1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "print-tree.h" 24 #include "locking.h" 25 26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 27 *root, struct btrfs_path *path, int level); 28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_key *ins_key, 30 struct btrfs_path *path, int data_size, int extend); 31 static int push_node_left(struct btrfs_trans_handle *trans, 32 struct btrfs_root *root, struct extent_buffer *dst, 33 struct extent_buffer *src, int empty); 34 static int balance_node_right(struct btrfs_trans_handle *trans, 35 struct btrfs_root *root, 36 struct extent_buffer *dst_buf, 37 struct extent_buffer *src_buf); 38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 39 struct btrfs_path *path, int level, int slot); 40 41 struct btrfs_path *btrfs_alloc_path(void) 42 { 43 struct btrfs_path *path; 44 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 45 if (path) 46 path->reada = 1; 47 return path; 48 } 49 50 /* 51 * set all locked nodes in the path to blocking locks. This should 52 * be done before scheduling 53 */ 54 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 55 { 56 int i; 57 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 58 if (p->nodes[i] && p->locks[i]) 59 btrfs_set_lock_blocking(p->nodes[i]); 60 } 61 } 62 63 /* 64 * reset all the locked nodes in the patch to spinning locks. 65 * 66 * held is used to keep lockdep happy, when lockdep is enabled 67 * we set held to a blocking lock before we go around and 68 * retake all the spinlocks in the path. You can safely use NULL 69 * for held 70 */ 71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 72 struct extent_buffer *held) 73 { 74 int i; 75 76 #ifdef CONFIG_DEBUG_LOCK_ALLOC 77 /* lockdep really cares that we take all of these spinlocks 78 * in the right order. If any of the locks in the path are not 79 * currently blocking, it is going to complain. So, make really 80 * really sure by forcing the path to blocking before we clear 81 * the path blocking. 82 */ 83 if (held) 84 btrfs_set_lock_blocking(held); 85 btrfs_set_path_blocking(p); 86 #endif 87 88 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 89 if (p->nodes[i] && p->locks[i]) 90 btrfs_clear_lock_blocking(p->nodes[i]); 91 } 92 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 if (held) 95 btrfs_clear_lock_blocking(held); 96 #endif 97 } 98 99 /* this also releases the path */ 100 void btrfs_free_path(struct btrfs_path *p) 101 { 102 btrfs_release_path(NULL, p); 103 kmem_cache_free(btrfs_path_cachep, p); 104 } 105 106 /* 107 * path release drops references on the extent buffers in the path 108 * and it drops any locks held by this path 109 * 110 * It is safe to call this on paths that no locks or extent buffers held. 111 */ 112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) 113 { 114 int i; 115 116 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 117 p->slots[i] = 0; 118 if (!p->nodes[i]) 119 continue; 120 if (p->locks[i]) { 121 btrfs_tree_unlock(p->nodes[i]); 122 p->locks[i] = 0; 123 } 124 free_extent_buffer(p->nodes[i]); 125 p->nodes[i] = NULL; 126 } 127 } 128 129 /* 130 * safely gets a reference on the root node of a tree. A lock 131 * is not taken, so a concurrent writer may put a different node 132 * at the root of the tree. See btrfs_lock_root_node for the 133 * looping required. 134 * 135 * The extent buffer returned by this has a reference taken, so 136 * it won't disappear. It may stop being the root of the tree 137 * at any time because there are no locks held. 138 */ 139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 140 { 141 struct extent_buffer *eb; 142 spin_lock(&root->node_lock); 143 eb = root->node; 144 extent_buffer_get(eb); 145 spin_unlock(&root->node_lock); 146 return eb; 147 } 148 149 /* loop around taking references on and locking the root node of the 150 * tree until you end up with a lock on the root. A locked buffer 151 * is returned, with a reference held. 152 */ 153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 154 { 155 struct extent_buffer *eb; 156 157 while (1) { 158 eb = btrfs_root_node(root); 159 btrfs_tree_lock(eb); 160 161 spin_lock(&root->node_lock); 162 if (eb == root->node) { 163 spin_unlock(&root->node_lock); 164 break; 165 } 166 spin_unlock(&root->node_lock); 167 168 btrfs_tree_unlock(eb); 169 free_extent_buffer(eb); 170 } 171 return eb; 172 } 173 174 /* cowonly root (everything not a reference counted cow subvolume), just get 175 * put onto a simple dirty list. transaction.c walks this to make sure they 176 * get properly updated on disk. 177 */ 178 static void add_root_to_dirty_list(struct btrfs_root *root) 179 { 180 if (root->track_dirty && list_empty(&root->dirty_list)) { 181 list_add(&root->dirty_list, 182 &root->fs_info->dirty_cowonly_roots); 183 } 184 } 185 186 /* 187 * used by snapshot creation to make a copy of a root for a tree with 188 * a given objectid. The buffer with the new root node is returned in 189 * cow_ret, and this func returns zero on success or a negative error code. 190 */ 191 int btrfs_copy_root(struct btrfs_trans_handle *trans, 192 struct btrfs_root *root, 193 struct extent_buffer *buf, 194 struct extent_buffer **cow_ret, u64 new_root_objectid) 195 { 196 struct extent_buffer *cow; 197 u32 nritems; 198 int ret = 0; 199 int level; 200 struct btrfs_root *new_root; 201 202 new_root = kmalloc(sizeof(*new_root), GFP_NOFS); 203 if (!new_root) 204 return -ENOMEM; 205 206 memcpy(new_root, root, sizeof(*new_root)); 207 new_root->root_key.objectid = new_root_objectid; 208 209 WARN_ON(root->ref_cows && trans->transid != 210 root->fs_info->running_transaction->transid); 211 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 212 213 level = btrfs_header_level(buf); 214 nritems = btrfs_header_nritems(buf); 215 216 cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0, 217 new_root_objectid, trans->transid, 218 level, buf->start, 0); 219 if (IS_ERR(cow)) { 220 kfree(new_root); 221 return PTR_ERR(cow); 222 } 223 224 copy_extent_buffer(cow, buf, 0, 0, cow->len); 225 btrfs_set_header_bytenr(cow, cow->start); 226 btrfs_set_header_generation(cow, trans->transid); 227 btrfs_set_header_owner(cow, new_root_objectid); 228 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); 229 230 write_extent_buffer(cow, root->fs_info->fsid, 231 (unsigned long)btrfs_header_fsid(cow), 232 BTRFS_FSID_SIZE); 233 234 WARN_ON(btrfs_header_generation(buf) > trans->transid); 235 ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL); 236 kfree(new_root); 237 238 if (ret) 239 return ret; 240 241 btrfs_mark_buffer_dirty(cow); 242 *cow_ret = cow; 243 return 0; 244 } 245 246 /* 247 * does the dirty work in cow of a single block. The parent block (if 248 * supplied) is updated to point to the new cow copy. The new buffer is marked 249 * dirty and returned locked. If you modify the block it needs to be marked 250 * dirty again. 251 * 252 * search_start -- an allocation hint for the new block 253 * 254 * empty_size -- a hint that you plan on doing more cow. This is the size in 255 * bytes the allocator should try to find free next to the block it returns. 256 * This is just a hint and may be ignored by the allocator. 257 */ 258 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 259 struct btrfs_root *root, 260 struct extent_buffer *buf, 261 struct extent_buffer *parent, int parent_slot, 262 struct extent_buffer **cow_ret, 263 u64 search_start, u64 empty_size) 264 { 265 u64 parent_start; 266 struct extent_buffer *cow; 267 u32 nritems; 268 int ret = 0; 269 int level; 270 int unlock_orig = 0; 271 272 if (*cow_ret == buf) 273 unlock_orig = 1; 274 275 btrfs_assert_tree_locked(buf); 276 277 if (parent) 278 parent_start = parent->start; 279 else 280 parent_start = 0; 281 282 WARN_ON(root->ref_cows && trans->transid != 283 root->fs_info->running_transaction->transid); 284 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 285 286 level = btrfs_header_level(buf); 287 nritems = btrfs_header_nritems(buf); 288 289 cow = btrfs_alloc_free_block(trans, root, buf->len, 290 parent_start, root->root_key.objectid, 291 trans->transid, level, 292 search_start, empty_size); 293 if (IS_ERR(cow)) 294 return PTR_ERR(cow); 295 296 /* cow is set to blocking by btrfs_init_new_buffer */ 297 298 copy_extent_buffer(cow, buf, 0, 0, cow->len); 299 btrfs_set_header_bytenr(cow, cow->start); 300 btrfs_set_header_generation(cow, trans->transid); 301 btrfs_set_header_owner(cow, root->root_key.objectid); 302 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); 303 304 write_extent_buffer(cow, root->fs_info->fsid, 305 (unsigned long)btrfs_header_fsid(cow), 306 BTRFS_FSID_SIZE); 307 308 WARN_ON(btrfs_header_generation(buf) > trans->transid); 309 if (btrfs_header_generation(buf) != trans->transid) { 310 u32 nr_extents; 311 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents); 312 if (ret) 313 return ret; 314 315 ret = btrfs_cache_ref(trans, root, buf, nr_extents); 316 WARN_ON(ret); 317 } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) { 318 /* 319 * There are only two places that can drop reference to 320 * tree blocks owned by living reloc trees, one is here, 321 * the other place is btrfs_drop_subtree. In both places, 322 * we check reference count while tree block is locked. 323 * Furthermore, if reference count is one, it won't get 324 * increased by someone else. 325 */ 326 u32 refs; 327 ret = btrfs_lookup_extent_ref(trans, root, buf->start, 328 buf->len, &refs); 329 BUG_ON(ret); 330 if (refs == 1) { 331 ret = btrfs_update_ref(trans, root, buf, cow, 332 0, nritems); 333 clean_tree_block(trans, root, buf); 334 } else { 335 ret = btrfs_inc_ref(trans, root, buf, cow, NULL); 336 } 337 BUG_ON(ret); 338 } else { 339 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems); 340 if (ret) 341 return ret; 342 clean_tree_block(trans, root, buf); 343 } 344 345 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 346 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start); 347 WARN_ON(ret); 348 } 349 350 if (buf == root->node) { 351 WARN_ON(parent && parent != buf); 352 353 spin_lock(&root->node_lock); 354 root->node = cow; 355 extent_buffer_get(cow); 356 spin_unlock(&root->node_lock); 357 358 if (buf != root->commit_root) { 359 btrfs_free_extent(trans, root, buf->start, 360 buf->len, buf->start, 361 root->root_key.objectid, 362 btrfs_header_generation(buf), 363 level, 1); 364 } 365 free_extent_buffer(buf); 366 add_root_to_dirty_list(root); 367 } else { 368 btrfs_set_node_blockptr(parent, parent_slot, 369 cow->start); 370 WARN_ON(trans->transid == 0); 371 btrfs_set_node_ptr_generation(parent, parent_slot, 372 trans->transid); 373 btrfs_mark_buffer_dirty(parent); 374 WARN_ON(btrfs_header_generation(parent) != trans->transid); 375 btrfs_free_extent(trans, root, buf->start, buf->len, 376 parent_start, btrfs_header_owner(parent), 377 btrfs_header_generation(parent), level, 1); 378 } 379 if (unlock_orig) 380 btrfs_tree_unlock(buf); 381 free_extent_buffer(buf); 382 btrfs_mark_buffer_dirty(cow); 383 *cow_ret = cow; 384 return 0; 385 } 386 387 /* 388 * cows a single block, see __btrfs_cow_block for the real work. 389 * This version of it has extra checks so that a block isn't cow'd more than 390 * once per transaction, as long as it hasn't been written yet 391 */ 392 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 393 struct btrfs_root *root, struct extent_buffer *buf, 394 struct extent_buffer *parent, int parent_slot, 395 struct extent_buffer **cow_ret) 396 { 397 u64 search_start; 398 int ret; 399 400 if (trans->transaction != root->fs_info->running_transaction) { 401 printk(KERN_CRIT "trans %llu running %llu\n", 402 (unsigned long long)trans->transid, 403 (unsigned long long) 404 root->fs_info->running_transaction->transid); 405 WARN_ON(1); 406 } 407 if (trans->transid != root->fs_info->generation) { 408 printk(KERN_CRIT "trans %llu running %llu\n", 409 (unsigned long long)trans->transid, 410 (unsigned long long)root->fs_info->generation); 411 WARN_ON(1); 412 } 413 414 if (btrfs_header_generation(buf) == trans->transid && 415 btrfs_header_owner(buf) == root->root_key.objectid && 416 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 417 *cow_ret = buf; 418 return 0; 419 } 420 421 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 422 423 if (parent) 424 btrfs_set_lock_blocking(parent); 425 btrfs_set_lock_blocking(buf); 426 427 ret = __btrfs_cow_block(trans, root, buf, parent, 428 parent_slot, cow_ret, search_start, 0); 429 return ret; 430 } 431 432 /* 433 * helper function for defrag to decide if two blocks pointed to by a 434 * node are actually close by 435 */ 436 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 437 { 438 if (blocknr < other && other - (blocknr + blocksize) < 32768) 439 return 1; 440 if (blocknr > other && blocknr - (other + blocksize) < 32768) 441 return 1; 442 return 0; 443 } 444 445 /* 446 * compare two keys in a memcmp fashion 447 */ 448 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 449 { 450 struct btrfs_key k1; 451 452 btrfs_disk_key_to_cpu(&k1, disk); 453 454 if (k1.objectid > k2->objectid) 455 return 1; 456 if (k1.objectid < k2->objectid) 457 return -1; 458 if (k1.type > k2->type) 459 return 1; 460 if (k1.type < k2->type) 461 return -1; 462 if (k1.offset > k2->offset) 463 return 1; 464 if (k1.offset < k2->offset) 465 return -1; 466 return 0; 467 } 468 469 /* 470 * same as comp_keys only with two btrfs_key's 471 */ 472 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 473 { 474 if (k1->objectid > k2->objectid) 475 return 1; 476 if (k1->objectid < k2->objectid) 477 return -1; 478 if (k1->type > k2->type) 479 return 1; 480 if (k1->type < k2->type) 481 return -1; 482 if (k1->offset > k2->offset) 483 return 1; 484 if (k1->offset < k2->offset) 485 return -1; 486 return 0; 487 } 488 489 /* 490 * this is used by the defrag code to go through all the 491 * leaves pointed to by a node and reallocate them so that 492 * disk order is close to key order 493 */ 494 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 495 struct btrfs_root *root, struct extent_buffer *parent, 496 int start_slot, int cache_only, u64 *last_ret, 497 struct btrfs_key *progress) 498 { 499 struct extent_buffer *cur; 500 u64 blocknr; 501 u64 gen; 502 u64 search_start = *last_ret; 503 u64 last_block = 0; 504 u64 other; 505 u32 parent_nritems; 506 int end_slot; 507 int i; 508 int err = 0; 509 int parent_level; 510 int uptodate; 511 u32 blocksize; 512 int progress_passed = 0; 513 struct btrfs_disk_key disk_key; 514 515 parent_level = btrfs_header_level(parent); 516 if (cache_only && parent_level != 1) 517 return 0; 518 519 if (trans->transaction != root->fs_info->running_transaction) 520 WARN_ON(1); 521 if (trans->transid != root->fs_info->generation) 522 WARN_ON(1); 523 524 parent_nritems = btrfs_header_nritems(parent); 525 blocksize = btrfs_level_size(root, parent_level - 1); 526 end_slot = parent_nritems; 527 528 if (parent_nritems == 1) 529 return 0; 530 531 btrfs_set_lock_blocking(parent); 532 533 for (i = start_slot; i < end_slot; i++) { 534 int close = 1; 535 536 if (!parent->map_token) { 537 map_extent_buffer(parent, 538 btrfs_node_key_ptr_offset(i), 539 sizeof(struct btrfs_key_ptr), 540 &parent->map_token, &parent->kaddr, 541 &parent->map_start, &parent->map_len, 542 KM_USER1); 543 } 544 btrfs_node_key(parent, &disk_key, i); 545 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 546 continue; 547 548 progress_passed = 1; 549 blocknr = btrfs_node_blockptr(parent, i); 550 gen = btrfs_node_ptr_generation(parent, i); 551 if (last_block == 0) 552 last_block = blocknr; 553 554 if (i > 0) { 555 other = btrfs_node_blockptr(parent, i - 1); 556 close = close_blocks(blocknr, other, blocksize); 557 } 558 if (!close && i < end_slot - 2) { 559 other = btrfs_node_blockptr(parent, i + 1); 560 close = close_blocks(blocknr, other, blocksize); 561 } 562 if (close) { 563 last_block = blocknr; 564 continue; 565 } 566 if (parent->map_token) { 567 unmap_extent_buffer(parent, parent->map_token, 568 KM_USER1); 569 parent->map_token = NULL; 570 } 571 572 cur = btrfs_find_tree_block(root, blocknr, blocksize); 573 if (cur) 574 uptodate = btrfs_buffer_uptodate(cur, gen); 575 else 576 uptodate = 0; 577 if (!cur || !uptodate) { 578 if (cache_only) { 579 free_extent_buffer(cur); 580 continue; 581 } 582 if (!cur) { 583 cur = read_tree_block(root, blocknr, 584 blocksize, gen); 585 } else if (!uptodate) { 586 btrfs_read_buffer(cur, gen); 587 } 588 } 589 if (search_start == 0) 590 search_start = last_block; 591 592 btrfs_tree_lock(cur); 593 btrfs_set_lock_blocking(cur); 594 err = __btrfs_cow_block(trans, root, cur, parent, i, 595 &cur, search_start, 596 min(16 * blocksize, 597 (end_slot - i) * blocksize)); 598 if (err) { 599 btrfs_tree_unlock(cur); 600 free_extent_buffer(cur); 601 break; 602 } 603 search_start = cur->start; 604 last_block = cur->start; 605 *last_ret = search_start; 606 btrfs_tree_unlock(cur); 607 free_extent_buffer(cur); 608 } 609 if (parent->map_token) { 610 unmap_extent_buffer(parent, parent->map_token, 611 KM_USER1); 612 parent->map_token = NULL; 613 } 614 return err; 615 } 616 617 /* 618 * The leaf data grows from end-to-front in the node. 619 * this returns the address of the start of the last item, 620 * which is the stop of the leaf data stack 621 */ 622 static inline unsigned int leaf_data_end(struct btrfs_root *root, 623 struct extent_buffer *leaf) 624 { 625 u32 nr = btrfs_header_nritems(leaf); 626 if (nr == 0) 627 return BTRFS_LEAF_DATA_SIZE(root); 628 return btrfs_item_offset_nr(leaf, nr - 1); 629 } 630 631 /* 632 * extra debugging checks to make sure all the items in a key are 633 * well formed and in the proper order 634 */ 635 static int check_node(struct btrfs_root *root, struct btrfs_path *path, 636 int level) 637 { 638 struct extent_buffer *parent = NULL; 639 struct extent_buffer *node = path->nodes[level]; 640 struct btrfs_disk_key parent_key; 641 struct btrfs_disk_key node_key; 642 int parent_slot; 643 int slot; 644 struct btrfs_key cpukey; 645 u32 nritems = btrfs_header_nritems(node); 646 647 if (path->nodes[level + 1]) 648 parent = path->nodes[level + 1]; 649 650 slot = path->slots[level]; 651 BUG_ON(nritems == 0); 652 if (parent) { 653 parent_slot = path->slots[level + 1]; 654 btrfs_node_key(parent, &parent_key, parent_slot); 655 btrfs_node_key(node, &node_key, 0); 656 BUG_ON(memcmp(&parent_key, &node_key, 657 sizeof(struct btrfs_disk_key))); 658 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 659 btrfs_header_bytenr(node)); 660 } 661 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); 662 if (slot != 0) { 663 btrfs_node_key_to_cpu(node, &cpukey, slot - 1); 664 btrfs_node_key(node, &node_key, slot); 665 BUG_ON(comp_keys(&node_key, &cpukey) <= 0); 666 } 667 if (slot < nritems - 1) { 668 btrfs_node_key_to_cpu(node, &cpukey, slot + 1); 669 btrfs_node_key(node, &node_key, slot); 670 BUG_ON(comp_keys(&node_key, &cpukey) >= 0); 671 } 672 return 0; 673 } 674 675 /* 676 * extra checking to make sure all the items in a leaf are 677 * well formed and in the proper order 678 */ 679 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, 680 int level) 681 { 682 struct extent_buffer *leaf = path->nodes[level]; 683 struct extent_buffer *parent = NULL; 684 int parent_slot; 685 struct btrfs_key cpukey; 686 struct btrfs_disk_key parent_key; 687 struct btrfs_disk_key leaf_key; 688 int slot = path->slots[0]; 689 690 u32 nritems = btrfs_header_nritems(leaf); 691 692 if (path->nodes[level + 1]) 693 parent = path->nodes[level + 1]; 694 695 if (nritems == 0) 696 return 0; 697 698 if (parent) { 699 parent_slot = path->slots[level + 1]; 700 btrfs_node_key(parent, &parent_key, parent_slot); 701 btrfs_item_key(leaf, &leaf_key, 0); 702 703 BUG_ON(memcmp(&parent_key, &leaf_key, 704 sizeof(struct btrfs_disk_key))); 705 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 706 btrfs_header_bytenr(leaf)); 707 } 708 if (slot != 0 && slot < nritems - 1) { 709 btrfs_item_key(leaf, &leaf_key, slot); 710 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); 711 if (comp_keys(&leaf_key, &cpukey) <= 0) { 712 btrfs_print_leaf(root, leaf); 713 printk(KERN_CRIT "slot %d offset bad key\n", slot); 714 BUG_ON(1); 715 } 716 if (btrfs_item_offset_nr(leaf, slot - 1) != 717 btrfs_item_end_nr(leaf, slot)) { 718 btrfs_print_leaf(root, leaf); 719 printk(KERN_CRIT "slot %d offset bad\n", slot); 720 BUG_ON(1); 721 } 722 } 723 if (slot < nritems - 1) { 724 btrfs_item_key(leaf, &leaf_key, slot); 725 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); 726 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); 727 if (btrfs_item_offset_nr(leaf, slot) != 728 btrfs_item_end_nr(leaf, slot + 1)) { 729 btrfs_print_leaf(root, leaf); 730 printk(KERN_CRIT "slot %d offset bad\n", slot); 731 BUG_ON(1); 732 } 733 } 734 BUG_ON(btrfs_item_offset_nr(leaf, 0) + 735 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); 736 return 0; 737 } 738 739 static noinline int check_block(struct btrfs_root *root, 740 struct btrfs_path *path, int level) 741 { 742 return 0; 743 if (level == 0) 744 return check_leaf(root, path, level); 745 return check_node(root, path, level); 746 } 747 748 /* 749 * search for key in the extent_buffer. The items start at offset p, 750 * and they are item_size apart. There are 'max' items in p. 751 * 752 * the slot in the array is returned via slot, and it points to 753 * the place where you would insert key if it is not found in 754 * the array. 755 * 756 * slot may point to max if the key is bigger than all of the keys 757 */ 758 static noinline int generic_bin_search(struct extent_buffer *eb, 759 unsigned long p, 760 int item_size, struct btrfs_key *key, 761 int max, int *slot) 762 { 763 int low = 0; 764 int high = max; 765 int mid; 766 int ret; 767 struct btrfs_disk_key *tmp = NULL; 768 struct btrfs_disk_key unaligned; 769 unsigned long offset; 770 char *map_token = NULL; 771 char *kaddr = NULL; 772 unsigned long map_start = 0; 773 unsigned long map_len = 0; 774 int err; 775 776 while (low < high) { 777 mid = (low + high) / 2; 778 offset = p + mid * item_size; 779 780 if (!map_token || offset < map_start || 781 (offset + sizeof(struct btrfs_disk_key)) > 782 map_start + map_len) { 783 if (map_token) { 784 unmap_extent_buffer(eb, map_token, KM_USER0); 785 map_token = NULL; 786 } 787 788 err = map_private_extent_buffer(eb, offset, 789 sizeof(struct btrfs_disk_key), 790 &map_token, &kaddr, 791 &map_start, &map_len, KM_USER0); 792 793 if (!err) { 794 tmp = (struct btrfs_disk_key *)(kaddr + offset - 795 map_start); 796 } else { 797 read_extent_buffer(eb, &unaligned, 798 offset, sizeof(unaligned)); 799 tmp = &unaligned; 800 } 801 802 } else { 803 tmp = (struct btrfs_disk_key *)(kaddr + offset - 804 map_start); 805 } 806 ret = comp_keys(tmp, key); 807 808 if (ret < 0) 809 low = mid + 1; 810 else if (ret > 0) 811 high = mid; 812 else { 813 *slot = mid; 814 if (map_token) 815 unmap_extent_buffer(eb, map_token, KM_USER0); 816 return 0; 817 } 818 } 819 *slot = low; 820 if (map_token) 821 unmap_extent_buffer(eb, map_token, KM_USER0); 822 return 1; 823 } 824 825 /* 826 * simple bin_search frontend that does the right thing for 827 * leaves vs nodes 828 */ 829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 830 int level, int *slot) 831 { 832 if (level == 0) { 833 return generic_bin_search(eb, 834 offsetof(struct btrfs_leaf, items), 835 sizeof(struct btrfs_item), 836 key, btrfs_header_nritems(eb), 837 slot); 838 } else { 839 return generic_bin_search(eb, 840 offsetof(struct btrfs_node, ptrs), 841 sizeof(struct btrfs_key_ptr), 842 key, btrfs_header_nritems(eb), 843 slot); 844 } 845 return -1; 846 } 847 848 /* given a node and slot number, this reads the blocks it points to. The 849 * extent buffer is returned with a reference taken (but unlocked). 850 * NULL is returned on error. 851 */ 852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 853 struct extent_buffer *parent, int slot) 854 { 855 int level = btrfs_header_level(parent); 856 if (slot < 0) 857 return NULL; 858 if (slot >= btrfs_header_nritems(parent)) 859 return NULL; 860 861 BUG_ON(level == 0); 862 863 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 864 btrfs_level_size(root, level - 1), 865 btrfs_node_ptr_generation(parent, slot)); 866 } 867 868 /* 869 * node level balancing, used to make sure nodes are in proper order for 870 * item deletion. We balance from the top down, so we have to make sure 871 * that a deletion won't leave an node completely empty later on. 872 */ 873 static noinline int balance_level(struct btrfs_trans_handle *trans, 874 struct btrfs_root *root, 875 struct btrfs_path *path, int level) 876 { 877 struct extent_buffer *right = NULL; 878 struct extent_buffer *mid; 879 struct extent_buffer *left = NULL; 880 struct extent_buffer *parent = NULL; 881 int ret = 0; 882 int wret; 883 int pslot; 884 int orig_slot = path->slots[level]; 885 int err_on_enospc = 0; 886 u64 orig_ptr; 887 888 if (level == 0) 889 return 0; 890 891 mid = path->nodes[level]; 892 893 WARN_ON(!path->locks[level]); 894 WARN_ON(btrfs_header_generation(mid) != trans->transid); 895 896 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 897 898 if (level < BTRFS_MAX_LEVEL - 1) 899 parent = path->nodes[level + 1]; 900 pslot = path->slots[level + 1]; 901 902 /* 903 * deal with the case where there is only one pointer in the root 904 * by promoting the node below to a root 905 */ 906 if (!parent) { 907 struct extent_buffer *child; 908 909 if (btrfs_header_nritems(mid) != 1) 910 return 0; 911 912 /* promote the child to a root */ 913 child = read_node_slot(root, mid, 0); 914 BUG_ON(!child); 915 btrfs_tree_lock(child); 916 btrfs_set_lock_blocking(child); 917 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 918 BUG_ON(ret); 919 920 spin_lock(&root->node_lock); 921 root->node = child; 922 spin_unlock(&root->node_lock); 923 924 ret = btrfs_update_extent_ref(trans, root, child->start, 925 child->len, 926 mid->start, child->start, 927 root->root_key.objectid, 928 trans->transid, level - 1); 929 BUG_ON(ret); 930 931 add_root_to_dirty_list(root); 932 btrfs_tree_unlock(child); 933 934 path->locks[level] = 0; 935 path->nodes[level] = NULL; 936 clean_tree_block(trans, root, mid); 937 btrfs_tree_unlock(mid); 938 /* once for the path */ 939 free_extent_buffer(mid); 940 ret = btrfs_free_extent(trans, root, mid->start, mid->len, 941 mid->start, root->root_key.objectid, 942 btrfs_header_generation(mid), 943 level, 1); 944 /* once for the root ptr */ 945 free_extent_buffer(mid); 946 return ret; 947 } 948 if (btrfs_header_nritems(mid) > 949 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 950 return 0; 951 952 if (trans->transaction->delayed_refs.flushing && 953 btrfs_header_nritems(mid) > 2) 954 return 0; 955 956 if (btrfs_header_nritems(mid) < 2) 957 err_on_enospc = 1; 958 959 left = read_node_slot(root, parent, pslot - 1); 960 if (left) { 961 btrfs_tree_lock(left); 962 btrfs_set_lock_blocking(left); 963 wret = btrfs_cow_block(trans, root, left, 964 parent, pslot - 1, &left); 965 if (wret) { 966 ret = wret; 967 goto enospc; 968 } 969 } 970 right = read_node_slot(root, parent, pslot + 1); 971 if (right) { 972 btrfs_tree_lock(right); 973 btrfs_set_lock_blocking(right); 974 wret = btrfs_cow_block(trans, root, right, 975 parent, pslot + 1, &right); 976 if (wret) { 977 ret = wret; 978 goto enospc; 979 } 980 } 981 982 /* first, try to make some room in the middle buffer */ 983 if (left) { 984 orig_slot += btrfs_header_nritems(left); 985 wret = push_node_left(trans, root, left, mid, 1); 986 if (wret < 0) 987 ret = wret; 988 if (btrfs_header_nritems(mid) < 2) 989 err_on_enospc = 1; 990 } 991 992 /* 993 * then try to empty the right most buffer into the middle 994 */ 995 if (right) { 996 wret = push_node_left(trans, root, mid, right, 1); 997 if (wret < 0 && wret != -ENOSPC) 998 ret = wret; 999 if (btrfs_header_nritems(right) == 0) { 1000 u64 bytenr = right->start; 1001 u64 generation = btrfs_header_generation(parent); 1002 u32 blocksize = right->len; 1003 1004 clean_tree_block(trans, root, right); 1005 btrfs_tree_unlock(right); 1006 free_extent_buffer(right); 1007 right = NULL; 1008 wret = del_ptr(trans, root, path, level + 1, pslot + 1009 1); 1010 if (wret) 1011 ret = wret; 1012 wret = btrfs_free_extent(trans, root, bytenr, 1013 blocksize, parent->start, 1014 btrfs_header_owner(parent), 1015 generation, level, 1); 1016 if (wret) 1017 ret = wret; 1018 } else { 1019 struct btrfs_disk_key right_key; 1020 btrfs_node_key(right, &right_key, 0); 1021 btrfs_set_node_key(parent, &right_key, pslot + 1); 1022 btrfs_mark_buffer_dirty(parent); 1023 } 1024 } 1025 if (btrfs_header_nritems(mid) == 1) { 1026 /* 1027 * we're not allowed to leave a node with one item in the 1028 * tree during a delete. A deletion from lower in the tree 1029 * could try to delete the only pointer in this node. 1030 * So, pull some keys from the left. 1031 * There has to be a left pointer at this point because 1032 * otherwise we would have pulled some pointers from the 1033 * right 1034 */ 1035 BUG_ON(!left); 1036 wret = balance_node_right(trans, root, mid, left); 1037 if (wret < 0) { 1038 ret = wret; 1039 goto enospc; 1040 } 1041 if (wret == 1) { 1042 wret = push_node_left(trans, root, left, mid, 1); 1043 if (wret < 0) 1044 ret = wret; 1045 } 1046 BUG_ON(wret == 1); 1047 } 1048 if (btrfs_header_nritems(mid) == 0) { 1049 /* we've managed to empty the middle node, drop it */ 1050 u64 root_gen = btrfs_header_generation(parent); 1051 u64 bytenr = mid->start; 1052 u32 blocksize = mid->len; 1053 1054 clean_tree_block(trans, root, mid); 1055 btrfs_tree_unlock(mid); 1056 free_extent_buffer(mid); 1057 mid = NULL; 1058 wret = del_ptr(trans, root, path, level + 1, pslot); 1059 if (wret) 1060 ret = wret; 1061 wret = btrfs_free_extent(trans, root, bytenr, blocksize, 1062 parent->start, 1063 btrfs_header_owner(parent), 1064 root_gen, level, 1); 1065 if (wret) 1066 ret = wret; 1067 } else { 1068 /* update the parent key to reflect our changes */ 1069 struct btrfs_disk_key mid_key; 1070 btrfs_node_key(mid, &mid_key, 0); 1071 btrfs_set_node_key(parent, &mid_key, pslot); 1072 btrfs_mark_buffer_dirty(parent); 1073 } 1074 1075 /* update the path */ 1076 if (left) { 1077 if (btrfs_header_nritems(left) > orig_slot) { 1078 extent_buffer_get(left); 1079 /* left was locked after cow */ 1080 path->nodes[level] = left; 1081 path->slots[level + 1] -= 1; 1082 path->slots[level] = orig_slot; 1083 if (mid) { 1084 btrfs_tree_unlock(mid); 1085 free_extent_buffer(mid); 1086 } 1087 } else { 1088 orig_slot -= btrfs_header_nritems(left); 1089 path->slots[level] = orig_slot; 1090 } 1091 } 1092 /* double check we haven't messed things up */ 1093 check_block(root, path, level); 1094 if (orig_ptr != 1095 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1096 BUG(); 1097 enospc: 1098 if (right) { 1099 btrfs_tree_unlock(right); 1100 free_extent_buffer(right); 1101 } 1102 if (left) { 1103 if (path->nodes[level] != left) 1104 btrfs_tree_unlock(left); 1105 free_extent_buffer(left); 1106 } 1107 return ret; 1108 } 1109 1110 /* Node balancing for insertion. Here we only split or push nodes around 1111 * when they are completely full. This is also done top down, so we 1112 * have to be pessimistic. 