1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include <linux/mm.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_path *path, int level); 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 32 const struct btrfs_key *ins_key, struct btrfs_path *path, 33 int data_size, int extend); 34 static int push_node_left(struct btrfs_trans_handle *trans, 35 struct btrfs_fs_info *fs_info, 36 struct extent_buffer *dst, 37 struct extent_buffer *src, int empty); 38 static int balance_node_right(struct btrfs_trans_handle *trans, 39 struct btrfs_fs_info *fs_info, 40 struct extent_buffer *dst_buf, 41 struct extent_buffer *src_buf); 42 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 43 int level, int slot); 44 45 struct btrfs_path *btrfs_alloc_path(void) 46 { 47 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 48 } 49 50 /* 51 * set all locked nodes in the path to blocking locks. This should 52 * be done before scheduling 53 */ 54 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 55 { 56 int i; 57 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 58 if (!p->nodes[i] || !p->locks[i]) 59 continue; 60 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 61 if (p->locks[i] == BTRFS_READ_LOCK) 62 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 63 else if (p->locks[i] == BTRFS_WRITE_LOCK) 64 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 65 } 66 } 67 68 /* 69 * reset all the locked nodes in the patch to spinning locks. 70 * 71 * held is used to keep lockdep happy, when lockdep is enabled 72 * we set held to a blocking lock before we go around and 73 * retake all the spinlocks in the path. You can safely use NULL 74 * for held 75 */ 76 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 77 struct extent_buffer *held, int held_rw) 78 { 79 int i; 80 81 if (held) { 82 btrfs_set_lock_blocking_rw(held, held_rw); 83 if (held_rw == BTRFS_WRITE_LOCK) 84 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 85 else if (held_rw == BTRFS_READ_LOCK) 86 held_rw = BTRFS_READ_LOCK_BLOCKING; 87 } 88 btrfs_set_path_blocking(p); 89 90 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 91 if (p->nodes[i] && p->locks[i]) { 92 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 93 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 94 p->locks[i] = BTRFS_WRITE_LOCK; 95 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 96 p->locks[i] = BTRFS_READ_LOCK; 97 } 98 } 99 100 if (held) 101 btrfs_clear_lock_blocking_rw(held, held_rw); 102 } 103 104 /* this also releases the path */ 105 void btrfs_free_path(struct btrfs_path *p) 106 { 107 if (!p) 108 return; 109 btrfs_release_path(p); 110 kmem_cache_free(btrfs_path_cachep, p); 111 } 112 113 /* 114 * path release drops references on the extent buffers in the path 115 * and it drops any locks held by this path 116 * 117 * It is safe to call this on paths that no locks or extent buffers held. 118 */ 119 noinline void btrfs_release_path(struct btrfs_path *p) 120 { 121 int i; 122 123 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 124 p->slots[i] = 0; 125 if (!p->nodes[i]) 126 continue; 127 if (p->locks[i]) { 128 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 129 p->locks[i] = 0; 130 } 131 free_extent_buffer(p->nodes[i]); 132 p->nodes[i] = NULL; 133 } 134 } 135 136 /* 137 * safely gets a reference on the root node of a tree. A lock 138 * is not taken, so a concurrent writer may put a different node 139 * at the root of the tree. See btrfs_lock_root_node for the 140 * looping required. 141 * 142 * The extent buffer returned by this has a reference taken, so 143 * it won't disappear. It may stop being the root of the tree 144 * at any time because there are no locks held. 145 */ 146 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 147 { 148 struct extent_buffer *eb; 149 150 while (1) { 151 rcu_read_lock(); 152 eb = rcu_dereference(root->node); 153 154 /* 155 * RCU really hurts here, we could free up the root node because 156 * it was COWed but we may not get the new root node yet so do 157 * the inc_not_zero dance and if it doesn't work then 158 * synchronize_rcu and try again. 159 */ 160 if (atomic_inc_not_zero(&eb->refs)) { 161 rcu_read_unlock(); 162 break; 163 } 164 rcu_read_unlock(); 165 synchronize_rcu(); 166 } 167 return eb; 168 } 169 170 /* loop around taking references on and locking the root node of the 171 * tree until you end up with a lock on the root. A locked buffer 172 * is returned, with a reference held. 173 */ 174 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 175 { 176 struct extent_buffer *eb; 177 178 while (1) { 179 eb = btrfs_root_node(root); 180 btrfs_tree_lock(eb); 181 if (eb == root->node) 182 break; 183 btrfs_tree_unlock(eb); 184 free_extent_buffer(eb); 185 } 186 return eb; 187 } 188 189 /* loop around taking references on and locking the root node of the 190 * tree until you end up with a lock on the root. A locked buffer 191 * is returned, with a reference held. 192 */ 193 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 194 { 195 struct extent_buffer *eb; 196 197 while (1) { 198 eb = btrfs_root_node(root); 199 btrfs_tree_read_lock(eb); 200 if (eb == root->node) 201 break; 202 btrfs_tree_read_unlock(eb); 203 free_extent_buffer(eb); 204 } 205 return eb; 206 } 207 208 /* cowonly root (everything not a reference counted cow subvolume), just get 209 * put onto a simple dirty list. transaction.c walks this to make sure they 210 * get properly updated on disk. 211 */ 212 static void add_root_to_dirty_list(struct btrfs_root *root) 213 { 214 struct btrfs_fs_info *fs_info = root->fs_info; 215 216 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 217 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 218 return; 219 220 spin_lock(&fs_info->trans_lock); 221 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 222 /* Want the extent tree to be the last on the list */ 223 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 224 list_move_tail(&root->dirty_list, 225 &fs_info->dirty_cowonly_roots); 226 else 227 list_move(&root->dirty_list, 228 &fs_info->dirty_cowonly_roots); 229 } 230 spin_unlock(&fs_info->trans_lock); 231 } 232 233 /* 234 * used by snapshot creation to make a copy of a root for a tree with 235 * a given objectid. The buffer with the new root node is returned in 236 * cow_ret, and this func returns zero on success or a negative error code. 237 */ 238 int btrfs_copy_root(struct btrfs_trans_handle *trans, 239 struct btrfs_root *root, 240 struct extent_buffer *buf, 241 struct extent_buffer **cow_ret, u64 new_root_objectid) 242 { 243 struct btrfs_fs_info *fs_info = root->fs_info; 244 struct extent_buffer *cow; 245 int ret = 0; 246 int level; 247 struct btrfs_disk_key disk_key; 248 249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 250 trans->transid != fs_info->running_transaction->transid); 251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 252 trans->transid != root->last_trans); 253 254 level = btrfs_header_level(buf); 255 if (level == 0) 256 btrfs_item_key(buf, &disk_key, 0); 257 else 258 btrfs_node_key(buf, &disk_key, 0); 259 260 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 261 &disk_key, level, buf->start, 0); 262 if (IS_ERR(cow)) 263 return PTR_ERR(cow); 264 265 copy_extent_buffer_full(cow, buf); 266 btrfs_set_header_bytenr(cow, cow->start); 267 btrfs_set_header_generation(cow, trans->transid); 268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 270 BTRFS_HEADER_FLAG_RELOC); 271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 273 else 274 btrfs_set_header_owner(cow, new_root_objectid); 275 276 write_extent_buffer_fsid(cow, fs_info->fsid); 277 278 WARN_ON(btrfs_header_generation(buf) > trans->transid); 279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 280 ret = btrfs_inc_ref(trans, root, cow, 1); 281 else 282 ret = btrfs_inc_ref(trans, root, cow, 0); 283 284 if (ret) 285 return ret; 286 287 btrfs_mark_buffer_dirty(cow); 288 *cow_ret = cow; 289 return 0; 290 } 291 292 enum mod_log_op { 293 MOD_LOG_KEY_REPLACE, 294 MOD_LOG_KEY_ADD, 295 MOD_LOG_KEY_REMOVE, 296 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 297 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 298 MOD_LOG_MOVE_KEYS, 299 MOD_LOG_ROOT_REPLACE, 300 }; 301 302 struct tree_mod_root { 303 u64 logical; 304 u8 level; 305 }; 306 307 struct tree_mod_elem { 308 struct rb_node node; 309 u64 logical; 310 u64 seq; 311 enum mod_log_op op; 312 313 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 314 int slot; 315 316 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 317 u64 generation; 318 319 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 320 struct btrfs_disk_key key; 321 u64 blockptr; 322 323 /* this is used for op == MOD_LOG_MOVE_KEYS */ 324 struct { 325 int dst_slot; 326 int nr_items; 327 } move; 328 329 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 330 struct tree_mod_root old_root; 331 }; 332 333 /* 334 * Pull a new tree mod seq number for our operation. 335 */ 336 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 337 { 338 return atomic64_inc_return(&fs_info->tree_mod_seq); 339 } 340 341 /* 342 * This adds a new blocker to the tree mod log's blocker list if the @elem 343 * passed does not already have a sequence number set. So when a caller expects 344 * to record tree modifications, it should ensure to set elem->seq to zero 345 * before calling btrfs_get_tree_mod_seq. 346 * Returns a fresh, unused tree log modification sequence number, even if no new 347 * blocker was added. 348 */ 349 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 350 struct seq_list *elem) 351 { 352 write_lock(&fs_info->tree_mod_log_lock); 353 spin_lock(&fs_info->tree_mod_seq_lock); 354 if (!elem->seq) { 355 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 356 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 357 } 358 spin_unlock(&fs_info->tree_mod_seq_lock); 359 write_unlock(&fs_info->tree_mod_log_lock); 360 361 return elem->seq; 362 } 363 364 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 365 struct seq_list *elem) 366 { 367 struct rb_root *tm_root; 368 struct rb_node *node; 369 struct rb_node *next; 370 struct seq_list *cur_elem; 371 struct tree_mod_elem *tm; 372 u64 min_seq = (u64)-1; 373 u64 seq_putting = elem->seq; 374 375 if (!seq_putting) 376 return; 377 378 spin_lock(&fs_info->tree_mod_seq_lock); 379 list_del(&elem->list); 380 elem->seq = 0; 381 382 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 383 if (cur_elem->seq < min_seq) { 384 if (seq_putting > cur_elem->seq) { 385 /* 386 * blocker with lower sequence number exists, we 387 * cannot remove anything from the log 388 */ 389 spin_unlock(&fs_info->tree_mod_seq_lock); 390 return; 391 } 392 min_seq = cur_elem->seq; 393 } 394 } 395 spin_unlock(&fs_info->tree_mod_seq_lock); 396 397 /* 398 * anything that's lower than the lowest existing (read: blocked) 399 * sequence number can be removed from the tree. 400 */ 401 write_lock(&fs_info->tree_mod_log_lock); 402 tm_root = &fs_info->tree_mod_log; 403 for (node = rb_first(tm_root); node; node = next) { 404 next = rb_next(node); 405 tm = rb_entry(node, struct tree_mod_elem, node); 406 if (tm->seq > min_seq) 407 continue; 408 rb_erase(node, tm_root); 409 kfree(tm); 410 } 411 write_unlock(&fs_info->tree_mod_log_lock); 412 } 413 414 /* 415 * key order of the log: 416 * node/leaf start address -> sequence 417 * 418 * The 'start address' is the logical address of the *new* root node 419 * for root replace operations, or the logical address of the affected 420 * block for all other operations. 421 * 422 * Note: must be called with write lock for fs_info::tree_mod_log_lock. 423 */ 424 static noinline int 425 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 426 { 427 struct rb_root *tm_root; 428 struct rb_node **new; 429 struct rb_node *parent = NULL; 430 struct tree_mod_elem *cur; 431 432 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 433 434 tm_root = &fs_info->tree_mod_log; 435 new = &tm_root->rb_node; 436 while (*new) { 437 cur = rb_entry(*new, struct tree_mod_elem, node); 438 parent = *new; 439 if (cur->logical < tm->logical) 440 new = &((*new)->rb_left); 441 else if (cur->logical > tm->logical) 442 new = &((*new)->rb_right); 443 else if (cur->seq < tm->seq) 444 new = &((*new)->rb_left); 445 else if (cur->seq > tm->seq) 446 new = &((*new)->rb_right); 447 else 448 return -EEXIST; 449 } 450 451 rb_link_node(&tm->node, parent, new); 452 rb_insert_color(&tm->node, tm_root); 453 return 0; 454 } 455 456 /* 457 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 458 * returns zero with the tree_mod_log_lock acquired. The caller must hold 459 * this until all tree mod log insertions are recorded in the rb tree and then 460 * write unlock fs_info::tree_mod_log_lock. 461 */ 462 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 463 struct extent_buffer *eb) { 464 smp_mb(); 465 if (list_empty(&(fs_info)->tree_mod_seq_list)) 466 return 1; 467 if (eb && btrfs_header_level(eb) == 0) 468 return 1; 469 470 write_lock(&fs_info->tree_mod_log_lock); 471 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 472 write_unlock(&fs_info->tree_mod_log_lock); 473 return 1; 474 } 475 476 return 0; 477 } 478 479 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 480 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 481 struct extent_buffer *eb) 482 { 483 smp_mb(); 484 if (list_empty(&(fs_info)->tree_mod_seq_list)) 485 return 0; 486 if (eb && btrfs_header_level(eb) == 0) 487 return 0; 488 489 return 1; 490 } 491 492 static struct tree_mod_elem * 493 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 494 enum mod_log_op op, gfp_t flags) 495 { 496 struct tree_mod_elem *tm; 497 498 tm = kzalloc(sizeof(*tm), flags); 499 if (!tm) 500 return NULL; 501 502 tm->logical = eb->start; 503 if (op != MOD_LOG_KEY_ADD) { 504 btrfs_node_key(eb, &tm->key, slot); 505 tm->blockptr = btrfs_node_blockptr(eb, slot); 506 } 507 tm->op = op; 508 tm->slot = slot; 509 tm->generation = btrfs_node_ptr_generation(eb, slot); 510 RB_CLEAR_NODE(&tm->node); 511 512 return tm; 513 } 514 515 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 516 enum mod_log_op op, gfp_t flags) 517 { 518 struct tree_mod_elem *tm; 519 int ret; 520 521 if (!tree_mod_need_log(eb->fs_info, eb)) 522 return 0; 523 524 tm = alloc_tree_mod_elem(eb, slot, op, flags); 525 if (!tm) 526 return -ENOMEM; 527 528 if (tree_mod_dont_log(eb->fs_info, eb)) { 529 kfree(tm); 530 return 0; 531 } 532 533 ret = __tree_mod_log_insert(eb->fs_info, tm); 534 write_unlock(&eb->fs_info->tree_mod_log_lock); 535 if (ret) 536 kfree(tm); 537 538 return ret; 539 } 540 541 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 542 int dst_slot, int src_slot, int nr_items) 543 { 544 struct tree_mod_elem *tm = NULL; 545 struct tree_mod_elem **tm_list = NULL; 546 int ret = 0; 547 int i; 548 int locked = 0; 549 550 if (!tree_mod_need_log(eb->fs_info, eb)) 551 return 0; 552 553 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 554 if (!tm_list) 555 return -ENOMEM; 556 557 tm = kzalloc(sizeof(*tm), GFP_NOFS); 558 if (!tm) { 559 ret = -ENOMEM; 560 goto free_tms; 561 } 562 563 tm->logical = eb->start; 564 tm->slot = src_slot; 565 tm->move.dst_slot = dst_slot; 566 tm->move.nr_items = nr_items; 567 tm->op = MOD_LOG_MOVE_KEYS; 568 569 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 570 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 571 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 572 if (!tm_list[i]) { 573 ret = -ENOMEM; 574 goto free_tms; 575 } 576 } 577 578 if (tree_mod_dont_log(eb->fs_info, eb)) 579 goto free_tms; 580 locked = 1; 581 582 /* 583 * When we override something during the move, we log these removals. 584 * This can only happen when we move towards the beginning of the 585 * buffer, i.e. dst_slot < src_slot. 586 */ 587 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 588 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 589 if (ret) 590 goto free_tms; 591 } 592 593 ret = __tree_mod_log_insert(eb->fs_info, tm); 594 if (ret) 595 goto free_tms; 596 write_unlock(&eb->fs_info->tree_mod_log_lock); 597 kfree(tm_list); 598 599 return 0; 600 free_tms: 601 for (i = 0; i < nr_items; i++) { 602 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 603 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 604 kfree(tm_list[i]); 605 } 606 if (locked) 607 write_unlock(&eb->fs_info->tree_mod_log_lock); 608 kfree(tm_list); 609 kfree(tm); 610 611 return ret; 612 } 613 614 static inline int 615 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 616 struct tree_mod_elem **tm_list, 617 int nritems) 618 { 619 int i, j; 620 int ret; 621 622 for (i = nritems - 1; i >= 0; i--) { 623 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 624 if (ret) { 625 for (j = nritems - 1; j > i; j--) 626 rb_erase(&tm_list[j]->node, 627 &fs_info->tree_mod_log); 628 return ret; 629 } 630 } 631 632 return 0; 633 } 634 635 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 636 struct extent_buffer *new_root, int log_removal) 637 { 638 struct btrfs_fs_info *fs_info = old_root->fs_info; 639 struct tree_mod_elem *tm = NULL; 640 struct tree_mod_elem **tm_list = NULL; 641 int nritems = 0; 642 int ret = 0; 643 int i; 644 645 if (!tree_mod_need_log(fs_info, NULL)) 646 return 0; 647 648 if (log_removal && btrfs_header_level(old_root) > 0) { 649 nritems = btrfs_header_nritems(old_root); 650 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 651 GFP_NOFS); 652 if (!tm_list) { 653 ret = -ENOMEM; 654 goto free_tms; 655 } 656 for (i = 0; i < nritems; i++) { 657 tm_list[i] = alloc_tree_mod_elem(old_root, i, 658 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 659 if (!tm_list[i]) { 660 ret = -ENOMEM; 661 goto free_tms; 662 } 663 } 664 } 665 666 tm = kzalloc(sizeof(*tm), GFP_NOFS); 667 if (!tm) { 668 ret = -ENOMEM; 669 goto free_tms; 670 } 671 672 tm->logical = new_root->start; 673 tm->old_root.logical = old_root->start; 674 tm->old_root.level = btrfs_header_level(old_root); 675 tm->generation = btrfs_header_generation(old_root); 676 tm->op = MOD_LOG_ROOT_REPLACE; 677 678 if (tree_mod_dont_log(fs_info, NULL)) 679 goto free_tms; 680 681 if (tm_list) 682 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 683 if (!ret) 684 ret = __tree_mod_log_insert(fs_info, tm); 685 686 write_unlock(&fs_info->tree_mod_log_lock); 687 if (ret) 688 goto free_tms; 689 kfree(tm_list); 690 691 return ret; 692 693 free_tms: 694 if (tm_list) { 695 for (i = 0; i < nritems; i++) 696 kfree(tm_list[i]); 697 kfree(tm_list); 698 } 699 kfree(tm); 700 701 return ret; 702 } 703 704 static struct tree_mod_elem * 705 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 706 int smallest) 707 { 708 struct rb_root *tm_root; 709 struct rb_node *node; 710 struct tree_mod_elem *cur = NULL; 711 struct tree_mod_elem *found = NULL; 712 713 read_lock(&fs_info->tree_mod_log_lock); 714 tm_root = &fs_info->tree_mod_log; 715 node = tm_root->rb_node; 716 while (node) { 717 cur = rb_entry(node, struct tree_mod_elem, node); 718 if (cur->logical < start) { 719 node = node->rb_left; 720 } else if (cur->logical > start) { 721 node = node->rb_right; 722 } else if (cur->seq < min_seq) { 723 node = node->rb_left; 724 } else if (!smallest) { 725 /* we want the node with the highest seq */ 726 if (found) 727 BUG_ON(found->seq > cur->seq); 728 found = cur; 729 node = node->rb_left; 730 } else if (cur->seq > min_seq) { 731 /* we want the node with the smallest seq */ 732 if (found) 733 BUG_ON(found->seq < cur->seq); 734 found = cur; 735 node = node->rb_right; 736 } else { 737 found = cur; 738 break; 739 } 740 } 741 read_unlock(&fs_info->tree_mod_log_lock); 742 743 return found; 744 } 745 746 /* 747 * this returns the element from the log with the smallest time sequence 748 * value that's in the log (the oldest log item). any element with a time 749 * sequence lower than min_seq will be ignored. 750 */ 751 static struct tree_mod_elem * 752 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 753 u64 min_seq) 754 { 755 return __tree_mod_log_search(fs_info, start, min_seq, 1); 756 } 757 758 /* 759 * this returns the element from the log with the largest time sequence 760 * value that's in the log (the most recent log item). any element with 761 * a time sequence lower than min_seq will be ignored. 