1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 45 struct btrfs_path *btrfs_alloc_path(void) 46 { 47 struct btrfs_path *path; 48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 49 return path; 50 } 51 52 /* 53 * set all locked nodes in the path to blocking locks. This should 54 * be done before scheduling 55 */ 56 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 57 { 58 int i; 59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 60 if (!p->nodes[i] || !p->locks[i]) 61 continue; 62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 63 if (p->locks[i] == BTRFS_READ_LOCK) 64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 65 else if (p->locks[i] == BTRFS_WRITE_LOCK) 66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 67 } 68 } 69 70 /* 71 * reset all the locked nodes in the patch to spinning locks. 72 * 73 * held is used to keep lockdep happy, when lockdep is enabled 74 * we set held to a blocking lock before we go around and 75 * retake all the spinlocks in the path. You can safely use NULL 76 * for held 77 */ 78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 79 struct extent_buffer *held, int held_rw) 80 { 81 int i; 82 83 #ifdef CONFIG_DEBUG_LOCK_ALLOC 84 /* lockdep really cares that we take all of these spinlocks 85 * in the right order. If any of the locks in the path are not 86 * currently blocking, it is going to complain. So, make really 87 * really sure by forcing the path to blocking before we clear 88 * the path blocking. 89 */ 90 if (held) { 91 btrfs_set_lock_blocking_rw(held, held_rw); 92 if (held_rw == BTRFS_WRITE_LOCK) 93 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 94 else if (held_rw == BTRFS_READ_LOCK) 95 held_rw = BTRFS_READ_LOCK_BLOCKING; 96 } 97 btrfs_set_path_blocking(p); 98 #endif 99 100 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 101 if (p->nodes[i] && p->locks[i]) { 102 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 103 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 104 p->locks[i] = BTRFS_WRITE_LOCK; 105 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 106 p->locks[i] = BTRFS_READ_LOCK; 107 } 108 } 109 110 #ifdef CONFIG_DEBUG_LOCK_ALLOC 111 if (held) 112 btrfs_clear_lock_blocking_rw(held, held_rw); 113 #endif 114 } 115 116 /* this also releases the path */ 117 void btrfs_free_path(struct btrfs_path *p) 118 { 119 if (!p) 120 return; 121 btrfs_release_path(p); 122 kmem_cache_free(btrfs_path_cachep, p); 123 } 124 125 /* 126 * path release drops references on the extent buffers in the path 127 * and it drops any locks held by this path 128 * 129 * It is safe to call this on paths that no locks or extent buffers held. 130 */ 131 noinline void btrfs_release_path(struct btrfs_path *p) 132 { 133 int i; 134 135 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 136 p->slots[i] = 0; 137 if (!p->nodes[i]) 138 continue; 139 if (p->locks[i]) { 140 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 141 p->locks[i] = 0; 142 } 143 free_extent_buffer(p->nodes[i]); 144 p->nodes[i] = NULL; 145 } 146 } 147 148 /* 149 * safely gets a reference on the root node of a tree. A lock 150 * is not taken, so a concurrent writer may put a different node 151 * at the root of the tree. See btrfs_lock_root_node for the 152 * looping required. 153 * 154 * The extent buffer returned by this has a reference taken, so 155 * it won't disappear. It may stop being the root of the tree 156 * at any time because there are no locks held. 157 */ 158 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 159 { 160 struct extent_buffer *eb; 161 162 while (1) { 163 rcu_read_lock(); 164 eb = rcu_dereference(root->node); 165 166 /* 167 * RCU really hurts here, we could free up the root node because 168 * it was cow'ed but we may not get the new root node yet so do 169 * the inc_not_zero dance and if it doesn't work then 170 * synchronize_rcu and try again. 171 */ 172 if (atomic_inc_not_zero(&eb->refs)) { 173 rcu_read_unlock(); 174 break; 175 } 176 rcu_read_unlock(); 177 synchronize_rcu(); 178 } 179 return eb; 180 } 181 182 /* loop around taking references on and locking the root node of the 183 * tree until you end up with a lock on the root. A locked buffer 184 * is returned, with a reference held. 185 */ 186 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 187 { 188 struct extent_buffer *eb; 189 190 while (1) { 191 eb = btrfs_root_node(root); 192 btrfs_tree_lock(eb); 193 if (eb == root->node) 194 break; 195 btrfs_tree_unlock(eb); 196 free_extent_buffer(eb); 197 } 198 return eb; 199 } 200 201 /* loop around taking references on and locking the root node of the 202 * tree until you end up with a lock on the root. A locked buffer 203 * is returned, with a reference held. 204 */ 205 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 206 { 207 struct extent_buffer *eb; 208 209 while (1) { 210 eb = btrfs_root_node(root); 211 btrfs_tree_read_lock(eb); 212 if (eb == root->node) 213 break; 214 btrfs_tree_read_unlock(eb); 215 free_extent_buffer(eb); 216 } 217 return eb; 218 } 219 220 /* cowonly root (everything not a reference counted cow subvolume), just get 221 * put onto a simple dirty list. transaction.c walks this to make sure they 222 * get properly updated on disk. 223 */ 224 static void add_root_to_dirty_list(struct btrfs_root *root) 225 { 226 spin_lock(&root->fs_info->trans_lock); 227 if (root->track_dirty && list_empty(&root->dirty_list)) { 228 list_add(&root->dirty_list, 229 &root->fs_info->dirty_cowonly_roots); 230 } 231 spin_unlock(&root->fs_info->trans_lock); 232 } 233 234 /* 235 * used by snapshot creation to make a copy of a root for a tree with 236 * a given objectid. The buffer with the new root node is returned in 237 * cow_ret, and this func returns zero on success or a negative error code. 238 */ 239 int btrfs_copy_root(struct btrfs_trans_handle *trans, 240 struct btrfs_root *root, 241 struct extent_buffer *buf, 242 struct extent_buffer **cow_ret, u64 new_root_objectid) 243 { 244 struct extent_buffer *cow; 245 int ret = 0; 246 int level; 247 struct btrfs_disk_key disk_key; 248 249 WARN_ON(root->ref_cows && trans->transid != 250 root->fs_info->running_transaction->transid); 251 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 252 253 level = btrfs_header_level(buf); 254 if (level == 0) 255 btrfs_item_key(buf, &disk_key, 0); 256 else 257 btrfs_node_key(buf, &disk_key, 0); 258 259 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 260 new_root_objectid, &disk_key, level, 261 buf->start, 0); 262 if (IS_ERR(cow)) 263 return PTR_ERR(cow); 264 265 copy_extent_buffer(cow, buf, 0, 0, cow->len); 266 btrfs_set_header_bytenr(cow, cow->start); 267 btrfs_set_header_generation(cow, trans->transid); 268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 270 BTRFS_HEADER_FLAG_RELOC); 271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 273 else 274 btrfs_set_header_owner(cow, new_root_objectid); 275 276 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 277 BTRFS_FSID_SIZE); 278 279 WARN_ON(btrfs_header_generation(buf) > trans->transid); 280 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 281 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 282 else 283 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 284 285 if (ret) 286 return ret; 287 288 btrfs_mark_buffer_dirty(cow); 289 *cow_ret = cow; 290 return 0; 291 } 292 293 enum mod_log_op { 294 MOD_LOG_KEY_REPLACE, 295 MOD_LOG_KEY_ADD, 296 MOD_LOG_KEY_REMOVE, 297 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 298 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 299 MOD_LOG_MOVE_KEYS, 300 MOD_LOG_ROOT_REPLACE, 301 }; 302 303 struct tree_mod_move { 304 int dst_slot; 305 int nr_items; 306 }; 307 308 struct tree_mod_root { 309 u64 logical; 310 u8 level; 311 }; 312 313 struct tree_mod_elem { 314 struct rb_node node; 315 u64 index; /* shifted logical */ 316 u64 seq; 317 enum mod_log_op op; 318 319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 320 int slot; 321 322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 323 u64 generation; 324 325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 326 struct btrfs_disk_key key; 327 u64 blockptr; 328 329 /* this is used for op == MOD_LOG_MOVE_KEYS */ 330 struct tree_mod_move move; 331 332 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 333 struct tree_mod_root old_root; 334 }; 335 336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 337 { 338 read_lock(&fs_info->tree_mod_log_lock); 339 } 340 341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 342 { 343 read_unlock(&fs_info->tree_mod_log_lock); 344 } 345 346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 347 { 348 write_lock(&fs_info->tree_mod_log_lock); 349 } 350 351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 352 { 353 write_unlock(&fs_info->tree_mod_log_lock); 354 } 355 356 /* 357 * Increment the upper half of tree_mod_seq, set lower half zero. 358 * 359 * Must be called with fs_info->tree_mod_seq_lock held. 360 */ 361 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info) 362 { 363 u64 seq = atomic64_read(&fs_info->tree_mod_seq); 364 seq &= 0xffffffff00000000ull; 365 seq += 1ull << 32; 366 atomic64_set(&fs_info->tree_mod_seq, seq); 367 return seq; 368 } 369 370 /* 371 * Increment the lower half of tree_mod_seq. 372 * 373 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers 374 * are generated should not technically require a spin lock here. (Rationale: 375 * incrementing the minor while incrementing the major seq number is between its 376 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it 377 * just returns a unique sequence number as usual.) We have decided to leave 378 * that requirement in here and rethink it once we notice it really imposes a 379 * problem on some workload. 380 */ 381 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info) 382 { 383 return atomic64_inc_return(&fs_info->tree_mod_seq); 384 } 385 386 /* 387 * return the last minor in the previous major tree_mod_seq number 388 */ 389 u64 btrfs_tree_mod_seq_prev(u64 seq) 390 { 391 return (seq & 0xffffffff00000000ull) - 1ull; 392 } 393 394 /* 395 * This adds a new blocker to the tree mod log's blocker list if the @elem 396 * passed does not already have a sequence number set. So when a caller expects 397 * to record tree modifications, it should ensure to set elem->seq to zero 398 * before calling btrfs_get_tree_mod_seq. 399 * Returns a fresh, unused tree log modification sequence number, even if no new 400 * blocker was added. 401 */ 402 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 403 struct seq_list *elem) 404 { 405 u64 seq; 406 407 tree_mod_log_write_lock(fs_info); 408 spin_lock(&fs_info->tree_mod_seq_lock); 409 if (!elem->seq) { 410 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info); 411 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 412 } 413 seq = btrfs_inc_tree_mod_seq_minor(fs_info); 414 spin_unlock(&fs_info->tree_mod_seq_lock); 415 tree_mod_log_write_unlock(fs_info); 416 417 return seq; 418 } 419 420 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 421 struct seq_list *elem) 422 { 423 struct rb_root *tm_root; 424 struct rb_node *node; 425 struct rb_node *next; 426 struct seq_list *cur_elem; 427 struct tree_mod_elem *tm; 428 u64 min_seq = (u64)-1; 429 u64 seq_putting = elem->seq; 430 431 if (!seq_putting) 432 return; 433 434 spin_lock(&fs_info->tree_mod_seq_lock); 435 list_del(&elem->list); 436 elem->seq = 0; 437 438 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 439 if (cur_elem->seq < min_seq) { 440 if (seq_putting > cur_elem->seq) { 441 /* 442 * blocker with lower sequence number exists, we 443 * cannot remove anything from the log 444 */ 445 spin_unlock(&fs_info->tree_mod_seq_lock); 446 return; 447 } 448 min_seq = cur_elem->seq; 449 } 450 } 451 spin_unlock(&fs_info->tree_mod_seq_lock); 452 453 /* 454 * anything that's lower than the lowest existing (read: blocked) 455 * sequence number can be removed from the tree. 456 */ 457 tree_mod_log_write_lock(fs_info); 458 tm_root = &fs_info->tree_mod_log; 459 for (node = rb_first(tm_root); node; node = next) { 460 next = rb_next(node); 461 tm = container_of(node, struct tree_mod_elem, node); 462 if (tm->seq > min_seq) 463 continue; 464 rb_erase(node, tm_root); 465 kfree(tm); 466 } 467 tree_mod_log_write_unlock(fs_info); 468 } 469 470 /* 471 * key order of the log: 472 * index -> sequence 473 * 474 * the index is the shifted logical of the *new* root node for root replace 475 * operations, or the shifted logical of the affected block for all other 476 * operations. 477 * 478 * Note: must be called with write lock (tree_mod_log_write_lock). 479 */ 480 static noinline int 481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 482 { 483 struct rb_root *tm_root; 484 struct rb_node **new; 485 struct rb_node *parent = NULL; 486 struct tree_mod_elem *cur; 487 488 BUG_ON(!tm); 489 490 spin_lock(&fs_info->tree_mod_seq_lock); 491 tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info); 492 spin_unlock(&fs_info->tree_mod_seq_lock); 493 494 tm_root = &fs_info->tree_mod_log; 495 new = &tm_root->rb_node; 496 while (*new) { 497 cur = container_of(*new, struct tree_mod_elem, node); 498 parent = *new; 499 if (cur->index < tm->index) 500 new = &((*new)->rb_left); 501 else if (cur->index > tm->index) 502 new = &((*new)->rb_right); 503 else if (cur->seq < tm->seq) 504 new = &((*new)->rb_left); 505 else if (cur->seq > tm->seq) 506 new = &((*new)->rb_right); 507 else 508 return -EEXIST; 509 } 510 511 rb_link_node(&tm->node, parent, new); 512 rb_insert_color(&tm->node, tm_root); 513 return 0; 514 } 515 516 /* 517 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 518 * returns zero with the tree_mod_log_lock acquired. The caller must hold 519 * this until all tree mod log insertions are recorded in the rb tree and then 520 * call tree_mod_log_write_unlock() to release. 521 */ 522 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 523 struct extent_buffer *eb) { 524 smp_mb(); 525 if (list_empty(&(fs_info)->tree_mod_seq_list)) 526 return 1; 527 if (eb && btrfs_header_level(eb) == 0) 528 return 1; 529 530 tree_mod_log_write_lock(fs_info); 531 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 532 tree_mod_log_write_unlock(fs_info); 533 return 1; 534 } 535 536 return 0; 537 } 538 539 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 540 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 541 struct extent_buffer *eb) 542 { 543 smp_mb(); 544 if (list_empty(&(fs_info)->tree_mod_seq_list)) 545 return 0; 546 if (eb && btrfs_header_level(eb) == 0) 547 return 0; 548 549 return 1; 550 } 551 552 static struct tree_mod_elem * 553 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 554 enum mod_log_op op, gfp_t flags) 555 { 556 struct tree_mod_elem *tm; 557 558 tm = kzalloc(sizeof(*tm), flags); 559 if (!tm) 560 return NULL; 561 562 tm->index = eb->start >> PAGE_CACHE_SHIFT; 563 if (op != MOD_LOG_KEY_ADD) { 564 btrfs_node_key(eb, &tm->key, slot); 565 tm->blockptr = btrfs_node_blockptr(eb, slot); 566 } 567 tm->op = op; 568 tm->slot = slot; 569 tm->generation = btrfs_node_ptr_generation(eb, slot); 570 RB_CLEAR_NODE(&tm->node); 571 572 return tm; 573 } 574 575 static noinline int 576 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 577 struct extent_buffer *eb, int slot, 578 enum mod_log_op op, gfp_t flags) 579 { 580 struct tree_mod_elem *tm; 581 int ret; 582 583 if (!tree_mod_need_log(fs_info, eb)) 584 return 0; 585 586 tm = alloc_tree_mod_elem(eb, slot, op, flags); 587 if (!tm) 588 return -ENOMEM; 589 590 if (tree_mod_dont_log(fs_info, eb)) { 591 kfree(tm); 592 return 0; 593 } 594 595 ret = __tree_mod_log_insert(fs_info, tm); 596 tree_mod_log_write_unlock(fs_info); 597 if (ret) 598 kfree(tm); 599 600 return ret; 601 } 602 603 static noinline int 604 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 605 struct extent_buffer *eb, int dst_slot, int src_slot, 606 int nr_items, gfp_t flags) 607 { 608 struct tree_mod_elem *tm = NULL; 609 struct tree_mod_elem **tm_list = NULL; 610 int ret = 0; 611 int i; 612 int locked = 0; 613 614 if (!tree_mod_need_log(fs_info, eb)) 615 return 0; 616 617 tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags); 618 if (!tm_list) 619 return -ENOMEM; 620 621 tm = kzalloc(sizeof(*tm), flags); 622 if (!tm) { 623 ret = -ENOMEM; 624 goto free_tms; 625 } 626 627 tm->index = eb->start >> PAGE_CACHE_SHIFT; 628 tm->slot = src_slot; 629 tm->move.dst_slot = dst_slot; 630 tm->move.nr_items = nr_items; 631 tm->op = MOD_LOG_MOVE_KEYS; 632 633 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 634 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 635 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 636 if (!tm_list[i]) { 637 ret = -ENOMEM; 638 goto free_tms; 639 } 640 } 641 642 if (tree_mod_dont_log(fs_info, eb)) 643 goto free_tms; 644 locked = 1; 645 646 /* 647 * When we override something during the move, we log these removals. 648 * This can only happen when we move towards the beginning of the 649 * buffer, i.e. dst_slot < src_slot. 650 */ 651 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 652 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 653 if (ret) 654 goto free_tms; 655 } 656 657 ret = __tree_mod_log_insert(fs_info, tm); 658 if (ret) 659 goto free_tms; 660 tree_mod_log_write_unlock(fs_info); 661 kfree(tm_list); 662 663 return 0; 664 free_tms: 665 for (i = 0; i < nr_items; i++) { 666 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 667 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 668 kfree(tm_list[i]); 669 } 670 if (locked) 671 tree_mod_log_write_unlock(fs_info); 672 kfree(tm_list); 673 kfree(tm); 674 675 return ret; 676 } 677 678 static inline int 679 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 680 struct tree_mod_elem **tm_list, 681 int nritems) 682 { 683 int i, j; 684 int ret; 685 686 for (i = nritems - 1; i >= 0; i--) { 687 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 688 if (ret) { 689 for (j = nritems - 1; j > i; j--) 690 rb_erase(&tm_list[j]->node, 691 &fs_info->tree_mod_log); 692 return ret; 693 } 694 } 695 696 return 0; 697 } 698 699 static noinline int 700 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 701 struct extent_buffer *old_root, 702 struct extent_buffer *new_root, gfp_t flags, 703 int log_removal) 704 { 705 struct tree_mod_elem *tm = NULL; 706 struct tree_mod_elem **tm_list = NULL; 707 int nritems = 0; 708 int ret = 0; 709 int i; 710 711 if (!tree_mod_need_log(fs_info, NULL)) 712 return 0; 713 714 if (log_removal && btrfs_header_level(old_root) > 0) { 715 nritems = btrfs_header_nritems(old_root); 716 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *), 717 flags); 718 if (!tm_list) { 719 ret = -ENOMEM; 720 goto free_tms; 721 } 722 for (i = 0; i < nritems; i++) { 723 tm_list[i] = alloc_tree_mod_elem(old_root, i, 724 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 725 if (!tm_list[i]) { 726 ret = -ENOMEM; 727 goto free_tms; 728 } 729 } 730 } 731 732 tm = kzalloc(sizeof(*tm), flags); 733 if (!tm) { 734 ret = -ENOMEM; 735 goto free_tms; 736 } 737 738 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 739 tm->old_root.logical = old_root->start; 740 tm->old_root.level = btrfs_header_level(old_root); 741 tm->generation = btrfs_header_generation(old_root); 742 tm->op = MOD_LOG_ROOT_REPLACE; 743 744 if (tree_mod_dont_log(fs_info, NULL)) 745 goto free_tms; 746 747 if (tm_list) 748 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 749 if (!ret) 750 ret = __tree_mod_log_insert(fs_info, tm); 751 752 tree_mod_log_write_unlock(fs_info); 753 if (ret) 754 goto free_tms; 755 kfree(tm_list); 756 757 return ret; 758 759 free_tms: 760 if (tm_list) { 761 for (i = 0; i < nritems; i++) 762 kfree(tm_list[i]); 763 kfree(tm_list); 764 } 765 kfree(tm); 766 767 return ret; 768 } 769 770 static struct tree_mod_elem * 771 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 772 int smallest) 773 { 774 struct rb_root *tm_root; 775 struct rb_node *node; 776 struct tree_mod_elem *cur = NULL; 777 struct tree_mod_elem *found = NULL; 778 u64 index = start >> PAGE_CACHE_SHIFT; 779 780 tree_mod_log_read_lock(fs_info); 781 tm_root = &fs_info->tree_mod_log; 782 node = tm_root->rb_node; 783 while (node) { 784 cur = container_of(node, struct tree_mod_elem, node); 785 if (cur->index < index) { 786 node = node->rb_left; 787 } else if (cur->index > index) { 788 node = node->rb_right; 789 } else if (cur->seq < min_seq) { 790 node = node->rb_left; 791 } else if (!smallest) { 792 /* we want the node with the highest seq */ 793 if (found) 794 BUG_ON(found->seq > cur->seq); 795 found = cur; 796 node = node->rb_left; 797 } else if (cur->seq > min_seq) { 798 /* we want the node with the smallest seq */ 799 if (found) 800 BUG_ON(found->seq < cur->seq); 801 found = cur; 802 node = node->rb_right; 803 } else { 804 found = cur; 805 break; 806 } 807 } 808 tree_mod_log_read_unlock(fs_info); 809 810 return found; 811 } 812 813 /* 814 * this returns the element from the log with the smallest time sequence 815 * value that's in the log (the oldest log item). any element with a time 816 * sequence lower than min_seq will be ignored. 