1113 */ 1114 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1115 struct btrfs_root *root, 1116 struct btrfs_path *path, int level) 1117 { 1118 struct extent_buffer *right = NULL; 1119 struct extent_buffer *mid; 1120 struct extent_buffer *left = NULL; 1121 struct extent_buffer *parent = NULL; 1122 int ret = 0; 1123 int wret; 1124 int pslot; 1125 int orig_slot = path->slots[level]; 1126 u64 orig_ptr; 1127 1128 if (level == 0) 1129 return 1; 1130 1131 mid = path->nodes[level]; 1132 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1133 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1134 1135 if (level < BTRFS_MAX_LEVEL - 1) 1136 parent = path->nodes[level + 1]; 1137 pslot = path->slots[level + 1]; 1138 1139 if (!parent) 1140 return 1; 1141 1142 left = read_node_slot(root, parent, pslot - 1); 1143 1144 /* first, try to make some room in the middle buffer */ 1145 if (left) { 1146 u32 left_nr; 1147 1148 btrfs_tree_lock(left); 1149 btrfs_set_lock_blocking(left); 1150 1151 left_nr = btrfs_header_nritems(left); 1152 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1153 wret = 1; 1154 } else { 1155 ret = btrfs_cow_block(trans, root, left, parent, 1156 pslot - 1, &left); 1157 if (ret) 1158 wret = 1; 1159 else { 1160 wret = push_node_left(trans, root, 1161 left, mid, 0); 1162 } 1163 } 1164 if (wret < 0) 1165 ret = wret; 1166 if (wret == 0) { 1167 struct btrfs_disk_key disk_key; 1168 orig_slot += left_nr; 1169 btrfs_node_key(mid, &disk_key, 0); 1170 btrfs_set_node_key(parent, &disk_key, pslot); 1171 btrfs_mark_buffer_dirty(parent); 1172 if (btrfs_header_nritems(left) > orig_slot) { 1173 path->nodes[level] = left; 1174 path->slots[level + 1] -= 1; 1175 path->slots[level] = orig_slot; 1176 btrfs_tree_unlock(mid); 1177 free_extent_buffer(mid); 1178 } else { 1179 orig_slot -= 1180 btrfs_header_nritems(left); 1181 path->slots[level] = orig_slot; 1182 btrfs_tree_unlock(left); 1183 free_extent_buffer(left); 1184 } 1185 return 0; 1186 } 1187 btrfs_tree_unlock(left); 1188 free_extent_buffer(left); 1189 } 1190 right = read_node_slot(root, parent, pslot + 1); 1191 1192 /* 1193 * then try to empty the right most buffer into the middle 1194 */ 1195 if (right) { 1196 u32 right_nr; 1197 1198 btrfs_tree_lock(right); 1199 btrfs_set_lock_blocking(right); 1200 1201 right_nr = btrfs_header_nritems(right); 1202 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1203 wret = 1; 1204 } else { 1205 ret = btrfs_cow_block(trans, root, right, 1206 parent, pslot + 1, 1207 &right); 1208 if (ret) 1209 wret = 1; 1210 else { 1211 wret = balance_node_right(trans, root, 1212 right, mid); 1213 } 1214 } 1215 if (wret < 0) 1216 ret = wret; 1217 if (wret == 0) { 1218 struct btrfs_disk_key disk_key; 1219 1220 btrfs_node_key(right, &disk_key, 0); 1221 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1222 btrfs_mark_buffer_dirty(parent); 1223 1224 if (btrfs_header_nritems(mid) <= orig_slot) { 1225 path->nodes[level] = right; 1226 path->slots[level + 1] += 1; 1227 path->slots[level] = orig_slot - 1228 btrfs_header_nritems(mid); 1229 btrfs_tree_unlock(mid); 1230 free_extent_buffer(mid); 1231 } else { 1232 btrfs_tree_unlock(right); 1233 free_extent_buffer(right); 1234 } 1235 return 0; 1236 } 1237 btrfs_tree_unlock(right); 1238 free_extent_buffer(right); 1239 } 1240 return 1; 1241 } 1242 1243 /* 1244 * readahead one full node of leaves, finding things that are close 1245 * to the block in 'slot', and triggering ra on them. 1246 */ 1247 static void reada_for_search(struct btrfs_root *root, 1248 struct btrfs_path *path, 1249 int level, int slot, u64 objectid) 1250 { 1251 struct extent_buffer *node; 1252 struct btrfs_disk_key disk_key; 1253 u32 nritems; 1254 u64 search; 1255 u64 target; 1256 u64 nread = 0; 1257 int direction = path->reada; 1258 struct extent_buffer *eb; 1259 u32 nr; 1260 u32 blocksize; 1261 u32 nscan = 0; 1262 1263 if (level != 1) 1264 return; 1265 1266 if (!path->nodes[level]) 1267 return; 1268 1269 node = path->nodes[level]; 1270 1271 search = btrfs_node_blockptr(node, slot); 1272 blocksize = btrfs_level_size(root, level - 1); 1273 eb = btrfs_find_tree_block(root, search, blocksize); 1274 if (eb) { 1275 free_extent_buffer(eb); 1276 return; 1277 } 1278 1279 target = search; 1280 1281 nritems = btrfs_header_nritems(node); 1282 nr = slot; 1283 while (1) { 1284 if (direction < 0) { 1285 if (nr == 0) 1286 break; 1287 nr--; 1288 } else if (direction > 0) { 1289 nr++; 1290 if (nr >= nritems) 1291 break; 1292 } 1293 if (path->reada < 0 && objectid) { 1294 btrfs_node_key(node, &disk_key, nr); 1295 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1296 break; 1297 } 1298 search = btrfs_node_blockptr(node, nr); 1299 if ((search <= target && target - search <= 65536) || 1300 (search > target && search - target <= 65536)) { 1301 readahead_tree_block(root, search, blocksize, 1302 btrfs_node_ptr_generation(node, nr)); 1303 nread += blocksize; 1304 } 1305 nscan++; 1306 if ((nread > 65536 || nscan > 32)) 1307 break; 1308 } 1309 } 1310 1311 /* 1312 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1313 * cache 1314 */ 1315 static noinline int reada_for_balance(struct btrfs_root *root, 1316 struct btrfs_path *path, int level) 1317 { 1318 int slot; 1319 int nritems; 1320 struct extent_buffer *parent; 1321 struct extent_buffer *eb; 1322 u64 gen; 1323 u64 block1 = 0; 1324 u64 block2 = 0; 1325 int ret = 0; 1326 int blocksize; 1327 1328 parent = path->nodes[level + 1]; 1329 if (!parent) 1330 return 0; 1331 1332 nritems = btrfs_header_nritems(parent); 1333 slot = path->slots[level + 1]; 1334 blocksize = btrfs_level_size(root, level); 1335 1336 if (slot > 0) { 1337 block1 = btrfs_node_blockptr(parent, slot - 1); 1338 gen = btrfs_node_ptr_generation(parent, slot - 1); 1339 eb = btrfs_find_tree_block(root, block1, blocksize); 1340 if (eb && btrfs_buffer_uptodate(eb, gen)) 1341 block1 = 0; 1342 free_extent_buffer(eb); 1343 } 1344 if (slot + 1 < nritems) { 1345 block2 = btrfs_node_blockptr(parent, slot + 1); 1346 gen = btrfs_node_ptr_generation(parent, slot + 1); 1347 eb = btrfs_find_tree_block(root, block2, blocksize); 1348 if (eb && btrfs_buffer_uptodate(eb, gen)) 1349 block2 = 0; 1350 free_extent_buffer(eb); 1351 } 1352 if (block1 || block2) { 1353 ret = -EAGAIN; 1354 1355 /* release the whole path */ 1356 btrfs_release_path(root, path); 1357 1358 /* read the blocks */ 1359 if (block1) 1360 readahead_tree_block(root, block1, blocksize, 0); 1361 if (block2) 1362 readahead_tree_block(root, block2, blocksize, 0); 1363 1364 if (block1) { 1365 eb = read_tree_block(root, block1, blocksize, 0); 1366 free_extent_buffer(eb); 1367 } 1368 if (block2) { 1369 eb = read_tree_block(root, block2, blocksize, 0); 1370 free_extent_buffer(eb); 1371 } 1372 } 1373 return ret; 1374 } 1375 1376 1377 /* 1378 * when we walk down the tree, it is usually safe to unlock the higher layers 1379 * in the tree. The exceptions are when our path goes through slot 0, because 1380 * operations on the tree might require changing key pointers higher up in the 1381 * tree. 1382 * 1383 * callers might also have set path->keep_locks, which tells this code to keep 1384 * the lock if the path points to the last slot in the block. This is part of 1385 * walking through the tree, and selecting the next slot in the higher block. 1386 * 1387 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1388 * if lowest_unlock is 1, level 0 won't be unlocked 1389 */ 1390 static noinline void unlock_up(struct btrfs_path *path, int level, 1391 int lowest_unlock) 1392 { 1393 int i; 1394 int skip_level = level; 1395 int no_skips = 0; 1396 struct extent_buffer *t; 1397 1398 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1399 if (!path->nodes[i]) 1400 break; 1401 if (!path->locks[i]) 1402 break; 1403 if (!no_skips && path->slots[i] == 0) { 1404 skip_level = i + 1; 1405 continue; 1406 } 1407 if (!no_skips && path->keep_locks) { 1408 u32 nritems; 1409 t = path->nodes[i]; 1410 nritems = btrfs_header_nritems(t); 1411 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1412 skip_level = i + 1; 1413 continue; 1414 } 1415 } 1416 if (skip_level < i && i >= lowest_unlock) 1417 no_skips = 1; 1418 1419 t = path->nodes[i]; 1420 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1421 btrfs_tree_unlock(t); 1422 path->locks[i] = 0; 1423 } 1424 } 1425 } 1426 1427 /* 1428 * This releases any locks held in the path starting at level and 1429 * going all the way up to the root. 1430 * 1431 * btrfs_search_slot will keep the lock held on higher nodes in a few 1432 * corner cases, such as COW of the block at slot zero in the node. This 1433 * ignores those rules, and it should only be called when there are no 1434 * more updates to be done higher up in the tree. 1435 */ 1436 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1437 { 1438 int i; 1439 1440 if (path->keep_locks || path->lowest_level) 1441 return; 1442 1443 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1444 if (!path->nodes[i]) 1445 continue; 1446 if (!path->locks[i]) 1447 continue; 1448 btrfs_tree_unlock(path->nodes[i]); 1449 path->locks[i] = 0; 1450 } 1451 } 1452 1453 /* 1454 * helper function for btrfs_search_slot. The goal is to find a block 1455 * in cache without setting the path to blocking. If we find the block 1456 * we return zero and the path is unchanged. 1457 * 1458 * If we can't find the block, we set the path blocking and do some 1459 * reada. -EAGAIN is returned and the search must be repeated. 1460 */ 1461 static int 1462 read_block_for_search(struct btrfs_trans_handle *trans, 1463 struct btrfs_root *root, struct btrfs_path *p, 1464 struct extent_buffer **eb_ret, int level, int slot, 1465 struct btrfs_key *key) 1466 { 1467 u64 blocknr; 1468 u64 gen; 1469 u32 blocksize; 1470 struct extent_buffer *b = *eb_ret; 1471 struct extent_buffer *tmp; 1472 1473 blocknr = btrfs_node_blockptr(b, slot); 1474 gen = btrfs_node_ptr_generation(b, slot); 1475 blocksize = btrfs_level_size(root, level - 1); 1476 1477 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1478 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 1479 *eb_ret = tmp; 1480 return 0; 1481 } 1482 1483 /* 1484 * reduce lock contention at high levels 1485 * of the btree by dropping locks before 1486 * we read. 1487 */ 1488 btrfs_unlock_up_safe(p, level + 1); 1489 btrfs_set_path_blocking(p); 1490 1491 if (tmp) 1492 free_extent_buffer(tmp); 1493 if (p->reada) 1494 reada_for_search(root, p, level, slot, key->objectid); 1495 1496 btrfs_release_path(NULL, p); 1497 tmp = read_tree_block(root, blocknr, blocksize, gen); 1498 if (tmp) 1499 free_extent_buffer(tmp); 1500 return -EAGAIN; 1501 } 1502 1503 /* 1504 * helper function for btrfs_search_slot. This does all of the checks 1505 * for node-level blocks and does any balancing required based on 1506 * the ins_len. 1507 * 1508 * If no extra work was required, zero is returned. If we had to 1509 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1510 * start over 1511 */ 1512 static int 1513 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1514 struct btrfs_root *root, struct btrfs_path *p, 1515 struct extent_buffer *b, int level, int ins_len) 1516 { 1517 int ret; 1518 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1519 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1520 int sret; 1521 1522 sret = reada_for_balance(root, p, level); 1523 if (sret) 1524 goto again; 1525 1526 btrfs_set_path_blocking(p); 1527 sret = split_node(trans, root, p, level); 1528 btrfs_clear_path_blocking(p, NULL); 1529 1530 BUG_ON(sret > 0); 1531 if (sret) { 1532 ret = sret; 1533 goto done; 1534 } 1535 b = p->nodes[level]; 1536 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1537 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) { 1538 int sret; 1539 1540 sret = reada_for_balance(root, p, level); 1541 if (sret) 1542 goto again; 1543 1544 btrfs_set_path_blocking(p); 1545 sret = balance_level(trans, root, p, level); 1546 btrfs_clear_path_blocking(p, NULL); 1547 1548 if (sret) { 1549 ret = sret; 1550 goto done; 1551 } 1552 b = p->nodes[level]; 1553 if (!b) { 1554 btrfs_release_path(NULL, p); 1555 goto again; 1556 } 1557 BUG_ON(btrfs_header_nritems(b) == 1); 1558 } 1559 return 0; 1560 1561 again: 1562 ret = -EAGAIN; 1563 done: 1564 return ret; 1565 } 1566 1567 /* 1568 * look for key in the tree. path is filled in with nodes along the way 1569 * if key is found, we return zero and you can find the item in the leaf 1570 * level of the path (level 0) 1571 * 1572 * If the key isn't found, the path points to the slot where it should 1573 * be inserted, and 1 is returned. If there are other errors during the 1574 * search a negative error number is returned. 1575 * 1576 * if ins_len > 0, nodes and leaves will be split as we walk down the 1577 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1578 * possible) 1579 */ 1580 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1581 *root, struct btrfs_key *key, struct btrfs_path *p, int 1582 ins_len, int cow) 1583 { 1584 struct extent_buffer *b; 1585 int slot; 1586 int ret; 1587 int level; 1588 int lowest_unlock = 1; 1589 u8 lowest_level = 0; 1590 1591 lowest_level = p->lowest_level; 1592 WARN_ON(lowest_level && ins_len > 0); 1593 WARN_ON(p->nodes[0] != NULL); 1594 1595 if (ins_len < 0) 1596 lowest_unlock = 2; 1597 1598 again: 1599 if (p->skip_locking) 1600 b = btrfs_root_node(root); 1601 else 1602 b = btrfs_lock_root_node(root); 1603 1604 while (b) { 1605 level = btrfs_header_level(b); 1606 1607 /* 1608 * setup the path here so we can release it under lock 1609 * contention with the cow code 1610 */ 1611 p->nodes[level] = b; 1612 if (!p->skip_locking) 1613 p->locks[level] = 1; 1614 1615 if (cow) { 1616 int wret; 1617 1618 /* 1619 * if we don't really need to cow this block 1620 * then we don't want to set the path blocking, 1621 * so we test it here 1622 */ 1623 if (btrfs_header_generation(b) == trans->transid && 1624 btrfs_header_owner(b) == root->root_key.objectid && 1625 !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) { 1626 goto cow_done; 1627 } 1628 btrfs_set_path_blocking(p); 1629 1630 wret = btrfs_cow_block(trans, root, b, 1631 p->nodes[level + 1], 1632 p->slots[level + 1], &b); 1633 if (wret) { 1634 free_extent_buffer(b); 1635 ret = wret; 1636 goto done; 1637 } 1638 } 1639 cow_done: 1640 BUG_ON(!cow && ins_len); 1641 if (level != btrfs_header_level(b)) 1642 WARN_ON(1); 1643 level = btrfs_header_level(b); 1644 1645 p->nodes[level] = b; 1646 if (!p->skip_locking) 1647 p->locks[level] = 1; 1648 1649 btrfs_clear_path_blocking(p, NULL); 1650 1651 /* 1652 * we have a lock on b and as long as we aren't changing 1653 * the tree, there is no way to for the items in b to change. 