762 */ 763 static struct tree_mod_elem * 764 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 765 { 766 return __tree_mod_log_search(fs_info, start, min_seq, 0); 767 } 768 769 static noinline int 770 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 771 struct extent_buffer *src, unsigned long dst_offset, 772 unsigned long src_offset, int nr_items) 773 { 774 int ret = 0; 775 struct tree_mod_elem **tm_list = NULL; 776 struct tree_mod_elem **tm_list_add, **tm_list_rem; 777 int i; 778 int locked = 0; 779 780 if (!tree_mod_need_log(fs_info, NULL)) 781 return 0; 782 783 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 784 return 0; 785 786 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 787 GFP_NOFS); 788 if (!tm_list) 789 return -ENOMEM; 790 791 tm_list_add = tm_list; 792 tm_list_rem = tm_list + nr_items; 793 for (i = 0; i < nr_items; i++) { 794 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 795 MOD_LOG_KEY_REMOVE, GFP_NOFS); 796 if (!tm_list_rem[i]) { 797 ret = -ENOMEM; 798 goto free_tms; 799 } 800 801 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 802 MOD_LOG_KEY_ADD, GFP_NOFS); 803 if (!tm_list_add[i]) { 804 ret = -ENOMEM; 805 goto free_tms; 806 } 807 } 808 809 if (tree_mod_dont_log(fs_info, NULL)) 810 goto free_tms; 811 locked = 1; 812 813 for (i = 0; i < nr_items; i++) { 814 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 815 if (ret) 816 goto free_tms; 817 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 818 if (ret) 819 goto free_tms; 820 } 821 822 write_unlock(&fs_info->tree_mod_log_lock); 823 kfree(tm_list); 824 825 return 0; 826 827 free_tms: 828 for (i = 0; i < nr_items * 2; i++) { 829 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 830 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 831 kfree(tm_list[i]); 832 } 833 if (locked) 834 write_unlock(&fs_info->tree_mod_log_lock); 835 kfree(tm_list); 836 837 return ret; 838 } 839 840 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 841 { 842 struct tree_mod_elem **tm_list = NULL; 843 int nritems = 0; 844 int i; 845 int ret = 0; 846 847 if (btrfs_header_level(eb) == 0) 848 return 0; 849 850 if (!tree_mod_need_log(eb->fs_info, NULL)) 851 return 0; 852 853 nritems = btrfs_header_nritems(eb); 854 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 855 if (!tm_list) 856 return -ENOMEM; 857 858 for (i = 0; i < nritems; i++) { 859 tm_list[i] = alloc_tree_mod_elem(eb, i, 860 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 861 if (!tm_list[i]) { 862 ret = -ENOMEM; 863 goto free_tms; 864 } 865 } 866 867 if (tree_mod_dont_log(eb->fs_info, eb)) 868 goto free_tms; 869 870 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 871 write_unlock(&eb->fs_info->tree_mod_log_lock); 872 if (ret) 873 goto free_tms; 874 kfree(tm_list); 875 876 return 0; 877 878 free_tms: 879 for (i = 0; i < nritems; i++) 880 kfree(tm_list[i]); 881 kfree(tm_list); 882 883 return ret; 884 } 885 886 /* 887 * check if the tree block can be shared by multiple trees 888 */ 889 int btrfs_block_can_be_shared(struct btrfs_root *root, 890 struct extent_buffer *buf) 891 { 892 /* 893 * Tree blocks not in reference counted trees and tree roots 894 * are never shared. If a block was allocated after the last 895 * snapshot and the block was not allocated by tree relocation, 896 * we know the block is not shared. 897 */ 898 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 899 buf != root->node && buf != root->commit_root && 900 (btrfs_header_generation(buf) <= 901 btrfs_root_last_snapshot(&root->root_item) || 902 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 903 return 1; 904 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 905 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 906 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 907 return 1; 908 #endif 909 return 0; 910 } 911 912 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 913 struct btrfs_root *root, 914 struct extent_buffer *buf, 915 struct extent_buffer *cow, 916 int *last_ref) 917 { 918 struct btrfs_fs_info *fs_info = root->fs_info; 919 u64 refs; 920 u64 owner; 921 u64 flags; 922 u64 new_flags = 0; 923 int ret; 924 925 /* 926 * Backrefs update rules: 927 * 928 * Always use full backrefs for extent pointers in tree block 929 * allocated by tree relocation. 930 * 931 * If a shared tree block is no longer referenced by its owner 932 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 933 * use full backrefs for extent pointers in tree block. 934 * 935 * If a tree block is been relocating 936 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 937 * use full backrefs for extent pointers in tree block. 938 * The reason for this is some operations (such as drop tree) 939 * are only allowed for blocks use full backrefs. 940 */ 941 942 if (btrfs_block_can_be_shared(root, buf)) { 943 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 944 btrfs_header_level(buf), 1, 945 &refs, &flags); 946 if (ret) 947 return ret; 948 if (refs == 0) { 949 ret = -EROFS; 950 btrfs_handle_fs_error(fs_info, ret, NULL); 951 return ret; 952 } 953 } else { 954 refs = 1; 955 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 956 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 957 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 958 else 959 flags = 0; 960 } 961 962 owner = btrfs_header_owner(buf); 963 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 964 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 965 966 if (refs > 1) { 967 if ((owner == root->root_key.objectid || 968 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 969 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 970 ret = btrfs_inc_ref(trans, root, buf, 1); 971 if (ret) 972 return ret; 973 974 if (root->root_key.objectid == 975 BTRFS_TREE_RELOC_OBJECTID) { 976 ret = btrfs_dec_ref(trans, root, buf, 0); 977 if (ret) 978 return ret; 979 ret = btrfs_inc_ref(trans, root, cow, 1); 980 if (ret) 981 return ret; 982 } 983 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 984 } else { 985 986 if (root->root_key.objectid == 987 BTRFS_TREE_RELOC_OBJECTID) 988 ret = btrfs_inc_ref(trans, root, cow, 1); 989 else 990 ret = btrfs_inc_ref(trans, root, cow, 0); 991 if (ret) 992 return ret; 993 } 994 if (new_flags != 0) { 995 int level = btrfs_header_level(buf); 996 997 ret = btrfs_set_disk_extent_flags(trans, fs_info, 998 buf->start, 999 buf->len, 1000 new_flags, level, 0); 1001 if (ret) 1002 return ret; 1003 } 1004 } else { 1005 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1006 if (root->root_key.objectid == 1007 BTRFS_TREE_RELOC_OBJECTID) 1008 ret = btrfs_inc_ref(trans, root, cow, 1); 1009 else 1010 ret = btrfs_inc_ref(trans, root, cow, 0); 1011 if (ret) 1012 return ret; 1013 ret = btrfs_dec_ref(trans, root, buf, 1); 1014 if (ret) 1015 return ret; 1016 } 1017 clean_tree_block(fs_info, buf); 1018 *last_ref = 1; 1019 } 1020 return 0; 1021 } 1022 1023 /* 1024 * does the dirty work in cow of a single block. The parent block (if 1025 * supplied) is updated to point to the new cow copy. The new buffer is marked 1026 * dirty and returned locked. If you modify the block it needs to be marked 1027 * dirty again. 1028 * 1029 * search_start -- an allocation hint for the new block 1030 * 1031 * empty_size -- a hint that you plan on doing more cow. This is the size in 1032 * bytes the allocator should try to find free next to the block it returns. 1033 * This is just a hint and may be ignored by the allocator. 1034 */ 1035 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1036 struct btrfs_root *root, 1037 struct extent_buffer *buf, 1038 struct extent_buffer *parent, int parent_slot, 1039 struct extent_buffer **cow_ret, 1040 u64 search_start, u64 empty_size) 1041 { 1042 struct btrfs_fs_info *fs_info = root->fs_info; 1043 struct btrfs_disk_key disk_key; 1044 struct extent_buffer *cow; 1045 int level, ret; 1046 int last_ref = 0; 1047 int unlock_orig = 0; 1048 u64 parent_start = 0; 1049 1050 if (*cow_ret == buf) 1051 unlock_orig = 1; 1052 1053 btrfs_assert_tree_locked(buf); 1054 1055 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1056 trans->transid != fs_info->running_transaction->transid); 1057 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1058 trans->transid != root->last_trans); 1059 1060 level = btrfs_header_level(buf); 1061 1062 if (level == 0) 1063 btrfs_item_key(buf, &disk_key, 0); 1064 else 1065 btrfs_node_key(buf, &disk_key, 0); 1066 1067 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1068 parent_start = parent->start; 1069 1070 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1071 root->root_key.objectid, &disk_key, level, 1072 search_start, empty_size); 1073 if (IS_ERR(cow)) 1074 return PTR_ERR(cow); 1075 1076 /* cow is set to blocking by btrfs_init_new_buffer */ 1077 1078 copy_extent_buffer_full(cow, buf); 1079 btrfs_set_header_bytenr(cow, cow->start); 1080 btrfs_set_header_generation(cow, trans->transid); 1081 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1082 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1083 BTRFS_HEADER_FLAG_RELOC); 1084 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1085 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1086 else 1087 btrfs_set_header_owner(cow, root->root_key.objectid); 1088 1089 write_extent_buffer_fsid(cow, fs_info->fsid); 1090 1091 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1092 if (ret) { 1093 btrfs_abort_transaction(trans, ret); 1094 return ret; 1095 } 1096 1097 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1098 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1099 if (ret) { 1100 btrfs_abort_transaction(trans, ret); 1101 return ret; 1102 } 1103 } 1104 1105 if (buf == root->node) { 1106 WARN_ON(parent && parent != buf); 1107 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1108 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1109 parent_start = buf->start; 1110 1111 extent_buffer_get(cow); 1112 ret = tree_mod_log_insert_root(root->node, cow, 1); 1113 BUG_ON(ret < 0); 1114 rcu_assign_pointer(root->node, cow); 1115 1116 btrfs_free_tree_block(trans, root, buf, parent_start, 1117 last_ref); 1118 free_extent_buffer(buf); 1119 add_root_to_dirty_list(root); 1120 } else { 1121 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1122 tree_mod_log_insert_key(parent, parent_slot, 1123 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1124 btrfs_set_node_blockptr(parent, parent_slot, 1125 cow->start); 1126 btrfs_set_node_ptr_generation(parent, parent_slot, 1127 trans->transid); 1128 btrfs_mark_buffer_dirty(parent); 1129 if (last_ref) { 1130 ret = tree_mod_log_free_eb(buf); 1131 if (ret) { 1132 btrfs_abort_transaction(trans, ret); 1133 return ret; 1134 } 1135 } 1136 btrfs_free_tree_block(trans, root, buf, parent_start, 1137 last_ref); 1138 } 1139 if (unlock_orig) 1140 btrfs_tree_unlock(buf); 1141 free_extent_buffer_stale(buf); 1142 btrfs_mark_buffer_dirty(cow); 1143 *cow_ret = cow; 1144 return 0; 1145 } 1146 1147 /* 1148 * returns the logical address of the oldest predecessor of the given root. 1149 * entries older than time_seq are ignored. 1150 */ 1151 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1152 struct extent_buffer *eb_root, u64 time_seq) 1153 { 1154 struct tree_mod_elem *tm; 1155 struct tree_mod_elem *found = NULL; 1156 u64 root_logical = eb_root->start; 1157 int looped = 0; 1158 1159 if (!time_seq) 1160 return NULL; 1161 1162 /* 1163 * the very last operation that's logged for a root is the 1164 * replacement operation (if it is replaced at all). this has 1165 * the logical address of the *new* root, making it the very 1166 * first operation that's logged for this root. 1167 */ 1168 while (1) { 1169 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1170 time_seq); 1171 if (!looped && !tm) 1172 return NULL; 1173 /* 1174 * if there are no tree operation for the oldest root, we simply 1175 * return it. this should only happen if that (old) root is at 1176 * level 0. 1177 */ 1178 if (!tm) 1179 break; 1180 1181 /* 1182 * if there's an operation that's not a root replacement, we 1183 * found the oldest version of our root. normally, we'll find a 1184 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1185 */ 1186 if (tm->op != MOD_LOG_ROOT_REPLACE) 1187 break; 1188 1189 found = tm; 1190 root_logical = tm->old_root.logical; 1191 looped = 1; 1192 } 1193 1194 /* if there's no old root to return, return what we found instead */ 1195 if (!found) 1196 found = tm; 1197 1198 return found; 1199 } 1200 1201 /* 1202 * tm is a pointer to the first operation to rewind within eb. then, all 1203 * previous operations will be rewound (until we reach something older than 1204 * time_seq). 1205 */ 1206 static void 1207 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1208 u64 time_seq, struct tree_mod_elem *first_tm) 1209 { 1210 u32 n; 1211 struct rb_node *next; 1212 struct tree_mod_elem *tm = first_tm; 1213 unsigned long o_dst; 1214 unsigned long o_src; 1215 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1216 1217 n = btrfs_header_nritems(eb); 1218 read_lock(&fs_info->tree_mod_log_lock); 1219 while (tm && tm->seq >= time_seq) { 1220 /* 1221 * all the operations are recorded with the operator used for 1222 * the modification. as we're going backwards, we do the 1223 * opposite of each operation here. 1224 */ 1225 switch (tm->op) { 1226 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1227 BUG_ON(tm->slot < n); 1228 /* Fallthrough */ 1229 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1230 case MOD_LOG_KEY_REMOVE: 1231 btrfs_set_node_key(eb, &tm->key, tm->slot); 1232 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1233 btrfs_set_node_ptr_generation(eb, tm->slot, 1234 tm->generation); 1235 n++; 1236 break; 1237 case MOD_LOG_KEY_REPLACE: 1238 BUG_ON(tm->slot >= n); 1239 btrfs_set_node_key(eb, &tm->key, tm->slot); 1240 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1241 btrfs_set_node_ptr_generation(eb, tm->slot, 1242 tm->generation); 1243 break; 1244 case MOD_LOG_KEY_ADD: 1245 /* if a move operation is needed it's in the log */ 1246 n--; 1247 break; 1248 case MOD_LOG_MOVE_KEYS: 1249 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1250 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1251 memmove_extent_buffer(eb, o_dst, o_src, 1252 tm->move.nr_items * p_size); 1253 break; 1254 case MOD_LOG_ROOT_REPLACE: 1255 /* 1256 * this operation is special. for roots, this must be 1257 * handled explicitly before rewinding. 1258 * for non-roots, this operation may exist if the node 1259 * was a root: root A -> child B; then A gets empty and 1260 * B is promoted to the new root. in the mod log, we'll 1261 * have a root-replace operation for B, a tree block 1262 * that is no root. we simply ignore that operation. 1263 */ 1264 break; 1265 } 1266 next = rb_next(&tm->node); 1267 if (!next) 1268 break; 1269 tm = rb_entry(next, struct tree_mod_elem, node); 1270 if (tm->logical != first_tm->logical) 1271 break; 1272 } 1273 read_unlock(&fs_info->tree_mod_log_lock); 1274 btrfs_set_header_nritems(eb, n); 1275 } 1276 1277 /* 1278 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1279 * is returned. If rewind operations happen, a fresh buffer is returned. The 1280 * returned buffer is always read-locked. If the returned buffer is not the 1281 * input buffer, the lock on the input buffer is released and the input buffer 1282 * is freed (its refcount is decremented). 1283 */ 1284 static struct extent_buffer * 1285 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1286 struct extent_buffer *eb, u64 time_seq) 1287 { 1288 struct extent_buffer *eb_rewin; 1289 struct tree_mod_elem *tm; 1290 1291 if (!time_seq) 1292 return eb; 1293 1294 if (btrfs_header_level(eb) == 0) 1295 return eb; 1296 1297 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1298 if (!tm) 1299 return eb; 1300 1301 btrfs_set_path_blocking(path); 1302 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1303 1304 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1305 BUG_ON(tm->slot != 0); 1306 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1307 if (!eb_rewin) { 1308 btrfs_tree_read_unlock_blocking(eb); 1309 free_extent_buffer(eb); 1310 return NULL; 1311 } 1312 btrfs_set_header_bytenr(eb_rewin, eb->start); 1313 btrfs_set_header_backref_rev(eb_rewin, 1314 btrfs_header_backref_rev(eb)); 1315 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1316 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1317 } else { 1318 eb_rewin = btrfs_clone_extent_buffer(eb); 1319 if (!eb_rewin) { 1320 btrfs_tree_read_unlock_blocking(eb); 1321 free_extent_buffer(eb); 1322 return NULL; 1323 } 1324 } 1325 1326 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1327 btrfs_tree_read_unlock_blocking(eb); 1328 free_extent_buffer(eb); 1329 1330 extent_buffer_get(eb_rewin); 1331 btrfs_tree_read_lock(eb_rewin); 1332 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1333 WARN_ON(btrfs_header_nritems(eb_rewin) > 1334 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1335 1336 return eb_rewin; 1337 } 1338 1339 /* 1340 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1341 * value. If there are no changes, the current root->root_node is returned. If 1342 * anything changed in between, there's a fresh buffer allocated on which the 1343 * rewind operations are done. In any case, the returned buffer is read locked. 1344 * Returns NULL on error (with no locks held). 1345 */ 1346 static inline struct extent_buffer * 1347 get_old_root(struct btrfs_root *root, u64 time_seq) 1348 { 1349 struct btrfs_fs_info *fs_info = root->fs_info; 1350 struct tree_mod_elem *tm; 1351 struct extent_buffer *eb = NULL; 1352 struct extent_buffer *eb_root; 1353 struct extent_buffer *old; 1354 struct tree_mod_root *old_root = NULL; 1355 u64 old_generation = 0; 1356 u64 logical; 1357 int level; 1358 1359 eb_root = btrfs_read_lock_root_node(root); 1360 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1361 if (!tm) 1362 return eb_root; 1363 1364 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1365 old_root = &tm->old_root; 1366 old_generation = tm->generation; 1367 logical = old_root->logical; 1368 level = old_root->level; 1369 } else { 1370 logical = eb_root->start; 1371 level = btrfs_header_level(eb_root); 1372 } 1373 1374 tm = tree_mod_log_search(fs_info, logical, time_seq); 1375 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1376 btrfs_tree_read_unlock(eb_root); 1377 free_extent_buffer(eb_root); 1378 old = read_tree_block(fs_info, logical, 0, level, NULL); 1379 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1380 if (!IS_ERR(old)) 1381 free_extent_buffer(old); 1382 btrfs_warn(fs_info, 1383 "failed to read tree block %llu from get_old_root", 1384 logical); 1385 } else { 1386 eb = btrfs_clone_extent_buffer(old); 1387 free_extent_buffer(old); 1388 } 1389 } else if (old_root) { 1390 btrfs_tree_read_unlock(eb_root); 1391 free_extent_buffer(eb_root); 1392 eb = alloc_dummy_extent_buffer(fs_info, logical); 1393 } else { 1394 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1395 eb = btrfs_clone_extent_buffer(eb_root); 1396 btrfs_tree_read_unlock_blocking(eb_root); 1397 free_extent_buffer(eb_root); 1398 } 1399 1400 if (!eb) 1401 return NULL; 1402 extent_buffer_get(eb); 1403 btrfs_tree_read_lock(eb); 1404 if (old_root) { 1405 btrfs_set_header_bytenr(eb, eb->start); 1406 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1407 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1408 btrfs_set_header_level(eb, old_root->level); 1409 btrfs_set_header_generation(eb, old_generation); 1410 } 1411 if (tm) 1412 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1413 else 1414 WARN_ON(btrfs_header_level(eb) != 0); 1415 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1416 1417 return eb; 1418 } 1419 1420 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1421 { 1422 struct tree_mod_elem *tm; 1423 int level; 1424 struct extent_buffer *eb_root = btrfs_root_node(root); 1425 1426 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1427 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1428 level = tm->old_root.level; 1429 } else { 1430 level = btrfs_header_level(eb_root); 1431 } 1432 free_extent_buffer(eb_root); 1433 1434 return level; 1435 } 1436 1437 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1438 struct btrfs_root *root, 1439 struct extent_buffer *buf) 1440 { 1441 if (btrfs_is_testing(root->fs_info)) 1442 return 0; 1443 1444 /* Ensure we can see the FORCE_COW bit */ 1445 smp_mb__before_atomic(); 1446 1447 /* 1448 * We do not need to cow a block if 1449 * 1) this block is not created or changed in this transaction; 1450 * 2) this block does not belong to TREE_RELOC tree; 1451 * 3) the root is not forced COW. 1452 * 1453 * What is forced COW: 1454 * when we create snapshot during committing the transaction, 1455 * after we've finished coping src root, we must COW the shared 1456 * block to ensure the metadata consistency. 