817 */ 818 static struct tree_mod_elem * 819 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 820 u64 min_seq) 821 { 822 return __tree_mod_log_search(fs_info, start, min_seq, 1); 823 } 824 825 /* 826 * this returns the element from the log with the largest time sequence 827 * value that's in the log (the most recent log item). any element with 828 * a time sequence lower than min_seq will be ignored. 829 */ 830 static struct tree_mod_elem * 831 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 832 { 833 return __tree_mod_log_search(fs_info, start, min_seq, 0); 834 } 835 836 static noinline int 837 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 838 struct extent_buffer *src, unsigned long dst_offset, 839 unsigned long src_offset, int nr_items) 840 { 841 int ret = 0; 842 struct tree_mod_elem **tm_list = NULL; 843 struct tree_mod_elem **tm_list_add, **tm_list_rem; 844 int i; 845 int locked = 0; 846 847 if (!tree_mod_need_log(fs_info, NULL)) 848 return 0; 849 850 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 851 return 0; 852 853 tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *), 854 GFP_NOFS); 855 if (!tm_list) 856 return -ENOMEM; 857 858 tm_list_add = tm_list; 859 tm_list_rem = tm_list + nr_items; 860 for (i = 0; i < nr_items; i++) { 861 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 862 MOD_LOG_KEY_REMOVE, GFP_NOFS); 863 if (!tm_list_rem[i]) { 864 ret = -ENOMEM; 865 goto free_tms; 866 } 867 868 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 869 MOD_LOG_KEY_ADD, GFP_NOFS); 870 if (!tm_list_add[i]) { 871 ret = -ENOMEM; 872 goto free_tms; 873 } 874 } 875 876 if (tree_mod_dont_log(fs_info, NULL)) 877 goto free_tms; 878 locked = 1; 879 880 for (i = 0; i < nr_items; i++) { 881 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 882 if (ret) 883 goto free_tms; 884 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 885 if (ret) 886 goto free_tms; 887 } 888 889 tree_mod_log_write_unlock(fs_info); 890 kfree(tm_list); 891 892 return 0; 893 894 free_tms: 895 for (i = 0; i < nr_items * 2; i++) { 896 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 897 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 898 kfree(tm_list[i]); 899 } 900 if (locked) 901 tree_mod_log_write_unlock(fs_info); 902 kfree(tm_list); 903 904 return ret; 905 } 906 907 static inline void 908 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 909 int dst_offset, int src_offset, int nr_items) 910 { 911 int ret; 912 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 913 nr_items, GFP_NOFS); 914 BUG_ON(ret < 0); 915 } 916 917 static noinline void 918 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 919 struct extent_buffer *eb, int slot, int atomic) 920 { 921 int ret; 922 923 ret = tree_mod_log_insert_key(fs_info, eb, slot, 924 MOD_LOG_KEY_REPLACE, 925 atomic ? GFP_ATOMIC : GFP_NOFS); 926 BUG_ON(ret < 0); 927 } 928 929 static noinline int 930 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 931 { 932 struct tree_mod_elem **tm_list = NULL; 933 int nritems = 0; 934 int i; 935 int ret = 0; 936 937 if (btrfs_header_level(eb) == 0) 938 return 0; 939 940 if (!tree_mod_need_log(fs_info, NULL)) 941 return 0; 942 943 nritems = btrfs_header_nritems(eb); 944 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *), 945 GFP_NOFS); 946 if (!tm_list) 947 return -ENOMEM; 948 949 for (i = 0; i < nritems; i++) { 950 tm_list[i] = alloc_tree_mod_elem(eb, i, 951 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 952 if (!tm_list[i]) { 953 ret = -ENOMEM; 954 goto free_tms; 955 } 956 } 957 958 if (tree_mod_dont_log(fs_info, eb)) 959 goto free_tms; 960 961 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 962 tree_mod_log_write_unlock(fs_info); 963 if (ret) 964 goto free_tms; 965 kfree(tm_list); 966 967 return 0; 968 969 free_tms: 970 for (i = 0; i < nritems; i++) 971 kfree(tm_list[i]); 972 kfree(tm_list); 973 974 return ret; 975 } 976 977 static noinline void 978 tree_mod_log_set_root_pointer(struct btrfs_root *root, 979 struct extent_buffer *new_root_node, 980 int log_removal) 981 { 982 int ret; 983 ret = tree_mod_log_insert_root(root->fs_info, root->node, 984 new_root_node, GFP_NOFS, log_removal); 985 BUG_ON(ret < 0); 986 } 987 988 /* 989 * check if the tree block can be shared by multiple trees 990 */ 991 int btrfs_block_can_be_shared(struct btrfs_root *root, 992 struct extent_buffer *buf) 993 { 994 /* 995 * Tree blocks not in refernece counted trees and tree roots 996 * are never shared. If a block was allocated after the last 997 * snapshot and the block was not allocated by tree relocation, 998 * we know the block is not shared. 999 */ 1000 if (root->ref_cows && 1001 buf != root->node && buf != root->commit_root && 1002 (btrfs_header_generation(buf) <= 1003 btrfs_root_last_snapshot(&root->root_item) || 1004 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 1005 return 1; 1006 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1007 if (root->ref_cows && 1008 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1009 return 1; 1010 #endif 1011 return 0; 1012 } 1013 1014 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 1015 struct btrfs_root *root, 1016 struct extent_buffer *buf, 1017 struct extent_buffer *cow, 1018 int *last_ref) 1019 { 1020 u64 refs; 1021 u64 owner; 1022 u64 flags; 1023 u64 new_flags = 0; 1024 int ret; 1025 1026 /* 1027 * Backrefs update rules: 1028 * 1029 * Always use full backrefs for extent pointers in tree block 1030 * allocated by tree relocation. 1031 * 1032 * If a shared tree block is no longer referenced by its owner 1033 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 1034 * use full backrefs for extent pointers in tree block. 1035 * 1036 * If a tree block is been relocating 1037 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1038 * use full backrefs for extent pointers in tree block. 1039 * The reason for this is some operations (such as drop tree) 1040 * are only allowed for blocks use full backrefs. 1041 */ 1042 1043 if (btrfs_block_can_be_shared(root, buf)) { 1044 ret = btrfs_lookup_extent_info(trans, root, buf->start, 1045 btrfs_header_level(buf), 1, 1046 &refs, &flags); 1047 if (ret) 1048 return ret; 1049 if (refs == 0) { 1050 ret = -EROFS; 1051 btrfs_std_error(root->fs_info, ret); 1052 return ret; 1053 } 1054 } else { 1055 refs = 1; 1056 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1057 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1058 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1059 else 1060 flags = 0; 1061 } 1062 1063 owner = btrfs_header_owner(buf); 1064 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1065 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1066 1067 if (refs > 1) { 1068 if ((owner == root->root_key.objectid || 1069 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1070 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1071 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 1072 BUG_ON(ret); /* -ENOMEM */ 1073 1074 if (root->root_key.objectid == 1075 BTRFS_TREE_RELOC_OBJECTID) { 1076 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 1077 BUG_ON(ret); /* -ENOMEM */ 1078 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 1079 BUG_ON(ret); /* -ENOMEM */ 1080 } 1081 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1082 } else { 1083 1084 if (root->root_key.objectid == 1085 BTRFS_TREE_RELOC_OBJECTID) 1086 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 1087 else 1088 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 1089 BUG_ON(ret); /* -ENOMEM */ 1090 } 1091 if (new_flags != 0) { 1092 int level = btrfs_header_level(buf); 1093 1094 ret = btrfs_set_disk_extent_flags(trans, root, 1095 buf->start, 1096 buf->len, 1097 new_flags, level, 0); 1098 if (ret) 1099 return ret; 1100 } 1101 } else { 1102 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1103 if (root->root_key.objectid == 1104 BTRFS_TREE_RELOC_OBJECTID) 1105 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 1106 else 1107 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 1108 BUG_ON(ret); /* -ENOMEM */ 1109 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 1110 BUG_ON(ret); /* -ENOMEM */ 1111 } 1112 clean_tree_block(trans, root, buf); 1113 *last_ref = 1; 1114 } 1115 return 0; 1116 } 1117 1118 /* 1119 * does the dirty work in cow of a single block. The parent block (if 1120 * supplied) is updated to point to the new cow copy. The new buffer is marked 1121 * dirty and returned locked. If you modify the block it needs to be marked 1122 * dirty again. 1123 * 1124 * search_start -- an allocation hint for the new block 1125 * 1126 * empty_size -- a hint that you plan on doing more cow. This is the size in 1127 * bytes the allocator should try to find free next to the block it returns. 1128 * This is just a hint and may be ignored by the allocator. 1129 */ 1130 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1131 struct btrfs_root *root, 1132 struct extent_buffer *buf, 1133 struct extent_buffer *parent, int parent_slot, 1134 struct extent_buffer **cow_ret, 1135 u64 search_start, u64 empty_size) 1136 { 1137 struct btrfs_disk_key disk_key; 1138 struct extent_buffer *cow; 1139 int level, ret; 1140 int last_ref = 0; 1141 int unlock_orig = 0; 1142 u64 parent_start; 1143 1144 if (*cow_ret == buf) 1145 unlock_orig = 1; 1146 1147 btrfs_assert_tree_locked(buf); 1148 1149 WARN_ON(root->ref_cows && trans->transid != 1150 root->fs_info->running_transaction->transid); 1151 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 1152 1153 level = btrfs_header_level(buf); 1154 1155 if (level == 0) 1156 btrfs_item_key(buf, &disk_key, 0); 1157 else 1158 btrfs_node_key(buf, &disk_key, 0); 1159 1160 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 1161 if (parent) 1162 parent_start = parent->start; 1163 else 1164 parent_start = 0; 1165 } else 1166 parent_start = 0; 1167 1168 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 1169 root->root_key.objectid, &disk_key, 1170 level, search_start, empty_size); 1171 if (IS_ERR(cow)) 1172 return PTR_ERR(cow); 1173 1174 /* cow is set to blocking by btrfs_init_new_buffer */ 1175 1176 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1177 btrfs_set_header_bytenr(cow, cow->start); 1178 btrfs_set_header_generation(cow, trans->transid); 1179 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1180 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1181 BTRFS_HEADER_FLAG_RELOC); 1182 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1183 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1184 else 1185 btrfs_set_header_owner(cow, root->root_key.objectid); 1186 1187 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1188 BTRFS_FSID_SIZE); 1189 1190 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1191 if (ret) { 1192 btrfs_abort_transaction(trans, root, ret); 1193 return ret; 1194 } 1195 1196 if (root->ref_cows) { 1197 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1198 if (ret) 1199 return ret; 1200 } 1201 1202 if (buf == root->node) { 1203 WARN_ON(parent && parent != buf); 1204 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1205 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1206 parent_start = buf->start; 1207 else 1208 parent_start = 0; 1209 1210 extent_buffer_get(cow); 1211 tree_mod_log_set_root_pointer(root, cow, 1); 1212 rcu_assign_pointer(root->node, cow); 1213 1214 btrfs_free_tree_block(trans, root, buf, parent_start, 1215 last_ref); 1216 free_extent_buffer(buf); 1217 add_root_to_dirty_list(root); 1218 } else { 1219 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1220 parent_start = parent->start; 1221 else 1222 parent_start = 0; 1223 1224 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1225 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1226 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1227 btrfs_set_node_blockptr(parent, parent_slot, 1228 cow->start); 1229 btrfs_set_node_ptr_generation(parent, parent_slot, 1230 trans->transid); 1231 btrfs_mark_buffer_dirty(parent); 1232 if (last_ref) { 1233 ret = tree_mod_log_free_eb(root->fs_info, buf); 1234 if (ret) { 1235 btrfs_abort_transaction(trans, root, ret); 1236 return ret; 1237 } 1238 } 1239 btrfs_free_tree_block(trans, root, buf, parent_start, 1240 last_ref); 1241 } 1242 if (unlock_orig) 1243 btrfs_tree_unlock(buf); 1244 free_extent_buffer_stale(buf); 1245 btrfs_mark_buffer_dirty(cow); 1246 *cow_ret = cow; 1247 return 0; 1248 } 1249 1250 /* 1251 * returns the logical address of the oldest predecessor of the given root. 1252 * entries older than time_seq are ignored. 1253 */ 1254 static struct tree_mod_elem * 1255 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1256 struct extent_buffer *eb_root, u64 time_seq) 1257 { 1258 struct tree_mod_elem *tm; 1259 struct tree_mod_elem *found = NULL; 1260 u64 root_logical = eb_root->start; 1261 int looped = 0; 1262 1263 if (!time_seq) 1264 return NULL; 1265 1266 /* 1267 * the very last operation that's logged for a root is the replacement 1268 * operation (if it is replaced at all). this has the index of the *new* 1269 * root, making it the very first operation that's logged for this root. 1270 */ 1271 while (1) { 1272 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1273 time_seq); 1274 if (!looped && !tm) 1275 return NULL; 1276 /* 1277 * if there are no tree operation for the oldest root, we simply 1278 * return it. this should only happen if that (old) root is at 1279 * level 0. 1280 */ 1281 if (!tm) 1282 break; 1283 1284 /* 1285 * if there's an operation that's not a root replacement, we 1286 * found the oldest version of our root. normally, we'll find a 1287 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1288 */ 1289 if (tm->op != MOD_LOG_ROOT_REPLACE) 1290 break; 1291 1292 found = tm; 1293 root_logical = tm->old_root.logical; 1294 looped = 1; 1295 } 1296 1297 /* if there's no old root to return, return what we found instead */ 1298 if (!found) 1299 found = tm; 1300 1301 return found; 1302 } 1303 1304 /* 1305 * tm is a pointer to the first operation to rewind within eb. then, all 1306 * previous operations will be rewinded (until we reach something older than 1307 * time_seq). 1308 */ 1309 static void 1310 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1311 u64 time_seq, struct tree_mod_elem *first_tm) 1312 { 1313 u32 n; 1314 struct rb_node *next; 1315 struct tree_mod_elem *tm = first_tm; 1316 unsigned long o_dst; 1317 unsigned long o_src; 1318 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1319 1320 n = btrfs_header_nritems(eb); 1321 tree_mod_log_read_lock(fs_info); 1322 while (tm && tm->seq >= time_seq) { 1323 /* 1324 * all the operations are recorded with the operator used for 1325 * the modification. as we're going backwards, we do the 1326 * opposite of each operation here. 1327 */ 1328 switch (tm->op) { 1329 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1330 BUG_ON(tm->slot < n); 1331 /* Fallthrough */ 1332 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1333 case MOD_LOG_KEY_REMOVE: 1334 btrfs_set_node_key(eb, &tm->key, tm->slot); 1335 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1336 btrfs_set_node_ptr_generation(eb, tm->slot, 1337 tm->generation); 1338 n++; 1339 break; 1340 case MOD_LOG_KEY_REPLACE: 1341 BUG_ON(tm->slot >= n); 1342 btrfs_set_node_key(eb, &tm->key, tm->slot); 1343 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1344 btrfs_set_node_ptr_generation(eb, tm->slot, 1345 tm->generation); 1346 break; 1347 case MOD_LOG_KEY_ADD: 1348 /* if a move operation is needed it's in the log */ 1349 n--; 1350 break; 1351 case MOD_LOG_MOVE_KEYS: 1352 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1353 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1354 memmove_extent_buffer(eb, o_dst, o_src, 1355 tm->move.nr_items * p_size); 1356 break; 1357 case MOD_LOG_ROOT_REPLACE: 1358 /* 1359 * this operation is special. for roots, this must be 1360 * handled explicitly before rewinding. 1361 * for non-roots, this operation may exist if the node 1362 * was a root: root A -> child B; then A gets empty and 1363 * B is promoted to the new root. in the mod log, we'll 1364 * have a root-replace operation for B, a tree block 1365 * that is no root. we simply ignore that operation. 1366 */ 1367 break; 1368 } 1369 next = rb_next(&tm->node); 1370 if (!next) 1371 break; 1372 tm = container_of(next, struct tree_mod_elem, node); 1373 if (tm->index != first_tm->index) 1374 break; 1375 } 1376 tree_mod_log_read_unlock(fs_info); 1377 btrfs_set_header_nritems(eb, n); 1378 } 1379 1380 /* 1381 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1382 * is returned. If rewind operations happen, a fresh buffer is returned. The 1383 * returned buffer is always read-locked. If the returned buffer is not the 1384 * input buffer, the lock on the input buffer is released and the input buffer 1385 * is freed (its refcount is decremented). 1386 */ 1387 static struct extent_buffer * 1388 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1389 struct extent_buffer *eb, u64 time_seq) 1390 { 1391 struct extent_buffer *eb_rewin; 1392 struct tree_mod_elem *tm; 1393 1394 if (!time_seq) 1395 return eb; 1396 1397 if (btrfs_header_level(eb) == 0) 1398 return eb; 1399 1400 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1401 if (!tm) 1402 return eb; 1403 1404 btrfs_set_path_blocking(path); 1405 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1406 1407 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1408 BUG_ON(tm->slot != 0); 1409 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1410 fs_info->tree_root->nodesize); 1411 if (!eb_rewin) { 1412 btrfs_tree_read_unlock_blocking(eb); 1413 free_extent_buffer(eb); 1414 return NULL; 1415 } 1416 btrfs_set_header_bytenr(eb_rewin, eb->start); 1417 btrfs_set_header_backref_rev(eb_rewin, 1418 btrfs_header_backref_rev(eb)); 1419 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1420 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1421 } else { 1422 eb_rewin = btrfs_clone_extent_buffer(eb); 1423 if (!eb_rewin) { 1424 btrfs_tree_read_unlock_blocking(eb); 1425 free_extent_buffer(eb); 1426 return NULL; 1427 } 1428 } 1429 1430 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1431 btrfs_tree_read_unlock_blocking(eb); 1432 free_extent_buffer(eb); 1433 1434 extent_buffer_get(eb_rewin); 1435 btrfs_tree_read_lock(eb_rewin); 1436 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1437 WARN_ON(btrfs_header_nritems(eb_rewin) > 1438 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1439 1440 return eb_rewin; 1441 } 1442 1443 /* 1444 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1445 * value. If there are no changes, the current root->root_node is returned. If 1446 * anything changed in between, there's a fresh buffer allocated on which the 1447 * rewind operations are done. In any case, the returned buffer is read locked. 1448 * Returns NULL on error (with no locks held). 1449 */ 1450 static inline struct extent_buffer * 1451 get_old_root(struct btrfs_root *root, u64 time_seq) 1452 { 1453 struct tree_mod_elem *tm; 1454 struct extent_buffer *eb = NULL; 1455 struct extent_buffer *eb_root; 1456 struct extent_buffer *old; 1457 struct tree_mod_root *old_root = NULL; 1458 u64 old_generation = 0; 1459 u64 logical; 1460 u32 blocksize; 1461 1462 eb_root = btrfs_read_lock_root_node(root); 1463 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1464 if (!tm) 1465 return eb_root; 1466 1467 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1468 old_root = &tm->old_root; 1469 old_generation = tm->generation; 1470 logical = old_root->logical; 1471 } else { 1472 logical = eb_root->start; 1473 } 1474 1475 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1476 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1477 btrfs_tree_read_unlock(eb_root); 1478 free_extent_buffer(eb_root); 1479 blocksize = btrfs_level_size(root, old_root->level); 1480 old = read_tree_block(root, logical, blocksize, 0); 1481 if (WARN_ON(!old || !extent_buffer_uptodate(old))) { 1482 free_extent_buffer(old); 1483 btrfs_warn(root->fs_info, 1484 "failed to read tree block %llu from get_old_root", logical); 1485 } else { 1486 eb = btrfs_clone_extent_buffer(old); 1487 free_extent_buffer(old); 1488 } 1489 } else if (old_root) { 1490 btrfs_tree_read_unlock(eb_root); 1491 free_extent_buffer(eb_root); 1492 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1493 } else { 1494 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1495 eb = btrfs_clone_extent_buffer(eb_root); 1496 btrfs_tree_read_unlock_blocking(eb_root); 1497 free_extent_buffer(eb_root); 1498 } 1499 1500 if (!eb) 1501 return NULL; 1502 extent_buffer_get(eb); 1503 btrfs_tree_read_lock(eb); 1504 if (old_root) { 1505 btrfs_set_header_bytenr(eb, eb->start); 1506 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1507 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1508 btrfs_set_header_level(eb, old_root->level); 1509 btrfs_set_header_generation(eb, old_generation); 1510 } 1511 if (tm) 1512 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1513 else 1514 WARN_ON(btrfs_header_level(eb) != 0); 1515 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1516 1517 return eb; 1518 } 1519 1520 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1521 { 1522 struct tree_mod_elem *tm; 1523 int level; 1524 struct extent_buffer *eb_root = btrfs_root_node(root); 1525 1526 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1527 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1528 level = tm->old_root.level; 1529 } else { 1530 level = btrfs_header_level(eb_root); 1531 } 1532 free_extent_buffer(eb_root); 1533 1534 return level; 1535 } 1536 1537 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1538 struct btrfs_root *root, 1539 struct extent_buffer *buf) 1540 { 1541 /* ensure we can see the force_cow */ 1542 smp_rmb(); 1543 1544 /* 1545 * We do not need to cow a block if 1546 * 1) this block is not created or changed in this transaction; 1547 * 2) this block does not belong to TREE_RELOC tree; 1548 * 3) the root is not forced COW. 1549 * 1550 * What is forced COW: 1551 * when we create snapshot during commiting the transaction, 1552 * after we've finished coping src root, we must COW the shared 1553 * block to ensure the metadata consistency. 