xref: /openbmc/linux/fs/btrfs/ctree.c (revision b04b4f78)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25 
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 		      *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_key *ins_key,
30 		      struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 			  struct btrfs_root *root, struct extent_buffer *dst,
33 			  struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 			      struct btrfs_root *root,
36 			      struct extent_buffer *dst_buf,
37 			      struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 		   struct btrfs_path *path, int level, int slot);
40 
41 struct btrfs_path *btrfs_alloc_path(void)
42 {
43 	struct btrfs_path *path;
44 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
45 	if (path)
46 		path->reada = 1;
47 	return path;
48 }
49 
50 /*
51  * set all locked nodes in the path to blocking locks.  This should
52  * be done before scheduling
53  */
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
55 {
56 	int i;
57 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58 		if (p->nodes[i] && p->locks[i])
59 			btrfs_set_lock_blocking(p->nodes[i]);
60 	}
61 }
62 
63 /*
64  * reset all the locked nodes in the patch to spinning locks.
65  *
66  * held is used to keep lockdep happy, when lockdep is enabled
67  * we set held to a blocking lock before we go around and
68  * retake all the spinlocks in the path.  You can safely use NULL
69  * for held
70  */
71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
72 					struct extent_buffer *held)
73 {
74 	int i;
75 
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77 	/* lockdep really cares that we take all of these spinlocks
78 	 * in the right order.  If any of the locks in the path are not
79 	 * currently blocking, it is going to complain.  So, make really
80 	 * really sure by forcing the path to blocking before we clear
81 	 * the path blocking.
82 	 */
83 	if (held)
84 		btrfs_set_lock_blocking(held);
85 	btrfs_set_path_blocking(p);
86 #endif
87 
88 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
89 		if (p->nodes[i] && p->locks[i])
90 			btrfs_clear_lock_blocking(p->nodes[i]);
91 	}
92 
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 	if (held)
95 		btrfs_clear_lock_blocking(held);
96 #endif
97 }
98 
99 /* this also releases the path */
100 void btrfs_free_path(struct btrfs_path *p)
101 {
102 	btrfs_release_path(NULL, p);
103 	kmem_cache_free(btrfs_path_cachep, p);
104 }
105 
106 /*
107  * path release drops references on the extent buffers in the path
108  * and it drops any locks held by this path
109  *
110  * It is safe to call this on paths that no locks or extent buffers held.
111  */
112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
113 {
114 	int i;
115 
116 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
117 		p->slots[i] = 0;
118 		if (!p->nodes[i])
119 			continue;
120 		if (p->locks[i]) {
121 			btrfs_tree_unlock(p->nodes[i]);
122 			p->locks[i] = 0;
123 		}
124 		free_extent_buffer(p->nodes[i]);
125 		p->nodes[i] = NULL;
126 	}
127 }
128 
129 /*
130  * safely gets a reference on the root node of a tree.  A lock
131  * is not taken, so a concurrent writer may put a different node
132  * at the root of the tree.  See btrfs_lock_root_node for the
133  * looping required.
134  *
135  * The extent buffer returned by this has a reference taken, so
136  * it won't disappear.  It may stop being the root of the tree
137  * at any time because there are no locks held.
138  */
139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
140 {
141 	struct extent_buffer *eb;
142 	spin_lock(&root->node_lock);
143 	eb = root->node;
144 	extent_buffer_get(eb);
145 	spin_unlock(&root->node_lock);
146 	return eb;
147 }
148 
149 /* loop around taking references on and locking the root node of the
150  * tree until you end up with a lock on the root.  A locked buffer
151  * is returned, with a reference held.
152  */
153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
154 {
155 	struct extent_buffer *eb;
156 
157 	while (1) {
158 		eb = btrfs_root_node(root);
159 		btrfs_tree_lock(eb);
160 
161 		spin_lock(&root->node_lock);
162 		if (eb == root->node) {
163 			spin_unlock(&root->node_lock);
164 			break;
165 		}
166 		spin_unlock(&root->node_lock);
167 
168 		btrfs_tree_unlock(eb);
169 		free_extent_buffer(eb);
170 	}
171 	return eb;
172 }
173 
174 /* cowonly root (everything not a reference counted cow subvolume), just get
175  * put onto a simple dirty list.  transaction.c walks this to make sure they
176  * get properly updated on disk.
177  */
178 static void add_root_to_dirty_list(struct btrfs_root *root)
179 {
180 	if (root->track_dirty && list_empty(&root->dirty_list)) {
181 		list_add(&root->dirty_list,
182 			 &root->fs_info->dirty_cowonly_roots);
183 	}
184 }
185 
186 /*
187  * used by snapshot creation to make a copy of a root for a tree with
188  * a given objectid.  The buffer with the new root node is returned in
189  * cow_ret, and this func returns zero on success or a negative error code.
190  */
191 int btrfs_copy_root(struct btrfs_trans_handle *trans,
192 		      struct btrfs_root *root,
193 		      struct extent_buffer *buf,
194 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
195 {
196 	struct extent_buffer *cow;
197 	u32 nritems;
198 	int ret = 0;
199 	int level;
200 	struct btrfs_root *new_root;
201 
202 	new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
203 	if (!new_root)
204 		return -ENOMEM;
205 
206 	memcpy(new_root, root, sizeof(*new_root));
207 	new_root->root_key.objectid = new_root_objectid;
208 
209 	WARN_ON(root->ref_cows && trans->transid !=
210 		root->fs_info->running_transaction->transid);
211 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
212 
213 	level = btrfs_header_level(buf);
214 	nritems = btrfs_header_nritems(buf);
215 
216 	cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
217 				     new_root_objectid, trans->transid,
218 				     level, buf->start, 0);
219 	if (IS_ERR(cow)) {
220 		kfree(new_root);
221 		return PTR_ERR(cow);
222 	}
223 
224 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
225 	btrfs_set_header_bytenr(cow, cow->start);
226 	btrfs_set_header_generation(cow, trans->transid);
227 	btrfs_set_header_owner(cow, new_root_objectid);
228 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
229 
230 	write_extent_buffer(cow, root->fs_info->fsid,
231 			    (unsigned long)btrfs_header_fsid(cow),
232 			    BTRFS_FSID_SIZE);
233 
234 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
235 	ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
236 	kfree(new_root);
237 
238 	if (ret)
239 		return ret;
240 
241 	btrfs_mark_buffer_dirty(cow);
242 	*cow_ret = cow;
243 	return 0;
244 }
245 
246 /*
247  * does the dirty work in cow of a single block.  The parent block (if
248  * supplied) is updated to point to the new cow copy.  The new buffer is marked
249  * dirty and returned locked.  If you modify the block it needs to be marked
250  * dirty again.
251  *
252  * search_start -- an allocation hint for the new block
253  *
254  * empty_size -- a hint that you plan on doing more cow.  This is the size in
255  * bytes the allocator should try to find free next to the block it returns.
256  * This is just a hint and may be ignored by the allocator.
257  */
258 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
259 			     struct btrfs_root *root,
260 			     struct extent_buffer *buf,
261 			     struct extent_buffer *parent, int parent_slot,
262 			     struct extent_buffer **cow_ret,
263 			     u64 search_start, u64 empty_size)
264 {
265 	u64 parent_start;
266 	struct extent_buffer *cow;
267 	u32 nritems;
268 	int ret = 0;
269 	int level;
270 	int unlock_orig = 0;
271 
272 	if (*cow_ret == buf)
273 		unlock_orig = 1;
274 
275 	btrfs_assert_tree_locked(buf);
276 
277 	if (parent)
278 		parent_start = parent->start;
279 	else
280 		parent_start = 0;
281 
282 	WARN_ON(root->ref_cows && trans->transid !=
283 		root->fs_info->running_transaction->transid);
284 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
285 
286 	level = btrfs_header_level(buf);
287 	nritems = btrfs_header_nritems(buf);
288 
289 	cow = btrfs_alloc_free_block(trans, root, buf->len,
290 				     parent_start, root->root_key.objectid,
291 				     trans->transid, level,
292 				     search_start, empty_size);
293 	if (IS_ERR(cow))
294 		return PTR_ERR(cow);
295 
296 	/* cow is set to blocking by btrfs_init_new_buffer */
297 
298 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
299 	btrfs_set_header_bytenr(cow, cow->start);
300 	btrfs_set_header_generation(cow, trans->transid);
301 	btrfs_set_header_owner(cow, root->root_key.objectid);
302 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
303 
304 	write_extent_buffer(cow, root->fs_info->fsid,
305 			    (unsigned long)btrfs_header_fsid(cow),
306 			    BTRFS_FSID_SIZE);
307 
308 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
309 	if (btrfs_header_generation(buf) != trans->transid) {
310 		u32 nr_extents;
311 		ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
312 		if (ret)
313 			return ret;
314 
315 		ret = btrfs_cache_ref(trans, root, buf, nr_extents);
316 		WARN_ON(ret);
317 	} else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
318 		/*
319 		 * There are only two places that can drop reference to
320 		 * tree blocks owned by living reloc trees, one is here,
321 		 * the other place is btrfs_drop_subtree. In both places,
322 		 * we check reference count while tree block is locked.
323 		 * Furthermore, if reference count is one, it won't get
324 		 * increased by someone else.
325 		 */
326 		u32 refs;
327 		ret = btrfs_lookup_extent_ref(trans, root, buf->start,
328 					      buf->len, &refs);
329 		BUG_ON(ret);
330 		if (refs == 1) {
331 			ret = btrfs_update_ref(trans, root, buf, cow,
332 					       0, nritems);
333 			clean_tree_block(trans, root, buf);
334 		} else {
335 			ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
336 		}
337 		BUG_ON(ret);
338 	} else {
339 		ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
340 		if (ret)
341 			return ret;
342 		clean_tree_block(trans, root, buf);
343 	}
344 
345 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
346 		ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
347 		WARN_ON(ret);
348 	}
349 
350 	if (buf == root->node) {
351 		WARN_ON(parent && parent != buf);
352 
353 		spin_lock(&root->node_lock);
354 		root->node = cow;
355 		extent_buffer_get(cow);
356 		spin_unlock(&root->node_lock);
357 
358 		if (buf != root->commit_root) {
359 			btrfs_free_extent(trans, root, buf->start,
360 					  buf->len, buf->start,
361 					  root->root_key.objectid,
362 					  btrfs_header_generation(buf),
363 					  level, 1);
364 		}
365 		free_extent_buffer(buf);
366 		add_root_to_dirty_list(root);
367 	} else {
368 		btrfs_set_node_blockptr(parent, parent_slot,
369 					cow->start);
370 		WARN_ON(trans->transid == 0);
371 		btrfs_set_node_ptr_generation(parent, parent_slot,
372 					      trans->transid);
373 		btrfs_mark_buffer_dirty(parent);
374 		WARN_ON(btrfs_header_generation(parent) != trans->transid);
375 		btrfs_free_extent(trans, root, buf->start, buf->len,
376 				  parent_start, btrfs_header_owner(parent),
377 				  btrfs_header_generation(parent), level, 1);
378 	}
379 	if (unlock_orig)
380 		btrfs_tree_unlock(buf);
381 	free_extent_buffer(buf);
382 	btrfs_mark_buffer_dirty(cow);
383 	*cow_ret = cow;
384 	return 0;
385 }
386 
387 /*
388  * cows a single block, see __btrfs_cow_block for the real work.
389  * This version of it has extra checks so that a block isn't cow'd more than
390  * once per transaction, as long as it hasn't been written yet
391  */
392 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
393 		    struct btrfs_root *root, struct extent_buffer *buf,
394 		    struct extent_buffer *parent, int parent_slot,
395 		    struct extent_buffer **cow_ret)
396 {
397 	u64 search_start;
398 	int ret;
399 
400 	if (trans->transaction != root->fs_info->running_transaction) {
401 		printk(KERN_CRIT "trans %llu running %llu\n",
402 		       (unsigned long long)trans->transid,
403 		       (unsigned long long)
404 		       root->fs_info->running_transaction->transid);
405 		WARN_ON(1);
406 	}
407 	if (trans->transid != root->fs_info->generation) {
408 		printk(KERN_CRIT "trans %llu running %llu\n",
409 		       (unsigned long long)trans->transid,
410 		       (unsigned long long)root->fs_info->generation);
411 		WARN_ON(1);
412 	}
413 
414 	if (btrfs_header_generation(buf) == trans->transid &&
415 	    btrfs_header_owner(buf) == root->root_key.objectid &&
416 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
417 		*cow_ret = buf;
418 		return 0;
419 	}
420 
421 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
422 
423 	if (parent)
424 		btrfs_set_lock_blocking(parent);
425 	btrfs_set_lock_blocking(buf);
426 
427 	ret = __btrfs_cow_block(trans, root, buf, parent,
428 				 parent_slot, cow_ret, search_start, 0);
429 	return ret;
430 }
431 
432 /*
433  * helper function for defrag to decide if two blocks pointed to by a
434  * node are actually close by
435  */
436 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
437 {
438 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
439 		return 1;
440 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
441 		return 1;
442 	return 0;
443 }
444 
445 /*
446  * compare two keys in a memcmp fashion
447  */
448 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
449 {
450 	struct btrfs_key k1;
451 
452 	btrfs_disk_key_to_cpu(&k1, disk);
453 
454 	if (k1.objectid > k2->objectid)
455 		return 1;
456 	if (k1.objectid < k2->objectid)
457 		return -1;
458 	if (k1.type > k2->type)
459 		return 1;
460 	if (k1.type < k2->type)
461 		return -1;
462 	if (k1.offset > k2->offset)
463 		return 1;
464 	if (k1.offset < k2->offset)
465 		return -1;
466 	return 0;
467 }
468 
469 /*
470  * same as comp_keys only with two btrfs_key's
471  */
472 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
473 {
474 	if (k1->objectid > k2->objectid)
475 		return 1;
476 	if (k1->objectid < k2->objectid)
477 		return -1;
478 	if (k1->type > k2->type)
479 		return 1;
480 	if (k1->type < k2->type)
481 		return -1;
482 	if (k1->offset > k2->offset)
483 		return 1;
484 	if (k1->offset < k2->offset)
485 		return -1;
486 	return 0;
487 }
488 
489 /*
490  * this is used by the defrag code to go through all the
491  * leaves pointed to by a node and reallocate them so that
492  * disk order is close to key order
493  */
494 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
495 		       struct btrfs_root *root, struct extent_buffer *parent,
496 		       int start_slot, int cache_only, u64 *last_ret,
497 		       struct btrfs_key *progress)
498 {
499 	struct extent_buffer *cur;
500 	u64 blocknr;
501 	u64 gen;
502 	u64 search_start = *last_ret;
503 	u64 last_block = 0;
504 	u64 other;
505 	u32 parent_nritems;
506 	int end_slot;
507 	int i;
508 	int err = 0;
509 	int parent_level;
510 	int uptodate;
511 	u32 blocksize;
512 	int progress_passed = 0;
513 	struct btrfs_disk_key disk_key;
514 
515 	parent_level = btrfs_header_level(parent);
516 	if (cache_only && parent_level != 1)
517 		return 0;
518 
519 	if (trans->transaction != root->fs_info->running_transaction)
520 		WARN_ON(1);
521 	if (trans->transid != root->fs_info->generation)
522 		WARN_ON(1);
523 
524 	parent_nritems = btrfs_header_nritems(parent);
525 	blocksize = btrfs_level_size(root, parent_level - 1);
526 	end_slot = parent_nritems;
527 
528 	if (parent_nritems == 1)
529 		return 0;
530 
531 	btrfs_set_lock_blocking(parent);
532 
533 	for (i = start_slot; i < end_slot; i++) {
534 		int close = 1;
535 
536 		if (!parent->map_token) {
537 			map_extent_buffer(parent,
538 					btrfs_node_key_ptr_offset(i),
539 					sizeof(struct btrfs_key_ptr),
540 					&parent->map_token, &parent->kaddr,
541 					&parent->map_start, &parent->map_len,
542 					KM_USER1);
543 		}
544 		btrfs_node_key(parent, &disk_key, i);
545 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
546 			continue;
547 
548 		progress_passed = 1;
549 		blocknr = btrfs_node_blockptr(parent, i);
550 		gen = btrfs_node_ptr_generation(parent, i);
551 		if (last_block == 0)
552 			last_block = blocknr;
553 
554 		if (i > 0) {
555 			other = btrfs_node_blockptr(parent, i - 1);
556 			close = close_blocks(blocknr, other, blocksize);
557 		}
558 		if (!close && i < end_slot - 2) {
559 			other = btrfs_node_blockptr(parent, i + 1);
560 			close = close_blocks(blocknr, other, blocksize);
561 		}
562 		if (close) {
563 			last_block = blocknr;
564 			continue;
565 		}
566 		if (parent->map_token) {
567 			unmap_extent_buffer(parent, parent->map_token,
568 					    KM_USER1);
569 			parent->map_token = NULL;
570 		}
571 
572 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
573 		if (cur)
574 			uptodate = btrfs_buffer_uptodate(cur, gen);
575 		else
576 			uptodate = 0;
577 		if (!cur || !uptodate) {
578 			if (cache_only) {
579 				free_extent_buffer(cur);
580 				continue;
581 			}
582 			if (!cur) {
583 				cur = read_tree_block(root, blocknr,
584 							 blocksize, gen);
585 			} else if (!uptodate) {
586 				btrfs_read_buffer(cur, gen);
587 			}
588 		}
589 		if (search_start == 0)
590 			search_start = last_block;
591 
592 		btrfs_tree_lock(cur);
593 		btrfs_set_lock_blocking(cur);
594 		err = __btrfs_cow_block(trans, root, cur, parent, i,
595 					&cur, search_start,
596 					min(16 * blocksize,
597 					    (end_slot - i) * blocksize));
598 		if (err) {
599 			btrfs_tree_unlock(cur);
600 			free_extent_buffer(cur);
601 			break;
602 		}
603 		search_start = cur->start;
604 		last_block = cur->start;
605 		*last_ret = search_start;
606 		btrfs_tree_unlock(cur);
607 		free_extent_buffer(cur);
608 	}
609 	if (parent->map_token) {
610 		unmap_extent_buffer(parent, parent->map_token,
611 				    KM_USER1);
612 		parent->map_token = NULL;
613 	}
614 	return err;
615 }
616 
617 /*
618  * The leaf data grows from end-to-front in the node.