1457 */ 1458 if (btrfs_header_generation(buf) == trans->transid && 1459 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1460 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1461 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1462 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1463 return 0; 1464 return 1; 1465 } 1466 1467 /* 1468 * cows a single block, see __btrfs_cow_block for the real work. 1469 * This version of it has extra checks so that a block isn't COWed more than 1470 * once per transaction, as long as it hasn't been written yet 1471 */ 1472 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1473 struct btrfs_root *root, struct extent_buffer *buf, 1474 struct extent_buffer *parent, int parent_slot, 1475 struct extent_buffer **cow_ret) 1476 { 1477 struct btrfs_fs_info *fs_info = root->fs_info; 1478 u64 search_start; 1479 int ret; 1480 1481 if (trans->transaction != fs_info->running_transaction) 1482 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1483 trans->transid, 1484 fs_info->running_transaction->transid); 1485 1486 if (trans->transid != fs_info->generation) 1487 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1488 trans->transid, fs_info->generation); 1489 1490 if (!should_cow_block(trans, root, buf)) { 1491 trans->dirty = true; 1492 *cow_ret = buf; 1493 return 0; 1494 } 1495 1496 search_start = buf->start & ~((u64)SZ_1G - 1); 1497 1498 if (parent) 1499 btrfs_set_lock_blocking(parent); 1500 btrfs_set_lock_blocking(buf); 1501 1502 ret = __btrfs_cow_block(trans, root, buf, parent, 1503 parent_slot, cow_ret, search_start, 0); 1504 1505 trace_btrfs_cow_block(root, buf, *cow_ret); 1506 1507 return ret; 1508 } 1509 1510 /* 1511 * helper function for defrag to decide if two blocks pointed to by a 1512 * node are actually close by 1513 */ 1514 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1515 { 1516 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1517 return 1; 1518 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1519 return 1; 1520 return 0; 1521 } 1522 1523 /* 1524 * compare two keys in a memcmp fashion 1525 */ 1526 static int comp_keys(const struct btrfs_disk_key *disk, 1527 const struct btrfs_key *k2) 1528 { 1529 struct btrfs_key k1; 1530 1531 btrfs_disk_key_to_cpu(&k1, disk); 1532 1533 return btrfs_comp_cpu_keys(&k1, k2); 1534 } 1535 1536 /* 1537 * same as comp_keys only with two btrfs_key's 1538 */ 1539 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1540 { 1541 if (k1->objectid > k2->objectid) 1542 return 1; 1543 if (k1->objectid < k2->objectid) 1544 return -1; 1545 if (k1->type > k2->type) 1546 return 1; 1547 if (k1->type < k2->type) 1548 return -1; 1549 if (k1->offset > k2->offset) 1550 return 1; 1551 if (k1->offset < k2->offset) 1552 return -1; 1553 return 0; 1554 } 1555 1556 /* 1557 * this is used by the defrag code to go through all the 1558 * leaves pointed to by a node and reallocate them so that 1559 * disk order is close to key order 1560 */ 1561 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1562 struct btrfs_root *root, struct extent_buffer *parent, 1563 int start_slot, u64 *last_ret, 1564 struct btrfs_key *progress) 1565 { 1566 struct btrfs_fs_info *fs_info = root->fs_info; 1567 struct extent_buffer *cur; 1568 u64 blocknr; 1569 u64 gen; 1570 u64 search_start = *last_ret; 1571 u64 last_block = 0; 1572 u64 other; 1573 u32 parent_nritems; 1574 int end_slot; 1575 int i; 1576 int err = 0; 1577 int parent_level; 1578 int uptodate; 1579 u32 blocksize; 1580 int progress_passed = 0; 1581 struct btrfs_disk_key disk_key; 1582 1583 parent_level = btrfs_header_level(parent); 1584 1585 WARN_ON(trans->transaction != fs_info->running_transaction); 1586 WARN_ON(trans->transid != fs_info->generation); 1587 1588 parent_nritems = btrfs_header_nritems(parent); 1589 blocksize = fs_info->nodesize; 1590 end_slot = parent_nritems - 1; 1591 1592 if (parent_nritems <= 1) 1593 return 0; 1594 1595 btrfs_set_lock_blocking(parent); 1596 1597 for (i = start_slot; i <= end_slot; i++) { 1598 struct btrfs_key first_key; 1599 int close = 1; 1600 1601 btrfs_node_key(parent, &disk_key, i); 1602 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1603 continue; 1604 1605 progress_passed = 1; 1606 blocknr = btrfs_node_blockptr(parent, i); 1607 gen = btrfs_node_ptr_generation(parent, i); 1608 btrfs_node_key_to_cpu(parent, &first_key, i); 1609 if (last_block == 0) 1610 last_block = blocknr; 1611 1612 if (i > 0) { 1613 other = btrfs_node_blockptr(parent, i - 1); 1614 close = close_blocks(blocknr, other, blocksize); 1615 } 1616 if (!close && i < end_slot) { 1617 other = btrfs_node_blockptr(parent, i + 1); 1618 close = close_blocks(blocknr, other, blocksize); 1619 } 1620 if (close) { 1621 last_block = blocknr; 1622 continue; 1623 } 1624 1625 cur = find_extent_buffer(fs_info, blocknr); 1626 if (cur) 1627 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1628 else 1629 uptodate = 0; 1630 if (!cur || !uptodate) { 1631 if (!cur) { 1632 cur = read_tree_block(fs_info, blocknr, gen, 1633 parent_level - 1, 1634 &first_key); 1635 if (IS_ERR(cur)) { 1636 return PTR_ERR(cur); 1637 } else if (!extent_buffer_uptodate(cur)) { 1638 free_extent_buffer(cur); 1639 return -EIO; 1640 } 1641 } else if (!uptodate) { 1642 err = btrfs_read_buffer(cur, gen, 1643 parent_level - 1,&first_key); 1644 if (err) { 1645 free_extent_buffer(cur); 1646 return err; 1647 } 1648 } 1649 } 1650 if (search_start == 0) 1651 search_start = last_block; 1652 1653 btrfs_tree_lock(cur); 1654 btrfs_set_lock_blocking(cur); 1655 err = __btrfs_cow_block(trans, root, cur, parent, i, 1656 &cur, search_start, 1657 min(16 * blocksize, 1658 (end_slot - i) * blocksize)); 1659 if (err) { 1660 btrfs_tree_unlock(cur); 1661 free_extent_buffer(cur); 1662 break; 1663 } 1664 search_start = cur->start; 1665 last_block = cur->start; 1666 *last_ret = search_start; 1667 btrfs_tree_unlock(cur); 1668 free_extent_buffer(cur); 1669 } 1670 return err; 1671 } 1672 1673 /* 1674 * search for key in the extent_buffer. The items start at offset p, 1675 * and they are item_size apart. There are 'max' items in p. 1676 * 1677 * the slot in the array is returned via slot, and it points to 1678 * the place where you would insert key if it is not found in 1679 * the array. 1680 * 1681 * slot may point to max if the key is bigger than all of the keys 1682 */ 1683 static noinline int generic_bin_search(struct extent_buffer *eb, 1684 unsigned long p, int item_size, 1685 const struct btrfs_key *key, 1686 int max, int *slot) 1687 { 1688 int low = 0; 1689 int high = max; 1690 int mid; 1691 int ret; 1692 struct btrfs_disk_key *tmp = NULL; 1693 struct btrfs_disk_key unaligned; 1694 unsigned long offset; 1695 char *kaddr = NULL; 1696 unsigned long map_start = 0; 1697 unsigned long map_len = 0; 1698 int err; 1699 1700 if (low > high) { 1701 btrfs_err(eb->fs_info, 1702 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1703 __func__, low, high, eb->start, 1704 btrfs_header_owner(eb), btrfs_header_level(eb)); 1705 return -EINVAL; 1706 } 1707 1708 while (low < high) { 1709 mid = (low + high) / 2; 1710 offset = p + mid * item_size; 1711 1712 if (!kaddr || offset < map_start || 1713 (offset + sizeof(struct btrfs_disk_key)) > 1714 map_start + map_len) { 1715 1716 err = map_private_extent_buffer(eb, offset, 1717 sizeof(struct btrfs_disk_key), 1718 &kaddr, &map_start, &map_len); 1719 1720 if (!err) { 1721 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1722 map_start); 1723 } else if (err == 1) { 1724 read_extent_buffer(eb, &unaligned, 1725 offset, sizeof(unaligned)); 1726 tmp = &unaligned; 1727 } else { 1728 return err; 1729 } 1730 1731 } else { 1732 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1733 map_start); 1734 } 1735 ret = comp_keys(tmp, key); 1736 1737 if (ret < 0) 1738 low = mid + 1; 1739 else if (ret > 0) 1740 high = mid; 1741 else { 1742 *slot = mid; 1743 return 0; 1744 } 1745 } 1746 *slot = low; 1747 return 1; 1748 } 1749 1750 /* 1751 * simple bin_search frontend that does the right thing for 1752 * leaves vs nodes 1753 */ 1754 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1755 int level, int *slot) 1756 { 1757 if (level == 0) 1758 return generic_bin_search(eb, 1759 offsetof(struct btrfs_leaf, items), 1760 sizeof(struct btrfs_item), 1761 key, btrfs_header_nritems(eb), 1762 slot); 1763 else 1764 return generic_bin_search(eb, 1765 offsetof(struct btrfs_node, ptrs), 1766 sizeof(struct btrfs_key_ptr), 1767 key, btrfs_header_nritems(eb), 1768 slot); 1769 } 1770 1771 static void root_add_used(struct btrfs_root *root, u32 size) 1772 { 1773 spin_lock(&root->accounting_lock); 1774 btrfs_set_root_used(&root->root_item, 1775 btrfs_root_used(&root->root_item) + size); 1776 spin_unlock(&root->accounting_lock); 1777 } 1778 1779 static void root_sub_used(struct btrfs_root *root, u32 size) 1780 { 1781 spin_lock(&root->accounting_lock); 1782 btrfs_set_root_used(&root->root_item, 1783 btrfs_root_used(&root->root_item) - size); 1784 spin_unlock(&root->accounting_lock); 1785 } 1786 1787 /* given a node and slot number, this reads the blocks it points to. The 1788 * extent buffer is returned with a reference taken (but unlocked). 1789 */ 1790 static noinline struct extent_buffer * 1791 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent, 1792 int slot) 1793 { 1794 int level = btrfs_header_level(parent); 1795 struct extent_buffer *eb; 1796 struct btrfs_key first_key; 1797 1798 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1799 return ERR_PTR(-ENOENT); 1800 1801 BUG_ON(level == 0); 1802 1803 btrfs_node_key_to_cpu(parent, &first_key, slot); 1804 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot), 1805 btrfs_node_ptr_generation(parent, slot), 1806 level - 1, &first_key); 1807 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1808 free_extent_buffer(eb); 1809 eb = ERR_PTR(-EIO); 1810 } 1811 1812 return eb; 1813 } 1814 1815 /* 1816 * node level balancing, used to make sure nodes are in proper order for 1817 * item deletion. We balance from the top down, so we have to make sure 1818 * that a deletion won't leave an node completely empty later on. 1819 */ 1820 static noinline int balance_level(struct btrfs_trans_handle *trans, 1821 struct btrfs_root *root, 1822 struct btrfs_path *path, int level) 1823 { 1824 struct btrfs_fs_info *fs_info = root->fs_info; 1825 struct extent_buffer *right = NULL; 1826 struct extent_buffer *mid; 1827 struct extent_buffer *left = NULL; 1828 struct extent_buffer *parent = NULL; 1829 int ret = 0; 1830 int wret; 1831 int pslot; 1832 int orig_slot = path->slots[level]; 1833 u64 orig_ptr; 1834 1835 if (level == 0) 1836 return 0; 1837 1838 mid = path->nodes[level]; 1839 1840 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1841 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1842 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1843 1844 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1845 1846 if (level < BTRFS_MAX_LEVEL - 1) { 1847 parent = path->nodes[level + 1]; 1848 pslot = path->slots[level + 1]; 1849 } 1850 1851 /* 1852 * deal with the case where there is only one pointer in the root 1853 * by promoting the node below to a root 1854 */ 1855 if (!parent) { 1856 struct extent_buffer *child; 1857 1858 if (btrfs_header_nritems(mid) != 1) 1859 return 0; 1860 1861 /* promote the child to a root */ 1862 child = read_node_slot(fs_info, mid, 0); 1863 if (IS_ERR(child)) { 1864 ret = PTR_ERR(child); 1865 btrfs_handle_fs_error(fs_info, ret, NULL); 1866 goto enospc; 1867 } 1868 1869 btrfs_tree_lock(child); 1870 btrfs_set_lock_blocking(child); 1871 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1872 if (ret) { 1873 btrfs_tree_unlock(child); 1874 free_extent_buffer(child); 1875 goto enospc; 1876 } 1877 1878 ret = tree_mod_log_insert_root(root->node, child, 1); 1879 BUG_ON(ret < 0); 1880 rcu_assign_pointer(root->node, child); 1881 1882 add_root_to_dirty_list(root); 1883 btrfs_tree_unlock(child); 1884 1885 path->locks[level] = 0; 1886 path->nodes[level] = NULL; 1887 clean_tree_block(fs_info, mid); 1888 btrfs_tree_unlock(mid); 1889 /* once for the path */ 1890 free_extent_buffer(mid); 1891 1892 root_sub_used(root, mid->len); 1893 btrfs_free_tree_block(trans, root, mid, 0, 1); 1894 /* once for the root ptr */ 1895 free_extent_buffer_stale(mid); 1896 return 0; 1897 } 1898 if (btrfs_header_nritems(mid) > 1899 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1900 return 0; 1901 1902 left = read_node_slot(fs_info, parent, pslot - 1); 1903 if (IS_ERR(left)) 1904 left = NULL; 1905 1906 if (left) { 1907 btrfs_tree_lock(left); 1908 btrfs_set_lock_blocking(left); 1909 wret = btrfs_cow_block(trans, root, left, 1910 parent, pslot - 1, &left); 1911 if (wret) { 1912 ret = wret; 1913 goto enospc; 1914 } 1915 } 1916 1917 right = read_node_slot(fs_info, parent, pslot + 1); 1918 if (IS_ERR(right)) 1919 right = NULL; 1920 1921 if (right) { 1922 btrfs_tree_lock(right); 1923 btrfs_set_lock_blocking(right); 1924 wret = btrfs_cow_block(trans, root, right, 1925 parent, pslot + 1, &right); 1926 if (wret) { 1927 ret = wret; 1928 goto enospc; 1929 } 1930 } 1931 1932 /* first, try to make some room in the middle buffer */ 1933 if (left) { 1934 orig_slot += btrfs_header_nritems(left); 1935 wret = push_node_left(trans, fs_info, left, mid, 1); 1936 if (wret < 0) 1937 ret = wret; 1938 } 1939 1940 /* 1941 * then try to empty the right most buffer into the middle 1942 */ 1943 if (right) { 1944 wret = push_node_left(trans, fs_info, mid, right, 1); 1945 if (wret < 0 && wret != -ENOSPC) 1946 ret = wret; 1947 if (btrfs_header_nritems(right) == 0) { 1948 clean_tree_block(fs_info, right); 1949 btrfs_tree_unlock(right); 1950 del_ptr(root, path, level + 1, pslot + 1); 1951 root_sub_used(root, right->len); 1952 btrfs_free_tree_block(trans, root, right, 0, 1); 1953 free_extent_buffer_stale(right); 1954 right = NULL; 1955 } else { 1956 struct btrfs_disk_key right_key; 1957 btrfs_node_key(right, &right_key, 0); 1958 ret = tree_mod_log_insert_key(parent, pslot + 1, 1959 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1960 BUG_ON(ret < 0); 1961 btrfs_set_node_key(parent, &right_key, pslot + 1); 1962 btrfs_mark_buffer_dirty(parent); 1963 } 1964 } 1965 if (btrfs_header_nritems(mid) == 1) { 1966 /* 1967 * we're not allowed to leave a node with one item in the 1968 * tree during a delete. A deletion from lower in the tree 1969 * could try to delete the only pointer in this node. 1970 * So, pull some keys from the left. 1971 * There has to be a left pointer at this point because 1972 * otherwise we would have pulled some pointers from the 1973 * right 1974 */ 1975 if (!left) { 1976 ret = -EROFS; 1977 btrfs_handle_fs_error(fs_info, ret, NULL); 1978 goto enospc; 1979 } 1980 wret = balance_node_right(trans, fs_info, mid, left); 1981 if (wret < 0) { 1982 ret = wret; 1983 goto enospc; 1984 } 1985 if (wret == 1) { 1986 wret = push_node_left(trans, fs_info, left, mid, 1); 1987 if (wret < 0) 1988 ret = wret; 1989 } 1990 BUG_ON(wret == 1); 1991 } 1992 if (btrfs_header_nritems(mid) == 0) { 1993 clean_tree_block(fs_info, mid); 1994 btrfs_tree_unlock(mid); 1995 del_ptr(root, path, level + 1, pslot); 1996 root_sub_used(root, mid->len); 1997 btrfs_free_tree_block(trans, root, mid, 0, 1); 1998 free_extent_buffer_stale(mid); 1999 mid = NULL; 2000 } else { 2001 /* update the parent key to reflect our changes */ 2002 struct btrfs_disk_key mid_key; 2003 btrfs_node_key(mid, &mid_key, 0); 2004 ret = tree_mod_log_insert_key(parent, pslot, 2005 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2006 BUG_ON(ret < 0); 2007 btrfs_set_node_key(parent, &mid_key, pslot); 2008 btrfs_mark_buffer_dirty(parent); 2009 } 2010 2011 /* update the path */ 2012 if (left) { 2013 if (btrfs_header_nritems(left) > orig_slot) { 2014 extent_buffer_get(left); 2015 /* left was locked after cow */ 2016 path->nodes[level] = left; 2017 path->slots[level + 1] -= 1; 2018 path->slots[level] = orig_slot; 2019 if (mid) { 2020 btrfs_tree_unlock(mid); 2021 free_extent_buffer(mid); 2022 } 2023 } else { 2024 orig_slot -= btrfs_header_nritems(left); 2025 path->slots[level] = orig_slot; 2026 } 2027 } 2028 /* double check we haven't messed things up */ 2029 if (orig_ptr != 2030 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2031 BUG(); 2032 enospc: 2033 if (right) { 2034 btrfs_tree_unlock(right); 2035 free_extent_buffer(right); 2036 } 2037 if (left) { 2038 if (path->nodes[level] != left) 2039 btrfs_tree_unlock(left); 2040 free_extent_buffer(left); 2041 } 2042 return ret; 2043 } 2044 2045 /* Node balancing for insertion. Here we only split or push nodes around 2046 * when they are completely full. This is also done top down, so we 2047 * have to be pessimistic. 2048 */ 2049 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2050 struct btrfs_root *root, 2051 struct btrfs_path *path, int level) 2052 { 2053 struct btrfs_fs_info *fs_info = root->fs_info; 2054 struct extent_buffer *right = NULL; 2055 struct extent_buffer *mid; 2056 struct extent_buffer *left = NULL; 2057 struct extent_buffer *parent = NULL; 2058 int ret = 0; 2059 int wret; 2060 int pslot; 2061 int orig_slot = path->slots[level]; 2062 2063 if (level == 0) 2064 return 1; 2065 2066 mid = path->nodes[level]; 2067 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2068 2069 if (level < BTRFS_MAX_LEVEL - 1) { 2070 parent = path->nodes[level + 1]; 2071 pslot = path->slots[level + 1]; 2072 } 2073 2074 if (!parent) 2075 return 1; 2076 2077 left = read_node_slot(fs_info, parent, pslot - 1); 2078 if (IS_ERR(left)) 2079 left = NULL; 2080 2081 /* first, try to make some room in the middle buffer */ 2082 if (left) { 2083 u32 left_nr; 2084 2085 btrfs_tree_lock(left); 2086 btrfs_set_lock_blocking(left); 2087 2088 left_nr = btrfs_header_nritems(left); 2089 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2090 wret = 1; 2091 } else { 2092 ret = btrfs_cow_block(trans, root, left, parent, 2093 pslot - 1, &left); 2094 if (ret) 2095 wret = 1; 2096 else { 2097 wret = push_node_left(trans, fs_info, 2098 left, mid, 0); 2099 } 2100 } 2101 if (wret < 0) 2102 ret = wret; 2103 if (wret == 0) { 2104 struct btrfs_disk_key disk_key; 2105 orig_slot += left_nr; 2106 btrfs_node_key(mid, &disk_key, 0); 2107 ret = tree_mod_log_insert_key(parent, pslot, 2108 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2109 BUG_ON(ret < 0); 2110 btrfs_set_node_key(parent, &disk_key, pslot); 2111 btrfs_mark_buffer_dirty(parent); 2112 if (btrfs_header_nritems(left) > orig_slot) { 2113 path->nodes[level] = left; 2114 path->slots[level + 1] -= 1; 2115 path->slots[level] = orig_slot; 2116 btrfs_tree_unlock(mid); 2117 free_extent_buffer(mid); 2118 } else { 2119 orig_slot -= 2120 btrfs_header_nritems(left); 2121 path->slots[level] = orig_slot; 2122 btrfs_tree_unlock(left); 2123 free_extent_buffer(left); 2124 } 2125 return 0; 2126 } 2127 btrfs_tree_unlock(left); 2128 free_extent_buffer(left); 2129 } 2130 right = read_node_slot(fs_info, parent, pslot + 1); 2131 if (IS_ERR(right)) 2132 right = NULL; 2133 2134 /* 2135 * then try to empty the right most buffer into the middle 2136 */ 2137 if (right) { 2138 u32 right_nr; 2139 2140 btrfs_tree_lock(right); 2141 btrfs_set_lock_blocking(right); 2142 2143 right_nr = btrfs_header_nritems(right); 2144 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2145 wret = 1; 2146 } else { 2147 ret = btrfs_cow_block(trans, root, right, 2148 parent, pslot + 1, 2149 &right); 2150 if (ret) 2151 wret = 1; 2152 else { 2153 wret = balance_node_right(trans, fs_info, 2154 right, mid); 2155 } 2156 } 2157 if (wret < 0) 2158 ret = wret; 2159 if (wret == 0) { 2160 struct btrfs_disk_key disk_key; 2161 2162 btrfs_node_key(right, &disk_key, 0); 2163 ret = tree_mod_log_insert_key(parent, pslot + 1, 2164 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2165 BUG_ON(ret < 0); 2166 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2167 btrfs_mark_buffer_dirty(parent); 2168 2169 if (btrfs_header_nritems(mid) <= orig_slot) { 2170 path->nodes[level] = right; 2171 path->slots[level + 1] += 1; 2172 path->slots[level] = orig_slot - 2173 btrfs_header_nritems(mid); 2174 btrfs_tree_unlock(mid); 2175 free_extent_buffer(mid); 2176 } else { 2177 btrfs_tree_unlock(right); 2178 free_extent_buffer(right); 2179 } 2180 return 0; 2181 } 2182 btrfs_tree_unlock(right); 2183 free_extent_buffer(right); 2184 } 2185 return 1; 2186 } 2187 2188 /* 2189 * readahead one full node of leaves, finding things that are close 2190 * to the block in 'slot', and triggering ra on them. 2191 */ 2192 static void reada_for_search(struct btrfs_fs_info *fs_info, 2193 struct btrfs_path *path, 2194 int level, int slot, u64 objectid) 2195 { 2196 struct extent_buffer *node; 2197 struct btrfs_disk_key disk_key; 2198 u32 nritems; 2199 u64 search; 2200 u64 target; 2201 u64 nread = 0; 2202 struct extent_buffer *eb; 2203 u32 nr; 2204 u32 blocksize; 2205 u32 nscan = 0; 2206 2207 if (level != 1) 2208 return; 2209 2210 if (!path->nodes[level]) 2211 return; 2212 2213 node = path->nodes[level]; 2214 2215 search = btrfs_node_blockptr(node, slot); 2216 blocksize = fs_info->nodesize; 2217 eb = find_extent_buffer(fs_info, search); 2218 if (eb) { 2219 free_extent_buffer(eb); 2220 return; 2221 } 2222 2223 target = search; 2224 2225 nritems = btrfs_header_nritems(node); 2226 nr = slot; 2227 2228 while (1) { 2229 if (path->reada == READA_BACK) { 2230 if (nr == 0) 2231 break; 2232 nr--; 2233 } else if (path->reada == READA_FORWARD) { 2234 nr++; 2235 if (nr >= nritems) 2236 break; 2237 } 2238 if (path->reada == READA_BACK && objectid) { 2239 btrfs_node_key(node, &disk_key, nr); 2240 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2241 break; 2242 } 2243 search = btrfs_node_blockptr(node, nr); 2244 if ((search <= target && target - search <= 65536) || 2245 (search > target && search - target <= 65536)) { 2246 readahead_tree_block(fs_info, search); 2247 nread += blocksize; 2248 } 2249 nscan++; 2250 if ((nread > 65536 || nscan > 32)) 2251 break; 2252 } 2253 } 2254 2255 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2256 struct btrfs_path *path, int level) 2257 { 2258 int slot; 2259 int nritems; 2260 struct extent_buffer *parent; 2261 struct extent_buffer *eb; 2262 u64 gen; 2263 u64 block1 = 0; 2264 u64 block2 = 0; 2265 2266 parent = path->nodes[level + 1]; 2267 if (!parent) 2268 return; 2269 2270 nritems = btrfs_header_nritems(parent); 2271 slot = path->slots[level + 1]; 2272 2273 if (slot > 0) { 2274 block1 = btrfs_node_blockptr(parent, slot - 1); 2275 gen = btrfs_node_ptr_generation(parent, slot - 1); 2276 eb = find_extent_buffer(fs_info, block1); 2277 /* 2278 * if we get -eagain from btrfs_buffer_uptodate, we 2279 * don't want to return eagain here. That will loop 2280 * forever 2281 */ 2282 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2283 block1 = 0; 2284 free_extent_buffer(eb); 2285 } 2286 if (slot + 1 < nritems) { 2287 block2 = btrfs_node_blockptr(parent, slot + 1); 2288 gen = btrfs_node_ptr_generation(parent, slot + 1); 2289 eb = find_extent_buffer(fs_info, block2); 2290 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2291 block2 = 0; 2292 free_extent_buffer(eb); 2293 } 2294 2295 if (block1) 2296 readahead_tree_block(fs_info, block1); 2297 if (block2) 2298 readahead_tree_block(fs_info, block2); 2299 } 2300 2301 2302 /* 2303 * when we walk down the tree, it is usually safe to unlock the higher layers 2304 * in the tree. The exceptions are when our path goes through slot 0, because 2305 * operations on the tree might require changing key pointers higher up in the 2306 * tree. 2307 * 2308 * callers might also have set path->keep_locks, which tells this code to keep 2309 * the lock if the path points to the last slot in the block. This is part of 2310 * walking through the tree, and selecting the next slot in the higher block. 