1554 */ 1555 if (btrfs_header_generation(buf) == trans->transid && 1556 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1557 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1558 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1559 !root->force_cow) 1560 return 0; 1561 return 1; 1562 } 1563 1564 /* 1565 * cows a single block, see __btrfs_cow_block for the real work. 1566 * This version of it has extra checks so that a block isn't cow'd more than 1567 * once per transaction, as long as it hasn't been written yet 1568 */ 1569 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1570 struct btrfs_root *root, struct extent_buffer *buf, 1571 struct extent_buffer *parent, int parent_slot, 1572 struct extent_buffer **cow_ret) 1573 { 1574 u64 search_start; 1575 int ret; 1576 1577 if (trans->transaction != root->fs_info->running_transaction) 1578 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1579 trans->transid, 1580 root->fs_info->running_transaction->transid); 1581 1582 if (trans->transid != root->fs_info->generation) 1583 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1584 trans->transid, root->fs_info->generation); 1585 1586 if (!should_cow_block(trans, root, buf)) { 1587 *cow_ret = buf; 1588 return 0; 1589 } 1590 1591 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1592 1593 if (parent) 1594 btrfs_set_lock_blocking(parent); 1595 btrfs_set_lock_blocking(buf); 1596 1597 ret = __btrfs_cow_block(trans, root, buf, parent, 1598 parent_slot, cow_ret, search_start, 0); 1599 1600 trace_btrfs_cow_block(root, buf, *cow_ret); 1601 1602 return ret; 1603 } 1604 1605 /* 1606 * helper function for defrag to decide if two blocks pointed to by a 1607 * node are actually close by 1608 */ 1609 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1610 { 1611 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1612 return 1; 1613 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1614 return 1; 1615 return 0; 1616 } 1617 1618 /* 1619 * compare two keys in a memcmp fashion 1620 */ 1621 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1622 { 1623 struct btrfs_key k1; 1624 1625 btrfs_disk_key_to_cpu(&k1, disk); 1626 1627 return btrfs_comp_cpu_keys(&k1, k2); 1628 } 1629 1630 /* 1631 * same as comp_keys only with two btrfs_key's 1632 */ 1633 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1634 { 1635 if (k1->objectid > k2->objectid) 1636 return 1; 1637 if (k1->objectid < k2->objectid) 1638 return -1; 1639 if (k1->type > k2->type) 1640 return 1; 1641 if (k1->type < k2->type) 1642 return -1; 1643 if (k1->offset > k2->offset) 1644 return 1; 1645 if (k1->offset < k2->offset) 1646 return -1; 1647 return 0; 1648 } 1649 1650 /* 1651 * this is used by the defrag code to go through all the 1652 * leaves pointed to by a node and reallocate them so that 1653 * disk order is close to key order 1654 */ 1655 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1656 struct btrfs_root *root, struct extent_buffer *parent, 1657 int start_slot, u64 *last_ret, 1658 struct btrfs_key *progress) 1659 { 1660 struct extent_buffer *cur; 1661 u64 blocknr; 1662 u64 gen; 1663 u64 search_start = *last_ret; 1664 u64 last_block = 0; 1665 u64 other; 1666 u32 parent_nritems; 1667 int end_slot; 1668 int i; 1669 int err = 0; 1670 int parent_level; 1671 int uptodate; 1672 u32 blocksize; 1673 int progress_passed = 0; 1674 struct btrfs_disk_key disk_key; 1675 1676 parent_level = btrfs_header_level(parent); 1677 1678 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1679 WARN_ON(trans->transid != root->fs_info->generation); 1680 1681 parent_nritems = btrfs_header_nritems(parent); 1682 blocksize = btrfs_level_size(root, parent_level - 1); 1683 end_slot = parent_nritems; 1684 1685 if (parent_nritems == 1) 1686 return 0; 1687 1688 btrfs_set_lock_blocking(parent); 1689 1690 for (i = start_slot; i < end_slot; i++) { 1691 int close = 1; 1692 1693 btrfs_node_key(parent, &disk_key, i); 1694 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1695 continue; 1696 1697 progress_passed = 1; 1698 blocknr = btrfs_node_blockptr(parent, i); 1699 gen = btrfs_node_ptr_generation(parent, i); 1700 if (last_block == 0) 1701 last_block = blocknr; 1702 1703 if (i > 0) { 1704 other = btrfs_node_blockptr(parent, i - 1); 1705 close = close_blocks(blocknr, other, blocksize); 1706 } 1707 if (!close && i < end_slot - 2) { 1708 other = btrfs_node_blockptr(parent, i + 1); 1709 close = close_blocks(blocknr, other, blocksize); 1710 } 1711 if (close) { 1712 last_block = blocknr; 1713 continue; 1714 } 1715 1716 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1717 if (cur) 1718 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1719 else 1720 uptodate = 0; 1721 if (!cur || !uptodate) { 1722 if (!cur) { 1723 cur = read_tree_block(root, blocknr, 1724 blocksize, gen); 1725 if (!cur || !extent_buffer_uptodate(cur)) { 1726 free_extent_buffer(cur); 1727 return -EIO; 1728 } 1729 } else if (!uptodate) { 1730 err = btrfs_read_buffer(cur, gen); 1731 if (err) { 1732 free_extent_buffer(cur); 1733 return err; 1734 } 1735 } 1736 } 1737 if (search_start == 0) 1738 search_start = last_block; 1739 1740 btrfs_tree_lock(cur); 1741 btrfs_set_lock_blocking(cur); 1742 err = __btrfs_cow_block(trans, root, cur, parent, i, 1743 &cur, search_start, 1744 min(16 * blocksize, 1745 (end_slot - i) * blocksize)); 1746 if (err) { 1747 btrfs_tree_unlock(cur); 1748 free_extent_buffer(cur); 1749 break; 1750 } 1751 search_start = cur->start; 1752 last_block = cur->start; 1753 *last_ret = search_start; 1754 btrfs_tree_unlock(cur); 1755 free_extent_buffer(cur); 1756 } 1757 return err; 1758 } 1759 1760 /* 1761 * The leaf data grows from end-to-front in the node. 1762 * this returns the address of the start of the last item, 1763 * which is the stop of the leaf data stack 1764 */ 1765 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1766 struct extent_buffer *leaf) 1767 { 1768 u32 nr = btrfs_header_nritems(leaf); 1769 if (nr == 0) 1770 return BTRFS_LEAF_DATA_SIZE(root); 1771 return btrfs_item_offset_nr(leaf, nr - 1); 1772 } 1773 1774 1775 /* 1776 * search for key in the extent_buffer. The items start at offset p, 1777 * and they are item_size apart. There are 'max' items in p. 1778 * 1779 * the slot in the array is returned via slot, and it points to 1780 * the place where you would insert key if it is not found in 1781 * the array. 1782 * 1783 * slot may point to max if the key is bigger than all of the keys 1784 */ 1785 static noinline int generic_bin_search(struct extent_buffer *eb, 1786 unsigned long p, 1787 int item_size, struct btrfs_key *key, 1788 int max, int *slot) 1789 { 1790 int low = 0; 1791 int high = max; 1792 int mid; 1793 int ret; 1794 struct btrfs_disk_key *tmp = NULL; 1795 struct btrfs_disk_key unaligned; 1796 unsigned long offset; 1797 char *kaddr = NULL; 1798 unsigned long map_start = 0; 1799 unsigned long map_len = 0; 1800 int err; 1801 1802 while (low < high) { 1803 mid = (low + high) / 2; 1804 offset = p + mid * item_size; 1805 1806 if (!kaddr || offset < map_start || 1807 (offset + sizeof(struct btrfs_disk_key)) > 1808 map_start + map_len) { 1809 1810 err = map_private_extent_buffer(eb, offset, 1811 sizeof(struct btrfs_disk_key), 1812 &kaddr, &map_start, &map_len); 1813 1814 if (!err) { 1815 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1816 map_start); 1817 } else { 1818 read_extent_buffer(eb, &unaligned, 1819 offset, sizeof(unaligned)); 1820 tmp = &unaligned; 1821 } 1822 1823 } else { 1824 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1825 map_start); 1826 } 1827 ret = comp_keys(tmp, key); 1828 1829 if (ret < 0) 1830 low = mid + 1; 1831 else if (ret > 0) 1832 high = mid; 1833 else { 1834 *slot = mid; 1835 return 0; 1836 } 1837 } 1838 *slot = low; 1839 return 1; 1840 } 1841 1842 /* 1843 * simple bin_search frontend that does the right thing for 1844 * leaves vs nodes 1845 */ 1846 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1847 int level, int *slot) 1848 { 1849 if (level == 0) 1850 return generic_bin_search(eb, 1851 offsetof(struct btrfs_leaf, items), 1852 sizeof(struct btrfs_item), 1853 key, btrfs_header_nritems(eb), 1854 slot); 1855 else 1856 return generic_bin_search(eb, 1857 offsetof(struct btrfs_node, ptrs), 1858 sizeof(struct btrfs_key_ptr), 1859 key, btrfs_header_nritems(eb), 1860 slot); 1861 } 1862 1863 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1864 int level, int *slot) 1865 { 1866 return bin_search(eb, key, level, slot); 1867 } 1868 1869 static void root_add_used(struct btrfs_root *root, u32 size) 1870 { 1871 spin_lock(&root->accounting_lock); 1872 btrfs_set_root_used(&root->root_item, 1873 btrfs_root_used(&root->root_item) + size); 1874 spin_unlock(&root->accounting_lock); 1875 } 1876 1877 static void root_sub_used(struct btrfs_root *root, u32 size) 1878 { 1879 spin_lock(&root->accounting_lock); 1880 btrfs_set_root_used(&root->root_item, 1881 btrfs_root_used(&root->root_item) - size); 1882 spin_unlock(&root->accounting_lock); 1883 } 1884 1885 /* given a node and slot number, this reads the blocks it points to. The 1886 * extent buffer is returned with a reference taken (but unlocked). 1887 * NULL is returned on error. 1888 */ 1889 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1890 struct extent_buffer *parent, int slot) 1891 { 1892 int level = btrfs_header_level(parent); 1893 struct extent_buffer *eb; 1894 1895 if (slot < 0) 1896 return NULL; 1897 if (slot >= btrfs_header_nritems(parent)) 1898 return NULL; 1899 1900 BUG_ON(level == 0); 1901 1902 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1903 btrfs_level_size(root, level - 1), 1904 btrfs_node_ptr_generation(parent, slot)); 1905 if (eb && !extent_buffer_uptodate(eb)) { 1906 free_extent_buffer(eb); 1907 eb = NULL; 1908 } 1909 1910 return eb; 1911 } 1912 1913 /* 1914 * node level balancing, used to make sure nodes are in proper order for 1915 * item deletion. We balance from the top down, so we have to make sure 1916 * that a deletion won't leave an node completely empty later on. 1917 */ 1918 static noinline int balance_level(struct btrfs_trans_handle *trans, 1919 struct btrfs_root *root, 1920 struct btrfs_path *path, int level) 1921 { 1922 struct extent_buffer *right = NULL; 1923 struct extent_buffer *mid; 1924 struct extent_buffer *left = NULL; 1925 struct extent_buffer *parent = NULL; 1926 int ret = 0; 1927 int wret; 1928 int pslot; 1929 int orig_slot = path->slots[level]; 1930 u64 orig_ptr; 1931 1932 if (level == 0) 1933 return 0; 1934 1935 mid = path->nodes[level]; 1936 1937 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1938 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1939 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1940 1941 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1942 1943 if (level < BTRFS_MAX_LEVEL - 1) { 1944 parent = path->nodes[level + 1]; 1945 pslot = path->slots[level + 1]; 1946 } 1947 1948 /* 1949 * deal with the case where there is only one pointer in the root 1950 * by promoting the node below to a root 1951 */ 1952 if (!parent) { 1953 struct extent_buffer *child; 1954 1955 if (btrfs_header_nritems(mid) != 1) 1956 return 0; 1957 1958 /* promote the child to a root */ 1959 child = read_node_slot(root, mid, 0); 1960 if (!child) { 1961 ret = -EROFS; 1962 btrfs_std_error(root->fs_info, ret); 1963 goto enospc; 1964 } 1965 1966 btrfs_tree_lock(child); 1967 btrfs_set_lock_blocking(child); 1968 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1969 if (ret) { 1970 btrfs_tree_unlock(child); 1971 free_extent_buffer(child); 1972 goto enospc; 1973 } 1974 1975 tree_mod_log_set_root_pointer(root, child, 1); 1976 rcu_assign_pointer(root->node, child); 1977 1978 add_root_to_dirty_list(root); 1979 btrfs_tree_unlock(child); 1980 1981 path->locks[level] = 0; 1982 path->nodes[level] = NULL; 1983 clean_tree_block(trans, root, mid); 1984 btrfs_tree_unlock(mid); 1985 /* once for the path */ 1986 free_extent_buffer(mid); 1987 1988 root_sub_used(root, mid->len); 1989 btrfs_free_tree_block(trans, root, mid, 0, 1); 1990 /* once for the root ptr */ 1991 free_extent_buffer_stale(mid); 1992 return 0; 1993 } 1994 if (btrfs_header_nritems(mid) > 1995 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1996 return 0; 1997 1998 left = read_node_slot(root, parent, pslot - 1); 1999 if (left) { 2000 btrfs_tree_lock(left); 2001 btrfs_set_lock_blocking(left); 2002 wret = btrfs_cow_block(trans, root, left, 2003 parent, pslot - 1, &left); 2004 if (wret) { 2005 ret = wret; 2006 goto enospc; 2007 } 2008 } 2009 right = read_node_slot(root, parent, pslot + 1); 2010 if (right) { 2011 btrfs_tree_lock(right); 2012 btrfs_set_lock_blocking(right); 2013 wret = btrfs_cow_block(trans, root, right, 2014 parent, pslot + 1, &right); 2015 if (wret) { 2016 ret = wret; 2017 goto enospc; 2018 } 2019 } 2020 2021 /* first, try to make some room in the middle buffer */ 2022 if (left) { 2023 orig_slot += btrfs_header_nritems(left); 2024 wret = push_node_left(trans, root, left, mid, 1); 2025 if (wret < 0) 2026 ret = wret; 2027 } 2028 2029 /* 2030 * then try to empty the right most buffer into the middle 2031 */ 2032 if (right) { 2033 wret = push_node_left(trans, root, mid, right, 1); 2034 if (wret < 0 && wret != -ENOSPC) 2035 ret = wret; 2036 if (btrfs_header_nritems(right) == 0) { 2037 clean_tree_block(trans, root, right); 2038 btrfs_tree_unlock(right); 2039 del_ptr(root, path, level + 1, pslot + 1); 2040 root_sub_used(root, right->len); 2041 btrfs_free_tree_block(trans, root, right, 0, 1); 2042 free_extent_buffer_stale(right); 2043 right = NULL; 2044 } else { 2045 struct btrfs_disk_key right_key; 2046 btrfs_node_key(right, &right_key, 0); 2047 tree_mod_log_set_node_key(root->fs_info, parent, 2048 pslot + 1, 0); 2049 btrfs_set_node_key(parent, &right_key, pslot + 1); 2050 btrfs_mark_buffer_dirty(parent); 2051 } 2052 } 2053 if (btrfs_header_nritems(mid) == 1) { 2054 /* 2055 * we're not allowed to leave a node with one item in the 2056 * tree during a delete. A deletion from lower in the tree 2057 * could try to delete the only pointer in this node. 2058 * So, pull some keys from the left. 2059 * There has to be a left pointer at this point because 2060 * otherwise we would have pulled some pointers from the 2061 * right 2062 */ 2063 if (!left) { 2064 ret = -EROFS; 2065 btrfs_std_error(root->fs_info, ret); 2066 goto enospc; 2067 } 2068 wret = balance_node_right(trans, root, mid, left); 2069 if (wret < 0) { 2070 ret = wret; 2071 goto enospc; 2072 } 2073 if (wret == 1) { 2074 wret = push_node_left(trans, root, left, mid, 1); 2075 if (wret < 0) 2076 ret = wret; 2077 } 2078 BUG_ON(wret == 1); 2079 } 2080 if (btrfs_header_nritems(mid) == 0) { 2081 clean_tree_block(trans, root, mid); 2082 btrfs_tree_unlock(mid); 2083 del_ptr(root, path, level + 1, pslot); 2084 root_sub_used(root, mid->len); 2085 btrfs_free_tree_block(trans, root, mid, 0, 1); 2086 free_extent_buffer_stale(mid); 2087 mid = NULL; 2088 } else { 2089 /* update the parent key to reflect our changes */ 2090 struct btrfs_disk_key mid_key; 2091 btrfs_node_key(mid, &mid_key, 0); 2092 tree_mod_log_set_node_key(root->fs_info, parent, 2093 pslot, 0); 2094 btrfs_set_node_key(parent, &mid_key, pslot); 2095 btrfs_mark_buffer_dirty(parent); 2096 } 2097 2098 /* update the path */ 2099 if (left) { 2100 if (btrfs_header_nritems(left) > orig_slot) { 2101 extent_buffer_get(left); 2102 /* left was locked after cow */ 2103 path->nodes[level] = left; 2104 path->slots[level + 1] -= 1; 2105 path->slots[level] = orig_slot; 2106 if (mid) { 2107 btrfs_tree_unlock(mid); 2108 free_extent_buffer(mid); 2109 } 2110 } else { 2111 orig_slot -= btrfs_header_nritems(left); 2112 path->slots[level] = orig_slot; 2113 } 2114 } 2115 /* double check we haven't messed things up */ 2116 if (orig_ptr != 2117 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2118 BUG(); 2119 enospc: 2120 if (right) { 2121 btrfs_tree_unlock(right); 2122 free_extent_buffer(right); 2123 } 2124 if (left) { 2125 if (path->nodes[level] != left) 2126 btrfs_tree_unlock(left); 2127 free_extent_buffer(left); 2128 } 2129 return ret; 2130 } 2131 2132 /* Node balancing for insertion. Here we only split or push nodes around 2133 * when they are completely full. This is also done top down, so we 2134 * have to be pessimistic. 2135 */ 2136 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2137 struct btrfs_root *root, 2138 struct btrfs_path *path, int level) 2139 { 2140 struct extent_buffer *right = NULL; 2141 struct extent_buffer *mid; 2142 struct extent_buffer *left = NULL; 2143 struct extent_buffer *parent = NULL; 2144 int ret = 0; 2145 int wret; 2146 int pslot; 2147 int orig_slot = path->slots[level]; 2148 2149 if (level == 0) 2150 return 1; 2151 2152 mid = path->nodes[level]; 2153 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2154 2155 if (level < BTRFS_MAX_LEVEL - 1) { 2156 parent = path->nodes[level + 1]; 2157 pslot = path->slots[level + 1]; 2158 } 2159 2160 if (!parent) 2161 return 1; 2162 2163 left = read_node_slot(root, parent, pslot - 1); 2164 2165 /* first, try to make some room in the middle buffer */ 2166 if (left) { 2167 u32 left_nr; 2168 2169 btrfs_tree_lock(left); 2170 btrfs_set_lock_blocking(left); 2171 2172 left_nr = btrfs_header_nritems(left); 2173 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2174 wret = 1; 2175 } else { 2176 ret = btrfs_cow_block(trans, root, left, parent, 2177 pslot - 1, &left); 2178 if (ret) 2179 wret = 1; 2180 else { 2181 wret = push_node_left(trans, root, 2182 left, mid, 0); 2183 } 2184 } 2185 if (wret < 0) 2186 ret = wret; 2187 if (wret == 0) { 2188 struct btrfs_disk_key disk_key; 2189 orig_slot += left_nr; 2190 btrfs_node_key(mid, &disk_key, 0); 2191 tree_mod_log_set_node_key(root->fs_info, parent, 2192 pslot, 0); 2193 btrfs_set_node_key(parent, &disk_key, pslot); 2194 btrfs_mark_buffer_dirty(parent); 2195 if (btrfs_header_nritems(left) > orig_slot) { 2196 path->nodes[level] = left; 2197 path->slots[level + 1] -= 1; 2198 path->slots[level] = orig_slot; 2199 btrfs_tree_unlock(mid); 2200 free_extent_buffer(mid); 2201 } else { 2202 orig_slot -= 2203 btrfs_header_nritems(left); 2204 path->slots[level] = orig_slot; 2205 btrfs_tree_unlock(left); 2206 free_extent_buffer(left); 2207 } 2208 return 0; 2209 } 2210 btrfs_tree_unlock(left); 2211 free_extent_buffer(left); 2212 } 2213 right = read_node_slot(root, parent, pslot + 1); 2214 2215 /* 2216 * then try to empty the right most buffer into the middle 2217 */ 2218 if (right) { 2219 u32 right_nr; 2220 2221 btrfs_tree_lock(right); 2222 btrfs_set_lock_blocking(right); 2223 2224 right_nr = btrfs_header_nritems(right); 2225 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2226 wret = 1; 2227 } else { 2228 ret = btrfs_cow_block(trans, root, right, 2229 parent, pslot + 1, 2230 &right); 2231 if (ret) 2232 wret = 1; 2233 else { 2234 wret = balance_node_right(trans, root, 2235 right, mid); 2236 } 2237 } 2238 if (wret < 0) 2239 ret = wret; 2240 if (wret == 0) { 2241 struct btrfs_disk_key disk_key; 2242 2243 btrfs_node_key(right, &disk_key, 0); 2244 tree_mod_log_set_node_key(root->fs_info, parent, 2245 pslot + 1, 0); 2246 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2247 btrfs_mark_buffer_dirty(parent); 2248 2249 if (btrfs_header_nritems(mid) <= orig_slot) { 2250 path->nodes[level] = right; 2251 path->slots[level + 1] += 1; 2252 path->slots[level] = orig_slot - 2253 btrfs_header_nritems(mid); 2254 btrfs_tree_unlock(mid); 2255 free_extent_buffer(mid); 2256 } else { 2257 btrfs_tree_unlock(right); 2258 free_extent_buffer(right); 2259 } 2260 return 0; 2261 } 2262 btrfs_tree_unlock(right); 