1654 * It is safe to drop the lock on our parent before we 1655 * go through the expensive btree search on b. 1656 * 1657 * If cow is true, then we might be changing slot zero, 1658 * which may require changing the parent. So, we can't 1659 * drop the lock until after we know which slot we're 1660 * operating on. 1661 */ 1662 if (!cow) 1663 btrfs_unlock_up_safe(p, level + 1); 1664 1665 ret = check_block(root, p, level); 1666 if (ret) { 1667 ret = -1; 1668 goto done; 1669 } 1670 1671 ret = bin_search(b, key, level, &slot); 1672 1673 if (level != 0) { 1674 if (ret && slot > 0) 1675 slot -= 1; 1676 p->slots[level] = slot; 1677 ret = setup_nodes_for_search(trans, root, p, b, level, 1678 ins_len); 1679 if (ret == -EAGAIN) 1680 goto again; 1681 else if (ret) 1682 goto done; 1683 b = p->nodes[level]; 1684 slot = p->slots[level]; 1685 1686 unlock_up(p, level, lowest_unlock); 1687 1688 /* this is only true while dropping a snapshot */ 1689 if (level == lowest_level) { 1690 ret = 0; 1691 goto done; 1692 } 1693 1694 ret = read_block_for_search(trans, root, p, 1695 &b, level, slot, key); 1696 if (ret == -EAGAIN) 1697 goto again; 1698 1699 if (!p->skip_locking) { 1700 int lret; 1701 1702 btrfs_clear_path_blocking(p, NULL); 1703 lret = btrfs_try_spin_lock(b); 1704 1705 if (!lret) { 1706 btrfs_set_path_blocking(p); 1707 btrfs_tree_lock(b); 1708 btrfs_clear_path_blocking(p, b); 1709 } 1710 } 1711 } else { 1712 p->slots[level] = slot; 1713 if (ins_len > 0 && 1714 btrfs_leaf_free_space(root, b) < ins_len) { 1715 int sret; 1716 1717 btrfs_set_path_blocking(p); 1718 sret = split_leaf(trans, root, key, 1719 p, ins_len, ret == 0); 1720 btrfs_clear_path_blocking(p, NULL); 1721 1722 BUG_ON(sret > 0); 1723 if (sret) { 1724 ret = sret; 1725 goto done; 1726 } 1727 } 1728 if (!p->search_for_split) 1729 unlock_up(p, level, lowest_unlock); 1730 goto done; 1731 } 1732 } 1733 ret = 1; 1734 done: 1735 /* 1736 * we don't really know what they plan on doing with the path 1737 * from here on, so for now just mark it as blocking 1738 */ 1739 if (!p->leave_spinning) 1740 btrfs_set_path_blocking(p); 1741 return ret; 1742 } 1743 1744 int btrfs_merge_path(struct btrfs_trans_handle *trans, 1745 struct btrfs_root *root, 1746 struct btrfs_key *node_keys, 1747 u64 *nodes, int lowest_level) 1748 { 1749 struct extent_buffer *eb; 1750 struct extent_buffer *parent; 1751 struct btrfs_key key; 1752 u64 bytenr; 1753 u64 generation; 1754 u32 blocksize; 1755 int level; 1756 int slot; 1757 int key_match; 1758 int ret; 1759 1760 eb = btrfs_lock_root_node(root); 1761 ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb); 1762 BUG_ON(ret); 1763 1764 btrfs_set_lock_blocking(eb); 1765 1766 parent = eb; 1767 while (1) { 1768 level = btrfs_header_level(parent); 1769 if (level == 0 || level <= lowest_level) 1770 break; 1771 1772 ret = bin_search(parent, &node_keys[lowest_level], level, 1773 &slot); 1774 if (ret && slot > 0) 1775 slot--; 1776 1777 bytenr = btrfs_node_blockptr(parent, slot); 1778 if (nodes[level - 1] == bytenr) 1779 break; 1780 1781 blocksize = btrfs_level_size(root, level - 1); 1782 generation = btrfs_node_ptr_generation(parent, slot); 1783 btrfs_node_key_to_cpu(eb, &key, slot); 1784 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key)); 1785 1786 if (generation == trans->transid) { 1787 eb = read_tree_block(root, bytenr, blocksize, 1788 generation); 1789 btrfs_tree_lock(eb); 1790 btrfs_set_lock_blocking(eb); 1791 } 1792 1793 /* 1794 * if node keys match and node pointer hasn't been modified 1795 * in the running transaction, we can merge the path. for 1796 * blocks owened by reloc trees, the node pointer check is 1797 * skipped, this is because these blocks are fully controlled 1798 * by the space balance code, no one else can modify them. 1799 */ 1800 if (!nodes[level - 1] || !key_match || 1801 (generation == trans->transid && 1802 btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) { 1803 if (level == 1 || level == lowest_level + 1) { 1804 if (generation == trans->transid) { 1805 btrfs_tree_unlock(eb); 1806 free_extent_buffer(eb); 1807 } 1808 break; 1809 } 1810 1811 if (generation != trans->transid) { 1812 eb = read_tree_block(root, bytenr, blocksize, 1813 generation); 1814 btrfs_tree_lock(eb); 1815 btrfs_set_lock_blocking(eb); 1816 } 1817 1818 ret = btrfs_cow_block(trans, root, eb, parent, slot, 1819 &eb); 1820 BUG_ON(ret); 1821 1822 if (root->root_key.objectid == 1823 BTRFS_TREE_RELOC_OBJECTID) { 1824 if (!nodes[level - 1]) { 1825 nodes[level - 1] = eb->start; 1826 memcpy(&node_keys[level - 1], &key, 1827 sizeof(node_keys[0])); 1828 } else { 1829 WARN_ON(1); 1830 } 1831 } 1832 1833 btrfs_tree_unlock(parent); 1834 free_extent_buffer(parent); 1835 parent = eb; 1836 continue; 1837 } 1838 1839 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]); 1840 btrfs_set_node_ptr_generation(parent, slot, trans->transid); 1841 btrfs_mark_buffer_dirty(parent); 1842 1843 ret = btrfs_inc_extent_ref(trans, root, 1844 nodes[level - 1], 1845 blocksize, parent->start, 1846 btrfs_header_owner(parent), 1847 btrfs_header_generation(parent), 1848 level - 1); 1849 BUG_ON(ret); 1850 1851 /* 1852 * If the block was created in the running transaction, 1853 * it's possible this is the last reference to it, so we 1854 * should drop the subtree. 1855 */ 1856 if (generation == trans->transid) { 1857 ret = btrfs_drop_subtree(trans, root, eb, parent); 1858 BUG_ON(ret); 1859 btrfs_tree_unlock(eb); 1860 free_extent_buffer(eb); 1861 } else { 1862 ret = btrfs_free_extent(trans, root, bytenr, 1863 blocksize, parent->start, 1864 btrfs_header_owner(parent), 1865 btrfs_header_generation(parent), 1866 level - 1, 1); 1867 BUG_ON(ret); 1868 } 1869 break; 1870 } 1871 btrfs_tree_unlock(parent); 1872 free_extent_buffer(parent); 1873 return 0; 1874 } 1875 1876 /* 1877 * adjust the pointers going up the tree, starting at level 1878 * making sure the right key of each node is points to 'key'. 1879 * This is used after shifting pointers to the left, so it stops 1880 * fixing up pointers when a given leaf/node is not in slot 0 of the 1881 * higher levels 1882 * 1883 * If this fails to write a tree block, it returns -1, but continues 1884 * fixing up the blocks in ram so the tree is consistent. 1885 */ 1886 static int fixup_low_keys(struct btrfs_trans_handle *trans, 1887 struct btrfs_root *root, struct btrfs_path *path, 1888 struct btrfs_disk_key *key, int level) 1889 { 1890 int i; 1891 int ret = 0; 1892 struct extent_buffer *t; 1893 1894 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1895 int tslot = path->slots[i]; 1896 if (!path->nodes[i]) 1897 break; 1898 t = path->nodes[i]; 1899 btrfs_set_node_key(t, key, tslot); 1900 btrfs_mark_buffer_dirty(path->nodes[i]); 1901 if (tslot != 0) 1902 break; 1903 } 1904 return ret; 1905 } 1906 1907 /* 1908 * update item key. 1909 * 1910 * This function isn't completely safe. It's the caller's responsibility 1911 * that the new key won't break the order 1912 */ 1913 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1914 struct btrfs_root *root, struct btrfs_path *path, 1915 struct btrfs_key *new_key) 1916 { 1917 struct btrfs_disk_key disk_key; 1918 struct extent_buffer *eb; 1919 int slot; 1920 1921 eb = path->nodes[0]; 1922 slot = path->slots[0]; 1923 if (slot > 0) { 1924 btrfs_item_key(eb, &disk_key, slot - 1); 1925 if (comp_keys(&disk_key, new_key) >= 0) 1926 return -1; 1927 } 1928 if (slot < btrfs_header_nritems(eb) - 1) { 1929 btrfs_item_key(eb, &disk_key, slot + 1); 1930 if (comp_keys(&disk_key, new_key) <= 0) 1931 return -1; 1932 } 1933 1934 btrfs_cpu_key_to_disk(&disk_key, new_key); 1935 btrfs_set_item_key(eb, &disk_key, slot); 1936 btrfs_mark_buffer_dirty(eb); 1937 if (slot == 0) 1938 fixup_low_keys(trans, root, path, &disk_key, 1); 1939 return 0; 1940 } 1941 1942 /* 1943 * try to push data from one node into the next node left in the 1944 * tree. 1945 * 1946 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1947 * error, and > 0 if there was no room in the left hand block. 1948 */ 1949 static int push_node_left(struct btrfs_trans_handle *trans, 1950 struct btrfs_root *root, struct extent_buffer *dst, 1951 struct extent_buffer *src, int empty) 1952 { 1953 int push_items = 0; 1954 int src_nritems; 1955 int dst_nritems; 1956 int ret = 0; 1957 1958 src_nritems = btrfs_header_nritems(src); 1959 dst_nritems = btrfs_header_nritems(dst); 1960 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1961 WARN_ON(btrfs_header_generation(src) != trans->transid); 1962 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1963 1964 if (!empty && src_nritems <= 8) 1965 return 1; 1966 1967 if (push_items <= 0) 1968 return 1; 1969 1970 if (empty) { 1971 push_items = min(src_nritems, push_items); 1972 if (push_items < src_nritems) { 1973 /* leave at least 8 pointers in the node if 1974 * we aren't going to empty it 1975 */ 1976 if (src_nritems - push_items < 8) { 1977 if (push_items <= 8) 1978 return 1; 1979 push_items -= 8; 1980 } 1981 } 1982 } else 1983 push_items = min(src_nritems - 8, push_items); 1984 1985 copy_extent_buffer(dst, src, 1986 btrfs_node_key_ptr_offset(dst_nritems), 1987 btrfs_node_key_ptr_offset(0), 1988 push_items * sizeof(struct btrfs_key_ptr)); 1989 1990 if (push_items < src_nritems) { 1991 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 1992 btrfs_node_key_ptr_offset(push_items), 1993 (src_nritems - push_items) * 1994 sizeof(struct btrfs_key_ptr)); 1995 } 1996 btrfs_set_header_nritems(src, src_nritems - push_items); 1997 btrfs_set_header_nritems(dst, dst_nritems + push_items); 1998 btrfs_mark_buffer_dirty(src); 1999 btrfs_mark_buffer_dirty(dst); 2000 2001 ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items); 2002 BUG_ON(ret); 2003 2004 return ret; 2005 } 2006 2007 /* 2008 * try to push data from one node into the next node right in the 2009 * tree. 2010 * 2011 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2012 * error, and > 0 if there was no room in the right hand block. 2013 * 2014 * this will only push up to 1/2 the contents of the left node over 2015 */ 2016 static int balance_node_right(struct btrfs_trans_handle *trans, 2017 struct btrfs_root *root, 2018 struct extent_buffer *dst, 2019 struct extent_buffer *src) 2020 { 2021 int push_items = 0; 2022 int max_push; 2023 int src_nritems; 2024 int dst_nritems; 2025 int ret = 0; 2026 2027 WARN_ON(btrfs_header_generation(src) != trans->transid); 2028 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2029 2030 src_nritems = btrfs_header_nritems(src); 2031 dst_nritems = btrfs_header_nritems(dst); 2032 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2033 if (push_items <= 0) 2034 return 1; 2035 2036 if (src_nritems < 4) 2037 return 1; 2038 2039 max_push = src_nritems / 2 + 1; 2040 /* don't try to empty the node */ 2041 if (max_push >= src_nritems) 2042 return 1; 2043 2044 if (max_push < push_items) 2045 push_items = max_push; 2046 2047 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2048 btrfs_node_key_ptr_offset(0), 2049 (dst_nritems) * 2050 sizeof(struct btrfs_key_ptr)); 2051 2052 copy_extent_buffer(dst, src, 2053 btrfs_node_key_ptr_offset(0), 2054 btrfs_node_key_ptr_offset(src_nritems - push_items), 2055 push_items * sizeof(struct btrfs_key_ptr)); 2056 2057 btrfs_set_header_nritems(src, src_nritems - push_items); 2058 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2059 2060 btrfs_mark_buffer_dirty(src); 2061 btrfs_mark_buffer_dirty(dst); 2062 2063 ret = btrfs_update_ref(trans, root, src, dst, 0, push_items); 2064 BUG_ON(ret); 2065 2066 return ret; 2067 } 2068 2069 /* 2070 * helper function to insert a new root level in the tree. 2071 * A new node is allocated, and a single item is inserted to 2072 * point to the existing root 2073 * 2074 * returns zero on success or < 0 on failure. 2075 */ 2076 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2077 struct btrfs_root *root, 2078 struct btrfs_path *path, int level) 2079 { 2080 u64 lower_gen; 2081 struct extent_buffer *lower; 2082 struct extent_buffer *c; 2083 struct extent_buffer *old; 2084 struct btrfs_disk_key lower_key; 2085 int ret; 2086 2087 BUG_ON(path->nodes[level]); 2088 BUG_ON(path->nodes[level-1] != root->node); 2089 2090 lower = path->nodes[level-1]; 2091 if (level == 1) 2092 btrfs_item_key(lower, &lower_key, 0); 2093 else 2094 btrfs_node_key(lower, &lower_key, 0); 2095 2096 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2097 root->root_key.objectid, trans->transid, 2098 level, root->node->start, 0); 2099 if (IS_ERR(c)) 2100 return PTR_ERR(c); 2101 2102 memset_extent_buffer(c, 0, 0, root->nodesize); 2103 btrfs_set_header_nritems(c, 1); 2104 btrfs_set_header_level(c, level); 2105 btrfs_set_header_bytenr(c, c->start); 2106 btrfs_set_header_generation(c, trans->transid); 2107 btrfs_set_header_owner(c, root->root_key.objectid); 2108 2109 write_extent_buffer(c, root->fs_info->fsid, 2110 (unsigned long)btrfs_header_fsid(c), 2111 BTRFS_FSID_SIZE); 2112 2113 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2114 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2115 BTRFS_UUID_SIZE); 2116 2117 btrfs_set_node_key(c, &lower_key, 0); 2118 btrfs_set_node_blockptr(c, 0, lower->start); 2119 lower_gen = btrfs_header_generation(lower); 2120 WARN_ON(lower_gen != trans->transid); 2121 2122 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2123 2124 btrfs_mark_buffer_dirty(c); 2125 2126 spin_lock(&root->node_lock); 2127 old = root->node; 2128 root->node = c; 2129 spin_unlock(&root->node_lock); 2130 2131 ret = btrfs_update_extent_ref(trans, root, lower->start, 2132 lower->len, lower->start, c->start, 2133 root->root_key.objectid, 2134 trans->transid, level - 1); 2135 BUG_ON(ret); 2136 2137 /* the super has an extra ref to root->node */ 2138 free_extent_buffer(old); 2139 2140 add_root_to_dirty_list(root); 2141 extent_buffer_get(c); 2142 path->nodes[level] = c; 2143 path->locks[level] = 1; 2144 path->slots[level] = 0; 2145 return 0; 2146 } 2147 2148 /* 2149 * worker function to insert a single pointer in a node. 2150 * the node should have enough room for the pointer already 2151 * 2152 * slot and level indicate where you want the key to go, and 2153 * blocknr is the block the key points to. 2154 * 2155 * returns zero on success and < 0 on any error 2156 */ 2157 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root 2158 *root, struct btrfs_path *path, struct btrfs_disk_key 2159 *key, u64 bytenr, int slot, int level) 2160 { 2161 struct extent_buffer *lower; 2162 int nritems; 2163 2164 BUG_ON(!path->nodes[level]); 2165 lower = path->nodes[level]; 2166 nritems = btrfs_header_nritems(lower); 2167 BUG_ON(slot > nritems); 2168 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) 2169 BUG(); 2170 if (slot != nritems) { 2171 memmove_extent_buffer(lower, 2172 btrfs_node_key_ptr_offset(slot + 1), 2173 btrfs_node_key_ptr_offset(slot), 2174 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2175 } 2176 btrfs_set_node_key(lower, key, slot); 2177 btrfs_set_node_blockptr(lower, slot, bytenr); 2178 WARN_ON(trans->transid == 0); 