2311 * 2312 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2313 * if lowest_unlock is 1, level 0 won't be unlocked 2314 */ 2315 static noinline void unlock_up(struct btrfs_path *path, int level, 2316 int lowest_unlock, int min_write_lock_level, 2317 int *write_lock_level) 2318 { 2319 int i; 2320 int skip_level = level; 2321 int no_skips = 0; 2322 struct extent_buffer *t; 2323 2324 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2325 if (!path->nodes[i]) 2326 break; 2327 if (!path->locks[i]) 2328 break; 2329 if (!no_skips && path->slots[i] == 0) { 2330 skip_level = i + 1; 2331 continue; 2332 } 2333 if (!no_skips && path->keep_locks) { 2334 u32 nritems; 2335 t = path->nodes[i]; 2336 nritems = btrfs_header_nritems(t); 2337 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2338 skip_level = i + 1; 2339 continue; 2340 } 2341 } 2342 if (skip_level < i && i >= lowest_unlock) 2343 no_skips = 1; 2344 2345 t = path->nodes[i]; 2346 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2347 btrfs_tree_unlock_rw(t, path->locks[i]); 2348 path->locks[i] = 0; 2349 if (write_lock_level && 2350 i > min_write_lock_level && 2351 i <= *write_lock_level) { 2352 *write_lock_level = i - 1; 2353 } 2354 } 2355 } 2356 } 2357 2358 /* 2359 * This releases any locks held in the path starting at level and 2360 * going all the way up to the root. 2361 * 2362 * btrfs_search_slot will keep the lock held on higher nodes in a few 2363 * corner cases, such as COW of the block at slot zero in the node. This 2364 * ignores those rules, and it should only be called when there are no 2365 * more updates to be done higher up in the tree. 2366 */ 2367 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2368 { 2369 int i; 2370 2371 if (path->keep_locks) 2372 return; 2373 2374 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2375 if (!path->nodes[i]) 2376 continue; 2377 if (!path->locks[i]) 2378 continue; 2379 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2380 path->locks[i] = 0; 2381 } 2382 } 2383 2384 /* 2385 * helper function for btrfs_search_slot. The goal is to find a block 2386 * in cache without setting the path to blocking. If we find the block 2387 * we return zero and the path is unchanged. 2388 * 2389 * If we can't find the block, we set the path blocking and do some 2390 * reada. -EAGAIN is returned and the search must be repeated. 2391 */ 2392 static int 2393 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2394 struct extent_buffer **eb_ret, int level, int slot, 2395 const struct btrfs_key *key) 2396 { 2397 struct btrfs_fs_info *fs_info = root->fs_info; 2398 u64 blocknr; 2399 u64 gen; 2400 struct extent_buffer *b = *eb_ret; 2401 struct extent_buffer *tmp; 2402 struct btrfs_key first_key; 2403 int ret; 2404 int parent_level; 2405 2406 blocknr = btrfs_node_blockptr(b, slot); 2407 gen = btrfs_node_ptr_generation(b, slot); 2408 parent_level = btrfs_header_level(b); 2409 btrfs_node_key_to_cpu(b, &first_key, slot); 2410 2411 tmp = find_extent_buffer(fs_info, blocknr); 2412 if (tmp) { 2413 /* first we do an atomic uptodate check */ 2414 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2415 *eb_ret = tmp; 2416 return 0; 2417 } 2418 2419 /* the pages were up to date, but we failed 2420 * the generation number check. Do a full 2421 * read for the generation number that is correct. 2422 * We must do this without dropping locks so 2423 * we can trust our generation number 2424 */ 2425 btrfs_set_path_blocking(p); 2426 2427 /* now we're allowed to do a blocking uptodate check */ 2428 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2429 if (!ret) { 2430 *eb_ret = tmp; 2431 return 0; 2432 } 2433 free_extent_buffer(tmp); 2434 btrfs_release_path(p); 2435 return -EIO; 2436 } 2437 2438 /* 2439 * reduce lock contention at high levels 2440 * of the btree by dropping locks before 2441 * we read. Don't release the lock on the current 2442 * level because we need to walk this node to figure 2443 * out which blocks to read. 2444 */ 2445 btrfs_unlock_up_safe(p, level + 1); 2446 btrfs_set_path_blocking(p); 2447 2448 free_extent_buffer(tmp); 2449 if (p->reada != READA_NONE) 2450 reada_for_search(fs_info, p, level, slot, key->objectid); 2451 2452 btrfs_release_path(p); 2453 2454 ret = -EAGAIN; 2455 tmp = read_tree_block(fs_info, blocknr, 0, parent_level - 1, 2456 &first_key); 2457 if (!IS_ERR(tmp)) { 2458 /* 2459 * If the read above didn't mark this buffer up to date, 2460 * it will never end up being up to date. Set ret to EIO now 2461 * and give up so that our caller doesn't loop forever 2462 * on our EAGAINs. 2463 */ 2464 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2465 ret = -EIO; 2466 free_extent_buffer(tmp); 2467 } else { 2468 ret = PTR_ERR(tmp); 2469 } 2470 return ret; 2471 } 2472 2473 /* 2474 * helper function for btrfs_search_slot. This does all of the checks 2475 * for node-level blocks and does any balancing required based on 2476 * the ins_len. 2477 * 2478 * If no extra work was required, zero is returned. If we had to 2479 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2480 * start over 2481 */ 2482 static int 2483 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2484 struct btrfs_root *root, struct btrfs_path *p, 2485 struct extent_buffer *b, int level, int ins_len, 2486 int *write_lock_level) 2487 { 2488 struct btrfs_fs_info *fs_info = root->fs_info; 2489 int ret; 2490 2491 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2492 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2493 int sret; 2494 2495 if (*write_lock_level < level + 1) { 2496 *write_lock_level = level + 1; 2497 btrfs_release_path(p); 2498 goto again; 2499 } 2500 2501 btrfs_set_path_blocking(p); 2502 reada_for_balance(fs_info, p, level); 2503 sret = split_node(trans, root, p, level); 2504 btrfs_clear_path_blocking(p, NULL, 0); 2505 2506 BUG_ON(sret > 0); 2507 if (sret) { 2508 ret = sret; 2509 goto done; 2510 } 2511 b = p->nodes[level]; 2512 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2513 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2514 int sret; 2515 2516 if (*write_lock_level < level + 1) { 2517 *write_lock_level = level + 1; 2518 btrfs_release_path(p); 2519 goto again; 2520 } 2521 2522 btrfs_set_path_blocking(p); 2523 reada_for_balance(fs_info, p, level); 2524 sret = balance_level(trans, root, p, level); 2525 btrfs_clear_path_blocking(p, NULL, 0); 2526 2527 if (sret) { 2528 ret = sret; 2529 goto done; 2530 } 2531 b = p->nodes[level]; 2532 if (!b) { 2533 btrfs_release_path(p); 2534 goto again; 2535 } 2536 BUG_ON(btrfs_header_nritems(b) == 1); 2537 } 2538 return 0; 2539 2540 again: 2541 ret = -EAGAIN; 2542 done: 2543 return ret; 2544 } 2545 2546 static void key_search_validate(struct extent_buffer *b, 2547 const struct btrfs_key *key, 2548 int level) 2549 { 2550 #ifdef CONFIG_BTRFS_ASSERT 2551 struct btrfs_disk_key disk_key; 2552 2553 btrfs_cpu_key_to_disk(&disk_key, key); 2554 2555 if (level == 0) 2556 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2557 offsetof(struct btrfs_leaf, items[0].key), 2558 sizeof(disk_key))); 2559 else 2560 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2561 offsetof(struct btrfs_node, ptrs[0].key), 2562 sizeof(disk_key))); 2563 #endif 2564 } 2565 2566 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2567 int level, int *prev_cmp, int *slot) 2568 { 2569 if (*prev_cmp != 0) { 2570 *prev_cmp = btrfs_bin_search(b, key, level, slot); 2571 return *prev_cmp; 2572 } 2573 2574 key_search_validate(b, key, level); 2575 *slot = 0; 2576 2577 return 0; 2578 } 2579 2580 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2581 u64 iobjectid, u64 ioff, u8 key_type, 2582 struct btrfs_key *found_key) 2583 { 2584 int ret; 2585 struct btrfs_key key; 2586 struct extent_buffer *eb; 2587 2588 ASSERT(path); 2589 ASSERT(found_key); 2590 2591 key.type = key_type; 2592 key.objectid = iobjectid; 2593 key.offset = ioff; 2594 2595 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2596 if (ret < 0) 2597 return ret; 2598 2599 eb = path->nodes[0]; 2600 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2601 ret = btrfs_next_leaf(fs_root, path); 2602 if (ret) 2603 return ret; 2604 eb = path->nodes[0]; 2605 } 2606 2607 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2608 if (found_key->type != key.type || 2609 found_key->objectid != key.objectid) 2610 return 1; 2611 2612 return 0; 2613 } 2614 2615 /* 2616 * btrfs_search_slot - look for a key in a tree and perform necessary 2617 * modifications to preserve tree invariants. 2618 * 2619 * @trans: Handle of transaction, used when modifying the tree 2620 * @p: Holds all btree nodes along the search path 2621 * @root: The root node of the tree 2622 * @key: The key we are looking for 2623 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2624 * deletions it's -1. 0 for plain searches 2625 * @cow: boolean should CoW operations be performed. Must always be 1 2626 * when modifying the tree. 2627 * 2628 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2629 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2630 * 2631 * If @key is found, 0 is returned and you can find the item in the leaf level 2632 * of the path (level 0) 2633 * 2634 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2635 * points to the slot where it should be inserted 2636 * 2637 * If an error is encountered while searching the tree a negative error number 2638 * is returned 2639 */ 2640 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2641 const struct btrfs_key *key, struct btrfs_path *p, 2642 int ins_len, int cow) 2643 { 2644 struct btrfs_fs_info *fs_info = root->fs_info; 2645 struct extent_buffer *b; 2646 int slot; 2647 int ret; 2648 int err; 2649 int level; 2650 int lowest_unlock = 1; 2651 int root_lock; 2652 /* everything at write_lock_level or lower must be write locked */ 2653 int write_lock_level = 0; 2654 u8 lowest_level = 0; 2655 int min_write_lock_level; 2656 int prev_cmp; 2657 2658 lowest_level = p->lowest_level; 2659 WARN_ON(lowest_level && ins_len > 0); 2660 WARN_ON(p->nodes[0] != NULL); 2661 BUG_ON(!cow && ins_len); 2662 2663 if (ins_len < 0) { 2664 lowest_unlock = 2; 2665 2666 /* when we are removing items, we might have to go up to level 2667 * two as we update tree pointers Make sure we keep write 2668 * for those levels as well 2669 */ 2670 write_lock_level = 2; 2671 } else if (ins_len > 0) { 2672 /* 2673 * for inserting items, make sure we have a write lock on 2674 * level 1 so we can update keys 2675 */ 2676 write_lock_level = 1; 2677 } 2678 2679 if (!cow) 2680 write_lock_level = -1; 2681 2682 if (cow && (p->keep_locks || p->lowest_level)) 2683 write_lock_level = BTRFS_MAX_LEVEL; 2684 2685 min_write_lock_level = write_lock_level; 2686 2687 again: 2688 prev_cmp = -1; 2689 /* 2690 * we try very hard to do read locks on the root 2691 */ 2692 root_lock = BTRFS_READ_LOCK; 2693 level = 0; 2694 if (p->search_commit_root) { 2695 /* 2696 * the commit roots are read only 2697 * so we always do read locks 2698 */ 2699 if (p->need_commit_sem) 2700 down_read(&fs_info->commit_root_sem); 2701 b = root->commit_root; 2702 extent_buffer_get(b); 2703 level = btrfs_header_level(b); 2704 if (p->need_commit_sem) 2705 up_read(&fs_info->commit_root_sem); 2706 if (!p->skip_locking) 2707 btrfs_tree_read_lock(b); 2708 } else { 2709 if (p->skip_locking) { 2710 b = btrfs_root_node(root); 2711 level = btrfs_header_level(b); 2712 } else { 2713 /* we don't know the level of the root node 2714 * until we actually have it read locked 2715 */ 2716 b = btrfs_read_lock_root_node(root); 2717 level = btrfs_header_level(b); 2718 if (level <= write_lock_level) { 2719 /* whoops, must trade for write lock */ 2720 btrfs_tree_read_unlock(b); 2721 free_extent_buffer(b); 2722 b = btrfs_lock_root_node(root); 2723 root_lock = BTRFS_WRITE_LOCK; 2724 2725 /* the level might have changed, check again */ 2726 level = btrfs_header_level(b); 2727 } 2728 } 2729 } 2730 p->nodes[level] = b; 2731 if (!p->skip_locking) 2732 p->locks[level] = root_lock; 2733 2734 while (b) { 2735 level = btrfs_header_level(b); 2736 2737 /* 2738 * setup the path here so we can release it under lock 2739 * contention with the cow code 2740 */ 2741 if (cow) { 2742 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2743 2744 /* 2745 * if we don't really need to cow this block 2746 * then we don't want to set the path blocking, 2747 * so we test it here 2748 */ 2749 if (!should_cow_block(trans, root, b)) { 2750 trans->dirty = true; 2751 goto cow_done; 2752 } 2753 2754 /* 2755 * must have write locks on this node and the 2756 * parent 2757 */ 2758 if (level > write_lock_level || 2759 (level + 1 > write_lock_level && 2760 level + 1 < BTRFS_MAX_LEVEL && 2761 p->nodes[level + 1])) { 2762 write_lock_level = level + 1; 2763 btrfs_release_path(p); 2764 goto again; 2765 } 2766 2767 btrfs_set_path_blocking(p); 2768 if (last_level) 2769 err = btrfs_cow_block(trans, root, b, NULL, 0, 2770 &b); 2771 else 2772 err = btrfs_cow_block(trans, root, b, 2773 p->nodes[level + 1], 2774 p->slots[level + 1], &b); 2775 if (err) { 2776 ret = err; 2777 goto done; 2778 } 2779 } 2780 cow_done: 2781 p->nodes[level] = b; 2782 btrfs_clear_path_blocking(p, NULL, 0); 2783 2784 /* 2785 * we have a lock on b and as long as we aren't changing 2786 * the tree, there is no way to for the items in b to change. 2787 * It is safe to drop the lock on our parent before we 2788 * go through the expensive btree search on b. 2789 * 2790 * If we're inserting or deleting (ins_len != 0), then we might 2791 * be changing slot zero, which may require changing the parent. 2792 * So, we can't drop the lock until after we know which slot 2793 * we're operating on. 2794 */ 2795 if (!ins_len && !p->keep_locks) { 2796 int u = level + 1; 2797 2798 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2799 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2800 p->locks[u] = 0; 2801 } 2802 } 2803 2804 ret = key_search(b, key, level, &prev_cmp, &slot); 2805 if (ret < 0) 2806 goto done; 2807 2808 if (level != 0) { 2809 int dec = 0; 2810 if (ret && slot > 0) { 2811 dec = 1; 2812 slot -= 1; 2813 } 2814 p->slots[level] = slot; 2815 err = setup_nodes_for_search(trans, root, p, b, level, 2816 ins_len, &write_lock_level); 2817 if (err == -EAGAIN) 2818 goto again; 2819 if (err) { 2820 ret = err; 2821 goto done; 2822 } 2823 b = p->nodes[level]; 2824 slot = p->slots[level]; 2825 2826 /* 2827 * slot 0 is special, if we change the key 2828 * we have to update the parent pointer 2829 * which means we must have a write lock 2830 * on the parent 2831 */ 2832 if (slot == 0 && ins_len && 2833 write_lock_level < level + 1) { 2834 write_lock_level = level + 1; 2835 btrfs_release_path(p); 2836 goto again; 2837 } 2838 2839 unlock_up(p, level, lowest_unlock, 2840 min_write_lock_level, &write_lock_level); 2841 2842 if (level == lowest_level) { 2843 if (dec) 2844 p->slots[level]++; 2845 goto done; 2846 } 2847 2848 err = read_block_for_search(root, p, &b, level, 2849 slot, key); 2850 if (err == -EAGAIN) 2851 goto again; 2852 if (err) { 2853 ret = err; 2854 goto done; 2855 } 2856 2857 if (!p->skip_locking) { 2858 level = btrfs_header_level(b); 2859 if (level <= write_lock_level) { 2860 err = btrfs_try_tree_write_lock(b); 2861 if (!err) { 2862 btrfs_set_path_blocking(p); 2863 btrfs_tree_lock(b); 2864 btrfs_clear_path_blocking(p, b, 2865 BTRFS_WRITE_LOCK); 2866 } 2867 p->locks[level] = BTRFS_WRITE_LOCK; 2868 } else { 2869 err = btrfs_tree_read_lock_atomic(b); 2870 if (!err) { 2871 btrfs_set_path_blocking(p); 2872 btrfs_tree_read_lock(b); 2873 btrfs_clear_path_blocking(p, b, 2874 BTRFS_READ_LOCK); 2875 } 2876 p->locks[level] = BTRFS_READ_LOCK; 2877 } 2878 p->nodes[level] = b; 2879 } 2880 } else { 2881 p->slots[level] = slot; 2882 if (ins_len > 0 && 2883 btrfs_leaf_free_space(fs_info, b) < ins_len) { 2884 if (write_lock_level < 1) { 2885 write_lock_level = 1; 2886 btrfs_release_path(p); 2887 goto again; 2888 } 2889 2890 btrfs_set_path_blocking(p); 2891 err = split_leaf(trans, root, key, 2892 p, ins_len, ret == 0); 2893 btrfs_clear_path_blocking(p, NULL, 0); 2894 2895 BUG_ON(err > 0); 2896 if (err) { 2897 ret = err; 2898 goto done; 2899 } 2900 } 2901 if (!p->search_for_split) 2902 unlock_up(p, level, lowest_unlock, 2903 min_write_lock_level, &write_lock_level); 2904 goto done; 2905 } 2906 } 2907 ret = 1; 2908 done: 2909 /* 2910 * we don't really know what they plan on doing with the path 2911 * from here on, so for now just mark it as blocking 2912 */ 2913 if (!p->leave_spinning) 2914 btrfs_set_path_blocking(p); 2915 if (ret < 0 && !p->skip_release_on_error) 2916 btrfs_release_path(p); 2917 return ret; 2918 } 2919 2920 /* 2921 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2922 * current state of the tree together with the operations recorded in the tree 2923 * modification log to search for the key in a previous version of this tree, as 2924 * denoted by the time_seq parameter. 2925 * 2926 * Naturally, there is no support for insert, delete or cow operations. 2927 * 2928 * The resulting path and return value will be set up as if we called 2929 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2930 */ 2931 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2932 struct btrfs_path *p, u64 time_seq) 2933 { 2934 struct btrfs_fs_info *fs_info = root->fs_info; 2935 struct extent_buffer *b; 2936 int slot; 2937 int ret; 2938 int err; 2939 int level; 2940 int lowest_unlock = 1; 2941 u8 lowest_level = 0; 2942 int prev_cmp = -1; 2943 2944 lowest_level = p->lowest_level; 2945 WARN_ON(p->nodes[0] != NULL); 2946 2947 if (p->search_commit_root) { 2948 BUG_ON(time_seq); 2949 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2950 } 2951 2952 again: 2953 b = get_old_root(root, time_seq); 2954 level = btrfs_header_level(b); 2955 p->locks[level] = BTRFS_READ_LOCK; 2956 2957 while (b) { 2958 level = btrfs_header_level(b); 2959 p->nodes[level] = b; 2960 btrfs_clear_path_blocking(p, NULL, 0); 2961 2962 /* 2963 * we have a lock on b and as long as we aren't changing 2964 * the tree, there is no way to for the items in b to change. 2965 * It is safe to drop the lock on our parent before we 2966 * go through the expensive btree search on b. 2967 */ 2968 btrfs_unlock_up_safe(p, level + 1); 2969 2970 /* 2971 * Since we can unwind ebs we want to do a real search every 2972 * time. 2973 */ 2974 prev_cmp = -1; 2975 ret = key_search(b, key, level, &prev_cmp, &slot); 2976 2977 if (level != 0) { 2978 int dec = 0; 2979 if (ret && slot > 0) { 2980 dec = 1; 2981 slot -= 1; 2982 } 2983 p->slots[level] = slot; 2984 unlock_up(p, level, lowest_unlock, 0, NULL); 2985 2986 if (level == lowest_level) { 2987 if (dec) 2988 p->slots[level]++; 2989 goto done; 2990 } 2991 2992 err = read_block_for_search(root, p, &b, level, 2993 slot, key); 2994 if (err == -EAGAIN) 2995 goto again; 2996 if (err) { 2997 ret = err; 2998 goto done; 2999 } 3000 3001 level = btrfs_header_level(b); 3002 err = btrfs_tree_read_lock_atomic(b); 3003 if (!err) { 3004 btrfs_set_path_blocking(p); 3005 btrfs_tree_read_lock(b); 3006 btrfs_clear_path_blocking(p, b, 3007 BTRFS_READ_LOCK); 3008 } 3009 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3010 if (!b) { 3011 ret = -ENOMEM; 3012 goto done; 3013 } 3014 p->locks[level] = BTRFS_READ_LOCK; 3015 p->nodes[level] = b; 3016 } else { 3017 p->slots[level] = slot; 3018 unlock_up(p, level, lowest_unlock, 0, NULL); 3019 goto done; 3020 } 3021 } 3022 ret = 1; 3023 done: 3024 if (!p->leave_spinning) 3025 btrfs_set_path_blocking(p); 3026 if (ret < 0) 3027 btrfs_release_path(p); 3028 3029 return ret; 3030 } 3031 3032 /* 3033 * helper to use instead of search slot if no exact match is needed but 3034 * instead the next or previous item should be returned. 