1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "print-tree.h" 24 #include "locking.h" 25 26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 27 *root, struct btrfs_path *path, int level); 28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_key *ins_key, 30 struct btrfs_path *path, int data_size, int extend); 31 static int push_node_left(struct btrfs_trans_handle *trans, 32 struct btrfs_root *root, struct extent_buffer *dst, 33 struct extent_buffer *src, int empty); 34 static int balance_node_right(struct btrfs_trans_handle *trans, 35 struct btrfs_root *root, 36 struct extent_buffer *dst_buf, 37 struct extent_buffer *src_buf); 38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 39 struct btrfs_path *path, int level, int slot); 40 41 struct btrfs_path *btrfs_alloc_path(void) 42 { 43 struct btrfs_path *path; 44 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 45 if (path) 46 path->reada = 1; 47 return path; 48 } 49 50 /* 51 * set all locked nodes in the path to blocking locks. This should 52 * be done before scheduling 53 */ 54 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 55 { 56 int i; 57 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 58 if (p->nodes[i] && p->locks[i]) 59 btrfs_set_lock_blocking(p->nodes[i]); 60 } 61 } 62 63 /* 64 * reset all the locked nodes in the patch to spinning locks. 65 * 66 * held is used to keep lockdep happy, when lockdep is enabled 67 * we set held to a blocking lock before we go around and 68 * retake all the spinlocks in the path. You can safely use NULL 69 * for held 70 */ 71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 72 struct extent_buffer *held) 73 { 74 int i; 75 76 #ifdef CONFIG_DEBUG_LOCK_ALLOC 77 /* lockdep really cares that we take all of these spinlocks 78 * in the right order. If any of the locks in the path are not 79 * currently blocking, it is going to complain. So, make really 80 * really sure by forcing the path to blocking before we clear 81 * the path blocking. 82 */ 83 if (held) 84 btrfs_set_lock_blocking(held); 85 btrfs_set_path_blocking(p); 86 #endif 87 88 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 89 if (p->nodes[i] && p->locks[i]) 90 btrfs_clear_lock_blocking(p->nodes[i]); 91 } 92 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 if (held) 95 btrfs_clear_lock_blocking(held); 96 #endif 97 } 98 99 /* this also releases the path */ 100 void btrfs_free_path(struct btrfs_path *p) 101 { 102 btrfs_release_path(NULL, p); 103 kmem_cache_free(btrfs_path_cachep, p); 104 } 105 106 /* 107 * path release drops references on the extent buffers in the path 108 * and it drops any locks held by this path 109 * 110 * It is safe to call this on paths that no locks or extent buffers held. 111 */ 112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) 113 { 114 int i; 115 116 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 117 p->slots[i] = 0; 118 if (!p->nodes[i]) 119 continue; 120 if (p->locks[i]) { 121 btrfs_tree_unlock(p->nodes[i]); 122 p->locks[i] = 0; 123 } 124 free_extent_buffer(p->nodes[i]); 125 p->nodes[i] = NULL; 126 } 127 } 128 129 /* 130 * safely gets a reference on the root node of a tree. A lock 131 * is not taken, so a concurrent writer may put a different node 132 * at the root of the tree. See btrfs_lock_root_node for the 133 * looping required. 134 * 135 * The extent buffer returned by this has a reference taken, so 136 * it won't disappear. It may stop being the root of the tree 137 * at any time because there are no locks held. 138 */ 139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 140 { 141 struct extent_buffer *eb; 142 spin_lock(&root->node_lock); 143 eb = root->node; 144 extent_buffer_get(eb); 145 spin_unlock(&root->node_lock); 146 return eb; 147 } 148 149 /* loop around taking references on and locking the root node of the 150 * tree until you end up with a lock on the root. A locked buffer 151 * is returned, with a reference held. 152 */ 153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 154 { 155 struct extent_buffer *eb; 156 157 while (1) { 158 eb = btrfs_root_node(root); 159 btrfs_tree_lock(eb); 160 161 spin_lock(&root->node_lock); 162 if (eb == root->node) { 163 spin_unlock(&root->node_lock); 164 break; 165 } 166 spin_unlock(&root->node_lock); 167 168 btrfs_tree_unlock(eb); 169 free_extent_buffer(eb); 170 } 171 return eb; 172 } 173 174 /* cowonly root (everything not a reference counted cow subvolume), just get 175 * put onto a simple dirty list. transaction.c walks this to make sure they 176 * get properly updated on disk. 177 */ 178 static void add_root_to_dirty_list(struct btrfs_root *root) 179 { 180 if (root->track_dirty && list_empty(&root->dirty_list)) { 181 list_add(&root->dirty_list, 182 &root->fs_info->dirty_cowonly_roots); 183 } 184 } 185 186 /* 187 * used by snapshot creation to make a copy of a root for a tree with 188 * a given objectid. The buffer with the new root node is returned in 189 * cow_ret, and this func returns zero on success or a negative error code. 190 */ 191 int btrfs_copy_root(struct btrfs_trans_handle *trans, 192 struct btrfs_root *root, 193 struct extent_buffer *buf, 194 struct extent_buffer **cow_ret, u64 new_root_objectid) 195 { 196 struct extent_buffer *cow; 197 u32 nritems; 198 int ret = 0; 199 int level; 200 struct btrfs_root *new_root; 201 202 new_root = kmalloc(sizeof(*new_root), GFP_NOFS); 203 if (!new_root) 204 return -ENOMEM; 205 206 memcpy(new_root, root, sizeof(*new_root)); 207 new_root->root_key.objectid = new_root_objectid; 208 209 WARN_ON(root->ref_cows && trans->transid != 210 root->fs_info->running_transaction->transid); 211 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 212 213 level = btrfs_header_level(buf); 214 nritems = btrfs_header_nritems(buf); 215 216 cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0, 217 new_root_objectid, trans->transid, 218 level, buf->start, 0); 219 if (IS_ERR(cow)) { 220 kfree(new_root); 221 return PTR_ERR(cow); 222 } 223 224 copy_extent_buffer(cow, buf, 0, 0, cow->len); 225 btrfs_set_header_bytenr(cow, cow->start); 226 btrfs_set_header_generation(cow, trans->transid); 227 btrfs_set_header_owner(cow, new_root_objectid); 228 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); 229 230 write_extent_buffer(cow, root->fs_info->fsid, 231 (unsigned long)btrfs_header_fsid(cow), 232 BTRFS_FSID_SIZE); 233 234 WARN_ON(btrfs_header_generation(buf) > trans->transid); 235 ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL); 236 kfree(new_root); 237 238 if (ret) 239 return ret; 240 241 btrfs_mark_buffer_dirty(cow); 242 *cow_ret = cow; 243 return 0; 244 } 245 246 /* 247 * does the dirty work in cow of a single block. The parent block (if 248 * supplied) is updated to point to the new cow copy. The new buffer is marked 249 * dirty and returned locked. If you modify the block it needs to be marked 250 * dirty again. 251 * 252 * search_start -- an allocation hint for the new block 253 * 254 * empty_size -- a hint that you plan on doing more cow. This is the size in 255 * bytes the allocator should try to find free next to the block it returns. 256 * This is just a hint and may be ignored by the allocator. 257 */ 258 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 259 struct btrfs_root *root, 260 struct extent_buffer *buf, 261 struct extent_buffer *parent, int parent_slot, 262 struct extent_buffer **cow_ret, 263 u64 search_start, u64 empty_size) 264 { 265 u64 parent_start; 266 struct extent_buffer *cow; 267 u32 nritems; 268 int ret = 0; 269 int level; 270 int unlock_orig = 0; 271 272 if (*cow_ret == buf) 273 unlock_orig = 1; 274 275 btrfs_assert_tree_locked(buf); 276 277 if (parent) 278 parent_start = parent->start; 279 else 280 parent_start = 0; 281 282 WARN_ON(root->ref_cows && trans->transid != 283 root->fs_info->running_transaction->transid); 284 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 285 286 level = btrfs_header_level(buf); 287 nritems = btrfs_header_nritems(buf); 288 289 cow = btrfs_alloc_free_block(trans, root, buf->len, 290 parent_start, root->root_key.objectid, 291 trans->transid, level, 292 search_start, empty_size); 293 if (IS_ERR(cow)) 294 return PTR_ERR(cow); 295 296 /* cow is set to blocking by btrfs_init_new_buffer */ 297 298 copy_extent_buffer(cow, buf, 0, 0, cow->len); 299 btrfs_set_header_bytenr(cow, cow->start); 300 btrfs_set_header_generation(cow, trans->transid); 301 btrfs_set_header_owner(cow, root->root_key.objectid); 302 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); 303 304 write_extent_buffer(cow, root->fs_info->fsid, 305 (unsigned long)btrfs_header_fsid(cow), 306 BTRFS_FSID_SIZE); 307 308 WARN_ON(btrfs_header_generation(buf) > trans->transid); 309 if (btrfs_header_generation(buf) != trans->transid) { 310 u32 nr_extents; 311 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents); 312 if (ret) 313 return ret; 314 315 ret = btrfs_cache_ref(trans, root, buf, nr_extents); 316 WARN_ON(ret); 317 } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) { 318 /* 319 * There are only two places that can drop reference to 320 * tree blocks owned by living reloc trees, one is here, 321 * the other place is btrfs_drop_subtree. In both places, 322 * we check reference count while tree block is locked. 323 * Furthermore, if reference count is one, it won't get 324 * increased by someone else. 325 */ 326 u32 refs; 327 ret = btrfs_lookup_extent_ref(trans, root, buf->start, 328 buf->len, &refs); 329 BUG_ON(ret); 330 if (refs == 1) { 331 ret = btrfs_update_ref(trans, root, buf, cow, 332 0, nritems); 333 clean_tree_block(trans, root, buf); 334 } else { 335 ret = btrfs_inc_ref(trans, root, buf, cow, NULL); 336 } 337 BUG_ON(ret); 338 } else { 339 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems); 340 if (ret) 341 return ret; 342 clean_tree_block(trans, root, buf); 343 } 344 345 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 346 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start); 347 WARN_ON(ret); 348 } 349 350 if (buf == root->node) { 351 WARN_ON(parent && parent != buf); 352 353 spin_lock(&root->node_lock); 354 root->node = cow; 355 extent_buffer_get(cow); 356 spin_unlock(&root->node_lock); 357 358 if (buf != root->commit_root) { 359 btrfs_free_extent(trans, root, buf->start, 360 buf->len, buf->start, 361 root->root_key.objectid, 362 btrfs_header_generation(buf), 363 level, 1); 364 } 365 free_extent_buffer(buf); 366 add_root_to_dirty_list(root); 367 } else { 368 btrfs_set_node_blockptr(parent, parent_slot, 369 cow->start); 370 WARN_ON(trans->transid == 0); 371 btrfs_set_node_ptr_generation(parent, parent_slot, 372 trans->transid); 373 btrfs_mark_buffer_dirty(parent); 374 WARN_ON(btrfs_header_generation(parent) != trans->transid); 375 btrfs_free_extent(trans, root, buf->start, buf->len, 376 parent_start, btrfs_header_owner(parent), 377 btrfs_header_generation(parent), level, 1); 378 } 379 if (unlock_orig) 380 btrfs_tree_unlock(buf); 381 free_extent_buffer(buf); 382 btrfs_mark_buffer_dirty(cow); 383 *cow_ret = cow; 384 return 0; 385 } 386 387 /* 388 * cows a single block, see __btrfs_cow_block for the real work. 389 * This version of it has extra checks so that a block isn't cow'd more than 390 * once per transaction, as long as it hasn't been written yet 391 */ 392 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 393 struct btrfs_root *root, struct extent_buffer *buf, 394 struct extent_buffer *parent, int parent_slot, 395 struct extent_buffer **cow_ret) 396 { 397 u64 search_start; 398 int ret; 399 400 if (trans->transaction != root->fs_info->running_transaction) { 401 printk(KERN_CRIT "trans %llu running %llu\n", 402 (unsigned long long)trans->transid, 403 (unsigned long long) 404 root->fs_info->running_transaction->transid); 405 WARN_ON(1); 406 } 407 if (trans->transid != root->fs_info->generation) { 408 printk(KERN_CRIT "trans %llu running %llu\n", 409 (unsigned long long)trans->transid, 410 (unsigned long long)root->fs_info->generation); 411 WARN_ON(1); 412 } 413 414 if (btrfs_header_generation(buf) == trans->transid && 415 btrfs_header_owner(buf) == root->root_key.objectid && 416 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 417 *cow_ret = buf; 418 return 0; 419 } 420 421 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 422 423 if (parent) 424 btrfs_set_lock_blocking(parent); 425 btrfs_set_lock_blocking(buf); 426 427 ret = __btrfs_cow_block(trans, root, buf, parent, 428 parent_slot, cow_ret, search_start, 0); 429 return ret; 430 } 431 432 /* 433 * helper function for defrag to decide if two blocks pointed to by a 434 * node are actually close by 435 */ 436 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 437 { 438 if (blocknr < other && other - (blocknr + blocksize) < 32768) 439 return 1; 440 if (blocknr > other && blocknr - (other + blocksize) < 32768) 441 return 1; 442 return 0; 443 } 444 445 /* 446 * compare two keys in a memcmp fashion 447 */ 448 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 449 { 450 struct btrfs_key k1; 451 452 btrfs_disk_key_to_cpu(&k1, disk); 453 454 if (k1.objectid > k2->objectid) 455 return 1; 456 if (k1.objectid < k2->objectid) 457 return -1; 458 if (k1.type > k2->type) 459 return 1; 460 if (k1.type < k2->type) 461 return -1; 462 if (k1.offset > k2->offset) 463 return 1; 464 if (k1.offset < k2->offset) 465 return -1; 466 return 0; 467 } 468 469 /* 470 * same as comp_keys only with two btrfs_key's 471 */ 472 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 473 { 474 if (k1->objectid > k2->objectid) 475 return 1; 476 if (k1->objectid < k2->objectid) 477 return -1; 478 if (k1->type > k2->type) 479 return 1; 480 if (k1->type < k2->type) 481 return -1; 482 if (k1->offset > k2->offset) 483 return 1; 484 if (k1->offset < k2->offset) 485 return -1; 486 return 0; 487 } 488 489 /* 490 * this is used by the defrag code to go through all the 491 * leaves pointed to by a node and reallocate them so that 492 * disk order is close to key order 493 */ 494 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 495 struct btrfs_root *root, struct extent_buffer *parent, 496 int start_slot, int cache_only, u64 *last_ret, 497 struct btrfs_key *progress) 498 { 499 struct extent_buffer *cur; 500 u64 blocknr; 501 u64 gen; 502 u64 search_start = *last_ret; 503 u64 last_block = 0; 504 u64 other; 505 u32 parent_nritems; 506 int end_slot; 507 int i; 508 int err = 0; 509 int parent_level; 510 int uptodate; 511 u32 blocksize; 512 int progress_passed = 0; 513 struct btrfs_disk_key disk_key; 514 515 parent_level = btrfs_header_level(parent); 516 if (cache_only && parent_level != 1) 517 return 0; 518 519 if (trans->transaction != root->fs_info->running_transaction) 520 WARN_ON(1); 521 if (trans->transid != root->fs_info->generation) 522 WARN_ON(1); 523 524 parent_nritems = btrfs_header_nritems(parent); 525 blocksize = btrfs_level_size(root, parent_level - 1); 526 end_slot = parent_nritems; 527 528 if (parent_nritems == 1) 529 return 0; 530 531 btrfs_set_lock_blocking(parent); 532 533 for (i = start_slot; i < end_slot; i++) { 534 int close = 1; 535 536 if (!parent->map_token) { 537 map_extent_buffer(parent, 538 btrfs_node_key_ptr_offset(i), 539 sizeof(struct btrfs_key_ptr), 540 &parent->map_token, &parent->kaddr, 