_log_op op) 582 { 583 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS); 584 } 585 586 static noinline int 587 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 588 struct extent_buffer *eb, int dst_slot, int src_slot, 589 int nr_items, gfp_t flags) 590 { 591 struct tree_mod_elem *tm; 592 int ret; 593 int i; 594 595 if (tree_mod_dont_log(fs_info, eb)) 596 return 0; 597 598 /* 599 * When we override something during the move, we log these removals. 600 * This can only happen when we move towards the beginning of the 601 * buffer, i.e. dst_slot < src_slot. 602 */ 603 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 604 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot, 605 MOD_LOG_KEY_REMOVE_WHILE_MOVING); 606 BUG_ON(ret < 0); 607 } 608 609 ret = tree_mod_alloc(fs_info, flags, &tm); 610 if (ret < 0) 611 goto out; 612 613 tm->index = eb->start >> PAGE_CACHE_SHIFT; 614 tm->slot = src_slot; 615 tm->move.dst_slot = dst_slot; 616 tm->move.nr_items = nr_items; 617 tm->op = MOD_LOG_MOVE_KEYS; 618 619 ret = __tree_mod_log_insert(fs_info, tm); 620 out: 621 tree_mod_log_write_unlock(fs_info); 622 return ret; 623 } 624 625 static inline void 626 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 627 { 628 int i; 629 u32 nritems; 630 int ret; 631 632 if (btrfs_header_level(eb) == 0) 633 return; 634 635 nritems = btrfs_header_nritems(eb); 636 for (i = nritems - 1; i >= 0; i--) { 637 ret = tree_mod_log_insert_key_locked(fs_info, eb, i, 638 MOD_LOG_KEY_REMOVE_WHILE_FREEING); 639 BUG_ON(ret < 0); 640 } 641 } 642 643 static noinline int 644 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 645 struct extent_buffer *old_root, 646 struct extent_buffer *new_root, gfp_t flags) 647 { 648 struct tree_mod_elem *tm; 649 int ret; 650 651 if (tree_mod_dont_log(fs_info, NULL)) 652 return 0; 653 654 ret = tree_mod_alloc(fs_info, flags, &tm); 655 if (ret < 0) 656 goto out; 657 658 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 659 tm->old_root.logical = old_root->start; 660 tm->old_root.level = btrfs_header_level(old_root); 661 tm->generation = btrfs_header_generation(old_root); 662 tm->op = MOD_LOG_ROOT_REPLACE; 663 664 ret = __tree_mod_log_insert(fs_info, tm); 665 out: 666 tree_mod_log_write_unlock(fs_info); 667 return ret; 668 } 669 670 static struct tree_mod_elem * 671 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 672 int smallest) 673 { 674 struct rb_root *tm_root; 675 struct rb_node *node; 676 struct tree_mod_elem *cur = NULL; 677 struct tree_mod_elem *found = NULL; 678 u64 index = start >> PAGE_CACHE_SHIFT; 679 680 tree_mod_log_read_lock(fs_info); 681 tm_root = &fs_info->tree_mod_log; 682 node = tm_root->rb_node; 683 while (node) { 684 cur = container_of(node, struct tree_mod_elem, node); 685 if (cur->index < index) { 686 node = node->rb_left; 687 } else if (cur->index > index) { 688 node = node->rb_right; 689 } else if (cur->seq < min_seq) { 690 node = node->rb_left; 691 } else if (!smallest) { 692 /* we want the node with the highest seq */ 693 if (found) 694 BUG_ON(found->seq > cur->seq); 695 found = cur; 696 node = node->rb_left; 697 } else if (cur->seq > min_seq) { 698 /* we want the node with the smallest seq */ 699 if (found) 700 BUG_ON(found->seq < cur->seq); 701 found = cur; 702 node = node->rb_right; 703 } else { 704 found = cur; 705 break; 706 } 707 } 708 tree_mod_log_read_unlock(fs_info); 709 710 return found; 711 } 712 713 /* 714 * this returns the element from the log with the smallest time sequence 715 * value that's in the log (the oldest log item). any element with a time 716 * sequence lower than min_seq will be ignored. 717 */ 718 static struct tree_mod_elem * 719 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 720 u64 min_seq) 721 { 722 return __tree_mod_log_search(fs_info, start, min_seq, 1); 723 } 724 725 /* 726 * this returns the element from the log with the largest time sequence 727 * value that's in the log (the most recent log item). any element with 728 * a time sequence lower than min_seq will be ignored. 729 */ 730 static struct tree_mod_elem * 731 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 732 { 733 return __tree_mod_log_search(fs_info, start, min_seq, 0); 734 } 735 736 static noinline void 737 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 738 struct extent_buffer *src, unsigned long dst_offset, 739 unsigned long src_offset, int nr_items) 740 { 741 int ret; 742 int i; 743 744 if (tree_mod_dont_log(fs_info, NULL)) 745 return; 746 747 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) { 748 tree_mod_log_write_unlock(fs_info); 749 return; 750 } 751 752 for (i = 0; i < nr_items; i++) { 753 ret = tree_mod_log_insert_key_locked(fs_info, src, 754 i + src_offset, 755 MOD_LOG_KEY_REMOVE); 756 BUG_ON(ret < 0); 757 ret = tree_mod_log_insert_key_locked(fs_info, dst, 758 i + dst_offset, 759 MOD_LOG_KEY_ADD); 760 BUG_ON(ret < 0); 761 } 762 763 tree_mod_log_write_unlock(fs_info); 764 } 765 766 static inline void 767 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 768 int dst_offset, int src_offset, int nr_items) 769 { 770 int ret; 771 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 772 nr_items, GFP_NOFS); 773 BUG_ON(ret < 0); 774 } 775 776 static noinline void 777 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 778 struct extent_buffer *eb, int slot, int atomic) 779 { 780 int ret; 781 782 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot, 783 MOD_LOG_KEY_REPLACE, 784 atomic ? GFP_ATOMIC : GFP_NOFS); 785 BUG_ON(ret < 0); 786 } 787 788 static noinline void 789 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 790 { 791 if (tree_mod_dont_log(fs_info, eb)) 792 return; 793 794 __tree_mod_log_free_eb(fs_info, eb); 795 796 tree_mod_log_write_unlock(fs_info); 797 } 798 799 static noinline void 800 tree_mod_log_set_root_pointer(struct btrfs_root *root, 801 struct extent_buffer *new_root_node) 802 { 803 int ret; 804 ret = tree_mod_log_insert_root(root->fs_info, root->node, 805 new_root_node, GFP_NOFS); 806 BUG_ON(ret < 0); 807 } 808 809 /* 810 * check if the tree block can be shared by multiple trees 811 */ 812 int btrfs_block_can_be_shared(struct btrfs_root *root, 813 struct extent_buffer *buf) 814 { 815 /* 816 * Tree blocks not in refernece counted trees and tree roots 817 * are never shared. If a block was allocated after the last 818 * snapshot and the block was not allocated by tree relocation, 819 * we know the block is not shared. 820 */ 821 if (root->ref_cows && 822 buf != root->node && buf != root->commit_root && 823 (btrfs_header_generation(buf) <= 824 btrfs_root_last_snapshot(&root->root_item) || 825 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 826 return 1; 827 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 828 if (root->ref_cows && 829 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 830 return 1; 831 #endif 832 return 0; 833 } 834 835 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 836 struct btrfs_root *root, 837 struct extent_buffer *buf, 838 struct extent_buffer *cow, 839 int *last_ref) 840 { 841 u64 refs; 842 u64 owner; 843 u64 flags; 844 u64 new_flags = 0; 845 int ret; 846 847 /* 848 * Backrefs update rules: 849 * 850 * Always use full backrefs for extent pointers in tree block 851 * allocated by tree relocation. 852 * 853 * If a shared tree block is no longer referenced by its owner 854 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 855 * use full backrefs for extent pointers in tree block. 856 * 857 * If a tree block is been relocating 858 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 859 * use full backrefs for extent pointers in tree block. 860 * The reason for this is some operations (such as drop tree) 861 * are only allowed for blocks use full backrefs. 862 */ 863 864 if (btrfs_block_can_be_shared(root, buf)) { 865 ret = btrfs_lookup_extent_info(trans, root, buf->start, 866 buf->len, &refs, &flags); 867 if (ret) 868 return ret; 869 if (refs == 0) { 870 ret = -EROFS; 871 btrfs_std_error(root->fs_info, ret); 872 return ret; 873 } 874 } else { 875 refs = 1; 876 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 877 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 878 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 879 else 880 flags = 0; 881 } 882 883 owner = btrfs_header_owner(buf); 884 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 885 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 886 887 if (refs > 1) { 888 if ((owner == root->root_key.objectid || 889 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 890 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 891 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 892 BUG_ON(ret); /* -ENOMEM */ 893 894 if (root->root_key.objectid == 895 BTRFS_TREE_RELOC_OBJECTID) { 896 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 897 BUG_ON(ret); /* -ENOMEM */ 898 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 899 BUG_ON(ret); /* -ENOMEM */ 900 } 901 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 902 } else { 903 904 if (root->root_key.objectid == 905 BTRFS_TREE_RELOC_OBJECTID) 906 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 907 else 908 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 909 BUG_ON(ret); /* -ENOMEM */ 910 } 911 if (new_flags != 0) { 912 ret = btrfs_set_disk_extent_flags(trans, root, 913 buf->start, 914 buf->len, 915 new_flags, 0); 916 if (ret) 917 return ret; 918 } 919 } else { 920 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 921 if (root->root_key.objectid == 922 BTRFS_TREE_RELOC_OBJECTID) 923 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 924 else 925 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 926 BUG_ON(ret); /* -ENOMEM */ 927 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 928 BUG_ON(ret); /* -ENOMEM */ 929 } 930 tree_mod_log_free_eb(root->fs_info, buf); 931 clean_tree_block(trans, root, buf); 932 *last_ref = 1; 933 } 934 return 0; 935 } 936 937 /* 938 * does the dirty work in cow of a single block. The parent block (if 939 * supplied) is updated to point to the new cow copy. The new buffer is marked 940 * dirty and returned locked. If you modify the block it needs to be marked 941 * dirty again. 942 * 943 * search_start -- an allocation hint for the new block 944 * 945 * empty_size -- a hint that you plan on doing more cow. This is the size in 946 * bytes the allocator should try to find free next to the block it returns. 947 * This is just a hint and may be ignored by the allocator. 948 */ 949 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 950 struct btrfs_root *root, 951 struct extent_buffer *buf, 952 struct extent_buffer *parent, int parent_slot, 953 struct extent_buffer **cow_ret, 954 u64 search_start, u64 empty_size) 955 { 956 struct btrfs_disk_key disk_key; 957 struct extent_buffer *cow; 958 int level, ret; 959 int last_ref = 0; 960 int unlock_orig = 0; 961 u64 parent_start; 962 963 if (*cow_ret == buf) 964 unlock_orig = 1; 965 966 btrfs_assert_tree_locked(buf); 967 968 WARN_ON(root->ref_cows && trans->transid != 969 root->fs_info->running_transaction->transid); 970 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 971 972 level = btrfs_header_level(buf); 973 974 if (level == 0) 975 btrfs_item_key(buf, &disk_key, 0); 976 else 977 btrfs_node_key(buf, &disk_key, 0); 978 979 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 980 if (parent) 981 parent_start = parent->start; 982 else 983 parent_start = 0; 984 } else 985 parent_start = 0; 986 987 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 988 root->root_key.objectid, &disk_key, 989 level, search_start, empty_size); 990 if (IS_ERR(cow)) 991 return PTR_ERR(cow); 992 993 /* cow is set to blocking by btrfs_init_new_buffer */ 994 995 copy_extent_buffer(cow, buf, 0, 0, cow->len); 996 btrfs_set_header_bytenr(cow, cow->start); 997 btrfs_set_header_generation(cow, trans->transid); 998 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 999 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1000 BTRFS_HEADER_FLAG_RELOC); 1001 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1002 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1003 else 1004 btrfs_set_header_owner(cow, root->root_key.objectid); 1005 1006 write_extent_buffer(cow, root->fs_info->fsid, 1007 (unsigned long)btrfs_header_fsid(cow), 1008 BTRFS_FSID_SIZE); 1009 1010 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1011 if (ret) { 1012 btrfs_abort_transaction(trans, root, ret); 1013 return ret; 1014 } 1015 1016 if (root->ref_cows) 1017 btrfs_reloc_cow_block(trans, root, buf, cow); 1018 1019 if (buf == root->node) { 1020 WARN_ON(parent && parent != buf); 1021 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1022 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1023 parent_start = buf->start; 1024 else 1025 parent_start = 0; 1026 1027 extent_buffer_get(cow); 1028 tree_mod_log_set_root_pointer(root, cow); 1029 rcu_assign_pointer(root->node, cow); 1030 1031 btrfs_free_tree_block(trans, root, buf, parent_start, 1032 last_ref); 1033 free_extent_buffer(buf); 1034 add_root_to_dirty_list(root); 1035 } else { 1036 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1037 parent_start = parent->start; 1038 else 1039 parent_start = 0; 1040 1041 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1042 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1043 MOD_LOG_KEY_REPLACE); 1044 btrfs_set_node_blockptr(parent, parent_slot, 1045 cow->start); 1046 btrfs_set_node_ptr_generation(parent, parent_slot, 1047 trans->transid); 1048 btrfs_mark_buffer_dirty(parent); 1049 btrfs_free_tree_block(trans, root, buf, parent_start, 1050 last_ref); 1051 } 1052 if (unlock_orig) 1053 btrfs_tree_unlock(buf); 1054 free_extent_buffer_stale(buf); 1055 btrfs_mark_buffer_dirty(cow); 1056 *cow_ret = cow; 1057 return 0; 1058 } 1059 1060 /* 1061 * returns the logical address of the oldest predecessor of the given root. 1062 * entries older than time_seq are ignored. 1063 */ 1064 static struct tree_mod_elem * 1065 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1066 struct btrfs_root *root, u64 time_seq) 1067 { 1068 struct tree_mod_elem *tm; 1069 struct tree_mod_elem *found = NULL; 1070 u64 root_logical = root->node->start; 1071 int looped = 0; 1072 1073 if (!time_seq) 1074 return 0; 1075 1076 /* 1077 * the very last operation that's logged for a root is the replacement 1078 * operation (if it is replaced at all). this has the index of the *new* 1079 * root, making it the very first operation that's logged for this root. 1080 */ 1081 while (1) { 1082 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1083 time_seq); 1084 if (!looped && !tm) 1085 return 0; 1086 /* 1087 * if there are no tree operation for the oldest root, we simply 1088 * return it. this should only happen if that (old) root is at 1089 * level 0. 1090 */ 1091 if (!tm) 1092 break; 1093 1094 /* 1095 * if there's an operation that's not a root replacement, we 1096 * found the oldest version of our root. normally, we'll find a 1097 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1098 */ 1099 if (tm->op != MOD_LOG_ROOT_REPLACE) 1100 break; 1101 1102 found = tm; 1103 root_logical = tm->old_root.logical; 1104 BUG_ON(root_logical == root->node->start); 1105 looped = 1; 1106 } 1107 1108 /* if there's no old root to return, return what we found instead */ 1109 if (!found) 1110 found = tm; 1111 1112 return found; 1113 } 1114 1115 /* 1116 * tm is a pointer to the first operation to rewind within eb. then, all 1117 * previous operations will be rewinded (until we reach something older than 1118 * time_seq). 1119 */ 1120 static void 1121 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq, 1122 struct tree_mod_elem *first_tm) 1123 { 1124 u32 n; 1125 struct rb_node *next; 1126 struct tree_mod_elem *tm = first_tm; 1127 unsigned long o_dst; 1128 unsigned long o_src; 1129 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1130 1131 n = btrfs_header_nritems(eb); 1132 while (tm && tm->seq >= time_seq) { 1133 /* 1134 * all the operations are recorded with the operator used for 1135 * the modification. as we're going backwards, we do the 1136 * opposite of each operation here. 1137 */ 1138 switch (tm->op) { 1139 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1140 BUG_ON(tm->slot < n); 1141 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1142 case MOD_LOG_KEY_REMOVE: 1143 btrfs_set_node_key(eb, &tm->key, tm->slot); 1144 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1145 btrfs_set_node_ptr_generation(eb, tm->slot, 1146 tm->generation); 1147 n++; 1148 break; 1149 case MOD_LOG_KEY_REPLACE: 1150 BUG_ON(tm->slot >= n); 1151 btrfs_set_node_key(eb, &tm->key, tm->slot); 1152 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1153 btrfs_set_node_ptr_generation(eb, tm->slot, 1154 tm->generation); 1155 break; 1156 case MOD_LOG_KEY_ADD: 1157 /* if a move operation is needed it's in the log */ 1158 n--; 1159 break; 1160 case MOD_LOG_MOVE_KEYS: 1161 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1162 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1163 memmove_extent_buffer(eb, o_dst, o_src, 1164 tm->move.nr_items * p_size); 1165 break; 1166 case MOD_LOG_ROOT_REPLACE: 1167 /* 1168 * this operation is special. for roots, this must be 1169 * handled explicitly before rewinding. 1170 * for non-roots, this operation may exist if the node 1171 * was a root: root A -> child B; then A gets empty and 1172 * B is promoted to the new root. in the mod log, we'll 1173 * have a root-replace operation for B, a tree block 1174 * that is no root. we simply ignore that operation. 1175 */ 1176 break; 1177 } 1178 next = rb_next(&tm->node); 1179 if (!next) 1180 break; 1181 tm = container_of(next, struct tree_mod_elem, node); 1182 if (tm->index != first_tm->index) 1183 break; 1184 } 1185 btrfs_set_header_nritems(eb, n); 1186 } 1187 1188 static struct extent_buffer * 1189 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1190 u64 time_seq) 1191 { 1192 struct extent_buffer *eb_rewin; 1193 struct tree_mod_elem *tm; 1194 1195 if (!time_seq) 1196 return eb; 1197 1198 if (btrfs_header_level(eb) == 0) 1199 return eb; 1200 1201 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1202 if (!tm) 1203 return eb; 1204 1205 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1206 BUG_ON(tm->slot != 0); 1207 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1208 fs_info->tree_root->nodesize); 1209 BUG_ON(!eb_rewin); 1210 btrfs_set_header_bytenr(eb_rewin, eb->start); 1211 btrfs_set_header_backref_rev(eb_rewin, 1212 btrfs_header_backref_rev(eb)); 1213 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1214 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1215 } else { 1216 eb_rewin = btrfs_clone_extent_buffer(eb); 1217 BUG_ON(!eb_rewin); 1218 } 1219 1220 extent_buffer_get(eb_rewin); 1221 free_extent_buffer(eb); 1222 1223 __tree_mod_log_rewind(eb_rewin, time_seq, tm); 1224 WARN_ON(btrfs_header_nritems(eb_rewin) > 1225 BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root)); 1226 1227 return eb_rewin; 1228 } 1229 1230 /* 1231 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1232 * value. If there are no changes, the current root->root_node is returned. If 1233 * anything changed in between, there's a fresh buffer allocated on which the 1234 * rewind operations are done. In any case, the returned buffer is read locked. 