3035 * When find_higher is true, the next higher item is returned, the next lower 3036 * otherwise. 3037 * When return_any and find_higher are both true, and no higher item is found, 3038 * return the next lower instead. 3039 * When return_any is true and find_higher is false, and no lower item is found, 3040 * return the next higher instead. 3041 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3042 * < 0 on error 3043 */ 3044 int btrfs_search_slot_for_read(struct btrfs_root *root, 3045 const struct btrfs_key *key, 3046 struct btrfs_path *p, int find_higher, 3047 int return_any) 3048 { 3049 int ret; 3050 struct extent_buffer *leaf; 3051 3052 again: 3053 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3054 if (ret <= 0) 3055 return ret; 3056 /* 3057 * a return value of 1 means the path is at the position where the 3058 * item should be inserted. Normally this is the next bigger item, 3059 * but in case the previous item is the last in a leaf, path points 3060 * to the first free slot in the previous leaf, i.e. at an invalid 3061 * item. 3062 */ 3063 leaf = p->nodes[0]; 3064 3065 if (find_higher) { 3066 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3067 ret = btrfs_next_leaf(root, p); 3068 if (ret <= 0) 3069 return ret; 3070 if (!return_any) 3071 return 1; 3072 /* 3073 * no higher item found, return the next 3074 * lower instead 3075 */ 3076 return_any = 0; 3077 find_higher = 0; 3078 btrfs_release_path(p); 3079 goto again; 3080 } 3081 } else { 3082 if (p->slots[0] == 0) { 3083 ret = btrfs_prev_leaf(root, p); 3084 if (ret < 0) 3085 return ret; 3086 if (!ret) { 3087 leaf = p->nodes[0]; 3088 if (p->slots[0] == btrfs_header_nritems(leaf)) 3089 p->slots[0]--; 3090 return 0; 3091 } 3092 if (!return_any) 3093 return 1; 3094 /* 3095 * no lower item found, return the next 3096 * higher instead 3097 */ 3098 return_any = 0; 3099 find_higher = 1; 3100 btrfs_release_path(p); 3101 goto again; 3102 } else { 3103 --p->slots[0]; 3104 } 3105 } 3106 return 0; 3107 } 3108 3109 /* 3110 * adjust the pointers going up the tree, starting at level 3111 * making sure the right key of each node is points to 'key'. 3112 * This is used after shifting pointers to the left, so it stops 3113 * fixing up pointers when a given leaf/node is not in slot 0 of the 3114 * higher levels 3115 * 3116 */ 3117 static void fixup_low_keys(struct btrfs_fs_info *fs_info, 3118 struct btrfs_path *path, 3119 struct btrfs_disk_key *key, int level) 3120 { 3121 int i; 3122 struct extent_buffer *t; 3123 int ret; 3124 3125 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3126 int tslot = path->slots[i]; 3127 3128 if (!path->nodes[i]) 3129 break; 3130 t = path->nodes[i]; 3131 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3132 GFP_ATOMIC); 3133 BUG_ON(ret < 0); 3134 btrfs_set_node_key(t, key, tslot); 3135 btrfs_mark_buffer_dirty(path->nodes[i]); 3136 if (tslot != 0) 3137 break; 3138 } 3139 } 3140 3141 /* 3142 * update item key. 3143 * 3144 * This function isn't completely safe. It's the caller's responsibility 3145 * that the new key won't break the order 3146 */ 3147 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3148 struct btrfs_path *path, 3149 const struct btrfs_key *new_key) 3150 { 3151 struct btrfs_disk_key disk_key; 3152 struct extent_buffer *eb; 3153 int slot; 3154 3155 eb = path->nodes[0]; 3156 slot = path->slots[0]; 3157 if (slot > 0) { 3158 btrfs_item_key(eb, &disk_key, slot - 1); 3159 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3160 } 3161 if (slot < btrfs_header_nritems(eb) - 1) { 3162 btrfs_item_key(eb, &disk_key, slot + 1); 3163 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3164 } 3165 3166 btrfs_cpu_key_to_disk(&disk_key, new_key); 3167 btrfs_set_item_key(eb, &disk_key, slot); 3168 btrfs_mark_buffer_dirty(eb); 3169 if (slot == 0) 3170 fixup_low_keys(fs_info, path, &disk_key, 1); 3171 } 3172 3173 /* 3174 * try to push data from one node into the next node left in the 3175 * tree. 3176 * 3177 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3178 * error, and > 0 if there was no room in the left hand block. 3179 */ 3180 static int push_node_left(struct btrfs_trans_handle *trans, 3181 struct btrfs_fs_info *fs_info, 3182 struct extent_buffer *dst, 3183 struct extent_buffer *src, int empty) 3184 { 3185 int push_items = 0; 3186 int src_nritems; 3187 int dst_nritems; 3188 int ret = 0; 3189 3190 src_nritems = btrfs_header_nritems(src); 3191 dst_nritems = btrfs_header_nritems(dst); 3192 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3193 WARN_ON(btrfs_header_generation(src) != trans->transid); 3194 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3195 3196 if (!empty && src_nritems <= 8) 3197 return 1; 3198 3199 if (push_items <= 0) 3200 return 1; 3201 3202 if (empty) { 3203 push_items = min(src_nritems, push_items); 3204 if (push_items < src_nritems) { 3205 /* leave at least 8 pointers in the node if 3206 * we aren't going to empty it 3207 */ 3208 if (src_nritems - push_items < 8) { 3209 if (push_items <= 8) 3210 return 1; 3211 push_items -= 8; 3212 } 3213 } 3214 } else 3215 push_items = min(src_nritems - 8, push_items); 3216 3217 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0, 3218 push_items); 3219 if (ret) { 3220 btrfs_abort_transaction(trans, ret); 3221 return ret; 3222 } 3223 copy_extent_buffer(dst, src, 3224 btrfs_node_key_ptr_offset(dst_nritems), 3225 btrfs_node_key_ptr_offset(0), 3226 push_items * sizeof(struct btrfs_key_ptr)); 3227 3228 if (push_items < src_nritems) { 3229 /* 3230 * Don't call tree_mod_log_insert_move here, key removal was 3231 * already fully logged by tree_mod_log_eb_copy above. 3232 */ 3233 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3234 btrfs_node_key_ptr_offset(push_items), 3235 (src_nritems - push_items) * 3236 sizeof(struct btrfs_key_ptr)); 3237 } 3238 btrfs_set_header_nritems(src, src_nritems - push_items); 3239 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3240 btrfs_mark_buffer_dirty(src); 3241 btrfs_mark_buffer_dirty(dst); 3242 3243 return ret; 3244 } 3245 3246 /* 3247 * try to push data from one node into the next node right in the 3248 * tree. 3249 * 3250 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3251 * error, and > 0 if there was no room in the right hand block. 3252 * 3253 * this will only push up to 1/2 the contents of the left node over 3254 */ 3255 static int balance_node_right(struct btrfs_trans_handle *trans, 3256 struct btrfs_fs_info *fs_info, 3257 struct extent_buffer *dst, 3258 struct extent_buffer *src) 3259 { 3260 int push_items = 0; 3261 int max_push; 3262 int src_nritems; 3263 int dst_nritems; 3264 int ret = 0; 3265 3266 WARN_ON(btrfs_header_generation(src) != trans->transid); 3267 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3268 3269 src_nritems = btrfs_header_nritems(src); 3270 dst_nritems = btrfs_header_nritems(dst); 3271 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3272 if (push_items <= 0) 3273 return 1; 3274 3275 if (src_nritems < 4) 3276 return 1; 3277 3278 max_push = src_nritems / 2 + 1; 3279 /* don't try to empty the node */ 3280 if (max_push >= src_nritems) 3281 return 1; 3282 3283 if (max_push < push_items) 3284 push_items = max_push; 3285 3286 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3287 BUG_ON(ret < 0); 3288 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3289 btrfs_node_key_ptr_offset(0), 3290 (dst_nritems) * 3291 sizeof(struct btrfs_key_ptr)); 3292 3293 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0, 3294 src_nritems - push_items, push_items); 3295 if (ret) { 3296 btrfs_abort_transaction(trans, ret); 3297 return ret; 3298 } 3299 copy_extent_buffer(dst, src, 3300 btrfs_node_key_ptr_offset(0), 3301 btrfs_node_key_ptr_offset(src_nritems - push_items), 3302 push_items * sizeof(struct btrfs_key_ptr)); 3303 3304 btrfs_set_header_nritems(src, src_nritems - push_items); 3305 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3306 3307 btrfs_mark_buffer_dirty(src); 3308 btrfs_mark_buffer_dirty(dst); 3309 3310 return ret; 3311 } 3312 3313 /* 3314 * helper function to insert a new root level in the tree. 3315 * A new node is allocated, and a single item is inserted to 3316 * point to the existing root 3317 * 3318 * returns zero on success or < 0 on failure. 3319 */ 3320 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3321 struct btrfs_root *root, 3322 struct btrfs_path *path, int level) 3323 { 3324 struct btrfs_fs_info *fs_info = root->fs_info; 3325 u64 lower_gen; 3326 struct extent_buffer *lower; 3327 struct extent_buffer *c; 3328 struct extent_buffer *old; 3329 struct btrfs_disk_key lower_key; 3330 int ret; 3331 3332 BUG_ON(path->nodes[level]); 3333 BUG_ON(path->nodes[level-1] != root->node); 3334 3335 lower = path->nodes[level-1]; 3336 if (level == 1) 3337 btrfs_item_key(lower, &lower_key, 0); 3338 else 3339 btrfs_node_key(lower, &lower_key, 0); 3340 3341 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3342 &lower_key, level, root->node->start, 0); 3343 if (IS_ERR(c)) 3344 return PTR_ERR(c); 3345 3346 root_add_used(root, fs_info->nodesize); 3347 3348 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header)); 3349 btrfs_set_header_nritems(c, 1); 3350 btrfs_set_header_level(c, level); 3351 btrfs_set_header_bytenr(c, c->start); 3352 btrfs_set_header_generation(c, trans->transid); 3353 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3354 btrfs_set_header_owner(c, root->root_key.objectid); 3355 3356 write_extent_buffer_fsid(c, fs_info->fsid); 3357 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid); 3358 3359 btrfs_set_node_key(c, &lower_key, 0); 3360 btrfs_set_node_blockptr(c, 0, lower->start); 3361 lower_gen = btrfs_header_generation(lower); 3362 WARN_ON(lower_gen != trans->transid); 3363 3364 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3365 3366 btrfs_mark_buffer_dirty(c); 3367 3368 old = root->node; 3369 ret = tree_mod_log_insert_root(root->node, c, 0); 3370 BUG_ON(ret < 0); 3371 rcu_assign_pointer(root->node, c); 3372 3373 /* the super has an extra ref to root->node */ 3374 free_extent_buffer(old); 3375 3376 add_root_to_dirty_list(root); 3377 extent_buffer_get(c); 3378 path->nodes[level] = c; 3379 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3380 path->slots[level] = 0; 3381 return 0; 3382 } 3383 3384 /* 3385 * worker function to insert a single pointer in a node. 3386 * the node should have enough room for the pointer already 3387 * 3388 * slot and level indicate where you want the key to go, and 3389 * blocknr is the block the key points to. 3390 */ 3391 static void insert_ptr(struct btrfs_trans_handle *trans, 3392 struct btrfs_fs_info *fs_info, struct btrfs_path *path, 3393 struct btrfs_disk_key *key, u64 bytenr, 3394 int slot, int level) 3395 { 3396 struct extent_buffer *lower; 3397 int nritems; 3398 int ret; 3399 3400 BUG_ON(!path->nodes[level]); 3401 btrfs_assert_tree_locked(path->nodes[level]); 3402 lower = path->nodes[level]; 3403 nritems = btrfs_header_nritems(lower); 3404 BUG_ON(slot > nritems); 3405 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 3406 if (slot != nritems) { 3407 if (level) { 3408 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3409 nritems - slot); 3410 BUG_ON(ret < 0); 3411 } 3412 memmove_extent_buffer(lower, 3413 btrfs_node_key_ptr_offset(slot + 1), 3414 btrfs_node_key_ptr_offset(slot), 3415 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3416 } 3417 if (level) { 3418 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3419 GFP_NOFS); 3420 BUG_ON(ret < 0); 3421 } 3422 btrfs_set_node_key(lower, key, slot); 3423 btrfs_set_node_blockptr(lower, slot, bytenr); 3424 WARN_ON(trans->transid == 0); 3425 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3426 btrfs_set_header_nritems(lower, nritems + 1); 3427 btrfs_mark_buffer_dirty(lower); 3428 } 3429 3430 /* 3431 * split the node at the specified level in path in two. 3432 * The path is corrected to point to the appropriate node after the split 3433 * 3434 * Before splitting this tries to make some room in the node by pushing 3435 * left and right, if either one works, it returns right away. 3436 * 3437 * returns 0 on success and < 0 on failure 3438 */ 3439 static noinline int split_node(struct btrfs_trans_handle *trans, 3440 struct btrfs_root *root, 3441 struct btrfs_path *path, int level) 3442 { 3443 struct btrfs_fs_info *fs_info = root->fs_info; 3444 struct extent_buffer *c; 3445 struct extent_buffer *split; 3446 struct btrfs_disk_key disk_key; 3447 int mid; 3448 int ret; 3449 u32 c_nritems; 3450 3451 c = path->nodes[level]; 3452 WARN_ON(btrfs_header_generation(c) != trans->transid); 3453 if (c == root->node) { 3454 /* 3455 * trying to split the root, lets make a new one 3456 * 3457 * tree mod log: We don't log_removal old root in 3458 * insert_new_root, because that root buffer will be kept as a 3459 * normal node. We are going to log removal of half of the 3460 * elements below with tree_mod_log_eb_copy. We're holding a 3461 * tree lock on the buffer, which is why we cannot race with 3462 * other tree_mod_log users. 3463 */ 3464 ret = insert_new_root(trans, root, path, level + 1); 3465 if (ret) 3466 return ret; 3467 } else { 3468 ret = push_nodes_for_insert(trans, root, path, level); 3469 c = path->nodes[level]; 3470 if (!ret && btrfs_header_nritems(c) < 3471 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3472 return 0; 3473 if (ret < 0) 3474 return ret; 3475 } 3476 3477 c_nritems = btrfs_header_nritems(c); 3478 mid = (c_nritems + 1) / 2; 3479 btrfs_node_key(c, &disk_key, mid); 3480 3481 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3482 &disk_key, level, c->start, 0); 3483 if (IS_ERR(split)) 3484 return PTR_ERR(split); 3485 3486 root_add_used(root, fs_info->nodesize); 3487 3488 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header)); 3489 btrfs_set_header_level(split, btrfs_header_level(c)); 3490 btrfs_set_header_bytenr(split, split->start); 3491 btrfs_set_header_generation(split, trans->transid); 3492 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3493 btrfs_set_header_owner(split, root->root_key.objectid); 3494 write_extent_buffer_fsid(split, fs_info->fsid); 3495 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid); 3496 3497 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid); 3498 if (ret) { 3499 btrfs_abort_transaction(trans, ret); 3500 return ret; 3501 } 3502 copy_extent_buffer(split, c, 3503 btrfs_node_key_ptr_offset(0), 3504 btrfs_node_key_ptr_offset(mid), 3505 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3506 btrfs_set_header_nritems(split, c_nritems - mid); 3507 btrfs_set_header_nritems(c, mid); 3508 ret = 0; 3509 3510 btrfs_mark_buffer_dirty(c); 3511 btrfs_mark_buffer_dirty(split); 3512 3513 insert_ptr(trans, fs_info, path, &disk_key, split->start, 3514 path->slots[level + 1] + 1, level + 1); 3515 3516 if (path->slots[level] >= mid) { 3517 path->slots[level] -= mid; 3518 btrfs_tree_unlock(c); 3519 free_extent_buffer(c); 3520 path->nodes[level] = split; 3521 path->slots[level + 1] += 1; 3522 } else { 3523 btrfs_tree_unlock(split); 3524 free_extent_buffer(split); 3525 } 3526 return ret; 3527 } 3528 3529 /* 3530 * how many bytes are required to store the items in a leaf. start 3531 * and nr indicate which items in the leaf to check. This totals up the 3532 * space used both by the item structs and the item data 3533 */ 3534 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3535 { 3536 struct btrfs_item *start_item; 3537 struct btrfs_item *end_item; 3538 struct btrfs_map_token token; 3539 int data_len; 3540 int nritems = btrfs_header_nritems(l); 3541 int end = min(nritems, start + nr) - 1; 3542 3543 if (!nr) 3544 return 0; 3545 btrfs_init_map_token(&token); 3546 start_item = btrfs_item_nr(start); 3547 end_item = btrfs_item_nr(end); 3548 data_len = btrfs_token_item_offset(l, start_item, &token) + 3549 btrfs_token_item_size(l, start_item, &token); 3550 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3551 data_len += sizeof(struct btrfs_item) * nr; 3552 WARN_ON(data_len < 0); 3553 return data_len; 3554 } 3555 3556 /* 3557 * The space between the end of the leaf items and 3558 * the start of the leaf data. IOW, how much room 3559 * the leaf has left for both items and data 3560 */ 3561 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info, 3562 struct extent_buffer *leaf) 3563 { 3564 int nritems = btrfs_header_nritems(leaf); 3565 int ret; 3566 3567 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3568 if (ret < 0) { 3569 btrfs_crit(fs_info, 3570 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3571 ret, 3572 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3573 leaf_space_used(leaf, 0, nritems), nritems); 3574 } 3575 return ret; 3576 } 3577 3578 /* 3579 * min slot controls the lowest index we're willing to push to the 3580 * right. We'll push up to and including min_slot, but no lower 3581 */ 3582 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info, 3583 struct btrfs_path *path, 3584 int data_size, int empty, 3585 struct extent_buffer *right, 3586 int free_space, u32 left_nritems, 3587 u32 min_slot) 3588 { 3589 struct extent_buffer *left = path->nodes[0]; 3590 struct extent_buffer *upper = path->nodes[1]; 3591 struct btrfs_map_token token; 3592 struct btrfs_disk_key disk_key; 3593 int slot; 3594 u32 i; 3595 int push_space = 0; 3596 int push_items = 0; 3597 struct btrfs_item *item; 3598 u32 nr; 3599 u32 right_nritems; 3600 u32 data_end; 3601 u32 this_item_size; 3602 3603 btrfs_init_map_token(&token); 3604 3605 if (empty) 3606 nr = 0; 3607 else 3608 nr = max_t(u32, 1, min_slot); 3609 3610 if (path->slots[0] >= left_nritems) 3611 push_space += data_size; 3612 3613 slot = path->slots[1]; 3614 i = left_nritems - 1; 3615 while (i >= nr) { 3616 item = btrfs_item_nr(i); 3617 3618 if (!empty && push_items > 0) { 3619 if (path->slots[0] > i) 3620 break; 3621 if (path->slots[0] == i) { 3622 int space = btrfs_leaf_free_space(fs_info, left); 3623 if (space + push_space * 2 > free_space) 3624 break; 3625 } 3626 } 3627 3628 if (path->slots[0] == i) 3629 push_space += data_size; 3630 3631 this_item_size = btrfs_item_size(left, item); 3632 if (this_item_size + sizeof(*item) + push_space > free_space) 3633 break; 3634 3635 push_items++; 3636 push_space += this_item_size + sizeof(*item); 3637 if (i == 0) 3638 break; 3639 i--; 3640 } 3641 3642 if (push_items == 0) 3643 goto out_unlock; 3644 3645 WARN_ON(!empty && push_items == left_nritems); 3646 3647 /* push left to right */ 3648 right_nritems = btrfs_header_nritems(right); 3649 3650 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3651 push_space -= leaf_data_end(fs_info, left); 3652 3653 /* make room in the right data area */ 3654 data_end = leaf_data_end(fs_info, right); 3655 memmove_extent_buffer(right, 3656 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3657 BTRFS_LEAF_DATA_OFFSET + data_end, 3658 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3659 3660 /* copy from the left data area */ 3661 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3662 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3663 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left), 3664 push_space); 3665 3666 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3667 btrfs_item_nr_offset(0), 3668 right_nritems * sizeof(struct btrfs_item)); 3669 3670 /* copy the items from left to right */ 3671 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3672 btrfs_item_nr_offset(left_nritems - push_items), 3673 push_items * sizeof(struct btrfs_item)); 3674 3675 /* update the item pointers */ 3676 right_nritems += push_items; 3677 btrfs_set_header_nritems(right, right_nritems); 3678 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3679 for (i = 0; i < right_nritems; i++) { 3680 item = btrfs_item_nr(i); 3681 push_space -= btrfs_token_item_size(right, item, &token); 3682 btrfs_set_token_item_offset(right, item, push_space, &token); 3683 } 3684 3685 left_nritems -= push_items; 3686 btrfs_set_header_nritems(left, left_nritems); 3687 3688 if (left_nritems) 3689 btrfs_mark_buffer_dirty(left); 3690 else 3691 clean_tree_block(fs_info, left); 3692 3693 btrfs_mark_buffer_dirty(right); 3694 3695 btrfs_item_key(right, &disk_key, 0); 3696 btrfs_set_node_key(upper, &disk_key, slot + 1); 3697 btrfs_mark_buffer_dirty(upper); 3698 3699 /* then fixup the leaf pointer in the path */ 3700 if (path->slots[0] >= left_nritems) { 3701 path->slots[0] -= left_nritems; 3702 if (btrfs_header_nritems(path->nodes[0]) == 0) 3703 clean_tree_block(fs_info, path->nodes[0]); 3704 btrfs_tree_unlock(path->nodes[0]); 3705 free_extent_buffer(path->nodes[0]); 3706 path->nodes[0] = right; 3707 path->slots[1] += 1; 3708 } else { 3709 btrfs_tree_unlock(right); 3710 free_extent_buffer(right); 3711 } 3712 return 0; 3713 3714 out_unlock: 3715 btrfs_tree_unlock(right); 3716 free_extent_buffer(right); 3717 return 1; 3718 } 3719 3720 /* 3721 * push some data in the path leaf to the right, trying to free up at 3722 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3723 * 3724 * returns 1 if the push failed because the other node didn't have enough 3725 * room, 0 if everything worked out and < 0 if there were major errors. 