541 &parent->map_start, &parent->map_len, 542 KM_USER1); 543 } 544 btrfs_node_key(parent, &disk_key, i); 545 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 546 continue; 547 548 progress_passed = 1; 549 blocknr = btrfs_node_blockptr(parent, i); 550 gen = btrfs_node_ptr_generation(parent, i); 551 if (last_block == 0) 552 last_block = blocknr; 553 554 if (i > 0) { 555 other = btrfs_node_blockptr(parent, i - 1); 556 close = close_blocks(blocknr, other, blocksize); 557 } 558 if (!close && i < end_slot - 2) { 559 other = btrfs_node_blockptr(parent, i + 1); 560 close = close_blocks(blocknr, other, blocksize); 561 } 562 if (close) { 563 last_block = blocknr; 564 continue; 565 } 566 if (parent->map_token) { 567 unmap_extent_buffer(parent, parent->map_token, 568 KM_USER1); 569 parent->map_token = NULL; 570 } 571 572 cur = btrfs_find_tree_block(root, blocknr, blocksize); 573 if (cur) 574 uptodate = btrfs_buffer_uptodate(cur, gen); 575 else 576 uptodate = 0; 577 if (!cur || !uptodate) { 578 if (cache_only) { 579 free_extent_buffer(cur); 580 continue; 581 } 582 if (!cur) { 583 cur = read_tree_block(root, blocknr, 584 blocksize, gen); 585 } else if (!uptodate) { 586 btrfs_read_buffer(cur, gen); 587 } 588 } 589 if (search_start == 0) 590 search_start = last_block; 591 592 btrfs_tree_lock(cur); 593 btrfs_set_lock_blocking(cur); 594 err = __btrfs_cow_block(trans, root, cur, parent, i, 595 &cur, search_start, 596 min(16 * blocksize, 597 (end_slot - i) * blocksize)); 598 if (err) { 599 btrfs_tree_unlock(cur); 600 free_extent_buffer(cur); 601 break; 602 } 603 search_start = cur->start; 604 last_block = cur->start; 605 *last_ret = search_start; 606 btrfs_tree_unlock(cur); 607 free_extent_buffer(cur); 608 } 609 if (parent->map_token) { 610 unmap_extent_buffer(parent, parent->map_token, 611 KM_USER1); 612 parent->map_token = NULL; 613 } 614 return err; 615 } 616 617 /* 618 * The leaf data grows from end-to-front in the node. 619 * this returns the address of the start of the last item, 620 * which is the stop of the leaf data stack 621 */ 622 static inline unsigned int leaf_data_end(struct btrfs_root *root, 623 struct extent_buffer *leaf) 624 { 625 u32 nr = btrfs_header_nritems(leaf); 626 if (nr == 0) 627 return BTRFS_LEAF_DATA_SIZE(root); 628 return btrfs_item_offset_nr(leaf, nr - 1); 629 } 630 631 /* 632 * extra debugging checks to make sure all the items in a key are 633 * well formed and in the proper order 634 */ 635 static int check_node(struct btrfs_root *root, struct btrfs_path *path, 636 int level) 637 { 638 struct extent_buffer *parent = NULL; 639 struct extent_buffer *node = path->nodes[level]; 640 struct btrfs_disk_key parent_key; 641 struct btrfs_disk_key node_key; 642 int parent_slot; 643 int slot; 644 struct btrfs_key cpukey; 645 u32 nritems = btrfs_header_nritems(node); 646 647 if (path->nodes[level + 1]) 648 parent = path->nodes[level + 1]; 649 650 slot = path->slots[level]; 651 BUG_ON(nritems == 0); 652 if (parent) { 653 parent_slot = path->slots[level + 1]; 654 btrfs_node_key(parent, &parent_key, parent_slot); 655 btrfs_node_key(node, &node_key, 0); 656 BUG_ON(memcmp(&parent_key, &node_key, 657 sizeof(struct btrfs_disk_key))); 658 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 659 btrfs_header_bytenr(node)); 660 } 661 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); 662 if (slot != 0) { 663 btrfs_node_key_to_cpu(node, &cpukey, slot - 1); 664 btrfs_node_key(node, &node_key, slot); 665 BUG_ON(comp_keys(&node_key, &cpukey) <= 0); 666 } 667 if (slot < nritems - 1) { 668 btrfs_node_key_to_cpu(node, &cpukey, slot + 1); 669 btrfs_node_key(node, &node_key, slot); 670 BUG_ON(comp_keys(&node_key, &cpukey) >= 0); 671 } 672 return 0; 673 } 674 675 /* 676 * extra checking to make sure all the items in a leaf are 677 * well formed and in the proper order 678 */ 679 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, 680 int level) 681 { 682 struct extent_buffer *leaf = path->nodes[level]; 683 struct extent_buffer *parent = NULL; 684 int parent_slot; 685 struct btrfs_key cpukey; 686 struct btrfs_disk_key parent_key; 687 struct btrfs_disk_key leaf_key; 688 int slot = path->slots[0]; 689 690 u32 nritems = btrfs_header_nritems(leaf); 691 692 if (path->nodes[level + 1]) 693 parent = path->nodes[level + 1]; 694 695 if (nritems == 0) 696 return 0; 697 698 if (parent) { 699 parent_slot = path->slots[level + 1]; 700 btrfs_node_key(parent, &parent_key, parent_slot); 701 btrfs_item_key(leaf, &leaf_key, 0); 702 703 BUG_ON(memcmp(&parent_key, &leaf_key, 704 sizeof(struct btrfs_disk_key))); 705 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 706 btrfs_header_bytenr(leaf)); 707 } 708 if (slot != 0 && slot < nritems - 1) { 709 btrfs_item_key(leaf, &leaf_key, slot); 710 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); 711 if (comp_keys(&leaf_key, &cpukey) <= 0) { 712 btrfs_print_leaf(root, leaf); 713 printk(KERN_CRIT "slot %d offset bad key\n", slot); 714 BUG_ON(1); 715 } 716 if (btrfs_item_offset_nr(leaf, slot - 1) != 717 btrfs_item_end_nr(leaf, slot)) { 718 btrfs_print_leaf(root, leaf); 719 printk(KERN_CRIT "slot %d offset bad\n", slot); 720 BUG_ON(1); 721 } 722 } 723 if (slot < nritems - 1) { 724 btrfs_item_key(leaf, &leaf_key, slot); 725 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); 726 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); 727 if (btrfs_item_offset_nr(leaf, slot) != 728 btrfs_item_end_nr(leaf, slot + 1)) { 729 btrfs_print_leaf(root, leaf); 730 printk(KERN_CRIT "slot %d offset bad\n", slot); 731 BUG_ON(1); 732 } 733 } 734 BUG_ON(btrfs_item_offset_nr(leaf, 0) + 735 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); 736 return 0; 737 } 738 739 static noinline int check_block(struct btrfs_root *root, 740 struct btrfs_path *path, int level) 741 { 742 return 0; 743 if (level == 0) 744 return check_leaf(root, path, level); 745 return check_node(root, path, level); 746 } 747 748 /* 749 * search for key in the extent_buffer. The items start at offset p, 750 * and they are item_size apart. There are 'max' items in p. 751 * 752 * the slot in the array is returned via slot, and it points to 753 * the place where you would insert key if it is not found in 754 * the array. 755 * 756 * slot may point to max if the key is bigger than all of the keys 757 */ 758 static noinline int generic_bin_search(struct extent_buffer *eb, 759 unsigned long p, 760 int item_size, struct btrfs_key *key, 761 int max, int *slot) 762 { 763 int low = 0; 764 int high = max; 765 int mid; 766 int ret; 767 struct btrfs_disk_key *tmp = NULL; 768 struct btrfs_disk_key unaligned; 769 unsigned long offset; 770 char *map_token = NULL; 771 char *kaddr = NULL; 772 unsigned long map_start = 0; 773 unsigned long map_len = 0; 774 int err; 775 776 while (low < high) { 777 mid = (low + high) / 2; 778 offset = p + mid * item_size; 779 780 if (!map_token || offset < map_start || 781 (offset + sizeof(struct btrfs_disk_key)) > 782 map_start + map_len) { 783 if (map_token) { 784 unmap_extent_buffer(eb, map_token, KM_USER0); 785 map_token = NULL; 786 } 787 788 err = map_private_extent_buffer(eb, offset, 789 sizeof(struct btrfs_disk_key), 790 &map_token, &kaddr, 791 &map_start, &map_len, KM_USER0); 792 793 if (!err) { 794 tmp = (struct btrfs_disk_key *)(kaddr + offset - 795 map_start); 796 } else { 797 read_extent_buffer(eb, &unaligned, 798 offset, sizeof(unaligned)); 799 tmp = &unaligned; 800 } 801 802 } else { 803 tmp = (struct btrfs_disk_key *)(kaddr + offset - 804 map_start); 805 } 806 ret = comp_keys(tmp, key); 807 808 if (ret < 0) 809 low = mid + 1; 810 else if (ret > 0) 811 high = mid; 812 else { 813 *slot = mid; 814 if (map_token) 815 unmap_extent_buffer(eb, map_token, KM_USER0); 816 return 0; 817 } 818 } 819 *slot = low; 820 if (map_token) 821 unmap_extent_buffer(eb, map_token, KM_USER0); 822 return 1; 823 } 824 825 /* 826 * simple bin_search frontend that does the right thing for 827 * leaves vs nodes 828 */ 829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 830 int level, int *slot) 831 { 832 if (level == 0) { 833 return generic_bin_search(eb, 834 offsetof(struct btrfs_leaf, items), 835 sizeof(struct btrfs_item), 836 key, btrfs_header_nritems(eb), 837 slot); 838 } else { 839 return generic_bin_search(eb, 840 offsetof(struct btrfs_node, ptrs), 841 sizeof(struct btrfs_key_ptr), 842 key, btrfs_header_nritems(eb), 843 slot); 844 } 845 return -1; 846 } 847 848 /* given a node and slot number, this reads the blocks it points to. The 849 * extent buffer is returned with a reference taken (but unlocked). 850 * NULL is returned on error. 851 */ 852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 853 struct extent_buffer *parent, int slot) 854 { 855 int level = btrfs_header_level(parent); 856 if (slot < 0) 857 return NULL; 858 if (slot >= btrfs_header_nritems(parent)) 859 return NULL; 860 861 BUG_ON(level == 0); 862 863 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 864 btrfs_level_size(root, level - 1), 865 btrfs_node_ptr_generation(parent, slot)); 866 } 867 868 /* 869 * node level balancing, used to make sure nodes are in proper order for 870 * item deletion. We balance from the top down, so we have to make sure 871 * that a deletion won't leave an node completely empty later on. 872 */ 873 static noinline int balance_level(struct btrfs_trans_handle *trans, 874 struct btrfs_root *root, 875 struct btrfs_path *path, int level) 876 { 877 struct extent_buffer *right = NULL; 878 struct extent_buffer *mid; 879 struct extent_buffer *left = NULL; 880 struct extent_buffer *parent = NULL; 881 int ret = 0; 882 int wret; 883 int pslot; 884 int orig_slot = path->slots[level]; 885 int err_on_enospc = 0; 886 u64 orig_ptr; 887 888 if (level == 0) 889 return 0; 890 891 mid = path->nodes[level]; 892 893 WARN_ON(!path->locks[level]); 894 WARN_ON(btrfs_header_generation(mid) != trans->transid); 895 896 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 897 898 if (level < BTRFS_MAX_LEVEL - 1) 899 parent = path->nodes[level + 1]; 900 pslot = path->slots[level + 1]; 901 902 /* 903 * deal with the case where there is only one pointer in the root 904 * by promoting the node below to a root 905 */ 906 if (!parent) { 907 struct extent_buffer *child; 908 909 if (btrfs_header_nritems(mid) != 1) 910 return 0; 911 912 /* promote the child to a root */ 913 child = read_node_slot(root, mid, 0); 914 BUG_ON(!child); 915 btrfs_tree_lock(child); 916 btrfs_set_lock_blocking(child); 917 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 918 BUG_ON(ret); 919 920 spin_lock(&root->node_lock); 921 root->node = child; 922 spin_unlock(&root->node_lock); 923 924 ret = btrfs_update_extent_ref(trans, root, child->start, 925 child->len, 926 mid->start, child->start, 927 root->root_key.objectid, 928 trans->transid, level - 1); 929 BUG_ON(ret); 930 931 add_root_to_dirty_list(root); 932 btrfs_tree_unlock(child); 933 934 path->locks[level] = 0; 935 path->nodes[level] = NULL; 936 clean_tree_block(trans, root, mid); 937 btrfs_tree_unlock(mid); 938 /* once for the path */ 939 free_extent_buffer(mid); 940 ret = btrfs_free_extent(trans, root, mid->start, mid->len, 941 mid->start, root->root_key.objectid, 942 btrfs_header_generation(mid), 943 level, 1); 944 /* once for the root ptr */ 945 free_extent_buffer(mid); 946 return ret; 947 } 948 if (btrfs_header_nritems(mid) > 949 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 950 return 0; 951 952 if (trans->transaction->delayed_refs.flushing && 953 btrfs_header_nritems(mid) > 2) 954 return 0; 955 956 if (btrfs_header_nritems(mid) < 2) 957 err_on_enospc = 1; 958 959 left = read_node_slot(root, parent, pslot - 1); 960 if (left) { 961 btrfs_tree_lock(left); 962 btrfs_set_lock_blocking(left); 963 wret = btrfs_cow_block(trans, root, left, 964 parent, pslot - 1, &left); 965 if (wret) { 966 ret = wret; 967 goto enospc; 968 } 969 } 970 right = read_node_slot(root, parent, pslot + 1); 971 if (right) { 972 btrfs_tree_lock(right); 973 btrfs_set_lock_blocking(right); 974 wret = btrfs_cow_block(trans, root, right, 975 parent, pslot + 1, &right); 976 if (wret) { 977 ret = wret; 978 goto enospc; 979 } 980 } 981 982 /* first, try to make some room in the middle buffer */ 983 if (left) { 984 orig_slot += btrfs_header_nritems(left); 985 wret = push_node_left(trans, root, left, mid, 1); 986 if (wret < 0) 987 ret = wret; 988 if (btrfs_header_nritems(mid) < 2) 989 err_on_enospc = 1; 990 } 991 992 /* 993 * then try to empty the right most buffer into the middle 994 */ 995 if (right) { 996 wret = push_node_left(trans, root, mid, right, 1); 997 if (wret < 0 && wret != -ENOSPC) 998 ret = wret; 999 if (btrfs_header_nritems(right) == 0) { 1000 u64 bytenr = right->start; 1001 u64 generation = btrfs_header_generation(parent); 1002 u32 blocksize = right->len; 1003 1004 clean_tree_block(trans, root, right); 1005 btrfs_tree_unlock(right); 1006 free_extent_buffer(right); 1007 right = NULL; 1008 wret = del_ptr(trans, root, path, level + 1, pslot + 1009 1); 1010 if (wret) 1011 ret = wret; 1012 wret = btrfs_free_extent(trans, root, bytenr, 1013 blocksize, parent->start, 1014 btrfs_header_owner(parent), 1015 generation, level, 1); 1016 if (wret) 1017 ret = wret; 1018 } else { 1019 struct btrfs_disk_key right_key; 1020 btrfs_node_key(right, &right_key, 0); 1021 btrfs_set_node_key(parent, &right_key, pslot + 1); 1022 btrfs_mark_buffer_dirty(parent); 1023 } 1024 } 1025 if (btrfs_header_nritems(mid) == 1) { 1026 /* 1027 * we're not allowed to leave a node with one item in the 1028 * tree during a delete. A deletion from lower in the tree 1029 * could try to delete the only pointer in this node. 1030 * So, pull some keys from the left. 1031 * There has to be a left pointer at this point because 1032 * otherwise we would have pulled some pointers from the 1033 * right 1034 */ 1035 BUG_ON(!left); 1036 wret = balance_node_right(trans, root, mid, left); 1037 if (wret < 0) { 1038 ret = wret; 1039 goto enospc; 1040 } 1041 if (wret == 1) { 1042 wret = push_node_left(trans, root, left, mid, 1); 1043 if (wret < 0) 1044 ret = wret; 1045 } 1046 BUG_ON(wret == 1); 1047 } 1048 if (btrfs_header_nritems(mid) == 0) { 1049 /* we've managed to empty the middle node, drop it */ 1050 u64 root_gen = btrfs_header_generation(parent); 1051 u64 bytenr = mid->start; 1052 u32 blocksize = mid->len; 1053 1054 clean_tree_block(trans, root, mid); 1055 btrfs_tree_unlock(mid); 1056 free_extent_buffer(mid); 1057 mid = NULL; 1058 wret = del_ptr(trans, root, path, level + 1, pslot); 1059 if (wret) 1060 ret = wret; 1061 wret = btrfs_free_extent(trans, root, bytenr, blocksize, 1062 parent->start, 1063 btrfs_header_owner(parent), 1064 root_gen, level, 1); 1065 if (wret) 1066 ret = wret; 1067 } else { 1068 /* update the parent key to reflect our changes */ 1069 struct btrfs_disk_key mid_key; 1070 btrfs_node_key(mid, &mid_key, 0); 1071 btrfs_set_node_key(parent, &mid_key, pslot); 1072 btrfs_mark_buffer_dirty(parent); 1073 } 1074 1075 /* update the path */ 1076 if (left) { 1077 if (btrfs_header_nritems(left) > orig_slot) { 1078 extent_buffer_get(left); 1079 /* left was locked after cow */ 1080 path->nodes[level] = left; 1081 path->slots[level + 1] -= 1; 1082 path->slots[level] = orig_slot; 1083 if (mid) { 1084 btrfs_tree_unlock(mid); 1085 free_extent_buffer(mid); 1086 } 1087 } else { 1088 orig_slot -= btrfs_header_nritems(left); 1089 path->slots[level] = orig_slot; 1090 } 1091 } 1092 /* double check we haven't messed things up */ 1093 check_block(root, path, level); 1094 if (orig_ptr != 1095 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1096 BUG(); 1097 enospc: 1098 if (right) { 1099 btrfs_tree_unlock(right); 1100 free_extent_buffer(right); 1101 } 1102 if (left) { 1103 if (path->nodes[level] != left) 1104 btrfs_tree_unlock(left); 1105 free_extent_buffer(left); 1106 } 1107 return ret; 1108 } 1109 1110 /* Node balancing for insertion. Here we only split or push nodes around 1111 * when they are completely full. This is also done top down, so we 1112 * have to be pessimistic. 