2179 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2180 btrfs_set_header_nritems(lower, nritems + 1); 2181 btrfs_mark_buffer_dirty(lower); 2182 return 0; 2183 } 2184 2185 /* 2186 * split the node at the specified level in path in two. 2187 * The path is corrected to point to the appropriate node after the split 2188 * 2189 * Before splitting this tries to make some room in the node by pushing 2190 * left and right, if either one works, it returns right away. 2191 * 2192 * returns 0 on success and < 0 on failure 2193 */ 2194 static noinline int split_node(struct btrfs_trans_handle *trans, 2195 struct btrfs_root *root, 2196 struct btrfs_path *path, int level) 2197 { 2198 struct extent_buffer *c; 2199 struct extent_buffer *split; 2200 struct btrfs_disk_key disk_key; 2201 int mid; 2202 int ret; 2203 int wret; 2204 u32 c_nritems; 2205 2206 c = path->nodes[level]; 2207 WARN_ON(btrfs_header_generation(c) != trans->transid); 2208 if (c == root->node) { 2209 /* trying to split the root, lets make a new one */ 2210 ret = insert_new_root(trans, root, path, level + 1); 2211 if (ret) 2212 return ret; 2213 } else if (!trans->transaction->delayed_refs.flushing) { 2214 ret = push_nodes_for_insert(trans, root, path, level); 2215 c = path->nodes[level]; 2216 if (!ret && btrfs_header_nritems(c) < 2217 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2218 return 0; 2219 if (ret < 0) 2220 return ret; 2221 } 2222 2223 c_nritems = btrfs_header_nritems(c); 2224 2225 split = btrfs_alloc_free_block(trans, root, root->nodesize, 2226 path->nodes[level + 1]->start, 2227 root->root_key.objectid, 2228 trans->transid, level, c->start, 0); 2229 if (IS_ERR(split)) 2230 return PTR_ERR(split); 2231 2232 btrfs_set_header_flags(split, btrfs_header_flags(c)); 2233 btrfs_set_header_level(split, btrfs_header_level(c)); 2234 btrfs_set_header_bytenr(split, split->start); 2235 btrfs_set_header_generation(split, trans->transid); 2236 btrfs_set_header_owner(split, root->root_key.objectid); 2237 btrfs_set_header_flags(split, 0); 2238 write_extent_buffer(split, root->fs_info->fsid, 2239 (unsigned long)btrfs_header_fsid(split), 2240 BTRFS_FSID_SIZE); 2241 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2242 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2243 BTRFS_UUID_SIZE); 2244 2245 mid = (c_nritems + 1) / 2; 2246 2247 copy_extent_buffer(split, c, 2248 btrfs_node_key_ptr_offset(0), 2249 btrfs_node_key_ptr_offset(mid), 2250 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2251 btrfs_set_header_nritems(split, c_nritems - mid); 2252 btrfs_set_header_nritems(c, mid); 2253 ret = 0; 2254 2255 btrfs_mark_buffer_dirty(c); 2256 btrfs_mark_buffer_dirty(split); 2257 2258 btrfs_node_key(split, &disk_key, 0); 2259 wret = insert_ptr(trans, root, path, &disk_key, split->start, 2260 path->slots[level + 1] + 1, 2261 level + 1); 2262 if (wret) 2263 ret = wret; 2264 2265 ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid); 2266 BUG_ON(ret); 2267 2268 if (path->slots[level] >= mid) { 2269 path->slots[level] -= mid; 2270 btrfs_tree_unlock(c); 2271 free_extent_buffer(c); 2272 path->nodes[level] = split; 2273 path->slots[level + 1] += 1; 2274 } else { 2275 btrfs_tree_unlock(split); 2276 free_extent_buffer(split); 2277 } 2278 return ret; 2279 } 2280 2281 /* 2282 * how many bytes are required to store the items in a leaf. start 2283 * and nr indicate which items in the leaf to check. This totals up the 2284 * space used both by the item structs and the item data 2285 */ 2286 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2287 { 2288 int data_len; 2289 int nritems = btrfs_header_nritems(l); 2290 int end = min(nritems, start + nr) - 1; 2291 2292 if (!nr) 2293 return 0; 2294 data_len = btrfs_item_end_nr(l, start); 2295 data_len = data_len - btrfs_item_offset_nr(l, end); 2296 data_len += sizeof(struct btrfs_item) * nr; 2297 WARN_ON(data_len < 0); 2298 return data_len; 2299 } 2300 2301 /* 2302 * The space between the end of the leaf items and 2303 * the start of the leaf data. IOW, how much room 2304 * the leaf has left for both items and data 2305 */ 2306 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2307 struct extent_buffer *leaf) 2308 { 2309 int nritems = btrfs_header_nritems(leaf); 2310 int ret; 2311 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2312 if (ret < 0) { 2313 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2314 "used %d nritems %d\n", 2315 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2316 leaf_space_used(leaf, 0, nritems), nritems); 2317 } 2318 return ret; 2319 } 2320 2321 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 2322 struct btrfs_root *root, 2323 struct btrfs_path *path, 2324 int data_size, int empty, 2325 struct extent_buffer *right, 2326 int free_space, u32 left_nritems) 2327 { 2328 struct extent_buffer *left = path->nodes[0]; 2329 struct extent_buffer *upper = path->nodes[1]; 2330 struct btrfs_disk_key disk_key; 2331 int slot; 2332 u32 i; 2333 int push_space = 0; 2334 int push_items = 0; 2335 struct btrfs_item *item; 2336 u32 nr; 2337 u32 right_nritems; 2338 u32 data_end; 2339 u32 this_item_size; 2340 int ret; 2341 2342 if (empty) 2343 nr = 0; 2344 else 2345 nr = 1; 2346 2347 if (path->slots[0] >= left_nritems) 2348 push_space += data_size; 2349 2350 slot = path->slots[1]; 2351 i = left_nritems - 1; 2352 while (i >= nr) { 2353 item = btrfs_item_nr(left, i); 2354 2355 if (!empty && push_items > 0) { 2356 if (path->slots[0] > i) 2357 break; 2358 if (path->slots[0] == i) { 2359 int space = btrfs_leaf_free_space(root, left); 2360 if (space + push_space * 2 > free_space) 2361 break; 2362 } 2363 } 2364 2365 if (path->slots[0] == i) 2366 push_space += data_size; 2367 2368 if (!left->map_token) { 2369 map_extent_buffer(left, (unsigned long)item, 2370 sizeof(struct btrfs_item), 2371 &left->map_token, &left->kaddr, 2372 &left->map_start, &left->map_len, 2373 KM_USER1); 2374 } 2375 2376 this_item_size = btrfs_item_size(left, item); 2377 if (this_item_size + sizeof(*item) + push_space > free_space) 2378 break; 2379 2380 push_items++; 2381 push_space += this_item_size + sizeof(*item); 2382 if (i == 0) 2383 break; 2384 i--; 2385 } 2386 if (left->map_token) { 2387 unmap_extent_buffer(left, left->map_token, KM_USER1); 2388 left->map_token = NULL; 2389 } 2390 2391 if (push_items == 0) 2392 goto out_unlock; 2393 2394 if (!empty && push_items == left_nritems) 2395 WARN_ON(1); 2396 2397 /* push left to right */ 2398 right_nritems = btrfs_header_nritems(right); 2399 2400 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2401 push_space -= leaf_data_end(root, left); 2402 2403 /* make room in the right data area */ 2404 data_end = leaf_data_end(root, right); 2405 memmove_extent_buffer(right, 2406 btrfs_leaf_data(right) + data_end - push_space, 2407 btrfs_leaf_data(right) + data_end, 2408 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2409 2410 /* copy from the left data area */ 2411 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2412 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2413 btrfs_leaf_data(left) + leaf_data_end(root, left), 2414 push_space); 2415 2416 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2417 btrfs_item_nr_offset(0), 2418 right_nritems * sizeof(struct btrfs_item)); 2419 2420 /* copy the items from left to right */ 2421 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2422 btrfs_item_nr_offset(left_nritems - push_items), 2423 push_items * sizeof(struct btrfs_item)); 2424 2425 /* update the item pointers */ 2426 right_nritems += push_items; 2427 btrfs_set_header_nritems(right, right_nritems); 2428 push_space = BTRFS_LEAF_DATA_SIZE(root); 2429 for (i = 0; i < right_nritems; i++) { 2430 item = btrfs_item_nr(right, i); 2431 if (!right->map_token) { 2432 map_extent_buffer(right, (unsigned long)item, 2433 sizeof(struct btrfs_item), 2434 &right->map_token, &right->kaddr, 2435 &right->map_start, &right->map_len, 2436 KM_USER1); 2437 } 2438 push_space -= btrfs_item_size(right, item); 2439 btrfs_set_item_offset(right, item, push_space); 2440 } 2441 2442 if (right->map_token) { 2443 unmap_extent_buffer(right, right->map_token, KM_USER1); 2444 right->map_token = NULL; 2445 } 2446 left_nritems -= push_items; 2447 btrfs_set_header_nritems(left, left_nritems); 2448 2449 if (left_nritems) 2450 btrfs_mark_buffer_dirty(left); 2451 btrfs_mark_buffer_dirty(right); 2452 2453 ret = btrfs_update_ref(trans, root, left, right, 0, push_items); 2454 BUG_ON(ret); 2455 2456 btrfs_item_key(right, &disk_key, 0); 2457 btrfs_set_node_key(upper, &disk_key, slot + 1); 2458 btrfs_mark_buffer_dirty(upper); 2459 2460 /* then fixup the leaf pointer in the path */ 2461 if (path->slots[0] >= left_nritems) { 2462 path->slots[0] -= left_nritems; 2463 if (btrfs_header_nritems(path->nodes[0]) == 0) 2464 clean_tree_block(trans, root, path->nodes[0]); 2465 btrfs_tree_unlock(path->nodes[0]); 2466 free_extent_buffer(path->nodes[0]); 2467 path->nodes[0] = right; 2468 path->slots[1] += 1; 2469 } else { 2470 btrfs_tree_unlock(right); 2471 free_extent_buffer(right); 2472 } 2473 return 0; 2474 2475 out_unlock: 2476 btrfs_tree_unlock(right); 2477 free_extent_buffer(right); 2478 return 1; 2479 } 2480 2481 /* 2482 * push some data in the path leaf to the right, trying to free up at 2483 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2484 * 2485 * returns 1 if the push failed because the other node didn't have enough 2486 * room, 0 if everything worked out and < 0 if there were major errors. 2487 */ 2488 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2489 *root, struct btrfs_path *path, int data_size, 2490 int empty) 2491 { 2492 struct extent_buffer *left = path->nodes[0]; 2493 struct extent_buffer *right; 2494 struct extent_buffer *upper; 2495 int slot; 2496 int free_space; 2497 u32 left_nritems; 2498 int ret; 2499 2500 if (!path->nodes[1]) 2501 return 1; 2502 2503 slot = path->slots[1]; 2504 upper = path->nodes[1]; 2505 if (slot >= btrfs_header_nritems(upper) - 1) 2506 return 1; 2507 2508 btrfs_assert_tree_locked(path->nodes[1]); 2509 2510 right = read_node_slot(root, upper, slot + 1); 2511 btrfs_tree_lock(right); 2512 btrfs_set_lock_blocking(right); 2513 2514 free_space = btrfs_leaf_free_space(root, right); 2515 if (free_space < data_size) 2516 goto out_unlock; 2517 2518 /* cow and double check */ 2519 ret = btrfs_cow_block(trans, root, right, upper, 2520 slot + 1, &right); 2521 if (ret) 2522 goto out_unlock; 2523 2524 free_space = btrfs_leaf_free_space(root, right); 2525 if (free_space < data_size) 2526 goto out_unlock; 2527 2528 left_nritems = btrfs_header_nritems(left); 2529 if (left_nritems == 0) 2530 goto out_unlock; 2531 2532 return __push_leaf_right(trans, root, path, data_size, empty, 2533 right, free_space, left_nritems); 2534 out_unlock: 2535 btrfs_tree_unlock(right); 2536 free_extent_buffer(right); 2537 return 1; 2538 } 2539 2540 /* 2541 * push some data in the path leaf to the left, trying to free up at 2542 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2543 */ 2544 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 2545 struct btrfs_root *root, 2546 struct btrfs_path *path, int data_size, 2547 int empty, struct extent_buffer *left, 2548 int free_space, int right_nritems) 2549 { 2550 struct btrfs_disk_key disk_key; 2551 struct extent_buffer *right = path->nodes[0]; 2552 int slot; 2553 int i; 2554 int push_space = 0; 2555 int push_items = 0; 2556 struct btrfs_item *item; 2557 u32 old_left_nritems; 2558 u32 nr; 2559 int ret = 0; 2560 int wret; 2561 u32 this_item_size; 2562 u32 old_left_item_size; 2563 2564 slot = path->slots[1]; 2565 2566 if (empty) 2567 nr = right_nritems; 2568 else 2569 nr = right_nritems - 1; 2570 2571 for (i = 0; i < nr; i++) { 2572 item = btrfs_item_nr(right, i); 2573 if (!right->map_token) { 2574 map_extent_buffer(right, (unsigned long)item, 2575 sizeof(struct btrfs_item), 2576 &right->map_token, &right->kaddr, 2577 &right->map_start, &right->map_len, 2578 KM_USER1); 2579 } 2580 2581 if (!empty && push_items > 0) { 2582 if (path->slots[0] < i) 2583 break; 2584 if (path->slots[0] == i) { 2585 int space = btrfs_leaf_free_space(root, right); 2586 if (space + push_space * 2 > free_space) 2587 break; 2588 } 2589 } 2590 2591 if (path->slots[0] == i) 2592 push_space += data_size; 2593 2594 this_item_size = btrfs_item_size(right, item); 2595 if (this_item_size + sizeof(*item) + push_space > free_space) 2596 break; 2597 2598 push_items++; 2599 push_space += this_item_size + sizeof(*item); 2600 } 2601 2602 if (right->map_token) { 2603 unmap_extent_buffer(right, right->map_token, KM_USER1); 2604 right->map_token = NULL; 2605 } 2606 2607 if (push_items == 0) { 2608 ret = 1; 2609 goto out; 2610 } 2611 if (!empty && push_items == btrfs_header_nritems(right)) 2612 WARN_ON(1); 2613 2614 /* push data from right to left */ 2615 copy_extent_buffer(left, right, 2616 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2617 btrfs_item_nr_offset(0), 2618 push_items * sizeof(struct btrfs_item)); 2619 2620 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2621 btrfs_item_offset_nr(right, push_items - 1); 2622 2623 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2624 leaf_data_end(root, left) - push_space, 2625 btrfs_leaf_data(right) + 2626 btrfs_item_offset_nr(right, push_items - 1), 2627 push_space); 2628 old_left_nritems = btrfs_header_nritems(left); 2629 BUG_ON(old_left_nritems <= 0); 2630 2631 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2632 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2633 u32 ioff; 2634 2635 item = btrfs_item_nr(left, i); 2636 if (!left->map_token) { 2637 map_extent_buffer(left, (unsigned long)item, 2638 sizeof(struct btrfs_item), 2639 &left->map_token, &left->kaddr, 2640 &left->map_start, &left->map_len, 2641 KM_USER1); 2642 } 2643 2644 ioff = btrfs_item_offset(left, item); 2645 btrfs_set_item_offset(left, item, 2646 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); 2647 } 2648 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2649 if (left->map_token) { 2650 unmap_extent_buffer(left, left->map_token, KM_USER1); 2651 left->map_token = NULL; 2652 } 2653 2654 /* fixup right node */ 2655 if (push_items > right_nritems) { 2656 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2657 right_nritems); 2658 WARN_ON(1); 2659 } 2660 2661 if (push_items < right_nritems) { 2662 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2663 leaf_data_end(root, right); 2664 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2665 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2666 btrfs_leaf_data(right) + 2667 leaf_data_end(root, right), push_space); 2668 2669 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2670 btrfs_item_nr_offset(push_items), 2671 (btrfs_header_nritems(right) - push_items) * 2672 sizeof(struct btrfs_item)); 2673 } 2674 right_nritems -= push_items; 2675 btrfs_set_header_nritems(right, right_nritems); 2676 push_space = BTRFS_LEAF_DATA_SIZE(root); 2677 for (i = 0; i < right_nritems; i++) { 2678 item = btrfs_item_nr(right, i); 2679 2680 if (!right->map_token) { 2681 map_extent_buffer(right, (unsigned long)item, 2682 sizeof(struct btrfs_item), 2683 &right->map_token, &right->kaddr, 2684 &right->map_start, &right->map_len, 2685 KM_USER1); 2686 } 2687 