1235 * Returns NULL on error (with no locks held). 1236 */ 1237 static inline struct extent_buffer * 1238 get_old_root(struct btrfs_root *root, u64 time_seq) 1239 { 1240 struct tree_mod_elem *tm; 1241 struct extent_buffer *eb; 1242 struct extent_buffer *old; 1243 struct tree_mod_root *old_root = NULL; 1244 u64 old_generation = 0; 1245 u64 logical; 1246 u32 blocksize; 1247 1248 eb = btrfs_read_lock_root_node(root); 1249 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq); 1250 if (!tm) 1251 return root->node; 1252 1253 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1254 old_root = &tm->old_root; 1255 old_generation = tm->generation; 1256 logical = old_root->logical; 1257 } else { 1258 logical = root->node->start; 1259 } 1260 1261 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1262 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1263 btrfs_tree_read_unlock(root->node); 1264 free_extent_buffer(root->node); 1265 blocksize = btrfs_level_size(root, old_root->level); 1266 old = read_tree_block(root, logical, blocksize, 0); 1267 if (!old) { 1268 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n", 1269 logical); 1270 WARN_ON(1); 1271 } else { 1272 eb = btrfs_clone_extent_buffer(old); 1273 free_extent_buffer(old); 1274 } 1275 } else if (old_root) { 1276 btrfs_tree_read_unlock(root->node); 1277 free_extent_buffer(root->node); 1278 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1279 } else { 1280 eb = btrfs_clone_extent_buffer(root->node); 1281 btrfs_tree_read_unlock(root->node); 1282 free_extent_buffer(root->node); 1283 } 1284 1285 if (!eb) 1286 return NULL; 1287 extent_buffer_get(eb); 1288 btrfs_tree_read_lock(eb); 1289 if (old_root) { 1290 btrfs_set_header_bytenr(eb, eb->start); 1291 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1292 btrfs_set_header_owner(eb, root->root_key.objectid); 1293 btrfs_set_header_level(eb, old_root->level); 1294 btrfs_set_header_generation(eb, old_generation); 1295 } 1296 if (tm) 1297 __tree_mod_log_rewind(eb, time_seq, tm); 1298 else 1299 WARN_ON(btrfs_header_level(eb) != 0); 1300 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1301 1302 return eb; 1303 } 1304 1305 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1306 { 1307 struct tree_mod_elem *tm; 1308 int level; 1309 1310 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq); 1311 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1312 level = tm->old_root.level; 1313 } else { 1314 rcu_read_lock(); 1315 level = btrfs_header_level(root->node); 1316 rcu_read_unlock(); 1317 } 1318 1319 return level; 1320 } 1321 1322 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1323 struct btrfs_root *root, 1324 struct extent_buffer *buf) 1325 { 1326 /* ensure we can see the force_cow */ 1327 smp_rmb(); 1328 1329 /* 1330 * We do not need to cow a block if 1331 * 1) this block is not created or changed in this transaction; 1332 * 2) this block does not belong to TREE_RELOC tree; 1333 * 3) the root is not forced COW. 1334 * 1335 * What is forced COW: 1336 * when we create snapshot during commiting the transaction, 1337 * after we've finished coping src root, we must COW the shared 1338 * block to ensure the metadata consistency. 1339 */ 1340 if (btrfs_header_generation(buf) == trans->transid && 1341 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1342 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1343 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1344 !root->force_cow) 1345 return 0; 1346 return 1; 1347 } 1348 1349 /* 1350 * cows a single block, see __btrfs_cow_block for the real work. 1351 * This version of it has extra checks so that a block isn't cow'd more than 1352 * once per transaction, as long as it hasn't been written yet 1353 */ 1354 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1355 struct btrfs_root *root, struct extent_buffer *buf, 1356 struct extent_buffer *parent, int parent_slot, 1357 struct extent_buffer **cow_ret) 1358 { 1359 u64 search_start; 1360 int ret; 1361 1362 if (trans->transaction != root->fs_info->running_transaction) 1363 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1364 (unsigned long long)trans->transid, 1365 (unsigned long long) 1366 root->fs_info->running_transaction->transid); 1367 1368 if (trans->transid != root->fs_info->generation) 1369 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1370 (unsigned long long)trans->transid, 1371 (unsigned long long)root->fs_info->generation); 1372 1373 if (!should_cow_block(trans, root, buf)) { 1374 *cow_ret = buf; 1375 return 0; 1376 } 1377 1378 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1379 1380 if (parent) 1381 btrfs_set_lock_blocking(parent); 1382 btrfs_set_lock_blocking(buf); 1383 1384 ret = __btrfs_cow_block(trans, root, buf, parent, 1385 parent_slot, cow_ret, search_start, 0); 1386 1387 trace_btrfs_cow_block(root, buf, *cow_ret); 1388 1389 return ret; 1390 } 1391 1392 /* 1393 * helper function for defrag to decide if two blocks pointed to by a 1394 * node are actually close by 1395 */ 1396 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1397 { 1398 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1399 return 1; 1400 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1401 return 1; 1402 return 0; 1403 } 1404 1405 /* 1406 * compare two keys in a memcmp fashion 1407 */ 1408 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1409 { 1410 struct btrfs_key k1; 1411 1412 btrfs_disk_key_to_cpu(&k1, disk); 1413 1414 return btrfs_comp_cpu_keys(&k1, k2); 1415 } 1416 1417 /* 1418 * same as comp_keys only with two btrfs_key's 1419 */ 1420 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1421 { 1422 if (k1->objectid > k2->objectid) 1423 return 1; 1424 if (k1->objectid < k2->objectid) 1425 return -1; 1426 if (k1->type > k2->type) 1427 return 1; 1428 if (k1->type < k2->type) 1429 return -1; 1430 if (k1->offset > k2->offset) 1431 return 1; 1432 if (k1->offset < k2->offset) 1433 return -1; 1434 return 0; 1435 } 1436 1437 /* 1438 * this is used by the defrag code to go through all the 1439 * leaves pointed to by a node and reallocate them so that 1440 * disk order is close to key order 1441 */ 1442 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1443 struct btrfs_root *root, struct extent_buffer *parent, 1444 int start_slot, int cache_only, u64 *last_ret, 1445 struct btrfs_key *progress) 1446 { 1447 struct extent_buffer *cur; 1448 u64 blocknr; 1449 u64 gen; 1450 u64 search_start = *last_ret; 1451 u64 last_block = 0; 1452 u64 other; 1453 u32 parent_nritems; 1454 int end_slot; 1455 int i; 1456 int err = 0; 1457 int parent_level; 1458 int uptodate; 1459 u32 blocksize; 1460 int progress_passed = 0; 1461 struct btrfs_disk_key disk_key; 1462 1463 parent_level = btrfs_header_level(parent); 1464 if (cache_only && parent_level != 1) 1465 return 0; 1466 1467 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1468 WARN_ON(trans->transid != root->fs_info->generation); 1469 1470 parent_nritems = btrfs_header_nritems(parent); 1471 blocksize = btrfs_level_size(root, parent_level - 1); 1472 end_slot = parent_nritems; 1473 1474 if (parent_nritems == 1) 1475 return 0; 1476 1477 btrfs_set_lock_blocking(parent); 1478 1479 for (i = start_slot; i < end_slot; i++) { 1480 int close = 1; 1481 1482 btrfs_node_key(parent, &disk_key, i); 1483 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1484 continue; 1485 1486 progress_passed = 1; 1487 blocknr = btrfs_node_blockptr(parent, i); 1488 gen = btrfs_node_ptr_generation(parent, i); 1489 if (last_block == 0) 1490 last_block = blocknr; 1491 1492 if (i > 0) { 1493 other = btrfs_node_blockptr(parent, i - 1); 1494 close = close_blocks(blocknr, other, blocksize); 1495 } 1496 if (!close && i < end_slot - 2) { 1497 other = btrfs_node_blockptr(parent, i + 1); 1498 close = close_blocks(blocknr, other, blocksize); 1499 } 1500 if (close) { 1501 last_block = blocknr; 1502 continue; 1503 } 1504 1505 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1506 if (cur) 1507 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1508 else 1509 uptodate = 0; 1510 if (!cur || !uptodate) { 1511 if (cache_only) { 1512 free_extent_buffer(cur); 1513 continue; 1514 } 1515 if (!cur) { 1516 cur = read_tree_block(root, blocknr, 1517 blocksize, gen); 1518 if (!cur) 1519 return -EIO; 1520 } else if (!uptodate) { 1521 err = btrfs_read_buffer(cur, gen); 1522 if (err) { 1523 free_extent_buffer(cur); 1524 return err; 1525 } 1526 } 1527 } 1528 if (search_start == 0) 1529 search_start = last_block; 1530 1531 btrfs_tree_lock(cur); 1532 btrfs_set_lock_blocking(cur); 1533 err = __btrfs_cow_block(trans, root, cur, parent, i, 1534 &cur, search_start, 1535 min(16 * blocksize, 1536 (end_slot - i) * blocksize)); 1537 if (err) { 1538 btrfs_tree_unlock(cur); 1539 free_extent_buffer(cur); 1540 break; 1541 } 1542 search_start = cur->start; 1543 last_block = cur->start; 1544 *last_ret = search_start; 1545 btrfs_tree_unlock(cur); 1546 free_extent_buffer(cur); 1547 } 1548 return err; 1549 } 1550 1551 /* 1552 * The leaf data grows from end-to-front in the node. 1553 * this returns the address of the start of the last item, 1554 * which is the stop of the leaf data stack 1555 */ 1556 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1557 struct extent_buffer *leaf) 1558 { 1559 u32 nr = btrfs_header_nritems(leaf); 1560 if (nr == 0) 1561 return BTRFS_LEAF_DATA_SIZE(root); 1562 return btrfs_item_offset_nr(leaf, nr - 1); 1563 } 1564 1565 1566 /* 1567 * search for key in the extent_buffer. The items start at offset p, 1568 * and they are item_size apart. There are 'max' items in p. 1569 * 1570 * the slot in the array is returned via slot, and it points to 1571 * the place where you would insert key if it is not found in 1572 * the array. 1573 * 1574 * slot may point to max if the key is bigger than all of the keys 1575 */ 1576 static noinline int generic_bin_search(struct extent_buffer *eb, 1577 unsigned long p, 1578 int item_size, struct btrfs_key *key, 1579 int max, int *slot) 1580 { 1581 int low = 0; 1582 int high = max; 1583 int mid; 1584 int ret; 1585 struct btrfs_disk_key *tmp = NULL; 1586 struct btrfs_disk_key unaligned; 1587 unsigned long offset; 1588 char *kaddr = NULL; 1589 unsigned long map_start = 0; 1590 unsigned long map_len = 0; 1591 int err; 1592 1593 while (low < high) { 1594 mid = (low + high) / 2; 1595 offset = p + mid * item_size; 1596 1597 if (!kaddr || offset < map_start || 1598 (offset + sizeof(struct btrfs_disk_key)) > 1599 map_start + map_len) { 1600 1601 err = map_private_extent_buffer(eb, offset, 1602 sizeof(struct btrfs_disk_key), 1603 &kaddr, &map_start, &map_len); 1604 1605 if (!err) { 1606 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1607 map_start); 1608 } else { 1609 read_extent_buffer(eb, &unaligned, 1610 offset, sizeof(unaligned)); 1611 tmp = &unaligned; 1612 } 1613 1614 } else { 1615 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1616 map_start); 1617 } 1618 ret = comp_keys(tmp, key); 1619 1620 if (ret < 0) 1621 low = mid + 1; 1622 else if (ret > 0) 1623 high = mid; 1624 else { 1625 *slot = mid; 1626 return 0; 1627 } 1628 } 1629 *slot = low; 1630 return 1; 1631 } 1632 1633 /* 1634 * simple bin_search frontend that does the right thing for 1635 * leaves vs nodes 1636 */ 1637 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1638 int level, int *slot) 1639 { 1640 if (level == 0) 1641 return generic_bin_search(eb, 1642 offsetof(struct btrfs_leaf, items), 1643 sizeof(struct btrfs_item), 1644 key, btrfs_header_nritems(eb), 1645 slot); 1646 else 1647 return generic_bin_search(eb, 1648 offsetof(struct btrfs_node, ptrs), 1649 sizeof(struct btrfs_key_ptr), 1650 key, btrfs_header_nritems(eb), 1651 slot); 1652 } 1653 1654 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1655 int level, int *slot) 1656 { 1657 return bin_search(eb, key, level, slot); 1658 } 1659 1660 static void root_add_used(struct btrfs_root *root, u32 size) 1661 { 1662 spin_lock(&root->accounting_lock); 1663 btrfs_set_root_used(&root->root_item, 1664 btrfs_root_used(&root->root_item) + size); 1665 spin_unlock(&root->accounting_lock); 1666 } 1667 1668 static void root_sub_used(struct btrfs_root *root, u32 size) 1669 { 1670 spin_lock(&root->accounting_lock); 1671 btrfs_set_root_used(&root->root_item, 1672 btrfs_root_used(&root->root_item) - size); 1673 spin_unlock(&root->accounting_lock); 1674 } 1675 1676 /* given a node and slot number, this reads the blocks it points to. The 1677 * extent buffer is returned with a reference taken (but unlocked). 1678 * NULL is returned on error. 1679 */ 1680 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1681 struct extent_buffer *parent, int slot) 1682 { 1683 int level = btrfs_header_level(parent); 1684 if (slot < 0) 1685 return NULL; 1686 if (slot >= btrfs_header_nritems(parent)) 1687 return NULL; 1688 1689 BUG_ON(level == 0); 1690 1691 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 1692 btrfs_level_size(root, level - 1), 1693 btrfs_node_ptr_generation(parent, slot)); 1694 } 1695 1696 /* 1697 * node level balancing, used to make sure nodes are in proper order for 1698 * item deletion. We balance from the top down, so we have to make sure 1699 * that a deletion won't leave an node completely empty later on. 1700 */ 1701 static noinline int balance_level(struct btrfs_trans_handle *trans, 1702 struct btrfs_root *root, 1703 struct btrfs_path *path, int level) 1704 { 1705 struct extent_buffer *right = NULL; 1706 struct extent_buffer *mid; 1707 struct extent_buffer *left = NULL; 1708 struct extent_buffer *parent = NULL; 1709 int ret = 0; 1710 int wret; 1711 int pslot; 1712 int orig_slot = path->slots[level]; 1713 u64 orig_ptr; 1714 1715 if (level == 0) 1716 return 0; 1717 1718 mid = path->nodes[level]; 1719 1720 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1721 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1722 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1723 1724 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1725 1726 if (level < BTRFS_MAX_LEVEL - 1) { 1727 parent = path->nodes[level + 1]; 1728 pslot = path->slots[level + 1]; 1729 } 1730 1731 /* 1732 * deal with the case where there is only one pointer in the root 1733 * by promoting the node below to a root 1734 */ 1735 if (!parent) { 1736 struct extent_buffer *child; 1737 1738 if (btrfs_header_nritems(mid) != 1) 1739 return 0; 1740 1741 /* promote the child to a root */ 1742 child = read_node_slot(root, mid, 0); 1743 if (!child) { 1744 ret = -EROFS; 1745 btrfs_std_error(root->fs_info, ret); 1746 goto enospc; 1747 } 1748 1749 btrfs_tree_lock(child); 1750 btrfs_set_lock_blocking(child); 1751 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1752 if (ret) { 1753 btrfs_tree_unlock(child); 1754 free_extent_buffer(child); 1755 goto enospc; 1756 } 1757 1758 tree_mod_log_free_eb(root->fs_info, root->node); 1759 tree_mod_log_set_root_pointer(root, child); 1760 rcu_assign_pointer(root->node, child); 1761 1762 add_root_to_dirty_list(root); 1763 btrfs_tree_unlock(child); 1764 1765 path->locks[level] = 0; 1766 path->nodes[level] = NULL; 1767 clean_tree_block(trans, root, mid); 1768 btrfs_tree_unlock(mid); 1769 /* once for the path */ 1770 free_extent_buffer(mid); 1771 1772 root_sub_used(root, mid->len); 1773 btrfs_free_tree_block(trans, root, mid, 0, 1); 1774 /* once for the root ptr */ 1775 free_extent_buffer_stale(mid); 1776 return 0; 1777 } 1778 if (btrfs_header_nritems(mid) > 1779 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1780 return 0; 1781 1782 left = read_node_slot(root, parent, pslot - 1); 1783 if (left) { 1784 btrfs_tree_lock(left); 1785 btrfs_set_lock_blocking(left); 1786 wret = btrfs_cow_block(trans, root, left, 1787 parent, pslot - 1, &left); 1788 if (wret) { 1789 ret = wret; 1790 goto enospc; 1791 } 1792 } 1793 right = read_node_slot(root, parent, pslot + 1); 1794 if (right) { 1795 btrfs_tree_lock(right); 1796 btrfs_set_lock_blocking(right); 1797 wret = btrfs_cow_block(trans, root, right, 1798 parent, pslot + 1, &right); 1799 if (wret) { 1800 ret = wret; 1801 goto enospc; 1802 } 1803 } 1804 1805 /* first, try to make some room in the middle buffer */ 1806 if (left) { 1807 orig_slot += btrfs_header_nritems(left); 1808 wret = push_node_left(trans, root, left, mid, 1); 1809 if (wret < 0) 1810 ret = wret; 1811 } 1812 1813 /* 1814 * then try to empty the right most buffer into the middle 1815 */ 1816 if (right) { 1817 wret = push_node_left(trans, root, mid, right, 1); 1818 if (wret < 0 && wret != -ENOSPC) 1819 ret = wret; 1820 if (btrfs_header_nritems(right) == 0) { 1821 clean_tree_block(trans, root, right); 1822 btrfs_tree_unlock(right); 1823 del_ptr(trans, root, path, level + 1, pslot + 1); 1824 root_sub_used(root, right->len); 1825 btrfs_free_tree_block(trans, root, right, 0, 1); 1826 free_extent_buffer_stale(right); 1827 right = NULL; 1828 } else { 1829 struct btrfs_disk_key right_key; 1830 btrfs_node_key(right, &right_key, 0); 1831 tree_mod_log_set_node_key(root->fs_info, parent, 1832 pslot + 1, 0); 1833 btrfs_set_node_key(parent, &right_key, pslot + 1); 1834 btrfs_mark_buffer_dirty(parent); 1835 } 1836 } 1837 if (btrfs_header_nritems(mid) == 1) { 1838 /* 1839 * we're not allowed to leave a node with one item in the 1840 * tree during a delete. A deletion from lower in the tree 1841 * could try to delete the only pointer in this node. 1842 * So, pull some keys from the left. 1843 * There has to be a left pointer at this point because 1844 * otherwise we would have pulled some pointers from the 1845 * right 1846 */ 1847 if (!left) { 1848 ret = -EROFS; 1849 btrfs_std_error(root->fs_info, ret); 1850 goto enospc; 1851 } 1852 wret = balance_node_right(trans, root, mid, left); 1853 if (wret < 0) { 1854 ret = wret; 1855 goto enospc; 1856 } 1857 if (wret == 1) { 1858 wret = push_node_left(trans, root, left, mid, 1); 1859 if (wret < 0) 1860 ret = wret; 1861 } 1862 BUG_ON(wret == 1); 1863 } 1864 if (btrfs_header_nritems(mid) == 0) { 1865 clean_tree_block(trans, root, mid); 1866 btrfs_tree_unlock(mid); 1867 del_ptr(trans, root, path, level + 1, pslot); 1868 root_sub_used(root, mid->len); 1869 btrfs_free_tree_block(trans, root, mid, 0, 1); 1870 free_extent_buffer_stale(mid); 1871 mid = NULL; 1872 } else { 1873 /* update the parent key to reflect our changes */ 1874 struct btrfs_disk_key mid_key; 1875 btrfs_node_key(mid, &mid_key, 0); 1876 tree_mod_log_set_node_key(root->fs_info, parent, 1877 pslot, 0); 1878 btrfs_set_node_key(parent, &mid_key, pslot); 1879 btrfs_mark_buffer_dirty(parent); 1880 } 1881 1882 /* update the path */ 1883 if (left) { 1884 if (btrfs_header_nritems(left) > orig_slot) { 1885 extent_buffer_get(left); 1886 /* left was locked after cow */ 1887 path->nodes[level] = left; 1888 path->slots[level + 1] -= 1; 1889 path->slots[level] = orig_slot; 1890 if (mid) { 1891 btrfs_tree_unlock(mid); 1892 free_extent_buffer(mid); 1893 } 1894 } else { 1895 orig_slot -= btrfs_header_nritems(left); 1896 path->slots[level] = orig_slot; 1897 } 1898 } 1899 /* double check we haven't messed things up */ 1900 if (orig_ptr != 1901 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1902 BUG(); 1903 enospc: 1904 if (right) { 1905 btrfs_tree_unlock(right); 1906 free_extent_buffer(right); 1907 } 1908 if (left) { 1909 if (path->nodes[level] != left) 1910 btrfs_tree_unlock(left); 1911 free_extent_buffer(left); 1912 } 1913 return ret; 1914 } 1915 1916 /* Node balancing for insertion. Here we only split or push nodes around 1917 * when they are completely full. This is also done top down, so we 1918 * have to be pessimistic. 