1113 */ 1114 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1115 struct btrfs_root *root, 1116 struct btrfs_path *path, int level) 1117 { 1118 struct extent_buffer *right = NULL; 1119 struct extent_buffer *mid; 1120 struct extent_buffer *left = NULL; 1121 struct extent_buffer *parent = NULL; 1122 int ret = 0; 1123 int wret; 1124 int pslot; 1125 int orig_slot = path->slots[level]; 1126 u64 orig_ptr; 1127 1128 if (level == 0) 1129 return 1; 1130 1131 mid = path->nodes[level]; 1132 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1133 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1134 1135 if (level < BTRFS_MAX_LEVEL - 1) 1136 parent = path->nodes[level + 1]; 1137 pslot = path->slots[level + 1]; 1138 1139 if (!parent) 1140 return 1; 1141 1142 left = read_node_slot(root, parent, pslot - 1); 1143 1144 /* first, try to make some room in the middle buffer */ 1145 if (left) { 1146 u32 left_nr; 1147 1148 btrfs_tree_lock(left); 1149 btrfs_set_lock_blocking(left); 1150 1151 left_nr = btrfs_header_nritems(left); 1152 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1153 wret = 1; 1154 } else { 1155 ret = btrfs_cow_block(trans, root, left, parent, 1156 pslot - 1, &left); 1157 if (ret) 1158 wret = 1; 1159 else { 1160 wret = push_node_left(trans, root, 1161 left, mid, 0); 1162 } 1163 } 1164 if (wret < 0) 1165 ret = wret; 1166 if (wret == 0) { 1167 struct btrfs_disk_key disk_key; 1168 orig_slot += left_nr; 1169 btrfs_node_key(mid, &disk_key, 0); 1170 btrfs_set_node_key(parent, &disk_key, pslot); 1171 btrfs_mark_buffer_dirty(parent); 1172 if (btrfs_header_nritems(left) > orig_slot) { 1173 path->nodes[level] = left; 1174 path->slots[level + 1] -= 1; 1175 path->slots[level] = orig_slot; 1176 btrfs_tree_unlock(mid); 1177 free_extent_buffer(mid); 1178 } else { 1179 orig_slot -= 1180 btrfs_header_nritems(left); 1181 path->slots[level] = orig_slot; 1182 btrfs_tree_unlock(left); 1183 free_extent_buffer(left); 1184 } 1185 return 0; 1186 } 1187 btrfs_tree_unlock(left); 1188 free_extent_buffer(left); 1189 } 1190 right = read_node_slot(root, parent, pslot + 1); 1191 1192 /* 1193 * then try to empty the right most buffer into the middle 1194 */ 1195 if (right) { 1196 u32 right_nr; 1197 1198 btrfs_tree_lock(right); 1199 btrfs_set_lock_blocking(right); 1200 1201 right_nr = btrfs_header_nritems(right); 1202 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1203 wret = 1; 1204 } else { 1205 ret = btrfs_cow_block(trans, root, right, 1206 parent, pslot + 1, 1207 &right); 1208 if (ret) 1209 wret = 1; 1210 else { 1211 wret = balance_node_right(trans, root, 1212 right, mid); 1213 } 1214 } 1215 if (wret < 0) 1216 ret = wret; 1217 if (wret == 0) { 1218 struct btrfs_disk_key disk_key; 1219 1220 btrfs_node_key(right, &disk_key, 0); 1221 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1222 btrfs_mark_buffer_dirty(parent); 1223 1224 if (btrfs_header_nritems(mid) <= orig_slot) { 1225 path->nodes[level] = right; 1226 path->slots[level + 1] += 1; 1227 path->slots[level] = orig_slot - 1228 btrfs_header_nritems(mid); 1229 btrfs_tree_unlock(mid); 1230 free_extent_buffer(mid); 1231 } else { 1232 btrfs_tree_unlock(right); 1233 free_extent_buffer(right); 1234 } 1235 return 0; 1236 } 1237 btrfs_tree_unlock(right); 1238 free_extent_buffer(right); 1239 } 1240 return 1; 1241 } 1242 1243 /* 1244 * readahead one full node of leaves, finding things that are close 1245 * to the block in 'slot', and triggering ra on them. 1246 */ 1247 static void reada_for_search(struct btrfs_root *root, 1248 struct btrfs_path *path, 1249 int level, int slot, u64 objectid) 1250 { 1251 struct extent_buffer *node; 1252 struct btrfs_disk_key disk_key; 1253 u32 nritems; 1254 u64 search; 1255 u64 target; 1256 u64 nread = 0; 1257 int direction = path->reada; 1258 struct extent_buffer *eb; 1259 u32 nr; 1260 u32 blocksize; 1261 u32 nscan = 0; 1262 1263 if (level != 1) 1264 return; 1265 1266 if (!path->nodes[level]) 1267 return; 1268 1269 node = path->nodes[level]; 1270 1271 search = btrfs_node_blockptr(node, slot); 1272 blocksize = btrfs_level_size(root, level - 1); 1273 eb = btrfs_find_tree_block(root, search, blocksize); 1274 if (eb) { 1275 free_extent_buffer(eb); 1276 return; 1277 } 1278 1279 target = search; 1280 1281 nritems = btrfs_header_nritems(node); 1282 nr = slot; 1283 while (1) { 1284 if (direction < 0) { 1285 if (nr == 0) 1286 break; 1287 nr--; 1288 } else if (direction > 0) { 1289 nr++; 1290 if (nr >= nritems) 1291 break; 1292 } 1293 if (path->reada < 0 && objectid) { 1294 btrfs_node_key(node, &disk_key, nr); 1295 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1296 break; 1297 } 1298 search = btrfs_node_blockptr(node, nr); 1299 if ((search <= target && target - search <= 65536) || 1300 (search > target && search - target <= 65536)) { 1301 readahead_tree_block(root, search, blocksize, 1302 btrfs_node_ptr_generation(node, nr)); 1303 nread += blocksize; 1304 } 1305 nscan++; 1306 if ((nread > 65536 || nscan > 32)) 1307 break; 1308 } 1309 } 1310 1311 /* 1312 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1313 * cache 1314 */ 1315 static noinline int reada_for_balance(struct btrfs_root *root, 1316 struct btrfs_path *path, int level) 1317 { 1318 int slot; 1319 int nritems; 1320 struct extent_buffer *parent; 1321 struct extent_buffer *eb; 1322 u64 gen; 1323 u64 block1 = 0; 1324 u64 block2 = 0; 1325 int ret = 0; 1326 int blocksize; 1327 1328 parent = path->nodes[level - 1]; 1329 if (!parent) 1330 return 0; 1331 1332 nritems = btrfs_header_nritems(parent); 1333 slot = path->slots[level]; 1334 blocksize = btrfs_level_size(root, level); 1335 1336 if (slot > 0) { 1337 block1 = btrfs_node_blockptr(parent, slot - 1); 1338 gen = btrfs_node_ptr_generation(parent, slot - 1); 1339 eb = btrfs_find_tree_block(root, block1, blocksize); 1340 if (eb && btrfs_buffer_uptodate(eb, gen)) 1341 block1 = 0; 1342 free_extent_buffer(eb); 1343 } 1344 if (slot < nritems) { 1345 block2 = btrfs_node_blockptr(parent, slot + 1); 1346 gen = btrfs_node_ptr_generation(parent, slot + 1); 1347 eb = btrfs_find_tree_block(root, block2, blocksize); 1348 if (eb && btrfs_buffer_uptodate(eb, gen)) 1349 block2 = 0; 1350 free_extent_buffer(eb); 1351 } 1352 if (block1 || block2) { 1353 ret = -EAGAIN; 1354 btrfs_release_path(root, path); 1355 if (block1) 1356 readahead_tree_block(root, block1, blocksize, 0); 1357 if (block2) 1358 readahead_tree_block(root, block2, blocksize, 0); 1359 1360 if (block1) { 1361 eb = read_tree_block(root, block1, blocksize, 0); 1362 free_extent_buffer(eb); 1363 } 1364 if (block1) { 1365 eb = read_tree_block(root, block2, blocksize, 0); 1366 free_extent_buffer(eb); 1367 } 1368 } 1369 return ret; 1370 } 1371 1372 1373 /* 1374 * when we walk down the tree, it is usually safe to unlock the higher layers 1375 * in the tree. The exceptions are when our path goes through slot 0, because 1376 * operations on the tree might require changing key pointers higher up in the 1377 * tree. 1378 * 1379 * callers might also have set path->keep_locks, which tells this code to keep 1380 * the lock if the path points to the last slot in the block. This is part of 1381 * walking through the tree, and selecting the next slot in the higher block. 1382 * 1383 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1384 * if lowest_unlock is 1, level 0 won't be unlocked 1385 */ 1386 static noinline void unlock_up(struct btrfs_path *path, int level, 1387 int lowest_unlock) 1388 { 1389 int i; 1390 int skip_level = level; 1391 int no_skips = 0; 1392 struct extent_buffer *t; 1393 1394 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1395 if (!path->nodes[i]) 1396 break; 1397 if (!path->locks[i]) 1398 break; 1399 if (!no_skips && path->slots[i] == 0) { 1400 skip_level = i + 1; 1401 continue; 1402 } 1403 if (!no_skips && path->keep_locks) { 1404 u32 nritems; 1405 t = path->nodes[i]; 1406 nritems = btrfs_header_nritems(t); 1407 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1408 skip_level = i + 1; 1409 continue; 1410 } 1411 } 1412 if (skip_level < i && i >= lowest_unlock) 1413 no_skips = 1; 1414 1415 t = path->nodes[i]; 1416 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1417 btrfs_tree_unlock(t); 1418 path->locks[i] = 0; 1419 } 1420 } 1421 } 1422 1423 /* 1424 * This releases any locks held in the path starting at level and 1425 * going all the way up to the root. 1426 * 1427 * btrfs_search_slot will keep the lock held on higher nodes in a few 1428 * corner cases, such as COW of the block at slot zero in the node. This 1429 * ignores those rules, and it should only be called when there are no 1430 * more updates to be done higher up in the tree. 1431 */ 1432 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1433 { 1434 int i; 1435 1436 if (path->keep_locks || path->lowest_level) 1437 return; 1438 1439 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1440 if (!path->nodes[i]) 1441 continue; 1442 if (!path->locks[i]) 1443 continue; 1444 btrfs_tree_unlock(path->nodes[i]); 1445 path->locks[i] = 0; 1446 } 1447 } 1448 1449 /* 1450 * helper function for btrfs_search_slot. The goal is to find a block 1451 * in cache without setting the path to blocking. If we find the block 1452 * we return zero and the path is unchanged. 1453 * 1454 * If we can't find the block, we set the path blocking and do some 1455 * reada. -EAGAIN is returned and the search must be repeated. 1456 */ 1457 static int 1458 read_block_for_search(struct btrfs_trans_handle *trans, 1459 struct btrfs_root *root, struct btrfs_path *p, 1460 struct extent_buffer **eb_ret, int level, int slot, 1461 struct btrfs_key *key) 1462 { 1463 u64 blocknr; 1464 u64 gen; 1465 u32 blocksize; 1466 struct extent_buffer *b = *eb_ret; 1467 struct extent_buffer *tmp; 1468 1469 blocknr = btrfs_node_blockptr(b, slot); 1470 gen = btrfs_node_ptr_generation(b, slot); 1471 blocksize = btrfs_level_size(root, level - 1); 1472 1473 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1474 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 1475 *eb_ret = tmp; 1476 return 0; 1477 } 1478 1479 /* 1480 * reduce lock contention at high levels 1481 * of the btree by dropping locks before 1482 * we read. 1483 */ 1484 btrfs_release_path(NULL, p); 1485 if (tmp) 1486 free_extent_buffer(tmp); 1487 if (p->reada) 1488 reada_for_search(root, p, level, slot, key->objectid); 1489 1490 tmp = read_tree_block(root, blocknr, blocksize, gen); 1491 if (tmp) 1492 free_extent_buffer(tmp); 1493 return -EAGAIN; 1494 } 1495 1496 /* 1497 * helper function for btrfs_search_slot. This does all of the checks 1498 * for node-level blocks and does any balancing required based on 1499 * the ins_len. 1500 * 1501 * If no extra work was required, zero is returned. If we had to 1502 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1503 * start over 1504 */ 1505 static int 1506 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1507 struct btrfs_root *root, struct btrfs_path *p, 1508 struct extent_buffer *b, int level, int ins_len) 1509 { 1510 int ret; 1511 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1512 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1513 int sret; 1514 1515 sret = reada_for_balance(root, p, level); 1516 if (sret) 1517 goto again; 1518 1519 btrfs_set_path_blocking(p); 1520 sret = split_node(trans, root, p, level); 1521 btrfs_clear_path_blocking(p, NULL); 1522 1523 BUG_ON(sret > 0); 1524 if (sret) { 1525 ret = sret; 1526 goto done; 1527 } 1528 b = p->nodes[level]; 1529 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1530 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) { 1531 int sret; 1532 1533 sret = reada_for_balance(root, p, level); 1534 if (sret) 1535 goto again; 1536 1537 btrfs_set_path_blocking(p); 1538 sret = balance_level(trans, root, p, level); 1539 btrfs_clear_path_blocking(p, NULL); 1540 1541 if (sret) { 1542 ret = sret; 1543 goto done; 1544 } 1545 b = p->nodes[level]; 1546 if (!b) { 1547 btrfs_release_path(NULL, p); 1548 goto again; 1549 } 1550 BUG_ON(btrfs_header_nritems(b) == 1); 1551 } 1552 return 0; 1553 1554 again: 1555 ret = -EAGAIN; 1556 done: 1557 return ret; 1558 } 1559 1560 /* 1561 * look for key in the tree. path is filled in with nodes along the way 1562 * if key is found, we return zero and you can find the item in the leaf 1563 * level of the path (level 0) 1564 * 1565 * If the key isn't found, the path points to the slot where it should 1566 * be inserted, and 1 is returned. If there are other errors during the 1567 * search a negative error number is returned. 1568 * 1569 * if ins_len > 0, nodes and leaves will be split as we walk down the 1570 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1571 * possible) 1572 */ 1573 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1574 *root, struct btrfs_key *key, struct btrfs_path *p, int 1575 ins_len, int cow) 1576 { 1577 struct extent_buffer *b; 1578 int slot; 1579 int ret; 1580 int level; 1581 int lowest_unlock = 1; 1582 u8 lowest_level = 0; 1583 1584 lowest_level = p->lowest_level; 1585 WARN_ON(lowest_level && ins_len > 0); 1586 WARN_ON(p->nodes[0] != NULL); 1587 1588 if (ins_len < 0) 1589 lowest_unlock = 2; 1590 1591 again: 1592 if (p->skip_locking) 1593 b = btrfs_root_node(root); 1594 else 1595 b = btrfs_lock_root_node(root); 1596 1597 while (b) { 1598 level = btrfs_header_level(b); 1599 1600 /* 1601 * setup the path here so we can release it under lock 1602 * contention with the cow code 1603 */ 1604 p->nodes[level] = b; 1605 if (!p->skip_locking) 1606 p->locks[level] = 1; 1607 1608 if (cow) { 1609 int wret; 1610 1611 /* 1612 * if we don't really need to cow this block 1613 * then we don't want to set the path blocking, 1614 * so we test it here 1615 */ 1616 if (btrfs_header_generation(b) == trans->transid && 1617 btrfs_header_owner(b) == root->root_key.objectid && 1618 !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) { 1619 goto cow_done; 1620 } 1621 btrfs_set_path_blocking(p); 1622 1623 wret = btrfs_cow_block(trans, root, b, 1624 p->nodes[level + 1], 1625 p->slots[level + 1], &b); 1626 if (wret) { 1627 free_extent_buffer(b); 1628 ret = wret; 1629 goto done; 1630 } 1631 } 1632 cow_done: 1633 BUG_ON(!cow && ins_len); 1634 if (level != btrfs_header_level(b)) 1635 WARN_ON(1); 1636 level = btrfs_header_level(b); 1637 1638 p->nodes[level] = b; 1639 if (!p->skip_locking) 1640 p->locks[level] = 1; 1641 1642 btrfs_clear_path_blocking(p, NULL); 1643 1644 /* 1645 * we have a lock on b and as long as we aren't changing 1646 * the tree, there is no way to for the items in b to change. 