619  * this returns the address of the start of the last item,
620  * which is the stop of the leaf data stack
621  */
622 static inline unsigned int leaf_data_end(struct btrfs_root *root,
623 					 struct extent_buffer *leaf)
624 {
625 	u32 nr = btrfs_header_nritems(leaf);
626 	if (nr == 0)
627 		return BTRFS_LEAF_DATA_SIZE(root);
628 	return btrfs_item_offset_nr(leaf, nr - 1);
629 }
630 
631 /*
632  * extra debugging checks to make sure all the items in a key are
633  * well formed and in the proper order
634  */
635 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
636 		      int level)
637 {
638 	struct extent_buffer *parent = NULL;
639 	struct extent_buffer *node = path->nodes[level];
640 	struct btrfs_disk_key parent_key;
641 	struct btrfs_disk_key node_key;
642 	int parent_slot;
643 	int slot;
644 	struct btrfs_key cpukey;
645 	u32 nritems = btrfs_header_nritems(node);
646 
647 	if (path->nodes[level + 1])
648 		parent = path->nodes[level + 1];
649 
650 	slot = path->slots[level];
651 	BUG_ON(nritems == 0);
652 	if (parent) {
653 		parent_slot = path->slots[level + 1];
654 		btrfs_node_key(parent, &parent_key, parent_slot);
655 		btrfs_node_key(node, &node_key, 0);
656 		BUG_ON(memcmp(&parent_key, &node_key,
657 			      sizeof(struct btrfs_disk_key)));
658 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
659 		       btrfs_header_bytenr(node));
660 	}
661 	BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
662 	if (slot != 0) {
663 		btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
664 		btrfs_node_key(node, &node_key, slot);
665 		BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
666 	}
667 	if (slot < nritems - 1) {
668 		btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
669 		btrfs_node_key(node, &node_key, slot);
670 		BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
671 	}
672 	return 0;
673 }
674 
675 /*
676  * extra checking to make sure all the items in a leaf are
677  * well formed and in the proper order
678  */
679 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
680 		      int level)
681 {
682 	struct extent_buffer *leaf = path->nodes[level];
683 	struct extent_buffer *parent = NULL;
684 	int parent_slot;
685 	struct btrfs_key cpukey;
686 	struct btrfs_disk_key parent_key;
687 	struct btrfs_disk_key leaf_key;
688 	int slot = path->slots[0];
689 
690 	u32 nritems = btrfs_header_nritems(leaf);
691 
692 	if (path->nodes[level + 1])
693 		parent = path->nodes[level + 1];
694 
695 	if (nritems == 0)
696 		return 0;
697 
698 	if (parent) {
699 		parent_slot = path->slots[level + 1];
700 		btrfs_node_key(parent, &parent_key, parent_slot);
701 		btrfs_item_key(leaf, &leaf_key, 0);
702 
703 		BUG_ON(memcmp(&parent_key, &leaf_key,
704 		       sizeof(struct btrfs_disk_key)));
705 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
706 		       btrfs_header_bytenr(leaf));
707 	}
708 	if (slot != 0 && slot < nritems - 1) {
709 		btrfs_item_key(leaf, &leaf_key, slot);
710 		btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
711 		if (comp_keys(&leaf_key, &cpukey) <= 0) {
712 			btrfs_print_leaf(root, leaf);
713 			printk(KERN_CRIT "slot %d offset bad key\n", slot);
714 			BUG_ON(1);
715 		}
716 		if (btrfs_item_offset_nr(leaf, slot - 1) !=
717 		       btrfs_item_end_nr(leaf, slot)) {
718 			btrfs_print_leaf(root, leaf);
719 			printk(KERN_CRIT "slot %d offset bad\n", slot);
720 			BUG_ON(1);
721 		}
722 	}
723 	if (slot < nritems - 1) {
724 		btrfs_item_key(leaf, &leaf_key, slot);
725 		btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
726 		BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
727 		if (btrfs_item_offset_nr(leaf, slot) !=
728 			btrfs_item_end_nr(leaf, slot + 1)) {
729 			btrfs_print_leaf(root, leaf);
730 			printk(KERN_CRIT "slot %d offset bad\n", slot);
731 			BUG_ON(1);
732 		}
733 	}
734 	BUG_ON(btrfs_item_offset_nr(leaf, 0) +
735 	       btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
736 	return 0;
737 }
738 
739 static noinline int check_block(struct btrfs_root *root,
740 				struct btrfs_path *path, int level)
741 {
742 	return 0;
743 	if (level == 0)
744 		return check_leaf(root, path, level);
745 	return check_node(root, path, level);
746 }
747 
748 /*
749  * search for key in the extent_buffer.  The items start at offset p,
750  * and they are item_size apart.  There are 'max' items in p.
751  *
752  * the slot in the array is returned via slot, and it points to
753  * the place where you would insert key if it is not found in
754  * the array.
755  *
756  * slot may point to max if the key is bigger than all of the keys
757  */
758 static noinline int generic_bin_search(struct extent_buffer *eb,
759 				       unsigned long p,
760 				       int item_size, struct btrfs_key *key,
761 				       int max, int *slot)
762 {
763 	int low = 0;
764 	int high = max;
765 	int mid;
766 	int ret;
767 	struct btrfs_disk_key *tmp = NULL;
768 	struct btrfs_disk_key unaligned;
769 	unsigned long offset;
770 	char *map_token = NULL;
771 	char *kaddr = NULL;
772 	unsigned long map_start = 0;
773 	unsigned long map_len = 0;
774 	int err;
775 
776 	while (low < high) {
777 		mid = (low + high) / 2;
778 		offset = p + mid * item_size;
779 
780 		if (!map_token || offset < map_start ||
781 		    (offset + sizeof(struct btrfs_disk_key)) >
782 		    map_start + map_len) {
783 			if (map_token) {
784 				unmap_extent_buffer(eb, map_token, KM_USER0);
785 				map_token = NULL;
786 			}
787 
788 			err = map_private_extent_buffer(eb, offset,
789 						sizeof(struct btrfs_disk_key),
790 						&map_token, &kaddr,
791 						&map_start, &map_len, KM_USER0);
792 
793 			if (!err) {
794 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
795 							map_start);
796 			} else {
797 				read_extent_buffer(eb, &unaligned,
798 						   offset, sizeof(unaligned));
799 				tmp = &unaligned;
800 			}
801 
802 		} else {
803 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
804 							map_start);
805 		}
806 		ret = comp_keys(tmp, key);
807 
808 		if (ret < 0)
809 			low = mid + 1;
810 		else if (ret > 0)
811 			high = mid;
812 		else {
813 			*slot = mid;
814 			if (map_token)
815 				unmap_extent_buffer(eb, map_token, KM_USER0);
816 			return 0;
817 		}
818 	}
819 	*slot = low;
820 	if (map_token)
821 		unmap_extent_buffer(eb, map_token, KM_USER0);
822 	return 1;
823 }
824 
825 /*
826  * simple bin_search frontend that does the right thing for
827  * leaves vs nodes
828  */
829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
830 		      int level, int *slot)
831 {
832 	if (level == 0) {
833 		return generic_bin_search(eb,
834 					  offsetof(struct btrfs_leaf, items),
835 					  sizeof(struct btrfs_item),
836 					  key, btrfs_header_nritems(eb),
837 					  slot);
838 	} else {
839 		return generic_bin_search(eb,
840 					  offsetof(struct btrfs_node, ptrs),
841 					  sizeof(struct btrfs_key_ptr),
842 					  key, btrfs_header_nritems(eb),
843 					  slot);
844 	}
845 	return -1;
846 }
847 
848 /* given a node and slot number, this reads the blocks it points to.  The
849  * extent buffer is returned with a reference taken (but unlocked).
850  * NULL is returned on error.
851  */
852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
853 				   struct extent_buffer *parent, int slot)
854 {
855 	int level = btrfs_header_level(parent);
856 	if (slot < 0)
857 		return NULL;
858 	if (slot >= btrfs_header_nritems(parent))
859 		return NULL;
860 
861 	BUG_ON(level == 0);
862 
863 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
864 		       btrfs_level_size(root, level - 1),
865 		       btrfs_node_ptr_generation(parent, slot));
866 }
867 
868 /*
869  * node level balancing, used to make sure nodes are in proper order for
870  * item deletion.  We balance from the top down, so we have to make sure
871  * that a deletion won't leave an node completely empty later on.
872  */
873 static noinline int balance_level(struct btrfs_trans_handle *trans,
874 			 struct btrfs_root *root,
875 			 struct btrfs_path *path, int level)
876 {
877 	struct extent_buffer *right = NULL;
878 	struct extent_buffer *mid;
879 	struct extent_buffer *left = NULL;
880 	struct extent_buffer *parent = NULL;
881 	int ret = 0;
882 	int wret;
883 	int pslot;
884 	int orig_slot = path->slots[level];
885 	int err_on_enospc = 0;
886 	u64 orig_ptr;
887 
888 	if (level == 0)
889 		return 0;
890 
891 	mid = path->nodes[level];
892 
893 	WARN_ON(!path->locks[level]);
894 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
895 
896 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
897 
898 	if (level < BTRFS_MAX_LEVEL - 1)
899 		parent = path->nodes[level + 1];
900 	pslot = path->slots[level + 1];
901 
902 	/*
903 	 * deal with the case where there is only one pointer in the root
904 	 * by promoting the node below to a root
905 	 */
906 	if (!parent) {
907 		struct extent_buffer *child;
908 
909 		if (btrfs_header_nritems(mid) != 1)
910 			return 0;
911 
912 		/* promote the child to a root */
913 		child = read_node_slot(root, mid, 0);
914 		BUG_ON(!child);
915 		btrfs_tree_lock(child);
916 		btrfs_set_lock_blocking(child);
917 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
918 		BUG_ON(ret);
919 
920 		spin_lock(&root->node_lock);
921 		root->node = child;
922 		spin_unlock(&root->node_lock);
923 
924 		ret = btrfs_update_extent_ref(trans, root, child->start,
925 					      child->len,
926 					      mid->start, child->start,
927 					      root->root_key.objectid,
928 					      trans->transid, level - 1);
929 		BUG_ON(ret);
930 
931 		add_root_to_dirty_list(root);
932 		btrfs_tree_unlock(child);
933 
934 		path->locks[level] = 0;
935 		path->nodes[level] = NULL;
936 		clean_tree_block(trans, root, mid);
937 		btrfs_tree_unlock(mid);
938 		/* once for the path */
939 		free_extent_buffer(mid);
940 		ret = btrfs_free_extent(trans, root, mid->start, mid->len,
941 					mid->start, root->root_key.objectid,
942 					btrfs_header_generation(mid),
943 					level, 1);
944 		/* once for the root ptr */
945 		free_extent_buffer(mid);
946 		return ret;
947 	}
948 	if (btrfs_header_nritems(mid) >
949 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
950 		return 0;
951 
952 	if (trans->transaction->delayed_refs.flushing &&
953 	    btrfs_header_nritems(mid) > 2)
954 		return 0;
955 
956 	if (btrfs_header_nritems(mid) < 2)
957 		err_on_enospc = 1;
958 
959 	left = read_node_slot(root, parent, pslot - 1);
960 	if (left) {
961 		btrfs_tree_lock(left);
962 		btrfs_set_lock_blocking(left);
963 		wret = btrfs_cow_block(trans, root, left,
964 				       parent, pslot - 1, &left);
965 		if (wret) {
966 			ret = wret;
967 			goto enospc;
968 		}
969 	}
970 	right = read_node_slot(root, parent, pslot + 1);
971 	if (right) {
972 		btrfs_tree_lock(right);
973 		btrfs_set_lock_blocking(right);
974 		wret = btrfs_cow_block(trans, root, right,
975 				       parent, pslot + 1, &right);
976 		if (wret) {
977 			ret = wret;
978 			goto enospc;
979 		}
980 	}
981 
982 	/* first, try to make some room in the middle buffer */
983 	if (left) {
984 		orig_slot += btrfs_header_nritems(left);
985 		wret = push_node_left(trans, root, left, mid, 1);
986 		if (wret < 0)
987 			ret = wret;
988 		if (btrfs_header_nritems(mid) < 2)
989 			err_on_enospc = 1;
990 	}
991 
992 	/*
993 	 * then try to empty the right most buffer into the middle
994 	 */
995 	if (right) {
996 		wret = push_node_left(trans, root, mid, right, 1);
997 		if (wret < 0 && wret != -ENOSPC)
998 			ret = wret;
999 		if (btrfs_header_nritems(right) == 0) {
1000 			u64 bytenr = right->start;
1001 			u64 generation = btrfs_header_generation(parent);
1002 			u32 blocksize = right->len;
1003 
1004 			clean_tree_block(trans, root, right);
1005 			btrfs_tree_unlock(right);
1006 			free_extent_buffer(right);
1007 			right = NULL;
1008 			wret = del_ptr(trans, root, path, level + 1, pslot +
1009 				       1);
1010 			if (wret)
1011 				ret = wret;
1012 			wret = btrfs_free_extent(trans, root, bytenr,
1013 						 blocksize, parent->start,
1014 						 btrfs_header_owner(parent),
1015 						 generation, level, 1);
1016 			if (wret)
1017 				ret = wret;
1018 		} else {
1019 			struct btrfs_disk_key right_key;
1020 			btrfs_node_key(right, &right_key, 0);
1021 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1022 			btrfs_mark_buffer_dirty(parent);
1023 		}
1024 	}
1025 	if (btrfs_header_nritems(mid) == 1) {
1026 		/*
1027 		 * we're not allowed to leave a node with one item in the
1028 		 * tree during a delete.  A deletion from lower in the tree
1029 		 * could try to delete the only pointer in this node.
1030 		 * So, pull some keys from the left.
1031 		 * There has to be a left pointer at this point because
1032 		 * otherwise we would have pulled some pointers from the
1033 		 * right
1034 		 */
1035 		BUG_ON(!left);
1036 		wret = balance_node_right(trans, root, mid, left);
1037 		if (wret < 0) {
1038 			ret = wret;
1039 			goto enospc;
1040 		}
1041 		if (wret == 1) {
1042 			wret = push_node_left(trans, root, left, mid, 1);
1043 			if (wret < 0)
1044 				ret = wret;
1045 		}
1046 		BUG_ON(wret == 1);
1047 	}
1048 	if (btrfs_header_nritems(mid) == 0) {
1049 		/* we've managed to empty the middle node, drop it */
1050 		u64 root_gen = btrfs_header_generation(parent);
1051 		u64 bytenr = mid->start;
1052 		u32 blocksize = mid->len;
1053 
1054 		clean_tree_block(trans, root, mid);
1055 		btrfs_tree_unlock(mid);
1056 		free_extent_buffer(mid);
1057 		mid = NULL;
1058 		wret = del_ptr(trans, root, path, level + 1, pslot);
1059 		if (wret)
1060 			ret = wret;
1061 		wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1062 					 parent->start,
1063 					 btrfs_header_owner(parent),
1064 					 root_gen, level, 1);
1065 		if (wret)
1066 			ret = wret;
1067 	} else {
1068 		/* update the parent key to reflect our changes */
1069 		struct btrfs_disk_key mid_key;
1070 		btrfs_node_key(mid, &mid_key, 0);
1071 		btrfs_set_node_key(parent, &mid_key, pslot);
1072 		btrfs_mark_buffer_dirty(parent);
1073 	}
1074 
1075 	/* update the path */
1076 	if (left) {
1077 		if (btrfs_header_nritems(left) > orig_slot) {
1078 			extent_buffer_get(left);
1079 			/* left was locked after cow */
1080 			path->nodes[level] = left;
1081 			path->slots[level + 1] -= 1;
1082 			path->slots[level] = orig_slot;
1083 			if (mid) {
1084 				btrfs_tree_unlock(mid);
1085 				free_extent_buffer(mid);
1086 			}
1087 		} else {
1088 			orig_slot -= btrfs_header_nritems(left);
1089 			path->slots[level] = orig_slot;
1090 		}
1091 	}
1092 	/* double check we haven't messed things up */
1093 	check_block(root, path, level);
1094 	if (orig_ptr !=
1095 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1096 		BUG();
1097 enospc:
1098 	if (right) {
1099 		btrfs_tree_unlock(right);
1100 		free_extent_buffer(right);
1101 	}
1102 	if (left) {
1103 		if (path->nodes[level] != left)
1104 			btrfs_tree_unlock(left);
1105 		free_extent_buffer(left);
1106 	}
1107 	return ret;
1108 }
1109 
1110 /* Node balancing for insertion.  Here we only split or push nodes around
1111  * when they are completely full.  This is also done top down, so we
1112  * have to be pessimistic.