1919 */ 1920 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1921 struct btrfs_root *root, 1922 struct btrfs_path *path, int level) 1923 { 1924 struct extent_buffer *right = NULL; 1925 struct extent_buffer *mid; 1926 struct extent_buffer *left = NULL; 1927 struct extent_buffer *parent = NULL; 1928 int ret = 0; 1929 int wret; 1930 int pslot; 1931 int orig_slot = path->slots[level]; 1932 1933 if (level == 0) 1934 return 1; 1935 1936 mid = path->nodes[level]; 1937 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1938 1939 if (level < BTRFS_MAX_LEVEL - 1) { 1940 parent = path->nodes[level + 1]; 1941 pslot = path->slots[level + 1]; 1942 } 1943 1944 if (!parent) 1945 return 1; 1946 1947 left = read_node_slot(root, parent, pslot - 1); 1948 1949 /* first, try to make some room in the middle buffer */ 1950 if (left) { 1951 u32 left_nr; 1952 1953 btrfs_tree_lock(left); 1954 btrfs_set_lock_blocking(left); 1955 1956 left_nr = btrfs_header_nritems(left); 1957 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1958 wret = 1; 1959 } else { 1960 ret = btrfs_cow_block(trans, root, left, parent, 1961 pslot - 1, &left); 1962 if (ret) 1963 wret = 1; 1964 else { 1965 wret = push_node_left(trans, root, 1966 left, mid, 0); 1967 } 1968 } 1969 if (wret < 0) 1970 ret = wret; 1971 if (wret == 0) { 1972 struct btrfs_disk_key disk_key; 1973 orig_slot += left_nr; 1974 btrfs_node_key(mid, &disk_key, 0); 1975 tree_mod_log_set_node_key(root->fs_info, parent, 1976 pslot, 0); 1977 btrfs_set_node_key(parent, &disk_key, pslot); 1978 btrfs_mark_buffer_dirty(parent); 1979 if (btrfs_header_nritems(left) > orig_slot) { 1980 path->nodes[level] = left; 1981 path->slots[level + 1] -= 1; 1982 path->slots[level] = orig_slot; 1983 btrfs_tree_unlock(mid); 1984 free_extent_buffer(mid); 1985 } else { 1986 orig_slot -= 1987 btrfs_header_nritems(left); 1988 path->slots[level] = orig_slot; 1989 btrfs_tree_unlock(left); 1990 free_extent_buffer(left); 1991 } 1992 return 0; 1993 } 1994 btrfs_tree_unlock(left); 1995 free_extent_buffer(left); 1996 } 1997 right = read_node_slot(root, parent, pslot + 1); 1998 1999 /* 2000 * then try to empty the right most buffer into the middle 2001 */ 2002 if (right) { 2003 u32 right_nr; 2004 2005 btrfs_tree_lock(right); 2006 btrfs_set_lock_blocking(right); 2007 2008 right_nr = btrfs_header_nritems(right); 2009 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2010 wret = 1; 2011 } else { 2012 ret = btrfs_cow_block(trans, root, right, 2013 parent, pslot + 1, 2014 &right); 2015 if (ret) 2016 wret = 1; 2017 else { 2018 wret = balance_node_right(trans, root, 2019 right, mid); 2020 } 2021 } 2022 if (wret < 0) 2023 ret = wret; 2024 if (wret == 0) { 2025 struct btrfs_disk_key disk_key; 2026 2027 btrfs_node_key(right, &disk_key, 0); 2028 tree_mod_log_set_node_key(root->fs_info, parent, 2029 pslot + 1, 0); 2030 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2031 btrfs_mark_buffer_dirty(parent); 2032 2033 if (btrfs_header_nritems(mid) <= orig_slot) { 2034 path->nodes[level] = right; 2035 path->slots[level + 1] += 1; 2036 path->slots[level] = orig_slot - 2037 btrfs_header_nritems(mid); 2038 btrfs_tree_unlock(mid); 2039 free_extent_buffer(mid); 2040 } else { 2041 btrfs_tree_unlock(right); 2042 free_extent_buffer(right); 2043 } 2044 return 0; 2045 } 2046 btrfs_tree_unlock(right); 2047 free_extent_buffer(right); 2048 } 2049 return 1; 2050 } 2051 2052 /* 2053 * readahead one full node of leaves, finding things that are close 2054 * to the block in 'slot', and triggering ra on them. 2055 */ 2056 static void reada_for_search(struct btrfs_root *root, 2057 struct btrfs_path *path, 2058 int level, int slot, u64 objectid) 2059 { 2060 struct extent_buffer *node; 2061 struct btrfs_disk_key disk_key; 2062 u32 nritems; 2063 u64 search; 2064 u64 target; 2065 u64 nread = 0; 2066 u64 gen; 2067 int direction = path->reada; 2068 struct extent_buffer *eb; 2069 u32 nr; 2070 u32 blocksize; 2071 u32 nscan = 0; 2072 2073 if (level != 1) 2074 return; 2075 2076 if (!path->nodes[level]) 2077 return; 2078 2079 node = path->nodes[level]; 2080 2081 search = btrfs_node_blockptr(node, slot); 2082 blocksize = btrfs_level_size(root, level - 1); 2083 eb = btrfs_find_tree_block(root, search, blocksize); 2084 if (eb) { 2085 free_extent_buffer(eb); 2086 return; 2087 } 2088 2089 target = search; 2090 2091 nritems = btrfs_header_nritems(node); 2092 nr = slot; 2093 2094 while (1) { 2095 if (direction < 0) { 2096 if (nr == 0) 2097 break; 2098 nr--; 2099 } else if (direction > 0) { 2100 nr++; 2101 if (nr >= nritems) 2102 break; 2103 } 2104 if (path->reada < 0 && objectid) { 2105 btrfs_node_key(node, &disk_key, nr); 2106 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2107 break; 2108 } 2109 search = btrfs_node_blockptr(node, nr); 2110 if ((search <= target && target - search <= 65536) || 2111 (search > target && search - target <= 65536)) { 2112 gen = btrfs_node_ptr_generation(node, nr); 2113 readahead_tree_block(root, search, blocksize, gen); 2114 nread += blocksize; 2115 } 2116 nscan++; 2117 if ((nread > 65536 || nscan > 32)) 2118 break; 2119 } 2120 } 2121 2122 /* 2123 * returns -EAGAIN if it had to drop the path, or zero if everything was in 2124 * cache 2125 */ 2126 static noinline int reada_for_balance(struct btrfs_root *root, 2127 struct btrfs_path *path, int level) 2128 { 2129 int slot; 2130 int nritems; 2131 struct extent_buffer *parent; 2132 struct extent_buffer *eb; 2133 u64 gen; 2134 u64 block1 = 0; 2135 u64 block2 = 0; 2136 int ret = 0; 2137 int blocksize; 2138 2139 parent = path->nodes[level + 1]; 2140 if (!parent) 2141 return 0; 2142 2143 nritems = btrfs_header_nritems(parent); 2144 slot = path->slots[level + 1]; 2145 blocksize = btrfs_level_size(root, level); 2146 2147 if (slot > 0) { 2148 block1 = btrfs_node_blockptr(parent, slot - 1); 2149 gen = btrfs_node_ptr_generation(parent, slot - 1); 2150 eb = btrfs_find_tree_block(root, block1, blocksize); 2151 /* 2152 * if we get -eagain from btrfs_buffer_uptodate, we 2153 * don't want to return eagain here. That will loop 2154 * forever 2155 */ 2156 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2157 block1 = 0; 2158 free_extent_buffer(eb); 2159 } 2160 if (slot + 1 < nritems) { 2161 block2 = btrfs_node_blockptr(parent, slot + 1); 2162 gen = btrfs_node_ptr_generation(parent, slot + 1); 2163 eb = btrfs_find_tree_block(root, block2, blocksize); 2164 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2165 block2 = 0; 2166 free_extent_buffer(eb); 2167 } 2168 if (block1 || block2) { 2169 ret = -EAGAIN; 2170 2171 /* release the whole path */ 2172 btrfs_release_path(path); 2173 2174 /* read the blocks */ 2175 if (block1) 2176 readahead_tree_block(root, block1, blocksize, 0); 2177 if (block2) 2178 readahead_tree_block(root, block2, blocksize, 0); 2179 2180 if (block1) { 2181 eb = read_tree_block(root, block1, blocksize, 0); 2182 free_extent_buffer(eb); 2183 } 2184 if (block2) { 2185 eb = read_tree_block(root, block2, blocksize, 0); 2186 free_extent_buffer(eb); 2187 } 2188 } 2189 return ret; 2190 } 2191 2192 2193 /* 2194 * when we walk down the tree, it is usually safe to unlock the higher layers 2195 * in the tree. The exceptions are when our path goes through slot 0, because 2196 * operations on the tree might require changing key pointers higher up in the 2197 * tree. 2198 * 2199 * callers might also have set path->keep_locks, which tells this code to keep 2200 * the lock if the path points to the last slot in the block. This is part of 2201 * walking through the tree, and selecting the next slot in the higher block. 2202 * 2203 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2204 * if lowest_unlock is 1, level 0 won't be unlocked 2205 */ 2206 static noinline void unlock_up(struct btrfs_path *path, int level, 2207 int lowest_unlock, int min_write_lock_level, 2208 int *write_lock_level) 2209 { 2210 int i; 2211 int skip_level = level; 2212 int no_skips = 0; 2213 struct extent_buffer *t; 2214 2215 if (path->really_keep_locks) 2216 return; 2217 2218 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2219 if (!path->nodes[i]) 2220 break; 2221 if (!path->locks[i]) 2222 break; 2223 if (!no_skips && path->slots[i] == 0) { 2224 skip_level = i + 1; 2225 continue; 2226 } 2227 if (!no_skips && path->keep_locks) { 2228 u32 nritems; 2229 t = path->nodes[i]; 2230 nritems = btrfs_header_nritems(t); 2231 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2232 skip_level = i + 1; 2233 continue; 2234 } 2235 } 2236 if (skip_level < i && i >= lowest_unlock) 2237 no_skips = 1; 2238 2239 t = path->nodes[i]; 2240 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2241 btrfs_tree_unlock_rw(t, path->locks[i]); 2242 path->locks[i] = 0; 2243 if (write_lock_level && 2244 i > min_write_lock_level && 2245 i <= *write_lock_level) { 2246 *write_lock_level = i - 1; 2247 } 2248 } 2249 } 2250 } 2251 2252 /* 2253 * This releases any locks held in the path starting at level and 2254 * going all the way up to the root. 2255 * 2256 * btrfs_search_slot will keep the lock held on higher nodes in a few 2257 * corner cases, such as COW of the block at slot zero in the node. This 2258 * ignores those rules, and it should only be called when there are no 2259 * more updates to be done higher up in the tree. 2260 */ 2261 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2262 { 2263 int i; 2264 2265 if (path->keep_locks || path->really_keep_locks) 2266 return; 2267 2268 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2269 if (!path->nodes[i]) 2270 continue; 2271 if (!path->locks[i]) 2272 continue; 2273 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2274 path->locks[i] = 0; 2275 } 2276 } 2277 2278 /* 2279 * helper function for btrfs_search_slot. The goal is to find a block 2280 * in cache without setting the path to blocking. If we find the block 2281 * we return zero and the path is unchanged. 2282 * 2283 * If we can't find the block, we set the path blocking and do some 2284 * reada. -EAGAIN is returned and the search must be repeated. 2285 */ 2286 static int 2287 read_block_for_search(struct btrfs_trans_handle *trans, 2288 struct btrfs_root *root, struct btrfs_path *p, 2289 struct extent_buffer **eb_ret, int level, int slot, 2290 struct btrfs_key *key, u64 time_seq) 2291 { 2292 u64 blocknr; 2293 u64 gen; 2294 u32 blocksize; 2295 struct extent_buffer *b = *eb_ret; 2296 struct extent_buffer *tmp; 2297 int ret; 2298 2299 blocknr = btrfs_node_blockptr(b, slot); 2300 gen = btrfs_node_ptr_generation(b, slot); 2301 blocksize = btrfs_level_size(root, level - 1); 2302 2303 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2304 if (tmp) { 2305 /* first we do an atomic uptodate check */ 2306 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) { 2307 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2308 /* 2309 * we found an up to date block without 2310 * sleeping, return 2311 * right away 2312 */ 2313 *eb_ret = tmp; 2314 return 0; 2315 } 2316 /* the pages were up to date, but we failed 2317 * the generation number check. Do a full 2318 * read for the generation number that is correct. 2319 * We must do this without dropping locks so 2320 * we can trust our generation number 2321 */ 2322 free_extent_buffer(tmp); 2323 btrfs_set_path_blocking(p); 2324 2325 /* now we're allowed to do a blocking uptodate check */ 2326 tmp = read_tree_block(root, blocknr, blocksize, gen); 2327 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) { 2328 *eb_ret = tmp; 2329 return 0; 2330 } 2331 free_extent_buffer(tmp); 2332 btrfs_release_path(p); 2333 return -EIO; 2334 } 2335 } 2336 2337 /* 2338 * reduce lock contention at high levels 2339 * of the btree by dropping locks before 2340 * we read. Don't release the lock on the current 2341 * level because we need to walk this node to figure 2342 * out which blocks to read. 2343 */ 2344 btrfs_unlock_up_safe(p, level + 1); 2345 btrfs_set_path_blocking(p); 2346 2347 free_extent_buffer(tmp); 2348 if (p->reada) 2349 reada_for_search(root, p, level, slot, key->objectid); 2350 2351 btrfs_release_path(p); 2352 2353 ret = -EAGAIN; 2354 tmp = read_tree_block(root, blocknr, blocksize, 0); 2355 if (tmp) { 2356 /* 2357 * If the read above didn't mark this buffer up to date, 2358 * it will never end up being up to date. Set ret to EIO now 2359 * and give up so that our caller doesn't loop forever 2360 * on our EAGAINs. 2361 */ 2362 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2363 ret = -EIO; 2364 free_extent_buffer(tmp); 2365 } 2366 return ret; 2367 } 2368 2369 /* 2370 * helper function for btrfs_search_slot. This does all of the checks 2371 * for node-level blocks and does any balancing required based on 2372 * the ins_len. 2373 * 2374 * If no extra work was required, zero is returned. If we had to 2375 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2376 * start over 2377 */ 2378 static int 2379 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2380 struct btrfs_root *root, struct btrfs_path *p, 2381 struct extent_buffer *b, int level, int ins_len, 2382 int *write_lock_level) 2383 { 2384 int ret; 2385 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2386 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2387 int sret; 2388 2389 if (*write_lock_level < level + 1) { 2390 *write_lock_level = level + 1; 2391 btrfs_release_path(p); 2392 goto again; 2393 } 2394 2395 sret = reada_for_balance(root, p, level); 2396 if (sret) 2397 goto again; 2398 2399 btrfs_set_path_blocking(p); 2400 sret = split_node(trans, root, p, level); 2401 btrfs_clear_path_blocking(p, NULL, 0); 2402 2403 BUG_ON(sret > 0); 2404 if (sret) { 2405 ret = sret; 2406 goto done; 2407 } 2408 b = p->nodes[level]; 2409 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2410 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2411 int sret; 2412 2413 if (*write_lock_level < level + 1) { 2414 *write_lock_level = level + 1; 2415 btrfs_release_path(p); 2416 goto again; 2417 } 2418 2419 sret = reada_for_balance(root, p, level); 2420 if (sret) 2421 goto again; 2422 2423 btrfs_set_path_blocking(p); 2424 sret = balance_level(trans, root, p, level); 2425 btrfs_clear_path_blocking(p, NULL, 0); 2426 2427 if (sret) { 2428 ret = sret; 2429 goto done; 2430 } 2431 b = p->nodes[level]; 2432 if (!b) { 2433 btrfs_release_path(p); 2434 goto again; 2435 } 2436 BUG_ON(btrfs_header_nritems(b) == 1); 2437 } 2438 return 0; 2439 2440 again: 2441 ret = -EAGAIN; 2442 done: 2443 return ret; 2444 } 2445 2446 /* 2447 * look for key in the tree. path is filled in with nodes along the way 2448 * if key is found, we return zero and you can find the item in the leaf 2449 * level of the path (level 0) 2450 * 2451 * If the key isn't found, the path points to the slot where it should 2452 * be inserted, and 1 is returned. If there are other errors during the 2453 * search a negative error number is returned. 2454 * 2455 * if ins_len > 0, nodes and leaves will be split as we walk down the 2456 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2457 * possible) 2458 */ 2459 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2460 *root, struct btrfs_key *key, struct btrfs_path *p, int 2461 ins_len, int cow) 2462 { 2463 struct extent_buffer *b; 2464 int slot; 2465 int ret; 2466 int err; 2467 int level; 2468 int lowest_unlock = 1; 2469 int root_lock; 2470 /* everything at write_lock_level or lower must be write locked */ 2471 int write_lock_level = 0; 2472 u8 lowest_level = 0; 2473 int min_write_lock_level; 2474 2475 lowest_level = p->lowest_level; 2476 WARN_ON(lowest_level && ins_len > 0); 2477 WARN_ON(p->nodes[0] != NULL); 2478 2479 if (ins_len < 0) { 2480 lowest_unlock = 2; 2481 2482 /* when we are removing items, we might have to go up to level 2483 * two as we update tree pointers Make sure we keep write 2484 * for those levels as well 2485 */ 2486 write_lock_level = 2; 2487 } else if (ins_len > 0) { 2488 /* 2489 * for inserting items, make sure we have a write lock on 2490 * level 1 so we can update keys 2491 */ 2492 write_lock_level = 1; 2493 } 2494 2495 if (!cow) 2496 write_lock_level = -1; 2497 2498 if (cow && (p->really_keep_locks || p->keep_locks || p->lowest_level)) 2499 write_lock_level = BTRFS_MAX_LEVEL; 2500 2501 min_write_lock_level = write_lock_level; 2502 2503 again: 2504 /* 2505 * we try very hard to do read locks on the root 2506 */ 2507 root_lock = BTRFS_READ_LOCK; 2508 level = 0; 2509 if (p->search_commit_root) { 2510 /* 2511 * the commit roots are read only 2512 * so we always do read locks 2513 */ 2514 b = root->commit_root; 2515 extent_buffer_get(b); 2516 level = btrfs_header_level(b); 2517 if (!p->skip_locking) 2518 btrfs_tree_read_lock(b); 2519 } else { 2520 if (p->skip_locking) { 2521 b = btrfs_root_node(root); 2522 level = btrfs_header_level(b); 2523 } else { 2524 /* we don't know the level of the root node 2525 * until we actually have it read locked 2526 */ 2527 b = btrfs_read_lock_root_node(root); 2528 level = btrfs_header_level(b); 2529 if (level <= write_lock_level) { 2530 /* whoops, must trade for write lock */ 2531 btrfs_tree_read_unlock(b); 2532 free_extent_buffer(b); 2533 b = btrfs_lock_root_node(root); 2534 root_lock = BTRFS_WRITE_LOCK; 2535 2536 /* the level might have changed, check again */ 2537 level = btrfs_header_level(b); 2538 } 2539 } 2540 } 2541 p->nodes[level] = b; 2542 if (!p->skip_locking) 2543 p->locks[level] = root_lock; 2544 2545 while (b) { 2546 level = btrfs_header_level(b); 2547 2548 /* 2549 * setup the path here so we can release it under lock 2550 * contention with the cow code 2551 */ 2552 if (cow) { 2553 /* 2554 * if we don't really need to cow this block 2555 * then we don't want to set the path blocking, 2556 * so we test it here 2557 */ 2558 if (!should_cow_block(trans, root, b)) 2559 goto cow_done; 2560 2561 btrfs_set_path_blocking(p); 2562 2563 /* 2564 * must have write locks on this node and the 2565 * parent 2566 */ 2567 if (level > write_lock_level || 2568 (level + 1 > write_lock_level && 2569 level + 1 < BTRFS_MAX_LEVEL && 2570 p->nodes[level + 1])) { 2571 write_lock_level = level + 1; 2572 btrfs_release_path(p); 2573 goto again; 2574 } 2575 2576 err = btrfs_cow_block(trans, root, b, 2577 p->nodes[level + 1], 2578 p->slots[level + 1], &b); 2579 if (err) { 2580 ret = err; 2581 goto done; 2582 } 2583 } 2584 cow_done: 2585 BUG_ON(!cow && ins_len); 2586 2587 p->nodes[level] = b; 2588 btrfs_clear_path_blocking(p, NULL, 0); 2589 2590 /* 2591 * we have a lock on b and as long as we aren't changing 2592 * the tree, there is no way to for the items in b to change. 