1647 * It is safe to drop the lock on our parent before we 1648 * go through the expensive btree search on b. 1649 * 1650 * If cow is true, then we might be changing slot zero, 1651 * which may require changing the parent. So, we can't 1652 * drop the lock until after we know which slot we're 1653 * operating on. 1654 */ 1655 if (!cow) 1656 btrfs_unlock_up_safe(p, level + 1); 1657 1658 ret = check_block(root, p, level); 1659 if (ret) { 1660 ret = -1; 1661 goto done; 1662 } 1663 1664 ret = bin_search(b, key, level, &slot); 1665 1666 if (level != 0) { 1667 if (ret && slot > 0) 1668 slot -= 1; 1669 p->slots[level] = slot; 1670 ret = setup_nodes_for_search(trans, root, p, b, level, 1671 ins_len); 1672 if (ret == -EAGAIN) 1673 goto again; 1674 else if (ret) 1675 goto done; 1676 b = p->nodes[level]; 1677 slot = p->slots[level]; 1678 1679 unlock_up(p, level, lowest_unlock); 1680 1681 /* this is only true while dropping a snapshot */ 1682 if (level == lowest_level) { 1683 ret = 0; 1684 goto done; 1685 } 1686 1687 ret = read_block_for_search(trans, root, p, 1688 &b, level, slot, key); 1689 if (ret == -EAGAIN) 1690 goto again; 1691 1692 if (!p->skip_locking) { 1693 int lret; 1694 1695 btrfs_clear_path_blocking(p, NULL); 1696 lret = btrfs_try_spin_lock(b); 1697 1698 if (!lret) { 1699 btrfs_set_path_blocking(p); 1700 btrfs_tree_lock(b); 1701 btrfs_clear_path_blocking(p, b); 1702 } 1703 } 1704 } else { 1705 p->slots[level] = slot; 1706 if (ins_len > 0 && 1707 btrfs_leaf_free_space(root, b) < ins_len) { 1708 int sret; 1709 1710 btrfs_set_path_blocking(p); 1711 sret = split_leaf(trans, root, key, 1712 p, ins_len, ret == 0); 1713 btrfs_clear_path_blocking(p, NULL); 1714 1715 BUG_ON(sret > 0); 1716 if (sret) { 1717 ret = sret; 1718 goto done; 1719 } 1720 } 1721 if (!p->search_for_split) 1722 unlock_up(p, level, lowest_unlock); 1723 goto done; 1724 } 1725 } 1726 ret = 1; 1727 done: 1728 /* 1729 * we don't really know what they plan on doing with the path 1730 * from here on, so for now just mark it as blocking 1731 */ 1732 if (!p->leave_spinning) 1733 btrfs_set_path_blocking(p); 1734 return ret; 1735 } 1736 1737 int btrfs_merge_path(struct btrfs_trans_handle *trans, 1738 struct btrfs_root *root, 1739 struct btrfs_key *node_keys, 1740 u64 *nodes, int lowest_level) 1741 { 1742 struct extent_buffer *eb; 1743 struct extent_buffer *parent; 1744 struct btrfs_key key; 1745 u64 bytenr; 1746 u64 generation; 1747 u32 blocksize; 1748 int level; 1749 int slot; 1750 int key_match; 1751 int ret; 1752 1753 eb = btrfs_lock_root_node(root); 1754 ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb); 1755 BUG_ON(ret); 1756 1757 btrfs_set_lock_blocking(eb); 1758 1759 parent = eb; 1760 while (1) { 1761 level = btrfs_header_level(parent); 1762 if (level == 0 || level <= lowest_level) 1763 break; 1764 1765 ret = bin_search(parent, &node_keys[lowest_level], level, 1766 &slot); 1767 if (ret && slot > 0) 1768 slot--; 1769 1770 bytenr = btrfs_node_blockptr(parent, slot); 1771 if (nodes[level - 1] == bytenr) 1772 break; 1773 1774 blocksize = btrfs_level_size(root, level - 1); 1775 generation = btrfs_node_ptr_generation(parent, slot); 1776 btrfs_node_key_to_cpu(eb, &key, slot); 1777 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key)); 1778 1779 if (generation == trans->transid) { 1780 eb = read_tree_block(root, bytenr, blocksize, 1781 generation); 1782 btrfs_tree_lock(eb); 1783 btrfs_set_lock_blocking(eb); 1784 } 1785 1786 /* 1787 * if node keys match and node pointer hasn't been modified 1788 * in the running transaction, we can merge the path. for 1789 * blocks owened by reloc trees, the node pointer check is 1790 * skipped, this is because these blocks are fully controlled 1791 * by the space balance code, no one else can modify them. 1792 */ 1793 if (!nodes[level - 1] || !key_match || 1794 (generation == trans->transid && 1795 btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) { 1796 if (level == 1 || level == lowest_level + 1) { 1797 if (generation == trans->transid) { 1798 btrfs_tree_unlock(eb); 1799 free_extent_buffer(eb); 1800 } 1801 break; 1802 } 1803 1804 if (generation != trans->transid) { 1805 eb = read_tree_block(root, bytenr, blocksize, 1806 generation); 1807 btrfs_tree_lock(eb); 1808 btrfs_set_lock_blocking(eb); 1809 } 1810 1811 ret = btrfs_cow_block(trans, root, eb, parent, slot, 1812 &eb); 1813 BUG_ON(ret); 1814 1815 if (root->root_key.objectid == 1816 BTRFS_TREE_RELOC_OBJECTID) { 1817 if (!nodes[level - 1]) { 1818 nodes[level - 1] = eb->start; 1819 memcpy(&node_keys[level - 1], &key, 1820 sizeof(node_keys[0])); 1821 } else { 1822 WARN_ON(1); 1823 } 1824 } 1825 1826 btrfs_tree_unlock(parent); 1827 free_extent_buffer(parent); 1828 parent = eb; 1829 continue; 1830 } 1831 1832 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]); 1833 btrfs_set_node_ptr_generation(parent, slot, trans->transid); 1834 btrfs_mark_buffer_dirty(parent); 1835 1836 ret = btrfs_inc_extent_ref(trans, root, 1837 nodes[level - 1], 1838 blocksize, parent->start, 1839 btrfs_header_owner(parent), 1840 btrfs_header_generation(parent), 1841 level - 1); 1842 BUG_ON(ret); 1843 1844 /* 1845 * If the block was created in the running transaction, 1846 * it's possible this is the last reference to it, so we 1847 * should drop the subtree. 1848 */ 1849 if (generation == trans->transid) { 1850 ret = btrfs_drop_subtree(trans, root, eb, parent); 1851 BUG_ON(ret); 1852 btrfs_tree_unlock(eb); 1853 free_extent_buffer(eb); 1854 } else { 1855 ret = btrfs_free_extent(trans, root, bytenr, 1856 blocksize, parent->start, 1857 btrfs_header_owner(parent), 1858 btrfs_header_generation(parent), 1859 level - 1, 1); 1860 BUG_ON(ret); 1861 } 1862 break; 1863 } 1864 btrfs_tree_unlock(parent); 1865 free_extent_buffer(parent); 1866 return 0; 1867 } 1868 1869 /* 1870 * adjust the pointers going up the tree, starting at level 1871 * making sure the right key of each node is points to 'key'. 1872 * This is used after shifting pointers to the left, so it stops 1873 * fixing up pointers when a given leaf/node is not in slot 0 of the 1874 * higher levels 1875 * 1876 * If this fails to write a tree block, it returns -1, but continues 1877 * fixing up the blocks in ram so the tree is consistent. 1878 */ 1879 static int fixup_low_keys(struct btrfs_trans_handle *trans, 1880 struct btrfs_root *root, struct btrfs_path *path, 1881 struct btrfs_disk_key *key, int level) 1882 { 1883 int i; 1884 int ret = 0; 1885 struct extent_buffer *t; 1886 1887 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1888 int tslot = path->slots[i]; 1889 if (!path->nodes[i]) 1890 break; 1891 t = path->nodes[i]; 1892 btrfs_set_node_key(t, key, tslot); 1893 btrfs_mark_buffer_dirty(path->nodes[i]); 1894 if (tslot != 0) 1895 break; 1896 } 1897 return ret; 1898 } 1899 1900 /* 1901 * update item key. 1902 * 1903 * This function isn't completely safe. It's the caller's responsibility 1904 * that the new key won't break the order 1905 */ 1906 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1907 struct btrfs_root *root, struct btrfs_path *path, 1908 struct btrfs_key *new_key) 1909 { 1910 struct btrfs_disk_key disk_key; 1911 struct extent_buffer *eb; 1912 int slot; 1913 1914 eb = path->nodes[0]; 1915 slot = path->slots[0]; 1916 if (slot > 0) { 1917 btrfs_item_key(eb, &disk_key, slot - 1); 1918 if (comp_keys(&disk_key, new_key) >= 0) 1919 return -1; 1920 } 1921 if (slot < btrfs_header_nritems(eb) - 1) { 1922 btrfs_item_key(eb, &disk_key, slot + 1); 1923 if (comp_keys(&disk_key, new_key) <= 0) 1924 return -1; 1925 } 1926 1927 btrfs_cpu_key_to_disk(&disk_key, new_key); 1928 btrfs_set_item_key(eb, &disk_key, slot); 1929 btrfs_mark_buffer_dirty(eb); 1930 if (slot == 0) 1931 fixup_low_keys(trans, root, path, &disk_key, 1); 1932 return 0; 1933 } 1934 1935 /* 1936 * try to push data from one node into the next node left in the 1937 * tree. 1938 * 1939 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1940 * error, and > 0 if there was no room in the left hand block. 1941 */ 1942 static int push_node_left(struct btrfs_trans_handle *trans, 1943 struct btrfs_root *root, struct extent_buffer *dst, 1944 struct extent_buffer *src, int empty) 1945 { 1946 int push_items = 0; 1947 int src_nritems; 1948 int dst_nritems; 1949 int ret = 0; 1950 1951 src_nritems = btrfs_header_nritems(src); 1952 dst_nritems = btrfs_header_nritems(dst); 1953 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1954 WARN_ON(btrfs_header_generation(src) != trans->transid); 1955 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1956 1957 if (!empty && src_nritems <= 8) 1958 return 1; 1959 1960 if (push_items <= 0) 1961 return 1; 1962 1963 if (empty) { 1964 push_items = min(src_nritems, push_items); 1965 if (push_items < src_nritems) { 1966 /* leave at least 8 pointers in the node if 1967 * we aren't going to empty it 1968 */ 1969 if (src_nritems - push_items < 8) { 1970 if (push_items <= 8) 1971 return 1; 1972 push_items -= 8; 1973 } 1974 } 1975 } else 1976 push_items = min(src_nritems - 8, push_items); 1977 1978 copy_extent_buffer(dst, src, 1979 btrfs_node_key_ptr_offset(dst_nritems), 1980 btrfs_node_key_ptr_offset(0), 1981 push_items * sizeof(struct btrfs_key_ptr)); 1982 1983 if (push_items < src_nritems) { 1984 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 1985 btrfs_node_key_ptr_offset(push_items), 1986 (src_nritems - push_items) * 1987 sizeof(struct btrfs_key_ptr)); 1988 } 1989 btrfs_set_header_nritems(src, src_nritems - push_items); 1990 btrfs_set_header_nritems(dst, dst_nritems + push_items); 1991 btrfs_mark_buffer_dirty(src); 1992 btrfs_mark_buffer_dirty(dst); 1993 1994 ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items); 1995 BUG_ON(ret); 1996 1997 return ret; 1998 } 1999 2000 /* 2001 * try to push data from one node into the next node right in the 2002 * tree. 2003 * 2004 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2005 * error, and > 0 if there was no room in the right hand block. 2006 * 2007 * this will only push up to 1/2 the contents of the left node over 2008 */ 2009 static int balance_node_right(struct btrfs_trans_handle *trans, 2010 struct btrfs_root *root, 2011 struct extent_buffer *dst, 2012 struct extent_buffer *src) 2013 { 2014 int push_items = 0; 2015 int max_push; 2016 int src_nritems; 2017 int dst_nritems; 2018 int ret = 0; 2019 2020 WARN_ON(btrfs_header_generation(src) != trans->transid); 2021 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2022 2023 src_nritems = btrfs_header_nritems(src); 2024 dst_nritems = btrfs_header_nritems(dst); 2025 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2026 if (push_items <= 0) 2027 return 1; 2028 2029 if (src_nritems < 4) 2030 return 1; 2031 2032 max_push = src_nritems / 2 + 1; 2033 /* don't try to empty the node */ 2034 if (max_push >= src_nritems) 2035 return 1; 2036 2037 if (max_push < push_items) 2038 push_items = max_push; 2039 2040 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2041 btrfs_node_key_ptr_offset(0), 2042 (dst_nritems) * 2043 sizeof(struct btrfs_key_ptr)); 2044 2045 copy_extent_buffer(dst, src, 2046 btrfs_node_key_ptr_offset(0), 2047 btrfs_node_key_ptr_offset(src_nritems - push_items), 2048 push_items * sizeof(struct btrfs_key_ptr)); 2049 2050 btrfs_set_header_nritems(src, src_nritems - push_items); 2051 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2052 2053 btrfs_mark_buffer_dirty(src); 2054 btrfs_mark_buffer_dirty(dst); 2055 2056 ret = btrfs_update_ref(trans, root, src, dst, 0, push_items); 2057 BUG_ON(ret); 2058 2059 return ret; 2060 } 2061 2062 /* 2063 * helper function to insert a new root level in the tree. 2064 * A new node is allocated, and a single item is inserted to 2065 * point to the existing root 2066 * 2067 * returns zero on success or < 0 on failure. 2068 */ 2069 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2070 struct btrfs_root *root, 2071 struct btrfs_path *path, int level) 2072 { 2073 u64 lower_gen; 2074 struct extent_buffer *lower; 2075 struct extent_buffer *c; 2076 struct extent_buffer *old; 2077 struct btrfs_disk_key lower_key; 2078 int ret; 2079 2080 BUG_ON(path->nodes[level]); 2081 BUG_ON(path->nodes[level-1] != root->node); 2082 2083 lower = path->nodes[level-1]; 2084 if (level == 1) 2085 btrfs_item_key(lower, &lower_key, 0); 2086 else 2087 btrfs_node_key(lower, &lower_key, 0); 2088 2089 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2090 root->root_key.objectid, trans->transid, 2091 level, root->node->start, 0); 2092 if (IS_ERR(c)) 2093 return PTR_ERR(c); 2094 2095 memset_extent_buffer(c, 0, 0, root->nodesize); 2096 btrfs_set_header_nritems(c, 1); 2097 btrfs_set_header_level(c, level); 2098 btrfs_set_header_bytenr(c, c->start); 2099 btrfs_set_header_generation(c, trans->transid); 2100 btrfs_set_header_owner(c, root->root_key.objectid); 2101 2102 write_extent_buffer(c, root->fs_info->fsid, 2103 (unsigned long)btrfs_header_fsid(c), 2104 BTRFS_FSID_SIZE); 2105 2106 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2107 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2108 BTRFS_UUID_SIZE); 2109 2110 btrfs_set_node_key(c, &lower_key, 0); 2111 btrfs_set_node_blockptr(c, 0, lower->start); 2112 lower_gen = btrfs_header_generation(lower); 2113 WARN_ON(lower_gen != trans->transid); 2114 2115 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2116 2117 btrfs_mark_buffer_dirty(c); 2118 2119 spin_lock(&root->node_lock); 2120 old = root->node; 2121 root->node = c; 2122 spin_unlock(&root->node_lock); 2123 2124 ret = btrfs_update_extent_ref(trans, root, lower->start, 2125 lower->len, lower->start, c->start, 2126 root->root_key.objectid, 2127 trans->transid, level - 1); 2128 BUG_ON(ret); 2129 2130 /* the super has an extra ref to root->node */ 2131 free_extent_buffer(old); 2132 2133 add_root_to_dirty_list(root); 2134 extent_buffer_get(c); 2135 path->nodes[level] = c; 2136 path->locks[level] = 1; 2137 path->slots[level] = 0; 2138 return 0; 2139 } 2140 2141 /* 2142 * worker function to insert a single pointer in a node. 2143 * the node should have enough room for the pointer already 2144 * 2145 * slot and level indicate where you want the key to go, and 2146 * blocknr is the block the key points to. 2147 * 2148 * returns zero on success and < 0 on any error 2149 */ 2150 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root 2151 *root, struct btrfs_path *path, struct btrfs_disk_key 2152 *key, u64 bytenr, int slot, int level) 2153 { 2154 struct extent_buffer *lower; 2155 int nritems; 2156 2157 BUG_ON(!path->nodes[level]); 2158 lower = path->nodes[level]; 2159 nritems = btrfs_header_nritems(lower); 2160 BUG_ON(slot > nritems); 2161 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) 2162 BUG(); 2163 if (slot != nritems) { 2164 memmove_extent_buffer(lower, 2165 btrfs_node_key_ptr_offset(slot + 1), 2166 btrfs_node_key_ptr_offset(slot), 2167 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2168 } 2169 btrfs_set_node_key(lower, key, slot); 2170 btrfs_set_node_blockptr(lower, slot, bytenr); 2171 WARN_ON(trans->transid == 0); 2172 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2173 