2263 free_extent_buffer(right); 2264 } 2265 return 1; 2266 } 2267 2268 /* 2269 * readahead one full node of leaves, finding things that are close 2270 * to the block in 'slot', and triggering ra on them. 2271 */ 2272 static void reada_for_search(struct btrfs_root *root, 2273 struct btrfs_path *path, 2274 int level, int slot, u64 objectid) 2275 { 2276 struct extent_buffer *node; 2277 struct btrfs_disk_key disk_key; 2278 u32 nritems; 2279 u64 search; 2280 u64 target; 2281 u64 nread = 0; 2282 u64 gen; 2283 int direction = path->reada; 2284 struct extent_buffer *eb; 2285 u32 nr; 2286 u32 blocksize; 2287 u32 nscan = 0; 2288 2289 if (level != 1) 2290 return; 2291 2292 if (!path->nodes[level]) 2293 return; 2294 2295 node = path->nodes[level]; 2296 2297 search = btrfs_node_blockptr(node, slot); 2298 blocksize = btrfs_level_size(root, level - 1); 2299 eb = btrfs_find_tree_block(root, search, blocksize); 2300 if (eb) { 2301 free_extent_buffer(eb); 2302 return; 2303 } 2304 2305 target = search; 2306 2307 nritems = btrfs_header_nritems(node); 2308 nr = slot; 2309 2310 while (1) { 2311 if (direction < 0) { 2312 if (nr == 0) 2313 break; 2314 nr--; 2315 } else if (direction > 0) { 2316 nr++; 2317 if (nr >= nritems) 2318 break; 2319 } 2320 if (path->reada < 0 && objectid) { 2321 btrfs_node_key(node, &disk_key, nr); 2322 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2323 break; 2324 } 2325 search = btrfs_node_blockptr(node, nr); 2326 if ((search <= target && target - search <= 65536) || 2327 (search > target && search - target <= 65536)) { 2328 gen = btrfs_node_ptr_generation(node, nr); 2329 readahead_tree_block(root, search, blocksize, gen); 2330 nread += blocksize; 2331 } 2332 nscan++; 2333 if ((nread > 65536 || nscan > 32)) 2334 break; 2335 } 2336 } 2337 2338 static noinline void reada_for_balance(struct btrfs_root *root, 2339 struct btrfs_path *path, int level) 2340 { 2341 int slot; 2342 int nritems; 2343 struct extent_buffer *parent; 2344 struct extent_buffer *eb; 2345 u64 gen; 2346 u64 block1 = 0; 2347 u64 block2 = 0; 2348 int blocksize; 2349 2350 parent = path->nodes[level + 1]; 2351 if (!parent) 2352 return; 2353 2354 nritems = btrfs_header_nritems(parent); 2355 slot = path->slots[level + 1]; 2356 blocksize = btrfs_level_size(root, level); 2357 2358 if (slot > 0) { 2359 block1 = btrfs_node_blockptr(parent, slot - 1); 2360 gen = btrfs_node_ptr_generation(parent, slot - 1); 2361 eb = btrfs_find_tree_block(root, block1, blocksize); 2362 /* 2363 * if we get -eagain from btrfs_buffer_uptodate, we 2364 * don't want to return eagain here. That will loop 2365 * forever 2366 */ 2367 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2368 block1 = 0; 2369 free_extent_buffer(eb); 2370 } 2371 if (slot + 1 < nritems) { 2372 block2 = btrfs_node_blockptr(parent, slot + 1); 2373 gen = btrfs_node_ptr_generation(parent, slot + 1); 2374 eb = btrfs_find_tree_block(root, block2, blocksize); 2375 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2376 block2 = 0; 2377 free_extent_buffer(eb); 2378 } 2379 2380 if (block1) 2381 readahead_tree_block(root, block1, blocksize, 0); 2382 if (block2) 2383 readahead_tree_block(root, block2, blocksize, 0); 2384 } 2385 2386 2387 /* 2388 * when we walk down the tree, it is usually safe to unlock the higher layers 2389 * in the tree. The exceptions are when our path goes through slot 0, because 2390 * operations on the tree might require changing key pointers higher up in the 2391 * tree. 2392 * 2393 * callers might also have set path->keep_locks, which tells this code to keep 2394 * the lock if the path points to the last slot in the block. This is part of 2395 * walking through the tree, and selecting the next slot in the higher block. 2396 * 2397 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2398 * if lowest_unlock is 1, level 0 won't be unlocked 2399 */ 2400 static noinline void unlock_up(struct btrfs_path *path, int level, 2401 int lowest_unlock, int min_write_lock_level, 2402 int *write_lock_level) 2403 { 2404 int i; 2405 int skip_level = level; 2406 int no_skips = 0; 2407 struct extent_buffer *t; 2408 2409 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2410 if (!path->nodes[i]) 2411 break; 2412 if (!path->locks[i]) 2413 break; 2414 if (!no_skips && path->slots[i] == 0) { 2415 skip_level = i + 1; 2416 continue; 2417 } 2418 if (!no_skips && path->keep_locks) { 2419 u32 nritems; 2420 t = path->nodes[i]; 2421 nritems = btrfs_header_nritems(t); 2422 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2423 skip_level = i + 1; 2424 continue; 2425 } 2426 } 2427 if (skip_level < i && i >= lowest_unlock) 2428 no_skips = 1; 2429 2430 t = path->nodes[i]; 2431 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2432 btrfs_tree_unlock_rw(t, path->locks[i]); 2433 path->locks[i] = 0; 2434 if (write_lock_level && 2435 i > min_write_lock_level && 2436 i <= *write_lock_level) { 2437 *write_lock_level = i - 1; 2438 } 2439 } 2440 } 2441 } 2442 2443 /* 2444 * This releases any locks held in the path starting at level and 2445 * going all the way up to the root. 2446 * 2447 * btrfs_search_slot will keep the lock held on higher nodes in a few 2448 * corner cases, such as COW of the block at slot zero in the node. This 2449 * ignores those rules, and it should only be called when there are no 2450 * more updates to be done higher up in the tree. 2451 */ 2452 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2453 { 2454 int i; 2455 2456 if (path->keep_locks) 2457 return; 2458 2459 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2460 if (!path->nodes[i]) 2461 continue; 2462 if (!path->locks[i]) 2463 continue; 2464 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2465 path->locks[i] = 0; 2466 } 2467 } 2468 2469 /* 2470 * helper function for btrfs_search_slot. The goal is to find a block 2471 * in cache without setting the path to blocking. If we find the block 2472 * we return zero and the path is unchanged. 2473 * 2474 * If we can't find the block, we set the path blocking and do some 2475 * reada. -EAGAIN is returned and the search must be repeated. 2476 */ 2477 static int 2478 read_block_for_search(struct btrfs_trans_handle *trans, 2479 struct btrfs_root *root, struct btrfs_path *p, 2480 struct extent_buffer **eb_ret, int level, int slot, 2481 struct btrfs_key *key, u64 time_seq) 2482 { 2483 u64 blocknr; 2484 u64 gen; 2485 u32 blocksize; 2486 struct extent_buffer *b = *eb_ret; 2487 struct extent_buffer *tmp; 2488 int ret; 2489 2490 blocknr = btrfs_node_blockptr(b, slot); 2491 gen = btrfs_node_ptr_generation(b, slot); 2492 blocksize = btrfs_level_size(root, level - 1); 2493 2494 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2495 if (tmp) { 2496 /* first we do an atomic uptodate check */ 2497 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2498 *eb_ret = tmp; 2499 return 0; 2500 } 2501 2502 /* the pages were up to date, but we failed 2503 * the generation number check. Do a full 2504 * read for the generation number that is correct. 2505 * We must do this without dropping locks so 2506 * we can trust our generation number 2507 */ 2508 btrfs_set_path_blocking(p); 2509 2510 /* now we're allowed to do a blocking uptodate check */ 2511 ret = btrfs_read_buffer(tmp, gen); 2512 if (!ret) { 2513 *eb_ret = tmp; 2514 return 0; 2515 } 2516 free_extent_buffer(tmp); 2517 btrfs_release_path(p); 2518 return -EIO; 2519 } 2520 2521 /* 2522 * reduce lock contention at high levels 2523 * of the btree by dropping locks before 2524 * we read. Don't release the lock on the current 2525 * level because we need to walk this node to figure 2526 * out which blocks to read. 2527 */ 2528 btrfs_unlock_up_safe(p, level + 1); 2529 btrfs_set_path_blocking(p); 2530 2531 free_extent_buffer(tmp); 2532 if (p->reada) 2533 reada_for_search(root, p, level, slot, key->objectid); 2534 2535 btrfs_release_path(p); 2536 2537 ret = -EAGAIN; 2538 tmp = read_tree_block(root, blocknr, blocksize, 0); 2539 if (tmp) { 2540 /* 2541 * If the read above didn't mark this buffer up to date, 2542 * it will never end up being up to date. Set ret to EIO now 2543 * and give up so that our caller doesn't loop forever 2544 * on our EAGAINs. 2545 */ 2546 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2547 ret = -EIO; 2548 free_extent_buffer(tmp); 2549 } 2550 return ret; 2551 } 2552 2553 /* 2554 * helper function for btrfs_search_slot. This does all of the checks 2555 * for node-level blocks and does any balancing required based on 2556 * the ins_len. 2557 * 2558 * If no extra work was required, zero is returned. If we had to 2559 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2560 * start over 2561 */ 2562 static int 2563 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2564 struct btrfs_root *root, struct btrfs_path *p, 2565 struct extent_buffer *b, int level, int ins_len, 2566 int *write_lock_level) 2567 { 2568 int ret; 2569 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2570 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2571 int sret; 2572 2573 if (*write_lock_level < level + 1) { 2574 *write_lock_level = level + 1; 2575 btrfs_release_path(p); 2576 goto again; 2577 } 2578 2579 btrfs_set_path_blocking(p); 2580 reada_for_balance(root, p, level); 2581 sret = split_node(trans, root, p, level); 2582 btrfs_clear_path_blocking(p, NULL, 0); 2583 2584 BUG_ON(sret > 0); 2585 if (sret) { 2586 ret = sret; 2587 goto done; 2588 } 2589 b = p->nodes[level]; 2590 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2591 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2592 int sret; 2593 2594 if (*write_lock_level < level + 1) { 2595 *write_lock_level = level + 1; 2596 btrfs_release_path(p); 2597 goto again; 2598 } 2599 2600 btrfs_set_path_blocking(p); 2601 reada_for_balance(root, p, level); 2602 sret = balance_level(trans, root, p, level); 2603 btrfs_clear_path_blocking(p, NULL, 0); 2604 2605 if (sret) { 2606 ret = sret; 2607 goto done; 2608 } 2609 b = p->nodes[level]; 2610 if (!b) { 2611 btrfs_release_path(p); 2612 goto again; 2613 } 2614 BUG_ON(btrfs_header_nritems(b) == 1); 2615 } 2616 return 0; 2617 2618 again: 2619 ret = -EAGAIN; 2620 done: 2621 return ret; 2622 } 2623 2624 static void key_search_validate(struct extent_buffer *b, 2625 struct btrfs_key *key, 2626 int level) 2627 { 2628 #ifdef CONFIG_BTRFS_ASSERT 2629 struct btrfs_disk_key disk_key; 2630 2631 btrfs_cpu_key_to_disk(&disk_key, key); 2632 2633 if (level == 0) 2634 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2635 offsetof(struct btrfs_leaf, items[0].key), 2636 sizeof(disk_key))); 2637 else 2638 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2639 offsetof(struct btrfs_node, ptrs[0].key), 2640 sizeof(disk_key))); 2641 #endif 2642 } 2643 2644 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2645 int level, int *prev_cmp, int *slot) 2646 { 2647 if (*prev_cmp != 0) { 2648 *prev_cmp = bin_search(b, key, level, slot); 2649 return *prev_cmp; 2650 } 2651 2652 key_search_validate(b, key, level); 2653 *slot = 0; 2654 2655 return 0; 2656 } 2657 2658 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path, 2659 u64 iobjectid, u64 ioff, u8 key_type, 2660 struct btrfs_key *found_key) 2661 { 2662 int ret; 2663 struct btrfs_key key; 2664 struct extent_buffer *eb; 2665 struct btrfs_path *path; 2666 2667 key.type = key_type; 2668 key.objectid = iobjectid; 2669 key.offset = ioff; 2670 2671 if (found_path == NULL) { 2672 path = btrfs_alloc_path(); 2673 if (!path) 2674 return -ENOMEM; 2675 } else 2676 path = found_path; 2677 2678 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2679 if ((ret < 0) || (found_key == NULL)) { 2680 if (path != found_path) 2681 btrfs_free_path(path); 2682 return ret; 2683 } 2684 2685 eb = path->nodes[0]; 2686 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2687 ret = btrfs_next_leaf(fs_root, path); 2688 if (ret) 2689 return ret; 2690 eb = path->nodes[0]; 2691 } 2692 2693 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2694 if (found_key->type != key.type || 2695 found_key->objectid != key.objectid) 2696 return 1; 2697 2698 return 0; 2699 } 2700 2701 /* 2702 * look for key in the tree. path is filled in with nodes along the way 2703 * if key is found, we return zero and you can find the item in the leaf 2704 * level of the path (level 0) 2705 * 2706 * If the key isn't found, the path points to the slot where it should 2707 * be inserted, and 1 is returned. If there are other errors during the 2708 * search a negative error number is returned. 2709 * 2710 * if ins_len > 0, nodes and leaves will be split as we walk down the 2711 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2712 * possible) 2713 */ 2714 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2715 *root, struct btrfs_key *key, struct btrfs_path *p, int 2716 ins_len, int cow) 2717 { 2718 struct extent_buffer *b; 2719 int slot; 2720 int ret; 2721 int err; 2722 int level; 2723 int lowest_unlock = 1; 2724 int root_lock; 2725 /* everything at write_lock_level or lower must be write locked */ 2726 int write_lock_level = 0; 2727 u8 lowest_level = 0; 2728 int min_write_lock_level; 2729 int prev_cmp; 2730 2731 lowest_level = p->lowest_level; 2732 WARN_ON(lowest_level && ins_len > 0); 2733 WARN_ON(p->nodes[0] != NULL); 2734 BUG_ON(!cow && ins_len); 2735 2736 if (ins_len < 0) { 2737 lowest_unlock = 2; 2738 2739 /* when we are removing items, we might have to go up to level 2740 * two as we update tree pointers Make sure we keep write 2741 * for those levels as well 2742 */ 2743 write_lock_level = 2; 2744 } else if (ins_len > 0) { 2745 /* 2746 * for inserting items, make sure we have a write lock on 2747 * level 1 so we can update keys 2748 */ 2749 write_lock_level = 1; 2750 } 2751 2752 if (!cow) 2753 write_lock_level = -1; 2754 2755 if (cow && (p->keep_locks || p->lowest_level)) 2756 write_lock_level = BTRFS_MAX_LEVEL; 2757 2758 min_write_lock_level = write_lock_level; 2759 2760 again: 2761 prev_cmp = -1; 2762 /* 2763 * we try very hard to do read locks on the root 2764 */ 2765 root_lock = BTRFS_READ_LOCK; 2766 level = 0; 2767 if (p->search_commit_root) { 2768 /* 2769 * the commit roots are read only 2770 * so we always do read locks 2771 */ 2772 if (p->need_commit_sem) 2773 down_read(&root->fs_info->commit_root_sem); 2774 b = root->commit_root; 2775 extent_buffer_get(b); 2776 level = btrfs_header_level(b); 2777 if (p->need_commit_sem) 2778 up_read(&root->fs_info->commit_root_sem); 2779 if (!p->skip_locking) 2780 btrfs_tree_read_lock(b); 2781 } else { 2782 if (p->skip_locking) { 2783 b = btrfs_root_node(root); 2784 level = btrfs_header_level(b); 2785 } else { 2786 /* we don't know the level of the root node 2787 * until we actually have it read locked 2788 */ 2789 b = btrfs_read_lock_root_node(root); 2790 level = btrfs_header_level(b); 2791 if (level <= write_lock_level) { 2792 /* whoops, must trade for write lock */ 2793 btrfs_tree_read_unlock(b); 2794 free_extent_buffer(b); 2795 b = btrfs_lock_root_node(root); 2796 root_lock = BTRFS_WRITE_LOCK; 2797 2798 /* the level might have changed, check again */ 2799 level = btrfs_header_level(b); 2800 } 2801 } 2802 } 2803 p->nodes[level] = b; 2804 if (!p->skip_locking) 2805 p->locks[level] = root_lock; 2806 2807 while (b) { 2808 level = btrfs_header_level(b); 2809 2810 /* 2811 * setup the path here so we can release it under lock 2812 * contention with the cow code 2813 */ 2814 if (cow) { 2815 /* 2816 * if we don't really need to cow this block 2817 * then we don't want to set the path blocking, 2818 * so we test it here 2819 */ 2820 if (!should_cow_block(trans, root, b)) 2821 goto cow_done; 2822 2823 btrfs_set_path_blocking(p); 2824 2825 /* 2826 * must have write locks on this node and the 2827 * parent 2828 */ 2829 if (level > write_lock_level || 2830 (level + 1 > write_lock_level && 2831 level + 1 < BTRFS_MAX_LEVEL && 2832 p->nodes[level + 1])) { 2833 write_lock_level = level + 1; 2834 btrfs_release_path(p); 2835 goto again; 2836 } 2837 2838 err = btrfs_cow_block(trans, root, b, 2839 p->nodes[level + 1], 2840 p->slots[level + 1], &b); 2841 if (err) { 2842 ret = err; 2843 goto done; 2844 } 2845 } 2846 cow_done: 2847 p->nodes[level] = b; 2848 btrfs_clear_path_blocking(p, NULL, 0); 2849 2850 /* 2851 * we have a lock on b and as long as we aren't changing 2852 * the tree, there is no way to for the items in b to change. 2853 * It is safe to drop the lock on our parent before we 2854 * go through the expensive btree search on b. 2855 * 2856 * If we're inserting or deleting (ins_len != 0), then we might 2857 * be changing slot zero, which may require changing the parent. 2858 * So, we can't drop the lock until after we know which slot 2859 * we're operating on. 2860 */ 2861 if (!ins_len && !p->keep_locks) { 2862 int u = level + 1; 2863 2864 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2865 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2866 p->locks[u] = 0; 2867 } 2868 } 2869 2870 ret = key_search(b, key, level, &prev_cmp, &slot); 2871 2872 if (level != 0) { 2873 int dec = 0; 2874 if (ret && slot > 0) { 2875 dec = 1; 2876 slot -= 1; 2877 } 2878 p->slots[level] = slot; 2879 err = setup_nodes_for_search(trans, root, p, b, level, 2880 ins_len, &write_lock_level); 2881 if (err == -EAGAIN) 2882 goto again; 2883 if (err) { 2884 ret = err; 2885 goto done; 2886 } 2887 b = p->nodes[level]; 2888 slot = p->slots[level]; 2889 2890 /* 2891 * slot 0 is special, if we change the key 2892 * we have to update the parent pointer 2893 * which means we must have a write lock 2894 * on the parent 2895 */ 2896 if (slot == 0 && ins_len && 2897 write_lock_level < level + 1) { 2898 write_lock_level = level + 1; 2899 btrfs_release_path(p); 2900 goto again; 2901 } 2902 2903 unlock_up(p, level, lowest_unlock, 2904 min_write_lock_level, &write_lock_level); 2905 2906 if (level == lowest_level) { 2907 if (dec) 2908 p->slots[level]++; 2909 goto done; 2910 } 2911 2912 err = read_block_for_search(trans, root, p, 2913 &b, level, slot, key, 0); 2914 if (err == -EAGAIN) 2915 goto again; 2916 if (err) { 2917 ret = err; 2918 goto done; 2919 } 2920 2921 if (!p->skip_locking) { 2922 level = btrfs_header_level(b); 2923 if (level <= write_lock_level) { 2924 err = btrfs_try_tree_write_lock(b); 2925 if (!err) { 2926 btrfs_set_path_blocking(p); 2927 btrfs_tree_lock(b); 2928 btrfs_clear_path_blocking(p, b, 2929 BTRFS_WRITE_LOCK); 2930 } 2931 p->locks[level] = BTRFS_WRITE_LOCK; 2932 } else { 2933 err = btrfs_try_tree_read_lock(b); 2934 if (!err) { 2935 btrfs_set_path_blocking(p); 2936 btrfs_tree_read_lock(b); 2937 btrfs_clear_path_blocking(p, b, 2938 BTRFS_READ_LOCK); 2939 } 2940 p->locks[level] = BTRFS_READ_LOCK; 2941 } 2942 p->nodes[level] = b; 2943 } 2944 } else { 2945 p->slots[level] = slot; 2946 if (ins_len > 0 && 2947 btrfs_leaf_free_space(root, b) < ins_len) { 2948 if (write_lock_level < 1) { 2949 write_lock_level = 1; 2950 btrfs_release_path(p); 2951 goto again; 2952 } 2953 2954 btrfs_set_path_blocking(p); 2955 err = split_leaf(trans, root, key, 2956 p, ins_len, ret == 0); 2957 btrfs_clear_path_blocking(p, NULL, 0); 2958 2959 BUG_ON(err > 0); 2960 if (err) { 2961 ret = err; 2962 goto done; 2963 } 2964 } 2965 if (!p->search_for_split) 2966 unlock_up(p, level, lowest_unlock, 2967 min_write_lock_level, &write_lock_level); 2968 goto done; 2969 } 2970 } 2971 ret = 1; 2972 done: 2973 /* 2974 * we don't really know what they plan on doing with the path 2975 * from here on, so for now just mark it as blocking 2976 */ 2977 if (!p->leave_spinning) 2978 btrfs_set_path_blocking(p); 2979 if (ret < 0) 2980 btrfs_release_path(p); 2981 return ret; 2982 } 2983 2984 /* 2985 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2986 * current state of the tree together with the operations recorded in the tree 2987 * modification log to search for the key in a previous version of this tree, as 2988 * denoted by the time_seq parameter. 2989 * 2990 * Naturally, there is no support for insert, delete or cow operations. 2991 * 2992 * The resulting path and return value will be set up as if we called 2993 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2994 */ 2995 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2996 struct btrfs_path *p, u64 time_seq) 2997 { 2998 struct extent_buffer *b; 2999 int slot; 3000 int ret; 3001 int err; 3002 int level; 3003 int lowest_unlock = 1; 3004 u8 lowest_level = 0; 3005 int prev_cmp = -1; 3006 3007 lowest_level = p->lowest_level; 3008 WARN_ON(p->nodes[0] != NULL); 3009 3010 if (p->search_commit_root) { 3011 BUG_ON(time_seq); 3012 return btrfs_search_slot(NULL, root, key, p, 0, 0); 3013 } 3014 3015 again: 3016 b = get_old_root(root, time_seq); 3017 level = btrfs_header_level(b); 3018 p->locks[level] = BTRFS_READ_LOCK; 3019 3020 while (b) { 3021 level = btrfs_header_level(b); 3022 p->nodes[level] = b; 3023 btrfs_clear_path_blocking(p, NULL, 0); 3024 3025 /* 3026 * we have a lock on b and as long as we aren't changing 3027 * the tree, there is no way to for the items in b to change. 