2593 * It is safe to drop the lock on our parent before we 2594 * go through the expensive btree search on b. 2595 * 2596 * If cow is true, then we might be changing slot zero, 2597 * which may require changing the parent. So, we can't 2598 * drop the lock until after we know which slot we're 2599 * operating on. 2600 */ 2601 if (!cow) 2602 btrfs_unlock_up_safe(p, level + 1); 2603 2604 ret = bin_search(b, key, level, &slot); 2605 2606 if (level != 0) { 2607 int dec = 0; 2608 if (ret && slot > 0) { 2609 dec = 1; 2610 slot -= 1; 2611 } 2612 p->slots[level] = slot; 2613 err = setup_nodes_for_search(trans, root, p, b, level, 2614 ins_len, &write_lock_level); 2615 if (err == -EAGAIN) 2616 goto again; 2617 if (err) { 2618 ret = err; 2619 goto done; 2620 } 2621 b = p->nodes[level]; 2622 slot = p->slots[level]; 2623 2624 /* 2625 * slot 0 is special, if we change the key 2626 * we have to update the parent pointer 2627 * which means we must have a write lock 2628 * on the parent 2629 */ 2630 if (slot == 0 && cow && 2631 write_lock_level < level + 1) { 2632 write_lock_level = level + 1; 2633 btrfs_release_path(p); 2634 goto again; 2635 } 2636 2637 unlock_up(p, level, lowest_unlock, 2638 min_write_lock_level, &write_lock_level); 2639 2640 if (level == lowest_level) { 2641 if (dec) 2642 p->slots[level]++; 2643 goto done; 2644 } 2645 2646 err = read_block_for_search(trans, root, p, 2647 &b, level, slot, key, 0); 2648 if (err == -EAGAIN) 2649 goto again; 2650 if (err) { 2651 ret = err; 2652 goto done; 2653 } 2654 2655 if (!p->skip_locking) { 2656 level = btrfs_header_level(b); 2657 if (level <= write_lock_level) { 2658 err = btrfs_try_tree_write_lock(b); 2659 if (!err) { 2660 btrfs_set_path_blocking(p); 2661 btrfs_tree_lock(b); 2662 btrfs_clear_path_blocking(p, b, 2663 BTRFS_WRITE_LOCK); 2664 } 2665 p->locks[level] = BTRFS_WRITE_LOCK; 2666 } else { 2667 err = btrfs_try_tree_read_lock(b); 2668 if (!err) { 2669 btrfs_set_path_blocking(p); 2670 btrfs_tree_read_lock(b); 2671 btrfs_clear_path_blocking(p, b, 2672 BTRFS_READ_LOCK); 2673 } 2674 p->locks[level] = BTRFS_READ_LOCK; 2675 } 2676 p->nodes[level] = b; 2677 } 2678 } else { 2679 p->slots[level] = slot; 2680 if (ins_len > 0 && 2681 btrfs_leaf_free_space(root, b) < ins_len) { 2682 if (write_lock_level < 1) { 2683 write_lock_level = 1; 2684 btrfs_release_path(p); 2685 goto again; 2686 } 2687 2688 btrfs_set_path_blocking(p); 2689 err = split_leaf(trans, root, key, 2690 p, ins_len, ret == 0); 2691 btrfs_clear_path_blocking(p, NULL, 0); 2692 2693 BUG_ON(err > 0); 2694 if (err) { 2695 ret = err; 2696 goto done; 2697 } 2698 } 2699 if (!p->search_for_split) 2700 unlock_up(p, level, lowest_unlock, 2701 min_write_lock_level, &write_lock_level); 2702 goto done; 2703 } 2704 } 2705 ret = 1; 2706 done: 2707 /* 2708 * we don't really know what they plan on doing with the path 2709 * from here on, so for now just mark it as blocking 2710 */ 2711 if (!p->leave_spinning) 2712 btrfs_set_path_blocking(p); 2713 if (ret < 0) 2714 btrfs_release_path(p); 2715 return ret; 2716 } 2717 2718 /* 2719 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2720 * current state of the tree together with the operations recorded in the tree 2721 * modification log to search for the key in a previous version of this tree, as 2722 * denoted by the time_seq parameter. 2723 * 2724 * Naturally, there is no support for insert, delete or cow operations. 2725 * 2726 * The resulting path and return value will be set up as if we called 2727 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2728 */ 2729 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2730 struct btrfs_path *p, u64 time_seq) 2731 { 2732 struct extent_buffer *b; 2733 int slot; 2734 int ret; 2735 int err; 2736 int level; 2737 int lowest_unlock = 1; 2738 u8 lowest_level = 0; 2739 2740 lowest_level = p->lowest_level; 2741 WARN_ON(p->nodes[0] != NULL); 2742 2743 if (p->search_commit_root) { 2744 BUG_ON(time_seq); 2745 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2746 } 2747 2748 again: 2749 b = get_old_root(root, time_seq); 2750 level = btrfs_header_level(b); 2751 p->locks[level] = BTRFS_READ_LOCK; 2752 2753 while (b) { 2754 level = btrfs_header_level(b); 2755 p->nodes[level] = b; 2756 btrfs_clear_path_blocking(p, NULL, 0); 2757 2758 /* 2759 * we have a lock on b and as long as we aren't changing 2760 * the tree, there is no way to for the items in b to change. 2761 * It is safe to drop the lock on our parent before we 2762 * go through the expensive btree search on b. 2763 */ 2764 btrfs_unlock_up_safe(p, level + 1); 2765 2766 ret = bin_search(b, key, level, &slot); 2767 2768 if (level != 0) { 2769 int dec = 0; 2770 if (ret && slot > 0) { 2771 dec = 1; 2772 slot -= 1; 2773 } 2774 p->slots[level] = slot; 2775 unlock_up(p, level, lowest_unlock, 0, NULL); 2776 2777 if (level == lowest_level) { 2778 if (dec) 2779 p->slots[level]++; 2780 goto done; 2781 } 2782 2783 err = read_block_for_search(NULL, root, p, &b, level, 2784 slot, key, time_seq); 2785 if (err == -EAGAIN) 2786 goto again; 2787 if (err) { 2788 ret = err; 2789 goto done; 2790 } 2791 2792 level = btrfs_header_level(b); 2793 err = btrfs_try_tree_read_lock(b); 2794 if (!err) { 2795 btrfs_set_path_blocking(p); 2796 btrfs_tree_read_lock(b); 2797 btrfs_clear_path_blocking(p, b, 2798 BTRFS_READ_LOCK); 2799 } 2800 p->locks[level] = BTRFS_READ_LOCK; 2801 p->nodes[level] = b; 2802 b = tree_mod_log_rewind(root->fs_info, b, time_seq); 2803 if (b != p->nodes[level]) { 2804 btrfs_tree_unlock_rw(p->nodes[level], 2805 p->locks[level]); 2806 p->locks[level] = 0; 2807 p->nodes[level] = b; 2808 } 2809 } else { 2810 p->slots[level] = slot; 2811 unlock_up(p, level, lowest_unlock, 0, NULL); 2812 goto done; 2813 } 2814 } 2815 ret = 1; 2816 done: 2817 if (!p->leave_spinning) 2818 btrfs_set_path_blocking(p); 2819 if (ret < 0) 2820 btrfs_release_path(p); 2821 2822 return ret; 2823 } 2824 2825 /* 2826 * helper to use instead of search slot if no exact match is needed but 2827 * instead the next or previous item should be returned. 2828 * When find_higher is true, the next higher item is returned, the next lower 2829 * otherwise. 2830 * When return_any and find_higher are both true, and no higher item is found, 2831 * return the next lower instead. 2832 * When return_any is true and find_higher is false, and no lower item is found, 2833 * return the next higher instead. 2834 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2835 * < 0 on error 2836 */ 2837 int btrfs_search_slot_for_read(struct btrfs_root *root, 2838 struct btrfs_key *key, struct btrfs_path *p, 2839 int find_higher, int return_any) 2840 { 2841 int ret; 2842 struct extent_buffer *leaf; 2843 2844 again: 2845 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2846 if (ret <= 0) 2847 return ret; 2848 /* 2849 * a return value of 1 means the path is at the position where the 2850 * item should be inserted. Normally this is the next bigger item, 2851 * but in case the previous item is the last in a leaf, path points 2852 * to the first free slot in the previous leaf, i.e. at an invalid 2853 * item. 2854 */ 2855 leaf = p->nodes[0]; 2856 2857 if (find_higher) { 2858 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2859 ret = btrfs_next_leaf(root, p); 2860 if (ret <= 0) 2861 return ret; 2862 if (!return_any) 2863 return 1; 2864 /* 2865 * no higher item found, return the next 2866 * lower instead 2867 */ 2868 return_any = 0; 2869 find_higher = 0; 2870 btrfs_release_path(p); 2871 goto again; 2872 } 2873 } else { 2874 if (p->slots[0] == 0) { 2875 ret = btrfs_prev_leaf(root, p); 2876 if (ret < 0) 2877 return ret; 2878 if (!ret) { 2879 p->slots[0] = btrfs_header_nritems(leaf) - 1; 2880 return 0; 2881 } 2882 if (!return_any) 2883 return 1; 2884 /* 2885 * no lower item found, return the next 2886 * higher instead 2887 */ 2888 return_any = 0; 2889 find_higher = 1; 2890 btrfs_release_path(p); 2891 goto again; 2892 } else { 2893 --p->slots[0]; 2894 } 2895 } 2896 return 0; 2897 } 2898 2899 /* 2900 * adjust the pointers going up the tree, starting at level 2901 * making sure the right key of each node is points to 'key'. 2902 * This is used after shifting pointers to the left, so it stops 2903 * fixing up pointers when a given leaf/node is not in slot 0 of the 2904 * higher levels 2905 * 2906 */ 2907 static void fixup_low_keys(struct btrfs_trans_handle *trans, 2908 struct btrfs_root *root, struct btrfs_path *path, 2909 struct btrfs_disk_key *key, int level) 2910 { 2911 int i; 2912 struct extent_buffer *t; 2913 2914 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2915 int tslot = path->slots[i]; 2916 if (!path->nodes[i]) 2917 break; 2918 t = path->nodes[i]; 2919 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1); 2920 btrfs_set_node_key(t, key, tslot); 2921 btrfs_mark_buffer_dirty(path->nodes[i]); 2922 if (tslot != 0) 2923 break; 2924 } 2925 } 2926 2927 /* 2928 * update item key. 2929 * 2930 * This function isn't completely safe. It's the caller's responsibility 2931 * that the new key won't break the order 2932 */ 2933 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 2934 struct btrfs_root *root, struct btrfs_path *path, 2935 struct btrfs_key *new_key) 2936 { 2937 struct btrfs_disk_key disk_key; 2938 struct extent_buffer *eb; 2939 int slot; 2940 2941 eb = path->nodes[0]; 2942 slot = path->slots[0]; 2943 if (slot > 0) { 2944 btrfs_item_key(eb, &disk_key, slot - 1); 2945 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 2946 } 2947 if (slot < btrfs_header_nritems(eb) - 1) { 2948 btrfs_item_key(eb, &disk_key, slot + 1); 2949 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 2950 } 2951 2952 btrfs_cpu_key_to_disk(&disk_key, new_key); 2953 btrfs_set_item_key(eb, &disk_key, slot); 2954 btrfs_mark_buffer_dirty(eb); 2955 if (slot == 0) 2956 fixup_low_keys(trans, root, path, &disk_key, 1); 2957 } 2958 2959 /* 2960 * try to push data from one node into the next node left in the 2961 * tree. 2962 * 2963 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2964 * error, and > 0 if there was no room in the left hand block. 2965 */ 2966 static int push_node_left(struct btrfs_trans_handle *trans, 2967 struct btrfs_root *root, struct extent_buffer *dst, 2968 struct extent_buffer *src, int empty) 2969 { 2970 int push_items = 0; 2971 int src_nritems; 2972 int dst_nritems; 2973 int ret = 0; 2974 2975 src_nritems = btrfs_header_nritems(src); 2976 dst_nritems = btrfs_header_nritems(dst); 2977 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2978 WARN_ON(btrfs_header_generation(src) != trans->transid); 2979 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2980 2981 if (!empty && src_nritems <= 8) 2982 return 1; 2983 2984 if (push_items <= 0) 2985 return 1; 2986 2987 if (empty) { 2988 push_items = min(src_nritems, push_items); 2989 if (push_items < src_nritems) { 2990 /* leave at least 8 pointers in the node if 2991 * we aren't going to empty it 2992 */ 2993 if (src_nritems - push_items < 8) { 2994 if (push_items <= 8) 2995 return 1; 2996 push_items -= 8; 2997 } 2998 } 2999 } else 3000 push_items = min(src_nritems - 8, push_items); 3001 3002 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3003 push_items); 3004 copy_extent_buffer(dst, src, 3005 btrfs_node_key_ptr_offset(dst_nritems), 3006 btrfs_node_key_ptr_offset(0), 3007 push_items * sizeof(struct btrfs_key_ptr)); 3008 3009 if (push_items < src_nritems) { 3010 /* 3011 * don't call tree_mod_log_eb_move here, key removal was already 3012 * fully logged by tree_mod_log_eb_copy above. 3013 */ 3014 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3015 btrfs_node_key_ptr_offset(push_items), 3016 (src_nritems - push_items) * 3017 sizeof(struct btrfs_key_ptr)); 3018 } 3019 btrfs_set_header_nritems(src, src_nritems - push_items); 3020 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3021 btrfs_mark_buffer_dirty(src); 3022 btrfs_mark_buffer_dirty(dst); 3023 3024 return ret; 3025 } 3026 3027 /* 3028 * try to push data from one node into the next node right in the 3029 * tree. 3030 * 3031 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3032 * error, and > 0 if there was no room in the right hand block. 3033 * 3034 * this will only push up to 1/2 the contents of the left node over 3035 */ 3036 static int balance_node_right(struct btrfs_trans_handle *trans, 3037 struct btrfs_root *root, 3038 struct extent_buffer *dst, 3039 struct extent_buffer *src) 3040 { 3041 int push_items = 0; 3042 int max_push; 3043 int src_nritems; 3044 int dst_nritems; 3045 int ret = 0; 3046 3047 WARN_ON(btrfs_header_generation(src) != trans->transid); 3048 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3049 3050 src_nritems = btrfs_header_nritems(src); 3051 dst_nritems = btrfs_header_nritems(dst); 3052 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3053 if (push_items <= 0) 3054 return 1; 3055 3056 if (src_nritems < 4) 3057 return 1; 3058 3059 max_push = src_nritems / 2 + 1; 3060 /* don't try to empty the node */ 3061 if (max_push >= src_nritems) 3062 return 1; 3063 3064 if (max_push < push_items) 3065 push_items = max_push; 3066 3067 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3068 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3069 btrfs_node_key_ptr_offset(0), 3070 (dst_nritems) * 3071 sizeof(struct btrfs_key_ptr)); 3072 3073 tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3074 src_nritems - push_items, push_items); 3075 copy_extent_buffer(dst, src, 3076 btrfs_node_key_ptr_offset(0), 3077 btrfs_node_key_ptr_offset(src_nritems - push_items), 3078 push_items * sizeof(struct btrfs_key_ptr)); 3079 3080 btrfs_set_header_nritems(src, src_nritems - push_items); 3081 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3082 3083 btrfs_mark_buffer_dirty(src); 3084 btrfs_mark_buffer_dirty(dst); 3085 3086 return ret; 3087 } 3088 3089 /* 3090 * helper function to insert a new root level in the tree. 3091 * A new node is allocated, and a single item is inserted to 3092 * point to the existing root 3093 * 3094 * returns zero on success or < 0 on failure. 3095 */ 3096 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3097 struct btrfs_root *root, 3098 struct btrfs_path *path, int level) 3099 { 3100 u64 lower_gen; 3101 struct extent_buffer *lower; 3102 struct extent_buffer *c; 3103 struct extent_buffer *old; 3104 struct btrfs_disk_key lower_key; 3105 3106 BUG_ON(path->nodes[level]); 3107 BUG_ON(path->nodes[level-1] != root->node); 3108 3109 lower = path->nodes[level-1]; 3110 if (level == 1) 3111 btrfs_item_key(lower, &lower_key, 0); 3112 else 3113 btrfs_node_key(lower, &lower_key, 0); 3114 3115 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3116 root->root_key.objectid, &lower_key, 3117 level, root->node->start, 0); 3118 if (IS_ERR(c)) 3119 return PTR_ERR(c); 3120 3121 root_add_used(root, root->nodesize); 3122 3123 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3124 btrfs_set_header_nritems(c, 1); 3125 btrfs_set_header_level(c, level); 3126 btrfs_set_header_bytenr(c, c->start); 3127 btrfs_set_header_generation(c, trans->transid); 3128 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3129 btrfs_set_header_owner(c, root->root_key.objectid); 3130 3131 write_extent_buffer(c, root->fs_info->fsid, 3132 (unsigned long)btrfs_header_fsid(c), 3133 BTRFS_FSID_SIZE); 3134 3135 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3136 (unsigned long)btrfs_header_chunk_tree_uuid(c), 3137 BTRFS_UUID_SIZE); 3138 3139 btrfs_set_node_key(c, &lower_key, 0); 3140 btrfs_set_node_blockptr(c, 0, lower->start); 3141 lower_gen = btrfs_header_generation(lower); 3142 WARN_ON(lower_gen != trans->transid); 3143 3144 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3145 3146 btrfs_mark_buffer_dirty(c); 3147 3148 old = root->node; 3149 tree_mod_log_set_root_pointer(root, c); 3150 rcu_assign_pointer(root->node, c); 3151 3152 /* the super has an extra ref to root->node */ 3153 free_extent_buffer(old); 3154 3155 add_root_to_dirty_list(root); 3156 extent_buffer_get(c); 3157 path->nodes[level] = c; 3158 path->locks[level] = BTRFS_WRITE_LOCK; 3159 path->slots[level] = 0; 3160 return 0; 3161 } 3162 3163 /* 3164 * worker function to insert a single pointer in a node. 3165 * the node should have enough room for the pointer already 3166 * 3167 * slot and level indicate where you want the key to go, and 3168 * blocknr is the block the key points to. 3169 */ 3170 static void insert_ptr(struct btrfs_trans_handle *trans, 3171 struct btrfs_root *root, struct btrfs_path *path, 3172 struct btrfs_disk_key *key, u64 bytenr, 3173 int slot, int level) 3174 { 3175 struct extent_buffer *lower; 3176 int nritems; 3177 int ret; 3178 3179 BUG_ON(!path->nodes[level]); 3180 btrfs_assert_tree_locked(path->nodes[level]); 3181 lower = path->nodes[level]; 3182 nritems = btrfs_header_nritems(lower); 3183 BUG_ON(slot > nritems); 3184 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3185 if (slot != nritems) { 3186 if (level) 3187 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3188 slot, nritems - slot); 3189 memmove_extent_buffer(lower, 3190 btrfs_node_key_ptr_offset(slot + 1), 3191 btrfs_node_key_ptr_offset(slot), 3192 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3193 } 3194 if (level) { 3195 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3196 MOD_LOG_KEY_ADD); 3197 BUG_ON(ret < 0); 3198 } 3199 btrfs_set_node_key(lower, key, slot); 3200 btrfs_set_node_blockptr(lower, slot, bytenr); 3201 WARN_ON(trans->transid == 0); 3202 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3203 btrfs_set_header_nritems(lower, nritems + 1); 3204 btrfs_mark_buffer_dirty(lower); 3205 } 3206 3207 /* 3208 * split the node at the specified level in