1113  */
1114 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1115 					  struct btrfs_root *root,
1116 					  struct btrfs_path *path, int level)
1117 {
1118 	struct extent_buffer *right = NULL;
1119 	struct extent_buffer *mid;
1120 	struct extent_buffer *left = NULL;
1121 	struct extent_buffer *parent = NULL;
1122 	int ret = 0;
1123 	int wret;
1124 	int pslot;
1125 	int orig_slot = path->slots[level];
1126 	u64 orig_ptr;
1127 
1128 	if (level == 0)
1129 		return 1;
1130 
1131 	mid = path->nodes[level];
1132 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1133 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1134 
1135 	if (level < BTRFS_MAX_LEVEL - 1)
1136 		parent = path->nodes[level + 1];
1137 	pslot = path->slots[level + 1];
1138 
1139 	if (!parent)
1140 		return 1;
1141 
1142 	left = read_node_slot(root, parent, pslot - 1);
1143 
1144 	/* first, try to make some room in the middle buffer */
1145 	if (left) {
1146 		u32 left_nr;
1147 
1148 		btrfs_tree_lock(left);
1149 		btrfs_set_lock_blocking(left);
1150 
1151 		left_nr = btrfs_header_nritems(left);
1152 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1153 			wret = 1;
1154 		} else {
1155 			ret = btrfs_cow_block(trans, root, left, parent,
1156 					      pslot - 1, &left);
1157 			if (ret)
1158 				wret = 1;
1159 			else {
1160 				wret = push_node_left(trans, root,
1161 						      left, mid, 0);
1162 			}
1163 		}
1164 		if (wret < 0)
1165 			ret = wret;
1166 		if (wret == 0) {
1167 			struct btrfs_disk_key disk_key;
1168 			orig_slot += left_nr;
1169 			btrfs_node_key(mid, &disk_key, 0);
1170 			btrfs_set_node_key(parent, &disk_key, pslot);
1171 			btrfs_mark_buffer_dirty(parent);
1172 			if (btrfs_header_nritems(left) > orig_slot) {
1173 				path->nodes[level] = left;
1174 				path->slots[level + 1] -= 1;
1175 				path->slots[level] = orig_slot;
1176 				btrfs_tree_unlock(mid);
1177 				free_extent_buffer(mid);
1178 			} else {
1179 				orig_slot -=
1180 					btrfs_header_nritems(left);
1181 				path->slots[level] = orig_slot;
1182 				btrfs_tree_unlock(left);
1183 				free_extent_buffer(left);
1184 			}
1185 			return 0;
1186 		}
1187 		btrfs_tree_unlock(left);
1188 		free_extent_buffer(left);
1189 	}
1190 	right = read_node_slot(root, parent, pslot + 1);
1191 
1192 	/*
1193 	 * then try to empty the right most buffer into the middle
1194 	 */
1195 	if (right) {
1196 		u32 right_nr;
1197 
1198 		btrfs_tree_lock(right);
1199 		btrfs_set_lock_blocking(right);
1200 
1201 		right_nr = btrfs_header_nritems(right);
1202 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1203 			wret = 1;
1204 		} else {
1205 			ret = btrfs_cow_block(trans, root, right,
1206 					      parent, pslot + 1,
1207 					      &right);
1208 			if (ret)
1209 				wret = 1;
1210 			else {
1211 				wret = balance_node_right(trans, root,
1212 							  right, mid);
1213 			}
1214 		}
1215 		if (wret < 0)
1216 			ret = wret;
1217 		if (wret == 0) {
1218 			struct btrfs_disk_key disk_key;
1219 
1220 			btrfs_node_key(right, &disk_key, 0);
1221 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1222 			btrfs_mark_buffer_dirty(parent);
1223 
1224 			if (btrfs_header_nritems(mid) <= orig_slot) {
1225 				path->nodes[level] = right;
1226 				path->slots[level + 1] += 1;
1227 				path->slots[level] = orig_slot -
1228 					btrfs_header_nritems(mid);
1229 				btrfs_tree_unlock(mid);
1230 				free_extent_buffer(mid);
1231 			} else {
1232 				btrfs_tree_unlock(right);
1233 				free_extent_buffer(right);
1234 			}
1235 			return 0;
1236 		}
1237 		btrfs_tree_unlock(right);
1238 		free_extent_buffer(right);
1239 	}
1240 	return 1;
1241 }
1242 
1243 /*
1244  * readahead one full node of leaves, finding things that are close
1245  * to the block in 'slot', and triggering ra on them.
1246  */
1247 static void reada_for_search(struct btrfs_root *root,
1248 			     struct btrfs_path *path,
1249 			     int level, int slot, u64 objectid)
1250 {
1251 	struct extent_buffer *node;
1252 	struct btrfs_disk_key disk_key;
1253 	u32 nritems;
1254 	u64 search;
1255 	u64 target;
1256 	u64 nread = 0;
1257 	int direction = path->reada;
1258 	struct extent_buffer *eb;
1259 	u32 nr;
1260 	u32 blocksize;
1261 	u32 nscan = 0;
1262 
1263 	if (level != 1)
1264 		return;
1265 
1266 	if (!path->nodes[level])
1267 		return;
1268 
1269 	node = path->nodes[level];
1270 
1271 	search = btrfs_node_blockptr(node, slot);
1272 	blocksize = btrfs_level_size(root, level - 1);
1273 	eb = btrfs_find_tree_block(root, search, blocksize);
1274 	if (eb) {
1275 		free_extent_buffer(eb);
1276 		return;
1277 	}
1278 
1279 	target = search;
1280 
1281 	nritems = btrfs_header_nritems(node);
1282 	nr = slot;
1283 	while (1) {
1284 		if (direction < 0) {
1285 			if (nr == 0)
1286 				break;
1287 			nr--;
1288 		} else if (direction > 0) {
1289 			nr++;
1290 			if (nr >= nritems)
1291 				break;
1292 		}
1293 		if (path->reada < 0 && objectid) {
1294 			btrfs_node_key(node, &disk_key, nr);
1295 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1296 				break;
1297 		}
1298 		search = btrfs_node_blockptr(node, nr);
1299 		if ((search <= target && target - search <= 65536) ||
1300 		    (search > target && search - target <= 65536)) {
1301 			readahead_tree_block(root, search, blocksize,
1302 				     btrfs_node_ptr_generation(node, nr));
1303 			nread += blocksize;
1304 		}
1305 		nscan++;
1306 		if ((nread > 65536 || nscan > 32))
1307 			break;
1308 	}
1309 }
1310 
1311 /*
1312  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1313  * cache
1314  */
1315 static noinline int reada_for_balance(struct btrfs_root *root,
1316 				      struct btrfs_path *path, int level)
1317 {
1318 	int slot;
1319 	int nritems;
1320 	struct extent_buffer *parent;
1321 	struct extent_buffer *eb;
1322 	u64 gen;
1323 	u64 block1 = 0;
1324 	u64 block2 = 0;
1325 	int ret = 0;
1326 	int blocksize;
1327 
1328 	parent = path->nodes[level + 1];
1329 	if (!parent)
1330 		return 0;
1331 
1332 	nritems = btrfs_header_nritems(parent);
1333 	slot = path->slots[level + 1];
1334 	blocksize = btrfs_level_size(root, level);
1335 
1336 	if (slot > 0) {
1337 		block1 = btrfs_node_blockptr(parent, slot - 1);
1338 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1339 		eb = btrfs_find_tree_block(root, block1, blocksize);
1340 		if (eb && btrfs_buffer_uptodate(eb, gen))
1341 			block1 = 0;
1342 		free_extent_buffer(eb);
1343 	}
1344 	if (slot + 1 < nritems) {
1345 		block2 = btrfs_node_blockptr(parent, slot + 1);
1346 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1347 		eb = btrfs_find_tree_block(root, block2, blocksize);
1348 		if (eb && btrfs_buffer_uptodate(eb, gen))
1349 			block2 = 0;
1350 		free_extent_buffer(eb);
1351 	}
1352 	if (block1 || block2) {
1353 		ret = -EAGAIN;
1354 
1355 		/* release the whole path */
1356 		btrfs_release_path(root, path);
1357 
1358 		/* read the blocks */
1359 		if (block1)
1360 			readahead_tree_block(root, block1, blocksize, 0);
1361 		if (block2)
1362 			readahead_tree_block(root, block2, blocksize, 0);
1363 
1364 		if (block1) {
1365 			eb = read_tree_block(root, block1, blocksize, 0);
1366 			free_extent_buffer(eb);
1367 		}
1368 		if (block2) {
1369 			eb = read_tree_block(root, block2, blocksize, 0);
1370 			free_extent_buffer(eb);
1371 		}
1372 	}
1373 	return ret;
1374 }
1375 
1376 
1377 /*
1378  * when we walk down the tree, it is usually safe to unlock the higher layers
1379  * in the tree.  The exceptions are when our path goes through slot 0, because
1380  * operations on the tree might require changing key pointers higher up in the
1381  * tree.
1382  *
1383  * callers might also have set path->keep_locks, which tells this code to keep
1384  * the lock if the path points to the last slot in the block.  This is part of
1385  * walking through the tree, and selecting the next slot in the higher block.
1386  *
1387  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1388  * if lowest_unlock is 1, level 0 won't be unlocked
1389  */
1390 static noinline void unlock_up(struct btrfs_path *path, int level,
1391 			       int lowest_unlock)
1392 {
1393 	int i;
1394 	int skip_level = level;
1395 	int no_skips = 0;
1396 	struct extent_buffer *t;
1397 
1398 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1399 		if (!path->nodes[i])
1400 			break;
1401 		if (!path->locks[i])
1402 			break;
1403 		if (!no_skips && path->slots[i] == 0) {
1404 			skip_level = i + 1;
1405 			continue;
1406 		}
1407 		if (!no_skips && path->keep_locks) {
1408 			u32 nritems;
1409 			t = path->nodes[i];
1410 			nritems = btrfs_header_nritems(t);
1411 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1412 				skip_level = i + 1;
1413 				continue;
1414 			}
1415 		}
1416 		if (skip_level < i && i >= lowest_unlock)
1417 			no_skips = 1;
1418 
1419 		t = path->nodes[i];
1420 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1421 			btrfs_tree_unlock(t);
1422 			path->locks[i] = 0;
1423 		}
1424 	}
1425 }
1426 
1427 /*
1428  * This releases any locks held in the path starting at level and
1429  * going all the way up to the root.
1430  *
1431  * btrfs_search_slot will keep the lock held on higher nodes in a few
1432  * corner cases, such as COW of the block at slot zero in the node.  This
1433  * ignores those rules, and it should only be called when there are no
1434  * more updates to be done higher up in the tree.
1435  */
1436 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1437 {
1438 	int i;
1439 
1440 	if (path->keep_locks || path->lowest_level)
1441 		return;
1442 
1443 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1444 		if (!path->nodes[i])
1445 			continue;
1446 		if (!path->locks[i])
1447 			continue;
1448 		btrfs_tree_unlock(path->nodes[i]);
1449 		path->locks[i] = 0;
1450 	}
1451 }
1452 
1453 /*
1454  * helper function for btrfs_search_slot.  The goal is to find a block
1455  * in cache without setting the path to blocking.  If we find the block
1456  * we return zero and the path is unchanged.
1457  *
1458  * If we can't find the block, we set the path blocking and do some
1459  * reada.  -EAGAIN is returned and the search must be repeated.
1460  */
1461 static int
1462 read_block_for_search(struct btrfs_trans_handle *trans,
1463 		       struct btrfs_root *root, struct btrfs_path *p,
1464 		       struct extent_buffer **eb_ret, int level, int slot,
1465 		       struct btrfs_key *key)
1466 {
1467 	u64 blocknr;
1468 	u64 gen;
1469 	u32 blocksize;
1470 	struct extent_buffer *b = *eb_ret;
1471 	struct extent_buffer *tmp;
1472 
1473 	blocknr = btrfs_node_blockptr(b, slot);
1474 	gen = btrfs_node_ptr_generation(b, slot);
1475 	blocksize = btrfs_level_size(root, level - 1);
1476 
1477 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1478 	if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1479 		*eb_ret = tmp;
1480 		return 0;
1481 	}
1482 
1483 	/*
1484 	 * reduce lock contention at high levels
1485 	 * of the btree by dropping locks before
1486 	 * we read.
1487 	 */
1488 	btrfs_unlock_up_safe(p, level + 1);
1489 	btrfs_set_path_blocking(p);
1490 
1491 	if (tmp)
1492 		free_extent_buffer(tmp);
1493 	if (p->reada)
1494 		reada_for_search(root, p, level, slot, key->objectid);
1495 
1496 	btrfs_release_path(NULL, p);
1497 	tmp = read_tree_block(root, blocknr, blocksize, gen);
1498 	if (tmp)
1499 		free_extent_buffer(tmp);
1500 	return -EAGAIN;
1501 }
1502 
1503 /*
1504  * helper function for btrfs_search_slot.  This does all of the checks
1505  * for node-level blocks and does any balancing required based on
1506  * the ins_len.
1507  *
1508  * If no extra work was required, zero is returned.  If we had to
1509  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1510  * start over
1511  */
1512 static int
1513 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1514 		       struct btrfs_root *root, struct btrfs_path *p,
1515 		       struct extent_buffer *b, int level, int ins_len)
1516 {
1517 	int ret;
1518 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1519 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1520 		int sret;
1521 
1522 		sret = reada_for_balance(root, p, level);
1523 		if (sret)
1524 			goto again;
1525 
1526 		btrfs_set_path_blocking(p);
1527 		sret = split_node(trans, root, p, level);
1528 		btrfs_clear_path_blocking(p, NULL);
1529 
1530 		BUG_ON(sret > 0);
1531 		if (sret) {
1532 			ret = sret;
1533 			goto done;
1534 		}
1535 		b = p->nodes[level];
1536 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1537 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
1538 		int sret;
1539 
1540 		sret = reada_for_balance(root, p, level);
1541 		if (sret)
1542 			goto again;
1543 
1544 		btrfs_set_path_blocking(p);
1545 		sret = balance_level(trans, root, p, level);
1546 		btrfs_clear_path_blocking(p, NULL);
1547 
1548 		if (sret) {
1549 			ret = sret;
1550 			goto done;
1551 		}
1552 		b = p->nodes[level];
1553 		if (!b) {
1554 			btrfs_release_path(NULL, p);
1555 			goto again;
1556 		}
1557 		BUG_ON(btrfs_header_nritems(b) == 1);
1558 	}
1559 	return 0;
1560 
1561 again:
1562 	ret = -EAGAIN;
1563 done:
1564 	return ret;
1565 }
1566 
1567 /*
1568  * look for key in the tree.  path is filled in with nodes along the way
1569  * if key is found, we return zero and you can find the item in the leaf
1570  * level of the path (level 0)
1571  *
1572  * If the key isn't found, the path points to the slot where it should
1573  * be inserted, and 1 is returned.  If there are other errors during the
1574  * search a negative error number is returned.
1575  *
1576  * if ins_len > 0, nodes and leaves will be split as we walk down the
1577  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1578  * possible)
1579  */
1580 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1581 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1582 		      ins_len, int cow)
1583 {
1584 	struct extent_buffer *b;
1585 	int slot;
1586 	int ret;
1587 	int level;
1588 	int lowest_unlock = 1;
1589 	u8 lowest_level = 0;
1590 
1591 	lowest_level = p->lowest_level;
1592 	WARN_ON(lowest_level && ins_len > 0);
1593 	WARN_ON(p->nodes[0] != NULL);
1594 
1595 	if (ins_len < 0)
1596 		lowest_unlock = 2;
1597 
1598 again:
1599 	if (p->skip_locking)
1600 		b = btrfs_root_node(root);
1601 	else
1602 		b = btrfs_lock_root_node(root);
1603 
1604 	while (b) {
1605 		level = btrfs_header_level(b);
1606 
1607 		/*
1608 		 * setup the path here so we can release it under lock
1609 		 * contention with the cow code
1610 		 */
1611 		p->nodes[level] = b;
1612 		if (!p->skip_locking)
1613 			p->locks[level] = 1;
1614 
1615 		if (cow) {
1616 			int wret;
1617 
1618 			/*
1619 			 * if we don't really need to cow this block
1620 			 * then we don't want to set the path blocking,
1621 			 * so we test it here
1622 			 */
1623 			if (btrfs_header_generation(b) == trans->transid &&
1624 			    btrfs_header_owner(b) == root->root_key.objectid &&
1625 			    !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1626 				goto cow_done;
1627 			}
1628 			btrfs_set_path_blocking(p);
1629 
1630 			wret = btrfs_cow_block(trans, root, b,
1631 					       p->nodes[level + 1],
1632 					       p->slots[level + 1], &b);
1633 			if (wret) {
1634 				free_extent_buffer(b);
1635 				ret = wret;
1636 				goto done;
1637 			}
1638 		}
1639 cow_done:
1640 		BUG_ON(!cow && ins_len);
1641 		if (level != btrfs_header_level(b))
1642 			WARN_ON(1);
1643 		level = btrfs_header_level(b);
1644 
1645 		p->nodes[level] = b;
1646 		if (!p->skip_locking)
1647 			p->locks[level] = 1;
1648 
1649 		btrfs_clear_path_blocking(p, NULL);
1650 
1651 		/*
1652 		 * we have a lock on b and as long as we aren't changing
1653 		 * the tree, there is no way to for the items in b to change.
1654 		 * It is safe to drop the lock on our parent before we
1655 		 * go through the expensive btree search on b.
1656 		 *
1657 		 * If cow is true, then we might be changing slot zero,
1658 		 * which may require changing the parent.  So, we can't
1659 		 * drop the lock until after we know which slot we're
1660 		 * operating on.