btrfs_set_header_nritems(lower, nritems + 1); 2174 btrfs_mark_buffer_dirty(lower); 2175 return 0; 2176 } 2177 2178 /* 2179 * split the node at the specified level in path in two. 2180 * The path is corrected to point to the appropriate node after the split 2181 * 2182 * Before splitting this tries to make some room in the node by pushing 2183 * left and right, if either one works, it returns right away. 2184 * 2185 * returns 0 on success and < 0 on failure 2186 */ 2187 static noinline int split_node(struct btrfs_trans_handle *trans, 2188 struct btrfs_root *root, 2189 struct btrfs_path *path, int level) 2190 { 2191 struct extent_buffer *c; 2192 struct extent_buffer *split; 2193 struct btrfs_disk_key disk_key; 2194 int mid; 2195 int ret; 2196 int wret; 2197 u32 c_nritems; 2198 2199 c = path->nodes[level]; 2200 WARN_ON(btrfs_header_generation(c) != trans->transid); 2201 if (c == root->node) { 2202 /* trying to split the root, lets make a new one */ 2203 ret = insert_new_root(trans, root, path, level + 1); 2204 if (ret) 2205 return ret; 2206 } else if (!trans->transaction->delayed_refs.flushing) { 2207 ret = push_nodes_for_insert(trans, root, path, level); 2208 c = path->nodes[level]; 2209 if (!ret && btrfs_header_nritems(c) < 2210 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2211 return 0; 2212 if (ret < 0) 2213 return ret; 2214 } 2215 2216 c_nritems = btrfs_header_nritems(c); 2217 2218 split = btrfs_alloc_free_block(trans, root, root->nodesize, 2219 path->nodes[level + 1]->start, 2220 root->root_key.objectid, 2221 trans->transid, level, c->start, 0); 2222 if (IS_ERR(split)) 2223 return PTR_ERR(split); 2224 2225 btrfs_set_header_flags(split, btrfs_header_flags(c)); 2226 btrfs_set_header_level(split, btrfs_header_level(c)); 2227 btrfs_set_header_bytenr(split, split->start); 2228 btrfs_set_header_generation(split, trans->transid); 2229 btrfs_set_header_owner(split, root->root_key.objectid); 2230 btrfs_set_header_flags(split, 0); 2231 write_extent_buffer(split, root->fs_info->fsid, 2232 (unsigned long)btrfs_header_fsid(split), 2233 BTRFS_FSID_SIZE); 2234 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2235 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2236 BTRFS_UUID_SIZE); 2237 2238 mid = (c_nritems + 1) / 2; 2239 2240 copy_extent_buffer(split, c, 2241 btrfs_node_key_ptr_offset(0), 2242 btrfs_node_key_ptr_offset(mid), 2243 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2244 btrfs_set_header_nritems(split, c_nritems - mid); 2245 btrfs_set_header_nritems(c, mid); 2246 ret = 0; 2247 2248 btrfs_mark_buffer_dirty(c); 2249 btrfs_mark_buffer_dirty(split); 2250 2251 btrfs_node_key(split, &disk_key, 0); 2252 wret = insert_ptr(trans, root, path, &disk_key, split->start, 2253 path->slots[level + 1] + 1, 2254 level + 1); 2255 if (wret) 2256 ret = wret; 2257 2258 ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid); 2259 BUG_ON(ret); 2260 2261 if (path->slots[level] >= mid) { 2262 path->slots[level] -= mid; 2263 btrfs_tree_unlock(c); 2264 free_extent_buffer(c); 2265 path->nodes[level] = split; 2266 path->slots[level + 1] += 1; 2267 } else { 2268 btrfs_tree_unlock(split); 2269 free_extent_buffer(split); 2270 } 2271 return ret; 2272 } 2273 2274 /* 2275 * how many bytes are required to store the items in a leaf. start 2276 * and nr indicate which items in the leaf to check. This totals up the 2277 * space used both by the item structs and the item data 2278 */ 2279 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2280 { 2281 int data_len; 2282 int nritems = btrfs_header_nritems(l); 2283 int end = min(nritems, start + nr) - 1; 2284 2285 if (!nr) 2286 return 0; 2287 data_len = btrfs_item_end_nr(l, start); 2288 data_len = data_len - btrfs_item_offset_nr(l, end); 2289 data_len += sizeof(struct btrfs_item) * nr; 2290 WARN_ON(data_len < 0); 2291 return data_len; 2292 } 2293 2294 /* 2295 * The space between the end of the leaf items and 2296 * the start of the leaf data. IOW, how much room 2297 * the leaf has left for both items and data 2298 */ 2299 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2300 struct extent_buffer *leaf) 2301 { 2302 int nritems = btrfs_header_nritems(leaf); 2303 int ret; 2304 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2305 if (ret < 0) { 2306 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2307 "used %d nritems %d\n", 2308 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2309 leaf_space_used(leaf, 0, nritems), nritems); 2310 } 2311 return ret; 2312 } 2313 2314 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 2315 struct btrfs_root *root, 2316 struct btrfs_path *path, 2317 int data_size, int empty, 2318 struct extent_buffer *right, 2319 int free_space, u32 left_nritems) 2320 { 2321 struct extent_buffer *left = path->nodes[0]; 2322 struct extent_buffer *upper = path->nodes[1]; 2323 struct btrfs_disk_key disk_key; 2324 int slot; 2325 u32 i; 2326 int push_space = 0; 2327 int push_items = 0; 2328 struct btrfs_item *item; 2329 u32 nr; 2330 u32 right_nritems; 2331 u32 data_end; 2332 u32 this_item_size; 2333 int ret; 2334 2335 if (empty) 2336 nr = 0; 2337 else 2338 nr = 1; 2339 2340 if (path->slots[0] >= left_nritems) 2341 push_space += data_size; 2342 2343 slot = path->slots[1]; 2344 i = left_nritems - 1; 2345 while (i >= nr) { 2346 item = btrfs_item_nr(left, i); 2347 2348 if (!empty && push_items > 0) { 2349 if (path->slots[0] > i) 2350 break; 2351 if (path->slots[0] == i) { 2352 int space = btrfs_leaf_free_space(root, left); 2353 if (space + push_space * 2 > free_space) 2354 break; 2355 } 2356 } 2357 2358 if (path->slots[0] == i) 2359 push_space += data_size; 2360 2361 if (!left->map_token) { 2362 map_extent_buffer(left, (unsigned long)item, 2363 sizeof(struct btrfs_item), 2364 &left->map_token, &left->kaddr, 2365 &left->map_start, &left->map_len, 2366 KM_USER1); 2367 } 2368 2369 this_item_size = btrfs_item_size(left, item); 2370 if (this_item_size + sizeof(*item) + push_space > free_space) 2371 break; 2372 2373 push_items++; 2374 push_space += this_item_size + sizeof(*item); 2375 if (i == 0) 2376 break; 2377 i--; 2378 } 2379 if (left->map_token) { 2380 unmap_extent_buffer(left, left->map_token, KM_USER1); 2381 left->map_token = NULL; 2382 } 2383 2384 if (push_items == 0) 2385 goto out_unlock; 2386 2387 if (!empty && push_items == left_nritems) 2388 WARN_ON(1); 2389 2390 /* push left to right */ 2391 right_nritems = btrfs_header_nritems(right); 2392 2393 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2394 push_space -= leaf_data_end(root, left); 2395 2396 /* make room in the right data area */ 2397 data_end = leaf_data_end(root, right); 2398 memmove_extent_buffer(right, 2399 btrfs_leaf_data(right) + data_end - push_space, 2400 btrfs_leaf_data(right) + data_end, 2401 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2402 2403 /* copy from the left data area */ 2404 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2405 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2406 btrfs_leaf_data(left) + leaf_data_end(root, left), 2407 push_space); 2408 2409 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2410 btrfs_item_nr_offset(0), 2411 right_nritems * sizeof(struct btrfs_item)); 2412 2413 /* copy the items from left to right */ 2414 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2415 btrfs_item_nr_offset(left_nritems - push_items), 2416 push_items * sizeof(struct btrfs_item)); 2417 2418 /* update the item pointers */ 2419 right_nritems += push_items; 2420 btrfs_set_header_nritems(right, right_nritems); 2421 push_space = BTRFS_LEAF_DATA_SIZE(root); 2422 for (i = 0; i < right_nritems; i++) { 2423 item = btrfs_item_nr(right, i); 2424 if (!right->map_token) { 2425 map_extent_buffer(right, (unsigned long)item, 2426 sizeof(struct btrfs_item), 2427 &right->map_token, &right->kaddr, 2428 &right->map_start, &right->map_len, 2429 KM_USER1); 2430 } 2431 push_space -= btrfs_item_size(right, item); 2432 btrfs_set_item_offset(right, item, push_space); 2433 } 2434 2435 if (right->map_token) { 2436 unmap_extent_buffer(right, right->map_token, KM_USER1); 2437 right->map_token = NULL; 2438 } 2439 left_nritems -= push_items; 2440 btrfs_set_header_nritems(left, left_nritems); 2441 2442 if (left_nritems) 2443 btrfs_mark_buffer_dirty(left); 2444 btrfs_mark_buffer_dirty(right); 2445 2446 ret = btrfs_update_ref(trans, root, left, right, 0, push_items); 2447 BUG_ON(ret); 2448 2449 btrfs_item_key(right, &disk_key, 0); 2450 btrfs_set_node_key(upper, &disk_key, slot + 1); 2451 btrfs_mark_buffer_dirty(upper); 2452 2453 /* then fixup the leaf pointer in the path */ 2454 if (path->slots[0] >= left_nritems) { 2455 path->slots[0] -= left_nritems; 2456 if (btrfs_header_nritems(path->nodes[0]) == 0) 2457 clean_tree_block(trans, root, path->nodes[0]); 2458 btrfs_tree_unlock(path->nodes[0]); 2459 free_extent_buffer(path->nodes[0]); 2460 path->nodes[0] = right; 2461 path->slots[1] += 1; 2462 } else { 2463 btrfs_tree_unlock(right); 2464 free_extent_buffer(right); 2465 } 2466 return 0; 2467 2468 out_unlock: 2469 btrfs_tree_unlock(right); 2470 free_extent_buffer(right); 2471 return 1; 2472 } 2473 2474 /* 2475 * push some data in the path leaf to the right, trying to free up at 2476 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2477 * 2478 * returns 1 if the push failed because the other node didn't have enough 2479 * room, 0 if everything worked out and < 0 if there were major errors. 2480 */ 2481 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2482 *root, struct btrfs_path *path, int data_size, 2483 int empty) 2484 { 2485 struct extent_buffer *left = path->nodes[0]; 2486 struct extent_buffer *right; 2487 struct extent_buffer *upper; 2488 int slot; 2489 int free_space; 2490 u32 left_nritems; 2491 int ret; 2492 2493 if (!path->nodes[1]) 2494 return 1; 2495 2496 slot = path->slots[1]; 2497 upper = path->nodes[1]; 2498 if (slot >= btrfs_header_nritems(upper) - 1) 2499 return 1; 2500 2501 btrfs_assert_tree_locked(path->nodes[1]); 2502 2503 right = read_node_slot(root, upper, slot + 1); 2504 btrfs_tree_lock(right); 2505 btrfs_set_lock_blocking(right); 2506 2507 free_space = btrfs_leaf_free_space(root, right); 2508 if (free_space < data_size) 2509 goto out_unlock; 2510 2511 /* cow and double check */ 2512 ret = btrfs_cow_block(trans, root, right, upper, 2513 slot + 1, &right); 2514 if (ret) 2515 goto out_unlock; 2516 2517 free_space = btrfs_leaf_free_space(root, right); 2518 if (free_space < data_size) 2519 goto out_unlock; 2520 2521 left_nritems = btrfs_header_nritems(left); 2522 if (left_nritems == 0) 2523 goto out_unlock; 2524 2525 return __push_leaf_right(trans, root, path, data_size, empty, 2526 right, free_space, left_nritems); 2527 out_unlock: 2528 btrfs_tree_unlock(right); 2529 free_extent_buffer(right); 2530 return 1; 2531 } 2532 2533 /* 2534 * push some data in the path leaf to the left, trying to free up at 2535 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2536 */ 2537 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 2538 struct btrfs_root *root, 2539 struct btrfs_path *path, int data_size, 2540 int empty, struct extent_buffer *left, 2541 int free_space, int right_nritems) 2542 { 2543 struct btrfs_disk_key disk_key; 2544 struct extent_buffer *right = path->nodes[0]; 2545 int slot; 2546 int i; 2547 int push_space = 0; 2548 int push_items = 0; 2549 struct btrfs_item *item; 2550 u32 old_left_nritems; 2551 u32 nr; 2552 int ret = 0; 2553 int wret; 2554 u32 this_item_size; 2555 u32 old_left_item_size; 2556 2557 slot = path->slots[1]; 2558 2559 if (empty) 2560 nr = right_nritems; 2561 else 2562 nr = right_nritems - 1; 2563 2564 for (i = 0; i < nr; i++) { 2565 item = btrfs_item_nr(right, i); 2566 if (!right->map_token) { 2567 map_extent_buffer(right, (unsigned long)item, 2568 sizeof(struct btrfs_item), 2569 &right->map_token, &right->kaddr, 2570 &right->map_start, &right->map_len, 2571 KM_USER1); 2572 } 2573 2574 if (!empty && push_items > 0) { 2575 if (path->slots[0] < i) 2576 break; 2577 if (path->slots[0] == i) { 2578 int space = btrfs_leaf_free_space(root, right); 2579 if (space + push_space * 2 > free_space) 2580 break; 2581 } 2582 } 2583 2584 if (path->slots[0] == i) 2585 push_space += data_size; 2586 2587 this_item_size = btrfs_item_size(right, item); 2588 if (this_item_size + sizeof(*item) + push_space > free_space) 2589 break; 2590 2591 push_items++; 2592 push_space += this_item_size + sizeof(*item); 2593 } 2594 2595 if (right->map_token) { 2596 unmap_extent_buffer(right, right->map_token, KM_USER1); 2597 right->map_token = NULL; 2598 } 2599 2600 if (push_items == 0) { 2601 ret = 1; 2602 goto out; 2603 } 2604 if (!empty && push_items == btrfs_header_nritems(right)) 2605 WARN_ON(1); 2606 2607 /* push data from right to left */ 2608 copy_extent_buffer(left, right, 2609 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2610 btrfs_item_nr_offset(0), 2611 push_items * sizeof(struct btrfs_item)); 2612 2613 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2614 btrfs_item_offset_nr(right, push_items - 1); 2615 2616 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2617 leaf_data_end(root, left) - push_space, 2618 btrfs_leaf_data(right) + 2619 btrfs_item_offset_nr(right, push_items - 1), 2620 push_space); 2621 old_left_nritems = btrfs_header_nritems(left); 2622 BUG_ON(old_left_nritems <= 0); 2623 2624 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2625 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2626 u32 ioff; 2627 2628 item = btrfs_item_nr(left, i); 2629 if (!left->map_token) { 2630 map_extent_buffer(left, (unsigned long)item, 2631 sizeof(struct btrfs_item), 2632 &left->map_token, &left->kaddr, 2633 &left->map_start, &left->map_len, 2634 KM_USER1); 2635 } 2636 2637 ioff = btrfs_item_offset(left, item); 2638 btrfs_set_item_offset(left, item, 2639 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); 2640 } 2641 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2642 if (left->map_token) { 2643 unmap_extent_buffer(left, left->map_token, KM_USER1); 2644 left->map_token = NULL; 2645 } 2646 2647 /* fixup right node */ 2648 if (push_items > right_nritems) { 2649 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2650 right_nritems); 2651 WARN_ON(1); 2652 } 2653 2654 if (push_items < right_nritems) { 2655 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2656 leaf_data_end(root, right); 2657 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2658 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2659 btrfs_leaf_data(right) + 2660 leaf_data_end(root, right), push_space); 2661 2662 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2663 btrfs_item_nr_offset(push_items), 2664 (btrfs_header_nritems(right) - push_items) * 2665 sizeof(struct btrfs_item)); 2666 } 2667 right_nritems -= push_items; 2668 btrfs_set_header_nritems(right, right_nritems); 2669 push_space = BTRFS_LEAF_DATA_SIZE(root); 2670 for (i = 0; i < right_nritems; i++) { 2671 item = btrfs_item_nr(right, i); 2672 2673 if (!right->map_token) { 2674 map_extent_buffer(right, (unsigned long)item, 2675 sizeof(struct btrfs_item), 2676 &right->map_token, &right->kaddr, 2677 &right->map_start, &right->map_len, 2678 KM_USER1); 2679 } 2680 2681 push_space = push_space - btrfs_item_size(right, item); 