path in two. 3209 * The path is corrected to point to the appropriate node after the split 3210 * 3211 * Before splitting this tries to make some room in the node by pushing 3212 * left and right, if either one works, it returns right away. 3213 * 3214 * returns 0 on success and < 0 on failure 3215 */ 3216 static noinline int split_node(struct btrfs_trans_handle *trans, 3217 struct btrfs_root *root, 3218 struct btrfs_path *path, int level) 3219 { 3220 struct extent_buffer *c; 3221 struct extent_buffer *split; 3222 struct btrfs_disk_key disk_key; 3223 int mid; 3224 int ret; 3225 u32 c_nritems; 3226 3227 c = path->nodes[level]; 3228 WARN_ON(btrfs_header_generation(c) != trans->transid); 3229 if (c == root->node) { 3230 /* trying to split the root, lets make a new one */ 3231 ret = insert_new_root(trans, root, path, level + 1); 3232 if (ret) 3233 return ret; 3234 } else { 3235 ret = push_nodes_for_insert(trans, root, path, level); 3236 c = path->nodes[level]; 3237 if (!ret && btrfs_header_nritems(c) < 3238 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3239 return 0; 3240 if (ret < 0) 3241 return ret; 3242 } 3243 3244 c_nritems = btrfs_header_nritems(c); 3245 mid = (c_nritems + 1) / 2; 3246 btrfs_node_key(c, &disk_key, mid); 3247 3248 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3249 root->root_key.objectid, 3250 &disk_key, level, c->start, 0); 3251 if (IS_ERR(split)) 3252 return PTR_ERR(split); 3253 3254 root_add_used(root, root->nodesize); 3255 3256 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3257 btrfs_set_header_level(split, btrfs_header_level(c)); 3258 btrfs_set_header_bytenr(split, split->start); 3259 btrfs_set_header_generation(split, trans->transid); 3260 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3261 btrfs_set_header_owner(split, root->root_key.objectid); 3262 write_extent_buffer(split, root->fs_info->fsid, 3263 (unsigned long)btrfs_header_fsid(split), 3264 BTRFS_FSID_SIZE); 3265 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3266 (unsigned long)btrfs_header_chunk_tree_uuid(split), 3267 BTRFS_UUID_SIZE); 3268 3269 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid); 3270 copy_extent_buffer(split, c, 3271 btrfs_node_key_ptr_offset(0), 3272 btrfs_node_key_ptr_offset(mid), 3273 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3274 btrfs_set_header_nritems(split, c_nritems - mid); 3275 btrfs_set_header_nritems(c, mid); 3276 ret = 0; 3277 3278 btrfs_mark_buffer_dirty(c); 3279 btrfs_mark_buffer_dirty(split); 3280 3281 insert_ptr(trans, root, path, &disk_key, split->start, 3282 path->slots[level + 1] + 1, level + 1); 3283 3284 if (path->slots[level] >= mid) { 3285 path->slots[level] -= mid; 3286 btrfs_tree_unlock(c); 3287 free_extent_buffer(c); 3288 path->nodes[level] = split; 3289 path->slots[level + 1] += 1; 3290 } else { 3291 btrfs_tree_unlock(split); 3292 free_extent_buffer(split); 3293 } 3294 return ret; 3295 } 3296 3297 /* 3298 * how many bytes are required to store the items in a leaf. start 3299 * and nr indicate which items in the leaf to check. This totals up the 3300 * space used both by the item structs and the item data 3301 */ 3302 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3303 { 3304 struct btrfs_item *start_item; 3305 struct btrfs_item *end_item; 3306 struct btrfs_map_token token; 3307 int data_len; 3308 int nritems = btrfs_header_nritems(l); 3309 int end = min(nritems, start + nr) - 1; 3310 3311 if (!nr) 3312 return 0; 3313 btrfs_init_map_token(&token); 3314 start_item = btrfs_item_nr(l, start); 3315 end_item = btrfs_item_nr(l, end); 3316 data_len = btrfs_token_item_offset(l, start_item, &token) + 3317 btrfs_token_item_size(l, start_item, &token); 3318 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3319 data_len += sizeof(struct btrfs_item) * nr; 3320 WARN_ON(data_len < 0); 3321 return data_len; 3322 } 3323 3324 /* 3325 * The space between the end of the leaf items and 3326 * the start of the leaf data. IOW, how much room 3327 * the leaf has left for both items and data 3328 */ 3329 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3330 struct extent_buffer *leaf) 3331 { 3332 int nritems = btrfs_header_nritems(leaf); 3333 int ret; 3334 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3335 if (ret < 0) { 3336 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 3337 "used %d nritems %d\n", 3338 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3339 leaf_space_used(leaf, 0, nritems), nritems); 3340 } 3341 return ret; 3342 } 3343 3344 /* 3345 * min slot controls the lowest index we're willing to push to the 3346 * right. We'll push up to and including min_slot, but no lower 3347 */ 3348 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3349 struct btrfs_root *root, 3350 struct btrfs_path *path, 3351 int data_size, int empty, 3352 struct extent_buffer *right, 3353 int free_space, u32 left_nritems, 3354 u32 min_slot) 3355 { 3356 struct extent_buffer *left = path->nodes[0]; 3357 struct extent_buffer *upper = path->nodes[1]; 3358 struct btrfs_map_token token; 3359 struct btrfs_disk_key disk_key; 3360 int slot; 3361 u32 i; 3362 int push_space = 0; 3363 int push_items = 0; 3364 struct btrfs_item *item; 3365 u32 nr; 3366 u32 right_nritems; 3367 u32 data_end; 3368 u32 this_item_size; 3369 3370 btrfs_init_map_token(&token); 3371 3372 if (empty) 3373 nr = 0; 3374 else 3375 nr = max_t(u32, 1, min_slot); 3376 3377 if (path->slots[0] >= left_nritems) 3378 push_space += data_size; 3379 3380 slot = path->slots[1]; 3381 i = left_nritems - 1; 3382 while (i >= nr) { 3383 item = btrfs_item_nr(left, i); 3384 3385 if (!empty && push_items > 0) { 3386 if (path->slots[0] > i) 3387 break; 3388 if (path->slots[0] == i) { 3389 int space = btrfs_leaf_free_space(root, left); 3390 if (space + push_space * 2 > free_space) 3391 break; 3392 } 3393 } 3394 3395 if (path->slots[0] == i) 3396 push_space += data_size; 3397 3398 this_item_size = btrfs_item_size(left, item); 3399 if (this_item_size + sizeof(*item) + push_space > free_space) 3400 break; 3401 3402 push_items++; 3403 push_space += this_item_size + sizeof(*item); 3404 if (i == 0) 3405 break; 3406 i--; 3407 } 3408 3409 if (push_items == 0) 3410 goto out_unlock; 3411 3412 WARN_ON(!empty && push_items == left_nritems); 3413 3414 /* push left to right */ 3415 right_nritems = btrfs_header_nritems(right); 3416 3417 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3418 push_space -= leaf_data_end(root, left); 3419 3420 /* make room in the right data area */ 3421 data_end = leaf_data_end(root, right); 3422 memmove_extent_buffer(right, 3423 btrfs_leaf_data(right) + data_end - push_space, 3424 btrfs_leaf_data(right) + data_end, 3425 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3426 3427 /* copy from the left data area */ 3428 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3429 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3430 btrfs_leaf_data(left) + leaf_data_end(root, left), 3431 push_space); 3432 3433 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3434 btrfs_item_nr_offset(0), 3435 right_nritems * sizeof(struct btrfs_item)); 3436 3437 /* copy the items from left to right */ 3438 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3439 btrfs_item_nr_offset(left_nritems - push_items), 3440 push_items * sizeof(struct btrfs_item)); 3441 3442 /* update the item pointers */ 3443 right_nritems += push_items; 3444 btrfs_set_header_nritems(right, right_nritems); 3445 push_space = BTRFS_LEAF_DATA_SIZE(root); 3446 for (i = 0; i < right_nritems; i++) { 3447 item = btrfs_item_nr(right, i); 3448 push_space -= btrfs_token_item_size(right, item, &token); 3449 btrfs_set_token_item_offset(right, item, push_space, &token); 3450 } 3451 3452 left_nritems -= push_items; 3453 btrfs_set_header_nritems(left, left_nritems); 3454 3455 if (left_nritems) 3456 btrfs_mark_buffer_dirty(left); 3457 else 3458 clean_tree_block(trans, root, left); 3459 3460 btrfs_mark_buffer_dirty(right); 3461 3462 btrfs_item_key(right, &disk_key, 0); 3463 btrfs_set_node_key(upper, &disk_key, slot + 1); 3464 btrfs_mark_buffer_dirty(upper); 3465 3466 /* then fixup the leaf pointer in the path */ 3467 if (path->slots[0] >= left_nritems) { 3468 path->slots[0] -= left_nritems; 3469 if (btrfs_header_nritems(path->nodes[0]) == 0) 3470 clean_tree_block(trans, root, path->nodes[0]); 3471 btrfs_tree_unlock(path->nodes[0]); 3472 free_extent_buffer(path->nodes[0]); 3473 path->nodes[0] = right; 3474 path->slots[1] += 1; 3475 } else { 3476 btrfs_tree_unlock(right); 3477 free_extent_buffer(right); 3478 } 3479 return 0; 3480 3481 out_unlock: 3482 btrfs_tree_unlock(right); 3483 free_extent_buffer(right); 3484 return 1; 3485 } 3486 3487 /* 3488 * push some data in the path leaf to the right, trying to free up at 3489 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3490 * 3491 * returns 1 if the push failed because the other node didn't have enough 3492 * room, 0 if everything worked out and < 0 if there were major errors. 3493 * 3494 * this will push starting from min_slot to the end of the leaf. It won't 3495 * push any slot lower than min_slot 3496 */ 3497 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3498 *root, struct btrfs_path *path, 3499 int min_data_size, int data_size, 3500 int empty, u32 min_slot) 3501 { 3502 struct extent_buffer *left = path->nodes[0]; 3503 struct extent_buffer *right; 3504 struct extent_buffer *upper; 3505 int slot; 3506 int free_space; 3507 u32 left_nritems; 3508 int ret; 3509 3510 if (!path->nodes[1]) 3511 return 1; 3512 3513 slot = path->slots[1]; 3514 upper = path->nodes[1]; 3515 if (slot >= btrfs_header_nritems(upper) - 1) 3516 return 1; 3517 3518 btrfs_assert_tree_locked(path->nodes[1]); 3519 3520 right = read_node_slot(root, upper, slot + 1); 3521 if (right == NULL) 3522 return 1; 3523 3524 btrfs_tree_lock(right); 3525 btrfs_set_lock_blocking(right); 3526 3527 free_space = btrfs_leaf_free_space(root, right); 3528 if (free_space < data_size) 3529 goto out_unlock; 3530 3531 /* cow and double check */ 3532 ret = btrfs_cow_block(trans, root, right, upper, 3533 slot + 1, &right); 3534 if (ret) 3535 goto out_unlock; 3536 3537 free_space = btrfs_leaf_free_space(root, right); 3538 if (free_space < data_size) 3539 goto out_unlock; 3540 3541 left_nritems = btrfs_header_nritems(left); 3542 if (left_nritems == 0) 3543 goto out_unlock; 3544 3545 return __push_leaf_right(trans, root, path, min_data_size, empty, 3546 right, free_space, left_nritems, min_slot); 3547 out_unlock: 3548 btrfs_tree_unlock(right); 3549 free_extent_buffer(right); 3550 return 1; 3551 } 3552 3553 /* 3554 * push some data in the path leaf to the left, trying to free up at 3555 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3556 * 3557 * max_slot can put a limit on how far into the leaf we'll push items. The 3558 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3559 * items 3560 */ 3561 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3562 struct btrfs_root *root, 3563 struct btrfs_path *path, int data_size, 3564 int empty, struct extent_buffer *left, 3565 int free_space, u32 right_nritems, 3566 u32 max_slot) 3567 { 3568 struct btrfs_disk_key disk_key; 3569 struct extent_buffer *right = path->nodes[0]; 3570 int i; 3571 int push_space = 0; 3572 int push_items = 0; 3573 struct btrfs_item *item; 3574 u32 old_left_nritems; 3575 u32 nr; 3576 int ret = 0; 3577 u32 this_item_size; 3578 u32 old_left_item_size; 3579 struct btrfs_map_token token; 3580 3581 btrfs_init_map_token(&token); 3582 3583 if (empty) 3584 nr = min(right_nritems, max_slot); 3585 else 3586 nr = min(right_nritems - 1, max_slot); 3587 3588 for (i = 0; i < nr; i++) { 3589 item = btrfs_item_nr(right, i); 3590 3591 if (!empty && push_items > 0) { 3592 if (path->slots[0] < i) 3593 break; 3594 if (path->slots[0] == i) { 3595 int space = btrfs_leaf_free_space(root, right); 3596 if (space + push_space * 2 > free_space) 3597 break; 3598 } 3599 } 3600 3601 if (path->slots[0] == i) 3602 push_space += data_size; 3603 3604 this_item_size = btrfs_item_size(right, item); 3605 if (this_item_size + sizeof(*item) + push_space > free_space) 3606 break; 3607 3608 push_items++; 3609 push_space += this_item_size + sizeof(*item); 3610 } 3611 3612 if (push_items == 0) { 3613 ret = 1; 3614 goto out; 3615 } 3616 if (!empty && push_items == btrfs_header_nritems(right)) 3617 WARN_ON(1); 3618 3619 /* push data from right to left */ 3620 copy_extent_buffer(left, right, 3621 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3622 btrfs_item_nr_offset(0), 3623 push_items * sizeof(struct btrfs_item)); 3624 3625 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3626 btrfs_item_offset_nr(right, push_items - 1); 3627 3628 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3629 leaf_data_end(root, left) - push_space, 3630 btrfs_leaf_data(right) + 3631 btrfs_item_offset_nr(right, push_items - 1), 3632 push_space); 3633 old_left_nritems = btrfs_header_nritems(left); 3634 BUG_ON(old_left_nritems <= 0); 3635 3636 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3637 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3638 u32 ioff; 3639 3640 item = btrfs_item_nr(left, i); 3641 3642 ioff = btrfs_token_item_offset(left, item, &token); 3643 btrfs_set_token_item_offset(left, item, 3644 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3645 &token); 3646 } 3647 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3648 3649 /* fixup right node */ 3650 if (push_items > right_nritems) 3651 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3652 right_nritems); 3653 3654 if (push_items < right_nritems) { 3655 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3656 leaf_data_end(root, right); 3657 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3658 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3659 btrfs_leaf_data(right) + 3660 leaf_data_end(root, right), push_space); 3661 3662 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3663 btrfs_item_nr_offset(push_items), 3664 (btrfs_header_nritems(right) - push_items) * 3665 sizeof(struct btrfs_item)); 3666 } 3667 right_nritems -= push_items; 3668 btrfs_set_header_nritems(right, right_nritems); 3669 push_space = BTRFS_LEAF_DATA_SIZE(root); 3670 for (i = 0; i < right_nritems; i++) { 3671 item = btrfs_item_nr(right, i); 3672 3673 push_space = push_space - btrfs_token_item_size(right, 3674 item, &token); 3675 btrfs_set_token_item_offset(right, item, push_space, &token); 3676 } 3677 3678 btrfs_mark_buffer_dirty(left); 3679 if (right_nritems) 3680 btrfs_mark_buffer_dirty(right); 3681 else 3682 clean_tree_block(trans, root, right); 3683 3684 btrfs_item_key(right, &disk_key, 0); 3685 fixup_low_keys(trans, root, path, &disk_key, 1); 3686 3687 /* then fixup the leaf pointer in the path */ 3688 if (path->slots[0] < push_items) { 3689 path->slots[0] += old_left_nritems; 3690 btrfs_tree_unlock(path->nodes[0]); 3691 free_extent_buffer(path->nodes[0]); 3692 path->nodes[0] = left; 3693 path->slots[1] -= 1; 3694 } else { 3695 btrfs_tree_unlock(left); 3696 free_extent_buffer(left); 3697 path->slots[0] -= push_items; 3698 } 3699 BUG_ON(path->slots[0] < 0); 3700 return ret; 3701 out: 3702 btrfs_tree_unlock(left); 3703 free_extent_buffer(left); 3704 return ret; 3705 } 3706 3707 /* 3708 * push some data in the path leaf to the left, trying to free up at 3709 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3710 * 3711 * max_slot can put a limit on how far into the leaf we'll push items. The 3712 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3713 * items 3714 */ 3715 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3716 *root, struct btrfs_path *path, int min_data_size, 3717 int data_size, int empty, u32 max_slot) 3718 { 3719 struct extent_buffer *right = path->nodes[0]; 3720 struct extent_buffer *left; 3721 int slot; 3722 int free_space; 3723 u32 right_nritems; 3724 int ret = 0; 3725 3726 slot = path->slots[1]; 3727 if (slot == 0) 3728 return 1; 3729 if (!path->nodes[1]) 3730 return 1; 3731 3732 right_nritems = btrfs_header_nritems(right); 3733 if (right_nritems == 0) 3734 return 1; 3735 3736 btrfs_assert_tree_locked(path->nodes[1]); 3737 3738 left = read_node_slot(root, path->nodes[1], slot - 1); 3739 if (left == NULL) 3740 return 1; 3741 3742 btrfs_tree_lock(left); 3743 btrfs_set_lock_blocking(left); 3744 3745 free_space = btrfs_leaf_free_space(root, left); 3746 if (free_space < data_size) { 3747 ret = 1; 3748 goto out; 3749 } 3750 3751 /* cow and double check */ 3752 ret = btrfs_cow_block(trans, root, left, 3753 path->nodes[1], slot - 1, &left); 3754 if (ret) { 3755 /* we hit -ENOSPC, but it isn't fatal here */ 3756 if (ret == -ENOSPC) 3757 ret = 1; 3758 goto out; 3759 } 3760 3761 free_space = btrfs_leaf_free_space(root, left); 3762 if (free_space < data_size) { 3763 ret = 1; 3764 goto out; 3765 } 3766 3767 return __push_leaf_left(trans, root, path, min_data_size, 3768 empty, left, free_space, right_nritems, 3769 max_slot); 3770 out: 3771 btrfs_tree_unlock(left); 3772 free_extent_buffer(left); 3773 return ret; 3774 } 3775 3776 /* 3777 * split the path's leaf in two, making sure there is at least data_size 3778 * available for the resulting leaf level of the path. 3779 */ 3780 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3781 struct btrfs_root *root, 3782 struct btrfs_path *path, 3783 struct extent_buffer *l, 3784 struct extent_buffer *right, 3785 int slot, int mid, int nritems) 3786 { 3787 int data_copy_size; 3788 int rt_data_off; 3789 int i; 3790 struct btrfs_disk_key disk_key; 3791 struct btrfs_map_token token; 3792 3793 btrfs_init_map_token(&token); 3794 3795 nritems = nritems - mid; 3796 btrfs_set_header_nritems(right, nritems); 3797 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 3798 3799 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3800 btrfs_item_nr_offset(mid), 3801 nritems * sizeof(struct btrfs_item)); 3802 3803 copy_extent_buffer(right, l, 3804 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 3805 data_copy_size, btrfs_leaf_data(l) + 3806 leaf_data_end(root, l), data_copy_size); 3807 3808 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 3809 btrfs_item_end_nr(l, mid); 3810 3811 for (i = 0; i < nritems; i++) { 3812 struct btrfs_item *item = btrfs_item_nr(right, i); 3813 u32 ioff; 3814 3815 ioff = btrfs_token_item_offset(right, item, &token); 3816 btrfs_set_token_item_offset(right, item, 3817 ioff + rt_data_off, &token); 3818 } 3819 3820 btrfs_set_header_nritems(l, mid); 3821 btrfs_item_key(right, &disk_key, 0); 3822 insert_ptr(trans, root, path, &disk_key, right->start, 3823 path->slots[1] + 1, 1); 3824 3825 btrfs_mark_buffer_dirty(right); 3826 btrfs_mark_buffer_dirty(l); 3827 BUG_ON(path->slots[0] != slot); 3828 3829 if (mid <= slot) { 3830 btrfs_tree_unlock(path->nodes[0]); 3831 free_extent_buffer(path->nodes[0]); 3832 path->nodes[0] = right; 3833 path->slots[0] -= mid; 3834 path->slots[1] += 1; 3835 } else { 3836 btrfs_tree_unlock(right); 3837 free_extent_buffer(right); 3838 } 3839 3840 BUG_ON(path->slots[0] < 0); 3841 } 3842 3843 /* 3844 * double splits happen when we need to insert a big item in the middle 3845 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3846 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3847 * A B C 3848 * 3849 * We avoid this by trying to push the items on either side of our target 3850 * into the adjacent leaves. If all goes well we can avoid the double split 3851 * completely. 