1661 		 */
1662 		if (!cow)
1663 			btrfs_unlock_up_safe(p, level + 1);
1664 
1665 		ret = check_block(root, p, level);
1666 		if (ret) {
1667 			ret = -1;
1668 			goto done;
1669 		}
1670 
1671 		ret = bin_search(b, key, level, &slot);
1672 
1673 		if (level != 0) {
1674 			if (ret && slot > 0)
1675 				slot -= 1;
1676 			p->slots[level] = slot;
1677 			ret = setup_nodes_for_search(trans, root, p, b, level,
1678 						     ins_len);
1679 			if (ret == -EAGAIN)
1680 				goto again;
1681 			else if (ret)
1682 				goto done;
1683 			b = p->nodes[level];
1684 			slot = p->slots[level];
1685 
1686 			unlock_up(p, level, lowest_unlock);
1687 
1688 			/* this is only true while dropping a snapshot */
1689 			if (level == lowest_level) {
1690 				ret = 0;
1691 				goto done;
1692 			}
1693 
1694 			ret = read_block_for_search(trans, root, p,
1695 						    &b, level, slot, key);
1696 			if (ret == -EAGAIN)
1697 				goto again;
1698 
1699 			if (!p->skip_locking) {
1700 				int lret;
1701 
1702 				btrfs_clear_path_blocking(p, NULL);
1703 				lret = btrfs_try_spin_lock(b);
1704 
1705 				if (!lret) {
1706 					btrfs_set_path_blocking(p);
1707 					btrfs_tree_lock(b);
1708 					btrfs_clear_path_blocking(p, b);
1709 				}
1710 			}
1711 		} else {
1712 			p->slots[level] = slot;
1713 			if (ins_len > 0 &&
1714 			    btrfs_leaf_free_space(root, b) < ins_len) {
1715 				int sret;
1716 
1717 				btrfs_set_path_blocking(p);
1718 				sret = split_leaf(trans, root, key,
1719 						      p, ins_len, ret == 0);
1720 				btrfs_clear_path_blocking(p, NULL);
1721 
1722 				BUG_ON(sret > 0);
1723 				if (sret) {
1724 					ret = sret;
1725 					goto done;
1726 				}
1727 			}
1728 			if (!p->search_for_split)
1729 				unlock_up(p, level, lowest_unlock);
1730 			goto done;
1731 		}
1732 	}
1733 	ret = 1;
1734 done:
1735 	/*
1736 	 * we don't really know what they plan on doing with the path
1737 	 * from here on, so for now just mark it as blocking
1738 	 */
1739 	if (!p->leave_spinning)
1740 		btrfs_set_path_blocking(p);
1741 	return ret;
1742 }
1743 
1744 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1745 		     struct btrfs_root *root,
1746 		     struct btrfs_key *node_keys,
1747 		     u64 *nodes, int lowest_level)
1748 {
1749 	struct extent_buffer *eb;
1750 	struct extent_buffer *parent;
1751 	struct btrfs_key key;
1752 	u64 bytenr;
1753 	u64 generation;
1754 	u32 blocksize;
1755 	int level;
1756 	int slot;
1757 	int key_match;
1758 	int ret;
1759 
1760 	eb = btrfs_lock_root_node(root);
1761 	ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb);
1762 	BUG_ON(ret);
1763 
1764 	btrfs_set_lock_blocking(eb);
1765 
1766 	parent = eb;
1767 	while (1) {
1768 		level = btrfs_header_level(parent);
1769 		if (level == 0 || level <= lowest_level)
1770 			break;
1771 
1772 		ret = bin_search(parent, &node_keys[lowest_level], level,
1773 				 &slot);
1774 		if (ret && slot > 0)
1775 			slot--;
1776 
1777 		bytenr = btrfs_node_blockptr(parent, slot);
1778 		if (nodes[level - 1] == bytenr)
1779 			break;
1780 
1781 		blocksize = btrfs_level_size(root, level - 1);
1782 		generation = btrfs_node_ptr_generation(parent, slot);
1783 		btrfs_node_key_to_cpu(eb, &key, slot);
1784 		key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1785 
1786 		if (generation == trans->transid) {
1787 			eb = read_tree_block(root, bytenr, blocksize,
1788 					     generation);
1789 			btrfs_tree_lock(eb);
1790 			btrfs_set_lock_blocking(eb);
1791 		}
1792 
1793 		/*
1794 		 * if node keys match and node pointer hasn't been modified
1795 		 * in the running transaction, we can merge the path. for
1796 		 * blocks owened by reloc trees, the node pointer check is
1797 		 * skipped, this is because these blocks are fully controlled
1798 		 * by the space balance code, no one else can modify them.
1799 		 */
1800 		if (!nodes[level - 1] || !key_match ||
1801 		    (generation == trans->transid &&
1802 		     btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1803 			if (level == 1 || level == lowest_level + 1) {
1804 				if (generation == trans->transid) {
1805 					btrfs_tree_unlock(eb);
1806 					free_extent_buffer(eb);
1807 				}
1808 				break;
1809 			}
1810 
1811 			if (generation != trans->transid) {
1812 				eb = read_tree_block(root, bytenr, blocksize,
1813 						generation);
1814 				btrfs_tree_lock(eb);
1815 				btrfs_set_lock_blocking(eb);
1816 			}
1817 
1818 			ret = btrfs_cow_block(trans, root, eb, parent, slot,
1819 					      &eb);
1820 			BUG_ON(ret);
1821 
1822 			if (root->root_key.objectid ==
1823 			    BTRFS_TREE_RELOC_OBJECTID) {
1824 				if (!nodes[level - 1]) {
1825 					nodes[level - 1] = eb->start;
1826 					memcpy(&node_keys[level - 1], &key,
1827 					       sizeof(node_keys[0]));
1828 				} else {
1829 					WARN_ON(1);
1830 				}
1831 			}
1832 
1833 			btrfs_tree_unlock(parent);
1834 			free_extent_buffer(parent);
1835 			parent = eb;
1836 			continue;
1837 		}
1838 
1839 		btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1840 		btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1841 		btrfs_mark_buffer_dirty(parent);
1842 
1843 		ret = btrfs_inc_extent_ref(trans, root,
1844 					nodes[level - 1],
1845 					blocksize, parent->start,
1846 					btrfs_header_owner(parent),
1847 					btrfs_header_generation(parent),
1848 					level - 1);
1849 		BUG_ON(ret);
1850 
1851 		/*
1852 		 * If the block was created in the running transaction,
1853 		 * it's possible this is the last reference to it, so we
1854 		 * should drop the subtree.
1855 		 */
1856 		if (generation == trans->transid) {
1857 			ret = btrfs_drop_subtree(trans, root, eb, parent);
1858 			BUG_ON(ret);
1859 			btrfs_tree_unlock(eb);
1860 			free_extent_buffer(eb);
1861 		} else {
1862 			ret = btrfs_free_extent(trans, root, bytenr,
1863 					blocksize, parent->start,
1864 					btrfs_header_owner(parent),
1865 					btrfs_header_generation(parent),
1866 					level - 1, 1);
1867 			BUG_ON(ret);
1868 		}
1869 		break;
1870 	}
1871 	btrfs_tree_unlock(parent);
1872 	free_extent_buffer(parent);
1873 	return 0;
1874 }
1875 
1876 /*
1877  * adjust the pointers going up the tree, starting at level
1878  * making sure the right key of each node is points to 'key'.
1879  * This is used after shifting pointers to the left, so it stops
1880  * fixing up pointers when a given leaf/node is not in slot 0 of the
1881  * higher levels
1882  *
1883  * If this fails to write a tree block, it returns -1, but continues
1884  * fixing up the blocks in ram so the tree is consistent.
1885  */
1886 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1887 			  struct btrfs_root *root, struct btrfs_path *path,
1888 			  struct btrfs_disk_key *key, int level)
1889 {
1890 	int i;
1891 	int ret = 0;
1892 	struct extent_buffer *t;
1893 
1894 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1895 		int tslot = path->slots[i];
1896 		if (!path->nodes[i])
1897 			break;
1898 		t = path->nodes[i];
1899 		btrfs_set_node_key(t, key, tslot);
1900 		btrfs_mark_buffer_dirty(path->nodes[i]);
1901 		if (tslot != 0)
1902 			break;
1903 	}
1904 	return ret;
1905 }
1906 
1907 /*
1908  * update item key.
1909  *
1910  * This function isn't completely safe. It's the caller's responsibility
1911  * that the new key won't break the order
1912  */
1913 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1914 			    struct btrfs_root *root, struct btrfs_path *path,
1915 			    struct btrfs_key *new_key)
1916 {
1917 	struct btrfs_disk_key disk_key;
1918 	struct extent_buffer *eb;
1919 	int slot;
1920 
1921 	eb = path->nodes[0];
1922 	slot = path->slots[0];
1923 	if (slot > 0) {
1924 		btrfs_item_key(eb, &disk_key, slot - 1);
1925 		if (comp_keys(&disk_key, new_key) >= 0)
1926 			return -1;
1927 	}
1928 	if (slot < btrfs_header_nritems(eb) - 1) {
1929 		btrfs_item_key(eb, &disk_key, slot + 1);
1930 		if (comp_keys(&disk_key, new_key) <= 0)
1931 			return -1;
1932 	}
1933 
1934 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1935 	btrfs_set_item_key(eb, &disk_key, slot);
1936 	btrfs_mark_buffer_dirty(eb);
1937 	if (slot == 0)
1938 		fixup_low_keys(trans, root, path, &disk_key, 1);
1939 	return 0;
1940 }
1941 
1942 /*
1943  * try to push data from one node into the next node left in the
1944  * tree.
1945  *
1946  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1947  * error, and > 0 if there was no room in the left hand block.
1948  */
1949 static int push_node_left(struct btrfs_trans_handle *trans,
1950 			  struct btrfs_root *root, struct extent_buffer *dst,
1951 			  struct extent_buffer *src, int empty)
1952 {
1953 	int push_items = 0;
1954 	int src_nritems;
1955 	int dst_nritems;
1956 	int ret = 0;
1957 
1958 	src_nritems = btrfs_header_nritems(src);
1959 	dst_nritems = btrfs_header_nritems(dst);
1960 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1961 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1962 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1963 
1964 	if (!empty && src_nritems <= 8)
1965 		return 1;
1966 
1967 	if (push_items <= 0)
1968 		return 1;
1969 
1970 	if (empty) {
1971 		push_items = min(src_nritems, push_items);
1972 		if (push_items < src_nritems) {
1973 			/* leave at least 8 pointers in the node if
1974 			 * we aren't going to empty it
1975 			 */
1976 			if (src_nritems - push_items < 8) {
1977 				if (push_items <= 8)
1978 					return 1;
1979 				push_items -= 8;
1980 			}
1981 		}
1982 	} else
1983 		push_items = min(src_nritems - 8, push_items);
1984 
1985 	copy_extent_buffer(dst, src,
1986 			   btrfs_node_key_ptr_offset(dst_nritems),
1987 			   btrfs_node_key_ptr_offset(0),
1988 			   push_items * sizeof(struct btrfs_key_ptr));
1989 
1990 	if (push_items < src_nritems) {
1991 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1992 				      btrfs_node_key_ptr_offset(push_items),
1993 				      (src_nritems - push_items) *
1994 				      sizeof(struct btrfs_key_ptr));
1995 	}
1996 	btrfs_set_header_nritems(src, src_nritems - push_items);
1997 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1998 	btrfs_mark_buffer_dirty(src);
1999 	btrfs_mark_buffer_dirty(dst);
2000 
2001 	ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
2002 	BUG_ON(ret);
2003 
2004 	return ret;
2005 }
2006 
2007 /*
2008  * try to push data from one node into the next node right in the
2009  * tree.
2010  *
2011  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2012  * error, and > 0 if there was no room in the right hand block.
2013  *
2014  * this will  only push up to 1/2 the contents of the left node over
2015  */
2016 static int balance_node_right(struct btrfs_trans_handle *trans,
2017 			      struct btrfs_root *root,
2018 			      struct extent_buffer *dst,
2019 			      struct extent_buffer *src)
2020 {
2021 	int push_items = 0;
2022 	int max_push;
2023 	int src_nritems;
2024 	int dst_nritems;
2025 	int ret = 0;
2026 
2027 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2028 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2029 
2030 	src_nritems = btrfs_header_nritems(src);
2031 	dst_nritems = btrfs_header_nritems(dst);
2032 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2033 	if (push_items <= 0)
2034 		return 1;
2035 
2036 	if (src_nritems < 4)
2037 		return 1;
2038 
2039 	max_push = src_nritems / 2 + 1;
2040 	/* don't try to empty the node */
2041 	if (max_push >= src_nritems)
2042 		return 1;
2043 
2044 	if (max_push < push_items)
2045 		push_items = max_push;
2046 
2047 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2048 				      btrfs_node_key_ptr_offset(0),
2049 				      (dst_nritems) *
2050 				      sizeof(struct btrfs_key_ptr));
2051 
2052 	copy_extent_buffer(dst, src,
2053 			   btrfs_node_key_ptr_offset(0),
2054 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2055 			   push_items * sizeof(struct btrfs_key_ptr));
2056 
2057 	btrfs_set_header_nritems(src, src_nritems - push_items);
2058 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2059 
2060 	btrfs_mark_buffer_dirty(src);
2061 	btrfs_mark_buffer_dirty(dst);
2062 
2063 	ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
2064 	BUG_ON(ret);
2065 
2066 	return ret;
2067 }
2068 
2069 /*
2070  * helper function to insert a new root level in the tree.
2071  * A new node is allocated, and a single item is inserted to
2072  * point to the existing root
2073  *
2074  * returns zero on success or < 0 on failure.
2075  */
2076 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2077 			   struct btrfs_root *root,
2078 			   struct btrfs_path *path, int level)
2079 {
2080 	u64 lower_gen;
2081 	struct extent_buffer *lower;
2082 	struct extent_buffer *c;
2083 	struct extent_buffer *old;
2084 	struct btrfs_disk_key lower_key;
2085 	int ret;
2086 
2087 	BUG_ON(path->nodes[level]);
2088 	BUG_ON(path->nodes[level-1] != root->node);
2089 
2090 	lower = path->nodes[level-1];
2091 	if (level == 1)
2092 		btrfs_item_key(lower, &lower_key, 0);
2093 	else
2094 		btrfs_node_key(lower, &lower_key, 0);
2095 
2096 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2097 				   root->root_key.objectid, trans->transid,
2098 				   level, root->node->start, 0);
2099 	if (IS_ERR(c))
2100 		return PTR_ERR(c);
2101 
2102 	memset_extent_buffer(c, 0, 0, root->nodesize);
2103 	btrfs_set_header_nritems(c, 1);
2104 	btrfs_set_header_level(c, level);
2105 	btrfs_set_header_bytenr(c, c->start);
2106 	btrfs_set_header_generation(c, trans->transid);
2107 	btrfs_set_header_owner(c, root->root_key.objectid);
2108 
2109 	write_extent_buffer(c, root->fs_info->fsid,
2110 			    (unsigned long)btrfs_header_fsid(c),
2111 			    BTRFS_FSID_SIZE);
2112 
2113 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2114 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2115 			    BTRFS_UUID_SIZE);
2116 
2117 	btrfs_set_node_key(c, &lower_key, 0);
2118 	btrfs_set_node_blockptr(c, 0, lower->start);
2119 	lower_gen = btrfs_header_generation(lower);
2120 	WARN_ON(lower_gen != trans->transid);
2121 
2122 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2123 
2124 	btrfs_mark_buffer_dirty(c);
2125 
2126 	spin_lock(&root->node_lock);
2127 	old = root->node;
2128 	root->node = c;
2129 	spin_unlock(&root->node_lock);
2130 
2131 	ret = btrfs_update_extent_ref(trans, root, lower->start,
2132 				      lower->len, lower->start, c->start,
2133 				      root->root_key.objectid,
2134 				      trans->transid, level - 1);
2135 	BUG_ON(ret);
2136 
2137 	/* the super has an extra ref to root->node */
2138 	free_extent_buffer(old);
2139 
2140 	add_root_to_dirty_list(root);
2141 	extent_buffer_get(c);
2142 	path->nodes[level] = c;
2143 	path->locks[level] = 1;
2144 	path->slots[level] = 0;
2145 	return 0;
2146 }
2147 
2148 /*
2149  * worker function to insert a single pointer in a node.
2150  * the node should have enough room for the pointer already
2151  *
2152  * slot and level indicate where you want the key to go, and
2153  * blocknr is the block the key points to.
2154  *
2155  * returns zero on success and < 0 on any error
2156  */
2157 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2158 		      *root, struct btrfs_path *path, struct btrfs_disk_key
2159 		      *key, u64 bytenr, int slot, int level)
2160 {
2161 	struct extent_buffer *lower;
2162 	int nritems;
2163 
2164 	BUG_ON(!path->nodes[level]);
2165 	lower = path->nodes[level];
2166 	nritems = btrfs_header_nritems(lower);
2167 	BUG_ON(slot > nritems);
2168 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2169 		BUG();
2170 	if (slot != nritems) {
2171 		memmove_extent_buffer(lower,
2172 			      btrfs_node_key_ptr_offset(slot + 1),
2173 			      btrfs_node_key_ptr_offset(slot),
2174 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2175 	}
2176 	btrfs_set_node_key(lower, key, slot);
2177 	btrfs_set_node_blockptr(lower, slot, bytenr);
2178 	WARN_ON(trans->transid == 0);
2179 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2180 	btrfs_set_header_nritems(lower, nritems + 1);
2181 	btrfs_mark_buffer_dirty(lower);
2182 	return 0;
2183 }
2184 
2185 /*
2186  * split the node at the specified level in path in two.