2682 btrfs_set_item_offset(right, item, push_space); 2683 } 2684 if (right->map_token) { 2685 unmap_extent_buffer(right, right->map_token, KM_USER1); 2686 right->map_token = NULL; 2687 } 2688 2689 btrfs_mark_buffer_dirty(left); 2690 if (right_nritems) 2691 btrfs_mark_buffer_dirty(right); 2692 2693 ret = btrfs_update_ref(trans, root, right, left, 2694 old_left_nritems, push_items); 2695 BUG_ON(ret); 2696 2697 btrfs_item_key(right, &disk_key, 0); 2698 wret = fixup_low_keys(trans, root, path, &disk_key, 1); 2699 if (wret) 2700 ret = wret; 2701 2702 /* then fixup the leaf pointer in the path */ 2703 if (path->slots[0] < push_items) { 2704 path->slots[0] += old_left_nritems; 2705 if (btrfs_header_nritems(path->nodes[0]) == 0) 2706 clean_tree_block(trans, root, path->nodes[0]); 2707 btrfs_tree_unlock(path->nodes[0]); 2708 free_extent_buffer(path->nodes[0]); 2709 path->nodes[0] = left; 2710 path->slots[1] -= 1; 2711 } else { 2712 btrfs_tree_unlock(left); 2713 free_extent_buffer(left); 2714 path->slots[0] -= push_items; 2715 } 2716 BUG_ON(path->slots[0] < 0); 2717 return ret; 2718 out: 2719 btrfs_tree_unlock(left); 2720 free_extent_buffer(left); 2721 return ret; 2722 } 2723 2724 /* 2725 * push some data in the path leaf to the left, trying to free up at 2726 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2727 */ 2728 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2729 *root, struct btrfs_path *path, int data_size, 2730 int empty) 2731 { 2732 struct extent_buffer *right = path->nodes[0]; 2733 struct extent_buffer *left; 2734 int slot; 2735 int free_space; 2736 u32 right_nritems; 2737 int ret = 0; 2738 2739 slot = path->slots[1]; 2740 if (slot == 0) 2741 return 1; 2742 if (!path->nodes[1]) 2743 return 1; 2744 2745 right_nritems = btrfs_header_nritems(right); 2746 if (right_nritems == 0) 2747 return 1; 2748 2749 btrfs_assert_tree_locked(path->nodes[1]); 2750 2751 left = read_node_slot(root, path->nodes[1], slot - 1); 2752 btrfs_tree_lock(left); 2753 btrfs_set_lock_blocking(left); 2754 2755 free_space = btrfs_leaf_free_space(root, left); 2756 if (free_space < data_size) { 2757 ret = 1; 2758 goto out; 2759 } 2760 2761 /* cow and double check */ 2762 ret = btrfs_cow_block(trans, root, left, 2763 path->nodes[1], slot - 1, &left); 2764 if (ret) { 2765 /* we hit -ENOSPC, but it isn't fatal here */ 2766 ret = 1; 2767 goto out; 2768 } 2769 2770 free_space = btrfs_leaf_free_space(root, left); 2771 if (free_space < data_size) { 2772 ret = 1; 2773 goto out; 2774 } 2775 2776 return __push_leaf_left(trans, root, path, data_size, 2777 empty, left, free_space, right_nritems); 2778 out: 2779 btrfs_tree_unlock(left); 2780 free_extent_buffer(left); 2781 return ret; 2782 } 2783 2784 /* 2785 * split the path's leaf in two, making sure there is at least data_size 2786 * available for the resulting leaf level of the path. 2787 * 2788 * returns 0 if all went well and < 0 on failure. 2789 */ 2790 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 2791 struct btrfs_root *root, 2792 struct btrfs_path *path, 2793 struct extent_buffer *l, 2794 struct extent_buffer *right, 2795 int slot, int mid, int nritems) 2796 { 2797 int data_copy_size; 2798 int rt_data_off; 2799 int i; 2800 int ret = 0; 2801 int wret; 2802 struct btrfs_disk_key disk_key; 2803 2804 nritems = nritems - mid; 2805 btrfs_set_header_nritems(right, nritems); 2806 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2807 2808 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2809 btrfs_item_nr_offset(mid), 2810 nritems * sizeof(struct btrfs_item)); 2811 2812 copy_extent_buffer(right, l, 2813 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2814 data_copy_size, btrfs_leaf_data(l) + 2815 leaf_data_end(root, l), data_copy_size); 2816 2817 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2818 btrfs_item_end_nr(l, mid); 2819 2820 for (i = 0; i < nritems; i++) { 2821 struct btrfs_item *item = btrfs_item_nr(right, i); 2822 u32 ioff; 2823 2824 if (!right->map_token) { 2825 map_extent_buffer(right, (unsigned long)item, 2826 sizeof(struct btrfs_item), 2827 &right->map_token, &right->kaddr, 2828 &right->map_start, &right->map_len, 2829 KM_USER1); 2830 } 2831 2832 ioff = btrfs_item_offset(right, item); 2833 btrfs_set_item_offset(right, item, ioff + rt_data_off); 2834 } 2835 2836 if (right->map_token) { 2837 unmap_extent_buffer(right, right->map_token, KM_USER1); 2838 right->map_token = NULL; 2839 } 2840 2841 btrfs_set_header_nritems(l, mid); 2842 ret = 0; 2843 btrfs_item_key(right, &disk_key, 0); 2844 wret = insert_ptr(trans, root, path, &disk_key, right->start, 2845 path->slots[1] + 1, 1); 2846 if (wret) 2847 ret = wret; 2848 2849 btrfs_mark_buffer_dirty(right); 2850 btrfs_mark_buffer_dirty(l); 2851 BUG_ON(path->slots[0] != slot); 2852 2853 ret = btrfs_update_ref(trans, root, l, right, 0, nritems); 2854 BUG_ON(ret); 2855 2856 if (mid <= slot) { 2857 btrfs_tree_unlock(path->nodes[0]); 2858 free_extent_buffer(path->nodes[0]); 2859 path->nodes[0] = right; 2860 path->slots[0] -= mid; 2861 path->slots[1] += 1; 2862 } else { 2863 btrfs_tree_unlock(right); 2864 free_extent_buffer(right); 2865 } 2866 2867 BUG_ON(path->slots[0] < 0); 2868 2869 return ret; 2870 } 2871 2872 /* 2873 * split the path's leaf in two, making sure there is at least data_size 2874 * available for the resulting leaf level of the path. 2875 * 2876 * returns 0 if all went well and < 0 on failure. 2877 */ 2878 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2879 struct btrfs_root *root, 2880 struct btrfs_key *ins_key, 2881 struct btrfs_path *path, int data_size, 2882 int extend) 2883 { 2884 struct extent_buffer *l; 2885 u32 nritems; 2886 int mid; 2887 int slot; 2888 struct extent_buffer *right; 2889 int ret = 0; 2890 int wret; 2891 int double_split; 2892 int num_doubles = 0; 2893 2894 /* first try to make some room by pushing left and right */ 2895 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY && 2896 !trans->transaction->delayed_refs.flushing) { 2897 wret = push_leaf_right(trans, root, path, data_size, 0); 2898 if (wret < 0) 2899 return wret; 2900 if (wret) { 2901 wret = push_leaf_left(trans, root, path, data_size, 0); 2902 if (wret < 0) 2903 return wret; 2904 } 2905 l = path->nodes[0]; 2906 2907 /* did the pushes work? */ 2908 if (btrfs_leaf_free_space(root, l) >= data_size) 2909 return 0; 2910 } 2911 2912 if (!path->nodes[1]) { 2913 ret = insert_new_root(trans, root, path, 1); 2914 if (ret) 2915 return ret; 2916 } 2917 again: 2918 double_split = 0; 2919 l = path->nodes[0]; 2920 slot = path->slots[0]; 2921 nritems = btrfs_header_nritems(l); 2922 mid = (nritems + 1) / 2; 2923 2924 right = btrfs_alloc_free_block(trans, root, root->leafsize, 2925 path->nodes[1]->start, 2926 root->root_key.objectid, 2927 trans->transid, 0, l->start, 0); 2928 if (IS_ERR(right)) { 2929 BUG_ON(1); 2930 return PTR_ERR(right); 2931 } 2932 2933 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 2934 btrfs_set_header_bytenr(right, right->start); 2935 btrfs_set_header_generation(right, trans->transid); 2936 btrfs_set_header_owner(right, root->root_key.objectid); 2937 btrfs_set_header_level(right, 0); 2938 write_extent_buffer(right, root->fs_info->fsid, 2939 (unsigned long)btrfs_header_fsid(right), 2940 BTRFS_FSID_SIZE); 2941 2942 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 2943 (unsigned long)btrfs_header_chunk_tree_uuid(right), 2944 BTRFS_UUID_SIZE); 2945 2946 if (mid <= slot) { 2947 if (nritems == 1 || 2948 leaf_space_used(l, mid, nritems - mid) + data_size > 2949 BTRFS_LEAF_DATA_SIZE(root)) { 2950 if (slot >= nritems) { 2951 struct btrfs_disk_key disk_key; 2952 2953 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2954 btrfs_set_header_nritems(right, 0); 2955 wret = insert_ptr(trans, root, path, 2956 &disk_key, right->start, 2957 path->slots[1] + 1, 1); 2958 if (wret) 2959 ret = wret; 2960 2961 btrfs_tree_unlock(path->nodes[0]); 2962 free_extent_buffer(path->nodes[0]); 2963 path->nodes[0] = right; 2964 path->slots[0] = 0; 2965 path->slots[1] += 1; 2966 btrfs_mark_buffer_dirty(right); 2967 return ret; 2968 } 2969 mid = slot; 2970 if (mid != nritems && 2971 leaf_space_used(l, mid, nritems - mid) + 2972 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2973 double_split = 1; 2974 } 2975 } 2976 } else { 2977 if (leaf_space_used(l, 0, mid) + data_size > 2978 BTRFS_LEAF_DATA_SIZE(root)) { 2979 if (!extend && data_size && slot == 0) { 2980 struct btrfs_disk_key disk_key; 2981 2982 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2983 btrfs_set_header_nritems(right, 0); 2984 wret = insert_ptr(trans, root, path, 2985 &disk_key, 2986 right->start, 2987 path->slots[1], 1); 2988 if (wret) 2989 ret = wret; 2990 btrfs_tree_unlock(path->nodes[0]); 2991 free_extent_buffer(path->nodes[0]); 2992 path->nodes[0] = right; 2993 path->slots[0] = 0; 2994 if (path->slots[1] == 0) { 2995 wret = fixup_low_keys(trans, root, 2996 path, &disk_key, 1); 2997 if (wret) 2998 ret = wret; 2999 } 3000 btrfs_mark_buffer_dirty(right); 3001 return ret; 3002 } else if ((extend || !data_size) && slot == 0) { 3003 mid = 1; 3004 } else { 3005 mid = slot; 3006 if (mid != nritems && 3007 leaf_space_used(l, mid, nritems - mid) + 3008 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3009 double_split = 1; 3010 } 3011 } 3012 } 3013 } 3014 3015 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems); 3016 BUG_ON(ret); 3017 3018 if (double_split) { 3019 BUG_ON(num_doubles != 0); 3020 num_doubles++; 3021 goto again; 3022 } 3023 3024 return ret; 3025 } 3026 3027 /* 3028 * This function splits a single item into two items, 3029 * giving 'new_key' to the new item and splitting the 3030 * old one at split_offset (from the start of the item). 3031 * 3032 * The path may be released by this operation. After 3033 * the split, the path is pointing to the old item. The 3034 * new item is going to be in the same node as the old one. 3035 * 3036 * Note, the item being split must be smaller enough to live alone on 3037 * a tree block with room for one extra struct btrfs_item 3038 * 3039 * This allows us to split the item in place, keeping a lock on the 3040 * leaf the entire time. 3041 */ 3042 int btrfs_split_item(struct btrfs_trans_handle *trans, 3043 struct btrfs_root *root, 3044 struct btrfs_path *path, 3045 struct btrfs_key *new_key, 3046 unsigned long split_offset) 3047 { 3048 u32 item_size; 3049 struct extent_buffer *leaf; 3050 struct btrfs_key orig_key; 3051 struct btrfs_item *item; 3052 struct btrfs_item *new_item; 3053 int ret = 0; 3054 int slot; 3055 u32 nritems; 3056 u32 orig_offset; 3057 struct btrfs_disk_key disk_key; 3058 char *buf; 3059 3060 leaf = path->nodes[0]; 3061 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]); 3062 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item)) 3063 goto split; 3064 3065 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3066 btrfs_release_path(root, path); 3067 3068 path->search_for_split = 1; 3069 path->keep_locks = 1; 3070 3071 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1); 3072 path->search_for_split = 0; 3073 3074 /* if our item isn't there or got smaller, return now */ 3075 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0], 3076 path->slots[0])) { 3077 path->keep_locks = 0; 3078 return -EAGAIN; 3079 } 3080 3081 btrfs_set_path_blocking(path); 3082 ret = split_leaf(trans, root, &orig_key, path, 3083 sizeof(struct btrfs_item), 1); 3084 path->keep_locks = 0; 3085 BUG_ON(ret); 3086 3087 btrfs_unlock_up_safe(path, 1); 3088 leaf = path->nodes[0]; 3089 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3090 3091 split: 3092 /* 3093 * make sure any changes to the path from split_leaf leave it 3094 * in a blocking state 3095 */ 3096 btrfs_set_path_blocking(path); 3097 3098 item = btrfs_item_nr(leaf, path->slots[0]); 3099 orig_offset = btrfs_item_offset(leaf, item); 3100 item_size = btrfs_item_size(leaf, item); 3101 3102 buf = kmalloc(item_size, GFP_NOFS); 3103 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3104 path->slots[0]), item_size); 3105 slot = path->slots[0] + 1; 3106 leaf = path->nodes[0]; 3107 3108 nritems = btrfs_header_nritems(leaf); 3109 3110 if (slot != nritems) { 3111 /* shift the items */ 3112 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3113 btrfs_item_nr_offset(slot), 3114 (nritems - slot) * sizeof(struct btrfs_item)); 3115 3116 } 3117 3118 btrfs_cpu_key_to_disk(&disk_key, new_key); 3119 btrfs_set_item_key(leaf, &disk_key, slot); 3120 3121 new_item = btrfs_item_nr(leaf, slot); 3122 3123 btrfs_set_item_offset(leaf, new_item, orig_offset); 3124 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3125 3126 btrfs_set_item_offset(leaf, item, 3127 orig_offset + item_size - split_offset); 3128 btrfs_set_item_size(leaf, item, split_offset); 3129 3130 btrfs_set_header_nritems(leaf, nritems + 1); 3131 3132 /* write the data for the start of the original item */ 3133 write_extent_buffer(leaf, buf, 3134 btrfs_item_ptr_offset(leaf, path->slots[0]), 3135 split_offset); 3136 3137 /* write the data for the new item */ 3138 write_extent_buffer(leaf, buf + split_offset, 3139 btrfs_item_ptr_offset(leaf, slot), 3140 item_size - split_offset); 3141 btrfs_mark_buffer_dirty(leaf); 3142 3143 ret = 0; 3144 if (btrfs_leaf_free_space(root, leaf) < 0) { 3145 btrfs_print_leaf(root, leaf); 3146 BUG(); 3147 } 3148 kfree(buf); 3149 return ret; 3150 } 3151 3152 /* 3153 * make the item pointed to by the path smaller. new_size indicates 3154 * how small to make it, and from_end tells us if we just chop bytes 3155 * off the end of the item or if we shift the item to chop bytes off 3156 * the front. 