3852 */ 3853 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3854 struct btrfs_root *root, 3855 struct btrfs_path *path, 3856 int data_size) 3857 { 3858 int ret; 3859 int progress = 0; 3860 int slot; 3861 u32 nritems; 3862 3863 slot = path->slots[0]; 3864 3865 /* 3866 * try to push all the items after our slot into the 3867 * right leaf 3868 */ 3869 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 3870 if (ret < 0) 3871 return ret; 3872 3873 if (ret == 0) 3874 progress++; 3875 3876 nritems = btrfs_header_nritems(path->nodes[0]); 3877 /* 3878 * our goal is to get our slot at the start or end of a leaf. If 3879 * we've done so we're done 3880 */ 3881 if (path->slots[0] == 0 || path->slots[0] == nritems) 3882 return 0; 3883 3884 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3885 return 0; 3886 3887 /* try to push all the items before our slot into the next leaf */ 3888 slot = path->slots[0]; 3889 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 3890 if (ret < 0) 3891 return ret; 3892 3893 if (ret == 0) 3894 progress++; 3895 3896 if (progress) 3897 return 0; 3898 return 1; 3899 } 3900 3901 /* 3902 * split the path's leaf in two, making sure there is at least data_size 3903 * available for the resulting leaf level of the path. 3904 * 3905 * returns 0 if all went well and < 0 on failure. 3906 */ 3907 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3908 struct btrfs_root *root, 3909 struct btrfs_key *ins_key, 3910 struct btrfs_path *path, int data_size, 3911 int extend) 3912 { 3913 struct btrfs_disk_key disk_key; 3914 struct extent_buffer *l; 3915 u32 nritems; 3916 int mid; 3917 int slot; 3918 struct extent_buffer *right; 3919 int ret = 0; 3920 int wret; 3921 int split; 3922 int num_doubles = 0; 3923 int tried_avoid_double = 0; 3924 3925 l = path->nodes[0]; 3926 slot = path->slots[0]; 3927 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3928 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 3929 return -EOVERFLOW; 3930 3931 /* first try to make some room by pushing left and right */ 3932 if (data_size) { 3933 wret = push_leaf_right(trans, root, path, data_size, 3934 data_size, 0, 0); 3935 if (wret < 0) 3936 return wret; 3937 if (wret) { 3938 wret = push_leaf_left(trans, root, path, data_size, 3939 data_size, 0, (u32)-1); 3940 if (wret < 0) 3941 return wret; 3942 } 3943 l = path->nodes[0]; 3944 3945 /* did the pushes work? */ 3946 if (btrfs_leaf_free_space(root, l) >= data_size) 3947 return 0; 3948 } 3949 3950 if (!path->nodes[1]) { 3951 ret = insert_new_root(trans, root, path, 1); 3952 if (ret) 3953 return ret; 3954 } 3955 again: 3956 split = 1; 3957 l = path->nodes[0]; 3958 slot = path->slots[0]; 3959 nritems = btrfs_header_nritems(l); 3960 mid = (nritems + 1) / 2; 3961 3962 if (mid <= slot) { 3963 if (nritems == 1 || 3964 leaf_space_used(l, mid, nritems - mid) + data_size > 3965 BTRFS_LEAF_DATA_SIZE(root)) { 3966 if (slot >= nritems) { 3967 split = 0; 3968 } else { 3969 mid = slot; 3970 if (mid != nritems && 3971 leaf_space_used(l, mid, nritems - mid) + 3972 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3973 if (data_size && !tried_avoid_double) 3974 goto push_for_double; 3975 split = 2; 3976 } 3977 } 3978 } 3979 } else { 3980 if (leaf_space_used(l, 0, mid) + data_size > 3981 BTRFS_LEAF_DATA_SIZE(root)) { 3982 if (!extend && data_size && slot == 0) { 3983 split = 0; 3984 } else if ((extend || !data_size) && slot == 0) { 3985 mid = 1; 3986 } else { 3987 mid = slot; 3988 if (mid != nritems && 3989 leaf_space_used(l, mid, nritems - mid) + 3990 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3991 if (data_size && !tried_avoid_double) 3992 goto push_for_double; 3993 split = 2 ; 3994 } 3995 } 3996 } 3997 } 3998 3999 if (split == 0) 4000 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4001 else 4002 btrfs_item_key(l, &disk_key, mid); 4003 4004 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 4005 root->root_key.objectid, 4006 &disk_key, 0, l->start, 0); 4007 if (IS_ERR(right)) 4008 return PTR_ERR(right); 4009 4010 root_add_used(root, root->leafsize); 4011 4012 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4013 btrfs_set_header_bytenr(right, right->start); 4014 btrfs_set_header_generation(right, trans->transid); 4015 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4016 btrfs_set_header_owner(right, root->root_key.objectid); 4017 btrfs_set_header_level(right, 0); 4018 write_extent_buffer(right, root->fs_info->fsid, 4019 (unsigned long)btrfs_header_fsid(right), 4020 BTRFS_FSID_SIZE); 4021 4022 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 4023 (unsigned long)btrfs_header_chunk_tree_uuid(right), 4024 BTRFS_UUID_SIZE); 4025 4026 if (split == 0) { 4027 if (mid <= slot) { 4028 btrfs_set_header_nritems(right, 0); 4029 insert_ptr(trans, root, path, &disk_key, right->start, 4030 path->slots[1] + 1, 1); 4031 btrfs_tree_unlock(path->nodes[0]); 4032 free_extent_buffer(path->nodes[0]); 4033 path->nodes[0] = right; 4034 path->slots[0] = 0; 4035 path->slots[1] += 1; 4036 } else { 4037 btrfs_set_header_nritems(right, 0); 4038 insert_ptr(trans, root, path, &disk_key, right->start, 4039 path->slots[1], 1); 4040 btrfs_tree_unlock(path->nodes[0]); 4041 free_extent_buffer(path->nodes[0]); 4042 path->nodes[0] = right; 4043 path->slots[0] = 0; 4044 if (path->slots[1] == 0) 4045 fixup_low_keys(trans, root, path, 4046 &disk_key, 1); 4047 } 4048 btrfs_mark_buffer_dirty(right); 4049 return ret; 4050 } 4051 4052 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4053 4054 if (split == 2) { 4055 BUG_ON(num_doubles != 0); 4056 num_doubles++; 4057 goto again; 4058 } 4059 4060 return 0; 4061 4062 push_for_double: 4063 push_for_double_split(trans, root, path, data_size); 4064 tried_avoid_double = 1; 4065 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4066 return 0; 4067 goto again; 4068 } 4069 4070 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4071 struct btrfs_root *root, 4072 struct btrfs_path *path, int ins_len) 4073 { 4074 struct btrfs_key key; 4075 struct extent_buffer *leaf; 4076 struct btrfs_file_extent_item *fi; 4077 u64 extent_len = 0; 4078 u32 item_size; 4079 int ret; 4080 4081 leaf = path->nodes[0]; 4082 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4083 4084 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4085 key.type != BTRFS_EXTENT_CSUM_KEY); 4086 4087 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4088 return 0; 4089 4090 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4091 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4092 fi = btrfs_item_ptr(leaf, path->slots[0], 4093 struct btrfs_file_extent_item); 4094 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4095 } 4096 btrfs_release_path(path); 4097 4098 path->keep_locks = 1; 4099 path->search_for_split = 1; 4100 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4101 path->search_for_split = 0; 4102 if (ret < 0) 4103 goto err; 4104 4105 ret = -EAGAIN; 4106 leaf = path->nodes[0]; 4107 /* if our item isn't there or got smaller, return now */ 4108 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4109 goto err; 4110 4111 /* the leaf has changed, it now has room. return now */ 4112 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4113 goto err; 4114 4115 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4116 fi = btrfs_item_ptr(leaf, path->slots[0], 4117 struct btrfs_file_extent_item); 4118 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4119 goto err; 4120 } 4121 4122 btrfs_set_path_blocking(path); 4123 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4124 if (ret) 4125 goto err; 4126 4127 path->keep_locks = 0; 4128 btrfs_unlock_up_safe(path, 1); 4129 return 0; 4130 err: 4131 path->keep_locks = 0; 4132 return ret; 4133 } 4134 4135 static noinline int split_item(struct btrfs_trans_handle *trans, 4136 struct btrfs_root *root, 4137 struct btrfs_path *path, 4138 struct btrfs_key *new_key, 4139 unsigned long split_offset) 4140 { 4141 struct extent_buffer *leaf; 4142 struct btrfs_item *item; 4143 struct btrfs_item *new_item; 4144 int slot; 4145 char *buf; 4146 u32 nritems; 4147 u32 item_size; 4148 u32 orig_offset; 4149 struct btrfs_disk_key disk_key; 4150 4151 leaf = path->nodes[0]; 4152 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4153 4154 btrfs_set_path_blocking(path); 4155 4156 item = btrfs_item_nr(leaf, path->slots[0]); 4157 orig_offset = btrfs_item_offset(leaf, item); 4158 item_size = btrfs_item_size(leaf, item); 4159 4160 buf = kmalloc(item_size, GFP_NOFS); 4161 if (!buf) 4162 return -ENOMEM; 4163 4164 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4165 path->slots[0]), item_size); 4166 4167 slot = path->slots[0] + 1; 4168 nritems = btrfs_header_nritems(leaf); 4169 if (slot != nritems) { 4170 /* shift the items */ 4171 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4172 btrfs_item_nr_offset(slot), 4173 (nritems - slot) * sizeof(struct btrfs_item)); 4174 } 4175 4176 btrfs_cpu_key_to_disk(&disk_key, new_key); 4177 btrfs_set_item_key(leaf, &disk_key, slot); 4178 4179 new_item = btrfs_item_nr(leaf, slot); 4180 4181 btrfs_set_item_offset(leaf, new_item, orig_offset); 4182 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4183 4184 btrfs_set_item_offset(leaf, item, 4185 orig_offset + item_size - split_offset); 4186 btrfs_set_item_size(leaf, item, split_offset); 4187 4188 btrfs_set_header_nritems(leaf, nritems + 1); 4189 4190 /* write the data for the start of the original item */ 4191 write_extent_buffer(leaf, buf, 4192 btrfs_item_ptr_offset(leaf, path->slots[0]), 4193 split_offset); 4194 4195 /* write the data for the new item */ 4196 write_extent_buffer(leaf, buf + split_offset, 4197 btrfs_item_ptr_offset(leaf, slot), 4198 item_size - split_offset); 4199 btrfs_mark_buffer_dirty(leaf); 4200 4201 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4202 kfree(buf); 4203 return 0; 4204 } 4205 4206 /* 4207 * This function splits a single item into two items, 4208 * giving 'new_key' to the new item and splitting the 4209 * old one at split_offset (from the start of the item). 4210 * 4211 * The path may be released by this operation. After 4212 * the split, the path is pointing to the old item. The 4213 * new item is going to be in the same node as the old one. 4214 * 4215 * Note, the item being split must be smaller enough to live alone on 4216 * a tree block with room for one extra struct btrfs_item 4217 * 4218 * This allows us to split the item in place, keeping a lock on the 4219 * leaf the entire time. 4220 */ 4221 int btrfs_split_item(struct btrfs_trans_handle *trans, 4222 struct btrfs_root *root, 4223 struct btrfs_path *path, 4224 struct btrfs_key *new_key, 4225 unsigned long split_offset) 4226 { 4227 int ret; 4228 ret = setup_leaf_for_split(trans, root, path, 4229 sizeof(struct btrfs_item)); 4230 if (ret) 4231 return ret; 4232 4233 ret = split_item(trans, root, path, new_key, split_offset); 4234 return ret; 4235 } 4236 4237 /* 4238 * This function duplicate a item, giving 'new_key' to the new item. 4239 * It guarantees both items live in the same tree leaf and the new item 4240 * is contiguous with the original item. 4241 * 4242 * This allows us to split file extent in place, keeping a lock on the 4243 * leaf the entire time. 4244 */ 4245 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4246 struct btrfs_root *root, 4247 struct btrfs_path *path, 4248 struct btrfs_key *new_key) 4249 { 4250 struct extent_buffer *leaf; 4251 int ret; 4252 u32 item_size; 4253 4254 leaf = path->nodes[0]; 4255 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4256 ret = setup_leaf_for_split(trans, root, path, 4257 item_size + sizeof(struct btrfs_item)); 4258 if (ret) 4259 return ret; 4260 4261 path->slots[0]++; 4262 setup_items_for_insert(trans, root, path, new_key, &item_size, 4263 item_size, item_size + 4264 sizeof(struct btrfs_item), 1); 4265 leaf = path->nodes[0]; 4266 memcpy_extent_buffer(leaf, 4267 btrfs_item_ptr_offset(leaf, path->slots[0]), 4268 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4269 item_size); 4270 return 0; 4271 } 4272 4273 /* 4274 * make the item pointed to by the path smaller. new_size indicates 4275 * how small to make it, and from_end tells us if we just chop bytes 4276 * off the end of the item or if we shift the item to chop bytes off 4277 * the front. 4278 */ 4279 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 4280 struct btrfs_root *root, 4281 struct btrfs_path *path, 4282 u32 new_size, int from_end) 4283 { 4284 int slot; 4285 struct extent_buffer *leaf; 4286 struct btrfs_item *item; 4287 u32 nritems; 4288 unsigned int data_end; 4289 unsigned int old_data_start; 4290 unsigned int old_size; 4291 unsigned int size_diff; 4292 int i; 4293 struct btrfs_map_token token; 4294 4295 btrfs_init_map_token(&token); 4296 4297 leaf = path->nodes[0]; 4298 slot = path->slots[0]; 4299 4300 old_size = btrfs_item_size_nr(leaf, slot); 4301 if (old_size == new_size) 4302 return; 4303 4304 nritems = btrfs_header_nritems(leaf); 4305 data_end = leaf_data_end(root, leaf); 4306 4307 old_data_start = btrfs_item_offset_nr(leaf, slot); 4308 4309 size_diff = old_size - new_size; 4310 4311 BUG_ON(slot < 0); 4312 BUG_ON(slot >= nritems); 4313 4314 /* 4315 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4316 */ 4317 /* first correct the data pointers */ 4318 for (i = slot; i < nritems; i++) { 4319 u32 ioff; 4320 item = btrfs_item_nr(leaf, i); 4321 4322 ioff = btrfs_token_item_offset(leaf, item, &token); 4323 btrfs_set_token_item_offset(leaf, item, 4324 ioff + size_diff, &token); 4325 } 4326 4327 /* shift the data */ 4328 if (from_end) { 4329 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4330 data_end + size_diff, btrfs_leaf_data(leaf) + 4331 data_end, old_data_start + new_size - data_end); 4332 } else { 4333 struct btrfs_disk_key disk_key; 4334 u64 offset; 4335 4336 btrfs_item_key(leaf, &disk_key, slot); 4337 4338 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4339 unsigned long ptr; 4340 struct btrfs_file_extent_item *fi; 4341 4342 fi = btrfs_item_ptr(leaf, slot, 4343 struct btrfs_file_extent_item); 4344 fi = (struct btrfs_file_extent_item *)( 4345 (unsigned long)fi - size_diff); 4346 4347 if (btrfs_file_extent_type(leaf, fi) == 4348 BTRFS_FILE_EXTENT_INLINE) { 4349 ptr = btrfs_item_ptr_offset(leaf, slot); 4350 memmove_extent_buffer(leaf, ptr, 4351 (unsigned long)fi, 4352 offsetof(struct btrfs_file_extent_item, 4353 disk_bytenr)); 4354 } 4355 } 4356 4357 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4358 data_end + size_diff, btrfs_leaf_data(leaf) + 4359 data_end, old_data_start - data_end); 4360 4361 offset = btrfs_disk_key_offset(&disk_key); 4362 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4363 btrfs_set_item_key(leaf, &disk_key, slot); 4364 if (slot == 0) 4365 fixup_low_keys(trans, root, path, &disk_key, 1); 4366 } 4367 4368 item = btrfs_item_nr(leaf, slot); 4369 btrfs_set_item_size(leaf, item, new_size); 4370 btrfs_mark_buffer_dirty(leaf); 4371 4372 if (btrfs_leaf_free_space(root, leaf) < 0) { 4373 btrfs_print_leaf(root, leaf); 4374 BUG(); 4375 } 4376 } 4377 4378 /* 4379 * make the item pointed to by the path bigger, data_size is the new size. 4380 */ 4381 void btrfs_extend_item(struct btrfs_trans_handle *trans, 4382 struct btrfs_root *root, struct btrfs_path *path, 4383 u32 data_size) 4384 { 4385 int slot; 4386 struct extent_buffer *leaf; 4387 struct btrfs_item *item; 4388 u32 nritems; 4389 unsigned int data_end; 4390 unsigned int old_data; 4391 unsigned int old_size; 4392 int i; 4393 struct btrfs_map_token token; 4394 4395 btrfs_init_map_token(&token); 4396 4397 leaf = path->nodes[0]; 4398 4399 nritems = btrfs_header_nritems(leaf); 4400 data_end = leaf_data_end(root, leaf); 4401 4402 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4403 btrfs_print_leaf(root, leaf); 4404 BUG(); 4405 } 4406 slot = path->slots[0]; 4407 old_data = btrfs_item_end_nr(leaf, slot); 4408 4409 BUG_ON(slot < 0); 4410 if (slot >= nritems) { 4411 btrfs_print_leaf(root, leaf); 4412 printk(KERN_CRIT "slot %d too large, nritems %d\n", 4413 slot, nritems); 4414 BUG_ON(1); 4415 } 4416 4417 /* 4418 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4419 */ 4420 /* first correct the data pointers */ 4421 for (i = slot; i < nritems; i++) { 4422 u32 ioff; 4423 item = btrfs_item_nr(leaf, i); 4424 4425 ioff = btrfs_token_item_offset(leaf, item, &token); 4426 btrfs_set_token_item_offset(leaf, item, 4427 ioff - data_size, &token); 4428 } 4429 4430 /* shift the data */ 4431 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4432 data_end - data_size, btrfs_leaf_data(leaf) + 4433 data_end, old_data - data_end); 4434 4435 data_end = old_data; 4436 old_size = btrfs_item_size_nr(leaf, slot); 4437 item = btrfs_item_nr(leaf, slot); 4438 btrfs_set_item_size(leaf, item, old_size + data_size); 4439 btrfs_mark_buffer_dirty(leaf); 4440 4441 if (btrfs_leaf_free_space(root, leaf) < 0) { 4442 btrfs_print_leaf(root, leaf); 4443 BUG(); 4444 } 4445 } 4446 4447 /* 4448 * this is a helper for btrfs_insert_empty_items, the main goal here is 4449 * to save stack depth by doing the bulk of the work in a function 4450 * that doesn't call btrfs_search_slot 4451 */ 4452 void setup_items_for_insert(struct btrfs_trans_handle *trans, 4453 struct btrfs_root *root, struct btrfs_path *path, 4454 struct btrfs_key *cpu_key, u32 *data_size, 4455 u32 total_data, u32 total_size, int nr) 4456 { 4457 struct btrfs_item *item; 4458 int i; 4459 u32 nritems; 4460 unsigned int data_end; 4461 struct btrfs_disk_key disk_key; 4462 struct extent_buffer *leaf; 4463 int slot; 4464 struct btrfs_map_token token; 4465 4466 btrfs_init_map_token(&token); 4467 4468 leaf = path->nodes[0]; 4469 slot = path->slots[0]; 4470 4471 nritems = btrfs_header_nritems(leaf); 4472 data_end = leaf_data_end(root, leaf); 4473 4474 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4475 btrfs_print_leaf(root, leaf); 4476 printk(KERN_CRIT "not enough freespace need %u have %d\n", 4477 total_size, btrfs_leaf_free_space(root, leaf)); 4478 BUG(); 4479 } 4480 4481 if (slot != nritems) { 4482 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4483 4484 if (old_data < data_end) { 4485 btrfs_print_leaf(root, leaf); 4486 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4487 slot, old_data, data_end); 4488 BUG_ON(1); 4489 } 4490 /* 4491 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4492 */ 4493 /* first correct the data pointers */ 4494 for (i = slot; i < nritems; i++) { 4495 u32 ioff; 4496 4497 item = btrfs_item_nr(leaf, i); 4498 ioff = btrfs_token_item_offset(leaf, item, &token); 4499 btrfs_set_token_item_offset(leaf, item, 4500 ioff - total_data, &token); 4501 } 4502 /* shift the items */ 4503 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4504 btrfs_item_nr_offset(slot), 4505 (nritems - slot) * sizeof(struct btrfs_item)); 4506 4507 /* shift the data */ 4508 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4509 data_end - total_data, btrfs_leaf_data(leaf) + 4510 data_end, old_data - data_end); 4511 data_end = old_data; 4512 } 4513 4514 /* setup the item for the new data */ 4515 for (i = 0; i < nr; i++) { 4516 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4517 btrfs_set_item_key(leaf, &disk_key, slot + i); 4518 item = btrfs_item_nr(leaf, slot + i); 4519 btrfs_set_token_item_offset(leaf, item, 4520 data_end - data_size[i], &token); 4521 data_end -= data_size[i]; 4522 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4523 } 4524 4525 btrfs_set_header_nritems(leaf, nritems + nr); 4526 4527 if (slot == 0) { 4528 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4529 fixup_low_keys(trans, root, path, &disk_key, 1); 4530 } 4531 btrfs_unlock_up_safe(path, 1); 4532 btrfs_mark_buffer_dirty(leaf); 4533 4534 if (btrfs_leaf_free_space(root, leaf) < 0) { 4535 btrfs_print_leaf(root, leaf); 4536 BUG(); 4537 } 4538 } 4539 4540 /* 4541 * Given a key and some data, insert items into the tree. 4542 * This does all the path init required, making room in the tree if needed. 