3726 * 3727 * this will push starting from min_slot to the end of the leaf. It won't 3728 * push any slot lower than min_slot 3729 */ 3730 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3731 *root, struct btrfs_path *path, 3732 int min_data_size, int data_size, 3733 int empty, u32 min_slot) 3734 { 3735 struct btrfs_fs_info *fs_info = root->fs_info; 3736 struct extent_buffer *left = path->nodes[0]; 3737 struct extent_buffer *right; 3738 struct extent_buffer *upper; 3739 int slot; 3740 int free_space; 3741 u32 left_nritems; 3742 int ret; 3743 3744 if (!path->nodes[1]) 3745 return 1; 3746 3747 slot = path->slots[1]; 3748 upper = path->nodes[1]; 3749 if (slot >= btrfs_header_nritems(upper) - 1) 3750 return 1; 3751 3752 btrfs_assert_tree_locked(path->nodes[1]); 3753 3754 right = read_node_slot(fs_info, upper, slot + 1); 3755 /* 3756 * slot + 1 is not valid or we fail to read the right node, 3757 * no big deal, just return. 3758 */ 3759 if (IS_ERR(right)) 3760 return 1; 3761 3762 btrfs_tree_lock(right); 3763 btrfs_set_lock_blocking(right); 3764 3765 free_space = btrfs_leaf_free_space(fs_info, right); 3766 if (free_space < data_size) 3767 goto out_unlock; 3768 3769 /* cow and double check */ 3770 ret = btrfs_cow_block(trans, root, right, upper, 3771 slot + 1, &right); 3772 if (ret) 3773 goto out_unlock; 3774 3775 free_space = btrfs_leaf_free_space(fs_info, right); 3776 if (free_space < data_size) 3777 goto out_unlock; 3778 3779 left_nritems = btrfs_header_nritems(left); 3780 if (left_nritems == 0) 3781 goto out_unlock; 3782 3783 if (path->slots[0] == left_nritems && !empty) { 3784 /* Key greater than all keys in the leaf, right neighbor has 3785 * enough room for it and we're not emptying our leaf to delete 3786 * it, therefore use right neighbor to insert the new item and 3787 * no need to touch/dirty our left leaft. */ 3788 btrfs_tree_unlock(left); 3789 free_extent_buffer(left); 3790 path->nodes[0] = right; 3791 path->slots[0] = 0; 3792 path->slots[1]++; 3793 return 0; 3794 } 3795 3796 return __push_leaf_right(fs_info, path, min_data_size, empty, 3797 right, free_space, left_nritems, min_slot); 3798 out_unlock: 3799 btrfs_tree_unlock(right); 3800 free_extent_buffer(right); 3801 return 1; 3802 } 3803 3804 /* 3805 * push some data in the path leaf to the left, trying to free up at 3806 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3807 * 3808 * max_slot can put a limit on how far into the leaf we'll push items. The 3809 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3810 * items 3811 */ 3812 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info, 3813 struct btrfs_path *path, int data_size, 3814 int empty, struct extent_buffer *left, 3815 int free_space, u32 right_nritems, 3816 u32 max_slot) 3817 { 3818 struct btrfs_disk_key disk_key; 3819 struct extent_buffer *right = path->nodes[0]; 3820 int i; 3821 int push_space = 0; 3822 int push_items = 0; 3823 struct btrfs_item *item; 3824 u32 old_left_nritems; 3825 u32 nr; 3826 int ret = 0; 3827 u32 this_item_size; 3828 u32 old_left_item_size; 3829 struct btrfs_map_token token; 3830 3831 btrfs_init_map_token(&token); 3832 3833 if (empty) 3834 nr = min(right_nritems, max_slot); 3835 else 3836 nr = min(right_nritems - 1, max_slot); 3837 3838 for (i = 0; i < nr; i++) { 3839 item = btrfs_item_nr(i); 3840 3841 if (!empty && push_items > 0) { 3842 if (path->slots[0] < i) 3843 break; 3844 if (path->slots[0] == i) { 3845 int space = btrfs_leaf_free_space(fs_info, right); 3846 if (space + push_space * 2 > free_space) 3847 break; 3848 } 3849 } 3850 3851 if (path->slots[0] == i) 3852 push_space += data_size; 3853 3854 this_item_size = btrfs_item_size(right, item); 3855 if (this_item_size + sizeof(*item) + push_space > free_space) 3856 break; 3857 3858 push_items++; 3859 push_space += this_item_size + sizeof(*item); 3860 } 3861 3862 if (push_items == 0) { 3863 ret = 1; 3864 goto out; 3865 } 3866 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3867 3868 /* push data from right to left */ 3869 copy_extent_buffer(left, right, 3870 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3871 btrfs_item_nr_offset(0), 3872 push_items * sizeof(struct btrfs_item)); 3873 3874 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3875 btrfs_item_offset_nr(right, push_items - 1); 3876 3877 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3878 leaf_data_end(fs_info, left) - push_space, 3879 BTRFS_LEAF_DATA_OFFSET + 3880 btrfs_item_offset_nr(right, push_items - 1), 3881 push_space); 3882 old_left_nritems = btrfs_header_nritems(left); 3883 BUG_ON(old_left_nritems <= 0); 3884 3885 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3886 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3887 u32 ioff; 3888 3889 item = btrfs_item_nr(i); 3890 3891 ioff = btrfs_token_item_offset(left, item, &token); 3892 btrfs_set_token_item_offset(left, item, 3893 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3894 &token); 3895 } 3896 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3897 3898 /* fixup right node */ 3899 if (push_items > right_nritems) 3900 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3901 right_nritems); 3902 3903 if (push_items < right_nritems) { 3904 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3905 leaf_data_end(fs_info, right); 3906 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3907 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3908 BTRFS_LEAF_DATA_OFFSET + 3909 leaf_data_end(fs_info, right), push_space); 3910 3911 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3912 btrfs_item_nr_offset(push_items), 3913 (btrfs_header_nritems(right) - push_items) * 3914 sizeof(struct btrfs_item)); 3915 } 3916 right_nritems -= push_items; 3917 btrfs_set_header_nritems(right, right_nritems); 3918 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3919 for (i = 0; i < right_nritems; i++) { 3920 item = btrfs_item_nr(i); 3921 3922 push_space = push_space - btrfs_token_item_size(right, 3923 item, &token); 3924 btrfs_set_token_item_offset(right, item, push_space, &token); 3925 } 3926 3927 btrfs_mark_buffer_dirty(left); 3928 if (right_nritems) 3929 btrfs_mark_buffer_dirty(right); 3930 else 3931 clean_tree_block(fs_info, right); 3932 3933 btrfs_item_key(right, &disk_key, 0); 3934 fixup_low_keys(fs_info, path, &disk_key, 1); 3935 3936 /* then fixup the leaf pointer in the path */ 3937 if (path->slots[0] < push_items) { 3938 path->slots[0] += old_left_nritems; 3939 btrfs_tree_unlock(path->nodes[0]); 3940 free_extent_buffer(path->nodes[0]); 3941 path->nodes[0] = left; 3942 path->slots[1] -= 1; 3943 } else { 3944 btrfs_tree_unlock(left); 3945 free_extent_buffer(left); 3946 path->slots[0] -= push_items; 3947 } 3948 BUG_ON(path->slots[0] < 0); 3949 return ret; 3950 out: 3951 btrfs_tree_unlock(left); 3952 free_extent_buffer(left); 3953 return ret; 3954 } 3955 3956 /* 3957 * push some data in the path leaf to the left, trying to free up at 3958 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3959 * 3960 * max_slot can put a limit on how far into the leaf we'll push items. The 3961 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3962 * items 3963 */ 3964 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3965 *root, struct btrfs_path *path, int min_data_size, 3966 int data_size, int empty, u32 max_slot) 3967 { 3968 struct btrfs_fs_info *fs_info = root->fs_info; 3969 struct extent_buffer *right = path->nodes[0]; 3970 struct extent_buffer *left; 3971 int slot; 3972 int free_space; 3973 u32 right_nritems; 3974 int ret = 0; 3975 3976 slot = path->slots[1]; 3977 if (slot == 0) 3978 return 1; 3979 if (!path->nodes[1]) 3980 return 1; 3981 3982 right_nritems = btrfs_header_nritems(right); 3983 if (right_nritems == 0) 3984 return 1; 3985 3986 btrfs_assert_tree_locked(path->nodes[1]); 3987 3988 left = read_node_slot(fs_info, path->nodes[1], slot - 1); 3989 /* 3990 * slot - 1 is not valid or we fail to read the left node, 3991 * no big deal, just return. 3992 */ 3993 if (IS_ERR(left)) 3994 return 1; 3995 3996 btrfs_tree_lock(left); 3997 btrfs_set_lock_blocking(left); 3998 3999 free_space = btrfs_leaf_free_space(fs_info, left); 4000 if (free_space < data_size) { 4001 ret = 1; 4002 goto out; 4003 } 4004 4005 /* cow and double check */ 4006 ret = btrfs_cow_block(trans, root, left, 4007 path->nodes[1], slot - 1, &left); 4008 if (ret) { 4009 /* we hit -ENOSPC, but it isn't fatal here */ 4010 if (ret == -ENOSPC) 4011 ret = 1; 4012 goto out; 4013 } 4014 4015 free_space = btrfs_leaf_free_space(fs_info, left); 4016 if (free_space < data_size) { 4017 ret = 1; 4018 goto out; 4019 } 4020 4021 return __push_leaf_left(fs_info, path, min_data_size, 4022 empty, left, free_space, right_nritems, 4023 max_slot); 4024 out: 4025 btrfs_tree_unlock(left); 4026 free_extent_buffer(left); 4027 return ret; 4028 } 4029 4030 /* 4031 * split the path's leaf in two, making sure there is at least data_size 4032 * available for the resulting leaf level of the path. 4033 */ 4034 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4035 struct btrfs_fs_info *fs_info, 4036 struct btrfs_path *path, 4037 struct extent_buffer *l, 4038 struct extent_buffer *right, 4039 int slot, int mid, int nritems) 4040 { 4041 int data_copy_size; 4042 int rt_data_off; 4043 int i; 4044 struct btrfs_disk_key disk_key; 4045 struct btrfs_map_token token; 4046 4047 btrfs_init_map_token(&token); 4048 4049 nritems = nritems - mid; 4050 btrfs_set_header_nritems(right, nritems); 4051 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l); 4052 4053 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4054 btrfs_item_nr_offset(mid), 4055 nritems * sizeof(struct btrfs_item)); 4056 4057 copy_extent_buffer(right, l, 4058 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4059 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4060 leaf_data_end(fs_info, l), data_copy_size); 4061 4062 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4063 4064 for (i = 0; i < nritems; i++) { 4065 struct btrfs_item *item = btrfs_item_nr(i); 4066 u32 ioff; 4067 4068 ioff = btrfs_token_item_offset(right, item, &token); 4069 btrfs_set_token_item_offset(right, item, 4070 ioff + rt_data_off, &token); 4071 } 4072 4073 btrfs_set_header_nritems(l, mid); 4074 btrfs_item_key(right, &disk_key, 0); 4075 insert_ptr(trans, fs_info, path, &disk_key, right->start, 4076 path->slots[1] + 1, 1); 4077 4078 btrfs_mark_buffer_dirty(right); 4079 btrfs_mark_buffer_dirty(l); 4080 BUG_ON(path->slots[0] != slot); 4081 4082 if (mid <= slot) { 4083 btrfs_tree_unlock(path->nodes[0]); 4084 free_extent_buffer(path->nodes[0]); 4085 path->nodes[0] = right; 4086 path->slots[0] -= mid; 4087 path->slots[1] += 1; 4088 } else { 4089 btrfs_tree_unlock(right); 4090 free_extent_buffer(right); 4091 } 4092 4093 BUG_ON(path->slots[0] < 0); 4094 } 4095 4096 /* 4097 * double splits happen when we need to insert a big item in the middle 4098 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4099 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4100 * A B C 4101 * 4102 * We avoid this by trying to push the items on either side of our target 4103 * into the adjacent leaves. If all goes well we can avoid the double split 4104 * completely. 4105 */ 4106 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4107 struct btrfs_root *root, 4108 struct btrfs_path *path, 4109 int data_size) 4110 { 4111 struct btrfs_fs_info *fs_info = root->fs_info; 4112 int ret; 4113 int progress = 0; 4114 int slot; 4115 u32 nritems; 4116 int space_needed = data_size; 4117 4118 slot = path->slots[0]; 4119 if (slot < btrfs_header_nritems(path->nodes[0])) 4120 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4121 4122 /* 4123 * try to push all the items after our slot into the 4124 * right leaf 4125 */ 4126 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4127 if (ret < 0) 4128 return ret; 4129 4130 if (ret == 0) 4131 progress++; 4132 4133 nritems = btrfs_header_nritems(path->nodes[0]); 4134 /* 4135 * our goal is to get our slot at the start or end of a leaf. If 4136 * we've done so we're done 4137 */ 4138 if (path->slots[0] == 0 || path->slots[0] == nritems) 4139 return 0; 4140 4141 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4142 return 0; 4143 4144 /* try to push all the items before our slot into the next leaf */ 4145 slot = path->slots[0]; 4146 space_needed = data_size; 4147 if (slot > 0) 4148 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4149 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4150 if (ret < 0) 4151 return ret; 4152 4153 if (ret == 0) 4154 progress++; 4155 4156 if (progress) 4157 return 0; 4158 return 1; 4159 } 4160 4161 /* 4162 * split the path's leaf in two, making sure there is at least data_size 4163 * available for the resulting leaf level of the path. 4164 * 4165 * returns 0 if all went well and < 0 on failure. 4166 */ 4167 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4168 struct btrfs_root *root, 4169 const struct btrfs_key *ins_key, 4170 struct btrfs_path *path, int data_size, 4171 int extend) 4172 { 4173 struct btrfs_disk_key disk_key; 4174 struct extent_buffer *l; 4175 u32 nritems; 4176 int mid; 4177 int slot; 4178 struct extent_buffer *right; 4179 struct btrfs_fs_info *fs_info = root->fs_info; 4180 int ret = 0; 4181 int wret; 4182 int split; 4183 int num_doubles = 0; 4184 int tried_avoid_double = 0; 4185 4186 l = path->nodes[0]; 4187 slot = path->slots[0]; 4188 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4189 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4190 return -EOVERFLOW; 4191 4192 /* first try to make some room by pushing left and right */ 4193 if (data_size && path->nodes[1]) { 4194 int space_needed = data_size; 4195 4196 if (slot < btrfs_header_nritems(l)) 4197 space_needed -= btrfs_leaf_free_space(fs_info, l); 4198 4199 wret = push_leaf_right(trans, root, path, space_needed, 4200 space_needed, 0, 0); 4201 if (wret < 0) 4202 return wret; 4203 if (wret) { 4204 space_needed = data_size; 4205 if (slot > 0) 4206 space_needed -= btrfs_leaf_free_space(fs_info, 4207 l); 4208 wret = push_leaf_left(trans, root, path, space_needed, 4209 space_needed, 0, (u32)-1); 4210 if (wret < 0) 4211 return wret; 4212 } 4213 l = path->nodes[0]; 4214 4215 /* did the pushes work? */ 4216 if (btrfs_leaf_free_space(fs_info, l) >= data_size) 4217 return 0; 4218 } 4219 4220 if (!path->nodes[1]) { 4221 ret = insert_new_root(trans, root, path, 1); 4222 if (ret) 4223 return ret; 4224 } 4225 again: 4226 split = 1; 4227 l = path->nodes[0]; 4228 slot = path->slots[0]; 4229 nritems = btrfs_header_nritems(l); 4230 mid = (nritems + 1) / 2; 4231 4232 if (mid <= slot) { 4233 if (nritems == 1 || 4234 leaf_space_used(l, mid, nritems - mid) + data_size > 4235 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4236 if (slot >= nritems) { 4237 split = 0; 4238 } else { 4239 mid = slot; 4240 if (mid != nritems && 4241 leaf_space_used(l, mid, nritems - mid) + 4242 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4243 if (data_size && !tried_avoid_double) 4244 goto push_for_double; 4245 split = 2; 4246 } 4247 } 4248 } 4249 } else { 4250 if (leaf_space_used(l, 0, mid) + data_size > 4251 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4252 if (!extend && data_size && slot == 0) { 4253 split = 0; 4254 } else if ((extend || !data_size) && slot == 0) { 4255 mid = 1; 4256 } else { 4257 mid = slot; 4258 if (mid != nritems && 4259 leaf_space_used(l, mid, nritems - mid) + 4260 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4261 if (data_size && !tried_avoid_double) 4262 goto push_for_double; 4263 split = 2; 4264 } 4265 } 4266 } 4267 } 4268 4269 if (split == 0) 4270 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4271 else 4272 btrfs_item_key(l, &disk_key, mid); 4273 4274 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4275 &disk_key, 0, l->start, 0); 4276 if (IS_ERR(right)) 4277 return PTR_ERR(right); 4278 4279 root_add_used(root, fs_info->nodesize); 4280 4281 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header)); 4282 btrfs_set_header_bytenr(right, right->start); 4283 btrfs_set_header_generation(right, trans->transid); 4284 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4285 btrfs_set_header_owner(right, root->root_key.objectid); 4286 btrfs_set_header_level(right, 0); 4287 write_extent_buffer_fsid(right, fs_info->fsid); 4288 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid); 4289 4290 if (split == 0) { 4291 if (mid <= slot) { 4292 btrfs_set_header_nritems(right, 0); 4293 insert_ptr(trans, fs_info, path, &disk_key, 4294 right->start, path->slots[1] + 1, 1); 4295 btrfs_tree_unlock(path->nodes[0]); 4296 free_extent_buffer(path->nodes[0]); 4297 path->nodes[0] = right; 4298 path->slots[0] = 0; 4299 path->slots[1] += 1; 4300 } else { 4301 btrfs_set_header_nritems(right, 0); 4302 insert_ptr(trans, fs_info, path, &disk_key, 4303 right->start, path->slots[1], 1); 4304 btrfs_tree_unlock(path->nodes[0]); 4305 free_extent_buffer(path->nodes[0]); 4306 path->nodes[0] = right; 4307 path->slots[0] = 0; 4308 if (path->slots[1] == 0) 4309 fixup_low_keys(fs_info, path, &disk_key, 1); 4310 } 4311 /* 4312 * We create a new leaf 'right' for the required ins_len and 4313 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4314 * the content of ins_len to 'right'. 4315 */ 4316 return ret; 4317 } 4318 4319 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems); 4320 4321 if (split == 2) { 4322 BUG_ON(num_doubles != 0); 4323 num_doubles++; 4324 goto again; 4325 } 4326 4327 return 0; 4328 4329 push_for_double: 4330 push_for_double_split(trans, root, path, data_size); 4331 tried_avoid_double = 1; 4332 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4333 return 0; 4334 goto again; 4335 } 4336 4337 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4338 struct btrfs_root *root, 4339 struct btrfs_path *path, int ins_len) 4340 { 4341 struct btrfs_fs_info *fs_info = root->fs_info; 4342 struct btrfs_key key; 4343 struct extent_buffer *leaf; 4344 struct btrfs_file_extent_item *fi; 4345 u64 extent_len = 0; 4346 u32 item_size; 4347 int ret; 4348 4349 leaf = path->nodes[0]; 4350 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4351 4352 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4353 key.type != BTRFS_EXTENT_CSUM_KEY); 4354 4355 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len) 4356 return 0; 4357 4358 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4359 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4360 fi = btrfs_item_ptr(leaf, path->slots[0], 4361 struct btrfs_file_extent_item); 4362 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4363 } 4364 btrfs_release_path(path); 4365 4366 path->keep_locks = 1; 4367 path->search_for_split = 1; 4368 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4369 path->search_for_split = 0; 4370 if (ret > 0) 4371 ret = -EAGAIN; 4372 if (ret < 0) 4373 goto err; 4374 4375 ret = -EAGAIN; 4376 leaf = path->nodes[0]; 4377 /* if our item isn't there, return now */ 4378 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4379 goto err; 4380 4381 /* the leaf has changed, it now has room. return now */ 4382 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len) 4383 goto err; 4384 4385 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4386 fi = btrfs_item_ptr(leaf, path->slots[0], 4387 struct btrfs_file_extent_item); 4388 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4389 goto err; 4390 } 4391 4392 btrfs_set_path_blocking(path); 4393 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4394 if (ret) 4395 goto err; 4396 4397 path->keep_locks = 0; 4398 btrfs_unlock_up_safe(path, 1); 4399 return 0; 4400 err: 4401 path->keep_locks = 0; 4402 return ret; 4403 } 4404 4405 static noinline int split_item(struct btrfs_fs_info *fs_info, 4406 struct btrfs_path *path, 4407 const struct btrfs_key *new_key, 4408 unsigned long split_offset) 4409 { 4410 struct extent_buffer *leaf; 4411 struct btrfs_item *item; 4412 struct btrfs_item *new_item; 4413 int slot; 4414 char *buf; 4415 u32 nritems; 4416 u32 item_size; 4417 u32 orig_offset; 4418 struct btrfs_disk_key disk_key; 4419 4420 leaf = path->nodes[0]; 4421 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item)); 4422 4423 btrfs_set_path_blocking(path); 4424 4425 item = btrfs_item_nr(path->slots[0]); 4426 orig_offset = btrfs_item_offset(leaf, item); 4427 item_size = btrfs_item_size(leaf, item); 4428 4429 buf = kmalloc(item_size, GFP_NOFS); 4430 if (!buf) 4431 return -ENOMEM; 4432 4433 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4434 path->slots[0]), item_size); 4435 4436 slot = path->slots[0] + 1; 4437 nritems = btrfs_header_nritems(leaf); 4438 if (slot != nritems) { 4439 /* shift the items */ 4440 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4441 btrfs_item_nr_offset(slot), 4442 (nritems - slot) * sizeof(struct btrfs_item)); 4443 } 4444 4445 btrfs_cpu_key_to_disk(&disk_key, new_key); 4446 btrfs_set_item_key(leaf, &disk_key, slot); 4447 4448 new_item = btrfs_item_nr(slot); 4449 4450 btrfs_set_item_offset(leaf, new_item, orig_offset); 4451 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4452 4453 btrfs_set_item_offset(leaf, item, 4454 orig_offset + item_size - split_offset); 4455 btrfs_set_item_size(leaf, item, split_offset); 4456 4457 btrfs_set_header_nritems(leaf, nritems + 1); 4458 4459 /* write the data for the start of the original item */ 4460 write_extent_buffer(leaf, buf, 4461 btrfs_item_ptr_offset(leaf, path->slots[0]), 4462 split_offset); 4463 4464 /* write the data for the new item */ 4465 write_extent_buffer(leaf, buf + split_offset, 4466 btrfs_item_ptr_offset(leaf, slot), 4467 item_size - split_offset); 4468 btrfs_mark_buffer_dirty(leaf); 4469 4470 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0); 4471 kfree(buf); 4472 return 0; 4473 } 4474 4475 /* 4476 * This function splits a single item into two items, 4477 * giving 'new_key' to the new item and splitting the 4478 * old one at split_offset (from the start of the item). 