3028 * It is safe to drop the lock on our parent before we 3029 * go through the expensive btree search on b. 3030 */ 3031 btrfs_unlock_up_safe(p, level + 1); 3032 3033 /* 3034 * Since we can unwind eb's we want to do a real search every 3035 * time. 3036 */ 3037 prev_cmp = -1; 3038 ret = key_search(b, key, level, &prev_cmp, &slot); 3039 3040 if (level != 0) { 3041 int dec = 0; 3042 if (ret && slot > 0) { 3043 dec = 1; 3044 slot -= 1; 3045 } 3046 p->slots[level] = slot; 3047 unlock_up(p, level, lowest_unlock, 0, NULL); 3048 3049 if (level == lowest_level) { 3050 if (dec) 3051 p->slots[level]++; 3052 goto done; 3053 } 3054 3055 err = read_block_for_search(NULL, root, p, &b, level, 3056 slot, key, time_seq); 3057 if (err == -EAGAIN) 3058 goto again; 3059 if (err) { 3060 ret = err; 3061 goto done; 3062 } 3063 3064 level = btrfs_header_level(b); 3065 err = btrfs_try_tree_read_lock(b); 3066 if (!err) { 3067 btrfs_set_path_blocking(p); 3068 btrfs_tree_read_lock(b); 3069 btrfs_clear_path_blocking(p, b, 3070 BTRFS_READ_LOCK); 3071 } 3072 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 3073 if (!b) { 3074 ret = -ENOMEM; 3075 goto done; 3076 } 3077 p->locks[level] = BTRFS_READ_LOCK; 3078 p->nodes[level] = b; 3079 } else { 3080 p->slots[level] = slot; 3081 unlock_up(p, level, lowest_unlock, 0, NULL); 3082 goto done; 3083 } 3084 } 3085 ret = 1; 3086 done: 3087 if (!p->leave_spinning) 3088 btrfs_set_path_blocking(p); 3089 if (ret < 0) 3090 btrfs_release_path(p); 3091 3092 return ret; 3093 } 3094 3095 /* 3096 * helper to use instead of search slot if no exact match is needed but 3097 * instead the next or previous item should be returned. 3098 * When find_higher is true, the next higher item is returned, the next lower 3099 * otherwise. 3100 * When return_any and find_higher are both true, and no higher item is found, 3101 * return the next lower instead. 3102 * When return_any is true and find_higher is false, and no lower item is found, 3103 * return the next higher instead. 3104 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3105 * < 0 on error 3106 */ 3107 int btrfs_search_slot_for_read(struct btrfs_root *root, 3108 struct btrfs_key *key, struct btrfs_path *p, 3109 int find_higher, int return_any) 3110 { 3111 int ret; 3112 struct extent_buffer *leaf; 3113 3114 again: 3115 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3116 if (ret <= 0) 3117 return ret; 3118 /* 3119 * a return value of 1 means the path is at the position where the 3120 * item should be inserted. Normally this is the next bigger item, 3121 * but in case the previous item is the last in a leaf, path points 3122 * to the first free slot in the previous leaf, i.e. at an invalid 3123 * item. 3124 */ 3125 leaf = p->nodes[0]; 3126 3127 if (find_higher) { 3128 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3129 ret = btrfs_next_leaf(root, p); 3130 if (ret <= 0) 3131 return ret; 3132 if (!return_any) 3133 return 1; 3134 /* 3135 * no higher item found, return the next 3136 * lower instead 3137 */ 3138 return_any = 0; 3139 find_higher = 0; 3140 btrfs_release_path(p); 3141 goto again; 3142 } 3143 } else { 3144 if (p->slots[0] == 0) { 3145 ret = btrfs_prev_leaf(root, p); 3146 if (ret < 0) 3147 return ret; 3148 if (!ret) { 3149 leaf = p->nodes[0]; 3150 if (p->slots[0] == btrfs_header_nritems(leaf)) 3151 p->slots[0]--; 3152 return 0; 3153 } 3154 if (!return_any) 3155 return 1; 3156 /* 3157 * no lower item found, return the next 3158 * higher instead 3159 */ 3160 return_any = 0; 3161 find_higher = 1; 3162 btrfs_release_path(p); 3163 goto again; 3164 } else { 3165 --p->slots[0]; 3166 } 3167 } 3168 return 0; 3169 } 3170 3171 /* 3172 * adjust the pointers going up the tree, starting at level 3173 * making sure the right key of each node is points to 'key'. 3174 * This is used after shifting pointers to the left, so it stops 3175 * fixing up pointers when a given leaf/node is not in slot 0 of the 3176 * higher levels 3177 * 3178 */ 3179 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path, 3180 struct btrfs_disk_key *key, int level) 3181 { 3182 int i; 3183 struct extent_buffer *t; 3184 3185 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3186 int tslot = path->slots[i]; 3187 if (!path->nodes[i]) 3188 break; 3189 t = path->nodes[i]; 3190 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1); 3191 btrfs_set_node_key(t, key, tslot); 3192 btrfs_mark_buffer_dirty(path->nodes[i]); 3193 if (tslot != 0) 3194 break; 3195 } 3196 } 3197 3198 /* 3199 * update item key. 3200 * 3201 * This function isn't completely safe. It's the caller's responsibility 3202 * that the new key won't break the order 3203 */ 3204 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path, 3205 struct btrfs_key *new_key) 3206 { 3207 struct btrfs_disk_key disk_key; 3208 struct extent_buffer *eb; 3209 int slot; 3210 3211 eb = path->nodes[0]; 3212 slot = path->slots[0]; 3213 if (slot > 0) { 3214 btrfs_item_key(eb, &disk_key, slot - 1); 3215 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3216 } 3217 if (slot < btrfs_header_nritems(eb) - 1) { 3218 btrfs_item_key(eb, &disk_key, slot + 1); 3219 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3220 } 3221 3222 btrfs_cpu_key_to_disk(&disk_key, new_key); 3223 btrfs_set_item_key(eb, &disk_key, slot); 3224 btrfs_mark_buffer_dirty(eb); 3225 if (slot == 0) 3226 fixup_low_keys(root, path, &disk_key, 1); 3227 } 3228 3229 /* 3230 * try to push data from one node into the next node left in the 3231 * tree. 3232 * 3233 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3234 * error, and > 0 if there was no room in the left hand block. 3235 */ 3236 static int push_node_left(struct btrfs_trans_handle *trans, 3237 struct btrfs_root *root, struct extent_buffer *dst, 3238 struct extent_buffer *src, int empty) 3239 { 3240 int push_items = 0; 3241 int src_nritems; 3242 int dst_nritems; 3243 int ret = 0; 3244 3245 src_nritems = btrfs_header_nritems(src); 3246 dst_nritems = btrfs_header_nritems(dst); 3247 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3248 WARN_ON(btrfs_header_generation(src) != trans->transid); 3249 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3250 3251 if (!empty && src_nritems <= 8) 3252 return 1; 3253 3254 if (push_items <= 0) 3255 return 1; 3256 3257 if (empty) { 3258 push_items = min(src_nritems, push_items); 3259 if (push_items < src_nritems) { 3260 /* leave at least 8 pointers in the node if 3261 * we aren't going to empty it 3262 */ 3263 if (src_nritems - push_items < 8) { 3264 if (push_items <= 8) 3265 return 1; 3266 push_items -= 8; 3267 } 3268 } 3269 } else 3270 push_items = min(src_nritems - 8, push_items); 3271 3272 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3273 push_items); 3274 if (ret) { 3275 btrfs_abort_transaction(trans, root, ret); 3276 return ret; 3277 } 3278 copy_extent_buffer(dst, src, 3279 btrfs_node_key_ptr_offset(dst_nritems), 3280 btrfs_node_key_ptr_offset(0), 3281 push_items * sizeof(struct btrfs_key_ptr)); 3282 3283 if (push_items < src_nritems) { 3284 /* 3285 * don't call tree_mod_log_eb_move here, key removal was already 3286 * fully logged by tree_mod_log_eb_copy above. 3287 */ 3288 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3289 btrfs_node_key_ptr_offset(push_items), 3290 (src_nritems - push_items) * 3291 sizeof(struct btrfs_key_ptr)); 3292 } 3293 btrfs_set_header_nritems(src, src_nritems - push_items); 3294 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3295 btrfs_mark_buffer_dirty(src); 3296 btrfs_mark_buffer_dirty(dst); 3297 3298 return ret; 3299 } 3300 3301 /* 3302 * try to push data from one node into the next node right in the 3303 * tree. 3304 * 3305 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3306 * error, and > 0 if there was no room in the right hand block. 3307 * 3308 * this will only push up to 1/2 the contents of the left node over 3309 */ 3310 static int balance_node_right(struct btrfs_trans_handle *trans, 3311 struct btrfs_root *root, 3312 struct extent_buffer *dst, 3313 struct extent_buffer *src) 3314 { 3315 int push_items = 0; 3316 int max_push; 3317 int src_nritems; 3318 int dst_nritems; 3319 int ret = 0; 3320 3321 WARN_ON(btrfs_header_generation(src) != trans->transid); 3322 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3323 3324 src_nritems = btrfs_header_nritems(src); 3325 dst_nritems = btrfs_header_nritems(dst); 3326 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3327 if (push_items <= 0) 3328 return 1; 3329 3330 if (src_nritems < 4) 3331 return 1; 3332 3333 max_push = src_nritems / 2 + 1; 3334 /* don't try to empty the node */ 3335 if (max_push >= src_nritems) 3336 return 1; 3337 3338 if (max_push < push_items) 3339 push_items = max_push; 3340 3341 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3342 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3343 btrfs_node_key_ptr_offset(0), 3344 (dst_nritems) * 3345 sizeof(struct btrfs_key_ptr)); 3346 3347 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3348 src_nritems - push_items, push_items); 3349 if (ret) { 3350 btrfs_abort_transaction(trans, root, ret); 3351 return ret; 3352 } 3353 copy_extent_buffer(dst, src, 3354 btrfs_node_key_ptr_offset(0), 3355 btrfs_node_key_ptr_offset(src_nritems - push_items), 3356 push_items * sizeof(struct btrfs_key_ptr)); 3357 3358 btrfs_set_header_nritems(src, src_nritems - push_items); 3359 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3360 3361 btrfs_mark_buffer_dirty(src); 3362 btrfs_mark_buffer_dirty(dst); 3363 3364 return ret; 3365 } 3366 3367 /* 3368 * helper function to insert a new root level in the tree. 3369 * A new node is allocated, and a single item is inserted to 3370 * point to the existing root 3371 * 3372 * returns zero on success or < 0 on failure. 3373 */ 3374 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3375 struct btrfs_root *root, 3376 struct btrfs_path *path, int level) 3377 { 3378 u64 lower_gen; 3379 struct extent_buffer *lower; 3380 struct extent_buffer *c; 3381 struct extent_buffer *old; 3382 struct btrfs_disk_key lower_key; 3383 3384 BUG_ON(path->nodes[level]); 3385 BUG_ON(path->nodes[level-1] != root->node); 3386 3387 lower = path->nodes[level-1]; 3388 if (level == 1) 3389 btrfs_item_key(lower, &lower_key, 0); 3390 else 3391 btrfs_node_key(lower, &lower_key, 0); 3392 3393 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3394 root->root_key.objectid, &lower_key, 3395 level, root->node->start, 0); 3396 if (IS_ERR(c)) 3397 return PTR_ERR(c); 3398 3399 root_add_used(root, root->nodesize); 3400 3401 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3402 btrfs_set_header_nritems(c, 1); 3403 btrfs_set_header_level(c, level); 3404 btrfs_set_header_bytenr(c, c->start); 3405 btrfs_set_header_generation(c, trans->transid); 3406 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3407 btrfs_set_header_owner(c, root->root_key.objectid); 3408 3409 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3410 BTRFS_FSID_SIZE); 3411 3412 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3413 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3414 3415 btrfs_set_node_key(c, &lower_key, 0); 3416 btrfs_set_node_blockptr(c, 0, lower->start); 3417 lower_gen = btrfs_header_generation(lower); 3418 WARN_ON(lower_gen != trans->transid); 3419 3420 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3421 3422 btrfs_mark_buffer_dirty(c); 3423 3424 old = root->node; 3425 tree_mod_log_set_root_pointer(root, c, 0); 3426 rcu_assign_pointer(root->node, c); 3427 3428 /* the super has an extra ref to root->node */ 3429 free_extent_buffer(old); 3430 3431 add_root_to_dirty_list(root); 3432 extent_buffer_get(c); 3433 path->nodes[level] = c; 3434 path->locks[level] = BTRFS_WRITE_LOCK; 3435 path->slots[level] = 0; 3436 return 0; 3437 } 3438 3439 /* 3440 * worker function to insert a single pointer in a node. 3441 * the node should have enough room for the pointer already 3442 * 3443 * slot and level indicate where you want the key to go, and 3444 * blocknr is the block the key points to. 3445 */ 3446 static void insert_ptr(struct btrfs_trans_handle *trans, 3447 struct btrfs_root *root, struct btrfs_path *path, 3448 struct btrfs_disk_key *key, u64 bytenr, 3449 int slot, int level) 3450 { 3451 struct extent_buffer *lower; 3452 int nritems; 3453 int ret; 3454 3455 BUG_ON(!path->nodes[level]); 3456 btrfs_assert_tree_locked(path->nodes[level]); 3457 lower = path->nodes[level]; 3458 nritems = btrfs_header_nritems(lower); 3459 BUG_ON(slot > nritems); 3460 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3461 if (slot != nritems) { 3462 if (level) 3463 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3464 slot, nritems - slot); 3465 memmove_extent_buffer(lower, 3466 btrfs_node_key_ptr_offset(slot + 1), 3467 btrfs_node_key_ptr_offset(slot), 3468 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3469 } 3470 if (level) { 3471 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3472 MOD_LOG_KEY_ADD, GFP_NOFS); 3473 BUG_ON(ret < 0); 3474 } 3475 btrfs_set_node_key(lower, key, slot); 3476 btrfs_set_node_blockptr(lower, slot, bytenr); 3477 WARN_ON(trans->transid == 0); 3478 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3479 btrfs_set_header_nritems(lower, nritems + 1); 3480 btrfs_mark_buffer_dirty(lower); 3481 } 3482 3483 /* 3484 * split the node at the specified level in path in two. 3485 * The path is corrected to point to the appropriate node after the split 3486 * 3487 * Before splitting this tries to make some room in the node by pushing 3488 * left and right, if either one works, it returns right away. 3489 * 3490 * returns 0 on success and < 0 on failure 3491 */ 3492 static noinline int split_node(struct btrfs_trans_handle *trans, 3493 struct btrfs_root *root, 3494 struct btrfs_path *path, int level) 3495 { 3496 struct extent_buffer *c; 3497 struct extent_buffer *split; 3498 struct btrfs_disk_key disk_key; 3499 int mid; 3500 int ret; 3501 u32 c_nritems; 3502 3503 c = path->nodes[level]; 3504 WARN_ON(btrfs_header_generation(c) != trans->transid); 3505 if (c == root->node) { 3506 /* 3507 * trying to split the root, lets make a new one 3508 * 3509 * tree mod log: We don't log_removal old root in 3510 * insert_new_root, because that root buffer will be kept as a 3511 * normal node. We are going to log removal of half of the 3512 * elements below with tree_mod_log_eb_copy. We're holding a 3513 * tree lock on the buffer, which is why we cannot race with 3514 * other tree_mod_log users. 3515 */ 3516 ret = insert_new_root(trans, root, path, level + 1); 3517 if (ret) 3518 return ret; 3519 } else { 3520 ret = push_nodes_for_insert(trans, root, path, level); 3521 c = path->nodes[level]; 3522 if (!ret && btrfs_header_nritems(c) < 3523 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3524 return 0; 3525 if (ret < 0) 3526 return ret; 3527 } 3528 3529 c_nritems = btrfs_header_nritems(c); 3530 mid = (c_nritems + 1) / 2; 3531 btrfs_node_key(c, &disk_key, mid); 3532 3533 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3534 root->root_key.objectid, 3535 &disk_key, level, c->start, 0); 3536 if (IS_ERR(split)) 3537 return PTR_ERR(split); 3538 3539 root_add_used(root, root->nodesize); 3540 3541 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3542 btrfs_set_header_level(split, btrfs_header_level(c)); 3543 btrfs_set_header_bytenr(split, split->start); 3544 btrfs_set_header_generation(split, trans->transid); 3545 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3546 btrfs_set_header_owner(split, root->root_key.objectid); 3547 write_extent_buffer(split, root->fs_info->fsid, 3548 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3549 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3550 btrfs_header_chunk_tree_uuid(split), 3551 BTRFS_UUID_SIZE); 3552 3553 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0, 3554 mid, c_nritems - mid); 3555 if (ret) { 3556 btrfs_abort_transaction(trans, root, ret); 3557 return ret; 3558 } 3559 copy_extent_buffer(split, c, 3560 btrfs_node_key_ptr_offset(0), 3561 btrfs_node_key_ptr_offset(mid), 3562 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3563 btrfs_set_header_nritems(split, c_nritems - mid); 3564 btrfs_set_header_nritems(c, mid); 3565 ret = 0; 3566 3567 btrfs_mark_buffer_dirty(c); 3568 btrfs_mark_buffer_dirty(split); 3569 3570 insert_ptr(trans, root, path, &disk_key, split->start, 3571 path->slots[level + 1] + 1, level + 1); 3572 3573 if (path->slots[level] >= mid) { 3574 path->slots[level] -= mid; 3575 btrfs_tree_unlock(c); 3576 free_extent_buffer(c); 3577 path->nodes[level] = split; 3578 path->slots[level + 1] += 1; 3579 } else { 3580 btrfs_tree_unlock(split); 3581 free_extent_buffer(split); 3582 } 3583 return ret; 3584 } 3585 3586 /* 3587 * how many bytes are required to store the items in a leaf. start 3588 * and nr indicate which items in the leaf to check. This totals up the 3589 * space used both by the item structs and the item data 3590 */ 3591 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3592 { 3593 struct btrfs_item *start_item; 3594 struct btrfs_item *end_item; 3595 struct btrfs_map_token token; 3596 int data_len; 3597 int nritems = btrfs_header_nritems(l); 3598 int end = min(nritems, start + nr) - 1; 3599 3600 if (!nr) 3601 return 0; 3602 btrfs_init_map_token(&token); 3603 start_item = btrfs_item_nr(start); 3604 end_item = btrfs_item_nr(end); 3605 data_len = btrfs_token_item_offset(l, start_item, &token) + 3606 btrfs_token_item_size(l, start_item, &token); 3607 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3608 data_len += sizeof(struct btrfs_item) * nr; 3609 WARN_ON(data_len < 0); 3610 return data_len; 3611 } 3612 3613 /* 3614 * The space between the end of the leaf items and 3615 * the start of the leaf data. IOW, how much room 3616 * the leaf has left for both items and data 3617 */ 3618 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3619 struct extent_buffer *leaf) 3620 { 3621 int nritems = btrfs_header_nritems(leaf); 3622 int ret; 3623 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3624 if (ret < 0) { 3625 btrfs_crit(root->fs_info, 3626 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3627 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3628 leaf_space_used(leaf, 0, nritems), nritems); 3629 } 3630 return ret; 3631 } 3632 3633 /* 3634 * min slot controls the lowest index we're willing to push to the 3635 * right. We'll push up to and including min_slot, but no lower 3636 */ 3637 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3638 struct btrfs_root *root, 3639 struct btrfs_path *path, 3640 int data_size, int empty, 3641 struct extent_buffer *right, 3642 int free_space, u32 left_nritems, 3643 u32 min_slot) 3644 { 3645 struct extent_buffer *left = path->nodes[0]; 3646 struct extent_buffer *upper = path->nodes[1]; 3647 struct btrfs_map_token token; 3648 struct btrfs_disk_key disk_key; 3649 int slot; 3650 u32 i; 3651 int push_space = 0; 3652 int push_items = 0; 3653 struct btrfs_item *item; 3654 u32 nr; 3655 u32 right_nritems; 3656 u32 data_end; 3657 u32 this_item_size; 3658 3659 btrfs_init_map_token(&token); 3660 3661 if (empty) 3662 nr = 0; 3663 else 3664 nr = max_t(u32, 1, min_slot); 3665 3666 if (path->slots[0] >= left_nritems) 3667 push_space += data_size; 3668 3669 slot = path->slots[1]; 3670 i = left_nritems - 1; 3671 while (i >= nr) { 3672 item = btrfs_item_nr(i); 3673 3674 if (!empty && push_items > 0) { 3675 if (path->slots[0] > i) 3676 break; 3677 if (path->slots[0] == i) { 3678 int space = btrfs_leaf_free_space(root, left); 3679 if (space + push_space * 2 > free_space) 3680 break; 3681 } 3682 } 3683 3684 if (path->slots[0] == i) 3685 push_space += data_size; 3686 3687 this_item_size = btrfs_item_size(left, item); 3688 if (this_item_size + sizeof(*item) + push_space > free_space) 3689 break; 3690 3691 push_items++; 3692 push_space += this_item_size + sizeof(*item); 3693 if (i == 0) 3694 break; 3695 i--; 3696 } 3697 3698 if (push_items == 0) 3699 goto out_unlock; 3700 3701 WARN_ON(!empty && push_items == left_nritems); 3702 3703 /* push left to right */ 3704 right_nritems = btrfs_header_nritems(right); 3705 3706 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3707 push_space -= leaf_data_end(root, left); 3708 3709 /* make room in the right data area */ 3710 data_end = leaf_data_end(root, right); 3711 memmove_extent_buffer(right, 3712 btrfs_leaf_data(right) + data_end - push_space, 3713 btrfs_leaf_data(right) + data_end, 3714 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3715 3716 /* copy from the left data area */ 3717 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3718 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3719 btrfs_leaf_data(left) + leaf_data_end(root, left), 3720 push_space); 3721 3722 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3723 btrfs_item_nr_offset(0), 3724 right_nritems * sizeof(struct btrfs_item)); 3725 3726 /* copy the items from left to right */ 3727 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3728 btrfs_item_nr_offset(left_nritems - push_items), 3729 push_items * sizeof(struct btrfs_item)); 3730 3731 /* update the item pointers */ 3732 right_nritems += push_items; 3733 btrfs_set_header_nritems(right, right_nritems); 3734 push_space = BTRFS_LEAF_DATA_SIZE(root); 3735 for (i = 0; i < right_nritems; i++) { 3736 item = btrfs_item_nr(i); 3737 push_space -= btrfs_token_item_size(right, item, &token); 3738 btrfs_set_token_item_offset(right, item, push_space, &token); 3739 } 3740 3741 left_nritems -= push_items; 3742 btrfs_set_header_nritems(left, left_nritems); 3743 3744 if (left_nritems) 3745 btrfs_mark_buffer_dirty(left); 3746 else 3747 clean_tree_block(trans, root, left); 3748 3749 btrfs_mark_buffer_dirty(right); 3750 3751 btrfs_item_key(right, &disk_key, 0); 3752 btrfs_set_node_key(upper, &disk_key, slot + 1); 3753 btrfs_mark_buffer_dirty(upper); 3754 3755 /* then fixup the leaf pointer in the path */ 3756 if (path->slots[0] >= left_nritems) { 3757 path->slots[0] -= left_nritems; 3758 if (btrfs_header_nritems(path->nodes[0]) == 0) 3759 clean_tree_block(trans, root, path->nodes[0]); 3760 btrfs_tree_unlock(path->nodes[0]); 3761 free_extent_buffer(path->nodes[0]); 3762 path->nodes[0] = right; 3763 path->slots[1] += 1; 3764 } else { 3765 btrfs_tree_unlock(right); 3766 free_extent_buffer(right); 3767 } 3768 return 0; 3769 3770 out_unlock: 3771 btrfs_tree_unlock(right); 3772 free_extent_buffer(right); 3773 return 1; 3774 } 3775 3776 /* 3777 * push some data in the path leaf to the right, trying to free up at 3778 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3779 * 3780 * returns 1 if the push failed because the other node didn't have enough 3781 * room, 0 if everything worked out and < 0 if there were major errors. 