4543 */ 4544 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4545 struct btrfs_root *root, 4546 struct btrfs_path *path, 4547 struct btrfs_key *cpu_key, u32 *data_size, 4548 int nr) 4549 { 4550 int ret = 0; 4551 int slot; 4552 int i; 4553 u32 total_size = 0; 4554 u32 total_data = 0; 4555 4556 for (i = 0; i < nr; i++) 4557 total_data += data_size[i]; 4558 4559 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4560 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4561 if (ret == 0) 4562 return -EEXIST; 4563 if (ret < 0) 4564 return ret; 4565 4566 slot = path->slots[0]; 4567 BUG_ON(slot < 0); 4568 4569 setup_items_for_insert(trans, root, path, cpu_key, data_size, 4570 total_data, total_size, nr); 4571 return 0; 4572 } 4573 4574 /* 4575 * Given a key and some data, insert an item into the tree. 4576 * This does all the path init required, making room in the tree if needed. 4577 */ 4578 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4579 *root, struct btrfs_key *cpu_key, void *data, u32 4580 data_size) 4581 { 4582 int ret = 0; 4583 struct btrfs_path *path; 4584 struct extent_buffer *leaf; 4585 unsigned long ptr; 4586 4587 path = btrfs_alloc_path(); 4588 if (!path) 4589 return -ENOMEM; 4590 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4591 if (!ret) { 4592 leaf = path->nodes[0]; 4593 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4594 write_extent_buffer(leaf, data, ptr, data_size); 4595 btrfs_mark_buffer_dirty(leaf); 4596 } 4597 btrfs_free_path(path); 4598 return ret; 4599 } 4600 4601 /* 4602 * delete the pointer from a given node. 4603 * 4604 * the tree should have been previously balanced so the deletion does not 4605 * empty a node. 4606 */ 4607 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4608 struct btrfs_path *path, int level, int slot) 4609 { 4610 struct extent_buffer *parent = path->nodes[level]; 4611 u32 nritems; 4612 int ret; 4613 4614 nritems = btrfs_header_nritems(parent); 4615 if (slot != nritems - 1) { 4616 if (level) 4617 tree_mod_log_eb_move(root->fs_info, parent, slot, 4618 slot + 1, nritems - slot - 1); 4619 memmove_extent_buffer(parent, 4620 btrfs_node_key_ptr_offset(slot), 4621 btrfs_node_key_ptr_offset(slot + 1), 4622 sizeof(struct btrfs_key_ptr) * 4623 (nritems - slot - 1)); 4624 } else if (level) { 4625 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4626 MOD_LOG_KEY_REMOVE); 4627 BUG_ON(ret < 0); 4628 } 4629 4630 nritems--; 4631 btrfs_set_header_nritems(parent, nritems); 4632 if (nritems == 0 && parent == root->node) { 4633 BUG_ON(btrfs_header_level(root->node) != 1); 4634 /* just turn the root into a leaf and break */ 4635 btrfs_set_header_level(root->node, 0); 4636 } else if (slot == 0) { 4637 struct btrfs_disk_key disk_key; 4638 4639 btrfs_node_key(parent, &disk_key, 0); 4640 fixup_low_keys(trans, root, path, &disk_key, level + 1); 4641 } 4642 btrfs_mark_buffer_dirty(parent); 4643 } 4644 4645 /* 4646 * a helper function to delete the leaf pointed to by path->slots[1] and 4647 * path->nodes[1]. 4648 * 4649 * This deletes the pointer in path->nodes[1] and frees the leaf 4650 * block extent. zero is returned if it all worked out, < 0 otherwise. 4651 * 4652 * The path must have already been setup for deleting the leaf, including 4653 * all the proper balancing. path->nodes[1] must be locked. 4654 */ 4655 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4656 struct btrfs_root *root, 4657 struct btrfs_path *path, 4658 struct extent_buffer *leaf) 4659 { 4660 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4661 del_ptr(trans, root, path, 1, path->slots[1]); 4662 4663 /* 4664 * btrfs_free_extent is expensive, we want to make sure we 4665 * aren't holding any locks when we call it 4666 */ 4667 btrfs_unlock_up_safe(path, 0); 4668 4669 root_sub_used(root, leaf->len); 4670 4671 extent_buffer_get(leaf); 4672 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4673 free_extent_buffer_stale(leaf); 4674 } 4675 /* 4676 * delete the item at the leaf level in path. If that empties 4677 * the leaf, remove it from the tree 4678 */ 4679 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4680 struct btrfs_path *path, int slot, int nr) 4681 { 4682 struct extent_buffer *leaf; 4683 struct btrfs_item *item; 4684 int last_off; 4685 int dsize = 0; 4686 int ret = 0; 4687 int wret; 4688 int i; 4689 u32 nritems; 4690 struct btrfs_map_token token; 4691 4692 btrfs_init_map_token(&token); 4693 4694 leaf = path->nodes[0]; 4695 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4696 4697 for (i = 0; i < nr; i++) 4698 dsize += btrfs_item_size_nr(leaf, slot + i); 4699 4700 nritems = btrfs_header_nritems(leaf); 4701 4702 if (slot + nr != nritems) { 4703 int data_end = leaf_data_end(root, leaf); 4704 4705 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4706 data_end + dsize, 4707 btrfs_leaf_data(leaf) + data_end, 4708 last_off - data_end); 4709 4710 for (i = slot + nr; i < nritems; i++) { 4711 u32 ioff; 4712 4713 item = btrfs_item_nr(leaf, i); 4714 ioff = btrfs_token_item_offset(leaf, item, &token); 4715 btrfs_set_token_item_offset(leaf, item, 4716 ioff + dsize, &token); 4717 } 4718 4719 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4720 btrfs_item_nr_offset(slot + nr), 4721 sizeof(struct btrfs_item) * 4722 (nritems - slot - nr)); 4723 } 4724 btrfs_set_header_nritems(leaf, nritems - nr); 4725 nritems -= nr; 4726 4727 /* delete the leaf if we've emptied it */ 4728 if (nritems == 0) { 4729 if (leaf == root->node) { 4730 btrfs_set_header_level(leaf, 0); 4731 } else { 4732 btrfs_set_path_blocking(path); 4733 clean_tree_block(trans, root, leaf); 4734 btrfs_del_leaf(trans, root, path, leaf); 4735 } 4736 } else { 4737 int used = leaf_space_used(leaf, 0, nritems); 4738 if (slot == 0) { 4739 struct btrfs_disk_key disk_key; 4740 4741 btrfs_item_key(leaf, &disk_key, 0); 4742 fixup_low_keys(trans, root, path, &disk_key, 1); 4743 } 4744 4745 /* delete the leaf if it is mostly empty */ 4746 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4747 /* push_leaf_left fixes the path. 4748 * make sure the path still points to our leaf 4749 * for possible call to del_ptr below 4750 */ 4751 slot = path->slots[1]; 4752 extent_buffer_get(leaf); 4753 4754 btrfs_set_path_blocking(path); 4755 wret = push_leaf_left(trans, root, path, 1, 1, 4756 1, (u32)-1); 4757 if (wret < 0 && wret != -ENOSPC) 4758 ret = wret; 4759 4760 if (path->nodes[0] == leaf && 4761 btrfs_header_nritems(leaf)) { 4762 wret = push_leaf_right(trans, root, path, 1, 4763 1, 1, 0); 4764 if (wret < 0 && wret != -ENOSPC) 4765 ret = wret; 4766 } 4767 4768 if (btrfs_header_nritems(leaf) == 0) { 4769 path->slots[1] = slot; 4770 btrfs_del_leaf(trans, root, path, leaf); 4771 free_extent_buffer(leaf); 4772 ret = 0; 4773 } else { 4774 /* if we're still in the path, make sure 4775 * we're dirty. Otherwise, one of the 4776 * push_leaf functions must have already 4777 * dirtied this buffer 4778 */ 4779 if (path->nodes[0] == leaf) 4780 btrfs_mark_buffer_dirty(leaf); 4781 free_extent_buffer(leaf); 4782 } 4783 } else { 4784 btrfs_mark_buffer_dirty(leaf); 4785 } 4786 } 4787 return ret; 4788 } 4789 4790 /* 4791 * search the tree again to find a leaf with lesser keys 4792 * returns 0 if it found something or 1 if there are no lesser leaves. 4793 * returns < 0 on io errors. 4794 * 4795 * This may release the path, and so you may lose any locks held at the 4796 * time you call it. 4797 */ 4798 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4799 { 4800 struct btrfs_key key; 4801 struct btrfs_disk_key found_key; 4802 int ret; 4803 4804 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4805 4806 if (key.offset > 0) 4807 key.offset--; 4808 else if (key.type > 0) 4809 key.type--; 4810 else if (key.objectid > 0) 4811 key.objectid--; 4812 else 4813 return 1; 4814 4815 btrfs_release_path(path); 4816 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4817 if (ret < 0) 4818 return ret; 4819 btrfs_item_key(path->nodes[0], &found_key, 0); 4820 ret = comp_keys(&found_key, &key); 4821 if (ret < 0) 4822 return 0; 4823 return 1; 4824 } 4825 4826 /* 4827 * A helper function to walk down the tree starting at min_key, and looking 4828 * for nodes or leaves that are either in cache or have a minimum 4829 * transaction id. This is used by the btree defrag code, and tree logging 4830 * 4831 * This does not cow, but it does stuff the starting key it finds back 4832 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4833 * key and get a writable path. 4834 * 4835 * This does lock as it descends, and path->keep_locks should be set 4836 * to 1 by the caller. 4837 * 4838 * This honors path->lowest_level to prevent descent past a given level 4839 * of the tree. 4840 * 4841 * min_trans indicates the oldest transaction that you are interested 4842 * in walking through. Any nodes or leaves older than min_trans are 4843 * skipped over (without reading them). 4844 * 4845 * returns zero if something useful was found, < 0 on error and 1 if there 4846 * was nothing in the tree that matched the search criteria. 4847 */ 4848 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4849 struct btrfs_key *max_key, 4850 struct btrfs_path *path, int cache_only, 4851 u64 min_trans) 4852 { 4853 struct extent_buffer *cur; 4854 struct btrfs_key found_key; 4855 int slot; 4856 int sret; 4857 u32 nritems; 4858 int level; 4859 int ret = 1; 4860 4861 WARN_ON(!path->keep_locks); 4862 again: 4863 cur = btrfs_read_lock_root_node(root); 4864 level = btrfs_header_level(cur); 4865 WARN_ON(path->nodes[level]); 4866 path->nodes[level] = cur; 4867 path->locks[level] = BTRFS_READ_LOCK; 4868 4869 if (btrfs_header_generation(cur) < min_trans) { 4870 ret = 1; 4871 goto out; 4872 } 4873 while (1) { 4874 nritems = btrfs_header_nritems(cur); 4875 level = btrfs_header_level(cur); 4876 sret = bin_search(cur, min_key, level, &slot); 4877 4878 /* at the lowest level, we're done, setup the path and exit */ 4879 if (level == path->lowest_level) { 4880 if (slot >= nritems) 4881 goto find_next_key; 4882 ret = 0; 4883 path->slots[level] = slot; 4884 btrfs_item_key_to_cpu(cur, &found_key, slot); 4885 goto out; 4886 } 4887 if (sret && slot > 0) 4888 slot--; 4889 /* 4890 * check this node pointer against the cache_only and 4891 * min_trans parameters. If it isn't in cache or is too 4892 * old, skip to the next one. 4893 */ 4894 while (slot < nritems) { 4895 u64 blockptr; 4896 u64 gen; 4897 struct extent_buffer *tmp; 4898 struct btrfs_disk_key disk_key; 4899 4900 blockptr = btrfs_node_blockptr(cur, slot); 4901 gen = btrfs_node_ptr_generation(cur, slot); 4902 if (gen < min_trans) { 4903 slot++; 4904 continue; 4905 } 4906 if (!cache_only) 4907 break; 4908 4909 if (max_key) { 4910 btrfs_node_key(cur, &disk_key, slot); 4911 if (comp_keys(&disk_key, max_key) >= 0) { 4912 ret = 1; 4913 goto out; 4914 } 4915 } 4916 4917 tmp = btrfs_find_tree_block(root, blockptr, 4918 btrfs_level_size(root, level - 1)); 4919 4920 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 4921 free_extent_buffer(tmp); 4922 break; 4923 } 4924 if (tmp) 4925 free_extent_buffer(tmp); 4926 slot++; 4927 } 4928 find_next_key: 4929 /* 4930 * we didn't find a candidate key in this node, walk forward 4931 * and find another one 4932 */ 4933 if (slot >= nritems) { 4934 path->slots[level] = slot; 4935 btrfs_set_path_blocking(path); 4936 sret = btrfs_find_next_key(root, path, min_key, level, 4937 cache_only, min_trans); 4938 if (sret == 0) { 4939 btrfs_release_path(path); 4940 goto again; 4941 } else { 4942 goto out; 4943 } 4944 } 4945 /* save our key for returning back */ 4946 btrfs_node_key_to_cpu(cur, &found_key, slot); 4947 path->slots[level] = slot; 4948 if (level == path->lowest_level) { 4949 ret = 0; 4950 unlock_up(path, level, 1, 0, NULL); 4951 goto out; 4952 } 4953 btrfs_set_path_blocking(path); 4954 cur = read_node_slot(root, cur, slot); 4955 BUG_ON(!cur); /* -ENOMEM */ 4956 4957 btrfs_tree_read_lock(cur); 4958 4959 path->locks[level - 1] = BTRFS_READ_LOCK; 4960 path->nodes[level - 1] = cur; 4961 unlock_up(path, level, 1, 0, NULL); 4962 btrfs_clear_path_blocking(path, NULL, 0); 4963 } 4964 out: 4965 if (ret == 0) 4966 memcpy(min_key, &found_key, sizeof(found_key)); 4967 btrfs_set_path_blocking(path); 4968 return ret; 4969 } 4970 4971 static void tree_move_down(struct btrfs_root *root, 4972 struct btrfs_path *path, 4973 int *level, int root_level) 4974 { 4975 BUG_ON(*level == 0); 4976 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 4977 path->slots[*level]); 4978 path->slots[*level - 1] = 0; 4979 (*level)--; 4980 } 4981 4982 static int tree_move_next_or_upnext(struct btrfs_root *root, 4983 struct btrfs_path *path, 4984 int *level, int root_level) 4985 { 4986 int ret = 0; 4987 int nritems; 4988 nritems = btrfs_header_nritems(path->nodes[*level]); 4989 4990 path->slots[*level]++; 4991 4992 while (path->slots[*level] >= nritems) { 4993 if (*level == root_level) 4994 return -1; 4995 4996 /* move upnext */ 4997 path->slots[*level] = 0; 4998 free_extent_buffer(path->nodes[*level]); 4999 path->nodes[*level] = NULL; 5000 (*level)++; 5001 path->slots[*level]++; 5002 5003 nritems = btrfs_header_nritems(path->nodes[*level]); 5004 ret = 1; 5005 } 5006 return ret; 5007 } 5008 5009 /* 5010 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5011 * or down. 5012 */ 5013 static int tree_advance(struct btrfs_root *root, 5014 struct btrfs_path *path, 5015 int *level, int root_level, 5016 int allow_down, 5017 struct btrfs_key *key) 5018 { 5019 int ret; 5020 5021 if (*level == 0 || !allow_down) { 5022 ret = tree_move_next_or_upnext(root, path, level, root_level); 5023 } else { 5024 tree_move_down(root, path, level, root_level); 5025 ret = 0; 5026 } 5027 if (ret >= 0) { 5028 if (*level == 0) 5029 btrfs_item_key_to_cpu(path->nodes[*level], key, 5030 path->slots[*level]); 5031 else 5032 btrfs_node_key_to_cpu(path->nodes[*level], key, 5033 path->slots[*level]); 5034 } 5035 return ret; 5036 } 5037 5038 static int tree_compare_item(struct btrfs_root *left_root, 5039 struct btrfs_path *left_path, 5040 struct btrfs_path *right_path, 5041 char *tmp_buf) 5042 { 5043 int cmp; 5044 int len1, len2; 5045 unsigned long off1, off2; 5046 5047 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5048 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5049 if (len1 != len2) 5050 return 1; 5051 5052 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5053 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5054 right_path->slots[0]); 5055 5056 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5057 5058 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5059 if (cmp) 5060 return 1; 5061 return 0; 5062 } 5063 5064 #define ADVANCE 1 5065 #define ADVANCE_ONLY_NEXT -1 5066 5067 /* 5068 * This function compares two trees and calls the provided callback for 5069 * every changed/new/deleted item it finds. 5070 * If shared tree blocks are encountered, whole subtrees are skipped, making 5071 * the compare pretty fast on snapshotted subvolumes. 5072 * 5073 * This currently works on commit roots only. As commit roots are read only, 5074 * we don't do any locking. The commit roots are protected with transactions. 5075 * Transactions are ended and rejoined when a commit is tried in between. 5076 * 5077 * This function checks for modifications done to the trees while comparing. 5078 * If it detects a change, it aborts immediately. 5079 */ 5080 int btrfs_compare_trees(struct btrfs_root *left_root, 5081 struct btrfs_root *right_root, 5082 btrfs_changed_cb_t changed_cb, void *ctx) 5083 { 5084 int ret; 5085 int cmp; 5086 struct btrfs_trans_handle *trans = NULL; 5087 struct btrfs_path *left_path = NULL; 5088 struct btrfs_path *right_path = NULL; 5089 struct btrfs_key left_key; 5090 struct btrfs_key right_key; 5091 char *tmp_buf = NULL; 5092 int left_root_level; 5093 int right_root_level; 5094 int left_level; 5095 int right_level; 5096 int left_end_reached; 5097 int right_end_reached; 5098 int advance_left; 5099 int advance_right; 5100 u64 left_blockptr; 5101 u64 right_blockptr; 5102 u64 left_start_ctransid; 5103 u64 right_start_ctransid; 5104 u64 ctransid; 5105 5106 left_path = btrfs_alloc_path(); 5107 if (!left_path) { 5108 ret = -ENOMEM; 5109 goto out; 5110 } 5111 right_path = btrfs_alloc_path(); 5112 if (!right_path) { 5113 ret = -ENOMEM; 5114 goto out; 5115 } 5116 5117 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS); 5118 if (!tmp_buf) { 5119 ret = -ENOMEM; 5120 goto out; 5121 } 5122 5123 left_path->search_commit_root = 1; 5124 left_path->skip_locking = 1; 5125 right_path->search_commit_root = 1; 5126 right_path->skip_locking = 1; 5127 5128 spin_lock(&left_root->root_item_lock); 5129 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item); 5130 spin_unlock(&left_root->root_item_lock); 5131 5132 spin_lock(&right_root->root_item_lock); 5133 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item); 5134 spin_unlock(&right_root->root_item_lock); 5135 5136 trans = btrfs_join_transaction(left_root); 5137 if (IS_ERR(trans)) { 5138 ret = PTR_ERR(trans); 5139 trans = NULL; 5140 goto out; 5141 } 5142 5143 /* 5144 * Strategy: Go to the first items of both trees. Then do 5145 * 5146 * If both trees are at level 0 5147 * Compare keys of current items 5148 * If left < right treat left item as new, advance left tree 5149 * and repeat 5150 * If left > right treat right item as deleted, advance right tree 5151 * and repeat 5152 * If left == right do deep compare of items, treat as changed if 5153 * needed, advance both trees and repeat 5154 * If both trees are at the same level but not at level 0 5155 * Compare keys of current nodes/leafs 5156 * If left < right advance left tree and repeat 5157 * If left > right advance right tree and repeat 5158 * If left == right compare blockptrs of the next nodes/leafs 5159 * If they match advance both trees but stay at the same level 5160 * and repeat 5161 * If they don't match advance both trees while allowing to go 5162 * deeper and repeat 5163 * If tree levels are different 5164 * Advance the tree that needs it and repeat 5165 * 5166 * Advancing a tree means: 5167 * If we are at level 0, try to go to the next slot. If that's not 5168 * possible, go one level up and repeat. Stop when we found a level 5169 * where we could go to the next slot. We may at this point be on a 5170 * node or a leaf. 5171 * 5172 * If we are not at level 0 and not on shared tree blocks, go one 5173 * level deeper. 