2187  * The path is corrected to point to the appropriate node after the split
2188  *
2189  * Before splitting this tries to make some room in the node by pushing
2190  * left and right, if either one works, it returns right away.
2191  *
2192  * returns 0 on success and < 0 on failure
2193  */
2194 static noinline int split_node(struct btrfs_trans_handle *trans,
2195 			       struct btrfs_root *root,
2196 			       struct btrfs_path *path, int level)
2197 {
2198 	struct extent_buffer *c;
2199 	struct extent_buffer *split;
2200 	struct btrfs_disk_key disk_key;
2201 	int mid;
2202 	int ret;
2203 	int wret;
2204 	u32 c_nritems;
2205 
2206 	c = path->nodes[level];
2207 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2208 	if (c == root->node) {
2209 		/* trying to split the root, lets make a new one */
2210 		ret = insert_new_root(trans, root, path, level + 1);
2211 		if (ret)
2212 			return ret;
2213 	} else if (!trans->transaction->delayed_refs.flushing) {
2214 		ret = push_nodes_for_insert(trans, root, path, level);
2215 		c = path->nodes[level];
2216 		if (!ret && btrfs_header_nritems(c) <
2217 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2218 			return 0;
2219 		if (ret < 0)
2220 			return ret;
2221 	}
2222 
2223 	c_nritems = btrfs_header_nritems(c);
2224 
2225 	split = btrfs_alloc_free_block(trans, root, root->nodesize,
2226 					path->nodes[level + 1]->start,
2227 					root->root_key.objectid,
2228 					trans->transid, level, c->start, 0);
2229 	if (IS_ERR(split))
2230 		return PTR_ERR(split);
2231 
2232 	btrfs_set_header_flags(split, btrfs_header_flags(c));
2233 	btrfs_set_header_level(split, btrfs_header_level(c));
2234 	btrfs_set_header_bytenr(split, split->start);
2235 	btrfs_set_header_generation(split, trans->transid);
2236 	btrfs_set_header_owner(split, root->root_key.objectid);
2237 	btrfs_set_header_flags(split, 0);
2238 	write_extent_buffer(split, root->fs_info->fsid,
2239 			    (unsigned long)btrfs_header_fsid(split),
2240 			    BTRFS_FSID_SIZE);
2241 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2242 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2243 			    BTRFS_UUID_SIZE);
2244 
2245 	mid = (c_nritems + 1) / 2;
2246 
2247 	copy_extent_buffer(split, c,
2248 			   btrfs_node_key_ptr_offset(0),
2249 			   btrfs_node_key_ptr_offset(mid),
2250 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2251 	btrfs_set_header_nritems(split, c_nritems - mid);
2252 	btrfs_set_header_nritems(c, mid);
2253 	ret = 0;
2254 
2255 	btrfs_mark_buffer_dirty(c);
2256 	btrfs_mark_buffer_dirty(split);
2257 
2258 	btrfs_node_key(split, &disk_key, 0);
2259 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2260 			  path->slots[level + 1] + 1,
2261 			  level + 1);
2262 	if (wret)
2263 		ret = wret;
2264 
2265 	ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2266 	BUG_ON(ret);
2267 
2268 	if (path->slots[level] >= mid) {
2269 		path->slots[level] -= mid;
2270 		btrfs_tree_unlock(c);
2271 		free_extent_buffer(c);
2272 		path->nodes[level] = split;
2273 		path->slots[level + 1] += 1;
2274 	} else {
2275 		btrfs_tree_unlock(split);
2276 		free_extent_buffer(split);
2277 	}
2278 	return ret;
2279 }
2280 
2281 /*
2282  * how many bytes are required to store the items in a leaf.  start
2283  * and nr indicate which items in the leaf to check.  This totals up the
2284  * space used both by the item structs and the item data
2285  */
2286 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2287 {
2288 	int data_len;
2289 	int nritems = btrfs_header_nritems(l);
2290 	int end = min(nritems, start + nr) - 1;
2291 
2292 	if (!nr)
2293 		return 0;
2294 	data_len = btrfs_item_end_nr(l, start);
2295 	data_len = data_len - btrfs_item_offset_nr(l, end);
2296 	data_len += sizeof(struct btrfs_item) * nr;
2297 	WARN_ON(data_len < 0);
2298 	return data_len;
2299 }
2300 
2301 /*
2302  * The space between the end of the leaf items and
2303  * the start of the leaf data.  IOW, how much room
2304  * the leaf has left for both items and data
2305  */
2306 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2307 				   struct extent_buffer *leaf)
2308 {
2309 	int nritems = btrfs_header_nritems(leaf);
2310 	int ret;
2311 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2312 	if (ret < 0) {
2313 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2314 		       "used %d nritems %d\n",
2315 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2316 		       leaf_space_used(leaf, 0, nritems), nritems);
2317 	}
2318 	return ret;
2319 }
2320 
2321 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2322 				      struct btrfs_root *root,
2323 				      struct btrfs_path *path,
2324 				      int data_size, int empty,
2325 				      struct extent_buffer *right,
2326 				      int free_space, u32 left_nritems)
2327 {
2328 	struct extent_buffer *left = path->nodes[0];
2329 	struct extent_buffer *upper = path->nodes[1];
2330 	struct btrfs_disk_key disk_key;
2331 	int slot;
2332 	u32 i;
2333 	int push_space = 0;
2334 	int push_items = 0;
2335 	struct btrfs_item *item;
2336 	u32 nr;
2337 	u32 right_nritems;
2338 	u32 data_end;
2339 	u32 this_item_size;
2340 	int ret;
2341 
2342 	if (empty)
2343 		nr = 0;
2344 	else
2345 		nr = 1;
2346 
2347 	if (path->slots[0] >= left_nritems)
2348 		push_space += data_size;
2349 
2350 	slot = path->slots[1];
2351 	i = left_nritems - 1;
2352 	while (i >= nr) {
2353 		item = btrfs_item_nr(left, i);
2354 
2355 		if (!empty && push_items > 0) {
2356 			if (path->slots[0] > i)
2357 				break;
2358 			if (path->slots[0] == i) {
2359 				int space = btrfs_leaf_free_space(root, left);
2360 				if (space + push_space * 2 > free_space)
2361 					break;
2362 			}
2363 		}
2364 
2365 		if (path->slots[0] == i)
2366 			push_space += data_size;
2367 
2368 		if (!left->map_token) {
2369 			map_extent_buffer(left, (unsigned long)item,
2370 					sizeof(struct btrfs_item),
2371 					&left->map_token, &left->kaddr,
2372 					&left->map_start, &left->map_len,
2373 					KM_USER1);
2374 		}
2375 
2376 		this_item_size = btrfs_item_size(left, item);
2377 		if (this_item_size + sizeof(*item) + push_space > free_space)
2378 			break;
2379 
2380 		push_items++;
2381 		push_space += this_item_size + sizeof(*item);
2382 		if (i == 0)
2383 			break;
2384 		i--;
2385 	}
2386 	if (left->map_token) {
2387 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2388 		left->map_token = NULL;
2389 	}
2390 
2391 	if (push_items == 0)
2392 		goto out_unlock;
2393 
2394 	if (!empty && push_items == left_nritems)
2395 		WARN_ON(1);
2396 
2397 	/* push left to right */
2398 	right_nritems = btrfs_header_nritems(right);
2399 
2400 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2401 	push_space -= leaf_data_end(root, left);
2402 
2403 	/* make room in the right data area */
2404 	data_end = leaf_data_end(root, right);
2405 	memmove_extent_buffer(right,
2406 			      btrfs_leaf_data(right) + data_end - push_space,
2407 			      btrfs_leaf_data(right) + data_end,
2408 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2409 
2410 	/* copy from the left data area */
2411 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2412 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2413 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2414 		     push_space);
2415 
2416 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2417 			      btrfs_item_nr_offset(0),
2418 			      right_nritems * sizeof(struct btrfs_item));
2419 
2420 	/* copy the items from left to right */
2421 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2422 		   btrfs_item_nr_offset(left_nritems - push_items),
2423 		   push_items * sizeof(struct btrfs_item));
2424 
2425 	/* update the item pointers */
2426 	right_nritems += push_items;
2427 	btrfs_set_header_nritems(right, right_nritems);
2428 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2429 	for (i = 0; i < right_nritems; i++) {
2430 		item = btrfs_item_nr(right, i);
2431 		if (!right->map_token) {
2432 			map_extent_buffer(right, (unsigned long)item,
2433 					sizeof(struct btrfs_item),
2434 					&right->map_token, &right->kaddr,
2435 					&right->map_start, &right->map_len,
2436 					KM_USER1);
2437 		}
2438 		push_space -= btrfs_item_size(right, item);
2439 		btrfs_set_item_offset(right, item, push_space);
2440 	}
2441 
2442 	if (right->map_token) {
2443 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2444 		right->map_token = NULL;
2445 	}
2446 	left_nritems -= push_items;
2447 	btrfs_set_header_nritems(left, left_nritems);
2448 
2449 	if (left_nritems)
2450 		btrfs_mark_buffer_dirty(left);
2451 	btrfs_mark_buffer_dirty(right);
2452 
2453 	ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2454 	BUG_ON(ret);
2455 
2456 	btrfs_item_key(right, &disk_key, 0);
2457 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2458 	btrfs_mark_buffer_dirty(upper);
2459 
2460 	/* then fixup the leaf pointer in the path */
2461 	if (path->slots[0] >= left_nritems) {
2462 		path->slots[0] -= left_nritems;
2463 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2464 			clean_tree_block(trans, root, path->nodes[0]);
2465 		btrfs_tree_unlock(path->nodes[0]);
2466 		free_extent_buffer(path->nodes[0]);
2467 		path->nodes[0] = right;
2468 		path->slots[1] += 1;
2469 	} else {
2470 		btrfs_tree_unlock(right);
2471 		free_extent_buffer(right);
2472 	}
2473 	return 0;
2474 
2475 out_unlock:
2476 	btrfs_tree_unlock(right);
2477 	free_extent_buffer(right);
2478 	return 1;
2479 }
2480 
2481 /*
2482  * push some data in the path leaf to the right, trying to free up at
2483  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2484  *
2485  * returns 1 if the push failed because the other node didn't have enough
2486  * room, 0 if everything worked out and < 0 if there were major errors.
2487  */
2488 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2489 			   *root, struct btrfs_path *path, int data_size,
2490 			   int empty)
2491 {
2492 	struct extent_buffer *left = path->nodes[0];
2493 	struct extent_buffer *right;
2494 	struct extent_buffer *upper;
2495 	int slot;
2496 	int free_space;
2497 	u32 left_nritems;
2498 	int ret;
2499 
2500 	if (!path->nodes[1])
2501 		return 1;
2502 
2503 	slot = path->slots[1];
2504 	upper = path->nodes[1];
2505 	if (slot >= btrfs_header_nritems(upper) - 1)
2506 		return 1;
2507 
2508 	btrfs_assert_tree_locked(path->nodes[1]);
2509 
2510 	right = read_node_slot(root, upper, slot + 1);
2511 	btrfs_tree_lock(right);
2512 	btrfs_set_lock_blocking(right);
2513 
2514 	free_space = btrfs_leaf_free_space(root, right);
2515 	if (free_space < data_size)
2516 		goto out_unlock;
2517 
2518 	/* cow and double check */
2519 	ret = btrfs_cow_block(trans, root, right, upper,
2520 			      slot + 1, &right);
2521 	if (ret)
2522 		goto out_unlock;
2523 
2524 	free_space = btrfs_leaf_free_space(root, right);
2525 	if (free_space < data_size)
2526 		goto out_unlock;
2527 
2528 	left_nritems = btrfs_header_nritems(left);
2529 	if (left_nritems == 0)
2530 		goto out_unlock;
2531 
2532 	return __push_leaf_right(trans, root, path, data_size, empty,
2533 				right, free_space, left_nritems);
2534 out_unlock:
2535 	btrfs_tree_unlock(right);
2536 	free_extent_buffer(right);
2537 	return 1;
2538 }
2539 
2540 /*
2541  * push some data in the path leaf to the left, trying to free up at
2542  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2543  */
2544 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2545 				     struct btrfs_root *root,
2546 				     struct btrfs_path *path, int data_size,
2547 				     int empty, struct extent_buffer *left,
2548 				     int free_space, int right_nritems)
2549 {
2550 	struct btrfs_disk_key disk_key;
2551 	struct extent_buffer *right = path->nodes[0];
2552 	int slot;
2553 	int i;
2554 	int push_space = 0;
2555 	int push_items = 0;
2556 	struct btrfs_item *item;
2557 	u32 old_left_nritems;
2558 	u32 nr;
2559 	int ret = 0;
2560 	int wret;
2561 	u32 this_item_size;
2562 	u32 old_left_item_size;
2563 
2564 	slot = path->slots[1];
2565 
2566 	if (empty)
2567 		nr = right_nritems;
2568 	else
2569 		nr = right_nritems - 1;
2570 
2571 	for (i = 0; i < nr; i++) {
2572 		item = btrfs_item_nr(right, i);
2573 		if (!right->map_token) {
2574 			map_extent_buffer(right, (unsigned long)item,
2575 					sizeof(struct btrfs_item),
2576 					&right->map_token, &right->kaddr,
2577 					&right->map_start, &right->map_len,
2578 					KM_USER1);
2579 		}
2580 
2581 		if (!empty && push_items > 0) {
2582 			if (path->slots[0] < i)
2583 				break;
2584 			if (path->slots[0] == i) {
2585 				int space = btrfs_leaf_free_space(root, right);
2586 				if (space + push_space * 2 > free_space)
2587 					break;
2588 			}
2589 		}
2590 
2591 		if (path->slots[0] == i)
2592 			push_space += data_size;
2593 
2594 		this_item_size = btrfs_item_size(right, item);
2595 		if (this_item_size + sizeof(*item) + push_space > free_space)
2596 			break;
2597 
2598 		push_items++;
2599 		push_space += this_item_size + sizeof(*item);
2600 	}
2601 
2602 	if (right->map_token) {
2603 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2604 		right->map_token = NULL;
2605 	}
2606 
2607 	if (push_items == 0) {
2608 		ret = 1;
2609 		goto out;
2610 	}
2611 	if (!empty && push_items == btrfs_header_nritems(right))
2612 		WARN_ON(1);
2613 
2614 	/* push data from right to left */
2615 	copy_extent_buffer(left, right,
2616 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2617 			   btrfs_item_nr_offset(0),
2618 			   push_items * sizeof(struct btrfs_item));
2619 
2620 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2621 		     btrfs_item_offset_nr(right, push_items - 1);
2622 
2623 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2624 		     leaf_data_end(root, left) - push_space,
2625 		     btrfs_leaf_data(right) +
2626 		     btrfs_item_offset_nr(right, push_items - 1),
2627 		     push_space);
2628 	old_left_nritems = btrfs_header_nritems(left);
2629 	BUG_ON(old_left_nritems <= 0);
2630 
2631 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2632 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2633 		u32 ioff;
2634 
2635 		item = btrfs_item_nr(left, i);
2636 		if (!left->map_token) {
2637 			map_extent_buffer(left, (unsigned long)item,
2638 					sizeof(struct btrfs_item),
2639 					&left->map_token, &left->kaddr,
2640 					&left->map_start, &left->map_len,
2641 					KM_USER1);
2642 		}
2643 
2644 		ioff = btrfs_item_offset(left, item);
2645 		btrfs_set_item_offset(left, item,
2646 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2647 	}
2648 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2649 	if (left->map_token) {
2650 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2651 		left->map_token = NULL;
2652 	}
2653 
2654 	/* fixup right node */
2655 	if (push_items > right_nritems) {
2656 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2657 		       right_nritems);
2658 		WARN_ON(1);
2659 	}
2660 
2661 	if (push_items < right_nritems) {
2662 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2663 						  leaf_data_end(root, right);
2664 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2665 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2666 				      btrfs_leaf_data(right) +
2667 				      leaf_data_end(root, right), push_space);
2668 
2669 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2670 			      btrfs_item_nr_offset(push_items),
2671 			     (btrfs_header_nritems(right) - push_items) *
2672 			     sizeof(struct btrfs_item));
2673 	}
2674 	right_nritems -= push_items;
2675 	btrfs_set_header_nritems(right, right_nritems);
2676 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2677 	for (i = 0; i < right_nritems; i++) {
2678 		item = btrfs_item_nr(right, i);
2679 
2680 		if (!right->map_token) {
2681 			map_extent_buffer(right, (unsigned long)item,
2682 					sizeof(struct btrfs_item),
2683 					&right->map_token, &right->kaddr,
2684 					&right->map_start, &right->map_len,
2685 					KM_USER1);
2686 		}
2687 
2688 		push_space = push_space - btrfs_item_size(right, item);
2689 		btrfs_set_item_offset(right, item, push_space);
2690 	}
2691 	if (right->map_token) {
2692 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2693 		right->map_token = NULL;
2694 	}
2695 
2696 	btrfs_mark_buffer_dirty(left);
2697 	if (right_nritems)
2698 		btrfs_mark_buffer_dirty(right);
2699 
2700 	ret = btrfs_update_ref(trans, root, right, left,
2701 			       old_left_nritems, push_items);
2702 	BUG_ON(ret);
2703 
2704 	btrfs_item_key(right, &disk_key, 0);
2705 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2706 	if (wret)
2707 		ret = wret;
2708 
2709 	/* then fixup the leaf pointer in the path */
2710 	if (path->slots[0] < push_items) {
2711 		path->slots[0] += old_left_nritems;
2712 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2713 			clean_tree_block(trans, root, path->nodes[0]);
2714 		btrfs_tree_unlock(path->nodes[0]);
2715 		free_extent_buffer(path->nodes[0]);
2716 		path->nodes[0] = left;
2717 		path->slots[1] -= 1;
2718 	} else {
2719 		btrfs_tree_unlock(left);
2720 		free_extent_buffer(left);
2721 		path->slots[0] -= push_items;
2722 	}
2723 	BUG_ON(path->slots[0] < 0);
2724 	return ret;
2725 out:
2726 	btrfs_tree_unlock(left);
2727 	free_extent_buffer(left);
2728 	return ret;
2729 }
2730 
2731 /*
2732  * push some data in the path leaf to the left, trying to free up at
2733  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2734  */
2735 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2736 			  *root, struct btrfs_path *path, int data_size,
2737 			  int empty)
2738 {
2739 	struct extent_buffer *right = path->nodes[0];
2740 	struct extent_buffer *left;
2741 	int slot;
2742 	int free_space;
2743 	u32 right_nritems;
2744 	int ret = 0;
2745 
2746 	slot = path->slots[1];
2747 	if (slot == 0)
2748 		return 1;
2749 	if (!path->nodes[1])
2750 		return 1;
2751 
2752 	right_nritems = btrfs_header_nritems(right);
2753 	if (right_nritems == 0)
2754 		return 1;
2755 
2756 	btrfs_assert_tree_locked(path->nodes[1]);
2757 
2758 	left = read_node_slot(root, path->nodes[1], slot - 1);
2759 	btrfs_tree_lock(left);
2760 	btrfs_set_lock_blocking(left);
2761 
2762 	free_space = btrfs_leaf_free_space(root, left);
2763 	if (free_space < data_size) {
2764 		ret = 1;
2765 		goto out;
2766 	}
2767 
2768 	/* cow and double check */
2769 	ret = btrfs_cow_block(trans, root, left,
2770 			      path->nodes[1], slot - 1, &left);
2771 	if (ret) {
2772 		/* we hit -ENOSPC, but it isn't fatal here */
2773 		ret = 1;
2774 		goto out;
2775 	}
2776 
2777 	free_space = btrfs_leaf_free_space(root, left);
2778 	if (free_space < data_size) {
2779 		ret = 1;
2780 		goto out;
2781 	}
2782 
2783 	return __push_leaf_left(trans, root, path, data_size,
2784 			       empty, left, free_space, right_nritems);
2785 out:
2786 	btrfs_tree_unlock(left);
2787 	free_extent_buffer(left);
2788 	return ret;
2789 }
2790 
2791 /*
2792  * split the path's leaf in two, making sure there is at least data_size
2793  * available for the resulting leaf level of the path.