3157 */ 3158 int btrfs_truncate_item(struct btrfs_trans_handle *trans, 3159 struct btrfs_root *root, 3160 struct btrfs_path *path, 3161 u32 new_size, int from_end) 3162 { 3163 int ret = 0; 3164 int slot; 3165 int slot_orig; 3166 struct extent_buffer *leaf; 3167 struct btrfs_item *item; 3168 u32 nritems; 3169 unsigned int data_end; 3170 unsigned int old_data_start; 3171 unsigned int old_size; 3172 unsigned int size_diff; 3173 int i; 3174 3175 slot_orig = path->slots[0]; 3176 leaf = path->nodes[0]; 3177 slot = path->slots[0]; 3178 3179 old_size = btrfs_item_size_nr(leaf, slot); 3180 if (old_size == new_size) 3181 return 0; 3182 3183 nritems = btrfs_header_nritems(leaf); 3184 data_end = leaf_data_end(root, leaf); 3185 3186 old_data_start = btrfs_item_offset_nr(leaf, slot); 3187 3188 size_diff = old_size - new_size; 3189 3190 BUG_ON(slot < 0); 3191 BUG_ON(slot >= nritems); 3192 3193 /* 3194 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3195 */ 3196 /* first correct the data pointers */ 3197 for (i = slot; i < nritems; i++) { 3198 u32 ioff; 3199 item = btrfs_item_nr(leaf, i); 3200 3201 if (!leaf->map_token) { 3202 map_extent_buffer(leaf, (unsigned long)item, 3203 sizeof(struct btrfs_item), 3204 &leaf->map_token, &leaf->kaddr, 3205 &leaf->map_start, &leaf->map_len, 3206 KM_USER1); 3207 } 3208 3209 ioff = btrfs_item_offset(leaf, item); 3210 btrfs_set_item_offset(leaf, item, ioff + size_diff); 3211 } 3212 3213 if (leaf->map_token) { 3214 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3215 leaf->map_token = NULL; 3216 } 3217 3218 /* shift the data */ 3219 if (from_end) { 3220 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3221 data_end + size_diff, btrfs_leaf_data(leaf) + 3222 data_end, old_data_start + new_size - data_end); 3223 } else { 3224 struct btrfs_disk_key disk_key; 3225 u64 offset; 3226 3227 btrfs_item_key(leaf, &disk_key, slot); 3228 3229 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3230 unsigned long ptr; 3231 struct btrfs_file_extent_item *fi; 3232 3233 fi = btrfs_item_ptr(leaf, slot, 3234 struct btrfs_file_extent_item); 3235 fi = (struct btrfs_file_extent_item *)( 3236 (unsigned long)fi - size_diff); 3237 3238 if (btrfs_file_extent_type(leaf, fi) == 3239 BTRFS_FILE_EXTENT_INLINE) { 3240 ptr = btrfs_item_ptr_offset(leaf, slot); 3241 memmove_extent_buffer(leaf, ptr, 3242 (unsigned long)fi, 3243 offsetof(struct btrfs_file_extent_item, 3244 disk_bytenr)); 3245 } 3246 } 3247 3248 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3249 data_end + size_diff, btrfs_leaf_data(leaf) + 3250 data_end, old_data_start - data_end); 3251 3252 offset = btrfs_disk_key_offset(&disk_key); 3253 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3254 btrfs_set_item_key(leaf, &disk_key, slot); 3255 if (slot == 0) 3256 fixup_low_keys(trans, root, path, &disk_key, 1); 3257 } 3258 3259 item = btrfs_item_nr(leaf, slot); 3260 btrfs_set_item_size(leaf, item, new_size); 3261 btrfs_mark_buffer_dirty(leaf); 3262 3263 ret = 0; 3264 if (btrfs_leaf_free_space(root, leaf) < 0) { 3265 btrfs_print_leaf(root, leaf); 3266 BUG(); 3267 } 3268 return ret; 3269 } 3270 3271 /* 3272 * make the item pointed to by the path bigger, data_size is the new size. 3273 */ 3274 int btrfs_extend_item(struct btrfs_trans_handle *trans, 3275 struct btrfs_root *root, struct btrfs_path *path, 3276 u32 data_size) 3277 { 3278 int ret = 0; 3279 int slot; 3280 int slot_orig; 3281 struct extent_buffer *leaf; 3282 struct btrfs_item *item; 3283 u32 nritems; 3284 unsigned int data_end; 3285 unsigned int old_data; 3286 unsigned int old_size; 3287 int i; 3288 3289 slot_orig = path->slots[0]; 3290 leaf = path->nodes[0]; 3291 3292 nritems = btrfs_header_nritems(leaf); 3293 data_end = leaf_data_end(root, leaf); 3294 3295 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3296 btrfs_print_leaf(root, leaf); 3297 BUG(); 3298 } 3299 slot = path->slots[0]; 3300 old_data = btrfs_item_end_nr(leaf, slot); 3301 3302 BUG_ON(slot < 0); 3303 if (slot >= nritems) { 3304 btrfs_print_leaf(root, leaf); 3305 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3306 slot, nritems); 3307 BUG_ON(1); 3308 } 3309 3310 /* 3311 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3312 */ 3313 /* first correct the data pointers */ 3314 for (i = slot; i < nritems; i++) { 3315 u32 ioff; 3316 item = btrfs_item_nr(leaf, i); 3317 3318 if (!leaf->map_token) { 3319 map_extent_buffer(leaf, (unsigned long)item, 3320 sizeof(struct btrfs_item), 3321 &leaf->map_token, &leaf->kaddr, 3322 &leaf->map_start, &leaf->map_len, 3323 KM_USER1); 3324 } 3325 ioff = btrfs_item_offset(leaf, item); 3326 btrfs_set_item_offset(leaf, item, ioff - data_size); 3327 } 3328 3329 if (leaf->map_token) { 3330 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3331 leaf->map_token = NULL; 3332 } 3333 3334 /* shift the data */ 3335 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3336 data_end - data_size, btrfs_leaf_data(leaf) + 3337 data_end, old_data - data_end); 3338 3339 data_end = old_data; 3340 old_size = btrfs_item_size_nr(leaf, slot); 3341 item = btrfs_item_nr(leaf, slot); 3342 btrfs_set_item_size(leaf, item, old_size + data_size); 3343 btrfs_mark_buffer_dirty(leaf); 3344 3345 ret = 0; 3346 if (btrfs_leaf_free_space(root, leaf) < 0) { 3347 btrfs_print_leaf(root, leaf); 3348 BUG(); 3349 } 3350 return ret; 3351 } 3352 3353 /* 3354 * Given a key and some data, insert items into the tree. 3355 * This does all the path init required, making room in the tree if needed. 3356 * Returns the number of keys that were inserted. 3357 */ 3358 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3359 struct btrfs_root *root, 3360 struct btrfs_path *path, 3361 struct btrfs_key *cpu_key, u32 *data_size, 3362 int nr) 3363 { 3364 struct extent_buffer *leaf; 3365 struct btrfs_item *item; 3366 int ret = 0; 3367 int slot; 3368 int i; 3369 u32 nritems; 3370 u32 total_data = 0; 3371 u32 total_size = 0; 3372 unsigned int data_end; 3373 struct btrfs_disk_key disk_key; 3374 struct btrfs_key found_key; 3375 3376 for (i = 0; i < nr; i++) { 3377 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3378 BTRFS_LEAF_DATA_SIZE(root)) { 3379 break; 3380 nr = i; 3381 } 3382 total_data += data_size[i]; 3383 total_size += data_size[i] + sizeof(struct btrfs_item); 3384 } 3385 BUG_ON(nr == 0); 3386 3387 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3388 if (ret == 0) 3389 return -EEXIST; 3390 if (ret < 0) 3391 goto out; 3392 3393 leaf = path->nodes[0]; 3394 3395 nritems = btrfs_header_nritems(leaf); 3396 data_end = leaf_data_end(root, leaf); 3397 3398 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3399 for (i = nr; i >= 0; i--) { 3400 total_data -= data_size[i]; 3401 total_size -= data_size[i] + sizeof(struct btrfs_item); 3402 if (total_size < btrfs_leaf_free_space(root, leaf)) 3403 break; 3404 } 3405 nr = i; 3406 } 3407 3408 slot = path->slots[0]; 3409 BUG_ON(slot < 0); 3410 3411 if (slot != nritems) { 3412 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3413 3414 item = btrfs_item_nr(leaf, slot); 3415 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3416 3417 /* figure out how many keys we can insert in here */ 3418 total_data = data_size[0]; 3419 for (i = 1; i < nr; i++) { 3420 if (comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3421 break; 3422 total_data += data_size[i]; 3423 } 3424 nr = i; 3425 3426 if (old_data < data_end) { 3427 btrfs_print_leaf(root, leaf); 3428 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3429 slot, old_data, data_end); 3430 BUG_ON(1); 3431 } 3432 /* 3433 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3434 */ 3435 /* first correct the data pointers */ 3436 WARN_ON(leaf->map_token); 3437 for (i = slot; i < nritems; i++) { 3438 u32 ioff; 3439 3440 item = btrfs_item_nr(leaf, i); 3441 if (!leaf->map_token) { 3442 map_extent_buffer(leaf, (unsigned long)item, 3443 sizeof(struct btrfs_item), 3444 &leaf->map_token, &leaf->kaddr, 3445 &leaf->map_start, &leaf->map_len, 3446 KM_USER1); 3447 } 3448 3449 ioff = btrfs_item_offset(leaf, item); 3450 btrfs_set_item_offset(leaf, item, ioff - total_data); 3451 } 3452 if (leaf->map_token) { 3453 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3454 leaf->map_token = NULL; 3455 } 3456 3457 /* shift the items */ 3458 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3459 btrfs_item_nr_offset(slot), 3460 (nritems - slot) * sizeof(struct btrfs_item)); 3461 3462 /* shift the data */ 3463 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3464 data_end - total_data, btrfs_leaf_data(leaf) + 3465 data_end, old_data - data_end); 3466 data_end = old_data; 3467 } else { 3468 /* 3469 * this sucks but it has to be done, if we are inserting at 3470 * the end of the leaf only insert 1 of the items, since we 3471 * have no way of knowing whats on the next leaf and we'd have 3472 * to drop our current locks to figure it out 3473 */ 3474 nr = 1; 3475 } 3476 3477 /* setup the item for the new data */ 3478 for (i = 0; i < nr; i++) { 3479 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3480 btrfs_set_item_key(leaf, &disk_key, slot + i); 3481 item = btrfs_item_nr(leaf, slot + i); 3482 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3483 data_end -= data_size[i]; 3484 btrfs_set_item_size(leaf, item, data_size[i]); 3485 } 3486 btrfs_set_header_nritems(leaf, nritems + nr); 3487 btrfs_mark_buffer_dirty(leaf); 3488 3489 ret = 0; 3490 if (slot == 0) { 3491 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3492 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3493 } 3494 3495 if (btrfs_leaf_free_space(root, leaf) < 0) { 3496 btrfs_print_leaf(root, leaf); 3497 BUG(); 3498 } 3499 out: 3500 if (!ret) 3501 ret = nr; 3502 return ret; 3503 } 3504 3505 /* 3506 * this is a helper for btrfs_insert_empty_items, the main goal here is 3507 * to save stack depth by doing the bulk of the work in a function 3508 * that doesn't call btrfs_search_slot 3509 */ 3510 static noinline_for_stack int 3511 setup_items_for_insert(struct btrfs_trans_handle *trans, 3512 struct btrfs_root *root, struct btrfs_path *path, 3513 struct btrfs_key *cpu_key, u32 *data_size, 3514 u32 total_data, u32 total_size, int nr) 3515 { 3516 struct btrfs_item *item; 3517 int i; 3518 u32 nritems; 3519 unsigned int data_end; 3520 struct btrfs_disk_key disk_key; 3521 int ret; 3522 struct extent_buffer *leaf; 3523 int slot; 3524 3525 leaf = path->nodes[0]; 3526 slot = path->slots[0]; 3527 3528 nritems = btrfs_header_nritems(leaf); 3529 data_end = leaf_data_end(root, leaf); 3530 3531 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3532 btrfs_print_leaf(root, leaf); 3533 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3534 total_size, btrfs_leaf_free_space(root, leaf)); 3535 BUG(); 3536 } 3537 3538 if (slot != nritems) { 3539 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3540 3541 if (old_data < data_end) { 3542 btrfs_print_leaf(root, leaf); 3543 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3544 slot, old_data, data_end); 3545 BUG_ON(1); 3546 } 3547 /* 3548 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3549 */ 3550 /* first correct the data pointers */ 3551 WARN_ON(leaf->map_token); 3552 for (i = slot; i < nritems; i++) { 3553 u32 ioff; 3554 3555 item = btrfs_item_nr(leaf, i); 3556 if (!leaf->map_token) { 3557 map_extent_buffer(leaf, (unsigned long)item, 3558 sizeof(struct btrfs_item), 3559 &leaf->map_token, &leaf->kaddr, 3560 &leaf->map_start, &leaf->map_len, 3561 KM_USER1); 3562 } 3563 3564 ioff = btrfs_item_offset(leaf, item); 3565 btrfs_set_item_offset(leaf, item, ioff - total_data); 3566 } 3567 if (leaf->map_token) { 3568 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3569 leaf->map_token = NULL; 3570 } 3571 3572 /* shift the items */ 3573 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3574 btrfs_item_nr_offset(slot), 3575 (nritems - slot) * sizeof(struct btrfs_item)); 3576 3577 /* shift the data */ 3578 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3579 data_end - total_data, btrfs_leaf_data(leaf) + 3580 data_end, old_data - data_end); 3581 data_end = old_data; 3582 } 3583 3584 /* setup the item for the new data */ 3585 for (i = 0; i < nr; i++) { 3586 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3587 btrfs_set_item_key(leaf, &disk_key, slot + i); 3588 item = btrfs_item_nr(leaf, slot + i); 3589 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3590 data_end -= data_size[i]; 3591 btrfs_set_item_size(leaf, item, data_size[i]); 3592 } 3593 3594 btrfs_set_header_nritems(leaf, nritems + nr); 3595 3596 ret = 0; 3597 if (slot == 0) { 3598 struct btrfs_disk_key disk_key; 3599 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3600 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3601 } 3602 btrfs_unlock_up_safe(path, 1); 3603 btrfs_mark_buffer_dirty(leaf); 3604 3605 if (btrfs_leaf_free_space(root, leaf) < 0) { 3606 btrfs_print_leaf(root, leaf); 3607 BUG(); 3608 } 3609 return ret; 3610 } 3611 3612 /* 3613 * Given a key and some data, insert items into the tree. 3614 * This does all the path init required, making room in the tree if needed. 3615 */ 3616 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3617 struct btrfs_root *root, 3618 struct btrfs_path *path, 3619 struct btrfs_key *cpu_key, u32 *data_size, 3620 int nr) 3621 { 3622 struct extent_buffer *leaf; 3623 int ret = 0; 3624 int slot; 3625 int i; 3626 u32 total_size = 0; 3627 u32 total_data = 0; 3628 3629 for (i = 0; i < nr; i++) 3630 total_data += data_size[i]; 3631 3632 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3633 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3634 if (ret == 0) 3635 return -EEXIST; 3636 if (ret < 0) 3637 goto out; 3638 3639 leaf = path->nodes[0]; 3640 slot = path->slots[0]; 3641 BUG_ON(slot < 0); 3642 3643 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size, 3644 total_data, total_size, nr); 3645 3646 out: 3647 return ret; 3648 } 3649 3650 /* 3651 * Given a key and some data, insert an item into the tree. 3652 * This does all the path init required, making room in the tree if needed. 3653 */ 3654 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3655 *root, struct btrfs_key *cpu_key, void *data, u32 3656 data_size) 3657 { 3658 int ret = 0; 3659 struct btrfs_path *path; 3660 struct extent_buffer *leaf; 3661 unsigned long ptr; 3662 3663 path = btrfs_alloc_path(); 3664 BUG_ON(!path); 3665 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3666 if (!ret) { 3667 leaf = path->nodes[0]; 3668 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3669 write_extent_buffer(leaf, data, ptr, data_size); 3670 btrfs_mark_buffer_dirty(leaf); 3671 } 3672 btrfs_free_path(path); 3673 return ret; 3674 } 3675 3676 /* 3677 * delete the pointer from a given node. 3678 * 3679 * the tree should have been previously balanced so the deletion does not 3680 * empty a node. 3681 */ 3682 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3683 struct btrfs_path *path, int level, int slot) 3684 { 3685 struct extent_buffer *parent = path->nodes[level]; 3686 u32 nritems; 3687 int ret = 0; 3688 int wret; 3689 3690 nritems = btrfs_header_nritems(parent); 3691 if (slot != nritems - 1) { 3692 memmove_extent_buffer(parent, 3693 btrfs_node_key_ptr_offset(slot), 3694 btrfs_node_key_ptr_offset(slot + 1), 3695 sizeof(struct btrfs_key_ptr) * 3696 (nritems - slot - 1)); 3697 } 3698 nritems--; 3699 btrfs_set_header_nritems(parent, nritems); 3700 if (nritems == 0 && parent == root->node) { 3701 BUG_ON(btrfs_header_level(root->node) != 1); 3702 /* just turn the root into a leaf and break */ 3703 btrfs_set_header_level(root->node, 0); 3704 } else if (slot == 0) { 3705 struct btrfs_disk_key disk_key; 3706 3707 btrfs_node_key(parent, &disk_key, 0); 3708 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); 3709 if (wret) 3710 ret = wret; 3711 } 3712 btrfs_mark_buffer_dirty(parent); 3713 return ret; 3714 } 3715 3716 /* 3717 * a helper function to delete the leaf pointed to by path->slots[1] and 3718 * path->nodes[1]. bytenr is the node block pointer, but since the callers 3719 * already know it, it is faster to have them pass it down than to 3720 * read it out of the node again. 3721 * 3722 * This deletes the pointer in path->nodes[1] and frees the leaf 3723 * block extent. zero is returned if it all worked out, < 0 otherwise. 3724 * 3725 * The path must have already been setup for deleting the leaf, including 3726 * all the proper balancing. path->nodes[1] must be locked. 