5174 * 5175 * If we are not at level 0 and on shared tree blocks, go one slot to 5176 * the right if possible or go up and right. 5177 */ 5178 5179 left_level = btrfs_header_level(left_root->commit_root); 5180 left_root_level = left_level; 5181 left_path->nodes[left_level] = left_root->commit_root; 5182 extent_buffer_get(left_path->nodes[left_level]); 5183 5184 right_level = btrfs_header_level(right_root->commit_root); 5185 right_root_level = right_level; 5186 right_path->nodes[right_level] = right_root->commit_root; 5187 extent_buffer_get(right_path->nodes[right_level]); 5188 5189 if (left_level == 0) 5190 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5191 &left_key, left_path->slots[left_level]); 5192 else 5193 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5194 &left_key, left_path->slots[left_level]); 5195 if (right_level == 0) 5196 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5197 &right_key, right_path->slots[right_level]); 5198 else 5199 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5200 &right_key, right_path->slots[right_level]); 5201 5202 left_end_reached = right_end_reached = 0; 5203 advance_left = advance_right = 0; 5204 5205 while (1) { 5206 /* 5207 * We need to make sure the transaction does not get committed 5208 * while we do anything on commit roots. This means, we need to 5209 * join and leave transactions for every item that we process. 5210 */ 5211 if (trans && btrfs_should_end_transaction(trans, left_root)) { 5212 btrfs_release_path(left_path); 5213 btrfs_release_path(right_path); 5214 5215 ret = btrfs_end_transaction(trans, left_root); 5216 trans = NULL; 5217 if (ret < 0) 5218 goto out; 5219 } 5220 /* now rejoin the transaction */ 5221 if (!trans) { 5222 trans = btrfs_join_transaction(left_root); 5223 if (IS_ERR(trans)) { 5224 ret = PTR_ERR(trans); 5225 trans = NULL; 5226 goto out; 5227 } 5228 5229 spin_lock(&left_root->root_item_lock); 5230 ctransid = btrfs_root_ctransid(&left_root->root_item); 5231 spin_unlock(&left_root->root_item_lock); 5232 if (ctransid != left_start_ctransid) 5233 left_start_ctransid = 0; 5234 5235 spin_lock(&right_root->root_item_lock); 5236 ctransid = btrfs_root_ctransid(&right_root->root_item); 5237 spin_unlock(&right_root->root_item_lock); 5238 if (ctransid != right_start_ctransid) 5239 right_start_ctransid = 0; 5240 5241 if (!left_start_ctransid || !right_start_ctransid) { 5242 WARN(1, KERN_WARNING 5243 "btrfs: btrfs_compare_tree detected " 5244 "a change in one of the trees while " 5245 "iterating. This is probably a " 5246 "bug.\n"); 5247 ret = -EIO; 5248 goto out; 5249 } 5250 5251 /* 5252 * the commit root may have changed, so start again 5253 * where we stopped 5254 */ 5255 left_path->lowest_level = left_level; 5256 right_path->lowest_level = right_level; 5257 ret = btrfs_search_slot(NULL, left_root, 5258 &left_key, left_path, 0, 0); 5259 if (ret < 0) 5260 goto out; 5261 ret = btrfs_search_slot(NULL, right_root, 5262 &right_key, right_path, 0, 0); 5263 if (ret < 0) 5264 goto out; 5265 } 5266 5267 if (advance_left && !left_end_reached) { 5268 ret = tree_advance(left_root, left_path, &left_level, 5269 left_root_level, 5270 advance_left != ADVANCE_ONLY_NEXT, 5271 &left_key); 5272 if (ret < 0) 5273 left_end_reached = ADVANCE; 5274 advance_left = 0; 5275 } 5276 if (advance_right && !right_end_reached) { 5277 ret = tree_advance(right_root, right_path, &right_level, 5278 right_root_level, 5279 advance_right != ADVANCE_ONLY_NEXT, 5280 &right_key); 5281 if (ret < 0) 5282 right_end_reached = ADVANCE; 5283 advance_right = 0; 5284 } 5285 5286 if (left_end_reached && right_end_reached) { 5287 ret = 0; 5288 goto out; 5289 } else if (left_end_reached) { 5290 if (right_level == 0) { 5291 ret = changed_cb(left_root, right_root, 5292 left_path, right_path, 5293 &right_key, 5294 BTRFS_COMPARE_TREE_DELETED, 5295 ctx); 5296 if (ret < 0) 5297 goto out; 5298 } 5299 advance_right = ADVANCE; 5300 continue; 5301 } else if (right_end_reached) { 5302 if (left_level == 0) { 5303 ret = changed_cb(left_root, right_root, 5304 left_path, right_path, 5305 &left_key, 5306 BTRFS_COMPARE_TREE_NEW, 5307 ctx); 5308 if (ret < 0) 5309 goto out; 5310 } 5311 advance_left = ADVANCE; 5312 continue; 5313 } 5314 5315 if (left_level == 0 && right_level == 0) { 5316 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5317 if (cmp < 0) { 5318 ret = changed_cb(left_root, right_root, 5319 left_path, right_path, 5320 &left_key, 5321 BTRFS_COMPARE_TREE_NEW, 5322 ctx); 5323 if (ret < 0) 5324 goto out; 5325 advance_left = ADVANCE; 5326 } else if (cmp > 0) { 5327 ret = changed_cb(left_root, right_root, 5328 left_path, right_path, 5329 &right_key, 5330 BTRFS_COMPARE_TREE_DELETED, 5331 ctx); 5332 if (ret < 0) 5333 goto out; 5334 advance_right = ADVANCE; 5335 } else { 5336 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5337 ret = tree_compare_item(left_root, left_path, 5338 right_path, tmp_buf); 5339 if (ret) { 5340 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5341 ret = changed_cb(left_root, right_root, 5342 left_path, right_path, 5343 &left_key, 5344 BTRFS_COMPARE_TREE_CHANGED, 5345 ctx); 5346 if (ret < 0) 5347 goto out; 5348 } 5349 advance_left = ADVANCE; 5350 advance_right = ADVANCE; 5351 } 5352 } else if (left_level == right_level) { 5353 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5354 if (cmp < 0) { 5355 advance_left = ADVANCE; 5356 } else if (cmp > 0) { 5357 advance_right = ADVANCE; 5358 } else { 5359 left_blockptr = btrfs_node_blockptr( 5360 left_path->nodes[left_level], 5361 left_path->slots[left_level]); 5362 right_blockptr = btrfs_node_blockptr( 5363 right_path->nodes[right_level], 5364 right_path->slots[right_level]); 5365 if (left_blockptr == right_blockptr) { 5366 /* 5367 * As we're on a shared block, don't 5368 * allow to go deeper. 5369 */ 5370 advance_left = ADVANCE_ONLY_NEXT; 5371 advance_right = ADVANCE_ONLY_NEXT; 5372 } else { 5373 advance_left = ADVANCE; 5374 advance_right = ADVANCE; 5375 } 5376 } 5377 } else if (left_level < right_level) { 5378 advance_right = ADVANCE; 5379 } else { 5380 advance_left = ADVANCE; 5381 } 5382 } 5383 5384 out: 5385 btrfs_free_path(left_path); 5386 btrfs_free_path(right_path); 5387 kfree(tmp_buf); 5388 5389 if (trans) { 5390 if (!ret) 5391 ret = btrfs_end_transaction(trans, left_root); 5392 else 5393 btrfs_end_transaction(trans, left_root); 5394 } 5395 5396 return ret; 5397 } 5398 5399 /* 5400 * this is similar to btrfs_next_leaf, but does not try to preserve 5401 * and fixup the path. It looks for and returns the next key in the 5402 * tree based on the current path and the cache_only and min_trans 5403 * parameters. 5404 * 5405 * 0 is returned if another key is found, < 0 if there are any errors 5406 * and 1 is returned if there are no higher keys in the tree 5407 * 5408 * path->keep_locks should be set to 1 on the search made before 5409 * calling this function. 5410 */ 5411 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5412 struct btrfs_key *key, int level, 5413 int cache_only, u64 min_trans) 5414 { 5415 int slot; 5416 struct extent_buffer *c; 5417 5418 WARN_ON(!path->keep_locks); 5419 while (level < BTRFS_MAX_LEVEL) { 5420 if (!path->nodes[level]) 5421 return 1; 5422 5423 slot = path->slots[level] + 1; 5424 c = path->nodes[level]; 5425 next: 5426 if (slot >= btrfs_header_nritems(c)) { 5427 int ret; 5428 int orig_lowest; 5429 struct btrfs_key cur_key; 5430 if (level + 1 >= BTRFS_MAX_LEVEL || 5431 !path->nodes[level + 1]) 5432 return 1; 5433 5434 if (path->locks[level + 1]) { 5435 level++; 5436 continue; 5437 } 5438 5439 slot = btrfs_header_nritems(c) - 1; 5440 if (level == 0) 5441 btrfs_item_key_to_cpu(c, &cur_key, slot); 5442 else 5443 btrfs_node_key_to_cpu(c, &cur_key, slot); 5444 5445 orig_lowest = path->lowest_level; 5446 btrfs_release_path(path); 5447 path->lowest_level = level; 5448 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5449 0, 0); 5450 path->lowest_level = orig_lowest; 5451 if (ret < 0) 5452 return ret; 5453 5454 c = path->nodes[level]; 5455 slot = path->slots[level]; 5456 if (ret == 0) 5457 slot++; 5458 goto next; 5459 } 5460 5461 if (level == 0) 5462 btrfs_item_key_to_cpu(c, key, slot); 5463 else { 5464 u64 blockptr = btrfs_node_blockptr(c, slot); 5465 u64 gen = btrfs_node_ptr_generation(c, slot); 5466 5467 if (cache_only) { 5468 struct extent_buffer *cur; 5469 cur = btrfs_find_tree_block(root, blockptr, 5470 btrfs_level_size(root, level - 1)); 5471 if (!cur || 5472 btrfs_buffer_uptodate(cur, gen, 1) <= 0) { 5473 slot++; 5474 if (cur) 5475 free_extent_buffer(cur); 5476 goto next; 5477 } 5478 free_extent_buffer(cur); 5479 } 5480 if (gen < min_trans) { 5481 slot++; 5482 goto next; 5483 } 5484 btrfs_node_key_to_cpu(c, key, slot); 5485 } 5486 return 0; 5487 } 5488 return 1; 5489 } 5490 5491 /* 5492 * search the tree again to find a leaf with greater keys 5493 * returns 0 if it found something or 1 if there are no greater leaves. 5494 * returns < 0 on io errors. 5495 */ 5496 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5497 { 5498 return btrfs_next_old_leaf(root, path, 0); 5499 } 5500 5501 /* Release the path up to but not including the given level */ 5502 static void btrfs_release_level(struct btrfs_path *path, int level) 5503 { 5504 int i; 5505 5506 for (i = 0; i < level; i++) { 5507 path->slots[i] = 0; 5508 if (!path->nodes[i]) 5509 continue; 5510 if (path->locks[i]) { 5511 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 5512 path->locks[i] = 0; 5513 } 5514 free_extent_buffer(path->nodes[i]); 5515 path->nodes[i] = NULL; 5516 } 5517 } 5518 5519 /* 5520 * This function assumes 2 things 5521 * 5522 * 1) You are using path->keep_locks 5523 * 2) You are not inserting items. 5524 * 5525 * If either of these are not true do not use this function. If you need a next 5526 * leaf with either of these not being true then this function can be easily 5527 * adapted to do that, but at the moment these are the limitations. 5528 */ 5529 int btrfs_next_leaf_write(struct btrfs_trans_handle *trans, 5530 struct btrfs_root *root, struct btrfs_path *path, 5531 int del) 5532 { 5533 struct extent_buffer *b; 5534 struct btrfs_key key; 5535 u32 nritems; 5536 int level = 1; 5537 int slot; 5538 int ret = 1; 5539 int write_lock_level = BTRFS_MAX_LEVEL; 5540 int ins_len = del ? -1 : 0; 5541 5542 WARN_ON(!(path->keep_locks || path->really_keep_locks)); 5543 5544 nritems = btrfs_header_nritems(path->nodes[0]); 5545 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5546 5547 while (path->nodes[level]) { 5548 nritems = btrfs_header_nritems(path->nodes[level]); 5549 if (!(path->locks[level] & BTRFS_WRITE_LOCK)) { 5550 search: 5551 btrfs_release_path(path); 5552 ret = btrfs_search_slot(trans, root, &key, path, 5553 ins_len, 1); 5554 if (ret < 0) 5555 goto out; 5556 level = 1; 5557 continue; 5558 } 5559 5560 if (path->slots[level] >= nritems - 1) { 5561 level++; 5562 continue; 5563 } 5564 5565 btrfs_release_level(path, level); 5566 break; 5567 } 5568 5569 if (!path->nodes[level]) { 5570 ret = 1; 5571 goto out; 5572 } 5573 5574 path->slots[level]++; 5575 b = path->nodes[level]; 5576 5577 while (b) { 5578 level = btrfs_header_level(b); 5579 5580 if (!should_cow_block(trans, root, b)) 5581 goto cow_done; 5582 5583 btrfs_set_path_blocking(path); 5584 ret = btrfs_cow_block(trans, root, b, 5585 path->nodes[level + 1], 5586 path->slots[level + 1], &b); 5587 if (ret) 5588 goto out; 5589 cow_done: 5590 path->nodes[level] = b; 5591 btrfs_clear_path_blocking(path, NULL, 0); 5592 if (level != 0) { 5593 ret = setup_nodes_for_search(trans, root, path, b, 5594 level, ins_len, 5595 &write_lock_level); 5596 if (ret == -EAGAIN) 5597 goto search; 5598 if (ret) 5599 goto out; 5600 5601 b = path->nodes[level]; 5602 slot = path->slots[level]; 5603 5604 ret = read_block_for_search(trans, root, path, 5605 &b, level, slot, &key, 0); 5606 if (ret == -EAGAIN) 5607 goto search; 5608 if (ret) 5609 goto out; 5610 level = btrfs_header_level(b); 5611 if (!btrfs_try_tree_write_lock(b)) { 5612 btrfs_set_path_blocking(path); 5613 btrfs_tree_lock(b); 5614 btrfs_clear_path_blocking(path, b, 5615 BTRFS_WRITE_LOCK); 5616 } 5617 path->locks[level] = BTRFS_WRITE_LOCK; 5618 path->nodes[level] = b; 5619 path->slots[level] = 0; 5620 } else { 5621 path->slots[level] = 0; 5622 ret = 0; 5623 break; 5624 } 5625 } 5626 5627 out: 5628 if (ret) 5629 btrfs_release_path(path); 5630 5631 return ret; 5632 } 5633 5634 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5635 u64 time_seq) 5636 { 5637 int slot; 5638 int level; 5639 struct extent_buffer *c; 5640 struct extent_buffer *next; 5641 struct btrfs_key key; 5642 u32 nritems; 5643 int ret; 5644 int old_spinning = path->leave_spinning; 5645 int next_rw_lock = 0; 5646 5647 nritems = btrfs_header_nritems(path->nodes[0]); 5648 if (nritems == 0) 5649 return 1; 5650 5651 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5652 again: 5653 level = 1; 5654 next = NULL; 5655 next_rw_lock = 0; 5656 btrfs_release_path(path); 5657 5658 path->keep_locks = 1; 5659 path->leave_spinning = 1; 5660 5661 if (time_seq) 5662 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5663 else 5664 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5665 path->keep_locks = 0; 5666 5667 if (ret < 0) 5668 return ret; 5669 5670 nritems = btrfs_header_nritems(path->nodes[0]); 5671 /* 5672 * by releasing the path above we dropped all our locks. A balance 5673 * could have added more items next to the key that used to be 5674 * at the very end of the block. So, check again here and 5675 * advance the path if there are now more items available. 5676 */ 5677 if (nritems > 0 && path->slots[0] < nritems - 1) { 5678 if (ret == 0) 5679 path->slots[0]++; 5680 ret = 0; 5681 goto done; 5682 } 5683 5684 while (level < BTRFS_MAX_LEVEL) { 5685 if (!path->nodes[level]) { 5686 ret = 1; 5687 goto done; 5688 } 5689 5690 slot = path->slots[level] + 1; 5691 c = path->nodes[level]; 5692 if (slot >= btrfs_header_nritems(c)) { 5693 level++; 5694 if (level == BTRFS_MAX_LEVEL) { 5695 ret = 1; 5696 goto done; 5697 } 5698 continue; 5699 } 5700 5701 if (next) { 5702 btrfs_tree_unlock_rw(next, next_rw_lock); 5703 free_extent_buffer(next); 5704 } 5705 5706 next = c; 5707 next_rw_lock = path->locks[level]; 5708 ret = read_block_for_search(NULL, root, path, &next, level, 5709 slot, &key, 0); 5710 if (ret == -EAGAIN) 5711 goto again; 5712 5713 if (ret < 0) { 5714 btrfs_release_path(path); 5715 goto done; 5716 } 5717 5718 if (!path->skip_locking) { 5719 ret = btrfs_try_tree_read_lock(next); 5720 if (!ret && time_seq) { 5721 /* 5722 * If we don't get the lock, we may be racing 5723 * with push_leaf_left, holding that lock while 5724 * itself waiting for the leaf we've currently 5725 * locked. To solve this situation, we give up 5726 * on our lock and cycle. 5727 */ 5728 free_extent_buffer(next); 5729 btrfs_release_path(path); 5730 cond_resched(); 5731 goto again; 5732 } 5733 if (!ret) { 5734 btrfs_set_path_blocking(path); 5735 btrfs_tree_read_lock(next); 5736 btrfs_clear_path_blocking(path, next, 5737 BTRFS_READ_LOCK); 5738 } 5739 next_rw_lock = BTRFS_READ_LOCK; 5740 } 5741 break; 5742 } 5743 path->slots[level] = slot; 5744 while (1) { 5745 level--; 5746 c = path->nodes[level]; 5747 if (path->locks[level]) 5748 btrfs_tree_unlock_rw(c, path->locks[level]); 5749 5750 free_extent_buffer(c); 5751 path->nodes[level] = next; 5752 path->slots[level] = 0; 5753 if (!path->skip_locking) 5754 path->locks[level] = next_rw_lock; 5755 if (!level) 5756 break; 5757 5758 ret = read_block_for_search(NULL, root, path, &next, level, 5759 0, &key, 0); 5760 if (ret == -EAGAIN) 5761 goto again; 5762 5763 if (ret < 0) { 5764 btrfs_release_path(path); 5765 goto done; 5766 } 5767 5768 if (!path->skip_locking) { 5769 ret = btrfs_try_tree_read_lock(next); 5770 if (!ret) { 5771 btrfs_set_path_blocking(path); 5772 btrfs_tree_read_lock(next); 5773 btrfs_clear_path_blocking(path, next, 5774 BTRFS_READ_LOCK); 5775 } 5776 next_rw_lock = BTRFS_READ_LOCK; 5777 } 5778 } 5779 ret = 0; 5780 done: 5781 unlock_up(path, 0, 1, 0, NULL); 5782 path->leave_spinning = old_spinning; 5783 if (!old_spinning) 5784 btrfs_set_path_blocking(path); 5785 5786 return ret; 5787 } 5788 5789 /* 5790 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5791 * searching until it gets past min_objectid or finds an item of 'type' 5792 * 5793 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5794 */ 5795 int btrfs_previous_item(struct btrfs_root *root, 5796 struct btrfs_path *path, u64 min_objectid, 5797 int type) 5798 { 5799 struct btrfs_key found_key; 5800 struct extent_buffer *leaf; 5801 u32 nritems; 5802 int ret; 5803 5804 while (1) { 5805 if (path->slots[0] == 0) { 5806 btrfs_set_path_blocking(path); 5807 ret = btrfs_prev_leaf(root, path); 5808 if (ret != 0) 5809 return ret; 5810 } else { 5811 path->slots[0]--; 5812 } 5813 leaf = path->nodes[0]; 5814 nritems = btrfs_header_nritems(leaf); 5815 if (nritems == 0) 5816 return 1; 5817 if (path->slots[0] == nritems) 5818 path->slots[0]--; 5819 5820 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5821 if (found_key.objectid < min_objectid) 5822 break; 5823 if (found_key.type == type) 5824 return 0; 5825 if (found_key.objectid == min_objectid && 5826 found_key.type < type) 5827 break; 5828 } 5829 return 1; 5830 } 5831