3782 * 3783 * this will push starting from min_slot to the end of the leaf. It won't 3784 * push any slot lower than min_slot 3785 */ 3786 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3787 *root, struct btrfs_path *path, 3788 int min_data_size, int data_size, 3789 int empty, u32 min_slot) 3790 { 3791 struct extent_buffer *left = path->nodes[0]; 3792 struct extent_buffer *right; 3793 struct extent_buffer *upper; 3794 int slot; 3795 int free_space; 3796 u32 left_nritems; 3797 int ret; 3798 3799 if (!path->nodes[1]) 3800 return 1; 3801 3802 slot = path->slots[1]; 3803 upper = path->nodes[1]; 3804 if (slot >= btrfs_header_nritems(upper) - 1) 3805 return 1; 3806 3807 btrfs_assert_tree_locked(path->nodes[1]); 3808 3809 right = read_node_slot(root, upper, slot + 1); 3810 if (right == NULL) 3811 return 1; 3812 3813 btrfs_tree_lock(right); 3814 btrfs_set_lock_blocking(right); 3815 3816 free_space = btrfs_leaf_free_space(root, right); 3817 if (free_space < data_size) 3818 goto out_unlock; 3819 3820 /* cow and double check */ 3821 ret = btrfs_cow_block(trans, root, right, upper, 3822 slot + 1, &right); 3823 if (ret) 3824 goto out_unlock; 3825 3826 free_space = btrfs_leaf_free_space(root, right); 3827 if (free_space < data_size) 3828 goto out_unlock; 3829 3830 left_nritems = btrfs_header_nritems(left); 3831 if (left_nritems == 0) 3832 goto out_unlock; 3833 3834 if (path->slots[0] == left_nritems && !empty) { 3835 /* Key greater than all keys in the leaf, right neighbor has 3836 * enough room for it and we're not emptying our leaf to delete 3837 * it, therefore use right neighbor to insert the new item and 3838 * no need to touch/dirty our left leaft. */ 3839 btrfs_tree_unlock(left); 3840 free_extent_buffer(left); 3841 path->nodes[0] = right; 3842 path->slots[0] = 0; 3843 path->slots[1]++; 3844 return 0; 3845 } 3846 3847 return __push_leaf_right(trans, root, path, min_data_size, empty, 3848 right, free_space, left_nritems, min_slot); 3849 out_unlock: 3850 btrfs_tree_unlock(right); 3851 free_extent_buffer(right); 3852 return 1; 3853 } 3854 3855 /* 3856 * push some data in the path leaf to the left, trying to free up at 3857 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3858 * 3859 * max_slot can put a limit on how far into the leaf we'll push items. The 3860 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3861 * items 3862 */ 3863 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3864 struct btrfs_root *root, 3865 struct btrfs_path *path, int data_size, 3866 int empty, struct extent_buffer *left, 3867 int free_space, u32 right_nritems, 3868 u32 max_slot) 3869 { 3870 struct btrfs_disk_key disk_key; 3871 struct extent_buffer *right = path->nodes[0]; 3872 int i; 3873 int push_space = 0; 3874 int push_items = 0; 3875 struct btrfs_item *item; 3876 u32 old_left_nritems; 3877 u32 nr; 3878 int ret = 0; 3879 u32 this_item_size; 3880 u32 old_left_item_size; 3881 struct btrfs_map_token token; 3882 3883 btrfs_init_map_token(&token); 3884 3885 if (empty) 3886 nr = min(right_nritems, max_slot); 3887 else 3888 nr = min(right_nritems - 1, max_slot); 3889 3890 for (i = 0; i < nr; i++) { 3891 item = btrfs_item_nr(i); 3892 3893 if (!empty && push_items > 0) { 3894 if (path->slots[0] < i) 3895 break; 3896 if (path->slots[0] == i) { 3897 int space = btrfs_leaf_free_space(root, right); 3898 if (space + push_space * 2 > free_space) 3899 break; 3900 } 3901 } 3902 3903 if (path->slots[0] == i) 3904 push_space += data_size; 3905 3906 this_item_size = btrfs_item_size(right, item); 3907 if (this_item_size + sizeof(*item) + push_space > free_space) 3908 break; 3909 3910 push_items++; 3911 push_space += this_item_size + sizeof(*item); 3912 } 3913 3914 if (push_items == 0) { 3915 ret = 1; 3916 goto out; 3917 } 3918 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3919 3920 /* push data from right to left */ 3921 copy_extent_buffer(left, right, 3922 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3923 btrfs_item_nr_offset(0), 3924 push_items * sizeof(struct btrfs_item)); 3925 3926 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3927 btrfs_item_offset_nr(right, push_items - 1); 3928 3929 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3930 leaf_data_end(root, left) - push_space, 3931 btrfs_leaf_data(right) + 3932 btrfs_item_offset_nr(right, push_items - 1), 3933 push_space); 3934 old_left_nritems = btrfs_header_nritems(left); 3935 BUG_ON(old_left_nritems <= 0); 3936 3937 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3938 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3939 u32 ioff; 3940 3941 item = btrfs_item_nr(i); 3942 3943 ioff = btrfs_token_item_offset(left, item, &token); 3944 btrfs_set_token_item_offset(left, item, 3945 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3946 &token); 3947 } 3948 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3949 3950 /* fixup right node */ 3951 if (push_items > right_nritems) 3952 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3953 right_nritems); 3954 3955 if (push_items < right_nritems) { 3956 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3957 leaf_data_end(root, right); 3958 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3959 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3960 btrfs_leaf_data(right) + 3961 leaf_data_end(root, right), push_space); 3962 3963 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3964 btrfs_item_nr_offset(push_items), 3965 (btrfs_header_nritems(right) - push_items) * 3966 sizeof(struct btrfs_item)); 3967 } 3968 right_nritems -= push_items; 3969 btrfs_set_header_nritems(right, right_nritems); 3970 push_space = BTRFS_LEAF_DATA_SIZE(root); 3971 for (i = 0; i < right_nritems; i++) { 3972 item = btrfs_item_nr(i); 3973 3974 push_space = push_space - btrfs_token_item_size(right, 3975 item, &token); 3976 btrfs_set_token_item_offset(right, item, push_space, &token); 3977 } 3978 3979 btrfs_mark_buffer_dirty(left); 3980 if (right_nritems) 3981 btrfs_mark_buffer_dirty(right); 3982 else 3983 clean_tree_block(trans, root, right); 3984 3985 btrfs_item_key(right, &disk_key, 0); 3986 fixup_low_keys(root, path, &disk_key, 1); 3987 3988 /* then fixup the leaf pointer in the path */ 3989 if (path->slots[0] < push_items) { 3990 path->slots[0] += old_left_nritems; 3991 btrfs_tree_unlock(path->nodes[0]); 3992 free_extent_buffer(path->nodes[0]); 3993 path->nodes[0] = left; 3994 path->slots[1] -= 1; 3995 } else { 3996 btrfs_tree_unlock(left); 3997 free_extent_buffer(left); 3998 path->slots[0] -= push_items; 3999 } 4000 BUG_ON(path->slots[0] < 0); 4001 return ret; 4002 out: 4003 btrfs_tree_unlock(left); 4004 free_extent_buffer(left); 4005 return ret; 4006 } 4007 4008 /* 4009 * push some data in the path leaf to the left, trying to free up at 4010 * least data_size bytes. returns zero if the push worked, nonzero otherwise 4011 * 4012 * max_slot can put a limit on how far into the leaf we'll push items. The 4013 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 4014 * items 4015 */ 4016 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 4017 *root, struct btrfs_path *path, int min_data_size, 4018 int data_size, int empty, u32 max_slot) 4019 { 4020 struct extent_buffer *right = path->nodes[0]; 4021 struct extent_buffer *left; 4022 int slot; 4023 int free_space; 4024 u32 right_nritems; 4025 int ret = 0; 4026 4027 slot = path->slots[1]; 4028 if (slot == 0) 4029 return 1; 4030 if (!path->nodes[1]) 4031 return 1; 4032 4033 right_nritems = btrfs_header_nritems(right); 4034 if (right_nritems == 0) 4035 return 1; 4036 4037 btrfs_assert_tree_locked(path->nodes[1]); 4038 4039 left = read_node_slot(root, path->nodes[1], slot - 1); 4040 if (left == NULL) 4041 return 1; 4042 4043 btrfs_tree_lock(left); 4044 btrfs_set_lock_blocking(left); 4045 4046 free_space = btrfs_leaf_free_space(root, left); 4047 if (free_space < data_size) { 4048 ret = 1; 4049 goto out; 4050 } 4051 4052 /* cow and double check */ 4053 ret = btrfs_cow_block(trans, root, left, 4054 path->nodes[1], slot - 1, &left); 4055 if (ret) { 4056 /* we hit -ENOSPC, but it isn't fatal here */ 4057 if (ret == -ENOSPC) 4058 ret = 1; 4059 goto out; 4060 } 4061 4062 free_space = btrfs_leaf_free_space(root, left); 4063 if (free_space < data_size) { 4064 ret = 1; 4065 goto out; 4066 } 4067 4068 return __push_leaf_left(trans, root, path, min_data_size, 4069 empty, left, free_space, right_nritems, 4070 max_slot); 4071 out: 4072 btrfs_tree_unlock(left); 4073 free_extent_buffer(left); 4074 return ret; 4075 } 4076 4077 /* 4078 * split the path's leaf in two, making sure there is at least data_size 4079 * available for the resulting leaf level of the path. 4080 */ 4081 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4082 struct btrfs_root *root, 4083 struct btrfs_path *path, 4084 struct extent_buffer *l, 4085 struct extent_buffer *right, 4086 int slot, int mid, int nritems) 4087 { 4088 int data_copy_size; 4089 int rt_data_off; 4090 int i; 4091 struct btrfs_disk_key disk_key; 4092 struct btrfs_map_token token; 4093 4094 btrfs_init_map_token(&token); 4095 4096 nritems = nritems - mid; 4097 btrfs_set_header_nritems(right, nritems); 4098 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 4099 4100 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4101 btrfs_item_nr_offset(mid), 4102 nritems * sizeof(struct btrfs_item)); 4103 4104 copy_extent_buffer(right, l, 4105 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 4106 data_copy_size, btrfs_leaf_data(l) + 4107 leaf_data_end(root, l), data_copy_size); 4108 4109 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 4110 btrfs_item_end_nr(l, mid); 4111 4112 for (i = 0; i < nritems; i++) { 4113 struct btrfs_item *item = btrfs_item_nr(i); 4114 u32 ioff; 4115 4116 ioff = btrfs_token_item_offset(right, item, &token); 4117 btrfs_set_token_item_offset(right, item, 4118 ioff + rt_data_off, &token); 4119 } 4120 4121 btrfs_set_header_nritems(l, mid); 4122 btrfs_item_key(right, &disk_key, 0); 4123 insert_ptr(trans, root, path, &disk_key, right->start, 4124 path->slots[1] + 1, 1); 4125 4126 btrfs_mark_buffer_dirty(right); 4127 btrfs_mark_buffer_dirty(l); 4128 BUG_ON(path->slots[0] != slot); 4129 4130 if (mid <= slot) { 4131 btrfs_tree_unlock(path->nodes[0]); 4132 free_extent_buffer(path->nodes[0]); 4133 path->nodes[0] = right; 4134 path->slots[0] -= mid; 4135 path->slots[1] += 1; 4136 } else { 4137 btrfs_tree_unlock(right); 4138 free_extent_buffer(right); 4139 } 4140 4141 BUG_ON(path->slots[0] < 0); 4142 } 4143 4144 /* 4145 * double splits happen when we need to insert a big item in the middle 4146 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4147 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4148 * A B C 4149 * 4150 * We avoid this by trying to push the items on either side of our target 4151 * into the adjacent leaves. If all goes well we can avoid the double split 4152 * completely. 4153 */ 4154 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4155 struct btrfs_root *root, 4156 struct btrfs_path *path, 4157 int data_size) 4158 { 4159 int ret; 4160 int progress = 0; 4161 int slot; 4162 u32 nritems; 4163 int space_needed = data_size; 4164 4165 slot = path->slots[0]; 4166 if (slot < btrfs_header_nritems(path->nodes[0])) 4167 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]); 4168 4169 /* 4170 * try to push all the items after our slot into the 4171 * right leaf 4172 */ 4173 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4174 if (ret < 0) 4175 return ret; 4176 4177 if (ret == 0) 4178 progress++; 4179 4180 nritems = btrfs_header_nritems(path->nodes[0]); 4181 /* 4182 * our goal is to get our slot at the start or end of a leaf. If 4183 * we've done so we're done 4184 */ 4185 if (path->slots[0] == 0 || path->slots[0] == nritems) 4186 return 0; 4187 4188 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4189 return 0; 4190 4191 /* try to push all the items before our slot into the next leaf */ 4192 slot = path->slots[0]; 4193 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4194 if (ret < 0) 4195 return ret; 4196 4197 if (ret == 0) 4198 progress++; 4199 4200 if (progress) 4201 return 0; 4202 return 1; 4203 } 4204 4205 /* 4206 * split the path's leaf in two, making sure there is at least data_size 4207 * available for the resulting leaf level of the path. 4208 * 4209 * returns 0 if all went well and < 0 on failure. 4210 */ 4211 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4212 struct btrfs_root *root, 4213 struct btrfs_key *ins_key, 4214 struct btrfs_path *path, int data_size, 4215 int extend) 4216 { 4217 struct btrfs_disk_key disk_key; 4218 struct extent_buffer *l; 4219 u32 nritems; 4220 int mid; 4221 int slot; 4222 struct extent_buffer *right; 4223 int ret = 0; 4224 int wret; 4225 int split; 4226 int num_doubles = 0; 4227 int tried_avoid_double = 0; 4228 4229 l = path->nodes[0]; 4230 slot = path->slots[0]; 4231 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4232 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 4233 return -EOVERFLOW; 4234 4235 /* first try to make some room by pushing left and right */ 4236 if (data_size && path->nodes[1]) { 4237 int space_needed = data_size; 4238 4239 if (slot < btrfs_header_nritems(l)) 4240 space_needed -= btrfs_leaf_free_space(root, l); 4241 4242 wret = push_leaf_right(trans, root, path, space_needed, 4243 space_needed, 0, 0); 4244 if (wret < 0) 4245 return wret; 4246 if (wret) { 4247 wret = push_leaf_left(trans, root, path, space_needed, 4248 space_needed, 0, (u32)-1); 4249 if (wret < 0) 4250 return wret; 4251 } 4252 l = path->nodes[0]; 4253 4254 /* did the pushes work? */ 4255 if (btrfs_leaf_free_space(root, l) >= data_size) 4256 return 0; 4257 } 4258 4259 if (!path->nodes[1]) { 4260 ret = insert_new_root(trans, root, path, 1); 4261 if (ret) 4262 return ret; 4263 } 4264 again: 4265 split = 1; 4266 l = path->nodes[0]; 4267 slot = path->slots[0]; 4268 nritems = btrfs_header_nritems(l); 4269 mid = (nritems + 1) / 2; 4270 4271 if (mid <= slot) { 4272 if (nritems == 1 || 4273 leaf_space_used(l, mid, nritems - mid) + data_size > 4274 BTRFS_LEAF_DATA_SIZE(root)) { 4275 if (slot >= nritems) { 4276 split = 0; 4277 } else { 4278 mid = slot; 4279 if (mid != nritems && 4280 leaf_space_used(l, mid, nritems - mid) + 4281 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4282 if (data_size && !tried_avoid_double) 4283 goto push_for_double; 4284 split = 2; 4285 } 4286 } 4287 } 4288 } else { 4289 if (leaf_space_used(l, 0, mid) + data_size > 4290 BTRFS_LEAF_DATA_SIZE(root)) { 4291 if (!extend && data_size && slot == 0) { 4292 split = 0; 4293 } else if ((extend || !data_size) && slot == 0) { 4294 mid = 1; 4295 } else { 4296 mid = slot; 4297 if (mid != nritems && 4298 leaf_space_used(l, mid, nritems - mid) + 4299 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4300 if (data_size && !tried_avoid_double) 4301 goto push_for_double; 4302 split = 2; 4303 } 4304 } 4305 } 4306 } 4307 4308 if (split == 0) 4309 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4310 else 4311 btrfs_item_key(l, &disk_key, mid); 4312 4313 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 4314 root->root_key.objectid, 4315 &disk_key, 0, l->start, 0); 4316 if (IS_ERR(right)) 4317 return PTR_ERR(right); 4318 4319 root_add_used(root, root->leafsize); 4320 4321 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4322 btrfs_set_header_bytenr(right, right->start); 4323 btrfs_set_header_generation(right, trans->transid); 4324 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4325 btrfs_set_header_owner(right, root->root_key.objectid); 4326 btrfs_set_header_level(right, 0); 4327 write_extent_buffer(right, root->fs_info->fsid, 4328 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4329 4330 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 4331 btrfs_header_chunk_tree_uuid(right), 4332 BTRFS_UUID_SIZE); 4333 4334 if (split == 0) { 4335 if (mid <= slot) { 4336 btrfs_set_header_nritems(right, 0); 4337 insert_ptr(trans, root, path, &disk_key, right->start, 4338 path->slots[1] + 1, 1); 4339 btrfs_tree_unlock(path->nodes[0]); 4340 free_extent_buffer(path->nodes[0]); 4341 path->nodes[0] = right; 4342 path->slots[0] = 0; 4343 path->slots[1] += 1; 4344 } else { 4345 btrfs_set_header_nritems(right, 0); 4346 insert_ptr(trans, root, path, &disk_key, right->start, 4347 path->slots[1], 1); 4348 btrfs_tree_unlock(path->nodes[0]); 4349 free_extent_buffer(path->nodes[0]); 4350 path->nodes[0] = right; 4351 path->slots[0] = 0; 4352 if (path->slots[1] == 0) 4353 fixup_low_keys(root, path, &disk_key, 1); 4354 } 4355 btrfs_mark_buffer_dirty(right); 4356 return ret; 4357 } 4358 4359 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4360 4361 if (split == 2) { 4362 BUG_ON(num_doubles != 0); 4363 num_doubles++; 4364 goto again; 4365 } 4366 4367 return 0; 4368 4369 push_for_double: 4370 push_for_double_split(trans, root, path, data_size); 4371 tried_avoid_double = 1; 4372 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4373 return 0; 4374 goto again; 4375 } 4376 4377 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4378 struct btrfs_root *root, 4379 struct btrfs_path *path, int ins_len) 4380 { 4381 struct btrfs_key key; 4382 struct extent_buffer *leaf; 4383 struct btrfs_file_extent_item *fi; 4384 u64 extent_len = 0; 4385 u32 item_size; 4386 int ret; 4387 4388 leaf = path->nodes[0]; 4389 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4390 4391 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4392 key.type != BTRFS_EXTENT_CSUM_KEY); 4393 4394 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4395 return 0; 4396 4397 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4398 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4399 fi = btrfs_item_ptr(leaf, path->slots[0], 4400 struct btrfs_file_extent_item); 4401 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4402 } 4403 btrfs_release_path(path); 4404 4405 path->keep_locks = 1; 4406 path->search_for_split = 1; 4407 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4408 path->search_for_split = 0; 4409 if (ret < 0) 4410 goto err; 4411 4412 ret = -EAGAIN; 4413 leaf = path->nodes[0]; 4414 /* if our item isn't there or got smaller, return now */ 4415 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4416 goto err; 4417 4418 /* the leaf has changed, it now has room. return now */ 4419 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4420 goto err; 4421 4422 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4423 fi = btrfs_item_ptr(leaf, path->slots[0], 4424 struct btrfs_file_extent_item); 4425 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4426 goto err; 4427 } 4428 4429 btrfs_set_path_blocking(path); 4430 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4431 if (ret) 4432 goto err; 4433 4434 path->keep_locks = 0; 4435 btrfs_unlock_up_safe(path, 1); 4436 return 0; 4437 err: 4438 path->keep_locks = 0; 4439 return ret; 4440 } 4441 4442 static noinline int split_item(struct btrfs_trans_handle *trans, 4443 struct btrfs_root *root, 4444 struct btrfs_path *path, 4445 struct btrfs_key *new_key, 4446 unsigned long split_offset) 4447 { 4448 struct extent_buffer *leaf; 4449 struct btrfs_item *item; 4450 struct btrfs_item *new_item; 4451 int slot; 4452 char *buf; 4453 u32 nritems; 4454 u32 item_size; 4455 u32 orig_offset; 4456 struct btrfs_disk_key disk_key; 4457 4458 leaf = path->nodes[0]; 4459 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4460 4461 btrfs_set_path_blocking(path); 4462 4463 item = btrfs_item_nr(path->slots[0]); 4464 orig_offset = btrfs_item_offset(leaf, item); 4465 item_size = btrfs_item_size(leaf, item); 4466 4467 buf = kmalloc(item_size, GFP_NOFS); 4468 if (!buf) 4469 return -ENOMEM; 4470 4471 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4472 path->slots[0]), item_size); 4473 4474 slot = path->slots[0] + 1; 4475 nritems = btrfs_header_nritems(leaf); 4476 if (slot != nritems) { 4477 /* shift the items */ 4478 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4479 btrfs_item_nr_offset(slot), 4480 (nritems - slot) * sizeof(struct btrfs_item)); 4481 } 4482 4483 btrfs_cpu_key_to_disk(&disk_key, new_key); 4484 btrfs_set_item_key(leaf, &disk_key, slot); 4485 4486 new_item = btrfs_item_nr(slot); 4487 4488 btrfs_set_item_offset(leaf, new_item, orig_offset); 4489 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4490 4491 btrfs_set_item_offset(leaf, item, 4492 orig_offset + item_size - split_offset); 4493 btrfs_set_item_size(leaf, item, split_offset); 4494 4495 btrfs_set_header_nritems(leaf, nritems + 1); 4496 4497 /* write the data for the start of the original item */ 4498 write_extent_buffer(leaf, buf, 4499 btrfs_item_ptr_offset(leaf, path->slots[0]), 4500 split_offset); 4501 4502 /* write the data for the new item */ 4503 write_extent_buffer(leaf, buf + split_offset, 4504 btrfs_item_ptr_offset(leaf, slot), 4505 item_size - split_offset); 4506 btrfs_mark_buffer_dirty(leaf); 4507 4508 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4509 kfree(buf); 4510 return 0; 4511 } 4512 4513 /* 4514 * This function splits a single item into two items, 4515 * giving 'new_key' to the new item and splitting the 4516 * old one at split_offset (from the start of the item). 