4479 * 4480 * The path may be released by this operation. After 4481 * the split, the path is pointing to the old item. The 4482 * new item is going to be in the same node as the old one. 4483 * 4484 * Note, the item being split must be smaller enough to live alone on 4485 * a tree block with room for one extra struct btrfs_item 4486 * 4487 * This allows us to split the item in place, keeping a lock on the 4488 * leaf the entire time. 4489 */ 4490 int btrfs_split_item(struct btrfs_trans_handle *trans, 4491 struct btrfs_root *root, 4492 struct btrfs_path *path, 4493 const struct btrfs_key *new_key, 4494 unsigned long split_offset) 4495 { 4496 int ret; 4497 ret = setup_leaf_for_split(trans, root, path, 4498 sizeof(struct btrfs_item)); 4499 if (ret) 4500 return ret; 4501 4502 ret = split_item(root->fs_info, path, new_key, split_offset); 4503 return ret; 4504 } 4505 4506 /* 4507 * This function duplicate a item, giving 'new_key' to the new item. 4508 * It guarantees both items live in the same tree leaf and the new item 4509 * is contiguous with the original item. 4510 * 4511 * This allows us to split file extent in place, keeping a lock on the 4512 * leaf the entire time. 4513 */ 4514 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4515 struct btrfs_root *root, 4516 struct btrfs_path *path, 4517 const struct btrfs_key *new_key) 4518 { 4519 struct extent_buffer *leaf; 4520 int ret; 4521 u32 item_size; 4522 4523 leaf = path->nodes[0]; 4524 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4525 ret = setup_leaf_for_split(trans, root, path, 4526 item_size + sizeof(struct btrfs_item)); 4527 if (ret) 4528 return ret; 4529 4530 path->slots[0]++; 4531 setup_items_for_insert(root, path, new_key, &item_size, 4532 item_size, item_size + 4533 sizeof(struct btrfs_item), 1); 4534 leaf = path->nodes[0]; 4535 memcpy_extent_buffer(leaf, 4536 btrfs_item_ptr_offset(leaf, path->slots[0]), 4537 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4538 item_size); 4539 return 0; 4540 } 4541 4542 /* 4543 * make the item pointed to by the path smaller. new_size indicates 4544 * how small to make it, and from_end tells us if we just chop bytes 4545 * off the end of the item or if we shift the item to chop bytes off 4546 * the front. 4547 */ 4548 void btrfs_truncate_item(struct btrfs_fs_info *fs_info, 4549 struct btrfs_path *path, u32 new_size, int from_end) 4550 { 4551 int slot; 4552 struct extent_buffer *leaf; 4553 struct btrfs_item *item; 4554 u32 nritems; 4555 unsigned int data_end; 4556 unsigned int old_data_start; 4557 unsigned int old_size; 4558 unsigned int size_diff; 4559 int i; 4560 struct btrfs_map_token token; 4561 4562 btrfs_init_map_token(&token); 4563 4564 leaf = path->nodes[0]; 4565 slot = path->slots[0]; 4566 4567 old_size = btrfs_item_size_nr(leaf, slot); 4568 if (old_size == new_size) 4569 return; 4570 4571 nritems = btrfs_header_nritems(leaf); 4572 data_end = leaf_data_end(fs_info, leaf); 4573 4574 old_data_start = btrfs_item_offset_nr(leaf, slot); 4575 4576 size_diff = old_size - new_size; 4577 4578 BUG_ON(slot < 0); 4579 BUG_ON(slot >= nritems); 4580 4581 /* 4582 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4583 */ 4584 /* first correct the data pointers */ 4585 for (i = slot; i < nritems; i++) { 4586 u32 ioff; 4587 item = btrfs_item_nr(i); 4588 4589 ioff = btrfs_token_item_offset(leaf, item, &token); 4590 btrfs_set_token_item_offset(leaf, item, 4591 ioff + size_diff, &token); 4592 } 4593 4594 /* shift the data */ 4595 if (from_end) { 4596 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4597 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4598 data_end, old_data_start + new_size - data_end); 4599 } else { 4600 struct btrfs_disk_key disk_key; 4601 u64 offset; 4602 4603 btrfs_item_key(leaf, &disk_key, slot); 4604 4605 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4606 unsigned long ptr; 4607 struct btrfs_file_extent_item *fi; 4608 4609 fi = btrfs_item_ptr(leaf, slot, 4610 struct btrfs_file_extent_item); 4611 fi = (struct btrfs_file_extent_item *)( 4612 (unsigned long)fi - size_diff); 4613 4614 if (btrfs_file_extent_type(leaf, fi) == 4615 BTRFS_FILE_EXTENT_INLINE) { 4616 ptr = btrfs_item_ptr_offset(leaf, slot); 4617 memmove_extent_buffer(leaf, ptr, 4618 (unsigned long)fi, 4619 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4620 } 4621 } 4622 4623 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4624 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4625 data_end, old_data_start - data_end); 4626 4627 offset = btrfs_disk_key_offset(&disk_key); 4628 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4629 btrfs_set_item_key(leaf, &disk_key, slot); 4630 if (slot == 0) 4631 fixup_low_keys(fs_info, path, &disk_key, 1); 4632 } 4633 4634 item = btrfs_item_nr(slot); 4635 btrfs_set_item_size(leaf, item, new_size); 4636 btrfs_mark_buffer_dirty(leaf); 4637 4638 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4639 btrfs_print_leaf(leaf); 4640 BUG(); 4641 } 4642 } 4643 4644 /* 4645 * make the item pointed to by the path bigger, data_size is the added size. 4646 */ 4647 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 4648 u32 data_size) 4649 { 4650 int slot; 4651 struct extent_buffer *leaf; 4652 struct btrfs_item *item; 4653 u32 nritems; 4654 unsigned int data_end; 4655 unsigned int old_data; 4656 unsigned int old_size; 4657 int i; 4658 struct btrfs_map_token token; 4659 4660 btrfs_init_map_token(&token); 4661 4662 leaf = path->nodes[0]; 4663 4664 nritems = btrfs_header_nritems(leaf); 4665 data_end = leaf_data_end(fs_info, leaf); 4666 4667 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) { 4668 btrfs_print_leaf(leaf); 4669 BUG(); 4670 } 4671 slot = path->slots[0]; 4672 old_data = btrfs_item_end_nr(leaf, slot); 4673 4674 BUG_ON(slot < 0); 4675 if (slot >= nritems) { 4676 btrfs_print_leaf(leaf); 4677 btrfs_crit(fs_info, "slot %d too large, nritems %d", 4678 slot, nritems); 4679 BUG_ON(1); 4680 } 4681 4682 /* 4683 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4684 */ 4685 /* first correct the data pointers */ 4686 for (i = slot; i < nritems; i++) { 4687 u32 ioff; 4688 item = btrfs_item_nr(i); 4689 4690 ioff = btrfs_token_item_offset(leaf, item, &token); 4691 btrfs_set_token_item_offset(leaf, item, 4692 ioff - data_size, &token); 4693 } 4694 4695 /* shift the data */ 4696 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4697 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4698 data_end, old_data - data_end); 4699 4700 data_end = old_data; 4701 old_size = btrfs_item_size_nr(leaf, slot); 4702 item = btrfs_item_nr(slot); 4703 btrfs_set_item_size(leaf, item, old_size + data_size); 4704 btrfs_mark_buffer_dirty(leaf); 4705 4706 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4707 btrfs_print_leaf(leaf); 4708 BUG(); 4709 } 4710 } 4711 4712 /* 4713 * this is a helper for btrfs_insert_empty_items, the main goal here is 4714 * to save stack depth by doing the bulk of the work in a function 4715 * that doesn't call btrfs_search_slot 4716 */ 4717 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4718 const struct btrfs_key *cpu_key, u32 *data_size, 4719 u32 total_data, u32 total_size, int nr) 4720 { 4721 struct btrfs_fs_info *fs_info = root->fs_info; 4722 struct btrfs_item *item; 4723 int i; 4724 u32 nritems; 4725 unsigned int data_end; 4726 struct btrfs_disk_key disk_key; 4727 struct extent_buffer *leaf; 4728 int slot; 4729 struct btrfs_map_token token; 4730 4731 if (path->slots[0] == 0) { 4732 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4733 fixup_low_keys(fs_info, path, &disk_key, 1); 4734 } 4735 btrfs_unlock_up_safe(path, 1); 4736 4737 btrfs_init_map_token(&token); 4738 4739 leaf = path->nodes[0]; 4740 slot = path->slots[0]; 4741 4742 nritems = btrfs_header_nritems(leaf); 4743 data_end = leaf_data_end(fs_info, leaf); 4744 4745 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) { 4746 btrfs_print_leaf(leaf); 4747 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4748 total_size, btrfs_leaf_free_space(fs_info, leaf)); 4749 BUG(); 4750 } 4751 4752 if (slot != nritems) { 4753 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4754 4755 if (old_data < data_end) { 4756 btrfs_print_leaf(leaf); 4757 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4758 slot, old_data, data_end); 4759 BUG_ON(1); 4760 } 4761 /* 4762 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4763 */ 4764 /* first correct the data pointers */ 4765 for (i = slot; i < nritems; i++) { 4766 u32 ioff; 4767 4768 item = btrfs_item_nr(i); 4769 ioff = btrfs_token_item_offset(leaf, item, &token); 4770 btrfs_set_token_item_offset(leaf, item, 4771 ioff - total_data, &token); 4772 } 4773 /* shift the items */ 4774 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4775 btrfs_item_nr_offset(slot), 4776 (nritems - slot) * sizeof(struct btrfs_item)); 4777 4778 /* shift the data */ 4779 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4780 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4781 data_end, old_data - data_end); 4782 data_end = old_data; 4783 } 4784 4785 /* setup the item for the new data */ 4786 for (i = 0; i < nr; i++) { 4787 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4788 btrfs_set_item_key(leaf, &disk_key, slot + i); 4789 item = btrfs_item_nr(slot + i); 4790 btrfs_set_token_item_offset(leaf, item, 4791 data_end - data_size[i], &token); 4792 data_end -= data_size[i]; 4793 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4794 } 4795 4796 btrfs_set_header_nritems(leaf, nritems + nr); 4797 btrfs_mark_buffer_dirty(leaf); 4798 4799 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4800 btrfs_print_leaf(leaf); 4801 BUG(); 4802 } 4803 } 4804 4805 /* 4806 * Given a key and some data, insert items into the tree. 4807 * This does all the path init required, making room in the tree if needed. 4808 */ 4809 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4810 struct btrfs_root *root, 4811 struct btrfs_path *path, 4812 const struct btrfs_key *cpu_key, u32 *data_size, 4813 int nr) 4814 { 4815 int ret = 0; 4816 int slot; 4817 int i; 4818 u32 total_size = 0; 4819 u32 total_data = 0; 4820 4821 for (i = 0; i < nr; i++) 4822 total_data += data_size[i]; 4823 4824 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4825 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4826 if (ret == 0) 4827 return -EEXIST; 4828 if (ret < 0) 4829 return ret; 4830 4831 slot = path->slots[0]; 4832 BUG_ON(slot < 0); 4833 4834 setup_items_for_insert(root, path, cpu_key, data_size, 4835 total_data, total_size, nr); 4836 return 0; 4837 } 4838 4839 /* 4840 * Given a key and some data, insert an item into the tree. 4841 * This does all the path init required, making room in the tree if needed. 4842 */ 4843 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4844 const struct btrfs_key *cpu_key, void *data, 4845 u32 data_size) 4846 { 4847 int ret = 0; 4848 struct btrfs_path *path; 4849 struct extent_buffer *leaf; 4850 unsigned long ptr; 4851 4852 path = btrfs_alloc_path(); 4853 if (!path) 4854 return -ENOMEM; 4855 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4856 if (!ret) { 4857 leaf = path->nodes[0]; 4858 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4859 write_extent_buffer(leaf, data, ptr, data_size); 4860 btrfs_mark_buffer_dirty(leaf); 4861 } 4862 btrfs_free_path(path); 4863 return ret; 4864 } 4865 4866 /* 4867 * delete the pointer from a given node. 4868 * 4869 * the tree should have been previously balanced so the deletion does not 4870 * empty a node. 4871 */ 4872 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4873 int level, int slot) 4874 { 4875 struct btrfs_fs_info *fs_info = root->fs_info; 4876 struct extent_buffer *parent = path->nodes[level]; 4877 u32 nritems; 4878 int ret; 4879 4880 nritems = btrfs_header_nritems(parent); 4881 if (slot != nritems - 1) { 4882 if (level) { 4883 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4884 nritems - slot - 1); 4885 BUG_ON(ret < 0); 4886 } 4887 memmove_extent_buffer(parent, 4888 btrfs_node_key_ptr_offset(slot), 4889 btrfs_node_key_ptr_offset(slot + 1), 4890 sizeof(struct btrfs_key_ptr) * 4891 (nritems - slot - 1)); 4892 } else if (level) { 4893 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4894 GFP_NOFS); 4895 BUG_ON(ret < 0); 4896 } 4897 4898 nritems--; 4899 btrfs_set_header_nritems(parent, nritems); 4900 if (nritems == 0 && parent == root->node) { 4901 BUG_ON(btrfs_header_level(root->node) != 1); 4902 /* just turn the root into a leaf and break */ 4903 btrfs_set_header_level(root->node, 0); 4904 } else if (slot == 0) { 4905 struct btrfs_disk_key disk_key; 4906 4907 btrfs_node_key(parent, &disk_key, 0); 4908 fixup_low_keys(fs_info, path, &disk_key, level + 1); 4909 } 4910 btrfs_mark_buffer_dirty(parent); 4911 } 4912 4913 /* 4914 * a helper function to delete the leaf pointed to by path->slots[1] and 4915 * path->nodes[1]. 4916 * 4917 * This deletes the pointer in path->nodes[1] and frees the leaf 4918 * block extent. zero is returned if it all worked out, < 0 otherwise. 4919 * 4920 * The path must have already been setup for deleting the leaf, including 4921 * all the proper balancing. path->nodes[1] must be locked. 4922 */ 4923 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4924 struct btrfs_root *root, 4925 struct btrfs_path *path, 4926 struct extent_buffer *leaf) 4927 { 4928 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4929 del_ptr(root, path, 1, path->slots[1]); 4930 4931 /* 4932 * btrfs_free_extent is expensive, we want to make sure we 4933 * aren't holding any locks when we call it 4934 */ 4935 btrfs_unlock_up_safe(path, 0); 4936 4937 root_sub_used(root, leaf->len); 4938 4939 extent_buffer_get(leaf); 4940 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4941 free_extent_buffer_stale(leaf); 4942 } 4943 /* 4944 * delete the item at the leaf level in path. If that empties 4945 * the leaf, remove it from the tree 4946 */ 4947 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4948 struct btrfs_path *path, int slot, int nr) 4949 { 4950 struct btrfs_fs_info *fs_info = root->fs_info; 4951 struct extent_buffer *leaf; 4952 struct btrfs_item *item; 4953 u32 last_off; 4954 u32 dsize = 0; 4955 int ret = 0; 4956 int wret; 4957 int i; 4958 u32 nritems; 4959 struct btrfs_map_token token; 4960 4961 btrfs_init_map_token(&token); 4962 4963 leaf = path->nodes[0]; 4964 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4965 4966 for (i = 0; i < nr; i++) 4967 dsize += btrfs_item_size_nr(leaf, slot + i); 4968 4969 nritems = btrfs_header_nritems(leaf); 4970 4971 if (slot + nr != nritems) { 4972 int data_end = leaf_data_end(fs_info, leaf); 4973 4974 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4975 data_end + dsize, 4976 BTRFS_LEAF_DATA_OFFSET + data_end, 4977 last_off - data_end); 4978 4979 for (i = slot + nr; i < nritems; i++) { 4980 u32 ioff; 4981 4982 item = btrfs_item_nr(i); 4983 ioff = btrfs_token_item_offset(leaf, item, &token); 4984 btrfs_set_token_item_offset(leaf, item, 4985 ioff + dsize, &token); 4986 } 4987 4988 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4989 btrfs_item_nr_offset(slot + nr), 4990 sizeof(struct btrfs_item) * 4991 (nritems - slot - nr)); 4992 } 4993 btrfs_set_header_nritems(leaf, nritems - nr); 4994 nritems -= nr; 4995 4996 /* delete the leaf if we've emptied it */ 4997 if (nritems == 0) { 4998 if (leaf == root->node) { 4999 btrfs_set_header_level(leaf, 0); 5000 } else { 5001 btrfs_set_path_blocking(path); 5002 clean_tree_block(fs_info, leaf); 5003 btrfs_del_leaf(trans, root, path, leaf); 5004 } 5005 } else { 5006 int used = leaf_space_used(leaf, 0, nritems); 5007 if (slot == 0) { 5008 struct btrfs_disk_key disk_key; 5009 5010 btrfs_item_key(leaf, &disk_key, 0); 5011 fixup_low_keys(fs_info, path, &disk_key, 1); 5012 } 5013 5014 /* delete the leaf if it is mostly empty */ 5015 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 5016 /* push_leaf_left fixes the path. 5017 * make sure the path still points to our leaf 5018 * for possible call to del_ptr below 5019 */ 5020 slot = path->slots[1]; 5021 extent_buffer_get(leaf); 5022 5023 btrfs_set_path_blocking(path); 5024 wret = push_leaf_left(trans, root, path, 1, 1, 5025 1, (u32)-1); 5026 if (wret < 0 && wret != -ENOSPC) 5027 ret = wret; 5028 5029 if (path->nodes[0] == leaf && 5030 btrfs_header_nritems(leaf)) { 5031 wret = push_leaf_right(trans, root, path, 1, 5032 1, 1, 0); 5033 if (wret < 0 && wret != -ENOSPC) 5034 ret = wret; 5035 } 5036 5037 if (btrfs_header_nritems(leaf) == 0) { 5038 path->slots[1] = slot; 5039 btrfs_del_leaf(trans, root, path, leaf); 5040 free_extent_buffer(leaf); 5041 ret = 0; 5042 } else { 5043 /* if we're still in the path, make sure 5044 * we're dirty. Otherwise, one of the 5045 * push_leaf functions must have already 5046 * dirtied this buffer 5047 */ 5048 if (path->nodes[0] == leaf) 5049 btrfs_mark_buffer_dirty(leaf); 5050 free_extent_buffer(leaf); 5051 } 5052 } else { 5053 btrfs_mark_buffer_dirty(leaf); 5054 } 5055 } 5056 return ret; 5057 } 5058 5059 /* 5060 * search the tree again to find a leaf with lesser keys 5061 * returns 0 if it found something or 1 if there are no lesser leaves. 5062 * returns < 0 on io errors. 5063 * 5064 * This may release the path, and so you may lose any locks held at the 5065 * time you call it. 5066 */ 5067 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5068 { 5069 struct btrfs_key key; 5070 struct btrfs_disk_key found_key; 5071 int ret; 5072 5073 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5074 5075 if (key.offset > 0) { 5076 key.offset--; 5077 } else if (key.type > 0) { 5078 key.type--; 5079 key.offset = (u64)-1; 5080 } else if (key.objectid > 0) { 5081 key.objectid--; 5082 key.type = (u8)-1; 5083 key.offset = (u64)-1; 5084 } else { 5085 return 1; 5086 } 5087 5088 btrfs_release_path(path); 5089 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5090 if (ret < 0) 5091 return ret; 5092 btrfs_item_key(path->nodes[0], &found_key, 0); 5093 ret = comp_keys(&found_key, &key); 5094 /* 5095 * We might have had an item with the previous key in the tree right 5096 * before we released our path. And after we released our path, that 5097 * item might have been pushed to the first slot (0) of the leaf we 5098 * were holding due to a tree balance. Alternatively, an item with the 5099 * previous key can exist as the only element of a leaf (big fat item). 5100 * Therefore account for these 2 cases, so that our callers (like 5101 * btrfs_previous_item) don't miss an existing item with a key matching 5102 * the previous key we computed above. 5103 */ 5104 if (ret <= 0) 5105 return 0; 5106 return 1; 5107 } 5108 5109 /* 5110 * A helper function to walk down the tree starting at min_key, and looking 5111 * for nodes or leaves that are have a minimum transaction id. 5112 * This is used by the btree defrag code, and tree logging 5113 * 5114 * This does not cow, but it does stuff the starting key it finds back 5115 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5116 * key and get a writable path. 5117 * 5118 * This honors path->lowest_level to prevent descent past a given level 5119 * of the tree. 5120 * 5121 * min_trans indicates the oldest transaction that you are interested 5122 * in walking through. Any nodes or leaves older than min_trans are 5123 * skipped over (without reading them). 5124 * 5125 * returns zero if something useful was found, < 0 on error and 1 if there 5126 * was nothing in the tree that matched the search criteria. 5127 */ 5128 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5129 struct btrfs_path *path, 5130 u64 min_trans) 5131 { 5132 struct btrfs_fs_info *fs_info = root->fs_info; 5133 struct extent_buffer *cur; 5134 struct btrfs_key found_key; 5135 int slot; 5136 int sret; 5137 u32 nritems; 5138 int level; 5139 int ret = 1; 5140 int keep_locks = path->keep_locks; 5141 5142 path->keep_locks = 1; 5143 again: 5144 cur = btrfs_read_lock_root_node(root); 5145 level = btrfs_header_level(cur); 5146 WARN_ON(path->nodes[level]); 5147 path->nodes[level] = cur; 5148 path->locks[level] = BTRFS_READ_LOCK; 5149 5150 if (btrfs_header_generation(cur) < min_trans) { 5151 ret = 1; 5152 goto out; 5153 } 5154 while (1) { 5155 nritems = btrfs_header_nritems(cur); 5156 level = btrfs_header_level(cur); 5157 sret = btrfs_bin_search(cur, min_key, level, &slot); 5158 5159 /* at the lowest level, we're done, setup the path and exit */ 5160 if (level == path->lowest_level) { 5161 if (slot >= nritems) 5162 goto find_next_key; 5163 ret = 0; 5164 path->slots[level] = slot; 5165 btrfs_item_key_to_cpu(cur, &found_key, slot); 5166 goto out; 5167 } 5168 if (sret && slot > 0) 5169 slot--; 5170 /* 5171 * check this node pointer against the min_trans parameters. 