2794  *
2795  * returns 0 if all went well and < 0 on failure.
2796  */
2797 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2798 			       struct btrfs_root *root,
2799 			       struct btrfs_path *path,
2800 			       struct extent_buffer *l,
2801 			       struct extent_buffer *right,
2802 			       int slot, int mid, int nritems)
2803 {
2804 	int data_copy_size;
2805 	int rt_data_off;
2806 	int i;
2807 	int ret = 0;
2808 	int wret;
2809 	struct btrfs_disk_key disk_key;
2810 
2811 	nritems = nritems - mid;
2812 	btrfs_set_header_nritems(right, nritems);
2813 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2814 
2815 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2816 			   btrfs_item_nr_offset(mid),
2817 			   nritems * sizeof(struct btrfs_item));
2818 
2819 	copy_extent_buffer(right, l,
2820 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2821 		     data_copy_size, btrfs_leaf_data(l) +
2822 		     leaf_data_end(root, l), data_copy_size);
2823 
2824 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2825 		      btrfs_item_end_nr(l, mid);
2826 
2827 	for (i = 0; i < nritems; i++) {
2828 		struct btrfs_item *item = btrfs_item_nr(right, i);
2829 		u32 ioff;
2830 
2831 		if (!right->map_token) {
2832 			map_extent_buffer(right, (unsigned long)item,
2833 					sizeof(struct btrfs_item),
2834 					&right->map_token, &right->kaddr,
2835 					&right->map_start, &right->map_len,
2836 					KM_USER1);
2837 		}
2838 
2839 		ioff = btrfs_item_offset(right, item);
2840 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2841 	}
2842 
2843 	if (right->map_token) {
2844 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2845 		right->map_token = NULL;
2846 	}
2847 
2848 	btrfs_set_header_nritems(l, mid);
2849 	ret = 0;
2850 	btrfs_item_key(right, &disk_key, 0);
2851 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2852 			  path->slots[1] + 1, 1);
2853 	if (wret)
2854 		ret = wret;
2855 
2856 	btrfs_mark_buffer_dirty(right);
2857 	btrfs_mark_buffer_dirty(l);
2858 	BUG_ON(path->slots[0] != slot);
2859 
2860 	ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2861 	BUG_ON(ret);
2862 
2863 	if (mid <= slot) {
2864 		btrfs_tree_unlock(path->nodes[0]);
2865 		free_extent_buffer(path->nodes[0]);
2866 		path->nodes[0] = right;
2867 		path->slots[0] -= mid;
2868 		path->slots[1] += 1;
2869 	} else {
2870 		btrfs_tree_unlock(right);
2871 		free_extent_buffer(right);
2872 	}
2873 
2874 	BUG_ON(path->slots[0] < 0);
2875 
2876 	return ret;
2877 }
2878 
2879 /*
2880  * split the path's leaf in two, making sure there is at least data_size
2881  * available for the resulting leaf level of the path.
2882  *
2883  * returns 0 if all went well and < 0 on failure.
2884  */
2885 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2886 			       struct btrfs_root *root,
2887 			       struct btrfs_key *ins_key,
2888 			       struct btrfs_path *path, int data_size,
2889 			       int extend)
2890 {
2891 	struct extent_buffer *l;
2892 	u32 nritems;
2893 	int mid;
2894 	int slot;
2895 	struct extent_buffer *right;
2896 	int ret = 0;
2897 	int wret;
2898 	int double_split;
2899 	int num_doubles = 0;
2900 
2901 	/* first try to make some room by pushing left and right */
2902 	if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY &&
2903 	    !trans->transaction->delayed_refs.flushing) {
2904 		wret = push_leaf_right(trans, root, path, data_size, 0);
2905 		if (wret < 0)
2906 			return wret;
2907 		if (wret) {
2908 			wret = push_leaf_left(trans, root, path, data_size, 0);
2909 			if (wret < 0)
2910 				return wret;
2911 		}
2912 		l = path->nodes[0];
2913 
2914 		/* did the pushes work? */
2915 		if (btrfs_leaf_free_space(root, l) >= data_size)
2916 			return 0;
2917 	}
2918 
2919 	if (!path->nodes[1]) {
2920 		ret = insert_new_root(trans, root, path, 1);
2921 		if (ret)
2922 			return ret;
2923 	}
2924 again:
2925 	double_split = 0;
2926 	l = path->nodes[0];
2927 	slot = path->slots[0];
2928 	nritems = btrfs_header_nritems(l);
2929 	mid = (nritems + 1) / 2;
2930 
2931 	right = btrfs_alloc_free_block(trans, root, root->leafsize,
2932 					path->nodes[1]->start,
2933 					root->root_key.objectid,
2934 					trans->transid, 0, l->start, 0);
2935 	if (IS_ERR(right)) {
2936 		BUG_ON(1);
2937 		return PTR_ERR(right);
2938 	}
2939 
2940 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2941 	btrfs_set_header_bytenr(right, right->start);
2942 	btrfs_set_header_generation(right, trans->transid);
2943 	btrfs_set_header_owner(right, root->root_key.objectid);
2944 	btrfs_set_header_level(right, 0);
2945 	write_extent_buffer(right, root->fs_info->fsid,
2946 			    (unsigned long)btrfs_header_fsid(right),
2947 			    BTRFS_FSID_SIZE);
2948 
2949 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2950 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2951 			    BTRFS_UUID_SIZE);
2952 
2953 	if (mid <= slot) {
2954 		if (nritems == 1 ||
2955 		    leaf_space_used(l, mid, nritems - mid) + data_size >
2956 			BTRFS_LEAF_DATA_SIZE(root)) {
2957 			if (slot >= nritems) {
2958 				struct btrfs_disk_key disk_key;
2959 
2960 				btrfs_cpu_key_to_disk(&disk_key, ins_key);
2961 				btrfs_set_header_nritems(right, 0);
2962 				wret = insert_ptr(trans, root, path,
2963 						  &disk_key, right->start,
2964 						  path->slots[1] + 1, 1);
2965 				if (wret)
2966 					ret = wret;
2967 
2968 				btrfs_tree_unlock(path->nodes[0]);
2969 				free_extent_buffer(path->nodes[0]);
2970 				path->nodes[0] = right;
2971 				path->slots[0] = 0;
2972 				path->slots[1] += 1;
2973 				btrfs_mark_buffer_dirty(right);
2974 				return ret;
2975 			}
2976 			mid = slot;
2977 			if (mid != nritems &&
2978 			    leaf_space_used(l, mid, nritems - mid) +
2979 			    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2980 				double_split = 1;
2981 			}
2982 		}
2983 	} else {
2984 		if (leaf_space_used(l, 0, mid) + data_size >
2985 			BTRFS_LEAF_DATA_SIZE(root)) {
2986 			if (!extend && data_size && slot == 0) {
2987 				struct btrfs_disk_key disk_key;
2988 
2989 				btrfs_cpu_key_to_disk(&disk_key, ins_key);
2990 				btrfs_set_header_nritems(right, 0);
2991 				wret = insert_ptr(trans, root, path,
2992 						  &disk_key,
2993 						  right->start,
2994 						  path->slots[1], 1);
2995 				if (wret)
2996 					ret = wret;
2997 				btrfs_tree_unlock(path->nodes[0]);
2998 				free_extent_buffer(path->nodes[0]);
2999 				path->nodes[0] = right;
3000 				path->slots[0] = 0;
3001 				if (path->slots[1] == 0) {
3002 					wret = fixup_low_keys(trans, root,
3003 						      path, &disk_key, 1);
3004 					if (wret)
3005 						ret = wret;
3006 				}
3007 				btrfs_mark_buffer_dirty(right);
3008 				return ret;
3009 			} else if ((extend || !data_size) && slot == 0) {
3010 				mid = 1;
3011 			} else {
3012 				mid = slot;
3013 				if (mid != nritems &&
3014 				    leaf_space_used(l, mid, nritems - mid) +
3015 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3016 					double_split = 1;
3017 				}
3018 			}
3019 		}
3020 	}
3021 
3022 	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3023 	BUG_ON(ret);
3024 
3025 	if (double_split) {
3026 		BUG_ON(num_doubles != 0);
3027 		num_doubles++;
3028 		goto again;
3029 	}
3030 
3031 	return ret;
3032 }
3033 
3034 /*
3035  * This function splits a single item into two items,
3036  * giving 'new_key' to the new item and splitting the
3037  * old one at split_offset (from the start of the item).
3038  *
3039  * The path may be released by this operation.  After
3040  * the split, the path is pointing to the old item.  The
3041  * new item is going to be in the same node as the old one.
3042  *
3043  * Note, the item being split must be smaller enough to live alone on
3044  * a tree block with room for one extra struct btrfs_item
3045  *
3046  * This allows us to split the item in place, keeping a lock on the
3047  * leaf the entire time.
3048  */
3049 int btrfs_split_item(struct btrfs_trans_handle *trans,
3050 		     struct btrfs_root *root,
3051 		     struct btrfs_path *path,
3052 		     struct btrfs_key *new_key,
3053 		     unsigned long split_offset)
3054 {
3055 	u32 item_size;
3056 	struct extent_buffer *leaf;
3057 	struct btrfs_key orig_key;
3058 	struct btrfs_item *item;
3059 	struct btrfs_item *new_item;
3060 	int ret = 0;
3061 	int slot;
3062 	u32 nritems;
3063 	u32 orig_offset;
3064 	struct btrfs_disk_key disk_key;
3065 	char *buf;
3066 
3067 	leaf = path->nodes[0];
3068 	btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
3069 	if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
3070 		goto split;
3071 
3072 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3073 	btrfs_release_path(root, path);
3074 
3075 	path->search_for_split = 1;
3076 	path->keep_locks = 1;
3077 
3078 	ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
3079 	path->search_for_split = 0;
3080 
3081 	/* if our item isn't there or got smaller, return now */
3082 	if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3083 							path->slots[0])) {
3084 		path->keep_locks = 0;
3085 		return -EAGAIN;
3086 	}
3087 
3088 	btrfs_set_path_blocking(path);
3089 	ret = split_leaf(trans, root, &orig_key, path,
3090 			 sizeof(struct btrfs_item), 1);
3091 	path->keep_locks = 0;
3092 	BUG_ON(ret);
3093 
3094 	btrfs_unlock_up_safe(path, 1);
3095 	leaf = path->nodes[0];
3096 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3097 
3098 split:
3099 	/*
3100 	 * make sure any changes to the path from split_leaf leave it
3101 	 * in a blocking state
3102 	 */
3103 	btrfs_set_path_blocking(path);
3104 
3105 	item = btrfs_item_nr(leaf, path->slots[0]);
3106 	orig_offset = btrfs_item_offset(leaf, item);
3107 	item_size = btrfs_item_size(leaf, item);
3108 
3109 	buf = kmalloc(item_size, GFP_NOFS);
3110 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3111 			    path->slots[0]), item_size);
3112 	slot = path->slots[0] + 1;
3113 	leaf = path->nodes[0];
3114 
3115 	nritems = btrfs_header_nritems(leaf);
3116 
3117 	if (slot != nritems) {
3118 		/* shift the items */
3119 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3120 			      btrfs_item_nr_offset(slot),
3121 			      (nritems - slot) * sizeof(struct btrfs_item));
3122 
3123 	}
3124 
3125 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3126 	btrfs_set_item_key(leaf, &disk_key, slot);
3127 
3128 	new_item = btrfs_item_nr(leaf, slot);
3129 
3130 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3131 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3132 
3133 	btrfs_set_item_offset(leaf, item,
3134 			      orig_offset + item_size - split_offset);
3135 	btrfs_set_item_size(leaf, item, split_offset);
3136 
3137 	btrfs_set_header_nritems(leaf, nritems + 1);
3138 
3139 	/* write the data for the start of the original item */
3140 	write_extent_buffer(leaf, buf,
3141 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3142 			    split_offset);
3143 
3144 	/* write the data for the new item */
3145 	write_extent_buffer(leaf, buf + split_offset,
3146 			    btrfs_item_ptr_offset(leaf, slot),
3147 			    item_size - split_offset);
3148 	btrfs_mark_buffer_dirty(leaf);
3149 
3150 	ret = 0;
3151 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3152 		btrfs_print_leaf(root, leaf);
3153 		BUG();
3154 	}
3155 	kfree(buf);
3156 	return ret;
3157 }
3158 
3159 /*
3160  * make the item pointed to by the path smaller.  new_size indicates
3161  * how small to make it, and from_end tells us if we just chop bytes
3162  * off the end of the item or if we shift the item to chop bytes off
3163  * the front.
3164  */
3165 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3166 			struct btrfs_root *root,
3167 			struct btrfs_path *path,
3168 			u32 new_size, int from_end)
3169 {
3170 	int ret = 0;
3171 	int slot;
3172 	int slot_orig;
3173 	struct extent_buffer *leaf;
3174 	struct btrfs_item *item;
3175 	u32 nritems;
3176 	unsigned int data_end;
3177 	unsigned int old_data_start;
3178 	unsigned int old_size;
3179 	unsigned int size_diff;
3180 	int i;
3181 
3182 	slot_orig = path->slots[0];
3183 	leaf = path->nodes[0];
3184 	slot = path->slots[0];
3185 
3186 	old_size = btrfs_item_size_nr(leaf, slot);
3187 	if (old_size == new_size)
3188 		return 0;
3189 
3190 	nritems = btrfs_header_nritems(leaf);
3191 	data_end = leaf_data_end(root, leaf);
3192 
3193 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3194 
3195 	size_diff = old_size - new_size;
3196 
3197 	BUG_ON(slot < 0);
3198 	BUG_ON(slot >= nritems);
3199 
3200 	/*
3201 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3202 	 */
3203 	/* first correct the data pointers */
3204 	for (i = slot; i < nritems; i++) {
3205 		u32 ioff;
3206 		item = btrfs_item_nr(leaf, i);
3207 
3208 		if (!leaf->map_token) {
3209 			map_extent_buffer(leaf, (unsigned long)item,
3210 					sizeof(struct btrfs_item),
3211 					&leaf->map_token, &leaf->kaddr,
3212 					&leaf->map_start, &leaf->map_len,
3213 					KM_USER1);
3214 		}
3215 
3216 		ioff = btrfs_item_offset(leaf, item);
3217 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3218 	}
3219 
3220 	if (leaf->map_token) {
3221 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3222 		leaf->map_token = NULL;
3223 	}
3224 
3225 	/* shift the data */
3226 	if (from_end) {
3227 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3228 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3229 			      data_end, old_data_start + new_size - data_end);
3230 	} else {
3231 		struct btrfs_disk_key disk_key;
3232 		u64 offset;
3233 
3234 		btrfs_item_key(leaf, &disk_key, slot);
3235 
3236 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3237 			unsigned long ptr;
3238 			struct btrfs_file_extent_item *fi;
3239 
3240 			fi = btrfs_item_ptr(leaf, slot,
3241 					    struct btrfs_file_extent_item);
3242 			fi = (struct btrfs_file_extent_item *)(
3243 			     (unsigned long)fi - size_diff);
3244 
3245 			if (btrfs_file_extent_type(leaf, fi) ==
3246 			    BTRFS_FILE_EXTENT_INLINE) {
3247 				ptr = btrfs_item_ptr_offset(leaf, slot);
3248 				memmove_extent_buffer(leaf, ptr,
3249 				      (unsigned long)fi,
3250 				      offsetof(struct btrfs_file_extent_item,
3251 						 disk_bytenr));
3252 			}
3253 		}
3254 
3255 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3256 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3257 			      data_end, old_data_start - data_end);
3258 
3259 		offset = btrfs_disk_key_offset(&disk_key);
3260 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3261 		btrfs_set_item_key(leaf, &disk_key, slot);
3262 		if (slot == 0)
3263 			fixup_low_keys(trans, root, path, &disk_key, 1);
3264 	}
3265 
3266 	item = btrfs_item_nr(leaf, slot);
3267 	btrfs_set_item_size(leaf, item, new_size);
3268 	btrfs_mark_buffer_dirty(leaf);
3269 
3270 	ret = 0;
3271 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3272 		btrfs_print_leaf(root, leaf);
3273 		BUG();
3274 	}
3275 	return ret;
3276 }
3277 
3278 /*
3279  * make the item pointed to by the path bigger, data_size is the new size.