2688 push_space = push_space - btrfs_item_size(right, item); 2689 btrfs_set_item_offset(right, item, push_space); 2690 } 2691 if (right->map_token) { 2692 unmap_extent_buffer(right, right->map_token, KM_USER1); 2693 right->map_token = NULL; 2694 } 2695 2696 btrfs_mark_buffer_dirty(left); 2697 if (right_nritems) 2698 btrfs_mark_buffer_dirty(right); 2699 2700 ret = btrfs_update_ref(trans, root, right, left, 2701 old_left_nritems, push_items); 2702 BUG_ON(ret); 2703 2704 btrfs_item_key(right, &disk_key, 0); 2705 wret = fixup_low_keys(trans, root, path, &disk_key, 1); 2706 if (wret) 2707 ret = wret; 2708 2709 /* then fixup the leaf pointer in the path */ 2710 if (path->slots[0] < push_items) { 2711 path->slots[0] += old_left_nritems; 2712 if (btrfs_header_nritems(path->nodes[0]) == 0) 2713 clean_tree_block(trans, root, path->nodes[0]); 2714 btrfs_tree_unlock(path->nodes[0]); 2715 free_extent_buffer(path->nodes[0]); 2716 path->nodes[0] = left; 2717 path->slots[1] -= 1; 2718 } else { 2719 btrfs_tree_unlock(left); 2720 free_extent_buffer(left); 2721 path->slots[0] -= push_items; 2722 } 2723 BUG_ON(path->slots[0] < 0); 2724 return ret; 2725 out: 2726 btrfs_tree_unlock(left); 2727 free_extent_buffer(left); 2728 return ret; 2729 } 2730 2731 /* 2732 * push some data in the path leaf to the left, trying to free up at 2733 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2734 */ 2735 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2736 *root, struct btrfs_path *path, int data_size, 2737 int empty) 2738 { 2739 struct extent_buffer *right = path->nodes[0]; 2740 struct extent_buffer *left; 2741 int slot; 2742 int free_space; 2743 u32 right_nritems; 2744 int ret = 0; 2745 2746 slot = path->slots[1]; 2747 if (slot == 0) 2748 return 1; 2749 if (!path->nodes[1]) 2750 return 1; 2751 2752 right_nritems = btrfs_header_nritems(right); 2753 if (right_nritems == 0) 2754 return 1; 2755 2756 btrfs_assert_tree_locked(path->nodes[1]); 2757 2758 left = read_node_slot(root, path->nodes[1], slot - 1); 2759 btrfs_tree_lock(left); 2760 btrfs_set_lock_blocking(left); 2761 2762 free_space = btrfs_leaf_free_space(root, left); 2763 if (free_space < data_size) { 2764 ret = 1; 2765 goto out; 2766 } 2767 2768 /* cow and double check */ 2769 ret = btrfs_cow_block(trans, root, left, 2770 path->nodes[1], slot - 1, &left); 2771 if (ret) { 2772 /* we hit -ENOSPC, but it isn't fatal here */ 2773 ret = 1; 2774 goto out; 2775 } 2776 2777 free_space = btrfs_leaf_free_space(root, left); 2778 if (free_space < data_size) { 2779 ret = 1; 2780 goto out; 2781 } 2782 2783 return __push_leaf_left(trans, root, path, data_size, 2784 empty, left, free_space, right_nritems); 2785 out: 2786 btrfs_tree_unlock(left); 2787 free_extent_buffer(left); 2788 return ret; 2789 } 2790 2791 /* 2792 * split the path's leaf in two, making sure there is at least data_size 2793 * available for the resulting leaf level of the path. 2794 * 2795 * returns 0 if all went well and < 0 on failure. 2796 */ 2797 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 2798 struct btrfs_root *root, 2799 struct btrfs_path *path, 2800 struct extent_buffer *l, 2801 struct extent_buffer *right, 2802 int slot, int mid, int nritems) 2803 { 2804 int data_copy_size; 2805 int rt_data_off; 2806 int i; 2807 int ret = 0; 2808 int wret; 2809 struct btrfs_disk_key disk_key; 2810 2811 nritems = nritems - mid; 2812 btrfs_set_header_nritems(right, nritems); 2813 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2814 2815 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2816 btrfs_item_nr_offset(mid), 2817 nritems * sizeof(struct btrfs_item)); 2818 2819 copy_extent_buffer(right, l, 2820 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2821 data_copy_size, btrfs_leaf_data(l) + 2822 leaf_data_end(root, l), data_copy_size); 2823 2824 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2825 btrfs_item_end_nr(l, mid); 2826 2827 for (i = 0; i < nritems; i++) { 2828 struct btrfs_item *item = btrfs_item_nr(right, i); 2829 u32 ioff; 2830 2831 if (!right->map_token) { 2832 map_extent_buffer(right, (unsigned long)item, 2833 sizeof(struct btrfs_item), 2834 &right->map_token, &right->kaddr, 2835 &right->map_start, &right->map_len, 2836 KM_USER1); 2837 } 2838 2839 ioff = btrfs_item_offset(right, item); 2840 btrfs_set_item_offset(right, item, ioff + rt_data_off); 2841 } 2842 2843 if (right->map_token) { 2844 unmap_extent_buffer(right, right->map_token, KM_USER1); 2845 right->map_token = NULL; 2846 } 2847 2848 btrfs_set_header_nritems(l, mid); 2849 ret = 0; 2850 btrfs_item_key(right, &disk_key, 0); 2851 wret = insert_ptr(trans, root, path, &disk_key, right->start, 2852 path->slots[1] + 1, 1); 2853 if (wret) 2854 ret = wret; 2855 2856 btrfs_mark_buffer_dirty(right); 2857 btrfs_mark_buffer_dirty(l); 2858 BUG_ON(path->slots[0] != slot); 2859 2860 ret = btrfs_update_ref(trans, root, l, right, 0, nritems); 2861 BUG_ON(ret); 2862 2863 if (mid <= slot) { 2864 btrfs_tree_unlock(path->nodes[0]); 2865 free_extent_buffer(path->nodes[0]); 2866 path->nodes[0] = right; 2867 path->slots[0] -= mid; 2868 path->slots[1] += 1; 2869 } else { 2870 btrfs_tree_unlock(right); 2871 free_extent_buffer(right); 2872 } 2873 2874 BUG_ON(path->slots[0] < 0); 2875 2876 return ret; 2877 } 2878 2879 /* 2880 * split the path's leaf in two, making sure there is at least data_size 2881 * available for the resulting leaf level of the path. 2882 * 2883 * returns 0 if all went well and < 0 on failure. 2884 */ 2885 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2886 struct btrfs_root *root, 2887 struct btrfs_key *ins_key, 2888 struct btrfs_path *path, int data_size, 2889 int extend) 2890 { 2891 struct extent_buffer *l; 2892 u32 nritems; 2893 int mid; 2894 int slot; 2895 struct extent_buffer *right; 2896 int ret = 0; 2897 int wret; 2898 int double_split; 2899 int num_doubles = 0; 2900 2901 /* first try to make some room by pushing left and right */ 2902 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY && 2903 !trans->transaction->delayed_refs.flushing) { 2904 wret = push_leaf_right(trans, root, path, data_size, 0); 2905 if (wret < 0) 2906 return wret; 2907 if (wret) { 2908 wret = push_leaf_left(trans, root, path, data_size, 0); 2909 if (wret < 0) 2910 return wret; 2911 } 2912 l = path->nodes[0]; 2913 2914 /* did the pushes work? */ 2915 if (btrfs_leaf_free_space(root, l) >= data_size) 2916 return 0; 2917 } 2918 2919 if (!path->nodes[1]) { 2920 ret = insert_new_root(trans, root, path, 1); 2921 if (ret) 2922 return ret; 2923 } 2924 again: 2925 double_split = 0; 2926 l = path->nodes[0]; 2927 slot = path->slots[0]; 2928 nritems = btrfs_header_nritems(l); 2929 mid = (nritems + 1) / 2; 2930 2931 right = btrfs_alloc_free_block(trans, root, root->leafsize, 2932 path->nodes[1]->start, 2933 root->root_key.objectid, 2934 trans->transid, 0, l->start, 0); 2935 if (IS_ERR(right)) { 2936 BUG_ON(1); 2937 return PTR_ERR(right); 2938 } 2939 2940 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 2941 btrfs_set_header_bytenr(right, right->start); 2942 btrfs_set_header_generation(right, trans->transid); 2943 btrfs_set_header_owner(right, root->root_key.objectid); 2944 btrfs_set_header_level(right, 0); 2945 write_extent_buffer(right, root->fs_info->fsid, 2946 (unsigned long)btrfs_header_fsid(right), 2947 BTRFS_FSID_SIZE); 2948 2949 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 2950 (unsigned long)btrfs_header_chunk_tree_uuid(right), 2951 BTRFS_UUID_SIZE); 2952 2953 if (mid <= slot) { 2954 if (nritems == 1 || 2955 leaf_space_used(l, mid, nritems - mid) + data_size > 2956 BTRFS_LEAF_DATA_SIZE(root)) { 2957 if (slot >= nritems) { 2958 struct btrfs_disk_key disk_key; 2959 2960 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2961 btrfs_set_header_nritems(right, 0); 2962 wret = insert_ptr(trans, root, path, 2963 &disk_key, right->start, 2964 path->slots[1] + 1, 1); 2965 if (wret) 2966 ret = wret; 2967 2968 btrfs_tree_unlock(path->nodes[0]); 2969 free_extent_buffer(path->nodes[0]); 2970 path->nodes[0] = right; 2971 path->slots[0] = 0; 2972 path->slots[1] += 1; 2973 btrfs_mark_buffer_dirty(right); 2974 return ret; 2975 } 2976 mid = slot; 2977 if (mid != nritems && 2978 leaf_space_used(l, mid, nritems - mid) + 2979 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2980 double_split = 1; 2981 } 2982 } 2983 } else { 2984 if (leaf_space_used(l, 0, mid) + data_size > 2985 BTRFS_LEAF_DATA_SIZE(root)) { 2986 if (!extend && data_size && slot == 0) { 2987 struct btrfs_disk_key disk_key; 2988 2989 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2990 btrfs_set_header_nritems(right, 0); 2991 wret = insert_ptr(trans, root, path, 2992 &disk_key, 2993 right->start, 2994 path->slots[1], 1); 2995 if (wret) 2996 ret = wret; 2997 btrfs_tree_unlock(path->nodes[0]); 2998 free_extent_buffer(path->nodes[0]); 2999 path->nodes[0] = right; 3000 path->slots[0] = 0; 3001 if (path->slots[1] == 0) { 3002 wret = fixup_low_keys(trans, root, 3003 path, &disk_key, 1); 3004 if (wret) 3005 ret = wret; 3006 } 3007 btrfs_mark_buffer_dirty(right); 3008 return ret; 3009 } else if ((extend || !data_size) && slot == 0) { 3010 mid = 1; 3011 } else { 3012 mid = slot; 3013 if (mid != nritems && 3014 leaf_space_used(l, mid, nritems - mid) + 3015 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3016 double_split = 1; 3017 } 3018 } 3019 } 3020 } 3021 3022 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems); 3023 BUG_ON(ret); 3024 3025 if (double_split) { 3026 BUG_ON(num_doubles != 0); 3027 num_doubles++; 3028 goto again; 3029 } 3030 3031 return ret; 3032 } 3033 3034 /* 3035 * This function splits a single item into two items, 3036 * giving 'new_key' to the new item and splitting the 3037 * old one at split_offset (from the start of the item). 3038 * 3039 * The path may be released by this operation. After 3040 * the split, the path is pointing to the old item. The 3041 * new item is going to be in the same node as the old one. 3042 * 3043 * Note, the item being split must be smaller enough to live alone on 3044 * a tree block with room for one extra struct btrfs_item 3045 * 3046 * This allows us to split the item in place, keeping a lock on the 3047 * leaf the entire time. 3048 */ 3049 int btrfs_split_item(struct btrfs_trans_handle *trans, 3050 struct btrfs_root *root, 3051 struct btrfs_path *path, 3052 struct btrfs_key *new_key, 3053 unsigned long split_offset) 3054 { 3055 u32 item_size; 3056 struct extent_buffer *leaf; 3057 struct btrfs_key orig_key; 3058 struct btrfs_item *item; 3059 struct btrfs_item *new_item; 3060 int ret = 0; 3061 int slot; 3062 u32 nritems; 3063 u32 orig_offset; 3064 struct btrfs_disk_key disk_key; 3065 char *buf; 3066 3067 leaf = path->nodes[0]; 3068 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]); 3069 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item)) 3070 goto split; 3071 3072 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3073 btrfs_release_path(root, path); 3074 3075 path->search_for_split = 1; 3076 path->keep_locks = 1; 3077 3078 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1); 3079 path->search_for_split = 0; 3080 3081 /* if our item isn't there or got smaller, return now */ 3082 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0], 3083 path->slots[0])) { 3084 path->keep_locks = 0; 3085 return -EAGAIN; 3086 } 3087 3088 btrfs_set_path_blocking(path); 3089 ret = split_leaf(trans, root, &orig_key, path, 3090 sizeof(struct btrfs_item), 1); 3091 path->keep_locks = 0; 3092 BUG_ON(ret); 3093 3094 btrfs_unlock_up_safe(path, 1); 3095 leaf = path->nodes[0]; 3096 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3097 3098 split: 3099 /* 3100 * make sure any changes to the path from split_leaf leave it 3101 * in a blocking state 3102 */ 3103 btrfs_set_path_blocking(path); 3104 3105 item = btrfs_item_nr(leaf, path->slots[0]); 3106 orig_offset = btrfs_item_offset(leaf, item); 3107 item_size = btrfs_item_size(leaf, item); 3108 3109 buf = kmalloc(item_size, GFP_NOFS); 3110 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3111 path->slots[0]), item_size); 3112 slot = path->slots[0] + 1; 3113 leaf = path->nodes[0]; 3114 3115 nritems = btrfs_header_nritems(leaf); 3116 3117 if (slot != nritems) { 3118 /* shift the items */ 3119 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3120 btrfs_item_nr_offset(slot), 3121 (nritems - slot) * sizeof(struct btrfs_item)); 3122 3123 } 3124 3125 btrfs_cpu_key_to_disk(&disk_key, new_key); 3126 btrfs_set_item_key(leaf, &disk_key, slot); 3127 3128 new_item = btrfs_item_nr(leaf, slot); 3129 3130 btrfs_set_item_offset(leaf, new_item, orig_offset); 3131 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3132 3133 btrfs_set_item_offset(leaf, item, 3134 orig_offset + item_size - split_offset); 3135 btrfs_set_item_size(leaf, item, split_offset); 3136 3137 btrfs_set_header_nritems(leaf, nritems + 1); 3138 3139 /* write the data for the start of the original item */ 3140 write_extent_buffer(leaf, buf, 3141 btrfs_item_ptr_offset(leaf, path->slots[0]), 3142 split_offset); 3143 3144 /* write the data for the new item */ 3145 write_extent_buffer(leaf, buf + split_offset, 3146 btrfs_item_ptr_offset(leaf, slot), 3147 item_size - split_offset); 3148 btrfs_mark_buffer_dirty(leaf); 3149 3150 ret = 0; 3151 if (btrfs_leaf_free_space(root, leaf) < 0) { 3152 btrfs_print_leaf(root, leaf); 3153 BUG(); 3154 } 3155 kfree(buf); 3156 return ret; 3157 } 3158 3159 /* 3160 * make the item pointed to by the path smaller. new_size indicates 3161 * how small to make it, and from_end tells us if we just chop bytes 3162 * off the end of the item or if we shift the item to chop bytes off 3163 * the front. 