4517 * 4518 * The path may be released by this operation. After 4519 * the split, the path is pointing to the old item. The 4520 * new item is going to be in the same node as the old one. 4521 * 4522 * Note, the item being split must be smaller enough to live alone on 4523 * a tree block with room for one extra struct btrfs_item 4524 * 4525 * This allows us to split the item in place, keeping a lock on the 4526 * leaf the entire time. 4527 */ 4528 int btrfs_split_item(struct btrfs_trans_handle *trans, 4529 struct btrfs_root *root, 4530 struct btrfs_path *path, 4531 struct btrfs_key *new_key, 4532 unsigned long split_offset) 4533 { 4534 int ret; 4535 ret = setup_leaf_for_split(trans, root, path, 4536 sizeof(struct btrfs_item)); 4537 if (ret) 4538 return ret; 4539 4540 ret = split_item(trans, root, path, new_key, split_offset); 4541 return ret; 4542 } 4543 4544 /* 4545 * This function duplicate a item, giving 'new_key' to the new item. 4546 * It guarantees both items live in the same tree leaf and the new item 4547 * is contiguous with the original item. 4548 * 4549 * This allows us to split file extent in place, keeping a lock on the 4550 * leaf the entire time. 4551 */ 4552 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4553 struct btrfs_root *root, 4554 struct btrfs_path *path, 4555 struct btrfs_key *new_key) 4556 { 4557 struct extent_buffer *leaf; 4558 int ret; 4559 u32 item_size; 4560 4561 leaf = path->nodes[0]; 4562 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4563 ret = setup_leaf_for_split(trans, root, path, 4564 item_size + sizeof(struct btrfs_item)); 4565 if (ret) 4566 return ret; 4567 4568 path->slots[0]++; 4569 setup_items_for_insert(root, path, new_key, &item_size, 4570 item_size, item_size + 4571 sizeof(struct btrfs_item), 1); 4572 leaf = path->nodes[0]; 4573 memcpy_extent_buffer(leaf, 4574 btrfs_item_ptr_offset(leaf, path->slots[0]), 4575 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4576 item_size); 4577 return 0; 4578 } 4579 4580 /* 4581 * make the item pointed to by the path smaller. new_size indicates 4582 * how small to make it, and from_end tells us if we just chop bytes 4583 * off the end of the item or if we shift the item to chop bytes off 4584 * the front. 4585 */ 4586 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4587 u32 new_size, int from_end) 4588 { 4589 int slot; 4590 struct extent_buffer *leaf; 4591 struct btrfs_item *item; 4592 u32 nritems; 4593 unsigned int data_end; 4594 unsigned int old_data_start; 4595 unsigned int old_size; 4596 unsigned int size_diff; 4597 int i; 4598 struct btrfs_map_token token; 4599 4600 btrfs_init_map_token(&token); 4601 4602 leaf = path->nodes[0]; 4603 slot = path->slots[0]; 4604 4605 old_size = btrfs_item_size_nr(leaf, slot); 4606 if (old_size == new_size) 4607 return; 4608 4609 nritems = btrfs_header_nritems(leaf); 4610 data_end = leaf_data_end(root, leaf); 4611 4612 old_data_start = btrfs_item_offset_nr(leaf, slot); 4613 4614 size_diff = old_size - new_size; 4615 4616 BUG_ON(slot < 0); 4617 BUG_ON(slot >= nritems); 4618 4619 /* 4620 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4621 */ 4622 /* first correct the data pointers */ 4623 for (i = slot; i < nritems; i++) { 4624 u32 ioff; 4625 item = btrfs_item_nr(i); 4626 4627 ioff = btrfs_token_item_offset(leaf, item, &token); 4628 btrfs_set_token_item_offset(leaf, item, 4629 ioff + size_diff, &token); 4630 } 4631 4632 /* shift the data */ 4633 if (from_end) { 4634 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4635 data_end + size_diff, btrfs_leaf_data(leaf) + 4636 data_end, old_data_start + new_size - data_end); 4637 } else { 4638 struct btrfs_disk_key disk_key; 4639 u64 offset; 4640 4641 btrfs_item_key(leaf, &disk_key, slot); 4642 4643 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4644 unsigned long ptr; 4645 struct btrfs_file_extent_item *fi; 4646 4647 fi = btrfs_item_ptr(leaf, slot, 4648 struct btrfs_file_extent_item); 4649 fi = (struct btrfs_file_extent_item *)( 4650 (unsigned long)fi - size_diff); 4651 4652 if (btrfs_file_extent_type(leaf, fi) == 4653 BTRFS_FILE_EXTENT_INLINE) { 4654 ptr = btrfs_item_ptr_offset(leaf, slot); 4655 memmove_extent_buffer(leaf, ptr, 4656 (unsigned long)fi, 4657 offsetof(struct btrfs_file_extent_item, 4658 disk_bytenr)); 4659 } 4660 } 4661 4662 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4663 data_end + size_diff, btrfs_leaf_data(leaf) + 4664 data_end, old_data_start - data_end); 4665 4666 offset = btrfs_disk_key_offset(&disk_key); 4667 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4668 btrfs_set_item_key(leaf, &disk_key, slot); 4669 if (slot == 0) 4670 fixup_low_keys(root, path, &disk_key, 1); 4671 } 4672 4673 item = btrfs_item_nr(slot); 4674 btrfs_set_item_size(leaf, item, new_size); 4675 btrfs_mark_buffer_dirty(leaf); 4676 4677 if (btrfs_leaf_free_space(root, leaf) < 0) { 4678 btrfs_print_leaf(root, leaf); 4679 BUG(); 4680 } 4681 } 4682 4683 /* 4684 * make the item pointed to by the path bigger, data_size is the added size. 4685 */ 4686 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4687 u32 data_size) 4688 { 4689 int slot; 4690 struct extent_buffer *leaf; 4691 struct btrfs_item *item; 4692 u32 nritems; 4693 unsigned int data_end; 4694 unsigned int old_data; 4695 unsigned int old_size; 4696 int i; 4697 struct btrfs_map_token token; 4698 4699 btrfs_init_map_token(&token); 4700 4701 leaf = path->nodes[0]; 4702 4703 nritems = btrfs_header_nritems(leaf); 4704 data_end = leaf_data_end(root, leaf); 4705 4706 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4707 btrfs_print_leaf(root, leaf); 4708 BUG(); 4709 } 4710 slot = path->slots[0]; 4711 old_data = btrfs_item_end_nr(leaf, slot); 4712 4713 BUG_ON(slot < 0); 4714 if (slot >= nritems) { 4715 btrfs_print_leaf(root, leaf); 4716 btrfs_crit(root->fs_info, "slot %d too large, nritems %d", 4717 slot, nritems); 4718 BUG_ON(1); 4719 } 4720 4721 /* 4722 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4723 */ 4724 /* first correct the data pointers */ 4725 for (i = slot; i < nritems; i++) { 4726 u32 ioff; 4727 item = btrfs_item_nr(i); 4728 4729 ioff = btrfs_token_item_offset(leaf, item, &token); 4730 btrfs_set_token_item_offset(leaf, item, 4731 ioff - data_size, &token); 4732 } 4733 4734 /* shift the data */ 4735 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4736 data_end - data_size, btrfs_leaf_data(leaf) + 4737 data_end, old_data - data_end); 4738 4739 data_end = old_data; 4740 old_size = btrfs_item_size_nr(leaf, slot); 4741 item = btrfs_item_nr(slot); 4742 btrfs_set_item_size(leaf, item, old_size + data_size); 4743 btrfs_mark_buffer_dirty(leaf); 4744 4745 if (btrfs_leaf_free_space(root, leaf) < 0) { 4746 btrfs_print_leaf(root, leaf); 4747 BUG(); 4748 } 4749 } 4750 4751 /* 4752 * this is a helper for btrfs_insert_empty_items, the main goal here is 4753 * to save stack depth by doing the bulk of the work in a function 4754 * that doesn't call btrfs_search_slot 4755 */ 4756 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4757 struct btrfs_key *cpu_key, u32 *data_size, 4758 u32 total_data, u32 total_size, int nr) 4759 { 4760 struct btrfs_item *item; 4761 int i; 4762 u32 nritems; 4763 unsigned int data_end; 4764 struct btrfs_disk_key disk_key; 4765 struct extent_buffer *leaf; 4766 int slot; 4767 struct btrfs_map_token token; 4768 4769 btrfs_init_map_token(&token); 4770 4771 leaf = path->nodes[0]; 4772 slot = path->slots[0]; 4773 4774 nritems = btrfs_header_nritems(leaf); 4775 data_end = leaf_data_end(root, leaf); 4776 4777 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4778 btrfs_print_leaf(root, leaf); 4779 btrfs_crit(root->fs_info, "not enough freespace need %u have %d", 4780 total_size, btrfs_leaf_free_space(root, leaf)); 4781 BUG(); 4782 } 4783 4784 if (slot != nritems) { 4785 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4786 4787 if (old_data < data_end) { 4788 btrfs_print_leaf(root, leaf); 4789 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d", 4790 slot, old_data, data_end); 4791 BUG_ON(1); 4792 } 4793 /* 4794 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4795 */ 4796 /* first correct the data pointers */ 4797 for (i = slot; i < nritems; i++) { 4798 u32 ioff; 4799 4800 item = btrfs_item_nr( i); 4801 ioff = btrfs_token_item_offset(leaf, item, &token); 4802 btrfs_set_token_item_offset(leaf, item, 4803 ioff - total_data, &token); 4804 } 4805 /* shift the items */ 4806 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4807 btrfs_item_nr_offset(slot), 4808 (nritems - slot) * sizeof(struct btrfs_item)); 4809 4810 /* shift the data */ 4811 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4812 data_end - total_data, btrfs_leaf_data(leaf) + 4813 data_end, old_data - data_end); 4814 data_end = old_data; 4815 } 4816 4817 /* setup the item for the new data */ 4818 for (i = 0; i < nr; i++) { 4819 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4820 btrfs_set_item_key(leaf, &disk_key, slot + i); 4821 item = btrfs_item_nr(slot + i); 4822 btrfs_set_token_item_offset(leaf, item, 4823 data_end - data_size[i], &token); 4824 data_end -= data_size[i]; 4825 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4826 } 4827 4828 btrfs_set_header_nritems(leaf, nritems + nr); 4829 4830 if (slot == 0) { 4831 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4832 fixup_low_keys(root, path, &disk_key, 1); 4833 } 4834 btrfs_unlock_up_safe(path, 1); 4835 btrfs_mark_buffer_dirty(leaf); 4836 4837 if (btrfs_leaf_free_space(root, leaf) < 0) { 4838 btrfs_print_leaf(root, leaf); 4839 BUG(); 4840 } 4841 } 4842 4843 /* 4844 * Given a key and some data, insert items into the tree. 4845 * This does all the path init required, making room in the tree if needed. 4846 */ 4847 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4848 struct btrfs_root *root, 4849 struct btrfs_path *path, 4850 struct btrfs_key *cpu_key, u32 *data_size, 4851 int nr) 4852 { 4853 int ret = 0; 4854 int slot; 4855 int i; 4856 u32 total_size = 0; 4857 u32 total_data = 0; 4858 4859 for (i = 0; i < nr; i++) 4860 total_data += data_size[i]; 4861 4862 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4863 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4864 if (ret == 0) 4865 return -EEXIST; 4866 if (ret < 0) 4867 return ret; 4868 4869 slot = path->slots[0]; 4870 BUG_ON(slot < 0); 4871 4872 setup_items_for_insert(root, path, cpu_key, data_size, 4873 total_data, total_size, nr); 4874 return 0; 4875 } 4876 4877 /* 4878 * Given a key and some data, insert an item into the tree. 4879 * This does all the path init required, making room in the tree if needed. 4880 */ 4881 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4882 *root, struct btrfs_key *cpu_key, void *data, u32 4883 data_size) 4884 { 4885 int ret = 0; 4886 struct btrfs_path *path; 4887 struct extent_buffer *leaf; 4888 unsigned long ptr; 4889 4890 path = btrfs_alloc_path(); 4891 if (!path) 4892 return -ENOMEM; 4893 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4894 if (!ret) { 4895 leaf = path->nodes[0]; 4896 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4897 write_extent_buffer(leaf, data, ptr, data_size); 4898 btrfs_mark_buffer_dirty(leaf); 4899 } 4900 btrfs_free_path(path); 4901 return ret; 4902 } 4903 4904 /* 4905 * delete the pointer from a given node. 4906 * 4907 * the tree should have been previously balanced so the deletion does not 4908 * empty a node. 4909 */ 4910 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4911 int level, int slot) 4912 { 4913 struct extent_buffer *parent = path->nodes[level]; 4914 u32 nritems; 4915 int ret; 4916 4917 nritems = btrfs_header_nritems(parent); 4918 if (slot != nritems - 1) { 4919 if (level) 4920 tree_mod_log_eb_move(root->fs_info, parent, slot, 4921 slot + 1, nritems - slot - 1); 4922 memmove_extent_buffer(parent, 4923 btrfs_node_key_ptr_offset(slot), 4924 btrfs_node_key_ptr_offset(slot + 1), 4925 sizeof(struct btrfs_key_ptr) * 4926 (nritems - slot - 1)); 4927 } else if (level) { 4928 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4929 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4930 BUG_ON(ret < 0); 4931 } 4932 4933 nritems--; 4934 btrfs_set_header_nritems(parent, nritems); 4935 if (nritems == 0 && parent == root->node) { 4936 BUG_ON(btrfs_header_level(root->node) != 1); 4937 /* just turn the root into a leaf and break */ 4938 btrfs_set_header_level(root->node, 0); 4939 } else if (slot == 0) { 4940 struct btrfs_disk_key disk_key; 4941 4942 btrfs_node_key(parent, &disk_key, 0); 4943 fixup_low_keys(root, path, &disk_key, level + 1); 4944 } 4945 btrfs_mark_buffer_dirty(parent); 4946 } 4947 4948 /* 4949 * a helper function to delete the leaf pointed to by path->slots[1] and 4950 * path->nodes[1]. 4951 * 4952 * This deletes the pointer in path->nodes[1] and frees the leaf 4953 * block extent. zero is returned if it all worked out, < 0 otherwise. 4954 * 4955 * The path must have already been setup for deleting the leaf, including 4956 * all the proper balancing. path->nodes[1] must be locked. 4957 */ 4958 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4959 struct btrfs_root *root, 4960 struct btrfs_path *path, 4961 struct extent_buffer *leaf) 4962 { 4963 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4964 del_ptr(root, path, 1, path->slots[1]); 4965 4966 /* 4967 * btrfs_free_extent is expensive, we want to make sure we 4968 * aren't holding any locks when we call it 4969 */ 4970 btrfs_unlock_up_safe(path, 0); 4971 4972 root_sub_used(root, leaf->len); 4973 4974 extent_buffer_get(leaf); 4975 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4976 free_extent_buffer_stale(leaf); 4977 } 4978 /* 4979 * delete the item at the leaf level in path. If that empties 4980 * the leaf, remove it from the tree 4981 */ 4982 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4983 struct btrfs_path *path, int slot, int nr) 4984 { 4985 struct extent_buffer *leaf; 4986 struct btrfs_item *item; 4987 int last_off; 4988 int dsize = 0; 4989 int ret = 0; 4990 int wret; 4991 int i; 4992 u32 nritems; 4993 struct btrfs_map_token token; 4994 4995 btrfs_init_map_token(&token); 4996 4997 leaf = path->nodes[0]; 4998 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4999 5000 for (i = 0; i < nr; i++) 5001 dsize += btrfs_item_size_nr(leaf, slot + i); 5002 5003 nritems = btrfs_header_nritems(leaf); 5004 5005 if (slot + nr != nritems) { 5006 int data_end = leaf_data_end(root, leaf); 5007 5008 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 5009 data_end + dsize, 5010 btrfs_leaf_data(leaf) + data_end, 5011 last_off - data_end); 5012 5013 for (i = slot + nr; i < nritems; i++) { 5014 u32 ioff; 5015 5016 item = btrfs_item_nr(i); 5017 ioff = btrfs_token_item_offset(leaf, item, &token); 5018 btrfs_set_token_item_offset(leaf, item, 5019 ioff + dsize, &token); 5020 } 5021 5022 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 5023 btrfs_item_nr_offset(slot + nr), 5024 sizeof(struct btrfs_item) * 5025 (nritems - slot - nr)); 5026 } 5027 btrfs_set_header_nritems(leaf, nritems - nr); 5028 nritems -= nr; 5029 5030 /* delete the leaf if we've emptied it */ 5031 if (nritems == 0) { 5032 if (leaf == root->node) { 5033 btrfs_set_header_level(leaf, 0); 5034 } else { 5035 btrfs_set_path_blocking(path); 5036 clean_tree_block(trans, root, leaf); 5037 btrfs_del_leaf(trans, root, path, leaf); 5038 } 5039 } else { 5040 int used = leaf_space_used(leaf, 0, nritems); 5041 if (slot == 0) { 5042 struct btrfs_disk_key disk_key; 5043 5044 btrfs_item_key(leaf, &disk_key, 0); 5045 fixup_low_keys(root, path, &disk_key, 1); 5046 } 5047 5048 /* delete the leaf if it is mostly empty */ 5049 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 5050 /* push_leaf_left fixes the path. 5051 * make sure the path still points to our leaf 5052 * for possible call to del_ptr below 5053 */ 5054 slot = path->slots[1]; 5055 extent_buffer_get(leaf); 5056 5057 btrfs_set_path_blocking(path); 5058 wret = push_leaf_left(trans, root, path, 1, 1, 5059 1, (u32)-1); 5060 if (wret < 0 && wret != -ENOSPC) 5061 ret = wret; 5062 5063 if (path->nodes[0] == leaf && 5064 btrfs_header_nritems(leaf)) { 5065 wret = push_leaf_right(trans, root, path, 1, 5066 1, 1, 0); 5067 if (wret < 0 && wret != -ENOSPC) 5068 ret = wret; 5069 } 5070 5071 if (btrfs_header_nritems(leaf) == 0) { 5072 path->slots[1] = slot; 5073 btrfs_del_leaf(trans, root, path, leaf); 5074 free_extent_buffer(leaf); 5075 ret = 0; 5076 } else { 5077 /* if we're still in the path, make sure 5078 * we're dirty. Otherwise, one of the 5079 * push_leaf functions must have already 5080 * dirtied this buffer 5081 */ 5082 if (path->nodes[0] == leaf) 5083 btrfs_mark_buffer_dirty(leaf); 5084 free_extent_buffer(leaf); 5085 } 5086 } else { 5087 btrfs_mark_buffer_dirty(leaf); 5088 } 5089 } 5090 return ret; 5091 } 5092 5093 /* 5094 * search the tree again to find a leaf with lesser keys 5095 * returns 0 if it found something or 1 if there are no lesser leaves. 5096 * returns < 0 on io errors. 5097 * 5098 * This may release the path, and so you may lose any locks held at the 5099 * time you call it. 5100 */ 5101 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5102 { 5103 struct btrfs_key key; 5104 struct btrfs_disk_key found_key; 5105 int ret; 5106 5107 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5108 5109 if (key.offset > 0) { 5110 key.offset--; 5111 } else if (key.type > 0) { 5112 key.type--; 5113 key.offset = (u64)-1; 5114 } else if (key.objectid > 0) { 5115 key.objectid--; 5116 key.type = (u8)-1; 5117 key.offset = (u64)-1; 5118 } else { 5119 return 1; 5120 } 5121 5122 btrfs_release_path(path); 5123 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5124 if (ret < 0) 5125 return ret; 5126 btrfs_item_key(path->nodes[0], &found_key, 0); 5127 ret = comp_keys(&found_key, &key); 5128 if (ret < 0) 5129 return 0; 5130 return 1; 5131 } 5132 5133 /* 5134 * A helper function to walk down the tree starting at min_key, and looking 5135 * for nodes or leaves that are have a minimum transaction id. 5136 * This is used by the btree defrag code, and tree logging 5137 * 5138 * This does not cow, but it does stuff the starting key it finds back 5139 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5140 * key and get a writable path. 5141 * 5142 * This does lock as it descends, and path->keep_locks should be set 5143 * to 1 by the caller. 5144 * 5145 * This honors path->lowest_level to prevent descent past a given level 5146 * of the tree. 5147 * 5148 * min_trans indicates the oldest transaction that you are interested 5149 * in walking through. Any nodes or leaves older than min_trans are 5150 * skipped over (without reading them). 5151 * 5152 * returns zero if something useful was found, < 0 on error and 1 if there 5153 * was nothing in the tree that matched the search criteria. 