5172 * If it is too old, old, skip to the next one. 5173 */ 5174 while (slot < nritems) { 5175 u64 gen; 5176 5177 gen = btrfs_node_ptr_generation(cur, slot); 5178 if (gen < min_trans) { 5179 slot++; 5180 continue; 5181 } 5182 break; 5183 } 5184 find_next_key: 5185 /* 5186 * we didn't find a candidate key in this node, walk forward 5187 * and find another one 5188 */ 5189 if (slot >= nritems) { 5190 path->slots[level] = slot; 5191 btrfs_set_path_blocking(path); 5192 sret = btrfs_find_next_key(root, path, min_key, level, 5193 min_trans); 5194 if (sret == 0) { 5195 btrfs_release_path(path); 5196 goto again; 5197 } else { 5198 goto out; 5199 } 5200 } 5201 /* save our key for returning back */ 5202 btrfs_node_key_to_cpu(cur, &found_key, slot); 5203 path->slots[level] = slot; 5204 if (level == path->lowest_level) { 5205 ret = 0; 5206 goto out; 5207 } 5208 btrfs_set_path_blocking(path); 5209 cur = read_node_slot(fs_info, cur, slot); 5210 if (IS_ERR(cur)) { 5211 ret = PTR_ERR(cur); 5212 goto out; 5213 } 5214 5215 btrfs_tree_read_lock(cur); 5216 5217 path->locks[level - 1] = BTRFS_READ_LOCK; 5218 path->nodes[level - 1] = cur; 5219 unlock_up(path, level, 1, 0, NULL); 5220 btrfs_clear_path_blocking(path, NULL, 0); 5221 } 5222 out: 5223 path->keep_locks = keep_locks; 5224 if (ret == 0) { 5225 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5226 btrfs_set_path_blocking(path); 5227 memcpy(min_key, &found_key, sizeof(found_key)); 5228 } 5229 return ret; 5230 } 5231 5232 static int tree_move_down(struct btrfs_fs_info *fs_info, 5233 struct btrfs_path *path, 5234 int *level) 5235 { 5236 struct extent_buffer *eb; 5237 5238 BUG_ON(*level == 0); 5239 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]); 5240 if (IS_ERR(eb)) 5241 return PTR_ERR(eb); 5242 5243 path->nodes[*level - 1] = eb; 5244 path->slots[*level - 1] = 0; 5245 (*level)--; 5246 return 0; 5247 } 5248 5249 static int tree_move_next_or_upnext(struct btrfs_path *path, 5250 int *level, int root_level) 5251 { 5252 int ret = 0; 5253 int nritems; 5254 nritems = btrfs_header_nritems(path->nodes[*level]); 5255 5256 path->slots[*level]++; 5257 5258 while (path->slots[*level] >= nritems) { 5259 if (*level == root_level) 5260 return -1; 5261 5262 /* move upnext */ 5263 path->slots[*level] = 0; 5264 free_extent_buffer(path->nodes[*level]); 5265 path->nodes[*level] = NULL; 5266 (*level)++; 5267 path->slots[*level]++; 5268 5269 nritems = btrfs_header_nritems(path->nodes[*level]); 5270 ret = 1; 5271 } 5272 return ret; 5273 } 5274 5275 /* 5276 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5277 * or down. 5278 */ 5279 static int tree_advance(struct btrfs_fs_info *fs_info, 5280 struct btrfs_path *path, 5281 int *level, int root_level, 5282 int allow_down, 5283 struct btrfs_key *key) 5284 { 5285 int ret; 5286 5287 if (*level == 0 || !allow_down) { 5288 ret = tree_move_next_or_upnext(path, level, root_level); 5289 } else { 5290 ret = tree_move_down(fs_info, path, level); 5291 } 5292 if (ret >= 0) { 5293 if (*level == 0) 5294 btrfs_item_key_to_cpu(path->nodes[*level], key, 5295 path->slots[*level]); 5296 else 5297 btrfs_node_key_to_cpu(path->nodes[*level], key, 5298 path->slots[*level]); 5299 } 5300 return ret; 5301 } 5302 5303 static int tree_compare_item(struct btrfs_path *left_path, 5304 struct btrfs_path *right_path, 5305 char *tmp_buf) 5306 { 5307 int cmp; 5308 int len1, len2; 5309 unsigned long off1, off2; 5310 5311 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5312 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5313 if (len1 != len2) 5314 return 1; 5315 5316 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5317 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5318 right_path->slots[0]); 5319 5320 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5321 5322 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5323 if (cmp) 5324 return 1; 5325 return 0; 5326 } 5327 5328 #define ADVANCE 1 5329 #define ADVANCE_ONLY_NEXT -1 5330 5331 /* 5332 * This function compares two trees and calls the provided callback for 5333 * every changed/new/deleted item it finds. 5334 * If shared tree blocks are encountered, whole subtrees are skipped, making 5335 * the compare pretty fast on snapshotted subvolumes. 5336 * 5337 * This currently works on commit roots only. As commit roots are read only, 5338 * we don't do any locking. The commit roots are protected with transactions. 5339 * Transactions are ended and rejoined when a commit is tried in between. 5340 * 5341 * This function checks for modifications done to the trees while comparing. 5342 * If it detects a change, it aborts immediately. 5343 */ 5344 int btrfs_compare_trees(struct btrfs_root *left_root, 5345 struct btrfs_root *right_root, 5346 btrfs_changed_cb_t changed_cb, void *ctx) 5347 { 5348 struct btrfs_fs_info *fs_info = left_root->fs_info; 5349 int ret; 5350 int cmp; 5351 struct btrfs_path *left_path = NULL; 5352 struct btrfs_path *right_path = NULL; 5353 struct btrfs_key left_key; 5354 struct btrfs_key right_key; 5355 char *tmp_buf = NULL; 5356 int left_root_level; 5357 int right_root_level; 5358 int left_level; 5359 int right_level; 5360 int left_end_reached; 5361 int right_end_reached; 5362 int advance_left; 5363 int advance_right; 5364 u64 left_blockptr; 5365 u64 right_blockptr; 5366 u64 left_gen; 5367 u64 right_gen; 5368 5369 left_path = btrfs_alloc_path(); 5370 if (!left_path) { 5371 ret = -ENOMEM; 5372 goto out; 5373 } 5374 right_path = btrfs_alloc_path(); 5375 if (!right_path) { 5376 ret = -ENOMEM; 5377 goto out; 5378 } 5379 5380 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 5381 if (!tmp_buf) { 5382 ret = -ENOMEM; 5383 goto out; 5384 } 5385 5386 left_path->search_commit_root = 1; 5387 left_path->skip_locking = 1; 5388 right_path->search_commit_root = 1; 5389 right_path->skip_locking = 1; 5390 5391 /* 5392 * Strategy: Go to the first items of both trees. Then do 5393 * 5394 * If both trees are at level 0 5395 * Compare keys of current items 5396 * If left < right treat left item as new, advance left tree 5397 * and repeat 5398 * If left > right treat right item as deleted, advance right tree 5399 * and repeat 5400 * If left == right do deep compare of items, treat as changed if 5401 * needed, advance both trees and repeat 5402 * If both trees are at the same level but not at level 0 5403 * Compare keys of current nodes/leafs 5404 * If left < right advance left tree and repeat 5405 * If left > right advance right tree and repeat 5406 * If left == right compare blockptrs of the next nodes/leafs 5407 * If they match advance both trees but stay at the same level 5408 * and repeat 5409 * If they don't match advance both trees while allowing to go 5410 * deeper and repeat 5411 * If tree levels are different 5412 * Advance the tree that needs it and repeat 5413 * 5414 * Advancing a tree means: 5415 * If we are at level 0, try to go to the next slot. If that's not 5416 * possible, go one level up and repeat. Stop when we found a level 5417 * where we could go to the next slot. We may at this point be on a 5418 * node or a leaf. 5419 * 5420 * If we are not at level 0 and not on shared tree blocks, go one 5421 * level deeper. 5422 * 5423 * If we are not at level 0 and on shared tree blocks, go one slot to 5424 * the right if possible or go up and right. 5425 */ 5426 5427 down_read(&fs_info->commit_root_sem); 5428 left_level = btrfs_header_level(left_root->commit_root); 5429 left_root_level = left_level; 5430 left_path->nodes[left_level] = left_root->commit_root; 5431 extent_buffer_get(left_path->nodes[left_level]); 5432 5433 right_level = btrfs_header_level(right_root->commit_root); 5434 right_root_level = right_level; 5435 right_path->nodes[right_level] = right_root->commit_root; 5436 extent_buffer_get(right_path->nodes[right_level]); 5437 up_read(&fs_info->commit_root_sem); 5438 5439 if (left_level == 0) 5440 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5441 &left_key, left_path->slots[left_level]); 5442 else 5443 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5444 &left_key, left_path->slots[left_level]); 5445 if (right_level == 0) 5446 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5447 &right_key, right_path->slots[right_level]); 5448 else 5449 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5450 &right_key, right_path->slots[right_level]); 5451 5452 left_end_reached = right_end_reached = 0; 5453 advance_left = advance_right = 0; 5454 5455 while (1) { 5456 if (advance_left && !left_end_reached) { 5457 ret = tree_advance(fs_info, left_path, &left_level, 5458 left_root_level, 5459 advance_left != ADVANCE_ONLY_NEXT, 5460 &left_key); 5461 if (ret == -1) 5462 left_end_reached = ADVANCE; 5463 else if (ret < 0) 5464 goto out; 5465 advance_left = 0; 5466 } 5467 if (advance_right && !right_end_reached) { 5468 ret = tree_advance(fs_info, right_path, &right_level, 5469 right_root_level, 5470 advance_right != ADVANCE_ONLY_NEXT, 5471 &right_key); 5472 if (ret == -1) 5473 right_end_reached = ADVANCE; 5474 else if (ret < 0) 5475 goto out; 5476 advance_right = 0; 5477 } 5478 5479 if (left_end_reached && right_end_reached) { 5480 ret = 0; 5481 goto out; 5482 } else if (left_end_reached) { 5483 if (right_level == 0) { 5484 ret = changed_cb(left_path, right_path, 5485 &right_key, 5486 BTRFS_COMPARE_TREE_DELETED, 5487 ctx); 5488 if (ret < 0) 5489 goto out; 5490 } 5491 advance_right = ADVANCE; 5492 continue; 5493 } else if (right_end_reached) { 5494 if (left_level == 0) { 5495 ret = changed_cb(left_path, right_path, 5496 &left_key, 5497 BTRFS_COMPARE_TREE_NEW, 5498 ctx); 5499 if (ret < 0) 5500 goto out; 5501 } 5502 advance_left = ADVANCE; 5503 continue; 5504 } 5505 5506 if (left_level == 0 && right_level == 0) { 5507 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5508 if (cmp < 0) { 5509 ret = changed_cb(left_path, right_path, 5510 &left_key, 5511 BTRFS_COMPARE_TREE_NEW, 5512 ctx); 5513 if (ret < 0) 5514 goto out; 5515 advance_left = ADVANCE; 5516 } else if (cmp > 0) { 5517 ret = changed_cb(left_path, right_path, 5518 &right_key, 5519 BTRFS_COMPARE_TREE_DELETED, 5520 ctx); 5521 if (ret < 0) 5522 goto out; 5523 advance_right = ADVANCE; 5524 } else { 5525 enum btrfs_compare_tree_result result; 5526 5527 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5528 ret = tree_compare_item(left_path, right_path, 5529 tmp_buf); 5530 if (ret) 5531 result = BTRFS_COMPARE_TREE_CHANGED; 5532 else 5533 result = BTRFS_COMPARE_TREE_SAME; 5534 ret = changed_cb(left_path, right_path, 5535 &left_key, result, ctx); 5536 if (ret < 0) 5537 goto out; 5538 advance_left = ADVANCE; 5539 advance_right = ADVANCE; 5540 } 5541 } else if (left_level == right_level) { 5542 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5543 if (cmp < 0) { 5544 advance_left = ADVANCE; 5545 } else if (cmp > 0) { 5546 advance_right = ADVANCE; 5547 } else { 5548 left_blockptr = btrfs_node_blockptr( 5549 left_path->nodes[left_level], 5550 left_path->slots[left_level]); 5551 right_blockptr = btrfs_node_blockptr( 5552 right_path->nodes[right_level], 5553 right_path->slots[right_level]); 5554 left_gen = btrfs_node_ptr_generation( 5555 left_path->nodes[left_level], 5556 left_path->slots[left_level]); 5557 right_gen = btrfs_node_ptr_generation( 5558 right_path->nodes[right_level], 5559 right_path->slots[right_level]); 5560 if (left_blockptr == right_blockptr && 5561 left_gen == right_gen) { 5562 /* 5563 * As we're on a shared block, don't 5564 * allow to go deeper. 5565 */ 5566 advance_left = ADVANCE_ONLY_NEXT; 5567 advance_right = ADVANCE_ONLY_NEXT; 5568 } else { 5569 advance_left = ADVANCE; 5570 advance_right = ADVANCE; 5571 } 5572 } 5573 } else if (left_level < right_level) { 5574 advance_right = ADVANCE; 5575 } else { 5576 advance_left = ADVANCE; 5577 } 5578 } 5579 5580 out: 5581 btrfs_free_path(left_path); 5582 btrfs_free_path(right_path); 5583 kvfree(tmp_buf); 5584 return ret; 5585 } 5586 5587 /* 5588 * this is similar to btrfs_next_leaf, but does not try to preserve 5589 * and fixup the path. It looks for and returns the next key in the 5590 * tree based on the current path and the min_trans parameters. 5591 * 5592 * 0 is returned if another key is found, < 0 if there are any errors 5593 * and 1 is returned if there are no higher keys in the tree 5594 * 5595 * path->keep_locks should be set to 1 on the search made before 5596 * calling this function. 5597 */ 5598 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5599 struct btrfs_key *key, int level, u64 min_trans) 5600 { 5601 int slot; 5602 struct extent_buffer *c; 5603 5604 WARN_ON(!path->keep_locks); 5605 while (level < BTRFS_MAX_LEVEL) { 5606 if (!path->nodes[level]) 5607 return 1; 5608 5609 slot = path->slots[level] + 1; 5610 c = path->nodes[level]; 5611 next: 5612 if (slot >= btrfs_header_nritems(c)) { 5613 int ret; 5614 int orig_lowest; 5615 struct btrfs_key cur_key; 5616 if (level + 1 >= BTRFS_MAX_LEVEL || 5617 !path->nodes[level + 1]) 5618 return 1; 5619 5620 if (path->locks[level + 1]) { 5621 level++; 5622 continue; 5623 } 5624 5625 slot = btrfs_header_nritems(c) - 1; 5626 if (level == 0) 5627 btrfs_item_key_to_cpu(c, &cur_key, slot); 5628 else 5629 btrfs_node_key_to_cpu(c, &cur_key, slot); 5630 5631 orig_lowest = path->lowest_level; 5632 btrfs_release_path(path); 5633 path->lowest_level = level; 5634 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5635 0, 0); 5636 path->lowest_level = orig_lowest; 5637 if (ret < 0) 5638 return ret; 5639 5640 c = path->nodes[level]; 5641 slot = path->slots[level]; 5642 if (ret == 0) 5643 slot++; 5644 goto next; 5645 } 5646 5647 if (level == 0) 5648 btrfs_item_key_to_cpu(c, key, slot); 5649 else { 5650 u64 gen = btrfs_node_ptr_generation(c, slot); 5651 5652 if (gen < min_trans) { 5653 slot++; 5654 goto next; 5655 } 5656 btrfs_node_key_to_cpu(c, key, slot); 5657 } 5658 return 0; 5659 } 5660 return 1; 5661 } 5662 5663 /* 5664 * search the tree again to find a leaf with greater keys 5665 * returns 0 if it found something or 1 if there are no greater leaves. 5666 * returns < 0 on io errors. 5667 */ 5668 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5669 { 5670 return btrfs_next_old_leaf(root, path, 0); 5671 } 5672 5673 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5674 u64 time_seq) 5675 { 5676 int slot; 5677 int level; 5678 struct extent_buffer *c; 5679 struct extent_buffer *next; 5680 struct btrfs_key key; 5681 u32 nritems; 5682 int ret; 5683 int old_spinning = path->leave_spinning; 5684 int next_rw_lock = 0; 5685 5686 nritems = btrfs_header_nritems(path->nodes[0]); 5687 if (nritems == 0) 5688 return 1; 5689 5690 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5691 again: 5692 level = 1; 5693 next = NULL; 5694 next_rw_lock = 0; 5695 btrfs_release_path(path); 5696 5697 path->keep_locks = 1; 5698 path->leave_spinning = 1; 5699 5700 if (time_seq) 5701 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5702 else 5703 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5704 path->keep_locks = 0; 5705 5706 if (ret < 0) 5707 return ret; 5708 5709 nritems = btrfs_header_nritems(path->nodes[0]); 5710 /* 5711 * by releasing the path above we dropped all our locks. A balance 5712 * could have added more items next to the key that used to be 5713 * at the very end of the block. So, check again here and 5714 * advance the path if there are now more items available. 5715 */ 5716 if (nritems > 0 && path->slots[0] < nritems - 1) { 5717 if (ret == 0) 5718 path->slots[0]++; 5719 ret = 0; 5720 goto done; 5721 } 5722 /* 5723 * So the above check misses one case: 5724 * - after releasing the path above, someone has removed the item that 5725 * used to be at the very end of the block, and balance between leafs 5726 * gets another one with bigger key.offset to replace it. 5727 * 5728 * This one should be returned as well, or we can get leaf corruption 5729 * later(esp. in __btrfs_drop_extents()). 5730 * 5731 * And a bit more explanation about this check, 5732 * with ret > 0, the key isn't found, the path points to the slot 5733 * where it should be inserted, so the path->slots[0] item must be the 5734 * bigger one. 5735 */ 5736 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5737 ret = 0; 5738 goto done; 5739 } 5740 5741 while (level < BTRFS_MAX_LEVEL) { 5742 if (!path->nodes[level]) { 5743 ret = 1; 5744 goto done; 5745 } 5746 5747 slot = path->slots[level] + 1; 5748 c = path->nodes[level]; 5749 if (slot >= btrfs_header_nritems(c)) { 5750 level++; 5751 if (level == BTRFS_MAX_LEVEL) { 5752 ret = 1; 5753 goto done; 5754 } 5755 continue; 5756 } 5757 5758 if (next) { 5759 btrfs_tree_unlock_rw(next, next_rw_lock); 5760 free_extent_buffer(next); 5761 } 5762 5763 next = c; 5764 next_rw_lock = path->locks[level]; 5765 ret = read_block_for_search(root, path, &next, level, 5766 slot, &key); 5767 if (ret == -EAGAIN) 5768 goto again; 5769 5770 if (ret < 0) { 5771 btrfs_release_path(path); 5772 goto done; 5773 } 5774 5775 if (!path->skip_locking) { 5776 ret = btrfs_try_tree_read_lock(next); 5777 if (!ret && time_seq) { 5778 /* 5779 * If we don't get the lock, we may be racing 5780 * with push_leaf_left, holding that lock while 5781 * itself waiting for the leaf we've currently 5782 * locked. To solve this situation, we give up 5783 * on our lock and cycle. 5784 */ 5785 free_extent_buffer(next); 5786 btrfs_release_path(path); 5787 cond_resched(); 5788 goto again; 5789 } 5790 if (!ret) { 5791 btrfs_set_path_blocking(path); 5792 btrfs_tree_read_lock(next); 5793 btrfs_clear_path_blocking(path, next, 5794 BTRFS_READ_LOCK); 5795 } 5796 next_rw_lock = BTRFS_READ_LOCK; 5797 } 5798 break; 5799 } 5800 path->slots[level] = slot; 5801 while (1) { 5802 level--; 5803 c = path->nodes[level]; 5804 if (path->locks[level]) 5805 btrfs_tree_unlock_rw(c, path->locks[level]); 5806 5807 free_extent_buffer(c); 5808 path->nodes[level] = next; 5809 path->slots[level] = 0; 5810 if (!path->skip_locking) 5811 path->locks[level] = next_rw_lock; 5812 if (!level) 5813 break; 5814 5815 ret = read_block_for_search(root, path, &next, level, 5816 0, &key); 5817 if (ret == -EAGAIN) 5818 goto again; 5819 5820 if (ret < 0) { 5821 btrfs_release_path(path); 5822 goto done; 5823 } 5824 5825 if (!path->skip_locking) { 5826 ret = btrfs_try_tree_read_lock(next); 5827 if (!ret) { 5828 btrfs_set_path_blocking(path); 5829 btrfs_tree_read_lock(next); 5830 btrfs_clear_path_blocking(path, next, 5831 BTRFS_READ_LOCK); 5832 } 5833 next_rw_lock = BTRFS_READ_LOCK; 5834 } 5835 } 5836 ret = 0; 5837 done: 5838 unlock_up(path, 0, 1, 0, NULL); 5839 path->leave_spinning = old_spinning; 5840 if (!old_spinning) 5841 btrfs_set_path_blocking(path); 5842 5843 return ret; 5844 } 5845 5846 /* 5847 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5848 * searching until it gets past min_objectid or finds an item of 'type' 5849 * 5850 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5851 */ 5852 int btrfs_previous_item(struct btrfs_root *root, 5853 struct btrfs_path *path, u64 min_objectid, 5854 int type) 5855 { 5856 struct btrfs_key found_key; 5857 struct extent_buffer *leaf; 5858 u32 nritems; 5859 int ret; 5860 5861 while (1) { 5862 if (path->slots[0] == 0) { 5863 btrfs_set_path_blocking(path); 5864 ret = btrfs_prev_leaf(root, path); 5865 if (ret != 0) 5866 return ret; 5867 } else { 5868 path->slots[0]--; 5869 } 5870 leaf = path->nodes[0]; 5871 nritems = btrfs_header_nritems(leaf); 5872 if (nritems == 0) 5873 return 1; 5874 if (path->slots[0] == nritems) 5875 path->slots[0]--; 5876 5877 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5878 if (found_key.objectid < min_objectid) 5879 break; 5880 if (found_key.type == type) 5881 return 0; 5882 if (found_key.objectid == min_objectid && 5883 found_key.type < type) 5884 break; 5885 } 5886 return 1; 5887 } 5888 5889 /* 5890 * search in extent tree to find a previous Metadata/Data extent item with 5891 * min objecitd. 5892 * 5893 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5894 */ 5895 int btrfs_previous_extent_item(struct btrfs_root *root, 5896 struct btrfs_path *path, u64 min_objectid) 5897 { 5898 struct btrfs_key found_key; 5899 struct extent_buffer *leaf; 5900 u32 nritems; 5901 int ret; 5902 5903 while (1) { 5904 if (path->slots[0] == 0) { 5905 btrfs_set_path_blocking(path); 5906 ret = btrfs_prev_leaf(root, path); 5907 if (ret != 0) 5908 return ret; 5909 } else { 5910 path->slots[0]--; 5911 } 5912 leaf = path->nodes[0]; 5913 nritems = btrfs_header_nritems(leaf); 5914 if (nritems == 0) 5915 return 1; 5916 if (path->slots[0] == nritems) 5917 path->slots[0]--; 5918 5919 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5920 if (found_key.objectid < min_objectid) 5921 break; 5922 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5923 found_key.type == BTRFS_METADATA_ITEM_KEY) 5924 return 0; 5925 if (found_key.objectid == min_objectid && 5926 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5927 break; 5928 } 5929 return 1; 5930 } 5931