3164 */ 3165 int btrfs_truncate_item(struct btrfs_trans_handle *trans, 3166 struct btrfs_root *root, 3167 struct btrfs_path *path, 3168 u32 new_size, int from_end) 3169 { 3170 int ret = 0; 3171 int slot; 3172 int slot_orig; 3173 struct extent_buffer *leaf; 3174 struct btrfs_item *item; 3175 u32 nritems; 3176 unsigned int data_end; 3177 unsigned int old_data_start; 3178 unsigned int old_size; 3179 unsigned int size_diff; 3180 int i; 3181 3182 slot_orig = path->slots[0]; 3183 leaf = path->nodes[0]; 3184 slot = path->slots[0]; 3185 3186 old_size = btrfs_item_size_nr(leaf, slot); 3187 if (old_size == new_size) 3188 return 0; 3189 3190 nritems = btrfs_header_nritems(leaf); 3191 data_end = leaf_data_end(root, leaf); 3192 3193 old_data_start = btrfs_item_offset_nr(leaf, slot); 3194 3195 size_diff = old_size - new_size; 3196 3197 BUG_ON(slot < 0); 3198 BUG_ON(slot >= nritems); 3199 3200 /* 3201 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3202 */ 3203 /* first correct the data pointers */ 3204 for (i = slot; i < nritems; i++) { 3205 u32 ioff; 3206 item = btrfs_item_nr(leaf, i); 3207 3208 if (!leaf->map_token) { 3209 map_extent_buffer(leaf, (unsigned long)item, 3210 sizeof(struct btrfs_item), 3211 &leaf->map_token, &leaf->kaddr, 3212 &leaf->map_start, &leaf->map_len, 3213 KM_USER1); 3214 } 3215 3216 ioff = btrfs_item_offset(leaf, item); 3217 btrfs_set_item_offset(leaf, item, ioff + size_diff); 3218 } 3219 3220 if (leaf->map_token) { 3221 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3222 leaf->map_token = NULL; 3223 } 3224 3225 /* shift the data */ 3226 if (from_end) { 3227 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3228 data_end + size_diff, btrfs_leaf_data(leaf) + 3229 data_end, old_data_start + new_size - data_end); 3230 } else { 3231 struct btrfs_disk_key disk_key; 3232 u64 offset; 3233 3234 btrfs_item_key(leaf, &disk_key, slot); 3235 3236 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3237 unsigned long ptr; 3238 struct btrfs_file_extent_item *fi; 3239 3240 fi = btrfs_item_ptr(leaf, slot, 3241 struct btrfs_file_extent_item); 3242 fi = (struct btrfs_file_extent_item *)( 3243 (unsigned long)fi - size_diff); 3244 3245 if (btrfs_file_extent_type(leaf, fi) == 3246 BTRFS_FILE_EXTENT_INLINE) { 3247 ptr = btrfs_item_ptr_offset(leaf, slot); 3248 memmove_extent_buffer(leaf, ptr, 3249 (unsigned long)fi, 3250 offsetof(struct btrfs_file_extent_item, 3251 disk_bytenr)); 3252 } 3253 } 3254 3255 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3256 data_end + size_diff, btrfs_leaf_data(leaf) + 3257 data_end, old_data_start - data_end); 3258 3259 offset = btrfs_disk_key_offset(&disk_key); 3260 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3261 btrfs_set_item_key(leaf, &disk_key, slot); 3262 if (slot == 0) 3263 fixup_low_keys(trans, root, path, &disk_key, 1); 3264 } 3265 3266 item = btrfs_item_nr(leaf, slot); 3267 btrfs_set_item_size(leaf, item, new_size); 3268 btrfs_mark_buffer_dirty(leaf); 3269 3270 ret = 0; 3271 if (btrfs_leaf_free_space(root, leaf) < 0) { 3272 btrfs_print_leaf(root, leaf); 3273 BUG(); 3274 } 3275 return ret; 3276 } 3277 3278 /* 3279 * make the item pointed to by the path bigger, data_size is the new size. 3280 */ 3281 int btrfs_extend_item(struct btrfs_trans_handle *trans, 3282 struct btrfs_root *root, struct btrfs_path *path, 3283 u32 data_size) 3284 { 3285 int ret = 0; 3286 int slot; 3287 int slot_orig; 3288 struct extent_buffer *leaf; 3289 struct btrfs_item *item; 3290 u32 nritems; 3291 unsigned int data_end; 3292 unsigned int old_data; 3293 unsigned int old_size; 3294 int i; 3295 3296 slot_orig = path->slots[0]; 3297 leaf = path->nodes[0]; 3298 3299 nritems = btrfs_header_nritems(leaf); 3300 data_end = leaf_data_end(root, leaf); 3301 3302 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3303 btrfs_print_leaf(root, leaf); 3304 BUG(); 3305 } 3306 slot = path->slots[0]; 3307 old_data = btrfs_item_end_nr(leaf, slot); 3308 3309 BUG_ON(slot < 0); 3310 if (slot >= nritems) { 3311 btrfs_print_leaf(root, leaf); 3312 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3313 slot, nritems); 3314 BUG_ON(1); 3315 } 3316 3317 /* 3318 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3319 */ 3320 /* first correct the data pointers */ 3321 for (i = slot; i < nritems; i++) { 3322 u32 ioff; 3323 item = btrfs_item_nr(leaf, i); 3324 3325 if (!leaf->map_token) { 3326 map_extent_buffer(leaf, (unsigned long)item, 3327 sizeof(struct btrfs_item), 3328 &leaf->map_token, &leaf->kaddr, 3329 &leaf->map_start, &leaf->map_len, 3330 KM_USER1); 3331 } 3332 ioff = btrfs_item_offset(leaf, item); 3333 btrfs_set_item_offset(leaf, item, ioff - data_size); 3334 } 3335 3336 if (leaf->map_token) { 3337 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3338 leaf->map_token = NULL; 3339 } 3340 3341 /* shift the data */ 3342 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3343 data_end - data_size, btrfs_leaf_data(leaf) + 3344 data_end, old_data - data_end); 3345 3346 data_end = old_data; 3347 old_size = btrfs_item_size_nr(leaf, slot); 3348 item = btrfs_item_nr(leaf, slot); 3349 btrfs_set_item_size(leaf, item, old_size + data_size); 3350 btrfs_mark_buffer_dirty(leaf); 3351 3352 ret = 0; 3353 if (btrfs_leaf_free_space(root, leaf) < 0) { 3354 btrfs_print_leaf(root, leaf); 3355 BUG(); 3356 } 3357 return ret; 3358 } 3359 3360 /* 3361 * Given a key and some data, insert items into the tree. 3362 * This does all the path init required, making room in the tree if needed. 3363 * Returns the number of keys that were inserted. 3364 */ 3365 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3366 struct btrfs_root *root, 3367 struct btrfs_path *path, 3368 struct btrfs_key *cpu_key, u32 *data_size, 3369 int nr) 3370 { 3371 struct extent_buffer *leaf; 3372 struct btrfs_item *item; 3373 int ret = 0; 3374 int slot; 3375 int i; 3376 u32 nritems; 3377 u32 total_data = 0; 3378 u32 total_size = 0; 3379 unsigned int data_end; 3380 struct btrfs_disk_key disk_key; 3381 struct btrfs_key found_key; 3382 3383 for (i = 0; i < nr; i++) { 3384 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3385 BTRFS_LEAF_DATA_SIZE(root)) { 3386 break; 3387 nr = i; 3388 } 3389 total_data += data_size[i]; 3390 total_size += data_size[i] + sizeof(struct btrfs_item); 3391 } 3392 BUG_ON(nr == 0); 3393 3394 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3395 if (ret == 0) 3396 return -EEXIST; 3397 if (ret < 0) 3398 goto out; 3399 3400 leaf = path->nodes[0]; 3401 3402 nritems = btrfs_header_nritems(leaf); 3403 data_end = leaf_data_end(root, leaf); 3404 3405 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3406 for (i = nr; i >= 0; i--) { 3407 total_data -= data_size[i]; 3408 total_size -= data_size[i] + sizeof(struct btrfs_item); 3409 if (total_size < btrfs_leaf_free_space(root, leaf)) 3410 break; 3411 } 3412 nr = i; 3413 } 3414 3415 slot = path->slots[0]; 3416 BUG_ON(slot < 0); 3417 3418 if (slot != nritems) { 3419 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3420 3421 item = btrfs_item_nr(leaf, slot); 3422 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3423 3424 /* figure out how many keys we can insert in here */ 3425 total_data = data_size[0]; 3426 for (i = 1; i < nr; i++) { 3427 if (comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3428 break; 3429 total_data += data_size[i]; 3430 } 3431 nr = i; 3432 3433 if (old_data < data_end) { 3434 btrfs_print_leaf(root, leaf); 3435 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3436 slot, old_data, data_end); 3437 BUG_ON(1); 3438 } 3439 /* 3440 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3441 */ 3442 /* first correct the data pointers */ 3443 WARN_ON(leaf->map_token); 3444 for (i = slot; i < nritems; i++) { 3445 u32 ioff; 3446 3447 item = btrfs_item_nr(leaf, i); 3448 if (!leaf->map_token) { 3449 map_extent_buffer(leaf, (unsigned long)item, 3450 sizeof(struct btrfs_item), 3451 &leaf->map_token, &leaf->kaddr, 3452 &leaf->map_start, &leaf->map_len, 3453 KM_USER1); 3454 } 3455 3456 ioff = btrfs_item_offset(leaf, item); 3457 btrfs_set_item_offset(leaf, item, ioff - total_data); 3458 } 3459 if (leaf->map_token) { 3460 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3461 leaf->map_token = NULL; 3462 } 3463 3464 /* shift the items */ 3465 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3466 btrfs_item_nr_offset(slot), 3467 (nritems - slot) * sizeof(struct btrfs_item)); 3468 3469 /* shift the data */ 3470 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3471 data_end - total_data, btrfs_leaf_data(leaf) + 3472 data_end, old_data - data_end); 3473 data_end = old_data; 3474 } else { 3475 /* 3476 * this sucks but it has to be done, if we are inserting at 3477 * the end of the leaf only insert 1 of the items, since we 3478 * have no way of knowing whats on the next leaf and we'd have 3479 * to drop our current locks to figure it out 3480 */ 3481 nr = 1; 3482 } 3483 3484 /* setup the item for the new data */ 3485 for (i = 0; i < nr; i++) { 3486 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3487 btrfs_set_item_key(leaf, &disk_key, slot + i); 3488 item = btrfs_item_nr(leaf, slot + i); 3489 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3490 data_end -= data_size[i]; 3491 btrfs_set_item_size(leaf, item, data_size[i]); 3492 } 3493 btrfs_set_header_nritems(leaf, nritems + nr); 3494 btrfs_mark_buffer_dirty(leaf); 3495 3496 ret = 0; 3497 if (slot == 0) { 3498 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3499 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3500 } 3501 3502 if (btrfs_leaf_free_space(root, leaf) < 0) { 3503 btrfs_print_leaf(root, leaf); 3504 BUG(); 3505 } 3506 out: 3507 if (!ret) 3508 ret = nr; 3509 return ret; 3510 } 3511 3512 /* 3513 * this is a helper for btrfs_insert_empty_items, the main goal here is 3514 * to save stack depth by doing the bulk of the work in a function 3515 * that doesn't call btrfs_search_slot 3516 */ 3517 static noinline_for_stack int 3518 setup_items_for_insert(struct btrfs_trans_handle *trans, 3519 struct btrfs_root *root, struct btrfs_path *path, 3520 struct btrfs_key *cpu_key, u32 *data_size, 3521 u32 total_data, u32 total_size, int nr) 3522 { 3523 struct btrfs_item *item; 3524 int i; 3525 u32 nritems; 3526 unsigned int data_end; 3527 struct btrfs_disk_key disk_key; 3528 int ret; 3529 struct extent_buffer *leaf; 3530 int slot; 3531 3532 leaf = path->nodes[0]; 3533 slot = path->slots[0]; 3534 3535 nritems = btrfs_header_nritems(leaf); 3536 data_end = leaf_data_end(root, leaf); 3537 3538 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3539 btrfs_print_leaf(root, leaf); 3540 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3541 total_size, btrfs_leaf_free_space(root, leaf)); 3542 BUG(); 3543 } 3544 3545 if (slot != nritems) { 3546 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3547 3548 if (old_data < data_end) { 3549 btrfs_print_leaf(root, leaf); 3550 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3551 slot, old_data, data_end); 3552 BUG_ON(1); 3553 } 3554 /* 3555 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3556 */ 3557 /* first correct the data pointers */ 3558 WARN_ON(leaf->map_token); 3559 for (i = slot; i < nritems; i++) { 3560 u32 ioff; 3561 3562 item = btrfs_item_nr(leaf, i); 3563 if (!leaf->map_token) { 3564 map_extent_buffer(leaf, (unsigned long)item, 3565 sizeof(struct btrfs_item), 3566 &leaf->map_token, &leaf->kaddr, 3567 &leaf->map_start, &leaf->map_len, 3568 KM_USER1); 3569 } 3570 3571 ioff = btrfs_item_offset(leaf, item); 3572 btrfs_set_item_offset(leaf, item, ioff - total_data); 3573 } 3574 if (leaf->map_token) { 3575 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3576 leaf->map_token = NULL; 3577 } 3578 3579 /* shift the items */ 3580 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3581 btrfs_item_nr_offset(slot), 3582 (nritems - slot) * sizeof(struct btrfs_item)); 3583 3584 /* shift the data */ 3585 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3586 data_end - total_data, btrfs_leaf_data(leaf) + 3587 data_end, old_data - data_end); 3588 data_end = old_data; 3589 } 3590 3591 /* setup the item for the new data */ 3592 for (i = 0; i < nr; i++) { 3593 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3594 btrfs_set_item_key(leaf, &disk_key, slot + i); 3595 item = btrfs_item_nr(leaf, slot + i); 3596 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3597 data_end -= data_size[i]; 3598 btrfs_set_item_size(leaf, item, data_size[i]); 3599 } 3600 3601 btrfs_set_header_nritems(leaf, nritems + nr); 3602 3603 ret = 0; 3604 if (slot == 0) { 3605 struct btrfs_disk_key disk_key; 3606 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3607 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3608 } 3609 btrfs_unlock_up_safe(path, 1); 3610 btrfs_mark_buffer_dirty(leaf); 3611 3612 if (btrfs_leaf_free_space(root, leaf) < 0) { 3613 btrfs_print_leaf(root, leaf); 3614 BUG(); 3615 } 3616 return ret; 3617 } 3618 3619 /* 3620 * Given a key and some data, insert items into the tree. 3621 * This does all the path init required, making room in the tree if needed. 3622 */ 3623 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3624 struct btrfs_root *root, 3625 struct btrfs_path *path, 3626 struct btrfs_key *cpu_key, u32 *data_size, 3627 int nr) 3628 { 3629 struct extent_buffer *leaf; 3630 int ret = 0; 3631 int slot; 3632 int i; 3633 u32 total_size = 0; 3634 u32 total_data = 0; 3635 3636 for (i = 0; i < nr; i++) 3637 total_data += data_size[i]; 3638 3639 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3640 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3641 if (ret == 0) 3642 return -EEXIST; 3643 if (ret < 0) 3644 goto out; 3645 3646 leaf = path->nodes[0]; 3647 slot = path->slots[0]; 3648 BUG_ON(slot < 0); 3649 3650 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size, 3651 total_data, total_size, nr); 3652 3653 out: 3654 return ret; 3655 } 3656 3657 /* 3658 * Given a key and some data, insert an item into the tree. 3659 * This does all the path init required, making room in the tree if needed. 3660 */ 3661 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3662 *root, struct btrfs_key *cpu_key, void *data, u32 3663 data_size) 3664 { 3665 int ret = 0; 3666 struct btrfs_path *path; 3667 struct extent_buffer *leaf; 3668 unsigned long ptr; 3669 3670 path = btrfs_alloc_path(); 3671 BUG_ON(!path); 3672 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3673 if (!ret) { 3674 leaf = path->nodes[0]; 3675 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3676 write_extent_buffer(leaf, data, ptr, data_size); 3677 btrfs_mark_buffer_dirty(leaf); 3678 } 3679 btrfs_free_path(path); 3680 return ret; 3681 } 3682 3683 /* 3684 * delete the pointer from a given node. 3685 * 3686 * the tree should have been previously balanced so the deletion does not 3687 * empty a node. 3688 */ 3689 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3690 struct btrfs_path *path, int level, int slot) 3691 { 3692 struct extent_buffer *parent = path->nodes[level]; 3693 u32 nritems; 3694 int ret = 0; 3695 int wret; 3696 3697 nritems = btrfs_header_nritems(parent); 3698 if (slot != nritems - 1) { 3699 memmove_extent_buffer(parent, 3700 btrfs_node_key_ptr_offset(slot), 3701 btrfs_node_key_ptr_offset(slot + 1), 3702 sizeof(struct btrfs_key_ptr) * 3703 (nritems - slot - 1)); 3704 } 3705 nritems--; 3706 btrfs_set_header_nritems(parent, nritems); 3707 if (nritems == 0 && parent == root->node) { 3708 BUG_ON(btrfs_header_level(root->node) != 1); 3709 /* just turn the root into a leaf and break */ 3710 btrfs_set_header_level(root->node, 0); 3711 } else if (slot == 0) { 3712 struct btrfs_disk_key disk_key; 3713 3714 btrfs_node_key(parent, &disk_key, 0); 3715 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); 3716 if (wret) 3717 ret = wret; 3718 } 3719 btrfs_mark_buffer_dirty(parent); 3720 return ret; 3721 } 3722 3723 /* 3724 * a helper function to delete the leaf pointed to by path->slots[1] and 3725 * path->nodes[1]. bytenr is the node block pointer, but since the callers 3726 * already know it, it is faster to have them pass it down than to 3727 * read it out of the node again. 3728 * 3729 * This deletes the pointer in path->nodes[1] and frees the leaf 3730 * block extent. zero is returned if it all worked out, < 0 otherwise. 3731 * 3732 * The path must have already been setup for deleting the leaf, including 3733 * all the proper balancing. path->nodes[1] must be locked. 