5154 */ 5155 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5156 struct btrfs_path *path, 5157 u64 min_trans) 5158 { 5159 struct extent_buffer *cur; 5160 struct btrfs_key found_key; 5161 int slot; 5162 int sret; 5163 u32 nritems; 5164 int level; 5165 int ret = 1; 5166 5167 WARN_ON(!path->keep_locks); 5168 again: 5169 cur = btrfs_read_lock_root_node(root); 5170 level = btrfs_header_level(cur); 5171 WARN_ON(path->nodes[level]); 5172 path->nodes[level] = cur; 5173 path->locks[level] = BTRFS_READ_LOCK; 5174 5175 if (btrfs_header_generation(cur) < min_trans) { 5176 ret = 1; 5177 goto out; 5178 } 5179 while (1) { 5180 nritems = btrfs_header_nritems(cur); 5181 level = btrfs_header_level(cur); 5182 sret = bin_search(cur, min_key, level, &slot); 5183 5184 /* at the lowest level, we're done, setup the path and exit */ 5185 if (level == path->lowest_level) { 5186 if (slot >= nritems) 5187 goto find_next_key; 5188 ret = 0; 5189 path->slots[level] = slot; 5190 btrfs_item_key_to_cpu(cur, &found_key, slot); 5191 goto out; 5192 } 5193 if (sret && slot > 0) 5194 slot--; 5195 /* 5196 * check this node pointer against the min_trans parameters. 5197 * If it is too old, old, skip to the next one. 5198 */ 5199 while (slot < nritems) { 5200 u64 gen; 5201 5202 gen = btrfs_node_ptr_generation(cur, slot); 5203 if (gen < min_trans) { 5204 slot++; 5205 continue; 5206 } 5207 break; 5208 } 5209 find_next_key: 5210 /* 5211 * we didn't find a candidate key in this node, walk forward 5212 * and find another one 5213 */ 5214 if (slot >= nritems) { 5215 path->slots[level] = slot; 5216 btrfs_set_path_blocking(path); 5217 sret = btrfs_find_next_key(root, path, min_key, level, 5218 min_trans); 5219 if (sret == 0) { 5220 btrfs_release_path(path); 5221 goto again; 5222 } else { 5223 goto out; 5224 } 5225 } 5226 /* save our key for returning back */ 5227 btrfs_node_key_to_cpu(cur, &found_key, slot); 5228 path->slots[level] = slot; 5229 if (level == path->lowest_level) { 5230 ret = 0; 5231 unlock_up(path, level, 1, 0, NULL); 5232 goto out; 5233 } 5234 btrfs_set_path_blocking(path); 5235 cur = read_node_slot(root, cur, slot); 5236 BUG_ON(!cur); /* -ENOMEM */ 5237 5238 btrfs_tree_read_lock(cur); 5239 5240 path->locks[level - 1] = BTRFS_READ_LOCK; 5241 path->nodes[level - 1] = cur; 5242 unlock_up(path, level, 1, 0, NULL); 5243 btrfs_clear_path_blocking(path, NULL, 0); 5244 } 5245 out: 5246 if (ret == 0) 5247 memcpy(min_key, &found_key, sizeof(found_key)); 5248 btrfs_set_path_blocking(path); 5249 return ret; 5250 } 5251 5252 static void tree_move_down(struct btrfs_root *root, 5253 struct btrfs_path *path, 5254 int *level, int root_level) 5255 { 5256 BUG_ON(*level == 0); 5257 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 5258 path->slots[*level]); 5259 path->slots[*level - 1] = 0; 5260 (*level)--; 5261 } 5262 5263 static int tree_move_next_or_upnext(struct btrfs_root *root, 5264 struct btrfs_path *path, 5265 int *level, int root_level) 5266 { 5267 int ret = 0; 5268 int nritems; 5269 nritems = btrfs_header_nritems(path->nodes[*level]); 5270 5271 path->slots[*level]++; 5272 5273 while (path->slots[*level] >= nritems) { 5274 if (*level == root_level) 5275 return -1; 5276 5277 /* move upnext */ 5278 path->slots[*level] = 0; 5279 free_extent_buffer(path->nodes[*level]); 5280 path->nodes[*level] = NULL; 5281 (*level)++; 5282 path->slots[*level]++; 5283 5284 nritems = btrfs_header_nritems(path->nodes[*level]); 5285 ret = 1; 5286 } 5287 return ret; 5288 } 5289 5290 /* 5291 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5292 * or down. 5293 */ 5294 static int tree_advance(struct btrfs_root *root, 5295 struct btrfs_path *path, 5296 int *level, int root_level, 5297 int allow_down, 5298 struct btrfs_key *key) 5299 { 5300 int ret; 5301 5302 if (*level == 0 || !allow_down) { 5303 ret = tree_move_next_or_upnext(root, path, level, root_level); 5304 } else { 5305 tree_move_down(root, path, level, root_level); 5306 ret = 0; 5307 } 5308 if (ret >= 0) { 5309 if (*level == 0) 5310 btrfs_item_key_to_cpu(path->nodes[*level], key, 5311 path->slots[*level]); 5312 else 5313 btrfs_node_key_to_cpu(path->nodes[*level], key, 5314 path->slots[*level]); 5315 } 5316 return ret; 5317 } 5318 5319 static int tree_compare_item(struct btrfs_root *left_root, 5320 struct btrfs_path *left_path, 5321 struct btrfs_path *right_path, 5322 char *tmp_buf) 5323 { 5324 int cmp; 5325 int len1, len2; 5326 unsigned long off1, off2; 5327 5328 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5329 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5330 if (len1 != len2) 5331 return 1; 5332 5333 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5334 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5335 right_path->slots[0]); 5336 5337 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5338 5339 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5340 if (cmp) 5341 return 1; 5342 return 0; 5343 } 5344 5345 #define ADVANCE 1 5346 #define ADVANCE_ONLY_NEXT -1 5347 5348 /* 5349 * This function compares two trees and calls the provided callback for 5350 * every changed/new/deleted item it finds. 5351 * If shared tree blocks are encountered, whole subtrees are skipped, making 5352 * the compare pretty fast on snapshotted subvolumes. 5353 * 5354 * This currently works on commit roots only. As commit roots are read only, 5355 * we don't do any locking. The commit roots are protected with transactions. 5356 * Transactions are ended and rejoined when a commit is tried in between. 5357 * 5358 * This function checks for modifications done to the trees while comparing. 5359 * If it detects a change, it aborts immediately. 5360 */ 5361 int btrfs_compare_trees(struct btrfs_root *left_root, 5362 struct btrfs_root *right_root, 5363 btrfs_changed_cb_t changed_cb, void *ctx) 5364 { 5365 int ret; 5366 int cmp; 5367 struct btrfs_path *left_path = NULL; 5368 struct btrfs_path *right_path = NULL; 5369 struct btrfs_key left_key; 5370 struct btrfs_key right_key; 5371 char *tmp_buf = NULL; 5372 int left_root_level; 5373 int right_root_level; 5374 int left_level; 5375 int right_level; 5376 int left_end_reached; 5377 int right_end_reached; 5378 int advance_left; 5379 int advance_right; 5380 u64 left_blockptr; 5381 u64 right_blockptr; 5382 u64 left_gen; 5383 u64 right_gen; 5384 5385 left_path = btrfs_alloc_path(); 5386 if (!left_path) { 5387 ret = -ENOMEM; 5388 goto out; 5389 } 5390 right_path = btrfs_alloc_path(); 5391 if (!right_path) { 5392 ret = -ENOMEM; 5393 goto out; 5394 } 5395 5396 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS); 5397 if (!tmp_buf) { 5398 ret = -ENOMEM; 5399 goto out; 5400 } 5401 5402 left_path->search_commit_root = 1; 5403 left_path->skip_locking = 1; 5404 right_path->search_commit_root = 1; 5405 right_path->skip_locking = 1; 5406 5407 /* 5408 * Strategy: Go to the first items of both trees. Then do 5409 * 5410 * If both trees are at level 0 5411 * Compare keys of current items 5412 * If left < right treat left item as new, advance left tree 5413 * and repeat 5414 * If left > right treat right item as deleted, advance right tree 5415 * and repeat 5416 * If left == right do deep compare of items, treat as changed if 5417 * needed, advance both trees and repeat 5418 * If both trees are at the same level but not at level 0 5419 * Compare keys of current nodes/leafs 5420 * If left < right advance left tree and repeat 5421 * If left > right advance right tree and repeat 5422 * If left == right compare blockptrs of the next nodes/leafs 5423 * If they match advance both trees but stay at the same level 5424 * and repeat 5425 * If they don't match advance both trees while allowing to go 5426 * deeper and repeat 5427 * If tree levels are different 5428 * Advance the tree that needs it and repeat 5429 * 5430 * Advancing a tree means: 5431 * If we are at level 0, try to go to the next slot. If that's not 5432 * possible, go one level up and repeat. Stop when we found a level 5433 * where we could go to the next slot. We may at this point be on a 5434 * node or a leaf. 5435 * 5436 * If we are not at level 0 and not on shared tree blocks, go one 5437 * level deeper. 5438 * 5439 * If we are not at level 0 and on shared tree blocks, go one slot to 5440 * the right if possible or go up and right. 5441 */ 5442 5443 down_read(&left_root->fs_info->commit_root_sem); 5444 left_level = btrfs_header_level(left_root->commit_root); 5445 left_root_level = left_level; 5446 left_path->nodes[left_level] = left_root->commit_root; 5447 extent_buffer_get(left_path->nodes[left_level]); 5448 5449 right_level = btrfs_header_level(right_root->commit_root); 5450 right_root_level = right_level; 5451 right_path->nodes[right_level] = right_root->commit_root; 5452 extent_buffer_get(right_path->nodes[right_level]); 5453 up_read(&left_root->fs_info->commit_root_sem); 5454 5455 if (left_level == 0) 5456 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5457 &left_key, left_path->slots[left_level]); 5458 else 5459 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5460 &left_key, left_path->slots[left_level]); 5461 if (right_level == 0) 5462 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5463 &right_key, right_path->slots[right_level]); 5464 else 5465 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5466 &right_key, right_path->slots[right_level]); 5467 5468 left_end_reached = right_end_reached = 0; 5469 advance_left = advance_right = 0; 5470 5471 while (1) { 5472 if (advance_left && !left_end_reached) { 5473 ret = tree_advance(left_root, left_path, &left_level, 5474 left_root_level, 5475 advance_left != ADVANCE_ONLY_NEXT, 5476 &left_key); 5477 if (ret < 0) 5478 left_end_reached = ADVANCE; 5479 advance_left = 0; 5480 } 5481 if (advance_right && !right_end_reached) { 5482 ret = tree_advance(right_root, right_path, &right_level, 5483 right_root_level, 5484 advance_right != ADVANCE_ONLY_NEXT, 5485 &right_key); 5486 if (ret < 0) 5487 right_end_reached = ADVANCE; 5488 advance_right = 0; 5489 } 5490 5491 if (left_end_reached && right_end_reached) { 5492 ret = 0; 5493 goto out; 5494 } else if (left_end_reached) { 5495 if (right_level == 0) { 5496 ret = changed_cb(left_root, right_root, 5497 left_path, right_path, 5498 &right_key, 5499 BTRFS_COMPARE_TREE_DELETED, 5500 ctx); 5501 if (ret < 0) 5502 goto out; 5503 } 5504 advance_right = ADVANCE; 5505 continue; 5506 } else if (right_end_reached) { 5507 if (left_level == 0) { 5508 ret = changed_cb(left_root, right_root, 5509 left_path, right_path, 5510 &left_key, 5511 BTRFS_COMPARE_TREE_NEW, 5512 ctx); 5513 if (ret < 0) 5514 goto out; 5515 } 5516 advance_left = ADVANCE; 5517 continue; 5518 } 5519 5520 if (left_level == 0 && right_level == 0) { 5521 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5522 if (cmp < 0) { 5523 ret = changed_cb(left_root, right_root, 5524 left_path, right_path, 5525 &left_key, 5526 BTRFS_COMPARE_TREE_NEW, 5527 ctx); 5528 if (ret < 0) 5529 goto out; 5530 advance_left = ADVANCE; 5531 } else if (cmp > 0) { 5532 ret = changed_cb(left_root, right_root, 5533 left_path, right_path, 5534 &right_key, 5535 BTRFS_COMPARE_TREE_DELETED, 5536 ctx); 5537 if (ret < 0) 5538 goto out; 5539 advance_right = ADVANCE; 5540 } else { 5541 enum btrfs_compare_tree_result cmp; 5542 5543 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5544 ret = tree_compare_item(left_root, left_path, 5545 right_path, tmp_buf); 5546 if (ret) 5547 cmp = BTRFS_COMPARE_TREE_CHANGED; 5548 else 5549 cmp = BTRFS_COMPARE_TREE_SAME; 5550 ret = changed_cb(left_root, right_root, 5551 left_path, right_path, 5552 &left_key, cmp, ctx); 5553 if (ret < 0) 5554 goto out; 5555 advance_left = ADVANCE; 5556 advance_right = ADVANCE; 5557 } 5558 } else if (left_level == right_level) { 5559 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5560 if (cmp < 0) { 5561 advance_left = ADVANCE; 5562 } else if (cmp > 0) { 5563 advance_right = ADVANCE; 5564 } else { 5565 left_blockptr = btrfs_node_blockptr( 5566 left_path->nodes[left_level], 5567 left_path->slots[left_level]); 5568 right_blockptr = btrfs_node_blockptr( 5569 right_path->nodes[right_level], 5570 right_path->slots[right_level]); 5571 left_gen = btrfs_node_ptr_generation( 5572 left_path->nodes[left_level], 5573 left_path->slots[left_level]); 5574 right_gen = btrfs_node_ptr_generation( 5575 right_path->nodes[right_level], 5576 right_path->slots[right_level]); 5577 if (left_blockptr == right_blockptr && 5578 left_gen == right_gen) { 5579 /* 5580 * As we're on a shared block, don't 5581 * allow to go deeper. 5582 */ 5583 advance_left = ADVANCE_ONLY_NEXT; 5584 advance_right = ADVANCE_ONLY_NEXT; 5585 } else { 5586 advance_left = ADVANCE; 5587 advance_right = ADVANCE; 5588 } 5589 } 5590 } else if (left_level < right_level) { 5591 advance_right = ADVANCE; 5592 } else { 5593 advance_left = ADVANCE; 5594 } 5595 } 5596 5597 out: 5598 btrfs_free_path(left_path); 5599 btrfs_free_path(right_path); 5600 kfree(tmp_buf); 5601 return ret; 5602 } 5603 5604 /* 5605 * this is similar to btrfs_next_leaf, but does not try to preserve 5606 * and fixup the path. It looks for and returns the next key in the 5607 * tree based on the current path and the min_trans parameters. 5608 * 5609 * 0 is returned if another key is found, < 0 if there are any errors 5610 * and 1 is returned if there are no higher keys in the tree 5611 * 5612 * path->keep_locks should be set to 1 on the search made before 5613 * calling this function. 5614 */ 5615 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5616 struct btrfs_key *key, int level, u64 min_trans) 5617 { 5618 int slot; 5619 struct extent_buffer *c; 5620 5621 WARN_ON(!path->keep_locks); 5622 while (level < BTRFS_MAX_LEVEL) { 5623 if (!path->nodes[level]) 5624 return 1; 5625 5626 slot = path->slots[level] + 1; 5627 c = path->nodes[level]; 5628 next: 5629 if (slot >= btrfs_header_nritems(c)) { 5630 int ret; 5631 int orig_lowest; 5632 struct btrfs_key cur_key; 5633 if (level + 1 >= BTRFS_MAX_LEVEL || 5634 !path->nodes[level + 1]) 5635 return 1; 5636 5637 if (path->locks[level + 1]) { 5638 level++; 5639 continue; 5640 } 5641 5642 slot = btrfs_header_nritems(c) - 1; 5643 if (level == 0) 5644 btrfs_item_key_to_cpu(c, &cur_key, slot); 5645 else 5646 btrfs_node_key_to_cpu(c, &cur_key, slot); 5647 5648 orig_lowest = path->lowest_level; 5649 btrfs_release_path(path); 5650 path->lowest_level = level; 5651 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5652 0, 0); 5653 path->lowest_level = orig_lowest; 5654 if (ret < 0) 5655 return ret; 5656 5657 c = path->nodes[level]; 5658 slot = path->slots[level]; 5659 if (ret == 0) 5660 slot++; 5661 goto next; 5662 } 5663 5664 if (level == 0) 5665 btrfs_item_key_to_cpu(c, key, slot); 5666 else { 5667 u64 gen = btrfs_node_ptr_generation(c, slot); 5668 5669 if (gen < min_trans) { 5670 slot++; 5671 goto next; 5672 } 5673 btrfs_node_key_to_cpu(c, key, slot); 5674 } 5675 return 0; 5676 } 5677 return 1; 5678 } 5679 5680 /* 5681 * search the tree again to find a leaf with greater keys 5682 * returns 0 if it found something or 1 if there are no greater leaves. 5683 * returns < 0 on io errors. 5684 */ 5685 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5686 { 5687 return btrfs_next_old_leaf(root, path, 0); 5688 } 5689 5690 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5691 u64 time_seq) 5692 { 5693 int slot; 5694 int level; 5695 struct extent_buffer *c; 5696 struct extent_buffer *next; 5697 struct btrfs_key key; 5698 u32 nritems; 5699 int ret; 5700 int old_spinning = path->leave_spinning; 5701 int next_rw_lock = 0; 5702 5703 nritems = btrfs_header_nritems(path->nodes[0]); 5704 if (nritems == 0) 5705 return 1; 5706 5707 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5708 again: 5709 level = 1; 5710 next = NULL; 5711 next_rw_lock = 0; 5712 btrfs_release_path(path); 5713 5714 path->keep_locks = 1; 5715 path->leave_spinning = 1; 5716 5717 if (time_seq) 5718 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5719 else 5720 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5721 path->keep_locks = 0; 5722 5723 if (ret < 0) 5724 return ret; 5725 5726 nritems = btrfs_header_nritems(path->nodes[0]); 5727 /* 5728 * by releasing the path above we dropped all our locks. A balance 5729 * could have added more items next to the key that used to be 5730 * at the very end of the block. So, check again here and 5731 * advance the path if there are now more items available. 5732 */ 5733 if (nritems > 0 && path->slots[0] < nritems - 1) { 5734 if (ret == 0) 5735 path->slots[0]++; 5736 ret = 0; 5737 goto done; 5738 } 5739 5740 while (level < BTRFS_MAX_LEVEL) { 5741 if (!path->nodes[level]) { 5742 ret = 1; 5743 goto done; 5744 } 5745 5746 slot = path->slots[level] + 1; 5747 c = path->nodes[level]; 5748 if (slot >= btrfs_header_nritems(c)) { 5749 level++; 5750 if (level == BTRFS_MAX_LEVEL) { 5751 ret = 1; 5752 goto done; 5753 } 5754 continue; 5755 } 5756 5757 if (next) { 5758 btrfs_tree_unlock_rw(next, next_rw_lock); 5759 free_extent_buffer(next); 5760 } 5761 5762 next = c; 5763 next_rw_lock = path->locks[level]; 5764 ret = read_block_for_search(NULL, root, path, &next, level, 5765 slot, &key, 0); 5766 if (ret == -EAGAIN) 5767 goto again; 5768 5769 if (ret < 0) { 5770 btrfs_release_path(path); 5771 goto done; 5772 } 5773 5774 if (!path->skip_locking) { 5775 ret = btrfs_try_tree_read_lock(next); 5776 if (!ret && time_seq) { 5777 /* 5778 * If we don't get the lock, we may be racing 5779 * with push_leaf_left, holding that lock while 5780 * itself waiting for the leaf we've currently 5781 * locked. To solve this situation, we give up 5782 * on our lock and cycle. 5783 */ 5784 free_extent_buffer(next); 5785 btrfs_release_path(path); 5786 cond_resched(); 5787 goto again; 5788 } 5789 if (!ret) { 5790 btrfs_set_path_blocking(path); 5791 btrfs_tree_read_lock(next); 5792 btrfs_clear_path_blocking(path, next, 5793 BTRFS_READ_LOCK); 5794 } 5795 next_rw_lock = BTRFS_READ_LOCK; 5796 } 5797 break; 5798 } 5799 path->slots[level] = slot; 5800 while (1) { 5801 level--; 5802 c = path->nodes[level]; 5803 if (path->locks[level]) 5804 btrfs_tree_unlock_rw(c, path->locks[level]); 5805 5806 free_extent_buffer(c); 5807 path->nodes[level] = next; 5808 path->slots[level] = 0; 5809 if (!path->skip_locking) 5810 path->locks[level] = next_rw_lock; 5811 if (!level) 5812 break; 5813 5814 ret = read_block_for_search(NULL, root, path, &next, level, 5815 0, &key, 0); 5816 if (ret == -EAGAIN) 5817 goto again; 5818 5819 if (ret < 0) { 5820 btrfs_release_path(path); 5821 goto done; 5822 } 5823 5824 if (!path->skip_locking) { 5825 ret = btrfs_try_tree_read_lock(next); 5826 if (!ret) { 5827 btrfs_set_path_blocking(path); 5828 btrfs_tree_read_lock(next); 5829 btrfs_clear_path_blocking(path, next, 5830 BTRFS_READ_LOCK); 5831 } 5832 next_rw_lock = BTRFS_READ_LOCK; 5833 } 5834 } 5835 ret = 0; 5836 done: 5837 unlock_up(path, 0, 1, 0, NULL); 5838 path->leave_spinning = old_spinning; 5839 if (!old_spinning) 5840 btrfs_set_path_blocking(path); 5841 5842 return ret; 5843 } 5844 5845 /* 5846 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5847 * searching until it gets past min_objectid or finds an item of 'type' 5848 * 5849 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5850 */ 5851 int btrfs_previous_item(struct btrfs_root *root, 5852 struct btrfs_path *path, u64 min_objectid, 5853 int type) 5854 { 5855 struct btrfs_key found_key; 5856 struct extent_buffer *leaf; 5857 u32 nritems; 5858 int ret; 5859 5860 while (1) { 5861 if (path->slots[0] == 0) { 5862 btrfs_set_path_blocking(path); 5863 ret = btrfs_prev_leaf(root, path); 5864 if (ret != 0) 5865 return ret; 5866 } else { 5867 path->slots[0]--; 5868 } 5869 leaf = path->nodes[0]; 5870 nritems = btrfs_header_nritems(leaf); 5871 if (nritems == 0) 5872 return 1; 5873 if (path->slots[0] == nritems) 5874 path->slots[0]--; 5875 5876 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5877 if (found_key.objectid < min_objectid) 5878 break; 5879 if (found_key.type == type) 5880 return 0; 5881 if (found_key.objectid == min_objectid && 5882 found_key.type < type) 5883 break; 5884 } 5885 return 1; 5886 } 5887 5888 /* 5889 * search in extent tree to find a previous Metadata/Data extent item with 5890 * min objecitd. 5891 * 5892 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5893 */ 5894 int btrfs_previous_extent_item(struct btrfs_root *root, 5895 struct btrfs_path *path, u64 min_objectid) 5896 { 5897 struct btrfs_key found_key; 5898 struct extent_buffer *leaf; 5899 u32 nritems; 5900 int ret; 5901 5902 while (1) { 5903 if (path->slots[0] == 0) { 5904 btrfs_set_path_blocking(path); 5905 ret = btrfs_prev_leaf(root, path); 5906 if (ret != 0) 5907 return ret; 5908 } else { 5909 path->slots[0]--; 5910 } 5911 leaf = path->nodes[0]; 5912 nritems = btrfs_header_nritems(leaf); 5913 if (nritems == 0) 5914 return 1; 5915 if (path->slots[0] == nritems) 5916 path->slots[0]--; 5917 5918 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5919 if (found_key.objectid < min_objectid) 5920 break; 5921 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5922 found_key.type == BTRFS_METADATA_ITEM_KEY) 5923 return 0; 5924 if (found_key.objectid == min_objectid && 5925 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5926 break; 5927 } 5928 return 1; 5929 } 5930