3727 */ 3728 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 3729 struct btrfs_root *root, 3730 struct btrfs_path *path, u64 bytenr) 3731 { 3732 int ret; 3733 u64 root_gen = btrfs_header_generation(path->nodes[1]); 3734 u64 parent_start = path->nodes[1]->start; 3735 u64 parent_owner = btrfs_header_owner(path->nodes[1]); 3736 3737 ret = del_ptr(trans, root, path, 1, path->slots[1]); 3738 if (ret) 3739 return ret; 3740 3741 /* 3742 * btrfs_free_extent is expensive, we want to make sure we 3743 * aren't holding any locks when we call it 3744 */ 3745 btrfs_unlock_up_safe(path, 0); 3746 3747 ret = btrfs_free_extent(trans, root, bytenr, 3748 btrfs_level_size(root, 0), 3749 parent_start, parent_owner, 3750 root_gen, 0, 1); 3751 return ret; 3752 } 3753 /* 3754 * delete the item at the leaf level in path. If that empties 3755 * the leaf, remove it from the tree 3756 */ 3757 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3758 struct btrfs_path *path, int slot, int nr) 3759 { 3760 struct extent_buffer *leaf; 3761 struct btrfs_item *item; 3762 int last_off; 3763 int dsize = 0; 3764 int ret = 0; 3765 int wret; 3766 int i; 3767 u32 nritems; 3768 3769 leaf = path->nodes[0]; 3770 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3771 3772 for (i = 0; i < nr; i++) 3773 dsize += btrfs_item_size_nr(leaf, slot + i); 3774 3775 nritems = btrfs_header_nritems(leaf); 3776 3777 if (slot + nr != nritems) { 3778 int data_end = leaf_data_end(root, leaf); 3779 3780 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3781 data_end + dsize, 3782 btrfs_leaf_data(leaf) + data_end, 3783 last_off - data_end); 3784 3785 for (i = slot + nr; i < nritems; i++) { 3786 u32 ioff; 3787 3788 item = btrfs_item_nr(leaf, i); 3789 if (!leaf->map_token) { 3790 map_extent_buffer(leaf, (unsigned long)item, 3791 sizeof(struct btrfs_item), 3792 &leaf->map_token, &leaf->kaddr, 3793 &leaf->map_start, &leaf->map_len, 3794 KM_USER1); 3795 } 3796 ioff = btrfs_item_offset(leaf, item); 3797 btrfs_set_item_offset(leaf, item, ioff + dsize); 3798 } 3799 3800 if (leaf->map_token) { 3801 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3802 leaf->map_token = NULL; 3803 } 3804 3805 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3806 btrfs_item_nr_offset(slot + nr), 3807 sizeof(struct btrfs_item) * 3808 (nritems - slot - nr)); 3809 } 3810 btrfs_set_header_nritems(leaf, nritems - nr); 3811 nritems -= nr; 3812 3813 /* delete the leaf if we've emptied it */ 3814 if (nritems == 0) { 3815 if (leaf == root->node) { 3816 btrfs_set_header_level(leaf, 0); 3817 } else { 3818 ret = btrfs_del_leaf(trans, root, path, leaf->start); 3819 BUG_ON(ret); 3820 } 3821 } else { 3822 int used = leaf_space_used(leaf, 0, nritems); 3823 if (slot == 0) { 3824 struct btrfs_disk_key disk_key; 3825 3826 btrfs_item_key(leaf, &disk_key, 0); 3827 wret = fixup_low_keys(trans, root, path, 3828 &disk_key, 1); 3829 if (wret) 3830 ret = wret; 3831 } 3832 3833 /* delete the leaf if it is mostly empty */ 3834 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 && 3835 !trans->transaction->delayed_refs.flushing) { 3836 /* push_leaf_left fixes the path. 3837 * make sure the path still points to our leaf 3838 * for possible call to del_ptr below 3839 */ 3840 slot = path->slots[1]; 3841 extent_buffer_get(leaf); 3842 3843 btrfs_set_path_blocking(path); 3844 wret = push_leaf_left(trans, root, path, 1, 1); 3845 if (wret < 0 && wret != -ENOSPC) 3846 ret = wret; 3847 3848 if (path->nodes[0] == leaf && 3849 btrfs_header_nritems(leaf)) { 3850 wret = push_leaf_right(trans, root, path, 1, 1); 3851 if (wret < 0 && wret != -ENOSPC) 3852 ret = wret; 3853 } 3854 3855 if (btrfs_header_nritems(leaf) == 0) { 3856 path->slots[1] = slot; 3857 ret = btrfs_del_leaf(trans, root, path, 3858 leaf->start); 3859 BUG_ON(ret); 3860 free_extent_buffer(leaf); 3861 } else { 3862 /* if we're still in the path, make sure 3863 * we're dirty. Otherwise, one of the 3864 * push_leaf functions must have already 3865 * dirtied this buffer 3866 */ 3867 if (path->nodes[0] == leaf) 3868 btrfs_mark_buffer_dirty(leaf); 3869 free_extent_buffer(leaf); 3870 } 3871 } else { 3872 btrfs_mark_buffer_dirty(leaf); 3873 } 3874 } 3875 return ret; 3876 } 3877 3878 /* 3879 * search the tree again to find a leaf with lesser keys 3880 * returns 0 if it found something or 1 if there are no lesser leaves. 3881 * returns < 0 on io errors. 3882 * 3883 * This may release the path, and so you may lose any locks held at the 3884 * time you call it. 3885 */ 3886 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 3887 { 3888 struct btrfs_key key; 3889 struct btrfs_disk_key found_key; 3890 int ret; 3891 3892 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 3893 3894 if (key.offset > 0) 3895 key.offset--; 3896 else if (key.type > 0) 3897 key.type--; 3898 else if (key.objectid > 0) 3899 key.objectid--; 3900 else 3901 return 1; 3902 3903 btrfs_release_path(root, path); 3904 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3905 if (ret < 0) 3906 return ret; 3907 btrfs_item_key(path->nodes[0], &found_key, 0); 3908 ret = comp_keys(&found_key, &key); 3909 if (ret < 0) 3910 return 0; 3911 return 1; 3912 } 3913 3914 /* 3915 * A helper function to walk down the tree starting at min_key, and looking 3916 * for nodes or leaves that are either in cache or have a minimum 3917 * transaction id. This is used by the btree defrag code, and tree logging 3918 * 3919 * This does not cow, but it does stuff the starting key it finds back 3920 * into min_key, so you can call btrfs_search_slot with cow=1 on the 3921 * key and get a writable path. 3922 * 3923 * This does lock as it descends, and path->keep_locks should be set 3924 * to 1 by the caller. 3925 * 3926 * This honors path->lowest_level to prevent descent past a given level 3927 * of the tree. 3928 * 3929 * min_trans indicates the oldest transaction that you are interested 3930 * in walking through. Any nodes or leaves older than min_trans are 3931 * skipped over (without reading them). 3932 * 3933 * returns zero if something useful was found, < 0 on error and 1 if there 3934 * was nothing in the tree that matched the search criteria. 3935 */ 3936 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3937 struct btrfs_key *max_key, 3938 struct btrfs_path *path, int cache_only, 3939 u64 min_trans) 3940 { 3941 struct extent_buffer *cur; 3942 struct btrfs_key found_key; 3943 int slot; 3944 int sret; 3945 u32 nritems; 3946 int level; 3947 int ret = 1; 3948 3949 WARN_ON(!path->keep_locks); 3950 again: 3951 cur = btrfs_lock_root_node(root); 3952 level = btrfs_header_level(cur); 3953 WARN_ON(path->nodes[level]); 3954 path->nodes[level] = cur; 3955 path->locks[level] = 1; 3956 3957 if (btrfs_header_generation(cur) < min_trans) { 3958 ret = 1; 3959 goto out; 3960 } 3961 while (1) { 3962 nritems = btrfs_header_nritems(cur); 3963 level = btrfs_header_level(cur); 3964 sret = bin_search(cur, min_key, level, &slot); 3965 3966 /* at the lowest level, we're done, setup the path and exit */ 3967 if (level == path->lowest_level) { 3968 if (slot >= nritems) 3969 goto find_next_key; 3970 ret = 0; 3971 path->slots[level] = slot; 3972 btrfs_item_key_to_cpu(cur, &found_key, slot); 3973 goto out; 3974 } 3975 if (sret && slot > 0) 3976 slot--; 3977 /* 3978 * check this node pointer against the cache_only and 3979 * min_trans parameters. If it isn't in cache or is too 3980 * old, skip to the next one. 3981 */ 3982 while (slot < nritems) { 3983 u64 blockptr; 3984 u64 gen; 3985 struct extent_buffer *tmp; 3986 struct btrfs_disk_key disk_key; 3987 3988 blockptr = btrfs_node_blockptr(cur, slot); 3989 gen = btrfs_node_ptr_generation(cur, slot); 3990 if (gen < min_trans) { 3991 slot++; 3992 continue; 3993 } 3994 if (!cache_only) 3995 break; 3996 3997 if (max_key) { 3998 btrfs_node_key(cur, &disk_key, slot); 3999 if (comp_keys(&disk_key, max_key) >= 0) { 4000 ret = 1; 4001 goto out; 4002 } 4003 } 4004 4005 tmp = btrfs_find_tree_block(root, blockptr, 4006 btrfs_level_size(root, level - 1)); 4007 4008 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 4009 free_extent_buffer(tmp); 4010 break; 4011 } 4012 if (tmp) 4013 free_extent_buffer(tmp); 4014 slot++; 4015 } 4016 find_next_key: 4017 /* 4018 * we didn't find a candidate key in this node, walk forward 4019 * and find another one 4020 */ 4021 if (slot >= nritems) { 4022 path->slots[level] = slot; 4023 btrfs_set_path_blocking(path); 4024 sret = btrfs_find_next_key(root, path, min_key, level, 4025 cache_only, min_trans); 4026 if (sret == 0) { 4027 btrfs_release_path(root, path); 4028 goto again; 4029 } else { 4030 goto out; 4031 } 4032 } 4033 /* save our key for returning back */ 4034 btrfs_node_key_to_cpu(cur, &found_key, slot); 4035 path->slots[level] = slot; 4036 if (level == path->lowest_level) { 4037 ret = 0; 4038 unlock_up(path, level, 1); 4039 goto out; 4040 } 4041 btrfs_set_path_blocking(path); 4042 cur = read_node_slot(root, cur, slot); 4043 4044 btrfs_tree_lock(cur); 4045 4046 path->locks[level - 1] = 1; 4047 path->nodes[level - 1] = cur; 4048 unlock_up(path, level, 1); 4049 btrfs_clear_path_blocking(path, NULL); 4050 } 4051 out: 4052 if (ret == 0) 4053 memcpy(min_key, &found_key, sizeof(found_key)); 4054 btrfs_set_path_blocking(path); 4055 return ret; 4056 } 4057 4058 /* 4059 * this is similar to btrfs_next_leaf, but does not try to preserve 4060 * and fixup the path. It looks for and returns the next key in the 4061 * tree based on the current path and the cache_only and min_trans 4062 * parameters. 4063 * 4064 * 0 is returned if another key is found, < 0 if there are any errors 4065 * and 1 is returned if there are no higher keys in the tree 4066 * 4067 * path->keep_locks should be set to 1 on the search made before 4068 * calling this function. 4069 */ 4070 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4071 struct btrfs_key *key, int lowest_level, 4072 int cache_only, u64 min_trans) 4073 { 4074 int level = lowest_level; 4075 int slot; 4076 struct extent_buffer *c; 4077 4078 WARN_ON(!path->keep_locks); 4079 while (level < BTRFS_MAX_LEVEL) { 4080 if (!path->nodes[level]) 4081 return 1; 4082 4083 slot = path->slots[level] + 1; 4084 c = path->nodes[level]; 4085 next: 4086 if (slot >= btrfs_header_nritems(c)) { 4087 level++; 4088 if (level == BTRFS_MAX_LEVEL) 4089 return 1; 4090 continue; 4091 } 4092 if (level == 0) 4093 btrfs_item_key_to_cpu(c, key, slot); 4094 else { 4095 u64 blockptr = btrfs_node_blockptr(c, slot); 4096 u64 gen = btrfs_node_ptr_generation(c, slot); 4097 4098 if (cache_only) { 4099 struct extent_buffer *cur; 4100 cur = btrfs_find_tree_block(root, blockptr, 4101 btrfs_level_size(root, level - 1)); 4102 if (!cur || !btrfs_buffer_uptodate(cur, gen)) { 4103 slot++; 4104 if (cur) 4105 free_extent_buffer(cur); 4106 goto next; 4107 } 4108 free_extent_buffer(cur); 4109 } 4110 if (gen < min_trans) { 4111 slot++; 4112 goto next; 4113 } 4114 btrfs_node_key_to_cpu(c, key, slot); 4115 } 4116 return 0; 4117 } 4118 return 1; 4119 } 4120 4121 /* 4122 * search the tree again to find a leaf with greater keys 4123 * returns 0 if it found something or 1 if there are no greater leaves. 4124 * returns < 0 on io errors. 4125 */ 4126 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4127 { 4128 int slot; 4129 int level; 4130 struct extent_buffer *c; 4131 struct extent_buffer *next; 4132 struct btrfs_key key; 4133 u32 nritems; 4134 int ret; 4135 int old_spinning = path->leave_spinning; 4136 int force_blocking = 0; 4137 4138 nritems = btrfs_header_nritems(path->nodes[0]); 4139 if (nritems == 0) 4140 return 1; 4141 4142 /* 4143 * we take the blocks in an order that upsets lockdep. Using 4144 * blocking mode is the only way around it. 4145 */ 4146 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4147 force_blocking = 1; 4148 #endif 4149 4150 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4151 again: 4152 level = 1; 4153 next = NULL; 4154 btrfs_release_path(root, path); 4155 4156 path->keep_locks = 1; 4157 4158 if (!force_blocking) 4159 path->leave_spinning = 1; 4160 4161 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4162 path->keep_locks = 0; 4163 4164 if (ret < 0) 4165 return ret; 4166 4167 nritems = btrfs_header_nritems(path->nodes[0]); 4168 /* 4169 * by releasing the path above we dropped all our locks. A balance 4170 * could have added more items next to the key that used to be 4171 * at the very end of the block. So, check again here and 4172 * advance the path if there are now more items available. 4173 */ 4174 if (nritems > 0 && path->slots[0] < nritems - 1) { 4175 path->slots[0]++; 4176 ret = 0; 4177 goto done; 4178 } 4179 4180 while (level < BTRFS_MAX_LEVEL) { 4181 if (!path->nodes[level]) { 4182 ret = 1; 4183 goto done; 4184 } 4185 4186 slot = path->slots[level] + 1; 4187 c = path->nodes[level]; 4188 if (slot >= btrfs_header_nritems(c)) { 4189 level++; 4190 if (level == BTRFS_MAX_LEVEL) { 4191 ret = 1; 4192 goto done; 4193 } 4194 continue; 4195 } 4196 4197 if (next) { 4198 btrfs_tree_unlock(next); 4199 free_extent_buffer(next); 4200 } 4201 4202 next = c; 4203 ret = read_block_for_search(NULL, root, path, &next, level, 4204 slot, &key); 4205 if (ret == -EAGAIN) 4206 goto again; 4207 4208 if (!path->skip_locking) { 4209 ret = btrfs_try_spin_lock(next); 4210 if (!ret) { 4211 btrfs_set_path_blocking(path); 4212 btrfs_tree_lock(next); 4213 if (!force_blocking) 4214 btrfs_clear_path_blocking(path, next); 4215 } 4216 if (force_blocking) 4217 btrfs_set_lock_blocking(next); 4218 } 4219 break; 4220 } 4221 path->slots[level] = slot; 4222 while (1) { 4223 level--; 4224 c = path->nodes[level]; 4225 if (path->locks[level]) 4226 btrfs_tree_unlock(c); 4227 4228 free_extent_buffer(c); 4229 path->nodes[level] = next; 4230 path->slots[level] = 0; 4231 if (!path->skip_locking) 4232 path->locks[level] = 1; 4233 4234 if (!level) 4235 break; 4236 4237 ret = read_block_for_search(NULL, root, path, &next, level, 4238 0, &key); 4239 if (ret == -EAGAIN) 4240 goto again; 4241 4242 if (!path->skip_locking) { 4243 btrfs_assert_tree_locked(path->nodes[level]); 4244 ret = btrfs_try_spin_lock(next); 4245 if (!ret) { 4246 btrfs_set_path_blocking(path); 4247 btrfs_tree_lock(next); 4248 if (!force_blocking) 4249 btrfs_clear_path_blocking(path, next); 4250 } 4251 if (force_blocking) 4252 btrfs_set_lock_blocking(next); 4253 } 4254 } 4255 ret = 0; 4256 done: 4257 unlock_up(path, 0, 1); 4258 path->leave_spinning = old_spinning; 4259 if (!old_spinning) 4260 btrfs_set_path_blocking(path); 4261 4262 return ret; 4263 } 4264 4265 /* 4266 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4267 * searching until it gets past min_objectid or finds an item of 'type' 4268 * 4269 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4270 */ 4271 int btrfs_previous_item(struct btrfs_root *root, 4272 struct btrfs_path *path, u64 min_objectid, 4273 int type) 4274 { 4275 struct btrfs_key found_key; 4276 struct extent_buffer *leaf; 4277 u32 nritems; 4278 int ret; 4279 4280 while (1) { 4281 if (path->slots[0] == 0) { 4282 btrfs_set_path_blocking(path); 4283 ret = btrfs_prev_leaf(root, path); 4284 if (ret != 0) 4285 return ret; 4286 } else { 4287 path->slots[0]--; 4288 } 4289 leaf = path->nodes[0]; 4290 nritems = btrfs_header_nritems(leaf); 4291 if (nritems == 0) 4292 return 1; 4293 if (path->slots[0] == nritems) 4294 path->slots[0]--; 4295 4296 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4297 if (found_key.type == type) 4298 return 0; 4299 if (found_key.objectid < min_objectid) 4300 break; 4301 if (found_key.objectid == min_objectid && 4302 found_key.type < type) 4303 break; 4304 } 4305 return 1; 4306 } 4307