3734 */ 3735 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 3736 struct btrfs_root *root, 3737 struct btrfs_path *path, u64 bytenr) 3738 { 3739 int ret; 3740 u64 root_gen = btrfs_header_generation(path->nodes[1]); 3741 u64 parent_start = path->nodes[1]->start; 3742 u64 parent_owner = btrfs_header_owner(path->nodes[1]); 3743 3744 ret = del_ptr(trans, root, path, 1, path->slots[1]); 3745 if (ret) 3746 return ret; 3747 3748 /* 3749 * btrfs_free_extent is expensive, we want to make sure we 3750 * aren't holding any locks when we call it 3751 */ 3752 btrfs_unlock_up_safe(path, 0); 3753 3754 ret = btrfs_free_extent(trans, root, bytenr, 3755 btrfs_level_size(root, 0), 3756 parent_start, parent_owner, 3757 root_gen, 0, 1); 3758 return ret; 3759 } 3760 /* 3761 * delete the item at the leaf level in path. If that empties 3762 * the leaf, remove it from the tree 3763 */ 3764 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3765 struct btrfs_path *path, int slot, int nr) 3766 { 3767 struct extent_buffer *leaf; 3768 struct btrfs_item *item; 3769 int last_off; 3770 int dsize = 0; 3771 int ret = 0; 3772 int wret; 3773 int i; 3774 u32 nritems; 3775 3776 leaf = path->nodes[0]; 3777 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3778 3779 for (i = 0; i < nr; i++) 3780 dsize += btrfs_item_size_nr(leaf, slot + i); 3781 3782 nritems = btrfs_header_nritems(leaf); 3783 3784 if (slot + nr != nritems) { 3785 int data_end = leaf_data_end(root, leaf); 3786 3787 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3788 data_end + dsize, 3789 btrfs_leaf_data(leaf) + data_end, 3790 last_off - data_end); 3791 3792 for (i = slot + nr; i < nritems; i++) { 3793 u32 ioff; 3794 3795 item = btrfs_item_nr(leaf, i); 3796 if (!leaf->map_token) { 3797 map_extent_buffer(leaf, (unsigned long)item, 3798 sizeof(struct btrfs_item), 3799 &leaf->map_token, &leaf->kaddr, 3800 &leaf->map_start, &leaf->map_len, 3801 KM_USER1); 3802 } 3803 ioff = btrfs_item_offset(leaf, item); 3804 btrfs_set_item_offset(leaf, item, ioff + dsize); 3805 } 3806 3807 if (leaf->map_token) { 3808 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3809 leaf->map_token = NULL; 3810 } 3811 3812 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3813 btrfs_item_nr_offset(slot + nr), 3814 sizeof(struct btrfs_item) * 3815 (nritems - slot - nr)); 3816 } 3817 btrfs_set_header_nritems(leaf, nritems - nr); 3818 nritems -= nr; 3819 3820 /* delete the leaf if we've emptied it */ 3821 if (nritems == 0) { 3822 if (leaf == root->node) { 3823 btrfs_set_header_level(leaf, 0); 3824 } else { 3825 ret = btrfs_del_leaf(trans, root, path, leaf->start); 3826 BUG_ON(ret); 3827 } 3828 } else { 3829 int used = leaf_space_used(leaf, 0, nritems); 3830 if (slot == 0) { 3831 struct btrfs_disk_key disk_key; 3832 3833 btrfs_item_key(leaf, &disk_key, 0); 3834 wret = fixup_low_keys(trans, root, path, 3835 &disk_key, 1); 3836 if (wret) 3837 ret = wret; 3838 } 3839 3840 /* delete the leaf if it is mostly empty */ 3841 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 && 3842 !trans->transaction->delayed_refs.flushing) { 3843 /* push_leaf_left fixes the path. 3844 * make sure the path still points to our leaf 3845 * for possible call to del_ptr below 3846 */ 3847 slot = path->slots[1]; 3848 extent_buffer_get(leaf); 3849 3850 btrfs_set_path_blocking(path); 3851 wret = push_leaf_left(trans, root, path, 1, 1); 3852 if (wret < 0 && wret != -ENOSPC) 3853 ret = wret; 3854 3855 if (path->nodes[0] == leaf && 3856 btrfs_header_nritems(leaf)) { 3857 wret = push_leaf_right(trans, root, path, 1, 1); 3858 if (wret < 0 && wret != -ENOSPC) 3859 ret = wret; 3860 } 3861 3862 if (btrfs_header_nritems(leaf) == 0) { 3863 path->slots[1] = slot; 3864 ret = btrfs_del_leaf(trans, root, path, 3865 leaf->start); 3866 BUG_ON(ret); 3867 free_extent_buffer(leaf); 3868 } else { 3869 /* if we're still in the path, make sure 3870 * we're dirty. Otherwise, one of the 3871 * push_leaf functions must have already 3872 * dirtied this buffer 3873 */ 3874 if (path->nodes[0] == leaf) 3875 btrfs_mark_buffer_dirty(leaf); 3876 free_extent_buffer(leaf); 3877 } 3878 } else { 3879 btrfs_mark_buffer_dirty(leaf); 3880 } 3881 } 3882 return ret; 3883 } 3884 3885 /* 3886 * search the tree again to find a leaf with lesser keys 3887 * returns 0 if it found something or 1 if there are no lesser leaves. 3888 * returns < 0 on io errors. 3889 * 3890 * This may release the path, and so you may lose any locks held at the 3891 * time you call it. 3892 */ 3893 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 3894 { 3895 struct btrfs_key key; 3896 struct btrfs_disk_key found_key; 3897 int ret; 3898 3899 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 3900 3901 if (key.offset > 0) 3902 key.offset--; 3903 else if (key.type > 0) 3904 key.type--; 3905 else if (key.objectid > 0) 3906 key.objectid--; 3907 else 3908 return 1; 3909 3910 btrfs_release_path(root, path); 3911 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3912 if (ret < 0) 3913 return ret; 3914 btrfs_item_key(path->nodes[0], &found_key, 0); 3915 ret = comp_keys(&found_key, &key); 3916 if (ret < 0) 3917 return 0; 3918 return 1; 3919 } 3920 3921 /* 3922 * A helper function to walk down the tree starting at min_key, and looking 3923 * for nodes or leaves that are either in cache or have a minimum 3924 * transaction id. This is used by the btree defrag code, and tree logging 3925 * 3926 * This does not cow, but it does stuff the starting key it finds back 3927 * into min_key, so you can call btrfs_search_slot with cow=1 on the 3928 * key and get a writable path. 3929 * 3930 * This does lock as it descends, and path->keep_locks should be set 3931 * to 1 by the caller. 3932 * 3933 * This honors path->lowest_level to prevent descent past a given level 3934 * of the tree. 3935 * 3936 * min_trans indicates the oldest transaction that you are interested 3937 * in walking through. Any nodes or leaves older than min_trans are 3938 * skipped over (without reading them). 3939 * 3940 * returns zero if something useful was found, < 0 on error and 1 if there 3941 * was nothing in the tree that matched the search criteria. 3942 */ 3943 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3944 struct btrfs_key *max_key, 3945 struct btrfs_path *path, int cache_only, 3946 u64 min_trans) 3947 { 3948 struct extent_buffer *cur; 3949 struct btrfs_key found_key; 3950 int slot; 3951 int sret; 3952 u32 nritems; 3953 int level; 3954 int ret = 1; 3955 3956 WARN_ON(!path->keep_locks); 3957 again: 3958 cur = btrfs_lock_root_node(root); 3959 level = btrfs_header_level(cur); 3960 WARN_ON(path->nodes[level]); 3961 path->nodes[level] = cur; 3962 path->locks[level] = 1; 3963 3964 if (btrfs_header_generation(cur) < min_trans) { 3965 ret = 1; 3966 goto out; 3967 } 3968 while (1) { 3969 nritems = btrfs_header_nritems(cur); 3970 level = btrfs_header_level(cur); 3971 sret = bin_search(cur, min_key, level, &slot); 3972 3973 /* at the lowest level, we're done, setup the path and exit */ 3974 if (level == path->lowest_level) { 3975 if (slot >= nritems) 3976 goto find_next_key; 3977 ret = 0; 3978 path->slots[level] = slot; 3979 btrfs_item_key_to_cpu(cur, &found_key, slot); 3980 goto out; 3981 } 3982 if (sret && slot > 0) 3983 slot--; 3984 /* 3985 * check this node pointer against the cache_only and 3986 * min_trans parameters. If it isn't in cache or is too 3987 * old, skip to the next one. 3988 */ 3989 while (slot < nritems) { 3990 u64 blockptr; 3991 u64 gen; 3992 struct extent_buffer *tmp; 3993 struct btrfs_disk_key disk_key; 3994 3995 blockptr = btrfs_node_blockptr(cur, slot); 3996 gen = btrfs_node_ptr_generation(cur, slot); 3997 if (gen < min_trans) { 3998 slot++; 3999 continue; 4000 } 4001 if (!cache_only) 4002 break; 4003 4004 if (max_key) { 4005 btrfs_node_key(cur, &disk_key, slot); 4006 if (comp_keys(&disk_key, max_key) >= 0) { 4007 ret = 1; 4008 goto out; 4009 } 4010 } 4011 4012 tmp = btrfs_find_tree_block(root, blockptr, 4013 btrfs_level_size(root, level - 1)); 4014 4015 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 4016 free_extent_buffer(tmp); 4017 break; 4018 } 4019 if (tmp) 4020 free_extent_buffer(tmp); 4021 slot++; 4022 } 4023 find_next_key: 4024 /* 4025 * we didn't find a candidate key in this node, walk forward 4026 * and find another one 4027 */ 4028 if (slot >= nritems) { 4029 path->slots[level] = slot; 4030 btrfs_set_path_blocking(path); 4031 sret = btrfs_find_next_key(root, path, min_key, level, 4032 cache_only, min_trans); 4033 if (sret == 0) { 4034 btrfs_release_path(root, path); 4035 goto again; 4036 } else { 4037 goto out; 4038 } 4039 } 4040 /* save our key for returning back */ 4041 btrfs_node_key_to_cpu(cur, &found_key, slot); 4042 path->slots[level] = slot; 4043 if (level == path->lowest_level) { 4044 ret = 0; 4045 unlock_up(path, level, 1); 4046 goto out; 4047 } 4048 btrfs_set_path_blocking(path); 4049 cur = read_node_slot(root, cur, slot); 4050 4051 btrfs_tree_lock(cur); 4052 4053 path->locks[level - 1] = 1; 4054 path->nodes[level - 1] = cur; 4055 unlock_up(path, level, 1); 4056 btrfs_clear_path_blocking(path, NULL); 4057 } 4058 out: 4059 if (ret == 0) 4060 memcpy(min_key, &found_key, sizeof(found_key)); 4061 btrfs_set_path_blocking(path); 4062 return ret; 4063 } 4064 4065 /* 4066 * this is similar to btrfs_next_leaf, but does not try to preserve 4067 * and fixup the path. It looks for and returns the next key in the 4068 * tree based on the current path and the cache_only and min_trans 4069 * parameters. 4070 * 4071 * 0 is returned if another key is found, < 0 if there are any errors 4072 * and 1 is returned if there are no higher keys in the tree 4073 * 4074 * path->keep_locks should be set to 1 on the search made before 4075 * calling this function. 4076 */ 4077 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4078 struct btrfs_key *key, int lowest_level, 4079 int cache_only, u64 min_trans) 4080 { 4081 int level = lowest_level; 4082 int slot; 4083 struct extent_buffer *c; 4084 4085 WARN_ON(!path->keep_locks); 4086 while (level < BTRFS_MAX_LEVEL) { 4087 if (!path->nodes[level]) 4088 return 1; 4089 4090 slot = path->slots[level] + 1; 4091 c = path->nodes[level]; 4092 next: 4093 if (slot >= btrfs_header_nritems(c)) { 4094 level++; 4095 if (level == BTRFS_MAX_LEVEL) 4096 return 1; 4097 continue; 4098 } 4099 if (level == 0) 4100 btrfs_item_key_to_cpu(c, key, slot); 4101 else { 4102 u64 blockptr = btrfs_node_blockptr(c, slot); 4103 u64 gen = btrfs_node_ptr_generation(c, slot); 4104 4105 if (cache_only) { 4106 struct extent_buffer *cur; 4107 cur = btrfs_find_tree_block(root, blockptr, 4108 btrfs_level_size(root, level - 1)); 4109 if (!cur || !btrfs_buffer_uptodate(cur, gen)) { 4110 slot++; 4111 if (cur) 4112 free_extent_buffer(cur); 4113 goto next; 4114 } 4115 free_extent_buffer(cur); 4116 } 4117 if (gen < min_trans) { 4118 slot++; 4119 goto next; 4120 } 4121 btrfs_node_key_to_cpu(c, key, slot); 4122 } 4123 return 0; 4124 } 4125 return 1; 4126 } 4127 4128 /* 4129 * search the tree again to find a leaf with greater keys 4130 * returns 0 if it found something or 1 if there are no greater leaves. 4131 * returns < 0 on io errors. 4132 */ 4133 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4134 { 4135 int slot; 4136 int level; 4137 struct extent_buffer *c; 4138 struct extent_buffer *next; 4139 struct btrfs_key key; 4140 u32 nritems; 4141 int ret; 4142 int old_spinning = path->leave_spinning; 4143 int force_blocking = 0; 4144 4145 nritems = btrfs_header_nritems(path->nodes[0]); 4146 if (nritems == 0) 4147 return 1; 4148 4149 /* 4150 * we take the blocks in an order that upsets lockdep. Using 4151 * blocking mode is the only way around it. 4152 */ 4153 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4154 force_blocking = 1; 4155 #endif 4156 4157 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4158 again: 4159 level = 1; 4160 next = NULL; 4161 btrfs_release_path(root, path); 4162 4163 path->keep_locks = 1; 4164 4165 if (!force_blocking) 4166 path->leave_spinning = 1; 4167 4168 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4169 path->keep_locks = 0; 4170 4171 if (ret < 0) 4172 return ret; 4173 4174 nritems = btrfs_header_nritems(path->nodes[0]); 4175 /* 4176 * by releasing the path above we dropped all our locks. A balance 4177 * could have added more items next to the key that used to be 4178 * at the very end of the block. So, check again here and 4179 * advance the path if there are now more items available. 4180 */ 4181 if (nritems > 0 && path->slots[0] < nritems - 1) { 4182 path->slots[0]++; 4183 ret = 0; 4184 goto done; 4185 } 4186 4187 while (level < BTRFS_MAX_LEVEL) { 4188 if (!path->nodes[level]) { 4189 ret = 1; 4190 goto done; 4191 } 4192 4193 slot = path->slots[level] + 1; 4194 c = path->nodes[level]; 4195 if (slot >= btrfs_header_nritems(c)) { 4196 level++; 4197 if (level == BTRFS_MAX_LEVEL) { 4198 ret = 1; 4199 goto done; 4200 } 4201 continue; 4202 } 4203 4204 if (next) { 4205 btrfs_tree_unlock(next); 4206 free_extent_buffer(next); 4207 } 4208 4209 next = c; 4210 ret = read_block_for_search(NULL, root, path, &next, level, 4211 slot, &key); 4212 if (ret == -EAGAIN) 4213 goto again; 4214 4215 if (!path->skip_locking) { 4216 ret = btrfs_try_spin_lock(next); 4217 if (!ret) { 4218 btrfs_set_path_blocking(path); 4219 btrfs_tree_lock(next); 4220 if (!force_blocking) 4221 btrfs_clear_path_blocking(path, next); 4222 } 4223 if (force_blocking) 4224 btrfs_set_lock_blocking(next); 4225 } 4226 break; 4227 } 4228 path->slots[level] = slot; 4229 while (1) { 4230 level--; 4231 c = path->nodes[level]; 4232 if (path->locks[level]) 4233 btrfs_tree_unlock(c); 4234 4235 free_extent_buffer(c); 4236 path->nodes[level] = next; 4237 path->slots[level] = 0; 4238 if (!path->skip_locking) 4239 path->locks[level] = 1; 4240 4241 if (!level) 4242 break; 4243 4244 ret = read_block_for_search(NULL, root, path, &next, level, 4245 0, &key); 4246 if (ret == -EAGAIN) 4247 goto again; 4248 4249 if (!path->skip_locking) { 4250 btrfs_assert_tree_locked(path->nodes[level]); 4251 ret = btrfs_try_spin_lock(next); 4252 if (!ret) { 4253 btrfs_set_path_blocking(path); 4254 btrfs_tree_lock(next); 4255 if (!force_blocking) 4256 btrfs_clear_path_blocking(path, next); 4257 } 4258 if (force_blocking) 4259 btrfs_set_lock_blocking(next); 4260 } 4261 } 4262 ret = 0; 4263 done: 4264 unlock_up(path, 0, 1); 4265 path->leave_spinning = old_spinning; 4266 if (!old_spinning) 4267 btrfs_set_path_blocking(path); 4268 4269 return ret; 4270 } 4271 4272 /* 4273 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4274 * searching until it gets past min_objectid or finds an item of 'type' 4275 * 4276 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4277 */ 4278 int btrfs_previous_item(struct btrfs_root *root, 4279 struct btrfs_path *path, u64 min_objectid, 4280 int type) 4281 { 4282 struct btrfs_key found_key; 4283 struct extent_buffer *leaf; 4284 u32 nritems; 4285 int ret; 4286 4287 while (1) { 4288 if (path->slots[0] == 0) { 4289 btrfs_set_path_blocking(path); 4290 ret = btrfs_prev_leaf(root, path); 4291 if (ret != 0) 4292 return ret; 4293 } else { 4294 path->slots[0]--; 4295 } 4296 leaf = path->nodes[0]; 4297 nritems = btrfs_header_nritems(leaf); 4298 if (nritems == 0) 4299 return 1; 4300 if (path->slots[0] == nritems) 4301 path->slots[0]--; 4302 4303 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4304 if (found_key.type == type) 4305 return 0; 4306 if (found_key.objectid < min_objectid) 4307 break; 4308 if (found_key.objectid == min_objectid && 4309 found_key.type < type) 4310 break; 4311 } 4312 return 1; 4313 } 4314