3280  */
3281 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3282 		      struct btrfs_root *root, struct btrfs_path *path,
3283 		      u32 data_size)
3284 {
3285 	int ret = 0;
3286 	int slot;
3287 	int slot_orig;
3288 	struct extent_buffer *leaf;
3289 	struct btrfs_item *item;
3290 	u32 nritems;
3291 	unsigned int data_end;
3292 	unsigned int old_data;
3293 	unsigned int old_size;
3294 	int i;
3295 
3296 	slot_orig = path->slots[0];
3297 	leaf = path->nodes[0];
3298 
3299 	nritems = btrfs_header_nritems(leaf);
3300 	data_end = leaf_data_end(root, leaf);
3301 
3302 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3303 		btrfs_print_leaf(root, leaf);
3304 		BUG();
3305 	}
3306 	slot = path->slots[0];
3307 	old_data = btrfs_item_end_nr(leaf, slot);
3308 
3309 	BUG_ON(slot < 0);
3310 	if (slot >= nritems) {
3311 		btrfs_print_leaf(root, leaf);
3312 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3313 		       slot, nritems);
3314 		BUG_ON(1);
3315 	}
3316 
3317 	/*
3318 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3319 	 */
3320 	/* first correct the data pointers */
3321 	for (i = slot; i < nritems; i++) {
3322 		u32 ioff;
3323 		item = btrfs_item_nr(leaf, i);
3324 
3325 		if (!leaf->map_token) {
3326 			map_extent_buffer(leaf, (unsigned long)item,
3327 					sizeof(struct btrfs_item),
3328 					&leaf->map_token, &leaf->kaddr,
3329 					&leaf->map_start, &leaf->map_len,
3330 					KM_USER1);
3331 		}
3332 		ioff = btrfs_item_offset(leaf, item);
3333 		btrfs_set_item_offset(leaf, item, ioff - data_size);
3334 	}
3335 
3336 	if (leaf->map_token) {
3337 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3338 		leaf->map_token = NULL;
3339 	}
3340 
3341 	/* shift the data */
3342 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3343 		      data_end - data_size, btrfs_leaf_data(leaf) +
3344 		      data_end, old_data - data_end);
3345 
3346 	data_end = old_data;
3347 	old_size = btrfs_item_size_nr(leaf, slot);
3348 	item = btrfs_item_nr(leaf, slot);
3349 	btrfs_set_item_size(leaf, item, old_size + data_size);
3350 	btrfs_mark_buffer_dirty(leaf);
3351 
3352 	ret = 0;
3353 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3354 		btrfs_print_leaf(root, leaf);
3355 		BUG();
3356 	}
3357 	return ret;
3358 }
3359 
3360 /*
3361  * Given a key and some data, insert items into the tree.
3362  * This does all the path init required, making room in the tree if needed.
3363  * Returns the number of keys that were inserted.
3364  */
3365 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3366 			    struct btrfs_root *root,
3367 			    struct btrfs_path *path,
3368 			    struct btrfs_key *cpu_key, u32 *data_size,
3369 			    int nr)
3370 {
3371 	struct extent_buffer *leaf;
3372 	struct btrfs_item *item;
3373 	int ret = 0;
3374 	int slot;
3375 	int i;
3376 	u32 nritems;
3377 	u32 total_data = 0;
3378 	u32 total_size = 0;
3379 	unsigned int data_end;
3380 	struct btrfs_disk_key disk_key;
3381 	struct btrfs_key found_key;
3382 
3383 	for (i = 0; i < nr; i++) {
3384 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3385 		    BTRFS_LEAF_DATA_SIZE(root)) {
3386 			break;
3387 			nr = i;
3388 		}
3389 		total_data += data_size[i];
3390 		total_size += data_size[i] + sizeof(struct btrfs_item);
3391 	}
3392 	BUG_ON(nr == 0);
3393 
3394 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3395 	if (ret == 0)
3396 		return -EEXIST;
3397 	if (ret < 0)
3398 		goto out;
3399 
3400 	leaf = path->nodes[0];
3401 
3402 	nritems = btrfs_header_nritems(leaf);
3403 	data_end = leaf_data_end(root, leaf);
3404 
3405 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3406 		for (i = nr; i >= 0; i--) {
3407 			total_data -= data_size[i];
3408 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3409 			if (total_size < btrfs_leaf_free_space(root, leaf))
3410 				break;
3411 		}
3412 		nr = i;
3413 	}
3414 
3415 	slot = path->slots[0];
3416 	BUG_ON(slot < 0);
3417 
3418 	if (slot != nritems) {
3419 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3420 
3421 		item = btrfs_item_nr(leaf, slot);
3422 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3423 
3424 		/* figure out how many keys we can insert in here */
3425 		total_data = data_size[0];
3426 		for (i = 1; i < nr; i++) {
3427 			if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3428 				break;
3429 			total_data += data_size[i];
3430 		}
3431 		nr = i;
3432 
3433 		if (old_data < data_end) {
3434 			btrfs_print_leaf(root, leaf);
3435 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3436 			       slot, old_data, data_end);
3437 			BUG_ON(1);
3438 		}
3439 		/*
3440 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3441 		 */
3442 		/* first correct the data pointers */
3443 		WARN_ON(leaf->map_token);
3444 		for (i = slot; i < nritems; i++) {
3445 			u32 ioff;
3446 
3447 			item = btrfs_item_nr(leaf, i);
3448 			if (!leaf->map_token) {
3449 				map_extent_buffer(leaf, (unsigned long)item,
3450 					sizeof(struct btrfs_item),
3451 					&leaf->map_token, &leaf->kaddr,
3452 					&leaf->map_start, &leaf->map_len,
3453 					KM_USER1);
3454 			}
3455 
3456 			ioff = btrfs_item_offset(leaf, item);
3457 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3458 		}
3459 		if (leaf->map_token) {
3460 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3461 			leaf->map_token = NULL;
3462 		}
3463 
3464 		/* shift the items */
3465 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3466 			      btrfs_item_nr_offset(slot),
3467 			      (nritems - slot) * sizeof(struct btrfs_item));
3468 
3469 		/* shift the data */
3470 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3471 			      data_end - total_data, btrfs_leaf_data(leaf) +
3472 			      data_end, old_data - data_end);
3473 		data_end = old_data;
3474 	} else {
3475 		/*
3476 		 * this sucks but it has to be done, if we are inserting at
3477 		 * the end of the leaf only insert 1 of the items, since we
3478 		 * have no way of knowing whats on the next leaf and we'd have
3479 		 * to drop our current locks to figure it out
3480 		 */
3481 		nr = 1;
3482 	}
3483 
3484 	/* setup the item for the new data */
3485 	for (i = 0; i < nr; i++) {
3486 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3487 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3488 		item = btrfs_item_nr(leaf, slot + i);
3489 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3490 		data_end -= data_size[i];
3491 		btrfs_set_item_size(leaf, item, data_size[i]);
3492 	}
3493 	btrfs_set_header_nritems(leaf, nritems + nr);
3494 	btrfs_mark_buffer_dirty(leaf);
3495 
3496 	ret = 0;
3497 	if (slot == 0) {
3498 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3499 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3500 	}
3501 
3502 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3503 		btrfs_print_leaf(root, leaf);
3504 		BUG();
3505 	}
3506 out:
3507 	if (!ret)
3508 		ret = nr;
3509 	return ret;
3510 }
3511 
3512 /*
3513  * this is a helper for btrfs_insert_empty_items, the main goal here is
3514  * to save stack depth by doing the bulk of the work in a function
3515  * that doesn't call btrfs_search_slot
3516  */
3517 static noinline_for_stack int
3518 setup_items_for_insert(struct btrfs_trans_handle *trans,
3519 		      struct btrfs_root *root, struct btrfs_path *path,
3520 		      struct btrfs_key *cpu_key, u32 *data_size,
3521 		      u32 total_data, u32 total_size, int nr)
3522 {
3523 	struct btrfs_item *item;
3524 	int i;
3525 	u32 nritems;
3526 	unsigned int data_end;
3527 	struct btrfs_disk_key disk_key;
3528 	int ret;
3529 	struct extent_buffer *leaf;
3530 	int slot;
3531 
3532 	leaf = path->nodes[0];
3533 	slot = path->slots[0];
3534 
3535 	nritems = btrfs_header_nritems(leaf);
3536 	data_end = leaf_data_end(root, leaf);
3537 
3538 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3539 		btrfs_print_leaf(root, leaf);
3540 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3541 		       total_size, btrfs_leaf_free_space(root, leaf));
3542 		BUG();
3543 	}
3544 
3545 	if (slot != nritems) {
3546 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3547 
3548 		if (old_data < data_end) {
3549 			btrfs_print_leaf(root, leaf);
3550 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3551 			       slot, old_data, data_end);
3552 			BUG_ON(1);
3553 		}
3554 		/*
3555 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3556 		 */
3557 		/* first correct the data pointers */
3558 		WARN_ON(leaf->map_token);
3559 		for (i = slot; i < nritems; i++) {
3560 			u32 ioff;
3561 
3562 			item = btrfs_item_nr(leaf, i);
3563 			if (!leaf->map_token) {
3564 				map_extent_buffer(leaf, (unsigned long)item,
3565 					sizeof(struct btrfs_item),
3566 					&leaf->map_token, &leaf->kaddr,
3567 					&leaf->map_start, &leaf->map_len,
3568 					KM_USER1);
3569 			}
3570 
3571 			ioff = btrfs_item_offset(leaf, item);
3572 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3573 		}
3574 		if (leaf->map_token) {
3575 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3576 			leaf->map_token = NULL;
3577 		}
3578 
3579 		/* shift the items */
3580 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3581 			      btrfs_item_nr_offset(slot),
3582 			      (nritems - slot) * sizeof(struct btrfs_item));
3583 
3584 		/* shift the data */
3585 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3586 			      data_end - total_data, btrfs_leaf_data(leaf) +
3587 			      data_end, old_data - data_end);
3588 		data_end = old_data;
3589 	}
3590 
3591 	/* setup the item for the new data */
3592 	for (i = 0; i < nr; i++) {
3593 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3594 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3595 		item = btrfs_item_nr(leaf, slot + i);
3596 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3597 		data_end -= data_size[i];
3598 		btrfs_set_item_size(leaf, item, data_size[i]);
3599 	}
3600 
3601 	btrfs_set_header_nritems(leaf, nritems + nr);
3602 
3603 	ret = 0;
3604 	if (slot == 0) {
3605 		struct btrfs_disk_key disk_key;
3606 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3607 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3608 	}
3609 	btrfs_unlock_up_safe(path, 1);
3610 	btrfs_mark_buffer_dirty(leaf);
3611 
3612 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3613 		btrfs_print_leaf(root, leaf);
3614 		BUG();
3615 	}
3616 	return ret;
3617 }
3618 
3619 /*
3620  * Given a key and some data, insert items into the tree.
3621  * This does all the path init required, making room in the tree if needed.
3622  */
3623 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3624 			    struct btrfs_root *root,
3625 			    struct btrfs_path *path,
3626 			    struct btrfs_key *cpu_key, u32 *data_size,
3627 			    int nr)
3628 {
3629 	struct extent_buffer *leaf;
3630 	int ret = 0;
3631 	int slot;
3632 	int i;
3633 	u32 total_size = 0;
3634 	u32 total_data = 0;
3635 
3636 	for (i = 0; i < nr; i++)
3637 		total_data += data_size[i];
3638 
3639 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3640 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3641 	if (ret == 0)
3642 		return -EEXIST;
3643 	if (ret < 0)
3644 		goto out;
3645 
3646 	leaf = path->nodes[0];
3647 	slot = path->slots[0];
3648 	BUG_ON(slot < 0);
3649 
3650 	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3651 			       total_data, total_size, nr);
3652 
3653 out:
3654 	return ret;
3655 }
3656 
3657 /*
3658  * Given a key and some data, insert an item into the tree.
3659  * This does all the path init required, making room in the tree if needed.
3660  */
3661 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3662 		      *root, struct btrfs_key *cpu_key, void *data, u32
3663 		      data_size)
3664 {
3665 	int ret = 0;
3666 	struct btrfs_path *path;
3667 	struct extent_buffer *leaf;
3668 	unsigned long ptr;
3669 
3670 	path = btrfs_alloc_path();
3671 	BUG_ON(!path);
3672 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3673 	if (!ret) {
3674 		leaf = path->nodes[0];
3675 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3676 		write_extent_buffer(leaf, data, ptr, data_size);
3677 		btrfs_mark_buffer_dirty(leaf);
3678 	}
3679 	btrfs_free_path(path);
3680 	return ret;
3681 }
3682 
3683 /*
3684  * delete the pointer from a given node.
3685  *
3686  * the tree should have been previously balanced so the deletion does not
3687  * empty a node.
3688  */
3689 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3690 		   struct btrfs_path *path, int level, int slot)
3691 {
3692 	struct extent_buffer *parent = path->nodes[level];
3693 	u32 nritems;
3694 	int ret = 0;
3695 	int wret;
3696 
3697 	nritems = btrfs_header_nritems(parent);
3698 	if (slot != nritems - 1) {
3699 		memmove_extent_buffer(parent,
3700 			      btrfs_node_key_ptr_offset(slot),
3701 			      btrfs_node_key_ptr_offset(slot + 1),
3702 			      sizeof(struct btrfs_key_ptr) *
3703 			      (nritems - slot - 1));
3704 	}
3705 	nritems--;
3706 	btrfs_set_header_nritems(parent, nritems);
3707 	if (nritems == 0 && parent == root->node) {
3708 		BUG_ON(btrfs_header_level(root->node) != 1);
3709 		/* just turn the root into a leaf and break */
3710 		btrfs_set_header_level(root->node, 0);
3711 	} else if (slot == 0) {
3712 		struct btrfs_disk_key disk_key;
3713 
3714 		btrfs_node_key(parent, &disk_key, 0);
3715 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3716 		if (wret)
3717 			ret = wret;
3718 	}
3719 	btrfs_mark_buffer_dirty(parent);
3720 	return ret;
3721 }
3722 
3723 /*
3724  * a helper function to delete the leaf pointed to by path->slots[1] and
3725  * path->nodes[1].  bytenr is the node block pointer, but since the callers
3726  * already know it, it is faster to have them pass it down than to
3727  * read it out of the node again.
3728  *
3729  * This deletes the pointer in path->nodes[1] and frees the leaf
3730  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3731  *
3732  * The path must have already been setup for deleting the leaf, including
3733  * all the proper balancing.  path->nodes[1] must be locked.
3734  */
3735 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3736 			    struct btrfs_root *root,
3737 			    struct btrfs_path *path, u64 bytenr)
3738 {
3739 	int ret;
3740 	u64 root_gen = btrfs_header_generation(path->nodes[1]);
3741 	u64 parent_start = path->nodes[1]->start;
3742 	u64 parent_owner = btrfs_header_owner(path->nodes[1]);
3743 
3744 	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3745 	if (ret)
3746 		return ret;
3747 
3748 	/*
3749 	 * btrfs_free_extent is expensive, we want to make sure we
3750 	 * aren't holding any locks when we call it
3751 	 */
3752 	btrfs_unlock_up_safe(path, 0);
3753 
3754 	ret = btrfs_free_extent(trans, root, bytenr,
3755 				btrfs_level_size(root, 0),
3756 				parent_start, parent_owner,
3757 				root_gen, 0, 1);
3758 	return ret;
3759 }
3760 /*
3761  * delete the item at the leaf level in path.  If that empties
3762  * the leaf, remove it from the tree
3763  */
3764 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3765 		    struct btrfs_path *path, int slot, int nr)
3766 {
3767 	struct extent_buffer *leaf;
3768 	struct btrfs_item *item;
3769 	int last_off;
3770 	int dsize = 0;
3771 	int ret = 0;
3772 	int wret;
3773 	int i;
3774 	u32 nritems;
3775 
3776 	leaf = path->nodes[0];
3777 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3778 
3779 	for (i = 0; i < nr; i++)
3780 		dsize += btrfs_item_size_nr(leaf, slot + i);
3781 
3782 	nritems = btrfs_header_nritems(leaf);
3783 
3784 	if (slot + nr != nritems) {
3785 		int data_end = leaf_data_end(root, leaf);
3786 
3787 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3788 			      data_end + dsize,
3789 			      btrfs_leaf_data(leaf) + data_end,
3790 			      last_off - data_end);
3791 
3792 		for (i = slot + nr; i < nritems; i++) {
3793 			u32 ioff;
3794 
3795 			item = btrfs_item_nr(leaf, i);
3796 			if (!leaf->map_token) {
3797 				map_extent_buffer(leaf, (unsigned long)item,
3798 					sizeof(struct btrfs_item),
3799 					&leaf->map_token, &leaf->kaddr,
3800 					&leaf->map_start, &leaf->map_len,
3801 					KM_USER1);
3802 			}
3803 			ioff = btrfs_item_offset(leaf, item);
3804 			btrfs_set_item_offset(leaf, item, ioff + dsize);
3805 		}
3806 
3807 		if (leaf->map_token) {
3808 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3809 			leaf->map_token = NULL;
3810 		}
3811 
3812 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3813 			      btrfs_item_nr_offset(slot + nr),
3814 			      sizeof(struct btrfs_item) *
3815 			      (nritems - slot - nr));
3816 	}
3817 	btrfs_set_header_nritems(leaf, nritems - nr);
3818 	nritems -= nr;
3819 
3820 	/* delete the leaf if we've emptied it */
3821 	if (nritems == 0) {
3822 		if (leaf == root->node) {
3823 			btrfs_set_header_level(leaf, 0);
3824 		} else {
3825 			ret = btrfs_del_leaf(trans, root, path, leaf->start);
3826 			BUG_ON(ret);
3827 		}
3828 	} else {
3829 		int used = leaf_space_used(leaf, 0, nritems);
3830 		if (slot == 0) {
3831 			struct btrfs_disk_key disk_key;
3832 
3833 			btrfs_item_key(leaf, &disk_key, 0);
3834 			wret = fixup_low_keys(trans, root, path,
3835 					      &disk_key, 1);
3836 			if (wret)
3837 				ret = wret;
3838 		}
3839 
3840 		/* delete the leaf if it is mostly empty */
3841 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 &&
3842 		    !trans->transaction->delayed_refs.flushing) {
3843 			/* push_leaf_left fixes the path.
3844 			 * make sure the path still points to our leaf
3845 			 * for possible call to del_ptr below
3846 			 */
3847 			slot = path->slots[1];
3848 			extent_buffer_get(leaf);
3849 
3850 			btrfs_set_path_blocking(path);
3851 			wret = push_leaf_left(trans, root, path, 1, 1);
3852 			if (wret < 0 && wret != -ENOSPC)
3853 				ret = wret;
3854 
3855 			if (path->nodes[0] == leaf &&
3856 			    btrfs_header_nritems(leaf)) {
3857 				wret = push_leaf_right(trans, root, path, 1, 1);
3858 				if (wret < 0 && wret != -ENOSPC)
3859 					ret = wret;
3860 			}
3861 
3862 			if (btrfs_header_nritems(leaf) == 0) {
3863 				path->slots[1] = slot;
3864 				ret = btrfs_del_leaf(trans, root, path,
3865 						     leaf->start);
3866 				BUG_ON(ret);
3867 				free_extent_buffer(leaf);
3868 			} else {
3869 				/* if we're still in the path, make sure
3870 				 * we're dirty.  Otherwise, one of the
3871 				 * push_leaf functions must have already
3872 				 * dirtied this buffer
3873 				 */
3874 				if (path->nodes[0] == leaf)
3875 					btrfs_mark_buffer_dirty(leaf);
3876 				free_extent_buffer(leaf);
3877 			}
3878 		} else {
3879 			btrfs_mark_buffer_dirty(leaf);
3880 		}
3881 	}
3882 	return ret;
3883 }
3884 
3885 /*
3886  * search the tree again to find a leaf with lesser keys
3887  * returns 0 if it found something or 1 if there are no lesser leaves.
3888  * returns < 0 on io errors.
3889  *
3890  * This may release the path, and so you may lose any locks held at the
3891  * time you call it.
3892  */
3893 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3894 {
3895 	struct btrfs_key key;
3896 	struct btrfs_disk_key found_key;
3897 	int ret;
3898 
3899 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3900 
3901 	if (key.offset > 0)
3902 		key.offset--;
3903 	else if (key.type > 0)
3904 		key.type--;
3905 	else if (key.objectid > 0)
3906 		key.objectid--;
3907 	else
3908 		return 1;
3909 
3910 	btrfs_release_path(root, path);
3911 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3912 	if (ret < 0)
3913 		return ret;
3914 	btrfs_item_key(path->nodes[0], &found_key, 0);
3915 	ret = comp_keys(&found_key, &key);
3916 	if (ret < 0)
3917 		return 0;
3918 	return 1;
3919 }
3920 
3921 /*
3922  * A helper function to walk down the tree starting at min_key, and looking
3923  * for nodes or leaves that are either in cache or have a minimum
3924  * transaction id.  This is used by the btree defrag code, and tree logging
3925  *
3926  * This does not cow, but it does stuff the starting key it finds back
3927  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3928  * key and get a writable path.
3929  *
3930  * This does lock as it descends, and path->keep_locks should be set
3931  * to 1 by the caller.
3932  *
3933  * This honors path->lowest_level to prevent descent past a given level
3934  * of the tree.
3935  *
3936  * min_trans indicates the oldest transaction that you are interested
3937  * in walking through.  Any nodes or leaves older than min_trans are
3938  * skipped over (without reading them).
3939  *
3940  * returns zero if something useful was found, < 0 on error and 1 if there
3941  * was nothing in the tree that matched the search criteria.
3942  */
3943 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3944 			 struct btrfs_key *max_key,
3945 			 struct btrfs_path *path, int cache_only,
3946 			 u64 min_trans)
3947 {
3948 	struct extent_buffer *cur;
3949 	struct btrfs_key found_key;
3950 	int slot;
3951 	int sret;
3952 	u32 nritems;
3953 	int level;
3954 	int ret = 1;
3955 
3956 	WARN_ON(!path->keep_locks);
3957 again:
3958 	cur = btrfs_lock_root_node(root);
3959 	level = btrfs_header_level(cur);
3960 	WARN_ON(path->nodes[level]);
3961 	path->nodes[level] = cur;
3962 	path->locks[level] = 1;
3963 
3964 	if (btrfs_header_generation(cur) < min_trans) {
3965 		ret = 1;
3966 		goto out;
3967 	}
3968 	while (1) {
3969 		nritems = btrfs_header_nritems(cur);
3970 		level = btrfs_header_level(cur);
3971 		sret = bin_search(cur, min_key, level, &slot);
3972 
3973 		/* at the lowest level, we're done, setup the path and exit */
3974 		if (level == path->lowest_level) {
3975 			if (slot >= nritems)
3976 				goto find_next_key;
3977 			ret = 0;
3978 			path->slots[level] = slot;
3979 			btrfs_item_key_to_cpu(cur, &found_key, slot);
3980 			goto out;
3981 		}
3982 		if (sret && slot > 0)
3983 			slot--;
3984 		/*
3985 		 * check this node pointer against the cache_only and
3986 		 * min_trans parameters.  If it isn't in cache or is too
3987 		 * old, skip to the next one.
3988 		 */
3989 		while (slot < nritems) {
3990 			u64 blockptr;
3991 			u64 gen;
3992 			struct extent_buffer *tmp;
3993 			struct btrfs_disk_key disk_key;
3994 
3995 			blockptr = btrfs_node_blockptr(cur, slot);
3996 			gen = btrfs_node_ptr_generation(cur, slot);
3997 			if (gen < min_trans) {
3998 				slot++;
3999 				continue;
4000 			}
4001 			if (!cache_only)
4002 				break;
4003 
4004 			if (max_key) {
4005 				btrfs_node_key(cur, &disk_key, slot);
4006 				if (comp_keys(&disk_key, max_key) >= 0) {
4007 					ret = 1;
4008 					goto out;
4009 				}
4010 			}
4011 
4012 			tmp = btrfs_find_tree_block(root, blockptr,
4013 					    btrfs_level_size(root, level - 1));
4014 
4015 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4016 				free_extent_buffer(tmp);
4017 				break;
4018 			}
4019 			if (tmp)
4020 				free_extent_buffer(tmp);
4021 			slot++;
4022 		}
4023 find_next_key:
4024 		/*
4025 		 * we didn't find a candidate key in this node, walk forward
4026 		 * and find another one
4027 		 */
4028 		if (slot >= nritems) {
4029 			path->slots[level] = slot;
4030 			btrfs_set_path_blocking(path);
4031 			sret = btrfs_find_next_key(root, path, min_key, level,
4032 						  cache_only, min_trans);
4033 			if (sret == 0) {
4034 				btrfs_release_path(root, path);
4035 				goto again;
4036 			} else {
4037 				goto out;
4038 			}
4039 		}
4040 		/* save our key for returning back */
4041 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4042 		path->slots[level] = slot;
4043 		if (level == path->lowest_level) {
4044 			ret = 0;
4045 			unlock_up(path, level, 1);
4046 			goto out;
4047 		}
4048 		btrfs_set_path_blocking(path);
4049 		cur = read_node_slot(root, cur, slot);
4050 
4051 		btrfs_tree_lock(cur);
4052 
4053 		path->locks[level - 1] = 1;
4054 		path->nodes[level - 1] = cur;
4055 		unlock_up(path, level, 1);
4056 		btrfs_clear_path_blocking(path, NULL);
4057 	}
4058 out:
4059 	if (ret == 0)
4060 		memcpy(min_key, &found_key, sizeof(found_key));
4061 	btrfs_set_path_blocking(path);
4062 	return ret;
4063 }
4064 
4065 /*
4066  * this is similar to btrfs_next_leaf, but does not try to preserve
4067  * and fixup the path.  It looks for and returns the next key in the
4068  * tree based on the current path and the cache_only and min_trans
4069  * parameters.
4070  *
4071  * 0 is returned if another key is found, < 0 if there are any errors
4072  * and 1 is returned if there are no higher keys in the tree
4073  *
4074  * path->keep_locks should be set to 1 on the search made before
4075  * calling this function.
4076  */
4077 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4078 			struct btrfs_key *key, int lowest_level,
4079 			int cache_only, u64 min_trans)
4080 {
4081 	int level = lowest_level;
4082 	int slot;
4083 	struct extent_buffer *c;
4084 
4085 	WARN_ON(!path->keep_locks);
4086 	while (level < BTRFS_MAX_LEVEL) {
4087 		if (!path->nodes[level])
4088 			return 1;
4089 
4090 		slot = path->slots[level] + 1;
4091 		c = path->nodes[level];
4092 next:
4093 		if (slot >= btrfs_header_nritems(c)) {
4094 			level++;
4095 			if (level == BTRFS_MAX_LEVEL)
4096 				return 1;
4097 			continue;
4098 		}
4099 		if (level == 0)
4100 			btrfs_item_key_to_cpu(c, key, slot);
4101 		else {
4102 			u64 blockptr = btrfs_node_blockptr(c, slot);
4103 			u64 gen = btrfs_node_ptr_generation(c, slot);
4104 
4105 			if (cache_only) {
4106 				struct extent_buffer *cur;
4107 				cur = btrfs_find_tree_block(root, blockptr,
4108 					    btrfs_level_size(root, level - 1));
4109 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4110 					slot++;
4111 					if (cur)
4112 						free_extent_buffer(cur);
4113 					goto next;
4114 				}
4115 				free_extent_buffer(cur);
4116 			}
4117 			if (gen < min_trans) {
4118 				slot++;
4119 				goto next;
4120 			}
4121 			btrfs_node_key_to_cpu(c, key, slot);
4122 		}
4123 		return 0;
4124 	}
4125 	return 1;
4126 }
4127 
4128 /*
4129  * search the tree again to find a leaf with greater keys
4130  * returns 0 if it found something or 1 if there are no greater leaves.
4131  * returns < 0 on io errors.
4132  */
4133 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4134 {
4135 	int slot;
4136 	int level;
4137 	struct extent_buffer *c;
4138 	struct extent_buffer *next;
4139 	struct btrfs_key key;
4140 	u32 nritems;
4141 	int ret;
4142 	int old_spinning = path->leave_spinning;
4143 	int force_blocking = 0;
4144 
4145 	nritems = btrfs_header_nritems(path->nodes[0]);
4146 	if (nritems == 0)
4147 		return 1;
4148 
4149 	/*
4150 	 * we take the blocks in an order that upsets lockdep.  Using
4151 	 * blocking mode is the only way around it.
4152 	 */
4153 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4154 	force_blocking = 1;
4155 #endif
4156 
4157 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4158 again:
4159 	level = 1;
4160 	next = NULL;
4161 	btrfs_release_path(root, path);
4162 
4163 	path->keep_locks = 1;
4164 
4165 	if (!force_blocking)
4166 		path->leave_spinning = 1;
4167 
4168 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4169 	path->keep_locks = 0;
4170 
4171 	if (ret < 0)
4172 		return ret;
4173 
4174 	nritems = btrfs_header_nritems(path->nodes[0]);
4175 	/*
4176 	 * by releasing the path above we dropped all our locks.  A balance
4177 	 * could have added more items next to the key that used to be
4178 	 * at the very end of the block.  So, check again here and
4179 	 * advance the path if there are now more items available.
4180 	 */
4181 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4182 		path->slots[0]++;
4183 		ret = 0;
4184 		goto done;
4185 	}
4186 
4187 	while (level < BTRFS_MAX_LEVEL) {
4188 		if (!path->nodes[level]) {
4189 			ret = 1;
4190 			goto done;
4191 		}
4192 
4193 		slot = path->slots[level] + 1;
4194 		c = path->nodes[level];
4195 		if (slot >= btrfs_header_nritems(c)) {
4196 			level++;
4197 			if (level == BTRFS_MAX_LEVEL) {
4198 				ret = 1;
4199 				goto done;
4200 			}
4201 			continue;
4202 		}
4203 
4204 		if (next) {
4205 			btrfs_tree_unlock(next);
4206 			free_extent_buffer(next);
4207 		}
4208 
4209 		next = c;
4210 		ret = read_block_for_search(NULL, root, path, &next, level,
4211 					    slot, &key);
4212 		if (ret == -EAGAIN)
4213 			goto again;
4214 
4215 		if (!path->skip_locking) {
4216 			ret = btrfs_try_spin_lock(next);
4217 			if (!ret) {
4218 				btrfs_set_path_blocking(path);
4219 				btrfs_tree_lock(next);
4220 				if (!force_blocking)
4221 					btrfs_clear_path_blocking(path, next);
4222 			}
4223 			if (force_blocking)
4224 				btrfs_set_lock_blocking(next);
4225 		}
4226 		break;
4227 	}
4228 	path->slots[level] = slot;
4229 	while (1) {
4230 		level--;
4231 		c = path->nodes[level];
4232 		if (path->locks[level])
4233 			btrfs_tree_unlock(c);
4234 
4235 		free_extent_buffer(c);
4236 		path->nodes[level] = next;
4237 		path->slots[level] = 0;
4238 		if (!path->skip_locking)
4239 			path->locks[level] = 1;
4240 
4241 		if (!level)
4242 			break;
4243 
4244 		ret = read_block_for_search(NULL, root, path, &next, level,
4245 					    0, &key);
4246 		if (ret == -EAGAIN)
4247 			goto again;
4248 
4249 		if (!path->skip_locking) {
4250 			btrfs_assert_tree_locked(path->nodes[level]);
4251 			ret = btrfs_try_spin_lock(next);
4252 			if (!ret) {
4253 				btrfs_set_path_blocking(path);
4254 				btrfs_tree_lock(next);
4255 				if (!force_blocking)
4256 					btrfs_clear_path_blocking(path, next);
4257 			}
4258 			if (force_blocking)
4259 				btrfs_set_lock_blocking(next);
4260 		}
4261 	}
4262 	ret = 0;
4263 done:
4264 	unlock_up(path, 0, 1);
4265 	path->leave_spinning = old_spinning;
4266 	if (!old_spinning)
4267 		btrfs_set_path_blocking(path);
4268 
4269 	return ret;
4270 }
4271 
4272 /*
4273  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4274  * searching until it gets past min_objectid or finds an item of 'type'
4275  *
4276  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4277  */
4278 int btrfs_previous_item(struct btrfs_root *root,
4279 			struct btrfs_path *path, u64 min_objectid,
4280 			int type)
4281 {
4282 	struct btrfs_key found_key;
4283 	struct extent_buffer *leaf;
4284 	u32 nritems;
4285 	int ret;
4286 
4287 	while (1) {
4288 		if (path->slots[0] == 0) {
4289 			btrfs_set_path_blocking(path);
4290 			ret = btrfs_prev_leaf(root, path);
4291 			if (ret != 0)
4292 				return ret;
4293 		} else {
4294 			path->slots[0]--;
4295 		}
4296 		leaf = path->nodes[0];
4297 		nritems = btrfs_header_nritems(leaf);
4298 		if (nritems == 0)
4299 			return 1;
4300 		if (path->slots[0] == nritems)
4301 			path->slots[0]--;
4302 
4303 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4304 		if (found_key.type == type)
4305 			return 0;
4306 		if (found_key.objectid < min_objectid)
4307 			break;
4308 		if (found_key.objectid == min_objectid &&
4309 		    found_key.type < type)
4310 			break;
4311 	}
4312 	return 1;
4313 }
4314